Sample records for observatory sdo atmospheric

  1. Computer Vision for the Solar Dynamics Observatory (SDO)

    NASA Astrophysics Data System (ADS)

    Martens, P. C. H.; Attrill, G. D. R.; Davey, A. R.; Engell, A.; Farid, S.; Grigis, P. C.; Kasper, J.; Korreck, K.; Saar, S. H.; Savcheva, A.; Su, Y.; Testa, P.; Wills-Davey, M.; Bernasconi, P. N.; Raouafi, N.-E.; Delouille, V. A.; Hochedez, J. F.; Cirtain, J. W.; Deforest, C. E.; Angryk, R. A.; de Moortel, I.; Wiegelmann, T.; Georgoulis, M. K.; McAteer, R. T. J.; Timmons, R. P.

    2012-01-01

    In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/ Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre- Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic

  2. Ground System for Solar Dynamics Observatory (SDO) Mission

    NASA Technical Reports Server (NTRS)

    Tann, Hun K.; Silva, Christopher J.; Pages, Raymond J.

    2005-01-01

    NASA s Goddard Space Flight Center (GSFC) has recently completed its Critical Design Review (CDR) of a new dual Ka and S-band ground system for the Solar Dynamics Observatory (SDO) Mission. SDO, the flagship mission under the new Living with a Star Program Office, is one of GSFC s most recent large-scale in-house missions. The observatory is scheduled for launch in August 2008 from the Kennedy Space Center aboard an Atlas-5 expendable launch vehicle. Unique to this mission is an extremely challenging science data capture requirement. The mission is required to capture 99.99% of available science over 95% of all observation opportunities. Due to the continuous, high volume (150 Mbps) science data rate, no on-board storage of science data will be implemented on this mission. With the observatory placed in a geo-synchronous orbit at 36,000 kilometers within view of dedicated ground stations, the ground system will in effect implement a "real-time" science data pipeline with appropriate data accounting, data storage, data distribution, data recovery, and automated system failure detection and correction to keep the science data flowing continuously to three separate Science Operations Centers (SOCs). Data storage rates of approx. 45 Tera-bytes per month are expected. The Mission Operations Center (MOC) will be based at GSFC and is designed to be highly automated. Three SOCs will share in the observatory operations, each operating their own instrument. Remote operations of a multi-antenna ground station in White Sands, New Mexico from the MOC is part of the design baseline.

  3. SDO Transit, September 2015

    NASA Image and Video Library

    2015-09-13

    On Sept. 13, 2015, as NASA's Solar Dynamics Observatory, or SDO, kept up its constant watch on the sun, its view was photobombed not once, but twice. Just as the moon came into SDO's field of view on a path to cross the sun, Earth entered the picture, blocking SDO's view completely. When SDO's orbit finally emerged from behind Earth, the moon was just completing its journey across the sun's face. Though SDO sees dozens of Earth eclipses and several lunar transits each year, this is the first time ever that the two have coincided. SDO's orbit usually gives us unobstructed views of the sun, but Earth's revolution around the sun means that SDO's orbit passes behind Earth twice each year, for two to three weeks at a time. During these phases, Earth blocks SDO's view of the sun for anywhere from a few minutes to over an hour once each day. Earth's outline looks fuzzy, while the moon's is crystal-clear. This is because-while the planet itself completely blocks the sun's light-Earth's atmosphere is an incomplete barrier, blocking different amounts of light at different altitudes. However, the moon has no atmosphere, so during the transit we can see the crisp edges of the moon's horizon. http://photojournal.jpl.nasa.gov/catalog/PIA19949

  4. NASA's Solar Dynamics Observatory (SDO): A Systems Approach to a Complex Mission

    NASA Technical Reports Server (NTRS)

    Ruffa, John A.; Ward, David K.; Bartusek, LIsa M.; Bay, Michael; Gonzales, Peter J.; Pesnell, William D.

    2012-01-01

    The Solar Dynamics Observatory (SDO) includes three advanced instruments, massive science data volume, stringent science data completeness requirements, and a custom ground station to meet mission demands. The strict instrument science requirements imposed a number of challenging drivers on the overall mission system design, leading the SDO team to adopt an integrated systems engineering presence across all aspects of the mission to ensure that mission science requirements would be met. Key strategies were devised to address these system level drivers and mitigate identified threats to mission success. The global systems engineering team approach ensured that key drivers and risk areas were rigorously addressed through all phases of the mission, leading to the successful SDO launch and on-orbit operation. Since launch, SDO's on-orbit performance has met all mission science requirements and enabled groundbreaking science observations, expanding our understanding of the Sun and its dynamic processes.

  5. NASA's Solar Dynamics Observatory (SDO): A Systems Approach to a Complex Mission

    NASA Technical Reports Server (NTRS)

    Ruffa, John A.; Ward, David K.; Bartusek, Lisa M.; Bay, Michael; Gonzales, Peter J.; Pesnell, William D.

    2012-01-01

    The Solar Dynamics Observatory (SDO) includes three advanced instruments, massive science data volume, stringent science data completeness requirements, and a custom ground station to meet mission demands. The strict instrument science requirements imposed a number of challenging drivers on the overall mission system design, leading the SDO team to adopt an integrated systems engineering presence across all aspects of the mission to ensure that mission science requirements would be met. Key strategies were devised to address these system level drivers and mitigate identified threats to mission success. The global systems engineering team approach ensured that key drivers and risk areas were rigorously addressed through all phases of the mission, leading to the successful SDO launch and on-orbit operation. Since launch, SDO s on-orbit performance has met all mission science requirements and enabled groundbreaking science observations, expanding our understanding of the Sun and its dynamic processes.

  6. NASA's SDO Sees Lunar Transit

    NASA Image and Video Library

    2017-12-08

    NASA's Solar Dynamics Observatory captured this image of the moon crossing in front of its view of the sun on Jan. 30, 2014, at 9:00 a.m. EST. -- On Jan 30, 2014, beginning at 8:31 a.m EST, the moon moved between NASA’s Solar Dynamics Observatory, or SDO, and the sun, giving the observatory a view of a partial solar eclipse from space. Such a lunar transit happens two to three times each year. This one lasted two and one half hours, which is the longest ever recorded. When the next one will occur is as of yet unknown due to planned adjustments in SDO's orbit. Note in the picture how crisp the horizon is on the moon, a reflection of the fact that the moon has no atmosphere around it to distort the light from the sun. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. SDO Collects Its 100 Millionth Image

    NASA Image and Video Library

    2015-01-20

    An instrument on our Solar Dynamics Observatory (SDO) captured its 100 millionth image of the sun. The instrument is the Atmospheric Imaging Assembly, or AIA, which uses four telescopes working parallel to gather eight images of the sun – cycling through 10 different wavelengths -- every 12 seconds. This is a processed image of SDO multiwavelength blend from Jan. 19, 2015, the date of the spacecraft's 100th millionth image release. Credit: NASA/Goddard/SDO Read more: www.nasa.gov/content/goddard/sdo-telescope-collects-its-1... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Solar Dynamics Observatory Artist Concept

    NASA Image and Video Library

    2010-02-11

    The Solar Dynamics Observatory SDO spacecraft, shown above the Earth as it faces toward the Sun. SDO is designed to study the influence of the Sun on the Earth and the inner solar system by studying the solar atmosphere. http://photojournal.jpl.nasa.gov/catalog/PIA18169

  9. Design and Development of the Solar Dynamics Observatory (SDO) Electrical Power System

    NASA Technical Reports Server (NTRS)

    Denney, Keys; Burns, Michael; Kercheval, Bradford

    2009-01-01

    The SDO spacecraft was designed to help us understand the Sun's influence on Earth and Near-Earth space by studying the solar atmosphere on small scales of space and time and in many wavelengths simultaneously. It will perform its operations in a geosynchronous orbit of the earth. This paper will present background on the SDO mission, an overview of the design and development activities associated specifically with the SDO electrical power system (EPS), as well as the major driving requirements behind the mission design. The primary coverage of the paper will be devoted to some of the challenges faced during the design and development phase. This will include the challenges associated with development of a compatible CompactPCI (cPCI) interface within the Power System Electronics (PSE) in order to utilize a "common" processor card, implementation of new solid state power controllers (SSPC) for primary load distribution switching and over current protection in the PSE, and the design approach adopted to meet single fault tolerance requirements for all of the SDO EPS functions.

  10. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Scientists involved in NASA's Solar Dynamics Observatory (SDO) mission attend a press conference to discuss recent images captured by the SDO spacecraft Wednesday, April 21, 2010, at the Newseum in Washington. Pictured right to left are: Madhulika Guhathakurta, SDO program scientist, NASA Headquarters in Washington; Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto and Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. Photo Credit: (NASA/Carla Cioffi)

  11. NASA's SDO Shows Moon Transiting the Sun

    NASA Image and Video Library

    2017-12-08

    On Nov. 22, 2014 from 5:29 to 6:04 p.m. EST., the moon partially obscured the view of the sun from NASA's Solar Dynamics Observatory. This phenomenon, which is called a lunar transit, could only be seen from SDO's point of view. In 2014, SDO captured four such transits -- including its longest ever recorded, which occurred on Jan. 30, and lasted two and a half hours. SDO imagery during a lunar transit always shows a crisp horizon on the moon -- a reflection of the fact that the moon has no atmosphere around it to distort the light from the sun. The horizon is so clear in these images that mountains and valleys in the terrain can be seen. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Scientists involved in NASA's Solar Dynamics Observatory (SDO) mission attend a press conference to discuss recent images captured by the SDO spacecraft Wednesday, April 21, 2010, at the Newseum in Washington. On Feb. 11, 2010, NASA launched the SDO spacecraft, which is the most advanced spacecraft ever designed to study the sun. Seated left to right are: Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md.; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment Instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder and Madhulika Guhathakurta, SDO program scientist, NASA Headquarters in Washington. Photo Credit: (NASA/Carla Cioffi)

  13. The Solar Dynamics Observatory (SDO) Education and Outreach (E/PO) Program: Changing Perceptions One Program at a Time

    NASA Technical Reports Server (NTRS)

    Drobnes, Emilie; Littleton, A.; Pesnell, William D.; Beck, K.; Buhr, S.; Durscher, R.; Hill, S.; McCaffrey, M.; McKenzie, D. E.; Myers, D.; hide

    2013-01-01

    We outline the context and overall philosophy for the combined Solar Dynamics Observatory (SDO) Education and Public Outreach (E/PO) program, present a brief overview of all SDO E/PO programs along with more detailed highlights of a few key programs, followed by a review of our results to date, conclude a summary of the successes, failures, and lessons learned, which future missions can use as a guide, while incorporating their own content to enhance the public's knowledge and appreciation of science and technology as well as its benefit to society.

  14. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Madhulika Guhathakurta, SDO Program Scientist at NASA Headquarters in Washington, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Launched on Feb. 11, 2010, SDO is the most advanced spacecraft ever designed to study the sun. During its five-year mission, it will examine the sun's magnetic field and also provide a better understanding of the role the sun plays in Earth's atmospheric chemistry and climate. Photo Credit: (NASA/Carla Cioffi)

  15. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Madhulika Guhathakurta, far right, SDO Program Scientist at NASA Headquarters in Washington, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Pictured from left of Dr. Guhathakurta's are: Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto and Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. Photo Credit: (NASA/Carla Cioffi)

  16. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Alan Title, second from left, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Launched on Feb. 11, 2010, SDO is the most advanced spacecraft ever designed to study the sun. During its five-year mission, it will examine the sun's magnetic field and also provide a better understanding of the role the sun plays in Earth's atmospheric chemistry and climate. Pictured from left to right: Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md., Alan Title, Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto, Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder and Madhulika Guhathakurta, SDO program scientist, NASA Headquarters in Washington. Photo Credit: (NASA/Carla Cioffi)

  17. The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO)

    NASA Technical Reports Server (NTRS)

    Scherrer, Philip Hanby; Schou, Jesper; Bush, R. I.; Kosovichev, A. G.; Bogart, R. S.; Hoeksema, J. T.; Liu, Y.; Duvall, T. L., Jr.; Zhao, J.; Title, A. M.; hide

    2011-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument and investigation as a part of the NASA Solar Dynamics Observatory (SDO) is designed to study convection-zone dynamics and the solar dynamo, the origin and evolution of sunspots, active regions, and complexes of activity, the sources and drivers of solar magnetic activity and disturbances, links between the internal processes and dynamics of the corona and heliosphere, and precursors of solar disturbances for space-weather forecasts. A brief overview of the instrument, investigation objectives, and standard data products is presented.

  18. On-Orbit Solar Dynamics Observatory (SDO) Star Tracker Warm Pixel Analysis

    NASA Technical Reports Server (NTRS)

    Felikson, Denis; Ekinci, Matthew; Hashmall, Joseph A.; Vess, Melissa

    2011-01-01

    This paper describes the process of identification and analysis of warm pixels in two autonomous star trackers on the Solar Dynamics Observatory (SDO) mission. A brief description of the mission orbit and attitude regimes is discussed and pertinent star tracker hardware specifications are given. Warm pixels are defined and the Quality Index parameter is introduced, which can be explained qualitatively as a manifestation of a possible warm pixel event. A description of the algorithm used to identify warm pixel candidates is given. Finally, analysis of dumps of on-orbit star tracker charge coupled devices (CCD) images is presented and an operational plan going forward is discussed. SDO, launched on February 11, 2010, is operated from the NASA Goddard Space Flight Center (GSFC). SDO is in a geosynchronous orbit with a 28.5 inclination. The nominal mission attitude points the spacecraft X-axis at the Sun, with the spacecraft Z-axis roughly aligned with the Solar North Pole. The spacecraft Y-axis completes the triad. In attitude, SDO moves approximately 0.04 per hour, mostly about the spacecraft Z-axis. The SDO star trackers, manufactured by Galileo Avionica, project the images of stars in their 16.4deg x 16.4deg fields-of-view onto CCD detectors consisting of 512 x 512 pixels. The trackers autonomously identify the star patterns and provide an attitude estimate. Each unit is able to track up to 9 stars. Additionally, each tracker calculates a parameter called the Quality Index, which is a measure of the quality of the attitude solution. Each pixel in the CCD measures the intensity of light and a warns pixel is defined as having a measurement consistently and significantly higher than the mean background intensity level. A warns pixel should also have lower intensity than a pixel containing a star image and will not move across the field of view as the attitude changes (as would a dim star image). It should be noted that the maximum error introduced in the star tracker

  19. NASA's SDO Sees a Solar Flare and a Lunar Transit

    NASA Image and Video Library

    2017-12-08

    A solar flare erupts on Jan. 30, 2014, as seen by the bright flash on the left side of the sun, captured here by NASA's Solar Dynamics Observatory. In the lower right corner the moon can be seen, having just passed between the observatory and the sun. --- The sun emitted a mid-level solar flare, peaking at 11:11 a.m. EST on Jan. 30, 2014. Images of the flare were captured by NASA's Solar Dynamics Observatory, or SDO, shortly after the observatory witnessed a lunar transit. The black disk of the moon can be seen in the lower right of the images. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may impact Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an M6.6 class flare. Updates will be provided as needed. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Philip H. Scherrer (left) principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, while colleagues Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder and Madhulika Guhathakurta, SDO program scientist, NASA Headquarters (right) look on Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  1. NASA's SDO Sees Giant Filament on the Sun

    NASA Image and Video Library

    2015-02-10

    A dark line snaked across the lower half of the sun on Feb.10, 2015, as seen in this image from NASA's Solar Dynamics Observatory, or SDO. SDO shows colder material as dark and hotter material as light, so the line is, in fact, an enormous swatch of colder material hovering in the sun's atmosphere, the corona. Stretched out, that line – or solar filament as scientists call it – would be more than 533,000 miles long. That is longer than 67 Earths lined up in a row. Filaments can float sedately for days before disappearing. Sometimes they also erupt out into space, releasing solar material in a shower that either rains back down or escapes out into space, becoming a moving cloud known as a coronal mass ejection, or CME. SDO captured images of the filament in numerous wavelengths, each of which helps highlight material of different temperatures on the sun. By looking at such features in different wavelengths and temperatures, scientists learn more about what causes these structures, as well as what catalyzes their occasional eruptions. For more on SDO, visit: www.nasa.gov/sdo Karen C. Fox NASA's Goddard Space Flight Center, Greenbelt, Maryland Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Accessing eSDO Solar Image Processing and Visualization through AstroGrid

    NASA Astrophysics Data System (ADS)

    Auden, E.; Dalla, S.

    2008-08-01

    The eSDO project is funded by the UK's Science and Technology Facilities Council (STFC) to integrate Solar Dynamics Observatory (SDO) data, algorithms, and visualization tools with the UK's Virtual Observatory project, AstroGrid. In preparation for the SDO launch in January 2009, the eSDO team has developed nine algorithms covering coronal behaviour, feature recognition, and global / local helioseismology. Each of these algorithms has been deployed as an AstroGrid Common Execution Architecture (CEA) application so that they can be included in complex VO workflows. In addition, the PLASTIC-enabled eSDO "Streaming Tool" online movie application allows users to search multi-instrument solar archives through AstroGrid web services and visualise the image data through galleries, an interactive movie viewing applet, and QuickTime movies generated on-the-fly.

  3. Image Quality of the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO)

    NASA Technical Reports Server (NTRS)

    Wachter, R.; Schou, Jesper; Rabello-Soares, M. C.; Miles, J. W.; Duvall, T. L., Jr.; Bush, R. I.

    2011-01-01

    We describe the imaging quality of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) as measured during the ground calibration of the instrument. We describe the calibration techniques and report our results for the final configuration of HMI. We present the distortion, modulation transfer function, stray light,image shifts introduced by moving parts of the instrument, best focus, field curvature, and the relative alignment of the two cameras. We investigate the gain and linearity of the cameras, and present the measured flat field.

  4. NASA's SDO Shows Images of Significant Solar Flare

    NASA Image and Video Library

    2014-02-25

    Caption: These SDO images from 7:25 p.m. EST on Feb. 24, 2014, show the first moments of an X-class flare in different wavelengths of light -- seen as the bright spot that appears on the left limb of the sun. Hot solar material can be seen hovering above the active region in the sun's atmosphere, the corona. Credit: NASA/SDO More info: The sun emitted a significant solar flare, peaking at 7:49 p.m. EST on Feb. 24, 2014. NASA's Solar Dynamics Observatory, which keeps a constant watch on the sun, captured images of the event. Solar flares are powerful bursts of radiation, appearing as giant flashes of light in the SDO images. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X4.9-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. SDO Spots Extra Energy in the Sun's Corona

    NASA Image and Video Library

    2017-12-08

    NASA release July 27, 2011 These jets, known as spicules, were captured in an SDO image on April 25, 2010. Combined with the energy from ripples in the magnetic field, they may contain enough energy to power the solar wind that streams from the sun toward Earth at 1.5 million miles per hour. Credit: NASA/SDO/AIA Like giant strands of seaweed some 32,000 miles high, material shooting up from the sun sways back and forth with the atmosphere. In the ocean, it's moving water that pulls the seaweed along for a ride; in the sun's corona, magnetic field ripples called Alfvén waves cause the swaying. For years these waves were too difficult to detect directly, but NASA's Solar Dynamics Observatory (SDO) is now able to track the movements of this solar "seaweed" and measure how much energy is carried by the Alfvén waves. The research shows that the waves carry more energy than previously thought, and possibly enough to drive two solar phenomena whose causes remain points of debate: the intense heating of the corona to some 20 times hotter than the sun's surface and solar winds that blast up to 1.5 million miles per hour. "SDO has amazing resolution so you can actually see individual waves," says Scott McIntosh at the National Center for Atmospheric Research in Boulder, Colo. "Now we can see that instead of these waves having about 1000th the energy needed as we previously thought, it has the equivalent of about 1100W light bulb for every 11 square feet of the sun's surface, which is enough to heat the sun's atmosphere and drive the solar wind." To read more go to: www.nasa.gov/mission_pages/sdo/news/alfven-waves.html NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on

  6. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Tom Woods, (second from right), principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  7. Sun's influence on climate: Explored with SDO

    NASA Astrophysics Data System (ADS)

    Lundstedt, H.

    2010-09-01

    Stunning images and movies recorded of the Sun, with Solar Dynamics Observatory (SDO), makes one wonder: How would this change our view on the Sun-Earth climate coupling? SDO shows a much more variable Sun, on all spatial and temporal scales. Detailed pictures of solar storms are foreseen to improve our understanding of the direct Sun-Earth coupling. Dynamo models, described by dynamical systems using input from helioseismic observations, are foreseen to improve our knowledge of the the Sun's cyclic influence on climate. Both the direct-, and the cycle-influence will be discussed in view of the new SDO observations.

  8. Inflight Performance of the SDO Fine Pointing Science Mode

    NASA Technical Reports Server (NTRS)

    Mason, Paul; O'Donnell, James; Starin, Scott R.; Halverson, Julie; Vess, Melissa F.

    2017-01-01

    The Solar Dynamics Observatory (SDO) was successfully launched and deployed from its Atlas V launch vehicle on February 11, 2010. Three months later, on May 14, 2010, the fully commissioned heliophysics laboratory was handed over to Space Systems Mission Operations to begin its science mission. SDO is an Explorer-class mission now operating in a geosynchronous orbit, sending data 24 hours per day to a dedicated ground station in White Sands, New Mexico. It carries a suite of instruments designed to observe the Sun in multiple wavelengths at unprecedented resolution. The Atmospheric Imaging Assembly (AIA) includes four telescopes with 4096x4096 focal plane CCDs that can image the full solar disk in seven extreme ultraviolet and three ultraviolet-visible wavelengths. The Extreme Ultraviolet Variability Experiment (EVE) collects time-correlated data on the activity of the Sun's corona. The Helioseismic and Magnetic Imager (HMI) enables study of pressure waves moving through the body of the Sun.

  9. NASA’s SDO Watches Bursts of Solar Material

    NASA Image and Video Library

    2017-12-08

    Solar material repeatedly bursts from the sun in this close-up captured on July 9-10, 2016, by NASA’s Solar Dynamics Observatory, or SDO. The sun is composed of plasma, a gas in which the negative electrons move freely around the positive ions, forming a powerful mix of charged particles. Each burst of plasma licks out from the surface only to withdraw back into the active region – a dance commanded by complex magnetic forces above the sun. SDO captured this video in wavelengths of extreme ultraviolet light, which are typically invisible to our eyes. The imagery is colorized here in red for easy viewing. Credit: NASA/SDO/Goddard Space Flight Center/Joy Ng

  10. Using SDO/AIA to Understand the Thermal Evolution of Solar Prominence Formation

    NASA Astrophysics Data System (ADS)

    Viall, Nicholeen; M.; Kucera, Therese T.; Karpen, Judith

    2016-10-01

    In this study, we investigate prominence formation using time series analysis of Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA) data. We investigate the thermal properties of forming prominences by analyzing observed light curves using the same technique that we have already successfully applied to active regions to diagnose heating and cooling cycles. This technique tracks the thermal evolution using emission formed at different temperatures, made possible by AIA's different wavebands and high time resolution. We also compute the predicted light curves in the same SDO/AIA channels of a hydrodynamic model of thermal nonequilibrium formation of prominence material, an evaporation-condensation model. In these models of prominence formation, heating at the foot-points of sheared coronal flux-tubes results in evaporation of material of a few MK into the corona followed by catastrophic cooling of the hot material to form cool ( 10,000 K) prominence material. We demonstrate that the SDO/AIA light curves for flux tubes undergoing thermal nonequilibrium vary at different locations along the flux tube, especially in the region where the condensate forms, and we compare the predicted light curves with those observed. Supported by NASA's Living with a Star program.

  11. Solar Dynamics Observatory Briefing

    NASA Image and Video Library

    2010-01-21

    Madhulika Guhathakurta, SDO Program Scientist, speaks during a briefing to discuss the upcoming launch of NASA's Solar Dynamic Observatory, or SDO, Thursday, Jan. 21, 2010, at NASA Headquarters in Washington. The mission is to study the Sun and its dynamic behavior. Photo Credit: (NASA/Paul E. Alers)

  12. NASA's SDO Catches a Double Photobomb

    NASA Image and Video Library

    2017-12-08

    On Sept. 13, 2015, as NASA’s Solar Dynamics Observatory, or SDO, kept up its constant watch on the sun, its view was photobombed not once, but twice. Just as the moon came into SDO’s field of view on a path to cross the sun, Earth entered the picture, blocking SDO’s view completely. When SDO's view of the sun emerged from Earth’s shadow, the moon was just completing its journey across the sun’s face. Though SDO sees dozens of Earth eclipses and several lunar transits each year, this is the first time ever that the two have coincided. This alignment of the sun, moon and Earth also resulted in a partial solar eclipse on Sept. 13, visible only from parts of Africa and Antarctica. Read more: www.nasa.gov/feature/goddard/nasas-sdo-catches-a-double-p... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Fast and robust segmentation in the SDO-AIA era

    NASA Astrophysics Data System (ADS)

    Verbeeck, Cis; Delouille, Véronique; Mampaey, Benjamin; Hochedez, Jean-François; Boyes, David; Barra, Vincent

    Solar images from the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Ob-servatory (SDO) will flood the solar physics community with a wealth of information on solar variability, of great importance both in solar physics and in view of Space Weather applica-tions. Obtaining this information, however, requires the ability to automatically process large amounts of data in an objective fashion. In previous work, we have proposed a multi-channel unsupervised spatially-constrained multi-channel fuzzy clustering algorithm (SPoCA) that automatically segments EUV solar images into Active Regions (AR), Coronal Holes (CH), and Quiet Sun (QS). This algorithm will run in near real time on AIA data as part of the SDO Feature Finding Project, a suite of software pipeline modules for automated feature recognition and analysis for the imagery from SDO. After having corrected for the limb brightening effect, SPoCA computes an optimal clustering with respect to the regions of interest using fuzzy logic on a quality criterion to manage the various noises present in the images and the imprecision in the definition of the above regions. Next, the algorithm applies a morphological opening operation, smoothing the cluster edges while preserving their general shape. The process is fast and automatic. A lower size limit is used to distinguish AR from Bright Points. As the algorithm segments the coronal images according to their brightness, it might happen that an AR is detected as several disjoint pieces, if the brightness in between is somewhat lower. Morphological dilation is employed to reconstruct the AR themselves from their constituent pieces. Combining SPoCA's detection of AR, CH, and QS on subsequent images allows automatic tracking and naming of any region of interest. In the SDO software pipeline, SPoCA will auto-matically populate the Heliophysics Events Knowledgebase(HEK) with Active Region events. Further, the algorithm has a huge potential for correct and

  14. NASA's SDO Shows Images of Significant Solar Flare

    NASA Image and Video Library

    2017-12-08

    Caption: An X-class solar flare erupted on the left side of the sun on the evening of Feb. 24, 2014. This composite image, captured at 7:59 p.m. EST, shows the sun in X-ray light with wavelengths of both 131 and 171 angstroms. Credit: NASA/SDO More info: The sun emitted a significant solar flare, peaking at 7:49 p.m. EST on Feb. 24, 2014. NASA's Solar Dynamics Observatory, which keeps a constant watch on the sun, captured images of the event. Solar flares are powerful bursts of radiation, appearing as giant flashes of light in the SDO images. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X4.9-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Solar Dynamics Observatory Briefing

    NASA Image and Video Library

    2010-01-21

    Richard Fisher, Heliophysics Division Director at NASA Headquarters, left, speaks during a briefing to discuss the upcoming launch of NASA's Solar Dynamic Observatory, or SDO, Thursday, Jan. 21, 2010, as Madhulika Guhathakurta, SDO Program Scientist looks on at NASA Headquarters in Washington. The mission is to study the Sun and its dynamic behavior. Photo Credit: (NASA/Paul E. Alers)

  16. Automated Feature and Event Detection with SDO AIA and HMI Data

    NASA Astrophysics Data System (ADS)

    Davey, Alisdair; Martens, P. C. H.; Attrill, G. D. R.; Engell, A.; Farid, S.; Grigis, P. C.; Kasper, J.; Korreck, K.; Saar, S. H.; Su, Y.; Testa, P.; Wills-Davey, M.; Savcheva, A.; Bernasconi, P. N.; Raouafi, N.-E.; Delouille, V. A.; Hochedez, J. F..; Cirtain, J. W.; Deforest, C. E.; Angryk, R. A.; de Moortel, I.; Wiegelmann, T.; Georgouli, M. K.; McAteer, R. T. J.; Hurlburt, N.; Timmons, R.

    The Solar Dynamics Observatory (SDO) represents a new frontier in quantity and quality of solar data. At about 1.5 TB/day, the data will not be easily digestible by solar physicists using the same methods that have been employed for images from previous missions. In order for solar scientists to use the SDO data effectively they need meta-data that will allow them to identify and retrieve data sets that address their particular science questions. We are building a comprehensive computer vision pipeline for SDO, abstracting complete metadata on many of the features and events detectable on the Sun without human intervention. Our project unites more than a dozen individual, existing codes into a systematic tool that can be used by the entire solar community. The feature finding codes will run as part of the SDO Event Detection System (EDS) at the Joint Science Operations Center (JSOC; joint between Stanford and LMSAL). The metadata produced will be stored in the Heliophysics Event Knowledgebase (HEK), which will be accessible on-line for the rest of the world directly or via the Virtual Solar Observatory (VSO) . Solar scientists will be able to use the HEK to select event and feature data to download for science studies.

  17. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  18. Accessing SDO data in a pipeline environment using the VSO WSDL/SOAP interface

    NASA Astrophysics Data System (ADS)

    Suarez Sola, F. I.; Hourcle, J. A.; Amezcua, A.; Bogart, R.; Davey, A. R.; Gurman, J. B.; Hill, F.; Hughitt, V. K.; Martens, P. C.; Spencer, J.; Vso Team

    2010-12-01

    As part of the Virtual Solar Observatory (VSO) effort to support the Solar Dynamics Observatory (SDO) data, the VSO has worked on bringing up to date its WSDL document and SOAP interface to make it compatible with most widely used web services core engines. (E.g. axis2, jws, etc.) In this presentation we will explore the possibilities available for searching and/or fetching data within pipeline code. We will explain some of the WSDL/VSO-SDO interface intricacies and show how the vast amount of data that is available via the VSO can be tapped via IDL, Java, Perl or C in an uncomplicated way.

  19. Sifting Through SDO's AIA Cosmic Ray Hits to Find Treasure

    NASA Astrophysics Data System (ADS)

    Kirk, M. S.; Thompson, B. J.; Viall, N. M.; Young, P. R.

    2017-12-01

    The Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO AIA) has revolutionized solar imaging with its high temporal and spatial resolution, unprecedented spatial and temporal coverage, and seven EUV channels. Automated algorithms routinely clean these images to remove cosmic ray intensity spikes as a part of its preprocessing algorithm. We take a novel approach to survey the entire set of AIA "spike" data to identify and group compact brightenings across the entire SDO mission. The AIA team applies a de-spiking algorithm to remove magnetospheric particle impacts on the CCD cameras, but it has been found that compact, intense solar brightenings are often removed as well. We use the spike database to mine the data and form statistics on compact solar brightenings without having to process large volumes of full-disk AIA data. There are approximately 3 trillion "spiked pixels" removed from images over the mission to date. We estimate that 0.001% of those are of solar origin and removed by mistake, giving us a pre-segmented dataset of 30 million events. We explore the implications of these statistics and the physical qualities of the "spikes" of solar origin.

  20. Understanding Solar Eruptions with SDO/HMI Measuring Photospheric Flows, Testing Models, and Steps Towards Forecasting Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Schuck, Peter W.; Linton, Mark; Muglach, Karin; Welsch, Brian; Hageman, Jacob

    2010-01-01

    The imminent launch of Solar Dynamics Observatory (SDO) will carry the first full-disk imaging vector magnetograph, the Helioseismic and Magnetic Imager (HMI), into an inclined geosynchronous orbit. This magnetograph will provide nearly continuous measurements of photospheric vector magnetic fields at cadences of 90 seconds to 12 minutes with I" resolution, precise pointing, and unfettered by atmospheric seeing. The enormous data stream of 1.5 Terabytes per day from SDO will provide an unprecedented opportunity to understand the mysteries of solar eruptions. These ground-breaking observations will permit the application of a new technique, the differential affine velocity estimator for vector magnetograms (DAVE4VM), to measure photospheric plasma flows in active regions. These measurements will permit, for the first time, accurate assessments of the coronal free energy available for driving CMEs and flares. The details of photospheric plasma flows, particularly along magnetic neutral-lines, are critical to testing models for initiating coronal mass ejections (CMEs) and flares. Assimilating flows and fields into state-of-the art 3D MHD simulations that model the highly stratified solar atmosphere from the convection zone to the corona represents the next step towards achieving NASA's Living with a Star forecasting goals of predicting "when a solar eruption leading to a CME will occur." This talk will describe these major science and predictive advances that will be delivered by SDO /HMI.

  1. Solar Dynamics Observatory On-Orbit Jitter Testing, Analysis, and Mitigation Plans

    NASA Technical Reports Server (NTRS)

    Liu, Kuo-Chia (Alice); Blaurock, Carl A.; Bourkland, Kristin L.; Morgenstern, Wendy M.; Maghami, Peiman G.

    2011-01-01

    The Solar Dynamics Observatory (SDO) was designed to understand the Sun and the Sun s influence on Earth. SDO was launched on February 11, 2010 carrying three scientific instruments: the Atmospheric Imaging Assembly (AIA), the Helioseismic and Magnetic Imager (HMI), and the Extreme Ultraviolet Variability Experiment (EVE). Both AIA and HMI are sensitive to high frequency pointing perturbations and have sub-arcsecond level line-of-sight (LOS) jitter requirements. Extensive modeling and analysis efforts were directed in estimating the amount of jitter disturbing the science instruments. To verify the disturbance models and to validate the jitter performance prior to launch, many jitter-critical components and subassemblies were tested either by the mechanism vendors or at the NASA Goddard Space Flight Center (GSFC). Although detailed analysis and assembly level tests were performed to obtain good jitter predictions, there were still several sources of uncertainties in the system. The structural finite element model did not have all the modes correlated to test data at high frequencies (greater than 50 Hz). The performance of the instrument stabilization system was not known exactly but was expected to be close to the analytical model. A true disturbance-to-LOS observatory level test was not available due to the tight schedule of the flight spacecraft, the cost in time and manpower, difficulties in creating gravity negation systems, and risks of damaging flight hardware. To protect the observatory jitter performance against model uncertainties, the SDO jitter team devised several on-orbit jitter reduction plans in addition to reserve margins on analysis results. Since some of these plans severely restricted the capabilities of several spacecraft components (e.g. wheels and High Gain Antennas), the SDO team performed on-orbit jitter tests to determine which jitter reduction plans, if any, were necessary to satisfy science LOS jitter requirements. The SDO on

  2. The Solar Dynamics Observatory, Studying the Sun and Its Influence on Other Bodies in the Solar System

    NASA Technical Reports Server (NTRS)

    Chamberlin, P. C.

    2011-01-01

    The solar photon output, which was once thought to be constant, varies over all time scales from seconds during solar flares to years due to the solar cycle. These solar variations cause significant deviations in the Earth and space environments on similar time scales, such as affecting the atmospheric densities and composition of particular atoms, molecules, and ions in the atmospheres of the Earth and other planets. Presented and discussed will be examples of unprecedented observations from NASA's new solar observatory, the Solar Dynamics Observatory (SDO). Using three specialized instruments, SDO measures the origins of solar activity from inside the Sun, though its atmosphere, then accurately measuring the Sun's radiative output in X-ray and EUV wavelengths (0.1-121 nm). Along with the visually appealing observations will be discussions of what these measurements can tell us about how the plasma motions in all layers of the Sun modifies and strengthens the weak solar dipole magnetic field to drive large energy releases in solar eruptions. Also presented will be examples of how the release of the Sun's energy, in the form of photons and high energy particles, physically influence other bodies in the solar system such as Earth, Mars, and the Moon, and how these changes drive changes in the technology that we are becoming dependent upon. The presentation will continuously emphasize how SDO, the first satellite in NASA's Living with a Star program, improving our understanding of the variable Sun and its Heliospheric influence.

  3. Ellerman bombs observed with the new vacuum solar telescope and the atmospheric imaging assembly onboard the solar dynamics observatory

    NASA Astrophysics Data System (ADS)

    Chen, Yajie; Tian, Hui; Xu, Zhi; Xiang, Yongyuan; Fang, Yuliang; Yang, Zihao

    2017-12-01

    Ellerman bombs (EBs) are believed to be small-scale reconnection events occurring around the temperature minimum region in the solar atmosphere. They are often identified as significant enhancements in the extended Hα wings without obvious signatures in the Hα core. Here we explore the possibility of using the 1700 Å images taken by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) to study EBs. From the Hα wing images obtained with the New Vacuum Solar Telescope (NVST) on 2015 May 2, we have identified 145 EBs and 51% of them clearly correspond to the bright points (BPs) in the AIA 1700 Å images. If we resize the NVST images using a linear interpolation to make the pixel sizes of the AIA and NVST images the same, some previously identified EBs disappear and about 71% of the remaining EBs are associated with BPs. Meanwhile, 66% of the compact brightenings in the AIA 1700 Å images can be identified as EBs in the Hα wings. The intensity enhancements of the EBs in the Hα wing images reveal a linear correlation with those of the BPs in the AIA 1700 Å images. Our study suggests that a significant fraction of EBs can be observed with the AIA 1700 Å filter, which is promising for large-sample statistical study of EBs as the seeing-free and full-disk SDO/AIA data are routinely available.

  4. The Mysterious sdO X-ray Binary BD+37°442

    NASA Astrophysics Data System (ADS)

    Heber, U.; Geier, S.; Irrgang, A.; Schneider, D.; Barbu-Barna, I.; Mereghetti, S.; La Palombara, N.

    2014-04-01

    Pulsed X-ray emission in the luminous, helium-rich sdO BD +37°442 has recently been discovered (La Palombara et al. 2012). It was suggested that the sdO star has a neutron star or white dwarf companion with a spin period of 19.2 s. After HD 49798, which has a massive white dwarf companion spinning at 13.2 s in an 1.55 day orbit, this is only the second O-type subdwarf from which X-ray emission has been detected. We report preliminary results of our ongoing campaign to obtain time-resolved high-resolution spectroscopy using the CAFE instrument at Calar Alto observatory and SARG at the Telescopio Nationale Galileo. Atmospheric parameters were derived via a quantitative NLTE spectral analysis. The line fits hint at an unusually large projected rotation velocity. Therefore it seemed likely that BD +37°442 is a binary similar to HD 49798 and that the orbital period is also similar. The level of X-ray emission from BD +37°442 could be explained by accretion from the sdO wind by a neutron star orbiting at a period of less than ten days. Hence, we embarked on radial velocity monitoring in order to derive the binary parameters of the BD+37°442 system and obtained 41 spectra spread out over several month in 2012. Unlike for HD 49798, no radial velocity variations were found and, hence, there is no dynamical evidence for the existence of a compact companion yet. The origin of the pulsed X-ray emission remains as a mystery.

  5. SDO Pick of the Week

    NASA Image and Video Library

    2017-12-08

    Magnetic arcs of solar material spewing from our favorite sphere of hot plasma, the sun. Magnetic arcs of solar material held their shapes fairly well as they spiraled above two solar active regions over 18 hours on Jan. 11-12, 2017. The charged solar material, called plasma, traces out the magnetic field lines above the active regions when viewed in wavelengths of extreme ultraviolet light, captured here by NASA’s Solar Dynamics Observatory. Extreme ultraviolet light is typically invisible to our eyes, but is colorized here in gold for easy viewing. Credit: NASA/SDO

  6. Analysis of Supergranule Sizes and Velocities Using Solar Dynamics Observatory (SDO)/Helioseismic Magnetic Imager (HMI) and Solar and Heliospheric Observatory (SOHO)/Michelson Doppler Imager (MDI) Dopplergrams

    NASA Technical Reports Server (NTRS)

    Williams, Peter E.; Pesnell, W. Dean; Beck, John G.; Lee, Shannon

    2013-01-01

    Co-temporal Doppler images from Solar and Heliospheric Observatory (SOHO)/ Michelson Doppler Imager (MDI) and Solar Dynamics Observatory (SDO)/Helioseismic Magnetic Imager (HMI) have been analyzed to extract quantitative information about global properties of the spatial and temporal characteristics of solar supergranulation. Preliminary comparisons show that supergranules appear to be smaller and have stronger horizontal velocity flows within HMI data than was measured with MDI. There appears to be no difference in their evolutionary timescales. Supergranule sizes and velocities were analyzed over a ten-day time period at a 15-minute cadence. While the averages of the time-series retain the aforementioned differences, fluctuations of these parameters first observed in MDI data were seen in both MDI and HMI time-series, exhibiting a strong cross-correlation. This verifies that these fluctuations are not instrumental, but are solar in origin. The observed discrepancies between the averaged values from the two sets of data are a consequence of instrument resolution. The lower spatial resolution of MDI results in larger observed structures with lower velocities than is seen in HMI. While these results offer a further constraint on the physical nature of supergranules, they also provide a level of calibration between the two instruments.

  7. Solar Demon: near real-time solar eruptive event detection on SDO/AIA images

    NASA Astrophysics Data System (ADS)

    Kraaikamp, Emil; Verbeeck, Cis

    Solar flares, dimmings and EUV waves have been observed routinely in extreme ultra-violet (EUV) images of the Sun since 1996. These events are closely associated with coronal mass ejections (CMEs), and therefore provide useful information for early space weather alerts. The Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) generates such a massive dataset that it becomes impossible to find most of these eruptive events manually. Solar Demon is a set of automatic detection algorithms that attempts to solve this problem by providing both near real-time warnings of eruptive events and a catalog of characterized events. Solar Demon has been designed to detect and characterize dimmings, EUV waves, as well as solar flares in near real-time on SDO/AIA data. The detection modules are running continuously at the Royal Observatory of Belgium on both quick-look data and synoptic science data. The output of Solar Demon can be accessed in near real-time on the Solar Demon website, and includes images, movies, light curves, and the numerical evolution of several parameters. Solar Demon is the result of collaboration between the FP7 projects AFFECTS and COMESEP. Flare detections of Solar Demon are integrated into the COMESEP alert system. Here we present the Solar Demon detection algorithms and their output. We will focus on the algorithm and its operational implementation. Examples of interesting flare, dimming and EUV wave events, and general statistics of the detections made so far during solar cycle 24 will be presented as well.

  8. Characterizing the Background Corona with SDO/AIA

    NASA Technical Reports Server (NTRS)

    Napier, Kate; Alexander, Caroline; Winebarger, Amy

    2014-01-01

    Characterizing the nature of the solar coronal background would enable scientists to more accurately determine plasma parameters, and may lead to a better understanding of the coronal heating problem. Because scientists study the 3D structure of the Sun in 2D, any line-of-sight includes both foreground and background material, and thus, the issue of background subtraction arises. By investigating the intensity values in and around an active region, using multiple wavelengths collected from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) over an eight-hour period, this project aims to characterize the background as smooth or structured. Different methods were employed to measure the true coronal background and create minimum intensity images. These were then investigated for the presence of structure. The background images created were found to contain long-lived structures, including coronal loops, that were still present in all of the wavelengths, 131, 171, 193, 211, and 335 A. The intensity profiles across the active region indicate that the background is much more structured than previously thought.

  9. SDO FlatSat Facility

    NASA Technical Reports Server (NTRS)

    Amason, David L.

    2008-01-01

    The goal of the Solar Dynamics Observatory (SDO) is to understand and, ideally, predict the solar variations that influence life and society. It's instruments will measure the properties of the Sun and will take hifh definition images of the Sun every few seconds, all day every day. The FlatSat is a high fidelity electrical and functional representation of the SDO spacecraft bus. It is a high fidelity test bed for Integration & Test (I & T), flight software, and flight operations. For I & T purposes FlatSat will be a driver to development and dry run electrical integration procedures, STOL test procedures, page displays, and the command and telemetry database. FlatSat will also serve as a platform for flight software acceptance and systems testing for the flight software system component including the spacecraft main processors, power supply electronics, attitude control electronic, gimbal control electrons and the S-band communications card. FlatSat will also benefit the flight operations team through post-launch flight software code and table update development and verification and verification of new and updated flight operations products. This document highlights the benefits of FlatSat; describes the building of FlatSat; provides FlatSat facility requirements, access roles and responsibilities; and, and discusses FlatSat mechanical and electrical integration and functional testing.

  10. Solar Flare Impulsive Phase Observations from SDO and Other Observatories

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.; Woods, Thomas N.; Schrijver, Karel; Warren, Harry; Milligan, Ryan; Christe, Steven; Brosius, Jeffrey W.

    2010-01-01

    With the start of normal operations of the Solar Dynamics Observatory in May 2010, the Extreme ultraviolet Variability Experiment (EVE) and the Atmospheric Imaging Assembly (AIA) have been returning the most accurate solar XUV and EUV measurements every 10 and 12 seconds, respectively, at almost 100% duty cycle. The focus of the presentation will be the solar flare impulsive phase observations provided by EVE and AIA and what these observations can tell us about the evolution of the initial phase of solar flares. Also emphasized throughout is how simultaneous observations with other instruments, such as RHESSI, SOHO-CDS, and HINODE-EIS, will help provide a more complete characterization of the solar flares and the evolution and energetics during the impulsive phase. These co-temporal observations from the other solar instruments can provide information such as extending the high temperature range spectra and images beyond that provided by the EUV and XUV wavelengths, provide electron density input into the lower atmosphere at the footpoints, and provide plasma flows of chromospheric evaporation, among other characteristics.

  11. Tuning the Solar Dynamics Observatory Onboard Kalman Filter

    NASA Technical Reports Server (NTRS)

    Halverson, Julie Kay; Harman, Rick; Carpenter, Russell; Poland, Devin

    2017-01-01

    The Solar Dynamics Observatory (SDO) was launched in 2010. SDO is a sun pointing semi-autonomous spacecraft in a geosynchronous orbit that allows nearly continuous observations of the sun. SDO is equipped with coarse sun sensors, two star trackers, a digital sun sensor, and three two-axis inertial reference units (IRU). The IRUs are temperature sensitive and were designed to operate in a stable thermal environment. Due to battery degradation concerns the IRU heaters were not used on SDO and the onboard filter was tuned to accommodate the noisier IRU data. Since launch currents have increased on two IRUs, one had to eventually be powered off. Recent ground tests on a battery similar to SDO indicated the heaters would have negligible impact on battery degradation, so in 2016 a decision was made to turn the heaters on. This paper presents the analysis and results of updating the filter tuning parameters onboard SDO with the IRUs now operating in their intended thermal environment.

  12. NASA's SDO Observes an X-class Solar Flare

    NASA Image and Video Library

    2017-12-08

    The sun emitted a significant solar flare, peaking at 1:01 a.m. EDT on Oct. 19, 2014. NASA's Solar Dynamics Observatory, which is always observing the sun, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an X1.1-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Atmospheric monitoring and model applications at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Keilhauer, Bianca

    2015-03-01

    The Pierre Auger Observatory detects high-energy cosmic rays with energies above ˜1017 eV. It is built as a multi-hybrid detector measuring extensive air showers with different techniques. For the reconstruction of extensive air showers, the atmospheric conditions at the site of the Observatory have to be known quite well. This is particularly true for reconstructions based on data obtained by the fluorescence technique. For these data, not only the weather conditions near ground are relevant, most important are altitude-dependent atmospheric profiles. The Pierre Auger Observatory has set up a dedicated atmospheric monitoring programme at the site in the Mendoza province, Argentina. Beyond this, exploratory studies were performed in Colorado, USA, for possible installations in the northern hemisphere. In recent years, the atmospheric monitoring programme at the Pierre Auger Observatory was supplemented by applying data from atmospheric models. Both GDAS and HYSPLIT are developments by the US weather department NOAA and the data are freely available. GDAS is a global model of the atmospheric state parameters on a 1 degree geographical grid, based on real-time measurements and numeric weather predictions, providing a full altitude-dependent data set every 3 hours. HYSPLIT is a powerful tool to track the movement of air masses at various heights, and with it the aerosols. Combining local measurements of the atmospheric state variables and aerosol scattering with the given model data, advanced studies about atmospheric conditions can be performed and high precision air shower reconstructions are achieved.

  14. The importance of atmospheric monitoring at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Dawson, Bruce R.

    The Pierre Auger Observatory is an ultra-high energy cosmic ray experiment employing a giant surface array of particle detectors together with telescopes to image fluorescence light from extensive air showers in the atmosphere. The atmosphere is the medium in which the incoming cosmic rays deposit their energy, and as a result we must monitor the characteristics of the atmosphere, including its density profile and light transmission properties, over the Observatory area of 3000 square kilometres.

  15. Characterizing the True Background Corona with SDO/AIA

    NASA Technical Reports Server (NTRS)

    Napier, Kate; Winebarger, Amy; Alexander, Caroline

    2014-01-01

    Characterizing the nature of the solar coronal background would enable scientists to more accurately determine plasma parameters, and may lead to a better understanding of the coronal heating problem. Because scientists study the 3D structure of the Sun in 2D, any line of sight includes both foreground and background material, and thus, the issue of background subtraction arises. By investigating the intensity values in and around an active region, using multiple wavelengths collected from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) over an eight-hour period, this project aims to characterize the background as smooth or structured. Different methods were employed to measure the true coronal background and create minimum intensity images. These were then investigated for the presence of structure. The background images created were found to contain long-lived structures, including coronal loops, that were still present in all of the wavelengths, 193 Angstroms,171 Angstroms,131 Angstroms, and 211 Angstroms. The intensity profiles across the active region indicate that the background is much more structured than previously thought.

  16. Understanding Solar Eruptions with SDO/HMI Measuring Photospheric Flows, Testing Models, and Steps Towards Forecasting Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Schuck, Peter W.; Linton, M.; Muglach, K.; Hoeksema, T.

    2010-01-01

    The Solar Dynamics Observatory (SDO) is carrying the first full-disk imaging vector magnetograph, the Helioseismic and Magnetic Imager (HMI), into an inclined geosynchronous orbit. This magnetograph will provide nearly continuous measurements of photospheric vector magnetic fields at cadences of 90 seconds to 12 minutes with 1" resolution, precise pointing, and unfettered by atmospheric seeing. The enormous data stream of 1.5 Terabytes per day from SAO will provide an unprecedented opportunity to understand the mysteries of solar eruptions. These ground-breaking observations will permit the application of a new technique, the differential affine velocity estimator for vector magnetograms (DAVE4VM), to measure photospheric plasma flows in active regions. These measurements will permit, for the first time, accurate assessments of the coronal free energy available for driving CMEs and flares. The details of photospheric plasma flows, particularly along magnetic neutral-lines, are critical to testing models for initiating coronal mass ejections (CMEs) and flares. Assimilating flows and fields into state-of-the art 3D MHD simulations that model the highly stratified solar atmosphere from the convection zone to the corona represents the next step towards achieving NASA's Living with a Star forecasting goals of predicting "when a solar eruption leading to a CME will occur." Our presentation will describe these major science and predictive advances that will be delivered by SDO/HMI.

  17. The Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Pesnell, William D.

    2008-01-01

    The Solar Dynamics Observatory (SDO) is the first Space Weather Mission in NASA's Living With a Star Program. SDO's main goal is to understand, driving towards a predictive capability, those solar variations that influence life on Earth and humanity's technological systems. The past decade has seen an increasing emphasis on understanding the entire Sun, from the nuclear reactions at the core to the development and loss of magnetic loops in the corona. SDO's three science investigations (HMI, AIA, and EVE) will determine how the Sun's magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. SDO will return full-disk Dopplergrams, full-disk vector magnetograms, full-disk images at nine EIUV wavelengths, and EUV spectral irradiances, all taken at a rapid cadence. This means you can 'observe the database' to study events, but we can also move forward in producing quantitative models of what the Sun is doing today. SDO is scheduled to launch in 2008 on an Atlas V rocket from the Kennedy Space Center, Cape Canaveral, Florida. The satellite will fly in a 28 degree inclined geosynchronous orbit about the longitude of New Mexico, where a dedicated Ka-band ground station will receive the 150 Mbps data flow. How SDO data will transform the study of the Sun and its affect on Space Weather studies will be discussed.

  18. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2017-12-08

    Scientists presented the first images from NASA's Solar Dynamics Observatory [SDO] during a special "first light" press conference, Wednesday, April 21 2010, at held at the Newseum in Washington DC. Credit: NASA/GSFC

  19. Solar Dynamics Observatory Briefing

    NASA Image and Video Library

    2010-01-21

    Richard Fisher, Heliophysics Division Director at NASA Headquarters, speaks during a briefing to discuss the upcoming launch of NASA's Solar Dynamic Observatory, or SDO, Thursday, Jan. 21, 2010, at NASA Headquarters in Washington. The mission is to study the Sun and its dynamic behavior. Photo Credit: (NASA/Paul E. Alers)

  20. NASA's SDO Sees Solar Flares

    NASA Image and Video Library

    2017-12-08

    A second X-class flare of June 10, 2014, appears as a bright flash on the left side of this image from NASA’s Solar Dynamics Observatory. This image shows light in the 193-angstrom wavelength, which is typically colorized in yellow. It was captured at 8:55 a.m EDT, just after the flare peaked. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. A study of acoustic halos in active region NOAA 11330 using multi-height SDO observations

    NASA Astrophysics Data System (ADS)

    Tripathy, S. C.; Jain, K.; Kholikov, S.; Hill, F.; Rajaguru, S. P.; Cally, P. S.

    2018-01-01

    We analyze data from the Helioseismic Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) instruments on board the Solar Dynamics Observatory (SDO) to characterize the spatio-temporal acoustic power distribution in active regions as a function of the height in the solar atmosphere. For this, we use Doppler velocity and continuum intensity observed using the magnetically sensitive line at 6173 Å as well as intensity at 1600 Å and 1700 Å. We focus on the power enhancements seen around AR 11330 as a function of wave frequency, magnetic field strength, field inclination and observation height. We find that acoustic halos occur above the acoustic cutoff frequency and extends up to 10 mHz in HMI Doppler and AIA 1700 Å observations. Halos are also found to be strong functions of magnetic field and their inclination angle. We further calculate and examine the spatially averaged relative phases and cross-coherence spectra and find different wave characteristics at different heights.

  2. Guaranteeing Pointing Performance of the SDO Sun-Pointing Controllers in Light of Nonlinear Effects

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Bourkland, Kristin L.

    2007-01-01

    The Solar Dynamics Observatory (SDO) mission is the first Space Weather Research Network mission, part of NASA s Living With a Star program.1 This program seeks to understand the changing Sun and its effects on the Solar System, life, and society. To this end, the SDO spacecraft will carry three Sun-observing instruments to geosynchronous orbit: Helioseismic and Magnetic Imager (HMI), led by Stanford University; Atmospheric Imaging Assembly (AIA), led by Lockheed Martin Space and Astrophysics Laboratory; and Extreme Ultraviolet Variability Experiment (EVE), led by the University of Colorado. Links describing the instruments in detail may be found through the SDO web site.2 The basic mission goals are to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station. These goals guided the design of the spacecraft bus that will carry and service the three-instrument payload. At the time of this publication, the SDO spacecraft bus is well into the integration and testing phase at the NASA Goddard Space Flight Center (GSFC). A three-axis stabilized attitude control system (ACS) is needed both to point at the Sun accurately and to keep the roll about the Sun vector correctly positioned. The ACS has four reaction wheel modes and 2 thruster actuated modes. More details about the ACS in general and the control modes in particular can be found in Refs. [3-6]. All four of SDO s wheel-actuated control modes involve Sun-pointing controllers, as might be expected from such a mission. Science mode, during which most science data is collected, uses specialized guide telescopes to point accurately at the Sun. Inertial mode has two sub-modes, one tracks a Sun-referenced target orientation, and another maintains an absolute (star-referenced) target orientation, that both employ a Kalman filter to process data from a digital Sun sensor and

  3. SDO/AIA Observation of Kelvin-Helmholtz Instability in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Thompson, B. J.

    2011-01-01

    We present observations of the formation, propagation and decay of vortex-shaped features in coronal images from the Solar Dynamics Observatory (SDO) associated with an eruption starting at about 2:30UT on Apr 8, 2010. The series of vortices formed along the interface between an erupting (dimming) region and the surrounding corona. They ranged in size from several to ten arcseconds, and traveled along the interface at 6-14 km s-1. The features were clearly visible in six out of the seven different EUV wavebands of the Atmospheric Imaging Assembly (AIA). Based on the structure, formation, propagation and decay of these features, we identified these features as the first observations of the Kelvin- Helmholtz (KH) instability in the corona in EUV. The interpretation is supported by linear analysis and by MHD model of KH instability. We conclude that the instability is driven by the velocity shear between the erupting and closed magnetic field of the Coronal Mass Ejection (CME).

  4. Using SDO Data in the Classroom to Do Real Science -- A Community College Laboratory Investigation

    NASA Astrophysics Data System (ADS)

    Dave, T. A.; Hildreth, S.; Lee, S.; Scherrer, D. K.

    2013-12-01

    The incredible accessibility of extremely high spatial and temporal resolution data from the Solar Dynamics Observatory creates an opportunity for students to do almost real-time investigation in an Astronomy Lab. We are developing a short series of laboratory exercises using SDO data, targeted for Community College students in an introductory lab class, extendable to high school and university students. The labs initially lead students to explore what SDO can do, online, through existing SDO video clips taken on specific dates. Students then investigate solar events using the Heliophysics Events Knowledgebase (HEK), and make their own online movies of events, to discuss and share with classmates. Finally, students can investigate specific events and areas, selecting specific dates, locations, wavelength regions, and time cadences to create and gather their own SDO datasets for more detailed investigation. In exploring the Sun using actual data, students actually do real science. We are in the process of beta testing the sequence of labs, and are seeking interested community college, university, and high school astronomy lab teachers who might consider trying the labs themselves.

  5. Two Coronal Holes on the Sun Viewed by SDO

    NASA Image and Video Library

    2015-03-17

    NASA’s Solar Dynamics Observatory, or SDO, captured this solar image on March 16, 2015, which clearly shows two dark patches, known as coronal holes. The larger coronal hole of the two, near the southern pole, covers an estimated 6- to 8-percent of the total solar surface. While that may not sound significant, it is one of the largest polar holes scientists have observed in decades. The smaller coronal hole, towards the opposite pole, is long and narrow. It covers about 3.8 billion square miles on the sun - only about 0.16-percent of the solar surface. Coronal holes are lower density and temperature regions of the sun’s outer atmosphere, known as the corona. Coronal holes can be a source of fast solar wind of solar particles that envelop the Earth. The magnetic field in these regions extends far out into space rather than quickly looping back into the sun’s surface. Magnetic fields that loop up and back down to the surface can be seen as arcs in non-coronal hole regions of the image, including over the lower right horizon. The bright active region on the lower right quadrant is the same region that produced solar flares last week. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. NASA's SDO Sees Solar Flares

    NASA Image and Video Library

    2014-06-10

    A solar flare bursts off the left limb of the sun in this image captured by NASA's Solar Dynamics Observatory on June 10, 2014, at 7:41 a.m. EDT. This is classified as an X2.2 flare, shown in a blend of two wavelengths of light: 171 and 131 angstroms, colorized in gold and red, respectively. Credit: NASA/SDO/Goddard/Wiessinger NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. SDO Sees Spring Eclipse April, 3

    NASA Image and Video Library

    2017-12-08

    NASA image captured April 3, 2011 Twice a year, SDO enters an eclipse season where the spacecraft slips behind Earth for up to 72 minutes a day. Unlike the crisp shadow one sees on the sun during a lunar eclipse, Earth's shadow has a variegated edge due to its atmosphere, which blocks the sun light to different degrees depending on its density. Also, light from brighter spots on the sun may make it through, which is why some solar features extend low into Earth's shadow. Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  8. SDO Sees Spring Eclipse, April 2

    NASA Image and Video Library

    2017-12-08

    NASA image captured April 2, 2011 Twice a year, SDO enters an eclipse season where the spacecraft slips behind Earth for up to 72 minutes a day. Unlike the crisp shadow one sees on the sun during a lunar eclipse, Earth's shadow has a variegated edge due to its atmosphere, which blocks the sun light to different degrees depending on its density. Also, light from brighter spots on the sun may make it through, which is why some solar features extend low into Earth's shadow. Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  9. SDO Sees Spring Eclipse, April 1

    NASA Image and Video Library

    2017-12-08

    NASA image captured April 1, 2011 Twice a year, SDO enters an eclipse season where the spacecraft slips behind Earth for up to 72 minutes a day. Unlike the crisp shadow one sees on the sun during a lunar eclipse, Earth's shadow has a variegated edge due to its atmosphere, which blocks the sun light to different degrees depending on its density. Also, light from brighter spots on the sun may make it through, which is why some solar features extend low into Earth's shadow. Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  10. Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO)

    NASA Technical Reports Server (NTRS)

    Schou, J.; Scherrer, P. H.; Bush, R. I.; Wachter, R.; Couvidat, S.; Rabello-Soares, M. C.; Bogart, R. S.; Hoeksema, J. T.; Liu, Y.; Duvall, T. L., Jr.; hide

    2012-01-01

    The Helioseismic and Magnetic Imager (HMI) investigation will study the solar interior using helioseismic techniques as well as the magnetic field near the solar surface. The HMI instrument is part of the Solar Dynamics Observatory (SDO) that was launched on 11 February 2010. The instrument is designed to measure the Doppler shift, intensity, and vector magnetic field at the solar photosphere using the 6173 Fe I absorption line. The instrument consists of a front-window filter, a telescope, a set of wave plates for polarimetry, an image-stabilization system, a blocking filter, a five-stage Lyot filter with one tunable element, two wide-field tunable Michelson interferometers, a pair of 4096(exo 2) pixel cameras with independent shutters, and associated electronics. Each camera takes a full-disk image roughly every 3.75 seconds giving an overall cadence of 45 seconds for the Doppler, intensity, and line-of-sight magnetic-field measurements and a slower cadence for the full vector magnetic field. This article describes the design of the HMI instrument and provides an overview of the pre-launch calibration efforts. Overviews of the investigation, details of the calibrations, data handling, and the science analysis are provided in accompanying articles.

  11. THE WAVE PROPERTIES OF CORONAL BRIGHT FRONTS OBSERVED USING SDO/AIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, David M.; DeLuca, Edward E.; Gallagher, Peter T., E-mail: longda@tcd.ie

    2011-11-15

    Coronal bright fronts (CBFs) are large-scale wavefronts that propagate through the solar corona at hundreds of kilometers per second. While their kinematics have been studied in detail, many questions remain regarding the temporal evolution of their amplitude and pulse width. Here, contemporaneous high cadence, multi-thermal observations of the solar corona from the Solar Dynamic Observatory (SDO) and Solar TErrestrial RElations Observatory (STEREO) spacecraft are used to determine the kinematics and expansion rate of a CBF wavefront observed on 2010 August 14. The CBF was found to have a lower initial velocity with weaker deceleration in STEREO observations compared to SDOmore » observations ({approx}340 km s{sup -1} and -72 m s{sup -2} as opposed to {approx}410 km s{sup -1} and -279 m s{sup -2}). The CBF kinematics from SDO were found to be highly passband-dependent, with an initial velocity ranging from 379 {+-} 12 km s{sup -1} to 460 {+-} 28 km s{sup -1} and acceleration ranging from -128 {+-} 28 m s{sup -2} to -431 {+-} 86 m s{sup -2} in the 335 A and 304 A passbands, respectively. These kinematics were used to estimate a quiet coronal magnetic field strength range of {approx}1-2 G. Significant pulse broadening was also observed, with expansion rates of {approx}130 km s{sup -1} (STEREO) and {approx}220 km s{sup -1} (SDO). By treating the CBF as a linear superposition of sinusoidal waves within a Gaussian envelope, the resulting dispersion rate of the pulse was found to be {approx}8-13 Mm{sup 2} s{sup -1}. These results are indicative of a fast-mode magnetoacoustic wave pulse propagating through an inhomogeneous medium.« less

  12. The Virtual Solar Observatory: What Are We Up To Now?

    NASA Technical Reports Server (NTRS)

    Gurman, J. B.; Hill, F.; Suarez-Sola, F.; Bogart, R.; Amezcua, A.; Martens, P.; Hourcle, J.; Hughitt, K.; Davey, A.

    2012-01-01

    In the nearly ten years of a functional Virtual Solar Observatory (VSO), http://virtualsolar.org/ we have made it possible to query and access sixty-seven distinct solar data products and several event lists from nine spacecraft and fifteen observatories or observing networks. We have used existing VSO technology, and developed new software, for a distributed network of sites caching and serving SDO HMI and/ or AlA data. We have also developed an application programming interface (API) that has enabled VSO search and data access capabilities in IDL, Python, and Java. We also have quite a bit of work yet to do, including completion of the implementation of access to SDO EVE data, and access to some nineteen other data sets from space- and ground-based observatories. In addition, we have been developing a new graphic user interface that will enable the saving of user interface and search preferences. We solicit advice from the community input prioritizing our task list, and adding to it

  13. The SDO Education and Outreach (E/PO) Program: Changing Perceptions One Program at a Time

    NASA Technical Reports Server (NTRS)

    Drobnes, E.; Littleton, A.; Pesnell, W. D.; Buhr, S.; Beck, K.; Durscher, R.; Hill, S.; McCaffrey, M.; McKenzie, D. E.; Myers, D.; hide

    2011-01-01

    The Solar Dynamics Observatory (SDO) Education and Public Outreach (E/PO) program began as a series of discrete efforts implemented by each of the instrument teams and has evolved into a well-rounded program with a full suite of national and international programs. The SDO E/PO team has put forth much effort in the past few years to increase our cohesiveness by adopting common goals and increasing the amount of overlap between our programs. In this paper, we outline the context and overall philosophy for our combined programs, present a brief overview of all SDO E/PO programs along with more detailed highlight of a few key programs, followed by a review of our results up to date. Concluding is a summary of the successes, failures, and lessons learned that future missions can use as a guide, while further incorporating their own content to enhance the public's knowledge and appreciation of NASA?s science and technology as well as its benefit to society.

  14. Lidar Atmospheric Observatory in the Canadian Arctic

    NASA Technical Reports Server (NTRS)

    Ulitsky, Arkady; Wang, Tin-Yu; Flood, Martin; Smith, Brent

    1992-01-01

    During the last decade there have been growing concerns about a broad variety of atmospheric properties. Among these, a depletion of the stratospheric ozone layer has attracted considerable attention from the general public, politicians and scientists due to its vital impact for the entire global biosphere. One of the major warning signs was the discovery of the 'ozone hole' in the Antarctic region where the concentration of the ozone in the stratosphere was significantly reduced. At present the stratospheric ozone layer in this region is being continuously monitored by groups of scientists from around the world and numerous observations of the ozone layer on the global scale have clearly demonstrated the process of ozone depletion. Recent observations by NASA have shown significant depletion in the Arctic region. This paper provides an initial description of two lidars that are planned to be installed in a new observatory for atmospheric studies in the Canadian Arctic. This observatory is being constructed under the supervision of the Atmospheric Environment Services (AES) of Canada as a part of Green Plan - an initiative of the Federal Government of Canada. The station is located at Eureka on Ellesmere Island at a latitude of 80 degrees N and a longitude of 86 degrees W.

  15. Constraining the common properties of active region formation using the SDO/HEAR dataset

    NASA Astrophysics Data System (ADS)

    Schunker, H.; Braun, D. C.; Birch, A. C.

    2016-10-01

    Observations from the Solar Dynamics Observatory (SDO) have the potential for allowing the helioseismic study of the formation of hundreds of active regions, which enable us to perform statistical analyses. We collated a uniform data set of emerging active regions (EARs) observed by the SDO/HMI instrument suitable for helioseismic analysis, where each active region can be observed up to 7 days before emergence. We call this dataset the SDO Helioseismic Emerging Active Region (SDO/HEAR) survey. We have used this dataset to to understand the nature of active region emergence. The latitudinally averaged line-of-sight magnetic field of all the EARs shows that the leading (trailing) polarity moves in a prograde (retrograde) direction with a speed of 110 ± 15 m/s (-60 ± 10 m/s) relative to the Carrington rotation rate in the first day after emergence. However, relative to the differential rotation of the surface plasma the East-West velocity is symmetric, with a mean of 90 ± 10 m/s. We have also compared the surface flows associated with the EARs at the time of emergence with surface flows from numerical simulations of flux emergence with different rise speeds. We found that the surface flows in simulations of emerging flux with a low rise speed of 70 m/s best match the observations.

  16. Solar Dynamics Observatory On-Orbit Jitter Testing, Analysis, and Mitigation Plans

    NASA Technical Reports Server (NTRS)

    Liu, Kuo-Chia; Blaurock, Carl A.; Bourkland, Kristin L.; Morgenstern, Wendy M.; Maghami, Peiman G.

    2011-01-01

    The recently launched Solar Dynamics Observatory (SDO) has two science instruments onboard that required sub-arcsecond pointing stability. Significant effort has been spent pre-launch to characterize the disturbances sources and validating jitter level at the component, sub-assembly, and spacecraft levels. However, an end-to-end jitter test emulating the flight condition was not performed on the ground due to cost and risk concerns. As a result, the true jitter level experienced on orbit remained uncertain prior to launch. Based on the pre-launch analysis, several operational constraints were placed on the observatory aimed to minimize the instrument jitter levels. If the actual jitter is below the analysis predictions, these operational constraints can be relaxed to reduce the burden of the flight operations team. The SDO team designed a three-day jitter test, utilizing the instrument sensors to measure pointing jitter up to 256 Hz. The test results were compared to pre-launch analysis predictions, used to determine which operational constraints can be relaxed, and analyzed for setting the jitter mitigation strategies for future SDO operations.

  17. Gas-analytic measurement complexes of Baikal atmospheric-limnological observatory

    NASA Astrophysics Data System (ADS)

    Pestunov, D. A.; Shamrin, A. M.; Shmargunov, V. P.; Panchenko, M. V.

    2015-11-01

    The paper presents the present-day structure of stationary and mobile hardware-software gas-analytical complexes of Baikal atmospheric-limnological observatory (BALO) Siberian Branch Russian Academy of Sciences (SB RAS), designed to study the processes of gas exchange of carbon-containing gases in the "atmosphere-water" system, which are constantly updated to include new measuring and auxiliary instrumentation.

  18. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2017-12-08

    Scientists presented the first images from NASA's Solar Dynamics Observatory [SDO] during a special "first light" press conference, Wednesday, April 21 2010, at held at the Newseum in Washington DC. Here, scientists are showing an animation from Walt Feimer, lead animator for the Heliophysics team. Credit: NASA/GSFC

  19. A Coronal Hole Jet Observed with Hinode and the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Young, Peter H.; Muglach, Karin

    2014-01-01

    A small blowout jet was observed at the boundary of the south coronal hole on 2011 February 8 at around 21:00 UT. Images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) revealed an expanding loop rising from one footpoint of a compact, bipolar bright point. Magnetograms from the Helioseismic Magnetic Imager (HMI) on board SDO showed that the jet was triggered by the cancelation of a parasitic positive polarity feature near the negative pole of the bright point. The jet emission was present for 25 mins and it extended 30 Mm from the bright point. Spectra from the EUV Imaging Spectrometer on board Hinode yielded a temperature and density of 1.6 MK and 0.9-1.7 × 10( exp 8) cu cm for the ejected plasma. Line-of-sight velocities reached up to 250 km/s. The density of the bright point was 7.6 × 10(exp 8) cu cm, and the peak of the bright point's emission measure occurred at 1.3 MK, with no plasma above 3 MK.

  20. A Study of quiescent prominences using SDO and STEREO data

    NASA Astrophysics Data System (ADS)

    Panesar, Navdeep Kaur

    2014-05-01

    In this dissertation, we have studied the structure, dynamics and evolution of two quiescent prominences. Quiescent prominences are large structures and mainly associated with the quiet Sun region. For the analysis, we have used the high spatial and temporal cadence data from the Solar Dynamic Observatory (SDO), and the Solar Terrestrial Relations Observatory (STEREO). We combined the observations from two different directions and studied the prominence in 3D. In the study of polar crown prominence, we mainly investigated the prominence flows on limb and found its association with on-disk brightenings. The merging of diffused active region flux in the already formed chain of prominence caused the several brightenings in the filament channel and also injected the plasma upward with an average velocity of 15 km/s. In another study, we investigated the triggering mechanism of a quiescent tornado-like prominence. Flares from the neighboring active region triggered the tornado-like motions of the top of the prominence. Active region field contracts after the flare which results in the expansion of prominence cavity. The prominence helical magnetic field expands and plasma moves along the field lines which appear as a tornado-like activity. In addition, the thermal structure of the tornado-like prominence and neighbouring active region was investigated by analysing emission in six of the seven EUV channels from the SDO. These observational investigations led to our understanding of structure and dynamics of quiescent prominences, which could be useful for theoretical prominence models.

  1. The Effects of Propellant Slosh Dynamics on the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Mason, Paul; Starin, Scott R.

    2011-01-01

    The Solar Dynamics Observatory (SDO) mission, which is part of the Living With a Star program, was successfully launched and deployed from its Atlas V launch vehicle on February 11, 2010. SDO is an Explorer-class mission now operating in a geosynchronous orbit (GEO). The basic mission is to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station located in White Sands, New Mexico. Almost half of SDO's launch mass was propellant, contained in two large tanks. To ensure performance with this amount of propellant, a slosh analysis was performed prior to launch. This paper provides an overview of the SDO slosh analysis, the on-orbit experience, and the lessons learned.

  2. A statistical study of decaying kink oscillations detected using SDO/AIA

    NASA Astrophysics Data System (ADS)

    Goddard, C. R.; Nisticò, G.; Nakariakov, V. M.; Zimovets, I. V.

    2016-01-01

    Context. Despite intensive studies of kink oscillations of coronal loops in the last decade, a large-scale statistically significant investigation of the oscillation parameters has not been made using data from the Solar Dynamics Observatory (SDO). Aims: We carry out a statistical study of kink oscillations using extreme ultraviolet imaging data from a previously compiled catalogue. Methods: We analysed 58 kink oscillation events observed by the Atmospheric Imaging Assembly (AIA) on board SDO during its first four years of operation (2010-2014). Parameters of the oscillations, including the initial apparent amplitude, period, length of the oscillating loop, and damping are studied for 120 individual loop oscillations. Results: Analysis of the initial loop displacement and oscillation amplitude leads to the conclusion that the initial loop displacement prescribes the initial amplitude of oscillation in general. The period is found to scale with the loop length, and a linear fit of the data cloud gives a kink speed of Ck = (1330 ± 50) km s-1. The main body of the data corresponds to kink speeds in the range Ck = (800-3300) km s-1. Measurements of 52 exponential damping times were made, and it was noted that at least 21 of the damping profiles may be better approximated by a combination of non-exponential and exponential profiles rather than a purely exponential damping envelope. There are nine additional cases where the profile appears to be purely non-exponential and no damping time was measured. A scaling of the exponential damping time with the period is found, following the previously established linear scaling between these two parameters.

  3. Simulating the Coronal Evolution of AR 11437 Using SDO/HMI Magnetograms

    NASA Astrophysics Data System (ADS)

    Yardley, Stephanie L.; Mackay, Duncan H.; Green, Lucie M.

    2018-01-01

    The coronal magnetic field evolution of AR 11437 is simulated by applying the magnetofrictional relaxation technique of Mackay et al. A sequence of photospheric line-of-sight magnetograms produced by the Solar Dynamics Observatory (SDO)/Helioseismic Magnetic Imager (HMI) is used to drive the simulation and continuously evolve the coronal magnetic field of the active region through a series of nonlinear force-free equilibria. The simulation is started during the first stages of the active region emergence so that its full evolution from emergence to decay can be simulated. A comparison of the simulation results with SDO/Atmospheric Imaging Assembly (AIA) observations show that many aspects of the active region’s observed coronal evolution are reproduced. In particular, it shows the presence of a flux rope, which forms at the same location as sheared coronal loops in the observations. The observations show that eruptions occurred on 2012 March 17 at 05:09 UT and 10:45 UT and on 2012 March 20 at 14:31 UT. The simulation reproduces the first and third eruption, with the simulated flux rope erupting roughly 1 and 10 hr before the observed ejections, respectively. A parameter study is conducted where the boundary and initial conditions are varied along with the physical effects of Ohmic diffusion, hyperdiffusion, and an additional injection of helicity. When comparing the simulations, the evolution of the magnetic field, free magnetic energy, relative helicity and flux rope eruption timings do not change significantly. This indicates that the key element in reproducing the coronal evolution of AR 11437 is the use of line-of-sight magnetograms to drive the evolution of the coronal magnetic field.

  4. Solar Dynamics Observatory (SDO) HGAS Induced Jitter

    NASA Technical Reports Server (NTRS)

    Liu, Alice; Blaurock, Carl; Liu, Kuo-Chia; Mule, Peter

    2008-01-01

    This paper presents the results of a comprehensive assessment of High Gain Antenna System induced jitter on the Solar Dynamics Observatory. The jitter prediction is created using a coupled model of the structural dynamics, optical response, control systems, and stepper motor actuator electromechanical dynamics. The paper gives an overview of the model components, presents the verification processes used to evaluate the models, describes validation and calibration tests and model-to-measurement comparison results, and presents the jitter analysis methodology and results.

  5. Parallel Group and Sunspot Counts from SDO/HMI and AAVSO Visual Observers (Abstract)

    NASA Astrophysics Data System (ADS)

    Howe, R.; Alvestad, J.

    2015-06-01

    (Abstract only) Creating group and sunspot counts from the SDO/HMI detector on the Solar Dynamics Observatory (SDO) satellite requires software that calculates sunspots from a “white light” intensity-gram (CCD image) and group counts from a filtered CCD magneto-gram. Images from the satellite come from here http://jsoc.stanford.edu/data/hmi/images/latest/ Together these two sets of images can be used to estimate the Wolf number as W = (10g + s), which is used to calculate the American Relative index. AAVSO now has approximately two years of group and sunspot counts in the SunEntry database as SDOH observer Jan Alvestad. It is important that we compare these satellite CCD image data with our visual observer daily submissions to determine if the SDO/HMI data should be included in calculating the American Relative index. These satellite data are continuous observations with excellent seeing. This contrasts with “snapshot” earth-based observations with mixed seeing. The SDO/HIM group and sunspot counts could be considered unbiased, except that they show a not normal statistical distribution when compared to the overall visual observations, which show a Poisson distribution. One challenge that should be addressed by AAVSO using these SDO/HMI data is the splitting of groups and deriving group properties from the magneto-grams. The filtered CCD detector that creates the magento-grams is not something our visual observers can relate too, unless they were to take CCD images in H-alpha and/or the Calcium spectrum line. So, questions remain as to how these satellite CCD image counts can be integrated into the overall American Relative index.

  6. The Solar Dynamics Observatory: Your On-Orbit Eye on the Sun

    NASA Technical Reports Server (NTRS)

    Pesnell, W. Dean

    2011-01-01

    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010 into the partly cloudy skies above Cape Canaveral, Florida. Over the next month SDO moved into a 28 degree inclined geosynchronous orbit at the longitude of the ground station in New Mexico. SDO is the first Space Weather Mission in NASA's Living With a Star Program. SDO's main goal is to understand and predict those solar variations that influence life on Earth and our technological systems. The SDO science investigations will determine how the Sun's magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere as the solar wind, energetic particles, and variations in the solar irradiance. The SDO mission consists of three scientific investigations (AIA, EVE, and HMI), a spacecraft bus, and a dedicated Ka-band ground station to handle the 150 Mbps data flow. SDO continues a long tradition of NASA missions providing calibrated solar spectral irradiance data, in this case using multiple measurements of the irradiance and rocket underflights of the spacecraft. The other instruments on SDO will be used to explain and develop predictive models of the solar spectral irradiance in the extreme ultraviolet. Science teams at LMSAL, LASP, and Stanford are responsible for processing, analyzing, distributing, and archiving the science data. We will talk about the launch of SDO and describe the data and science it is providing to NASA.

  7. Solar Dynamics Observatory Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R., Jr.; Kristin, D.; Bourkland, L.; Hsu, Oscar C.; Liu, Kuo-Chia; Mason, Paul A. C.; Morgenstern, Wendy M.; Russo, Angela M.; Starin, Scott R.; Vess, Melissa F.

    2011-01-01

    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010. Over the next three months, the spacecraft was raised from its launch orbit into its final geosynchronous orbit and its systems and instruments were tested and calibrated in preparation for its desired ten year science mission studying the Sun. A great deal of activity during this time involved the spacecraft attitude control system (ACS); testing control modes, calibrating sensors and actuators, and using the ACS to help commission the spacecraft instruments and to control the propulsion system as the spacecraft was maneuvered into its final orbit. This paper will discuss the chronology of the SDO launch and commissioning, showing the ACS analysis work performed to diagnose propellant slosh transient and attitude oscillation anomalies that were seen during commissioning, and to determine how to overcome them. The simulations and tests devised to demonstrate correct operation of all onboard ACS modes and the activities in support of instrument calibration will be discussed and the final maneuver plan performed to bring SDO on station will be shown. In addition to detailing these commissioning and anomaly resolution activities, the unique set of tests performed to characterize SDO's on-orbit jitter performance will be discussed.

  8. Laboratory study supporting the interpretation of Solar Dynamics Observatory data

    DOE PAGES

    Trabert, E.; Beiersdorfer, P.

    2015-01-29

    High-resolution extreme ultraviolet spectra of ions in an electron beam ion trap are investigated as a laboratory complement of the moderate-resolution observation bands of the AIA experiment on board the Solar Dynamics Observatory (SDO) spacecraft. Here, the latter observations depend on dominant iron lines of various charge states which in combination yield temperature information on the solar plasma. Our measurements suggest additions to the spectral models that are used in the SDO data interpretation. In the process, we also note a fair number of inconsistencies among the wavelength reference data bases.

  9. Time-Distance Helioseismology Data-Analysis Pipeline for Helioseismic and Magnetic Imager Onboard Solar Dynamics Observatory (SDO-HMI) and Its Initial Results

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Couvidat, S.; Bogart, R. S.; Parchevsky, K. V.; Birch, A. C.; Duvall, Thomas L., Jr.; Beck, J. G.; Kosovichev, A. G.; Scherrer, P. H.

    2011-01-01

    The Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO/HMI) provides continuous full-disk observations of solar oscillations. We develop a data-analysis pipeline based on the time-distance helioseismology method to measure acoustic travel times using HMI Doppler-shift observations, and infer solar interior properties by inverting these measurements. The pipeline is used for routine production of near-real-time full-disk maps of subsurface wave-speed perturbations and horizontal flow velocities for depths ranging from 0 to 20 Mm, every eight hours. In addition, Carrington synoptic maps for the subsurface properties are made from these full-disk maps. The pipeline can also be used for selected target areas and time periods. We explain details of the pipeline organization and procedures, including processing of the HMI Doppler observations, measurements of the travel times, inversions, and constructions of the full-disk and synoptic maps. Some initial results from the pipeline, including full-disk flow maps, sunspot subsurface flow fields, and the interior rotation and meridional flow speeds, are presented.

  10. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Gurman, J. B.; Hourclé, J. A.; Bogart, R. S.; Tian, K.; Hill, F.; Suàrez-Sola, I.; Zarro, D. M.; Davey, A. R.; Martens, P. C.; Yoshimura, K.; Reardon, K. M.

    2006-12-01

    The Virtual Solar Observatory (VSO) has survived its infancy and provides metadata search and data identification for measurements from 45 instrument data sets held at 12 online archives, as well as flare and coronal mass ejection (CME) event lists. Like any toddler, the VSO is good at getting into anything and everything, and is now extending its grasp to more data sets, new missions, and new access methods using its application programming interface (API). We discuss and demonstrate recent changes, including developments for STEREO and SDO, and an IDL-callable interface for the VSO API. We urge the heliophysics community to help civilize this obstreperous youngster by providing input on ways to make the VSO even more useful for system science research in its role as part of the growing cluster of Heliophysics Virtual Observatories.

  11. Solar Dynamics Observatory High Gain Antenna Handover Planning

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.; Mann, Laurie

    2007-01-01

    The Solar Dynamics Observatory (SDO) is planned to launch in early 2009 as a mission to study the solar variability and its impact on Earth. To best satisfy its science goal, SDO will fly in a geosynchronous orbit with an inclination of approximately 29 deg. The spacecraft attitude is designed so that the science instruments point directly at the Sun with high accuracy. One of SDO s principal requirements is to obtain long periods of uninterrupted observations. The observations have an extremely high data volume so SDO must be in continuous contact with the ground during the observation periods. To maintain this contact, SDO is equipped with a pair of high gain antennas (HGAs) transmitting to a pair of ground antennas at the SDO ground station (SDOGS) located in White Sands, New Mexico. Either HGA can transmit to either SDOGS antenna. Neither HGA can be powered down. During a portion of each year, each of the HGA beams will intersect with the SDO body for a portion of the orbit. The original SDO antenna contact plan used each HGA for the half of each year during which its beam would not intersect the spacecraft. No data would be lost except, possibly, when switching from one antenna to another. After this plan was adopted, further analysis showed that daily handovers would be necessary for significant periods of the year. This unexpected need for extensive handovers necessitated that a handover design be developed to minimize the impact on the mission. This antenna handover design was developed and successfully tested with simulated data using the slew rate limits from preliminary jitter analysis. Subsequent analysis provided significant revision of allowed rates requiring modification of the handover plans.

  12. Solar Dynamics Observatory High Gain Antenna Handover Planning

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.; Mann, Laurie

    2007-01-01

    The Solar Dynamics Observatory (SDO) is planned to launch in early 2009 as a mission to study the solar variability and its impact on Earth. To best satisfy its science goal, SDO will fly in a geosynchronous orbit with an inclination of approximately 29 deg. The spacecraft attitude is designed so that the science instruments point directly at the Sun with high accuracy. One of SDO's principal requirements is to obtain long periods of uninterrupted observations. The observations have an extremely high data volume so SDO must be in continuous contact with the ground during the observation periods. To maintain this contact, SDO is equipped with a pair of high gain antennas (HGAs) transmitting to a pair of ground antennas at the SDO ground station (SDOGS) located in White Sands, New Mexico. Either HGA can transmit to either SDOGS antenna. Neither HGA can be powered down. During a portion of each year, each of the HGA beams will intersect with the SDO body for a portion of the orbit. The original SDO antenna contact plan used each HGA for the half of each year during which its beam would not intersect the spacecraft. No data would be lost except, possibly, when switching from one antenna to another. After this plan was adopted, further analysis showed that daily handovers would be necessary for significant periods of the year. This unexpected need for extensive handovers necessitated that a handover design be developed to minimize the impact on the mission. This antenna handover design was developed and successfully tested with simulated data using the slew rate limits from preliminary jitter analysis. Subsequent analysis provided significant revision of allowed rates requiring modification of the handover plans.

  13. Recent Science from the Cape Verde Atmospheric Observatory (CVAO)

    NASA Astrophysics Data System (ADS)

    Read, Katie; Lee, James; Punjabi, Shalini; Carpenter, Lucy; Lewis, Alastair; Moller, Sarah; Mendes Neves, Luis; Fleming, Zoe; Evans, Mat; Arnold, Steve; Hopkins, James

    2013-04-01

    The Cape Verde Atmospheric Observatory (16,848°N, 24.871°W), a subtropical marine boundary layer atmospheric monitoring station situated at Calhau on the island of São Vicente, has been in operation since October 2006. Almost continuous measurements of the trace gases O3, CO, NMVOC, NO, and NO2 have been obtained. Other data from the CVAO, for example of greenhouse gases, aerosol (physical and chemical parameters), halocarbons, halogen oxides, are also available over various timescales (see http://ncasweb.leeds.ac.uk/capeverde/ for more details). Through the newly EU funded Global Mercury Observation System (GMOS) project, atmospheric measurements of mercury began in 2011. The observatory has hosted a number of field campaigns including Reactive Halogens in the Marine Boundary Layer experiment (RHaMBLe) in 2007 (Lee et al., 2010) which focussed on halogen chemistry and Seasonal Oxidant Study (SOS) in 2009 which looked at how the oxidation chemistry varied seasonally. The prevailing strong on-shore winds bring marine air masses with varying inputs of Saharan dust and of long range transport from North American Europe, thus the CVAO is an appealing location for both short and long term research into a variety of atmospheric phenomena. Aged air masses from North America, Europe, and Africa influence the measurements at the observatory, but fresh emissions from coastal Africa and the ocean may also play a major role. Through the use of the UK Met office's NAME model (http://www.metoffice.gov.uk/research/modelling-systems/dispersion-model) it has recently been possible to classify the air received by the site and this has since been employed in further interpretation of the datasets (Carpenter et al., 2010). Measurements from the last six years will be presented at the conference together with comparisons with the output of the CAM-Chem global chemistry transport model (Read et al., 2012). The CVAO is a global GAW (Global Atmospheric Watch) station and so data is

  14. SDO Observed its First Lunar Transit

    NASA Image and Video Library

    2017-12-08

    NASA image captured October 7, 2010 View a video of this event here: www.flickr.com/photos/gsfc/5099028189 This was a first for SDO and it was visually engaging too. On October 7, 2010, SDO observed its first lunar transit when the new Moon passed directly between the spacecraft (in its geosynchronous orbit) and the Sun. With SDO watching the Sun in a wavelength of extreme ultraviolet light, the dark Moon created a partial eclipse of the Sun. These images, while unusual and cool to see, have practical value to the SDO science team. Karel Schrijver of Lockheed-Martin's Solar and Astrophysics Lab explains: "The very sharp edge of the lunar limb allows us to measure the in-orbit characteristics of the telescope e.g., light diffraction on optics and filter support grids. Once these are characterized, we can use that information to correct our data for instrumental effects and sharpen up the images to even more detail." To learn more about SDO go to: sdo.gsfc.nasa.gov/ Credit: NASA/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  15. CCMC Plans to Support SDO Operations

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter

    2008-01-01

    The CCMC will actively support the SDO Mission. It will do this, wherever feasible, by installing and running those models which the SDO science planners deem both appropriate and necessary to enable the science goals of SDO. In this presentation I will outline our philosophy in offering this support, the models we are actively pursuing to enable this, and the modes in which we intend to run these models. I will discuss how users of SDO data will be able to request model runs and analyse their outputs. I will also describe the facilities which we have at our disposal to support this effort, and our expectations for the resource requirements which this support will need.

  16. ANALYSIS OF CORONAL RAIN OBSERVED BY IRIS , HINODE /SOT, AND SDO /AIA: TRANSVERSE OSCILLATIONS, KINEMATICS, AND THERMAL EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohutova, P.; Verwichte, E., E-mail: p.kohutova@warwick.ac.uk

    Coronal rain composed of cool plasma condensations falling from coronal heights along magnetic field lines is a phenomenon occurring mainly in active region coronal loops. Recent high-resolution observations have shown that coronal rain is much more common than previously thought, suggesting its important role in the chromosphere-corona mass cycle. We present the analysis of MHD oscillations and kinematics of the coronal rain observed in chromospheric and transition region lines by the Interface Region Imaging Spectrograph (IRIS) , the Hinode Solar Optical Telescope (SOT), and the Solar Dynamics Observatory ( SDO) Atmospheric Imaging Assembly (AIA). Two different regimes of transverse oscillationsmore » traced by the rain are detected: small-scale persistent oscillations driven by a continuously operating process and localized large-scale oscillations excited by a transient mechanism. The plasma condensations are found to move with speeds ranging from few km s{sup −1} up to 180 km s{sup −1} and with accelerations largely below the free-fall rate, likely explained by pressure effects and the ponderomotive force resulting from the loop oscillations. The observed evolution of the emission in individual SDO /AIA bandpasses is found to exhibit clear signatures of a gradual cooling of the plasma at the loop top. We determine the temperature evolution of the coronal loop plasma using regularized inversion to recover the differential emission measure (DEM) and by forward modeling the emission intensities in the SDO /AIA bandpasses using a two-component synthetic DEM model. The inferred evolution of the temperature and density of the plasma near the apex is consistent with the limit cycle model and suggests the loop is going through a sequence of periodically repeating heating-condensation cycles.« less

  17. Jitter Test Program and On-Orbit Mitigation Strategies for Solar Dynamic Observatory

    NASA Technical Reports Server (NTRS)

    Liu, Kuo-Chia; Kenney, Thomas; Maghami, Peiman; Mule, Pete; Blaurock, Carl; Haile, William B.

    2007-01-01

    The Solar Dynamic Observatory (SDO) aims to study the Sun's influence on the Earth, the source, storage, and release of the solar energy, and the interior structure of the Sun. During science observations, the jitter stability at the instrument focal plane must be maintained to less than a fraction of an arcsecond for two of the SDO instruments. To meet these stringent requirements, a significant amount of analysis and test effort has been devoted to predicting the jitter induced from various disturbance sources. This paper presents an overview of the SDO jitter analysis approach and test effort performed to date. It emphasizes the disturbance modeling, verification, calibration, and validation of the high gain antenna stepping mechanism and the reaction wheels, which are the two largest jitter contributors. This paper also describes on-orbit mitigation strategies to protect the system from analysis model uncertainties. Lessons learned from the SDO jitter analyses and test programs are included in the paper to share the knowledge gained with the community.

  18. The Solar Dynamics Observatory: Your Eye On The Sun

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2008-01-01

    The Sun hiccups and satellites die. That is what NASA's Living With a Star Program is all about. The Solar Dynamics Observatory (SDO) is the first Space Weather Mission in LWS. SDO's main goal is to understand, driving towards a predictive capability, those solar variations that influence life on Earth and humanity's technological systems. The past decade has seen an increasing emphasis on understanding the entire Sun, from the nuclear reactions at the core to the development and loss of magnetic loops in the corona. SDO's three science investigations (HMI, AIA, and EVE) will determine how the Sun's magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. SDO will return full-disk Dopplergrams, full-disk vector magnetograms, full-disk images at nine E/UV wavelengths, and EUV spectral irradiances, all taken at a rapid cadence. This means you can "observe the database" to study events, but we can also move forward in producing quantitative models of what the Sun is doing today. SDO is scheduled to launch in 2008 on an Atlas V rocket from the Kennedy Space Center, Cape Canaveral, Florida. The satellite will fly in a 28 degree inclined geosynchronous orbit about the longitude of New Mexico, where a dedicated Ka-band ground station will receive the 150 Mbps data flow. How SDO data will transform the study of the Sun and its affect on Space Weather studies will be discussed.

  19. Airborne optic and magnetic observatory (ABOMO) for the investigation of the ionosphere, magnetosphere, and atmospheric proceses

    NASA Astrophysics Data System (ADS)

    Raspopov, Oleg M.; Pochtarev, V. I.; Domaratskij, Serguej N.

    1993-11-01

    The St. Petersburg Filial (Division) of IZMIRAN has recently initiated a major new research project involving the Airborne Optic and Magnetic Observatory (ABOMO). ABOMO is designed specifically for studies of auroral, magnetic, ionospheric and atmospheric phenomena including ozone and other important atmospheric constituents. The observatory is constructed aboard a modified four-engine turboprop aircraft AN-12.

  20. THE SPATIO-TEMPORAL EVOLUTION OF SOLAR FLARES OBSERVED WITH AIA/SDO: FRACTAL DIFFUSION, SUB-DIFFUSION, OR LOGISTIC GROWTH?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschwanden, Markus J., E-mail: aschwanden@lmsal.com

    2012-09-20

    We explore the spatio-temporal evolution of solar flares by fitting a radial expansion model r(t) that consists of an exponentially growing acceleration phase, followed by a deceleration phase that is parameterized by the generalized diffusion function r(t){proportional_to}{kappa}(t - t{sub 1}){sup {beta}/2}, which includes the logistic growth limit ({beta} = 0), sub-diffusion ({beta} = 0-1), classical diffusion ({beta} = 1), super-diffusion ({beta} = 1-2), and the linear expansion limit ({beta} = 2). We analyze all M- and X-class flares observed with Geostationary Operational Environmental Satellite and Atmospheric Imaging Assembly/Solar Dynamics Observatory (SDO) during the first two years of the SDO mission,more » amounting to 155 events. We find that most flares operate in the sub-diffusive regime ({beta} = 0.53 {+-} 0.27), which we interpret in terms of anisotropic chain reactions of intermittent magnetic reconnection episodes in a low plasma-{beta} corona. We find a mean propagation speed of v = 15 {+-} 12 km s{sup -1}, with maximum speeds of v{sub max} = 80 {+-} 85 km s{sup -1} per flare, which is substantially slower than the sonic speeds expected for thermal diffusion of flare plasmas. The diffusive characteristics established here (for the first time for solar flares) is consistent with the fractal-diffusive self-organized criticality model, which predicted diffusive transport merely based on cellular automaton simulations.« less

  1. A HOT FLUX ROPE OBSERVED BY SDO/AIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aparna, V.; Tripathi, Durgesh, E-mail: aparnav@iucaa.in

    2016-03-01

    A filament eruption was observed on 2010 October 31 in the images recorded by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) in its Extreme Ultra-Violet (EUV) channels. The filament showed a slow-rise phase followed by a fast rise and was classified to be an asymmetric eruption. In addition, multiple localized brightenings which were spatially and temporally associated with the slow-rise phase were identified, leading us to believe that the tether-cutting mechanism initiated the eruption. An associated flux rope was detected in high-temperature channels of AIA, namely 94 and 131 Å, corresponding to 7 and 11more » MK plasma respectively. In addition, these channels are also sensitive to cooler plasma corresponding to 1–2 MK. In this study, we have applied the algorithm devised by Warren et al. to remove cooler emission from the 94 Å channel to deduce only the high-temperature structure of the flux rope and to study its temporal evolution. We found that the flux rope was very clearly seen in the clean 94 Å channel image corresponding to Fe xviii emission, which corresponds to a plasma at a temperature of 7 MK. This temperature matched well with that obtained using Differential Emission Measure analysis. This study provides important constrains in the modeling of the thermodynamic structure of the flux ropes in coronal mass ejections.« less

  2. A Statistical Comparison between Photospheric Vector Magnetograms Obtained by SDO/HMI and Hinode/SP

    NASA Astrophysics Data System (ADS)

    Sainz Dalda, Alberto

    2017-12-01

    Since 2010 May 1, we have been able to study (almost) continuously the vector magnetic field in the Sun, thanks to two space-based observatories: the Solar Dynamics Observatory (SDO) and Hinode. Both are equipped with instruments able to measure the Stokes parameters of Zeeman-induced polarization of photospheric line radiation. But the observation modes; the spectral lines; the spatial, spectral, and temporal sampling; and even the inversion codes used to recover magnetic and thermodynamic information from the Stokes profiles are different. We compare the vector magnetic fields derived from observations with the HMI instrument on board SDO with those observed by the SP instrument on Hinode. We have obtained relationships between components of magnetic vectors in the umbra, penumbra, and plage observed in 14 maps of NOAA Active Region 11084. Importantly, we have transformed SP data into observables comparable to those of HMI, to explore possible influences of the different modes of operation of the two instruments and the inversion schemes used to infer the magnetic fields. The assumed filling factor (fraction of each pixel containing a Zeeman signature) produces the most significant differences in derived magnetic properties, especially in the plage. The spectral and angular samplings have the next-largest effects. We suggest to treat the disambiguation in the same way in the data provided by HMI and SP. That would make the relationship between the vector magnetic field recovered from these data stronger, which would favor the simultaneous or complementary use of both instruments.

  3. 20-micron transparency and atmospheric water vapor at the Wyoming Infrared Observatory

    NASA Technical Reports Server (NTRS)

    Grasdalen, G. L.; Gehrz, R. D.; Hackwell, J. A.; Freedman, R.

    1985-01-01

    The atmospheric transparency at 19.5 and 23 microns from the Wyoming Infrared Observatory over the past six years has been examined. It is found that the transparency is largely controlled by the season. Four months: June, July, August, and September have very poor 20-micron transparency. During the rest of the year the transparency is usually quite good at 19.5 microns and moderately good at 23 microns. Using rawinsonde data and theoretical calculations for the expected infrared transparency, the measures of 20-micron transparency were calibrated in terms of atmospheric water-vapor content. The water vapor over the Wyoming Infrared Observatory is found to compare favorably with that above other proposed or developed sites: Mauna Kea, Mount Graham, and Wheeler Peak.

  4. Overlying extreme-ultraviolet arcades preventing eruption of a filament observed by AIA/SDO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huadong; Ma, Suli; Zhang, Jun, E-mail: hdchen@upc.edu.cn

    2013-11-20

    Using the multi-wavelength data from the Atmospheric Imaging Assembly/Solar Dynamic Observatory (AIA/SDO) and the Sun Earth Connection Coronal and Heliospheric Investigation/Solar Terrestrial Relations Observatory (SECCHI/STEREO), we report a failed filament eruption in NOAA AR 11339 on 2011 November 3. The eruption was associated with an X1.9 flare, but without any coronal mass ejection (CME), coronal dimming, or extreme ultraviolet (EUV) waves. Some magnetic arcades above the filament were observed distinctly in EUV channels, especially in the AIA 94 Å and 131 Å wavebands, before and during the filament eruption process. Our results show that the overlying arcades expanded along withmore » the ascent of the filament at first until they reached a projected height of about 49 Mm above the Sun's surface, where they stopped. The following filament material was observed to be confined by the stopped EUV arcades and not to escape from the Sun. After the flare, a new filament formed at the low corona where part of the former filament remained before its eruption. These results support that the overlying arcades play an important role in preventing the filament from successfully erupting outward. We also discuss in this paper the EUV emission of the overlying arcades during the flare. It is rare for a failed filament eruption to be associated with an X1.9 class flare, but not with a CME or EUV waves. Therefore, this study also provides valuable insight into the triggering mechanism of the initiation of CMEs and EUV waves.« less

  5. Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments

    NASA Technical Reports Server (NTRS)

    Woods, T. N.; Eparvier, F. G.; Hock, R.; Jones, A. R.; Woodraska, D.; Judge, D.; Didkovsky, L.; Lean, J.; Mariska, J.; Warren, H.; hide

    2010-01-01

    The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth's upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105 nm with unprecedented spectral resolution (0.1 nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazingincidence spectrograph that measures the solar EUV irradiance in the 5 to 37 nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105 nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39 nm, and a MEGS-Photometer measures the Sun s bright hydrogen emission at 121.6 nm. The EVE data products include a near real-time space-weather product (Level 0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15 minutes. The EVE higher-level products are Level 2 with the solar EUV irradiance at higher time cadence (0.25 seconds for photometers and ten seconds for spectrographs) and Level 3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.

  6. Data Distribution System (DDS) and Solar Dynamic Observatory Ground Station (SDOGS) Integration Manager

    NASA Technical Reports Server (NTRS)

    Pham, Kim; Bialas, Thomas

    2012-01-01

    The DDS SDOGS Integration Manager (DSIM) provides translation between native control and status formats for systems within DDS and SDOGS, and the ASIST (Advanced Spacecraft Integration and System Test) control environment in the SDO MOC (Solar Dynamics Observatory Mission Operations Center). This system was created in response for a need to centralize remote monitor and control of SDO Ground Station equipments using ASIST control environment in SDO MOC, and to have configurable table definition for equipment. It provides translation of status and monitoring information from the native systems into ASIST-readable format to display on pages in the MOC. The manager is lightweight, user friendly, and efficient. It allows data trending, correlation, and storing. It allows using ASIST as common interface for remote monitor and control of heterogeneous equipments. It also provides failover capability to back up machines.

  7. Viewing The Entire Sun With STEREO And SDO

    NASA Astrophysics Data System (ADS)

    Thompson, William T.; Gurman, J. B.; Kucera, T. A.; Howard, R. A.; Vourlidas, A.; Wuelser, J.; Pesnell, D.

    2011-05-01

    On 6 February 2011, the two Solar Terrestrial Relations Observatory (STEREO) spacecraft were at 180 degrees separation. This allowed the first-ever simultaneous view of the entire Sun. Combining the STEREO data with corresponding images from the Solar Dynamics Observatory (SDO) allows this full-Sun view to continue for the next eight years. We show how the data from the three viewpoints are combined into a single heliographic map. Processing of the STEREO beacon telemetry allows these full-Sun views to be created in near-real-time, allowing tracking of solar activity even on the far side of the Sun. This is a valuable space-weather tool, not only for anticipating activity before it rotates onto the Earth-view, but also for deep space missions in other parts of the solar system. Scientific use of the data includes the ability to continuously track the entire lifecycle of active regions, filaments, coronal holes, and other solar features. There is also a significant public outreach component to this activity. The STEREO Science Center produces products from the three viewpoints used in iPhone/iPad and Android applications, as well as time sequences for spherical projection systems used in museums, such as Science-on-a-Sphere and Magic Planet.

  8. Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antiči'C, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Del Peral, L.; Del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lahurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi'Canovi'C, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; 'Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargascárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2012-04-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargüe and averaged monthly models, the utility of the GDAS data is shown.

  9. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abreu, P.; /Lisbon, IST; Aglietta, M.

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

  10. Success of Solar Dynamics Observatory (SDO) Education & Public Outreach (E/PO) in Montana

    NASA Astrophysics Data System (ADS)

    Freed, M. S.; Lowder, S. C.; McKenzie, D. E.

    2013-03-01

    The Space Public Outreach Team (SPOT) program at Montana State University (MSU) is the main component of SDO E/PO efforts in Montana. SPOT brings energetic presentations of recent science & NASA missions to students in primary & secondary schools. Presenters are university undergraduates that visit a diverse group of K-12 students from both rural & urban areas of Montana. This program is extremely cost effective, a valuable service-learning experience for undergraduates at MSU and has repeatedly received praise from both teachers and students. A complementary effort for training schoolteachers entitled NASA Education Activity Training (NEAT) is also employed. NEAT illustrates to teachers inexpensive and highly effective methods for demonstrating difficult science concepts to their students. We will highlight the successes and lessons learned from SPOT & NEAT, so that other E/PO programs can use it as a template to further science literacy in our nation's schools.

  11. SDO Reveals Star-Forming Eruptions

    NASA Image and Video Library

    2015-01-20

    Spectacular eruption: On June 7, 2011, SDO captured this image as a massive eruption lifted an enormous amount of cool, dark material into the corona. Most of that material fell back onto the sun, where the gravitational energy of the fall caused it to heat up to a million degrees and more. Scientists concluded that this event on the sun was a small-scale version of what happens as stars form and collect gases via gravity. Thus, AIA allowed us to study in detail a phenomenon that cannot be observed so closely anywhere else in the universe. Credit: NASA/SDO/AIA/LMSAL Read more: www.nasa.gov/content/goddard/sdo-telescope-collects-its-1... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Case study of a magnetic transient in NOAA 11429 observed by SDO/HMI during the M7.9 flare on 2012 march 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harker, Brian J.; Pevtsov, Alexei A., E-mail: bharker@nso.edu, E-mail: apevtsov@nso.edu

    NOAA 11429 was the source of an M7.9 X-ray flare at the western solar limb (N18° W63°) on 2012 March 13 at 17:12 UT. Observations of the line-of-sight magnetic flux and the Stokes I and V profiles from which it is derived were carried out by the Solar Dynamics Observatory Helioseismic and Magnetic Imager (SDO/HMI) with a 45 s cadence over the full disk, at a spatial sampling of 0.''5. During flare onset, a transient patch of negative flux can be observed in SDO/HMI magnetograms to rapidly appear within the positive polarity penumbra of NOAA 11429. We present here amore » detailed study of this magnetic transient and offer interpretations as to whether this highly debated phenomenon represents a 'real' change in the structure of the magnetic field at the site of the flare, or is instead a product of instrumental/algorithmic artifacts related to particular SDO/HMI data reduction techniques.« less

  13. Solar Cycle Variation of Microwave Polar Brightening and EUV Coronal Hole Observed by Nobeyama Radioheliograph and SDO/AIA

    NASA Astrophysics Data System (ADS)

    Kim, Sujin; Park, Jong-Yeop; Kim, Yeon-Han

    2017-08-01

    We investigate the solar cycle variation of microwave and extreme ultraviolet (EUV) intensity in latitude to compare microwave polar brightening (MPB) with the EUV polar coronal hole (CH). For this study, we used the full-sun images observed in 17 GHz of the Nobeyama Radioheliograph from 1992 July to 2016 November and in two EUV channels of the Atmospheric Imaging Assembly (AIA) 193 Å and 171 Å on the Solar Dynamics Observatory (SDO) from 2011 January to 2016 November. As a result, we found that the polar intensity in EUV is anti-correlated with the polar intensity in microwave. Since the depression of EUV intensity in the pole is mostly owing to the CH appearance and continuation there, the anti-correlation in the intensity implies the intimate association between the polar CH and the MPB. Considering the report of tet{gopal99} that the enhanced microwave brightness in the CH is seen above the enhanced photospheric magnetic field, we suggest that the pole area during the solar minimum has a stronger magnetic field than the quiet sun level and such a strong field in the pole results in the formation of the polar CH. The emission mechanism of the MPB and the physical link with the polar CH are not still fully understood. It is necessary to investigate the MPB using high resolution microwave imaging data, which can be obtained by the high performance large-array radio observatories such as the ALMA project.

  14. NASA’s Solar Dynamics Observatory Captured Trio of Solar Flares April 2-3

    NASA Image and Video Library

    2017-12-08

    The sun emitted a trio of mid-level solar flares on April 2-3, 2017. The first peaked at 4:02 a.m. EDT on April 2, the second peaked at 4:33 p.m. EDT on April 2, and the third peaked at 10:29 a.m. EDT on April 3. NASA’s Solar Dynamics Observatory, which watches the sun constantly, captured images of the three events. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel. Learn more: go.nasa.gov/2oQVFju Caption: NASA's Solar Dynamics Observatory captured this image of a solar flare peaking at 10:29 a.m. EDT on April 3, 2017, as seen in the bright flash near the sun’s upper right edge. The image shows a subset of extreme ultraviolet light that highlights the extremely hot material in flares and which is typically colorized in teal. Credits: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Atmospheric Extinction Coefficients in the Ic Band for Several Major International Observatories: Results from the BiSON Telescopes, 1984-2016

    NASA Astrophysics Data System (ADS)

    Hale, S. J.; Chaplin, W. J.; Davies, G. R.; Elsworth, Y. P.; Howe, R.; Lund, M. N.; Moxon, E. Z.; Thomas, A.; Pallé, P. L.; Rhodes, E. J., Jr.

    2017-09-01

    Over 30 years of solar data have been acquired by the Birmingham Solar Oscillations Network (BiSON), an international network of telescopes used to study oscillations of the Sun. Five of the six BiSON telescopes are located at major observatories. The observational sites are, in order of increasing longitude: Mount Wilson (Hale) Observatory (MWO), California, USA; Las Campanas Observatory, Chile; Observatorio del Teide, Izaña, Tenerife, Canary Islands; the South African Astronomical Observatory, Sutherland, South Africa; Carnarvon, Western Australia; and the Paul Wild Observatory, Narrabri, New South Wales, Australia. The BiSON data may be used to measure atmospheric extinction coefficients in the {{{I}}}{{c}} band (approximately 700-900 nm), and presented here are the derived atmospheric extinction coefficients from each site over the years 1984-2016.

  16. Systems approach to the design of the CCD sensors and camera electronics for the AIA and HMI instruments on solar dynamics observatory

    NASA Astrophysics Data System (ADS)

    Waltham, N.; Beardsley, S.; Clapp, M.; Lang, J.; Jerram, P.; Pool, P.; Auker, G.; Morris, D.; Duncan, D.

    2017-11-01

    Solar Dynamics Observatory (SDO) is imaging the Sun in many wavelengths near simultaneously and with a resolution ten times higher than the average high-definition television. In this paper we describe our innovative systems approach to the design of the CCD cameras for two of SDO's remote sensing instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI). Both instruments share use of a custom-designed 16 million pixel science-grade CCD and common camera readout electronics. A prime requirement was for the CCD to operate with significantly lower drive voltages than before, motivated by our wish to simplify the design of the camera readout electronics. Here, the challenge lies in the design of circuitry to drive the CCD's highly capacitive electrodes and to digitize its analogue video output signal with low noise and to high precision. The challenge is greatly exacerbated when forced to work with only fully space-qualified, radiation-tolerant components. We describe our systems approach to the design of the AIA and HMI CCD and camera electronics, and the engineering solutions that enabled us to comply with both mission and instrument science requirements.

  17. The Effects of Propellant Slosh Dynamics on the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Mason, Paul; Starin, Scott R.

    2011-01-01

    The Solar Dynamics Observatory (SOO) mission, which is part of the Living With a Star program, was successfully launched and deployed from its Atlas V launch vehicle on February 11, 2010. SOO is an Explorer-class mission now operating in a geosynchronous orbit (GEO). The basic mission is to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station located in White Sands, New Mexico. Almost half of SDO's launch mass was propellant, contained in two large tanks. To ensure performance with this amount of propellant, a slosh analysis was performed prior to launch. This paper provides an overview of the SDO slosh analysis, the on-orbit experience, and the lessons learned.

  18. Calibration of Gimbaled Platforms: The Solar Dynamics Observatory High Gain Antennas

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.

    2006-01-01

    Simple parameterization of gimbaled platform pointing produces a complete set of 13 calibration parameters-9 misalignment angles, 2 scale factors and 2 biases. By modifying the parameter representation, redundancy can be eliminated and a minimum set of 9 independent parameters defined. These consist of 5 misalignment angles, 2 scale factors, and 2 biases. Of these, only 4 misalignment angles and 2 biases are significant for the Solar Dynamics Observatory (SDO) High Gain Antennas (HGAs). An algorithm to determine these parameters after launch has been developed and tested with simulated SDO data. The algorithm consists of a direct minimization of the root-sum-square of the differences between expected power and measured power. The results show that sufficient parameter accuracy can be attained even when time-dependent thermal distortions are present, if measurements from a pattern of intentional offset pointing positions is included.

  19. International Arctic Systems for Observing the Atmosphere (IASOA): 2007 Observatory Upgrades in Canada, Greenland, Russia and the United States

    NASA Astrophysics Data System (ADS)

    Darby, L. S.; Uttal, T.; Burkhart, J.; Drummond, J.

    2007-12-01

    International Arctic Systems for Observing the Atmosphere (IASOA) is a dynamic organization developed to enhance Arctic atmospheric research by fostering collaborations among researchers during the International Polar Year (IPY) and beyond. The member stations are Abisko, Sweden; Alert and Eureka, Canada; Barrow, USA; Cherskii and Tiksi Russia; Ny-Ålesund, Norway; Pallas and Sodankylä, Finland; and Summit, Greenland. All of these observatories operate year-round, with at least minimal staffing in the winter months, are intensive and permanent. Presently, measurement and building upgrades are occurring at the Tiksi, Eureka, Summit and Barrow observatories. A new weather station building has been completed in Tiksi and is currently available for installation of instruments. A second Clean Air Facility (CAF) that will be suitable for aerosol, chemistry, pollutant, greenhouse gases, fluxes and radiation measurements is expected to be completed in the spring of 2008. Real- time continuous measurement instruments for the measurement of ozone and black carbon, and flasks for carbon cycle gas measurements for the new Tiksi station are awaiting shipping from Boulder, CO. At the Eureka site many instruments including a flux tower, several CIMELs for the Aeronet Network, and a Baseline Surface Radiation Network (BSRN) station were installed in the summer of 2007. With IPY funding the level of technical support at the site has been increased to provide more reliable data collection and transmission. The Summit, Greenland observatory has recently released a strategic plan highlighting climate sensitive year- round observations, innovative research platforms and operational plans to increase renewable energy to maintain the pristine platform. Summit also has a new multi-channel GC/MS for continuous measurement of trace halocarbon and CFC gas concentrations. All NOAA instruments have been moved from the Science trench to a new atmospheric watch observatory building. NOAA is now

  20. Flare Seismology from SDO Observations

    NASA Astrophysics Data System (ADS)

    Lindsey, Charles; Martinez Oliveros, Juan Carlos; Hudson, Hugh

    2011-10-01

    Some flares release intense seismic transients into the solar interior. These transients are the sole instance we know of in which the Sun's corona exerts a conspicuous influence on the solar interior through flares. The desire to understand this phenomenon has led to ambitious efforts to model the mechanisms by which energy stored in coronal magnetic fields drives acoustic waves that penetrate deep into the Sun's interior. These mechanisms potentially involve the hydrodynamic response of the chromosphere to thick-target heating by high-energy particles, radiative exchange in the chromosphere and photosphere, and Lorentz-force transients to account for acoustic energies estimated up to at 5X10^27 erg and momenta of order 6X10^19 dyne sec. An understanding of these components of flare mechanics promises more than a powerful diagnostic for local helioseismology. It could give us fundamental new insight into flare mechanics themselves. The key is appropriate observations to match the models. Helioseismic observations have identified the compact sources of transient seismic emission at the foot points of flares. The Solar Dynamics Observatory is now giving us high quality continuum-brightness and Doppler observations of acoustically active flares from HMI concurrent with high-resolution EUV observations from AIA. Supported by HXR observations from RHESSI and a broad variety of other observational resources, the SDO promises a leading role in flare research in solar cycle 24.

  1. The Effects of Propellant Slosh Dynamics on the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Mason, Paul; Starin, Scott R.

    2011-01-01

    The Solar Dynamics Observatory (SDO) mission, which is part of the Living With a Star program, was successfully launched and deployed from its Atlas V launch vehicle on February 11, 2010. SDO is an Explorer-class mission now operating in a geosynchronous orbit (GEO). The basic mission is to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station located in White Sands, New Mexico. A significant portion of SDO's launch mass was propellant, contained in two large tanks. To ensure performance with this level of propellant, a slosh analysis was performed. This paper provides an overview of the SDO slosh analysis, the on-orbit experience, and the lessons learned. SDO is a three-axis controlled, single fault tolerant spacecraft. The attitude sensor complement includes sixteen coarse Sun sensors, a digital Sun sensor, three two-axis inertial reference units, two star trackers, and four guide telescopes. Attitude actuation is performed either using four reaction wheels or eight thrusters, depending on the control mode, along with single main engine which nominally provides velocity-change thrust. The attitude control software has five nominal control modes: three wheel-based modes and two thruster-based modes. A wheel-based Safehold running in the Attitude Control Electronics (ACE) box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. To achieve and maintain a geosynchronous orbit for a 2974-kilogram spacecraft in a cost effective manner, the SDO team designed a high-efficiency propulsive system. This bi-propellant design includes a 100-pound-force main engine and eight 5-pound-force attitude control thrusters. The main engine provides high specific impulse for

  2. Combined SDO/AIA, Hinode/XRT and FOXSI-2 microflare observations - DEM analysis and energetics

    NASA Astrophysics Data System (ADS)

    Panchapakesan, S. A.; Glesener, L.; Vievering, J. T.; Ryan, D.; Christe, S.; Inglis, A. R.; Buitrago-Casas, J. C.; Musset, S.; Krucker, S.

    2017-12-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket makes directimaging and spectral observation of the Sun in hard X-rays (HXRs) using highlysensitive focusing HXR optics. The second flight of FOXSI was launchedsuccessfully on 11 December 2014 and observed significant HXR emissions duringmicroflares. Some of these flares showed heating up to severalmillion Kelvin and were visible in the Extreme Ultraviolet (EUV) with the AtmosphericImaging Assembly (SDO/AIA). Spectral observations from FOXSI suggest emission upto 10-12 MK. We utilize SDO/AIA EUV, Hinode/XRT soft X-ray, and FOXSI-2 highenergy X-ray observations to derive the differential emission measure (DEM) ofthe microflares. The AIA and XRT observations provide broad temperaturecoverage but are poorly constrained at the hotter end. We therefore use FOXSI-2to better determine the high temperature component, thus producing a moreconstrained DEM than is possible with typically available observations. We usethis more highly constrained DEM to investigate the energetics of the observedmicroflares.

  3. Reaction Wheel Disturbance Modeling, Jitter Analysis, and Validation Tests for Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Liu,Kuo-Chia; Maghami, Peiman; Blaurock, Carl

    2008-01-01

    The Solar Dynamics Observatory (SDO) aims to study the Sun's influence on the Earth by understanding the source, storage, and release of the solar energy, and the interior structure of the Sun. During science observations, the jitter stability at the instrument focal plane must be maintained to less than a fraction of an arcsecond for two of the SDO instruments. To meet these stringent requirements, a significant amount of analysis and test effort has been devoted to predicting the jitter induced from various disturbance sources. One of the largest disturbance sources onboard is the reaction wheel. This paper presents the SDO approach on reaction wheel disturbance modeling and jitter analysis. It describes the verification and calibration of the disturbance model, and ground tests performed for validating the reaction wheel jitter analysis. To mitigate the reaction wheel disturbance effects, the wheels will be limited to operate at low wheel speeds based on the current analysis. An on-orbit jitter test algorithm is also presented in the paper which will identify the true wheel speed limits in order to ensure that the wheel jitter requirements are met.

  4. NASA'S Great Observatories

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Why are space observatories important? The answer concerns twinkling stars in the night sky. To reach telescopes on Earth, light from distant objects has to penetrate Earth's atmosphere. Although the sky may look clear, the gases that make up our atmosphere cause problems for astronomers. These gases absorb the majority of radiation emanating from celestial bodies so that it never reaches the astronomer's telescope. Radiation that does make it to the surface is distorted by pockets of warm and cool air, causing the twinkling effect. In spite of advanced computer enhancement, the images finally seen by astronomers are incomplete. NASA, in conjunction with other countries' space agencies, commercial companies, and the international community, has built observatories such as the Hubble Space Telescope, the Compton Gamma Ray Observatory, and the Chandra X-ray Observatory to find the answers to numerous questions about the universe. With the capabilities the Space Shuttle provides, scientist now have the means for deploying these observatories from the Shuttle's cargo bay directly into orbit.

  5. Spatially resolved observation of the fundamental and second harmonic standing kink modes using SDO/AIA

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M.

    2016-09-01

    Aims: We consider a coronal loop kink oscillation observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) which demonstrates two strong spectral components. The period of the lower frequency component being approximately twice that of the shorter frequency component suggests the presence of harmonics. Methods: We examine the presence of two longitudinal harmonics by investigating the spatial dependence of the loop oscillation. The time-dependent displacement of the loop is measured at 15 locations along the loop axis. For each position the displacement is fitted as the sum of two damped sinusoids, having periods P1 and P2, and a damping time τ. The shorter period component exhibits anti-phase oscillations in the loop legs. Results: We interpret the observation in terms of the first (global or fundamental) and second longitudinal harmonics of the standing kink mode. The strong excitation of the second harmonic appears connected to the preceding coronal mass ejection (CME) which displaced one of the loop legs. The oscillation parameters found are P1 = 5.00±0.62 min, P2 = 2.20±0.23 min, P1/ 2P2 = 1.15±0.22, and τ/P = 3.35 ± 1.45. A movie associated to Fig. 5 is available in electronic form at http://www.aanda.org

  6. NASA's SDO Satellite Captures Venus Transit Approach

    NASA Image and Video Library

    2012-06-05

    NASA image captured June 5, 2012 at 212357 UTC (about 5:24 p.m. EDT). On June 5-6 2012, SDO is collecting images of one of the rarest predictable solar events: the transit of Venus across the face of the sun. This event happens in pairs eight years apart that are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117. This image was captured by SDO's AIA instrument at 193 Angstroms. Credit: NASA/SDO, AIA To read more about the 2012 Venus Transit go to: sunearthday.nasa.gov/transitofvenus Add your photos of the Transit of Venus to our Flickr Group here: www.flickr.com/groups/venustransit/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Model-Atmosphere Spectra of Central Stars of Planetary Nebulae - Access via the Virtual Observatory Service TheoSSA

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Reindl, N.

    2014-04-01

    In the framework of the Virtual Observatory (VO), the German Astrophysical Virtual Observatory GAVO project provides easy access to theoretical spectral energy distributions (SEDs) within the registered GAVO service TheoSSA (http://dc.g-vo.org/theossa). TheoSSA is based on the well established Tübingen NLTE Model-Atmosphere Package (TMAP) for hot, compact stars. This includes central stars of planetary nebulae. We show examples of TheoSSA in operation.

  8. Satisfaction with Daily Occupations for Elderly People (SDO-E)—Adaptation and Psychometric Testing

    PubMed Central

    Wästberg, Birgitta; Eklund, Mona

    2017-01-01

    Satisfaction with everyday occupations has been shown to be important for health and well-being in various populations. Research into satisfaction with everyday occupations among elderly persons is, however, lacking. The aim was to investigate the psychometric properties of an adapted test version of the Satisfaction with Daily Occupations instrument (SDO) for elderly people, called SDO-E. Five hospital-based occupational therapists working with elderly people evaluated the content validity and usability of the SDO-E. The elderly participants consisted of 50 people from outside of the health services and 42 inpatients at an internal medicine clinic. They completed the SDO-E and rated their perceived health, activity level, and general satisfaction with daily occupations. The SDO-E showed fair content validity and utility, acceptable internal consistency, good preliminary construct validity and relevant known-groups validity. The SDO-E thus appears to be a useful screening tool for assessing activity level and satisfaction with daily occupations among elderly people, and a complement to other self-report instruments concerning factors connected with health and well-being. Future research should further explore the content validity of the SDO-E, particularly the views of the elderly themselves, and investigate the SDO-E in terms of sensitivity to change. PMID:28946667

  9. Atmospheric anthropic impacts tracked by the French atmospheric mobile observatory

    NASA Astrophysics Data System (ADS)

    Cuesta, J.; Chazette, P.; Flamant, P. H.

    2009-04-01

    A new ATmospheric Mobile ObServatory, so called "ATMOS", has been developed by the LiMAG "Lidar, Meteorology and Geophysics" team of the Institut Pierre Simon Laplace (IPSL) in France, in order to contribute to international field campaigns for studying atmospheric physico-chemistry, air quality and climate (i.e. aerosols, clouds, trace gazes, atmospheric dynamics and energy budget) and the ground-based validation of satellite observations. ATMOS has been deployed in the framework of i) LISAIR, for monitoring air quality in Paris in 2005, ii) AMMA "African Monsoon Multidisciplinary Analysis", in Tamanrasset and in Niamey for observing the aerosols and the atmospheric boundary layer in the Sahara and in the Sahel in 2006, iii) COPS "Convectively and Orographycally driven Precipitation Study" in the Rhin Valley in 2007 and iv) the validation of the spatial mission CALIPSO, launched in April 2006. In the coming years, ATMOS will be deployed i) in the Paris Megacity, in the framework of MEGAPOLI (2009-2010), ii) in southern France (near Marseille) for the Chemistry-Aerosol Mediterranean Experiment CHARMEX (2011-2012) and iii) the validation of ADM-Aeolus in 2010-2011 and Earth-Care in 2012. ATMOS payload is modular, accounting for the different platforms, instruments and measuring techniques. The deployment of ATMOS is an essential contribution to field campaigns, complementing the fixed sites, and a potential alternative of airborne platforms, heavier and more expensive. ATMOS mobile payload comprises both the remote sensing platform MOBILIS ("Moyens mOBIles de téLédetection de l'IPSL") and the in-situ physico-chemical station SAMMO ("Station Aérosols et chiMie MObile"). MOBILIS is an autonomous and high-performance system constituted by a full set of active and passive remote sensing instrumentation (i.e. Lidars and radiometers), whose payload may be adapted for either i) long term fixed monitoring in a maritime container or a shelter, ii) ground-based transect

  10. Fully Automated Sunspot Detection and Classification Using SDO HMI Imagery in MATLAB

    DTIC Science & Technology

    2014-03-27

    FULLY AUTOMATED SUNSPOT DETECTION AND CLASSIFICATION USING SDO HMI IMAGERY IN MATLAB THESIS Gordon M. Spahr, Second Lieutenant, USAF AFIT-ENP-14-M-34...CLASSIFICATION USING SDO HMI IMAGERY IN MATLAB THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air...DISTRIUBUTION UNLIMITED. AFIT-ENP-14-M-34 FULLY AUTOMATED SUNSPOT DETECTION AND CLASSIFICATION USING SDO HMI IMAGERY IN MATLAB Gordon M. Spahr, BS Second

  11. Atmospheric Science Research at the Whiteface Mountain Adirondack High Peaks Observatory

    NASA Astrophysics Data System (ADS)

    Schwab, J. J.; Brandt, R. E.; Casson, P.; Demerjian, K. L.; Crandall, B. A.

    2014-12-01

    The Atmospheric Sciences Research Center established an atmospheric observatory at Whiteface Mountain in the Adirondacks in 1961. The current mountain top observatory building was built by the University at Albany in 1969-70 and the New York State Department of Environmental Conservation (DEC) began ozone measurements at this summit location in 1973. Those measurements continue to this day and constitute a valuable long term data record for tropospheric ozone in the northeastern U.S. The elevation of the summit is 1483 m above sea level, and is roughly 90 m above the tree line in this location. With a mean cloud base height of less than 1100 m at the summit, it is a prime location for cloud research. The research station headquarters, laboratories, offices, and a second measurement site are located at the Marble Mountain Lodge, perched on a shoulder northeast of the massif at an elevation of 604 m above sea level. Parameters measured at the site include meteorological variables, trace gases, precipitation chemistry, aerosol mass and components, and more. Precipitation and cloud chemistry has a long history at the lodge and summit locations, respectively, and continues to this day. Some data from the 40-year record will be shown in the presentation. In the late 1980's the summit site was outfitted with instrumentation to measure oxides of nitrogen and other ozone precursors. Measurements of many of these same parameters were added at the lodge site and continue to this day. In this poster we will give an overview of the Whiteface Mountain Observatory and its two measurement locations. We will highlight the parameters currently being measured at our sites, and indicate those measured by ASRC, as well as those measured by other organizations. We will also recap some of the historical activities and measurement programs that have taken place at the site, as alluded to above. Also included will be examples of the rich archive of trends data for gas phase species

  12. Spectral Analysis of the sdO Standard Star Feige 34

    NASA Astrophysics Data System (ADS)

    Latour, M.; Chayer, P.; Green, E. M.; Fontaine, G.

    2017-03-01

    We present our current work on the spectral analysis of the hot sdO star Feige 34. We combine high S/N optical spectra and fully-blanketed non-LTE model atmospheres to derive its fundamental parameters (Teff, log g) and helium abundance. Our best fits indicate Teff = 63 000 K, log g = 6.0 and log N(He)/N(H) = -1.8. We also use available ultraviolet spectra (IUE and FUSE) to measure metal abundances. We find the star to be enriched in iron and nickel by a factor of ten with respect to the solar values, while lighter elements have subsolar abundances. The FUSE spectrum suggests that the spectral lines could be broadened by rotation.

  13. A Mediterranean atmospheric observatory in Corsica within the framework of HyMEx and ChArMEx

    NASA Astrophysics Data System (ADS)

    Lambert, D.

    2010-09-01

    In the western Mediterranean basin, Corsica is at a strategic location for oceanographic and atmospheric studies in the framework of the Mediterranean projects HyMeX and ChArMEx. The development of a multi-site instrumented platform located on this island is the core of the project CORSiCA (Corsican Observatory for Research and Studies on Climate and Atmosphere-ocean environment). Several measurement sites are planned in various places in Corsica, but the main site gathering the largest panel of measurements will be located near Ersa at the northern tip of the island (Cap Corse). This area is relevant for many reasons: it is open to the Gulf of Genoa and is not impacted by local and regional anthropogenic inputs. In the close area of Ersa, five sites are particularly interesting: the Semaphore du Cap Corse belonging to the French Navy, the wind-mill farm on the mountain crest, two sites at Centuri and Tollare, and the Giraglia island. Contacts and partnerships have been established with local partners in Corsica: Departmental Centres of Météo-France (CDM 2B and CDM 2A), OEC (the Corsica environmental office, a regional agency co-funding the CORSiCA observatory), the University of Corsica, Qualitair Corse (the local air quality agency) and STARESO (Station de Recherches Sous-marines et Océanographiques, an oceanographic station located on the west coast of Corsica). CORSiCA will be operated for the HyMEx and ChArMEx Long Observation Period (LOP), Enhanced Observation Period (EOP) and Special Observation Periods (SOP). In addition, this observatory will also be of interest for the MERMEx experiment (Marine Ecosystems Response in the Mediterranean Experiment). Furthermore, it will be supported by the MOOSE network (Mediterranean Ocean Observing System on Environment) to maintain long-term observations of key atmospheric parameters on this site. In the present communication we will expose the scientific objectives and we will describe the type of instrumentation and

  14. Evidence for Widespread Cooling in an Active Region Observed with the SDO Atmospheric Imaging Assembly

    NASA Technical Reports Server (NTRS)

    Viall, Nicholeen M.; Klimchuk, James A.

    2012-01-01

    A well known behavior of EUV light curves of discrete coronal loops is that the peak intensities of cooler channels or spectral lines are reached at progressively later times. This time lag is understood to be the result of hot coronal loop plasma cooling through these lower respective temperatures. However, loops typically comprise only a minority of the total emission in active regions. Is this cooling pattern a common property of active region coronal plasma, or does it only occur in unique circumstances, locations, and times? The new SDO/AIA data provide a wonderful opportunity to answer this question systematically for an entire active region. We measure the time lag between pairs of SDO/AIA EUV channels using 24 hours of images of AR 11082 observed on 19 June 2010. We find that there is a time-lag signal consistent with cooling plasma, just as is usually found for loops, throughout the active region including the diffuse emission between loops for the entire 24 hour duration. The pattern persists consistently for all channel pairs and choice of window length within the 24 hour time period, giving us confidence that the plasma is cooling from temperatures of greater than 3 MK, and sometimes exceeding 7 MK, down to temperatures lower than approx. 0.8 MK. This suggests that the bulk of the emitting coronal plasma in this active region is not steady; rather, it is dynamic and constantly evolving. These measurements provide crucial constraints on any model which seeks to describe coronal heating.

  15. Attitude Control System Design for the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Bourkland, Kristin L.; Kuo-Chia, Liu; Mason, Paul A. C.; Vess, Melissa F.; Andrews, Stephen F.; Morgenstern, Wendy M.

    2005-01-01

    The Solar Dynamics Observatory mission, part of the Living With a Star program, will place a geosynchronous satellite in orbit to observe the Sun and relay data to a dedicated ground station at all times. SDO remains Sun- pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system is a single-fault tolerant design. Its fully redundant attitude sensor complement includes 16 coarse Sun sensors, a digital Sun sensor, 3 two-axis inertial reference units, 2 star trackers, and 4 guide telescopes. Attitude actuation is performed using 4 reaction wheels and 8 thrusters, and a single main engine nominally provides velocity-change thrust. The attitude control software has five nominal control modes-3 wheel-based modes and 2 thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. The paper details the mode designs and their uses.

  16. EVIDENCE FOR COLLAPSING FIELDS IN THE CORONA AND PHOTOSPHERE DURING THE 2011 FEBRUARY 15 X2.2 FLARE: SDO/AIA AND HMI OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosain, S., E-mail: sgosain@nso.edu; Udaipur Solar Observatory, P.O. Box 198, Dewali, Udaipur, Rajasthan 313001

    2012-04-10

    We use high-resolution Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly observations to study the evolution of the coronal loops in a flaring solar active region, NOAA 11158. We identify three distinct phases of the coronal loop dynamics during this event: (1) slow-rise phase: slow rising motion of the loop-tops prior to the flare in response to the slow rise of the underlying flux rope; (2) collapse phase: sudden contraction of the loop-tops, with the lower loops collapsing earlier than the higher loops; and (3) oscillation phase: the loops exhibit global kink oscillations after the collapse phase at different periods, with themore » period decreasing with the decreasing height of the loops. The period of these loop oscillations is used to estimate the field strength in the coronal loops. Furthermore, we also use SDO/Helioseismic and Magnetic Imager (HMI) observations to study the photospheric changes close to the polarity inversion line (PIL). The longitudinal magnetograms show a stepwise permanent decrease in the magnetic flux after the flare over a coherent patch along the PIL. Furthermore, we examine the HMI Stokes I, Q, U, V profiles over this patch and find that the Stokes-V signal systematically decreases while the Stokes-Q and U signals increase after the flare. These observations suggest that close to the PIL the field configuration became more horizontal after the flare. We also use HMI vector magnetic field observations to quantify the changes in the field inclination angle and find an inward collapse of the field lines toward the PIL by {approx}10 Degree-Sign . These observations are consistent with the 'coronal implosion' scenario and its predictions about flare-related photospheric field changes.« less

  17. Trigger of Successive Filament Eruptions Observed by SDO and STEREO

    NASA Astrophysics Data System (ADS)

    Dhara, Sajal Kumar; Belur, Ravindra; Kumar, Pankaj; Banyal, Ravinder Kumar; Mathew, Shibu K.; Joshi, Bhuwan

    2017-10-01

    Using multiwavelength observations from the Solar Dynamics Observatory (SDO) and the Solar Terrestrial Relations Observatory (STEREO), we investigate the mechanism of two successive eruptions (F1 and F2) of a filament in active region NOAA 11444 on 27 March 2012. The filament was inverse J-shaped and lay along a quasi-circular polarity inversion line (PIL). The first part of the filament erupted at ˜2{:}30 UT on 27 March 2012 (F1), the second part at around 4:20 UT on the same day (F2). A precursor or preflare brightening was observed below the filament main axis about 30 min before F1. The brightening was followed by a jet-like ejection below the filament, which triggered its eruption. Before the eruption of F2, the filament seemed to be trapped within the overlying arcade loops for almost 1.5 h before it successfully erupted. Interestingly, we observe simultaneously contraction (˜12 km s^{-1}) and expansion (˜20 km s^{-1}) of arcade loops in the active region before F2. Magnetograms obtained with the Helioseismic and Magnetic Imager (HMI) show converging motion of the opposite polarities, which result in flux cancellation near the PIL. We suggest that flux cancellation at the PIL resulted in a jet-like ejection below the filament main axis, which triggered F1, similar to the tether-cutting process. F2 was triggered by removal of the overlying arcade loops via reconnection. Both filament eruptions produced high-speed (˜1000 km s^{-1}) coronal mass ejections.

  18. A new look at a polar crown cavity as observed by SDO/AIA. Structure and dynamics

    NASA Astrophysics Data System (ADS)

    Régnier, S.; Walsh, R. W.; Alexander, C. E.

    2011-09-01

    Context. The Solar Dynamics Observatory (SDO) was launched in February 2010 and is now providing an unprecedented view of the solar activity at high spatial resolution and high cadence covering a broad range of temperature layers of the atmosphere. Aims: We aim at defining the structure of a polar crown cavity and describing its evolution during the erupting process. Methods: We use the high-cadence time series of SDO/AIA observations at 304 Å (50 000 K) and 171 Å (0.6 MK) to determine the structure of the polar crown cavity and its associated plasma, as well as the evolution of the cavity during the different phases of the eruption. We report on the observations recorded on 13 June 2010 located on the north-west limb. Results: We observe coronal plasma shaped by magnetic field lines with a negative curvature (U-shape) sitting at the bottom of a cavity. The cavity is located just above the polar crown filament material. We thus observe the inner part of the cavity above the filament as depicted in the classical three part coronal mass ejection (CME) model composed of a filament, a cavity, and a CME front. The filament (in this case a polar crown filament) is part of the cavity, and it makes a continuous structuring from the filament to the CME front depicted by concentric ellipses (in a 2D cartoon). Conclusions: We propose to define a polar crown cavity as a density depletion sitting above denser polar crown filament plasma drained down the cavity by gravity. As part of the polar crown filament, plasma at different temperatures (ranging from 50 000 K to 0.6 MK) is observed at the same location on the cavity dips and sustained by a competition between the gravity and the curvature of magnetic field lines. The eruption of the polar crown cavity as a solid body can be decomposed into two phases: a slow rise at a speed of 0.6 km s-1 and an acceleration phase at a mean speed of 25 km s-1. Two movies are only available at http://www.aanda.org

  19. Observations of Excitation and Damping of Transversal Oscillations in Coronal Loops by AIA/SDO

    NASA Astrophysics Data System (ADS)

    Abedini, A.

    2018-02-01

    The excitation and damping of the transversal coronal loop oscillations and quantitative relation between damping time, damping property (damping time per period), oscillation amplitude, dissipation mechanism and the wake phenomena are investigated. The observed time series data with the Atmospheric Imaging Assembly (AIA) telescope on NASA's Solar Dynamics Observatory (SDO) satellite on 2015 March 2, consisting of 400 consecutive images with 12 s cadence in the 171 Å pass band is analyzed for evidence of transversal oscillations along the coronal loops by the Lomb-Scargle periodgram. In this analysis signatures of transversal coronal loop oscillations that are damped rapidly were found with dominant oscillation periods in the range of P=12.25 - 15.80 min. Also, damping times and damping properties of the transversal coronal loop oscillations at dominant oscillation periods are estimated in the range of {τd=11.76} - {21.46} min and {τd/P=0.86} - {1.49}, respectively. The observational results of this analysis show that damping properties decrease slowly with increasing amplitude of the oscillation, but the periods of the oscillations are not sensitive functions of the amplitude of the oscillations. The order of magnitude of the damping properties and damping times are in good agreement with previous findings and the theoretical prediction for damping of kink mode oscillations by the dissipation mechanism. Furthermore, oscillations of the loop segments attenuate with time roughly as t^{-α} and the magnitude values of α for 30 different segments change from 0.51 to 0.75.

  20. Measuring Temperature-Dependent Propagating Disturbances in Coronal Fan Loops Using Multiple SDO-AIA Channels and Surfing Transform Technique

    NASA Technical Reports Server (NTRS)

    Uritskiy, Vadim M.; Davila, Joseph M.; Viall, Nicholeen M.; Ofman, Leon

    2013-01-01

    A set of co-aligned high resolution images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) is used to investigate propagating disturbances (PDs) in warm fan loops at the periphery of a non-flaring active region NOAA AR 11082. To measure PD speeds at multiple coronal temperatures, a new data analysis methodology is proposed enabling quantitative description of sub visual coronal motions with low signal-to-noise ratios of the order of 0.1. The technique operates with a set of one-dimensional surfing signals extracted from position-timeplots of several AIA channels through a modified version of Radon transform. The signals are used to evaluate a two-dimensional power spectral density distribution in the frequency - velocity space which exhibits a resonance in the presence of quasi-periodic PDs. By applying this analysis to the same fan loop structures observed in several AIA channels, we found that the traveling velocity of PDs increases with the temperature of the coronal plasma following the square root dependence predicted for the slow mode magneto-acoustic wave which seems to be the dominating wave mode in the studied loop structures. This result extends recent observations by Kiddie et al. (2012) to a more general class of fan loop systems not associated with sunspots and demonstrating consistent slow mode activity in up to four AIA channels.

  1. Inter-Comparison between July 24, 2014 EUV Data from NASA Sounding Rocket 36.289 and Concurrent Measurements from Orbital Solar Observatories

    NASA Astrophysics Data System (ADS)

    Didkovsky, L. V.; Wieman, S. R.; Judge, D. L.

    2014-12-01

    Sounding rocket mission NASA 36.289 Didkovsky provided solar EUV irradiance measurements from four instruments built at the USC Space Sciences Center: the Rare Gas Ionization Cell (RGIC), the Solar Extreme ultraviolet Monitor (SEM), the Dual Grating Spectrometer (DGS), and the Optics-Free Spectrometer (OFS), thus meeting the mission comprehensive success criteria. These sounding rocket data allow us to inter-compare the observed absolute EUV irradiance with the data taken at the same time from the SOHO and SDO solar observatories. The sounding rocket data from the two degradation-free instruments (DGS and OFS) can be used to verify the degradation rates of SOHO and SDO EUV channels and serve as a flight-proven prototypes for future improvements of degradation-free instrumentation for solar physics.

  2. A large-scale solar dynamics observatory image dataset for computer vision applications.

    PubMed

    Kucuk, Ahmet; Banda, Juan M; Angryk, Rafal A

    2017-01-01

    The National Aeronautics Space Agency (NASA) Solar Dynamics Observatory (SDO) mission has given us unprecedented insight into the Sun's activity. By capturing approximately 70,000 images a day, this mission has created one of the richest and biggest repositories of solar image data available to mankind. With such massive amounts of information, researchers have been able to produce great advances in detecting solar events. In this resource, we compile SDO solar data into a single repository in order to provide the computer vision community with a standardized and curated large-scale dataset of several hundred thousand solar events found on high resolution solar images. This publicly available resource, along with the generation source code, will accelerate computer vision research on NASA's solar image data by reducing the amount of time spent performing data acquisition and curation from the multiple sources we have compiled. By improving the quality of the data with thorough curation, we anticipate a wider adoption and interest from the computer vision to the solar physics community.

  3. Atmospheric mercury speciation dynamics at the high-altitude Pic du Midi Observatory, southern France

    NASA Astrophysics Data System (ADS)

    Fu, Xuewu; Marusczak, Nicolas; Heimbürger, Lars-Eric; Sauvage, Bastien; Gheusi, François; Prestbo, Eric M.; Sonke, Jeroen E.

    2016-05-01

    Continuous measurements of atmospheric gaseous elemental mercury (GEM), particulate bound mercury (PBM) and gaseous oxidized mercury (GOM) at the high-altitude Pic du Midi Observatory (PDM Observatory, 2877 m a.s.l.) in southern France were made from November 2011 to November 2012. The mean GEM, PBM and GOM concentrations were 1.86 ng m-3, 14 pg m-3 and 27 pg m-3, respectively and we observed 44 high PBM (peak PBM values of 33-98 pg m-3) and 61 high GOM (peak GOM values of 91-295 pg m-3) events. The high PBM events occurred mainly in cold seasons (winter and spring) whereas high GOM events were mainly observed in the warm seasons (summer and autumn). In cold seasons the maximum air mass residence times (ARTs) associated with high PBM events were observed in the upper troposphere over North America. The ratios of high PBM ARTs to total ARTs over North America, Europe, the Arctic region and Atlantic Ocean were all elevated in the cold season compared to the warm season, indicating that the middle and upper free troposphere of the Northern Hemisphere may be more enriched in PBM in cold seasons. PBM concentrations and PBM / GOM ratios during the high PBM events were significantly anti-correlated with atmospheric aerosol concentrations, air temperature and solar radiation, suggesting in situ formation of PBM in the middle and upper troposphere. We identified two distinct types of high GOM events with the GOM concentrations positively and negatively correlated with atmospheric ozone concentrations, respectively. High GOM events positively correlated with ozone were mainly related to air masses from the upper troposphere over the Arctic region and middle troposphere over the temperate North Atlantic Ocean, whereas high GOM events anti-correlated with ozone were mainly related to air masses from the lower free troposphere over the subtropical North Atlantic Ocean. The ARTs analysis demonstrates that the lower and middle free troposphere over the North Atlantic Ocean was

  4. Atmospheric CO2 Records from Sites in the Main Geophysical Observatory Air Sampling Network (1983 - 1993)

    DOE Data Explorer

    Brounshtein, A. M. [Main Geophysical Observatory, St. Petersburg, Russia; Shaskov, A. A. [Main Geophysical Observatory, St. Petersburg, Russia; Paramonova, N. N. [Main Geophysical Observatory, St. Petersburg, Russia; Privalov, V. I. [Main Geophysical Observatory, St. Petersburg, Russia; Starodubtsev, Y. A. [Main Geophysical Observatory, St. Petersburg, Russia

    1997-01-01

    Air samples were collected from five sites in the Main Geophysical Observatory air sampling network to monitor the atmospheric CO2 from 1983 - 1993. Airwas collected generally four times per month in pairs of 1.5-L stainless steel electropolished flasks with one greaseless stainless steel stopcock. Sampling was performed by opening the stopcock of the flasks, which have been evacuated at the central laboratory at the Main Geophysical Observatory (MGO). The air was not dried during sample collection. Attempts were made to obtain samples when the wind speed was >5 m/s and the wind direction corresponded to the predetermined "clean air" sector. The period of record at Bering Island is too short to identify any long-term trends in atmospheric CO2 concentrations; however, the yearly mean atmospheric CO2 concentration at Bering Island rose from approximately 346 parts per million by volume (ppmv) in 1986 to 362.6 ppmv in 1993. Measurements from this station are considered indicative of maritime air masses. The period of record at Kotelny Island is too short to identify any long-term trends in atmospheric CO2 concentrations; however, the yearly mean atmospheric CO2 concentration at Kotelny Island rose from 356.08 parts per million by volume (ppmv) in 1988 to 358.8 ppmv in 1993. Because Kotelny Island is the northernmost Russian sampling site, measurements from this site serve as a useful comparison to other northern sites (e.g., Alert, Northwest Territories). In late 1989, air sampling began at the Russian site of Kyzylcha, located in the Republic of Uzbekistan. Unfortunately, the desert site at Kyzylcha has been out of operation since mid-1991 due to financial difficulties in Russia. The annual mean value of 359.02 parts per million by volume (ppmv) for 1990, the lone full year of operation, is higher than measurements from other monitoring programs at this latitude [e.g., Niwot Ridge (354.7 ppmv in 1990) and Tae-ahn Peninsula]. Station "C," an open ocean site, in the

  5. Exploring EUV Spicules Using 304 Angstrom He II Data from SDO AIA

    NASA Technical Reports Server (NTRS)

    Snyder, Ian R.; Sterling, Alphonse C.; Falconer, David A.; Moore, Ron L.

    2014-01-01

    We present results from a statistical study of He II 304 Angstrom Extreme Ultraviolet (EUV) spicules at the limb of the Sun. We also measured properties of one macrospicule; macrospicules are longer than most spicules, and much broader in width than spicules. We use high-cadence (12 second) and high-resolution (0.6 arcseconds pixels) resolution data from the Atmospheric Imaging Array (AIA) instrument on the Solar Dynamic Observatory (SDO). All of the observed events occurred near the solar north pole, where quiet Sun or coronal hole environments ensued. We examined the maximum lengths, maximum rise velocities, and lifetimes of 33 Extreme Ultraviolet (EUV) spicules and the macrospicule. For the bulk of the Extreme Ultraviolet (EUV) spicules these quantities are, respectively, approximately 10,000-40,000 kilometers, 20-100 kilometers per second, and approximately 100- approximately 1000 seconds. For the macrospicule the corresponding quantities were respectively approximately 60,000 kilometers, approximately 130 kilometers per second, approximately 1800 seconds, which is typical of macrospicules measured by other workers. Therefore macrospicules are taller, longer-lived, and faster than most Extreme Ultraviolet (EUV) spicules. The rise profiles of both the spicules and the macrospicules match well a second-order ("parabolic" ) trajectory, although the acceleration was often weaker than that of solar gravity in the profiles fitted to the trajectories. Our macrospicule also had an obvious brightening at its base at birth, while such brightening was not apparent for the Extreme Ultraviolet (EUV) spicules. Most of the Extreme Ultraviolet (EUV) spicules remained visible during their descent back to the solar surface, although a small percentage of the spicules and the macrospicule faded out before falling back to the surface. Our sample of macrospicules is not yet large enough to determine whether their initiation mechanism is identical to that of Extreme Ultraviolet (EUV

  6. The sunspot databases of the Debrecen Observatory

    NASA Astrophysics Data System (ADS)

    Baranyi, Tünde; Gyori, Lajos; Ludmány, András

    2015-08-01

    We present the sunspot data bases and online tools available in the Debrecen Heliophysical Observatory: the DPD (Debrecen Photoheliographic Data, 1974 -), the SDD (SOHO/MDI-Debrecen Data, 1996-2010), the HMIDD (SDO/HMI-Debrecen Data, HMIDD, 2010-), the revised version of Greenwich Photoheliographic Data (GPR, 1874-1976) presented together with the Hungarian Historical Solar Drawings (HHSD, 1872-1919). These are the most detailed and reliable documentations of the sunspot activity in the relevant time intervals. They are very useful for studying sunspot group evolution on various time scales from hours to weeks. Time-dependent differences between the available long-term sunspot databases are investigated and cross-calibration factors are determined between them. This work has received funding from the European Community's Seventh Framework Programme (FP7/2012-2015) under grant agreement No. 284461 (eHEROES).

  7. New Views of the Solar Corona from STEREO and SDO

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.

    2012-01-01

    In the last few years, we have been treated to an unusual visual feast of solar observations of the corona in EUV wavelengths. The observations from the two vantage points of STEREO/SECCHI are now capturing the entire solar atmosphere simultaneously in four wavelengths. The SDO/AIA images provide us with arcsecond resolution images of the full visible disk in ten wavelengths. All these data are captured with cadences of a few seconds to a few minutes. In this talk, I review some intriguing results from our first attempts to deal with these observations which touch upon the problems of coronal mass ejection initiation and solar wind generation. I will also discuss data processing techniques that may help us recover even more information from the images. The talk will contain a generous portion of beautiful EUV images and movies of the solar corona.

  8. Stratospheric Observatory for Infrared Astronomy

    NASA Astrophysics Data System (ADS)

    Hamidouche, M.; Young, E.; Marcum, P.; Krabbe, A.

    2010-12-01

    We present one of the new generations of observatories, the Stratospheric Observatory For Infrared Astronomy (SOFIA). This is an airborne observatory consisting of a 2.7-m telescope mounted on a modified Boeing B747-SP airplane. Flying at an up to 45,000 ft (14 km) altitude, SOFIA will observe above more than 99 percent of the Earth's atmospheric water vapor allowing observations in the normally obscured far-infrared. We outline the observatory capabilities and goals. The first-generation science instruments flying on board SOFIA and their main astronomical goals are also presented.

  9. NASA's SDO Satellite Captures 2012 Venus Transit

    NASA Image and Video Library

    2017-12-08

    NASA image captured June 5, 2012. On June 5-6 2012, SDO is collecting images of one of the rarest predictable solar events: the transit of Venus across the face of the sun. This event happens in pairs eight years apart that are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117. Credit: NASA/SDO, HMI To read more about the 2012 Venus Transit go to: sunearthday.nasa.gov/transitofvenus Add your photos of the Transit of Venus to our Flickr Group here: www.flickr.com/groups/venustransit/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. Time-Series Analyses of Supergranule Characteristics Compared Between SDO/HMI, SOHO/MDI and Simulated Datasets

    NASA Technical Reports Server (NTRS)

    Williams, Peter E.; Pesnell, William Dean

    2012-01-01

    Supergranulation is a well-observed solar phenomenon despite its underlying mechanisms remaining a mystery. Originally considered to arise due to convective motions, alternative mechanisms have been suggested such as the cumulative downdrafts of granules as well as displaying wave-like properties. Supergranule characteristics are well documented, however. Supergranule cells are approximately 35 Mm across, have lifetimes on the order of a day and have divergent horizontal velocities of around 300 mis, a factor of 10 higher than their central radial components. While they have been observed using Doppler methods for more than half a century, their existence is also observed in other datasets such as magneto grams and Ca II K images. These datasets clearly show the influence of supergranulation on solar magnetism and how the local field is organized by the flows of supergranule cells. The Heliospheric and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO) continues to produce Doppler images enabling the continuation of supergranulation studies made with SOHO/MDI, but with superior temporal and spatial resolution. The size-distribution of divergent cellular flows observed on the photosphere now reaches down to granular scales, allowing contemporaneous comparisons between the two flow components. SOHO/MDI Doppler observations made during the minima of cycles 22/23 and 23/24 exhibit fluctuations of supergranule characteristics (global averages of the supergranule size, size-range and horizontal velocity) with periods of 3-5 days. Similar fluctuations have been observed in SDO/HMI Dopplergrams and the high correlation between co-temporal HMI & MOl suggest a solar origin. Their nature has been probed by invoking data simulations that produce realistic Dopplergrams based on MOl data.

  11. SDO Spots Extra Energy in the Sun's Corona [detail

    NASA Image and Video Library

    2017-12-08

    NASA release July 27, 2011 These jets, known as spicules, were captured in an SDO image on April 25, 2010. Combined with the energy from ripples in the magnetic field, they may contain enough energy to power the solar wind that streams from the sun toward Earth at 1.5 million miles per hour. Credit: NASA/SDO/AIA To see a full disk view go here: www.flickr.com/photos/gsfc/5982663752/in/photostream/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. EVOLUTION OF MAGNETIC FIELD AND ENERGY IN A MAJOR ERUPTIVE ACTIVE REGION BASED ON SDO/HMI OBSERVATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Xudong; Hoeksema, J. Todd; Liu, Yang

    We report the evolution of the magnetic field and its energy in NOAA active region 11158 over five days based on a vector magnetogram series from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO). Fast flux emergence and strong shearing motion led to a quadrupolar sunspot complex that produced several major eruptions, including the first X-class flare of Solar Cycle 24. Extrapolated nonlinear force-free coronal fields show substantial electric current and free energy increase during early flux emergence near a low-lying sigmoidal filament with a sheared kilogauss field in the filament channel. The computed magneticmore » free energy reaches a maximum of {approx}2.6 Multiplication-Sign 10{sup 32} erg, about 50% of which is stored below 6 Mm. It decreases by {approx}0.3 Multiplication-Sign 10{sup 32} erg within 1 hr of the X-class flare, which is likely an underestimation of the actual energy loss. During the flare, the photospheric field changed rapidly: the horizontal field was enhanced by 28% in the core region, becoming more inclined and more parallel to the polarity inversion line. Such change is consistent with the conjectured coronal field 'implosion' and is supported by the coronal loop retraction observed by the Atmospheric Imaging Assembly (AIA). The extrapolated field becomes more 'compact' after the flare, with shorter loops in the core region, probably because of reconnection. The coronal field becomes slightly more sheared in the lowest layer, relaxes faster with height, and is overall less energetic.« less

  13. Multi-thermal dynamics and energetics of a coronal mass ejection in the low solar atmosphere

    NASA Astrophysics Data System (ADS)

    Hannah, I. G.; Kontar, E. P.

    2013-05-01

    Aims: The aim of this work is to determine the multi-thermal characteristics and plasma energetics of an eruptive plasmoid and occulted flare observed by the Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA). Methods: We study a 2010 Nov. 3 event (peaking at 12:20 UT in GOES soft X-rays) of a coronal mass ejection and occulted flare that demonstrates the morphology of a classic erupting flux rope. The high spatial and time resolution and six coronal channels of the SDO/AIA images allows the dynamics of the multi-thermal emission during the initial phases of eruption to be studied in detail. The differential emission measure is calculated, using an optimized version of a regularized inversion method, for each pixel across the six channels at different times, resulting in emission measure maps and movies in a variety of temperature ranges. Results: We find that the core of the erupting plasmoid is hot (8-11, 11-14 MK) with a similarly hot filamentary "stem" structure connecting it to the lower atmosphere, which could be interpreted as the current sheet in the flux rope model, though is wider than these models suggest. The velocity of the leading edge of the eruption is 597-664 km s-1 in the temperature range ≥3-4 MK and between 1029-1246 km s-1 for ≤2-3 MK. We estimate the density (in 11-14 MK) of the erupting core and stem during the impulsive phase to be about 3 × 109 cm-3, 6 × 109 cm-3, 9 × 108 cm-3 in the plasmoid core, stem, and surrounding envelope of material. This gives thermal energy estimates of 5 × 1029 erg, 1 × 1029 erg, and 2 × 1030 erg. The kinetic energy for the core and envelope is slightly lower. The thermal energy of the core and current sheet grows during the eruption, suggesting continuous influx of energy presumably via reconnection. Conclusions: The combination of the optimized regularized inversion method and SDO/AIA data allows the multi-thermal characteristics (i.e. velocity, density, and thermal energies) of the

  14. EXTRAPOLATION OF THE SOLAR CORONAL MAGNETIC FIELD FROM SDO/HMI MAGNETOGRAM BY A CESE-MHD-NLFFF CODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Chaowei; Feng Xueshang, E-mail: cwjiang@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn

    Due to the absence of direct measurement, the magnetic field in the solar corona is usually extrapolated from the photosphere in a numerical way. At the moment, the nonlinear force-free field (NLFFF) model dominates the physical models for field extrapolation in the low corona. Recently, we have developed a new NLFFF model with MHD relaxation to reconstruct the coronal magnetic field. This method is based on CESE-MHD model with the conservation-element/solution-element (CESE) spacetime scheme. In this paper, we report the application of the CESE-MHD-NLFFF code to Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) data with magnetograms sampled for two activemore » regions (ARs), NOAA AR 11158 and 11283, both of which were very non-potential, producing X-class flares and eruptions. The raw magnetograms are preprocessed to remove the force and then inputted into the extrapolation code. Qualitative comparison of the results with the SDO/AIA images shows that our code can reconstruct magnetic field lines resembling the EUV-observed coronal loops. Most important structures of the ARs are reproduced excellently, like the highly sheared field lines that suspend filaments in AR 11158 and twisted flux rope which corresponds to a sigmoid in AR 11283. Quantitative assessment of the results shows that the force-free constraint is fulfilled very well in the strong-field regions but apparently not that well in the weak-field regions because of data noise and numerical errors in the small currents.« less

  15. Investigating the Differential Emission Measure and Energetics of Microflares with Combined SDO/AIA and RHESSI Observations

    NASA Technical Reports Server (NTRS)

    Inglis, A. R.; Christe, S.

    2014-01-01

    An important question in solar physics is whether solar microflares, the smallest currently observable flare events in X-rays, possess the same energetic properties as large flares. Recent surveys have suggested that microflares may be less efficient particle accelerators than large flares, and hence contribute less non-thermal energy, which may have implications for coronal heating mechanisms. We therefore explore the energetic properties of microflares by combining EUV and X-ray measurements. We present forward-fitting differential emission measure (DEM) analysis of 10 microflares. The fitting is constrained by combining, for the first time, high-temperature Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations and flux data from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA). Two fitting models are tested for the DEM; a Gaussian distribution and a uniform DEM profile. A Gaussian fit proved unable to explain the observations for any of the studied microflares. However, 8 of 10 events studied were reasonably fit by a uniform DEM profile. Hence microflare plasma can be considered to be significantly multi-thermal, and may not be significantly peaked or contain resolvable fine structure, within the uncertainties of the observational instruments. The thermal and non-thermal energy is estimated for each microflare, comparing the energy budget with an isothermal plasma assumption. From the multi-thermal fits the minimum non-thermal energy content was found to average approximately 30% of the estimated thermal energy. By comparison, under an isothermal model the non-thermal and thermal energy estimates were generally comparable. Hence, multi-thermal plasma is an important consideration for solar microflares that substantially alters their thermal and non-thermal energy content.

  16. An Eruptive Complex Solar Flare and Events in its Aftermath

    NASA Astrophysics Data System (ADS)

    Luoni, M. L.; Francile, C.; Mandrini, C. H.; Cremades, H.

    2017-10-01

    We present a study of the M6.6 flare that occurred on 13 February 2011 in AR 11158. The flare was accompanied by a CME and EUV waves. We use multiwavelength observations from the ground: H-alpha Solar Telescope for Argentina (HASTA), and space: Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA), both onboard the Solar and Dynamic Observatory (SDO).

  17. The COronal Solar Magnetism Observatory (COSMO) Large Aperture Coronagraph

    NASA Astrophysics Data System (ADS)

    Tomczyk, Steve; Gallagher, Dennis; Wu, Zhen; Zhang, Haiying; Nelson, Pete; Burkepile, Joan; Kolinksi, Don; Sutherland, Lee

    2013-04-01

    The COSMO is a facility dedicated to observing coronal and chromospheric magnetic fields. It will be located on a mountaintop in the Hawaiian Islands and will replace the current Mauna Loa Solar Observatory (MLSO). COSMO will provide unique observations of the global coronal magnetic fields and its environment to enhance the value of data collected by other observatories on the ground (e.g. SOLIS, BBO NST, Gregor, ATST, EST, Chinese Giant Solar Telescope, NLST, FASR) and in space (e.g. SDO, Hinode, SOHO, GOES, STEREO, Solar-C, Solar Probe+, Solar Orbiter). COSMO will employ a fleet of instruments to cover many aspects of measuring magnetic fields in the solar atmosphere. The dynamics and energy flow in the corona are dominated by magnetic fields. To understand the formation of CMEs, their relation to other forms of solar activity, and their progression out into the solar wind requires measurements of coronal magnetic fields. The large aperture coronagraph, the Chromospheric and Prominence Magnetometer and the K-Coronagraph form the COSMO instrument suite to measure magnetic fields and the polarization brightness of the low corona used to infer electron density. The large aperture coronagraph will employ a 1.5 meter fuse silica singlet lens, birefringent filters, and a spectropolarimeter to cover fields of view of up to 1 degree. It will observe the corona over a wide range of emission lines from 530.3 nm through 1083.0 nm allowing for magnetic field measurements over a wide range of coronal temperatures (e.g. FeXIV at 530.3 nm, Fe X at 637.4 nm, Fe XIII at 1074.7 and 1079.8 nm. These lines are faint and require the very large aperture. NCAR and NSF have provided funding to bring the large aperture coronagraph to a preliminary design review state by the end of 2013. As with all data from Mauna Loa, the data products from COSMO will be available to the community via the Mauna Loa website: http://mlso.hao.ucar.edu

  18. ENERGY RELEASE AND INITIATION OF A SUNQUAKE IN A C-CLASS FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharykin, I. N.; Kosovichev, A. G.; Zimovets, I. V.

    We present an analysis of the C7.0 solar flare from 2013 February 17, revealing a strong helioseismic response (sunquake) caused by a compact impact observed with the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO) in the low atmosphere. This is the weakest known C-class flare generating a sunquake event. To investigate the possible mechanisms of this event and understand the role of accelerated charged particles and photospheric electric currents, we use data from three space observatories: RHESSI, SDO, and Geostationary Operational Environmental Satellite. We find that the photospheric flare impact does not spatially correspond to themore » strongest hard X-ray emission source, but both of these events are parts of the same energy release. Our analysis reveals a close association of the flare energy release with a rapid increase in the electric currents and suggests that the sunquake initiation is unlikely to be caused by the impact of high-energy electrons, but may be associated with rapid current dissipation or a localized impulsive Lorentz force in the lower layers of the solar atmosphere.« less

  19. Solar Dynamics Observatory Guidance, Navigation, and Control System Overview

    NASA Technical Reports Server (NTRS)

    Morgenstern, Wendy M.; Bourkland, Kristin L.; Hsu, Oscar C.; Liu, Kuo-Chia; Mason, Paul A. C.; O'Donnell, James R., Jr.; Russo, Angela M.; Starin, Scott R.; Vess, Melissa F.

    2011-01-01

    The Solar Dynamics Observatory (SDO) was designed and built at the Goddard Space Flight Center, launched from Cape Canaveral on February 11, 2010, and reached its final geosynchronous science orbit on March 16, 2010. The purpose of SDO is to observe the Sun and continuously relay data to a dedicated ground station. SDO remains Sun-pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system (ACS) is a single-fault tolerant design. Its fully redundant attitude sensor complement includes sixteen coarse Sun sensors (CSSs), a digital Sun sensor (DSS), three two-axis inertial reference units (IRUs), and two star trackers (STs). The ACS also makes use of the four guide telescopes included as a part of one of the science instruments. Attitude actuation is performed using four reaction wheels assemblies (RWAs) and eight thrusters, with a single main engine used to provide velocity-change thrust for orbit raising. The attitude control software has five nominal control modes, three wheel-based modes and two thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. This paper details the final overall design of the SDO guidance, navigation, and control (GN&C) system and how it was used in practice during SDO launch, commissioning, and nominal operations. This overview will include the ACS control modes, attitude determination and sensor calibration, the high gain antenna (HGA) calibration, and jitter mitigation operation. The Solar Dynamics Observatory mission is part of the NASA Living With a Star program, which seeks to understand the changing Sun and its effects on the Solar System, life, and society. To this end, the SDO spacecraft carries three Sun

  20. A New U.S. West Coast Network of Atmospheric River Observatories

    NASA Astrophysics Data System (ADS)

    White, A. B.; Wilczak, J. M.; Ayers, T. E.; King, C. W.; Jordan, J. R.; Shaw, W. J.; Flaherty, J. E.; Morris, V. R.

    2015-12-01

    The West Coast of North America is the gateway to winter storms forming over the Pacific Ocean that deliver most of the precipitation and water supply to the region. Satellites are capable of detecting the concentrated water vapor in these storms (a.k.a. atmospheric rivers) over the oceans, but because of the complex emissivity of land surfaces, fail to do so over land. In addition, these storms often are accompanied by a baroclinically induced low-level jet that drives the moisture up the windward slopes of coastal and inland mountain ranges and produces orographically enhanced precipitation. To date, satellites cannot resolve this important feature. NOAA's Hydrometeorology Testbed (HMT; hmt.noaa.gov) has developed the concept of an atmospheric river observatory (ARO); a collection of ground-based instruments capable of detecting and monitoring the water vapor transport in the low-level jet region. With funding provided by the California Department of Water Resources and U.S. Department of Energy, HMT has installed a picket fence of AROs along the U.S. West Coast. In addition, HMT has developed an award-winning water vapor flux tool that takes advantage of the data collected by the AROs to provide situational awareness and decision support for end users. This tool recently has been updated to include operational weather prediction output. The ARO network and water vapor flux tool will be described in this presentation.

  1. Changes in Atmospheric Sulfur Dioxide (SO2) over the English Channel - 1.5 Years of Measurements from the Penlee Point Atmospheric Observatory

    NASA Astrophysics Data System (ADS)

    Yang, Mingxi; Bell, Thomas; Hopkins, Frances; Smyth, Timothy

    2016-04-01

    Atmospheric sulfur dioxide (SO2) was measured continuously from the Penlee Point Atmospheric Observatory near Plymouth, United Kingdom between May 2014 and November 2015. This coastal site is exposed to marine air across a wide wind sector. The predominant southwesterly winds carry relatively clean background Atlantic air. In contrast, air from the southeast is heavily influenced by exhaust plumes from ships in the English Channel as well as near near the Plymouth Sound. International Maritime Organization regulation came into force in January 2015 to reduce sulfur emissions tenfold in Sulfur Emission Control Areas such as the English Channel. We observed a three-fold reduction from 2014 to 2015 in the estimated ship-emitted SO2 during southeasterly winds. Dimethylsulfide (DMS) is an important source of atmospheric SO2 even in this semi-polluted region. The relative contribution of DMS oxidation to the SO2 burden over the English Channel increased from ~1/3 in 2014 to ~1/2 in 2015 due to the reduction in ship sulfur emissions. Our diel analysis suggests that SO2 is removed from the marine atmospheric boundary layer in about half a day, with dry deposition to the ocean accounting for a quarter of the total loss.

  2. NASA's SDO Satellite Captures Venus Transit Approach -- Bigger, Better!

    NASA Image and Video Library

    2017-12-08

    NASA image captured June 5, 2012. On June 5-6 2012, SDO is collecting images of one of the rarest predictable solar events: the transit of Venus across the face of the sun. This event happens in pairs eight years apart that are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117. Credit: NASA/SDO, AIA To read more about the 2012 Venus Transit go to: sunearthday.nasa.gov/transitofvenus Add your photos of the Transit of Venus to our Flickr Group here: www.flickr.com/groups/venustransit/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. NASA's SDO Satellite Captures 2012 Venus Transit [Close-Up

    NASA Image and Video Library

    2017-12-08

    NASA image captured June 5, 2012. On June 5-6 2012, SDO is collecting images of one of the rarest predictable solar events: the transit of Venus across the face of the sun. This event happens in pairs eight years apart that are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117. Credit: NASA/SDO, HMI To read more about the 2012 Venus Transit go to: sunearthday.nasa.gov/transitofvenus Add your photos of the Transit of Venus to our Flickr Group here: www.flickr.com/groups/venustransit/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Solar Activity Seen at Sunspot Site Tracked by Mars Rover

    NASA Image and Video Library

    2015-07-10

    An eruption from the surface of the sun is conspicuous in the lower left portion of this July 6, 2015, image from NASA's Earth-orbiting Solar Dynamics Observatory (SDO). It originates from a location on the surface where NASA's Curiosity Mars rover had been tracking a sunspot in late June and early July. This image was taken by the Atmosphere Imaging Assembly on SDO using the instrument's 131-Angstrom wavelength channel, which is sensitive to hot solar flares. The sun completes a rotation about once a month -- faster near its equator than near its poles. This summer, Mars has a view of the opposite side of the sun from what's facing Earth. Images from Curiosity tracking a southern-hemisphere sunspot until it rotated out of view during the July 4 weekend are in an animation at PIA19801. This location on the sun rotated into position to be seen from Earth a few days later. The eruption visible in this image was linked to a coronal mass ejection observed by SDO and NASA's Solar and Heliospheric Observatory. The coronal mass ejection affected interplanetary space weather, as shown at http://go.nasa.gov/1JSXLF3. http://photojournal.jpl.nasa.gov/catalog/PIA19680

  5. The UCLan SDO Data Hub

    NASA Astrophysics Data System (ADS)

    Dalla, S.; Walsh, R. W.; Chapman, S. A.; Marsh, M.; Regnier, S.; Bewsher, D.; Brown, D. S.; Kelly, J.; Laitinen, T.; Alexander, C.

    2010-12-01

    A data pipeline for the distribution of SDO data products has been developed throughout a number of countries in the US, Europe and Asia. The UK node within this pipeline is at the University of Central Lancashire (UCLan), where a data center has been established to host a rolling AIA and HMI archive, aimed at supplying data to the country's large solar scientific community. This presentation will describe the hardware and software structures of the archive, as well as the best practice identified and feedback received from users of the facility. We will also discuss algorithms that are run locally in order to identify solar features and events.

  6. AAVSO Visual Sunspot Observations vs. SDO HMI Sunspot Catalog

    NASA Astrophysics Data System (ADS)

    Howe, R.

    2014-06-01

    (Abstract only) The most important issue with regard to using the SDO HMI data from the National Solar Observatory (NSO, http://www.nso.edu/staff/fwatson/STARA) is that their current model for creating sunspot counts does not split in groups and consequently does not provide a corresponding group count and Wolf number. As it is a different quantity, it cannot be mixed with the data from our sunspot networks. For the AAVSO with about seventy stations contributing each day, adding HMI sunspot data would anyway hardly change the resulting index. Perhaps, the best use of HMI data is for an external validation, by exploiting the fact that HMI provides a series that is rather close to the sunspot number and is acquired completely independently. So, it is unlikely to suffer from the same problems (jumps, biases) at the same time. This validation only works for rather short durations, as the lifetime of space instruments is limited and aging effects are often affecting the data over the mission. In addition, successive instruments have different properties: for example, the NSO model has not managed yet to reconcile the series from MDI and HMI. There is a ~10-15% jump. The first challenge that should be addressed by AAVSO using HMI data is the splitting in groups and deriving group properties. Then, together with the sunspot counts and areas per group, a lot more analyses and diagnostics can be derived (like the selective disappearance of the smallest sunspots?), that can help interpreting trends in the ratio SSN/other solar indices and many other solar effects.

  7. Evidence for two-loop interaction from IRIS and SDO observations of penumbral brightenings

    NASA Astrophysics Data System (ADS)

    Alissandrakis, C. E.; Koukras, A.; Patsourakos, S.; Nindos, A.

    2017-07-01

    Aims: We investigate small scale energy release events which can provide clues on the heating mechanism of the solar corona. Methods: We analyzed spectral and imaging data from the Interface Region Imaging Spectrograph (IRIS), images from the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatoty (SDO), and magnetograms from the Helioseismic and Magnetic Imager (HMI) aboard SDO. Results: We report observations of small flaring loops in the penumbra of a large sunspot on July 19, 2013. Our main event consisted of a loop spanning 15'', from the umbral-penumbral boundary to an opposite polarity region outside the penumbra. It lasted approximately 10 min with a two minute impulsive peak and was observed in all AIA/SDO channels, while the IRIS slit was located near its penumbral footpoint. Mass motions with an apparent velocity of 100 km s-1 were detected beyond the brightening, starting in the rise phase of the impulsive peak; these were apparently associated with a higher-lying loop. We interpret these motions in terms of two-loop interaction. IRIS spectra in both the C II and Si iv lines showed very extended wings, up to about 400 km s-1, first in the blue (upflows) and subsequently in the red wing. In addition to the strong lines, emission was detected in the weak lines of Cl I, O I and C I, as well as in the Mg II triplet lines. Absorption features in the profiles of the C II doublet, the Si iv doublet and the Mg II h and k lines indicate the existence of material with a lower source function between the brightening and the observer. We attribute this absorption to the higher loop and this adds further credibility to the two-loop interaction hypothesis. Tilts were detected in the absorption spectra, as well as in the spectra of Cl I, O I, and C I lines, possibly indicating rotational motions from the untwisting of magnetic flux tubes. Conclusions: We conclude that the absorption features in the C II, Si iv and Mg II profiles originate in a higher

  8. EPO for the NASA SDO Extreme Ultraviolet Variability Experiment (EVE) Learning Suite for Educators

    NASA Astrophysics Data System (ADS)

    Kellagher, Emily; Scherrer, D. K.

    2013-07-01

    EVE Education and Public Outreach (EPO) promotes an understanding of the process of science and concepts within solar science and sun-earth connections. EVE EPO also features working scientists, current research and career awareness. One of the highlights for of this years projects is the digitization of solar lessons and the collaboration with the other instrument teams to develop new resources for students and educators. Digital lesson suite: EVE EPO has taken the best solar lessons and reworked then to make then more engaging, to reflect SDO data and made them SMARTboard compatible. We are creating a website that Students and teachers can access these lesson and use them online or download them. Project team collaboration: The SDO instruments (EVE, AIA and HMI) teams have created a comic book series for upper elementary and middle school students with the SDO mascot Camilla. These comics may be printed or read on mobile devices. Many teachers are looking for resources to use with their students via the Ipad so our collaboration helps supply teachers with a great resource that teachers about solar concepts and helps dispel solar misconceptions.Abstract (2,250 Maximum Characters): EVE Education and Public Outreach (EPO) promotes an understanding of the process of science and concepts within solar science and sun-earth connections. EVE EPO also features working scientists, current research and career awareness. One of the highlights for of this years projects is the digitization of solar lessons and the collaboration with the other instrument teams to develop new resources for students and educators. Digital lesson suite: EVE EPO has taken the best solar lessons and reworked then to make then more engaging, to reflect SDO data and made them SMARTboard compatible. We are creating a website that Students and teachers can access these lesson and use them online or download them. Project team collaboration: The SDO instruments (EVE, AIA and HMI) teams have created a

  9. Impact of atmospheric effects on the energy reconstruction of air showers observed by the surface detectors of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariš, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-02-01

    Atmospheric conditions, such as the pressure (P), temperature (T) or air density (ρ propto P/T), affect the development of extended air showers initiated by energetic cosmic rays. We study the impact of the atmospheric variations on the reconstruction of air showers with data from the arrays of surface detectors of the Pierre Auger Observatory, considering separately the one with detector spacings of 1500 m and the one with 750 m spacing. We observe modulations in the event rates that are due to the influence of the air density and pressure variations on the measured signals, from which the energy estimators are obtained. We show how the energy assignment can be corrected to account for such atmospheric effects.

  10. Double Photobomb

    NASA Image and Video Library

    2015-09-14

    NASA’s Solar Dynamics Observatory captured this image of Earth and the moon transiting the sun together on Sept. 13, 2015. The edge of Earth, visible near the top of the frame, appears fuzzy because Earth’s atmosphere blocks different amounts of light at different altitudes. On the left, the moon’s edge is perfectly crisp, because it has no atmosphere. This image was taken in extreme ultraviolet wavelengths of 171 angstroms. Though this light is invisible to our eyes, it is typically colorized in gold. Credits: NASA/SDO

  11. The Solar Dynamics Observatory Education and Public Outreach Program: The First Years

    NASA Astrophysics Data System (ADS)

    Wawro, M.; Drobnes, E.; van Doren, A.; Scherrer, D. K.

    2010-12-01

    The Solar Dynamics Observatory (SDO) Education and Public Outreach (E/PO) program began as a series of discrete programs implemented by each of the instrument teams and has evolved into a well-rounded program with a full suite of national and international programs: student, teacher, and journalist workshops, international research programs, family programs, etc. In this presentation, we provide an overview of our philosophy and approach and of some of the programs developed and implemented prior to launch. In conclusion we will summarize our successes, our failures, our lessons learned, and present guiding principles in the hope that future missions will use our platform as a guide to build upon for future programs, incorporating their own content to enhance the public's appreciation of the science that NASA does and its benefit to society.

  12. Earth Eclipses the Sun

    NASA Image and Video Library

    2017-12-08

    Twice a year, NASA’s Solar Dynamics Observatory, or SDO, has an eclipse season — a weeks-long period in which Earth blocks SDO’s view of the sun for part of each day. This footage captured by SDO on Feb. 15, 2017, shows one such eclipse. Earth’s edge appears fuzzy, rather than crisp, because the sun’s light is able to shine through Earth’s atmosphere in some places. These images were captured in wavelengths of extreme ultraviolet light, which is typically invisible to our eyes, but is colorized here in gold. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Investigations of the lower and middle atmosphere at the Arecibo Observatory and a description of the new VHF radar project

    NASA Technical Reports Server (NTRS)

    Rottger, J.; Ierkic, H. M.; Zimmerman, R. K.; Hagen, J.

    1986-01-01

    The atmospheric science research at the Arecibo Observatory is performed by means of (active) radar methods and (passive) optical methods. The active methods utilize the 430 NHz radar, the S-band radar on 2380 MHz, and a recently constructed Very High Frequency (VHF) radar. The passive methods include measurements of the mesopause temperature by observing the rotational emissions from OH-bands. The VHF radar design is discussed.

  14. Atmospheres in a Test Tube: state of the art at the Astronomical Observatory of Padova.

    NASA Astrophysics Data System (ADS)

    Erculiani, M. S.; Claudi, R.; Cocola, L.; Giro, E.; La Rocca, N.; Morosinotto, T.; Poletto, L.; Barbisan, D.; Billi, D.; Bonato, M.; D'Alessandro, M.; Galletta, G.; Meneghini, M.; Trivellin, N.; Cestelli Guidi, M.; Pace, E.; Schierano, D.; Micela, G.

    At the Astronomical observatory of Padova we are trying to answer some questions about the detectability of biosignatures in the exoplanetary atmospheres, working in the framework of the project Atmosphere in a Test Tube. In particular we are investigating how the presence of photosynthetic biota living on the surface of a planet orbiting in the HZ of an M type star may modify the atmospheric gas abundances. This can be achieved in laboratory with an environmental simulator called MINI - LISA. The simulator allows to modify the temperature and the pressure inside a test chamber, where a selected population of photosynthetic bacteria is arranged. We'll focalize our experiments on the following bacteria: Acaryochloris marina, Halomicronema hongdechloris, Leptolyngbya sp.1 and Chlorogloeopsis fritschii. The first two bacteria are naturally provided with NIR light metabolizers, like Chl-d and Chl-f, while the last two can develop such pigments if grown in NIR light. The experiment will lead us to obtain useful data to be compared with the ones expected either by the future space missions (JWST, ARIEL) and ground based new instrumentation (SPHERE@VLT; GPI@GEMINI; PCS@E-ELT). In this talk we discuss the layout of the experiment and its state of art.

  15. Mini-filament Eruptions Triggering Confined Solar Flares Observed by ONSET and SDO

    NASA Astrophysics Data System (ADS)

    Yang, Shuhong; Zhang, Jun

    2018-06-01

    Using the observations from the Optical and Near-infrared Solar Eruption Tracer (ONSET) and the Solar Dynamics Observatory (SDO), we study an M5.7 flare in AR 11476 on 2012 May 10 and a micro-flare in the quiet Sun on 2017 March 23. Before the onset of each flare, there is a reverse S-shaped filament above the polarity inversion line, then the filaments become unstable and begin to rise. The rising filaments gain the upper hand over the tension force of the dome-like overlying loops and thus successfully erupt outward. The footpoints of the reconnecting overlying loops successively brighten and are observed as two flare ribbons, while the newly formed low-lying loops appear as post-flare loops. These eruptions are similar to the classical model of successful filament eruptions associated with coronal mass ejections (CMEs). However, the erupting filaments in this study move along large-scale lines and eventually reach the remote solar surface; i.e., no filament material is ejected into the interplanetary space. Thus, both the flares are confined. These results reveal that some successful filament eruptions can trigger confined flares. Our observations also imply that this kind of filament eruption may be ubiquitous on the Sun, from active regions (ARs) with large flares to the quiet Sun with micro-flares.

  16. Orbiting Carbon Observatory

    NASA Technical Reports Server (NTRS)

    Miller, Charles E.

    2005-01-01

    Human impact on the environment has produced measurable changes in the geological record since the late 1700s. Anthropogenic emissions of CO2 today may cause the global climate to depart for its natural behavior for many millenia. CO2 is the primary anthropogenic driver of climate change. The Orbiting Carbon Observatory goals are to help collect measurements of atmospheric CO2, answering questions such as why the atmospheric CO2 buildup varies annually, the roles of the oceans and land ecosystems in absorbing CO2, the roles of North American and Eurasian sinks and how these carbon sinks respond to climate change. The present carbon cycle, CO2 variability, and climate uncertainties due atmospheric CO2 uncertainties are highlighted in this presentation.

  17. Relating Alfvén Wave Heating Model to Observations of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Yoritomo, J. Y.; Van Ballegooijen, A. A.

    2012-12-01

    We compared images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) with simulations of propagating and dissipating Alfvén waves from a three-dimensional magnetohydrodynamic (MHD) model (van Ballegooijen et. al 2011; Asgari-Targhi & van Ballegooijen 2012). The goal was to search for observational evidence of Alfvén waves in the solar corona and understand their role in coronal heating. We looked at one particular active region on the 5th of May 2012. Certain distinct loops in the SDO/AIA observations were selected and expanded. Movies were created from these selections in an attempt to discover transverse motions that may be Alfvén waves. Using a magnetogram of that day and the corresponding synoptic map, a potential field model was created for the active region. Three-dimensional MHD models for several loops in different locations in the active region were created. Each model specifies the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We find that the heating is intermittent in the loops and reflection occurs at the transition region. For loops at larger and larger height, a point is reached where thermal non-equilibrium occurs. In the center this critical height is much higher than in the periphery of the active region. Lastly, we find that the average heating rate and coronal pressure decrease with increasing height in the corona. This research was supported by an NSF grant for the Smithsonian Astrophysical Observatory (SAO) Solar REU program and a SDO/AIA grant for the Smithsonian Astrophysical Observatory.

  18. Impact of atmospheric effects on the energy reconstruction of air showers observed by the surface detectors of the Pierre Auger Observatory

    DOE PAGES

    Aab, A.; Abreu, P.; Aglietta, M.; ...

    2017-02-07

    Atmospheric conditions, such as the pressure (P), temperature (T) or air density (more » $$\\rho \\propto P/T$$), affect the development of extended air showers initiated by energetic cosmic rays. We study the impact of the atmospheric variations on the reconstruction of air showers with data from the arrays of surface detectors of the Pierre Auger Observatory, considering separately the one with detector spacings of 1500 m and the one with 750 m spacing. We observe modulations in the event rates that are due to the influence of the air density and pressure variations on the measured signals, from which the energy estimators are obtained. Lastly, we show how the energy assignment can be corrected to account for such atmospheric effects.« less

  19. Impact of atmospheric effects on the energy reconstruction of air showers observed by the surface detectors of the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, A.; Abreu, P.; Aglietta, M.

    Atmospheric conditions, such as the pressure (P), temperature (T) or air density (more » $$\\rho \\propto P/T$$), affect the development of extended air showers initiated by energetic cosmic rays. We study the impact of the atmospheric variations on the reconstruction of air showers with data from the arrays of surface detectors of the Pierre Auger Observatory, considering separately the one with detector spacings of 1500 m and the one with 750 m spacing. We observe modulations in the event rates that are due to the influence of the air density and pressure variations on the measured signals, from which the energy estimators are obtained. Lastly, we show how the energy assignment can be corrected to account for such atmospheric effects.« less

  20. Image quality characteristics of a novel colour scanning digital ophthalmoscope (SDO) compared with fundus photography.

    PubMed

    Strauss, Rupert W; Krieglstein, Tina R; Priglinger, Siegfried G; Reis, Werner; Ulbig, Michael W; Kampik, Anselm; Neubauer, Aljoscha S

    2007-11-01

    To establish a set of quality parameters for grading image quality and apply those to evaluate the fundus image quality obtained by a new scanning digital ophthalmoscope (SDO) compared with standard slide photography. On visual analogue scales a total of eight image characteristics were defined: overall quality, contrast, colour brilliance, focus (sharpness), resolution and details, noise, artefacts and validity of clinical assessment. Grading was repeated after 4 months to assess repeatability. Fundus images of 23 patients imaged digitally by SDO and by Zeiss 450FF fundus camera using Kodak film were graded side-by-side by three graders. Lens opacity was quantified with the Interzeag Lens Opacity Meter 701. For all of the eight scales of image quality, good repeatability within the graders (mean Kendall's W 0.69) was obtained after 4 months. Inter-grader agreement ranged between 0.31 and 0.66. Despite the SDO's limited nominal image resolution of 720 x 576 pixels, the Zeiss FF 450 camera performed better in only two of the subscales - noise (p = 0.001) and artefacts (p = 0.01). Lens opacities significantly influenced only the two subscales 'resolution' and 'details', which deteriorated with increasing media opacities for both imaging systems. Distinct scales to grade image characteristics of different origin were developed and validated. Overall SDO digital imaging was found to provide fundus pictures of a similarly high level of quality as expert photography on slides.

  1. Study on Precursor Activity of the X1.6 Flare in the Great AR 12192 with SDO , IRIS , and Hinode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamba, Yumi; Lee, Kyoung-Sun; Imada, Shinsuke

    The physical properties and their contribution to the onset of a solar flare are still uncleare even though chromospheric brightening is considered a precursor phenomenon of a flare. Many studies suggested that photospheric magnetic field changes cause destabilization of large-scale coronal structure. We aim to understand how a small photospheric change contributes to a flare and to reveal how the intermediary chromosphere behaves in the precursor phase. We analyzed the precursor brightening of the X1.6 flare on 2014 October 22 in the AR 12192 using the Interface Region Imaging Spectrograph ( IRIS ) and Hinode /EUV Imaging Spectrometer (EIS) data.more » We investigated a localized jet with the strong precursor brightening, and compared the intensity, Doppler velocity, and line width in C ii, Mg ii k, and Si iv lines by IRIS and He ii, Fe xii, and Fe xv lines by Hinode /EIS. We also analyzed the photospheric magnetic field and chromospheric/coronal structures using the Solar Dynamics Observatory ( SDO )/Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly. We found a significant blueshift (∼100 km s{sup −1}), which is related to the strong precursor brightening over a characteristic magnetic field structure, and the blueshift was observed at all of the temperatures. This might indicate that the flow is accelerated by Lorentz force. Moreover, the large-scale coronal loop that connects the foot points of the flare ribbons was destabilized just after the precursor brightening with the blueshift. It suggests that magnetic reconnection locally occurred in the lower chromosphere and it triggered magnetic reconnection of the X1.6 flare in the corona.« less

  2. Study on Precursor Activity of the X1.6 Flare in the Great AR 12192 with SDO, IRIS, and Hinode

    NASA Astrophysics Data System (ADS)

    Bamba, Yumi; Lee, Kyoung-Sun; Imada, Shinsuke; Kusano, Kanya

    2017-05-01

    The physical properties and their contribution to the onset of a solar flare are still uncleare even though chromospheric brightening is considered a precursor phenomenon of a flare. Many studies suggested that photospheric magnetic field changes cause destabilization of large-scale coronal structure. We aim to understand how a small photospheric change contributes to a flare and to reveal how the intermediary chromosphere behaves in the precursor phase. We analyzed the precursor brightening of the X1.6 flare on 2014 October 22 in the AR 12192 using the Interface Region Imaging Spectrograph (IRIS) and Hinode/EUV Imaging Spectrometer (EIS) data. We investigated a localized jet with the strong precursor brightening, and compared the intensity, Doppler velocity, and line width in C II, Mg II k, and Si IV lines by IRIS and He II, Fe xii, and Fe xv lines by Hinode/EIS. We also analyzed the photospheric magnetic field and chromospheric/coronal structures using the Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly. We found a significant blueshift (˜100 km s-1), which is related to the strong precursor brightening over a characteristic magnetic field structure, and the blueshift was observed at all of the temperatures. This might indicate that the flow is accelerated by Lorentz force. Moreover, the large-scale coronal loop that connects the foot points of the flare ribbons was destabilized just after the precursor brightening with the blueshift. It suggests that magnetic reconnection locally occurred in the lower chromosphere and it triggered magnetic reconnection of the X1.6 flare in the corona.

  3. X-class Flare Erupts from Sun on April 24

    NASA Image and Video Library

    2017-12-08

    The sun emitted a significant solar flare, peaking at 8:27 p.m. EDT on April 24, 2014. Images of the flare were captured by NASA's Solar Dynamics Observatory. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may impact Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an X1.4 flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. Credit: NASA/Goddard/SDO Credit: NASA/SDO

  4. LAGO: The Latin American giant observatory

    NASA Astrophysics Data System (ADS)

    Sidelnik, Iván; Asorey, Hernán; LAGO Collaboration

    2017-12-01

    The Latin American Giant Observatory (LAGO) is an extended cosmic ray observatory composed of a network of water-Cherenkov detectors (WCD) spanning over different sites located at significantly different altitudes (from sea level up to more than 5000 m a.s.l.) and latitudes across Latin America, covering a wide range of geomagnetic rigidity cut-offs and atmospheric absorption/reaction levels. The LAGO WCD is simple and robust, and incorporates several integrated devices to allow time synchronization, autonomous operation, on board data analysis, as well as remote control and automated data transfer. This detection network is designed to make detailed measurements of the temporal evolution of the radiation flux coming from outer space at ground level. LAGO is mainly oriented to perform basic research in three areas: high energy phenomena, space weather and atmospheric radiation at ground level. It is an observatory designed, built and operated by the LAGO Collaboration, a non-centralized collaborative union of more than 30 institutions from ten countries. In this paper we describe the scientific and academic goals of the LAGO project - illustrating its present status with some recent results - and outline its future perspectives.

  5. NASA SDO - Solar & Space Weather Education via Social Media

    NASA Astrophysics Data System (ADS)

    Durscher, Romeo; Wawro, Martha

    2012-03-01

    NASA has embraced social media as a valuable tool to communicate the activities of the agency in fulfillment of its mission. Team SDO continues to be on the forefront of using social media in a very engaging and interactive way and share mission information, solar images and space weather updates via a variety of social media platforms and outlets. We will present the impact SDO's social media strategy has made, including follower, friends and fan statistics from Twitter, Facebook, YouTube, Google+ and other outlets. We will discuss the various social media outlets and the techniques we use for reaching and engaging our audience. Effectiveness is measured through the use of various automatically-gathered statistics and level of public engagement. Of key importance to effective social media use is having access to scientists who can quickly respond to questions and express their answers in meaningful ways to the public. Our presentation will highlight the importance of scientist involvement and suggest ways for encouraging more scientists to support these efforts. We will present some of the social media plans for 2012 and discuss how we can continue to educate, inform, engage and inspire.

  6. Analysis of Photospheric Convection Cells with SDO/HMI

    NASA Technical Reports Server (NTRS)

    Williams, Peter E.; Pesnell, William Dean

    2010-01-01

    Supergranulation is a component of solar convection that assists in the outward transportation of internal energy. Supergranule cells are approximately 35 Mm across, have lifetimes on the order of a day and have divergent horizontal velocities of around 300 m/s, a factor of 10 higher than their central radial components. While they have been observed using Doppler methods for around half a century, their existence is also observed in other datasets such as magnetograms and Ca II K images. These datasets clearly show the influence of supergranulation on solar magnetism and how the local field is organized by the flows of supergranule cells. The Heliospheric and Magnetic Imager (HMI) aboard SDO is making fresh observations of convection phenomena at a higher cadence and a higher resolution that should make granular features visible. Granulation and supergranulation characteristics can now be compared within the same datasets, which may lead to further understanding of any mutual influences. The temporal and spatial enhancements of HMI will also reduce the noise level within studies of convection so that more detailed studies of their characteristics may be made. We present analyses of SDO/HMI Dopplergrams that provide new estimates of convection cell sizes, lifetimes, and velocity flows, as well as the rotation rates of the convection patterns across the solar disk. We make comparisons with previous data produced by MDI, as well as from data simulations.

  7. SDO's Ultra-high Definition View of 2012 Venus Transit - 304 Angstrom

    NASA Image and Video Library

    2017-12-08

    NASA image captured June 5, 2012. On June 5-6 2012, SDO is collecting images of one of the rarest predictable solar events: the transit of Venus across the face of the sun. This event happens in pairs eight years apart that are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117. Credit: NASA/SDO, AIA To read more about the 2012 Venus Transit go to: sunearthday.nasa.gov/transitofvenus Add your photos of the Transit of Venus to our Flickr Group here: www.flickr.com/groups/venustransit/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. SDO's Ultra-high Definition View of 2012 Venus Transit - 171 Angstrom

    NASA Image and Video Library

    2017-12-08

    NASA image captured June 6, 2012. On June 5-6 2012, SDO is collecting images of one of the rarest predictable solar events: the transit of Venus across the face of the sun. This event happens in pairs eight years apart that are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117. Credit: NASA/SDO, AIA To read more about the 2012 Venus Transit go to: sunearthday.nasa.gov/transitofvenus Add your photos of the Transit of Venus to our Flickr Group here: www.flickr.com/groups/venustransit/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. SDO's Ultra-high Definition View of 2012 Venus Transit - HMI Instrument

    NASA Image and Video Library

    2012-06-06

    NASA image captured June 6, 2012. On June 5-6 2012, SDO is collecting images of one of the rarest predictable solar events: the transit of Venus across the face of the sun. This event happens in pairs eight years apart that are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117. Credit: NASA/SDO, HMI To read more about the 2012 Venus Transit go to: sunearthday.nasa.gov/transitofvenus Add your photos of the Transit of Venus to our Flickr Group here: www.flickr.com/groups/venustransit/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  10. SDO's Ultra-high Definition View of 2012 Venus Transit - 304 Angstrom

    NASA Image and Video Library

    2017-12-08

    NASA image captured June 6, 2012. On June 5-6 2012, SDO is collecting images of one of the rarest predictable solar events: the transit of Venus across the face of the sun. This event happens in pairs eight years apart that are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117. Credit: NASA/SDO, AIA To read more about the 2012 Venus Transit go to: sunearthday.nasa.gov/transitofvenus Add your photos of the Transit of Venus to our Flickr Group here: www.flickr.com/groups/venustransit/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. SDO's Ultra-high Definition View of 2012 Venus Transit - 193 Angstrom

    NASA Image and Video Library

    2017-12-08

    NASA image captured June 6, 2012. On June 5-6 2012, SDO is collecting images of one of the rarest predictable solar events: the transit of Venus across the face of the sun. This event happens in pairs eight years apart that are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117. Credit: NASA/SDO, AIA To read more about the 2012 Venus Transit go to: sunearthday.nasa.gov/transitofvenus Add your photos of the Transit of Venus to our Flickr Group here: www.flickr.com/groups/venustransit/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. SDO's Ultra-high Definition View of 2012 Venus Transit -- Path Sequence

    NASA Image and Video Library

    2017-12-08

    NASA image captured June 5-6, 2012. On June 5-6 2012, SDO is collecting images of one of the rarest predictable solar events: the transit of Venus across the face of the sun. This event happens in pairs eight years apart that are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117. Credit: NASA/SDO, AIA To read more about the 2012 Venus Transit go to: sunearthday.nasa.gov/transitofvenus Add your photos of the Transit of Venus to our Flickr Group here: www.flickr.com/groups/venustransit/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. SDO's Ultra-high Definition View of 2012 Venus Transit - 171 Angstrom

    NASA Image and Video Library

    2017-12-08

    NASA image captured June 5, 2012. On June 5-6 2012, SDO is collecting images of one of the rarest predictable solar events: the transit of Venus across the face of the sun. This event happens in pairs eight years apart that are separated from each other by 105 or 121 years. The last transit was in 2004 and the next will not happen until 2117. Credit: NASA/SDO, AIA To read more about the 2012 Venus Transit go to: sunearthday.nasa.gov/transitofvenus Add your photos of the Transit of Venus to our Flickr Group here: www.flickr.com/groups/venustransit/ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Real-Time Visualization Tool Integrating STEREO, ACE, SOHO and the SDO

    NASA Astrophysics Data System (ADS)

    Schroeder, P. C.; Luhmann, J. G.; Marchant, W.

    2011-12-01

    The STEREO/IMPACT team has developed a new web-based visualization tool for near real-time data from the STEREO instruments, ACE and SOHO as well as relevant models of solar activity. This site integrates images, solar energetic particle, solar wind plasma and magnetic field measurements in an intuitive way using near real-time products from NOAA and other sources to give an overview of recent space weather events. This site enhances the browse tools already available at UC Berkeley, UCLA and Caltech which allow users to visualize similar data from the start of the STEREO mission. Our new near real-time tool utilizes publicly available real-time data products from a number of missions and instruments, including SOHO LASCO C2 images from the SOHO team's NASA site, SDO AIA images from the SDO team's NASA site, STEREO IMPACT SEP data plots and ACE EPAM data plots from the NOAA Space Weather Prediction Center and STEREO spacecraft positions from the STEREO Science Center.

  15. The state of Pluto's atmosphere in 2012-2013

    NASA Astrophysics Data System (ADS)

    Bosh, A. S.; Person, M. J.; Levine, S. E.; Zuluaga, C. A.; Zangari, A. M.; Gulbis, A. A. S.; Schaefer, G. H.; Dunham, E. W.; Babcock, B. A.; Davis, A. B.; Pasachoff, J. M.; Rojo, P.; Servajean, E.; Förster, F.; Oswalt, T.; Batcheldor, D.; Bell, D.; Bird, P.; Fey, D.; Fulwider, T.; Geisert, E.; Hastings, D.; Keuhler, C.; Mizusawa, T.; Solenski, P.; Watson, B.

    2015-01-01

    We observed two stellar occultations on UT 4 May 2013 and UT 9 September 2012, with the aim of measuring Pluto's atmospheric parameters. Both of these events were observed by world-wide collaborations of many observers, and both occurred within 1 month of Pluto's stationary points. The PC20120909 event was observed at the McDonald Observatory (MONET 1.2-m), and Olin Observatory (the Ortega 0.8-m); the P20130504 event was observed at the Las Campanas Observatory (du Pont 2.5-m), the Cerro Tololo Inter-American Observatory (SMARTS 1-m), and the Cerro Calán National Astronomical Observatory (Goto 0.45-m). Analysis of the data indicates an atmospheric state similar to that in June 2011. The shadow radius for the event is unchanged from recent events, indicating an atmosphere that is holding stable and not in the midst of global collapse. We discuss the advantages and disadvantages of comparing various atmospheric parameters across events (the shadow radius vs. the pressure at a particular radius). These analyses suggest that Pluto will still have an atmosphere when the New Horizons spacecraft arrives in July 2015.

  16. Comparisons of Supergranule Properties from SDO/HMI with Other Datasets

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean; Williams, Peter E.

    2010-01-01

    While supergranules, a component of solar convection, have been well studied through the use of Dopplergrams, other datasets also exhibit these features. Quiet Sun magnetograms show local magnetic field elements distributed around the boundaries of supergranule cells, notably clustering at the common apex points of adjacent cells, while more solid cellular features are seen near active regions. Ca II K images are notable for exhibiting the chromospheric network representing a cellular distribution of local magnetic field lines across the solar disk that coincides with supergranulation boundaries. Measurements at 304 A further above the solar surface also show a similar pattern to the chromospheric network, but the boundaries are more nebulous in nature. While previous observations of these different solar features were obtained with a variety of instruments, SDO provides a single platform, from which the relevant data products at a high cadence and high-definition image quality are delivered. The images may also be cross-referenced due to their coincidental time of observation. We present images of these different solar features from HMI & AIA and use them to make composite images of supergranules at different atmospheric layers in which they manifest. We also compare each data product to equivalent data from previous observations, for example HMI magnetograms with those from MDI.

  17. Tracking Photospheric Energy Transport in Active Regions with SDO

    NASA Astrophysics Data System (ADS)

    Attié, R.; Thompson, B. J.

    2017-12-01

    The solar photosphere presents flow fields at all observable scales. Where energy-bearing magnetic active regions break through the photosphere these flows are particularly strong, as sheared and twisted magnetic fields come into equilibrium with their surroundings while transporting magnetic energy into the corona. A part of this magnetic energy - the so-called `free energy' stored in the magnetic field in the form of "twisted" and shear of the field - is released in flares and eruptions. We can quantify the energy arrival and build-up in the corona by tracking flow fields and magnetic features at the photosphere as magnetic flux emerges and evolves before and after a flare or eruption.To do this reliably requires two things: a long series of photospheric observations at high sensitivity, spatial and temporal resolution, and an efficient, reliable and robust framework that tracks the photospheric plasma flows and magnetic evolution in both the quiet sun and active regions. SDO/HMI provides the observations, and we present here an innovative high resolution tracking framework that involves the `Balltracking' and `Magnetic Balltracking' algorithms. We show the first results of a systematic, quantitative and comprehensive measurements of the flows and transport of magnetic energy into the solar atmosphere and investigate whether this dynamic view can improve predictions of flares and Coronal Mass Ejections (CMEs).

  18. Validation of ground-motion simulations for historical events using SDoF systems

    USGS Publications Warehouse

    Galasso, C.; Zareian, F.; Iervolino, I.; Graves, R.W.

    2012-01-01

    The study presented in this paper is among the first in a series of studies toward the engineering validation of the hybrid broadband ground‐motion simulation methodology by Graves and Pitarka (2010). This paper provides a statistical comparison between seismic demands of single degree of freedom (SDoF) systems subjected to past events using simulations and actual recordings. A number of SDoF systems are selected considering the following: (1) 16 oscillation periods between 0.1 and 6 s; (2) elastic case and four nonlinearity levels, from mildly inelastic to severely inelastic systems; and (3) two hysteretic behaviors, in particular, nondegrading–nonevolutionary and degrading–evolutionary. Demand spectra are derived in terms of peak and cyclic response, as well as their statistics for four historical earthquakes: 1979 Mw 6.5 Imperial Valley, 1989 Mw 6.8 Loma Prieta, 1992 Mw 7.2 Landers, and 1994 Mw 6.7 Northridge.

  19. Energy Release from Impacting Prominence Material Following the 2011 June 7 Eruption

    NASA Technical Reports Server (NTRS)

    Gilbert, H. R.; Inglis, A. R.; Mays, M. L.; Ofman, L.; Thompson, B. J.; Young, C. A.

    2013-01-01

    Solar filaments exhibit a range of eruptive-like dynamic activity, ranging from the full or partial eruption of the filament mass and surrounding magnetic structure as a coronal mass ejection to a fully confined or failed eruption. On 2011 June 7, a dramatic partial eruption of a filament was observed by multiple instruments on board the Solar Dynamics Observatory (SDO) and Solar-Terrestrial Relations Observatory. One of the interesting aspects of this event is the response of the solar atmosphere as non-escaping material falls inward under the influence of gravity. The impact sites show clear evidence of brightening in the observed extreme ultraviolet wavelengths due to energy release. Two plausible physical mechanisms for explaining the brightening are considered: heating of the plasma due to the kinetic energy of impacting material compressing the plasma, or reconnection between the magnetic field of low-lying loops and the field carried by the impacting material. By analyzing the emission of the brightenings in several SDO/Atmospheric Imaging Assembly wavelengths, and comparing the kinetic energy of the impacting material (7.6 × 10(exp 26) - 5.8 × 10(exp 27) erg) to the radiative energy (approx. 1.9 × 10(exp 25) - 2.5 × 10(exp 26) erg), we find the dominant mechanism of energy release involved in the observed brightening is plasma compression.

  20. A distributed atmosphere-sea ice-ocean observatory in the central Arctic Ocean: concept and first results

    NASA Astrophysics Data System (ADS)

    Hoppmann, Mario; Nicolaus, Marcel; Rabe, Benjamin; Wenzhöfer, Frank; Katlein, Christian; Scholz, Daniel; Valcic, Lovro

    2017-04-01

    To understand the current evolution of the Arctic Ocean towards a less extensive, thinner and younger sea ice cover is one of the biggest challenges in climate research. Especially the lack of simultaneous in-situ observations of sea ice, ocean and atmospheric properties leads to significant knowledge gaps in their complex interactions, and how the associated processes impact the polar marine ecosystem. Here we present a concept for the implementation of a long-term strategy to monitor the most essential climate- and ecosystem parameters in the central Arctic Ocean, year round and synchronously. The basis of this strategy is the development and enhancement of a number of innovative autonomous observational platforms, such as rugged weather stations, ice mass balance buoys, ice-tethered bio-optical buoys and upper ocean profilers. The deployment of those complementing platforms in a distributed network enables the simultaneous collection of physical and biogeochemical in-situ data on basin scales and year round, including the largely undersampled winter periods. A key advantage over other observatory systems is that the data is sent via satellite in near-real time, contributing to numerical weather predictions through the Global Telecommunication System (GTS) and to the International Arctic Buoy Programme (IABP). The first instruments were installed on ice floes in the Eurasian Basin in spring 2015 and 2016, yielding exceptional records of essential climate- and ecosystem-relevant parameters in one of the most inaccessible regions of this planet. Over the next 4 years, and including the observational periods of the Year of Polar Prediction (YOPP, 2017-2019) and the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC, 2020), the distributed observatory will be maintained by deployment of additional instruments in the central Arctic each year, benefitting from international logistical efforts.

  1. Status of the James Webb Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2013-01-01

    The James Webb Space Telescope (JWST) is the largest cryogenic, space telescope ever built, and will address a broad range of scientific goals from first light in the universe and re-ionization, to characterization of the atmospheres of extrasolar planets. Recently, significant progress has been made in the construction of the observatory with the completion of all 21 flight mirrors that comprise the telescope's optical chain, and the start of flight instrument deliveries to the Goddard Space Flight Center. In this paper we discuss the design of the observatory, and focus on the recent milestone achievements in each of the major observatory sub-systems.

  2. The Coronal Solar Magnetism Observatory

    NASA Astrophysics Data System (ADS)

    Tomczyk, S.; Landi, E.; Zhang, J.; Lin, H.; DeLuca, E. E.

    2015-12-01

    Measurements of coronal and chromospheric magnetic fields are arguably the most important observables required for advances in our understanding of the processes responsible for coronal heating, coronal dynamics and the generation of space weather that affects communications, GPS systems, space flight, and power transmission. The Coronal Solar Magnetism Observatory (COSMO) is a proposed ground-based suite of instruments designed for routine study of coronal and chromospheric magnetic fields and their environment, and to understand the formation of coronal mass ejections (CME) and their relation to other forms of solar activity. This new facility will be operated by the High Altitude Observatory of the National Center for Atmospheric Research (HAO/NCAR) with partners at the University of Michigan, the University of Hawaii and George Mason University in support of the solar and heliospheric community. It will replace the current NCAR Mauna Loa Solar Observatory (http://mlso.hao.ucar.edu). COSMO will enhance the value of existing and new observatories on the ground and in space by providing unique and crucial observations of the global coronal and chromospheric magnetic field and its evolution. The design and current status of the COSMO will be reviewed.

  3. NASA Extends Chandra X-ray Observatory Contract with the Smithsonian Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    2002-07-01

    NASA NASA has extended its contract with the Smithsonian Astrophysical Observatory in Cambridge, Mass. to August 2003 to provide science and operational support for the Chandra X- ray Observatory, one of the world's most powerful tools to better understand the structure and evolution of the universe. The contract is an 11-month period of performance extension to the Chandra X-ray Center contract, with an estimated value of 50.75 million. Total contract value is now 298.2 million. The contract extension resulted from the delay of the launch of the Chandra X-ray Observatory from August 1998 to July 1999. The revised period of performance will continue the contract through Aug. 31, 2003, which is 48 months beyond operational checkout of the observatory. The contract type is cost reimbursement with no fee. The contract covers mission operations and data analysis, which includes both the observatory operations and the science data processing and general observer (astronomer) support. The observatory operations tasks include monitoring the health and status of the observatory and developing and distributing by satellite the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning, and coordination of science observations with the general observers and the processing and delivery of the resulting scientific data. Each year, there are on the order of 200 to 250 observing proposals selected out of about 800 submitted, with a total amount of observing time about 20 million seconds. X-ray astronomy can only be performed from space because Earth's atmosphere blocks X-rays from reaching the surface. The Chandra Observatory travels one-third of the way to the Moon during its orbit around the Earth every 64 hours. At its highest point, Chandra's highly elliptical, or egg-shaped, orbit is 200 times higher than that of its visible-light- gathering sister, the Hubble Space Telescope. NASA

  4. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1975-01-01

    The family of High Energy Astronomy Observatory (HEAO) instruments consisted of three unmarned scientific observatories capable of detecting the x-rays emitted by the celestial bodies with high sensitivity and high resolution. The celestial gamma-ray and cosmic-ray fluxes were also collected and studied to learn more about the mysteries of the universe. High-Energy rays cannot be studied by Earth-based observatories because of the obscuring effects of the atmosphere that prevent the rays from reaching the Earth's surface. They had been observed initially by sounding rockets and balloons, and by small satellites that do not possess the needed instrumentation capabilities required for high data resolution and sensitivity. The HEAO carried the instrumentation necessary for this capability. In this photograph, an artist's concept of three HEAO spacecraft is shown: HEAO-1, launched on August 12, 1977; HEAO-2, launched on November 13, 1978; and HEAO-3, launched on September 20. 1979.

  5. Exploring EUV Spicules Using 304 Ang He II Data from SDO/AIA

    NASA Technical Reports Server (NTRS)

    Snyder, Ian; Sterling, Alphonse C.; Falconer, David A.; Moore, Ronald L.

    2015-01-01

    We present results from a statistical study of He II 304 Angstrom EUV spicules and macrospicules at the limb of the Sun. We use high-cadence (12 sec) and high-resolution (0.6 arcsec pixels) resolution data from the Atmospheric Imaging Array (AIA) instrument on the Solar Dynamic Observatory (SDO). All of the observed events occurred in quiet or coronal hole regions near the solar pole. Spicules and macrospicules are typically transient jet-like chromospheric-material features, the macrospicules are wider and have taller maximum heights than the spicules. We looked for characteristics of the populations of these two phenomena that might indicate whether they have the same or different initiation mechanisms. We examined the maximum heights, time-averaged rise velocities, and lifetimes of about two dozen EUV spicules and about five EUV macrospicules. For spicules, these quantities are, respectively, approx. 5-30 km, 5-50 km/s, and a few 100- approx. 1000 sec. Macrospicules were approx. 60,000 km, 55 km/s, and had lifetimes of approx. 1800 sec. Therefore the macrospicules were taller and longer-lived than the spicules, and had velocities comparable to that of the fastest spicules. The rise profiles of both the spicules and the macrospicules matched well a second-order ("parabolic'') trajectory, although the acceleration was generally weaker than that of solar gravity in the profiles fitted to the trajectories. The Macrospicules also had obvious brightenings at their bases at their birth, while such brightenings were not apparent for most of the spicules. Most of the spicules and several of the macrospicules remained visible during their decent back to the solar surface, although a small percentage of the spicules faded out before their fall was completed. Are findings are suggestive of the two phenomena possibly having different initiation mechanisms, but this is not yet conclusive. Qualitatively the EUV 304 Angstrom spicules match well the properties quoted for "Type I

  6. The Science and Design of the AGIS Observatory

    NASA Astrophysics Data System (ADS)

    Schroedter, Martin

    2010-02-01

    The AGIS observatory is a next-generation array of imaging atmospheric Cherenkov telescopes (IACTs) for gamma-ray astronomy between 100 GeV and 100 TeV. The AGIS observatory is the next logical step in high energy gamma-ray astronomy, offering improved angular resolution and sensitivity compared to FERMI, and overlapping the high energy end of FERMI's sensitivity band. The baseline AGIS observatory will employ an array of 36 Schwarzschild-Couder IACTs in combination with a highly pixelated (0.05^o diameter) camera. The instrument is designed to provide millicrab sensitivity over a wide (8^o diameter) field of view, allowing both deep studies of faint point sources as well as efficient mapping of the Galactic plane and extended sources. I will describe science drivers behind the AGIS observatory and the design and status of the project. )

  7. The Science and Design of the AGIS Observatory

    NASA Astrophysics Data System (ADS)

    Falcone, Abraham; Aliu, E.; Arlen, T.; Benbow, W.; Buckley, J.; Bugaev, S.; Byrum, K.; Ciupik, L.; Coppi, P.; Digel, S.; Drake, G.; Finley, J.; Fortson, L.; Franco, J.; Funk, S.; Guarino, V.; Gyuk, G.; Hanna, D.; Hiriart, D.; Humensky, B.; Holder, J.; Kaaret, P.; Karlsson, N.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; LeBohec, S.; Maier, G.; Mukherjee, R.; Ong, R.; Otte, N.; Pareschi, G.; Pohl, M.; Quinn, J.; Ramsey, B.; Romani, R.; Rovero, A. C.; Schroedter, M.; Sinnis, C.; Slane, P.; Smith, A.; Swordy, S.; Tajima, H.; Vassiliev, V.; Wagner, R.; Wakely, S. P.; Weekes, T. C.; Weinstein, A.; Williams, D.

    2010-01-01

    The AGIS observatory is a next-generation array of imaging atmospheric Cherenkov telescopes (IACTs) for gamma-ray astronomy between 100GeV and 100 TeV. The AGIS observatory is the next logical step in high energy gamma-ray astronomy, offering improved angular resolution and sensitivity compared to FERMI, and overlapping the high energy end of FERMI's sensitivity band. The baseline AGIS observatory will employ an array of 36 Schwarzschild-Couder IACTs in combination with a highly pixelated (0.05 degree/pixel) camera. The instrument is designed to provide millicrab sensitivity over a wide (8 degree diameter) field of view, allowing both deep studies of faint point sources as well as efficient mapping of the Galactic plane and extended sources. This presentation will include a description of science drivers behind the AGIS observatory and the design and status of the project.

  8. Open questions on prominences from coordinated observations by IRIS, Hinode, SDO/AIA, THEMIS, and the Meudon/MSDP

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Tian, H.; Kucera, T.; López Ariste, A.; Mein, N.; Mein, P.; Dalmasse, K.; Golub, L.

    2014-09-01

    Context. A large prominence was observed by multiple instruments on the ground and in space during an international campaign on September 24, 2013, for three hours (12:12 UT -15:12 UT). Instruments used in the campaign included the newly launched (June 2013) Interface Region Imaging Spectrograph (IRIS), THEMIS (Tenerife), the Hinode Solar Optical Telescope (SOT), the Solar Dynamic Observatory's Atmospheric Imaging Assembly (SDO/AIA), and the Multichannel Subtractive Double Pass spectrograph (MSDP) in the Meudon Solar Tower. The movies obtained in 304 Å with the EUV imager SDO/AIA, and in Ca II line by SOT show the dynamic nature of the prominence. Aims: The aim of this work is to study the dynamics of the prominence fine structures in multiple wavelengths to understand their formation. Methods: The spectrographs IRIS and MSDP provided line profiles with a high cadence in Mg II h (2803.5 Å) and k (2796.4 Å) lines along four slit positions (IRIS), and in Hα in a 2D field of view (MSDP). The spectropolarimetry of THEMIS (Tenerife) allowed us to derive the magnetic field of the prominence using the He D3 line depolarization (Hanle effect combined with the Zeeman effect). Results: The magnetic field is found to be globally horizontal with a relatively weak field strength (8-15 Gauss). On the other hand, the Ca II movie reveals turbulent-like motion that is not organized in specific parts of the prominence. We tested the addition of a turbulent magnetic component. This model is compatible with the polarimetric observations at those places where the plasma turbulence peaks. On the other hand, the Mg II line profiles show multiple peaks well separated in wavelength. This is interpreted by the existence of small threads along the line of sight with a large dispersion of discrete values of Doppler shifts, from 5 km s-1 (a quasi-steady component) to 60-80 km s-1. Each peak corresponds to a Gaussian profile, and not to a reversed profile as was expected by the present non

  9. Hotspots in Fountains on the Sun's Surface Help Explain Coronal Heating Mystery

    NASA Image and Video Library

    2017-12-08

    NASA image release January 6, 2010 Caption: Spicules on the sun, as observed by the Solar Dynamics Observatory. These bursts of gas jet off the surface of the sun at 150,000 miles per hour and contain gas that reaches temperatures over a million degrees. GREENBELT, Md. -- Observations from NASA's Solar Dynamics Observatory (SDO) and the Japanese satellite Hinode show that some gas in the giant, fountain-like jets in the sun's atmosphere known as spicules can reach temperatures of millions of degrees. The finding offers a possible new framework for how the sun's high atmosphere gets so much hotter than the surface of the sun. What makes the high atmosphere, or corona, so hot – over a million degrees, compared to the sun surface's 10,000 degrees Fahrenheit -- remains a poorly understood aspect of the sun's complicated space weather system. That weather system can reach Earth, causing auroral lights and, if strong enough, disrupting Earth's communications and power systems. Understanding such phenomena, therefore, is an important step towards better protecting our satellites and power grids. "The traditional view is that all the heating happens higher up in the corona," says Dean Pesnell, who is SDO's project scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. "The suggestion in this paper is that cool gas is being ejected from the sun's surface in spicules and getting heated on its way to the corona." Spicules were first named in the 1940s, but were hard to study in detail until recently, says Bart De Pontieu of Lockheed Martin's Solar and Astrophysics Laboratory, Palo Alto, Calif. who is the lead author on a paper on this subject in the January 7, 2011 issue of Science magazine. In visible light, spicules can be seen to send large masses of so-called plasma – the electromagnetic gas that surrounds the sun – up through the lower solar atmosphere or photosphere. The amount of material sent up is stunning, some 100 times as much as streams away from

  10. Understanding Coronal Heating through Time-Series Analysis and Nanoflare Modeling

    NASA Astrophysics Data System (ADS)

    Romich, Kristine; Viall, Nicholeen

    2018-01-01

    Periodic intensity fluctuations in coronal loops, a signature of temperature evolution, have been observed using the Atmospheric Imaging Assembly (AIA) aboard NASA’s Solar Dynamics Observatory (SDO) spacecraft. We examine the proposal that nanoflares, or impulsive bursts of energy release in the solar atmosphere, are responsible for the intensity fluctuations as well as the megakelvin-scale temperatures observed in the corona. Drawing on the work of Cargill (2014) and Bradshaw & Viall (2016), we develop a computer model of the energy released by a sequence of nanoflare events in a single magnetic flux tube. We then use EBTEL (Enthalpy-Based Thermal Evolution of Loops), a hydrodynamic model of plasma response to energy input, to simulate intensity as a function of time across the coronal AIA channels. We test the EBTEL output for periodicities using a spectral code based on Mann and Lees’ (1996) multitaper method and present preliminary results here. Our ultimate goal is to establish whether quasi-continuous or impulsive energy bursts better approximate the original SDO data.

  11. Accumulation of electric currents driving jetting events in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Vargas Domínguez, S.; Guo, Y.; Demoulin, P.; Schmieder, B.; Ding, M.; Liu, Y.

    2013-12-01

    The solar atmosphere is populated with a wide variety of structures and phenomena at different spatial and temporal scales. Explosive phenomena are of particular interest due to their contribution to the atmosphere's energy budget and their implications, e.g. coronal heating. Recent instrumental developments have provided important observations and therefore new insights for tracking the dynamic evolution of the solar atmosphere. Jets of plasma are frequently observed in the solar corona and are thought to be a consequence of magnetic reconnection, however, the physics involved is not fully understood. Unprecedented observations (EUV and vector magnetic fields) are used to study solar jetting events, from which we derive the magnetic flux evolution, the photospheric velocity field, and the vertical electric current evolution. The evolution of magnetic parasitic polarities displaying diverging flows are detected to trigger recurrent jets in a solar regionon 17 September 2010. The interaction drive the build up of electric currents. Observed diverging flows are proposed to build continuously such currents. Magnetic reconnection is proposed to occur periodically, in the current layer created between the emerging bipole and the large scale active region field. SDO/AIA EUV composite images. Upper: SDO/AIA 171 Å image overlaid by the line-of-sight magnetic field observed at the same time as that of the 171 Å image. Lower: Map of photospheric transverse velocities derived from LCT analysis with the HMI magnetograms.

  12. Observatories on the moon

    NASA Astrophysics Data System (ADS)

    Burns, J. O.; Duric, N.; Taylor, G. J.; Johnson, S. W.

    1990-03-01

    It is suggested that the moon could be a haven for astronomy with observatories on its surface yielding extraordinarily detailed views of the heavens and open new windows to study the universe. The near absence of an atmosphere, the seismic stability of its surface, the low levels of interference from light and radio waves and the abundance of raw materials make the moon an ideal site for constructing advanced astronomical observatories. Due to increased interest in the U.S. in the moon as a scientific platform, planning has begun for a permanent lunar base and for astronomical observatories that might be built on the moon in the 21st century. Three specific projects are discussed: (1) the Very Low Frequency Array (VLFA), which would consist of about 200 dipole antennas, each resembling a TV reception antenna about one meter in length; (2) the Lunar Optical-UV-IR Synthesis Array (LOUISA), which will improve on the resolution of the largest ground-based telescope by a factor of 100,000; and (3) a moon-earth radio interferometer, which would have a resolution of about one-hundredth-thousandth of an arc second at a frequency of 10 GHz.

  13. The Atsa Suborbital Observatory: An Observatory for a Commercial Suborbital Spacecraft

    NASA Astrophysics Data System (ADS)

    Vilas, F.; Sollitt, L. S.

    2012-12-01

    The advantages of astronomical observations made above Earth's atmosphere have long been understood: free access to spectral regions inaccessible from Earth (e.g., UV) or affected by the atmosphere's content (e.g., IR). Most robotic, space-based telescopes maintain large angular separation between the Sun and an observational target in order to avoid accidental damage to instruments from the Sun. For most astronomical targets, this possibility is easily avoided by waiting until objects are visible away from the Sun. For the Solar System objects inside Earth's orbit, this is never the case. Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. Commercial suborbital spacecraft are largely expected to go to ~100 km altitude above Earth, providing a limited amount of time for astronomical observations. The unique scientific advantage to these observations is the ability to point close to the Sun: if a suborbital spacecraft accidentally turns too close to the Sun and fries an instrument, it is easy to land the spacecraft and repair the hardware for the next flight. Objects uniquely observed during the short observing window include inner-Earth asteroids, Mercury, Venus, and Sun-grazing comets. Both open-FOV and target-specific observations are possible. Despite many space probes to the inner Solar System, scientific questions remain. These include inner-Earth asteroid size and bulk density informing Solar System evolution studies and efforts to develop methods of mitigation against imminent impactors to Earth; chemistry and dynamics of Venus' atmosphere addressing physical phenomena such as greenhouse effect, atmospheric super-rotation and global resurfacing on Venus. With the Atsa Suborbital Observatory, we combine the strengths of both ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with both in-house facility

  14. A search for remnant planetary nebulae around hot sdO stars

    NASA Astrophysics Data System (ADS)

    Kwitter, Karen B.; Massey, Philip; Congdon, Charles W.; Pasachoff, Jay M.

    1989-05-01

    Spectroscopic and imaging searches for nebular emission associated with a sample of hot subdwarf O (sdO) stars have been carried out. Of 45 stars searched, no evidence of such nebulosity is found in 44. The single exception is RWT 152, around which a planetary nebula had been discovered previously. These negative results place constraints on the evolutionary history of these stars.

  15. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    The March 29, 2014, X-class flare appears as a bright light on the upper right in this image from SDO, showing light in the 304 Angstrom wavelength. This wavelength shows material on the sun in what's called the transition region, where the chromosphere transitions into the upper solar atmosphere, the corona. Some light of the flare is clearly visible, but the flare appears brighter in other images that show hotter temperature material. Credit: NASA/SDO/AIA -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Overview of Key Results from SDO Extreme ultraviolet Variability Experiment (EVE)

    NASA Astrophysics Data System (ADS)

    Woods, Tom; Eparvier, Frank; Jones, Andrew; Mason, James; Didkovsky, Leonid; Chamberlin, Phil

    2016-10-01

    The SDO Extreme ultraviolet Variability Experiment (EVE) includes several channels to observe the solar extreme ultraviolet (EUV) spectral irradiance from 1 to 106 nm. These channels include the Multiple EUV Grating Spectrograph (MEGS) A, B, and P channels from the University of Colorado (CU) and the EUV SpectroPhometer (ESP) channels from the University of Southern California (USC). The solar EUV spectrum is rich in many different emission lines from the corona, transition region, and chromosphere. The EVE full-disk irradiance spectra are important for studying the solar impacts in Earth's ionosphere and thermosphere and are useful for space weather operations. In addition, the EVE observations, with its high spectral resolution of 0.1 nm and in collaboration with AIA solar EUV images, have proven valuable for studying active region evolution and explosive energy release during flares and coronal eruptions. These SDO measurements have revealed interesting results such as understanding the flare variability over all wavelengths, discovering and classifying different flare phases, using coronal dimming measurements to predict CME properties of mass and velocity, and exploring the role of nano-flares in continual heating of active regions.

  17. Force-Free Magnetic Fields Calculated from Automated Tracing of Coronal Loops with AIA/SDO

    NASA Astrophysics Data System (ADS)

    Aschwanden, M. J.

    2013-12-01

    One of the most realistic magnetic field models of the solar corona is a nonlinear force-free field (NLFFF) solution. There exist about a dozen numeric codes that compute NLFFF solutions based on extrapolations of photospheric vector magnetograph data. However, since the photosphere and lower chromosphere is not force-free, a suitable correction has to be applied to the lower boundary condition. Despite of such "pre-processing" corrections, the resulting theoretical magnetic field lines deviate substantially from observed coronal loop geometries. - Here we developed an alternative method that fits an analytical NLFFF approximation to the observed geometry of coronal loops. The 2D coordinates of the geometry of coronal loop structures observed with AIA/SDO are traced with the "Oriented Coronal CUrved Loop Tracing" (OCCULT-2) code, an automated pattern recognition algorithm that has demonstrated the fidelity in loop tracing matching visual perception. A potential magnetic field solution is then derived from a line-of-sight magnetogram observed with HMI/SDO, and an analytical NLFFF approximation is then forward-fitted to the twisted geometry of coronal loops. We demonstrate the performance of this magnetic field modeling method for a number of solar active regions, before and after major flares observed with SDO. The difference of the NLFFF and the potential field energies allows us then to compute the free magnetic energy, which is an upper limit of the energy that is released during a solar flare.

  18. Standard UBV Observations at the Çanakkale University Observatory (ÇUO)

    NASA Astrophysics Data System (ADS)

    Bakis, Hicran; Bakis, Volkan; Demircan, Osman; Budding, Edwin

    2005-07-01

    By using standard and comparison star observations carried out at different times of the year, at Çanakkale Onsekiz Mart University Observatory, we obtained the atmospheric extinction coefficients at the observatory. We also obtained transformation coefficients and zero-point constants for the transformation to the standard Johnson UBV system, of observations in the local system carried out with the SSP5A photometer and T40 telescope. The transmission curves and the mean wavelengths of the UBV filters as measured in the laboratory appear not much different from those of the standard Johnson system and found inside the transmission curve of the standard mean atmosphere.

  19. Formation of Penumbra in a Sample of Active Regions Observed by the SDO Satellite

    NASA Astrophysics Data System (ADS)

    Murabito, Mariarita; Zuccarello, Francesca; Guglielmino, Salvo L.; Romano, Paolo

    2018-03-01

    Recently, high-resolution observations improved our understanding of the penumbra formation process around sunspots. In particular, two aspects have been carefully investigated: whether the settlement of the penumbra can occur between the main opposite magnetic polarities where new magnetic flux is still emerging, and the establishment of the Evershed flow. In this paper, we present the analysis of twelve active regions (ARs) where both the penumbra formation and the onset of the Evershed flow were observed. We used data acquired by the Helioseismic and Magnetic Imager (HMI) instrument on board the Solar Dynamic Observatory (SDO) satellite analyzing continuum images, magnetograms, and Dopplergrams of the selected ARs. The results obtained in our sample provided the following information about the stable settlement of the penumbra: eight spots formed the first stable penumbral sector in the region between the two opposite polarities, and nine spots formed on the opposite side. Moreover, eleven sunpots showed an inverse Evershed flow (i.e., a plasma motion directed toward the protospot border) before the penumbra formation, which changes within 1–6 hr into the classical Evershed flow as soon as the penumbra forms. Comparing our results with recent observations, we are able to discriminate between the different ways of penumbra formation. Moreover, we suggest that the change from inverse Evershed flow, visible before the penumbra appears, into the classical Evershed flow may be a signature of the formation of penumbral filaments.

  20. A search for remnant planetary nebulae around hot sdO stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwitter, K.B.; Congdon, C.W.; Pasachoff, J.M.

    1989-05-01

    Spectroscopic and imaging searches for nebular emission associated with a sample of hot subdwarf O (sdO) stars have been carried out. Of 45 stars searched, no evidence of such nebulosity is found in 44. The single exception is RWT 152, around which a planetary nebula had been discovered previously. These negative results place constraints on the evolutionary history of these stars. 21 refs.

  1. Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Curci, G.

    2014-11-01

    The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyse aerosol optical depth τa(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean τa(3.5 km) ∼ 0.04 - and shows a seasonal trend with a winter minimum - τa(3.5 km) ∼ 0.03 -, and a summer maximum - τa(3.5 km) ∼ 0.06 -, and an unexpected increase from August to September - τa(3.5 km) ∼ 0.055. We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), whilst the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.

  2. Imaging Spectropolarimeter for the Multi-Application Solar Telescope at Udaipur Solar Observatory: Characterization of Polarimeter and Preliminary Observations

    NASA Astrophysics Data System (ADS)

    Tiwary, Alok Ranjan; Mathew, Shibu K.; Bayanna, A. Raja; Venkatakrishnan, P.; Yadav, Rahul

    2017-04-01

    The Multi-Application Solar Telescope (MAST) is a 50 cm off-axis Gregorian telescope that has recently become operational at the Udaipur Solar Observatory (USO). An imaging spectropolarimeter is being developed as one of the back-end instruments of MAST to gain a better understanding of the evolution and dynamics of solar magnetic and velocity fields. This system consists of a narrow-band filter and a polarimeter. The polarimeter includes a linear polarizer and two sets of liquid crystal variable retarders (LCVRs). The instrument is intended for simultaneous observations in the spectral lines 6173 Å and 8542 Å, which are formed in the photosphere and chromosphere, respectively. In this article, we present results from the characterization of the LCVRs for the spectral lines of interest and the response matrix of the polarimeter. We also present preliminary observations of an active region obtained using the spectropolarimeter. For verification purposes, we compare the Stokes observations of the active region obtained from the Helioseismic Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) with that of MAST observations in the spectral line 6173 Å. We find good agreement between the two observations, considering the fact that MAST observations are limited by seeing.

  3. ISS images for Observatory protection

    NASA Astrophysics Data System (ADS)

    Sánchez de Miguel, Alejandro; Zamorano, Jaime

    2015-08-01

    Light pollution is the main factor of degradation of the astronomical quality of the sky along the history. Astronomical observatories have been monitoring how the brightness of the sky varies using photometric measures of the night sky brightness mainly at zenith. Since the sky brightness depends in other factors such as sky glow, aerosols, solar activity and the presence of celestial objects, the continuous increase of light pollution in these enclaves is difficult to trace except when it is too late.Using models of light dispersion on the atmosphere one can determine which light pollution sources are increasing the sky brightness at the observatories. The input satellite data has been provided by DMSP/OLS and SNPP/VIIRS. Unfortunately their panchromatic bands (color blinded) are not useful to detect in which extension the increase is due to the dramatic change produced by the irruption of LED technology in outdoor lighting. The only instrument in the space that is able to distinguish between the various lighting technologies are the DSLR cameras used by the astronauts onboard the ISS.Current status for some astronomical observatories that have been imaged from the ISS is presented. We are planning to send an official request to NASA with a plan to get images for the most important astronomical observatories. We ask support for this proposal by the astronomical community and especially by the US-based researchers.

  4. Solar Scientist Confirm Existence of Flux Ropes on the Sun

    NASA Image and Video Library

    2013-02-14

    Caption: This is an image of magnetic loops on the sun, captured by NASA's Solar Dynamics Observatory (SDO). It has been processed to highlight the edges of each loop to make the structure more clear. A series of loops such as this is known as a flux rope, and these lie at the heart of eruptions on the sun known as coronal mass ejections (CMEs.) This is the first time scientists were able to discern the timing of a flux rope's formation. (SDO AIA 131 and 171 difference blended image of flux ropes during CME.) Credit: NASA/Goddard Space Flight Center/SDO ---- On July 18, 2012, a fairly small explosion of light burst off the lower right limb of the sun. Such flares often come with an associated eruption of solar material, known as a coronal mass ejection or CME – but this one did not. Something interesting did happen, however. Magnetic field lines in this area of the sun's atmosphere, the corona, began to twist and kink, generating the hottest solar material – a charged gas called plasma – to trace out the newly-formed slinky shape. The plasma glowed brightly in extreme ultraviolet images from the Atmospheric Imaging Assembly (AIA) aboard NASA’s Solar Dynamics Observatory (SDO) and scientists were able to watch for the first time the very formation of something they had long theorized was at the heart of many eruptive events on the sun: a flux rope. Eight hours later, on July 19, the same region flared again. This time the flux rope's connection to the sun was severed, and the magnetic fields escaped into space, dragging billions of tons of solar material along for the ride -- a classic CME. "Seeing this structure was amazing," says Angelos Vourlidas, a solar scientist at the Naval Research Laboratory in Washington, D.C. "It looks exactly like the cartoon sketches theorists have been drawing of flux ropes since the 1970s. It was a series of figure eights lined up to look like a giant slinky on the sun." To read more about this new discovery go to: 1.usa

  5. Solar Scientist Confirm Existence of Flux Ropes on the Sun

    NASA Image and Video Library

    2017-12-08

    Caption: This is an image of magnetic loops on the sun, captured by NASA's Solar Dynamics Observatory (SDO). It has been processed to highlight the edges of each loop to make the structure more clear. A series of loops such as this is known as a flux rope, and these lie at the heart of eruptions on the sun known as coronal mass ejections (CMEs.) This is the first time scientists were able to discern the timing of a flux rope's formation. (SDO AIA 131 and 171 difference blended image of flux ropes during CME.) Credit: NASA/Goddard Space Flight Center/SDO ---- On July 18, 2012, a fairly small explosion of light burst off the lower right limb of the sun. Such flares often come with an associated eruption of solar material, known as a coronal mass ejection or CME – but this one did not. Something interesting did happen, however. Magnetic field lines in this area of the sun's atmosphere, the corona, began to twist and kink, generating the hottest solar material – a charged gas called plasma – to trace out the newly-formed slinky shape. The plasma glowed brightly in extreme ultraviolet images from the Atmospheric Imaging Assembly (AIA) aboard NASA’s Solar Dynamics Observatory (SDO) and scientists were able to watch for the first time the very formation of something they had long theorized was at the heart of many eruptive events on the sun: a flux rope. Eight hours later, on July 19, the same region flared again. This time the flux rope's connection to the sun was severed, and the magnetic fields escaped into space, dragging billions of tons of solar material along for the ride -- a classic CME. "Seeing this structure was amazing," says Angelos Vourlidas, a solar scientist at the Naval Research Laboratory in Washington, D.C. "It looks exactly like the cartoon sketches theorists have been drawing of flux ropes since the 1970s. It was a series of figure eights lined up to look like a giant slinky on the sun." To read more about this new discovery go to: 1.usa

  6. Magnetic Feature Tracking in the SDO Era: Past Sacrifices, Recent Advances, and Future Possibilities

    NASA Astrophysics Data System (ADS)

    Lamb, D. A.; DeForest, C. E.; Van Kooten, S.

    2014-12-01

    When implementing computer vision codes, a common reaction to the high angular resolution and the high cadence of SDO's image products has been to reduce the resolution and cadence of the data so that it "looks like" SOHO data. This can be partially justified on physical grounds: if the phenomenon that a computer vision code is trying to detect was characterized in low-resolution, low cadence data, then the higher quality data may not be needed. But sacrificing at least two, and sometimes all four main advantages of SDO's imaging data (the other two being a higher duty cycle and additional data products) threatens to also discard the perhaps more subtle discoveries waiting to be made: a classic baby-with-the-bath-water situation. In this presentation, we discuss some of the sacrifices made in implementing SWAMIS-EF, an automatic emerging magnetic flux region detection code for SDO/HMI, and how those sacrifices simultaneously simplified and complicated development of the code. SWAMIS-EF is a feature-finding code, and we will describe some situations and analyses in which a feature-finding code excels, and some in which a different type of algorithm may produce more favorable results. In particular, because the solar magnetic field is irreducibly complex at the currently observed spatial scales, searching for phenomena such as flux emergence using even semi-strict physical criteria often leads to large numbers of false or missed detections. This undesirable behavior can be mitigated by relaxing the imposed physical criteria, but here too there are tradeoffs: decreased numbers of missed detections may increase the number of false detections if the selection criteria are not both sensitive and specific to the searched-for phenomenon. Finally, we describe some recent steps we have taken to overcome these obstacles, by fully embracing the high resolution, high cadence SDO data, optimizing and partially parallelizing our existing code as a first step to allow fast

  7. Calculation of Precipitable Water for Stratospheric Observatory for Infrared Astronomy Aircraft (SOFIA): Airplane in the Night Sky

    NASA Technical Reports Server (NTRS)

    Wen, Pey Chun; Busby, Christopher M.

    2011-01-01

    Stratospheric Observatory for Infrared Astronomy, or SOFIA, is the new generation airborne observatory station based at NASA s Dryden Aircraft Operations Facility, Palmdale, CA, to study the universe. Since the observatory detects infrared energy, water vapor is a concern in the atmosphere due to its known capacity to absorb infrared energy emitted by astronomical objects. Although SOFIA is hoping to fly above 99% of water vapor in the atmosphere it is still possible to affect astronomical observation. Water vapor is one of the toughest parameter to measure in the atmosphere, several atmosphere modeling are used to calculate water vapor loading. The water vapor loading, or Precipitable water, is being calculated by Matlab along the planned flight path. Over time, these results will help SOFIA to plan flights to regions of lower water vapor loading and hopefully improve the imagery collection of these astronomical features.

  8. High-resolution altitude profiles of the atmospheric turbulence with PML at the Sutherland Observatory

    NASA Astrophysics Data System (ADS)

    Catala, L.; Ziad, A.; Fanteï-Caujolle, Y.; Crawford, S. M.; Buckley, D. A. H.; Borgnino, J.; Blary, F.; Nickola, M.; Pickering, T.

    2017-05-01

    With the prospect of the next generation of ground-based telescopes, the extremely large telescopes, increasingly complex and demanding adaptive optics systems are needed. This is to compensate for image distortion caused by atmospheric turbulence and fully take advantage of mirrors with diameters of 30-40 m. This requires a more precise characterization of the turbulence. The Profiler of Moon Limb (PML) was developed within this context. The PML aims to provide high-resolution altitude profiles of the turbulence using differential measurements of the Moon limb position to calculate the transverse spatio-angular covariance of the angle of arrival fluctuations. The covariance of differential image motion for different separation angles is sensitive to the altitude distribution of the seeing. The use of the continuous Moon limb provides a large number of separation angles allowing for the high-resolution altitude of the profiles. The method is presented and tested with simulated data. Moreover, a PML instrument was deployed at the Sutherland Observatory in South Africa in 2011 August. We present here the results of this measurement campaign.

  9. Mie Lidar for Aerosols and Clouds Monitoring at Otlica Observatory

    NASA Astrophysics Data System (ADS)

    Gao, F.; Stanič, S.; Bergant, K.; Filipčič, A.; Veberič, D.; Forte, B.

    2009-04-01

    Aerosol and cloud densities are the most important atmospheric parameters, which significantly influence the atmospheric conditions. The study of their spatial and temporal properties can provide detailed information about the transport processes of the air masses. In recent years, lidar techniques for remote sensing of the atmospheric parameters have been greatly improved. Like the lidar systems of the Pierre Auger Observatory in Argentina (35.2S, 69.1W, 1400 m a.s.l.), the Mie lidar built at Otlica Observatory (45.93N, 13.91E, 945 m a.s.l.) in Slovenia employs the same hardware, including the transmitter, the receiver, and the DAQ system. Due to its high-power laser, large-diameter telescope, and photon-counting data-acquisition technique, the Mie lidar has the potential ability to measure the tropospheric and stratospheric atmospheric conditions, and is suitable for monitoring the changes of the cirrus clouds and atmospheric boundary layer. We have been performing routine atmospheric monitoring experiments with the Otlica Mie lidar since September 2008. Using the techniques of event-averaging, noise-elimination, and data-gluing, the far end of lidar probing range is extended from 30 km up to 40 km. The extinction profiles are calculated using the Klett method and the time-height-intensity plots were made. They clearly show the evolution of atmospheric conditions, especially the motion of the cirrus clouds above Otlica.

  10. Destruction of Sun-Grazing Comet C-2011 N3 (SOHO) Within the Low Solar Corona

    NASA Technical Reports Server (NTRS)

    Schrijver, C. J.; Brown, J. C.; Battams, K.; Saint-Hilaire, P.; Liu, W.; Hudson, H.; Pesnell, W. D.

    2012-01-01

    Observations of comets in Sun-grazing orbits that survive solar insolation long enough to penetrate into the Suns inner corona provide information on the solar atmosphere and magnetic field as well as on the makeup of the comet. On 6 July 2011, the Solar Dynamics Observatory (SDO) observed the demise of comet C2011 N3 (SOHO) within the low solar corona in five wavelength bands in the extreme ultraviolet (EUV). The comet penetrated to within 0.146 solarradius (100,000 kilometers) of the solar surface before its EUV signal disappeared.

  11. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  12. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.

  13. Using Polar Coronal Hole Area Measurements to Determine the Solar Polar Magnetic Field Reversal in Solar Cycle 24

    NASA Technical Reports Server (NTRS)

    Karna, N.; Webber, S.A. Hess; Pesnell, W.D.

    2014-01-01

    An analysis of solar polar coronal hole (PCH) areas since the launch of the Solar Dynamics Observatory (SDO) shows how the polar regions have evolved during Solar Cycle 24. We present PCH areas from mid-2010 through 2013 using data from the Atmospheric Imager Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) instruments onboard SDO. Our analysis shows that both the northern and southern PCH areas have decreased significantly in size since 2010. Linear fits to the areas derived from the magnetic-field properties indicate that, although the northern hemisphere went through polar-field reversal and reached solar-maximum conditions in mid-2012, the southern hemisphere had not reached solar-maximum conditions in the polar regions by the end of 2013. Our results show that solar-maximum conditions in each hemisphere, as measured by the area of the polar coronal holes and polar magnetic field, will be offset in time.

  14. KSC-2009-6831

    NASA Image and Video Library

    2009-12-15

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., the Solar Dynamics Observatory, or SDO, secured to a Ransome table, has been bagged and is rotated into a vertical position. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Troy Cryder

  15. KSC-2009-6839

    NASA Image and Video Library

    2009-12-15

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., technicians from NASA's Goddard Space Flight Center secure the bagged Solar Dynamics Observatory, or SDO, onto a dolly for further processing. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Troy Cryder

  16. Using the EUV to Weigh a Sun-Grazing Comet as it Disappears in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean; Schrijiver, Carolus J.; Brown, John C.; Battams, Karl; Saint-Hilaire, Pascal; Hudson Hugh S.; Lui, Wei

    2012-01-01

    On July 6,2011, the Atmospheric Imaging Assembly (AlA) on the Solar Dynamics Observatory (SDO) observed a comet in most of its EUY passbands. The comet disappeared while moving through the solar corona. The comet penetrated to 0.146 solar radii ($\\simapprox.100,000 km) above the photosphere before its EUY faded. Before then, the comet's coma and a tail were observed in absorption and emission, respectively. The material in the variable tail quickly fell behind the nucleus. An estimate of the comet's mass based on this effect, one derived from insolation, and one using the tail's EUY brightness, all yield $\\sim 50$ giga-grams some 10 minutes prior to the end of its visibility. These unique first observations herald a new era in the study of Sun-grazing comets close to their perihelia and of the conditions in the solar corona and solar wind. We will discuss the observations and interpretation of the comet by SDO as well as the coronagraph observations from SOHO and STEREO. A search of the SOHO comet archive for other comets that could be observed in the SDO; AlA EUY channels will be described

  17. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1998-01-01

    This photograph shows a TRW technician inspecting the completely assembled Chandra X-ray Observatory (CXO) in the Thermal Vacuum Chamber at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  18. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    This photograph shows TRW technicians preparing the assembled Chandra X-Ray Observatory (CXO) for an official unveiling at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  19. GENERAL VIEW, LOOKING SOUTHEAST, OF STANDARDIZING MAGNETIC OBSERVATORY (SMO) WHICH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW, LOOKING SOUTHEAST, OF STANDARDIZING MAGNETIC OBSERVATORY (SMO) WHICH IS TO THE RIGHT. THE BUILDING TO THE LEFT IS 'STATION 'A'', ALSO A NON-MAGNETIC STRUCTURE, ONCE USED FOR COMPARISONS OF MAGNETIC INSTRUMENTS WITH THE SMO. THE BUILDING IN THE CENTER CONTAINED A SEARCH-LIGHT USED IN CONJUNCTION WITH MEASUREMENTS OF THE EARTH'S ATMOSPHERE. - Carnegie Institution of Washington, Department of Terrestrial Magnetism, Standardizing Magnetic Observatory, 5241 Broad Branch Drive Northwest, Washington, District of Columbia, DC

  20. Formation and evolution of coronal rain observed by SDO/AIA on February 22, 2012

    NASA Astrophysics Data System (ADS)

    Vashalomidze, Z.; Kukhianidze, V.; Zaqarashvili, T. V.; Oliver, R.; Shergelashvili, B.; Ramishvili, G.; Poedts, S.; De Causmaecker, P.

    2015-05-01

    Context. The formation and dynamics of coronal rain are currently not fully understood. Coronal rain is the fall of cool and dense blobs formed by thermal instability in the solar corona towards the solar surface with acceleration smaller than gravitational free fall. Aims: We aim to study the observational evidence of the formation of coronal rain and to trace the detailed dynamics of individual blobs. Methods: We used time series of the 171 Å and 304 Å spectral lines obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) above active region AR 11420 on February 22, 2012. Results: Observations show that a coronal loop disappeared in the 171 Å channel and appeared in the 304 Å line more than one hour later, which indicates a rapid cooling of the coronal loop from 1 MK to 0.05 MK. An energy estimation shows that the radiation is higher than the heat input, which indicates so-called catastrophic cooling. The cooling was accompanied by the formation of coronal rain in the form of falling cold plasma. We studied two different sequences of falling blobs. The first sequence includes three different blobs. The mean velocities of the blobs were estimated to be 50 km s-1, 60 km s-1 and 40 km s-1. A polynomial fit shows the different values of the acceleration for different blobs, which are lower than free-fall in the solar corona. The first and second blob move along the same path, but with and without acceleration, respectively. We performed simple numerical simulations for two consecutive blobs, which show that the second blob moves in a medium that is modified by the passage of the first blob. Therefore, the second blob has a relatively high speed and no acceleration, as is shown by observations. The second sequence includes two different blobs with mean velocities of 100 km s-1 and 90 km s-1, respectively. Conclusions: The formation of coronal rain blobs is connected with the process of catastrophic cooling. The different

  1. Optical Instability of the Earth's Atmosphere

    NASA Technical Reports Server (NTRS)

    Kucherov, N. I. (Editor)

    1966-01-01

    The atmosphere is not stationary: it changes continuously and its optical properties are inherently unstable. This optical instability of the air medium is of considerable significance in various fields of research and observation where light transmission through the atmosphere plays a basic role. Under the category of optical instabilities we mainly have the different atmospheric perturbations whose integrated effect constitutes the astroclimate: these are image pulsation, scintillation, and the blurring of the diffraction disk. The artificial satellites and space probes collected a great amount of new data on the upper atmosphere and on the outer space environment. New interesting and important problems arose, which attracted the attention of many geophysicists and astronomers. This shift in the center of gravity of scientific interests and efforts is observed mainly among scientists specializing in atmospheric physics. Recently, scientific organizations engaged on optical instability research switched to astroclimatic topics. Twelve scientific organizations were represented at the Soviet astronomers have recently been charged with a very difficult and responsible task: to select suitable sites for the erection of new observatories, including an astrophysical observatory with the largest telescope in the USSR. A considerable number of research groups were dispatched into various areas of the Soviet Union, and many astronomical observatories took part in the astroclimatic survey. The work of these expeditions remains un-paralleled by any other country in the world. On the other hand, these researches aroused a definite interest in astroclimate in Soviet astronomical observatories. International astronomical circles pay an ever growing attention to the problems of astroclimate.

  2. Artist's Concept of the Orbiting Carbon Observatory

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Artist's concept of the Orbiting Carbon Observatory. The mission, scheduled to launch in early 2009, will be the first spacecraft dedicated to studying atmospheric carbon dioxide, the principal human-produced driver of climate change. It will provide the first global picture of the human and natural sources of carbon dioxide and the places where this important greenhouse gas is stored. Such information will improve global carbon cycle models as well as forecasts of atmospheric carbon dioxide levels and of how our climate may change in the future.

  3. Occultation Evidence for Haze in Pluto's Atmosphere in 2015 at the New Horizons Encounter

    NASA Astrophysics Data System (ADS)

    Bosh, A. S.; Person, M. J.; Zuluaga, C.; Sickafoose, A. A.; Levine, S. E.; Pasachoff, J. M.; Babcock, B. A.; Dunham, E. W.; McLean, I.; Wolf, J.; Abe, F.; Becklin, E.; Bida, T. A.; Bright, L. P.; Brothers, T.; Christie, G.; Collins, P. L.; Durst, R. F.; Gilmore, A. C.; Hamilton, R.; Harris, H. C.; Johnson, C.; Kilmartin, P. M.; Kosiarek, M. R.; Leppik, K.; Logsdon, S.; Lucas, R.; Mathers, S.; Morley, C. J. K.; Natusch, T.; Nelson, P.; Ngan, H.; Pfüller, E.; Röser, H. P.; Sallum, S.; Savage, M.; Seeger, C. H.; Siu, H.; Stockdale, C.; Suzuki, D.; Thanathibodee, T.; Tilleman, T.; Tristram, P. J.; Van Cleve, J.; Varughese, C.; Weisenbach, L. W.; Widen, E.; Wiedemann, M.

    2015-12-01

    On UT 29 June 2015, the occultation by Pluto of a bright star (r'=11.9) was observed from the Stratospheric Observatory for Infrared Astronomy (SOFIA) as well as several ground-based stations in New Zealand and Australia. Pre-event astrometry allowed for an in-flight update to the SOFIA team with the result that SOFIA was deep within the central flash zone. Combined analysis of the data sets leads to the result that Pluto's middle atmosphere is essentially unchanged from 2011 and 2013 (Person et al. 2013; Bosh et al. 2015); there has been no significant expansion or contraction of the atmosphere. Additionally, we find that a haze component in the atmosphere is required to reproduce the light curves obtained. This haze scenario has implications for understanding the photochemistry of Pluto's atmosphere. This work was supported by NASA grants NNX15AJ82G (Lowell Observatory), NNX10AB27G (MIT), and NNX12AJ29G (Williams), and by the National Research Foundation of South Africa. Co-authors were visiting observers on SOFIA, at the Keck Observatory, the Magellan Observatory, the SARA-CT Observatory, the Mt. John University Observatory, and the Auckland Observatory.

  4. The New Pelagic Operational Observatory of the Catalan Sea (OOCS) for the Multisensor Coordinated Measurement of Atmospheric and Oceanographic Conditions

    PubMed Central

    Bahamon, Nixon; Aguzzi, Jacopo; Bernardello, Raffaele; Ahumada-Sempoal, Miguel-Angel; Puigdefabregas, Joan; Cateura, Jordi; Muñoz, Eduardo; Velásquez, Zoila; Cruzado, Antonio

    2011-01-01

    The new pelagic Operational Observatory of the Catalan Sea (OOCS) for the coordinated multisensor measurement of atmospheric and oceanographic conditions has been recently installed (2009) in the Catalan Sea (41°39′N, 2°54′E; Western Mediterranean) and continuously operated (with minor maintenance gaps) until today. This multiparametric platform is moored at 192 m depth, 9.3 km off Blanes harbour (Girona, Spain). It is composed of a buoy holding atmospheric sensors and a set of oceanographic sensors measuring the water conditions over the upper 100 m depth. The station is located close to the head of the Blanes submarine canyon where an important multispecies pelagic and demersal fishery gives the station ecological and economic relevance. The OOCS provides important records on atmospheric and oceanographic conditions, the latter through the measurement of hydrological and biogeochemical parameters, at depths with a time resolution never attained before for this area of the Mediterranean. Twenty four moored sensors and probes operating in a coordinated fashion provide important data on Essential Ocean Variables (EOVs; UNESCO) such as temperature, salinity, pressure, dissolved oxygen, chlorophyll fluorescence, and turbidity. In comparison with other pelagic observatories presently operating in other world areas, OOCS also measures photosynthetic available radiation (PAR) from above the sea surface and at different depths in the upper 50 m. Data are recorded each 30 min and transmitted in real-time to a ground station via GPRS. This time series is published and automatically updated at the frequency of data collection on the official OOCS website (http://www.ceab.csic.es/~oceans). Under development are embedded automated routines for the in situ data treatment and assimilation into numerical models, in order to provide a reliable local marine processing forecast. In this work, our goal is to detail the OOCS multisensor architecture in relation to the

  5. Ionospheric model-observation comparisons: E layer at Arecibo Incorporation of SDO-EVE solar irradiances

    NASA Astrophysics Data System (ADS)

    Sojka, Jan J.; Jensen, Joseph B.; David, Michael; Schunk, Robert W.; Woods, Tom; Eparvier, Frank; Sulzer, Michael P.; Gonzalez, Sixto A.; Eccles, J. Vincent

    2014-05-01

    This study evaluates how the new irradiance observations from the NASA Solar Dynamics Observatory (SDO) Extreme Ultraviolet Variability Experiment (EVE) can, with its high spectral resolution and 10 s cadence, improve the modeling of the E region. To demonstrate this a campaign combining EVE observations with that of the NSF Arecibo incoherent scatter radar (ISR) was conducted. The ISR provides E region electron density observations with high-altitude resolution, 300 m, and absolute densities using the plasma line technique. Two independent ionospheric models were used, the Utah State University Time-Dependent Ionospheric Model (TDIM) and Space Environment Corporation's Data-Driven D Region (DDDR) model. Each used the same EVE irradiance spectrum binned at 1 nm resolution from 0.1 to 106 nm. At the E region peak the modeled TDIM density is 20% lower and that of the DDDR is 6% higher than observed. These differences could correspond to a 36% lower (TDIM) and 12% higher (DDDR) production rate if the differences were entirely attributed to the solar irradiance source. The detailed profile shapes that included the E region altitude and that of the valley region were only qualitatively similar to observations. Differences on the order of a neutral-scale height were present. Neither model captured a distinct dawn to dusk tilt in the E region peak altitude. A model sensitivity study demonstrated how future improved spectral resolution of the 0.1 to 7 nm irradiance could account for some of these model shortcomings although other relevant processes are also poorly modeled.

  6. KSC-2009-6485

    NASA Image and Video Library

    2009-11-19

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., spacecraft technicians secure one of the solar panels on the Solar Dynamics Observatory, or SDO, to the side of the spacecraft for launch. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  7. KSC-2009-6829

    NASA Image and Video Library

    2009-12-15

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., the Solar Dynamics Observatory, or SDO, secured to a Ransome table, has been bagged and is being rotated from a horizontal to a vertical position. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Troy Cryder

  8. KSC-2009-6830

    NASA Image and Video Library

    2009-12-15

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., technicians from NASA's Goddard Space Flight Center rotate the bagged Solar Dynamics Observatory, or SDO, secured to a Ransome table, into a vertical position. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Troy Cryder

  9. KSC-2009-6479

    NASA Image and Video Library

    2009-11-19

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., spacecraft technicians secure the high-gain communications antenna on the Solar Dynamics Observatory, or SDO, against the spacecraft following testing to verify the spacecraft's readiness for launch. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  10. Portable coastal observatories

    USGS Publications Warehouse

    Frye, Daniel; Butman, Bradford; Johnson, Mark; von der Heydt, Keith; Lerner, Steven

    2000-01-01

    Ocean observational science is in the midst of a paradigm shift from an expeditionary science centered on short research cruises and deployments of internally recording instruments to a sustained observational science where the ocean is monitored on a regular basis, much the way the atmosphere is monitored. While satellite remote sensing is one key way of meeting the challenge of real-time monitoring of large ocean regions, new technologies are required for in situ observations to measure conditions below the ocean surface and to measure ocean characteristics not observable from space. One method of making sustained observations in the coastal ocean is to install a fiber optic cable from shore to the area of interest. This approach has the advantage of providing power to offshore instruments and essentially unlimited bandwidth for data. The LEO-15 observatory offshore of New Jersey (yon Alt et al., 1997) and the planned Katama observatory offshore of Martha's Vineyard (Edson et al., 2000) use this approach. These sites, along with other cabled sites, will play an important role in coastal ocean science in the next decade. Cabled observatories, however, have two drawbacks that limit the number of sites that are likely to be installed. First, the cable and the cable installation are expensive and the shore station needed at the cable terminus is often in an environmentally sensitive area where competing interests must be resolved. Second, cabled sites are inherently limited geographically to sites within reach of the cable, so it is difficult to cover large areas of the coastal ocean.

  11. EC03089-6421: a new, very rapidly pulsating sdO star

    NASA Astrophysics Data System (ADS)

    Kilkenny, D.; Worters, H. L.; Østensen, R. H.

    2017-06-01

    EC 03089-6421, classified sdO in the Edinburgh-Cape (EC) blue object survey, is shown to have unusually rapid pulsations with a dominant frequency near 32 mHz (amplitude ˜0.02 mag; period 31.1 s) - which appears to be strongly variable in amplitude on time-scales of hours and days - and a generally weaker frequency near 29 mHz (amplitude ˜0.004 mag; period 34.2 s), which is also variable in amplitude. This star varies at twice the frequency of any known hot subdwarf pulsator. Although the low-resolution EC spectrogram appears very similar to those of DAO stars, our analysis derives Teff = 40 200 ± 1600 K; log g = 6.25 ± 0.23 and log N(He)/N(H) = -1.63 ± 0.55; more recent spectrograms give Teff = 37 400 ± 1000 K; log g = 5.70 ± 0.13 and log N(He)/N(H) = -2.02 ± 0.17, both of which indicate that the gravity is too low for a white dwarf star, although the low temperature derived from the Balmer lines is at odds with the absence of neutral Helium and the strength of He II 4686. It is possible that EC 03089-6421 is a field analogue of the ω Cen sdO variables.

  12. Spectrophotometry of pulsating stars at Oukaimeden Observatory in Morocco

    NASA Astrophysics Data System (ADS)

    Benhida, Abdelmjid; sefyani, Fouad; de France, Thibault; Elashab, Sana; Zohra Belharcha, fatim; Gillet, Denis; Mathias, phillipe; Daassou, Ahmed; Lazrek, Mohamed; Benkhaldoun, Zouhair

    2015-08-01

    Location of modern observatories requires high sky quality: good weather, isolated site to avoid any pollution, high altitude for a better transparency and to reduce temperature gradients, the main source of atmospheric turbulence. With an altitude of 2750m, the region of Oukaimeden in Morocco (longitude: 7°52'052" West, latitude: 3°112032" North) meets most of these criteriaWith its 10'' and 14'' dedicated telescopes operating in remote control modes that combines high precision photometry and high resolution spectroscopy (spectrograph Eshell of R~12000 resolution over a wide spectral range), the universitary observatory of Oukaimeden (code J43) aims to develop new thematics in addition to present science. In particular, through this instrumentation, we aim to develop the field of pulsating stars, especially the atmospheric dynamics of high amplitude pulsators such as RR Lyrae and RV Tauri star, in order to establish new models of the mechanical and thermal behaviour of their atmospheres (shock waves, relaxation time, energy loss...).In this work we will first describe our measuring instruments, and then analyze spectra and photometric curves of RR Lyrae star obtained during the maximum of the Blazhko effect.

  13. The detection of upwardly propagating waves channeling energy from the chromosphere to the low corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freij, N.; Nelson, C. J.; Mumford, S.

    There have been ubiquitous observations of wave-like motions in the solar atmosphere for decades. Recent improvements to space- and ground-based observatories have allowed the focus to shift to smaller magnetic structures on the solar surface. In this paper, high-resolution ground-based data taken using the Swedish 1 m Solar Telescope is combined with co-spatial and co-temporal data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) satellite to analyze running penumbral waves (RPWs). RPWs have always been thought to be radial wave propagation that occurs within sunspots. Recent research has suggested that they are in fact upwardlymore » propagating field-aligned waves (UPWs). Here, RPWs within a solar pore are observed for the first time and are interpreted as UPWs due to the lack of a penumbra that is required to support RPWs. These UPWs are also observed co-spatially and co-temporally within several SDO/AIA elemental lines that sample the transition region and low corona. The observed UPWs are traveling at a horizontal velocity of around 17 ± 0.5 km s{sup –1} and a minimum vertical velocity of 42 ± 21 km s{sup –1}. The estimated energy of the waves is around 150 W m{sup –2}, which is on the lower bound required to heat the quiet-Sun corona. This is a new, yet unconsidered source of wave energy within the solar chromosphere and low corona.« less

  14. Coronal Magnetic Field Measurement from EUV Images Made by the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk; Nitta, Nariaki; Akiyama, Sachiko; Makela, Pertti; Yashiro, Seiji

    2012-01-01

    By measuring the geometrical properties of the coronal mass ejection (CME) flux rope and the leading shock observed on 2010 June 13 by the Solar Dynamics Observatory (SDO) mission's Atmospheric Imaging Assembly we determine the Alfven speed and the magnetic field strength in the inner corona at a heliocentric distance of approx. 1.4 Rs The basic measurements are the shock standoff distance (Delta R) ahead of the CME flux rope, the radius of curvature of the flux rope (R(sub c)), and the shock speed. We first derive the Alfvenic Mach number (M) using the relationship, Delta R/R(sub c) = 0.81[(gamma-1) M(exp 2) + 2] / [(gamma +1)(M2 - 1)], where gamma is the only parameter that needed to be assumed. For gamma = 4/3, the Mach number declined from 3.7 to 1.5 indicating shock weakening within the field of view of the imager. The shock formation coincided with the appearance of a type II radio burst at a frequency of approx. 300 MHz (harmonic component), providing an independent confirmation of the shock. The shock compression ratio derived from the radio dynamic spectrum was found to be consistent with that derived from the theory of fast-mode MHD shocks. From the measured shock speed and the derived Mach number, we found the Alfven speed to increase from approx 140 km/s to 460 km/s over the distance range 1.2-1.5 Rs. By deriving the upstream plasma density from the emission frequency of the associated type II radio burst, we determined the coronal magnetic field to be in the range 1.3-1.5 G. The derived magnetic field values are consistent with other estimates in a similar distance range. This work demonstrates that the EUV imagers, in the presence of radio dynamic spectra, can be used as coronal magnetometers

  15. Investigating On-Orbit Attitude Determination Anomalies for the Solar Dynamics Observatory Mission

    NASA Technical Reports Server (NTRS)

    Vess, Melissa F.; Starin, Scott R.; Chia-Kuo, Alice Liu

    2011-01-01

    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010 from Kennedy Space Center on an Atlas V launch vehicle into a geosynchronous transfer orbit. SDO carries a suite of three scientific instruments, whose observations are intended to promote a more complete understanding of the Sun and its effects on the Earth's environment. After a successful launch, separation, and initial Sun acquisition, the launch and flight operations teams dove into a commissioning campaign that included, among other things, checkout and calibration of the fine attitude sensors and checkout of the Kalman filter (KF) and the spacecraft s inertial pointing and science control modes. In addition, initial calibration of the science instruments was also accomplished. During that process of KF and controller checkout, several interesting observations were noticed and investigated. The SDO fine attitude sensors consist of one Adcole Digital Sun Sensor (DSS), two Galileo Avionica (GA) quaternion-output Star Trackers (STs), and three Kearfott Two-Axis Rate Assemblies (hereafter called inertial reference units, or IRUs). Initial checkout of the fine attitude sensors indicated that all sensors appeared to be functioning properly. Initial calibration maneuvers were planned and executed to update scale factors, drift rate biases, and alignments of the IRUs. After updating the IRU parameters, the KF was initialized and quickly reached convergence. Over the next few hours, it became apparent that there was an oscillation in the sensor residuals and the KF estimation of the IRU bias. A concentrated investigation ensued to determine the cause of the oscillations, their effect on mission requirements, and how to mitigate them. The ensuing analysis determined that the oscillations seen were, in fact, due to an oscillation in the IRU biases. The low frequencies of the oscillations passed through the KF, were well within the controller bandwidth, and therefore the spacecraft was actually

  16. Early Science Results from SOFIA, the Worlds Largest Airborne Observatory

    NASA Astrophysics Data System (ADS)

    De Buizer, J.

    2012-09-01

    The Stratospheric Observatory for Infrared Astronomy, or SOFIA, is the largest flying observatory ever built, consisting of a 2.7-meter diameter telescope embedded in a modified Boeing 747-SP aircraft. SOFIA is a joint project between NASA and the German Aerospace Center Deutsches Zentrum fur Luft und-Raumfahrt. By flying at altitudes up to 45000 feet, the observatory gets above 99.9% of the infrared-absorbing water vapor in the Earth's atmosphere. This opens up an almost uninterrupted wavelength range from 0.3-1600 microns that is in large part obscured from ground based observatories. Since its 'Initial Science Flight' in December 2010, SOFIA has flown several dozen science flights, and has observed a wide array of objects from Solar System bodies, to stellar nurseries, to distant galaxies. This talk will review some of the exciting new science results from these first flights which were made by three instruments: the mid-infrared camera FORCAST, the far-infrared heterodyne spectrometer GREAT, and the optical occultation photometer HIPO.

  17. Spectral Analysis within the Virtual Observatory: The GAVO Service TheoSSA

    NASA Astrophysics Data System (ADS)

    Ringat, E.

    2012-03-01

    In the last decade, numerous Virtual Observatory organizations were established. One of these is the German Astrophysical Virtual Observatory (GAVO) that e.g. provides access to spectral energy distributions via the service TheoSSA. In a pilot phase, these are based on the Tübingen NLTE Model-Atmosphere Package (TMAP) and suitable for hot, compact stars. We demonstrate the power of TheoSSA in an application to the sdOB primary of AA Doradus by comparison with a “classical” spectral analysis.

  18. Ultrahigh Energy Neutrinos at the Pierre Auger Observatory

    DOE PAGES

    Abreu, P.; Aglietta, M.; Ahlers, M.; ...

    2013-01-01

    The observation of ultrahigh energy neutrinos (UHE ν s) has become a priority in experimental astroparticle physics. UHE ν s can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ν ) or in the Earth crust (Earth-skimming ν ), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversedmore » a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHE ν s in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHE ν s in the EeV range and above.« less

  19. Future Large-Aperture Ultraviolet/Optical/Infrared Space Observatory

    NASA Technical Reports Server (NTRS)

    Thronson, Harley; Mandell, Avi; Polidan, Ron; Tumlinson, Jason

    2016-01-01

    Since the beginning of modern astronomical science in the early 1900s, astronomers have yearned to escape the turbulence and absorption of Earth's atmosphere by placing observatories in space. One of the first papers to lay out the advantages of space astronomy was by Lyman Spitzer in 1946, "Astronomical Advantages of an Extra-Terrestrial Observatory," though later in life he minimized the influence of this work. Since that time, and especially gaining momentum in the 1960s after the launch of Sputnik, astronomers, technologists, and engineers continued to advance, organizing scientific conferences, advocating for necessary technologies, and assessing sophisticated designs for increasingly ambitious space observations at ultraviolet, visual, and infrared (UVOIR) wavelengths. These community-wide endeavors, combined with the explosion in technological capability enabled by the Apollo era, led to rapid advancement in space observatory performance that culminated in the spectacularly successful Hubble Space Telescope (HST), launched in 1990 and still returning surpassing scientific results.

  20. KSC-2009-4022

    NASA Image and Video Library

    2009-07-11

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., a hoist begins rotating NASA's Solar Dynamics Observatory, or SDO. After rotation, the SDO will be moved to a work stand. SDO will be rotated and moved to a work stand. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston

  1. Verification of the Solar Dynamics Observatory High Gain Antenna Pointing Algorithm Using Flight Data

    NASA Technical Reports Server (NTRS)

    Bourkland, Kristin L.; Liu, Kuo-Chia

    2011-01-01

    The Solar Dynamics Observatory (SDO), launched in 2010, is a NASA-designed spacecraft built to study the Sun. SDO has tight pointing requirements and instruments that are sensitive to spacecraft jitter. Two High Gain Antennas (HGAs) are used to continuously send science data to a dedicated ground station. Preflight analysis showed that jitter resulting from motion of the HGAs was a cause for concern. Three jitter mitigation techniques were developed and implemented to overcome effects of jitter from different sources. These mitigation techniques include: the random step delay, stagger stepping, and the No Step Request (NSR). During the commissioning phase of the mission, a jitter test was performed onboard the spacecraft, in which various sources of jitter were examined to determine their level of effect on the instruments. During the HGA portion of the test, the jitter amplitudes from the single step of a gimbal were examined, as well as the amplitudes due to the execution of various gimbal rates. The jitter levels were compared with the gimbal jitter allocations for each instrument. The decision was made to consider implementing two of the jitter mitigating techniques on board the spacecraft: stagger stepping and the NSR. Flight data with and without jitter mitigation enabled was examined, and it is shown in this paper that HGA tracking is not negatively impacted with the addition of the jitter mitigation techniques. Additionally, the individual gimbal steps were examined, and it was confirmed that the stagger stepping and NSRs worked as designed. An Image Quality Test was performed to determine the amount of cumulative jitter from the reaction wheels, HGAs, and instruments during various combinations of typical operations. The HGA-induced jitter on the instruments is well within the jitter requirement when the stagger step and NSR mitigation options are enabled.

  2. KSC-2010-1052

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., spacecraft fueling technicians from Kennedy Space Center prepare to sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO. From left are SDO technician Brian Kittle and ASTROTECH mission/facility manager Gerard Gleeson. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  3. KSC-2010-1049

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., spacecraft fueling technicians from Kennedy Space Center prepare to sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO. From left are Boeing technicians Richard Gillman and Steve Lay, and SDO technician Brian Kittle. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  4. Multi-thermal observations of flares and eruptions with the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. (Invited)

    NASA Astrophysics Data System (ADS)

    Schrijver, C. J.; Aia Science Team

    2010-12-01

    The revolutionary advance in observational capabilities offered by SDO's AIA offers new views of solar flares and eruptions. The high cadence and spatial resolution, the full-Sun coverage, and the variety of thermal responses of the AIA channels from thousands to millions of degrees enable the study the source regions of solar explosions, as well as the responses of the solar corona from their immediate vicinity to regions over a solar radius away. These observations emphasize the importance of magnetic connectivity and topology, the frequent occurrence of fast wave-like perturbations, and the contrasts between impulsive compact X-ray-bright flares and long-duration EUV-bright phenomena.

  5. Atmospheric Seeing and Transparency Robotic Observatory

    NASA Astrophysics Data System (ADS)

    Cline, J. D.; Castelaz, M. W.

    2002-12-01

    A robotic 12.7 cm telescope and camera (together called OVIEW) have been designed to do photometry of 50 of the brightest stars in the local sky 24 hours a day. Each star is imaged through a broadband 500 nm filter. Software automatically analyzes the brightness of the star and the stellar seeing disk. The results are published in real-time on a web page. Comparison of stellar brightness with known apparent magnitude is a measure of transparency with instrument resolution of one arcsecond. We will describe the observatory, software, and website. We will also describe other telescopes on the Optical Ridge at the Pisgah Astronomical Research Institute (PARI). On the same pier as OVIEW is a second robotic 12.7 cm telescope and camera that image the sun and moon. The solar and lunar images are published live on the Internet. Also on the Optical Ridge is a robotic 20 cm telescope. This telescope is operated by UNC-Chapel Hill and has been operating on the Optical Ridge for more than 2 years surveying the plane of the Milky Way for binary low mass stars. UNC-Chapel Hill also operates a 25 cm telescope with an IR camera for photometry of gamma ray burst optical afterglows. An additional 25 cm telescope with a new 3.2 megapixel CCD is used for undergraduate research and W UMa binary star photometry. We acknowledge the AAS Small Grant Program for partial support of the solar/lunar telescope.

  6. Diagnosing the Magnetic Field Structure of a Coronal Cavity Observed during the 2017 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Chen, Yajie; Tian, Hui; Su, Yingna; Qu, Zhongquan; Deng, Linhua; Jibben, Patricia R.; Yang, Zihao; Zhang, Jingwen; Samanta, Tanmoy; He, Jiansen; Wang, Linghua; Zhu, Yingjie; Zhong, Yue; Liang, Yu

    2018-03-01

    We present an investigation of a coronal cavity observed above the western limb in the coronal red line Fe X 6374 Å using a telescope of Peking University and in the green line Fe XIV 5303 Å using a telescope of Yunnan Observatories, Chinese Academy of Sciences, during the total solar eclipse on 2017 August 21. A series of magnetic field models is constructed based on the magnetograms taken by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO) one week before the eclipse. The model field lines are then compared with coronal structures seen in images taken by the Atmospheric Imaging Assembly on board SDO and in our coronal red line images. The best-fit model consists of a flux rope with a twist angle of 3.1π, which is consistent with the most probable value of the total twist angle of interplanetary flux ropes observed at 1 au. Linear polarization of the Fe XIII 10747 Å line calculated from this model shows a “lagomorphic” signature that is also observed by the Coronal Multichannel Polarimeter of the High Altitude Observatory. We also find a ring-shaped structure in the line-of-sight velocity of Fe XIII 10747 Å, which implies hot plasma flows along a helical magnetic field structure, in the cavity. These results suggest that the magnetic structure of the cavity is a highly twisted flux rope, which may erupt eventually. The temperature structure of the cavity has also been investigated using the intensity ratio of Fe XIII 10747 Å and Fe X 6374 Å.

  7. Cirrus clouds properties derived from polarized micro pulse lidar (p-mpl) observations at the atmospheric observatory `el arenosillo' (sw iberian peninsula): a case study for radiative implications

    NASA Astrophysics Data System (ADS)

    Águila, Ana del; Gómez, Laura; Vilaplana, José Manuel; Sorribas, Mar; Córdoba-Jabonero, Carmen

    2018-04-01

    Cirrus (Ci) clouds are involved in Climate Change concerns since they affect the radiative balance of the atmosphere. Recently, a polarized Micro Pulse Lidar (P-MPL), standard system within NASA/MPLNET has been deployed at the INTA/Atmospheric Observatory `El Arenosillo' (ARN), located in the SW Iberian Peninsula. Hence, the INTA/P-MPL system is used for Ci detection over that station for the first time. Radiative effects of a Ci case observed over ARN are examined, as reference for future long-term Ci observations. Optical and macrophysical properties are retrieved, and used for radiative transfer simulations. Data are compared to the measured surface radiation levels and all-sky images simultaneously performed at the ARN station.

  8. An SDO/AIA-Observed Filament Eruption Triggered by a Lid-Removal Onset Mechanism

    NASA Astrophysics Data System (ADS)

    Sterling, A. C.; Moore, R. L.; Falconer, D. A.; Knox, J. M.

    2013-12-01

    An eruption of a solar filament often presages the onset of a more general solar eruption, often leading to a solar flare and coronal mass ejection (CME). Among the mechanisms suggested for triggering eruptions are flux cancelation, flux emergence, tether-cutting reconnection, and breakout reconnection. Here we present an example of a filament eruption due to a different trigger mechanism, which we call ``lid removal,'' whereby a magnetic structure overlying the filament is removed by a preceding adjacent eruption, rendering MHD unstable the magnetic system containing the filament and resulting in the subsequent eruption of the filament. This filament eruption occurred on 23 Jan 2013, and was well-seen in SDO/AIA 193 Ang images. Prior to its eruption the filament was at an approximately constant height above the solar surface for ~4 hours, before smoothly lifting off. Evidence for the overlying ``lid'' field was difficult to discern in 193 Ang images, but was apparent in hotter coronal images, such as SDO/AIA 335. Removal of the lid field was due to an eruption of that field visible in the hotter-corona images. In this way, the lid-removal filament-eruption mechanism is similar to recent observations of connected or cascading eruptions originating from magnetically-linked locations.

  9. On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. T.; Baldner, C. S.; Bush, R. I.; Schou, J.; Scherrer, P. H.

    2018-03-01

    The Helioseismic and Magnetic Imager (HMI) instrument is a major component of NASA's Solar Dynamics Observatory (SDO) spacecraft. Since commencement of full regular science operations on 1 May 2010, HMI has operated with remarkable continuity, e.g. during the more than five years of the SDO prime mission that ended 30 September 2015, HMI collected 98.4% of all possible 45-second velocity maps; minimizing gaps in these full-disk Dopplergrams is crucial for helioseismology. HMI velocity, intensity, and magnetic-field measurements are used in numerous investigations, so understanding the quality of the data is important. This article describes the calibration measurements used to track the performance of the HMI instrument, and it details trends in important instrument parameters during the prime mission. Regular calibration sequences provide information used to improve and update the calibration of HMI data. The set-point temperature of the instrument front window and optical bench is adjusted regularly to maintain instrument focus, and changes in the temperature-control scheme have been made to improve stability in the observable quantities. The exposure time has been changed to compensate for a 20% decrease in instrument throughput. Measurements of the performance of the shutter and tuning mechanisms show that they are aging as expected and continue to perform according to specification. Parameters of the tunable optical-filter elements are regularly adjusted to account for drifts in the central wavelength. Frequent measurements of changing CCD-camera characteristics, such as gain and flat field, are used to calibrate the observations. Infrequent expected events such as eclipses, transits, and spacecraft off-points interrupt regular instrument operations and provide the opportunity to perform additional calibration. Onboard instrument anomalies are rare and seem to occur quite uniformly in time. The instrument continues to perform very well.

  10. Long-term measurements of atmospheric trace gases (CO2, CH4, N2O, SF6, CO, H2), O2, and δ13CH4 isotopes at Weybourne Atmospheric Observatory, UK: past, present and future

    NASA Astrophysics Data System (ADS)

    Manning, Andrew C.; Forster, Grant L.; Oram, David E.; Reeves, Claire E.; Pickers, Penelope A.; Barningham, S. Thomas; Sturges, William T.; Bandy, Brian; Nisbet, Euan G.; Lowry, David; Fisher, Rebecca; Fleming, Zoe

    2016-04-01

    The Weybourne Atmospheric Observatory (WAO) is situated on the north Norfolk Coast (52.95°N, 1.13°E) in the United Kingdom and is run by the University of East Anglia (UEA), with support from the UK National Centre for Atmospheric Science (NCAS). In 2016, the WAO became a UK-ICOS (Integrated Carbon Observing System) monitoring station. Since 2008, we have been collecting high-precision long-term in situ measurements of atmospheric carbon dioxide (CO2), oxygen (O2), carbon monoxide (CO) and molecular hydrogen (H2), as well as regular bag sampling for δ13CH4. In early 2013, the measurement of atmospheric methane (CH4) commenced, and nitrous oxide (N2O) and sulphur hexafluoride (SF6) began in 2014. We summarise the CO2, O2, CH4, N2O, SF6, CO, H2 and δ13CH4 measurements made to date and highlight some key features observed (e.g. seasonal cycles, long-term trends, pollution events and deposition events). We summarise how the long-term measurements fit into other broader projects which have helped to support the long term time-series at WAO over the years, and highlight how we contribute to broader global atmospheric observation networks.

  11. Realistic Modeling of Multi-Scale MHD Dynamics of the Solar Atmosphere

    NASA Technical Reports Server (NTRS)

    Kitiashvili, Irina; Mansour, Nagi N.; Wray, Alan; Couvidat, Sebastian; Yoon, Seokkwan; Kosovichev, Alexander

    2014-01-01

    Realistic 3D radiative MHD simulations open new perspectives for understanding the turbulent dynamics of the solar surface, its coupling to the atmosphere, and the physical mechanisms of generation and transport of non-thermal energy. Traditionally, plasma eruptions and wave phenomena in the solar atmosphere are modeled by prescribing artificial driving mechanisms using magnetic or gas pressure forces that might arise from magnetic field emergence or reconnection instabilities. In contrast, our 'ab initio' simulations provide a realistic description of solar dynamics naturally driven by solar energy flow. By simulating the upper convection zone and the solar atmosphere, we can investigate in detail the physical processes of turbulent magnetoconvection, generation and amplification of magnetic fields, excitation of MHD waves, and plasma eruptions. We present recent simulation results of the multi-scale dynamics of quiet-Sun regions, and energetic effects in the atmosphere and compare with observations. For the comparisons we calculate synthetic spectro-polarimetric data to model observational data of SDO, Hinode, and New Solar Telescope.

  12. OBSERVATIONS OF A SERIES OF FLARES AND ASSOCIATED JET-LIKE ERUPTIONS DRIVEN BY THE EMERGENCE OF TWISTED MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Eun-Kyung; Yurchyshyn, Vasyl; Kim, Sujin

    We studied temporal changes of morphological and magnetic properties of a succession of four confined flares followed by an eruptive flare using the high-resolution New Solar Telescope (NST) operating at the Big Bear Solar Observatory (BBSO) and Helioseismic and Magnetic Imager (HMI) magnetograms and Atmospheric Image Assembly (AIA) EUV images provided by the Solar Dynamics Observatory (SDO). From the NST/Hα and the SDO/AIA 304 Å observations we found that each flare developed a jet structure that evolved in a manner similar to evolution of the blowout jet: (1) an inverted-Y-shaped jet appeared and drifted away from its initial position; (2) jets formed amore » curtain-like structure that consisted of many fine threads accompanied by subsequent brightenings near the footpoints of the fine threads; and finally, (3) the jet showed a twisted structure visible near the flare maximum. Analysis of the HMI data showed that both the negative magnetic flux and the magnetic helicity have been gradually increasing in the positive-polarity region, indicating the continuous injection of magnetic twist before and during the series of flares. Based on these results, we suggest that the continuous emergence of twisted magnetic flux played an important role in producing successive flares and developing a series of blowout jets.« less

  13. A Mediterranean atmospheric and oceanographic observatory in Corsica within the framework of HyMEx, ChArMEx and MERMEx

    NASA Astrophysics Data System (ADS)

    Lambert, D.

    2009-09-01

    sources are close and numerous), atmospheric inputs impact marine cycles of several chemical elements in the Mediterranean environment and thus potentially the regional ecosystem. Furthermore, in spite of high level of ozone and aerosols concentration during the summer period, permanent observations of gas and aerosols in the background troposphere are sparse in both space and time over the western Mediterranean basin. In that sense, a Mediterranean observatory in Corsica should present a great interest for investigating different scientific questions related to aerosols and gases over the Mediterranean basin. In Corsica Island, the remote semaphore of Ersa (Cape Corse), is an appropriate remote site for atmospheric background monitoring with minimum local anthropogenic emissions. We propose to bring together initiatives concerning measurements in Corsica to create a Mediterranean observatory that would give the scientific community facilities for setting up a multiparameter observation platform in a region where observations are sparse (if even existing). French research agencies have decided to support several projects in the frame of a large coordinated multidisciplinary programme focused on the Mediterranean region (http://www.dt.insu.cnrs.fr/c-med/c-med.php), including HyMEx (Hydrological cycle in Mediterranean Experiment; http://www.hymex.org/index.php), ChArMEx (The Chemistry-Aerosol Mediterranean Experiment; https://charmex.lsce.ipsl.fr/) and MERMEx (Marine Ecosystems Response in the Mediterranean Experiment; http://mermex.com.univ-mrs.fr/). Several initiatives based on measurements in Corsica have emerged in the frame of these projects: • Suggestions to improve the existing data network with ground-based conventional weather stations, radiosounding station (profiles of temperature, humidity, wind speed and direction, and ozone measurement), radars, etc.; • Aircraft measurements; • Deployment of a wind profiler network around the western Mediterranean basin

  14. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    In this photograph, the Chandra X-Ray Observatory (CXO) was installed and mated to the Inertial Upper Stage (IUS) inside the Shuttle Columbia's cargo bay at the Kennedy Space Center. The CXO will help astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, the CXO was carried into low-Earth orbit by the Space Shuttle Columbia (STS-93 mission) on July 22, 1999. The Observatory was deployed from the Shuttle's cargo bay at 155 miles above the Earth. Two firings of an attached IUS rocket, and several firings of its own onboard rocket motors, after separating from the IUS, placed the Observatory into its working orbit. The IUS is a solid rocket used to place spacecraft into orbit or boost them away from the Earth on interplanetary missions. Since its first use by NASA in 1983, the IUS has supported a variety of important missions, such as the Tracking and Data Relay Satellite, Galileo spacecraft, Magellan spacecraft, and Ulysses spacecraft. The IUS was built by the Boeing Aerospace Co., at Seattle, Washington and managed by the Marshall Space Flight Center.

  15. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    NASA Astrophysics Data System (ADS)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  16. Determination of technical readiness for an atmospheric carbon imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Mobilia, Joseph; Kumer, John B.; Palmer, Alice; Sawyer, Kevin; Mao, Yalan; Katz, Noah; Mix, Jack; Nast, Ted; Clark, Charles S.; Vanbezooijen, Roel; Magoncelli, Antonio; Baraze, Ronald A.; Chenette, David L.

    2013-09-01

    The geoCARB sensor uses a 4-channel push broom slit-scan infrared imaging grating spectrometer to measure the absorption spectra of sunlight reflected from the ground in narrow wavelength regions. The instrument is designed for flight at geostationary orbit to provide mapping of greenhouse gases over continental scales, several times per day, with a spatial resolution of a few kilometers. The sensor provides multiple daily maps of column-averaged mixing ratios of CO2, CH4, and CO over the regions of interest, which enables flux determination at unprecedented time, space, and accuracy scales. The geoCARB sensor development is based on our experience in successful implementation of advanced space deployed optical instruments for remote sensing. A few recent examples include the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on the geostationary Solar Dynamics Observatory (SDO), the Space Based Infrared System (SBIRS GEO-1) and the Interface Region Imaging Spectrograph (IRIS), along with sensors under development, the Near Infared camera (NIRCam) for James Webb (JWST), and the Global Lightning Mapper (GLM) and Solar UltraViolet Imager (SUVI) for the GOES-R series. The Tropospheric Infrared Mapping Spectrometer (TIMS), developed in part through the NASA Instrument Incubator Program (IIP), provides an important part of the strong technological foundation for geoCARB. The paper discusses subsystem heritage and technology readiness levels for these subsystems. The system level flight technology readiness and methods used to determine this level are presented along with plans to enhance the level.

  17. Metrology of the Solar Spectral Irradiance at the Top Of Atmosphere in the Near Infrared using Ground Based Instruments. Final results of the PYR-ILIOS campaign (Mauna Loa Observatory, June-July 2016).

    NASA Astrophysics Data System (ADS)

    Cessateur, G.; Bolsée, D.; Pereira, N.; Sperfeld, P.; Pape, S.

    2017-12-01

    The availability of reference spectra for the Solar Spectral Irradiance (SSI) is important for the solar physics, the studies of planetary atmospheres and climatology. The near infrared (NIR) part of these spectra is of great interest for its main role for example, in the Earth's radiative budget. Until recently, some large and unsolved discrepancies (up to 10 %) were observed in the 1.6 μm region between space instruments, models and ground-based measurements. We designed a ground-based instrumentation for SSI measurements at the Top Of Atmosphere (TOA) through atmospheric NIR windows using the Bouguer-Langley technique. The main instrument is a double NIR spectroradiometer designed by Bentham (UK), radiometrically characterized at the Royal Belgian Institute for Space Aeronomy. It was absolute calibrated against a high-temperature blackbody as primary standard for spectral irradiance at the Physikalisch-Technische Bundesanstalt (Germany). The PYR-ILIOS campaign was carried out in June to July 2016 at the Mauna Loa Observatory (Hawaii, USA, 3396 m a.s.l.) follows the four-month IRESPERAD campaign which was carried out in the summer 2011 at the Izaña Atmospheric Observatory (Canary Islands, 2367 m a.s.l.). We present here the results of the 3'week PYR-ILIOS campaign and compare them with the ATLAS 3 spectrum as well as from recently reprocessed NIR solar spectra obtained with SOLAR/SOLSPEC on ISS and SCIAMACHY on ENVISAT. The uncertainty budget of the PYR-ILIOS results will be discussed.

  18. KSC-2009-4024

    NASA Image and Video Library

    2009-07-11

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers ensure the smooth rotation of NASA's Solar Dynamics Observatory, or SDO. After rotation, the SDO will be moved to a work stand. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston

  19. KSC-2009-4026

    NASA Image and Video Library

    2009-07-11

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers check the fittings of the hoist supporting NASA's Solar Dynamics Observatory, or SDO, after its rotation. The SDO will be moved to a work stand. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston

  20. KSC-2009-4021

    NASA Image and Video Library

    2009-07-11

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers stand by as a hoist moves NASA's Solar Dynamics Observatory, or SDO, from its transporter. SDO will be rotated and moved to a work stand. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston

  1. KSC-2009-4025

    NASA Image and Video Library

    2009-07-11

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers maneuver the position of NASA's Solar Dynamics Observatory, or SDO, after its rotation. The SDO will be moved to a work stand. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston

  2. KSC-2009-4023

    NASA Image and Video Library

    2009-07-11

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers ensure the smooth rotation of NASA's Solar Dynamics Observatory, or SDO. After rotation, the SDO will be moved to a work stand. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston

  3. Metrology of the Solar Spectral Irradiance at the Top Of Atmosphere in the Near Infrared using Ground Based Instruments. Presentation of the PYR-ILIOS campaign (Mauna Loa Observatory, June-July 2016).

    NASA Astrophysics Data System (ADS)

    Cessateur, G.; Bolsée, D.; Pereira, N.; Sperfeld, P.; Pape, S.

    2016-12-01

    The availability of reference spectra for the Solar Spectral Irradiance (SSI) is of the most importance for the solar physics, the studies of planetary atmospheres and climatology. The near infrared (NIR) part of these spectra is of great interest for its main role for example, in the Earth's radiative budget. However, some large and unsolved discrepancies (up to 10 %) are observed in the 1.6 μm region between recent measurements from space instruments and modelling. We developed a ground-based instrumentation dedicated to SSI measurements of the Top Of Atmosphere (TOA), obtained through atmospheric NIR windows using the Bouguer-Langley technique. The instruments are a double spectroradiometer designed by Bentham (UK) and a 6-channels NIR filters radiometer. Both were radiometrically characterized at the Royal Belgian Institute for Space Aeronomy. In the following they were calibrated against a high-temperature blackbody as primary standard for spectral irradiance at the Physikalisch-Technische Bundesanstalt (Germany). The PYR-ILIOS campaign carried out in June to July 2016 at the Mauna Loa Observatory (Hawaii, USA, 3396 m a.s.l.) is a follower of the four-month IRESPERAD campaign which was carried out in 2011 at the Izaña Atmospheric Observatory (Canary Islands, 2367 m a.s.l.). We present here the results of the 3 weeks PYR-ILIOS campaign and compare them with the outcome from IRESPERAD as well as from other ground-based, airborne or space experiments will be presented. The standard uncertainty of the PYR-ILIOS results will be discussed.

  4. Last light: Sunset at the South Pole | National Oceanic and Atmospheric

    Science.gov Websites

    Observatory, Sunday March 20 marks the start of the austral autumn, the last time they see the sun for six months. The National Science Foundation's Atmospheric Research Observatory illuminated by the sun

  5. Shock Formation Height in the Solar Corona Estimated from SDO and Radio Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Nitta, N.

    2011-01-01

    Wave transients at EUV wavelengths and type II radio bursts are good indicators of shock formation in the solar corona. We use recent EUV wave observations from SDO and combine them with metric type II radio data to estimate the height in the corona where the shocks form. We compare the results with those obtained from other methods. We also estimate the shock formation heights independently using white-light observations of coronal mass ejections that ultimately drive the shocks.

  6. Nobeyama Radio Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Nobeyama Radio Observatory has telescopes at millimeter and submillimeter wavelengths. It was established in 1982 as an observatory of Tokyo Astronomical Observatory (NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN since 1987), and operates the 45 m telescope, Nobeyama Millimeter Array, and Radioheliograph. High-resolution images of star forming regions and molecular clouds have revealed many aspects of...

  7. AN ANALYSIS OF THE PULSATING STAR SDSS J160043.6+074802.9 USING NEW NON-LTE MODEL ATMOSPHERES AND SPECTRA FOR HOT O SUBDWARFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latour, M.; Fontaine, G.; Brassard, P.

    2011-06-01

    We first present our new grids of model atmospheres and spectra for hot subdwarf O (sdO) stars: standard non-LTE (NLTE) H+He models with no metals, NLTE line-blanketed models with C+N+O, and NLTE line-blanketed models with C+N+O+Fe. Using hydrogen and helium lines in the optical range, we make detailed comparisons between theoretical spectra of different grids in order to characterize the line-blanketing effects of metals. We find these effects to be dependent on both the effective temperature and the surface gravity. Moreover, we find that the helium abundance also influences in an important way the effects of line blanketing on themore » resulting spectra. We further find that the addition of Fe (solar abundance) leads only to incremental effects on the atmospheric structure as compared with the case where the metallicity is defined by C+N+O (solar abundances). We use our grids to perform fits on a 9 A resolution, high signal-to-noise ratio ({approx}300 blueward of 5000 A) optical spectrum of SDSS J160043.6+074802.9, the only known pulsating sdO star. Our best and most reliable result is based on the fit achieved with NLTE synthetic spectra that include C, N, O, and Fe in solar abundances, leading to the following parameters: T{sub eff} = 68,500 {+-} 1770 K, log g = 6.09 {+-} 0.07, and log N(He)/N(H) = -0.64 {+-} 0.05 (formal fitting errors only). This combination of parameters, particularly the comparatively high helium abundance, implies that line-blanketing effects due to metals are not very large in the atmosphere of this sdO star.« less

  8. MDM Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    MDM Observatory was founded by the University of Michigan, Dartmouth College and the Massachusetts Institute of Technology. Current operating partners include Michigan, Dartmouth, MIT, Ohio State University and Columbia University. The observatory is located on the southwest ridge of the KITT PEAK NATIONAL OBSERVATORY near Tucson, Arizona. It operates the 2.4 m Hiltner Telescope and the 1.3 m McG...

  9. WIYN Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Located at Kitt Peak in Arizona. The WIYN Observatory is owned and operated by the WIYN Consortium, which consists of the University of Wisconsin, Indiana University, Yale University and the National Optical Astronomy Observatories (NOAO). Most of the capital costs of the observatory were provided by these universities, while NOAO, which operates the other telescopes of the KITT PEAK NATIONAL OBS...

  10. Private Observatories in South Africa

    NASA Astrophysics Data System (ADS)

    Rijsdijk, C.

    2016-12-01

    Descriptions of private observatories in South Africa, written by their owners. Positions, equipment descriptions and observing programmes are given. Included are: Klein Karoo Observatory (B. Monard), Cederberg Observatory (various), Centurion Planetary and Lunar Observatory (C. Foster), Le Marischel Observatory (L. Ferreira), Sterkastaaing Observatory (M. Streicher), Henley on Klip (B. Fraser), Archer Observatory (B. Dumas), Overbeek Observatory (A. Overbeek), Overberg Observatory (A. van Staden), St Cyprian's School Observatory, Fisherhaven Small Telescope Observatory (J. Retief), COSPAR 0433 (G. Roberts), COSPAR 0434 (I. Roberts), Weltevreden Karoo Observatory (D. Bullis), Winobs (M. Shafer)

  11. KSC-2010-1055

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., Boeing spacecraft fueling technicians from Kennedy Space Center take a sample of the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO, which is protectively covered. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  12. KSC-2010-1053

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., Boeing spacecraft fueling technicians from Kennedy Space Center prepare to sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO, which is protectively covered. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  13. KSC-2010-1054

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., Boeing spacecraft fueling technicians from Kennedy Space Center prepare the equipment necessary to sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  14. KSC-2010-1056

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., Boeing spacecraft fueling technicians from Kennedy Space Center take a sample of the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO, which is protectively covered. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  15. The turbulence study in the astronomical observatory in the North Caucasus

    NASA Astrophysics Data System (ADS)

    Nosov, V. V.; Nosov, E. V.; Lukin, V. P.; Torgaev, A. V.

    2017-09-01

    In the Special Astrophysical Observatory (SAO) continued pilot studies and research astroclimate coherent turbulence, similar to those given by us to the CAO in October 2012. To this end, under the dome of the Big Telescope Altazimuthal (BTA) has been measured astroclimate parameters. Measurements made throughout the volume of the dome of the specialized facilities BTA using ultrasonic weather station AMC-03 is fastened to the structure of the rotating telescope and dome. Also construction of temperature measurements of the telescope and the dome (and their size) used a thermometer and a laser rangefinder.Along with the state of the atmosphere measurements dome of the telescope is controlled ultrasonic meteosystems Meteo-2, mounted on 20-meter meteorological mast at the telescope site. Meteo-2 was used for the registration of long-term observations of atmospheric turbulence parameters for the expedition in order to clarify the conditions of the emergence of coherent areas of turbulence over the observatory territory.

  16. Pluto's atmosphere in 2015 from high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Roe, Henry G.; Cook, Jason C.; Mace, Gregory N.; Holler, Bryan J.; Young, Leslie A.; McLane, Jacob N.; Jaffe, Daniel T.

    2015-11-01

    Pluto's thin N2/CH4 atmosphere is in vapor-pressure equilibrium with ices on its surface. The atmosphere evolves seasonally with the varying insolation pattern on Pluto's heterogenous surface, perhaps even largely freezing out to the surface during the coldest portion of Pluto's year. We use high-resolution (R≈25,000-50,000) near-infrared spectroscopy to resolve atmospheric methane absorption lines from Pluto's continuum spectra, as well as separate Pluto's atmospheric lines from the telluric spectrum. In addition to measuring the abundance and temperature of Pluto's atmospheric CH4, with broad wavelength coverage we are able to search for the inevitable products of N2/CH4 photochemistry. In 2015 we are undertaking an intensive campaign using NIRSPEC at Keck Observatory and IGRINS (Immersion Grating INfrared Spectrometer) at McDonald Observatory to coincide with the New Horizons Pluto encounter. We will report initial results from this 2015 campaign and compare the state of Pluto's atmosphere at the time of the New Horizons encounter with earlier years.

  17. Measurement of Solar Neutrons on 05 March 2012, Using a Fiber-Type Neutron Monitor Onboard the Attached Payload to the ISS

    NASA Astrophysics Data System (ADS)

    Koga, K.; Muraki, Y.; Masuda, S.; Shibata, S.; Matsumoto, H.; Kawano, H.

    2017-08-01

    The solar neutron detector Space Environment Data Acquisition Equipment - Attached Payload (SEDA-FIB) onboard the International Space Station (ISS) detected several events from the solar direction associated with three large solar flares observed on 05 (X1.1), 07 (X5.4), and 09 (M6.3) March 2012. In this study, we focus on the interesting event of 05 March, present the temporal profiles of the neutrons, and discuss the physics that may be related to a possible acceleration scenario for ions above the solar surface. We compare our data with images of the flares obtained by the ultraviolet telescope Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO).

  18. Earth Eclipses the Sun

    NASA Image and Video Library

    2017-02-21

    Several times a day for a few days the Earth completely blocked the Sun for about an hour due to NASA's Solar Dynamics Observatory's orbital path (Feb. 15, 2017). The edge of the Earth is not crisp, but kind of fuzzy due to Earth's atmosphere. This frame from a video shows the ending of one such eclipse over -- just seven minutes. The sun is shown in a wavelength of extreme ultraviolet light. These eclipses re-occur about every six months. The Moon blocks SDO's view of the sun on occasion as well. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21461

  19. Twisting/Swirling Motions during a Prominence Eruption as Seen from SDO/AIA

    NASA Astrophysics Data System (ADS)

    Pant, V.; Datta, A.; Banerjee, D.; Chandrashekhar, K.; Ray, S.

    2018-06-01

    A quiescent prominence was observed at the northwest limb of the Sun using different channels of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. We report and analyze twisting/swirling motions during and after the prominence eruption. We segregate the observed rotational motions into small and large scales. Small-scale rotational motions manifest in the barbs of the prominence, while the large-scale rotation manifests as the roll motion during the prominence eruption. We noticed that both footpoints of the prominence rotate in the counterclockwise direction. We propose that a similar sense of rotation in both footpoints leads to a prominence eruption. The prominence erupted asymmetrically near the southern footpoint, which may be due to an uneven mass distribution and location of the cavity near the southern footpoint. Furthermore, we study the swirling motion of the plasma along different circular paths in the cavity of the prominence after the prominence eruption. The rotational velocities of the plasma moving along different circular paths are estimated to be ∼9–40 km s‑1. These swirling motions can be explained in terms of twisted magnetic field lines in the prominence cavity. Finally we observe the twist built up in the prominence, being carried away by the coronal mass ejection, as seen in the Large Angle Spectrometric Coronagraph on board the Solar and Heliospheric Observatory.

  20. Measurement of Light Pollution of Iranian National Observatory

    NASA Astrophysics Data System (ADS)

    Son Hosseini, S.; Nasiri, S.

    2006-08-01

    The problem of Light pollution became important mainly since 1960, by growth of urban development and using more artificial lights and lamps at the nighttimes. Optical telescopes share the same range of wavelengths as are used to provide illumination of roadways, buildings and automobiles. The light glow that emanates from man made pollution will scatter off the atmosphere and affects the images taken by the observatory instruments. A method of estimating the night sky brightness produced by a city of known population and distance is useful in site testing of the new observatories, as well as in studying the likely future deterioration of existing sites. Now with planning the Iranian National Observatory that will house a 2-meter telescope and on the way of the site selection project, studying the light pollution is propounded in Iran. Thus, we need a site with the least light pollution, beside other parameters, i.e. seeing, meteorological, geophysical and local parameters. The seeing parameter is being measured in our 4 preliminary selected sites at Qom, Kashan, Kerman and Birjand since 2 years ago using an out of focus Differential Image Motion Monitor. These sites are selected among 33 candidate sites by studying the meteorological data obtained from the local synoptic stations and the Meteosat. We use the Walker's law to estimate the Sky glow of these sites having the population and the distances of the nearby regions. The results are corrected by the methods introduced by Treanor and Berry using the atmospheric extinction coefficients. The data obtained using an 11 inch telescope with a ST7 CCD camera for above sites are consistent with the estimated values of the light pollution mentioned above.

  1. Middle Atmosphere Program. Handbook for MAP, volume 27

    NASA Technical Reports Server (NTRS)

    Edwards, Belva (Editor)

    1989-01-01

    The proceedings are presented from the MAP program of July 1988. It is intended to be a quick synopsis of the symposium. General topics include: New International Equatorial Observatory; Dynamics of the Middle Atmosphere in Winter (DYNAMICS); Global Budget of Stratospheric Trace Constituents (GLOBUS); Gravity Waves and Turbulence in the Middle Atmosphere Program (GRATMAP); Middle Atmosphere Electrodynamics (MAE); Winter in Northern Europe (WINE); Atmospheric Tides Middle Atmosphere Program (ATMAP); and many others.

  2. Millimeter and X-Ray Emission from the 5 July 2012 Solar Flare

    NASA Astrophysics Data System (ADS)

    Tsap, Y. T.; Smirnova, V. V.; Motorina, G. G.; Morgachev, A. S.; Kuznetsov, S. A.; Nagnibeda, V. G.; Ryzhov, V. S.

    2018-03-01

    The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39 - 11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (≳ 300 keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.

  3. Low-latitude Ionospheric Heating during Solar Flares

    NASA Astrophysics Data System (ADS)

    Klenzing, J.; Chamberlin, P. C.; Qian, L.; Haaser, R. A.; Burrell, A. G.; Earle, G. D.; Heelis, R. A.; Simoes, F. A.

    2013-12-01

    The advent of the Solar Dynamics Observatory (SDO) represents a leap forward in our capability to measure rapidly changing transient events on the sun. SDO measurements are paired with the comprehensive low latitude measurements of the ionosphere and thermosphere provided by the Communication/Navigation Outage Forecast System (C/NOFS) satellite and state-of-the-art general circulation models to discuss the coupling between the terrestrial upper atmosphere and solar radiation. Here we discuss ionospheric heating as detected by the Coupled Ion-Neutral Dynamics Investigation (CINDI) instrument suite on the C/NOFS satellite during solar flares. Also discusses is the necessity of decoupling the heating due to increased EUV irradiance and that due to geomagnetic storms, which sometimes occur with flares. Increases in both the ion temperature and ion density in the subsolar topside ionosphere are detected within 77 minutes of the 23 Jan 2012 M-class flare, and the observed results are compared with the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) using the Flare Irradiance Spectral Model (FISM) as an input.

  4. Thermal Diagnostics with the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory: A Validated Method for Differential Emission Measure Inversions

    NASA Astrophysics Data System (ADS)

    Cheung, Mark C. M.; Boerner, P.; Schrijver, C. J.; Testa, P.; Chen, F.; Peter, H.; Malanushenko, A.

    2015-07-01

    We present a new method for performing differential emission measure (DEM) inversions on narrow-band EUV images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. The method yields positive definite DEM solutions by solving a linear program. This method has been validated against a diverse set of thermal models of varying complexity and realism. These include (1) idealized Gaussian DEM distributions, (2) 3D models of NOAA Active Region 11158 comprising quasi-steady loop atmospheres in a nonlinear force-free field, and (3) thermodynamic models from a fully compressible, 3D MHD simulation of active region (AR) corona formation following magnetic flux emergence. We then present results from the application of the method to AIA observations of Active Region 11158, comparing the region's thermal structure on two successive solar rotations. Additionally, we show how the DEM inversion method can be adapted to simultaneously invert AIA and Hinode X-ray Telescope data, and how supplementing AIA data with the latter improves the inversion result. The speed of the method allows for routine production of DEM maps, thus facilitating science studies that require tracking of the thermal structure of the solar corona in time and space.

  5. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    NASA Astrophysics Data System (ADS)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the

  6. Cherenkov Telescope Array: the next-generation gamma ray observatory

    NASA Astrophysics Data System (ADS)

    Ebr, Jan

    2017-08-01

    The Cherenkov Telescope Array (CTA) is a project to build the next generation ground-based observatory for gamma-ray astronomy at very-high energies in the range from 20 GeV to 300 TeV, which will both surpass the sensitivity of existing instruments in their energy domains and extend the limits of the observed energy spectrum. It will probe some of the most energetic processes in the Universe and provide insight into topics such as the acceleration of charged cosmic rays and their role in galaxy evolution, processes in relativistic jets, wind and explosions and the nature and distribution of dark matter. The CTA Observatory will consist of more than a hundred imaging atmospheric Cherenkov telescopes (IACT) of three different size classes, installed at two premier astronomical locations, one in each hemisphere. It is foreseen that the telescopes will use a variety of optical designs including parabolic primary mirrors, variations of the Davies-Cotton design and two-mirror setups such as the Schwarzschild-Couder telescope, and several camera designs, using both photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) for detection of the nanosecond-scale Cherenkov flashes. Each telescope will feature a precise but lightweight and agile mount, allowing even the largest telescopes to change targets within 20 seconds, with systems of sensors and actuators actively controlling the shape of the reflecting surfaces. As an integral part, the Observatory will feature extensive calibration facilities, closely monitoring both the detectors themselves and the surrounding atmosphere. Several telescope prototypes already exist and the installation works at the northern site have started.

  7. Virtual Energetic Particle Observatory for the Heliospheric Data Environment

    NASA Technical Reports Server (NTRS)

    Cooper, J. F.; Armstrong, T. P.; Hill, M. E.; Lal, N.; McGuire, R. E.; McKibben, R. B.; Narock, T. W.; Szabo, A.; Tranquille, C.

    2007-01-01

    The heliosphere is pervaded by interplanetary energetic particles, traditionally also called cosmic rays, from solar, internal heliospheric, and galactic sources. The particles species of interest to heliophysics extend from plasma energies to the GeV energies of galactic cosmic rays still measurably affected by heliospheric modulation and the still higher energies contributing to atmospheric ionization. The NASA and international Heliospheric Network of operational and legacy spacecraft measures interplanetary fluxes of these particles. Spatial coverage extends from the inner heliosphere and geospace to the heliosheath boundary region now being traversed by Voyager 1 and soon by Voyager 2. Science objectives include investigation of solar flare and coronal mass ejection events, acceleration and transport of interplanetary particles within the inner heliosphere, cosmic ray interactions with planetary surfaces and atmospheres, sources of suprathermal and anomalous cosmic ray ions in the outer heliosphere, and solar cycle modulation of galactic cosmic rays. The Virtual Energetic Particle Observatory (VEPO) will improve access and usability of selected spacecraft and sub-orbital NASA heliospheric energetic particle data sets as a newly approved effort within the evolving heliophysics virtual observatory environment. In this presentation, we will describe current VEPO science requirements, our initial priorities and an overview of our strategy to implement VEPO rapidly and at minimal cost by working within the high-level framework of the Virtual Heliospheric Observatory (VHO). VEPO will also leverage existing data services of NASA's Space Physics Data Facility and other existing capabilities of the U.S. and international heliospheric research communities.

  8. The Central Laser Facility at the Pierre Auger Observatory: Studies of the Atmospheric Vertical Aerosol Optical Depth and other Applications to Cosmic Ray Measurements

    NASA Astrophysics Data System (ADS)

    Medina Hernandez, Carlos Francisco

    The two largest observatories in the world dedicated to the study of Ultra High Energy Cosmic Rays (UHECR) are the Pierre Auger Observatory (Auger) in Mendoza, Argentina and the Telescope Array (TA) in Utah, USA. The measurements of the cosmic ray flux by Auger and TA present a discrepancy at the highest part of the energy spectrum. In this thesis, I study if this discrepancy can be attributed to instrumental effects related to the measurements of the atmospheric aerosol contents in Auger. The Auger Fluorescence Detector (FD) measures the scattered light from laser tracks generated by the Central Laser Facility (CLF) and the eXtreme Laser Facility (XLF) located near the center of Auger, to estimate the vertical aerosol optical depth (tau (z,t)). A good knowledge of tau (z,t) is needed to obtain unbiased and reliable FD measurements of the energy of the UHECR primary particle. The CLF was upgraded substantially in 2013 to improve laser reliability. A substantial part of my Ph.D work is dedicated to building, maintaining and analyzing data from this upgraded facility. The upgraded CLF includes a backscatter Raman LIDAR which independently measures tau (z,t). For the first time in a cosmic ray experiment, two years of measurements of tau (z,t) obtained with the Raman LIDAR are compared with the measurements obtained with the FD. Based on these comparisons, an alternative atmospheric database was created to study its effects on the measurements of the flux as a function of energy. The resulting energy spectrum plot is found to be more compatible with the energy spectrum plot released by TA.

  9. JPEG2000 Image Compression on Solar EUV Images

    NASA Astrophysics Data System (ADS)

    Fischer, Catherine E.; Müller, Daniel; De Moortel, Ineke

    2017-01-01

    For future solar missions as well as ground-based telescopes, efficient ways to return and process data have become increasingly important. Solar Orbiter, which is the next ESA/NASA mission to explore the Sun and the heliosphere, is a deep-space mission, which implies a limited telemetry rate that makes efficient onboard data compression a necessity to achieve the mission science goals. Missions like the Solar Dynamics Observatory (SDO) and future ground-based telescopes such as the Daniel K. Inouye Solar Telescope, on the other hand, face the challenge of making petabyte-sized solar data archives accessible to the solar community. New image compression standards address these challenges by implementing efficient and flexible compression algorithms that can be tailored to user requirements. We analyse solar images from the Atmospheric Imaging Assembly (AIA) instrument onboard SDO to study the effect of lossy JPEG2000 (from the Joint Photographic Experts Group 2000) image compression at different bitrates. To assess the quality of compressed images, we use the mean structural similarity (MSSIM) index as well as the widely used peak signal-to-noise ratio (PSNR) as metrics and compare the two in the context of solar EUV images. In addition, we perform tests to validate the scientific use of the lossily compressed images by analysing examples of an on-disc and off-limb coronal-loop oscillation time-series observed by AIA/SDO.

  10. Subsurface Zonal and Meridional Flows from SDO/HMI

    NASA Astrophysics Data System (ADS)

    Komm, Rudolf; Howe, Rachel; Hill, Frank

    2016-10-01

    We study the solar-cycle variation of the zonal and meridional flows in the near-surface layers of the solar convection zone from the surface to a depth of about 16 Mm. The flows are determined from SDO/HMI Dopplergrams using the HMI ring-diagram pipeline. The zonal and meridional flows vary with the solar cycle. Bands of faster-than-average zonal flows together with more-poleward-than-average meridional flows move from mid-latitudes toward the equator during the solar cycle and are mainly located on the equatorward side of the mean latitude of solar magnetic activity. Similarly, bands of slower-than-average zonal flows together with less-poleward-than-average meridional flows are located on the poleward side of the mean latitude of activity. Here, we will focus on the variation of these flows at high latitudes (poleward of 50 degree) that are now accessible using HMI data. We will present the latest results.

  11. A systematic desaturation method for images from the Atmospheric Imaging Assembly in the Solar Dynamics Observatory.

    NASA Astrophysics Data System (ADS)

    Torre, Gabriele; Schwartz, Richard; Piana, Michele; Massone, Anna Maria; Benvenuto, Federico

    2016-05-01

    The fine spatial resolution of the SDO AIA CCD's is often destroyed by the charge in saturated pixels overflowing into a swath of neighboring cells during fast rising solar flares. Automated exposure control can only mitigate this issue to a degree and it has other deleterious effects. Our method addresses the desaturation problem for AIA images as an image reconstruction problem in which the information content of the diffraction fringes, generated by the interaction between the incoming radiation and the hardware of the spacecraft, is exploited to recover the true image intensities within the primary saturated core of the image. This methodology takes advantage of some well defined techniques like cross-correlation and the Expectation Maximization method to invert the direct relation between the diffraction fringes intensities and the true flux intensities. During this talk a complete overview on the structure of the method will be provided, besides some reliability tests obtained by its application against synthetic and real data.

  12. Distributed Observatory Management

    NASA Astrophysics Data System (ADS)

    Godin, M. A.; Bellingham, J. G.

    2006-12-01

    posted to the COOP tool on a daily basis, and updated with announcements on schedule, system status, voting results from previous day, ocean, atmosphere, hardware, adaptive sampling and coordinated control and forecast. The collection of standardized data files was used to generate daily plots of observed and predicted currents, temperature, and salinity. Team members were able to participate from any internet-accessible location using common Internet browsers, and any team member could add to the day's summary, point out trends and discuss observations, and make an adaptation proposal. If a team member submitted a proposal, team-wide discussion and voting followed. All interactions were archived and left publicly accessible so that future experiments could be made more systematic with increased automation. The need for collaboration and data handling tools is important for future ocean observatories, which will require 24-hour per day, 7-day a week interactions over many years. As demonstrated in the ASAP experiment, the COOP tool and associated data handling tools allowed scientists to coherently and collaboratively manage an ocean observatory, without being co-located at the observatory. Lessons learned from operating these collaborative tools during the ASAP experiment provide an important foundation for creating even more capable portals.

  13. Planetary atmospheres and aurorae

    NASA Technical Reports Server (NTRS)

    Moos, H. W.; Encrenaz, TH.

    1987-01-01

    Observations of planetary atmospheres and auroras obtained by the IUE satellite observatory during the first 10 years of its operation are reviewed. Topics examined include the value of UV studies of atmospheric phenomena, the kinds of observations available prior to the launch of IUE in 1978, the composition and structure of the upper atmospheres below the homopause, the effects of the magnetosphere on the atmosphere above the homopause, excitation processes, and fundamental questions and scientific goals. Data on Jupiter, Saturn, Neptune and Uranus, and the Io plasma torus are presented in tables and graphs and briefly characterized. It is pointed out that the IUE has greatly advanced knowledge of the plantary atmospheres, despite the fact that its design was not optimized for planetary observations.

  14. Sun Emits a Mid-Level Flare

    NASA Image and Video Library

    2017-12-08

    Caption: NASA’s Solar Dynamics Observatory (SDO) captured this image of an M5.7 class flare on May 3, 2013 at 1:30 p.m. EDT. This image shows light in the 131 Angstrom wavelength, a wavelength of light that can show material at the very hot temperatures of a solar flare and that is typically colorized in teal. Caption: NASA’s Solar Dynamics Observatory (SDO) captured this image of an M5.7 class flare on May 3, 2013 at 1:30 p.m. EDT. This image shows light in the 131 Angstrom wavelength, a wavelength of light that can show material at the very hot temperatures of a solar flare and that is typically colorized in teal. Credit: NASA/Goddard/SDO --- The sun emitted a mid-level solar flare, peaking at 1:32 pm EDT on May 3, 2013. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This disrupts the radio signals for as long as the flare is ongoing, and the radio blackout for this flare has already subsided. This flare is classified as an M5.7 class flare. M-class flares are the weakest flares that can still cause some space weather effects near Earth. Increased numbers of flares are quite common at the moment, since the sun's normal 11-year activity cycle is ramping up toward solar maximum, which is expected in late 2013. Updates will be provided as they are available on the flare and whether there was an associated coronal mass ejection (CME), another solar phenomenon that can send solar particles into space and affect electronic systems in satellites and on Earth. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling

  15. Preface: MHD wave phenomena in the solar interior and atmosphere

    NASA Astrophysics Data System (ADS)

    Fedun, Viktor; Srivastava, A. K.

    2018-01-01

    The Sun is our nearest star and this star produces various plasma wave processes and energetic events. These phenomena strongly influence interplanetary plasma dynamics and contribute to space-weather. The understanding of solar atmospheric dynamics requires hi-resolution modern observations which, in turn, further advances theoretical models of physical processes in the solar interior and atmosphere. In particular, it is essential to connect the magnetohydrodynamic (MHD) wave processes with the small and large-scale solar phenomena vis-a-vis transport of energy and mass. With the advent of currently available and upcoming high-resolution space (e.g., IRIS, SDO, Hinode, Aditya-L1, Solar-C, Solar Orbiter), and ground-based (e.g., SST, ROSA, NLST, Hi-C, DKIST, EST, COSMO) observations, solar physicists are able to explore exclusive wave processes in various solar magnetic structures at different spatio-temporal scales.

  16. An Overview of the Performance of the Chandra X-ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Aldcroft, T. L.; Bautz, M.; Cameron, R. A.; Dewey, D.; Drake, J. J.; Grant, C. E.; Marshall, H. L.; Murray, S. S.

    2004-01-01

    The Chandra X-ray Observatory is the X-ray component of NASA's Great Observatory Program which includes the recently launched Spitzer Infrared Telescope, the Hubble Space Telescope (HST) for observations in the visible, and the Compton Gamma-Ray Observatory (CGRO) which, after providing years of useful data has reentered the atmosphere. All these facilities provide, or provided, scientific data to the international astronomical community in response to peer-reviewed proposals for their use. The Chandra X-ray Observatory was the result of the efforts of many academic, commercial, and government organizations primarily in the United States but also in Europe. NASA s Marshall Space Flight Center (MSFC) manages the Project and provides Project Science; Northrop Grumman Space Technology (NGST - formerly TRW) served as prime contractor responsible for providing the spacecraft, the telescope, and assembling and testing the Observatory; and the Smithsonian Astrophysical Observatory (SAO) provides technical support and is responsible for ground operations including the Chandra X-ray Center (CXC). Telescope and instrument teams at SAO, the Massachusetts Institute of Technology (MIT), the Pennsylvania State University (PSU), the Space Research Institute of the Netherlands (SRON), the Max-Planck Institut fur extraterrestrische Physik (MPE), and the University of Kiel support also provide technical support to the Chandra Project. We present here a detailed description of the hardware, its on-orbit performance, and a brief overview of some of the remarkable discoveries that illustrate that performance.

  17. Magnetic Braids in Eruptions of a Spiral Structure in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Huang, Zhenghua; Xia, Lidong; Nelson, Chris J.; Liu, Jiajia; Wiegelmann, Thomas; Tian, Hui; Klimchuk, James A.; Chen, Yao; Li, Bo

    2018-02-01

    We report on high-resolution imaging and spectral observations of eruptions of a spiral structure in the transition region, which were taken with the Interface Region Imaging Spectrograph, and the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). The eruption coincided with the appearance of two series of jets, with velocities comparable to the Alfvén speeds in their footpoints. Several pieces of evidence of magnetic braiding in the eruption are revealed, including localized bright knots, multiple well-separated jet threads, transition region explosive events, and the fact that all three of these are falling into the same locations within the eruptive structures. Through analysis of the extrapolated 3D magnetic field in the region, we found that the eruptive spiral structure corresponded well to locations of twisted magnetic flux tubes with varying curl values along their lengths. The eruption occurred where strong parallel currents, high squashing factors, and large twist numbers were obtained. The electron number density of the eruptive structure is found to be ∼3 × 1012 cm‑3, indicating that a significant amount of mass could be pumped into the corona by the jets. Following the eruption, the extrapolations revealed a set of seemingly relaxed loops, which were visible in the AIA 94 Å channel, indicating temperatures of around 6.3 MK. With these observations, we suggest that magnetic braiding could be part of the mechanisms explaining the formation of solar eruption and the mass and energy supplement to the corona.

  18. SOFIA, an airborne observatory for infrared astronomy

    NASA Astrophysics Data System (ADS)

    Krabbe, Alfred; Mehlert, Dörte; Röser, Hans-Peter; Scorza, Cecilia

    2013-11-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German project operating a 2.7 m infrared airborne telescope onboard a modified Boeing 747-SP in the stratosphere at altitudes up to 13.7 km. SOFIA covers a spectral range from 0.3 µm to 1.6 mm, with an average atmospheric transmission greater than 80%. After successfully completing its commissioning, SOFIA commenced regular astronomical observation in spring 2013, and will ramp up to more than one hundred 8 to 10 h flights per year by 2015. The observatory is expected to operate until the mid 2030s. SOFIA's initial complement of seven focal plane instruments includes broadband imagers, moderate-resolution spectrographs and high-resolution spectrometers. SOFIA also includes an elaborate program for Education and Public Outreach. We describe the SOFIA facility together with its first light instrumentation and include some of its first scientific results. In addition, the education and public outreach program is presented.

  19. Observatories and Telescopes of Modern Times

    NASA Astrophysics Data System (ADS)

    Leverington, David

    2016-11-01

    Preface; Part I. Optical Observatories: 1. Palomar Mountain Observatory; 2. The United States Optical Observatory; 3. From the Next Generation Telescope to Gemini and SOAR; 4. Competing primary mirror designs; 5. Active optics, adaptive optics and other technical innovations; 6. European Northern Observatory and Calar Alto; 7. European Southern Observatory; 8. Mauna Kea Observatory; 9. Australian optical observatories; 10. Mount Hopkins' Whipple Observatory and the MMT; 11. Apache Point Observatory; 12. Carnegie Southern Observatory (Las Campanas); 13. Mount Graham International Optical Observatory; 14. Modern optical interferometers; 15. Solar observatories; Part II. Radio Observatories: 16. Australian radio observatories; 17. Cambridge Mullard Radio Observatory; 18. Jodrell Bank; 19. Early radio observatories away from the Australian-British axis; 20. The American National Radio Astronomy Observatory; 21. Owens Valley and Mauna Kea; 22. Further North and Central American observatories; 23. Further European and Asian radio observatories; 24. ALMA and the South Pole; Name index; Optical observatory and telescope index; Radio observatory and telescope index; General index.

  20. Systematic Variations of Macrospicule Properties Observed by SDO/AIA over Half a Decade

    NASA Astrophysics Data System (ADS)

    Kiss, T. S.; Gyenge, N.; Erdélyi, R.

    2017-01-01

    Macrospicules (MSs) are localized small-scale jet-like phenomena in the solar atmosphere, which have the potential to transport a considerable amount of momentum and energy from the lower solar atmospheric regions to the transition region and the low corona. A detailed statistical analysis of their temporal behavior and spatial properties is carried out in this work. Using state-of-the-art spatial and temporal resolution observations, yielded by the Atmospheric Imaging Assembly of Solar Dynamics Observatory, we constructed a database covering a 5.5 year long period, containing 301 macrospicules that occurred between 2010 June and 2015 December, detected at 30.4 nm wavelength. Here, we report the long-term variation of the height, length, average speed, and width of MS in coronal holes and Quiet Sun areas both in the northern and southern hemisphere of the Sun. This new database helps to refine our knowledge about the physical properties of MSs. Cross-correlation of these properties shows a relatively strong correlation, but not always a dominant one. However, a more detailed analysis indicates a wave-like signature in the behavior of MS properties in time. The periods of these long-term oscillatory behaviors are just under two years. Also, in terms of solar north/south hemispheres, a strong asymmetry was found in the spatial distribution of MS properties, which may be accounted for by the solar dynamo. This latter feature may then indicate a strong and rather intrinsic link between global internal and local atmospheric phenomena in the Sun.

  1. Automated Identification of Coronal Holes from Synoptic EUV Maps

    NASA Astrophysics Data System (ADS)

    Hamada, Amr; Asikainen, Timo; Virtanen, Ilpo; Mursula, Kalevi

    2018-04-01

    Coronal holes (CHs) are regions of open magnetic field lines in the solar corona and the source of the fast solar wind. Understanding the evolution of coronal holes is critical for solar magnetism as well as for accurate space weather forecasts. We study the extreme ultraviolet (EUV) synoptic maps at three wavelengths (195 Å/193 Å, 171 Å and 304 Å) measured by the Solar and Heliospheric Observatory/Extreme Ultraviolet Imaging Telescope (SOHO/EIT) and the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) instruments. The two datasets are first homogenized by scaling the SDO/AIA data to the SOHO/EIT level by means of histogram equalization. We then develop a novel automated method to identify CHs from these homogenized maps by determining the intensity threshold of CH regions separately for each synoptic map. This is done by identifying the best location and size of an image segment, which optimally contains portions of coronal holes and the surrounding quiet Sun allowing us to detect the momentary intensity threshold. Our method is thus able to adjust itself to the changing scale size of coronal holes and to temporally varying intensities. To make full use of the information in the three wavelengths we construct a composite CH distribution, which is more robust than distributions based on one wavelength. Using the composite CH dataset we discuss the temporal evolution of CHs during the Solar Cycles 23 and 24.

  2. Evidence for the Magnetic Breakout Model in an Equatorial Coronal-Hole Jet

    NASA Technical Reports Server (NTRS)

    Kumar, Pankaj; Karpen, Judith T.; Antiochos, Spiro K.; Wyper, Peter F.; Devore, C. Richard; DeForest, Craig E.

    2018-01-01

    Small, impulsive jets commonly occur throughout the solar corona, but are especially visible in coronal holes. Evidence is mounting that jets are part of a continuum of eruptions that extends to much larger coronal mass ejections and eruptive flares. Because coronal-hole jets originate in relatively simple magnetic structures, they offer an ideal testbed for theories of energy buildup and release in the full range of solar eruptions. We analyzed an equatorial coronal-hole jet observed by the Solar Dynamics Observatory (SDO)/AIA (Atmospheric Imaging Assembly)) on 2014 January 9 in which the magnetic-field structure was consistent with the embedded-bipole topology that we identified and modeled previously as an origin of coronal jets. In addition, this event contained a mini-filament, which led to important insights into the energy storage and release mechanisms. SDO/HMI (Solar Dynamics Observatory/Helioseismic and Magnetic Imager) magnetograms revealed footpoint motions in the primary minority-polarity region at the eruption site, but show negligible flux emergence or cancellation for at least 16 hours before the eruption. Therefore, the free energy powering this jet probably came from magnetic shear concentrated at the polarity inversion line within the embedded bipole. We find that the observed activity sequence and its interpretation closely match the predictions of the breakout jet model, strongly supporting the hypothesis that the breakout model can explain solar eruptions on a wide range of scales.

  3. Advantages of a Lunar Cryogenic Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Burke, James; Kaltenegger, Lisa

    2017-04-01

    ESA and collaborating agencies are preparing to establish a Moon Village at a south polar site. Robotic precursor missions will include resource prospecting in permanently shadowed cold traps. The environment there is favorable for infrared and millimeter-wave astronomy. In this paper we examine the evolutionary development of a cryogenic observatory, beginning with small telescopes robotically installed and operated in conjunction with prospecting precursor missions, and continuing into later phases supported from the Moon Village. Relay communications into and out of the cold traps may be shared or else provided by dedicated links. Candidate locations can be selected with the help of data from the Lunar Reconnaissance Orbiter. The first telescope will be primarily a proof-of-concept demonstrator but it can have scientific and applications uses too, supplementing other space-based survey instruments observing astrophysical objects and potentially hazardous asteroids and comets. A south polar site sees only half or the sky but that half includes the galactic center and many other interesting targets. The telescopes can stare at any object for as long as desired, providing monitoring capabilities for transiting or radial velocity planet searches, like NASA's TESS mission. In addition such telescopes are opening the prospect of gathering spectroscopic data on exoplanet atmospheres and cool stars - from UV information to assess the activity of a star to VIS to IR spectral data of the atmosphere and even atmospheric biosignatures. Preliminary design of the first telescope might be funded under a NASA call for lunar science payload concepts. An important additional product can be educational and outreach uses of the observatory, especially for the benefit of people in the developing world who can do southern hemisphere follow-up observations.

  4. Characterizing Atmospheric Processing of Aerosols from Forest Fires at the Mt. Bachelor Observatory during BBOP

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Collier, S.; Hee, J.; Wigder, N. L.; Jaffe, D. A.; Zhang, Q.

    2014-12-01

    This study investigates the physical and chemical characteristics and atmospheric processing of aerosols from uncontrolled forest fires across the Pacific Northwest. The measurements were made at the Mt. Bachelor Observatory (MBO) located at the summit of Mt. Bachelor in central Oregon (43.9794° N, 121.6885° W, 2,763 m asl) in summer 2013 during the DOE sponsored Biomass Burning Observation Project (BBOP) field campaign. We utilized an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) coupled with a thermodenuder. Observations during periods affected by biomass burning (BB) pollution showed elevated non-refractory submicron aerosol (NR-PM1) concentration up to 140 μg/m3. NR-PM1 correlated well with PM light scattering (up to ~ 600 Mm-1 at 550 nm) and gas phase CO (up to ~0.4 ppmv). The AMS BB tracer, f60, i.e., fraction of organic signals at m/z = 60, was also enhanced with a maximum of ~ 2%. Organic aerosol (OA) dominated the PM composition in BB plumes (94.1% of the NR-PM1 mass) with an average concentration of 13.9 μg/m3. Three distinctive BBOA factors were identified by Positive Matrix Factorization (PMF): a fresh BBOA-I factor (O/C=0.27, H/C=1.52, f60 = 2.26%) that correlates well with ammonium nitrate; an intermediately oxidized BBOA-II (O/C=0.52, H/C=1.47, f60 = 1.05%), and a highly oxidized BBOA-III (O/C=0.95, H/C=1.02) with a low f60 (< 0.01%) and enhanced tracer ions for carboxylic acids (e.g., CHO2+). During persistent BB plume events from fixed fire sources, fresh BBOA-I initially dominated the OA composition, but decreased as the more oxidized BBOA-II increased while BBOA-III remained unchanged. These events shed light on the chemical transformation of BB aerosol during atmospheric aging. We will examine the enhancement of different BBOA factors relative to CO to investigate secondary organic aerosol (SOA) formation processes in BB plumes.

  5. Okayama Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Okayama Astrophysical Observatory (OAO) is a branch Observatory of the NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN. Its main facilities are 188 cm and 91 cm telescopes, equipped with newly built instruments with CCD/IR cameras (e.g. OASIS). OAO accepts nearly 300 astronomers a year, according to the observation program scheduled by the committee....

  6. Spectroscopic Diagnostics of the Non-Maxwellian κ-distributions Using SDO/EVE Observations of the 2012 March 7 X-class Flare

    NASA Astrophysics Data System (ADS)

    Dzifčáková, Elena; Zemanová, Alena; Dudík, Jaroslav; Mackovjak, Šimon

    2018-02-01

    Spectroscopic observations made by the Extreme Ultraviolet Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) during the 2012 March 7 X5.4-class flare (SOL2012-03-07T00:07) are analyzed for signatures of the non-Maxwellian κ-distributions. Observed spectra were averaged over 1 minute to increase photon statistics in weaker lines and the pre-flare spectrum was subtracted. Synthetic line intensities for the κ-distributions are calculated using the KAPPA database. We find strong departures (κ ≲ 2) during the early and impulsive phases of the flare, with subsequent thermalization of the flare plasma during the gradual phase. If the temperatures are diagnosed from a single line ratio, the results are strongly dependent on the value of κ. For κ = 2, we find temperatures about a factor of two higher than the commonly used Maxwellian ones. The non-Maxwellian effects could also cause the temperatures diagnosed from line ratios and from the ratio of GOES X-ray channels to be different. Multithermal analysis reveals the plasma to be strongly multithermal at all times with flat DEMs. For lower κ, the {{DEM}}κ are shifted toward higher temperatures. The only parameter that is nearly independent of κ is electron density, where we find log({n}{{e}} [{{cm}}-3]) ≈ 11.5 almost independently of time. We conclude that the non-Maxwellian effects are important and should be taken into account when analyzing solar flare observations, including spectroscopic and imaging ones.

  7. Automatic detection of white-light flare kernels in SDO/HMI intensitygrams

    NASA Astrophysics Data System (ADS)

    Mravcová, Lucia; Švanda, Michal

    2017-11-01

    Solar flares with a broadband emission in the white-light range of the electromagnetic spectrum belong to most enigmatic phenomena on the Sun. The origin of the white-light emission is not entirely understood. We aim to systematically study the visible-light emission connected to solar flares in SDO/HMI observations. We developed a code for automatic detection of kernels of flares with HMI intensity brightenings and study properties of detected candidates. The code was tuned and tested and with a little effort, it could be applied to any suitable data set. By studying a few flare examples, we found indication that HMI intensity brightening might be an artefact of the simplified procedure used to compute HMI observables.

  8. Well-defined EUV wave associated with a CME-driven shock

    NASA Astrophysics Data System (ADS)

    Cunha-Silva, R. D.; Selhorst, C. L.; Fernandes, F. C. R.; Oliveira e Silva, A. J.

    2018-05-01

    Aims: We report on a well-defined EUV wave observed by the Extreme Ultraviolet Imager (EUVI) on board the Solar Terrestrial Relations Observatory (STEREO) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The event was accompanied by a shock wave driven by a halo CME observed by the Large Angle and Spectrometric Coronagraph (LASCO-C2/C3) on board the Solar and Heliospheric Observatory (SOHO), as evidenced by the occurrence of type II bursts in the metric and dekameter-hectometric wavelength ranges. We investigated the kinematics of the EUV wave front and the radio source with the purpose of verifying the association between the EUV wave and the shock wave. Methods: The EUV wave fronts were determined from the SDO/AIA images by means of two appropriate directions (slices). The heights (radial propagation) of the EUV wave observed by STEREO/EUVI and of the radio source associated with the shock wave were compared considering the whole bandwidth of the harmonic lane of the radio emission, whereas the speed of the shock was estimated using the lowest frequencies of the harmonic lane associated with the undisturbed corona, using an appropriate multiple of the Newkirk (1961, ApJ, 133, 983) density model and taking into account the H/F frequency ratio fH/fF = 2. The speed of the radio source associated with the interplanetary shock was determined using the Mann et al. (1999, A&A, 348, 614) density model. Results: The EUV wave fronts determined from the SDO/AIA images revealed the coexistence of two types of EUV waves, a fast one with a speed of 560 km s-1, and a slower one with a speed of 250 km s-1, which corresponds approximately to one-third of the average speed of the radio source ( 680 km s-1). The radio signature of the interplanetary shock revealed an almost constant speed of 930 km s-1, consistent with the linear speed of the halo CME (950 km s-1) and with the values found for the accelerating coronal shock ( 535-823 km s-1

  9. THERMAL DIAGNOSTICS WITH THE ATMOSPHERIC IMAGING ASSEMBLY ON BOARD THE SOLAR DYNAMICS OBSERVATORY: A VALIDATED METHOD FOR DIFFERENTIAL EMISSION MEASURE INVERSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Mark C. M.; Boerner, P.; Schrijver, C. J.

    We present a new method for performing differential emission measure (DEM) inversions on narrow-band EUV images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. The method yields positive definite DEM solutions by solving a linear program. This method has been validated against a diverse set of thermal models of varying complexity and realism. These include (1) idealized Gaussian DEM distributions, (2) 3D models of NOAA Active Region 11158 comprising quasi-steady loop atmospheres in a nonlinear force-free field, and (3) thermodynamic models from a fully compressible, 3D MHD simulation of active region (AR) corona formation following magneticmore » flux emergence. We then present results from the application of the method to AIA observations of Active Region 11158, comparing the region's thermal structure on two successive solar rotations. Additionally, we show how the DEM inversion method can be adapted to simultaneously invert AIA and Hinode X-ray Telescope data, and how supplementing AIA data with the latter improves the inversion result. The speed of the method allows for routine production of DEM maps, thus facilitating science studies that require tracking of the thermal structure of the solar corona in time and space.« less

  10. NASA Awards Chandra X-Ray Observatory Follow-On Contract

    NASA Astrophysics Data System (ADS)

    2003-08-01

    NASA has awarded a contract to the Smithsonian Astrophysical Observatory in Cambridge, Mass., to provide science and operational support for the Chandra X-ray Observatory, one of the world's most powerful tools to better understand the structure and evolution of the universe. The contract will have a period of performance from August 31, 2003, through July 31, 2010, with an estimated value of 373 million. It is a follow-on contract to the existing contract with Smithsonian Astrophysical Observatory that has provided science and operations support to the Observatory since its launch in July 1999. At launch the intended mission life was five years. As a result of Chandra's success, NASA extended the mission from five to 10 years. The value of the original contract was 289 million. The follow-on contract with the Smithsonian Astrophysical Observatory will continue through the 10-year mission. The contract type is cost reimbursement with no fee. The contract covers mission operations and data analysis, which includes the observatory operations, science data processing and the general and guaranteed time observer (astronomer) support. The observatory operations tasks include monitoring the health and status of the observatory and developing and up linking the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning, and coordination of science observations with the general observers and processing and delivery of the resulting scientific data. There are approximately 200 to 250 observing proposals selected annually out of about 800 submitted, with a total amount of observing time of about 20 million seconds. Chandra has exceeded expectations of scientists, giving them unique insight into phenomena light years away, such as exotic celestial objects, matter falling into black holes, and stellar explosions. X-ray astronomy can only be performed from space because Earth's atmosphere

  11. KSC-2010-1050

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., spacecraft fueling technicians from Kennedy Space Center prepare to sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO. From left are Boeing technician Steve Lay and ASTROTECH mission/facility manager Gerard Gleeson. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  12. KSC-2010-1058

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – In the control room at the Astrotech Space Operations facility in Titusville, Fla., test conductors from ASTROTECH and Kennedy Space Center monitor data received from the clean room as technicians sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  13. KSC-2010-1057

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – In the control room at the Astrotech Space Operations facility in Titusville, Fla., a team of Kennedy Space Center spacecraft fueling specialists and engineers monitors data received from the clean room as technicians sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  14. KSC-2010-1051

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., spacecraft fueling technicians from Kennedy Space Center prepare to sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO. From left are Boeing technician Steve Lay and ASTROTECH mission/facility manager Gerard Gleeson. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  15. Morfología de eyecciones coronales de masa: avances e interrogantes pendientes

    NASA Astrophysics Data System (ADS)

    Cremades, H.

    2016-08-01

    Coronal mass ejections (CMEs) originate in the solar atmosphere and inject large amounts of plasma and magnetic fields in the heliosphere. Moreover, they can generate geomagnetic storms and shock waves, which in turn may accelerate energetic particles. The growing interest in studying CMEs stems not only from practical reasons, given their capacity to interact with Earth's atmosphere involving undesirable technological effects for modern society, but also from scientific reasons, because CMEs are part of the solar wind and thus play a key role in coronal and interplanetary dynamics. Space missions devoted to solar monitoring such as SOHO (Solar and Heliospheric Observatory), STEREO (Solar-Terrestrial Relations Observatory), and SDO (Solar Dynamics Observatory) have meant a great step toward the understanding of CME structure and evolution. However, given the nature of the instruments used for CME observation it is still difficult to deduce aspects of their three-dimensional configuration. In this report we visit the most relevant and latest advances regarding the three-dimensional characterization of their morphology, based both on theoretical models and observations. Their relationship with aspects of their source regions at photospheric, chromospheric, and low coronal levels, as well as with their interplanetary counterparts detected in situ are additionally addressed. These correspondences are vital not only for deepening the physical understanding of CMEs, but also to constrain geometrical and propagation models of CMEs towards improving current space weather forecasts.

  16. KSC-2009-4017

    NASA Image and Video Library

    2009-07-10

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., the shipping container cover removed from NASA's Solar Dynamics Observatory (right), or SDO, is moved away. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Tim Jacobs

  17. KSC-2009-4029

    NASA Image and Video Library

    2009-07-11

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., an overhead cable moves NASA's Solar Dynamics Observatory, or SDO, toward the work stand in the foreground. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston

  18. KSC-2009-4027

    NASA Image and Video Library

    2009-07-11

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers move a work stand into position to hold NASA's Solar Dynamics Observatory, or SDO, in the background. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston

  19. KSC-2009-4014

    NASA Image and Video Library

    2009-07-10

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers secure an overhead crane to the shipping container that holds NASA's Solar Dynamics Observatory, or SDO. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Tim Jacobs

  20. Laboratory investigation on super-Earths atmospheres

    NASA Astrophysics Data System (ADS)

    Erculiani, M. S.; Claudi, R. U.; Lessio, L.; Farisato, G.; Giro, E.; Cocola, L.; Billi, D.; D'alessandro, M.; Pace, E.; Schierano, D.; Benatti, S.; Bonavita, M.; Galletta, G.

    2014-04-01

    In the framework of Atmosphere in a Test Tube, at the Astronomical Observatory of Padova (INAF) we are going to perform experiments aimed to understand the possible modification of the atmosphere by photosynthetic biota present on the planet surface. This goal can be achieved simulating M star planetary environmental conditions. The bacteria that are being studied are Acaryochloris marina, Chroococcidiopsis spp. and Halomicronema hingdechloris. Tests will be performed with LISA or MINI-LISA ambient simulator in the laboratory of the Padova Astronomic Observatory. In this paper we describe the whole road map to follow in order to perform experiments and to obtain useful data to be compared with the real ones that will be obtained by the future space missions. Starting by a fiducial experiment we will modify either environmental and thermodynamical properties in order to simulate both real irradiation by an M star and gas mixture mimicing super earths atmospheres. These laboratory tests could be used as a guideline in order to understand whether chemical disequilibrium of O2, CO2 and CH4 could be ascribed to biotic life forms.

  1. Atmospheric Visibility Monitoring for planetary optical communications

    NASA Technical Reports Server (NTRS)

    Cowles, Kelly

    1991-01-01

    The Atmospheric Visibility Monitoring project endeavors to improve current atmospheric models and generate visibility statistics relevant to prospective earth-satellite optical communications systems. Three autonomous observatories are being used to measure atmospheric conditions on the basis of observed starlight; these data will yield clear-sky and transmission statistics for three sites with high clear-sky probabilities. Ground-based data will be compared with satellite imagery to determine the correlation between satellite data and ground-based observations.

  2. Rattlesnake Mountain Observatory (46.4° N, 119.6° W) Multispectral Optical Depth Measurements: 1979-1994 (NDP-053)

    DOE Data Explorer

    Larson, Nels R. [Pacific Northwest Laboratory (PNNL), Richland, WA (USA); Michalsky, Joseph J. [Atmospheric Sciences Research Center, Albany, NY (USA); LeBaron, Brock A. [Utah Bureau of Air Quality, Salt Lake City, Utah (USA)

    2012-01-01

    Surface measurements of solar irradiance of the atmosphere were made by a multipurpose computer-controlled scanning photometer at the Rattlesnake Mountain Observatory in eastern Washington. The observatory is located at 46.4° N, 119.6° W at an elevation of 1088 m above mean sea level. The photometer measures the attenuation of direct solar radiation for different wavelengths using 12 filters. Five of these filters (i.e., at 428 nm, 486 nm, 535 nm, 785 nm, and 1010 nm, with respective half-power widths of 2, 2, 3, 18, and 28 nm) are suitable for monitoring variations in the total optical depth of the atmosphere.

  3. Solar radius determination from SODISM/PICARD and HMI/SDO observations of the decrease of the spectral solar radiance during the 2012 June Venus transit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauchecorne, A.; Meftah, M.; Irbah, A.

    On 2012 June 5-6, the transit of Venus provided a rare opportunity to determine the radius of the Sun using solar imagers observing a well-defined object, namely, the planet and its atmosphere, partially occulting the Sun. A new method has been developed to estimate the solar radius during a planetary transit. It is based on the estimation of the spectral solar radiance decrease in a region around the contact between the planet and the Sun at the beginning of the ingress and at the end of the egress. The extrapolation to zero of the radiance decrease versus the Sun-to-Venus apparentmore » angular distance allows estimation of the solar radius at the time of first and fourth contacts. This method presents the advantage of being almost independent on the plate scale, the distortion, the refraction by the planetary atmosphere, and on the point-spread function of the imager. It has been applied to two space solar visible imagers, SODISM/PICARD and HMI/SDO. The found results are mutually consistent, despite their different error budgets: 959.''85 ± 0.''19 (1σ) for SODISM at 607.1 nm and 959.''90 ± 0.''06 (1σ) for HMI at 617.3 nm.« less

  4. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Sackett, C.

    1999-05-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction of the building and dome has been completed, and first light is planned for spring 1999. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have received an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  5. The Atmospheric Monitoring Strategy for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Daniel, M. K.; CTA Consortium

    2015-04-01

    The Imaging Atmospheric Cherenkov Technique (IACT) is unusual in astronomy as the atmosphere actually forms an intrinsic part of the detector system, with telescopes indirectly detecting very high energy particles by the generation and transport of Cherenkov photons deep within the atmosphere. This means that accurate measurement, characterisation and monitoring of the atmosphere is at the very heart of successfully operating an IACT system. The Cherenkov Telescope Array (CTA) will be the next generation IACT observatory with an ambitious aim to improve the sensitivity of an order of magnitude over current facilities, along with corresponding improvements in angular and energy resolution and extended energy coverage, through an array of Large (23 m), Medium (12 m) and Small (4 m) sized telescopes spread over an area of order ~km2. Whole sky coverage will be achieved by operating at two sites: one in the northern hemisphere and one in the southern hemisphere. This proceedings will cover the characterisation of the candidate sites and the atmospheric calibration strategy. CTA will utilise a suite of instrumentation and analysis techniques for atmospheric modelling and monitoring regarding pointing forecasts, intelligent pointing selection for the observatory operations and for offline data correction.

  6. Analysis of a 12-Hour Artifact in LF Oscillations of the Magnetic Field of Sunspots According to SDO/HMI Data

    NASA Astrophysics Data System (ADS)

    Efremov, V. I.; Parfinenko, L. D.; Solov'ev, A. A.

    2017-12-01

    The properties of the 12-h artifact in the data of the SDO/HMI instrument (Helioseismic and Magnetic Imager) caused by the nonzero radial velocity of the station relative to the Sun are investigated. The study has been carried out with respect to long-period oscillations of the magnetic field of sunspots for different station positions in the Earth's orbit by the alternative spectral method of singular decomposition of the signal CaterPillarSSA. Features of artifact filtering, both in special positions of the station (at the points of aphelion and perihelion) and at arbitrarily selected orbital points, are considered. It is shown that the 12-h artifact mode can be completely filtered from the time series of the observed variable, not only at these two orbital points (because of the symmetry of the station's radial velocity with respect to the zero mean here) but also at any others. It is shown that only a 12-h mode is physically justified, while the 24-h harmonic appears only as an artifact in the Fourier decomposition of the amplitude-modulated signal. It is emphasized that the values of the magnetic field measured with SDO/HMI are sensitive only to the station's radial velocity absolute values with respect to the Sun and do not depend on its direction. It has been noted that the periods of sunspot oscillation as a whole obtained from SDO/HMI data after orbital artifact filtration fit well into the dependence diagram of the period of sunspot oscillations on the value of its magnetic field strength constructed earlier by SOHO/MDIdata.

  7. Dispersion of the solar magnetic flux in the undisturbed photosphere as derived from SDO/HMI data

    NASA Astrophysics Data System (ADS)

    Abramenko, Valentina I.

    2017-11-01

    To explore the magnetic flux dispersion in the undisturbed solar photosphere, magnetograms acquired by Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamic Observatory (SDO) were utilized. Two areas, a coronal hole (CH) area and an area of super-granulation (SG) pattern, were analysed. We explored the displacement and separation spectra and the behaviour of the turbulent diffusion coefficient, K. The displacement and separation spectra are very similar to each other. Small magnetic elements (of size 3-100 squared pixels and the detection threshold of 20 Mx sm-2) in both CH and SG areas disperse in the same way and they are more mobile than the large elements (of size 20-400 squared pixels and the detection threshold of 130 Mx sm-2). The regime of super-diffusivity is found for small elements (γ ≈ 1.3 and K growing from ˜100 to ˜ 300 km2 s-1). Large elements in the CH area are scanty and show super-diffusion with γ ≈ 1.2 and K = (62-96) km2 s-1 on a rather narrow range of 500-2200 km. Large elements in the SG area demonstrate two ranges of linearity and two diffusivity regimes: sub-diffusivity on scales 900-2500 km with γ = 0.88 and K decreasing from ˜130 to ˜100 km2 s-1, and super-diffusivity on scales 2500-4800 km with γ ≈ 1.3 and K growing from ˜140 to ˜200 km2 s-1. A comparison of our results with the previously published shows that there is a tendency of saturation of the diffusion coefficient on large scales, I.e. the turbulent regime of super-diffusivity is gradually replaced by normal diffusion.

  8. McDonald Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    McDonald Observatory, located in West Texas near Fort Davis, is the astronomical observatory of the University of Texas at Austin. Discoveries at McDonald Observatory include water vapor on Mars, the abundance of rare-earth chemical elements in stars, the discovery of planets circling around nearby stars and the use of the measurements of rapid oscillations in the brightness of white dwarf stars ...

  9. The Observatory as Laboratory: Spectral Analysis at Mount Wilson Observatory

    NASA Astrophysics Data System (ADS)

    Brashear, Ronald

    2018-01-01

    This paper will discuss the seminal changes in astronomical research practices made at the Mount Wilson Observatory in the early twentieth century by George Ellery Hale and his staff. Hale’s desire to set the agenda for solar and stellar astronomical research is often described in terms of his new telescopes, primarily the solar tower observatories and the 60- and 100-inch telescopes on Mount Wilson. This paper will focus more on the ancillary but no less critical parts of Hale’s research mission: the establishment of associated “physical” laboratories as part of the observatory complex where observational spectral data could be quickly compared with spectra obtained using specialized laboratory equipment. Hale built a spectroscopic laboratory on the mountain and a more elaborate physical laboratory in Pasadena and staffed it with highly trained physicists, not classically trained astronomers. The success of Hale’s vision for an astronomical observatory quickly made the Carnegie Institution’s Mount Wilson Observatory one of the most important astrophysical research centers in the world.

  10. Astronomical observatories

    NASA Technical Reports Server (NTRS)

    Ponomarev, D. N.

    1983-01-01

    The layout and equipment of astronomical observatories, the oldest scientific institutions of human society are discussed. The example of leading observatories of the USSR allows the reader to familiarize himself with both their modern counterparts, as well as the goals and problems on which astronomers are presently working.

  11. From The Pierre Auger Observatory to AugerPrime

    NASA Astrophysics Data System (ADS)

    Parra, Alejandra; Martínez Bravo, Oscar; Pierre Auger Collaboration

    2017-06-01

    In the present work we report the principal motivation and reasons for the new stage of the Pierre Auger Observatory, AugerPrime. This upgrade has as its principal goal to clarify the origin of the highest energy cosmic rays through improvement in studies of the mass composition. To accomplished this goal, AugerPrime will use air shower universality, which states that extensive air showers can be completely described by three parameters: the primary energy E 0, the atmospheric shower depth of maximum X max, and the number of muons, Nμ . The Auger Collaboration has planned to complement its surface array (SD), based on water-Cherenkov detectors (WCD) with scintillator detectors, calls SSD (Scintillator Surface Detector). These will be placed at the top of each WCD station. The SSD will allow a shower to shower analysis, instead of the statistical analysis that the Observatory has previously done, to determine the mass composition of the primary particle by the electromagnetic to muonic ratio.

  12. Understanding the Spatiotemporal Structures in Atmosphere-Land Surface Exchange at the Jülich Observatory for Cloud Evolution

    NASA Astrophysics Data System (ADS)

    Marke, T.; Crewell, S.; Loehnert, U.; Rascher, U.; Schween, J. H.

    2015-12-01

    This study aims at identifying spatial and temporal patterns of surface-atmosphere exchange parameters from highly-resolved and long-term observations. For this purpose, a combination of continuous ground-based measurements and dedicated aircraft campaigns using state-of-the-art remote sensing instrumentation at the Jülich Observatory for Cloud Evolution (JOYCE) is available. JOYCE provides a constantly growing multi-year data set for detailed insight into boundary layer processes and patterns related to surface conditions since 2011. The JOYCE site is embedded in a rural environment with different crop types. The availability of a scanning microwave radiometer and cloud radar is a unique component of JOYCE. The hemispheric scans of the ground-based radiometer allow the identification and quantification of horizontal gradients in water vapor and liquid water path measurements. How these gradients are connected to near-surface fluxes and the topography depending on the mean wind flow and surface fluxes is investigated by exploring the long-term data set. Additionally, situations with strong coupling to the surface can be identified by observing the atmospheric turbulence and stability within the boundary layer, using different lidar systems. Furthermore, the influence of thin liquid water clouds, which are typical for the boundary layer development, on the radiation field and the interaction with the vegetation is examined. Applying a synergistic statistical retrieval approach, using passive microwave and infrared observations, shows an improvement in retrieving thin liquid cloud microphysical properties. The role of vegetation is assessed by exploiting the time series of the sun-induced chlorophyll fluorescence (SIF) signal measured at the ground level using automated measurements. For selected case studies, a comparison to maps of hyperspectral reflectance and SIF obtained from an airborne high-resolution imaging spectrometer is realized.

  13. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; Melsheimer, T.; Rideout, C.; Vanlew, K.

    1998-12-01

    The Little Thompson Observatory is believed to be the first observatory built as part of a high school and accessible to other schools remotely, via the Internet. This observatory is the second member of the Telescopes in Education (TIE) project. Construction is nearly completed and first light is planned for fall 1998. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations will have prioritized access to the telescope, and there will also be opportunities for public viewing. After midnight, the telescope will be open to world-wide use by schools via the Internet following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. That telescope has been in use for the past four years by up to 50 schools per month. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. We have applied for an IDEAS grant to provide teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  14. Optical Properties of atmospheric dust from twilight observations

    NASA Technical Reports Server (NTRS)

    Divari, N. B.; Zaginayilo, Y. I.; Kovalchuk, L. V.

    1973-01-01

    Three methods of approximation are described and used to separate the primary twilight brightness from the observed brightness. Photoelectric observations obtained are combined with observations from a balloon and from the observatory to derive the atmospheric scattering phase functions of 0.37 micron and 0.58 micron as a function of height. Comparison of these data with data for a Rayleigh atmosphere provide information on the optical properties of dust in the upper atmosphere.

  15. Thermodynamic Spectrum of Solar Flares Based on SDO/EVE Observations: Techniques and First Results

    NASA Technical Reports Server (NTRS)

    Wang, Yuming; Zhou, Zhenjun; Zhang, Jie; Liu, Kai; Liu, Rui; Shen, Chenglong; Chamberlin, Phillip C.

    2016-01-01

    The Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could potentially be useful for extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0 class, and reach the following statistical results. First, EUV peaks are always behind the soft X-ray (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections.

  16. THERMODYNAMIC SPECTRUM OF SOLAR FLARES BASED ON SDO/EVE OBSERVATIONS: TECHNIQUES AND FIRST RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuming; Zhou, Zhenjun; Liu, Kai

    2016-03-15

    The Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could potentially be useful for extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0 class, and reach the following statistical results. First, EUV peaks are always behind the soft X-raymore » (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections.« less

  17. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; D\\'\\iaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; Garc\\'\\ia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agëra, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Mart\\'\\inez Bravo, O.; Martraire, D.; Mas\\'\\ias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodr\\'\\iguez-Fr\\'\\ias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiał kowski, A.; Šm\\'\\ida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2014-08-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.

  18. Atmospheric Sciences Meet Astronomy: Mutual Benefits from two Different Approaches

    NASA Astrophysics Data System (ADS)

    Kausch, Wolfgang; Noll, Stefan; Kimeswenger, Stefan; Kondrak, Matthias; Unterguggenberger, Stefanie; Przybilla, Norbert; Lakićević, Maša; Zeilinger, Werner

    2016-04-01

    Light from astronomical targets has to pass the Earth's atmosphere when being observed by ground-based telescope facilities. The signal detected by modern astronomical spectrographs is significantly influenced by molecular absorption and airglow emission. The first mainly arises from various species in the lower, thus denser atmosphere, whereas the latter is caused by chemiluminescence in the mesopause region and above. As ground-based astronomical spectrographs are optimised from the near-UV to the mid-infrared regime (0.3....25μm), a number of absorption features from numerous species are directly visible (e.g. H2O, CO2, CH4, O2, O3,...). The same is true for the airglow emission arising e.g. from the hydroxyl radical and oxygen. The high resolution provided by some spectrographs and their frequent usage allows a detailed investigation of atmospheric lines. Usually being a source of noise for astronomers, which needs to be corrected for, this influence can be used to precisely analyse the composition and the state of the Earth's atmosphere above an observatory. On the other hand, a good knowledge of this allows astronomers to better correct for this influence. Thus, both, atmospheric and astronomical sciences highly benefit from a good understanding of the atmospheric state above an observatory. During the past years we conducted several studies to link astronomical and atmospheric data. For this purpose we use data taken with the Very Large Telescope (VLT) operated by the European Southern Observatory, and the Cerro Armazones Observatory (OCA, University of Bochum, Germany; Universidad Católica del Norte, Chile), both located in the Chilean Atacama desert. The three spectrographs used in our studies are X-Shooter@VLT (resolving power R˜3300...18000, wavelength range λ=0.3...2.5μm), UVES@VLT (R˜20.000....110.000, λ=0.3....1.1μm), and BESO@OCA (R=50000@Hα=0.656μm, λ=0.38 - 0.84μm). In addition, we use atmospheric data obtained with the satellites

  19. The Carl Sagan solar and stellar observatories as remote observatories

    NASA Astrophysics Data System (ADS)

    Saucedo-Morales, J.; Loera-Gonzalez, P.

    In this work we summarize recent efforts made by the University of Sonora, with the goal of expanding the capability for remote operation of the Carl Sagan Solar and Stellar Observatories, as well as the first steps that have been taken in order to achieve autonomous robotic operation in the near future. The solar observatory was established in 2007 on the university campus by our late colleague A. Sánchez-Ibarra. It consists of four solar telescopes mounted on a single equatorial mount. On the other hand, the stellar observatory, which saw the first light on 16 February 2010, is located 21 km away from Hermosillo, Sonora at the site of the School of Agriculture of the University of Sonora. Both observatories can now be remotely controlled, and to some extent are able to operate autonomously. In this paper we discuss how this has been accomplished in terms of the use of software as well as the instruments under control. We also briefly discuss the main scientific and educational objectives, the future plans to improve the control software and to construct an autonomous observatory on a mountain site, as well as the opportunities for collaborations.

  20. WNCC Observatory

    NASA Astrophysics Data System (ADS)

    Snyder, L. F.

    2003-05-01

    Western Nevada Community College (WNCC), located in Carson City, Nevada, is a small two year college with only 6,000 students. Associate degrees and Cer- tificates of Achievement are awarded. The college was built and started classes in 1971 and about 12 years ago the chair of the physics department along with a few in administration had dreams of building a small observatory for education. Around that time a local foundation, Nevada Gaming Foundation for Education Excellence, was looking for a beneficiary in the education field to receive a grant. They decided an observatory at the college met their criteria. Grants to the foundation instigated by Senators, businesses, and Casinos and donations from the local public now total $1.3 million. This paper will explain the different facets of building the observatory, the planning, construction, telescopes and equipment decisions and how we think it will operate for the public, education and research. The organization of local volunteers to operate and maintain the observatory and the planned re- search will be explained.

  1. Comparison of time series of integrated water vapor measured using radiosonde, GPS and microwave radiometer at the CNR-IMAA Atmospheric Observatory

    NASA Astrophysics Data System (ADS)

    Amato, Franceso; Rosoldi, Marco; Madonna, Fabio

    2015-04-01

    Information about the amount and spatial distribution of atmospheric water vapor is essential to improve our knowledge of weather forecasting and climate change. Water vapor is highly variable in space and time depending on the complex interplay of several phenomena like convection, precipitation, turbulence, etc. It remains one of the most poorly characterized meteorological parameters. Remarkable progress in using of Global Navigation Satellite Systems (GNSS), in particular GPS, for the monitoring of atmospheric water vapor has been achieved during the last decades. Various studies have demonstrated that GPS could provide accurate water vapor estimates for the study of the atmosphere. Different GPS data processing provided within the scientific community made use of various tropospheric models that primarily differs for the assumptions on the vertical refractivity profiles and the mapping of the vertical delay with elevation angles. This works compares several models based on the use of surface meteorological data. In order to calculate the Integrated Water Vapour (IWV), an algorithm for calculating the zenith tropospheric delay was implemented. It is based upon different mapping functions (Niell, Saastamoinen, Chao and Herring Mapping Functions). Observations are performed at the Istituto di Metodologie per l'Analisi Ambientale (IMAA) GPS station located in Tito Scalo, Potenza (40.60N, 15.72E), from July to December 2014, in the framework of OSCAR project (Observation System for Climate Application at Regional scale). The retrieved values of the IWV using the GPS are systematically compared with the other estimation of IWV collected at CIAO (CNR-IMAA Atmospheric Observatory) using the other available measurement techniques. In particular, in this work the compared IWV are retrieved from: 1. a Trimble GPS antenna (data processed by the GPS-Met network, see gpsmet.nooa.gov); 2. a Novatel GPS antenna (data locally processed using a software developed at CIAO); 3

  2. ``Route of astronomical observatories'' project: Classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2016-10-01

    Observatories offer a good possibility for serial transnational applications. For example one can choose groups like baroque or neoclassical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments or made by famous firms. I will discuss what has been achieved and show examples, like the route of astronomical observatories, the transition from classical astronomy to modern astrophysics. I will also discuss why the implementation of the World Heritage & Astronomy initiative is difficult and why there are problems to nominate observatories for election in the national tentative lists.

  3. A new instrument for measuring atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Jacobs, Danny C.; Edwards, Brett; Stelly, Zak; Gorgievska, Ivana; Westpfahl, David J.; Klinglesmith, Daniel A., III; Creech-Eakman, Michelle J.

    2004-10-01

    The Magdalena Ridge Observatory is a congressionally funded project to deliver a state-of-the-art observatory on the Magdalena Ridge in New Mexico to provide astronomical research, educational and outreach programs to the state. In this paper we report results from one of our undergraduate projects being run at New Mexico Tech. This project focuses on the design and characterization of a novel instrument for sensing the atmospheric flow instabilities related to seeing at the observatory site. The instrument attempts to find the power of turbulence on millisecond time scales by measuring a voltage difference between two active microphones. The principles behind the instrument are explored here and a description of the limitations of the current experimental implementation is given. Initial results from the experiment are presented and compared with simultaneous measurements from a co-located Differential Image Motion Monitor. The instrument is shown to be a valuable and robust tool for monitoring the atmospheric conditions during site testing campaigns, but further data will be needed to confirm the precise nature of the correlation between measurements made with this system and more conventional seeing metrics.

  4. High-resolution Observations of Sympathetic Filament Eruptions by NVST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shangwei; Su, Yingna; Zhou, Tuanhui

    We investigate two sympathetic filament eruptions observed by the New Vacuum Solar Telescope on 2015 October 15. The full picture of the eruptions is obtained from the corresponding Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) observations. The two filaments start from active region NOAA 12434 in the north and end in one large quiescent filament channel in the south. The left filament erupts first, followed by the right filament eruption about 10 minutes later. Clear twist structure and rotating motion are observed in both filaments during the eruption. Both eruptions failed, since the filaments first rise up, thenmore » flow toward the south and merge into the southern large quiescent filament. We also observe repeated activations of mini filaments below the right filament after its eruption. Using magnetic field models constructed based on SDO /HMI magnetograms via the flux rope insertion method, we find that the left filament eruption is likely to be triggered by kink instability, while the weakening of overlying magnetic fields due to magnetic reconnection at an X-point between the two filament systems might play an important role in the onset of the right filament eruption.« less

  5. Mechanisms and Observations of Coronal Dimming for the 2010 August 7 Event

    NASA Technical Reports Server (NTRS)

    Mason, James P.; Woods, Thomas N.; Caspi, Amir; Thompson, Barbara J.; Hock, Rachel A.

    2014-01-01

    Coronal dimming of extreme ultraviolet (EUV) emission has the potential to be a useful forecaster of coronal mass ejections (CMEs). As emitting material leaves the corona, a temporary void is left behind which can be observed in spectral images and irradiance measurements. The velocity and mass of the CMEs should impact the character of those observations. However, other physical processes can confuse the observations. We describe these processes and the expected observational signature, with special emphasis placed on the differences. We then apply this understanding to a coronal dimming event with an associated CME that occurred on 2010 August 7. Data from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) and EUV Variability Experiment (EVE) are used for observations of the dimming, while the Solar and Heliospheric Observatory's (SoHO) Large Angle and Spectrometric Coronagraph (LASCO) and the Solar Terrestrial Relations Observatory's (STEREO) COR1 and COR2 are used to obtain velocity and mass estimates for the associated CME. We develop a technique for mitigating temperature effects in coronal dimming from full-disk irradiance measurements taken by EVE. We find that for this event, nearly 100% of the dimming is due to mass loss in the corona.

  6. Joint SDO and IRIS Observations of a Novel, Hybrid Prominence-Coronal Rain Complex

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Antolin, Patrick; Sun, Xudong; Gao, Lijia; Vial, Jean-Claude; Gibson, Sarah; Okamoto, Takenori; Berger, Thomas; Uitenbroek, Han; De Pontieu, Bart

    2016-10-01

    Solar prominences and coronal rain are intimately related phenomena, both involving cool material at chromospheric temperatures within the hot corona and both playing important roles as part of the return flow of the chromosphere-corona mass cycle. At the same time, they exhibit distinct morphologies and dynamics not yet well understood. Quiescent prominences consist of numerous long-lasting, filamentary downflow threads, while coronal rain is more transient and falls comparably faster along well-defined curved paths. We report here a novel, hybrid prominence-coronal rain complex in an arcade-fan geometry observed by SDO/AIA and IRIS, which provides new insights to the underlying physics of such contrasting behaviors. We found that the supra-arcade fan region hosts a prominence sheet consisting of meandering threads with broad line widths. As the prominence material descends to the arcade, it turns into coronal rain sliding down coronal loops with line widths 2-3 times narrower. This contrast suggests that distinct local plasma and magnetic conditions determine the fate of the cool material, a scenario supported by our magnetic field extrapolations from SDO/HMI. Specifically, the supra-arcade fan (similar to those in solar flares; e.g., McKenzie 2013) is likely situated in a current sheet, where the magnetic field is weak and the plasma-beta could be close to unity, thus favoring turbulent flows like those prominence threads. In contrast, the underlying arcade has a stronger magnetic field and most likely a low-beta environment, such that the material is guided along magnetic field lines to appear as coronal rain. We will discuss the physical implications of these observations beyond prominence and coronal rain.

  7. An Analysis of Eruptions Detected by the LMSAL Eruption Patrol

    NASA Astrophysics Data System (ADS)

    Hurlburt, N. E.; Higgins, P. A.; Jaffey, S.

    2014-12-01

    Observations of the solar atmosphere reveals a wide range of real and apparent motions, from small scale jets and spicules to global-scale coronal mass ejections. Identifying and characterizing these motions are essential to advance our understanding the drivers of space weather. Automated and visual identifications are used in identifying CMEs. To date, the precursors to these — eruptions near the solar surface — have been identified primarily by visual inspection. Here we report on an analysis of the eruptions detected by the Eruption Patrol, a data mining module designed to automatically identify eruptions from data collected by Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA). We describe the module and use it both to explore relations with other solar events recorded in the Heliophysics Event Knowledgebase and to identify and access data collected by the Interface Region Imaging Spectrograph (IRIS) and Solar Optical Telescope (SOT) on Hinode for further analysis.

  8. Coronal Mass Ejections and Dimmings: A Comparative Study using MHD Simulations and SDO Observations

    NASA Astrophysics Data System (ADS)

    Jin, M.; Cheung, C. M. M.; DeRosa, M. L.; Nitta, N.; Schrijver, K.

    2017-12-01

    Solar coronal dimmings have been observed extensively in the past two decades. Due to their close association with coronal mass ejections (CMEs), there is a critical need to improve our understanding of the physical processes that cause dimmings and determine their relationship with CMEs. In this study, we investigate coronal dimmings by combining simulation and observational efforts. By utilizing a data-driven global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model), we simulate coronal dimmings resulting from different CME energetics and flux rope configurations. We synthesize the emissions of different EUV spectral bands/lines and compare with SDO/AIA and EVE observations. A detailed analysis of simulation and observation data suggests that although the transient dimming / brightening patterns could relate to plasma heating processes (either by adiabatic compression or reconnection), the long-lasting "core" and "remote" (also known as "secondary") dimmings both originate from regions with open/quasi-open fields and are caused by mass loss process. The mass loss in the remote dimming region is induced by CME-driven shock. Using metrics such as dimming depth, dimming slope, and recovery time, we investigate the relationship between dimmings and CME properties (e.g., CME mass, CME speed) in the simulation. Our result suggests that coronal dimmings encode important information about CME energetics, CME-driven shock properties, and magnetic configuration of erupting flux ropes. We also discuss how our knowledge about solar coronal dimmings could be extended to the study of stellar CMEs, which may prove important for exoplanet atmospheres and habitability but which are currently not observable.

  9. Indirect probes of supersymmetry breaking in the JEM-EUSO observatory

    NASA Astrophysics Data System (ADS)

    Albuquerque, Ivone F. M.; Cavalcante de Souza, Jairo

    2013-01-01

    In this paper we propose indirect probes of the supersymmetry-breaking scale, through observations in the Extreme Universe Space Observatory onboard the Japanese Experiment Module (JEM-EUSO). We consider scenarios where the lightest supersymmetric particle is the gravitino, and the next-to-lightest supersymmetric particle (NLSP) is a long-lived slepton. We demonstrate that JEM-EUSO will be able to probe models where the NLSP decays, therefore probing supersymmetry-breaking scales below 5×106GeV. The observatory field of view will be large enough to detect a few tens of events per year, depending on its energy threshold. This is complementary to a previous proposal [I. Albuquerque , Phys. Rev. Lett. 92, 221802 (2004)PRLTAO0031-9007] where it was shown that 1km3 neutrino telescopes can directly probe this scale. NLSPs will be produced by the interaction of high-energy neutrinos in the Earth. Here we investigate scenarios where they subsequently decay, either in the atmosphere after escaping the Earth or right before leaving the Earth, producing taus. These can be detected by JEM-EUSO and have two distinctive signatures: one, they are produced in the Earth and go upwards in the atmosphere, which allows discrimination from atmospheric taus, and second, as NLSPs are always produced in pairs, coincident taus will be a strong signature for these events. Assuming that the neutrino flux is equivalent to the Waxman-Bahcall limit, we determine the rate of taus from NLSP decays reaching JEM-EUSO’s field of view.

  10. Astronomical publications of Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  11. Development of Time-Distance Helioseismology Data Analysis Pipeline for SDO/HMI

    NASA Technical Reports Server (NTRS)

    DuVall, T. L., Jr.; Zhao, J.; Couvidat, S.; Parchevsky, K. V.; Beck, J.; Kosovichev, A. G.; Scherrer, P. H.

    2008-01-01

    The Helioseismic and Magnetic Imager of SDO will provide uninterrupted 4k x 4k-pixel Doppler-shift images of the Sun with approximately 40 sec cadence. These data will have a unique potential for advancing local helioseismic diagnostics of the Sun's interior structure and dynamics. They will help to understand the basic mechanisms of solar activity and develop predictive capabilities for NASA's Living with a Star program. Because of the tremendous amount of data the HMI team is developing a data analysis pipeline, which will provide maps of subsurface flows and sound-speed distributions inferred form the Doppler data by the time-distance technique. We discuss the development plan, methods, and algorithms, and present the status of the pipeline, testing results and examples of the data products.

  12. Keele Observatory

    NASA Astrophysics Data System (ADS)

    Theodorus van Loon, Jacco; Albinson, James; Bagnall, Alan; Bryant, Lian; Caisley, Dave; Doody, Stephen; Johnson, Ian; Klimczak, Paul; Maddison, Ron; Robinson, StJohn; Stretch, Matthew; Webb, John

    2015-08-01

    Keele Observatory was founded by Dr. Ron Maddison in 1962, on the hill-top campus of Keele University in central England, hosting the 1876 Grubb 31cm refractor from Oxford Observatory. It since acquired a 61cm research reflector, a 15cm Halpha solar telescope and a range of other telescopes. Run by a group of volunteering engineers and students under directorship of a Keele astrophysicist, it is used for public outreach as well as research. About 4,000 people visit the observatory every year, including a large number of children. We present the facility, its history - including involvement in the 1919 Eddington solar eclipse expedition which proved Albert Einstein's theory of general relativity - and its ambitions to erect a radio telescope on its site.

  13. Slipping magnetic reconnection during an X-class solar flare observed by SDO/AIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudík, J.; Del Zanna, G.; Mason, H. E.

    2014-04-01

    We present SDO/AIA observations of an eruptive X-class flare of 2012 July 12, and compare its evolution with the predictions of a three-dimensional (3D) numerical simulation. We focus on the dynamics of flare loops that are seen to undergo slipping reconnection during the flare. In the Atmospheric Imaging Assembly (AIA) 131 Å observations, lower parts of 10 MK flare loops exhibit an apparent motion with velocities of several tens of km s{sup –1} along the developing flare ribbons. In the early stages of the flare, flare ribbons consist of compact, localized bright transition-region emission from the footpoints of the flaremore » loops. A differential emission measure analysis shows that the flare loops have temperatures up to the formation of Fe XXIV. A series of very long, S-shaped loops erupt, leading to a coronal mass ejection observed by STEREO. The observed dynamics are compared with the evolution of magnetic structures in the 'standard solar flare model in 3D.' This model matches the observations well, reproducing the apparently slipping flare loops, S-shaped erupting loops, and the evolution of flare ribbons. All of these processes are explained via 3D reconnection mechanisms resulting from the expansion of a torus-unstable flux rope. The AIA observations and the numerical model are complemented by radio observations showing a noise storm in the metric range. Dm-drifting pulsation structures occurring during the eruption indicate plasmoid ejection and enhancement of the reconnection rate. The bursty nature of radio emission shows that the slipping reconnection is still intermittent, although it is observed to persist for more than an hour.« less

  14. The Extreme Universe Space Observatory Super Pressure Balloon Mission

    NASA Astrophysics Data System (ADS)

    Wiencke, Lawrence; Olinto, Angela; Adams, Jim; JEM-EUSO Collaboration

    2017-01-01

    The Extreme Universe Space Observatory on a super pressure balloon (EUSO-SPB) mission will make the first fluorescence observations of high energy cosmic ray extensive air showers by looking down on the atmosphere from near space. A long duration flight of at least 50 nights launched from Wanaka NZ is planned for 2017. We describe completed instrument, and the planned mission. We acknowledge the support of NASA through grants NNX13AH53G and NNX13AH55G.

  15. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A. E.; VanLew, K.; Melsheimer, T.; Sackett, C.

    1999-12-01

    The Little Thompson Observatory is the second member of the Telescopes in Education (TIE) project. Construction of the dome and the remote control system has been completed, and the telescope is now on-line and operational over the Internet. The observatory is located on the grounds of Berthoud High School in northern Colorado. Local schools and youth organizations have prioritized access to the telescope, and there are monthly opportunities for public viewing. In the future, the telescope will be open after midnight to world-wide use by schools following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. Students remotely connect to the observatory over the Internet, and then receive the images on their local computers. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. With funding from an IDEAS grant, we have begun teacher training workshops which will allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms.

  16. Nonlinear force-free field modeling of the solar magnetic carpet and comparison with SDO/HMI and Sunrise/IMAX observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitta, L. P.; Kariyappa, R.; Van Ballegooijen, A. A.

    2014-10-01

    In the quiet solar photosphere, the mixed polarity fields form a magnetic carpet that continuously evolves due to dynamical interaction between the convective motions and magnetic field. This interplay is a viable source to heat the solar atmosphere. In this work, we used the line-of-sight (LOS) magnetograms obtained from the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory, and the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory, as time-dependent lower boundary conditions, to study the evolution of the coronal magnetic field. We use a magneto-frictional relaxation method, including hyperdiffusion, to produce a time series of three-dimensional nonlinearmore » force-free fields from a sequence of photospheric LOS magnetograms. Vertical flows are added up to a height of 0.7 Mm in the modeling to simulate the non-force-freeness at the photosphere-chromosphere layers. Among the derived quantities, we study the spatial and temporal variations of the energy dissipation rate and energy flux. Our results show that the energy deposited in the solar atmosphere is concentrated within 2 Mm of the photosphere and there is not sufficient energy flux at the base of the corona to cover radiative and conductive losses. Possible reasons and implications are discussed. Better observational constraints of the magnetic field in the chromosphere are crucial to understand the role of the magnetic carpet in coronal heating.« less

  17. Heating mechanisms for intermittent loops in active region cores from AIA/SDO EUV observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadavid, A. C.; Lawrence, J. K.; Christian, D. J.

    2014-11-01

    We investigate intensity variations and energy deposition in five coronal loops in active region cores. These were selected for their strong variability in the AIA/SDO 94 Å intensity channel. We isolate the hot Fe XVIII and Fe XXI components of the 94 Å and 131 Å by modeling and subtracting the 'warm' contributions to the emission. HMI/SDO data allow us to focus on 'inter-moss' regions in the loops. The detailed evolution of the inter-moss intensity time series reveals loops that are impulsively heated in a mode compatible with a nanoflare storm, with a spike in the hot 131 Å signalsmore » leading and the other five EUV emission channels following in progressive cooling order. A sharp increase in electron temperature tends to follow closely after the hot 131 Å signal confirming the impulsive nature of the process. A cooler process of growing emission measure follows more slowly. The Fourier power spectra of the hot 131 Å signals, when averaged over the five loops, present three scaling regimes with break frequencies near 0.1 min{sup –1} and 0.7 min{sup –1}. The low frequency regime corresponds to 1/f noise; the intermediate indicates a persistent scaling process and the high frequencies show white noise. Very similar results are found for the energy dissipation in a 2D 'hybrid' shell model of loop magneto-turbulence, based on reduced magnetohydrodynamics, that is compatible with nanoflare statistics. We suggest that such turbulent dissipation is the energy source for our loops.« less

  18. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collaboration: Pierre Auger Collaboration

    2014-08-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analysesmore » including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.« less

  19. KSC-2009-4592

    NASA Image and Video Library

    2009-08-11

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., workers in the control room monitor the data on computer screens from the movement of the high-gain antenna on the Solar Dynamics Observatory, or SDO. The SDO is undergoing performance testing. All of the spacecraft science instruments are being tested in their last major evaluation before launch. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Liftoff on an Atlas V rocket is scheduled for Dec. 4. Photo credit: NASA/Jack Pfaller

  20. ERUPTION OF A SOLAR FILAMENT CONSISTING OF TWO THREADS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi Yi; Jiang Yunchun; Li Haidong

    The trigger and driving mechanism for the eruption of a filament consisting of two dark threads was studied with unprecedented high cadence and resolution of He II 304 A observations made by the Atmospheric Imagining Assembly (AIA) on board the Solar Dynamics Observatory (SDO) and the observations made by the Solar Magnetic Activity Research Telescope and the Extreme Ultraviolet Imager (EUVI) telescope on board the Solar Terrestrial Relations Observatory Ahead (STEREO-A). The filament was located at the periphery of the active region NOAA 11228 and erupted on 2011 June 6. At the onset of the eruption, a turbulent filament threadmore » was found to be heated and to elongate in stride over a second one. After it rose slowly, most interestingly, the elongating thread was driven to contact and interact with the second one, and it then erupted with its southern leg being wrapped by a newly formed thread produced by the magnetic reconnection between fields carried by the two threads. Combining the observations from STEREO-A/EUVI and SDO/AIA 304 A images, the three-dimensional shape of the axis of the filament was obtained and it was found that only the southern leg of the eruptive filament underwent rotation. We suggest that the eruption was triggered by the reconnection of the turbulent filament thread and the surrounding magnetic field, and that it was mainly driven by the kink instability of the southern leg of the eruptive filament that possessed a more twisted field introduced by the reconnection-produced thread.« less

  1. Resolving Differences in Absolute Irradiance Measurements Between the SOHO/CELIAS/SEM and the SDO/EVE.

    PubMed

    Wieman, S R; Didkovsky, L V; Judge, D L

    The Solar EUV Monitor (SEM) onboard SOHO has measured absolute extreme ultraviolet (EUV) and soft X-ray solar irradiance nearly continuously since January 1996. The EUV Variability Experiment (EVE) on SDO, in operation since April of 2010, measures solar irradiance in a wide spectral range that encompasses the band passes (26 - 34 nm and 0.1 - 50 nm) measured by SOHO/SEM. However, throughout the mission overlap, irradiance values from these two instruments have differed by more than the combined stated uncertainties of the measurements. In an effort to identify the sources of these differences and eliminate them, we investigate in this work the effect of reprocessing the SEM data using a more accurate SEM response function (obtained from synchrotron measurements with a SEM sounding-rocket clone instrument taken after SOHO was already in orbit) and time-dependent, measured solar spectral distributions - i.e ., solar reference spectra that were unavailable prior to the launch of the SDO. We find that recalculating the SEM data with these improved parameters reduces mean differences with the EVE measurements from about 20 % to less than 5 % in the 26 - 34 nm band, and from about 35 % to about 15 % for irradiances in the 0.1 - 7 nm band extracted from the SEM 0.1 - 50 nm channel.

  2. Tools for Coordinated Planning Between Observatories

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Fishman, Mark; Grella, Vince; Kerbel, Uri; Maks, Lori; Misra, Dharitri; Pell, Vince; Powers, Edward I. (Technical Monitor)

    2001-01-01

    With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only one single observatory. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. At present, multi-observatory programs are conducted by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming, error-prone, and the outcome of the requests is not certain until the very end. To increase observatory operations efficiency, such manpower intensive processes need to undergo re-engineering. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype effort called the Visual Observation Layout Tool (VOLT). The main objective of the VOLT project is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the scheduling probability of all observations.

  3. Preliminary results from the Stereo-SCIDAR at the VLT Observatory: extraction of reference atmospheric turbulence profiles for E-ELT adaptive optics instrument performance simulations

    NASA Astrophysics Data System (ADS)

    Sarazin, Marc S.; Osborn, James; Chacon-Oelckers, Arlette; Dérie, Frédéric J.; Le Louarn, Miska; Milli, Julien; Navarrete, Julio; Wilson, Richard R. W.

    2017-09-01

    The Stereo-SCIDAR (Scintillation Detection and Ranging) atmospheric turbulence profiler, built for ESO by Durham University, observes the scintillation patterns of binary elements with one of the four VLT-Interferometer 1.8m auxiliary telescopes at the ESO Paranal Observatory. The primary products are the vertical profiles of the index of refraction structure coefficient and of the wind velocity which allow to compute the wavefront coherence time and the isoplanatic angle with a vertical resolution of 250m. The several thousands of profiles collected during more than 30 nights of operation are grouped following criteria based on the altitude distribution or on principal component analysis. A set of reference profiles representative of the site is proposed as input for the various simulation models developed by the E-ELT (European Extremely Large Telescope) instruments Consortia.

  4. Measurements of the Michigan Airglow Observatory from 1971 to 1973 at Ester Dome Alaska

    NASA Technical Reports Server (NTRS)

    Mcwatters, K. D.; Meriwether, J. W.; Hays, P. B.; Nagy, A. F.

    1973-01-01

    The Michigan Airglow Observatory (MAO) was located at Ester Dome Observatory, College, Alaska (latitude: 64 deg 53'N, longitude: 148 deg 03'W) since October, 1971. The MAO houses a 6-inch Fabry-Perot interferometer, a 2-channel monitoring photometer and a 4-channel tilting filter photometer. The Fabry-Perot interferometer was used extensively during the winter observing seasons of 1971-72 and 1972-73 to measure temperature and mass motions of the neutral atmosphere above approximately 90 kilometers altitude. Neutral wind data from the 1971-72 observing season as measured by observing the Doppler shift of the gamma 6300 A atomic oxygen emission line are presented.

  5. Running a distributed virtual observatory: U.S. Virtual Astronomical Observatory operations

    NASA Astrophysics Data System (ADS)

    McGlynn, Thomas A.; Hanisch, Robert J.; Berriman, G. Bruce; Thakar, Aniruddha R.

    2012-09-01

    Operation of the US Virtual Astronomical Observatory shares some issues with modern physical observatories, e.g., intimidating data volumes and rapid technological change, and must also address unique concerns like the lack of direct control of the underlying and scattered data resources, and the distributed nature of the observatory itself. In this paper we discuss how the VAO has addressed these challenges to provide the astronomical community with a coherent set of science-enabling tools and services. The distributed nature of our virtual observatory-with data and personnel spanning geographic, institutional and regime boundaries-is simultaneously a major operational headache and the primary science motivation for the VAO. Most astronomy today uses data from many resources. Facilitation of matching heterogeneous datasets is a fundamental reason for the virtual observatory. Key aspects of our approach include continuous monitoring and validation of VAO and VO services and the datasets provided by the community, monitoring of user requests to optimize access, caching for large datasets, and providing distributed storage services that allow user to collect results near large data repositories. Some elements are now fully implemented, while others are planned for subsequent years. The distributed nature of the VAO requires careful attention to what can be a straightforward operation at a conventional observatory, e.g., the organization of the web site or the collection and combined analysis of logs. Many of these strategies use and extend protocols developed by the international virtual observatory community. Our long-term challenge is working with the underlying data providers to ensure high quality implementation of VO data access protocols (new and better 'telescopes'), assisting astronomical developers to build robust integrating tools (new 'instruments'), and coordinating with the research community to maximize the science enabled.

  6. The Stratospheric Observatory for Infrared Astronomy (SOFIA)

    NASA Astrophysics Data System (ADS)

    Wolf, J.

    2004-05-01

    The Stratospheric Observatory for Infrared Astronomy, SOFIA, will carry a 3-meter-class telescope onboard a Boeing 747SP aircraft to altitudes of 41,000 to 45,000 ft, above most of the atmosphere's IR-absorbing water vapor. The telescope was developed and built in Germany and has been delivered to the U.S. in September 2002. The integration into the B747SP has been com- pleted and functional tests are under way in Waco, Texas. In early 2005 flight-testing of the observatory will initially be dedi-cated to the re-certification of the modified aircraft, then performance tests of the telescope and the electronics and data systems will commence. Later in 2005 after transferring to its home base, NASA's Ames Research Center in Moffett Field, California, SOFIA will start astrophysical observations. A suite of specialized infrared cameras and spectrometers covering wave-lengths between 1 and 600 ?m is being developed by U.S. and German science institutions. In addition to the infrared instruments, a high-speed visible range CCD camera will use the airborne observatory to chase the shadows of celestial bodies during occultations. Once SOFIA will be in routine operations with a planned observing schedule of up to 960 hours at altitude per year, it might also be available as a platform to serendipitous observations not using the main telescope, such as recordings of meteor streams or the search for extra-solar planets transiting their central stars. These are areas of research in which amateur astronomers with relatively small telescopes and state-of-the-art imaging equipment can contribute.

  7. The Boulder magnetic observatory

    USGS Publications Warehouse

    Love, Jeffrey J.; Finn, Carol A.; Pedrie, Kolby L.; Blum, Cletus C.

    2015-08-14

    The Boulder magnetic observatory has, since 1963, been operated by the Geomagnetism Program of the U.S. Geological Survey in accordance with Bureau and national priorities. Data from the observatory are used for a wide variety of scientific purposes, both pure and applied. The observatory also supports developmental projects within the Geomagnetism Program and collaborative projects with allied geophysical agencies.

  8. Sun Shines in High-Energy X-rays

    NASA Image and Video Library

    2014-12-22

    X-rays stream off the sun in this first picture of the sun, overlaid on a picture taken by NASA Solar Dynamics Observatory SDO, taken by NASA NuSTAR. The field of view covers the west limb of the sun.

  9. "Route of astronomical observatories'' project: classical observatories from the Renaissance to the rise of astrophysics

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    2015-08-01

    Observatories offer a good possibility for serial transnational applications. A well-known example for a thematic programme is the Struve arc, already recognized as World Heritage.I will discuss what has been achieved and show examples, like the route of astronomical observatories or the transition from classical astronomy to modern astrophysics (La Plata, Hamburg, Nice, etc.), visible in the architecture, the choice of instruments, and the arrangement of the observatory buildings in an astronomy park. This corresponds to the main categories according to which the ``outstanding universal value'' (UNESCO criteria ii, iv and vi) of the observatories have been evaluated: historic, scientific, and aesthetic. This proposal is based on the criteria of a comparability of the observatories in terms of the urbanistic complex and the architecture, the scientific orientation, equipment of instruments, authenticity and integrity of the preserved state, as well as in terms of historic scientific relations and scientific contributions.Apart from these serial transnational applications one can also choose other groups like baroque or neo-classical observatories, solar physics observatories or a group of observatories equipped with the same kind of instruments and made by the same famous firm. I will also discuss why the implementation of the Astronomy and World Heritage Initiative is difficult and why there are problems to nominate observatories for election in the national Tentative Lists

  10. The Virtual Observatory: I

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2014-11-01

    The concept of the Virtual Observatory arose more-or-less simultaneously in the United States and Europe circa 2000. Ten pages of Astronomy and Astrophysics in the New Millennium: Panel Reports (National Academy Press, Washington, 2001), that is, the detailed recommendations of the Panel on Theory, Computation, and Data Exploration of the 2000 Decadal Survey in Astronomy, are dedicated to describing the motivation for, scientific value of, and major components required in implementing the National Virtual Observatory. European initiatives included the Astrophysical Virtual Observatory at the European Southern Observatory, the AstroGrid project in the United Kingdom, and the Euro-VO (sponsored by the European Union). Organizational/conceptual meetings were held in the US at the California Institute of Technology (Virtual Observatories of the Future, June 13-16, 2000) and at ESO Headquarters in Garching, Germany (Mining the Sky, July 31-August 4, 2000; Toward an International Virtual Observatory, June 10-14, 2002). The nascent US, UK, and European VO projects formed the International Virtual Observatory Alliance (IVOA) at the June 2002 meeting in Garching, with yours truly as the first chair. The IVOA has grown to a membership of twenty-one national projects and programs on six continents, and has developed a broad suite of data access protocols and standards that have been widely implemented. Astronomers can now discover, access, and compare data from hundreds of telescopes and facilities, hosted at hundreds of organizations worldwide, stored in thousands of databases, all with a single query.

  11. SDO Delta H Mode Design and Analysis

    NASA Technical Reports Server (NTRS)

    Mason, Paul A.; Starin, Scott R.

    2007-01-01

    While on orbit, disturbance torques on a three axis stabilized spacecraft tend to increase the system momentum, which is stored in the reaction wheels. Upon reaching the predefined momentum capacity (or maximum wheel speed) of the reaction wheel, an external torque must be used to unload the momentum. The purpose of the Delta H mode is to manage the system momentum. This is accomplished by driving the reaction wheels to a target momentum state while the attitude thrusters, which provide an external torque, are used to maintain the attitude. The Delta H mode is designed to meet the mission requirements and implement the momentum management plan. Changes in the requirements or the momentum management plan can lead to design changes in the mode. The momentum management plan defines the expected momentum buildup trend, the desired momentum state and how often the system is driven to the desired momentum state (unloaded). The desired momentum state is chosen based on wheel capacity, wheel configuration, thruster layout and thruster sizing. For the Solar Dynamics Observatory mission, the predefined wheel momentum capacity is a function of the jitter requirements, power, and maximum momentum capacity. Changes in jitter requirements or power limits can lead to changes in the desired momentum state. These changes propagate into the changes in the momentum management plan and therefore the Delta H mode design. This paper presents the analysis and design performed for the Solar Dynamics Observatory Delta H mode. In particular, the mode logic and processing needed to meet requirements is described along with the momentum distribution formulation. The Delta H mode design is validated using the Solar Dynamics Observatory High Fidelity simulator. Finally, a summary of the design is provided along with concluding remarks.

  12. Detection of Three-minute Oscillations in Full-disk Lyα Emission during a Solar Flare

    NASA Astrophysics Data System (ADS)

    Milligan, Ryan O.; Fleck, Bernhard; Ireland, Jack; Fletcher, Lyndsay; Dennis, Brian R.

    2017-10-01

    In this Letter we report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Lyα (from GOES/EUVS) and Lyman continuum (from Solar Dynamics Observatory (SDO)/EVE) emission from the 2011 February 15 X-class flare (SOL2011-02-15T01:56) revealed a ˜3 minute period present during the flare’s main phase. The formation temperature of this emission locates this radiation at the flare’s chromospheric footpoints, and similar behavior is found in the SDO/Atmospheric Imaging Assembly 1600 and 1700 Å channels, which are dominated by chromospheric continuum. The implication is that the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray (HXR) energies (50-100 keV) in Reuven Ramaty High Energy Solar Spectroscopic Imager data we can state that this 3-minute oscillation does not depend on the rate of energization of non-thermal electrons. However, a second period of 120 s found in both HXR and chromospheric lightcurves is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Lyα line may influence the composition and dynamics of planetary atmospheres during periods of high activity.

  13. Giant Sunspot Erupts on October 24, 2014

    NASA Image and Video Library

    2014-10-25

    SDO AIA image of the X3.1 flare in 131 angstrom light from 21:43 UT on October 24, 2014. Credit:NASA/SDO More info: The sun emitted a significant solar flare, peaking at 5:40 p.m. EDT on Oct. 24, 2014. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured images of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X3.1-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. The flare erupted from a particularly large active region -- labeled AR 12192 -- on the sun that is the largest in 24 years. This is the fourth substantial flare from this active region since Oct. 19. Credit: NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, Ryan O.; Fletcher, Lyndsay; Fleck, Bernhard

    In this Letter we report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Ly α (from GOES /EUVS) and Lyman continuum (from Solar Dynamics Observatory ( SDO )/EVE) emission from the 2011 February 15 X-class flare (SOL2011-02-15T01:56) revealed a ∼3 minute period present during the flare’s main phase. The formation temperature of this emission locates this radiation at the flare’s chromospheric footpoints, and similar behavior is found in the SDO /Atmospheric Imaging Assembly 1600 and 1700 Å channels, which are dominated by chromospheric continuum. The implication is thatmore » the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray (HXR) energies (50–100 keV) in Reuven Ramaty High Energy Solar Spectroscopic Imager data we can state that this 3-minute oscillation does not depend on the rate of energization of non-thermal electrons. However, a second period of 120 s found in both HXR and chromospheric lightcurves is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Ly α line may influence the composition and dynamics of planetary atmospheres during periods of high activity.« less

  15. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)

    NASA Astrophysics Data System (ADS)

    Nicolaus, M.; Rex, M.; Dethloff, K.; Shupe, M.; Sommerfeld, A.

    2016-12-01

    The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) is a key international flagship initiative under the auspices of the International Arctic Science Committee (IASC). The main aim of MOSAiC is to improve our understanding of the functioning of the Arctic coupled system with a complex interplay between processes in the atmosphere, ocean, sea ice and ecosystem coupled through bio-geochemical interactions. The main objective of MOSAiC is to develop a better understanding of these important coupled-system processes so they can be more accurately represented in regional- and global-scale weather- and climate models. Observations covering a full annual cycle over the Arctic Ocean of many critical parameters such as cloud properties, surface energy fluxes, atmospheric aerosols, small-scale sea-ice and oceanic processes, biological feedbacks with the sea-ice ice and ocean, and others have never been made in the central Arctic in all seasons, and certainly not in a coupled system fashion. The main scientific goals focus on data assimilation for numerical weather prediction models, improved sea ice forecasts and climate models, ground truth for satellite remote sensing, energy budget and fluxes through interfaces, sources, sinks and cycles of chemical species, boundary layer processes, habitat conditions and primary productivity and stakeholder services. The MOSAiC Observatory will be deployed in, and drift with, the Arctic sea-ice pack for a full annual cycle, starting in fall 2019 and ending in fall 2020. Initial drift plans are to start in the newly forming fall sea-ice in the East Siberian Sea and follow the Transpolar Drift. The German Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research will made a huge contribution with the icebreaker Polarstern to serve as the central drifting observatory for this year long drift, and the US Department of Energy has committed a comprehensive atmospheric measurement suite. Many other

  16. Sun Emits an X2.2 Flare on March 11, 2015

    NASA Image and Video Library

    2015-03-11

    The sun emitted a significant solar flare, peaking at 12:22 p.m. EDT on March 11, 2015. NASA’s Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X2.2-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. This image was captured by NASA's Solar Dynamics Observatory and shows a blend of light from the 171 and 131 Ångström wavelengths. The Earth is shown to scale. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Creating Griffith Observatory

    NASA Astrophysics Data System (ADS)

    Cook, Anthony

    2013-01-01

    Griffith Observatory has been the iconic symbol of the sky for southern California since it began its public mission on May 15, 1935. While the Observatory is widely known as being the gift of Col. Griffith J. Griffith (1850-1919), the story of how Griffith’s gift became reality involves many of the people better known for other contributions that made Los Angeles area an important center of astrophysics in the 20th century. Griffith began drawing up his plans for an observatory and science museum for the people of Los Angeles after looking at Saturn through the newly completed 60-inch reflector on Mt. Wilson. He realized the social impact that viewing the heavens could have if made freely available, and discussing the idea of a public observatory with Mt. Wilson Observatory’s founder, George Ellery Hale, and Director, Walter Adams. This resulted, in 1916, in a will specifying many of the features of Griffith Observatory, and establishing a committee managed trust fund to build it. Astronomy popularizer Mars Baumgardt convinced the committee at the Zeiss Planetarium projector would be appropriate for Griffith’s project after the planetarium was introduced in Germany in 1923. In 1930, the trust committee judged funds to be sufficient to start work on creating Griffith Observatory, and letters from the Committee requesting help in realizing the project were sent to Hale, Adams, Robert Millikan, and other area experts then engaged in creating the 200-inch telescope eventually destined for Palomar Mountain. A Scientific Advisory Committee, headed by Millikan, recommended that Caltech Physicist Edward Kurth be put in charge of building and exhibit design. Kurth, in turn, sought help from artist Russell Porter. The architecture firm of John C. Austin and Fredrick Ashley was selected to design the project, and they adopted the designs of Porter and Kurth. Philip Fox of the Adler Planetarium was enlisted to manage the completion of the Observatory and become its

  18. The Quest for an OCO (Orbiting Carbon Observatory) Re-Flight

    NASA Technical Reports Server (NTRS)

    Basilio, Ralph R.; Livermore, Thomas R.; Shen, Y. Janet; Pollock, H. Randy

    2010-01-01

    The objective of the OCO (Orbiting Carbon Observatory) mission was to make the first space-based measurements of atmospheric carbon dioxide with the accuracy needed to quantify sources and sinks of this important greenhouse gas. Unfortunately, the observatory was lost as a result of a launch vehicle failure on 24 February 2009. The JPL (Jet Propulsion Laboratory) was directed to assess the options for the re-flight of the OCO instrument and recovery of the carbon-related measurement, and to understand and quantitatively assess the cost, schedule, and technical and programmatic risks of the identified options. The two most likely solutions were (1) a shared platform with the TIRS (Thermal Infrared Sensor) instrument and (2) a dedicated OSC (Orbital Sciences Corporation) LEOStar-2 spacecraft bus similar to that utilized for the original OCO mission. A joint OCO-TIRS mission study was commissioned and two specific options were examined. However, each presented technical challenges that would drive cost. It was determined that the best option was to rebuild the OCO observatory to the extent possible including another LEOStar-2 spacecraft bus. This lowest risk approach leverages the original OCO design and provides the shortest path to launch, which is targeted for no later than the February 2013 timeframe.

  19. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-01-01

    Managed by the Marshall Space Flight Center and built by TRW, the second High Energy Astronomy Observatory was launched November 13, 1978. The observatory carried the largest X-ray telescope ever built and was renamed the Einstein Observatory after achieving orbit.

  20. Large-scale photospheric motions determined from granule tracking and helioseismology from SDO/HMI data

    NASA Astrophysics Data System (ADS)

    Roudier, Th.; Švanda, M.; Ballot, J.; Malherbe, J. M.; Rieutord, M.

    2018-04-01

    Context. Large-scale flows in the Sun play an important role in the dynamo process linked to the solar cycle. The important large-scale flows are the differential rotation and the meridional circulation with an amplitude of km s-1 and few m s-1, respectively. These flows also have a cycle-related components, namely the torsional oscillations. Aim. Our attempt is to determine large-scale plasma flows on the solar surface by deriving horizontal flow velocities using the techniques of solar granule tracking, dopplergrams, and time-distance helioseismology. Methods: Coherent structure tracking (CST) and time-distance helioseismology were used to investigate the solar differential rotation and meridional circulation at the solar surface on a 30-day HMI/SDO sequence. The influence of a large sunspot on these large-scale flows with a specific 7-day HMI/SDO sequence has been also studied. Results: The large-scale flows measured by the CST on the solar surface and the same flow determined from the same data with the helioseismology in the first 1 Mm below the surface are in good agreement in amplitude and direction. The torsional waves are also located at the same latitudes with amplitude of the same order. We are able to measure the meridional circulation correctly using the CST method with only 3 days of data and after averaging between ± 15° in longitude. Conclusions: We conclude that the combination of CST and Doppler velocities allows us to detect properly the differential solar rotation and also smaller amplitude flows such as the meridional circulation and torsional waves. The results of our methods are in good agreement with helioseismic measurements.

  1. The Little Thompson Observatory

    NASA Astrophysics Data System (ADS)

    Schweitzer, A.; VanLew, K.; Melsheimer, T.; Sackett, C.

    2000-12-01

    The Little Thompson Observatory is the second member of the Telescopes in Education (TIE) project. The observatory is located on the grounds of Berthoud High School in northern Colorado. The telescope is operational over the Internet, and we are now debugging the software to enable schools to control the telescope from classroom computers and take images. Local schools and youth organizations have prioritized access to the telescope, and there are monthly opportunities for public viewing. In the future, the telescope will be open after midnight to world-wide use by schools following the model of the first TIE observatory, the 24" telescope on Mt. Wilson. The observatory grew out of grassroots support from the local community surrounding Berthoud, Colorado, a town of 3,500 residents. TIE has provided the observatory with a Tinsley 18" Cassegrain telescope on a 10-year loan. The facility has been built with tremendous support from volunteers and the local school district. With funding from an IDEAS grant, we have completed the first teacher training workshops to allow K-12 schools in northern Colorado to make use of the Little Thompson Observatory, including remote observing from classrooms. The workshops were accredited by the school district, and received very favorable reviews.

  2. The Penllergare Observatory

    NASA Astrophysics Data System (ADS)

    Birks, J. L.

    2005-12-01

    This rather picturesque and historically important Victorian observatory was built by the wealthy John Dillwyn Llewelyn near to his mansion, some four miles north-west of Swansea, Wales. He had many scientific interests, in addition to astronomy, and was a notable pioneer of photography in Wales. Together with his eldest daughter, Thereza, (who married the grandson of the fifth Astronomer Royal, Nevil Maskelyne), he took some early photographs of the Moon from this site. This paper describes the construction of the observatory, and some of those primarily involved with it. Despite its having undergone restoration work in 1982, the state of the observatory is again the cause for much concern.

  3. Recent Ultra High Energy neutrino bounds and multimessenger observations with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Zas, Enrique

    2018-01-01

    The overall picture of the highest energy particles produced in the Universe is changing because of measurements made with the Pierre Auger Observatory. Composition studies of cosmic rays point towards an unexpected mixed composition of intermediate mass nuclei, more isotropic than anticipated, which is reshaping the future of the field and underlining the priority to understand composition at the highest energies. The Observatory is competitive in the search for neutrinos of all flavors above about 100 PeV by looking for very inclined showers produced deep in the atmosphere by neutrinos interacting either in the atmosphere or in the Earth's crust. It covers a large field of view between -85° and 60° declination in equatorial coordinates. Neutrinos are expected because of the existence of ultra high energy cosmic rays. They provide valuable complementary information, their fluxes being sensitive to the primary cosmic ray masses and their directions reflecting the source positions. We report the results of the neutrino search providing competitive bounds to neutrino production and strong constraints to a number of production models including cosmogenic neutrinos due to ultra high energy protons. We also report on two recent contributions of the Observatory to multimessenger studies by searching for correlations of neutrinos both with cosmic rays and with gravitational waves. The correlations of the directions of the highest energy astrophysical neutrinos discovered with IceCube with the highest energy cosmic rays detected with the Auger Observatory and the Telescope Array revealed an excess that is not statistically significant and is being monitored. The targeted search for neutrinos correlated with the discovery of the gravitational wave events GW150914 and GW151226 with advanced LIGO has led to the first bounds on the energy emitted by black hole mergers in Ultra-High Energy Neutrinos.

  4. Ancient "Observatories" - A Relevant Concept?

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    It is quite common, when reading popular books on astronomy, to see a place referred to as "the oldest observatory in the world". In addition, numerous books on archaeoastronomy, of various levels of quality, frequently refer to the existence of "prehistoric" or "ancient" observatories when describing or citing monuments that were certainly not built with the primary purpose of observing the skies. Internet sources are also guilty of this practice. In this chapter, the different meanings of the word observatory will be analyzed, looking at how their significances can be easily confused or even interchanged. The proclaimed "ancient observatories" are a typical result of this situation. Finally, the relevance of the concept of the ancient observatory will be evaluated.

  5. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph B.

    2007-01-01

    The Virtual Solar Observatory (VSO) is now able to search for solar data ranging from the radio to gamma rays, obtained from space and groundbased observatories, from 26 sources at 12 data providers, and from 1915 to the present. The solar physics community can use a Web interface or an Application Programming Interface (API) that allows integrating VSO searches into other software, including other Web services. Over the next few years, this integration will be especially obvious as the NASA Heliophysics division sponsors the development of a heliophysics-wide virtual observatory (VO), based on existing VO's in heliospheric, magnetospheric, and ionospheric physics as well as the VSO. We examine some of the challenges and potential of such a "meta-VO."

  6. Four years (2011-2015) of total gaseous mercury measurements from the Cape Verde Atmospheric Observatory

    NASA Astrophysics Data System (ADS)

    Read, Katie A.; Neves, Luis M.; Carpenter, Lucy J.; Lewis, Alastair C.; Fleming, Zoe L.; Kentisbeer, John

    2017-04-01

    Mercury is a chemical with widespread anthropogenic emissions that is known to be highly toxic to humans, ecosystems and wildlife. Global anthropogenic emissions are around 20 % higher than natural emissions and the amount of mercury released into the atmosphere has increased since the industrial revolution. In 2005 the European Union and the United States adopted measures to reduce mercury use, in part to offset the impacts of increasing emissions in industrialising countries. The changing regional emissions of mercury have impacts on a range of spatial scales. Here we report 4 years (December 2011-December 2015) of total gaseous mercury (TGM) measurements at the Cape Verde Observatory (CVO), a global WMO-GAW station located in the subtropical remote marine boundary layer. Observed total gaseous mercury concentrations were between 1.03 and 1.33 ng m-3 (10th, 90th percentiles), close to expectations based on previous interhemispheric gradient measurements. We observe a decreasing trend in TGM (-0.05 ± 0.04 ng m-3 yr-1, -4.2 % ± 3.3 % yr-1) over the 4 years consistent with the reported decrease of mercury concentrations in North Atlantic surface waters and reductions in anthropogenic emissions. The decrease was more visible in the summer (July-September) than in the winter (December-February), when measurements were impacted by air from the African continent and Sahara/Sahel regions. African air masses were also associated with the highest and most variable TGM concentrations. We suggest that the less pronounced downward trend inclination in African air may be attributed to poorly controlled anthropogenic sources such as artisanal and small-scale gold mining (ASGM) in West Africa.

  7. Research Article. Towards a tidal loading model for the Argentine-German Geodetic Observatory (La Plata)

    NASA Astrophysics Data System (ADS)

    Richter, A.; Müller, L.; Marderwald, E.; Mendoza, L.; Kruse, E.; Perdomo, R.; Scheinert, M.; Perdomo, S.

    2017-02-01

    We present a regionalized model of ocean tidal loading effects for the Argentine-German Geodetic Observatory in La Plata. It provides the amplitudes and phases of gravity variations and vertical deformation for nine tidal constituents to be applied as corrections to the observatory's future geodetic observation data. This model combines a global ocean tide model with a model of the tides in the Río de la Plata estuary. A comparison with conventional predictions based only on the global ocean tide model reveals the importance of the incorporation of the regional tide model. Tidal loading at the observatory is dominated by the tides in the Atlantic Ocean. An additional contribution of local tidal loading in channels and groundwater is examined. The magnitude of the tidal loading is also reviewed in the context of the effects of solid earth tides, atmospheric loading and non-tidal loads.

  8. HMI Measured Doppler Velocity Contamination from the SDO Orbit Velocity

    NASA Astrophysics Data System (ADS)

    Scherrer, Phil; HMI Team

    2016-10-01

    The Problem: The SDO satellite is in an inclined Geo-sync orbit which allows uninterrupted views of the Sun nearly 98% of the time. This orbit has a velocity of about 3,500 m/s with the solar line-of-sight component varying with time of day and time of year. Due to remaining calibration errors in wavelength filters the orbit velocity leaks into the line-of-sight solar velocity and magnetic field measurements. Since the same model of the filter is used in the Milne-Eddington inversions used to generate the vector magnetic field data, the orbit velocity also contaminates the vector magnetic products. These errors contribute 12h and 24h variations in most HMI data products and are known as the 24-hour problem. Early in the mission we made a patch to the calibration that corrected the disk mean velocity. The resulting LOS velocity has been used for helioseismology with no apparent problems. The velocity signal has about a 1% scale error that varies with time of day and with velocity, i.e. it is non-linear for large velocities. This causes leaks into the LOS field (which is simply the difference between velocity measured in LCP and RCP rescaled for the Zeeman splitting). This poster reviews the measurement process, shows examples of the problem, and describes recent work at resolving the issues. Since the errors are in the filter characterization it makes most sense to work first on the LOS data products since they, unlike the vector products, are directly and simply related to the filter profile without assumptions on the solar atmosphere, filling factors, etc. Therefore this poster is strictly limited to understanding how to better understand the filter profiles as they vary across the field and with time of day and time in years resulting in velocity errors of up to a percent and LOS field estimates with errors up to a few percent (of the standard LOS magnetograph method based on measuring the differences in wavelength of the line centroids in LCP and RCP light). We

  9. NASA's Great Observatories: Paper Model.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This educational brief discusses observatory stations built by the National Aeronautics and Space Administration (NASA) for looking at the universe. This activity for grades 5-12 has students build paper models of the observatories and study their history, features, and functions. Templates for the observatories are included. (MVL)

  10. Everyday astronomy @ Sydney Observatory

    NASA Astrophysics Data System (ADS)

    Parello, S. L.

    2008-06-01

    Catering to a broad range of audiences, including many non-English speaking visitors, Sydney Observatory offers everything from school programmes to public sessions, day care activities to night observing, personal interactions to web-based outreach. With a history of nearly 150 years of watching the heavens, Sydney Observatory is now engaged in sharing the wonder with everybody in traditional and innovative ways. Along with time-honoured tours of the sky through two main telescopes, as well as a small planetarium, Sydney Observatory also boasts a 3D theatre, and offers programmes 363 days a year - rain or shine, day and night. Additionally, our website neversleeps, with a blog, YouTube videos, and night sky watching podcasts. And for good measure, a sprinkling of special events such as the incomparable Festival of the Stars, for which most of northern Sydney turns out their lights. Sydney Observatory is the oldest working observatory in Australia, and we're thrilled to be looking forward to our 150th Anniversary next year in anticipation of the International Year of Astronomy immediately thereafter.

  11. Alfvén Wave Heating Model of an Active Region and Comparisons with the EIS Observations

    NASA Astrophysics Data System (ADS)

    Lawless, A. P.; Asgari-Targhi, M.

    2013-12-01

    We study the generation and dissipation of Alfvén waves in open and closed field lines using the images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) (van Ballegouijen et al. 2011; Asgari-Targhi & van Ballegouijen 2012; Asgari et al. 2013). The goal is to search for observational evidence of Alfvén waves in the solar corona and to understand their role in coronal heating. We focus on one particular active region on the 10th of December 2007. Using the MDI magnetogram and the potential field modeling of this region, we create three-dimensional MHD models for several open and closed field lines in different locations in the active region. For each model, we compute the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We then compare these results with the EIS observations. This research is supported by the NSF grant for the Solar physics REU Program at the Smithsonian Astrophysical Observatory (AGS-1263241) and contract SP02H1701R from Lockheed-Martin to SAO.

  12. Comparison between two models of energy balance in coronal loops

    NASA Astrophysics Data System (ADS)

    Mac Cormack, C.; López Fuentes, M.; Vásquez, A. M.; Nuevo, F. A.; Frazin, R. A.; Landi, E.

    2017-10-01

    In this work we compare two models to analyze the energy balance along coronal magnetic loops. For the first stationary model we deduce an expression of the energy balance along the loops expressed in terms of quantities provided by the combination of differential emission measure tomography (DEMT) applied to EUV images time series and potential extrapolations of the coronal magnetic field. The second applied model is a 0D hydrodynamic model that provides the evolution of the average properties of the coronal plasma along the loops, using as input parameters the loop length and the heating rate obtained with the first model. We compare the models for two Carrington rotations (CR) corresponding to different periods of activity: CR 2081, corresponding to a period of minimum activity observed with the Extreme Ultraviolet Imager (EUVI) on board of the Solar Terrestrial Relations Observatory (STEREO), and CR 2099, corresponding to a period of activity increase observed with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The results of the models are consistent for both rotations.

  13. Anomalous Temporal Behaviour of Broadband Ly Alpha Observations During Solar Flares from SDO/EVE

    NASA Technical Reports Server (NTRS)

    Milligan, Ryan O.; Chamberlin, Phillip C.

    2016-01-01

    Although it is the most prominent emission line in the solar spectrum, there has been a notable lack of studies devoted to variations in Lyman-alpha (Ly-alpha) emission during solar flares in recent years. However, the few examples that do exist have shown Ly-alpha emission to be a substantial radiator of the total energy budget of solar flares (of the order of 10 percent). It is also a known driver of fluctuations in the Earth's ionosphere. The EUV (Extreme Ultra-Violet) Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) now provides broadband, photometric Ly-alpha data at 10-second cadence with its Multiple EUV Grating Spectrograph-Photometer (MEGS-P) component, and has observed scores of solar flares in the 5 years since it was launched. However, the MEGS-P time profiles appear to display a rise time of tens of minutes around the time of the flare onset. This is in stark contrast to the rapid, impulsive increase observed in other intrinsically chromospheric features (H-alpha, Ly-beta, LyC, C III, etc.). Furthermore, the emission detected by MEGS-P peaks around the time of the peak of thermal soft X-ray emission and not during the impulsive phase when energy deposition in the chromosphere (often assumed to be in the form of non-thermal electrons) is greatest. The time derivative of Ly-alpha lightcurves also appears to resemble that of the time derivative of soft X-rays, reminiscent of the Neupert effect. Given that spectrally-resolved Ly-alpha observations during flares from SORCE / SOLSTICE (Solar Radiation and Climate Experiment / Solar Stellar Irradiance Comparison Experiment) peak during the impulsive phase as expected, this suggests that the atypical behaviour of MEGS-P data is a manifestation of the broadband nature of the observations. This could imply that other lines andor continuum emission that becomes enhanced during flares could be contributing to the passband. Users are hereby urged to exercise caution when interpreting

  14. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-12

    Annmarie Eldering, OCO-2 deputy project scientist with NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, demonstrates with a few white beans in a container of black beans the small differences in carbon dioxide in the atmosphere that the Orbiting Carbon Observatory-2 (OCO-2) will be able to measure, during a press briefing, Thursday, June 12, 2014, at NASA Headquarters in Washington. OCO-2, NASA’s first spacecraft dedicated to studying carbon dioxide, is set for a July 1, 2014, launch from Vandenberg Air Force Base in California. Its mission is to measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  15. Using Solar Dynamics Observatory Data in the Classroom to Do Real Science -- A Community College Astronomy Laboratory Investigation

    NASA Astrophysics Data System (ADS)

    Scherrer, Deborah K.; Hildreth, S.; Lee, S.; Dave, T.; Scherrer, P. H.

    2013-07-01

    A partnership between Stanford University and Chabot Community College (Hayward, CA) has developed a series of laboratory exercises using SDO (AIA, HMI) data, targeted for community college students in an introductory astronomy lab class. The labs lead students to explore what SDO can do via online resources and videos. Students investigate their chosen solar events, generate their own online videos, prepare their own hypotheses relating to the events, and explore outcomes. Final assessment should be completed by the end of summer 2013. Should the labs prove valuable, they may be adapted for high school use.

  16. KSC-2009-6236

    NASA Image and Video Library

    2009-11-09

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., the Solar Dynamics Observatory, or SDO, with its solar arrays deployed, is ready to receive signal commands to test the release mechanism sequence for the arrays. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. Photo credit: NASA/Jack Pfaller

  17. KSC-2009-5305

    NASA Image and Video Library

    2009-10-01

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., workers secure the Solar Dynamics Observatory, or SDO, onto a work stand during preparations for propulsion system testing and leak checks on the spacecraft. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. Photo credit: NASA/Amanda Diller

  18. Verification of the Solar Dynamics Observatory High Gain Antenna Pointing Algorithm Using Flight Data

    NASA Technical Reports Server (NTRS)

    Bourkland, Kristin L.; Liu, Kuo-Chia

    2011-01-01

    The Solar Dynamics Observatory (SDO) is a NASA spacecraft designed to study the Sun. It was launched on February 11, 2010 into a geosynchronous orbit, and uses a suite of attitude sensors and actuators to finely point the spacecraft at the Sun. SDO has three science instruments: the Atmospheric Imaging Assembly (AIA), the Helioseismic and Magnetic Imager (HMI), and the Extreme Ultraviolet Variability Experiment (EVE). SDO uses two High Gain Antennas (HGAs) to send science data to a dedicated ground station in White Sands, New Mexico. In order to meet the science data capture budget, the HGAs must be able to transmit data to the ground for a very large percentage of the time. Each HGA is a dual-axis antenna driven by stepper motors. Both antennas transmit data at all times, but only a single antenna is required in order to meet the transmission rate requirement. For portions of the year, one antenna or the other has an unobstructed view of the White Sands ground station. During other periods, however, the view from both antennas to the Earth is blocked for different portions of the day. During these times of blockage, the two HGAs take turns pointing to White Sands, with the other antenna pointing out to space. The HGAs handover White Sands transmission responsibilities to the unblocked antenna. There are two handover seasons per year, each lasting about 72 days, where the antennas hand off control every twelve hours. The non-tracking antenna slews back to the ground station by following a ground commanded trajectory and arrives approximately 5 minutes before the formerly tracking antenna slews away to point out into space. The SDO Attitude Control System (ACS) runs at 5 Hz, and the HGA Gimbal Control Electronics (GCE) run at 200 Hz. There are 40 opportunities for the gimbals to step each ACS cycle, with a hardware limitation of no more than one step every three GCE cycles. The ACS calculates the desired gimbal motion for tracking the ground station or for slewing

  19. NASA's SDO Captures Mercury Transit Time-lapses SDO Captures Mercury Transit Time-lapse

    NASA Image and Video Library

    2017-12-08

    Less than once per decade, Mercury passes between the Earth and the sun in a rare astronomical event known as a planetary transit. The 2016 Mercury transit occurred on May 9th, between roughly 7:12 a.m. and 2:42 p.m. EDT. The images in this video are from NASA’s Solar Dynamics Observatory Music: Encompass by Mark Petrie For more info on the Mercury transit go to: www.nasa.gov/transit This video is public domain and may be downloaded at: svs.gsfc.nasa.gov/12235 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. The EUV Emission in Comet-Solar Corona Interactions

    NASA Technical Reports Server (NTRS)

    Bryans, Paul; Pesnell, William Dean; Schrijver, Carolus J.; Brown, John C.; Battams, Karl; Saint-Hilaire, Pasal; Liu, Wei; Hudson, Hugh S.

    2011-01-01

    The Atmospheric Imaging Assembly (AlA) on the Solar Dynamics Observatory (SDO) viewed a comet as it passed through the solar corona on 2011 July 5. This was the first sighting of a comet by a EUV telescope. For 20 minutes, enhanced emission in several of the AlA wavelength bands marked the path of the comet. We explain this EUV emission by considering the evolution of the cometary atmosphere as it interacts with the ambient solar atmosphere. Water ice in the comet rapidly sublimates as it approaches the Sun. This water vapor is then photodissociated, primarily by Ly-alpha, by the solar radiation field to create atomic Hand O. Other molecules present in the comet also evaporate and dissociate to give atomic Fe and other metals. Subsequent ionization of these atoms can be achieved by a number of means, including photoionization, electron impact, and charge exchange with coronal protons and other highly-charged species. Finally, particles from the cometary atmosphere are thermalized to the background temperature of the corona. Each step could cause emission in the AlA bandpasses. We will report here on their relative contribution to the emission seen in the AlA telescopes.

  1. Overview of the Manitou Experimental Forest Observatory: Site description and selected science results from 2008 to 2013

    Treesearch

    J. Ortega; A. Turnipseed; A. B. Guenther; T. G. Karl; D. A. Day; D. Gochis; J. A. Huffman; A. J. Prenni; E. J. T. Levin; S. M. Kreidenweis; P. J. DeMott; Y. Tobo; E. G. Patton; A. Hodzic; Y. Y. Cui; P. C. Harley; R. S. Hornbrook; E. C. Apel; R. K. Monson; A. S. D. Eller; J. P. Greenberg; M. C. Barth; P. Campuzano-Jost; B. B. Palm; J. L. Jimenez; A. C. Aiken; M. K. Dubey; C. Geron; J. Offenberg; M. G. Ryan; P. J. Fornwalt; S. C. Pryor; F. N. Keutsch; J. P. DiGangi; A. W. H. Chan; A. H. Goldstein; G. M. Wolfe; S. Kim; L. Kaser; R. Schnitzhofer; A. Hansel; C. A. Cantrell; R. L. Mauldin; J. N. Smith

    2014-01-01

    The Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen (BEACHON) project seeks to understand the feedbacks and interrelationships between hydrology, biogenic emissions, carbon assimilation, aerosol properties, clouds and associated feedbacks within water-limited ecosystems. The Manitou Experimental Forest Observatory (MEFO) was...

  2. KSC-2009-4590

    NASA Image and Video Library

    2009-08-11

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., the Solar Dynamics Observatory, or SDO, is moved, or gimbaled, during performance testing. All of the spacecraft science instruments are being tested in their last major evaluation before launch. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Liftoff on an Atlas V rocket is scheduled for Dec. 4. Photo credit: NASA/Jack Pfaller

  3. Mercury Transit (Composite Image)

    NASA Image and Video Library

    2017-12-08

    On May 9, 2016, Mercury passed directly between the sun and Earth. This event – which happens about 13 times each century – is called a transit. NASA’s Solar Dynamics Observatory, or SDO, studies the sun 24/7 and captured the entire seven-and-a-half-hour event. This composite image of Mercury’s journey across the sun was created with visible-light images from the Helioseismic and Magnetic Imager on SDO. Image Credit: NASA's Goddard Space Flight Center/SDO/Genna Duberstein NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. SOFIA: The Next Generation Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Dunham, Edward; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    SOFIA, the Stratospheric Observatory For Infrared Astronomy, will carry a 2.5 meter telescope into the stratosphere on 160 7.5 hour flights per year. At stratospheric altitudes SOFIA will operate above 99% of the water vapor in the Earth's atmosphere, allowing observation of wide regions of the infrared spectrum that are totally obscured from even the best ground-based sites. Its mobility and long range will allow worldwide observation of ephemeral events such as occultations and eclipses. SOFIA will be developed jointly by NASA and DARA, the German space agency. It has been included in the President's budget request to Congress for a development start in FY96 (this October!) and enjoys strong support in Germany. This talk will cover SOFIA's scientific goals, technical characteristics, science operating plan, and political status.

  5. Studying the Light Pollution around Urban Observatories: Columbus State University’s WestRock Observatory

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Brendon Andrew; Johnson, Michael

    2017-01-01

    Light pollution plays an ever increasing role in the operations of observatories across the world. This is especially true in urban environments like Columbus, GA, where Columbus State University’s WestRock Observatory is located. Light pollution’s effects on an observatory include high background levels, which results in a lower signal to noise ratio. Overall, this will limit what the telescope can detect, and therefore limit the capabilities of the observatory as a whole.Light pollution has been mapped in Columbus before using VIIRS DNB composites. However, this approach did not provide the detailed resolution required to narrow down the problem areas around the vicinity of the observatory. The purpose of this study is to assess the current state of light pollution surrounding the WestRock observatory by measuring and mapping the brightness of the sky due to light pollution using light meters and geographic information system (GIS) software.Compared to VIIRS data this study allows for an improved spatial resolution and a direct measurement of the sky background. This assessment will enable future studies to compare their results to the baseline established here, ensuring that any changes to the way the outdoors are illuminated and their effects can be accurately measured, and counterbalanced.

  6. Analysis of an Anemone-Type Eruption in an On-Disk Coronal Hole

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi; Tennant, Allyn; Alexander, Caroline; Sterling, Alphonse; Moore, Ronald; Woolley, Robert

    2016-01-01

    We report on an eruption seen in a very small coronal hole (about 120 arcseconds across), beginning at approximately 19:00 Universal Time on March 3, 2016. The event was initially observed by an amateur astronomer (RW) in an H-alpha movie from the Global Oscillation Network Group (GONG); the eruption attracted the attention of the observer because there was no nearby active region. To examine the region in detail, we use data from the Solar Dynamics Observatory (SDO), provided by the Atmospheric Imaging Assembly (AIA) in wavelengths 193 angstroms, 304 angstroms, and 94 angstroms, and the Helioseismic and Magnetic Imager (HMI). Data analysis and calibration activities such as scaling, rotation so that north is up, and removal of solar rotation are accomplished with SunPy. The eruption in low-cadence HMI data begins with the appearance of a bipole in the location of the coronal hole, followed by (apparent) expansion outwards when the intensity of the AIA wavelengths brighten; as the event proceeds, the coronal hole disappears. From high-cadence data, we will present results on the magnetic evolution of this structure, how it is related to intensity brightenings seen in the various SDO/AIA wavelengths, and how this event compares with the standard-anemone picture.

  7. NASA's Solar Eclipse Composite Image July 11, 2010

    NASA Image and Video Library

    2017-12-08

    Eclipse 2010 Composite A solar eclipse photo (gray and white) from the Williams College Expedition to Easter Island in the South Pacific (July 11, 2010) was embedded with an image of the Sun’s outer corona taken by the Large Angle Spectrometric Coronagraph (LASCO) on the SOHO spacecraft and shown in red false color. LASCO uses a disk to blot out the bright sun and the inner corona so that the faint outer corona can be monitored and studied. Further, the dark silhouette of the moon was covered with an image of the Sun taken in extreme ultraviolet light at about the same time by the Atmospheric Imaging Assembly on Solar Dynamics Observatory (SDO). The composite brings out the correlation of structures in the inner and outer corona. Credits: Williams College Eclipse Expedition -- Jay M. Pasachoff, Muzhou Lu, and Craig Malamut; SOHO’s LASCO image courtesy of NASA/ESA; solar disk image from NASA’s SDO; compositing by Steele Hill, NASA Goddard Space Flight Center. NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  8. ON THE CONNECTION BETWEEN PROPAGATING SOLAR CORONAL DISTURBANCES AND CHROMOSPHERIC FOOTPOINTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryans, P.; McIntosh, S. W.; Moortel, I. De

    2016-09-20

    The Interface Region Imaging Spectrograph ( IRIS ) provides an unparalleled opportunity to explore the (thermal) interface between the chromosphere, transition region, and the coronal plasma observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory ( SDO ). The SDO /AIA observations of coronal loop footpoints show strong recurring upward propagating signals—“propagating coronal disturbances” (PCDs) with apparent speeds of the order of 100–120 km s{sup −1}. That signal has a clear signature in the slit-jaw images of IRIS in addition to identifiable spectral signatures and diagnostics in the Mg iih (2803 Å) line. In analyzing the Mgmore » iih line, we are able to observe the presence of magnetoacoustic shock waves that are also present in the vicinity of the coronal loop footpoints. We see there is enough of a correspondence between the shock propagation in Mg iih, the evolution of the Si iv line profiles, and the PCD evolution to indicate that these waves are an important ingredient for PCDs. In addition, the strong flows in the jet-like features in the IRIS Si iv slit-jaw images are also associated with PCDs, such that waves and flows both appear to be contributing to the signals observed at the footpoints of PCDs.« less

  9. Analysis of an Anemone-Type Eruption in an On-Disk Coronal Hole

    NASA Astrophysics Data System (ADS)

    Adams, Mitzi; Tennant, Allyn F.; Alexander, Caroline E.; Sterling, Alphonse C.; Moore, Ronald L.; Woolley, Robert

    2016-05-01

    We report on an eruption seen in a very small coronal hole (about 120'' across), beginning at approximately 19:00 UT on March 3, 2016. The event was initially observed by an amateur astronomer (RW) in an H-alpha movie from the Global Oscillation Network Group (GONG); the eruption attracted the attention of the observer because there was no nearby active region. To examine the region in detail, we use data from the Solar Dynamics Observatory (SDO), provided by the Atmospheric Imaging Assembly (AIA) in wavelengths 193 Å, 304 Å, and 94 Å, and the Helioseismic and Magnetic Imager (HMI). Data analysis and calibration activities such as scaling, rotation so that north is up, and removal of solar rotation are accomplished with SunPy. The eruption in low-cadence HMI data begins with the appearance of a bipole in the location of the coronal hole, followed by (apparent) expansion outwards when the intensity of the AIA wavelengths brighten; as the event proceeds, the coronal hole disappears. From high-cadence data, we will present results on the magnetic evolution of this structure, how it is related to intensity brightenings seen in the various SDO/AIA wavelengths, and how this event compares with the standard-anemone picture.

  10. Observational evidence of torus instability as trigger mechanism for coronal mass ejections: The 2011 August 4 filament eruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuccarello, F. P.; Poedts, S.; Seaton, D. B.

    Solar filaments are magnetic structures often observed in the solar atmosphere and consist of plasma that is cooler and denser than their surroundings. They are visible for days—even weeks—which suggests that they are often in equilibrium with their environment before disappearing or erupting. Several eruption models have been proposed that aim to reveal what mechanism causes (or triggers) these solar eruptions. Validating these models through observations represents a fundamental step in our understanding of solar eruptions. We present an analysis of the observation of a filament eruption that agrees with the torus instability model. This model predicts that a magneticmore » flux rope embedded in an ambient field undergoes an eruption when the axis of the flux rope reaches a critical height that depends on the topology of the ambient field. We use the two vantage points of the Solar Dynamics Observatory (SDO) and the Solar TErrestrial RElations Observatory to reconstruct the three-dimensional shape of the filament, to follow its morphological evolution, and to determine its height just before eruption. The magnetograms acquired by SDO/Helioseismic and Magnetic Imager are used to infer the topology of the ambient field and to derive the critical height for the onset of the torus instability. Our analysis shows that the torus instability is the trigger of the eruption. We also find that some pre-eruptive processes, such as magnetic reconnection during the observed flares and flux cancellation at the neutral line, facilitated the eruption by bringing the filament to a region where the magnetic field was more vulnerable to the torus instability.« less

  11. Flux Cancelation: The Key to Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Panesar, Navdeep K.; Sterling, Alphonse; Moore, Ronald; Chakrapani, Prithi; Innes, Davina; Schmit, Don; Tiwari, Sanjiv

    2017-01-01

    Solar coronal jets are magnetically channeled eruptions that occur in all types of solar environments (e.g. active regions, quiet-Sun regions and coronal holes). Recent studies show that coronal jets are driven by the eruption of small-scare filaments (minifilaments). Once the eruption is underway magnetic reconnection evidently makes the jet spire and the bright emission in the jet base. However, the triggering mechanism of these eruptions and the formation mechanism of the pre-jet minifilaments are still open questions. In this talk, mainly using SDO/AIA (Solar Dynamics Observatory / Atmospheric Imaging Assembly) and SDO/HIM (Solar Dynamics Observatory / Helioseismic and Magnetic Imager) data, first I will address the question: what triggers the jet-driving minifilament eruptions in different solar environments (coronal holes, quiet regions, active regions)? Then I will talk about the magnetic field evolution that produces the pre-jet minifilaments. By examining pre-jet evolutionary changes in line-of-sight HMI magnetograms while examining concurrent EUV (Extreme Ultra-Violet) images of coronal and transition-region emission, we find clear evidence that flux cancelation is the main process that builds pre-jet minifilaments, and is also the main process that triggers the eruptions. I will also present results from our ongoing work indicating that jet-driving minifilament eruptions are analogous to larger-scare filament eruptions that make flares and CMEs (Coronal Mass Ejections). We find that persistent flux cancellation at the neutral line of large-scale filaments often triggers their eruptions. From our observations we infer that flux cancelation is the fundamental process from the buildup and triggering of solar eruptions of all sizes.

  12. Investigating High O3 Days at the Boulder Atmospheric Observatory in Summer 2015

    NASA Astrophysics Data System (ADS)

    Lindaas, J.; Abeleira, A.; Farmer, D.; Pollack, I. B.; Flocke, F. M.; Roscioli, J. R.; Herndon, S. C.; Fischer, E. V.

    2017-12-01

    The Northern Colorado Front Range is currently in nonattainment of the U.S. EPA National Ambient Air Quality Standard (NAAQS) for ozone (O3). Significant recent research efforts have been devoted to investigating the underlying causes of the high O3 abundances observed in this region. A growing population and a recent boom in oil and natural gas production within the Denver-Julesberg Basin have contributed to increased anthropogenic emissions of many O3 precursors. Better understanding the contributions of emissions from different sectors in the Front Range to O3 production can help inform more effective control strategies. Here, we aim to use measurements of O3 and a suite of O3 precursors made at the Boulder Atmospheric Observatory (BAO) to investigate the causes of high O3 abundances in the Northern Colorado Front Range. Measurements spanned 6 weeks during summer 2015 (3 additional weeks of measurements were impacted by wildfire smoke) and included O3, CO, CH4, 40+ volatile organic compounds (VOCs), NO, NO2, NOy, nitric acid (HNO3), peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), and methacryloyl peroxynitrate (MPAN). We define a "high O3 day" as any day in which the maximum hourly average O3 mixing ratio was greater than the 95th percentile of all daytime (10am - 4pm MDT) hourly average O3 mixing ratios in the study period. We find that high O3 days at BAO are coincident with high O3 days at routine monitoring sites throughout the Front Range. We observe a positive relationship between O3 and the calculated OH reactivity attributable to species associated with oil and natural gas production. We also find that tracers of photochemistry such as acyl peroxy nitrates (APNs) are closely correlated with O3 on high O3 days. High abundances of PPN with respect to PAN on high O3 days suggest that anthropogenic emissions of O3 precursors play a dominant role in photochemistry at BAO. We also compare high and low O3 days with respect to estimated O3 production

  13. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-11-13

    The launch of an Atlas/Centaur launch vehicle is shown in this photograph. The Atlas/Centaur, launched on November 13, 1978, carried the High Energy Astronomy Observatory (HEAO)-2 into the required orbit. The second observatory, the HEAO-2 (nicknamed the Einstein Observatory in honor of the centernial of the birth of Albert Einstein) carried the first telescope capable of producing actual photographs of x-ray objects.

  14. White Dwarf Model Atmospheres: Synthetic Spectra for Supersoft Sources

    NASA Astrophysics Data System (ADS)

    Rauch, Thomas

    2013-01-01

    The Tübingen NLTE Model-Atmosphere Package (TMAP) calculates fully metal-line blanketed white dwarf model atmospheres and spectral energy distributions (SEDs) at a high level of sophistication. Such SEDs are easily accessible via the German Astrophysical Virtual Observatory (GAVO) service TheoSSA. We discuss applications of TMAP models to (pre) white dwarfs during the hottest stages of their stellar evolution, e.g. in the parameter range of novae and supersoft sources.

  15. A new look at atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hofmann, David J.; Butler, James H.; Tans, Pieter P.

    Carbon dioxide is increasing in the atmosphere and is of considerable concern in global climate change because of its greenhouse gas warming potential. The rate of increase has accelerated since measurements began at Mauna Loa Observatory in 1958 where carbon dioxide increased from less than 1 part per million per year (ppm yr -1) prior to 1970 to more than 2 ppm yr -1 in recent years. Here we show that the anthropogenic component (atmospheric value reduced by the pre-industrial value of 280 ppm) of atmospheric carbon dioxide has been increasing exponentially with a doubling time of about 30 years since the beginning of the industrial revolution (˜1800). Even during the 1970s, when fossil fuel emissions dropped sharply in response to the "oil crisis" of 1973, the anthropogenic atmospheric carbon dioxide level continued increasing exponentially at Mauna Loa Observatory. Since the growth rate (time derivative) of an exponential has the same characteristic lifetime as the function itself, the carbon dioxide growth rate is also doubling at the same rate. This explains the observation that the linear growth rate of carbon dioxide has more than doubled in the past 40 years. The accelerating growth rate is simply the outcome of exponential growth in carbon dioxide with a nearly constant doubling time of about 30 years (about 2%/yr) and appears to have tracked human population since the pre-industrial era.

  16. Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Orr, Tim R.

    2008-01-01

    Lava from Kilauea volcano flowing through a forest in the Royal Gardens subdivision, Hawai'i, in February 2008. The Hawaiian Volcano Observatory (HVO) monitors the volcanoes of Hawai'i and is located within Hawaiian Volcanoes National Park. HVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Kilauea and HVO at http://hvo.wr.usgs.gov.

  17. A large-scale dataset of solar event reports from automated feature recognition modules

    NASA Astrophysics Data System (ADS)

    Schuh, Michael A.; Angryk, Rafal A.; Martens, Petrus C.

    2016-05-01

    The massive repository of images of the Sun captured by the Solar Dynamics Observatory (SDO) mission has ushered in the era of Big Data for Solar Physics. In this work, we investigate the entire public collection of events reported to the Heliophysics Event Knowledgebase (HEK) from automated solar feature recognition modules operated by the SDO Feature Finding Team (FFT). With the SDO mission recently surpassing five years of operations, and over 280,000 event reports for seven types of solar phenomena, we present the broadest and most comprehensive large-scale dataset of the SDO FFT modules to date. We also present numerous statistics on these modules, providing valuable contextual information for better understanding and validating of the individual event reports and the entire dataset as a whole. After extensive data cleaning through exploratory data analysis, we highlight several opportunities for knowledge discovery from data (KDD). Through these important prerequisite analyses presented here, the results of KDD from Solar Big Data will be overall more reliable and better understood. As the SDO mission remains operational over the coming years, these datasets will continue to grow in size and value. Future versions of this dataset will be analyzed in the general framework established in this work and maintained publicly online for easy access by the community.

  18. Griffith Observatory: Hollywood's Celestial Theater

    NASA Astrophysics Data System (ADS)

    Margolis, Emily A.; Dr. Stuart W. Leslie

    2018-01-01

    The Griffith Observatory, perched atop the Hollywood Hills, is perhaps the most recognizable observatory in the world. Since opening in 1935, this Los Angeles icon has brought millions of visitors closer to the heavens. Through an analysis of planning documentation, internal newsletters, media coverage, programming and exhibition design, I demonstrate how the Observatory’s Southern California location shaped its form and function. The astronomical community at nearby Mt. Wilson Observatory and Caltech informed the selection of instrumentation and programming, especially for presentations with the Observatory’s Zeiss Planetarium, the second installed in the United States. Meanwhile the Observatory staff called upon some of Hollywood’s best artists, model makers, and scriptwriters to translate the latest astronomical discoveries into spectacular audiovisual experiences, which were enhanced with Space Age technological displays on loan from Southern California’s aerospace companies. The influences of these three communities- professional astronomy, entertainment, and aerospace- persist today and continue to make Griffith Observatory one of the premiere sites of public astronomy in the country.

  19. Observatory Improvements for SOFIA

    NASA Technical Reports Server (NTRS)

    Peralta, Robert A.; Jensen, Stephen C.

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint project between NASA and Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), the German Space Agency. SOFIA is based in a Boeing 747 SP and flown in the stratosphere to observe infrared wavelengths unobservable from the ground. In 2007 Dryden Flight Research Center (DFRC) inherited and began work on improving the plane and its telescope. The improvements continue today with upgrading the plane and improving the telescope. The Observatory Verification and Validation (V&V) process is to ensure that the observatory is where the program says it is. The Telescope Status Display (TSD) will provide any information from the on board network to monitors that will display the requested information. In order to assess risks to the program, one must work through the various threats associate with that risk. Once all the risks are closed the program can work towards improving the observatory.

  20. Iranian National Observatory

    NASA Astrophysics Data System (ADS)

    Khosroshahi, H. G.; Danesh, A.; Molaeinezhad, A.

    2016-09-01

    The Iranian National Observatory is under construction at an altitude of 3600m at Gargash summit 300km southern Tehran. The site selection was concluded in 2007 and the site monitoring activities have begun since then, which indicates a high quality of the site with a median seeing of 0.7 arcsec through the year. One of the major observing facilities of the observatory is a 3.4m Alt-Az Ritchey-Chretien optical telescope which is currently under design. This f/11 telescope will be equipped with high resolution medium-wide field imaging cameras as well as medium and high resolution spectrographs. In this review, I will give an overview of astronomy research and education in Iran. Then I will go through the past and present activities of the Iranian National Observatory project including the site quality, telescope specifications and instrument capabilities.

  1. The exposure of the hybrid detector of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Deligny, O.; Della Selva, A.; Dembinski, H.; Denkiewicz, A.; di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Gascon, A.; Gelmini, G.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karhan, P.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Mičanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Mueller, S.; Muller, M. A.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; PeĶala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rivière, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tapia, A.; Tarutina, T.; Taşcău, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winders, L.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.; Pierre Auger Collaboration

    2011-01-01

    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.

  2. Establishing Regular Measurements of Halocarbons at Taunus Observatory

    NASA Astrophysics Data System (ADS)

    Schuck, Tanja; Lefrancois, Fides; Gallmann, Franziska; Engel, Andreas

    2017-04-01

    In late 2013 an ongoing whole air flask collection program has been started at the Taunus Observatory (TO) in central Germany. Being a rural site in close vicinity to the densely populated Rhein-Main area with the city of Frankfurt, Taunus Observatory allows to assess local and regional emissions but owed to its altitude of 825m also regularly experiences background conditions. With its large caption area halocarbon measurements at the site have the potential to improve the data base for estimation of regional and total European halogenated greenhouse gas emissions. At current, flask samples are collected weekly for analysis using a GC-MS system at Frankfurt University employing a quadrupole as well as a time-of-flight (TOF) mass spectrometer. The TOF instrument yields full scan mass information and allows for retrospective analysis of so far undetected non-target species. For quality assurance additional samples are collected approximately bi-weekly at the Mace Head Atmospheric Research Station (MHD) analyzed in Frankfurt following the same measurement procedure. Thus the TO time series can be linked to both, the in-situ AGAGE measurements and the NOAA flask sampling program at MHD. In 2017 it is planned to supplement the current flask sampling by employing an in-situ GC-MS system at the site, thus increasing the measurement frequency. We will present the timeseries of selected halocarbons recorded at Taunus Observatory. While there is good agreement of baseline mixing ratios between TO and MHD, measurements at TO are regularly influenced by elevated halocarbon mixing ratios. An analysis of HYSPLIT trajectories for the existing time series revealed significant differences in halocarbon mixing ranges depending on air mass origin.

  3. Measurement of the Muon Atmospheric Production Depth with the Water Cherenkov Detectors of the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina Bueno, Laura

    Ultra-high-energy cosmic rays (UHECR) are particles of uncertain origin and composition, with energies above 1 EeV (10 18 eV or 0.16 J). The measured flux of UHECR is a steeply decreasing function of energy. The largest and most sensitive apparatus built to date to record and study cosmic ray Extensive Air Showers (EAS) is the Pierre Auger Observatory. The Pierre Auger Observatory has produced the largest and finest amount of data ever collected for UHECR. A broad physics program is being carried out covering all relevant topics of the field. Among them, one of the most interesting is the problemmore » related to the estimation of the mass composition of cosmic rays in this energy range. Currently the best measurements of mass are those obtained by studying the longitudinal development of the electromagnetic part of the EAS with the Fluorescence Detector. However, the collected statistics is small, specially at energies above several tens of EeV. Although less precise, the volume of data gathered with the Surface Detector is nearly a factor ten larger than the fluorescence data. So new ways to study composition with data collected at the ground are under investigation. The subject of this thesis follows one of those new lines of research. Using preferentially the time information associated with the muons that reach the ground, we try to build observables related to the composition of the primaries that initiated the EAS. A simple phenomenological model relates the arrival times with the depths in the atmosphere where muons are produced. The experimental confirmation that the distributions of muon production depths (MPD) correlate with the mass of the primary particle has opened the way to a variety of studies, of which this thesis is a continuation, with the aim of enlarging and improving its range of applicability. We revisit the phenomenological model which is at the root of the analysis and discuss a new way to improve some aspects of the model. We carry out

  4. Hemispherical Nature of EUV Shocks Revealed by SOHO, STEREO, and SDO Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk; Nitta, N.; Akiyama, S.; Makela, P.; Yashiro, S.

    2011-01-01

    EUV wave transients associated with type II radio bursts are manifestation of CME-driven shocks in the solar corona. We use recent EUV wave observations from SOHO, STEREO, and SDO for a set of CMEs to show that the EUV transients have a spherical shape in the inner corona. We demonstrate this by showing that the radius of the EUV transient on the disk observed by one instrument is approximately equal to the height of the wave above the solar surface in an orthogonal view provided by another instrument. The study also shows that the CME-driven shocks often form very low in the corona at a heliocentric distance of 1.2 Rs, even smaller than the previous estimates from STEREO/CORl data (Gopalswamy et aI., 2009, Solar Phys. 259, 227). These results have important implications for the acceleration of solar energetic particles by CMEs

  5. Observatory data and the Swarm mission

    NASA Astrophysics Data System (ADS)

    Macmillan, S.; Olsen, N.

    2013-11-01

    The ESA Swarm mission to identify and measure very accurately the different magnetic signals that arise in the Earth's core, mantle, crust, oceans, ionosphere and magnetosphere, which together form the magnetic field around the Earth, has increased interest in magnetic data collected on the surface of the Earth at observatories. The scientific use of Swarm data and Swarm-derived products is greatly enhanced by combination with observatory data and indices. As part of the Swarm Level-2 data activities plans are in place to distribute such ground-based data along with the Swarm data as auxiliary data products. We describe here the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. We discuss other possible combined uses of satellite and observatory data, in particular those that may use higher cadence 1-second and 1-minute data from observatories.

  6. Lord Kelvin's atmospheric electricity measurements

    NASA Astrophysics Data System (ADS)

    Aplin, Karen; Harrison, R. Giles; Trainer, Matthew; Hough, James

    2013-04-01

    Lord Kelvin (William Thomson), one of the greatest Victorian scientists, made a substantial but little-recognised contribution to geophysics through his work on atmospheric electricity. He developed sensitive instrumentation for measuring the atmospheric electric field, including invention of a portable electrometer, which made mobile measurements possible for the first time. Kelvin's measurements of the atmospheric electric field in 1859, made during development of the portable electrometer, can be used to deduce the substantial levels of particulate pollution blown over the Scottish island of Arran from the industrial mainland. Kelvin was also testing the electrometer during the largest solar flare ever recorded, the "Carrington event" in the late summer of 1859. Subsequently, Lord Kelvin also developed a water dropper sensor, and employed photographic techniques for "incessant recording" of the atmospheric electric field, which led to the long series of measurements recorded at UK observatories for the remainder of the 19th and much of the 20th century. These data sets have been valuable in both studies of historical pollution and cosmic ray effects on atmospheric processes.

  7. Selection of astrophysical/astronomical/solar sites at the Argentina East Andes range taking into account atmospheric components

    NASA Astrophysics Data System (ADS)

    Piacentini, R. D.; García, B.; Micheletti, M. I.; Salum, G.; Freire, M.; Maya, J.; Mancilla, A.; Crinó, E.; Mandat, D.; Pech, M.; Bulik, T.

    2016-06-01

    In the present work we analyze sites in the Argentinian high Andes mountains as possible places for astrophysical/astronomical/solar observatories. They are located at: San Antonio de los Cobres (SAC) and El Leoncito/CASLEO region: sites 1 and 2. We consider the following atmospheric components that affect, in different and specific wavelength ranges, the detection of photons of astronomical/astrophysical/solar origin: ozone, microscopic particles, precipitable water and clouds. We also determined the atmospheric radiative transmittance in a day near the summer solstice at noon, in order to confirm the clearness of the sky in the proposed sites at SAC and El Leoncito. Consequently, all the collected and analyzed data in the present work, indicate that the proposed sites are very promising to host astrophysical/astronomical/solar observatories. Some atmospheric components, like aerosols, play a significant role in the attenuation of light (Cherencov and/or fluorescence) detected in cosmic rays (particles or gamma photons) astrophysical observatories, while others, like ozone have to be considered in astronomical/solar light detection.

  8. Super-Diffraction Limited Measurements through the Turbulent Atmosphere by Speckle Interferometry

    DTIC Science & Technology

    1990-02-22

    independently confirmed by a submotion in the residuals to spectroscopically obtained radial velocities of the system. / (3) Atmospheric Turbulence Studies ...spectroscopically obtained radial velocities 1. (3) Atmospheric Turbulence Studies - The very extensive data accumu- lated under this project at the two... studies . I B. RESEARCH ACCOMPLISHMENTS 1. Observing Opportunities Observing time on the 1.8-meter telescope was provided by the Lowell Observatory3 on a

  9. Eastern Anatolia Observatory (DAG): Recent developments and a prospective observing site for robotic telescopes

    NASA Astrophysics Data System (ADS)

    Yesilyaprak, C.; Yerli, S. K.; Keskin, O.

    2016-12-01

    This document (Eastern Anatolia Observatory (DAG) is the new observatory of Turkey with the optical and near-infrared largest telescope (4 m class) and its robust observing site infrastructure. This national project consists of three phases with DAG (Telescope, Enclosure, Buildings and Infrastructures), FPI (Focal Plane Instruments and Adaptive Optics) and MCP (Mirror Coating Plant) and is supported by the Ministry of Development of Turkey. The tenders of telescope and enclosure have been made and almost all the infrastructure (roads, geological and atmospherical surveys, electricity, fiber optics, cable car, water, generator, etc.) of DAG site (Erzurum/Turkey, 3,170 m altitude) have been completed. This poster is about the recent developments of DAG and about the future possible collaborations for various robotic telescopes which can be set up in DAG site.

  10. The Space Telescope Observatory

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.; Odell, C. R.

    1979-01-01

    A convenient guide to the expected characteristics of the Space Telescope Observatory for astronomers and physicists is presented. An attempt is made to provide enough detail so that a professional scientist, observer or theorist, can plan how the observatory may be used to further his observing programs or to test theoretical models.

  11. Orbiting Carbon Observatory Briefing

    NASA Image and Video Library

    2009-01-29

    Anna Michalak, an Orbiting Carbon Observatory science team member from the University of Michigan, Ann Arbor, speaks during a media briefing to discuss the upcoming Orbiting Carbon Observatory mission, the first NASA spacecraft dedicated to studying carbon dioxide, Thursday, Jan. 29, 2009, at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  12. Hemispheric Patterns in Electric Current Helicity of Solar Magnetic Fields During Solar Cycle 24: Results from SOLIS, SDO and Hinode

    NASA Astrophysics Data System (ADS)

    Gusain, S.

    2017-12-01

    We study the hemispheric patterns in electric current helicity distribution on the Sun. Magnetic field vector in the photosphere is now routinely measured by variety of instruments. SOLIS/VSM of NSO observes full disk Stokes spectra in photospheric lines which are used to derive vector magnetograms. Hinode SP is a space based spectropolarimeter which has the same observable as SOLIS albeit with limited field-of-view (FOV) but high spatial resolution. SDO/HMI derives vector magnetograms from full disk Stokes measurements, with rather limited spectral resolution, from space in a different photospheric line. Further, these datasets now exist for several years. SOLIS/VSM from 2003, Hinode SP from 2006, and SDO HMI since 2010. Using these time series of vector magnetograms we compute the electric current density in active regions during solar cycle 24 and study the hemispheric distributions. Many studies show that the helicity parameters and proxies show a strong hemispheric bias, such that Northern hemisphere has preferentially negative and southern positive helicity, respectively. We will confirm these results for cycle 24 from three different datasets and evaluate the statistical significance of the hemispheric bias. Further, we discuss the solar cycle variation in the hemispheric helicity pattern during cycle 24 and discuss its implications in terms of solar dynamo models.

  13. KSC-2009-4587

    NASA Image and Video Library

    2009-08-11

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., the Solar Dynamics Observatory, or SDO, is undergoing performance testing. The high-gain antenna seen at center left will be moved, or gimbaled. All of the spacecraft science instruments are being tested in their last major evaluation before launch. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Liftoff on an Atlas V rocket is scheduled for Dec. 4. Photo credit: NASA/Jack Pfaller

  14. Tracking Waves from Sunspots Gives New Solar Insight

    NASA Image and Video Library

    2017-12-08

    While it often seems unvarying from our viewpoint on Earth, the sun is constantly changing. Material courses through not only the star itself, but throughout its expansive atmosphere. Understanding the dance of this charged gas is a key part of better understanding our sun – how it heats up its atmosphere, how it creates a steady flow of solar wind streaming outward in all directions, and how magnetic fields twist and turn to create regions that can explode in giant eruptions. Now, for the first time, researchers have tracked a particular kind of solar wave as it swept upward from the sun's surface through its atmosphere, adding to our understanding of how solar material travels throughout the sun. Scientists analyzed sunspot images from a trio of observatories -- including the Big Bear Solar Observatory, which captured this footage -- to make the first-ever observations of a solar wave traveling up into the sun’s atmosphere from a sunspot. Tracking solar waves like this provides a novel tool for scientists to study the atmosphere of the sun. The imagery of the journey also confirms existing ideas, helping to nail down the existence of a mechanism that moves energy – and therefore heat – into the sun’s mysteriously-hot upper atmosphere, called the corona. A study on these results was published Oct. 11, 2016, in The Astrophysical Journal Letters. Image credit: Zhao et al/NASA/SDO/IRIS/BBSO Read more: go.nasa.gov/2dRv80g NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Exploration Station 2010 Brings Science to the Public

    NASA Astrophysics Data System (ADS)

    Wawro, Martha; Asher, Pranoti

    2011-04-01

    Exploration Station is a public outreach event held prior to the AGU Fall Meeting each year and is a joint venture between AGU and NASA's Solar Dynamics Observatory (SDO). The event features hands-on science activities for the public. This year's event was held in conjunction with the AGU public lecture given by SDO lead project scientist, Dean Pesnell. Many members of the general public attended, including families with children. They were joined by many AGU members, who also enjoyed the exhibits and explored the possible education and outreach activities available within the AGU community. Educators from across AGU were involved, but space physics and planetary sciences were especially well represented.

  16. High precision active nutation control for a flexible momentum biased spacecraft

    NASA Technical Reports Server (NTRS)

    Laskin, R. A.; Kopf, E. H.

    1984-01-01

    The controller design for the Solar Dynamics Observatory (SDO) is presented. SDO is a momentum biased spacecraft with three flexible appendages. Its primary scientific instrument, the solar oscillations imager (SOI), is rigidly attached to the spacecraft bus and has arc-second pointing requirements. Meeting these requirements necessitates the use of an active nutation controller (ANC) which is here mechanized with a small reaction wheel oriented along a bus transverse axis. The ANC does its job by orchestrating the transfer of angular momentum out of the bus transverse axes and into the momentum wheel. A simulation study verifies that the controller provides quick, stable, and accurate response.

  17. INTERMAGNET and magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, Arnaud

    2012-01-01

    A magnetic observatory is a specially designed ground-based facility that supports time-series measurement of the Earth’s magnetic field. Observatory data record a superposition of time-dependent signals related to a fantastic diversity of physical processes in the Earth’s core, mantle, lithosphere, ocean, ionosphere, magnetosphere, and, even, the Sun and solar wind.

  18. Astronomical Archive at Tartu Observatory

    NASA Astrophysics Data System (ADS)

    Annuk, K.

    2007-10-01

    Archiving astronomical data is important task not only at large observatories but also at small observatories. Here we describe the astronomical archive at Tartu Observatory. The archive consists of old photographic plate images, photographic spectrograms, CCD direct--images and CCD spectroscopic data. The photographic plate digitizing project was started in 2005. An on-line database (based on MySQL) was created. The database includes CCD data as well photographic data. A PHP-MySQL interface was written for access to all data.

  19. WFIRST Observatory Performance

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffrey W.

    2012-01-01

    The WFIRST observatory will be a powerful and flexible wide-field near-infrared facility. The planned surveys will provide data applicable to an enormous variety of astrophysical science. This presentation will provide a description of the observatory and its performance characteristics. This will include a discussion of the point spread function, signal-to-noise budgets for representative observing scenarios and the corresponding limiting sensitivity. Emphasis will be given to providing prospective Guest Observers with information needed to begin thinking about new observing programs.

  20. Archive interoperability in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Genova, Françoise

    2003-02-01

    Main goals of Virtual Observatory projects are to build interoperability between astronomical on-line services, observatory archives, databases and results published in journals, and to develop tools permitting the best scientific usage from the very large data sets stored in observatory archives and produced by large surveys. The different Virtual Observatory projects collaborate to define common exchange standards, which are the key for a truly International Virtual Observatory: for instance their first common milestone has been a standard allowing exchange of tabular data, called VOTable. The Interoperability Work Area of the European Astrophysical Virtual Observatory project aims at networking European archives, by building a prototype using the CDS VizieR and Aladin tools, and at defining basic rules to help archive providers in interoperability implementation. The prototype is accessible for scientific usage, to get user feedback (and science results!) at an early stage of the project. ISO archive participates very actively to this endeavour, and more generally to information networking. The on-going inclusion of the ISO log in SIMBAD will allow higher level links for users.

  1. India-based neutrino observatory (INO): Physics reach and status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indumathi, D.

    We present a review of the physics reach and current status of the proposed India-based Neutrino Observatory (INO). We briefly outline details of the INO location and the present status of detector development. We then present the physics goals and simulation studies of the main detector, the magnetised Iron Calorimeter (ICAL) detector, to be housed in INO. The ICAL detector would make precision measurements of neutrino oscillation parameters with atmospheric neutrinos including a measurement of the neutrino mass hierarchy. Additional synergies with other experiments due to the complete insensitivity of ICAL to the CP phase are also discussed.

  2. Solar Scientist Confirm Existence of Flux Ropes on the Sun

    NASA Image and Video Library

    2017-12-08

    Caption: This is an image of magnetic loops on the sun, captured by NASA's Solar Dynamics Observatory (SDO). It has been processed to highlight the edges of each loop to make the structure more clear. A series of loops such as this is known as a flux rope, and these lie at the heart of eruptions on the sun known as coronal mass ejections (CMEs.) This is the first time scientists were able to discern the timing of a flux rope's formation. (Blended 131 Angstrom and 171 Angstrom images of July 19, 2012 flare and CME.) Credit: NASA/Goddard Space Flight Center/SDO ---- On July 18, 2012, a fairly small explosion of light burst off the lower right limb of the sun. Such flares often come with an associated eruption of solar material, known as a coronal mass ejection or CME – but this one did not. Something interesting did happen, however. Magnetic field lines in this area of the sun's atmosphere, the corona, began to twist and kink, generating the hottest solar material – a charged gas called plasma – to trace out the newly-formed slinky shape. The plasma glowed brightly in extreme ultraviolet images from the Atmospheric Imaging Assembly (AIA) aboard NASA’s Solar Dynamics Observatory (SDO) and scientists were able to watch for the first time the very formation of something they had long theorized was at the heart of many eruptive events on the sun: a flux rope. Eight hours later, on July 19, the same region flared again. This time the flux rope's connection to the sun was severed, and the magnetic fields escaped into space, dragging billions of tons of solar material along for the ride -- a classic CME. "Seeing this structure was amazing," says Angelos Vourlidas, a solar scientist at the Naval Research Laboratory in Washington, D.C. "It looks exactly like the cartoon sketches theorists have been drawing of flux ropes since the 1970s. It was a series of figure eights lined up to look like a giant slinky on the sun." To read more about this new discovery go to: 1.usa

  3. Morphology Of A Hot Prominence Cavity Observed with Hinode/XRT and SDO/AIA

    NASA Technical Reports Server (NTRS)

    Weber, Mark A.; Reeves, K. K.; Gibson, S. E.; Kucera, T. A.

    2012-01-01

    Prominence cavities appear as circularly shaped voids in coronal emission over polarity inversion lines where a prominence channel is straddling the solar limb. The presence of chromospheric material suspended at coronal altitudes is a common but not necessary feature within these cavities. These voids are observed to change shape as a prominence feature rotates around the limb. We use a morphological model projected in cross-sections to fit the cavity emission in Hinode/XRT passbands, and then apply temperature diagnostics to XRT and SDO/AIA data to investigate the thermal structure. We find significant evidence that the prominence cavity is hotter than the corona immediately outside the cavity boundary. This investigation follows upon "Thermal Properties of A Solar Coronal Cavity Observed with the X-ray Telescope on Hinode" by Reeves et al., 2012, ApJ, in press.

  4. The Planetary Virtual Observatory and Laboratory (PVOL) and its integration into the Virtual European Solar and Planetary Access (VESPA)

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Juaristi, J.; Legarreta, J.; Sánchez-Lavega, A.; Rojas, J. F.; Erard, S.; Cecconi, B.; Le Sidaner, Pierre

    2018-01-01

    Since 2003 the Planetary Virtual Observatory and Laboratory (PVOL) has been storing and serving publicly through its web site a large database of amateur observations of the Giant Planets (Hueso et al., 2010a). These images are used for scientific research of the atmospheric dynamics and cloud structure on these planets and constitute a powerful resource to address time variable phenomena in their atmospheres. Advances over the last decade in observation techniques, and a wider recognition by professional astronomers of the quality of amateur observations, have resulted in the need to upgrade this database. We here present major advances in the PVOL database, which has evolved into a full virtual planetary observatory encompassing also observations of Mercury, Venus, Mars, the Moon and the Galilean satellites. Besides the new objects, the images can be tagged and the database allows simple and complex searches over the data. The new web service: PVOL2 is available online in http://pvol2.ehu.eus/.

  5. The International Outer Planets Watch atmospheres node database of giant-planet images

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Legarreta, J.; Sánchez-Lavega, A.; Rojas, J. F.; Gómez-Forrellad, J. M.

    2011-10-01

    The Atmospheres Node of the International Outer Planets Watch (IOPW) is aimed to encourage the observations and study of the atmospheres of the Giant Planets. One of its main activities is to provide an interaction between the professional and amateur astronomical communities maintaining an online and fully searchable database of images of the giant planets obtained from amateur astronomers and available to both professional and amateurs [1]. The IOPW database contains about 13,000 image observations of Jupiter and Saturn obtained in the visible range with a few contributions of Uranus and Neptune. We describe the organization and structure of the database as posted in the Internet and in particular the PVOL software (Planetary Virtual Observatory & Laboratory) designed to manage the site and based in concepts from Virtual Observatory projects.

  6. The exposure of the hybrid detector of the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2010-06-01

    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The 'hybrid' detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure.more » We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.« less

  7. Equatorial secondary cosmic ray observatory to study space weather and terrestrial events

    NASA Astrophysics Data System (ADS)

    Vichare, Geeta; Bhaskar, Ankush; Datar, Gauri; Raghav, Anil; Nair, K. U.; Selvaraj, C.; Ananthi, M.; Sinha, A. K.; Paranjape, M.; Gawade, T.; Anil Kumar, C. P.; Panneerselvam, C.; Sathishkumar, S.; Gurubaran, S.

    2018-05-01

    Recently, equatorial secondary cosmic ray observatory has been established at Equatorial Geophysical Research Laboratory (EGRL), Tirunelveli, (Geographic Coordinates: 8.71°N, 77.76°E), to study secondary cosmic rays (SCR) produced due to the interaction of primary cosmic rays with the Earth's atmosphere. EGRL is a regional center of Indian Institute of Geomagnetism (IIG), located near the equator in the Southern part of India. Two NaI(Tl) scintillation detectors are installed inside the temperature controlled environment. One detector is cylindrical in shape of size 7.62 cm × 7.62 cm and another one is rectangular cuboid of 10.16 cm × 10.16 cm × 40.64 cm size. Besides NaI(Tl) detectors, various other research facilities such as the Geomagnetic observatory, Medium Frequency Radar System, Digital Ionosonde, All-sky airglow imager, Atmospheric electricity laboratory to measure the near-Earth atmospheric electric fields are also available at EGRL. With the accessibility of multi- instrument facilities, the objective is set to understand the relationship between SCR and various atmospheric and ionospheric processes, during space weather and terrestrial events. For gamma-ray spectroscopy, it is important to test the performance of the NaI(Tl) scintillation detectors and to calibrate the gamma-ray spectrum in terms of energy. The present article describes the details of the experimental setup installed near the equator to study cosmic rays, along with the performance testing and calibration of the detectors under various conditions. A systematic shift in the gain is observed with varying temperature of the detector system. It is found that the detector's response to the variations in the temperature is not just linear or non-linear type, but it depends on the history of the variation, indicating temperature hysteresis effects on NaI detector and PMT system. This signifies the importance of isothermal environment while studying SCR flux using NaI(Tl) detectors

  8. Sofia Observatory Performance and Characterization

    NASA Technical Reports Server (NTRS)

    Temi, Pasquale; Miller, Walter; Dunham, Edward; McLean, Ian; Wolf, Jurgen; Becklin, Eric; Bida, Tom; Brewster, Rick; Casey, Sean; Collins, Peter; hide

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) has recently concluded a set of engineering flights for Observatory performance evaluation. These in-flight opportunities have been viewed as a first comprehensive assessment of the Observatory's performance and will be used to address the development activity that is planned for 2012, as well as to identify additional Observatory upgrades. A series of 8 SOFIA Characterization And Integration (SCAI) flights have been conducted from June to December 2011. The HIPO science instrument in conjunction with the DSI Super Fast Diagnostic Camera (SFDC) have been used to evaluate pointing stability, including the image motion due to rigid-body and flexible-body telescope modes as well as possible aero-optical image motion. We report on recent improvements in pointing stability by using an Active Mass Damper system installed on Telescope Assembly. Measurements and characterization of the shear layer and cavity seeing, as well as image quality evaluation as a function of wavelength have been performed using the HIPO+FLITECAM Science Instrument configuration (FLIPO). A number of additional tests and measurements have targeted basic Observatory capabilities and requirements including, but not limited to, pointing accuracy, chopper evaluation and imager sensitivity. SCAI activities included in-flight partial Science Instrument commissioning prior to the use of the instruments as measuring engines. This paper reports on the data collected during the SCAI flights and presents current SOFIA Observatory performance and characterization.

  9. Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)

    NASA Astrophysics Data System (ADS)

    Dethloff, Klaus; Rex, Markus; Shupe, Matthew

    2016-04-01

    The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) is an international initiative under the International Arctic Science Committee (IASC) umbrella that aims to improve numerical model representations of sea ice, weather, and climate processes through coupled system observations and modeling activities that link the central Arctic atmosphere, sea ice, ocean, and the ecosystem. Observations of many critical parameters such as cloud properties, surface energy fluxes, atmospheric aerosols, small-scale sea-ice and oceanic processes, biological feedbacks with the sea-ice ice and ocean, and others have never been made in the central Arctic in all seasons, and certainly not in a coupled system fashion. The primary objective of MOSAiC is to develop a better understanding of these important coupled-system processes so they can be more accurately represented in regional- and global-scale weather- and climate models. Such enhancements will contribute to improved modeling of global climate and weather, and Arctic sea-ice predictive capabilities. The MOSAiC observations are an important opportunity to gather the high quality and comprehensive observations needed to improve numerical modeling of critical, scale-dependent processes impacting Arctic predictability given diminished sea ice coverage and increased model complexity. Model improvements are needed to understand the effects of a changing Arctic on mid-latitude weather and climate. MOSAiC is specifically designed to provide the multi-parameter, coordinated observations needed to improve sub-grid scale model parameterizations especially with respect to thinner ice conditions. To facilitate, evaluate, and develop the needed model improvements, MOSAiC will employ a hierarchy of modeling approaches ranging from process model studies, to regional climate model intercomparisons, to operational forecasts and assimilation of real-time observations. Model evaluations prior to the field program will

  10. In Brief: Deep-sea observatory

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-11-01

    The first deep-sea ocean observatory offshore of the continental United States has begun operating in the waters off central California. The remotely operated Monterey Accelerated Research System (MARS) will allow scientists to monitor the deep sea continuously. Among the first devices to be hooked up to the observatory are instruments to monitor earthquakes, videotape deep-sea animals, and study the effects of acidification on seafloor animals. ``Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: `Watson, come here, I need you!','' commented Marcia McNutt, president and CEO of the Monterey Bay Aquarium Research Institute, which coordinated construction of the observatory. For more information, see http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html.

  11. An astronomical observatory for Peru

    NASA Astrophysics Data System (ADS)

    del Mar, Juan Quintanilla; Sicardy, Bruno; Giraldo, Víctor Ayma; Callo, Víctor Raúl Aguilar

    2011-06-01

    Peru and France are to conclude an agreement to provide Peru with an astronomical observatory equipped with a 60-cm diameter telescope. The principal aims of this project are to establish and develop research and teaching in astronomy. Since 2004, a team of researchers from Paris Observatory has been working with the University of Cusco (UNSAAC) on the educational, technical and financial aspects of implementing this venture. During an international astronomy conference in Cusco in July 2009, the foundation stone of the future Peruvian Observatory was laid at the top of Pachatusan Mountain. UNSAAC, represented by its Rector, together with the town of Oropesa and the Cusco regional authority, undertook to make the sum of 300,000€ available to the project. An agreement between Paris Observatory and UNSAAC now enables Peruvian students to study astronomy through online teaching.

  12. The Next Generation of Chromospheric Measurements

    NASA Astrophysics Data System (ADS)

    Tarbell, T. D.

    2005-05-01

    I discuss the new measurements which we know will happen, from missions or observatories which are being developed now, as well as the measurements which should happen for further progress. The future is promising, with new missions such as Solar-B, SDO, and SunRise, and new or upgraded observatories, such as SVST, DOT, GREGOR, ATST, and FASR. I also point out significant needs for the future, such as detailed chromospheric spectroscopy of the type which would have been provided by NEXUS or similar instruments.

  13. Gamma-ray astronomy: From Fermi up to the HAWC high-energy {gamma}-ray observatory in Sierra Negra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carraminana, Alberto; Collaboration: HAWC Collaboration

    Gamma-rays represent the most energetic electromagnetic window for the study of the Universe. They are studied both from space at MeV and GeV energies, with instruments like the Fermi{gamma}-ray Space Telescope, and at TeV energies with ground based instruments profiting of particle cascades in the atmosphere and of the Cerenkov radiation of charged particles in the air or in water. The Milagro gamma-ray observatory represented the first instrument to successfully implement the water Cerenkov technique for {gamma}-ray astronomy, opening the ground for the more sensitive HAWC {gamma}-ray observatory, currently under development in the Sierra Negra site and already providing earlymore » science results.« less

  14. Measuring Atmospheric Carbon Dioxide from Space: The GOSAT and OCO-2 Missions

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2011-01-01

    The Japanese Greenhouse gases Observing Satellite (GOSAT) is providing new insight into atmospheric carbon dioxide trends. The NASA Orbiting Carbon Observatory-2 (OCO-2)Mission will build on this record with increased sensitivity resolution, and coverage.

  15. New Opportunities for Cabled Ocean Observatories

    NASA Astrophysics Data System (ADS)

    Duennebier, F. K.; Butler, R.; Karl, D. M.; Roger, L. B.

    2002-12-01

    With the decommissioning of transoceanic telecommunications cables as they become obsolete or uneconomical, there is an opportunity to use these systems for ocean observatories. Two coaxial cables, TPC-1 and HAW-2 are currently in use for observatories, and another, ANZCAN, is scheduled to be used beginning in 2004 to provide a cabled observatory at Station ALOHA, north of Oahu. The ALOHA observatory will provide several Mb/s data rates and about 1 kW of power to experiments installed at Station ALOHA. Sensors can be installed either by wet mateable connection to a junction box on the ocean floor using an ROV, or by acoustic data link to the system. In either case real-time data will be provided to users over the Internet. A Small Experiment Module, to be first installed at the Hawaii-2 Observatory, and later at Station ALOHA, will provide relatively cheap and uncomplicated access to the observatories for relatively simple sensors. Within the next few years, the first electro-optical cables installed in the 1980's will be decommissioned and could be available for scientific use. These cables could provide long "extension cords" (thousands of km) with very high bandwidth and reasonable power to several observatories in remote locations in the ocean. While they could be used in-place, a more exciting scenario is to use cable ships to pick up sections of cable and move them to locations of higher scientific interest. While such moves would not be cheap, the costs would rival the cost of installation and maintenance of a buoyed observatory, with far more bandwidth and power available for science use.

  16. Daily variation characteristics at polar geomagnetic observatories

    NASA Astrophysics Data System (ADS)

    Lepidi, S.; Cafarella, L.; Pietrolungo, M.; Di Mauro, D.

    2011-08-01

    This paper is based on the statistical analysis of the diurnal variation as observed at six polar geomagnetic observatories, three in the Northern and three in the Southern hemisphere. Data are for 2006, a year of low geomagnetic activity. We compared the Italian observatory Mario Zucchelli Station (TNB; corrected geomagnetic latitude: 80.0°S), the French-Italian observatory Dome C (DMC; 88.9°S), the French observatory Dumont D'Urville (DRV; 80.4°S) and the three Canadian observatories, Resolute Bay (RES; 83.0°N), Cambridge Bay (CBB; 77.0°N) and Alert (ALE, 87.2°N). The aim of this work was to highlight analogies and differences in daily variation as observed at the different observatories during low geomagnetic activity year, also considering Interplanetary Magnetic Field conditions and geomagnetic indices.

  17. Observatories of Sawai Jai Singh II

    NASA Astrophysics Data System (ADS)

    Johnson-Roehr, Susan N.

    Sawai Jai Singh II, Maharaja of Amber and Jaipur, constructed five observatories in the second quarter of the eighteenth century in the north Indian cities of Shahjahanabad (Delhi), Jaipur, Ujjain, Mathura, and Varanasi. Believing the accuracy of his naked-eye observations would improve with larger, more stable instruments, Jai Singh reengineered common brass instruments using stone construction methods. His applied ingenuity led to the invention of several outsize masonry instruments, the majority of which were used to determine the coordinates of celestial objects with reference to the local horizon. During Jai Singh's lifetime, the observatories were used to make observations in order to update existing ephemerides such as the Zīj-i Ulugh Begī. Jai Singh established communications with European astronomers through a number of Jesuits living and working in India. In addition to dispatching ambassadorial parties to Portugal, he invited French and Bavarian Jesuits to visit and make use of the observatories in Shahjahanabad and Jaipur. The observatories were abandoned after Jai Singh's death in 1743 CE. The Mathura observatory was disassembled completely before 1857. The instruments at the remaining observatories were restored extensively during the nineteenth and twentieth centuries.

  18. Occultation of Epsilon Geminorum by Mars - Evidence for atmospheric tides

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; French, R. G.; Dunham, E.; Gierasch, P. J.; Veverka, J.; Church, C.; Sagan, C.

    1977-01-01

    Epsilon Geminorum occultation data obtained on April 8, 1976, with the aid of a 91-cm telescope aboard the NASA Kuiper Airborne Observatory have provided a basis for the determination of temperature, pressure, and number density profiles of the Martian atmosphere. The results concerning the temperature profiles are compared with those of Viking 1 reported by Nier et al. (1976) and with theoretical predictions of thermally driven tides in the Martian atmosphere made by Zurek (1976).

  19. The Pierre Auger Cosmic Ray Observatory

    DOE PAGES

    Aab, Alexander

    2015-07-08

    The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the world's largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above 1017 eV and study the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water Cherenkov particle detector stations spread over 3000 km 2 overlooked by 24 air fluorescence telescopes. Additionally, three high elevation fluorescence telescopes overlook a 23.5 km 2, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operationmore » since completion in 2008 and has recorded data from an exposure exceeding 40,000 km 2 sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Observatory.« less

  20. Byurakan Astrophysical Observatory as Cultural Centre

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Farmanyan, S. V.

    2017-07-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts. Keywords: Byurakan Astrophysical Observatory, architecture, botanic garden, tourism, Cultural Astronomy.

  1. Simultaneous Observation of Solar Neutrons at the ISS and High Mountain Observatories as Evidence for two Different Acceleration Mechanisms Associated to a Flare on July 8,2014

    NASA Astrophysics Data System (ADS)

    Valdes-Galicia, J. F.; González, L. X.; Watanabe, K.; Muraki, Y.; Matsubara, Y.; Lopez, D.; Koga, K.; Kakimoto, F.; Sako, T.; Salinas, J., Sr.; Ticona, R.; Shibata, S.; Masuda, S.; Tunesada, S.

    2016-12-01

    An M 6.5-class flare was observed at N12E56 of the solar surface at 16:06 UT on July 8, 2014. In association with the flare, two neutron detectors located at high mountains: Mt. Sierra Negra in Mexico (4600m asl) and Mt. Chacaltaya in Bolivia (5200m asl) recorded two neutron pulses, separated approximately 30 minutes. Enhancements were also observed in the neutral channel detector onboard the International Space Station. We analyzed these data combined with solar images from the Atompspheric ImagingAssembly (AIA) onboard the SolarDynamicalObservatory (SDO). From our analysis we conclude that the production mechanism of neutrons cannot be explained by a single model: one of the enhancements may be explained by an electric field generated by the collision of magnetic loops, and the other by a shock acceleration mechanism at the front side of the observed CME. To the best of our knowledge, this is the first time that evidence is found for two different mechanisms present in a solar eruption leading to energetic solar neutron production.

  2. GROWING TRANSVERSE OSCILLATIONS OF A MULTISTRANDED LOOP OBSERVED BY SDO/AIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tongjiang; Ofman, Leon; Su, Yang

    The first evidence of transverse oscillations of a multistranded loop with growing amplitudes and internal coupling observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory is presented. The loop oscillation event occurred on 2011 March 8, triggered by a coronal mass ejection (CME). The multiwavelength analysis reveals the presence of multithermal strands in the oscillating loop, whose dynamic behaviors are temperature-dependent, showing differences in their oscillation amplitudes, phases, and emission evolution. The physical parameters of growing oscillations of two strands in 171 A are measured and the three-dimensional loop geometry is determined using STEREO-A/EUVI data. These strandsmore » have very similar frequencies, and between two 193 A strands a quarter-period phase delay sets up. These features suggest the coupling between kink oscillations of neighboring strands and the interpretation by the collective kink mode as predicted by some models. However, the temperature dependence of the multistranded loop oscillations was not studied previously and needs further investigation. The transverse loop oscillations are associated with intensity and loop width variations. We suggest that the amplitude-growing kink oscillations may be a result of continuous non-periodic driving by magnetic deformation of the CME, which deposits energy into the loop system at a rate faster than its loss.« less

  3. OZCAR: the French network of Critical Zone Observatories: principles and scientific objectives

    NASA Astrophysics Data System (ADS)

    Braud, Isabelle; Gaillardet, Jérôme; Hankard, Fatim; Le Borgne, Tanguy; Nord, Guillaume; Six, Delphine; Galy, Catherine; Laggoun-Défarge, Fatima; Tallec, Tiphaine; Pauwels, Hélène

    2017-04-01

    This contribution aims at presenting the principles that underlined the creation of the OZCAR research infrastructure, gathering various Critical Zone Observatories in France, and the scientific questions that drives the observation settings. The Critical Zone includes the fine zone between the lower atmosphere at the top of the canopy down to the bedrock-soil interface. This lithosphere-atmosphere boundary is critical for the availability of life-sustaining resources and critical for humanity because this is the zone where we live, where we build our cities, from which we extract our food and our water and where we release most of our wastes. This is the fragile zone on which the natural ecosystem relies because this is where nutrients are being released from the rocks. OZCAR is a distributed research infrastructure gathering instrumented sites and catchments on continental surfaces all dedicated to the observation and monitoring of the different compartments of the Critical Zone at the national scale. All these observatories (more that 40) were all built up on specific questions (acid deposition, flood prediction, urban hydrology…), some of them more than 50 years ago, but they have all in common to be highly instrumented, permanently funded as infrastructures. They all share the same overarching goal of understanding and predicting the Critical Zone in a changing world. OZCAR gathers instrumented catchments, hydrogeological sites, peatlands, glacier and permafrost regions and a spatial observatory under the common umbrella of understanding water and biogeochemical cycles and the associated fluxes of energy by using natural gradients and experimentation. Based on the collaboration with Southern Countries, OZCAR's sites have a global coverage including tropical areas and high mountainous regions in the Andes and the Himalaya. OZCAR benefits from a French investments project called CRITEX (Innovative equipment for the critical zone, https://www.critex.fr/critex-3

  4. A Long-Term Dissipation of the EUV He ii (30.4 nm) Segmentation in Full-Disk Solar Images

    NASA Astrophysics Data System (ADS)

    Didkovsky, Leonid

    2018-06-01

    Some quiet-Sun days observed by the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO) during the time interval in 2010 - 2017 were used to continue our previous analyses reported by Didkovsky and Gurman ( Solar Phys. 289, 153, 2014a) and Didkovsky, Wieman, and Korogodina ( Solar Phys. 292, 32, 2017). The analysis consists of determining and comparing spatial spectral ratios (spectral densities over some time interval) from spatial (segmentation-cell length) power spectra. The ratios were compared using modeled compatible spatial frequencies for spectra from the Extreme ultraviolet Imaging Telescope (EIT) on-board the Solar and Heliospheric Observatory (SOHO) and from AIA images. With the new AIA data added to the EIT data we analyzed previously, the whole time interval from 1996 to 2017 reported here is approximately the length of two "standard" solar cycles (SC). The spectral ratios of segmentation-cell dimension structures show a significant and steady increase with no detected indication of SC-related returns to the values that characterize the SC minima. This increase in spatial power at high spatial frequencies is interpreted as a dissipation of medium-size EUV network structures to smaller-size structures in the transition region. Each of the latest ratio changes for 2010 through 2017 spectra calculated for a number of consecutive short-term intervals has been converted into monthly mean ratio (MMR) changes. The MMR values demonstrate variable sign and magnitudes, thus confirming the solar nature of the changes. These changes do not follow a "typical" trend of instrumental degradation or a long-term activity profile from the He ii (30.4 nm) irradiance measured by the Extreme ultraviolet Spectrophotometer (ESP) either. The ESP is a channel of the Extreme ultraviolet Variability Experiment (EVE) on-board SDO.

  5. Global Energetics of Solar Flares. VI. Refined Energetics of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2017-09-01

    In this study, we refine the coronal mass ejection (CME) model that was presented in an earlier study of the global energetics of solar flares and associated CMEs and apply it to all (860) GOES M- and X-class flare events observed during the first seven years (2010-2016) of the Solar Dynamics Observatory (SDO) mission. The model refinements include (1) the CME geometry in terms of a 3D volume undergoing self-similar adiabatic expansion, (2) the solar gravitational deceleration during the propagation of the CME, which discriminates between eruptive and confined CMEs, (3) a self-consistent relationship between the CME center-of-mass motion detected during EUV dimming and the leading-edge motion observed in white-light coronagraphs, (4) the equipartition of the CME’s kinetic and thermal energies, and (5) the Rosner-Tucker-Vaiana scaling law. The refined CME model is entirely based on EUV-dimming observations (using Atmospheric Imager Assembly (AIA)/SDO data) and complements the traditional white-light scattering model (using Large-Angle and Spectrometric Coronagraph Experiment (LASCO)/Solar and Heliospheric Observatory data), and both models are independently capable of determining fundamental CME parameters. Comparing the two methods, we find that (1) LASCO is less sensitive than AIA in detecting CMEs (in 24% of the cases), (2) CME masses below {m}{cme}≲ {10}14 g are underestimated by LASCO, (3) AIA and LASCO masses, speeds, and energies agree closely in the statistical mean after the elimination of outliers, and (4) the CME parameters speed v, emission measure-weighted flare peak temperature T e , and length scale L are consistent with the following scaling laws: v\\propto {T}e1/2, v\\propto {({m}{cme})}1/4, and {m}{cme}\\propto {L}2.

  6. Selections from 2016: A Connection Between Solar Explosions and Dimming on the Sun

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    Editors note:In these last two weeks of 2016, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.The Nature of CME-Flare-Associated Coronal DimmingPublished June2016Main takeaway:The Solar Dynamics Observatory (SDO) observed a large solar eruption at the end of December 2011. Scientists Jianxia Cheng (Shanghai Astronomical Observatory and the Chinese Academy of Sciences) and Jiong Qiu (Montana State University) studied this coronal mass ejection and the associated flaring on the Suns surface. They found that this activity was accompanied by dimming in the Suns corona near the ends of the flare ribbons.Why its interesting:The process of coronal dimming isnt fully understood, but Cheng and Qius observations provide a clear link between coronal dimming and eruptions of plasma and energy from the Sun. The locations of the dimming the footpoints of the two flare ribbons and the timing relative to the eruption suggests that coronal dimming is caused by the ejection of hot plasma from the Suns surface.How this process was studied:There are a number of satellites dedicated to observing the Sun, and several of them were used to study this explosion. Data from SDOs Atmospheric Imaging Assembly (which images in extreme ultraviolet) and its Helioseismic and Magnetic Imager (which measures magnetic fields) were used as well as observations from STEREO, the pair of satellites orbiting the Sun at 90 from SDO.CitationJ. X. Cheng and J. Qiu 2016 ApJ 825 37. doi:10.3847/0004-637X/825/1/37

  7. An international network of magnetic observatories

    USGS Publications Warehouse

    Love, Jeffrey J.; Chulliat, A.

    2013-01-01

    Since its formation in the late 1980s, the International Real-Time Magnetic Observatory Network (INTERMAGNET), a voluntary consortium of geophysical institutes from around the world, has promoted the operation of magnetic observatories according to modern standards [eg. Rasson, 2007]. INTERMAGNET institutes have cooperatively developed infrastructure for data exchange and management ads well as methods for data processing and checking. INTERMAGNET institute have also helped to expand global geomagnetic monitoring capacity, most notably by assisting magnetic observatory institutes in economically developing countries by working directly with local geophysicists. Today the INTERMAGNET consortium encompasses 57 institutes from 40 countries supporting 120 observatories (see Figures 1a and 1b). INTERMAGNET data record a wide variety of time series signals related to a host of different physical processes in the Earth's interiors and in the Earth's surrounding space environment [e.g., Love, 2008]. Observatory data have always had a diverse user community, and to meet evolving demand, INTERMAGNET has recently coordinated the introduction of several new data services.

  8. OSO-6 Orbiting Solar Observatory

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.

  9. Neutrino Oscillations and the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wark, David

    2001-04-01

    When the existence of the neutrino was almost apologetically first proposed by Wolfgang Pauli it was intended to explain the mysterious apparent absence of energy and momentum in beta decay. 70 years later the neutrino has indeed solved that mystery, but it has generated still more of its own. Are neutrinos massive? Is it possible to create a neutrino with its spin in the same direction as its momentum? What fraction of the mass of the Universe is made up of neutrinos? Are the flavour labels which we put on neutrinos, like electron and muon, really fixed or can they change? Why does no experiment see the predicted flux of neutrinos from the Sun? Why do there appear to be roughly equal numbers of muon and electron neutrinos created in our atmosphere, rather than the 2:1 ratio we would expect? Many of these questions were coupled when Bruno Pontecorvo first suggested that the shortfall in solar neutrino measurements were caused by neutrino oscillations - neutrinos spontaneously changing flavour as they travel from the Sun. 30 years later we still await definitive proof of that conjecture, and providing that proof is the reason for the Sudbury Neutrino Observatory. The talk will discuss the current state of neutrino oscillations studies, and show how the unique capabilities of the Sudbury Neutrino Observatory can provide definitive proof of whether neutrino oscillations are the long-sought answer to the solar neutrino problem.

  10. X-class Solar Flare on March 29, 2014

    NASA Image and Video Library

    2014-03-31

    Extreme ultraviolet light streams out of an X-class solar flare as seen in this image captured on March 29, 2014, by NASA's Solar Dynamics Observatory. This image blends two wavelengths of light: 304 and 171 Angstroms, which help scientists observe the lower levels of the sun's atmosphere. More info: The sun emitted a significant solar flare, peaking at 1:48 p.m. EDT March 29, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event impacted Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an X.1-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Space-atmospheric interactions of energetic cosmic rays

    NASA Astrophysics Data System (ADS)

    Isar, Paula Gina

    2015-02-01

    Ultra-high energy cosmic rays are the most energetic particles in the Universe of which origin still remain a mystery since a century from their descovery. They are unique messengers coming from far beyond our Milky Way Galaxy, which provides insights into the fundamental matter, energy, space and time. As subatomic particles flying through space to nearly light speed, the ultra-high energy cosmic rays are so rare that they strike the Earth's atmosphere at a rate of up to only one particle per square kilometer per year or century. While the atmosphere is used as a giant calorimeter where cosmic rays induced air showers are initiated and the medium through which Cherenkov or fluorescence light or radio waves propagate, all cosmic ray measurements (performed either from space or ground) rely on an accurate atmospheric monitoring and understanding of atmospheric effects. The interdisciplinary link between Astroparticle Physics and Atmospheric Environment through the ultra-high energy comic rays space - atmospheric interactions, based on the present ground- and future space-based cosmic ray observatories, will be presented.

  12. The Farid & Moussa Raphael Observatory

    NASA Astrophysics Data System (ADS)

    Hajjar, R.

    2017-06-01

    The Farid & Moussa Raphael Observatory (FMRO) at Notre Dame University Louaize (NDU) is a teaching, research, and outreach facility located at the main campus of the university. It located very close to the Lebanese coast, in an urbanized area. It features a 60-cm Planewave CDK telescope, and instruments that allow for photometric and spetroscopic studies. The observatory currently has one thinned, back-illuminated CCD camera, used as the main imager along with Johnson-Cousin and Sloan photometric filters. It also features two spectrographs, one of which is a fiber fed echelle spectrograph. These are used with a dedicated CCD. The observatory has served for student projects, and summer schools for advanced undergraduate and graduate students. It is also made available for use by the regional and international community. The control system is currently being configured for remote observations. A number of long-term research projects are also being launched at the observatory.

  13. Re-development of the Mount Evans Womble Observatory

    NASA Astrophysics Data System (ADS)

    Stencel, Robert E.

    2017-01-01

    Mount Evans in the Colorado Front Range hosts one of the highest altitude observatories in the USA, at an elevation of 14,148 ft (4,312 m). The observatory is operated under a Forest Service use permit, recently renewed for another 30 years. At times, observing conditions (seeing, water vapor column, etc.) can be as good as anywhere. The existing twin 0.72 m f/21 R-C telescopes are solar powered and internet connected. However, jet stream winds in 2012 destroyed the 15 year old, 22.5 ft diameter Ash dome. The replacement, custom dome design/install was rushed, and suffers from a number of flaws. Given that, plus the aging telescope and operating system, we are planning, and seeking partners and investor funds, to re-develop the facility. Facets of this may include replacing the twin apertures with a single full-aperture telescope for remote operations and sky monitoring, replacing the flawed dome with an innovative dome design, renewable power upgrades, and outreach programs for the many thousands of mountain visitors seasonally. As elsewhere, we are grappling with increases in atmospheric water vapor and out-of-control regional light pollution growth, but believe that the site continues to hold great potential. Interested parties are invited to contact the first author for further information. Website: http://www.du.edu/~rstencel/MtEvans .

  14. Compton Gamma Ray Observatory: Lessons Learned in Propulsion

    NASA Technical Reports Server (NTRS)

    Dressler, G. A.; Joseph, G. W.; Behrens, H. W.; Asato, D. I.; Carlson, R. A.; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Compton Gamma Ray Observatory was the second of NASA's Great Observatories. At 17 1/2 tons. it was the heaviest astrophysical payload ever flown at the time of its launch on April 5, 1991 aboard the Space Shuttle. During initial, on-orbit priming of the spacecraft's monopropellant hydrazine propulsion system, a severe waterhammer transient was experienced. At that time, anomalous telemetry readings were received from on-board propulsion system instrumentation. This led to ground analyses and laboratory investigations as to the root cause of the waterhammer, potential damage to system integrity and functionality, and risks for switching from the primary (A-side) propulsion system to the redundant (B-side) system. The switchover to B-side was ultimately performed successfully and the spacecraft completed its basic and extended missions in this configuration. Nine years later, following a critical control gyroscope failure, Compton was safely deorbited and re-entered the Earth's atmosphere on June 4, 2000. Additional risk assessments concerning viability of A- and B-sides were necessary to provide confidence in attitude and delta-V authority and reliability to manage the precisely controlled reentry. This paper summarizes the design and operation of the propulsion system used on the spacecraft and provides "lessons learned" from the system engineering investigations into the propellant loading procedures, the initial priming anomaly, mission operations, and the commanded re-entry following the gyro failure.

  15. The European Virtual Observatory EURO-VO | Euro-VO

    Science.gov Websites

    : VOTECH EuroVO-DCA EuroVO-AIDA EuroVO-ICE The European Virtual Observatory EURO-VO The Virtual Observatory news Workshop on Virtual Observatory Tools and their Applications, Krakow, Poland June 16-18, organized present the Astronomical Virtual Observatory at the Copernicus (European Earth Observation Programme) Big

  16. Mechanical Overview of the International X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Robinson, David W.; McClelland, Ryan S.

    2009-01-01

    The International X-ray Observatory (IXO) is a new collaboration between NASA, ESA, and JAXA which is under study for launch in 2020. IXO will be a large 6600 kilogram Great Observatory-class mission which will build upon the legacies of the Chandra and XMM-Newton X-ray observatories. It combines elements from NASA's Constellation-X program and ESA's XEUS program. The observatory will have a 20-25 meter focal length, which necessitates the use of a deployable instrument module. Currently the project is actively trading configurations and layouts of the various instruments and spacecraft components. This paper will provide a snapshot of the latest observatory configuration under consideration and summarize the observatory from the mechanical engineering perspective.

  17. SHARPs - A Near-Real-Time Space Weather Data Product from HMI

    NASA Astrophysics Data System (ADS)

    Bobra, M.; Turmon, M.; Baldner, C.; Sun, X.; Hoeksema, J. T.

    2012-12-01

    A data product from the Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO), called Space-weather HMI Active Region Patches (SHARPs), is now available through the SDO Joint Science Operations Center (JSOC) and the Virtual Solar Observatory. SHARPs are magnetically active regions identified on the solar disk and tracked automatically in time. SHARP data are processed within a few hours of the observation time. The SHARP data series contains active region-sized disambiguated vector magnetic field data in both Lambert Cylindrical Equal-Area and CCD coordinates on a 12 minute cadence. The series also provides simultaneous HMI maps of the line-of-sight magnetic field, continuum intensity, and velocity on the same ~0.5 arc-second pixel grid. In addition, the SHARP data series provides space weather quantities computed on the inverted, disambiguated, and remapped data. The values for each tracked region are computed and updated in near real time. We present space weather results for several X-class flares; furthermore, we compare said space weather quantities with helioseismic quantities calculated using ring-diagram analysis.

  18. Filament Eruption Creates 'Canyon of Fire' on the Sun

    NASA Image and Video Library

    2013-10-24

    A magnetic filament of solar material erupted on the sun in late September, breaking the quiet conditions in a spectacular fashion. The 200,000 mile long filament ripped through the sun's atmosphere, the corona, leaving behind what looks like a canyon of fire. The glowing canyon traces the channel where magnetic fields held the filament aloft before the explosion. Visualizers at NASA's Goddard Space Flight Center in Greenbelt, Md. combined two days of satellite data to create a short movie of this gigantic event on the sun: bit.ly/166CncU In reality, the sun is not made of fire, but of something called plasma: particles so hot that their electrons have boiled off, creating a charged gas that is interwoven with magnetic fields. These images were captured on Sept. 29-30, 2013, by NASA's Solar Dynamics Observatory, or SDO, which constantly observes the sun in a variety of wavelengths. Read more/download video: 1.usa.gov/1dnrsjF Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. 110th Anniversary of the Engelhardt Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Nefedyev, Y.

    2012-09-01

    The Engelhardt Astronomical Observatory (EAO) was founded in September 21, 1901. The history of creation of the Engelhard Astronomical Observatory was begun in 1897 with transfer a complimentary to the Kazan University of the unique astronomical equipment of the private observatory in Dresden by known astronomer Vasily Pavlovichem Engelgardt. Having stopped astronomical activity owing to advanced years and illnesses Engelgardt has decided to offer all tools and library of the Astronomical observatory of the Kazan University. Vasily Pavlovich has put the first condition of the donation that his tools have been established as soon as possible and on them supervision are started. In 1898 the decree of Emperor had been allocated means and the ground for construction of the Astronomical observatory is allocated. There is the main historical telescope of the Engelhard Astronomical Observatory the 12-inch refractor which was constructed by English master Grubbom in 1875. The unique tool of the Engelhard Astronomical Observatory is unique in the world now a working telescope heliometer. It's one of the first heliometers, left workshops Repsolda. It has been made in 1874 and established in Engelgardt observatory in 1908 in especially for him the constructed round pavilion in diameter of 3.6 m. Today the Engelhard Astronomical Observatory is the only thing scientifically - educational and cultural - the cognitive astronomical center, located on territory from Moscow up to the most east border of Russia. Currently, the observatory is preparing to enter the protected UNESCO World Heritage List.

  20. Kitt Peak National Observatory | ast.noao.edu

    Science.gov Websites

    National Observatory (KPNO), part of the National Optical Astronomy Observatory (NOAO), supports the most diverse collection of astronomical observatories on Earth for nighttime optical and infrared astronomy and NOAO is the national center for ground-based nighttime astronomy in the United States and is operated