Sample records for observatory sdo observed

  1. The Effects of Propellant Slosh Dynamics on the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Mason, Paul; Starin, Scott R.

    2011-01-01

    The Solar Dynamics Observatory (SDO) mission, which is part of the Living With a Star program, was successfully launched and deployed from its Atlas V launch vehicle on February 11, 2010. SDO is an Explorer-class mission now operating in a geosynchronous orbit (GEO). The basic mission is to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station located in White Sands, New Mexico. Almost half of SDO's launch mass was propellant, contained in two large tanks. To ensure performance with this amount of propellant, a slosh analysis was performed prior to launch. This paper provides an overview of the SDO slosh analysis, the on-orbit experience, and the lessons learned.

  2. Tuning the Solar Dynamics Observatory Onboard Kalman Filter

    NASA Technical Reports Server (NTRS)

    Halverson, Julie Kay; Harman, Rick; Carpenter, Russell; Poland, Devin

    2017-01-01

    The Solar Dynamics Observatory (SDO) was launched in 2010. SDO is a sun pointing semi-autonomous spacecraft in a geosynchronous orbit that allows nearly continuous observations of the sun. SDO is equipped with coarse sun sensors, two star trackers, a digital sun sensor, and three two-axis inertial reference units (IRU). The IRUs are temperature sensitive and were designed to operate in a stable thermal environment. Due to battery degradation concerns the IRU heaters were not used on SDO and the onboard filter was tuned to accommodate the noisier IRU data. Since launch currents have increased on two IRUs, one had to eventually be powered off. Recent ground tests on a battery similar to SDO indicated the heaters would have negligible impact on battery degradation, so in 2016 a decision was made to turn the heaters on. This paper presents the analysis and results of updating the filter tuning parameters onboard SDO with the IRUs now operating in their intended thermal environment.

  3. NASA's Solar Dynamics Observatory (SDO): A Systems Approach to a Complex Mission

    NASA Technical Reports Server (NTRS)

    Ruffa, John A.; Ward, David K.; Bartusek, LIsa M.; Bay, Michael; Gonzales, Peter J.; Pesnell, William D.

    2012-01-01

    The Solar Dynamics Observatory (SDO) includes three advanced instruments, massive science data volume, stringent science data completeness requirements, and a custom ground station to meet mission demands. The strict instrument science requirements imposed a number of challenging drivers on the overall mission system design, leading the SDO team to adopt an integrated systems engineering presence across all aspects of the mission to ensure that mission science requirements would be met. Key strategies were devised to address these system level drivers and mitigate identified threats to mission success. The global systems engineering team approach ensured that key drivers and risk areas were rigorously addressed through all phases of the mission, leading to the successful SDO launch and on-orbit operation. Since launch, SDO's on-orbit performance has met all mission science requirements and enabled groundbreaking science observations, expanding our understanding of the Sun and its dynamic processes.

  4. NASA's Solar Dynamics Observatory (SDO): A Systems Approach to a Complex Mission

    NASA Technical Reports Server (NTRS)

    Ruffa, John A.; Ward, David K.; Bartusek, Lisa M.; Bay, Michael; Gonzales, Peter J.; Pesnell, William D.

    2012-01-01

    The Solar Dynamics Observatory (SDO) includes three advanced instruments, massive science data volume, stringent science data completeness requirements, and a custom ground station to meet mission demands. The strict instrument science requirements imposed a number of challenging drivers on the overall mission system design, leading the SDO team to adopt an integrated systems engineering presence across all aspects of the mission to ensure that mission science requirements would be met. Key strategies were devised to address these system level drivers and mitigate identified threats to mission success. The global systems engineering team approach ensured that key drivers and risk areas were rigorously addressed through all phases of the mission, leading to the successful SDO launch and on-orbit operation. Since launch, SDO s on-orbit performance has met all mission science requirements and enabled groundbreaking science observations, expanding our understanding of the Sun and its dynamic processes.

  5. Laboratory study supporting the interpretation of Solar Dynamics Observatory data

    DOE PAGES

    Trabert, E.; Beiersdorfer, P.

    2015-01-29

    High-resolution extreme ultraviolet spectra of ions in an electron beam ion trap are investigated as a laboratory complement of the moderate-resolution observation bands of the AIA experiment on board the Solar Dynamics Observatory (SDO) spacecraft. Here, the latter observations depend on dominant iron lines of various charge states which in combination yield temperature information on the solar plasma. Our measurements suggest additions to the spectral models that are used in the SDO data interpretation. In the process, we also note a fair number of inconsistencies among the wavelength reference data bases.

  6. Sun's influence on climate: Explored with SDO

    NASA Astrophysics Data System (ADS)

    Lundstedt, H.

    2010-09-01

    Stunning images and movies recorded of the Sun, with Solar Dynamics Observatory (SDO), makes one wonder: How would this change our view on the Sun-Earth climate coupling? SDO shows a much more variable Sun, on all spatial and temporal scales. Detailed pictures of solar storms are foreseen to improve our understanding of the direct Sun-Earth coupling. Dynamo models, described by dynamical systems using input from helioseismic observations, are foreseen to improve our knowledge of the the Sun's cyclic influence on climate. Both the direct-, and the cycle-influence will be discussed in view of the new SDO observations.

  7. Solar Dynamics Observatory High Gain Antenna Handover Planning

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.; Mann, Laurie

    2007-01-01

    The Solar Dynamics Observatory (SDO) is planned to launch in early 2009 as a mission to study the solar variability and its impact on Earth. To best satisfy its science goal, SDO will fly in a geosynchronous orbit with an inclination of approximately 29 deg. The spacecraft attitude is designed so that the science instruments point directly at the Sun with high accuracy. One of SDO s principal requirements is to obtain long periods of uninterrupted observations. The observations have an extremely high data volume so SDO must be in continuous contact with the ground during the observation periods. To maintain this contact, SDO is equipped with a pair of high gain antennas (HGAs) transmitting to a pair of ground antennas at the SDO ground station (SDOGS) located in White Sands, New Mexico. Either HGA can transmit to either SDOGS antenna. Neither HGA can be powered down. During a portion of each year, each of the HGA beams will intersect with the SDO body for a portion of the orbit. The original SDO antenna contact plan used each HGA for the half of each year during which its beam would not intersect the spacecraft. No data would be lost except, possibly, when switching from one antenna to another. After this plan was adopted, further analysis showed that daily handovers would be necessary for significant periods of the year. This unexpected need for extensive handovers necessitated that a handover design be developed to minimize the impact on the mission. This antenna handover design was developed and successfully tested with simulated data using the slew rate limits from preliminary jitter analysis. Subsequent analysis provided significant revision of allowed rates requiring modification of the handover plans.

  8. Solar Dynamics Observatory High Gain Antenna Handover Planning

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.; Mann, Laurie

    2007-01-01

    The Solar Dynamics Observatory (SDO) is planned to launch in early 2009 as a mission to study the solar variability and its impact on Earth. To best satisfy its science goal, SDO will fly in a geosynchronous orbit with an inclination of approximately 29 deg. The spacecraft attitude is designed so that the science instruments point directly at the Sun with high accuracy. One of SDO's principal requirements is to obtain long periods of uninterrupted observations. The observations have an extremely high data volume so SDO must be in continuous contact with the ground during the observation periods. To maintain this contact, SDO is equipped with a pair of high gain antennas (HGAs) transmitting to a pair of ground antennas at the SDO ground station (SDOGS) located in White Sands, New Mexico. Either HGA can transmit to either SDOGS antenna. Neither HGA can be powered down. During a portion of each year, each of the HGA beams will intersect with the SDO body for a portion of the orbit. The original SDO antenna contact plan used each HGA for the half of each year during which its beam would not intersect the spacecraft. No data would be lost except, possibly, when switching from one antenna to another. After this plan was adopted, further analysis showed that daily handovers would be necessary for significant periods of the year. This unexpected need for extensive handovers necessitated that a handover design be developed to minimize the impact on the mission. This antenna handover design was developed and successfully tested with simulated data using the slew rate limits from preliminary jitter analysis. Subsequent analysis provided significant revision of allowed rates requiring modification of the handover plans.

  9. Jitter Test Program and On-Orbit Mitigation Strategies for Solar Dynamic Observatory

    NASA Technical Reports Server (NTRS)

    Liu, Kuo-Chia; Kenney, Thomas; Maghami, Peiman; Mule, Pete; Blaurock, Carl; Haile, William B.

    2007-01-01

    The Solar Dynamic Observatory (SDO) aims to study the Sun's influence on the Earth, the source, storage, and release of the solar energy, and the interior structure of the Sun. During science observations, the jitter stability at the instrument focal plane must be maintained to less than a fraction of an arcsecond for two of the SDO instruments. To meet these stringent requirements, a significant amount of analysis and test effort has been devoted to predicting the jitter induced from various disturbance sources. This paper presents an overview of the SDO jitter analysis approach and test effort performed to date. It emphasizes the disturbance modeling, verification, calibration, and validation of the high gain antenna stepping mechanism and the reaction wheels, which are the two largest jitter contributors. This paper also describes on-orbit mitigation strategies to protect the system from analysis model uncertainties. Lessons learned from the SDO jitter analyses and test programs are included in the paper to share the knowledge gained with the community.

  10. Accessing eSDO Solar Image Processing and Visualization through AstroGrid

    NASA Astrophysics Data System (ADS)

    Auden, E.; Dalla, S.

    2008-08-01

    The eSDO project is funded by the UK's Science and Technology Facilities Council (STFC) to integrate Solar Dynamics Observatory (SDO) data, algorithms, and visualization tools with the UK's Virtual Observatory project, AstroGrid. In preparation for the SDO launch in January 2009, the eSDO team has developed nine algorithms covering coronal behaviour, feature recognition, and global / local helioseismology. Each of these algorithms has been deployed as an AstroGrid Common Execution Architecture (CEA) application so that they can be included in complex VO workflows. In addition, the PLASTIC-enabled eSDO "Streaming Tool" online movie application allows users to search multi-instrument solar archives through AstroGrid web services and visualise the image data through galleries, an interactive movie viewing applet, and QuickTime movies generated on-the-fly.

  11. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  12. Solar Dynamics Observatory Briefing

    NASA Image and Video Library

    2010-01-21

    Madhulika Guhathakurta, SDO Program Scientist, speaks during a briefing to discuss the upcoming launch of NASA's Solar Dynamic Observatory, or SDO, Thursday, Jan. 21, 2010, at NASA Headquarters in Washington. The mission is to study the Sun and its dynamic behavior. Photo Credit: (NASA/Paul E. Alers)

  13. The Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Pesnell, William D.

    2008-01-01

    The Solar Dynamics Observatory (SDO) is the first Space Weather Mission in NASA's Living With a Star Program. SDO's main goal is to understand, driving towards a predictive capability, those solar variations that influence life on Earth and humanity's technological systems. The past decade has seen an increasing emphasis on understanding the entire Sun, from the nuclear reactions at the core to the development and loss of magnetic loops in the corona. SDO's three science investigations (HMI, AIA, and EVE) will determine how the Sun's magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. SDO will return full-disk Dopplergrams, full-disk vector magnetograms, full-disk images at nine EIUV wavelengths, and EUV spectral irradiances, all taken at a rapid cadence. This means you can 'observe the database' to study events, but we can also move forward in producing quantitative models of what the Sun is doing today. SDO is scheduled to launch in 2008 on an Atlas V rocket from the Kennedy Space Center, Cape Canaveral, Florida. The satellite will fly in a 28 degree inclined geosynchronous orbit about the longitude of New Mexico, where a dedicated Ka-band ground station will receive the 150 Mbps data flow. How SDO data will transform the study of the Sun and its affect on Space Weather studies will be discussed.

  14. Solar Dynamics Observatory Artist Concept

    NASA Image and Video Library

    2010-02-11

    The Solar Dynamics Observatory SDO spacecraft, shown above the Earth as it faces toward the Sun. SDO is designed to study the influence of the Sun on the Earth and the inner solar system by studying the solar atmosphere. http://photojournal.jpl.nasa.gov/catalog/PIA18169

  15. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Madhulika Guhathakurta, SDO Program Scientist at NASA Headquarters in Washington, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Launched on Feb. 11, 2010, SDO is the most advanced spacecraft ever designed to study the sun. During its five-year mission, it will examine the sun's magnetic field and also provide a better understanding of the role the sun plays in Earth's atmospheric chemistry and climate. Photo Credit: (NASA/Carla Cioffi)

  16. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Scientists involved in NASA's Solar Dynamics Observatory (SDO) mission attend a press conference to discuss recent images captured by the SDO spacecraft Wednesday, April 21, 2010, at the Newseum in Washington. On Feb. 11, 2010, NASA launched the SDO spacecraft, which is the most advanced spacecraft ever designed to study the sun. Seated left to right are: Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md.; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment Instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder and Madhulika Guhathakurta, SDO program scientist, NASA Headquarters in Washington. Photo Credit: (NASA/Carla Cioffi)

  17. The Solar Dynamics Observatory: Your Eye On The Sun

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2008-01-01

    The Sun hiccups and satellites die. That is what NASA's Living With a Star Program is all about. The Solar Dynamics Observatory (SDO) is the first Space Weather Mission in LWS. SDO's main goal is to understand, driving towards a predictive capability, those solar variations that influence life on Earth and humanity's technological systems. The past decade has seen an increasing emphasis on understanding the entire Sun, from the nuclear reactions at the core to the development and loss of magnetic loops in the corona. SDO's three science investigations (HMI, AIA, and EVE) will determine how the Sun's magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere and geospace as the solar wind, energetic particles, and variations in the solar irradiance. SDO will return full-disk Dopplergrams, full-disk vector magnetograms, full-disk images at nine E/UV wavelengths, and EUV spectral irradiances, all taken at a rapid cadence. This means you can "observe the database" to study events, but we can also move forward in producing quantitative models of what the Sun is doing today. SDO is scheduled to launch in 2008 on an Atlas V rocket from the Kennedy Space Center, Cape Canaveral, Florida. The satellite will fly in a 28 degree inclined geosynchronous orbit about the longitude of New Mexico, where a dedicated Ka-band ground station will receive the 150 Mbps data flow. How SDO data will transform the study of the Sun and its affect on Space Weather studies will be discussed.

  18. Solar Dynamics Observatory Briefing

    NASA Image and Video Library

    2010-01-21

    Richard Fisher, Heliophysics Division Director at NASA Headquarters, left, speaks during a briefing to discuss the upcoming launch of NASA's Solar Dynamic Observatory, or SDO, Thursday, Jan. 21, 2010, as Madhulika Guhathakurta, SDO Program Scientist looks on at NASA Headquarters in Washington. The mission is to study the Sun and its dynamic behavior. Photo Credit: (NASA/Paul E. Alers)

  19. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Scientists involved in NASA's Solar Dynamics Observatory (SDO) mission attend a press conference to discuss recent images captured by the SDO spacecraft Wednesday, April 21, 2010, at the Newseum in Washington. Pictured right to left are: Madhulika Guhathakurta, SDO program scientist, NASA Headquarters in Washington; Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto and Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. Photo Credit: (NASA/Carla Cioffi)

  20. The Virtual Solar Observatory: What Are We Up To Now?

    NASA Technical Reports Server (NTRS)

    Gurman, J. B.; Hill, F.; Suarez-Sola, F.; Bogart, R.; Amezcua, A.; Martens, P.; Hourcle, J.; Hughitt, K.; Davey, A.

    2012-01-01

    In the nearly ten years of a functional Virtual Solar Observatory (VSO), http://virtualsolar.org/ we have made it possible to query and access sixty-seven distinct solar data products and several event lists from nine spacecraft and fifteen observatories or observing networks. We have used existing VSO technology, and developed new software, for a distributed network of sites caching and serving SDO HMI and/ or AlA data. We have also developed an application programming interface (API) that has enabled VSO search and data access capabilities in IDL, Python, and Java. We also have quite a bit of work yet to do, including completion of the implementation of access to SDO EVE data, and access to some nineteen other data sets from space- and ground-based observatories. In addition, we have been developing a new graphic user interface that will enable the saving of user interface and search preferences. We solicit advice from the community input prioritizing our task list, and adding to it

  1. The Effects of Propellant Slosh Dynamics on the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Mason, Paul; Starin, Scott R.

    2011-01-01

    The Solar Dynamics Observatory (SOO) mission, which is part of the Living With a Star program, was successfully launched and deployed from its Atlas V launch vehicle on February 11, 2010. SOO is an Explorer-class mission now operating in a geosynchronous orbit (GEO). The basic mission is to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station located in White Sands, New Mexico. Almost half of SDO's launch mass was propellant, contained in two large tanks. To ensure performance with this amount of propellant, a slosh analysis was performed prior to launch. This paper provides an overview of the SDO slosh analysis, the on-orbit experience, and the lessons learned.

  2. THE WAVE PROPERTIES OF CORONAL BRIGHT FRONTS OBSERVED USING SDO/AIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, David M.; DeLuca, Edward E.; Gallagher, Peter T., E-mail: longda@tcd.ie

    2011-11-15

    Coronal bright fronts (CBFs) are large-scale wavefronts that propagate through the solar corona at hundreds of kilometers per second. While their kinematics have been studied in detail, many questions remain regarding the temporal evolution of their amplitude and pulse width. Here, contemporaneous high cadence, multi-thermal observations of the solar corona from the Solar Dynamic Observatory (SDO) and Solar TErrestrial RElations Observatory (STEREO) spacecraft are used to determine the kinematics and expansion rate of a CBF wavefront observed on 2010 August 14. The CBF was found to have a lower initial velocity with weaker deceleration in STEREO observations compared to SDOmore » observations ({approx}340 km s{sup -1} and -72 m s{sup -2} as opposed to {approx}410 km s{sup -1} and -279 m s{sup -2}). The CBF kinematics from SDO were found to be highly passband-dependent, with an initial velocity ranging from 379 {+-} 12 km s{sup -1} to 460 {+-} 28 km s{sup -1} and acceleration ranging from -128 {+-} 28 m s{sup -2} to -431 {+-} 86 m s{sup -2} in the 335 A and 304 A passbands, respectively. These kinematics were used to estimate a quiet coronal magnetic field strength range of {approx}1-2 G. Significant pulse broadening was also observed, with expansion rates of {approx}130 km s{sup -1} (STEREO) and {approx}220 km s{sup -1} (SDO). By treating the CBF as a linear superposition of sinusoidal waves within a Gaussian envelope, the resulting dispersion rate of the pulse was found to be {approx}8-13 Mm{sup 2} s{sup -1}. These results are indicative of a fast-mode magnetoacoustic wave pulse propagating through an inhomogeneous medium.« less

  3. Analysis of Supergranule Sizes and Velocities Using Solar Dynamics Observatory (SDO)/Helioseismic Magnetic Imager (HMI) and Solar and Heliospheric Observatory (SOHO)/Michelson Doppler Imager (MDI) Dopplergrams

    NASA Technical Reports Server (NTRS)

    Williams, Peter E.; Pesnell, W. Dean; Beck, John G.; Lee, Shannon

    2013-01-01

    Co-temporal Doppler images from Solar and Heliospheric Observatory (SOHO)/ Michelson Doppler Imager (MDI) and Solar Dynamics Observatory (SDO)/Helioseismic Magnetic Imager (HMI) have been analyzed to extract quantitative information about global properties of the spatial and temporal characteristics of solar supergranulation. Preliminary comparisons show that supergranules appear to be smaller and have stronger horizontal velocity flows within HMI data than was measured with MDI. There appears to be no difference in their evolutionary timescales. Supergranule sizes and velocities were analyzed over a ten-day time period at a 15-minute cadence. While the averages of the time-series retain the aforementioned differences, fluctuations of these parameters first observed in MDI data were seen in both MDI and HMI time-series, exhibiting a strong cross-correlation. This verifies that these fluctuations are not instrumental, but are solar in origin. The observed discrepancies between the averaged values from the two sets of data are a consequence of instrument resolution. The lower spatial resolution of MDI results in larger observed structures with lower velocities than is seen in HMI. While these results offer a further constraint on the physical nature of supergranules, they also provide a level of calibration between the two instruments.

  4. The Solar Dynamics Observatory (SDO) Education and Outreach (E/PO) Program: Changing Perceptions One Program at a Time

    NASA Technical Reports Server (NTRS)

    Drobnes, Emilie; Littleton, A.; Pesnell, William D.; Beck, K.; Buhr, S.; Durscher, R.; Hill, S.; McCaffrey, M.; McKenzie, D. E.; Myers, D.; hide

    2013-01-01

    We outline the context and overall philosophy for the combined Solar Dynamics Observatory (SDO) Education and Public Outreach (E/PO) program, present a brief overview of all SDO E/PO programs along with more detailed highlights of a few key programs, followed by a review of our results to date, conclude a summary of the successes, failures, and lessons learned, which future missions can use as a guide, while incorporating their own content to enhance the public's knowledge and appreciation of science and technology as well as its benefit to society.

  5. Ground System for Solar Dynamics Observatory (SDO) Mission

    NASA Technical Reports Server (NTRS)

    Tann, Hun K.; Silva, Christopher J.; Pages, Raymond J.

    2005-01-01

    NASA s Goddard Space Flight Center (GSFC) has recently completed its Critical Design Review (CDR) of a new dual Ka and S-band ground system for the Solar Dynamics Observatory (SDO) Mission. SDO, the flagship mission under the new Living with a Star Program Office, is one of GSFC s most recent large-scale in-house missions. The observatory is scheduled for launch in August 2008 from the Kennedy Space Center aboard an Atlas-5 expendable launch vehicle. Unique to this mission is an extremely challenging science data capture requirement. The mission is required to capture 99.99% of available science over 95% of all observation opportunities. Due to the continuous, high volume (150 Mbps) science data rate, no on-board storage of science data will be implemented on this mission. With the observatory placed in a geo-synchronous orbit at 36,000 kilometers within view of dedicated ground stations, the ground system will in effect implement a "real-time" science data pipeline with appropriate data accounting, data storage, data distribution, data recovery, and automated system failure detection and correction to keep the science data flowing continuously to three separate Science Operations Centers (SOCs). Data storage rates of approx. 45 Tera-bytes per month are expected. The Mission Operations Center (MOC) will be based at GSFC and is designed to be highly automated. Three SOCs will share in the observatory operations, each operating their own instrument. Remote operations of a multi-antenna ground station in White Sands, New Mexico from the MOC is part of the design baseline.

  6. Relating Alfvén Wave Heating Model to Observations of a Solar Active Region

    NASA Astrophysics Data System (ADS)

    Yoritomo, J. Y.; Van Ballegooijen, A. A.

    2012-12-01

    We compared images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) with simulations of propagating and dissipating Alfvén waves from a three-dimensional magnetohydrodynamic (MHD) model (van Ballegooijen et. al 2011; Asgari-Targhi & van Ballegooijen 2012). The goal was to search for observational evidence of Alfvén waves in the solar corona and understand their role in coronal heating. We looked at one particular active region on the 5th of May 2012. Certain distinct loops in the SDO/AIA observations were selected and expanded. Movies were created from these selections in an attempt to discover transverse motions that may be Alfvén waves. Using a magnetogram of that day and the corresponding synoptic map, a potential field model was created for the active region. Three-dimensional MHD models for several loops in different locations in the active region were created. Each model specifies the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We find that the heating is intermittent in the loops and reflection occurs at the transition region. For loops at larger and larger height, a point is reached where thermal non-equilibrium occurs. In the center this critical height is much higher than in the periphery of the active region. Lastly, we find that the average heating rate and coronal pressure decrease with increasing height in the corona. This research was supported by an NSF grant for the Smithsonian Astrophysical Observatory (SAO) Solar REU program and a SDO/AIA grant for the Smithsonian Astrophysical Observatory.

  7. Case study of a magnetic transient in NOAA 11429 observed by SDO/HMI during the M7.9 flare on 2012 march 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harker, Brian J.; Pevtsov, Alexei A., E-mail: bharker@nso.edu, E-mail: apevtsov@nso.edu

    NOAA 11429 was the source of an M7.9 X-ray flare at the western solar limb (N18° W63°) on 2012 March 13 at 17:12 UT. Observations of the line-of-sight magnetic flux and the Stokes I and V profiles from which it is derived were carried out by the Solar Dynamics Observatory Helioseismic and Magnetic Imager (SDO/HMI) with a 45 s cadence over the full disk, at a spatial sampling of 0.''5. During flare onset, a transient patch of negative flux can be observed in SDO/HMI magnetograms to rapidly appear within the positive polarity penumbra of NOAA 11429. We present here amore » detailed study of this magnetic transient and offer interpretations as to whether this highly debated phenomenon represents a 'real' change in the structure of the magnetic field at the site of the flare, or is instead a product of instrumental/algorithmic artifacts related to particular SDO/HMI data reduction techniques.« less

  8. The Solar Dynamics Observatory: Your On-Orbit Eye on the Sun

    NASA Technical Reports Server (NTRS)

    Pesnell, W. Dean

    2011-01-01

    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010 into the partly cloudy skies above Cape Canaveral, Florida. Over the next month SDO moved into a 28 degree inclined geosynchronous orbit at the longitude of the ground station in New Mexico. SDO is the first Space Weather Mission in NASA's Living With a Star Program. SDO's main goal is to understand and predict those solar variations that influence life on Earth and our technological systems. The SDO science investigations will determine how the Sun's magnetic field is generated and structured, how this stored magnetic energy is released into the heliosphere as the solar wind, energetic particles, and variations in the solar irradiance. The SDO mission consists of three scientific investigations (AIA, EVE, and HMI), a spacecraft bus, and a dedicated Ka-band ground station to handle the 150 Mbps data flow. SDO continues a long tradition of NASA missions providing calibrated solar spectral irradiance data, in this case using multiple measurements of the irradiance and rocket underflights of the spacecraft. The other instruments on SDO will be used to explain and develop predictive models of the solar spectral irradiance in the extreme ultraviolet. Science teams at LMSAL, LASP, and Stanford are responsible for processing, analyzing, distributing, and archiving the science data. We will talk about the launch of SDO and describe the data and science it is providing to NASA.

  9. The Solar Dynamics Observatory, Studying the Sun and Its Influence on Other Bodies in the Solar System

    NASA Technical Reports Server (NTRS)

    Chamberlin, P. C.

    2011-01-01

    The solar photon output, which was once thought to be constant, varies over all time scales from seconds during solar flares to years due to the solar cycle. These solar variations cause significant deviations in the Earth and space environments on similar time scales, such as affecting the atmospheric densities and composition of particular atoms, molecules, and ions in the atmospheres of the Earth and other planets. Presented and discussed will be examples of unprecedented observations from NASA's new solar observatory, the Solar Dynamics Observatory (SDO). Using three specialized instruments, SDO measures the origins of solar activity from inside the Sun, though its atmosphere, then accurately measuring the Sun's radiative output in X-ray and EUV wavelengths (0.1-121 nm). Along with the visually appealing observations will be discussions of what these measurements can tell us about how the plasma motions in all layers of the Sun modifies and strengthens the weak solar dipole magnetic field to drive large energy releases in solar eruptions. Also presented will be examples of how the release of the Sun's energy, in the form of photons and high energy particles, physically influence other bodies in the solar system such as Earth, Mars, and the Moon, and how these changes drive changes in the technology that we are becoming dependent upon. The presentation will continuously emphasize how SDO, the first satellite in NASA's Living with a Star program, improving our understanding of the variable Sun and its Heliospheric influence.

  10. Reaction Wheel Disturbance Modeling, Jitter Analysis, and Validation Tests for Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Liu,Kuo-Chia; Maghami, Peiman; Blaurock, Carl

    2008-01-01

    The Solar Dynamics Observatory (SDO) aims to study the Sun's influence on the Earth by understanding the source, storage, and release of the solar energy, and the interior structure of the Sun. During science observations, the jitter stability at the instrument focal plane must be maintained to less than a fraction of an arcsecond for two of the SDO instruments. To meet these stringent requirements, a significant amount of analysis and test effort has been devoted to predicting the jitter induced from various disturbance sources. One of the largest disturbance sources onboard is the reaction wheel. This paper presents the SDO approach on reaction wheel disturbance modeling and jitter analysis. It describes the verification and calibration of the disturbance model, and ground tests performed for validating the reaction wheel jitter analysis. To mitigate the reaction wheel disturbance effects, the wheels will be limited to operate at low wheel speeds based on the current analysis. An on-orbit jitter test algorithm is also presented in the paper which will identify the true wheel speed limits in order to ensure that the wheel jitter requirements are met.

  11. Accessing SDO data in a pipeline environment using the VSO WSDL/SOAP interface

    NASA Astrophysics Data System (ADS)

    Suarez Sola, F. I.; Hourcle, J. A.; Amezcua, A.; Bogart, R.; Davey, A. R.; Gurman, J. B.; Hill, F.; Hughitt, V. K.; Martens, P. C.; Spencer, J.; Vso Team

    2010-12-01

    As part of the Virtual Solar Observatory (VSO) effort to support the Solar Dynamics Observatory (SDO) data, the VSO has worked on bringing up to date its WSDL document and SOAP interface to make it compatible with most widely used web services core engines. (E.g. axis2, jws, etc.) In this presentation we will explore the possibilities available for searching and/or fetching data within pipeline code. We will explain some of the WSDL/VSO-SDO interface intricacies and show how the vast amount of data that is available via the VSO can be tapped via IDL, Java, Perl or C in an uncomplicated way.

  12. Constraining the common properties of active region formation using the SDO/HEAR dataset

    NASA Astrophysics Data System (ADS)

    Schunker, H.; Braun, D. C.; Birch, A. C.

    2016-10-01

    Observations from the Solar Dynamics Observatory (SDO) have the potential for allowing the helioseismic study of the formation of hundreds of active regions, which enable us to perform statistical analyses. We collated a uniform data set of emerging active regions (EARs) observed by the SDO/HMI instrument suitable for helioseismic analysis, where each active region can be observed up to 7 days before emergence. We call this dataset the SDO Helioseismic Emerging Active Region (SDO/HEAR) survey. We have used this dataset to to understand the nature of active region emergence. The latitudinally averaged line-of-sight magnetic field of all the EARs shows that the leading (trailing) polarity moves in a prograde (retrograde) direction with a speed of 110 ± 15 m/s (-60 ± 10 m/s) relative to the Carrington rotation rate in the first day after emergence. However, relative to the differential rotation of the surface plasma the East-West velocity is symmetric, with a mean of 90 ± 10 m/s. We have also compared the surface flows associated with the EARs at the time of emergence with surface flows from numerical simulations of flux emergence with different rise speeds. We found that the surface flows in simulations of emerging flux with a low rise speed of 70 m/s best match the observations.

  13. A Statistical Comparison between Photospheric Vector Magnetograms Obtained by SDO/HMI and Hinode/SP

    NASA Astrophysics Data System (ADS)

    Sainz Dalda, Alberto

    2017-12-01

    Since 2010 May 1, we have been able to study (almost) continuously the vector magnetic field in the Sun, thanks to two space-based observatories: the Solar Dynamics Observatory (SDO) and Hinode. Both are equipped with instruments able to measure the Stokes parameters of Zeeman-induced polarization of photospheric line radiation. But the observation modes; the spectral lines; the spatial, spectral, and temporal sampling; and even the inversion codes used to recover magnetic and thermodynamic information from the Stokes profiles are different. We compare the vector magnetic fields derived from observations with the HMI instrument on board SDO with those observed by the SP instrument on Hinode. We have obtained relationships between components of magnetic vectors in the umbra, penumbra, and plage observed in 14 maps of NOAA Active Region 11084. Importantly, we have transformed SP data into observables comparable to those of HMI, to explore possible influences of the different modes of operation of the two instruments and the inversion schemes used to infer the magnetic fields. The assumed filling factor (fraction of each pixel containing a Zeeman signature) produces the most significant differences in derived magnetic properties, especially in the plage. The spectral and angular samplings have the next-largest effects. We suggest to treat the disambiguation in the same way in the data provided by HMI and SP. That would make the relationship between the vector magnetic field recovered from these data stronger, which would favor the simultaneous or complementary use of both instruments.

  14. Parallel Group and Sunspot Counts from SDO/HMI and AAVSO Visual Observers (Abstract)

    NASA Astrophysics Data System (ADS)

    Howe, R.; Alvestad, J.

    2015-06-01

    (Abstract only) Creating group and sunspot counts from the SDO/HMI detector on the Solar Dynamics Observatory (SDO) satellite requires software that calculates sunspots from a “white light” intensity-gram (CCD image) and group counts from a filtered CCD magneto-gram. Images from the satellite come from here http://jsoc.stanford.edu/data/hmi/images/latest/ Together these two sets of images can be used to estimate the Wolf number as W = (10g + s), which is used to calculate the American Relative index. AAVSO now has approximately two years of group and sunspot counts in the SunEntry database as SDOH observer Jan Alvestad. It is important that we compare these satellite CCD image data with our visual observer daily submissions to determine if the SDO/HMI data should be included in calculating the American Relative index. These satellite data are continuous observations with excellent seeing. This contrasts with “snapshot” earth-based observations with mixed seeing. The SDO/HIM group and sunspot counts could be considered unbiased, except that they show a not normal statistical distribution when compared to the overall visual observations, which show a Poisson distribution. One challenge that should be addressed by AAVSO using these SDO/HMI data is the splitting of groups and deriving group properties from the magneto-grams. The filtered CCD detector that creates the magento-grams is not something our visual observers can relate too, unless they were to take CCD images in H-alpha and/or the Calcium spectrum line. So, questions remain as to how these satellite CCD image counts can be integrated into the overall American Relative index.

  15. Inter-Comparison between July 24, 2014 EUV Data from NASA Sounding Rocket 36.289 and Concurrent Measurements from Orbital Solar Observatories

    NASA Astrophysics Data System (ADS)

    Didkovsky, L. V.; Wieman, S. R.; Judge, D. L.

    2014-12-01

    Sounding rocket mission NASA 36.289 Didkovsky provided solar EUV irradiance measurements from four instruments built at the USC Space Sciences Center: the Rare Gas Ionization Cell (RGIC), the Solar Extreme ultraviolet Monitor (SEM), the Dual Grating Spectrometer (DGS), and the Optics-Free Spectrometer (OFS), thus meeting the mission comprehensive success criteria. These sounding rocket data allow us to inter-compare the observed absolute EUV irradiance with the data taken at the same time from the SOHO and SDO solar observatories. The sounding rocket data from the two degradation-free instruments (DGS and OFS) can be used to verify the degradation rates of SOHO and SDO EUV channels and serve as a flight-proven prototypes for future improvements of degradation-free instrumentation for solar physics.

  16. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Madhulika Guhathakurta, far right, SDO Program Scientist at NASA Headquarters in Washington, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Pictured from left of Dr. Guhathakurta's are: Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder; Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto; Alan Title, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto and Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md. Photo Credit: (NASA/Carla Cioffi)

  17. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Alan Title, second from left, principal investigator, Atmospheric Imaging Assembly instrument, Lockheed Martin Solar and Astrophysics Laboratory in Palo Alto, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Launched on Feb. 11, 2010, SDO is the most advanced spacecraft ever designed to study the sun. During its five-year mission, it will examine the sun's magnetic field and also provide a better understanding of the role the sun plays in Earth's atmospheric chemistry and climate. Pictured from left to right: Dean Pesnell, SDO project scientist, Goddard Space Flight Center in Greenbelt, Md., Alan Title, Philip H. Scherrer, principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto, Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder and Madhulika Guhathakurta, SDO program scientist, NASA Headquarters in Washington. Photo Credit: (NASA/Carla Cioffi)

  18. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Philip H. Scherrer (left) principal investigator, Helioseismic and Magnetic Imager instrument, Stanford University in Palo Alto, speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, while colleagues Tom Woods, principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder and Madhulika Guhathakurta, SDO program scientist, NASA Headquarters (right) look on Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  19. NASA's SDO Sees Lunar Transit

    NASA Image and Video Library

    2017-12-08

    NASA's Solar Dynamics Observatory captured this image of the moon crossing in front of its view of the sun on Jan. 30, 2014, at 9:00 a.m. EST. -- On Jan 30, 2014, beginning at 8:31 a.m EST, the moon moved between NASA’s Solar Dynamics Observatory, or SDO, and the sun, giving the observatory a view of a partial solar eclipse from space. Such a lunar transit happens two to three times each year. This one lasted two and one half hours, which is the longest ever recorded. When the next one will occur is as of yet unknown due to planned adjustments in SDO's orbit. Note in the picture how crisp the horizon is on the moon, a reflection of the fact that the moon has no atmosphere around it to distort the light from the sun. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Time-Distance Helioseismology Data-Analysis Pipeline for Helioseismic and Magnetic Imager Onboard Solar Dynamics Observatory (SDO-HMI) and Its Initial Results

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Couvidat, S.; Bogart, R. S.; Parchevsky, K. V.; Birch, A. C.; Duvall, Thomas L., Jr.; Beck, J. G.; Kosovichev, A. G.; Scherrer, P. H.

    2011-01-01

    The Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO/HMI) provides continuous full-disk observations of solar oscillations. We develop a data-analysis pipeline based on the time-distance helioseismology method to measure acoustic travel times using HMI Doppler-shift observations, and infer solar interior properties by inverting these measurements. The pipeline is used for routine production of near-real-time full-disk maps of subsurface wave-speed perturbations and horizontal flow velocities for depths ranging from 0 to 20 Mm, every eight hours. In addition, Carrington synoptic maps for the subsurface properties are made from these full-disk maps. The pipeline can also be used for selected target areas and time periods. We explain details of the pipeline organization and procedures, including processing of the HMI Doppler observations, measurements of the travel times, inversions, and constructions of the full-disk and synoptic maps. Some initial results from the pipeline, including full-disk flow maps, sunspot subsurface flow fields, and the interior rotation and meridional flow speeds, are presented.

  1. Solar Activity Seen at Sunspot Site Tracked by Mars Rover

    NASA Image and Video Library

    2015-07-10

    An eruption from the surface of the sun is conspicuous in the lower left portion of this July 6, 2015, image from NASA's Earth-orbiting Solar Dynamics Observatory (SDO). It originates from a location on the surface where NASA's Curiosity Mars rover had been tracking a sunspot in late June and early July. This image was taken by the Atmosphere Imaging Assembly on SDO using the instrument's 131-Angstrom wavelength channel, which is sensitive to hot solar flares. The sun completes a rotation about once a month -- faster near its equator than near its poles. This summer, Mars has a view of the opposite side of the sun from what's facing Earth. Images from Curiosity tracking a southern-hemisphere sunspot until it rotated out of view during the July 4 weekend are in an animation at PIA19801. This location on the sun rotated into position to be seen from Earth a few days later. The eruption visible in this image was linked to a coronal mass ejection observed by SDO and NASA's Solar and Heliospheric Observatory. The coronal mass ejection affected interplanetary space weather, as shown at http://go.nasa.gov/1JSXLF3. http://photojournal.jpl.nasa.gov/catalog/PIA19680

  2. The Effects of Propellant Slosh Dynamics on the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Mason, Paul; Starin, Scott R.

    2011-01-01

    The Solar Dynamics Observatory (SDO) mission, which is part of the Living With a Star program, was successfully launched and deployed from its Atlas V launch vehicle on February 11, 2010. SDO is an Explorer-class mission now operating in a geosynchronous orbit (GEO). The basic mission is to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station located in White Sands, New Mexico. A significant portion of SDO's launch mass was propellant, contained in two large tanks. To ensure performance with this level of propellant, a slosh analysis was performed. This paper provides an overview of the SDO slosh analysis, the on-orbit experience, and the lessons learned. SDO is a three-axis controlled, single fault tolerant spacecraft. The attitude sensor complement includes sixteen coarse Sun sensors, a digital Sun sensor, three two-axis inertial reference units, two star trackers, and four guide telescopes. Attitude actuation is performed either using four reaction wheels or eight thrusters, depending on the control mode, along with single main engine which nominally provides velocity-change thrust. The attitude control software has five nominal control modes: three wheel-based modes and two thruster-based modes. A wheel-based Safehold running in the Attitude Control Electronics (ACE) box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. To achieve and maintain a geosynchronous orbit for a 2974-kilogram spacecraft in a cost effective manner, the SDO team designed a high-efficiency propulsive system. This bi-propellant design includes a 100-pound-force main engine and eight 5-pound-force attitude control thrusters. The main engine provides high specific impulse for the maneuvers to attain GEO, while the smaller Attitude Control System (ACS) thrusters manage the disturbance torques of the larger main engine and provide the capability for much smaller orbit adjustment burns. SDO's large solar profile produces a large solar torque disturbance and momentum buildup. This buildup drives the frequency of momentum unloads via ACS thrusters. SDO requires 1409 kilograms (which is approximately half the launch mass) of propellant to achieve and maintain the GEO orbit while performing the momentum unloads for 10 years.

  3. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    The March 29, 2014, X-class flare appears as a bright light on the upper right in this image from SDO, showing light in the 304 Angstrom wavelength. This wavelength shows material on the sun in what's called the transition region, where the chromosphere transitions into the upper solar atmosphere, the corona. Some light of the flare is clearly visible, but the flare appears brighter in other images that show hotter temperature material. Credit: NASA/SDO/AIA -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Using SDO/AIA to Understand the Thermal Evolution of Solar Prominence Formation

    NASA Astrophysics Data System (ADS)

    Viall, Nicholeen; M.; Kucera, Therese T.; Karpen, Judith

    2016-10-01

    In this study, we investigate prominence formation using time series analysis of Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA) data. We investigate the thermal properties of forming prominences by analyzing observed light curves using the same technique that we have already successfully applied to active regions to diagnose heating and cooling cycles. This technique tracks the thermal evolution using emission formed at different temperatures, made possible by AIA's different wavebands and high time resolution. We also compute the predicted light curves in the same SDO/AIA channels of a hydrodynamic model of thermal nonequilibrium formation of prominence material, an evaporation-condensation model. In these models of prominence formation, heating at the foot-points of sheared coronal flux-tubes results in evaporation of material of a few MK into the corona followed by catastrophic cooling of the hot material to form cool ( 10,000 K) prominence material. We demonstrate that the SDO/AIA light curves for flux tubes undergoing thermal nonequilibrium vary at different locations along the flux tube, especially in the region where the condensate forms, and we compare the predicted light curves with those observed. Supported by NASA's Living with a Star program.

  5. Computer Vision for the Solar Dynamics Observatory (SDO)

    NASA Astrophysics Data System (ADS)

    Martens, P. C. H.; Attrill, G. D. R.; Davey, A. R.; Engell, A.; Farid, S.; Grigis, P. C.; Kasper, J.; Korreck, K.; Saar, S. H.; Savcheva, A.; Su, Y.; Testa, P.; Wills-Davey, M.; Bernasconi, P. N.; Raouafi, N.-E.; Delouille, V. A.; Hochedez, J. F.; Cirtain, J. W.; Deforest, C. E.; Angryk, R. A.; de Moortel, I.; Wiegelmann, T.; Georgoulis, M. K.; McAteer, R. T. J.; Timmons, R. P.

    2012-01-01

    In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/ Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre- Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic processing. This will allow the system to produce timely space-weather alerts and to guide the selection and production of quicklook images and movies, in addition to its prime mission of enabling solar science. We briefly describe the complex and unique data-processing pipeline, consisting of the hardware and control software required to handle the SDO data stream and accommodate the computer-vision modules, which has been set up at the Lockheed-Martin Space Astrophysics Laboratory (LMSAL), with an identical copy at the Smithsonian Astrophysical Observatory (SAO).

  6. Using the EUV to Weigh a Sun-Grazing Comet as it Disappears in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean; Schrijiver, Carolus J.; Brown, John C.; Battams, Karl; Saint-Hilaire, Pascal; Hudson Hugh S.; Lui, Wei

    2012-01-01

    On July 6,2011, the Atmospheric Imaging Assembly (AlA) on the Solar Dynamics Observatory (SDO) observed a comet in most of its EUY passbands. The comet disappeared while moving through the solar corona. The comet penetrated to 0.146 solar radii ($\\simapprox.100,000 km) above the photosphere before its EUY faded. Before then, the comet's coma and a tail were observed in absorption and emission, respectively. The material in the variable tail quickly fell behind the nucleus. An estimate of the comet's mass based on this effect, one derived from insolation, and one using the tail's EUY brightness, all yield $\\sim 50$ giga-grams some 10 minutes prior to the end of its visibility. These unique first observations herald a new era in the study of Sun-grazing comets close to their perihelia and of the conditions in the solar corona and solar wind. We will discuss the observations and interpretation of the comet by SDO as well as the coronagraph observations from SOHO and STEREO. A search of the SOHO comet archive for other comets that could be observed in the SDO; AlA EUY channels will be described

  7. Image Quality of the Helioseismic and Magnetic Imager (HMI) Onboard the Solar Dynamics Observatory (SDO)

    NASA Technical Reports Server (NTRS)

    Wachter, R.; Schou, Jesper; Rabello-Soares, M. C.; Miles, J. W.; Duvall, T. L., Jr.; Bush, R. I.

    2011-01-01

    We describe the imaging quality of the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) as measured during the ground calibration of the instrument. We describe the calibration techniques and report our results for the final configuration of HMI. We present the distortion, modulation transfer function, stray light,image shifts introduced by moving parts of the instrument, best focus, field curvature, and the relative alignment of the two cameras. We investigate the gain and linearity of the cameras, and present the measured flat field.

  8. The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO)

    NASA Technical Reports Server (NTRS)

    Scherrer, Philip Hanby; Schou, Jesper; Bush, R. I.; Kosovichev, A. G.; Bogart, R. S.; Hoeksema, J. T.; Liu, Y.; Duvall, T. L., Jr.; Zhao, J.; Title, A. M.; hide

    2011-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument and investigation as a part of the NASA Solar Dynamics Observatory (SDO) is designed to study convection-zone dynamics and the solar dynamo, the origin and evolution of sunspots, active regions, and complexes of activity, the sources and drivers of solar magnetic activity and disturbances, links between the internal processes and dynamics of the corona and heliosphere, and precursors of solar disturbances for space-weather forecasts. A brief overview of the instrument, investigation objectives, and standard data products is presented.

  9. KSC-2009-6485

    NASA Image and Video Library

    2009-11-19

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., spacecraft technicians secure one of the solar panels on the Solar Dynamics Observatory, or SDO, to the side of the spacecraft for launch. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  10. KSC-2009-6831

    NASA Image and Video Library

    2009-12-15

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., the Solar Dynamics Observatory, or SDO, secured to a Ransome table, has been bagged and is rotated into a vertical position. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Troy Cryder

  11. KSC-2009-6829

    NASA Image and Video Library

    2009-12-15

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., the Solar Dynamics Observatory, or SDO, secured to a Ransome table, has been bagged and is being rotated from a horizontal to a vertical position. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Troy Cryder

  12. KSC-2009-6830

    NASA Image and Video Library

    2009-12-15

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., technicians from NASA's Goddard Space Flight Center rotate the bagged Solar Dynamics Observatory, or SDO, secured to a Ransome table, into a vertical position. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Troy Cryder

  13. KSC-2009-6839

    NASA Image and Video Library

    2009-12-15

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., technicians from NASA's Goddard Space Flight Center secure the bagged Solar Dynamics Observatory, or SDO, onto a dolly for further processing. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Troy Cryder

  14. A Coronal Hole Jet Observed with Hinode and the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Young, Peter H.; Muglach, Karin

    2014-01-01

    A small blowout jet was observed at the boundary of the south coronal hole on 2011 February 8 at around 21:00 UT. Images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) revealed an expanding loop rising from one footpoint of a compact, bipolar bright point. Magnetograms from the Helioseismic Magnetic Imager (HMI) on board SDO showed that the jet was triggered by the cancelation of a parasitic positive polarity feature near the negative pole of the bright point. The jet emission was present for 25 mins and it extended 30 Mm from the bright point. Spectra from the EUV Imaging Spectrometer on board Hinode yielded a temperature and density of 1.6 MK and 0.9-1.7 × 10( exp 8) cu cm for the ejected plasma. Line-of-sight velocities reached up to 250 km/s. The density of the bright point was 7.6 × 10(exp 8) cu cm, and the peak of the bright point's emission measure occurred at 1.3 MK, with no plasma above 3 MK.

  15. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2017-12-08

    Scientists presented the first images from NASA's Solar Dynamics Observatory [SDO] during a special "first light" press conference, Wednesday, April 21 2010, at held at the Newseum in Washington DC. Credit: NASA/GSFC

  16. Inflight Performance of the SDO Fine Pointing Science Mode

    NASA Technical Reports Server (NTRS)

    Mason, Paul; O'Donnell, James; Starin, Scott R.; Halverson, Julie; Vess, Melissa F.

    2017-01-01

    The Solar Dynamics Observatory (SDO) was successfully launched and deployed from its Atlas V launch vehicle on February 11, 2010. Three months later, on May 14, 2010, the fully commissioned heliophysics laboratory was handed over to Space Systems Mission Operations to begin its science mission. SDO is an Explorer-class mission now operating in a geosynchronous orbit, sending data 24 hours per day to a dedicated ground station in White Sands, New Mexico. It carries a suite of instruments designed to observe the Sun in multiple wavelengths at unprecedented resolution. The Atmospheric Imaging Assembly (AIA) includes four telescopes with 4096x4096 focal plane CCDs that can image the full solar disk in seven extreme ultraviolet and three ultraviolet-visible wavelengths. The Extreme Ultraviolet Variability Experiment (EVE) collects time-correlated data on the activity of the Sun's corona. The Helioseismic and Magnetic Imager (HMI) enables study of pressure waves moving through the body of the Sun.

  17. Data Distribution System (DDS) and Solar Dynamic Observatory Ground Station (SDOGS) Integration Manager

    NASA Technical Reports Server (NTRS)

    Pham, Kim; Bialas, Thomas

    2012-01-01

    The DDS SDOGS Integration Manager (DSIM) provides translation between native control and status formats for systems within DDS and SDOGS, and the ASIST (Advanced Spacecraft Integration and System Test) control environment in the SDO MOC (Solar Dynamics Observatory Mission Operations Center). This system was created in response for a need to centralize remote monitor and control of SDO Ground Station equipments using ASIST control environment in SDO MOC, and to have configurable table definition for equipment. It provides translation of status and monitoring information from the native systems into ASIST-readable format to display on pages in the MOC. The manager is lightweight, user friendly, and efficient. It allows data trending, correlation, and storing. It allows using ASIST as common interface for remote monitor and control of heterogeneous equipments. It also provides failover capability to back up machines.

  18. KSC-2009-4022

    NASA Image and Video Library

    2009-07-11

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., a hoist begins rotating NASA's Solar Dynamics Observatory, or SDO. After rotation, the SDO will be moved to a work stand. SDO will be rotated and moved to a work stand. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston

  19. Solar Dynamics Observatory On-Orbit Jitter Testing, Analysis, and Mitigation Plans

    NASA Technical Reports Server (NTRS)

    Liu, Kuo-Chia; Blaurock, Carl A.; Bourkland, Kristin L.; Morgenstern, Wendy M.; Maghami, Peiman G.

    2011-01-01

    The recently launched Solar Dynamics Observatory (SDO) has two science instruments onboard that required sub-arcsecond pointing stability. Significant effort has been spent pre-launch to characterize the disturbances sources and validating jitter level at the component, sub-assembly, and spacecraft levels. However, an end-to-end jitter test emulating the flight condition was not performed on the ground due to cost and risk concerns. As a result, the true jitter level experienced on orbit remained uncertain prior to launch. Based on the pre-launch analysis, several operational constraints were placed on the observatory aimed to minimize the instrument jitter levels. If the actual jitter is below the analysis predictions, these operational constraints can be relaxed to reduce the burden of the flight operations team. The SDO team designed a three-day jitter test, utilizing the instrument sensors to measure pointing jitter up to 256 Hz. The test results were compared to pre-launch analysis predictions, used to determine which operational constraints can be relaxed, and analyzed for setting the jitter mitigation strategies for future SDO operations.

  20. A Study of quiescent prominences using SDO and STEREO data

    NASA Astrophysics Data System (ADS)

    Panesar, Navdeep Kaur

    2014-05-01

    In this dissertation, we have studied the structure, dynamics and evolution of two quiescent prominences. Quiescent prominences are large structures and mainly associated with the quiet Sun region. For the analysis, we have used the high spatial and temporal cadence data from the Solar Dynamic Observatory (SDO), and the Solar Terrestrial Relations Observatory (STEREO). We combined the observations from two different directions and studied the prominence in 3D. In the study of polar crown prominence, we mainly investigated the prominence flows on limb and found its association with on-disk brightenings. The merging of diffused active region flux in the already formed chain of prominence caused the several brightenings in the filament channel and also injected the plasma upward with an average velocity of 15 km/s. In another study, we investigated the triggering mechanism of a quiescent tornado-like prominence. Flares from the neighboring active region triggered the tornado-like motions of the top of the prominence. Active region field contracts after the flare which results in the expansion of prominence cavity. The prominence helical magnetic field expands and plasma moves along the field lines which appear as a tornado-like activity. In addition, the thermal structure of the tornado-like prominence and neighbouring active region was investigated by analysing emission in six of the seven EUV channels from the SDO. These observational investigations led to our understanding of structure and dynamics of quiescent prominences, which could be useful for theoretical prominence models.

  1. KSC-2009-6479

    NASA Image and Video Library

    2009-11-19

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., spacecraft technicians secure the high-gain communications antenna on the Solar Dynamics Observatory, or SDO, against the spacecraft following testing to verify the spacecraft's readiness for launch. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  2. Automated Feature and Event Detection with SDO AIA and HMI Data

    NASA Astrophysics Data System (ADS)

    Davey, Alisdair; Martens, P. C. H.; Attrill, G. D. R.; Engell, A.; Farid, S.; Grigis, P. C.; Kasper, J.; Korreck, K.; Saar, S. H.; Su, Y.; Testa, P.; Wills-Davey, M.; Savcheva, A.; Bernasconi, P. N.; Raouafi, N.-E.; Delouille, V. A.; Hochedez, J. F..; Cirtain, J. W.; Deforest, C. E.; Angryk, R. A.; de Moortel, I.; Wiegelmann, T.; Georgouli, M. K.; McAteer, R. T. J.; Hurlburt, N.; Timmons, R.

    The Solar Dynamics Observatory (SDO) represents a new frontier in quantity and quality of solar data. At about 1.5 TB/day, the data will not be easily digestible by solar physicists using the same methods that have been employed for images from previous missions. In order for solar scientists to use the SDO data effectively they need meta-data that will allow them to identify and retrieve data sets that address their particular science questions. We are building a comprehensive computer vision pipeline for SDO, abstracting complete metadata on many of the features and events detectable on the Sun without human intervention. Our project unites more than a dozen individual, existing codes into a systematic tool that can be used by the entire solar community. The feature finding codes will run as part of the SDO Event Detection System (EDS) at the Joint Science Operations Center (JSOC; joint between Stanford and LMSAL). The metadata produced will be stored in the Heliophysics Event Knowledgebase (HEK), which will be accessible on-line for the rest of the world directly or via the Virtual Solar Observatory (VSO) . Solar scientists will be able to use the HEK to select event and feature data to download for science studies.

  3. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    Zoom in on the flare in ultraviolet (SDO/AIA), X-rays (Hinode) and gamma-rays (RHESSI) -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Solar Dynamics Observatory On-Orbit Jitter Testing, Analysis, and Mitigation Plans

    NASA Technical Reports Server (NTRS)

    Liu, Kuo-Chia (Alice); Blaurock, Carl A.; Bourkland, Kristin L.; Morgenstern, Wendy M.; Maghami, Peiman G.

    2011-01-01

    The Solar Dynamics Observatory (SDO) was designed to understand the Sun and the Sun s influence on Earth. SDO was launched on February 11, 2010 carrying three scientific instruments: the Atmospheric Imaging Assembly (AIA), the Helioseismic and Magnetic Imager (HMI), and the Extreme Ultraviolet Variability Experiment (EVE). Both AIA and HMI are sensitive to high frequency pointing perturbations and have sub-arcsecond level line-of-sight (LOS) jitter requirements. Extensive modeling and analysis efforts were directed in estimating the amount of jitter disturbing the science instruments. To verify the disturbance models and to validate the jitter performance prior to launch, many jitter-critical components and subassemblies were tested either by the mechanism vendors or at the NASA Goddard Space Flight Center (GSFC). Although detailed analysis and assembly level tests were performed to obtain good jitter predictions, there were still several sources of uncertainties in the system. The structural finite element model did not have all the modes correlated to test data at high frequencies (greater than 50 Hz). The performance of the instrument stabilization system was not known exactly but was expected to be close to the analytical model. A true disturbance-to-LOS observatory level test was not available due to the tight schedule of the flight spacecraft, the cost in time and manpower, difficulties in creating gravity negation systems, and risks of damaging flight hardware. To protect the observatory jitter performance against model uncertainties, the SDO jitter team devised several on-orbit jitter reduction plans in addition to reserve margins on analysis results. Since some of these plans severely restricted the capabilities of several spacecraft components (e.g. wheels and High Gain Antennas), the SDO team performed on-orbit jitter tests to determine which jitter reduction plans, if any, were necessary to satisfy science LOS jitter requirements. The SDO on-orbit jitter tests were designed to satisfy the following four objectives: 1. Determine the acceptable reaction wheel operational speed range during Science Mode. 2. Determine HGA algorithm jitter parameters (number of stagger steps and enable/disable no-steprequests). 3. Determine acceptable EVE instrument filter wheels spin rates. 4. Determine if AIA instrument filter wheels excite the first AIA telescope structural mode. This paper provides detailed information on the SDO wheel jitter test plan, shows on-orbit jitter measurements and how ground predictions compare to those measurements, and describes the final jitter mitigation plan executed on SDO.

  5. NASA’s SDO Watches Bursts of Solar Material

    NASA Image and Video Library

    2017-12-08

    Solar material repeatedly bursts from the sun in this close-up captured on July 9-10, 2016, by NASA’s Solar Dynamics Observatory, or SDO. The sun is composed of plasma, a gas in which the negative electrons move freely around the positive ions, forming a powerful mix of charged particles. Each burst of plasma licks out from the surface only to withdraw back into the active region – a dance commanded by complex magnetic forces above the sun. SDO captured this video in wavelengths of extreme ultraviolet light, which are typically invisible to our eyes. The imagery is colorized here in red for easy viewing. Credit: NASA/SDO/Goddard Space Flight Center/Joy Ng

  6. KSC-2009-4024

    NASA Image and Video Library

    2009-07-11

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers ensure the smooth rotation of NASA's Solar Dynamics Observatory, or SDO. After rotation, the SDO will be moved to a work stand. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston

  7. KSC-2009-4025

    NASA Image and Video Library

    2009-07-11

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers maneuver the position of NASA's Solar Dynamics Observatory, or SDO, after its rotation. The SDO will be moved to a work stand. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston

  8. KSC-2009-4023

    NASA Image and Video Library

    2009-07-11

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers ensure the smooth rotation of NASA's Solar Dynamics Observatory, or SDO. After rotation, the SDO will be moved to a work stand. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston

  9. Diagnosing the Magnetic Field Structure of a Coronal Cavity Observed during the 2017 Total Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Chen, Yajie; Tian, Hui; Su, Yingna; Qu, Zhongquan; Deng, Linhua; Jibben, Patricia R.; Yang, Zihao; Zhang, Jingwen; Samanta, Tanmoy; He, Jiansen; Wang, Linghua; Zhu, Yingjie; Zhong, Yue; Liang, Yu

    2018-03-01

    We present an investigation of a coronal cavity observed above the western limb in the coronal red line Fe X 6374 Å using a telescope of Peking University and in the green line Fe XIV 5303 Å using a telescope of Yunnan Observatories, Chinese Academy of Sciences, during the total solar eclipse on 2017 August 21. A series of magnetic field models is constructed based on the magnetograms taken by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO) one week before the eclipse. The model field lines are then compared with coronal structures seen in images taken by the Atmospheric Imaging Assembly on board SDO and in our coronal red line images. The best-fit model consists of a flux rope with a twist angle of 3.1π, which is consistent with the most probable value of the total twist angle of interplanetary flux ropes observed at 1 au. Linear polarization of the Fe XIII 10747 Å line calculated from this model shows a “lagomorphic” signature that is also observed by the Coronal Multichannel Polarimeter of the High Altitude Observatory. We also find a ring-shaped structure in the line-of-sight velocity of Fe XIII 10747 Å, which implies hot plasma flows along a helical magnetic field structure, in the cavity. These results suggest that the magnetic structure of the cavity is a highly twisted flux rope, which may erupt eventually. The temperature structure of the cavity has also been investigated using the intensity ratio of Fe XIII 10747 Å and Fe X 6374 Å.

  10. SDO Collects Its 100 Millionth Image

    NASA Image and Video Library

    2015-01-20

    An instrument on our Solar Dynamics Observatory (SDO) captured its 100 millionth image of the sun. The instrument is the Atmospheric Imaging Assembly, or AIA, which uses four telescopes working parallel to gather eight images of the sun – cycling through 10 different wavelengths -- every 12 seconds. This is a processed image of SDO multiwavelength blend from Jan. 19, 2015, the date of the spacecraft's 100th millionth image release. Credit: NASA/Goddard/SDO Read more: www.nasa.gov/content/goddard/sdo-telescope-collects-its-1... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Solar Dynamics Observatory Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R., Jr.; Kristin, D.; Bourkland, L.; Hsu, Oscar C.; Liu, Kuo-Chia; Mason, Paul A. C.; Morgenstern, Wendy M.; Russo, Angela M.; Starin, Scott R.; Vess, Melissa F.

    2011-01-01

    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010. Over the next three months, the spacecraft was raised from its launch orbit into its final geosynchronous orbit and its systems and instruments were tested and calibrated in preparation for its desired ten year science mission studying the Sun. A great deal of activity during this time involved the spacecraft attitude control system (ACS); testing control modes, calibrating sensors and actuators, and using the ACS to help commission the spacecraft instruments and to control the propulsion system as the spacecraft was maneuvered into its final orbit. This paper will discuss the chronology of the SDO launch and commissioning, showing the ACS analysis work performed to diagnose propellant slosh transient and attitude oscillation anomalies that were seen during commissioning, and to determine how to overcome them. The simulations and tests devised to demonstrate correct operation of all onboard ACS modes and the activities in support of instrument calibration will be discussed and the final maneuver plan performed to bring SDO on station will be shown. In addition to detailing these commissioning and anomaly resolution activities, the unique set of tests performed to characterize SDO's on-orbit jitter performance will be discussed.

  12. KSC-2009-4026

    NASA Image and Video Library

    2009-07-11

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers check the fittings of the hoist supporting NASA's Solar Dynamics Observatory, or SDO, after its rotation. The SDO will be moved to a work stand. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston

  13. KSC-2009-4021

    NASA Image and Video Library

    2009-07-11

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers stand by as a hoist moves NASA's Solar Dynamics Observatory, or SDO, from its transporter. SDO will be rotated and moved to a work stand. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston

  14. VizieR Online Data Catalog: Complex network for solar active regions (Daei+, 2017)

    NASA Astrophysics Data System (ADS)

    Daei, F.; Safari, H.; Dadashi, N.

    2018-03-01

    The solar monitor (www.solarmonitor.org) records the solar data observed by several solar space observatories and missions (e.g., GOES, GONG, ACE, STEREO, SDO, etc.). 4227 solar active regions (ARs) during 1999 January 1 to 2017 April 14 used for building the AR network are listed in table 1. See section 2 for further details. (1 data file).

  15. An Eruptive Complex Solar Flare and Events in its Aftermath

    NASA Astrophysics Data System (ADS)

    Luoni, M. L.; Francile, C.; Mandrini, C. H.; Cremades, H.

    2017-10-01

    We present a study of the M6.6 flare that occurred on 13 February 2011 in AR 11158. The flare was accompanied by a CME and EUV waves. We use multiwavelength observations from the ground: H-alpha Solar Telescope for Argentina (HASTA), and space: Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA), both onboard the Solar and Dynamic Observatory (SDO).

  16. Well-defined EUV wave associated with a CME-driven shock

    NASA Astrophysics Data System (ADS)

    Cunha-Silva, R. D.; Selhorst, C. L.; Fernandes, F. C. R.; Oliveira e Silva, A. J.

    2018-05-01

    Aims: We report on a well-defined EUV wave observed by the Extreme Ultraviolet Imager (EUVI) on board the Solar Terrestrial Relations Observatory (STEREO) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The event was accompanied by a shock wave driven by a halo CME observed by the Large Angle and Spectrometric Coronagraph (LASCO-C2/C3) on board the Solar and Heliospheric Observatory (SOHO), as evidenced by the occurrence of type II bursts in the metric and dekameter-hectometric wavelength ranges. We investigated the kinematics of the EUV wave front and the radio source with the purpose of verifying the association between the EUV wave and the shock wave. Methods: The EUV wave fronts were determined from the SDO/AIA images by means of two appropriate directions (slices). The heights (radial propagation) of the EUV wave observed by STEREO/EUVI and of the radio source associated with the shock wave were compared considering the whole bandwidth of the harmonic lane of the radio emission, whereas the speed of the shock was estimated using the lowest frequencies of the harmonic lane associated with the undisturbed corona, using an appropriate multiple of the Newkirk (1961, ApJ, 133, 983) density model and taking into account the H/F frequency ratio fH/fF = 2. The speed of the radio source associated with the interplanetary shock was determined using the Mann et al. (1999, A&A, 348, 614) density model. Results: The EUV wave fronts determined from the SDO/AIA images revealed the coexistence of two types of EUV waves, a fast one with a speed of 560 km s-1, and a slower one with a speed of 250 km s-1, which corresponds approximately to one-third of the average speed of the radio source ( 680 km s-1). The radio signature of the interplanetary shock revealed an almost constant speed of 930 km s-1, consistent with the linear speed of the halo CME (950 km s-1) and with the values found for the accelerating coronal shock ( 535-823 km s-1), taking into account the gap between the radio emissions.

  17. Attitude Control System Design for the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Bourkland, Kristin L.; Kuo-Chia, Liu; Mason, Paul A. C.; Vess, Melissa F.; Andrews, Stephen F.; Morgenstern, Wendy M.

    2005-01-01

    The Solar Dynamics Observatory mission, part of the Living With a Star program, will place a geosynchronous satellite in orbit to observe the Sun and relay data to a dedicated ground station at all times. SDO remains Sun- pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system is a single-fault tolerant design. Its fully redundant attitude sensor complement includes 16 coarse Sun sensors, a digital Sun sensor, 3 two-axis inertial reference units, 2 star trackers, and 4 guide telescopes. Attitude actuation is performed using 4 reaction wheels and 8 thrusters, and a single main engine nominally provides velocity-change thrust. The attitude control software has five nominal control modes-3 wheel-based modes and 2 thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. The paper details the mode designs and their uses.

  18. ENERGY RELEASE AND INITIATION OF A SUNQUAKE IN A C-CLASS FLARE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharykin, I. N.; Kosovichev, A. G.; Zimovets, I. V.

    We present an analysis of the C7.0 solar flare from 2013 February 17, revealing a strong helioseismic response (sunquake) caused by a compact impact observed with the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO) in the low atmosphere. This is the weakest known C-class flare generating a sunquake event. To investigate the possible mechanisms of this event and understand the role of accelerated charged particles and photospheric electric currents, we use data from three space observatories: RHESSI, SDO, and Geostationary Operational Environmental Satellite. We find that the photospheric flare impact does not spatially correspond to themore » strongest hard X-ray emission source, but both of these events are parts of the same energy release. Our analysis reveals a close association of the flare energy release with a rapid increase in the electric currents and suggests that the sunquake initiation is unlikely to be caused by the impact of high-energy electrons, but may be associated with rapid current dissipation or a localized impulsive Lorentz force in the lower layers of the solar atmosphere.« less

  19. SHARPs - A Near-Real-Time Space Weather Data Product from HMI

    NASA Astrophysics Data System (ADS)

    Bobra, M.; Turmon, M.; Baldner, C.; Sun, X.; Hoeksema, J. T.

    2012-12-01

    A data product from the Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO), called Space-weather HMI Active Region Patches (SHARPs), is now available through the SDO Joint Science Operations Center (JSOC) and the Virtual Solar Observatory. SHARPs are magnetically active regions identified on the solar disk and tracked automatically in time. SHARP data are processed within a few hours of the observation time. The SHARP data series contains active region-sized disambiguated vector magnetic field data in both Lambert Cylindrical Equal-Area and CCD coordinates on a 12 minute cadence. The series also provides simultaneous HMI maps of the line-of-sight magnetic field, continuum intensity, and velocity on the same ~0.5 arc-second pixel grid. In addition, the SHARP data series provides space weather quantities computed on the inverted, disambiguated, and remapped data. The values for each tracked region are computed and updated in near real time. We present space weather results for several X-class flares; furthermore, we compare said space weather quantities with helioseismic quantities calculated using ring-diagram analysis.

  20. SDO Transit, September 2015

    NASA Image and Video Library

    2015-09-13

    On Sept. 13, 2015, as NASA's Solar Dynamics Observatory, or SDO, kept up its constant watch on the sun, its view was photobombed not once, but twice. Just as the moon came into SDO's field of view on a path to cross the sun, Earth entered the picture, blocking SDO's view completely. When SDO's orbit finally emerged from behind Earth, the moon was just completing its journey across the sun's face. Though SDO sees dozens of Earth eclipses and several lunar transits each year, this is the first time ever that the two have coincided. SDO's orbit usually gives us unobstructed views of the sun, but Earth's revolution around the sun means that SDO's orbit passes behind Earth twice each year, for two to three weeks at a time. During these phases, Earth blocks SDO's view of the sun for anywhere from a few minutes to over an hour once each day. Earth's outline looks fuzzy, while the moon's is crystal-clear. This is because-while the planet itself completely blocks the sun's light-Earth's atmosphere is an incomplete barrier, blocking different amounts of light at different altitudes. However, the moon has no atmosphere, so during the transit we can see the crisp edges of the moon's horizon. http://photojournal.jpl.nasa.gov/catalog/PIA19949

  1. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2017-12-08

    Scientists presented the first images from NASA's Solar Dynamics Observatory [SDO] during a special "first light" press conference, Wednesday, April 21 2010, at held at the Newseum in Washington DC. Here, scientists are showing an animation from Walt Feimer, lead animator for the Heliophysics team. Credit: NASA/GSFC

  2. Solar Dynamics Observatory Briefing

    NASA Image and Video Library

    2010-01-21

    Richard Fisher, Heliophysics Division Director at NASA Headquarters, speaks during a briefing to discuss the upcoming launch of NASA's Solar Dynamic Observatory, or SDO, Thursday, Jan. 21, 2010, at NASA Headquarters in Washington. The mission is to study the Sun and its dynamic behavior. Photo Credit: (NASA/Paul E. Alers)

  3. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    This combined image shows the March 29, 2014, X-class flare as seen through the eyes of different observatories. SDO is on the bottom/left, which helps show the position of the flare on the sun. The darker orange square is IRIS data. The red rectangular inset is from Sacramento Peak. The violet spots show the flare's footpoints from RHESSI. -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. A study of acoustic halos in active region NOAA 11330 using multi-height SDO observations

    NASA Astrophysics Data System (ADS)

    Tripathy, S. C.; Jain, K.; Kholikov, S.; Hill, F.; Rajaguru, S. P.; Cally, P. S.

    2018-01-01

    We analyze data from the Helioseismic Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) instruments on board the Solar Dynamics Observatory (SDO) to characterize the spatio-temporal acoustic power distribution in active regions as a function of the height in the solar atmosphere. For this, we use Doppler velocity and continuum intensity observed using the magnetically sensitive line at 6173 Å as well as intensity at 1600 Å and 1700 Å. We focus on the power enhancements seen around AR 11330 as a function of wave frequency, magnetic field strength, field inclination and observation height. We find that acoustic halos occur above the acoustic cutoff frequency and extends up to 10 mHz in HMI Doppler and AIA 1700 Å observations. Halos are also found to be strong functions of magnetic field and their inclination angle. We further calculate and examine the spatially averaged relative phases and cross-coherence spectra and find different wave characteristics at different heights.

  5. On the Prognostic Efficiency of Topological Descriptors for Magnetograms of Active Regions

    NASA Astrophysics Data System (ADS)

    Knyazeva, I. S.; Urtiev, F. A.; Makarenko, N. G.

    2017-12-01

    Solar flare prediction remains an important practical task of space weather. An increase in the amount and quality of observational data and the development of machine-learning methods has led to an improvement in prediction techniques. Additional information has been retrieved from the vector magnetograms; these have been recently supplemented by traditional line-of-sight (LOS) magnetograms. In this work, the problem of the comparative prognostic efficiency of features obtained on the basis of vector data and LOS magnetograms is discussed. Invariants obtained from a topological analysis of LOS magnetograms are used as complexity characteristics of magnetic patterns. Alternatively, the so-called SHARP parameters were used; they were calculated by the data analysis group of the Stanford University Laboratory on the basis of HMI/SDO vector magnetograms and are available online at the website (http://jsoc.stanford.edu/) with the solar dynamics observatory (SDO) database for the entire history of SDO observations. It has been found that the efficiency of large-flare prediction based on topological descriptors of LOS magnetograms in epignosis mode is at least s no worse than the results of prognostic schemes based on vector features. The advantages of the use of topological invariants based on LOS data are discussed.

  6. NASA's Solar Dynamics Observatory Unveils New Images

    NASA Image and Video Library

    2010-04-20

    Tom Woods, (second from right), principal investigator, Extreme Ultraviolet Variability Experiment instrument, Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder speaks during a briefing to discuss recent images from NASA's Solar Dynamics Observatory, or SDO, Wednesday, April 21, 2010, at the Newseum in Washington. Photo Credit: (NASA/Carla Cioffi)

  7. Solar Demon: near real-time solar eruptive event detection on SDO/AIA images

    NASA Astrophysics Data System (ADS)

    Kraaikamp, Emil; Verbeeck, Cis

    Solar flares, dimmings and EUV waves have been observed routinely in extreme ultra-violet (EUV) images of the Sun since 1996. These events are closely associated with coronal mass ejections (CMEs), and therefore provide useful information for early space weather alerts. The Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) generates such a massive dataset that it becomes impossible to find most of these eruptive events manually. Solar Demon is a set of automatic detection algorithms that attempts to solve this problem by providing both near real-time warnings of eruptive events and a catalog of characterized events. Solar Demon has been designed to detect and characterize dimmings, EUV waves, as well as solar flares in near real-time on SDO/AIA data. The detection modules are running continuously at the Royal Observatory of Belgium on both quick-look data and synoptic science data. The output of Solar Demon can be accessed in near real-time on the Solar Demon website, and includes images, movies, light curves, and the numerical evolution of several parameters. Solar Demon is the result of collaboration between the FP7 projects AFFECTS and COMESEP. Flare detections of Solar Demon are integrated into the COMESEP alert system. Here we present the Solar Demon detection algorithms and their output. We will focus on the algorithm and its operational implementation. Examples of interesting flare, dimming and EUV wave events, and general statistics of the detections made so far during solar cycle 24 will be presented as well.

  8. Energy Release from Impacting Prominence Material Following the 2011 June 7 Eruption

    NASA Technical Reports Server (NTRS)

    Gilbert, H. R.; Inglis, A. R.; Mays, M. L.; Ofman, L.; Thompson, B. J.; Young, C. A.

    2013-01-01

    Solar filaments exhibit a range of eruptive-like dynamic activity, ranging from the full or partial eruption of the filament mass and surrounding magnetic structure as a coronal mass ejection to a fully confined or failed eruption. On 2011 June 7, a dramatic partial eruption of a filament was observed by multiple instruments on board the Solar Dynamics Observatory (SDO) and Solar-Terrestrial Relations Observatory. One of the interesting aspects of this event is the response of the solar atmosphere as non-escaping material falls inward under the influence of gravity. The impact sites show clear evidence of brightening in the observed extreme ultraviolet wavelengths due to energy release. Two plausible physical mechanisms for explaining the brightening are considered: heating of the plasma due to the kinetic energy of impacting material compressing the plasma, or reconnection between the magnetic field of low-lying loops and the field carried by the impacting material. By analyzing the emission of the brightenings in several SDO/Atmospheric Imaging Assembly wavelengths, and comparing the kinetic energy of the impacting material (7.6 × 10(exp 26) - 5.8 × 10(exp 27) erg) to the radiative energy (approx. 1.9 × 10(exp 25) - 2.5 × 10(exp 26) erg), we find the dominant mechanism of energy release involved in the observed brightening is plasma compression.

  9. KSC-2009-4017

    NASA Image and Video Library

    2009-07-10

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., the shipping container cover removed from NASA's Solar Dynamics Observatory (right), or SDO, is moved away. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Tim Jacobs

  10. KSC-2009-4029

    NASA Image and Video Library

    2009-07-11

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., an overhead cable moves NASA's Solar Dynamics Observatory, or SDO, toward the work stand in the foreground. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston

  11. KSC-2009-4014

    NASA Image and Video Library

    2009-07-10

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers secure an overhead crane to the shipping container that holds NASA's Solar Dynamics Observatory, or SDO. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Tim Jacobs

  12. SDO/AIA Observation of Kelvin-Helmholtz Instability in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Thompson, B. J.

    2011-01-01

    We present observations of the formation, propagation and decay of vortex-shaped features in coronal images from the Solar Dynamics Observatory (SDO) associated with an eruption starting at about 2:30UT on Apr 8, 2010. The series of vortices formed along the interface between an erupting (dimming) region and the surrounding corona. They ranged in size from several to ten arcseconds, and traveled along the interface at 6-14 km s-1. The features were clearly visible in six out of the seven different EUV wavebands of the Atmospheric Imaging Assembly (AIA). Based on the structure, formation, propagation and decay of these features, we identified these features as the first observations of the Kelvin- Helmholtz (KH) instability in the corona in EUV. The interpretation is supported by linear analysis and by MHD model of KH instability. We conclude that the instability is driven by the velocity shear between the erupting and closed magnetic field of the Coronal Mass Ejection (CME).

  13. ANALYSIS OF CORONAL RAIN OBSERVED BY IRIS , HINODE /SOT, AND SDO /AIA: TRANSVERSE OSCILLATIONS, KINEMATICS, AND THERMAL EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohutova, P.; Verwichte, E., E-mail: p.kohutova@warwick.ac.uk

    Coronal rain composed of cool plasma condensations falling from coronal heights along magnetic field lines is a phenomenon occurring mainly in active region coronal loops. Recent high-resolution observations have shown that coronal rain is much more common than previously thought, suggesting its important role in the chromosphere-corona mass cycle. We present the analysis of MHD oscillations and kinematics of the coronal rain observed in chromospheric and transition region lines by the Interface Region Imaging Spectrograph (IRIS) , the Hinode Solar Optical Telescope (SOT), and the Solar Dynamics Observatory ( SDO) Atmospheric Imaging Assembly (AIA). Two different regimes of transverse oscillationsmore » traced by the rain are detected: small-scale persistent oscillations driven by a continuously operating process and localized large-scale oscillations excited by a transient mechanism. The plasma condensations are found to move with speeds ranging from few km s{sup −1} up to 180 km s{sup −1} and with accelerations largely below the free-fall rate, likely explained by pressure effects and the ponderomotive force resulting from the loop oscillations. The observed evolution of the emission in individual SDO /AIA bandpasses is found to exhibit clear signatures of a gradual cooling of the plasma at the loop top. We determine the temperature evolution of the coronal loop plasma using regularized inversion to recover the differential emission measure (DEM) and by forward modeling the emission intensities in the SDO /AIA bandpasses using a two-component synthetic DEM model. The inferred evolution of the temperature and density of the plasma near the apex is consistent with the limit cycle model and suggests the loop is going through a sequence of periodically repeating heating-condensation cycles.« less

  14. The detection of upwardly propagating waves channeling energy from the chromosphere to the low corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freij, N.; Nelson, C. J.; Mumford, S.

    There have been ubiquitous observations of wave-like motions in the solar atmosphere for decades. Recent improvements to space- and ground-based observatories have allowed the focus to shift to smaller magnetic structures on the solar surface. In this paper, high-resolution ground-based data taken using the Swedish 1 m Solar Telescope is combined with co-spatial and co-temporal data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) satellite to analyze running penumbral waves (RPWs). RPWs have always been thought to be radial wave propagation that occurs within sunspots. Recent research has suggested that they are in fact upwardlymore » propagating field-aligned waves (UPWs). Here, RPWs within a solar pore are observed for the first time and are interpreted as UPWs due to the lack of a penumbra that is required to support RPWs. These UPWs are also observed co-spatially and co-temporally within several SDO/AIA elemental lines that sample the transition region and low corona. The observed UPWs are traveling at a horizontal velocity of around 17 ± 0.5 km s{sup –1} and a minimum vertical velocity of 42 ± 21 km s{sup –1}. The estimated energy of the waves is around 150 W m{sup –2}, which is on the lower bound required to heat the quiet-Sun corona. This is a new, yet unconsidered source of wave energy within the solar chromosphere and low corona.« less

  15. Guaranteeing Pointing Performance of the SDO Sun-Pointing Controllers in Light of Nonlinear Effects

    NASA Technical Reports Server (NTRS)

    Starin, Scott R.; Bourkland, Kristin L.

    2007-01-01

    The Solar Dynamics Observatory (SDO) mission is the first Space Weather Research Network mission, part of NASA s Living With a Star program.1 This program seeks to understand the changing Sun and its effects on the Solar System, life, and society. To this end, the SDO spacecraft will carry three Sun-observing instruments to geosynchronous orbit: Helioseismic and Magnetic Imager (HMI), led by Stanford University; Atmospheric Imaging Assembly (AIA), led by Lockheed Martin Space and Astrophysics Laboratory; and Extreme Ultraviolet Variability Experiment (EVE), led by the University of Colorado. Links describing the instruments in detail may be found through the SDO web site.2 The basic mission goals are to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station. These goals guided the design of the spacecraft bus that will carry and service the three-instrument payload. At the time of this publication, the SDO spacecraft bus is well into the integration and testing phase at the NASA Goddard Space Flight Center (GSFC). A three-axis stabilized attitude control system (ACS) is needed both to point at the Sun accurately and to keep the roll about the Sun vector correctly positioned. The ACS has four reaction wheel modes and 2 thruster actuated modes. More details about the ACS in general and the control modes in particular can be found in Refs. [3-6]. All four of SDO s wheel-actuated control modes involve Sun-pointing controllers, as might be expected from such a mission. Science mode, during which most science data is collected, uses specialized guide telescopes to point accurately at the Sun. Inertial mode has two sub-modes, one tracks a Sun-referenced target orientation, and another maintains an absolute (star-referenced) target orientation, that both employ a Kalman filter to process data from a digital Sun sensor and two star trackers. However, this paper is concerned only with the other two modes: Safe Hold (SH) and Sun Acquisition (SA).

  16. NASA's SDO Sees a Solar Flare and a Lunar Transit

    NASA Image and Video Library

    2017-12-08

    A solar flare erupts on Jan. 30, 2014, as seen by the bright flash on the left side of the sun, captured here by NASA's Solar Dynamics Observatory. In the lower right corner the moon can be seen, having just passed between the observatory and the sun. --- The sun emitted a mid-level solar flare, peaking at 11:11 a.m. EST on Jan. 30, 2014. Images of the flare were captured by NASA's Solar Dynamics Observatory, or SDO, shortly after the observatory witnessed a lunar transit. The black disk of the moon can be seen in the lower right of the images. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may impact Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an M6.6 class flare. Updates will be provided as needed. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. KSC-2009-4027

    NASA Image and Video Library

    2009-07-11

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers move a work stand into position to hold NASA's Solar Dynamics Observatory, or SDO, in the background. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston

  18. A New Set of Solar Fireworks

    NASA Image and Video Library

    2017-12-08

    NASA's Solar Dynamics Observatory (SDO) captured this image of an M9-class flare on Oct 20, 2012 at 2:14 p.m. EDT. This image shows light at a wavelength of 131 Angstroms, which corresponds to material at 10 million Kelvin, and is a good wavelength for observing flares. This wavelength is typically colorized as teal, as shown here. To read more go to: www.nasa.gov/mission_pages/sunearth/news/News102012-m9fla... Credit: NASA/GSFC/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Apparent Solar Tornado-Like Prominences

    NASA Astrophysics Data System (ADS)

    Panasenco, Olga; Martin, Sara F.; Velli, Marco

    2014-02-01

    Recent high-resolution observations from the Solar Dynamics Observatory (SDO) have reawakened interest in the old and fascinating phenomenon of solar tornado-like prominences. This class of prominences was first introduced by Pettit ( Astrophys. J. 76, 9, 1932), who studied them over many years. Observations of tornado prominences similar to the ones seen by SDO had already been documented by Secchi ( Le Soleil, 1877). High-resolution and high-cadence multiwavelength data obtained by SDO reveal that the tornado-like appearance of these prominences is mainly an illusion due to projection effects. We discuss two different cases where prominences on the limb might appear to have a tornado-like behavior. One case of apparent vortical motions in prominence spines and barbs arises from the (mostly) 2D counterstreaming plasma motion along the prominence spine and barbs together with oscillations along individual threads. The other case of apparent rotational motion is observed in a prominence cavity and results from the 3D plasma motion along the writhed magnetic fields inside and along the prominence cavity as seen projected on the limb. Thus, the "tornado" impression results either from counterstreaming and oscillations or from the projection on the plane of the sky of plasma motion along magnetic-field lines, rather than from a true vortical motion around an (apparent) vertical or horizontal axis. We discuss the link between tornado-like prominences, filament barbs, and photospheric vortices at their base.

  20. KSC-2009-4592

    NASA Image and Video Library

    2009-08-11

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., workers in the control room monitor the data on computer screens from the movement of the high-gain antenna on the Solar Dynamics Observatory, or SDO. The SDO is undergoing performance testing. All of the spacecraft science instruments are being tested in their last major evaluation before launch. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Liftoff on an Atlas V rocket is scheduled for Dec. 4. Photo credit: NASA/Jack Pfaller

  1. OBSERVATIONS OF A SERIES OF FLARES AND ASSOCIATED JET-LIKE ERUPTIONS DRIVEN BY THE EMERGENCE OF TWISTED MAGNETIC FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Eun-Kyung; Yurchyshyn, Vasyl; Kim, Sujin

    We studied temporal changes of morphological and magnetic properties of a succession of four confined flares followed by an eruptive flare using the high-resolution New Solar Telescope (NST) operating at the Big Bear Solar Observatory (BBSO) and Helioseismic and Magnetic Imager (HMI) magnetograms and Atmospheric Image Assembly (AIA) EUV images provided by the Solar Dynamics Observatory (SDO). From the NST/Hα and the SDO/AIA 304 Å observations we found that each flare developed a jet structure that evolved in a manner similar to evolution of the blowout jet: (1) an inverted-Y-shaped jet appeared and drifted away from its initial position; (2) jets formed amore » curtain-like structure that consisted of many fine threads accompanied by subsequent brightenings near the footpoints of the fine threads; and finally, (3) the jet showed a twisted structure visible near the flare maximum. Analysis of the HMI data showed that both the negative magnetic flux and the magnetic helicity have been gradually increasing in the positive-polarity region, indicating the continuous injection of magnetic twist before and during the series of flares. Based on these results, we suggest that the continuous emergence of twisted magnetic flux played an important role in producing successive flares and developing a series of blowout jets.« less

  2. Evidence for the Magnetic Breakout Model in an Equatorial Coronal-Hole Jet

    NASA Technical Reports Server (NTRS)

    Kumar, Pankaj; Karpen, Judith T.; Antiochos, Spiro K.; Wyper, Peter F.; Devore, C. Richard; DeForest, Craig E.

    2018-01-01

    Small, impulsive jets commonly occur throughout the solar corona, but are especially visible in coronal holes. Evidence is mounting that jets are part of a continuum of eruptions that extends to much larger coronal mass ejections and eruptive flares. Because coronal-hole jets originate in relatively simple magnetic structures, they offer an ideal testbed for theories of energy buildup and release in the full range of solar eruptions. We analyzed an equatorial coronal-hole jet observed by the Solar Dynamics Observatory (SDO)/AIA (Atmospheric Imaging Assembly)) on 2014 January 9 in which the magnetic-field structure was consistent with the embedded-bipole topology that we identified and modeled previously as an origin of coronal jets. In addition, this event contained a mini-filament, which led to important insights into the energy storage and release mechanisms. SDO/HMI (Solar Dynamics Observatory/Helioseismic and Magnetic Imager) magnetograms revealed footpoint motions in the primary minority-polarity region at the eruption site, but show negligible flux emergence or cancellation for at least 16 hours before the eruption. Therefore, the free energy powering this jet probably came from magnetic shear concentrated at the polarity inversion line within the embedded bipole. We find that the observed activity sequence and its interpretation closely match the predictions of the breakout jet model, strongly supporting the hypothesis that the breakout model can explain solar eruptions on a wide range of scales.

  3. Understanding Coronal Heating through Time-Series Analysis and Nanoflare Modeling

    NASA Astrophysics Data System (ADS)

    Romich, Kristine; Viall, Nicholeen

    2018-01-01

    Periodic intensity fluctuations in coronal loops, a signature of temperature evolution, have been observed using the Atmospheric Imaging Assembly (AIA) aboard NASA’s Solar Dynamics Observatory (SDO) spacecraft. We examine the proposal that nanoflares, or impulsive bursts of energy release in the solar atmosphere, are responsible for the intensity fluctuations as well as the megakelvin-scale temperatures observed in the corona. Drawing on the work of Cargill (2014) and Bradshaw & Viall (2016), we develop a computer model of the energy released by a sequence of nanoflare events in a single magnetic flux tube. We then use EBTEL (Enthalpy-Based Thermal Evolution of Loops), a hydrodynamic model of plasma response to energy input, to simulate intensity as a function of time across the coronal AIA channels. We test the EBTEL output for periodicities using a spectral code based on Mann and Lees’ (1996) multitaper method and present preliminary results here. Our ultimate goal is to establish whether quasi-continuous or impulsive energy bursts better approximate the original SDO data.

  4. Understanding Solar Eruptions with SDO/HMI Measuring Photospheric Flows, Testing Models, and Steps Towards Forecasting Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Schuck, Peter W.; Linton, Mark; Muglach, Karin; Welsch, Brian; Hageman, Jacob

    2010-01-01

    The imminent launch of Solar Dynamics Observatory (SDO) will carry the first full-disk imaging vector magnetograph, the Helioseismic and Magnetic Imager (HMI), into an inclined geosynchronous orbit. This magnetograph will provide nearly continuous measurements of photospheric vector magnetic fields at cadences of 90 seconds to 12 minutes with I" resolution, precise pointing, and unfettered by atmospheric seeing. The enormous data stream of 1.5 Terabytes per day from SDO will provide an unprecedented opportunity to understand the mysteries of solar eruptions. These ground-breaking observations will permit the application of a new technique, the differential affine velocity estimator for vector magnetograms (DAVE4VM), to measure photospheric plasma flows in active regions. These measurements will permit, for the first time, accurate assessments of the coronal free energy available for driving CMEs and flares. The details of photospheric plasma flows, particularly along magnetic neutral-lines, are critical to testing models for initiating coronal mass ejections (CMEs) and flares. Assimilating flows and fields into state-of-the art 3D MHD simulations that model the highly stratified solar atmosphere from the convection zone to the corona represents the next step towards achieving NASA's Living with a Star forecasting goals of predicting "when a solar eruption leading to a CME will occur." This talk will describe these major science and predictive advances that will be delivered by SDO /HMI.

  5. NASA's SDO Shows Moon Transiting the Sun

    NASA Image and Video Library

    2017-12-08

    On Nov. 22, 2014 from 5:29 to 6:04 p.m. EST., the moon partially obscured the view of the sun from NASA's Solar Dynamics Observatory. This phenomenon, which is called a lunar transit, could only be seen from SDO's point of view. In 2014, SDO captured four such transits -- including its longest ever recorded, which occurred on Jan. 30, and lasted two and a half hours. SDO imagery during a lunar transit always shows a crisp horizon on the moon -- a reflection of the fact that the moon has no atmosphere around it to distort the light from the sun. The horizon is so clear in these images that mountains and valleys in the terrain can be seen. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Using SDO Data in the Classroom to Do Real Science -- A Community College Laboratory Investigation

    NASA Astrophysics Data System (ADS)

    Dave, T. A.; Hildreth, S.; Lee, S.; Scherrer, D. K.

    2013-12-01

    The incredible accessibility of extremely high spatial and temporal resolution data from the Solar Dynamics Observatory creates an opportunity for students to do almost real-time investigation in an Astronomy Lab. We are developing a short series of laboratory exercises using SDO data, targeted for Community College students in an introductory lab class, extendable to high school and university students. The labs initially lead students to explore what SDO can do, online, through existing SDO video clips taken on specific dates. Students then investigate solar events using the Heliophysics Events Knowledgebase (HEK), and make their own online movies of events, to discuss and share with classmates. Finally, students can investigate specific events and areas, selecting specific dates, locations, wavelength regions, and time cadences to create and gather their own SDO datasets for more detailed investigation. In exploring the Sun using actual data, students actually do real science. We are in the process of beta testing the sequence of labs, and are seeking interested community college, university, and high school astronomy lab teachers who might consider trying the labs themselves.

  7. Design and Development of the Solar Dynamics Observatory (SDO) Electrical Power System

    NASA Technical Reports Server (NTRS)

    Denney, Keys; Burns, Michael; Kercheval, Bradford

    2009-01-01

    The SDO spacecraft was designed to help us understand the Sun's influence on Earth and Near-Earth space by studying the solar atmosphere on small scales of space and time and in many wavelengths simultaneously. It will perform its operations in a geosynchronous orbit of the earth. This paper will present background on the SDO mission, an overview of the design and development activities associated specifically with the SDO electrical power system (EPS), as well as the major driving requirements behind the mission design. The primary coverage of the paper will be devoted to some of the challenges faced during the design and development phase. This will include the challenges associated with development of a compatible CompactPCI (cPCI) interface within the Power System Electronics (PSE) in order to utilize a "common" processor card, implementation of new solid state power controllers (SSPC) for primary load distribution switching and over current protection in the PSE, and the design approach adopted to meet single fault tolerance requirements for all of the SDO EPS functions.

  8. Trigger of Successive Filament Eruptions Observed by SDO and STEREO

    NASA Astrophysics Data System (ADS)

    Dhara, Sajal Kumar; Belur, Ravindra; Kumar, Pankaj; Banyal, Ravinder Kumar; Mathew, Shibu K.; Joshi, Bhuwan

    2017-10-01

    Using multiwavelength observations from the Solar Dynamics Observatory (SDO) and the Solar Terrestrial Relations Observatory (STEREO), we investigate the mechanism of two successive eruptions (F1 and F2) of a filament in active region NOAA 11444 on 27 March 2012. The filament was inverse J-shaped and lay along a quasi-circular polarity inversion line (PIL). The first part of the filament erupted at ˜2{:}30 UT on 27 March 2012 (F1), the second part at around 4:20 UT on the same day (F2). A precursor or preflare brightening was observed below the filament main axis about 30 min before F1. The brightening was followed by a jet-like ejection below the filament, which triggered its eruption. Before the eruption of F2, the filament seemed to be trapped within the overlying arcade loops for almost 1.5 h before it successfully erupted. Interestingly, we observe simultaneously contraction (˜12 km s^{-1}) and expansion (˜20 km s^{-1}) of arcade loops in the active region before F2. Magnetograms obtained with the Helioseismic and Magnetic Imager (HMI) show converging motion of the opposite polarities, which result in flux cancellation near the PIL. We suggest that flux cancellation at the PIL resulted in a jet-like ejection below the filament main axis, which triggered F1, similar to the tether-cutting process. F2 was triggered by removal of the overlying arcade loops via reconnection. Both filament eruptions produced high-speed (˜1000 km s^{-1}) coronal mass ejections.

  9. Mechanisms and Observations of Coronal Dimming for the 2010 August 7 Event

    NASA Technical Reports Server (NTRS)

    Mason, James P.; Woods, Thomas N.; Caspi, Amir; Thompson, Barbara J.; Hock, Rachel A.

    2014-01-01

    Coronal dimming of extreme ultraviolet (EUV) emission has the potential to be a useful forecaster of coronal mass ejections (CMEs). As emitting material leaves the corona, a temporary void is left behind which can be observed in spectral images and irradiance measurements. The velocity and mass of the CMEs should impact the character of those observations. However, other physical processes can confuse the observations. We describe these processes and the expected observational signature, with special emphasis placed on the differences. We then apply this understanding to a coronal dimming event with an associated CME that occurred on 2010 August 7. Data from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) and EUV Variability Experiment (EVE) are used for observations of the dimming, while the Solar and Heliospheric Observatory's (SoHO) Large Angle and Spectrometric Coronagraph (LASCO) and the Solar Terrestrial Relations Observatory's (STEREO) COR1 and COR2 are used to obtain velocity and mass estimates for the associated CME. We develop a technique for mitigating temperature effects in coronal dimming from full-disk irradiance measurements taken by EVE. We find that for this event, nearly 100% of the dimming is due to mass loss in the corona.

  10. NASA's Van Allen Probes Discover a Surprise Circling Earth

    NASA Image and Video Library

    2017-12-08

    On Aug. 31, 2012, a giant prominence on the sun erupted, sending out particles and a shock wave that traveled near Earth. This event may have been one of the causes of a third radiation belt that appeared around Earth a few days later, a phenomenon that was observed for the very first time by the newly-launched Van Allen Probes. This image of the prominence before it erupted was captured by NASA's Solar Dynamics Observatory (SDO). Credit: NASA/SDO/AIA/Goddard Space Flight Center To read more go to: www.nasa.gov/mission_pages/rbsp/news/third-belt.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. High-resolution Observations of Sympathetic Filament Eruptions by NVST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shangwei; Su, Yingna; Zhou, Tuanhui

    We investigate two sympathetic filament eruptions observed by the New Vacuum Solar Telescope on 2015 October 15. The full picture of the eruptions is obtained from the corresponding Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) observations. The two filaments start from active region NOAA 12434 in the north and end in one large quiescent filament channel in the south. The left filament erupts first, followed by the right filament eruption about 10 minutes later. Clear twist structure and rotating motion are observed in both filaments during the eruption. Both eruptions failed, since the filaments first rise up, thenmore » flow toward the south and merge into the southern large quiescent filament. We also observe repeated activations of mini filaments below the right filament after its eruption. Using magnetic field models constructed based on SDO /HMI magnetograms via the flux rope insertion method, we find that the left filament eruption is likely to be triggered by kink instability, while the weakening of overlying magnetic fields due to magnetic reconnection at an X-point between the two filament systems might play an important role in the onset of the right filament eruption.« less

  12. The Sun's Seismic Radius as Measured from the Fundamental Modes of Oscillations and Its Implications for the TSI Variations

    NASA Astrophysics Data System (ADS)

    Jain, Kiran; Tripathy, S. C.; Hill, F.

    2018-05-01

    In this Letter we explore the relationship between the solar seismic radius and total solar irradiance (TSI) during the last two solar cycles using the uninterrupted data from space-borne instruments on board the Solar and Heliospheric Observatory (SoHO) and the Solar Dynamics Observatory (SDO). The seismic radius is calculated from the fundamental (f) modes of solar oscillations utilizing the observations from SoHO/Michelson Doppler Imager (MDI) and SDO/Helioseismic and Magnetic Imager (HMI), and the TSI measurements are obtained from SoHO/VIRGO. Our study suggests that the major contribution to the TSI variation arises from the changes in magnetic field, while the radius variation plays a secondary role. We find that the solar irradiance increases with decreasing seismic radius; however, the anti-correlation between them is moderately weak. The estimated maximum change in seismic radius during a solar cycle is about 5 km, and is consistent in both solar cycles 23 and 24. Previous studies ;suggest a radius change at the surface of the order of 0.06 arcsec to explain the 0.1% variation in the TSI values during the solar cycle; however, our inferred seismic radius change is significantly smaller, hence the TSI variations cannot be fully explained by the temporal changes in seismic radius.

  13. Solar Flare Impulsive Phase Observations from SDO and Other Observatories

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip C.; Woods, Thomas N.; Schrijver, Karel; Warren, Harry; Milligan, Ryan; Christe, Steven; Brosius, Jeffrey W.

    2010-01-01

    With the start of normal operations of the Solar Dynamics Observatory in May 2010, the Extreme ultraviolet Variability Experiment (EVE) and the Atmospheric Imaging Assembly (AIA) have been returning the most accurate solar XUV and EUV measurements every 10 and 12 seconds, respectively, at almost 100% duty cycle. The focus of the presentation will be the solar flare impulsive phase observations provided by EVE and AIA and what these observations can tell us about the evolution of the initial phase of solar flares. Also emphasized throughout is how simultaneous observations with other instruments, such as RHESSI, SOHO-CDS, and HINODE-EIS, will help provide a more complete characterization of the solar flares and the evolution and energetics during the impulsive phase. These co-temporal observations from the other solar instruments can provide information such as extending the high temperature range spectra and images beyond that provided by the EUV and XUV wavelengths, provide electron density input into the lower atmosphere at the footpoints, and provide plasma flows of chromospheric evaporation, among other characteristics.

  14. KSC-2009-6236

    NASA Image and Video Library

    2009-11-09

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., the Solar Dynamics Observatory, or SDO, with its solar arrays deployed, is ready to receive signal commands to test the release mechanism sequence for the arrays. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. Photo credit: NASA/Jack Pfaller

  15. SDO Pick of the Week

    NASA Image and Video Library

    2017-12-08

    Magnetic arcs of solar material spewing from our favorite sphere of hot plasma, the sun. Magnetic arcs of solar material held their shapes fairly well as they spiraled above two solar active regions over 18 hours on Jan. 11-12, 2017. The charged solar material, called plasma, traces out the magnetic field lines above the active regions when viewed in wavelengths of extreme ultraviolet light, captured here by NASA’s Solar Dynamics Observatory. Extreme ultraviolet light is typically invisible to our eyes, but is colorized here in gold for easy viewing. Credit: NASA/SDO

  16. KSC-2009-5305

    NASA Image and Video Library

    2009-10-01

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., workers secure the Solar Dynamics Observatory, or SDO, onto a work stand during preparations for propulsion system testing and leak checks on the spacecraft. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. Liftoff on an Atlas V rocket is scheduled for Feb. 3, 2010. Photo credit: NASA/Amanda Diller

  17. Destruction of Sun-Grazing Comet C-2011 N3 (SOHO) Within the Low Solar Corona

    NASA Technical Reports Server (NTRS)

    Schrijver, C. J.; Brown, J. C.; Battams, K.; Saint-Hilaire, P.; Liu, W.; Hudson, H.; Pesnell, W. D.

    2012-01-01

    Observations of comets in Sun-grazing orbits that survive solar insolation long enough to penetrate into the Suns inner corona provide information on the solar atmosphere and magnetic field as well as on the makeup of the comet. On 6 July 2011, the Solar Dynamics Observatory (SDO) observed the demise of comet C2011 N3 (SOHO) within the low solar corona in five wavelength bands in the extreme ultraviolet (EUV). The comet penetrated to within 0.146 solarradius (100,000 kilometers) of the solar surface before its EUV signal disappeared.

  18. The SDO Education and Outreach (E/PO) Program: Changing Perceptions One Program at a Time

    NASA Technical Reports Server (NTRS)

    Drobnes, E.; Littleton, A.; Pesnell, W. D.; Buhr, S.; Beck, K.; Durscher, R.; Hill, S.; McCaffrey, M.; McKenzie, D. E.; Myers, D.; hide

    2011-01-01

    The Solar Dynamics Observatory (SDO) Education and Public Outreach (E/PO) program began as a series of discrete efforts implemented by each of the instrument teams and has evolved into a well-rounded program with a full suite of national and international programs. The SDO E/PO team has put forth much effort in the past few years to increase our cohesiveness by adopting common goals and increasing the amount of overlap between our programs. In this paper, we outline the context and overall philosophy for our combined programs, present a brief overview of all SDO E/PO programs along with more detailed highlight of a few key programs, followed by a review of our results up to date. Concluding is a summary of the successes, failures, and lessons learned that future missions can use as a guide, while further incorporating their own content to enhance the public's knowledge and appreciation of NASA?s science and technology as well as its benefit to society.

  19. Observational evidence of torus instability as trigger mechanism for coronal mass ejections: The 2011 August 4 filament eruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuccarello, F. P.; Poedts, S.; Seaton, D. B.

    Solar filaments are magnetic structures often observed in the solar atmosphere and consist of plasma that is cooler and denser than their surroundings. They are visible for days—even weeks—which suggests that they are often in equilibrium with their environment before disappearing or erupting. Several eruption models have been proposed that aim to reveal what mechanism causes (or triggers) these solar eruptions. Validating these models through observations represents a fundamental step in our understanding of solar eruptions. We present an analysis of the observation of a filament eruption that agrees with the torus instability model. This model predicts that a magneticmore » flux rope embedded in an ambient field undergoes an eruption when the axis of the flux rope reaches a critical height that depends on the topology of the ambient field. We use the two vantage points of the Solar Dynamics Observatory (SDO) and the Solar TErrestrial RElations Observatory to reconstruct the three-dimensional shape of the filament, to follow its morphological evolution, and to determine its height just before eruption. The magnetograms acquired by SDO/Helioseismic and Magnetic Imager are used to infer the topology of the ambient field and to derive the critical height for the onset of the torus instability. Our analysis shows that the torus instability is the trigger of the eruption. We also find that some pre-eruptive processes, such as magnetic reconnection during the observed flares and flux cancellation at the neutral line, facilitated the eruption by bringing the filament to a region where the magnetic field was more vulnerable to the torus instability.« less

  20. KSC-2009-4590

    NASA Image and Video Library

    2009-08-11

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., the Solar Dynamics Observatory, or SDO, is moved, or gimbaled, during performance testing. All of the spacecraft science instruments are being tested in their last major evaluation before launch. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Liftoff on an Atlas V rocket is scheduled for Dec. 4. Photo credit: NASA/Jack Pfaller

  1. Hotspots in Fountains on the Sun's Surface Help Explain Coronal Heating Mystery

    NASA Image and Video Library

    2017-12-08

    NASA image release January 6, 2010 Caption: Spicules on the sun, as observed by the Solar Dynamics Observatory. These bursts of gas jet off the surface of the sun at 150,000 miles per hour and contain gas that reaches temperatures over a million degrees. GREENBELT, Md. -- Observations from NASA's Solar Dynamics Observatory (SDO) and the Japanese satellite Hinode show that some gas in the giant, fountain-like jets in the sun's atmosphere known as spicules can reach temperatures of millions of degrees. The finding offers a possible new framework for how the sun's high atmosphere gets so much hotter than the surface of the sun. What makes the high atmosphere, or corona, so hot – over a million degrees, compared to the sun surface's 10,000 degrees Fahrenheit -- remains a poorly understood aspect of the sun's complicated space weather system. That weather system can reach Earth, causing auroral lights and, if strong enough, disrupting Earth's communications and power systems. Understanding such phenomena, therefore, is an important step towards better protecting our satellites and power grids. "The traditional view is that all the heating happens higher up in the corona," says Dean Pesnell, who is SDO's project scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. "The suggestion in this paper is that cool gas is being ejected from the sun's surface in spicules and getting heated on its way to the corona." Spicules were first named in the 1940s, but were hard to study in detail until recently, says Bart De Pontieu of Lockheed Martin's Solar and Astrophysics Laboratory, Palo Alto, Calif. who is the lead author on a paper on this subject in the January 7, 2011 issue of Science magazine. In visible light, spicules can be seen to send large masses of so-called plasma – the electromagnetic gas that surrounds the sun – up through the lower solar atmosphere or photosphere. The amount of material sent up is stunning, some 100 times as much as streams away from the sun in the solar wind towards the edges of the solar system. But nobody knew if they contained hot gas. "Heating of spicules to the necessary hot temperatures has never been observed, so their role in coronal heating had been dismissed as unlikely," says De Pontieu. Now, De Pontieu's team -- which included researchers at Lockheed Martin, the High Altitude Observatory of the National Center for Atmospheric Research (NCAR) in Colorado and the University of Oslo, Norway -- was able to combine images from SDO and Hinode to produce a more complete picture of the gas inside these gigantic fountains. The scientists found that a large fraction of the gas is heated to a hundred thousand degrees, while a small fraction is heated to millions of degrees. Time-lapsed images show that this material spews up into the corona, with most falling back down towards the surface of the sun. However, the small fraction of the gas that is heated to millions of degrees does not immediately return to the surface. Given the large number of spicules on the Sun, and the amount of material in the spicules, the scientists believe that if even some of that super hot plasma stays aloft it would make a contribution to coronal heating. Astrophysicist Jonathan Cirtain, who is the U.S. project scientist for Hinode at NASA's Marshall Space Flight Center, Huntsville, Ala., says that incorporating such new information helps address an important question that reaches far beyond the sun. "This breakthrough in our understanding of the mechanisms which transfer energy from the solar photosphere to the corona addresses one of the most compelling questions in stellar astrophysics: How is the atmosphere of a star heated?" he says. "This is a fantastic discovery, and demonstrates the muscle of the NASA Heliophysics System Observatory, comprised of numerous instruments on multiple observatories." Hinode is the second mission in NASA's Solar Terrestrial Probes program, the goal of which is to improve understanding of fundamental solar and space physics processes. The mission is led by the Japan Aerospace Exploration Agency (JAXA) and the National Astronomical Observatory of Japan (NAOJ). The collaborative mission includes the U.S., the United Kingdom, Norway and Europe. NASA Marshall manages Hinode U.S. science operations and oversaw development of the scientific instrumentation provided for the mission by NASA, academia and industry. The Lockheed Martin Advanced Technology Center is the lead U.S. investigator for the Solar Optical Telescope on Hinode. SDO is the first mission in a NASA science program called Living With a Star, the goal of which is to develop the scientific understanding necessary to address those aspects of the sun-Earth system that directly affect our lives and society. NASA Goddard built, operates, and manages the SDO spacecraft for NASA's Science Mission Directorate in Washington. To learn more go to: www.nasa.gov/mission_pages/sdo/news/news20110106-spicules... Credit: NASA Goddard/SDO/AIA NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  2. Space-weather Parameters for 1,000 Active Regions Observed by SDO/HMI

    NASA Astrophysics Data System (ADS)

    Bobra, M.; Liu, Y.; Hoeksema, J. T.; Sun, X.

    2013-12-01

    We present statistical studies of several space-weather parameters, derived from observations of the photospheric vector magnetic field by the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory, for a thousand active regions. Each active region has been observed every twelve minutes during the entirety of its disk passage. Some of these parameters, such as energy density and shear angle, indicate the deviation of the photospheric magnetic field from that of a potential field. Other parameters include flux, helicity, field gradients, polarity inversion line properties, and measures of complexity. We show that some of these parameters are useful for event prediction.

  3. Calibration of Gimbaled Platforms: The Solar Dynamics Observatory High Gain Antennas

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.

    2006-01-01

    Simple parameterization of gimbaled platform pointing produces a complete set of 13 calibration parameters-9 misalignment angles, 2 scale factors and 2 biases. By modifying the parameter representation, redundancy can be eliminated and a minimum set of 9 independent parameters defined. These consist of 5 misalignment angles, 2 scale factors, and 2 biases. Of these, only 4 misalignment angles and 2 biases are significant for the Solar Dynamics Observatory (SDO) High Gain Antennas (HGAs). An algorithm to determine these parameters after launch has been developed and tested with simulated SDO data. The algorithm consists of a direct minimization of the root-sum-square of the differences between expected power and measured power. The results show that sufficient parameter accuracy can be attained even when time-dependent thermal distortions are present, if measurements from a pattern of intentional offset pointing positions is included.

  4. ERUPTION OF A SOLAR FILAMENT CONSISTING OF TWO THREADS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi Yi; Jiang Yunchun; Li Haidong

    The trigger and driving mechanism for the eruption of a filament consisting of two dark threads was studied with unprecedented high cadence and resolution of He II 304 A observations made by the Atmospheric Imagining Assembly (AIA) on board the Solar Dynamics Observatory (SDO) and the observations made by the Solar Magnetic Activity Research Telescope and the Extreme Ultraviolet Imager (EUVI) telescope on board the Solar Terrestrial Relations Observatory Ahead (STEREO-A). The filament was located at the periphery of the active region NOAA 11228 and erupted on 2011 June 6. At the onset of the eruption, a turbulent filament threadmore » was found to be heated and to elongate in stride over a second one. After it rose slowly, most interestingly, the elongating thread was driven to contact and interact with the second one, and it then erupted with its southern leg being wrapped by a newly formed thread produced by the magnetic reconnection between fields carried by the two threads. Combining the observations from STEREO-A/EUVI and SDO/AIA 304 A images, the three-dimensional shape of the axis of the filament was obtained and it was found that only the southern leg of the eruptive filament underwent rotation. We suggest that the eruption was triggered by the reconnection of the turbulent filament thread and the surrounding magnetic field, and that it was mainly driven by the kink instability of the southern leg of the eruptive filament that possessed a more twisted field introduced by the reconnection-produced thread.« less

  5. Overlying extreme-ultraviolet arcades preventing eruption of a filament observed by AIA/SDO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huadong; Ma, Suli; Zhang, Jun, E-mail: hdchen@upc.edu.cn

    2013-11-20

    Using the multi-wavelength data from the Atmospheric Imaging Assembly/Solar Dynamic Observatory (AIA/SDO) and the Sun Earth Connection Coronal and Heliospheric Investigation/Solar Terrestrial Relations Observatory (SECCHI/STEREO), we report a failed filament eruption in NOAA AR 11339 on 2011 November 3. The eruption was associated with an X1.9 flare, but without any coronal mass ejection (CME), coronal dimming, or extreme ultraviolet (EUV) waves. Some magnetic arcades above the filament were observed distinctly in EUV channels, especially in the AIA 94 Å and 131 Å wavebands, before and during the filament eruption process. Our results show that the overlying arcades expanded along withmore » the ascent of the filament at first until they reached a projected height of about 49 Mm above the Sun's surface, where they stopped. The following filament material was observed to be confined by the stopped EUV arcades and not to escape from the Sun. After the flare, a new filament formed at the low corona where part of the former filament remained before its eruption. These results support that the overlying arcades play an important role in preventing the filament from successfully erupting outward. We also discuss in this paper the EUV emission of the overlying arcades during the flare. It is rare for a failed filament eruption to be associated with an X1.9 class flare, but not with a CME or EUV waves. Therefore, this study also provides valuable insight into the triggering mechanism of the initiation of CMEs and EUV waves.« less

  6. Solar Cycle Variation of Microwave Polar Brightening and EUV Coronal Hole Observed by Nobeyama Radioheliograph and SDO/AIA

    NASA Astrophysics Data System (ADS)

    Kim, Sujin; Park, Jong-Yeop; Kim, Yeon-Han

    2017-08-01

    We investigate the solar cycle variation of microwave and extreme ultraviolet (EUV) intensity in latitude to compare microwave polar brightening (MPB) with the EUV polar coronal hole (CH). For this study, we used the full-sun images observed in 17 GHz of the Nobeyama Radioheliograph from 1992 July to 2016 November and in two EUV channels of the Atmospheric Imaging Assembly (AIA) 193 Å and 171 Å on the Solar Dynamics Observatory (SDO) from 2011 January to 2016 November. As a result, we found that the polar intensity in EUV is anti-correlated with the polar intensity in microwave. Since the depression of EUV intensity in the pole is mostly owing to the CH appearance and continuation there, the anti-correlation in the intensity implies the intimate association between the polar CH and the MPB. Considering the report of tet{gopal99} that the enhanced microwave brightness in the CH is seen above the enhanced photospheric magnetic field, we suggest that the pole area during the solar minimum has a stronger magnetic field than the quiet sun level and such a strong field in the pole results in the formation of the polar CH. The emission mechanism of the MPB and the physical link with the polar CH are not still fully understood. It is necessary to investigate the MPB using high resolution microwave imaging data, which can be obtained by the high performance large-array radio observatories such as the ALMA project.

  7. Ellerman bombs observed with the new vacuum solar telescope and the atmospheric imaging assembly onboard the solar dynamics observatory

    NASA Astrophysics Data System (ADS)

    Chen, Yajie; Tian, Hui; Xu, Zhi; Xiang, Yongyuan; Fang, Yuliang; Yang, Zihao

    2017-12-01

    Ellerman bombs (EBs) are believed to be small-scale reconnection events occurring around the temperature minimum region in the solar atmosphere. They are often identified as significant enhancements in the extended Hα wings without obvious signatures in the Hα core. Here we explore the possibility of using the 1700 Å images taken by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) to study EBs. From the Hα wing images obtained with the New Vacuum Solar Telescope (NVST) on 2015 May 2, we have identified 145 EBs and 51% of them clearly correspond to the bright points (BPs) in the AIA 1700 Å images. If we resize the NVST images using a linear interpolation to make the pixel sizes of the AIA and NVST images the same, some previously identified EBs disappear and about 71% of the remaining EBs are associated with BPs. Meanwhile, 66% of the compact brightenings in the AIA 1700 Å images can be identified as EBs in the Hα wings. The intensity enhancements of the EBs in the Hα wing images reveal a linear correlation with those of the BPs in the AIA 1700 Å images. Our study suggests that a significant fraction of EBs can be observed with the AIA 1700 Å filter, which is promising for large-sample statistical study of EBs as the seeing-free and full-disk SDO/AIA data are routinely available.

  8. NASA's SDO Catches a Double Photobomb

    NASA Image and Video Library

    2017-12-08

    On Sept. 13, 2015, as NASA’s Solar Dynamics Observatory, or SDO, kept up its constant watch on the sun, its view was photobombed not once, but twice. Just as the moon came into SDO’s field of view on a path to cross the sun, Earth entered the picture, blocking SDO’s view completely. When SDO's view of the sun emerged from Earth’s shadow, the moon was just completing its journey across the sun’s face. Though SDO sees dozens of Earth eclipses and several lunar transits each year, this is the first time ever that the two have coincided. This alignment of the sun, moon and Earth also resulted in a partial solar eclipse on Sept. 13, visible only from parts of Africa and Antarctica. Read more: www.nasa.gov/feature/goddard/nasas-sdo-catches-a-double-p... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. EVIDENCE FOR COLLAPSING FIELDS IN THE CORONA AND PHOTOSPHERE DURING THE 2011 FEBRUARY 15 X2.2 FLARE: SDO/AIA AND HMI OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosain, S., E-mail: sgosain@nso.edu; Udaipur Solar Observatory, P.O. Box 198, Dewali, Udaipur, Rajasthan 313001

    2012-04-10

    We use high-resolution Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly observations to study the evolution of the coronal loops in a flaring solar active region, NOAA 11158. We identify three distinct phases of the coronal loop dynamics during this event: (1) slow-rise phase: slow rising motion of the loop-tops prior to the flare in response to the slow rise of the underlying flux rope; (2) collapse phase: sudden contraction of the loop-tops, with the lower loops collapsing earlier than the higher loops; and (3) oscillation phase: the loops exhibit global kink oscillations after the collapse phase at different periods, with themore » period decreasing with the decreasing height of the loops. The period of these loop oscillations is used to estimate the field strength in the coronal loops. Furthermore, we also use SDO/Helioseismic and Magnetic Imager (HMI) observations to study the photospheric changes close to the polarity inversion line (PIL). The longitudinal magnetograms show a stepwise permanent decrease in the magnetic flux after the flare over a coherent patch along the PIL. Furthermore, we examine the HMI Stokes I, Q, U, V profiles over this patch and find that the Stokes-V signal systematically decreases while the Stokes-Q and U signals increase after the flare. These observations suggest that close to the PIL the field configuration became more horizontal after the flare. We also use HMI vector magnetic field observations to quantify the changes in the field inclination angle and find an inward collapse of the field lines toward the PIL by {approx}10 Degree-Sign . These observations are consistent with the 'coronal implosion' scenario and its predictions about flare-related photospheric field changes.« less

  10. Time-Series Analyses of Supergranule Characteristics Compared Between SDO/HMI, SOHO/MDI and Simulated Datasets

    NASA Technical Reports Server (NTRS)

    Williams, Peter E.; Pesnell, William Dean

    2012-01-01

    Supergranulation is a well-observed solar phenomenon despite its underlying mechanisms remaining a mystery. Originally considered to arise due to convective motions, alternative mechanisms have been suggested such as the cumulative downdrafts of granules as well as displaying wave-like properties. Supergranule characteristics are well documented, however. Supergranule cells are approximately 35 Mm across, have lifetimes on the order of a day and have divergent horizontal velocities of around 300 mis, a factor of 10 higher than their central radial components. While they have been observed using Doppler methods for more than half a century, their existence is also observed in other datasets such as magneto grams and Ca II K images. These datasets clearly show the influence of supergranulation on solar magnetism and how the local field is organized by the flows of supergranule cells. The Heliospheric and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO) continues to produce Doppler images enabling the continuation of supergranulation studies made with SOHO/MDI, but with superior temporal and spatial resolution. The size-distribution of divergent cellular flows observed on the photosphere now reaches down to granular scales, allowing contemporaneous comparisons between the two flow components. SOHO/MDI Doppler observations made during the minima of cycles 22/23 and 23/24 exhibit fluctuations of supergranule characteristics (global averages of the supergranule size, size-range and horizontal velocity) with periods of 3-5 days. Similar fluctuations have been observed in SDO/HMI Dopplergrams and the high correlation between co-temporal HMI & MOl suggest a solar origin. Their nature has been probed by invoking data simulations that produce realistic Dopplergrams based on MOl data.

  11. Imaging Spectropolarimeter for the Multi-Application Solar Telescope at Udaipur Solar Observatory: Characterization of Polarimeter and Preliminary Observations

    NASA Astrophysics Data System (ADS)

    Tiwary, Alok Ranjan; Mathew, Shibu K.; Bayanna, A. Raja; Venkatakrishnan, P.; Yadav, Rahul

    2017-04-01

    The Multi-Application Solar Telescope (MAST) is a 50 cm off-axis Gregorian telescope that has recently become operational at the Udaipur Solar Observatory (USO). An imaging spectropolarimeter is being developed as one of the back-end instruments of MAST to gain a better understanding of the evolution and dynamics of solar magnetic and velocity fields. This system consists of a narrow-band filter and a polarimeter. The polarimeter includes a linear polarizer and two sets of liquid crystal variable retarders (LCVRs). The instrument is intended for simultaneous observations in the spectral lines 6173 Å and 8542 Å, which are formed in the photosphere and chromosphere, respectively. In this article, we present results from the characterization of the LCVRs for the spectral lines of interest and the response matrix of the polarimeter. We also present preliminary observations of an active region obtained using the spectropolarimeter. For verification purposes, we compare the Stokes observations of the active region obtained from the Helioseismic Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) with that of MAST observations in the spectral line 6173 Å. We find good agreement between the two observations, considering the fact that MAST observations are limited by seeing.

  12. Sun Shines in High-Energy X-rays

    NASA Image and Video Library

    2014-12-22

    X-rays stream off the sun in this first picture of the sun, overlaid on a picture taken by NASA Solar Dynamics Observatory SDO, taken by NASA NuSTAR. The field of view covers the west limb of the sun.

  13. Millimeter and X-Ray Emission from the 5 July 2012 Solar Flare

    NASA Astrophysics Data System (ADS)

    Tsap, Y. T.; Smirnova, V. V.; Motorina, G. G.; Morgachev, A. S.; Kuznetsov, S. A.; Nagnibeda, V. G.; Ryzhov, V. S.

    2018-03-01

    The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39 - 11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (≳ 300 keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.

  14. Selections from 2016: A Connection Between Solar Explosions and Dimming on the Sun

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    Editors note:In these last two weeks of 2016, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.The Nature of CME-Flare-Associated Coronal DimmingPublished June2016Main takeaway:The Solar Dynamics Observatory (SDO) observed a large solar eruption at the end of December 2011. Scientists Jianxia Cheng (Shanghai Astronomical Observatory and the Chinese Academy of Sciences) and Jiong Qiu (Montana State University) studied this coronal mass ejection and the associated flaring on the Suns surface. They found that this activity was accompanied by dimming in the Suns corona near the ends of the flare ribbons.Why its interesting:The process of coronal dimming isnt fully understood, but Cheng and Qius observations provide a clear link between coronal dimming and eruptions of plasma and energy from the Sun. The locations of the dimming the footpoints of the two flare ribbons and the timing relative to the eruption suggests that coronal dimming is caused by the ejection of hot plasma from the Suns surface.How this process was studied:There are a number of satellites dedicated to observing the Sun, and several of them were used to study this explosion. Data from SDOs Atmospheric Imaging Assembly (which images in extreme ultraviolet) and its Helioseismic and Magnetic Imager (which measures magnetic fields) were used as well as observations from STEREO, the pair of satellites orbiting the Sun at 90 from SDO.CitationJ. X. Cheng and J. Qiu 2016 ApJ 825 37. doi:10.3847/0004-637X/825/1/37

  15. KSC-2009-4587

    NASA Image and Video Library

    2009-08-11

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., the Solar Dynamics Observatory, or SDO, is undergoing performance testing. The high-gain antenna seen at center left will be moved, or gimbaled. All of the spacecraft science instruments are being tested in their last major evaluation before launch. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Liftoff on an Atlas V rocket is scheduled for Dec. 4. Photo credit: NASA/Jack Pfaller

  16. Mercury Transit (Composite Image)

    NASA Image and Video Library

    2017-12-08

    On May 9, 2016, Mercury passed directly between the sun and Earth. This event – which happens about 13 times each century – is called a transit. NASA’s Solar Dynamics Observatory, or SDO, studies the sun 24/7 and captured the entire seven-and-a-half-hour event. This composite image of Mercury’s journey across the sun was created with visible-light images from the Helioseismic and Magnetic Imager on SDO. Image Credit: NASA's Goddard Space Flight Center/SDO/Genna Duberstein NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Simulating the Coronal Evolution of AR 11437 Using SDO/HMI Magnetograms

    NASA Astrophysics Data System (ADS)

    Yardley, Stephanie L.; Mackay, Duncan H.; Green, Lucie M.

    2018-01-01

    The coronal magnetic field evolution of AR 11437 is simulated by applying the magnetofrictional relaxation technique of Mackay et al. A sequence of photospheric line-of-sight magnetograms produced by the Solar Dynamics Observatory (SDO)/Helioseismic Magnetic Imager (HMI) is used to drive the simulation and continuously evolve the coronal magnetic field of the active region through a series of nonlinear force-free equilibria. The simulation is started during the first stages of the active region emergence so that its full evolution from emergence to decay can be simulated. A comparison of the simulation results with SDO/Atmospheric Imaging Assembly (AIA) observations show that many aspects of the active region’s observed coronal evolution are reproduced. In particular, it shows the presence of a flux rope, which forms at the same location as sheared coronal loops in the observations. The observations show that eruptions occurred on 2012 March 17 at 05:09 UT and 10:45 UT and on 2012 March 20 at 14:31 UT. The simulation reproduces the first and third eruption, with the simulated flux rope erupting roughly 1 and 10 hr before the observed ejections, respectively. A parameter study is conducted where the boundary and initial conditions are varied along with the physical effects of Ohmic diffusion, hyperdiffusion, and an additional injection of helicity. When comparing the simulations, the evolution of the magnetic field, free magnetic energy, relative helicity and flux rope eruption timings do not change significantly. This indicates that the key element in reproducing the coronal evolution of AR 11437 is the use of line-of-sight magnetograms to drive the evolution of the coronal magnetic field.

  18. Non-homogeneous Behaviour of the Spatial Distribution of Macrospicules

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Bennett, S.; Erdélyi, R.

    2015-03-01

    In this paper the longitudinal and latitudinal spatial distribution of macrospicules is examined. We found a statistical relationship between the active longitude (determined by sunspot groups) and the longitudinal distribution of macrospicules. This distribution of macrospicules shows an inhomogeneity and non-axisymmetrical behaviour in the time interval between June 2010 and December 2012, covered by observations of the Solar Dynamic Observatory (SDO) satellite. The enhanced positions of the activity and its time variation have been calculated. The migration of the longitudinal distribution of macrospicules shows a similar behaviour to that of the sunspot groups.

  19. THE SPATIO-TEMPORAL EVOLUTION OF SOLAR FLARES OBSERVED WITH AIA/SDO: FRACTAL DIFFUSION, SUB-DIFFUSION, OR LOGISTIC GROWTH?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschwanden, Markus J., E-mail: aschwanden@lmsal.com

    2012-09-20

    We explore the spatio-temporal evolution of solar flares by fitting a radial expansion model r(t) that consists of an exponentially growing acceleration phase, followed by a deceleration phase that is parameterized by the generalized diffusion function r(t){proportional_to}{kappa}(t - t{sub 1}){sup {beta}/2}, which includes the logistic growth limit ({beta} = 0), sub-diffusion ({beta} = 0-1), classical diffusion ({beta} = 1), super-diffusion ({beta} = 1-2), and the linear expansion limit ({beta} = 2). We analyze all M- and X-class flares observed with Geostationary Operational Environmental Satellite and Atmospheric Imaging Assembly/Solar Dynamics Observatory (SDO) during the first two years of the SDO mission,more » amounting to 155 events. We find that most flares operate in the sub-diffusive regime ({beta} = 0.53 {+-} 0.27), which we interpret in terms of anisotropic chain reactions of intermittent magnetic reconnection episodes in a low plasma-{beta} corona. We find a mean propagation speed of v = 15 {+-} 12 km s{sup -1}, with maximum speeds of v{sub max} = 80 {+-} 85 km s{sup -1} per flare, which is substantially slower than the sonic speeds expected for thermal diffusion of flare plasmas. The diffusive characteristics established here (for the first time for solar flares) is consistent with the fractal-diffusive self-organized criticality model, which predicted diffusive transport merely based on cellular automaton simulations.« less

  20. NASA's SDO Sees Giant Filament on the Sun

    NASA Image and Video Library

    2015-02-10

    A dark line snaked across the lower half of the sun on Feb.10, 2015, as seen in this image from NASA's Solar Dynamics Observatory, or SDO. SDO shows colder material as dark and hotter material as light, so the line is, in fact, an enormous swatch of colder material hovering in the sun's atmosphere, the corona. Stretched out, that line – or solar filament as scientists call it – would be more than 533,000 miles long. That is longer than 67 Earths lined up in a row. Filaments can float sedately for days before disappearing. Sometimes they also erupt out into space, releasing solar material in a shower that either rains back down or escapes out into space, becoming a moving cloud known as a coronal mass ejection, or CME. SDO captured images of the filament in numerous wavelengths, each of which helps highlight material of different temperatures on the sun. By looking at such features in different wavelengths and temperatures, scientists learn more about what causes these structures, as well as what catalyzes their occasional eruptions. For more on SDO, visit: www.nasa.gov/sdo Karen C. Fox NASA's Goddard Space Flight Center, Greenbelt, Maryland Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Low-latitude Ionospheric Heating during Solar Flares

    NASA Astrophysics Data System (ADS)

    Klenzing, J.; Chamberlin, P. C.; Qian, L.; Haaser, R. A.; Burrell, A. G.; Earle, G. D.; Heelis, R. A.; Simoes, F. A.

    2013-12-01

    The advent of the Solar Dynamics Observatory (SDO) represents a leap forward in our capability to measure rapidly changing transient events on the sun. SDO measurements are paired with the comprehensive low latitude measurements of the ionosphere and thermosphere provided by the Communication/Navigation Outage Forecast System (C/NOFS) satellite and state-of-the-art general circulation models to discuss the coupling between the terrestrial upper atmosphere and solar radiation. Here we discuss ionospheric heating as detected by the Coupled Ion-Neutral Dynamics Investigation (CINDI) instrument suite on the C/NOFS satellite during solar flares. Also discusses is the necessity of decoupling the heating due to increased EUV irradiance and that due to geomagnetic storms, which sometimes occur with flares. Increases in both the ion temperature and ion density in the subsolar topside ionosphere are detected within 77 minutes of the 23 Jan 2012 M-class flare, and the observed results are compared with the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) using the Flare Irradiance Spectral Model (FISM) as an input.

  2. Multi-thermal observations of flares and eruptions with the Atmospheric Imaging Assembly on the Solar Dynamics Observatory. (Invited)

    NASA Astrophysics Data System (ADS)

    Schrijver, C. J.; Aia Science Team

    2010-12-01

    The revolutionary advance in observational capabilities offered by SDO's AIA offers new views of solar flares and eruptions. The high cadence and spatial resolution, the full-Sun coverage, and the variety of thermal responses of the AIA channels from thousands to millions of degrees enable the study the source regions of solar explosions, as well as the responses of the solar corona from their immediate vicinity to regions over a solar radius away. These observations emphasize the importance of magnetic connectivity and topology, the frequent occurrence of fast wave-like perturbations, and the contrasts between impulsive compact X-ray-bright flares and long-duration EUV-bright phenomena.

  3. A large-scale dataset of solar event reports from automated feature recognition modules

    NASA Astrophysics Data System (ADS)

    Schuh, Michael A.; Angryk, Rafal A.; Martens, Petrus C.

    2016-05-01

    The massive repository of images of the Sun captured by the Solar Dynamics Observatory (SDO) mission has ushered in the era of Big Data for Solar Physics. In this work, we investigate the entire public collection of events reported to the Heliophysics Event Knowledgebase (HEK) from automated solar feature recognition modules operated by the SDO Feature Finding Team (FFT). With the SDO mission recently surpassing five years of operations, and over 280,000 event reports for seven types of solar phenomena, we present the broadest and most comprehensive large-scale dataset of the SDO FFT modules to date. We also present numerous statistics on these modules, providing valuable contextual information for better understanding and validating of the individual event reports and the entire dataset as a whole. After extensive data cleaning through exploratory data analysis, we highlight several opportunities for knowledge discovery from data (KDD). Through these important prerequisite analyses presented here, the results of KDD from Solar Big Data will be overall more reliable and better understood. As the SDO mission remains operational over the coming years, these datasets will continue to grow in size and value. Future versions of this dataset will be analyzed in the general framework established in this work and maintained publicly online for easy access by the community.

  4. Global Energetics of Solar Flares. VI. Refined Energetics of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.

    2017-09-01

    In this study, we refine the coronal mass ejection (CME) model that was presented in an earlier study of the global energetics of solar flares and associated CMEs and apply it to all (860) GOES M- and X-class flare events observed during the first seven years (2010-2016) of the Solar Dynamics Observatory (SDO) mission. The model refinements include (1) the CME geometry in terms of a 3D volume undergoing self-similar adiabatic expansion, (2) the solar gravitational deceleration during the propagation of the CME, which discriminates between eruptive and confined CMEs, (3) a self-consistent relationship between the CME center-of-mass motion detected during EUV dimming and the leading-edge motion observed in white-light coronagraphs, (4) the equipartition of the CME’s kinetic and thermal energies, and (5) the Rosner-Tucker-Vaiana scaling law. The refined CME model is entirely based on EUV-dimming observations (using Atmospheric Imager Assembly (AIA)/SDO data) and complements the traditional white-light scattering model (using Large-Angle and Spectrometric Coronagraph Experiment (LASCO)/Solar and Heliospheric Observatory data), and both models are independently capable of determining fundamental CME parameters. Comparing the two methods, we find that (1) LASCO is less sensitive than AIA in detecting CMEs (in 24% of the cases), (2) CME masses below {m}{cme}≲ {10}14 g are underestimated by LASCO, (3) AIA and LASCO masses, speeds, and energies agree closely in the statistical mean after the elimination of outliers, and (4) the CME parameters speed v, emission measure-weighted flare peak temperature T e , and length scale L are consistent with the following scaling laws: v\\propto {T}e1/2, v\\propto {({m}{cme})}1/4, and {m}{cme}\\propto {L}2.

  5. Earth Eclipses the Sun

    NASA Image and Video Library

    2017-12-08

    Twice a year, NASA’s Solar Dynamics Observatory, or SDO, has an eclipse season — a weeks-long period in which Earth blocks SDO’s view of the sun for part of each day. This footage captured by SDO on Feb. 15, 2017, shows one such eclipse. Earth’s edge appears fuzzy, rather than crisp, because the sun’s light is able to shine through Earth’s atmosphere in some places. These images were captured in wavelengths of extreme ultraviolet light, which is typically invisible to our eyes, but is colorized here in gold. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. ON THE CONNECTION BETWEEN PROPAGATING SOLAR CORONAL DISTURBANCES AND CHROMOSPHERIC FOOTPOINTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryans, P.; McIntosh, S. W.; Moortel, I. De

    2016-09-20

    The Interface Region Imaging Spectrograph ( IRIS ) provides an unparalleled opportunity to explore the (thermal) interface between the chromosphere, transition region, and the coronal plasma observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory ( SDO ). The SDO /AIA observations of coronal loop footpoints show strong recurring upward propagating signals—“propagating coronal disturbances” (PCDs) with apparent speeds of the order of 100–120 km s{sup −1}. That signal has a clear signature in the slit-jaw images of IRIS in addition to identifiable spectral signatures and diagnostics in the Mg iih (2803 Å) line. In analyzing the Mgmore » iih line, we are able to observe the presence of magnetoacoustic shock waves that are also present in the vicinity of the coronal loop footpoints. We see there is enough of a correspondence between the shock propagation in Mg iih, the evolution of the Si iv line profiles, and the PCD evolution to indicate that these waves are an important ingredient for PCDs. In addition, the strong flows in the jet-like features in the IRIS Si iv slit-jaw images are also associated with PCDs, such that waves and flows both appear to be contributing to the signals observed at the footpoints of PCDs.« less

  7. Mini-filament Eruptions Triggering Confined Solar Flares Observed by ONSET and SDO

    NASA Astrophysics Data System (ADS)

    Yang, Shuhong; Zhang, Jun

    2018-06-01

    Using the observations from the Optical and Near-infrared Solar Eruption Tracer (ONSET) and the Solar Dynamics Observatory (SDO), we study an M5.7 flare in AR 11476 on 2012 May 10 and a micro-flare in the quiet Sun on 2017 March 23. Before the onset of each flare, there is a reverse S-shaped filament above the polarity inversion line, then the filaments become unstable and begin to rise. The rising filaments gain the upper hand over the tension force of the dome-like overlying loops and thus successfully erupt outward. The footpoints of the reconnecting overlying loops successively brighten and are observed as two flare ribbons, while the newly formed low-lying loops appear as post-flare loops. These eruptions are similar to the classical model of successful filament eruptions associated with coronal mass ejections (CMEs). However, the erupting filaments in this study move along large-scale lines and eventually reach the remote solar surface; i.e., no filament material is ejected into the interplanetary space. Thus, both the flares are confined. These results reveal that some successful filament eruptions can trigger confined flares. Our observations also imply that this kind of filament eruption may be ubiquitous on the Sun, from active regions (ARs) with large flares to the quiet Sun with micro-flares.

  8. A large-scale solar dynamics observatory image dataset for computer vision applications.

    PubMed

    Kucuk, Ahmet; Banda, Juan M; Angryk, Rafal A

    2017-01-01

    The National Aeronautics Space Agency (NASA) Solar Dynamics Observatory (SDO) mission has given us unprecedented insight into the Sun's activity. By capturing approximately 70,000 images a day, this mission has created one of the richest and biggest repositories of solar image data available to mankind. With such massive amounts of information, researchers have been able to produce great advances in detecting solar events. In this resource, we compile SDO solar data into a single repository in order to provide the computer vision community with a standardized and curated large-scale dataset of several hundred thousand solar events found on high resolution solar images. This publicly available resource, along with the generation source code, will accelerate computer vision research on NASA's solar image data by reducing the amount of time spent performing data acquisition and curation from the multiple sources we have compiled. By improving the quality of the data with thorough curation, we anticipate a wider adoption and interest from the computer vision to the solar physics community.

  9. Flare Seismology from SDO Observations

    NASA Astrophysics Data System (ADS)

    Lindsey, Charles; Martinez Oliveros, Juan Carlos; Hudson, Hugh

    2011-10-01

    Some flares release intense seismic transients into the solar interior. These transients are the sole instance we know of in which the Sun's corona exerts a conspicuous influence on the solar interior through flares. The desire to understand this phenomenon has led to ambitious efforts to model the mechanisms by which energy stored in coronal magnetic fields drives acoustic waves that penetrate deep into the Sun's interior. These mechanisms potentially involve the hydrodynamic response of the chromosphere to thick-target heating by high-energy particles, radiative exchange in the chromosphere and photosphere, and Lorentz-force transients to account for acoustic energies estimated up to at 5X10^27 erg and momenta of order 6X10^19 dyne sec. An understanding of these components of flare mechanics promises more than a powerful diagnostic for local helioseismology. It could give us fundamental new insight into flare mechanics themselves. The key is appropriate observations to match the models. Helioseismic observations have identified the compact sources of transient seismic emission at the foot points of flares. The Solar Dynamics Observatory is now giving us high quality continuum-brightness and Doppler observations of acoustically active flares from HMI concurrent with high-resolution EUV observations from AIA. Supported by HXR observations from RHESSI and a broad variety of other observational resources, the SDO promises a leading role in flare research in solar cycle 24.

  10. Exploration Station 2010 Brings Science to the Public

    NASA Astrophysics Data System (ADS)

    Wawro, Martha; Asher, Pranoti

    2011-04-01

    Exploration Station is a public outreach event held prior to the AGU Fall Meeting each year and is a joint venture between AGU and NASA's Solar Dynamics Observatory (SDO). The event features hands-on science activities for the public. This year's event was held in conjunction with the AGU public lecture given by SDO lead project scientist, Dean Pesnell. Many members of the general public attended, including families with children. They were joined by many AGU members, who also enjoyed the exhibits and explored the possible education and outreach activities available within the AGU community. Educators from across AGU were involved, but space physics and planetary sciences were especially well represented.

  11. Using Solar Dynamics Observatory Data in the Classroom to Do Real Science -- A Community College Astronomy Laboratory Investigation

    NASA Astrophysics Data System (ADS)

    Scherrer, Deborah K.; Hildreth, S.; Lee, S.; Dave, T.; Scherrer, P. H.

    2013-07-01

    A partnership between Stanford University and Chabot Community College (Hayward, CA) has developed a series of laboratory exercises using SDO (AIA, HMI) data, targeted for community college students in an introductory astronomy lab class. The labs lead students to explore what SDO can do via online resources and videos. Students investigate their chosen solar events, generate their own online videos, prepare their own hypotheses relating to the events, and explore outcomes. Final assessment should be completed by the end of summer 2013. Should the labs prove valuable, they may be adapted for high school use.

  12. High precision active nutation control for a flexible momentum biased spacecraft

    NASA Technical Reports Server (NTRS)

    Laskin, R. A.; Kopf, E. H.

    1984-01-01

    The controller design for the Solar Dynamics Observatory (SDO) is presented. SDO is a momentum biased spacecraft with three flexible appendages. Its primary scientific instrument, the solar oscillations imager (SOI), is rigidly attached to the spacecraft bus and has arc-second pointing requirements. Meeting these requirements necessitates the use of an active nutation controller (ANC) which is here mechanized with a small reaction wheel oriented along a bus transverse axis. The ANC does its job by orchestrating the transfer of angular momentum out of the bus transverse axes and into the momentum wheel. A simulation study verifies that the controller provides quick, stable, and accurate response.

  13. The Next Generation of Chromospheric Measurements

    NASA Astrophysics Data System (ADS)

    Tarbell, T. D.

    2005-05-01

    I discuss the new measurements which we know will happen, from missions or observatories which are being developed now, as well as the measurements which should happen for further progress. The future is promising, with new missions such as Solar-B, SDO, and SunRise, and new or upgraded observatories, such as SVST, DOT, GREGOR, ATST, and FASR. I also point out significant needs for the future, such as detailed chromospheric spectroscopy of the type which would have been provided by NEXUS or similar instruments.

  14. Solar Dynamics Observatory (SDO) HGAS Induced Jitter

    NASA Technical Reports Server (NTRS)

    Liu, Alice; Blaurock, Carl; Liu, Kuo-Chia; Mule, Peter

    2008-01-01

    This paper presents the results of a comprehensive assessment of High Gain Antenna System induced jitter on the Solar Dynamics Observatory. The jitter prediction is created using a coupled model of the structural dynamics, optical response, control systems, and stepper motor actuator electromechanical dynamics. The paper gives an overview of the model components, presents the verification processes used to evaluate the models, describes validation and calibration tests and model-to-measurement comparison results, and presents the jitter analysis methodology and results.

  15. Understanding Solar Eruptions with SDO/HMI Measuring Photospheric Flows, Testing Models, and Steps Towards Forecasting Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Schuck, Peter W.; Linton, M.; Muglach, K.; Hoeksema, T.

    2010-01-01

    The Solar Dynamics Observatory (SDO) is carrying the first full-disk imaging vector magnetograph, the Helioseismic and Magnetic Imager (HMI), into an inclined geosynchronous orbit. This magnetograph will provide nearly continuous measurements of photospheric vector magnetic fields at cadences of 90 seconds to 12 minutes with 1" resolution, precise pointing, and unfettered by atmospheric seeing. The enormous data stream of 1.5 Terabytes per day from SAO will provide an unprecedented opportunity to understand the mysteries of solar eruptions. These ground-breaking observations will permit the application of a new technique, the differential affine velocity estimator for vector magnetograms (DAVE4VM), to measure photospheric plasma flows in active regions. These measurements will permit, for the first time, accurate assessments of the coronal free energy available for driving CMEs and flares. The details of photospheric plasma flows, particularly along magnetic neutral-lines, are critical to testing models for initiating coronal mass ejections (CMEs) and flares. Assimilating flows and fields into state-of-the art 3D MHD simulations that model the highly stratified solar atmosphere from the convection zone to the corona represents the next step towards achieving NASA's Living with a Star forecasting goals of predicting "when a solar eruption leading to a CME will occur." Our presentation will describe these major science and predictive advances that will be delivered by SDO/HMI.

  16. JPEG2000 Image Compression on Solar EUV Images

    NASA Astrophysics Data System (ADS)

    Fischer, Catherine E.; Müller, Daniel; De Moortel, Ineke

    2017-01-01

    For future solar missions as well as ground-based telescopes, efficient ways to return and process data have become increasingly important. Solar Orbiter, which is the next ESA/NASA mission to explore the Sun and the heliosphere, is a deep-space mission, which implies a limited telemetry rate that makes efficient onboard data compression a necessity to achieve the mission science goals. Missions like the Solar Dynamics Observatory (SDO) and future ground-based telescopes such as the Daniel K. Inouye Solar Telescope, on the other hand, face the challenge of making petabyte-sized solar data archives accessible to the solar community. New image compression standards address these challenges by implementing efficient and flexible compression algorithms that can be tailored to user requirements. We analyse solar images from the Atmospheric Imaging Assembly (AIA) instrument onboard SDO to study the effect of lossy JPEG2000 (from the Joint Photographic Experts Group 2000) image compression at different bitrates. To assess the quality of compressed images, we use the mean structural similarity (MSSIM) index as well as the widely used peak signal-to-noise ratio (PSNR) as metrics and compare the two in the context of solar EUV images. In addition, we perform tests to validate the scientific use of the lossily compressed images by analysing examples of an on-disc and off-limb coronal-loop oscillation time-series observed by AIA/SDO.

  17. First Simultaneous Views of the Axial and Lateral Perspectives of a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Cabello, I.; Cremades, H.; Balmaceda, L.; Dohmen, I.

    2016-08-01

    The different appearances exhibited by coronal mass ejections (CMEs) are believed to be in part the result of different orientations of their main axis of symmetry, consistent with a flux-rope configuration. There are observational reports of CMEs seen along their main axis (axial perspective) and perpendicular to it (lateral perspective), but no simultaneous observations of both perspectives from the same CME have been reported to date. The stereoscopic views of the telescopes onboard the Solar-Terrestrial Relations Observatory (STEREO) twin spacecraft, in combination with the views from the Solar and Heliospheric Observatory (SOHO) and the Solar Dynamics Observatory (SDO), allow us to study the axial and lateral perspectives of a CME simultaneously for the first time. In addition, this study shows that the lateral angular extent ( L) increases linearly with time, while the angular extent of the axial perspective ( D) presents this behavior only from the low corona to {≈} 5 R_{⊙}, where it slows down. The ratio L/D ≈ 1.6 obtained here as the average over several points in time is consistent with measurements of L and D previously performed on events exhibiting only one of the perspectives from the single vantage point provided by SOHO.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarzadeh, S.; Rutten, R. J.; Szydlarski, M.

    A dense forest of slender bright fibrils near a small solar active region is seen in high-quality narrowband Ca ii H images from the SuFI instrument onboard the Sunrise balloon-borne solar observatory. The orientation of these slender Ca ii H fibrils (SCF) overlaps with the magnetic field configuration in the low solar chromosphere derived by magnetostatic extrapolation of the photospheric field observed with Sunrise/IMaX and SDO/HMI. In addition, many observed SCFs are qualitatively aligned with small-scale loops computed from a novel inversion approach based on best-fit numerical MHD simulation. Such loops are organized in canopy-like arches over quiet areas thatmore » differ in height depending on the field strength near their roots.« less

  19. NASA Adds Leap Second to Master Clock

    NASA Image and Video Library

    2017-12-08

    On Dec. 31, 2016, official clocks around the world will add a leap second just before midnight Coordinated Universal Time — which corresponds to 6:59:59 p.m. EST. NASA missions will also have to make the switch, including the Solar Dynamics Observatory, or SDO, which watches the sun 24/7. Clocks do this to keep in sync with Earth's rotation, which gradually slows down over time. When the dinosaurs roamed Earth, for example, our globe took only 23 hours to make a complete rotation. In space, millisecond accuracy is crucial to understanding how satellites orbit. "SDO moves about 1.9 miles every second," said Dean Pesnell, the project scientist for SDO at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "So does every other object in orbit near SDO. We all have to use the same time to make sure our collision avoidance programs are accurate. So we all add a leap second to the end of 2016, delaying 2017 by one second." The leap second is also key to making sure that SDO is in sync with the Coordinated Universal Time, or UTC, used to label each of its images. SDO has a clock that counts the number of seconds since the beginning of the mission. To convert that count to UTC requires knowing just how many leap seconds have been added to Earth-bound clocks since the mission started. When the spacecraft wants to provide a time in UTC, it calls a software module that takes into consideration both the mission's second count and the number of leap seconds — and then returns a time in UTC.

  20. On the Performance of Multi-Instrument Solar Flare Observations During Solar Cycle 24

    NASA Astrophysics Data System (ADS)

    Milligan, Ryan O.; Ireland, Jack

    2018-02-01

    The current fleet of space-based solar observatories offers us a wealth of opportunities to study solar flares over a range of wavelengths. Significant advances in our understanding of flare physics often come from coordinated observations between multiple instruments. Consequently, considerable efforts have been, and continue to be, made to coordinate observations among instruments ( e.g. through the Max Millennium Program of Solar Flare Research). However, there has been no study to date that quantifies how many flares have been observed by combinations of various instruments. Here we describe a technique that retrospectively searches archival databases for flares jointly observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), Solar Dynamics Observatory (SDO)/ EUV Variability Experiment (EVE - Multiple EUV Grating Spectrograph (MEGS)-A and -B, Hinode/( EUV Imaging Spectrometer, Solar Optical Telescope, and X-Ray Telescope), and Interface Region Imaging Spectrograph (IRIS). Out of the 6953 flares of GOES magnitude C1 or greater that we consider over the 6.5 years after the launch of SDO, 40 have been observed by 6 or more instruments simultaneously. Using each instrument's individual rate of success in observing flares, we show that the numbers of flares co-observed by 3 or more instruments are higher than the number expected under the assumption that the instruments operated independently of one another. In particular, the number of flares observed by larger numbers of instruments is much higher than expected. Our study illustrates that these missions often acted in cooperation, or at least had aligned goals. We also provide details on an interactive widget ( Solar Flare Finder), now available in SSWIDL, which allows a user to search for flaring events that have been observed by a chosen set of instruments. This provides access to a broader range of events in order to answer specific science questions. The difficulty in scheduling coordinated observations for solar-flare research is discussed with respect to instruments projected to begin operations during Solar Cycle 25, such as the Daniel K. Inouye Solar Telescope, Solar Orbiter, and Parker Solar Probe.

  1. Understanding Measurements Returned by the Helioseismic and Magnetic Imager

    NASA Astrophysics Data System (ADS)

    Cohen, Daniel Parke; Criscuoli, Serena

    2014-06-01

    The Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO) observes the Sun at the FeI 6173 Å line and returns full disk maps of line-of-sight observables including the magnetic field flux, FeI line width, line depth, and continuum intensity. To properly interpret such data it is important to understand any issues with the HMI and the pipeline that produces these observables. At this aim, HMI data were analyzed at both daily intervals for a span of 3 years at disk center in the quiet Sun and hourly intervals for a span of 200 hours around an active region. Systematic effects attributed to issues with instrument adjustments and re-calibrations, variations in the transmission filters and the orbital velocities of the SDO were found while the actual physical evolutions of such observables were difficult to determine. Velocities and magnetic flux measurements are less affected, as the aforementioned effects are partially compensated for by the HMI algorithm; the other observables are instead affected by larger uncertainties. In order to model these uncertainties, the HMI pipeline was tested with synthetic spectra generated through various 1D atmosphere models with radiative transfer code (the RH code). It was found that HMI estimates of line width, line depth, and continuum intensity are highly dependent on the shape of the line, and therefore highly dependent on the line-of-sight angle and the magnetic field associated to the model. The best estimates are found for Quiet regions at disk center, for which the relative differences between theoretical and HMI algorithm values are 6-8% for line width, 10-15% for line depth, and 0.1-0.2% for continuum intensity. In general, the relative difference between theoretical values and HMI estimates increases toward the limb and with the increase of the field; the HMI algorithm seems to fail in regions with fields larger than ~2000 G. This work is carried out through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the NSF REU Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  2. Fast and robust segmentation in the SDO-AIA era

    NASA Astrophysics Data System (ADS)

    Verbeeck, Cis; Delouille, Véronique; Mampaey, Benjamin; Hochedez, Jean-François; Boyes, David; Barra, Vincent

    Solar images from the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Ob-servatory (SDO) will flood the solar physics community with a wealth of information on solar variability, of great importance both in solar physics and in view of Space Weather applica-tions. Obtaining this information, however, requires the ability to automatically process large amounts of data in an objective fashion. In previous work, we have proposed a multi-channel unsupervised spatially-constrained multi-channel fuzzy clustering algorithm (SPoCA) that automatically segments EUV solar images into Active Regions (AR), Coronal Holes (CH), and Quiet Sun (QS). This algorithm will run in near real time on AIA data as part of the SDO Feature Finding Project, a suite of software pipeline modules for automated feature recognition and analysis for the imagery from SDO. After having corrected for the limb brightening effect, SPoCA computes an optimal clustering with respect to the regions of interest using fuzzy logic on a quality criterion to manage the various noises present in the images and the imprecision in the definition of the above regions. Next, the algorithm applies a morphological opening operation, smoothing the cluster edges while preserving their general shape. The process is fast and automatic. A lower size limit is used to distinguish AR from Bright Points. As the algorithm segments the coronal images according to their brightness, it might happen that an AR is detected as several disjoint pieces, if the brightness in between is somewhat lower. Morphological dilation is employed to reconstruct the AR themselves from their constituent pieces. Combining SPoCA's detection of AR, CH, and QS on subsequent images allows automatic tracking and naming of any region of interest. In the SDO software pipeline, SPoCA will auto-matically populate the Heliophysics Events Knowledgebase(HEK) with Active Region events. Further, the algorithm has a huge potential for correct and automatic identification of AR, CH, and QS in any study that aims to address properties of those specific regions in the corona. SPoCA is now ready and waiting to tackle solar cycle 24 using SDO data. While we presently apply SPoCA to EUV data, the method is generic enough to allow the introduction of other channels or data, e.g., Differential Emission Measure (DEM) maps. Because of the unprecedented challenges brought up by the quantity of SDO data, European partners have gathered within an ISSI team on `Mining and Exploiting the NASA Solar Dynam-ics Observatory data in Europe' (a.k.a. Soldyneuro). Its aim is to provide automated feature recognition algorithms for scanning the SDO archive, as well as conducting scientific studies that combine different algorithm's outputs. Within the Soldyneuro project, we will use data from the EUV Variability Experiment (EVE) spectrometer in order to estimate the full Sun DEM. This DEM will next be used to estimate the total flux from AIA images so as to provide a validation for the calibration of AIA.

  3. On-orbit Performance and Calibration of the HMI Instrument

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. Todd; Bush, Rock; HMI Calibration Team

    2016-10-01

    The Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) has observed the Sun almost continuously since the completion of commissioning in May 2010, returning more than 100,000,000 filtergrams from geosynchronous orbit. Diligent and exhaustive monitoring of the instrument's performance ensures that HMI functions properly and allows proper calibration of the full-disk images and processing of the HMI observables. We constantly monitor trends in temperature, pointing, mechanism behavior, and software errors. Cosmic ray contamination is detected and bad pixels are removed from each image. Routine calibration sequences and occasional special observing programs are used to measure the instrument focus, distortion, scattered light, filter profiles, throughput, and detector characteristics. That information is used to optimize instrument performance and adjust calibration of filtergrams and observables.

  4. Alfvén Wave Heating Model of an Active Region and Comparisons with the EIS Observations

    NASA Astrophysics Data System (ADS)

    Lawless, A. P.; Asgari-Targhi, M.

    2013-12-01

    We study the generation and dissipation of Alfvén waves in open and closed field lines using the images from the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) (van Ballegouijen et al. 2011; Asgari-Targhi & van Ballegouijen 2012; Asgari et al. 2013). The goal is to search for observational evidence of Alfvén waves in the solar corona and to understand their role in coronal heating. We focus on one particular active region on the 10th of December 2007. Using the MDI magnetogram and the potential field modeling of this region, we create three-dimensional MHD models for several open and closed field lines in different locations in the active region. For each model, we compute the temperature, pressure, magnetic field strength, average heating rate, and other parameters along the loop. We then compare these results with the EIS observations. This research is supported by the NSF grant for the Solar physics REU Program at the Smithsonian Astrophysical Observatory (AGS-1263241) and contract SP02H1701R from Lockheed-Martin to SAO.

  5. On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. T.; Baldner, C. S.; Bush, R. I.; Schou, J.; Scherrer, P. H.

    2018-03-01

    The Helioseismic and Magnetic Imager (HMI) instrument is a major component of NASA's Solar Dynamics Observatory (SDO) spacecraft. Since commencement of full regular science operations on 1 May 2010, HMI has operated with remarkable continuity, e.g. during the more than five years of the SDO prime mission that ended 30 September 2015, HMI collected 98.4% of all possible 45-second velocity maps; minimizing gaps in these full-disk Dopplergrams is crucial for helioseismology. HMI velocity, intensity, and magnetic-field measurements are used in numerous investigations, so understanding the quality of the data is important. This article describes the calibration measurements used to track the performance of the HMI instrument, and it details trends in important instrument parameters during the prime mission. Regular calibration sequences provide information used to improve and update the calibration of HMI data. The set-point temperature of the instrument front window and optical bench is adjusted regularly to maintain instrument focus, and changes in the temperature-control scheme have been made to improve stability in the observable quantities. The exposure time has been changed to compensate for a 20% decrease in instrument throughput. Measurements of the performance of the shutter and tuning mechanisms show that they are aging as expected and continue to perform according to specification. Parameters of the tunable optical-filter elements are regularly adjusted to account for drifts in the central wavelength. Frequent measurements of changing CCD-camera characteristics, such as gain and flat field, are used to calibrate the observations. Infrequent expected events such as eclipses, transits, and spacecraft off-points interrupt regular instrument operations and provide the opportunity to perform additional calibration. Onboard instrument anomalies are rare and seem to occur quite uniformly in time. The instrument continues to perform very well.

  6. Reconnection on the Sun

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    Because the Sun is so close, it makes an excellent laboratory to study processes we cant examinein distant stars. One openquestion is that of how solar magnetic fields rearrange themselves, producing the tremendous releases of energy we observe as solar flares and coronal mass ejections (CMEs).What is Magnetic Reconnection?Magnetic reconnection occurs when a magnetic field rearranges itself to move to a lower-energy state. As field lines of opposite polarity reconnect, magnetic energy is suddenly converted into thermal and kinetic energy.This processis believed to be behind the sudden releases of energy from the solar surface in the form of solar flares and CMEs. But there are many different models for how magnetic reconnection could occur in the magnetic field at the Suns surface, and we arent sure which one of these reconnection types is responsible for the events we see.Recently, however, several studies have been published presenting some of the first observational support of specific reconnection models. Taken together, these observations suggest that there are likely several different types of reconnection happening on the solar surface. Heres a closer look at two of these recent publications:A pre-eruption SDO image of a flaring region (b) looks remarkably similar to a 3D cartoon for typical breakout configuration (a). Click for a closer look! [Adapted from Chen et al. 2016]Study 1:Magnetic BreakoutLed by Yao Chen (Shandong University in China), a team of scientists has presented observations made by the Solar Dynamics Observatory (SDO) of a flare and CME event that appears to have been caused by magnetic breakout.In the magnetic breakout model, a series of loops in the Suns lower corona are confined by a surrounding larger loop structure called an arcade higher in the corona. As the lower loops push upward, reconnection occurs in the upper corona, removing the overlying, confining arcade. Without that extra confinement, the lower coronal loops expand upward, erupting from the solar surface.Snapshots from the SDO side view (left and center) and STEREO overhead view (right). The three rows show the time evolution of the double-loop structure after the initial flare. In the STEREO view, you can see the central footpoints of the loops slip to the left. [Gou et al. 2016]In the SDO observations presented by Chen and collaborators, the pre-flare/CME structures look remarkably like the structures predicted in the breakout model. Sequential heating of loops can be seen as the breakout reconnection starts, followed by anenormous flare and CME as the lower loops erupt outward.Study 2: Slipping ReconnectionA team of scientists from the University of Science and Technology of China, led by Tingyu Gou and Rui Liu, have presented the first stereoscopic observation of slipping reconnection in the Sun, made by the two-spacecraft Solar Terrestrial Relations Observatory (STEREO).In slipping reconnection, magnetic field lines continuously exchange connectivities with their neighbors, causing them to slip through plasma. Observations by STEREO of a flaring double-loop system revealed that the central footpoints the endpoints where the loops are anchored to the solar surface slipped sideways after a flare.The authors model of the double-loop structure at two different times, during which the central footpoint slips from point C to D. Projections onto the XY and YZ planes show STEREOs and SDOs views, respectively. [Gou et al. 2016]The authors reconstructed a 3D model of the loop system using the overhead observations from STEREO and a simultaneous side view from SDO. They speculate that the slipping reconnection was likely triggered by the initial solar flare.Double BonusCheck out the videos belowto watch these processes happen!This first video is from Chen et al. 2016, and shows the SDO view of coronal loops in three wavelengths. If you watch carefully, you can see the sequential brightening of loops signs of the breakout reconnection before the flare and CME.http://aasnova.org/wp-content/uploads/2016/05/breakout.mp4This second video is from Gou et al. 2016, and shows the SDO side view (left and center panels) and STEREO top view (right panel) of a flare and the slipping reconnection that occurred after. Keep your eye on the STEREO view between 0:02 and 0:04 to watch the central footpoint slide left.http://aasnova.org/wp-content/uploads/2016/05/slipping.mp4CitationYao Chen et al 2016 ApJ 820 L37. doi:10.3847/2041-8205/820/2/L37Tingyu Gou et al 2016 ApJ 821 L28. doi:10.3847/2041-8205/821/2/L28

  7. NASA's SDO Sees Solar Flares

    NASA Image and Video Library

    2014-06-10

    A solar flare bursts off the left limb of the sun in this image captured by NASA's Solar Dynamics Observatory on June 10, 2014, at 7:41 a.m. EDT. This is classified as an X2.2 flare, shown in a blend of two wavelengths of light: 171 and 131 angstroms, colorized in gold and red, respectively. Credit: NASA/SDO/Goddard/Wiessinger NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. NASA's SDO Sees Solar Flares

    NASA Image and Video Library

    2017-12-08

    A second X-class flare of June 10, 2014, appears as a bright flash on the left side of this image from NASA’s Solar Dynamics Observatory. This image shows light in the 193-angstrom wavelength, which is typically colorized in yellow. It was captured at 8:55 a.m EDT, just after the flare peaked. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. KSC-2009-4064

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., lower the high-gain antenna on the Solar Dynamics Observatory to gain access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  10. KSC-2009-4063

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., begin lowering the high-gain antenna on the Solar Dynamics Observatory to gain access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  11. KSC-2009-4067

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., the lowered high-gain antenna on the Solar Dynamics Observatory will allow engineers access to the battery compartment in order to install the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  12. KSC-2009-4065

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., lower the high-gain antenna on the Solar Dynamics Observatory to gain access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  13. On-Orbit Solar Dynamics Observatory (SDO) Star Tracker Warm Pixel Analysis

    NASA Technical Reports Server (NTRS)

    Felikson, Denis; Ekinci, Matthew; Hashmall, Joseph A.; Vess, Melissa

    2011-01-01

    This paper describes the process of identification and analysis of warm pixels in two autonomous star trackers on the Solar Dynamics Observatory (SDO) mission. A brief description of the mission orbit and attitude regimes is discussed and pertinent star tracker hardware specifications are given. Warm pixels are defined and the Quality Index parameter is introduced, which can be explained qualitatively as a manifestation of a possible warm pixel event. A description of the algorithm used to identify warm pixel candidates is given. Finally, analysis of dumps of on-orbit star tracker charge coupled devices (CCD) images is presented and an operational plan going forward is discussed. SDO, launched on February 11, 2010, is operated from the NASA Goddard Space Flight Center (GSFC). SDO is in a geosynchronous orbit with a 28.5 inclination. The nominal mission attitude points the spacecraft X-axis at the Sun, with the spacecraft Z-axis roughly aligned with the Solar North Pole. The spacecraft Y-axis completes the triad. In attitude, SDO moves approximately 0.04 per hour, mostly about the spacecraft Z-axis. The SDO star trackers, manufactured by Galileo Avionica, project the images of stars in their 16.4deg x 16.4deg fields-of-view onto CCD detectors consisting of 512 x 512 pixels. The trackers autonomously identify the star patterns and provide an attitude estimate. Each unit is able to track up to 9 stars. Additionally, each tracker calculates a parameter called the Quality Index, which is a measure of the quality of the attitude solution. Each pixel in the CCD measures the intensity of light and a warns pixel is defined as having a measurement consistently and significantly higher than the mean background intensity level. A warns pixel should also have lower intensity than a pixel containing a star image and will not move across the field of view as the attitude changes (as would a dim star image). It should be noted that the maximum error introduced in the star tracker attitude solution during suspected warm pixel corruptions is within the specified 36 attitude error budget requirement of [35, 70, 70] arcseconds. Thus, the star trackers provided attitude accuracy within the specification for SDO. The star tracker images are intentionally defocused so each star image is detected in more than one CCD pixel. The position of each star is calculated as an intensity-weighted average of the illuminated pixels. The exact method of finding the positions is proprietary to the tracker manufacturer. When a warm pixel happens to be in the vicinity of a star, it can corrupt the calculation of the position of that particular star, thereby corrupting the estimate of the attitude.

  14. Spaceflight Ka-Band High-Rate Radiation-Hard Modulator

    NASA Technical Reports Server (NTRS)

    Jaso, Jeffery M.

    2011-01-01

    A document discusses the creation of a Ka-band modulator developed specifically for the NASA/GSFC Solar Dynamics Observatory (SDO). This flight design consists of a high-bandwidth, Quadriphase Shift Keying (QPSK) vector modulator with radiation-hardened, high-rate driver circuitry that receives I and Q channel data. The radiationhard design enables SDO fs Ka-band communications downlink system to transmit 130 Mbps (300 Msps after data encoding) of science instrument data to the ground system continuously throughout the mission fs minimum life of five years. The low error vector magnitude (EVM) of the modulator lowers the implementation loss of the transmitter in which it is used, thereby increasing the overall communication system link margin. The modulator comprises a component within the SDO transmitter, and meets the following specifications over a 0 to 40 C operational temperature range: QPSK/OQPSK modulator, 300-Msps symbol rate, 26.5-GHz center frequency, error vector magnitude less than or equal to 10 percent rms, and compliance with the NTIA (National Telecommunications and Information Administration) spectral mask.

  15. Simultaneous Observation of Solar Neutrons at the ISS and High Mountain Observatories as Evidence for two Different Acceleration Mechanisms Associated to a Flare on July 8,2014

    NASA Astrophysics Data System (ADS)

    Valdes-Galicia, J. F.; González, L. X.; Watanabe, K.; Muraki, Y.; Matsubara, Y.; Lopez, D.; Koga, K.; Kakimoto, F.; Sako, T.; Salinas, J., Sr.; Ticona, R.; Shibata, S.; Masuda, S.; Tunesada, S.

    2016-12-01

    An M 6.5-class flare was observed at N12E56 of the solar surface at 16:06 UT on July 8, 2014. In association with the flare, two neutron detectors located at high mountains: Mt. Sierra Negra in Mexico (4600m asl) and Mt. Chacaltaya in Bolivia (5200m asl) recorded two neutron pulses, separated approximately 30 minutes. Enhancements were also observed in the neutral channel detector onboard the International Space Station. We analyzed these data combined with solar images from the Atompspheric ImagingAssembly (AIA) onboard the SolarDynamicalObservatory (SDO). From our analysis we conclude that the production mechanism of neutrons cannot be explained by a single model: one of the enhancements may be explained by an electric field generated by the collision of magnetic loops, and the other by a shock acceleration mechanism at the front side of the observed CME. To the best of our knowledge, this is the first time that evidence is found for two different mechanisms present in a solar eruption leading to energetic solar neutron production.

  16. Analysis of an Anemone-Type Eruption in an On-Disk Coronal Hole

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi; Tennant, Allyn; Alexander, Caroline; Sterling, Alphonse; Moore, Ronald; Woolley, Robert

    2016-01-01

    We report on an eruption seen in a very small coronal hole (about 120 arcseconds across), beginning at approximately 19:00 Universal Time on March 3, 2016. The event was initially observed by an amateur astronomer (RW) in an H-alpha movie from the Global Oscillation Network Group (GONG); the eruption attracted the attention of the observer because there was no nearby active region. To examine the region in detail, we use data from the Solar Dynamics Observatory (SDO), provided by the Atmospheric Imaging Assembly (AIA) in wavelengths 193 angstroms, 304 angstroms, and 94 angstroms, and the Helioseismic and Magnetic Imager (HMI). Data analysis and calibration activities such as scaling, rotation so that north is up, and removal of solar rotation are accomplished with SunPy. The eruption in low-cadence HMI data begins with the appearance of a bipole in the location of the coronal hole, followed by (apparent) expansion outwards when the intensity of the AIA wavelengths brighten; as the event proceeds, the coronal hole disappears. From high-cadence data, we will present results on the magnetic evolution of this structure, how it is related to intensity brightenings seen in the various SDO/AIA wavelengths, and how this event compares with the standard-anemone picture.

  17. NASA's SDO Observes an X-class Solar Flare

    NASA Image and Video Library

    2017-12-08

    The sun emitted a significant solar flare, peaking at 1:01 a.m. EDT on Oct. 19, 2014. NASA's Solar Dynamics Observatory, which is always observing the sun, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an X1.1-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Analysis of an Anemone-Type Eruption in an On-Disk Coronal Hole

    NASA Astrophysics Data System (ADS)

    Adams, Mitzi; Tennant, Allyn F.; Alexander, Caroline E.; Sterling, Alphonse C.; Moore, Ronald L.; Woolley, Robert

    2016-05-01

    We report on an eruption seen in a very small coronal hole (about 120'' across), beginning at approximately 19:00 UT on March 3, 2016. The event was initially observed by an amateur astronomer (RW) in an H-alpha movie from the Global Oscillation Network Group (GONG); the eruption attracted the attention of the observer because there was no nearby active region. To examine the region in detail, we use data from the Solar Dynamics Observatory (SDO), provided by the Atmospheric Imaging Assembly (AIA) in wavelengths 193 Å, 304 Å, and 94 Å, and the Helioseismic and Magnetic Imager (HMI). Data analysis and calibration activities such as scaling, rotation so that north is up, and removal of solar rotation are accomplished with SunPy. The eruption in low-cadence HMI data begins with the appearance of a bipole in the location of the coronal hole, followed by (apparent) expansion outwards when the intensity of the AIA wavelengths brighten; as the event proceeds, the coronal hole disappears. From high-cadence data, we will present results on the magnetic evolution of this structure, how it is related to intensity brightenings seen in the various SDO/AIA wavelengths, and how this event compares with the standard-anemone picture.

  19. Mid-level Solar Flare

    NASA Image and Video Library

    2017-12-08

    SDO View of M7.3 Class Solar Flare on Oct. 2, 2014 NASA's Solar Dynamics Observatory captured this image of an M7.3 class solar flare on Oct. 2, 2014. The solar flare is the bright flash of light on the right limb of the sun. A burst of solar material erupting out into space can be seen just below it. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. KSC-2009-4060

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., begin work to lower the high-gain antenna on the Solar Dynamics Observatory. Lowering the antenna will provide access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  1. KSC-2009-4059

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – The Solar Dynamics Observatory sits on a stand at Astrotech Space Operations in Titusville, Fla. Engineers will lower the high-gain antenna to access the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  2. KSC-2009-4062

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., work to lower the high-gain antenna on the Solar Dynamics Observatory. Lowering the antenna will provide access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  3. KSC-2009-4061

    NASA Image and Video Library

    2009-07-15

    CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., begin work to lower the high-gain antenna on the Solar Dynamics Observatory. Lowering the antenna will provide access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  4. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. A SOLAR CORONAL JET EVENT TRIGGERS A CORONAL MASS EJECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiajia; Wang, Yuming; Shen, Chenglong

    2015-11-10

    In this paper, we present multi-point, multi-wavelength observations and analysis of a solar coronal jet and coronal mass ejection (CME) event. Employing the GCS model, we obtained the real (three-dimensional) heliocentric distance and direction of the CME and found it to propagate at a high speed of over 1000 km s{sup −1}. The jet erupted before the CME and shared the same source region. The temporal and spacial relationship between these two events lead us to the possibility that the jet triggered the CME and became its core. This scenario hold the promise of enriching our understanding of the triggeringmore » mechanism of CMEs and their relations to coronal large-scale jets. On the other hand, the magnetic field configuration of the source region observed by the Solar Dynamics Observatory (SDO)/HMI instrument along with the off-limb inverse Y-shaped configuration observed by SDO/AIA in the 171 Å passband provide the first detailed observation of the three-dimensional reconnection process of a large-scale jet as simulated in Pariat et al. The eruption process of the jet highlights the importance of filament-like material during the eruption of not only small-scale X-ray jets, but likely also of large-scale EUV jets. Based on our observations and analysis, we propose the most probable mechanism for the whole event, with a blob structure overlaying the three-dimensional structure of the jet, to describe the interaction between the jet and the CME.« less

  6. NuSTAR Stares at the Sun

    NASA Image and Video Library

    2015-07-08

    Flaring, active regions of our sun are highlighted in this image combining observations from several telescopes. High-energy X-rays from NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) are shown in blue; low-energy X-rays from Japan's Hinode spacecraft are green; and extreme ultraviolet light from NASA's Solar Dynamics Observatory (SDO) is yellow and red. All three telescopes captured their solar images around the same time on April 29, 2015. The NuSTAR image is a mosaic made from combining smaller images. The active regions across the sun's surface contain material heated to several millions of degrees. The blue-white areas showing the NuSTAR data pinpoint the most energetic spots. During the observations, microflares went off, which are smaller versions of the larger flares that also erupt from the sun's surface. The microflares rapidly release energy and heat the material in the active regions. NuSTAR typically stares deeper into the cosmos to observe X-rays from supernovas, black holes and other extreme objects. But it can also look safely at the sun and capture images of its high-energy X-rays with more sensitivity than before. Scientists plan to continue to study the sun with NuSTAR to learn more about microflares, as well as hypothesized nanoflares, which are even smaller. In this image, the NuSTAR data shows X-rays with energies between 2 and 6 kiloelectron volts; the Hinode data, which is from the X-ray Telescope instrument, has energies of 0.2 to 2.4 kiloelectron volts; and the Solar Dynamics Observatory data, taken using the Atmospheric Imaging Assembly instrument, shows extreme ultraviolet light with wavelengths of 171 and 193 Angstroms. Note the green Hinode image frame edge does not extend as far as the SDO ultraviolet image, resulting in the green portion of the image being truncated on the right and left sides. http://photojournal.jpl.nasa.gov/catalog/PIA19821

  7. STRUCTURE AND DYNAMICS OF THE 2012 NOVEMBER 13/14 ECLIPSE WHITE-LIGHT CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasachoff, J. M.; Rušin, V.; Saniga, M.

    2015-02-20

    Continuing our series of observations of coronal motion and dynamics over the solar-activity cycle, we observed from sites in Queensland, Australia, during the 2012 November 13 (UT)/14 (local time) total solar eclipse. The corona took the low-ellipticity shape typical of solar maximum (flattening index ε = 0.01), a change from the composite coronal images we observed and analyzed in this journal and elsewhere for the 2006 and 2008-2010 eclipses. After crossing the northeast Australian coast, the path of totality was over the ocean, so further totality was seen only by shipborne observers. Our results include velocities of a coronal massmore » ejection (CME; during the 36 minutes of passage from the Queensland coast to a ship north of New Zealand, we measured 413 km s{sup –1}) and we analyze its dynamics. We discuss the shapes and positions of several types of coronal features seen on our higher-resolution composite Queensland coronal images, including many helmet streamers, very faint bright and dark loops at the bases of helmet streamers, voids, and radially oriented thin streamers. We compare our eclipse observations with models of the magnetic field, confirming the validity of the predictions, and relate the eclipse phenomenology seen with the near-simultaneous images from NASA's Solar Dynamics Observatory (SDO/AIA), NASA's Extreme Ultraviolet Imager on Solar Terrestrial Relations Observatory, ESA/Royal Observatory of Belgium's Sun Watcher with Active Pixels and Image Processing (SWAP) on PROBA2, and Naval Research Laboratory's Large Angle and Spectrometric Coronagraph Experiment on ESA's Solar and Heliospheric Observatory. For example, the southeastern CME is related to the solar flare whose origin we trace with a SWAP series of images.« less

  8. Spatially resolved observation of the fundamental and second harmonic standing kink modes using SDO/AIA

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M.

    2016-09-01

    Aims: We consider a coronal loop kink oscillation observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) which demonstrates two strong spectral components. The period of the lower frequency component being approximately twice that of the shorter frequency component suggests the presence of harmonics. Methods: We examine the presence of two longitudinal harmonics by investigating the spatial dependence of the loop oscillation. The time-dependent displacement of the loop is measured at 15 locations along the loop axis. For each position the displacement is fitted as the sum of two damped sinusoids, having periods P1 and P2, and a damping time τ. The shorter period component exhibits anti-phase oscillations in the loop legs. Results: We interpret the observation in terms of the first (global or fundamental) and second longitudinal harmonics of the standing kink mode. The strong excitation of the second harmonic appears connected to the preceding coronal mass ejection (CME) which displaced one of the loop legs. The oscillation parameters found are P1 = 5.00±0.62 min, P2 = 2.20±0.23 min, P1/ 2P2 = 1.15±0.22, and τ/P = 3.35 ± 1.45. A movie associated to Fig. 5 is available in electronic form at http://www.aanda.org

  9. The three-dimensional angular widths of CMEs and their relations to the source regions

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Feng, X. S.

    2017-12-01

    The angular width of a coronal mass ejection (CME) is an important factor to determine whether the corresponding interplanetary CME (ICME) and its preceding shock will reach our Earth. However, very few studies are involved to study the decisive factors of the CME's angular width. In this study, we use the three-dimensional (3D) angular width of CMEs obtained from the Graduated Cylindrical Shell (GCS) model based on observations of Solar Terrestrial Relations Observatory (STEREO) to study the relations between the CME's 3D width and characteristics of the CME's source region. We find that for the CMEs produced by active regions (ARs), the CME width has some correlations with the AR's area and flux, but these correlations are not strong. The magnetic flux contained in the CME seems to come from only part of the AR's total flux. For the CMEs produced by flare regions, the correlations between the CME angular width and the flare region's area and flux are strong. The magnetic flux within those CMEs seems to totally (even not enough) come from the flare region. Our findings prefer to support that the CME's 3D angular width can be generally estimated based on observations of Solar Dynamics Observatory (SDO) for its source region instead of the observations from coronagraphs onboard Solar and Heliospheric Observatory (SOHO) and STEREO.

  10. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    A combination of many (but not all) of the datasets which observed this flare. -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. Flux Cancelation: The Key to Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Panesar, Navdeep K.; Sterling, Alphonse; Moore, Ronald; Chakrapani, Prithi; Innes, Davina; Schmit, Don; Tiwari, Sanjiv

    2017-01-01

    Solar coronal jets are magnetically channeled eruptions that occur in all types of solar environments (e.g. active regions, quiet-Sun regions and coronal holes). Recent studies show that coronal jets are driven by the eruption of small-scare filaments (minifilaments). Once the eruption is underway magnetic reconnection evidently makes the jet spire and the bright emission in the jet base. However, the triggering mechanism of these eruptions and the formation mechanism of the pre-jet minifilaments are still open questions. In this talk, mainly using SDO/AIA (Solar Dynamics Observatory / Atmospheric Imaging Assembly) and SDO/HIM (Solar Dynamics Observatory / Helioseismic and Magnetic Imager) data, first I will address the question: what triggers the jet-driving minifilament eruptions in different solar environments (coronal holes, quiet regions, active regions)? Then I will talk about the magnetic field evolution that produces the pre-jet minifilaments. By examining pre-jet evolutionary changes in line-of-sight HMI magnetograms while examining concurrent EUV (Extreme Ultra-Violet) images of coronal and transition-region emission, we find clear evidence that flux cancelation is the main process that builds pre-jet minifilaments, and is also the main process that triggers the eruptions. I will also present results from our ongoing work indicating that jet-driving minifilament eruptions are analogous to larger-scare filament eruptions that make flares and CMEs (Coronal Mass Ejections). We find that persistent flux cancellation at the neutral line of large-scale filaments often triggers their eruptions. From our observations we infer that flux cancelation is the fundamental process from the buildup and triggering of solar eruptions of all sizes.

  12. The Virtual Solar Observatory and the Heliophysics Meta-Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Gurman, J. B.; Hourclé, J. A.; Bogart, R. S.; Tian, K.; Hill, F.; Suàrez-Sola, I.; Zarro, D. M.; Davey, A. R.; Martens, P. C.; Yoshimura, K.; Reardon, K. M.

    2006-12-01

    The Virtual Solar Observatory (VSO) has survived its infancy and provides metadata search and data identification for measurements from 45 instrument data sets held at 12 online archives, as well as flare and coronal mass ejection (CME) event lists. Like any toddler, the VSO is good at getting into anything and everything, and is now extending its grasp to more data sets, new missions, and new access methods using its application programming interface (API). We discuss and demonstrate recent changes, including developments for STEREO and SDO, and an IDL-callable interface for the VSO API. We urge the heliophysics community to help civilize this obstreperous youngster by providing input on ways to make the VSO even more useful for system science research in its role as part of the growing cluster of Heliophysics Virtual Observatories.

  13. Comparison between two models of energy balance in coronal loops

    NASA Astrophysics Data System (ADS)

    Mac Cormack, C.; López Fuentes, M.; Vásquez, A. M.; Nuevo, F. A.; Frazin, R. A.; Landi, E.

    2017-10-01

    In this work we compare two models to analyze the energy balance along coronal magnetic loops. For the first stationary model we deduce an expression of the energy balance along the loops expressed in terms of quantities provided by the combination of differential emission measure tomography (DEMT) applied to EUV images time series and potential extrapolations of the coronal magnetic field. The second applied model is a 0D hydrodynamic model that provides the evolution of the average properties of the coronal plasma along the loops, using as input parameters the loop length and the heating rate obtained with the first model. We compare the models for two Carrington rotations (CR) corresponding to different periods of activity: CR 2081, corresponding to a period of minimum activity observed with the Extreme Ultraviolet Imager (EUVI) on board of the Solar Terrestrial Relations Observatory (STEREO), and CR 2099, corresponding to a period of activity increase observed with the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). The results of the models are consistent for both rotations.

  14. Anti-parallel EUV Flows Observed along Active Region Filament Threads with Hi-C

    NASA Astrophysics Data System (ADS)

    Alexander, Caroline E.; Walsh, Robert W.; Régnier, Stéphane; Cirtain, Jonathan; Winebarger, Amy R.; Golub, Leon; Kobayashi, Ken; Platt, Simon; Mitchell, Nick; Korreck, Kelly; DePontieu, Bart; DeForest, Craig; Weber, Mark; Title, Alan; Kuzin, Sergey

    2013-09-01

    Plasma flows within prominences/filaments have been observed for many years and hold valuable clues concerning the mass and energy balance within these structures. Previous observations of these flows primarily come from Hα and cool extreme-ultraviolet (EUV) lines (e.g., 304 Å) where estimates of the size of the prominence threads has been limited by the resolution of the available instrumentation. Evidence of "counter-steaming" flows has previously been inferred from these cool plasma observations, but now, for the first time, these flows have been directly imaged along fundamental filament threads within the million degree corona (at 193 Å). In this work, we present observations of an AR filament observed with the High-resolution Coronal Imager (Hi-C) that exhibits anti-parallel flows along adjacent filament threads. Complementary data from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager are presented. The ultra-high spatial and temporal resolution of Hi-C allow the anti-parallel flow velocities to be measured (70-80 km s-1) and gives an indication of the resolvable thickness of the individual strands (0.''8 ± 0.''1). The temperature of the plasma flows was estimated to be log T (K) = 5.45 ± 0.10 using Emission Measure loci analysis. We find that SDO/AIA cannot clearly observe these anti-parallel flows or measure their velocity or thread width due to its larger pixel size. We suggest that anti-parallel/counter-streaming flows are likely commonplace within all filaments and are currently not observed in EUV due to current instrument spatial resolution.

  15. Sifting Through SDO's AIA Cosmic Ray Hits to Find Treasure

    NASA Astrophysics Data System (ADS)

    Kirk, M. S.; Thompson, B. J.; Viall, N. M.; Young, P. R.

    2017-12-01

    The Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO AIA) has revolutionized solar imaging with its high temporal and spatial resolution, unprecedented spatial and temporal coverage, and seven EUV channels. Automated algorithms routinely clean these images to remove cosmic ray intensity spikes as a part of its preprocessing algorithm. We take a novel approach to survey the entire set of AIA "spike" data to identify and group compact brightenings across the entire SDO mission. The AIA team applies a de-spiking algorithm to remove magnetospheric particle impacts on the CCD cameras, but it has been found that compact, intense solar brightenings are often removed as well. We use the spike database to mine the data and form statistics on compact solar brightenings without having to process large volumes of full-disk AIA data. There are approximately 3 trillion "spiked pixels" removed from images over the mission to date. We estimate that 0.001% of those are of solar origin and removed by mistake, giving us a pre-segmented dataset of 30 million events. We explore the implications of these statistics and the physical qualities of the "spikes" of solar origin.

  16. KSC-2010-1052

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., spacecraft fueling technicians from Kennedy Space Center prepare to sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO. From left are SDO technician Brian Kittle and ASTROTECH mission/facility manager Gerard Gleeson. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  17. KSC-2010-1049

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., spacecraft fueling technicians from Kennedy Space Center prepare to sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO. From left are Boeing technicians Richard Gillman and Steve Lay, and SDO technician Brian Kittle. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  18. Formation of Penumbra in a Sample of Active Regions Observed by the SDO Satellite

    NASA Astrophysics Data System (ADS)

    Murabito, Mariarita; Zuccarello, Francesca; Guglielmino, Salvo L.; Romano, Paolo

    2018-03-01

    Recently, high-resolution observations improved our understanding of the penumbra formation process around sunspots. In particular, two aspects have been carefully investigated: whether the settlement of the penumbra can occur between the main opposite magnetic polarities where new magnetic flux is still emerging, and the establishment of the Evershed flow. In this paper, we present the analysis of twelve active regions (ARs) where both the penumbra formation and the onset of the Evershed flow were observed. We used data acquired by the Helioseismic and Magnetic Imager (HMI) instrument on board the Solar Dynamic Observatory (SDO) satellite analyzing continuum images, magnetograms, and Dopplergrams of the selected ARs. The results obtained in our sample provided the following information about the stable settlement of the penumbra: eight spots formed the first stable penumbral sector in the region between the two opposite polarities, and nine spots formed on the opposite side. Moreover, eleven sunpots showed an inverse Evershed flow (i.e., a plasma motion directed toward the protospot border) before the penumbra formation, which changes within 1–6 hr into the classical Evershed flow as soon as the penumbra forms. Comparing our results with recent observations, we are able to discriminate between the different ways of penumbra formation. Moreover, we suggest that the change from inverse Evershed flow, visible before the penumbra appears, into the classical Evershed flow may be a signature of the formation of penumbral filaments.

  19. A new look at a polar crown cavity as observed by SDO/AIA. Structure and dynamics

    NASA Astrophysics Data System (ADS)

    Régnier, S.; Walsh, R. W.; Alexander, C. E.

    2011-09-01

    Context. The Solar Dynamics Observatory (SDO) was launched in February 2010 and is now providing an unprecedented view of the solar activity at high spatial resolution and high cadence covering a broad range of temperature layers of the atmosphere. Aims: We aim at defining the structure of a polar crown cavity and describing its evolution during the erupting process. Methods: We use the high-cadence time series of SDO/AIA observations at 304 Å (50 000 K) and 171 Å (0.6 MK) to determine the structure of the polar crown cavity and its associated plasma, as well as the evolution of the cavity during the different phases of the eruption. We report on the observations recorded on 13 June 2010 located on the north-west limb. Results: We observe coronal plasma shaped by magnetic field lines with a negative curvature (U-shape) sitting at the bottom of a cavity. The cavity is located just above the polar crown filament material. We thus observe the inner part of the cavity above the filament as depicted in the classical three part coronal mass ejection (CME) model composed of a filament, a cavity, and a CME front. The filament (in this case a polar crown filament) is part of the cavity, and it makes a continuous structuring from the filament to the CME front depicted by concentric ellipses (in a 2D cartoon). Conclusions: We propose to define a polar crown cavity as a density depletion sitting above denser polar crown filament plasma drained down the cavity by gravity. As part of the polar crown filament, plasma at different temperatures (ranging from 50 000 K to 0.6 MK) is observed at the same location on the cavity dips and sustained by a competition between the gravity and the curvature of magnetic field lines. The eruption of the polar crown cavity as a solid body can be decomposed into two phases: a slow rise at a speed of 0.6 km s-1 and an acceleration phase at a mean speed of 25 km s-1. Two movies are only available at http://www.aanda.org

  20. Sun Emits a Mid-Level Flare on Dec. 4, 2014

    NASA Image and Video Library

    2017-12-08

    The sun emitted a solar flare on Dec. 4, 2014, seen as the flash of light in this image from NASA's Solar Dynamics Observatory. The image blends two wavelengths of extreme ultraviolet light – 131 and 171 Angstroms – which are typically colored in teal and gold, respectively. Read more: 1.usa.gov/121n7PP Image Credit: NASA/SDO

  1. Viewing The Entire Sun With STEREO And SDO

    NASA Astrophysics Data System (ADS)

    Thompson, William T.; Gurman, J. B.; Kucera, T. A.; Howard, R. A.; Vourlidas, A.; Wuelser, J.; Pesnell, D.

    2011-05-01

    On 6 February 2011, the two Solar Terrestrial Relations Observatory (STEREO) spacecraft were at 180 degrees separation. This allowed the first-ever simultaneous view of the entire Sun. Combining the STEREO data with corresponding images from the Solar Dynamics Observatory (SDO) allows this full-Sun view to continue for the next eight years. We show how the data from the three viewpoints are combined into a single heliographic map. Processing of the STEREO beacon telemetry allows these full-Sun views to be created in near-real-time, allowing tracking of solar activity even on the far side of the Sun. This is a valuable space-weather tool, not only for anticipating activity before it rotates onto the Earth-view, but also for deep space missions in other parts of the solar system. Scientific use of the data includes the ability to continuously track the entire lifecycle of active regions, filaments, coronal holes, and other solar features. There is also a significant public outreach component to this activity. The STEREO Science Center produces products from the three viewpoints used in iPhone/iPad and Android applications, as well as time sequences for spherical projection systems used in museums, such as Science-on-a-Sphere and Magic Planet.

  2. Systems approach to the design of the CCD sensors and camera electronics for the AIA and HMI instruments on solar dynamics observatory

    NASA Astrophysics Data System (ADS)

    Waltham, N.; Beardsley, S.; Clapp, M.; Lang, J.; Jerram, P.; Pool, P.; Auker, G.; Morris, D.; Duncan, D.

    2017-11-01

    Solar Dynamics Observatory (SDO) is imaging the Sun in many wavelengths near simultaneously and with a resolution ten times higher than the average high-definition television. In this paper we describe our innovative systems approach to the design of the CCD cameras for two of SDO's remote sensing instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI). Both instruments share use of a custom-designed 16 million pixel science-grade CCD and common camera readout electronics. A prime requirement was for the CCD to operate with significantly lower drive voltages than before, motivated by our wish to simplify the design of the camera readout electronics. Here, the challenge lies in the design of circuitry to drive the CCD's highly capacitive electrodes and to digitize its analogue video output signal with low noise and to high precision. The challenge is greatly exacerbated when forced to work with only fully space-qualified, radiation-tolerant components. We describe our systems approach to the design of the AIA and HMI CCD and camera electronics, and the engineering solutions that enabled us to comply with both mission and instrument science requirements.

  3. KSC-2009-4267

    NASA Image and Video Library

    2009-07-27

    CAPE CANAVERAL, Fla. – At the Astrotech Payload Processing Facility in Titusville, Fla., the Solar Dynamics Observatory is moved across the floor toward the Ransome table in the background. The table will be used to rotate the spacecraft in various directions for access to different areas of the spacecraft. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  4. Ionospheric model-observation comparisons: E layer at Arecibo Incorporation of SDO-EVE solar irradiances

    NASA Astrophysics Data System (ADS)

    Sojka, Jan J.; Jensen, Joseph B.; David, Michael; Schunk, Robert W.; Woods, Tom; Eparvier, Frank; Sulzer, Michael P.; Gonzalez, Sixto A.; Eccles, J. Vincent

    2014-05-01

    This study evaluates how the new irradiance observations from the NASA Solar Dynamics Observatory (SDO) Extreme Ultraviolet Variability Experiment (EVE) can, with its high spectral resolution and 10 s cadence, improve the modeling of the E region. To demonstrate this a campaign combining EVE observations with that of the NSF Arecibo incoherent scatter radar (ISR) was conducted. The ISR provides E region electron density observations with high-altitude resolution, 300 m, and absolute densities using the plasma line technique. Two independent ionospheric models were used, the Utah State University Time-Dependent Ionospheric Model (TDIM) and Space Environment Corporation's Data-Driven D Region (DDDR) model. Each used the same EVE irradiance spectrum binned at 1 nm resolution from 0.1 to 106 nm. At the E region peak the modeled TDIM density is 20% lower and that of the DDDR is 6% higher than observed. These differences could correspond to a 36% lower (TDIM) and 12% higher (DDDR) production rate if the differences were entirely attributed to the solar irradiance source. The detailed profile shapes that included the E region altitude and that of the valley region were only qualitatively similar to observations. Differences on the order of a neutral-scale height were present. Neither model captured a distinct dawn to dusk tilt in the E region peak altitude. A model sensitivity study demonstrated how future improved spectral resolution of the 0.1 to 7 nm irradiance could account for some of these model shortcomings although other relevant processes are also poorly modeled.

  5. A study of a long duration B9 flare-CME event and associated shock

    NASA Astrophysics Data System (ADS)

    Chandra, R.; Chen, P. F.; Fulara, A.; Srivastava, A. K.; Uddin, W.

    2018-01-01

    We present and discuss here the observations of a small long duration GOES B-class flare associated with a quiescent filament eruption, a global EUV wave and a CME on 2011 May 11. The event was well observed by the Solar Dynamics Observatory (SDO), GONG H α , STEREO and Culgoora spectrograph. As the filament erupted, ahead of the filament we observed the propagation of EIT wave fronts, as well as two flare ribbons on both sides of the polarity inversion line (PIL) on the solar surface. The observations show the co-existence of two types of EUV waves, i.e., a fast and a slow one. A type II radio burst with up to the third harmonic component was also associated with this event. The evolution of photospheric magnetic field showed flux emergence and cancellation at the filament site before its eruption.

  6. A statistical study of decaying kink oscillations detected using SDO/AIA

    NASA Astrophysics Data System (ADS)

    Goddard, C. R.; Nisticò, G.; Nakariakov, V. M.; Zimovets, I. V.

    2016-01-01

    Context. Despite intensive studies of kink oscillations of coronal loops in the last decade, a large-scale statistically significant investigation of the oscillation parameters has not been made using data from the Solar Dynamics Observatory (SDO). Aims: We carry out a statistical study of kink oscillations using extreme ultraviolet imaging data from a previously compiled catalogue. Methods: We analysed 58 kink oscillation events observed by the Atmospheric Imaging Assembly (AIA) on board SDO during its first four years of operation (2010-2014). Parameters of the oscillations, including the initial apparent amplitude, period, length of the oscillating loop, and damping are studied for 120 individual loop oscillations. Results: Analysis of the initial loop displacement and oscillation amplitude leads to the conclusion that the initial loop displacement prescribes the initial amplitude of oscillation in general. The period is found to scale with the loop length, and a linear fit of the data cloud gives a kink speed of Ck = (1330 ± 50) km s-1. The main body of the data corresponds to kink speeds in the range Ck = (800-3300) km s-1. Measurements of 52 exponential damping times were made, and it was noted that at least 21 of the damping profiles may be better approximated by a combination of non-exponential and exponential profiles rather than a purely exponential damping envelope. There are nine additional cases where the profile appears to be purely non-exponential and no damping time was measured. A scaling of the exponential damping time with the period is found, following the previously established linear scaling between these two parameters.

  7. EXTRAPOLATION OF THE SOLAR CORONAL MAGNETIC FIELD FROM SDO/HMI MAGNETOGRAM BY A CESE-MHD-NLFFF CODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Chaowei; Feng Xueshang, E-mail: cwjiang@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn

    Due to the absence of direct measurement, the magnetic field in the solar corona is usually extrapolated from the photosphere in a numerical way. At the moment, the nonlinear force-free field (NLFFF) model dominates the physical models for field extrapolation in the low corona. Recently, we have developed a new NLFFF model with MHD relaxation to reconstruct the coronal magnetic field. This method is based on CESE-MHD model with the conservation-element/solution-element (CESE) spacetime scheme. In this paper, we report the application of the CESE-MHD-NLFFF code to Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) data with magnetograms sampled for two activemore » regions (ARs), NOAA AR 11158 and 11283, both of which were very non-potential, producing X-class flares and eruptions. The raw magnetograms are preprocessed to remove the force and then inputted into the extrapolation code. Qualitative comparison of the results with the SDO/AIA images shows that our code can reconstruct magnetic field lines resembling the EUV-observed coronal loops. Most important structures of the ARs are reproduced excellently, like the highly sheared field lines that suspend filaments in AR 11158 and twisted flux rope which corresponds to a sigmoid in AR 11283. Quantitative assessment of the results shows that the force-free constraint is fulfilled very well in the strong-field regions but apparently not that well in the weak-field regions because of data noise and numerical errors in the small currents.« less

  8. Two Coronal Holes on the Sun Viewed by SDO

    NASA Image and Video Library

    2015-03-17

    NASA’s Solar Dynamics Observatory, or SDO, captured this solar image on March 16, 2015, which clearly shows two dark patches, known as coronal holes. The larger coronal hole of the two, near the southern pole, covers an estimated 6- to 8-percent of the total solar surface. While that may not sound significant, it is one of the largest polar holes scientists have observed in decades. The smaller coronal hole, towards the opposite pole, is long and narrow. It covers about 3.8 billion square miles on the sun - only about 0.16-percent of the solar surface. Coronal holes are lower density and temperature regions of the sun’s outer atmosphere, known as the corona. Coronal holes can be a source of fast solar wind of solar particles that envelop the Earth. The magnetic field in these regions extends far out into space rather than quickly looping back into the sun’s surface. Magnetic fields that loop up and back down to the surface can be seen as arcs in non-coronal hole regions of the image, including over the lower right horizon. The bright active region on the lower right quadrant is the same region that produced solar flares last week. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Solar Scientist Confirm Existence of Flux Ropes on the Sun

    NASA Image and Video Library

    2013-02-14

    Caption: This is an image of magnetic loops on the sun, captured by NASA's Solar Dynamics Observatory (SDO). It has been processed to highlight the edges of each loop to make the structure more clear. A series of loops such as this is known as a flux rope, and these lie at the heart of eruptions on the sun known as coronal mass ejections (CMEs.) This is the first time scientists were able to discern the timing of a flux rope's formation. (SDO AIA 131 and 171 difference blended image of flux ropes during CME.) Credit: NASA/Goddard Space Flight Center/SDO ---- On July 18, 2012, a fairly small explosion of light burst off the lower right limb of the sun. Such flares often come with an associated eruption of solar material, known as a coronal mass ejection or CME – but this one did not. Something interesting did happen, however. Magnetic field lines in this area of the sun's atmosphere, the corona, began to twist and kink, generating the hottest solar material – a charged gas called plasma – to trace out the newly-formed slinky shape. The plasma glowed brightly in extreme ultraviolet images from the Atmospheric Imaging Assembly (AIA) aboard NASA’s Solar Dynamics Observatory (SDO) and scientists were able to watch for the first time the very formation of something they had long theorized was at the heart of many eruptive events on the sun: a flux rope. Eight hours later, on July 19, the same region flared again. This time the flux rope's connection to the sun was severed, and the magnetic fields escaped into space, dragging billions of tons of solar material along for the ride -- a classic CME. "Seeing this structure was amazing," says Angelos Vourlidas, a solar scientist at the Naval Research Laboratory in Washington, D.C. "It looks exactly like the cartoon sketches theorists have been drawing of flux ropes since the 1970s. It was a series of figure eights lined up to look like a giant slinky on the sun." To read more about this new discovery go to: 1.usa.gov/14UHsTt

  10. Solar Scientist Confirm Existence of Flux Ropes on the Sun

    NASA Image and Video Library

    2017-12-08

    Caption: This is an image of magnetic loops on the sun, captured by NASA's Solar Dynamics Observatory (SDO). It has been processed to highlight the edges of each loop to make the structure more clear. A series of loops such as this is known as a flux rope, and these lie at the heart of eruptions on the sun known as coronal mass ejections (CMEs.) This is the first time scientists were able to discern the timing of a flux rope's formation. (SDO AIA 131 and 171 difference blended image of flux ropes during CME.) Credit: NASA/Goddard Space Flight Center/SDO ---- On July 18, 2012, a fairly small explosion of light burst off the lower right limb of the sun. Such flares often come with an associated eruption of solar material, known as a coronal mass ejection or CME – but this one did not. Something interesting did happen, however. Magnetic field lines in this area of the sun's atmosphere, the corona, began to twist and kink, generating the hottest solar material – a charged gas called plasma – to trace out the newly-formed slinky shape. The plasma glowed brightly in extreme ultraviolet images from the Atmospheric Imaging Assembly (AIA) aboard NASA’s Solar Dynamics Observatory (SDO) and scientists were able to watch for the first time the very formation of something they had long theorized was at the heart of many eruptive events on the sun: a flux rope. Eight hours later, on July 19, the same region flared again. This time the flux rope's connection to the sun was severed, and the magnetic fields escaped into space, dragging billions of tons of solar material along for the ride -- a classic CME. "Seeing this structure was amazing," says Angelos Vourlidas, a solar scientist at the Naval Research Laboratory in Washington, D.C. "It looks exactly like the cartoon sketches theorists have been drawing of flux ropes since the 1970s. It was a series of figure eights lined up to look like a giant slinky on the sun." To read more about this new discovery go to: 1.usa.gov/14UHsTt

  11. High-resolution Observations of Flares in an Arch Filament System

    NASA Astrophysics Data System (ADS)

    Su, Yingna; Liu, Rui; Li, Shangwei; Cao, Wenda; Ahn, Kwangsu; Ji, Haisheng

    2018-03-01

    We study five sequential solar flares (SOL2015-08-07) occurring in Active Region 12396 observed with the Goode Solar Telescope (GST) at the Big Bear Solar Observatory, complemented by Interface Region Imaging Spectrograph and SDO observations. The main flaring region is an arch filament system (AFS) consisting of multiple bundles of dark filament threads enclosed by semicircular flare ribbons. We study the magnetic configuration and evolution of the active region by constructing coronal magnetic field models based on SDO/HMI magnetograms using two independent methods, i.e., the nonlinear force-free field (NLFFF) extrapolation and the flux rope insertion method. The models consist of multiple flux ropes with mixed signs of helicity, i.e., positive (negative) in the northern (southern) region, which is consistent with the GST observations of multiple filament bundles. The footprints of quasi-separatrix layers (QSLs) derived from the extrapolated NLFFF compare favorably with the observed flare ribbons. An interesting double-ribbon fine structure located at the east border of the AFS is consistent with the fine structure of the QSL’s footprint. Moreover, magnetic field lines traced along the semicircular footprint of a dome-like QSL surrounding the AFS are connected to the regions of significant helicity and Poynting flux injection. The maps of magnetic twist show that positive twist became dominant as time progressed, which is consistent with the injection of positive helicity before the flares. We hence conclude that these circular shaped flares are caused by 3D magnetic reconnection at the QSLs associated with the AFS possessing mixed signs of helicity.

  12. SDO Observed its First Lunar Transit

    NASA Image and Video Library

    2017-12-08

    NASA image captured October 7, 2010 View a video of this event here: www.flickr.com/photos/gsfc/5099028189 This was a first for SDO and it was visually engaging too. On October 7, 2010, SDO observed its first lunar transit when the new Moon passed directly between the spacecraft (in its geosynchronous orbit) and the Sun. With SDO watching the Sun in a wavelength of extreme ultraviolet light, the dark Moon created a partial eclipse of the Sun. These images, while unusual and cool to see, have practical value to the SDO science team. Karel Schrijver of Lockheed-Martin's Solar and Astrophysics Lab explains: "The very sharp edge of the lunar limb allows us to measure the in-orbit characteristics of the telescope e.g., light diffraction on optics and filter support grids. Once these are characterized, we can use that information to correct our data for instrumental effects and sharpen up the images to even more detail." To learn more about SDO go to: sdo.gsfc.nasa.gov/ Credit: NASA/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  13. Electrical Power System Architectures for In-House NASA/GSFC Missions

    NASA Technical Reports Server (NTRS)

    Yun, Diane D.

    2006-01-01

    This power point presentation reviews the electrical power system (EPS) architecture used for a few NASA GSFC's missions both current and planned. Included in the presentation are reviews of electric power systems for the Space Technology 5 (ST5) mission, the Solar Dynamics Observatory (SDO) Mission, and the Lunar Reconnaissance Orbiter (LRO). There is a slide that compares the three missions' electrical supply systems.

  14. Evidence for the Magnetic Breakout Model in an Equatorial Coronal-hole Jet

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Karpen, Judith T.; Antiochos, Spiro K.; Wyper, Peter F.; DeVore, C. Richard; DeForest, Craig E.

    2018-02-01

    Small, impulsive jets commonly occur throughout the solar corona, but are especially visible in coronal holes. Evidence is mounting that jets are part of a continuum of eruptions that extends to much larger coronal mass ejections and eruptive flares. Because coronal-hole jets originate in relatively simple magnetic structures, they offer an ideal testbed for theories of energy buildup and release in the full range of solar eruptions. We analyzed an equatorial coronal-hole jet observed by the Solar Dynamics Observatory (SDO)/AIA on 2014 January 9 in which the magnetic-field structure was consistent with the embedded-bipole topology that we identified and modeled previously as an origin of coronal jets. In addition, this event contained a mini-filament, which led to important insights into the energy storage and release mechanisms. SDO/HMI magnetograms revealed footpoint motions in the primary minority-polarity region at the eruption site, but show negligible flux emergence or cancellation for at least 16 hr before the eruption. Therefore, the free energy powering this jet probably came from magnetic shear concentrated at the polarity inversion line within the embedded bipole. We find that the observed activity sequence and its interpretation closely match the predictions of the breakout jet model, strongly supporting the hypothesis that the breakout model can explain solar eruptions on a wide range of scales.

  15. Measuring Temperature-Dependent Propagating Disturbances in Coronal Fan Loops Using Multiple SDO-AIA Channels and Surfing Transform Technique

    NASA Technical Reports Server (NTRS)

    Uritskiy, Vadim M.; Davila, Joseph M.; Viall, Nicholeen M.; Ofman, Leon

    2013-01-01

    A set of co-aligned high resolution images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) is used to investigate propagating disturbances (PDs) in warm fan loops at the periphery of a non-flaring active region NOAA AR 11082. To measure PD speeds at multiple coronal temperatures, a new data analysis methodology is proposed enabling quantitative description of sub visual coronal motions with low signal-to-noise ratios of the order of 0.1. The technique operates with a set of one-dimensional surfing signals extracted from position-timeplots of several AIA channels through a modified version of Radon transform. The signals are used to evaluate a two-dimensional power spectral density distribution in the frequency - velocity space which exhibits a resonance in the presence of quasi-periodic PDs. By applying this analysis to the same fan loop structures observed in several AIA channels, we found that the traveling velocity of PDs increases with the temperature of the coronal plasma following the square root dependence predicted for the slow mode magneto-acoustic wave which seems to be the dominating wave mode in the studied loop structures. This result extends recent observations by Kiddie et al. (2012) to a more general class of fan loop systems not associated with sunspots and demonstrating consistent slow mode activity in up to four AIA channels.

  16. A HOT FLUX ROPE OBSERVED BY SDO/AIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aparna, V.; Tripathi, Durgesh, E-mail: aparnav@iucaa.in

    2016-03-01

    A filament eruption was observed on 2010 October 31 in the images recorded by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) in its Extreme Ultra-Violet (EUV) channels. The filament showed a slow-rise phase followed by a fast rise and was classified to be an asymmetric eruption. In addition, multiple localized brightenings which were spatially and temporally associated with the slow-rise phase were identified, leading us to believe that the tether-cutting mechanism initiated the eruption. An associated flux rope was detected in high-temperature channels of AIA, namely 94 and 131 Å, corresponding to 7 and 11more » MK plasma respectively. In addition, these channels are also sensitive to cooler plasma corresponding to 1–2 MK. In this study, we have applied the algorithm devised by Warren et al. to remove cooler emission from the 94 Å channel to deduce only the high-temperature structure of the flux rope and to study its temporal evolution. We found that the flux rope was very clearly seen in the clean 94 Å channel image corresponding to Fe xviii emission, which corresponds to a plasma at a temperature of 7 MK. This temperature matched well with that obtained using Differential Emission Measure analysis. This study provides important constrains in the modeling of the thermodynamic structure of the flux ropes in coronal mass ejections.« less

  17. Morfología de eyecciones coronales de masa: avances e interrogantes pendientes

    NASA Astrophysics Data System (ADS)

    Cremades, H.

    2016-08-01

    Coronal mass ejections (CMEs) originate in the solar atmosphere and inject large amounts of plasma and magnetic fields in the heliosphere. Moreover, they can generate geomagnetic storms and shock waves, which in turn may accelerate energetic particles. The growing interest in studying CMEs stems not only from practical reasons, given their capacity to interact with Earth's atmosphere involving undesirable technological effects for modern society, but also from scientific reasons, because CMEs are part of the solar wind and thus play a key role in coronal and interplanetary dynamics. Space missions devoted to solar monitoring such as SOHO (Solar and Heliospheric Observatory), STEREO (Solar-Terrestrial Relations Observatory), and SDO (Solar Dynamics Observatory) have meant a great step toward the understanding of CME structure and evolution. However, given the nature of the instruments used for CME observation it is still difficult to deduce aspects of their three-dimensional configuration. In this report we visit the most relevant and latest advances regarding the three-dimensional characterization of their morphology, based both on theoretical models and observations. Their relationship with aspects of their source regions at photospheric, chromospheric, and low coronal levels, as well as with their interplanetary counterparts detected in situ are additionally addressed. These correspondences are vital not only for deepening the physical understanding of CMEs, but also to constrain geometrical and propagation models of CMEs towards improving current space weather forecasts.

  18. A Long-Term Dissipation of the EUV He ii (30.4 nm) Segmentation in Full-Disk Solar Images

    NASA Astrophysics Data System (ADS)

    Didkovsky, Leonid

    2018-06-01

    Some quiet-Sun days observed by the Atmospheric Imaging Assembly (AIA) on-board the Solar Dynamics Observatory (SDO) during the time interval in 2010 - 2017 were used to continue our previous analyses reported by Didkovsky and Gurman ( Solar Phys. 289, 153, 2014a) and Didkovsky, Wieman, and Korogodina ( Solar Phys. 292, 32, 2017). The analysis consists of determining and comparing spatial spectral ratios (spectral densities over some time interval) from spatial (segmentation-cell length) power spectra. The ratios were compared using modeled compatible spatial frequencies for spectra from the Extreme ultraviolet Imaging Telescope (EIT) on-board the Solar and Heliospheric Observatory (SOHO) and from AIA images. With the new AIA data added to the EIT data we analyzed previously, the whole time interval from 1996 to 2017 reported here is approximately the length of two "standard" solar cycles (SC). The spectral ratios of segmentation-cell dimension structures show a significant and steady increase with no detected indication of SC-related returns to the values that characterize the SC minima. This increase in spatial power at high spatial frequencies is interpreted as a dissipation of medium-size EUV network structures to smaller-size structures in the transition region. Each of the latest ratio changes for 2010 through 2017 spectra calculated for a number of consecutive short-term intervals has been converted into monthly mean ratio (MMR) changes. The MMR values demonstrate variable sign and magnitudes, thus confirming the solar nature of the changes. These changes do not follow a "typical" trend of instrumental degradation or a long-term activity profile from the He ii (30.4 nm) irradiance measured by the Extreme ultraviolet Spectrophotometer (ESP) either. The ESP is a channel of the Extreme ultraviolet Variability Experiment (EVE) on-board SDO.

  19. The Longitudinal Evolution of Equatorial Coronal Holes

    NASA Astrophysics Data System (ADS)

    Krista, Larisza D.; McIntosh, Scott W.; Leamon, Robert J.

    2018-04-01

    In 2011, three satellites—the Solar-Terrestrial RElations Observatory A & B, and the Solar Dynamics Observatory (SDO)—were in a unique spatial alignment that allowed a 360° view of the Sun. This alignment lasted until 2014, the peak of solar cycle 24. Using extreme ultraviolet images and Hovmöller diagrams, we studied the lifetimes and propagation characteristics of coronal holes (CHs) in longitude over several solar rotations. Our initial results show at least three distinct populations of “low-latitude” or “equatorial” CHs (below 65^\\circ latitude). One population rotates in retrograde direction and coincides with a group of long-lived (over sixty days) CHs in each hemisphere. These are typically located between 30° and 55^\\circ , and display velocities of ∼55 m s‑1 slower than the local differential rotation rate. A second, smaller population of CHs rotate prograde, with velocities between ∼20 and 45 m s‑1. This population is also long-lived, but observed ±10° from the solar equator. A third population of CHs are short-lived (less than two solar rotations), and they appear over a wide range of latitudes (±65°) and exhibit velocities between ‑140 and 80 m s‑1. The CH “butterfly diagram” we developed shows a systematic evolution of the longer-lived holes; however, the sample is too short in time to draw conclusions about possible connections to dynamo-related phenomena. An extension of the present work to the 22 years of the combined SOHO–SDO archives is necessary to understand the contribution of CHs to the decadal-scale evolution of the Sun.

  20. The sensory dorsal organs of crustaceans.

    PubMed

    Lerosey-Aubril, Rudy; Meyer, Roland

    2013-05-01

    The cuticle of crustaceans bears numerous organs, of which the functions of many are unknown. One of these, the sensory dorsal organ (SDO), is present in a wide diversity of taxa. Here we critically review the variability, ultrastructure, distribution, and possible function of this enigmatic cuticular organ. Previous data are complemented by new observations on larvae and adults of various malacostracans. The SDO is composed of four sensors arranged as the corners of a square, the centre of which is occupied by a gland. Pores or pegs surrounding this central complex may also form part of the organ. The arrangement and the external aspect of the five main elements varies greatly, but this apparently has little impact on their ultrastructural organisation. The sensors and the gland are associated with a particularly thin cuticle. Each sensor contains four outer dendritic segments and the central gland is made of a single large cell. It is not yet known what this large cell secretes. The SDO is innervated from the tritocerebrum and therefore belongs to the third cephalic segment. A similar organ, here called the posterior SDO, has been repeatedly observed more posteriorly on the carapace. It resembles the SDO but has a greater number of sensors (usually six, but up to ten) apparently associated with only two outer dendritic segments. The SDO and the posterior SDO are known in the Eumalacostraca, the Hoplocarida, and the Phyllocarida. Some branchiopods also possess a 'dorsal organ' resembling both the SDO and the ion-transporting organ more typical of this group. This may indicate a common origin for these two functionally distinct groups of organs. New observations on the posterior SDO support the hypothesis that the SDO and the posterior SDO are homologous to the lattice organ complexes of the costracans. However, the relationship between the SDO and the dorsal cephalic hump of calanoid copepods remains unclear. No correlation can be demonstrated between the presence of a SDO and a particular ecological or biological trait. In fossils, the most convincing examples of SDO-like organs are found in some Late Cambrian arthropods from the Alum Shale of southern Sweden. They suggest that related organs might have been present in non-crustacean Cambrian arthropods. The distribution of the SDO and posterior SDO in extant and fossil crustaceans strongly suggests that these organs originated early in the history of the group, and are crucial to the functioning of these organisms. However, except for knowing that the sensors are chemoreceptors and that in a given organ a functional relationship probably exists between them and the gland, little is known about this function. The description of a SDO in freshwater carideans, which can be easily reared in a laboratory, opens the way for behavioural and physiological experiments to be undertaken that could prove crucial for the determination of this function. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  1. A small-scale eruption leading to a blowout macrospicule jet in an on-disk coronal hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Mitzi; Sterling, Alphonse C.; Moore, Ronald L.

    2014-03-01

    We examine the three-dimensional magnetic structure and dynamics of a solar EUV-macrospicule jet that occurred on 2011 February 27 in an on-disk coronal hole. The observations are from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA) and the SDO Helioseismic and Magnetic Imager (HMI). The observations reveal that in this event, closed-field-carrying cool absorbing plasma, as in an erupting mini-filament, erupted and opened, forming a blowout jet. Contrary to some jet models, there was no substantial recently emerged, closed, bipolar-magnetic field in the base of the jet. Instead, over several hours, flux convergence and cancellation at the polarity inversionmore » line inside an evolved arcade in the base apparently destabilized the entire arcade, including its cool-plasma-carrying core field, to undergo a blowout eruption in the manner of many standard-sized, arcade-blowout eruptions that produce a flare and coronal mass ejection. Internal reconnection made bright 'flare' loops over the polarity inversion line inside the blowing-out arcade field, and external reconnection of the blowing-out arcade field with an ambient open field made longer and dimmer EUV loops on the outside of the blowing-out arcade. That the loops made by the external reconnection were much larger than the loops made by the internal reconnection makes this event a new variety of blowout jet, a variety not recognized in previous observations and models of blowout jets.« less

  2. Observations of Excitation and Damping of Transversal Oscillations in Coronal Loops by AIA/SDO

    NASA Astrophysics Data System (ADS)

    Abedini, A.

    2018-02-01

    The excitation and damping of the transversal coronal loop oscillations and quantitative relation between damping time, damping property (damping time per period), oscillation amplitude, dissipation mechanism and the wake phenomena are investigated. The observed time series data with the Atmospheric Imaging Assembly (AIA) telescope on NASA's Solar Dynamics Observatory (SDO) satellite on 2015 March 2, consisting of 400 consecutive images with 12 s cadence in the 171 Å pass band is analyzed for evidence of transversal oscillations along the coronal loops by the Lomb-Scargle periodgram. In this analysis signatures of transversal coronal loop oscillations that are damped rapidly were found with dominant oscillation periods in the range of P=12.25 - 15.80 min. Also, damping times and damping properties of the transversal coronal loop oscillations at dominant oscillation periods are estimated in the range of {τd=11.76} - {21.46} min and {τd/P=0.86} - {1.49}, respectively. The observational results of this analysis show that damping properties decrease slowly with increasing amplitude of the oscillation, but the periods of the oscillations are not sensitive functions of the amplitude of the oscillations. The order of magnitude of the damping properties and damping times are in good agreement with previous findings and the theoretical prediction for damping of kink mode oscillations by the dissipation mechanism. Furthermore, oscillations of the loop segments attenuate with time roughly as t^{-α} and the magnitude values of α for 30 different segments change from 0.51 to 0.75.

  3. ANTI-PARALLEL EUV FLOWS OBSERVED ALONG ACTIVE REGION FILAMENT THREADS WITH HI-C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Caroline E.; Walsh, Robert W.; Régnier, Stéphane

    Plasma flows within prominences/filaments have been observed for many years and hold valuable clues concerning the mass and energy balance within these structures. Previous observations of these flows primarily come from Hα and cool extreme-ultraviolet (EUV) lines (e.g., 304 Å) where estimates of the size of the prominence threads has been limited by the resolution of the available instrumentation. Evidence of 'counter-steaming' flows has previously been inferred from these cool plasma observations, but now, for the first time, these flows have been directly imaged along fundamental filament threads within the million degree corona (at 193 Å). In this work, wemore » present observations of an AR filament observed with the High-resolution Coronal Imager (Hi-C) that exhibits anti-parallel flows along adjacent filament threads. Complementary data from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager are presented. The ultra-high spatial and temporal resolution of Hi-C allow the anti-parallel flow velocities to be measured (70-80 km s{sup –1}) and gives an indication of the resolvable thickness of the individual strands (0.''8 ± 0.''1). The temperature of the plasma flows was estimated to be log T (K) = 5.45 ± 0.10 using Emission Measure loci analysis. We find that SDO/AIA cannot clearly observe these anti-parallel flows or measure their velocity or thread width due to its larger pixel size. We suggest that anti-parallel/counter-streaming flows are likely commonplace within all filaments and are currently not observed in EUV due to current instrument spatial resolution.« less

  4. Evidence of Significant Energy Input in the Late Phase of a Solar Flare from NuSTAR X-Ray Observations

    NASA Astrophysics Data System (ADS)

    Kuhar, Matej; Krucker, Säm; Hannah, Iain G.; Glesener, Lindsay; Saint-Hilaire, Pascal; Grefenstette, Brian W.; Hudson, Hugh S.; White, Stephen M.; Smith, David M.; Marsh, Andrew J.; Wright, Paul J.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2017-01-01

    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray (NuSTAR) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory (SDO)/AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at ˜18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of new post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8-4.6 MK, emission measure (0.3-1.8) × 1046 cm-3, and density estimated at (2.5-6.0) × 108 cm-3. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0-4.3 MK. By examining the post-flare loops’ cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.

  5. EVIDENCE OF SIGNIFICANT ENERGY INPUT IN THE LATE PHASE OF A SOLAR FLARE FROM NuSTAR X-RAY OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhar, Matej; Krucker, Säm; Hannah, Iain G.

    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray ( NuSTAR ) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory ( SDO )/AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at ∼18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/ AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of newmore » post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8–4.6 MK, emission measure (0.3–1.8) × 10{sup 46} cm{sup −3}, and density estimated at (2.5–6.0) × 10{sup 8} cm{sup −3}. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0–4.3 MK. By examining the post-flare loops’ cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.« less

  6. Evidence of Significant Energy Input in the Late Phase of A Solar Flare from NuSTAR X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Kuhar, Matej; Krucker, Sam; Hannah, Iain G.; Glesener, Lindsay; Saint-Hilaire, Pascal; Grefenstette, Brian W.; Hudson, Hugh S.; White, Stephen M.; Smith, David M.; Marsh, Andrew J.; hide

    2017-01-01

    We present observations of the occulted active region AR 12222 during the third Nuclear Spectroscopic Telescope ARray (NuSTAR) solar campaign on 2014 December 11, with concurrent Solar Dynamics Observatory (SDO)/ AIA and FOXSI-2 sounding rocket observations. The active region produced a medium-size solar flare 1 day before the observations, at approximately 18 UT on 2014 December 10, with the post-flare loops still visible at the time of NuSTAR observations. The time evolution of the source emission in the SDO/AIA 335 Å channel reveals the characteristics of an extreme-ultraviolet late-phase event, caused by the continuous formation of new post-flare loops that arch higher and higher in the solar corona. The spectral fitting of NuSTAR observations yields an isothermal source, with temperature 3.8-4.6 MK, emission measure (0.3-1.8) × 1046 cm-3, and density estimated at (2.5-6.0) × 108 cm-3. The observed AIA fluxes are consistent with the derived NuSTAR temperature range, favoring temperature values in the range of 4.0-4.3 MK. By examining the post-flare loops' cooling times and energy content, we estimate that at least 12 sets of post-flare loops were formed and subsequently cooled between the onset of the flare and NuSTAR observations, with their total thermal energy content an order of magnitude larger than the energy content at flare peak time. This indicates that the standard approach of using only the flare peak time to derive the total thermal energy content of a flare can lead to a large underestimation of its value.

  7. Solar Dynamics Observatory Guidance, Navigation, and Control System Overview

    NASA Technical Reports Server (NTRS)

    Morgenstern, Wendy M.; Bourkland, Kristin L.; Hsu, Oscar C.; Liu, Kuo-Chia; Mason, Paul A. C.; O'Donnell, James R., Jr.; Russo, Angela M.; Starin, Scott R.; Vess, Melissa F.

    2011-01-01

    The Solar Dynamics Observatory (SDO) was designed and built at the Goddard Space Flight Center, launched from Cape Canaveral on February 11, 2010, and reached its final geosynchronous science orbit on March 16, 2010. The purpose of SDO is to observe the Sun and continuously relay data to a dedicated ground station. SDO remains Sun-pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system (ACS) is a single-fault tolerant design. Its fully redundant attitude sensor complement includes sixteen coarse Sun sensors (CSSs), a digital Sun sensor (DSS), three two-axis inertial reference units (IRUs), and two star trackers (STs). The ACS also makes use of the four guide telescopes included as a part of one of the science instruments. Attitude actuation is performed using four reaction wheels assemblies (RWAs) and eight thrusters, with a single main engine used to provide velocity-change thrust for orbit raising. The attitude control software has five nominal control modes, three wheel-based modes and two thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. This paper details the final overall design of the SDO guidance, navigation, and control (GN&C) system and how it was used in practice during SDO launch, commissioning, and nominal operations. This overview will include the ACS control modes, attitude determination and sensor calibration, the high gain antenna (HGA) calibration, and jitter mitigation operation. The Solar Dynamics Observatory mission is part of the NASA Living With a Star program, which seeks to understand the changing Sun and its effects on the Solar System, life, and society. To this end, the SDO spacecraft carries three Sun-observing instruments: Helioseismic and Magnetic Imager (HMI), led by Stanford University; Atmospheric Imaging Assembly (AIA), led by Lockheed Martin Space and Astrophysics Laboratory; and Extreme Ultraviolet Variability Experiment (EVE), led by the University of Colorado. The basic mission is to observe the Sun for a very high percentage of the 5-year mission (10-year goal) with long stretches of uninterrupted observations and with constant, high-data-rate transmission to a dedicated ground station to be located in White Sands, New Mexico. These goals guided the design of the spacecraft bus that will carry and service the three-instrument payload. Overarching design goals for the bus are geosynchronous orbit, near-constant Sun observations with the ability to fly through eclipses, and constant HGA contact with the dedicated ground station. A three-axis stabilized ACS is needed both to point at the Sun accurately and to keep the roll about the Sun vector correctly positioned with respect to the solar north pole. This roll control is especially important for the magnetic field imaging of HM I. The mission requirements have several general impacts on the ACS design. Both the AIA and HMI instruments are very sensitive to the blurring caused by jitter. Each has an image stabilization system (ISS) with some ability to filter out high frequency motion, but below the bandwidth of the ISS the control system must compensate for disturbances within the ACS bandwidth or avoid exciting jitter at higher frequencies. Within the ACS bandwidth, the control requirement imposed by AIA is to place the center of the solar disk no more than 2 arc sec, 3 , from a body-defined target based on one of the GTs that accompany the instrument. This body-defined target, called the science reference boresight (SRB), was determined from the postlaunch orientation of the GTs by averaging the bounding telescope boresights for pitch to get a pitch SRB coordinate, and by averaging the bounding boresights for yaw toet the yaw SRB coordinate. The location of this SRB in the 0.5-deg field-of-view for each GT then becomes the central target for each telescope; one GT is selected for use as the ACS controlling guide telescope (CGT) at any given time. Fine Sun-pointing is effected based on this SRB for all three instruments when the Sun is within the linear range of the CGT. In addition to limiting jitter, HMI science requires averaging several observations, making the instrument sensitive to low frequency motion that induces differential motion between each observation. This requires the spacecraft attitude to be stable about the roll axis to approximately 10 arcsec over a ten-minute period. Instrument calibrations require that the spacecraft point the SRB up to 2.5 degrees in pitch and yaw away from the center of the Sun, placing the Sun outside the field-of-view of the guide telescopes. In such instances, when the GTs cannot provide the definitive target for the ACS, on-board attitude determination combined with ephemeris prediction of the Sun direction must provide the definitive target. EVE is capable of observing the Sun with less dependence on attitude control. However, the ground data processing needs for calibrations result in the most strict attitude knowledge requirements for the mission: [35,70,70] arcsec, 3 , of knowledge with respect to the center of the solar disk. In addition to driving the ACS sensor selection, the knowledge requirements, which have their effect primarily during Inertial mode calibrations, drive the accuracy requirements for the solar ephemeris. The need to achieve and maintain geosynchronous orbit (GEO) drove the need for high-efficiency propulsive systems and appropriate attitude control. The main engine provided high specific impulse for the maneuvers to attain GEO, while the smaller ACS thrusters managed the disturbance torques of the larger engine and provided the capability for much smaller adjustment burns on orbit. SDO s large solar profile means that solar radiation pressure is a large torque disturbance, and the momentum buildup from this disturbance and the GEO altitude drives the ACS to use thrusters to manage vehicle momentum. The demanding data capture budget for the mission, however, requires SDO to avoid frequent thruster maneuvers, while concerns about on-orbit jitter restrict the maximum desired wheel speeds desired from the RWAs. The plan for on-orbit wheel speed and momentum management will be discussed as well as what is now being done in operation after the jitter environment was characterized. The SDO ACS hardware complement is single-fault tolerant. Two main processors carry virtually identical copies of the command and data handling and ACS software, and two identical attitude control electronics (ACE) boxes carry Coldfire processors with contingency ACS software and other hardware interface cards; the ACE structure allows reaction wheels to be commanded by the Sun-pointing Safehold independent of the Mil Std 1553 data bus. The sixteen Adcole CSSs are grouped into primary and backup sets of eight sensors, each set providing the ability to calculate a sun vector. Each set of eight eyes provides full 4 -steradian coverage. The Adcole DSS comprises an optics head and a separate electronics box providing a 1553 data interface. The electronics box is mounted inside the Faraday cage created by the spacecraft bus module. The DSS head with its 32- deg square FOV is mounted on the instrument module with its boresight along the spacecraft X axis, nearly aligned with the Sun during observations. Adcole has designed the DSS calibration parameters so that the accuracy is 0.24 arcminutes within 10 deg of the boresight, and diminishes to 3 arcminutes as the Sun moves towards the edges of its FOV . This DSS calibration scheme provides higher accuracy attitude determination over the range of the instrument calibration maneuvers.

  8. KSC-2009-4266

    NASA Image and Video Library

    2009-07-27

    CAPE CANAVERAL, Fla. – At the Astrotech Payload Processing Facility in Titusville, Fla., technicians check the Solar Dynamics Observatory after it was lifted from its work stand. The spacecraft is being moved onto a Ransome table that will allow it to be rotated in various directions for access to different areas of the spacecraft. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  9. KSC-2009-4265

    NASA Image and Video Library

    2009-07-27

    CAPE CANAVERAL, Fla. – At the Astrotech Payload Processing Facility in Titusville, Fla., the Solar Dynamics Observatory is lifted from the work stand under the guidance of technicians. The spacecraft is being moved onto a Ransome table that will allow it to be rotated in various directions for access to different areas of the spacecraft. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  10. KSC-2009-4264

    NASA Image and Video Library

    2009-07-27

    CAPE CANAVERAL, Fla. – At the Astrotech Payload Processing Facility in Titusville, Fla., technicians check the clearance as the Solar Dynamics Observatory is lifted from the stand. The spacecraft is being moved onto a Ransome table that will allow it to be rotated in various directions for access to different areas of the spacecraft. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  11. KSC-2009-4262

    NASA Image and Video Library

    2009-07-27

    CAPE CANAVERAL, Fla. – At the Astrotech Payload Processing Facility in Titusville, Fla., the Solar Dynamics Observatory is fitted with a crane to lift it from the work stand. The spacecraft will be moved onto a Ransome table that will allow it to be rotated in various directions for access to different areas of the spacecraft. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  12. Gigantic Rolling Wave Captured on the Sun [hd video

    NASA Image and Video Library

    2017-12-08

    A corona mass ejection (CME) erupted from just around the edge of the sun on May 1, 2013, in a gigantic rolling wave. CMEs can shoot over a billion tons of particles into space at over a million miles per hour. This CME occurred on the sun’s limb and is not headed toward Earth. The video, taken in extreme ultraviolet light by NASA’s Solar Dynamics Observatory (SDO), covers about two and a half hours. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Gigantic Rolling Wave Captured on the Sun

    NASA Image and Video Library

    2017-12-08

    A coronal mass ejection (CME) erupted from just around the edge of the sun on May 1, 2013, in a gigantic rolling wave. CMEs can shoot over a billion tons of particles into space at over a million miles per hour. This CME occurred on the sun’s limb and is not headed toward Earth. The video (seen here: bit.ly/103whUl), taken in extreme ultraviolet light by NASA’s Solar Dynamics Observatory (SDO), covers about two and a half hours. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. KSC-2009-4263

    NASA Image and Video Library

    2009-07-27

    CAPE CANAVERAL, Fla. – At the Astrotech Payload Processing Facility in Titusville, Fla., technicians secure an overhead crane on the Solar Dynamics Observatory . The crane will lift the spacecraft from the work stand and move it onto a Ransome table that will allow it to be rotated in various directions for access to different areas of the spacecraft. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller

  15. Comet ISON Seen Coming and Going

    NASA Image and Video Library

    2013-11-30

    "Timelapse" series of images of comet ISON as viewed by ESA/NASA's Solar and Heliospheric Observatory, or SOHO. This image is a composite, with the sun imaged by NASA's Solar Dynamics Observatory in the center, and SOHO's two coronagraphs showing the solar atmosphere, the corona. The most recent image in this is from 5:30 p.m. EST on Nov. 29, 2013. Continuing a history of surprising behavior, material from Comet ISON appeared on the other side of the sun on the evening on Nov. 28, 2013, despite not having been seen in observations during its closest approach to the sun. The question remains whether it is merely debris from the comet, or if some portion of the comet's nucleus survived, but late-night analysis from scientists with NASA's Comet ISON Observing Campaign suggest that there is at least a small nucleus intact. Image Credit:ESA&NASA/SOHO/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Spectroscopic Diagnostics of the Non-Maxwellian κ-distributions Using SDO/EVE Observations of the 2012 March 7 X-class Flare

    NASA Astrophysics Data System (ADS)

    Dzifčáková, Elena; Zemanová, Alena; Dudík, Jaroslav; Mackovjak, Šimon

    2018-02-01

    Spectroscopic observations made by the Extreme Ultraviolet Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) during the 2012 March 7 X5.4-class flare (SOL2012-03-07T00:07) are analyzed for signatures of the non-Maxwellian κ-distributions. Observed spectra were averaged over 1 minute to increase photon statistics in weaker lines and the pre-flare spectrum was subtracted. Synthetic line intensities for the κ-distributions are calculated using the KAPPA database. We find strong departures (κ ≲ 2) during the early and impulsive phases of the flare, with subsequent thermalization of the flare plasma during the gradual phase. If the temperatures are diagnosed from a single line ratio, the results are strongly dependent on the value of κ. For κ = 2, we find temperatures about a factor of two higher than the commonly used Maxwellian ones. The non-Maxwellian effects could also cause the temperatures diagnosed from line ratios and from the ratio of GOES X-ray channels to be different. Multithermal analysis reveals the plasma to be strongly multithermal at all times with flat DEMs. For lower κ, the {{DEM}}κ are shifted toward higher temperatures. The only parameter that is nearly independent of κ is electron density, where we find log({n}{{e}} [{{cm}}-3]) ≈ 11.5 almost independently of time. We conclude that the non-Maxwellian effects are important and should be taken into account when analyzing solar flare observations, including spectroscopic and imaging ones.

  17. Measurement of Solar Neutrons on 05 March 2012, Using a Fiber-Type Neutron Monitor Onboard the Attached Payload to the ISS

    NASA Astrophysics Data System (ADS)

    Koga, K.; Muraki, Y.; Masuda, S.; Shibata, S.; Matsumoto, H.; Kawano, H.

    2017-08-01

    The solar neutron detector Space Environment Data Acquisition Equipment - Attached Payload (SEDA-FIB) onboard the International Space Station (ISS) detected several events from the solar direction associated with three large solar flares observed on 05 (X1.1), 07 (X5.4), and 09 (M6.3) March 2012. In this study, we focus on the interesting event of 05 March, present the temporal profiles of the neutrons, and discuss the physics that may be related to a possible acceleration scenario for ions above the solar surface. We compare our data with images of the flares obtained by the ultraviolet telescope Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO).

  18. NASA's SDO Shows Images of Significant Solar Flare

    NASA Image and Video Library

    2014-02-25

    Caption: These SDO images from 7:25 p.m. EST on Feb. 24, 2014, show the first moments of an X-class flare in different wavelengths of light -- seen as the bright spot that appears on the left limb of the sun. Hot solar material can be seen hovering above the active region in the sun's atmosphere, the corona. Credit: NASA/SDO More info: The sun emitted a significant solar flare, peaking at 7:49 p.m. EST on Feb. 24, 2014. NASA's Solar Dynamics Observatory, which keeps a constant watch on the sun, captured images of the event. Solar flares are powerful bursts of radiation, appearing as giant flashes of light in the SDO images. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X4.9-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. KSC-2010-1054

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., Boeing spacecraft fueling technicians from Kennedy Space Center prepare the equipment necessary to sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  20. Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO)

    NASA Technical Reports Server (NTRS)

    Schou, J.; Scherrer, P. H.; Bush, R. I.; Wachter, R.; Couvidat, S.; Rabello-Soares, M. C.; Bogart, R. S.; Hoeksema, J. T.; Liu, Y.; Duvall, T. L., Jr.; hide

    2012-01-01

    The Helioseismic and Magnetic Imager (HMI) investigation will study the solar interior using helioseismic techniques as well as the magnetic field near the solar surface. The HMI instrument is part of the Solar Dynamics Observatory (SDO) that was launched on 11 February 2010. The instrument is designed to measure the Doppler shift, intensity, and vector magnetic field at the solar photosphere using the 6173 Fe I absorption line. The instrument consists of a front-window filter, a telescope, a set of wave plates for polarimetry, an image-stabilization system, a blocking filter, a five-stage Lyot filter with one tunable element, two wide-field tunable Michelson interferometers, a pair of 4096(exo 2) pixel cameras with independent shutters, and associated electronics. Each camera takes a full-disk image roughly every 3.75 seconds giving an overall cadence of 45 seconds for the Doppler, intensity, and line-of-sight magnetic-field measurements and a slower cadence for the full vector magnetic field. This article describes the design of the HMI instrument and provides an overview of the pre-launch calibration efforts. Overviews of the investigation, details of the calibrations, data handling, and the science analysis are provided in accompanying articles.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pankaj; Innes, D. E.; Inhester, B., E-mail: pankaj@kasi.re.kr

    We report high resolution observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) of intensity oscillations in a hot, T ∼ 8-10 MK, loop. The AIA images show a large coronal loop that was rapidly heated following plasma ejection from one of the loop's footpoints. A wave-like intensity enhancement, seen very clearly in the 131 and 94 Å channel images, propagated ahead of the ejecta along the loop, and was reflected at the opposite footpoint. The wave reflected four times before fading. It was only seen in the hot, 131 and 94 Å channels. The characteristic period and the decaymore » time of the oscillation were ∼630 and ∼440 s, respectively. The phase speed was about 460-510 km s{sup –1} which roughly matches the sound speed of the loop (430-480 km s{sup –1}). The observed properties of the oscillation are consistent with the observations of Dopper-shift oscillations discovered by the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation and with their interpretation as slow magnetoacoustic waves. We suggest that the impulsive injection of plasma, following reconnection at one of the loop footpoints, led to rapid heating and the propagation of a longitudinal compressive wave along the loop. The wave bounces back and forth a couple of times before fading.« less

  2. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs - Space-Weather HMI Active Region Patches

    NASA Astrophysics Data System (ADS)

    Bobra, M. G.; Sun, X.; Hoeksema, J. T.; Turmon, M.; Liu, Y.; Hayashi, K.; Barnes, G.; Leka, K. D.

    2014-09-01

    A new data product from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patches ( SHARPs) is now available. SDO/HMI is the first space-based instrument to map the full-disk photospheric vector magnetic field with high cadence and continuity. The SHARP data series provide maps in patches that encompass automatically tracked magnetic concentrations for their entire lifetime; map quantities include the photospheric vector magnetic field and its uncertainty, along with Doppler velocity, continuum intensity, and line-of-sight magnetic field. Furthermore, keywords in the SHARP data series provide several parameters that concisely characterize the magnetic-field distribution and its deviation from a potential-field configuration. These indices may be useful for active-region event forecasting and for identifying regions of interest. The indices are calculated per patch and are available on a twelve-minute cadence. Quick-look data are available within approximately three hours of observation; definitive science products are produced approximately five weeks later. SHARP data are available at jsoc.stanford.edu and maps are available in either of two different coordinate systems. This article describes the SHARP data products and presents examples of SHARP data and parameters.

  3. CONVERGING SUPERGRANULAR FLOWS AND THE FORMATION OF CORONAL PLUMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.-M.; Warren, H. P.; Muglach, K., E-mail: yi.wang@nrl.navy.mil, E-mail: harry.warren@nrl.navy.mil, E-mail: karin.muglach@nasa.gov

    Earlier studies have suggested that coronal plumes are energized by magnetic reconnection between unipolar flux concentrations and nearby bipoles, even though magnetograms sometimes show very little minority-polarity flux near the footpoints of plumes. Here we use high-resolution extreme-ultraviolet (EUV) images and magnetograms from the Solar Dynamics Observatory (SDO) to clarify the relationship between plume emission and the underlying photospheric field. We find that plumes form where unipolar network elements inside coronal holes converge to form dense clumps, and fade as the clumps disperse again. The converging flows also carry internetwork fields of both polarities. Although the minority-polarity flux is sometimesmore » barely visible in the magnetograms, the corresponding EUV images almost invariably show loop-like features in the core of the plumes, with the fine structure changing on timescales of minutes or less. We conclude that the SDO observations are consistent with a model in which plume emission originates from interchange reconnection in converging flows, with the plume lifetime being determined by the ∼1 day evolutionary timescale of the supergranular network. Furthermore, the presence of large EUV bright points and/or ephemeral regions is not a necessary precondition for the formation of plumes, which can be energized even by the weak, mixed-polarity internetwork fields swept up by converging flows.« less

  4. HMI Data Driven Magnetohydrodynamic Model Predicted Active Region Photospheric Heating Rates: Their Scale Invariant, Flare Like Power Law Distributions, and Their Possible Association With Flares

    NASA Technical Reports Server (NTRS)

    Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.

    2017-01-01

    There are many flare forecasting models. For an excellent review and comparison of some of them see Barnes et al. (2016). All these models are successful to some degree, but there is a need for better models. We claim the most successful models explicitly or implicitly base their forecasts on various estimates of components of the photospheric current density J, based on observations of the photospheric magnetic field B. However, none of the models we are aware of compute the complete J. We seek to develop a better model based on computing the complete photospheric J. Initial results from this model are presented in this talk. We present a data driven, near photospheric, 3 D, non-force free magnetohydrodynamic (MHD) model that computes time series of the total J, and associated resistive heating rate in each pixel at the photosphere in the neutral line regions (NLRs) of 14 active regions (ARs). The model is driven by time series of B measured by the Helioseismic & Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series of B in every AR pixel. Errors in B due to these periods can be significant.

  5. Filament Eruption Creates 'Canyon of Fire' on the Sun

    NASA Image and Video Library

    2013-10-24

    A magnetic filament of solar material erupted on the sun in late September, breaking the quiet conditions in a spectacular fashion. The 200,000 mile long filament ripped through the sun's atmosphere, the corona, leaving behind what looks like a canyon of fire. The glowing canyon traces the channel where magnetic fields held the filament aloft before the explosion. Visualizers at NASA's Goddard Space Flight Center in Greenbelt, Md. combined two days of satellite data to create a short movie of this gigantic event on the sun: bit.ly/166CncU In reality, the sun is not made of fire, but of something called plasma: particles so hot that their electrons have boiled off, creating a charged gas that is interwoven with magnetic fields. These images were captured on Sept. 29-30, 2013, by NASA's Solar Dynamics Observatory, or SDO, which constantly observes the sun in a variety of wavelengths. Read more/download video: 1.usa.gov/1dnrsjF Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Multi-point Shock and Flux Rope Analysis of Multiple Interplanetary Coronal Mass Ejections around 2010 August 1 in the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Möstl, C.; Farrugia, C. J.; Kilpua, E. K. J.; Jian, L. K.; Liu, Y.; Eastwood, J. P.; Harrison, R. A.; Webb, D. F.; Temmer, M.; Odstrcil, D.; Davies, J. A.; Rollett, T.; Luhmann, J. G.; Nitta, N.; Mulligan, T.; Jensen, E. A.; Forsyth, R.; Lavraud, B.; de Koning, C. A.; Veronig, A. M.; Galvin, A. B.; Zhang, T. L.; Anderson, B. J.

    2012-10-01

    We present multi-point in situ observations of a complex sequence of coronal mass ejections (CMEs) which may serve as a benchmark event for numerical and empirical space weather prediction models. On 2010 August 1, instruments on various space missions, Solar Dynamics Observatory/Solar and Heliospheric Observatory/Solar-TErrestrial-RElations-Observatory (SDO/SOHO/STEREO), monitored several CMEs originating within tens of degrees from the solar disk center. We compare their imprints on four widely separated locations, spanning 120° in heliospheric longitude, with radial distances from the Sun ranging from MESSENGER (0.38 AU) to Venus Express (VEX, at 0.72 AU) to Wind, ACE, and ARTEMIS near Earth and STEREO-B close to 1 AU. Calculating shock and flux rope parameters at each location points to a non-spherical shape of the shock, and shows the global configuration of the interplanetary coronal mass ejections (ICMEs), which have interacted, but do not seem to have merged. VEX and STEREO-B observed similar magnetic flux ropes (MFRs), in contrast to structures at Wind. The geomagnetic storm was intense, reaching two minima in the Dst index (≈ - 100 nT), and was caused by the sheath region behind the shock and one of two observed MFRs. MESSENGER received a glancing blow of the ICMEs, and the events missed STEREO-A entirely. The observations demonstrate how sympathetic solar eruptions may immerse at least 1/3 of the heliosphere in the ecliptic with their distinct plasma and magnetic field signatures. We also emphasize the difficulties in linking the local views derived from single-spacecraft observations to a consistent global picture, pointing to possible alterations from the classical picture of ICMEs.

  7. Investigating the Differential Emission Measure and Energetics of Microflares with Combined SDO/AIA and RHESSI Observations

    NASA Technical Reports Server (NTRS)

    Inglis, A. R.; Christe, S.

    2014-01-01

    An important question in solar physics is whether solar microflares, the smallest currently observable flare events in X-rays, possess the same energetic properties as large flares. Recent surveys have suggested that microflares may be less efficient particle accelerators than large flares, and hence contribute less non-thermal energy, which may have implications for coronal heating mechanisms. We therefore explore the energetic properties of microflares by combining EUV and X-ray measurements. We present forward-fitting differential emission measure (DEM) analysis of 10 microflares. The fitting is constrained by combining, for the first time, high-temperature Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations and flux data from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly (AIA). Two fitting models are tested for the DEM; a Gaussian distribution and a uniform DEM profile. A Gaussian fit proved unable to explain the observations for any of the studied microflares. However, 8 of 10 events studied were reasonably fit by a uniform DEM profile. Hence microflare plasma can be considered to be significantly multi-thermal, and may not be significantly peaked or contain resolvable fine structure, within the uncertainties of the observational instruments. The thermal and non-thermal energy is estimated for each microflare, comparing the energy budget with an isothermal plasma assumption. From the multi-thermal fits the minimum non-thermal energy content was found to average approximately 30% of the estimated thermal energy. By comparison, under an isothermal model the non-thermal and thermal energy estimates were generally comparable. Hence, multi-thermal plasma is an important consideration for solar microflares that substantially alters their thermal and non-thermal energy content.

  8. NASA's SDO Captures Mercury Transit Time-lapses SDO Captures Mercury Transit Time-lapse

    NASA Image and Video Library

    2017-12-08

    Less than once per decade, Mercury passes between the Earth and the sun in a rare astronomical event known as a planetary transit. The 2016 Mercury transit occurred on May 9th, between roughly 7:12 a.m. and 2:42 p.m. EDT. The images in this video are from NASA’s Solar Dynamics Observatory Music: Encompass by Mark Petrie For more info on the Mercury transit go to: www.nasa.gov/transit This video is public domain and may be downloaded at: svs.gsfc.nasa.gov/12235 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Success of Solar Dynamics Observatory (SDO) Education & Public Outreach (E/PO) in Montana

    NASA Astrophysics Data System (ADS)

    Freed, M. S.; Lowder, S. C.; McKenzie, D. E.

    2013-03-01

    The Space Public Outreach Team (SPOT) program at Montana State University (MSU) is the main component of SDO E/PO efforts in Montana. SPOT brings energetic presentations of recent science & NASA missions to students in primary & secondary schools. Presenters are university undergraduates that visit a diverse group of K-12 students from both rural & urban areas of Montana. This program is extremely cost effective, a valuable service-learning experience for undergraduates at MSU and has repeatedly received praise from both teachers and students. A complementary effort for training schoolteachers entitled NASA Education Activity Training (NEAT) is also employed. NEAT illustrates to teachers inexpensive and highly effective methods for demonstrating difficult science concepts to their students. We will highlight the successes and lessons learned from SPOT & NEAT, so that other E/PO programs can use it as a template to further science literacy in our nation's schools.

  10. Helioviewer.org: Enhanced Solar & Heliospheric Data Visualization

    NASA Astrophysics Data System (ADS)

    Stys, J. E.; Ireland, J.; Hughitt, V. K.; Mueller, D.

    2013-12-01

    Helioviewer.org enables the simultaneous exploration of multiple heterogeneous solar data sets. In the latest iteration of this open-source web application, Hinode XRT and Yohkoh SXT join SDO, SOHO, STEREO, and PROBA2 as supported data sources. A newly enhanced user-interface expands the utility of Helioviewer.org by adding annotations backed by data from the Heliospheric Events Knowledgebase (HEK). Helioviewer.org can now overlay solar feature and event data via interactive marker pins, extended regions, data labels, and information panels. An interactive time-line provides enhanced browsing and visualization to image data set coverage and solar events. The addition of a size-of-the-Earth indicator provides a sense of the scale to solar and heliospheric features for education and public outreach purposes. Tight integration with the Virtual Solar Observatory and SDO AIA cutout service enable solar physicists to seamlessly import science data into their SSW/IDL or SunPy/Python data analysis environments.

  11. X-class Flare Erupts from Sun on April 24

    NASA Image and Video Library

    2017-12-08

    The sun emitted a significant solar flare, peaking at 8:27 p.m. EDT on April 24, 2014. Images of the flare were captured by NASA's Solar Dynamics Observatory. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may impact Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an X1.4 flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. Credit: NASA/Goddard/SDO Credit: NASA/SDO

  12. The Compound and Homologous Eruptions from the SAR 11429

    NASA Astrophysics Data System (ADS)

    Dhakal, Suman Kumar; Zhang, Jie

    2016-05-01

    Super Active Regions (SARs) are ARs which shows extremely high rate of solar eruptions. NOAA AR 11429 was a SAR which produced 47 C-Class, 15 M-Class and 3 X-Class flares and 8 CMEs during its passage from the front disk of the Sun. This SAR had anti-Hale and delta-spot magnetic configuration and many sub-regions of magnetic flux emergence. With the aid of multi-wavelength observations of the Solar Dynamics Observatory (SDO), the Solar Terrestrial Relations Observatory (STEREO) and nonlinear force-free model for the magnetic field in the solar corona, we found the existence of many magnetic flux structures (flux bundles) in the corona of the AR. The energy released by these co-existing flux bundles within short time, resulted in compound erutpions from the AR on March 9 and 10, 2012. In the period of 38 hours, after the CME eruption on March 9, the continuous shearing and cancellation and new magnetic flux emergence resulted in another CME on March 10. Both of the events showed the compound nature and the similarity of the foot-points and EUV dimming made these eruptions homologous.

  13. STS-133 Launch Tweetup

    NASA Image and Video Library

    2010-11-01

    Romeo Durscher from Stanford, CA, who goes by @RomeoCH on Twitter, tweets with his Solar Dynamics Observatory (SDO) mascot named "Camilla" by his side during the NASA STS-133 mission tweetup on Monday, Nov., 1, 2010 at the NASA Kennedy Space Center in Cape Canaveral, Fla. NASA Tweetups provide @NASA followers with the opportunity to go behind-the-scenes at NASA facilities and events and speak with scientists, engineers, astronauts and managers. Photo Credit: (NASA/Bill Ingalls)

  14. Terminator 2020: Get Ready for the "Event" of The Next Decade

    NASA Astrophysics Data System (ADS)

    McIntosh, S. W.; Leamon, R. J.; Fan, Y.; Rempel, M.; Dikpati, M.

    2017-12-01

    The abrupt end of solar activity cycles 22 and 23 at the Sun's equator are observed with instruments from the Solar and Heliospheric Observatory (SOHO), Solar Terrestrial Relations Observatory (STEREO), and Solar Dynamics Observatory (SDO). These events are remarkable in that they rapidly trigger the onset of magnetic activity belonging to the next solar cycle at mid-latitudes. The triggered onset of new cycle flux emergence leads to blossoming of the new cycle shortly thereafter. Using small-scale tracers of magnetic solar activity we examine the timing of the cycle ``termination points'' in relation to the excitation of new activity and find that the time taken for the solar plasma to communicate this transition is less than one solar rotation, and possibly as little as a eight days. This very short transition time implies that the mean magnetic field present in the Sun's convection zone is approximately 80 kG. This value may be considerably larger than conventional explorations estimate and therefore, have a significant dynamical impact on the physical appearance of solar activity, and considerably impacting our ability to perform first-principles numerical simulations of the same. Should solar cycle 24 [and 25] continue in their progression we anticipate that a termination event of this type should occur in the 2020 timeframe. PSP will have a front row seat to observe this systemic flip in solar magnetism and the induced changes in our star's radiative and partiuculate output. Such observations may prove to be critical in assessing the Sun's ability to force short term evolution in the Earth's atmosphere.

  15. Magnetic Flux Cancellation as the Trigger Mechanism of Solar Coronal Jets

    NASA Technical Reports Server (NTRS)

    McGlasson, Riley A.; Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2017-01-01

    Coronal jets are narrow eruptions in the solar corona, and are often observed in extreme ultraviolet (EUV) and X-Ray images. They occur everywhere on the solar disk: in active regions, quiet regions, and coronal holes (Raouafi et al. 2016). Recent studies indicate that most coronal jets in quiet regions and coronal holes are driven by the eruption of a minifilament (Sterling et al. 2015), and that this eruption follows flux cancellation at the magnetic neutral line under the pre-eruption minifilament (Panesar et al. 2016). We confirm this picture for a large sample of jets in quiet regions and coronal holes using multithermal extreme ultraviolet (EUV) images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and line-of-sight magnetograms from the SDO/Helioseismic and Magnetic Imager (HMI). We report observations of 60 randomly selected jet eruptions. We have analyzed the magnetic cause of these eruptions and measured the base size and the duration of each jet using routines in SolarSoft IDL. By examining the evolutionary changes in the magnetic field before, during, and after jet eruption, we found that each of these jets resulted from minifilament eruption triggered by flux cancellation at the neutral line. In agreement with the above studies, we found our jets to have an average base diameter of 7600 +/- 2700 km and an average jet-growth duration of 9.0 +/- 3.6 minutes. These observations confirm that minifilament eruption is the driver and that magnetic flux cancellation is the primary trigger mechanism for nearly all coronal hole and quiet region coronal jet eruptions.

  16. VERTICAL KINK OSCILLATION OF A MAGNETIC FLUX ROPE STRUCTURE IN THE SOLAR CORONA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.; Cho, K.-S.; Nakariakov, V. M., E-mail: sjkim@kasi.re.kr

    2014-12-20

    Vertical transverse oscillations of a coronal magnetic rope, observed simultaneously in the 171 Å and 304 Å bandpasses of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO), are detected. The oscillation period is about 700 s and the displacement amplitude is about 1 Mm. The oscillation amplitude remains constant during the observation. Simultaneous observation of the rope in the bandpasses corresponding to the coronal and chromospheric temperatures suggests that it has a multi-thermal structure. Oscillatory patterns in 171 Å and 304 Å are coherent, which indicates that the observed kink oscillation is collective, in which the ropemore » moves as a single entity. We interpret the oscillation as a fundamental standing vertically polarized kink mode of the rope, while the interpretation in terms of a perpendicular fast wave could not be entirely ruled out. In addition, the arcade situated above the rope and seen in the 171 Å bandpass shows an oscillatory motion with the period of about 1000 s.« less

  17. JHelioviewer. Time-dependent 3D visualisation of solar and heliospheric data

    NASA Astrophysics Data System (ADS)

    Müller, D.; Nicula, B.; Felix, S.; Verstringe, F.; Bourgoignie, B.; Csillaghy, A.; Berghmans, D.; Jiggens, P.; García-Ortiz, J. P.; Ireland, J.; Zahniy, S.; Fleck, B.

    2017-09-01

    Context. Solar observatories are providing the world-wide community with a wealth of data, covering wide time ranges (e.g. Solar and Heliospheric Observatory, SOHO), multiple viewpoints (Solar TErrestrial RElations Observatory, STEREO), and returning large amounts of data (Solar Dynamics Observatory, SDO). In particular, the large volume of SDO data presents challenges; the data are available only from a few repositories, and full-disk, full-cadence data for reasonable durations of scientific interest are difficult to download, due to their size and the download rates available to most users. From a scientist's perspective this poses three problems: accessing, browsing, and finding interesting data as efficiently as possible. Aims: To address these challenges, we have developed JHelioviewer, a visualisation tool for solar data based on the JPEG 2000 compression standard and part of the open source ESA/NASA Helioviewer Project. Since the first release of JHelioviewer in 2009, the scientific functionality of the software has been extended significantly, and the objective of this paper is to highlight these improvements. Methods: The JPEG 2000 standard offers useful new features that facilitate the dissemination and analysis of high-resolution image data and offers a solution to the challenge of efficiently browsing petabyte-scale image archives. The JHelioviewer software is open source, platform independent, and extendable via a plug-in architecture. Results: With JHelioviewer, users can visualise the Sun for any time period between September 1991 and today; they can perform basic image processing in real time, track features on the Sun, and interactively overlay magnetic field extrapolations. The software integrates solar event data and a timeline display. Once an interesting event has been identified, science quality data can be accessed for in-depth analysis. As a first step towards supporting science planning of the upcoming Solar Orbiter mission, JHelioviewer offers a virtual camera model that enables users to set the vantage point to the location of a spacecraft or celestial body at any given time.

  18. SDO Spots Extra Energy in the Sun's Corona

    NASA Image and Video Library

    2017-12-08

    NASA release July 27, 2011 These jets, known as spicules, were captured in an SDO image on April 25, 2010. Combined with the energy from ripples in the magnetic field, they may contain enough energy to power the solar wind that streams from the sun toward Earth at 1.5 million miles per hour. Credit: NASA/SDO/AIA Like giant strands of seaweed some 32,000 miles high, material shooting up from the sun sways back and forth with the atmosphere. In the ocean, it's moving water that pulls the seaweed along for a ride; in the sun's corona, magnetic field ripples called Alfvén waves cause the swaying. For years these waves were too difficult to detect directly, but NASA's Solar Dynamics Observatory (SDO) is now able to track the movements of this solar "seaweed" and measure how much energy is carried by the Alfvén waves. The research shows that the waves carry more energy than previously thought, and possibly enough to drive two solar phenomena whose causes remain points of debate: the intense heating of the corona to some 20 times hotter than the sun's surface and solar winds that blast up to 1.5 million miles per hour. "SDO has amazing resolution so you can actually see individual waves," says Scott McIntosh at the National Center for Atmospheric Research in Boulder, Colo. "Now we can see that instead of these waves having about 1000th the energy needed as we previously thought, it has the equivalent of about 1100W light bulb for every 11 square feet of the sun's surface, which is enough to heat the sun's atmosphere and drive the solar wind." To read more go to: www.nasa.gov/mission_pages/sdo/news/alfven-waves.html NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    Like almost all solar observatories, NASA's IRIS can provide images of different layers of the sun's atmosphere, which together create a whole picture of what's happening. This image shows light at a wavelength of 1400 Angstrom, which highlights material some 650 miles above the sun's surface. The vertical line in the middle shows the slit for IRIS's spectrograph, which can separate light into its many wavelengths to provide even more information about the temperature and velocity of material during a flare. Credit: NASA/IRIS/Goddard Space Flight Center -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. KSC-2010-1055

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., Boeing spacecraft fueling technicians from Kennedy Space Center take a sample of the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO, which is protectively covered. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  1. KSC-2010-1053

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., Boeing spacecraft fueling technicians from Kennedy Space Center prepare to sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO, which is protectively covered. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  2. KSC-2010-1050

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., spacecraft fueling technicians from Kennedy Space Center prepare to sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO. From left are Boeing technician Steve Lay and ASTROTECH mission/facility manager Gerard Gleeson. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  3. The Mysterious sdO X-ray Binary BD+37°442

    NASA Astrophysics Data System (ADS)

    Heber, U.; Geier, S.; Irrgang, A.; Schneider, D.; Barbu-Barna, I.; Mereghetti, S.; La Palombara, N.

    2014-04-01

    Pulsed X-ray emission in the luminous, helium-rich sdO BD +37°442 has recently been discovered (La Palombara et al. 2012). It was suggested that the sdO star has a neutron star or white dwarf companion with a spin period of 19.2 s. After HD 49798, which has a massive white dwarf companion spinning at 13.2 s in an 1.55 day orbit, this is only the second O-type subdwarf from which X-ray emission has been detected. We report preliminary results of our ongoing campaign to obtain time-resolved high-resolution spectroscopy using the CAFE instrument at Calar Alto observatory and SARG at the Telescopio Nationale Galileo. Atmospheric parameters were derived via a quantitative NLTE spectral analysis. The line fits hint at an unusually large projected rotation velocity. Therefore it seemed likely that BD +37°442 is a binary similar to HD 49798 and that the orbital period is also similar. The level of X-ray emission from BD +37°442 could be explained by accretion from the sdO wind by a neutron star orbiting at a period of less than ten days. Hence, we embarked on radial velocity monitoring in order to derive the binary parameters of the BD+37°442 system and obtained 41 spectra spread out over several month in 2012. Unlike for HD 49798, no radial velocity variations were found and, hence, there is no dynamical evidence for the existence of a compact companion yet. The origin of the pulsed X-ray emission remains as a mystery.

  4. KSC-2010-1058

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – In the control room at the Astrotech Space Operations facility in Titusville, Fla., test conductors from ASTROTECH and Kennedy Space Center monitor data received from the clean room as technicians sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  5. KSC-2010-1057

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – In the control room at the Astrotech Space Operations facility in Titusville, Fla., a team of Kennedy Space Center spacecraft fueling specialists and engineers monitors data received from the clean room as technicians sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  6. KSC-2010-1056

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., Boeing spacecraft fueling technicians from Kennedy Space Center take a sample of the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO, which is protectively covered. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  7. KSC-2010-1051

    NASA Image and Video Library

    2010-01-07

    CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., spacecraft fueling technicians from Kennedy Space Center prepare to sample the monomethylhydrazine propellant that will be loaded aboard the Solar Dynamics Observatory, or SDO. From left are Boeing technician Steve Lay and ASTROTECH mission/facility manager Gerard Gleeson. The hydrazine fuel is being sampled for purity before it is loaded aboard the spacecraft. The technicians are dressed in self-contained atmospheric protective ensemble suits, or SCAPE suits, as a safety precaution in the unlikely event that any of the highly toxic chemical should escape from the storage tank. The nitrogen tetroxide oxidizer was loaded earlier in the week which is customarily followed by loading of the fuel. Propellant loading is one of the final processing milestones before the spacecraft is encapsulated in its fairing for launch. SDO is the first mission in NASA's Living With a Star Program and is designed to study the causes of solar variability and its impacts on Earth. The spacecraft's long-term measurements will give solar scientists in-depth information to help characterize the interior of the Sun, the Sun's magnetic field, the hot plasma of the solar corona, and the density of radiation that creates the ionosphere of the planets. The information will be used to create better forecasts of space weather needed to protect the aircraft, satellites and astronauts living and working in space. Liftoff aboard an Atlas V rocket is targeted for Feb. 9 from Launch Complex 41 on Cape Canaveral Air Force Station. For information on SDO, visit http://www.nasa.gov/sdo. Photo credit: NASA/Jack Pfaller

  8. Photospheric magnetic fields in six magnetographs

    NASA Astrophysics Data System (ADS)

    Virtanen, Ilpo; Mursula, Kalevi

    2016-10-01

    Photospheric magnetic field has been routinely observed since 1950s, but calibrated digital data exist only since 1970s. The longest uniform data set is measured at the Wilcox Solar Observatory (WSO), covering 40 years from 1976 onwards. However, the WSO instrument operates in very low spatial resolution and suffers from saturation of strong fields. Other, higher resolution instruments like those at NSO Kitt Peak (KP) offer a more detailed view of the solar magnetic field, but several instrument updates make the data less uniform. While the different observatories show a similar large scale structure of the photospheric field, the measured magnetic field intensities differ significantly between the observatories. In this work we study the photospheric magnetic fields and, especially, the scaling of the magnetic field intensity between six independent data sets. We use synoptic maps constructed from the measurements of the photospheric magnetic field at Wilcox Solar Observatory, Mount Wilson Observatory (MWO), Kitt Peak (KP), SOLIS, SOHO/MDI and SDO/HMI. We calculate the harmonic expansion of the magnetic field from all six data sets and investigate the scaling of harmonic coefficients between the observations. We investigate how scaling depends on latitude and field strength, as well as on the solar cycle phase, and what is the effect of polar field filling in KP, SOLIS and MDI. We find that scaling factors based on harmonic coefficients are in general smaller than scaling factors based on pixel-by-pixel comparison or histogram techniques. This indicates that a significant amount of total flux is contained in the high harmonics of the higher resolution observations that are beyond the resolution of WSO. We note that only scaling factors based on harmonic coefficients should be used when using the PFSS-model, since the other methods tend to lead to overestimated values of the magnetic flux. The scaling of the low order harmonic coefficients is typically different than for higher terms. The most problematic harmonic is the axial quadrupole term, which is known to be noisy and to suffer from observational limitations (e.g., the vantage point effect). We did not find significant solar cycle variation in the scaling factors.

  9. SDO FlatSat Facility

    NASA Technical Reports Server (NTRS)

    Amason, David L.

    2008-01-01

    The goal of the Solar Dynamics Observatory (SDO) is to understand and, ideally, predict the solar variations that influence life and society. It's instruments will measure the properties of the Sun and will take hifh definition images of the Sun every few seconds, all day every day. The FlatSat is a high fidelity electrical and functional representation of the SDO spacecraft bus. It is a high fidelity test bed for Integration & Test (I & T), flight software, and flight operations. For I & T purposes FlatSat will be a driver to development and dry run electrical integration procedures, STOL test procedures, page displays, and the command and telemetry database. FlatSat will also serve as a platform for flight software acceptance and systems testing for the flight software system component including the spacecraft main processors, power supply electronics, attitude control electronic, gimbal control electrons and the S-band communications card. FlatSat will also benefit the flight operations team through post-launch flight software code and table update development and verification and verification of new and updated flight operations products. This document highlights the benefits of FlatSat; describes the building of FlatSat; provides FlatSat facility requirements, access roles and responsibilities; and, and discusses FlatSat mechanical and electrical integration and functional testing.

  10. MAGNETIC FLUX CANCELATION AS THE TRIGGER OF SOLAR QUIET-REGION CORONAL JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    We report observations of 10 random on-disk solar quiet-region coronal jets found in high-resolution extreme ultraviolet (EUV) images from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly and having good coverage in magnetograms from the SDO /Helioseismic and Magnetic Imager (HMI). Recent studies show that coronal jets are driven by the eruption of a small-scale filament (called a minifilament ). However, the trigger of these eruptions is still unknown. In the present study, we address the question: what leads to the jet-driving minifilament eruptions? The EUV observations show that there is a cool-transition-region-plasma minifilament present prior to each jetmore » event and the minifilament eruption drives the jet. By examining pre-jet evolutionary changes in the line of sight photospheric magnetic field, we observe that each pre-jet minifilament resides over the neutral line between majority-polarity and minority-polarity patches of magnetic flux. In each of the 10 cases, the opposite-polarity patches approach and merge with each other (flux reduction between 21% and 57%). After several hours, continuous flux cancelation at the neutral line apparently destabilizes the field holding the cool-plasma minifilament to erupt and undergo internal reconnection, and external reconnection with the surrounding coronal field. The external reconnection opens the minifilament field allowing the minifilament material to escape outward, forming part of the jet spire. Thus, we found that each of the 10 jets resulted from eruption of a minifilament following flux cancelation at the neutral line under the minifilament. These observations establish that magnetic flux cancelation is usually the trigger of quiet-region coronal jet eruptions.« less

  11. Observations of quasi-periodic phenomena associated with a large blowout solar jet

    NASA Astrophysics Data System (ADS)

    Morton, R. J.; Srivastava, A. K.; Erdélyi, R.

    2012-06-01

    Aims: A variety of periodic phenomena have been observed in conjunction with large solar jets. We aim to find further evidence for (quasi-)periodic behaviour in solar jets and determine what the periodic behaviour can tell us about the excitation mechanism and formation process of the large solar jet. Methods: Using the 304 Å (He-II), 171 Å (Fe IX), 193 Å (Fe XII/XXIV) and 131 Å (Fe VIII/XXI) filters onboard the Solar Dynamic Observatory (SDO) Atmospheric Imaging Assembly (AIA), we investigate the intensity oscillations associated with a solar jet. Results: Evidence is provided for multiple magnetic reconnection events occurring between a pre-twisted, closed field and open field lines. Components of the jet are seen in multiple SDO/AIA filters covering a wide range of temperatures, suggesting the jet can be classified as a blowout jet. Two bright, elongated features are observed to be co-spatial with the large jet, appearing at the jet's footpoints. Investigation of these features reveal they are defined by multiple plasma ejections. The ejecta display (quasi-)periodic behaviour on timescales of 50 s and have rise velocities of 40-150 km s-1 along the open field lines. Due to the suggestion that the large jet is reconnection-driven and the observed properties of the ejecta, we further propose that these ejecta events are similar to type-II spicules. The bright features also display (quasi)-periodic intensity perturbations on the timescale of 300 s. Possible explanations for the existence of the (quasi-)periodic perturbations in terms of jet dynamics and the response of the transition region are discussed. Movies are available in electronic form at http://www.aanda.org

  12. Automated Identification of Coronal Holes from Synoptic EUV Maps

    NASA Astrophysics Data System (ADS)

    Hamada, Amr; Asikainen, Timo; Virtanen, Ilpo; Mursula, Kalevi

    2018-04-01

    Coronal holes (CHs) are regions of open magnetic field lines in the solar corona and the source of the fast solar wind. Understanding the evolution of coronal holes is critical for solar magnetism as well as for accurate space weather forecasts. We study the extreme ultraviolet (EUV) synoptic maps at three wavelengths (195 Å/193 Å, 171 Å and 304 Å) measured by the Solar and Heliospheric Observatory/Extreme Ultraviolet Imaging Telescope (SOHO/EIT) and the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) instruments. The two datasets are first homogenized by scaling the SDO/AIA data to the SOHO/EIT level by means of histogram equalization. We then develop a novel automated method to identify CHs from these homogenized maps by determining the intensity threshold of CH regions separately for each synoptic map. This is done by identifying the best location and size of an image segment, which optimally contains portions of coronal holes and the surrounding quiet Sun allowing us to detect the momentary intensity threshold. Our method is thus able to adjust itself to the changing scale size of coronal holes and to temporally varying intensities. To make full use of the information in the three wavelengths we construct a composite CH distribution, which is more robust than distributions based on one wavelength. Using the composite CH dataset we discuss the temporal evolution of CHs during the Solar Cycles 23 and 24.

  13. What can He II 304 Å tell us about transient seismic emission from solar flares?

    NASA Astrophysics Data System (ADS)

    Lindsey, C.; Donea, A. C.

    2017-10-01

    After neary 20 years since their discovery by Kosovichev and Zharkova, the mechanics of the release of seismic transients into the solar interior from some flares remain a mystery. Seismically emissive flares invariably show the signatures of intense chromosphere heating consistent with pressure variations sufficient to drive seismic transients commensurate with helioseismic observations-under certain conditions. Magnetic observations show the signatures of apparent magnetic changes, suggesting Lorentz-force transients that could likewise drive seismic transients-similarly subject to certain conditions. But, the diagnostic signatures of both of these prospective drivers are apparent over vast regions from which no significant seismic emission emanates. What distinguishes the source regions of transient seismic emission from the much vaster regions that show the signatures of both transient heating and magnetic variations but are acoustically unproductive? Observations of acoustically active flares in He II 304 Å by the Atomospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO) offer a promising new resource with which to address this question.

  14. Twisting/Swirling Motions during a Prominence Eruption as Seen from SDO/AIA

    NASA Astrophysics Data System (ADS)

    Pant, V.; Datta, A.; Banerjee, D.; Chandrashekhar, K.; Ray, S.

    2018-06-01

    A quiescent prominence was observed at the northwest limb of the Sun using different channels of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. We report and analyze twisting/swirling motions during and after the prominence eruption. We segregate the observed rotational motions into small and large scales. Small-scale rotational motions manifest in the barbs of the prominence, while the large-scale rotation manifests as the roll motion during the prominence eruption. We noticed that both footpoints of the prominence rotate in the counterclockwise direction. We propose that a similar sense of rotation in both footpoints leads to a prominence eruption. The prominence erupted asymmetrically near the southern footpoint, which may be due to an uneven mass distribution and location of the cavity near the southern footpoint. Furthermore, we study the swirling motion of the plasma along different circular paths in the cavity of the prominence after the prominence eruption. The rotational velocities of the plasma moving along different circular paths are estimated to be ∼9–40 km s‑1. These swirling motions can be explained in terms of twisted magnetic field lines in the prominence cavity. Finally we observe the twist built up in the prominence, being carried away by the coronal mass ejection, as seen in the Large Angle Spectrometric Coronagraph on board the Solar and Heliospheric Observatory.

  15. OBSERVATIONS AND MAGNETIC FIELD MODELING OF A SOLAR POLAR CROWN PROMINENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su Yingna; Van Ballegooijen, Adriaan, E-mail: ynsu@head.cfa.harvard.edu

    2012-10-01

    We present observations and magnetic field modeling of the large polar crown prominence that erupted on 2010 December 6. Combination of Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) and STEREO{sub B}ehind/EUVI allows us to see the fine structures of this prominence both at the limb and on the disk. We focus on the structures and dynamics of this prominence before the eruption. This prominence contains two parts: an active region part containing mainly horizontal threads and a quiet-Sun part containing mainly vertical threads. On the northern side of the prominence channel, both AIA and EUVI observe bright features which appearmore » to be the lower legs of loops that go above then join in the filament. Filament materials are observed to frequently eject horizontally from the active region part to the quiet-Sun part. This ejection results in the formation of a dense-column structure (concentration of dark vertical threads) near the border between the active region and the quiet Sun. Using the flux rope insertion method, we create nonlinear force-free field models based on SDO/Helioseismic and Magnetic Imager line-of-sight magnetograms. A key feature of these models is that the flux rope has connections with the surroundings photosphere, so its axial flux varies along the filament path. The height and location of the dips of field lines in our models roughly replicate those of the observed prominence. Comparison between model and observations suggests that the bright features on the northern side of the channel are the lower legs of the field lines that turn into the flux rope. We suggest that plasma may be injected into the prominence along these field lines. Although the models fit the observations quiet well, there are also some interesting differences. For example, the models do not reproduce the observed vertical threads and cannot explain the formation of the dense-column structure.« less

  16. Decay-less kink oscillations in coronal loops

    NASA Astrophysics Data System (ADS)

    Anfinogentov, S.; Nisticò, G.; Nakariakov, V. M.

    2013-12-01

    Context. Kink oscillations of coronal loops in an off-limb active region are detected with the Imaging Assembly Array (AIA) instruments of the Solar Dynamics Observatory (SDO) at 171 Å. Aims: We aim to measure periods and amplitudes of kink oscillations of different loops and to determinate the evolution of the oscillation phase along the oscillating loop. Methods: Oscillating coronal loops were visually identified in the field of view of SDO/AIA and STEREO/EUVI-A: the loop length was derived by three-dimensional analysis. Several slits were taken along the loops to assemble time-distance maps. We identified oscillatory patterns and retrieved periods and amplitudes of the oscillations. We applied the cross-correlation technique to estimate the phase shift between oscillations at different segments of oscillating loops. Results: We found that all analysed loops show low-amplitude undamped transverse oscillations. Oscillation periods of loops in the same active region range from 2.5 to 11 min, and are different for different loops. The displacement amplitude is lower than 1 Mm. The oscillation phase is constant along each analysed loop. The spatial structure of the phase of the oscillations corresponds to the fundamental standing kink mode. We conclude that the observed behaviour is consistent with the empirical model in terms of a damped harmonic resonator affected by a non-resonant continuously operating external force. A movie is available in electronic form at http://www.aanda.org

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, Ryan O.; Fletcher, Lyndsay; Fleck, Bernhard

    In this Letter we report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Ly α (from GOES /EUVS) and Lyman continuum (from Solar Dynamics Observatory ( SDO )/EVE) emission from the 2011 February 15 X-class flare (SOL2011-02-15T01:56) revealed a ∼3 minute period present during the flare’s main phase. The formation temperature of this emission locates this radiation at the flare’s chromospheric footpoints, and similar behavior is found in the SDO /Atmospheric Imaging Assembly 1600 and 1700 Å channels, which are dominated by chromospheric continuum. The implication is thatmore » the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray (HXR) energies (50–100 keV) in Reuven Ramaty High Energy Solar Spectroscopic Imager data we can state that this 3-minute oscillation does not depend on the rate of energization of non-thermal electrons. However, a second period of 120 s found in both HXR and chromospheric lightcurves is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Ly α line may influence the composition and dynamics of planetary atmospheres during periods of high activity.« less

  18. A Statistical Analysis of the Solar Phenomena Associated with Global EUV Waves

    NASA Astrophysics Data System (ADS)

    Long, D. M.; Murphy, P.; Graham, G.; Carley, E. P.; Pérez-Suárez, D.

    2017-12-01

    Solar eruptions are the most spectacular events in our solar system and are associated with many different signatures of energy release including solar flares, coronal mass ejections, global waves, radio emission and accelerated particles. Here, we apply the Coronal Pulse Identification and Tracking Algorithm (CorPITA) to the high-cadence synoptic data provided by the Solar Dynamics Observatory (SDO) to identify and track global waves observed by SDO. 164 of the 362 solar flare events studied (45%) were found to have associated global waves with no waves found for the remaining 198 (55%). A clear linear relationship was found between the median initial velocity and the acceleration of the waves, with faster waves exhibiting a stronger deceleration (consistent with previous results). No clear relationship was found between global waves and type II radio bursts, electrons or protons detected in situ near Earth. While no relationship was found between the wave properties and the associated flare size (with waves produced by flares from B to X-class), more than a quarter of the active regions studied were found to produce more than one wave event. These results suggest that the presence of a global wave in a solar eruption is most likely determined by the structure and connectivity of the erupting active region and the surrounding quiet solar corona rather than by the amount of free energy available within the active region.

  19. Double Photobomb

    NASA Image and Video Library

    2015-09-14

    NASA’s Solar Dynamics Observatory captured this image of Earth and the moon transiting the sun together on Sept. 13, 2015. The edge of Earth, visible near the top of the frame, appears fuzzy because Earth’s atmosphere blocks different amounts of light at different altitudes. On the left, the moon’s edge is perfectly crisp, because it has no atmosphere. This image was taken in extreme ultraviolet wavelengths of 171 angstroms. Though this light is invisible to our eyes, it is typically colorized in gold. Credits: NASA/SDO

  20. MAG4 Versus Alternative Techniques for Forecasting Active-Region Flare Productivity

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ronald L.; Barghouty, Abdulnasser F.; Khazanov, Igor

    2014-01-01

    MAG4 (Magnetogram Forecast), developed originally for NASA/SRAG (Space Radiation Analysis Group), is an automated program that analyzes magnetograms from the HMI (Helioseismic and Magnetic Imager) instrument on NASA SDO (Solar Dynamics Observatory), and automatically converts the rate (or probability) of major flares (M- and X-class), Coronal Mass Ejections (CMEs), and Solar Energetic Particle Events. MAG4 does not forecast that a flare will occur at a particular time in the next 24 or 48 hours; rather the probability of one occurring.

  1. The Use of a Gyroless Wheel-Tach Controller in SDO Safehold Mode

    NASA Technical Reports Server (NTRS)

    Bourkland, Kristin L.; Starin, Scott R.; Mangus, David J.; Starin, Scott (Technical Monitor)

    2005-01-01

    This paper describes the progression of the Safehold mode design on the Solar Dynamics Observatory satellite. Safehold uses coarse Sun sensors and reaction wheel tachometers to keep the spacecraft in a thermally safe and power-positive attitude. The control algorithm is described, and simulation results shown. Specific control issues arose when the spacecraft entered eclipse, and a description of the trade study which added gyroscopes to the mode is included. The paper concludes with the results from the linear and nonlinear stability analysis.

  2. How MAG4 Improves Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Falconer, David; Khazanov, Igor; Barghouty, Nasser

    2013-01-01

    Dangerous space weather is driven by solar flares and Coronal Mass Ejection (CMEs). Forecasting flares and CMEs is the first step to forecasting either dangerous space weather or All Clear. MAG4 (Magnetogram Forecast), developed originally for NASA/SRAG (Space Radiation Analysis Group), is an automated program that analyzes magnetograms from the HMI (Helioseismic and Magnetic Imager) instrument on NASA SDO (Solar Dynamics Observatory), and automatically converts the rate (or probability) of major flares (M- and X-class), Coronal Mass Ejections (CMEs), and Solar Energetic Particle Events.

  3. Decayless low-amplitude kink oscillations: a common phenomenon in the solar corona?

    NASA Astrophysics Data System (ADS)

    Anfinogentov, S. A.; Nakariakov, V. M.; Nisticò, G.

    2015-11-01

    Context. We investigate the decayless regime of coronal kink oscillations recently discovered in the Solar Dynamics Observatory (SDO)/AIA data. In contrast to decaying kink oscillations that are excited by impulsive dynamical processes, this type of transverse oscillations is not connected to any external impulsive impact, such as a flare or coronal mass ejection, and does not show any significant decay. Moreover the amplitude of these decayless oscillations is typically lower than that of decaying oscillations. Aims: The aim of this research is to estimate the prevalence of this phenomenon and its characteristic signatures. Methods: We analysed 21 active regions (NOAA 11637-11657) observed in January 2013 in the 171 Å channel of SDO/AIA. For each active region we inspected six hours of observations, constructing time-distance plots for the slits positioned across pronounced bright loops. The oscillatory patterns in time-distance plots were visually identified and the oscillation periods and amplitudes were measured. We also estimated the length of each oscillating loop. Results: Low-amplitude decayless kink oscillations are found to be present in the majority of the analysed active regions. The oscillation periods lie in the range from 1.5 to 10 min. In two active regions with insufficient observation conditions we did not identify any oscillation patterns. The oscillation periods are found to increase with the length of the oscillating loop. Conclusions: The considered type of coronal oscillations is a common phenomenon in the corona. The established dependence of the oscillation period on the loop length is consistent with their interpretation in terms of standing kink waves. Appendix A is available in electronic form at http://www.aanda.org

  4. Data-driven Model of the ICME Propagation through the Solar Corona and Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Yalim, M. S.; Pogorelov, N.; Singh, T.; Liu, Y.

    2017-12-01

    The solar wind (SW) emerging from the Sun is the main driving mechanism of solar events which may lead to geomagnetic storms that are the primary causes of space weather disturbances that affect the magnetic environment of Earth and may have hazardous effects on the space-borne and ground-based technological systems as well as human health. Therefore, accurate modeling of the SW is very important to understand the underlying mechanisms of such storms.Getting ready for the Parker Solar Probe mission, we have developed a data-driven magnetohydrodynamic (MHD) model of the global solar corona which utilizes characteristic boundary conditions implemented within the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) - a collection of problem oriented routines incorporated into the Chombo adaptive mesh refinement framework developed at Lawrence Berkeley National Laboratory. Our global solar corona model can be driven by both synoptic and synchronic vector magnetogram data obtained by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) and the horizontal velocity data on the photosphere obtained by applying the Differential Affine Velocity Estimatorfor Vector Magnetograms (DAVE4VM) method on the HMI-observed vector magnetic fields.Our CME generation model is based on Gibson-Low-type flux ropes the parameters of which are determined from analysis of observational data from STEREO/SECCHI, SDO/AIA and SOHO/LASCO, and by applying the Graduate Cylindrical Shell model for the flux rope reconstruction.In this study, we will present the results of three-dimensional global simulations of ICME propagation through our characteristically-consistent MHD model of the background SW from the Sun to Earth driven by HMI-observed vector magnetic fields and validate our results using multiple spacecraft data at 1 AU.

  5. Magnetic Flux Cancellation as the Trigger of Solar Coronal Jets

    NASA Astrophysics Data System (ADS)

    McGlasson, R.; Panesar, N. K.; Sterling, A. C.; Moore, R. L.

    2017-12-01

    Coronal jets are narrow eruptions in the solar corona, and are often observed in extreme ultraviolet (EUV) and X-ray images. They occur everywhere on the solar disk: in active regions, quiet regions, and coronal holes (Raouafi et al. 2016). Recent studies indicate that most coronal jets in quiet regions and coronal holes are driven by the eruption of a minifilament (Sterling et al. 2015), and that this eruption follows flux cancellation at the magnetic neutral line under the pre-eruption minifilament (Panesar et al. 2016). We confirm this picture for a large sample of jets in quiet regions and coronal holes using multithermal (304 Å 171 Å, 193 Å, and 211 Å) extreme ultraviolet (EUV) images from the Solar Dynamics Observatory (SDO) /Atmospheric Imaging Assembly (AIA) and line-of-sight magnetograms from the SDO /Helioseismic and Magnetic Imager (HMI). We report observations of 60 randomly selected jet eruptions. We have analyzed the magnetic cause of these eruptions and measured the base size and the duration of each jet using routines in SolarSoft IDL. By examining the evolutionary changes in the magnetic field before, during, and after jet eruption, we found that each of these jets resulted from minifilament eruption triggered by flux cancellation at the neutral line. In agreement with the above studies, we found our jets to have an average base diameter of 7600 ± 2700 km and an average duration of 9.0 ± 3.6 minutes. These observations confirm that minifilament eruption is the driver and magnetic flux cancellation is the primary trigger mechanism for nearly all coronal hole and quiet region coronal jet eruptions.

  6. Formation of a White-Light Jet Within a Quadrupolar Magnetic Configuration

    NASA Astrophysics Data System (ADS)

    Filippov, Boris; Koutchmy, Serge; Tavabi, Ehsan

    2013-08-01

    We analyze multi-wavelength and multi-viewpoint observations of a large-scale event viewed on 7 April 2011, originating from an active-region complex. The activity leads to a white-light jet being formed in the outer corona. The topology and evolution of the coronal structures were imaged in high resolution using the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). In addition, large field-of-view images of the corona were obtained using the Sun Watcher using Active Pixel System detector and Image Processing (SWAP) telescope onboard the PRoject for Onboard Autonomy (PROBA2) microsatellite, providing evidence for the connectivity of the coronal structures with outer coronal features that were imaged with the Large Angle Spectrometric Coronagraph (LASCO) C2 on the S olar and Heliospheric Observatory (SOHO). The data sets reveal an Eiffel-tower type jet configuration extending into a narrow jet in the outer corona. The event starts from the growth of a dark area in the central part of the structure. The darkening was also observed in projection on the disk by the Solar TErrestrial RElations Observatory-Ahead (STEREO-A) spacecraft from a different point of view. We assume that the dark volume in the corona descends from a coronal cavity of a flux rope that moved up higher in the corona but still failed to erupt. The quadrupolar magnetic configuration corresponds to a saddle-like shape of the dark volume and provides a possibility for the plasma to escape along the open field lines into the outer corona, forming the white-light jet.

  7. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    IBIS can focus in on different wavelengths of light, and so reveal different layers at different heights in the sun's lower atmosphere, the chromosphere. This image shows a region slightly higher than the former one. Credit: Lucia Kleint (BAER Institute), Paul Higgins (Trinity College Dublin, Ireland) -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Structure and Dynamics of Quiescent Prominence Eruptions

    NASA Astrophysics Data System (ADS)

    Lu, Muzhou; Su, Y.; Adriaan van Ballegooijen, A.

    2012-05-01

    We present a survey on the fine structure and dynamics of quiescent prominence eruptions observed both on the disk and at the limb. We have identified 45 quiescent prominence eruptions by looking at the SDO (Solar Dynamics Observatory)/AIA (Atmospheric Imaging Assembly) daily movies from April to June in 2011. Among these events, there are 24 symmetric eruptions (coherent loop-like eruptions) and 21 asymmetric eruptions (one footpoint lifts off) as shown by AIA and STEREO/EUVI observations. Vertical filament threads are identified in 10 out of the 45 events, while horizontal threads are observed in almost all eruptions. We find 23 events with twisting/untwisting motions. For 14 selected limb events, we carry out a detailed study of the eruption dynamics using AIA observations at 304 Å. We find that the initial heights of these erupting prominences are located around 50-110 Mm above the limb. The eruptions start from a speed of less than 5 km/s, then increase to several tens km/s in the AIA field of view. The maximum speed of these events is 50 km/s. The acceleration plots show a positive acceleration in the range of 0 to 20 m/s^2. No significant difference is identified in the dynamics of the symmetric and asymmetric eruptions. Acknowledgments. This project is supported by the NASA contract SP02H1701R from LMSAL to Smithsonian Astrophysical Observatory (SAO). M. Lu is supported under the NSF-REU solar physics program at SAO, grant number ATM-0851866.

  9. Improving Soft X-Ray Spectral Irradiance Models for Use Throughout the Solar System

    NASA Astrophysics Data System (ADS)

    Eparvier, F. G.; Thiemann, E.; Woods, T. N.

    2017-12-01

    Understanding the effects of solar variability on planetary atmospheres has been hindered by the lack of accurate models and measurements of the soft x-ray (SXR) spectral irradiance (0-6 nm). Most measurements of the SXR have been broadband and are difficult to interpret due to changing spectral distribution under the pass band of the instruments. Models that use reference spectra for quiet sun, active region, and flaring contributions to irradiance have been made, but with limited success. The recent Miniature X-ray Solar Spectrometer (MinXSS) CubeSat made spectral measurements in the 0.04 - 3 nm range from June 2016 to May 2017, observing the Sun at many different levels of activity. In addition, the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) has observed the Sun since May 2010, in both broad bands (including a band at 0-7 nm) and spectrally resolved (6-105 nm at 0.1 nm resolution). We will present an improved model of the SXR based on new reference spectra from MinXSS and SDO-EVE. The non-flaring portion of the model is driven by broadband SXR measurements for determining activity level and relative contributions of quiet and active sun. Flares are modeled using flare temperatures from the GOES X-Ray Sensors. The improved SXR model can be driven by any sensors that provide a measure of activity level and flare temperature from any vantage point in the solar system. As an example, a version of the model is using the broadband solar irradiance measurements from the MAVEN EUV Monitor at Mars will be presented.

  10. GLOBAL ENERGETICS OF SOLAR FLARES. IV. CORONAL MASS EJECTION ENERGETICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschwanden, Markus J., E-mail: aschwanden@lmsal.com

    2016-11-01

    This study entails the fourth part of a global flare energetics project, in which the mass m {sub cme}, kinetic energy E {sub kin}, and the gravitational potential energy E {sub grav} of coronal mass ejections (CMEs) is measured in 399 M and X-class flare events observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission, using a new method based on the EUV dimming effect. EUV dimming is modeled in terms of a radial adiabatic expansion process, which is fitted to the observed evolution of the total emission measure of the CME source region. The modelmore » derives the evolution of the mean electron density, the emission measure, the bulk plasma expansion velocity, the mass, and the energy in the CME source region. The EUV dimming method is truly complementary to the Thomson scattering method in white light, which probes the CME evolution in the heliosphere at r ≳ 2 R {sub ⊙}, while the EUV dimming method tracks the CME launch in the corona. We compare the CME parameters obtained in white light with the LASCO/C2 coronagraph with those obtained from EUV dimming with the Atmospheric Imaging Assembly onboard the SDO for all identical events in both data sets. We investigate correlations between CME parameters, the relative timing with flare parameters, frequency occurrence distributions, and the energy partition between magnetic, thermal, nonthermal, and CME energies. CME energies are found to be systematically lower than the dissipated magnetic energies, which is consistent with a magnetic origin of CMEs.« less

  11. EVOLUTION OF MAGNETIC FIELD AND ENERGY IN A MAJOR ERUPTIVE ACTIVE REGION BASED ON SDO/HMI OBSERVATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Xudong; Hoeksema, J. Todd; Liu, Yang

    We report the evolution of the magnetic field and its energy in NOAA active region 11158 over five days based on a vector magnetogram series from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO). Fast flux emergence and strong shearing motion led to a quadrupolar sunspot complex that produced several major eruptions, including the first X-class flare of Solar Cycle 24. Extrapolated nonlinear force-free coronal fields show substantial electric current and free energy increase during early flux emergence near a low-lying sigmoidal filament with a sheared kilogauss field in the filament channel. The computed magneticmore » free energy reaches a maximum of {approx}2.6 Multiplication-Sign 10{sup 32} erg, about 50% of which is stored below 6 Mm. It decreases by {approx}0.3 Multiplication-Sign 10{sup 32} erg within 1 hr of the X-class flare, which is likely an underestimation of the actual energy loss. During the flare, the photospheric field changed rapidly: the horizontal field was enhanced by 28% in the core region, becoming more inclined and more parallel to the polarity inversion line. Such change is consistent with the conjectured coronal field 'implosion' and is supported by the coronal loop retraction observed by the Atmospheric Imaging Assembly (AIA). The extrapolated field becomes more 'compact' after the flare, with shorter loops in the core region, probably because of reconnection. The coronal field becomes slightly more sheared in the lowest layer, relaxes faster with height, and is overall less energetic.« less

  12. Space Oddities: The Search For Ephemeral Coronal Holes

    NASA Astrophysics Data System (ADS)

    O'Connor, Rachel E.; Pesnell, W. Dean; Kirk, Michael S.; Karna, Nishu

    2016-10-01

    Ephemeral coronal holes are short-lived, volatile counterparts to equatorial coronal holes. Very little is known about their characteristics and behavior aside from their definition: open, unipolar magnetic field lines resulting in darkened regions of the corona. The first exemplar of this phenomenon was observed by NASA's Solar Dynamics Observatory (SDO) on October 26, 2010, which spurred our search for other occurrences in order to understand the frequency and evolution of these phenomena. To accomplish this, we visually evaluated SDO 211 Å images on a 12-hour cadence between June 2010 and June 2016. Each compact and isolated dim region we encountered was flagged as a potential ephemeral coronal hole for further analysis. This preliminary effort resulted in 149 candidate holes. For further analysis of their characteristics, we applied a strict definition criterion of an ephemeral coronal hole. This criterion was a set of four factors that were created in order to ensure events being observed were isolated, individual events- the candidates had to be dark relative to the surrounding material, not influenced by a nearby eruption, not obviously connected to other coronal hole structures, and their lifetime had to occur completely within the disk crossing. This criterion was designed so that events could be completely analyzed, from beginning to end, to better understand the origins. Application of this criterion eliminated all candidates but 5 of the original 149. True ephemeral coronal holes are rare occurrences, appearing only five times in six years. Future research in this area is needed to both locate additional events and study the underlying driving forces behind these rare phenomena.

  13. Large-amplitude Longitudinal Oscillations Triggered by the Merging of Two Solar Filaments: Observations and Magnetic Field Analysis

    NASA Astrophysics Data System (ADS)

    Luna, M.; Su, Y.; Schmieder, B.; Chandra, R.; Kucera, T. A.

    2017-12-01

    We follow the eruption of two related intermediate filaments observed in Hα (from GONG) and EUV (from Solar Dynamics Observatory SDO/Atmospheric Imaging assembly AIA) and the resulting large-amplitude longitudinal oscillations of the plasma in the filament channels. The events occurred in and around the decayed active region AR12486 on 2016 January 26. Our detailed study of the oscillation reveals that the periods of the oscillations are about one hour. In Hα, the period decreases with time and exhibits strong damping. The analysis of 171 Å images shows that the oscillation has two phases: an initial long-period phase and a subsequent oscillation with a shorter period. In this wavelength, the damping appears weaker than in Hα. The velocity is the largest ever detected in a prominence oscillation, approximately 100 {km} {{{s}}}-1. Using SDO/HMI magnetograms, we reconstruct the magnetic field of the filaments, modeled as flux ropes by using a flux-rope insertion method. Applying seismological techniques, we determine that the radii of curvature of the field lines in which cool plasma is condensed are in the range 75-120 Mm, in agreement with the reconstructed field. In addition, we infer a field strength of ≥7 to 30 Gauss, depending on the electron density assumed, that is also in agreement with the values from the reconstruction (8-20 Gauss). The poloidal flux is zero and the axis flux is on the order of 1020 to 1021 Mx, confirming the high shear existing even in a non-active filament.

  14. Characterizing the Background Corona with SDO/AIA

    NASA Technical Reports Server (NTRS)

    Napier, Kate; Alexander, Caroline; Winebarger, Amy

    2014-01-01

    Characterizing the nature of the solar coronal background would enable scientists to more accurately determine plasma parameters, and may lead to a better understanding of the coronal heating problem. Because scientists study the 3D structure of the Sun in 2D, any line-of-sight includes both foreground and background material, and thus, the issue of background subtraction arises. By investigating the intensity values in and around an active region, using multiple wavelengths collected from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) over an eight-hour period, this project aims to characterize the background as smooth or structured. Different methods were employed to measure the true coronal background and create minimum intensity images. These were then investigated for the presence of structure. The background images created were found to contain long-lived structures, including coronal loops, that were still present in all of the wavelengths, 131, 171, 193, 211, and 335 A. The intensity profiles across the active region indicate that the background is much more structured than previously thought.

  15. The Sun: One Year in One Image

    NASA Image and Video Library

    2017-12-08

    Image released: April 22, 2013 In the three years since it first provided images of the sun in the spring of 2010, NASA’s Solar Dynamics Observatory has had virtually unbroken coverage of the sun's rise toward solar maximum, the peak of solar activity in its regular 11-year cycle. This image is a composite of 25 separate images spanning the period of April 16, 2012, to April 15, 2013. It uses the SDO AIA wavelength of 171 angstroms and reveals the zones on the sun where active regions are most common during this part of the solar cycle. Credit: NASA/GSFC/SDO Learn more about this image. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Using Polar Coronal Hole Area Measurements to Determine the Solar Polar Magnetic Field Reversal in Solar Cycle 24

    NASA Technical Reports Server (NTRS)

    Karna, N.; Webber, S.A. Hess; Pesnell, W.D.

    2014-01-01

    An analysis of solar polar coronal hole (PCH) areas since the launch of the Solar Dynamics Observatory (SDO) shows how the polar regions have evolved during Solar Cycle 24. We present PCH areas from mid-2010 through 2013 using data from the Atmospheric Imager Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) instruments onboard SDO. Our analysis shows that both the northern and southern PCH areas have decreased significantly in size since 2010. Linear fits to the areas derived from the magnetic-field properties indicate that, although the northern hemisphere went through polar-field reversal and reached solar-maximum conditions in mid-2012, the southern hemisphere had not reached solar-maximum conditions in the polar regions by the end of 2013. Our results show that solar-maximum conditions in each hemisphere, as measured by the area of the polar coronal holes and polar magnetic field, will be offset in time.

  17. The sunspot databases of the Debrecen Observatory

    NASA Astrophysics Data System (ADS)

    Baranyi, Tünde; Gyori, Lajos; Ludmány, András

    2015-08-01

    We present the sunspot data bases and online tools available in the Debrecen Heliophysical Observatory: the DPD (Debrecen Photoheliographic Data, 1974 -), the SDD (SOHO/MDI-Debrecen Data, 1996-2010), the HMIDD (SDO/HMI-Debrecen Data, HMIDD, 2010-), the revised version of Greenwich Photoheliographic Data (GPR, 1874-1976) presented together with the Hungarian Historical Solar Drawings (HHSD, 1872-1919). These are the most detailed and reliable documentations of the sunspot activity in the relevant time intervals. They are very useful for studying sunspot group evolution on various time scales from hours to weeks. Time-dependent differences between the available long-term sunspot databases are investigated and cross-calibration factors are determined between them. This work has received funding from the European Community's Seventh Framework Programme (FP7/2012-2015) under grant agreement No. 284461 (eHEROES).

  18. Comprehensive Analysis of the Geoeffective Solar Event of 21 June 2015: Effects on the Magnetosphere, Plasmasphere, and Ionosphere Systems

    NASA Astrophysics Data System (ADS)

    Piersanti, Mirko; Alberti, Tommaso; Bemporad, Alessandro; Berrilli, Francesco; Bruno, Roberto; Capparelli, Vincenzo; Carbone, Vincenzo; Cesaroni, Claudio; Consolini, Giuseppe; Cristaldi, Alice; Del Corpo, Alfredo; Del Moro, Dario; Di Matteo, Simone; Ermolli, Ilaria; Fineschi, Silvano; Giannattasio, Fabio; Giorgi, Fabrizio; Giovannelli, Luca; Guglielmino, Salvatore Luigi; Laurenza, Monica; Lepreti, Fabio; Marcucci, Maria Federica; Martucci, Matteo; Mergè, Matteo; Pezzopane, Michael; Pietropaolo, Ermanno; Romano, Paolo; Sparvoli, Roberta; Spogli, Luca; Stangalini, Marco; Vecchio, Antonio; Vellante, Massimo; Villante, Umberto; Zuccarello, Francesca; Heilig, Balázs; Reda, Jan; Lichtenberger, János

    2017-11-01

    A full-halo coronal mass ejection (CME) left the Sun on 21 June 2015 from active region (AR) NOAA 12371. It encountered Earth on 22 June 2015 and generated a strong geomagnetic storm whose minimum Dst value was -204 nT. The CME was associated with an M2-class flare observed at 01:42 UT, located near disk center (N12 E16). Using satellite data from solar, heliospheric, and magnetospheric missions and ground-based instruments, we performed a comprehensive Sun-to-Earth analysis. In particular, we analyzed the active region evolution using ground-based and satellite instruments (Big Bear Solar Observatory (BBSO), Interface Region Imaging Spectrograph (IRIS), Hinode, Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO), Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), covering Hα, EUV, UV, and X-ray data); the AR magnetograms, using data from SDO/ Helioseismic and Magnetic Imager (HMI); the high-energy particle data, using the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument; and the Rome neutron monitor measurements to assess the effects of the interplanetary perturbation on cosmic-ray intensity. We also evaluated the 1 - 8 Å soft X-ray data and the {˜} 1 MHz type III radio burst time-integrated intensity (or fluence) of the flare in order to predict the associated solar energetic particle (SEP) event using the model developed by Laurenza et al. ( Space Weather 7(4), 2009). In addition, using ground-based observations from lower to higher latitudes ( International Real-time Magnetic Observatory Network (INTERMAGNET) and European Quasi-Meridional Magnetometer Array (EMMA)), we reconstructed the ionospheric current system associated with the geomagnetic sudden impulse (SI). Furthermore, Super Dual Auroral Radar Network (SuperDARN) measurements were used to image the global ionospheric polar convection during the SI and during the principal phases of the geomagnetic storm. In addition, to investigate the influence of the disturbed electric field on the low-latitude ionosphere induced by geomagnetic storms, we focused on the morphology of the crests of the equatorial ionospheric anomaly by the simultaneous use of the Global Navigation Satellite System (GNSS) receivers, ionosondes, and Langmuir probes onboard the Swarm constellation satellites. Moreover, we investigated the dynamics of the plasmasphere during the different phases of the geomagnetic storm by examining the time evolution of the radial profiles of the equatorial plasma mass density derived from field line resonances detected at the EMMA network (1.5 < L < 6.5). Finally, we present the general features of the geomagnetic response to the CME by applying innovative data analysis tools that allow us to investigate the time variation of ground-based observations of the Earth's magnetic field during the associated geomagnetic storm.

  19. Kink-induced full and failed eruptions of two coupled flux tubes of the same filament

    NASA Astrophysics Data System (ADS)

    Dechev, M.; Koleva, K.; Duchlev, P.

    2018-02-01

    In this work, we report results from the study of a filament/prominence eruption on 2014 May 4. This eruption belongs to the class of rarely reported causally linked eruptions of two coupled flux tubes (FTs) of a quiet region filament. We made a comparative analysis based on multiwave observations from Solar Dynamics Observatory (SDO) and Solar Terrestrial Relations Observatory (STEREO) A and B combining the high temporal and spatial data taken from three different viewpoints. The main results of the study are as follows: (1) The source of the eruptive prominence consists of two coupled FTs located near the eastern limb: top-located one (FT1) and bottom-located one (FT2). (2) FT1 and FT2 had the same helicity, i.e. left-handed twist and writhe. Their untwisting motion during eruption suggests that kink instability seems to act. (3) The kinematic evolution of the FT1 suggests a slow successful eruption that was associated with a slow CME. (4) The FT2 exhibited failed kinked eruption with a non-radial propagation followed by its reformation. This eruption was accompanied of apparent mass draining in the legs, flare-ribbons and post-flare EUV arcade.

  20. Image Recognition and Feature Detection in Solar Physics

    NASA Astrophysics Data System (ADS)

    Martens, Petrus C.

    2012-05-01

    The Solar Dynamics Observatory (SDO) data repository will dwarf the archives of all previous solar physics missions put together. NASA recognized early on that the traditional methods of analyzing the data -- solar scientists and grad students in particular analyzing the images by hand -- would simply not work and tasked our Feature Finding Team (FFT) with developing automated feature recognition modules for solar events and phenomena likely to be observed by SDO. Having these metadata available on-line will enable solar scientist to conduct statistical studies involving large sets of events that would be impossible now with traditional means. We have followed a two-track approach in our project: we have been developing some existing task-specific solar feature finding modules to be "pipe-line" ready for the stream of SDO data, plus we are designing a few new modules. Secondly, we took it upon us to develop an entirely new "trainable" module that would be capable of identifying different types of solar phenomena starting from a limited number of user-provided examples. Both approaches are now reaching fruition, and I will show examples and movies with results from several of our feature finding modules. In the second part of my presentation I will focus on our “trainable” module, which is the most innovative in character. First, there is the strong similarity between solar and medical X-ray images with regard to their texture, which has allowed us to apply some advances made in medical image recognition. Second, we have found that there is a strong similarity between the way our trainable module works and the way our brain recognizes images. The brain can quickly recognize similar images from key characteristics, just as our code does. We conclude from that that our approach represents the beginning of a more human-like procedure for computer image recognition.

  1. Investigating On-Orbit Attitude Determination Anomalies for the Solar Dynamics Observatory Mission

    NASA Technical Reports Server (NTRS)

    Vess, Melissa F.; Starin, Scott R.; Chia-Kuo, Alice Liu

    2011-01-01

    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010 from Kennedy Space Center on an Atlas V launch vehicle into a geosynchronous transfer orbit. SDO carries a suite of three scientific instruments, whose observations are intended to promote a more complete understanding of the Sun and its effects on the Earth's environment. After a successful launch, separation, and initial Sun acquisition, the launch and flight operations teams dove into a commissioning campaign that included, among other things, checkout and calibration of the fine attitude sensors and checkout of the Kalman filter (KF) and the spacecraft s inertial pointing and science control modes. In addition, initial calibration of the science instruments was also accomplished. During that process of KF and controller checkout, several interesting observations were noticed and investigated. The SDO fine attitude sensors consist of one Adcole Digital Sun Sensor (DSS), two Galileo Avionica (GA) quaternion-output Star Trackers (STs), and three Kearfott Two-Axis Rate Assemblies (hereafter called inertial reference units, or IRUs). Initial checkout of the fine attitude sensors indicated that all sensors appeared to be functioning properly. Initial calibration maneuvers were planned and executed to update scale factors, drift rate biases, and alignments of the IRUs. After updating the IRU parameters, the KF was initialized and quickly reached convergence. Over the next few hours, it became apparent that there was an oscillation in the sensor residuals and the KF estimation of the IRU bias. A concentrated investigation ensued to determine the cause of the oscillations, their effect on mission requirements, and how to mitigate them. The ensuing analysis determined that the oscillations seen were, in fact, due to an oscillation in the IRU biases. The low frequencies of the oscillations passed through the KF, were well within the controller bandwidth, and therefore the spacecraft was actually following the oscillating biases, resulting in movement of the spacecraft on the order of plus or minus 20 arcsec. Though this level of error met the ACS attitude knowledge requirement of [35, 70, 70] arcsec, 3 sigma, the desire of the ACS and instrument teams was to remove as much of the oscillation as possible. The Kearfott IRUs have an internal temperature controller, designed to maintain the IRU temperature at a constant temperature of approximately 70 C, thus minimizing the change in the bias drift and scale factors of the mechanical gyros. During ground testing of the observatory, it was discovered that the 83-Hz control cycle of the IRU heaters put a tremendous amount of stress on the spacecraft battery. Analysis by the power systems team indicated that the constant charge/discharge on the battery due to the IRU thermal control cycle could potentially limit the life of the battery. After much analysis, the decision was made not to run the internal IRU heaters. Analysis of on orbit data revealed that the oscillations in the IRU bias had a connection to the temperature of the IRU; changes in IRU temperature resulted in changes in the amplitude and period of the IRU biases. Several mitigating solutions were investigated, the result of which was to tune the KF with larger IRU noise assumptions which allows the KF to follow and correct for the time-varying IRU biases.

  2. Flare-induced changes of the photospheric magnetic field in a δ-spot deduced from ground-based observations

    NASA Astrophysics Data System (ADS)

    Gömöry, P.; Balthasar, H.; Kuckein, C.; Koza, J.; Veronig, A. M.; González Manrique, S. J.; Kučera, A.; Schwartz, P.; Hanslmeier, A.

    2017-06-01

    Aims: Changes of the magnetic field and the line-of-sight velocities in the photosphere are being reported for an M-class flare that originated at a δ-spot belonging to active region NOAA 11865. Methods: High-resolution ground-based near-infrared spectropolarimetric observations were acquired simultaneously in two photospheric spectral lines, Fe I 10783 Å and Si I 10786 Å, with the Tenerife Infrared Polarimeter at the Vacuum Tower Telescope (VTT) in Tenerife on 2013 October 15. The observations covered several stages of the M-class flare. Inversions of the full-Stokes vector of both lines were carried out and the results were put into context using (extreme)-ultraviolet filtergrams from the Solar Dynamics Observatory (SDO). Results: The active region showed high flaring activity during the whole observing period. After the M-class flare, the longitudinal magnetic field did not show significant changes along the polarity inversion line (PIL). However, an enhancement of the transverse magnetic field of approximately 550 G was found that bridges the PIL and connects umbrae of opposite polarities in the δ-spot. At the same time, a newly formed system of loops appeared co-spatially in the corona as seen in 171 Å filtergrams of the Atmospheric Imaging Assembly (AIA) on board SDO. However, we cannot exclude that the magnetic connection between the umbrae already existed in the upper atmosphere before the M-class flare and became visible only later when it was filled with hot plasma. The photospheric Doppler velocities show a persistent upflow pattern along the PIL without significant changes due to the flare. Conclusions: The increase of the transverse component of the magnetic field after the flare together with the newly formed loop system in the corona support recent predictions of flare models and flare observations. The movie associated to Figs. 4 and 5 is available at http://www.aanda.org

  3. Combined SDO/AIA, Hinode/XRT and FOXSI-2 microflare observations - DEM analysis and energetics

    NASA Astrophysics Data System (ADS)

    Panchapakesan, S. A.; Glesener, L.; Vievering, J. T.; Ryan, D.; Christe, S.; Inglis, A. R.; Buitrago-Casas, J. C.; Musset, S.; Krucker, S.

    2017-12-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket makes directimaging and spectral observation of the Sun in hard X-rays (HXRs) using highlysensitive focusing HXR optics. The second flight of FOXSI was launchedsuccessfully on 11 December 2014 and observed significant HXR emissions duringmicroflares. Some of these flares showed heating up to severalmillion Kelvin and were visible in the Extreme Ultraviolet (EUV) with the AtmosphericImaging Assembly (SDO/AIA). Spectral observations from FOXSI suggest emission upto 10-12 MK. We utilize SDO/AIA EUV, Hinode/XRT soft X-ray, and FOXSI-2 highenergy X-ray observations to derive the differential emission measure (DEM) ofthe microflares. The AIA and XRT observations provide broad temperaturecoverage but are poorly constrained at the hotter end. We therefore use FOXSI-2to better determine the high temperature component, thus producing a moreconstrained DEM than is possible with typically available observations. We usethis more highly constrained DEM to investigate the energetics of the observedmicroflares.

  4. A Comet's Missing Light

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    On 28 November 2013, comet C/2012 S1 better known as comet ISON should have passed within two solar radii of the Suns surface as it reached perihelion in its orbit. But instead of shining in extreme ultraviolet (EUV) wavelengths as it grazed the solar surface, the comet was never detected by EUV instruments. What happened to comet ISON?Missing EmissionWhen a sungrazing comet passes through the solar corona, it leaves behind a trail of molecules evaporated from its surface. Some of these molecules emit EUV light, which can be detected by instruments on telescopes like the space-based Solar Dynamics Observatory (SDO).Comet ISON, a comet that arrived from deep space and was predicted to graze the Suns corona in November 2013, was expected to cause EUV emission during its close passage. But analysis of the data from multiple telescopes that tracked ISON in EUV including SDO reveals no sign of it at perihelion.In a recent study, Paul Bryans and DeanPesnell, scientists from NCARs High Altitude Observatory and NASA Goddard Space Flight Center, try to determine why ISON didnt display this expected emission.Comparing ISON and LovejoyIn December 2011, another comet dipped into the Suns corona: comet Lovejoy. This image, showingthe orbit Lovejoy took around the Sun, is a composite of SDO images of the pre- and post-perihelion phases of the orbit. Click for a closer look! The dashed part of the curve represents where Lovejoy passed out of view behind the Sun. [Bryans Pesnell 2016]This is not the first time weve watched a sungrazing comet with EUV-detecting telescopes: Comet Lovejoy passed similarly close to the Sun in December 2011. But when Lovejoy grazed the solar corona, it emitted brightly in EUV. So why didnt ISON? Bryans and Pesnell argue that there are two possibilities:the coronal conditions experienced by the two comets were not similar, orthe two comets themselves were not similar.To establish which factor is the most relevant, the authors first demonstrate that both comets experienced very similar radiation fields as they passed perihelion. They also show that the properties of the Suns corona experienced by each comet like its density and magnetic field topology were roughly the same.Bryans and Pesnell argue that, as both comets appear to have encountered similar solar conditions, the most likely explanation for ISONs lack of detectable EUV emission is that it didnt deposit as much material in its orbit as Lovejoy did. They show that this would happen if ISONs nucleus were four times smaller in radius than Lovejoys, spanning a mere 5070 meters in comparison to Lovejoys 200300 meters.This conclusion is consistent with white-light observations of ISON that suggest that, though it might have started out significantly larger than Lovejoy, ISON underwent dramatic mass loss as it approached the Sun. By the time it arrived at perihelion, it was likely no longer large enough to create a strong EUV signal resulting in the non-detection of this elusive comet with SDO and other telescopes.CitationPaul Bryans and W. Dean Pesnell 2016 ApJ 822 77. doi:10.3847/0004-637X/822/2/77

  5. Sun Emits a Mid-Level Flare

    NASA Image and Video Library

    2017-12-08

    Caption: NASA’s Solar Dynamics Observatory (SDO) captured this image of an M5.7 class flare on May 3, 2013 at 1:30 p.m. EDT. This image shows light in the 131 Angstrom wavelength, a wavelength of light that can show material at the very hot temperatures of a solar flare and that is typically colorized in teal. Caption: NASA’s Solar Dynamics Observatory (SDO) captured this image of an M5.7 class flare on May 3, 2013 at 1:30 p.m. EDT. This image shows light in the 131 Angstrom wavelength, a wavelength of light that can show material at the very hot temperatures of a solar flare and that is typically colorized in teal. Credit: NASA/Goddard/SDO --- The sun emitted a mid-level solar flare, peaking at 1:32 pm EDT on May 3, 2013. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This disrupts the radio signals for as long as the flare is ongoing, and the radio blackout for this flare has already subsided. This flare is classified as an M5.7 class flare. M-class flares are the weakest flares that can still cause some space weather effects near Earth. Increased numbers of flares are quite common at the moment, since the sun's normal 11-year activity cycle is ramping up toward solar maximum, which is expected in late 2013. Updates will be provided as they are available on the flare and whether there was an associated coronal mass ejection (CME), another solar phenomenon that can send solar particles into space and affect electronic systems in satellites and on Earth. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. The Solar Dynamics Observatory Education and Public Outreach Program: The First Years

    NASA Astrophysics Data System (ADS)

    Wawro, M.; Drobnes, E.; van Doren, A.; Scherrer, D. K.

    2010-12-01

    The Solar Dynamics Observatory (SDO) Education and Public Outreach (E/PO) program began as a series of discrete programs implemented by each of the instrument teams and has evolved into a well-rounded program with a full suite of national and international programs: student, teacher, and journalist workshops, international research programs, family programs, etc. In this presentation, we provide an overview of our philosophy and approach and of some of the programs developed and implemented prior to launch. In conclusion we will summarize our successes, our failures, our lessons learned, and present guiding principles in the hope that future missions will use our platform as a guide to build upon for future programs, incorporating their own content to enhance the public's appreciation of the science that NASA does and its benefit to society.

  7. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    This close-up of the sunspot underneath the March 29, 2014, flare shows incredible detail. The image was captured by the G-band camera at Sacramento Peak in New Mexico. This instrument can focus on only a small area at once, but provide very high resolution. Ground-based telescope data can be hindered by Earth's atmosphere, which blocks much of the sun's ultraviolet and X-ray light, and causes twinkling even in the light it does allow through. As it happens, the March 29 flare occurred at a time of day in New Mexico that often results in the best viewing times from the ground. Credit: Kevin Reardon (National Solar Observatory), Lucia Kleint (BAER Institute) -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Outburst on the Sun

    NASA Image and Video Library

    2015-03-11

    The Sun blew out a coronal mass ejection along with part of a solar filament over a three-hour period (Feb. 24, 2015). While some of the strands fell back into the Sun, a substantial part raced into space in a bright cloud of particles (as observed by the SOHO spacecraft). The activity was captured in a wavelength of extreme ultraviolet light. Because this occurred way over near the edge of the Sun, it was unlikely to have any effect on Earth. Download high res/video file: sdo.gsfc.nasa.gov/gallery/potw/item/603 Credit: NASA/Solar Dynamics Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. An Analysis of Eruptions Detected by the LMSAL Eruption Patrol

    NASA Astrophysics Data System (ADS)

    Hurlburt, N. E.; Higgins, P. A.; Jaffey, S.

    2014-12-01

    Observations of the solar atmosphere reveals a wide range of real and apparent motions, from small scale jets and spicules to global-scale coronal mass ejections. Identifying and characterizing these motions are essential to advance our understanding the drivers of space weather. Automated and visual identifications are used in identifying CMEs. To date, the precursors to these — eruptions near the solar surface — have been identified primarily by visual inspection. Here we report on an analysis of the eruptions detected by the Eruption Patrol, a data mining module designed to automatically identify eruptions from data collected by Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA). We describe the module and use it both to explore relations with other solar events recorded in the Heliophysics Event Knowledgebase and to identify and access data collected by the Interface Region Imaging Spectrograph (IRIS) and Solar Optical Telescope (SOT) on Hinode for further analysis.

  10. Detection of Three-minute Oscillations in Full-disk Lyα Emission during a Solar Flare

    NASA Astrophysics Data System (ADS)

    Milligan, Ryan O.; Fleck, Bernhard; Ireland, Jack; Fletcher, Lyndsay; Dennis, Brian R.

    2017-10-01

    In this Letter we report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Lyα (from GOES/EUVS) and Lyman continuum (from Solar Dynamics Observatory (SDO)/EVE) emission from the 2011 February 15 X-class flare (SOL2011-02-15T01:56) revealed a ˜3 minute period present during the flare’s main phase. The formation temperature of this emission locates this radiation at the flare’s chromospheric footpoints, and similar behavior is found in the SDO/Atmospheric Imaging Assembly 1600 and 1700 Å channels, which are dominated by chromospheric continuum. The implication is that the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray (HXR) energies (50-100 keV) in Reuven Ramaty High Energy Solar Spectroscopic Imager data we can state that this 3-minute oscillation does not depend on the rate of energization of non-thermal electrons. However, a second period of 120 s found in both HXR and chromospheric lightcurves is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Lyα line may influence the composition and dynamics of planetary atmospheres during periods of high activity.

  11. Development and Parameters of a Non-Self-Similar CME Caused by the Eruption of a Quiescent Prominence

    NASA Astrophysics Data System (ADS)

    Kuzmenko, I. V.; Grechnev, V. V.

    2017-10-01

    The eruption of a large quiescent prominence on 17 August 2013 and an associated coronal mass ejection (CME) were observed from different vantage points by the Solar Dynamics Observatory (SDO), the Solar-Terrestrial Relations Observatory (STEREO), and the Solar and Heliospheric Observatory (SOHO). Screening of the quiet Sun by the prominence produced an isolated negative microwave burst. We estimated the parameters of the erupting prominence from a radio absorption model and measured them from 304 Å images. The variations of the parameters as obtained by these two methods are similar and agree within a factor of two. The CME development was studied from the kinematics of the front and different components of the core and their structural changes. The results were verified using movies in which the CME expansion was compensated for according to the measured kinematics. We found that the CME mass (3.6 × 10^{15} g) was mainly supplied by the prominence (≈ 6 × 10^{15} g), while a considerable part drained back. The mass of the coronal-temperature component did not exceed 10^{15} g. The CME was initiated by the erupting prominence, which constituted its core and remained active. The structural and kinematical changes started in the core and propagated outward. The CME structures continued to form during expansion, which did not become self-similar up to 25 R_{⊙}. The aerodynamic drag was insignificant. The core formed during the CME rise to 4 R_{⊙} and possibly beyond. Some of its components were observed to straighten and stretch outward, indicating the transformation of tangled structures of the core into a simpler flux rope, which grew and filled the cavity as the CME expanded.

  12. Flare Plasma Diagnostics from X-Ray and Ultraviolet Observations

    NASA Astrophysics Data System (ADS)

    Tsap, Yu. T.; Motorina, G. G.

    2017-12-01

    We compare the measured values of emission measure EM and temperature T of coronal flare plasma following the GOES, RHESSI, and SDO/AIA satellite observations for the events of July 4, 5, and 7, 2012, in the NOAA 11515 active region. We show that the values of EM and T can vary widely (up to one order of magnitude for EM) depending on the technical features of instruments and processing technique. The maximum difference has been found to be between RHESSI and SDO/AIA measurements for temperature and between GOES and SDO/AIA measurements for EM. We discuss the pros and cons of the approaches used and the practical effects of the resulting numerical estimates for EM and T.

  13. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north-south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north-south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun's polar regions in general and the polar meridonal flow in particular.

  14. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north ]south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north ]south differences. There was a strong flow in the North while the flow in the South was weaker. With these results, we have a possible solution to the polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun fs polar regions in general and the polar meridional flow in particular

  15. MASS ESTIMATES OF RAPIDLY MOVING PROMINENCE MATERIAL FROM HIGH-CADENCE EUV IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, David R.; Baker, Deborah; Van Driel-Gesztelyi, Lidia, E-mail: d.r.williams@ucl.ac.uk

    We present a new method for determining the column density of erupting filament material using state-of-the-art multi-wavelength imaging data. Much of the prior work on filament/prominence structure can be divided between studies that use a polychromatic approach with targeted campaign observations and those that use synoptic observations, frequently in only one or two wavelengths. The superior time resolution, sensitivity, and near-synchronicity of data from the Solar Dynamics Observatory's Advanced Imaging Assembly allow us to combine these two techniques using photoionization continuum opacity to determine the spatial distribution of hydrogen in filament material. We apply the combined techniques to SDO/AIA observationsmore » of a filament that erupted during the spectacular coronal mass ejection on 2011 June 7. The resulting 'polychromatic opacity imaging' method offers a powerful way to track partially ionized gas as it erupts through the solar atmosphere on a regular basis, without the need for coordinated observations, thereby readily offering regular, realistic mass-distribution estimates for models of these erupting structures.« less

  16. HMI Data Driven Magnetohydrodynamic Model Predicted Active Region Photospheric Heating Rates: Their Scale Invariant, Flare Like Power Law Distributions, and Their Possible Association With Flares

    NASA Technical Reports Server (NTRS)

    Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.

    2017-01-01

    A data driven, near photospheric, 3 D, non-force free magnetohydrodynamic model pre- dicts time series of the complete current density, and the resistive heating rate Q at the photosphere in neutral line regions (NLRs) of 14 active regions (ARs). The model is driven by time series of the magnetic field B observed by the Helioseismic & Magnetic Imager on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series for B in every AR pixel. Errors in B due to these periods can be significant. The number of occurrences N(q) of values of Q > or = q for each AR time series is found to be a scale invariant power law distribution, N(Q) / Q-s, above an AR dependent threshold value of Q, where 0.3952 < or = s < or = 0.5298 with mean and standard deviation of 0.4678 and 0.0454, indicating little variation between ARs. Observations show that the number of occurrences N(E) of coronal flares with a total energy released > or = E obeys the same type of distribution, N(E) / E-S, above an AR dependent threshold value of E, with 0.38 < or approx. S < or approx. 0.60, also with little variation among ARs. Within error margins the ranges of s and S are nearly identical. This strong similarity between N(Q) and N(E) suggests a fundamental connection between the process that drives coronal flares and the process that drives photospheric NLR heating rates in ARs. In addition, results suggest it is plausible that spikes in Q, several orders of magnitude above background values, are correlated with times of the subsequent occurrence of M or X flares.

  17. HMI Data Driven Magnetohydrodynamic Model Predicted Active Region Photospheric Heating Rates: Their Scale Invariant, Flare Like Power Law Distributions, and Their Possible Association With Flares

    NASA Technical Reports Server (NTRS)

    Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.

    2017-01-01

    A data driven, near photospheric, 3 D, non-force free magnetohydrodynamic model predicts time series of the complete current density, and the resistive heating rate Q at the photosphere in neutral line regions (NLRs) of 14 active regions (ARs). The model is driven by time series of the magnetic field B observed by the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series for B in every AR pixel. Errors in B due to these periods can be significant. The number of occurrences N(q) of values of Q > or = q for each AR time series is found to be a scale invariant power law distribution, N(Q) / Q-s, above an AR dependent threshold value of Q, where 0.3952 < or = s < or = 0.5298 with mean and standard deviation of 0.4678 and 0.0454, indicating little variation between ARs. Observations show that the number of occurrences N(E) of coronal flares with a total energy released > or = E obeys the same type of distribution, N(E) / E-S, above an AR dependent threshold value of E, with 0.38 < or approx. S < or approx. 0.60, also with little variation among ARs. Within error margins the ranges of s and S are nearly identical. This strong similarity between N(Q) and N(E) suggests a fundamental connection between the process that drives coronal flares and the process that drives photospheric NLR heating rates in ARs. In addition, results suggest it is plausible that spikes in Q, several orders of magnitude above background values, are correlated with times of the subsequent occurrence of M or X flares.

  18. NASA's SDO Shows Images of Significant Solar Flare

    NASA Image and Video Library

    2017-12-08

    Caption: An X-class solar flare erupted on the left side of the sun on the evening of Feb. 24, 2014. This composite image, captured at 7:59 p.m. EST, shows the sun in X-ray light with wavelengths of both 131 and 171 angstroms. Credit: NASA/SDO More info: The sun emitted a significant solar flare, peaking at 7:49 p.m. EST on Feb. 24, 2014. NASA's Solar Dynamics Observatory, which keeps a constant watch on the sun, captured images of the event. Solar flares are powerful bursts of radiation, appearing as giant flashes of light in the SDO images. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X4.9-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. PREFACE: Eclipse on the Coral Sea: Cycle 24 Ascending

    NASA Astrophysics Data System (ADS)

    Cally, Paul; Erdélyi, Robert; Norton

    2013-06-01

    A total solar eclipse is the most spectacular and awe-inspiring astronomical phenomenon most people will ever see in their lifetimes. Even hardened solar scientists draw inspiration from it. The eclipse with 2 minutes totality in the early morning of 14 November 2012 (local time) drew over 120 solar researchers (and untold thousands of the general public) to the small and picturesque resort town of Palm Cove just north of Cairns in tropical north Queensland, Australia, and they were rewarded when the clouds parted just before totality to reveal a stunning solar display. Eclipse photograph The eclipse was also the catalyst for an unusually broad and exciting conference held in Palm Cove over the week 12--16 November. Eclipse on the Coral Sea: Cycle 24 Ascending served as GONG 2012, LWS/SDO-5, and SOHO 27, indicating how widely it drew on the various sub-communities within solar physics. Indeed, as we neared the end of the ascending phase of the peculiar Solar Cycle 24, it was the perfect time to bring the whole community together to discuss our Sun's errant recent behaviour, especially as Cycle 24 is the first to be fully observed by the Solar Dynamics Observatory (SDO). The whole-Sun perspective was a driving theme of the conference, with the cycle probed from interior (helioseismology), to atmosphere (the various lines observed by the Atmospheric Imaging Assemble (AIA) aboard SDO, the several instruments on Hinode, and other modern observatories), and beyond (CMEs etc). The quality of the presentations was exceptional, and the many speakers are to be commended for pitching their talks to the broad community present. These proceedings draw from the invited and contributed oral presentations and the posters exhibited in Palm Cove. They give an (incomplete) snapshot of the meeting, illustrating its broad vistas. The published contributions are organized along the lines of the conference sessions, as set out in the Contents, leading off with a provocative view of Cycle 24 thus far from Sarbani Basu. Other invited papers presented here include an appreciation of Hinode's view of solar activity as the cycle rises by Toshifumi Shimizu; a first taxonomy of magnetic tornadoes and chromospheric swirls by Sven Wedemeyer {\\it et al}; an analysis of Hinode/EIS observations of transient heating events; a timely re-examination of solar dynamo theory by Paul Charbonneau; an exciting teaser for the solar potential of the Murchison Widefield Array now operating in Western Australia by Steven Tingay {\\it et al}; an overview and critique of the state of nonlinear force-free magnetic field extrapolation theory and practice by Mike Wheatland and Stuart Gilchrist; and a masterful review of atmospheric MHD wave coupling to the Sun's internal p-mode oscillations by Elena Khomenko and Irantzu Calvo Santamaria. The many contributed papers published here are no less exciting. All papers have been refereed to a high standard. The editors thank all the referees, drawn both from conference attendees and the wider community, who have taken their tasks very seriously and provided very detailed and helpful reports. Nearly all contributions have been substantially improved by the process. We must also thank our financial sponsors. Both the Global Oscillations Network Group (GONG) and LWS/SDO were generous in their support, as were the School of Mathematical Sciences and the Monash Centre for Astrophysics (MoCA) at Monash University, Melbourne, and the Centre for Astronomy at James Cook University, Townsville. The Local Organizing Committee and the many students who assisted before and during the conference also deserve high praise for facilitating such a memorable meeting. Paul Cally, Robert Erdélyi and Aimee Norton Conference photograph

  20. Oscillations In Emerging Active Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Garcia, M. A.; Muglach, K.

    2017-12-01

    Active regions (ARs) on the Sun are directly related to space weather phenomena like flares and coronal mass ejections (CMEs). It is well known that both can have impacts not only on Earth, but also on nearby orbits and beyond. Predicting when and where active regions will emerge at the surface of the Sun would strengthen space weather forecasting abilities. In this study, data from the Solar Dynamics Observatory (SDO) are used to produce images of the magnetic field and Doppler Velocity at the photosphere of the Sun. This data is used to study the emergence of ARs at the surface of the Sun. Since global oscillations that travel through the solar interior are modified by the magnetic field, the oscillation patterns in and around ARs should be different from the oscillation patterns in the quiet, non-active Sun. Thus, a change in oscillation patterns can be determined before an AR is visible at the Sun's surface. Using Fast Fourier Transforms, the oscillation patterns can be calculated from the SDO Dopplergrams. Magnetograms provide the time when the magnetic field of the active region reaches the solar surface. Thus, both the calculated oscillation frequencies and power can be compared to the information of an AR's emergence in the magnetograms. In particular, it can be determined if there is any time delay between the change of oscillation power and magnetic field emergence. For this particular AR studied, it was found that the 5-min oscillation power starts to decrease at the time the AR emerges. The 3-min oscillation power also decreases first but increases again a few hours after the start of the emergence. This observation is probably due to 3-min oscillation power halos around the AR and has been observed before. A few hours before the AR starts to emerge, an increase was found in both 5-min and 3-min oscillation power. This effect is promising, however, it has not been observed before and has to be verified with additional observations.

  1. SMALL-SCALE STRUCTURING OF ELLERMAN BOMBS AT THE SOLAR LIMB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, C. J.; Doyle, J. G.; Scullion, E. M.

    2015-01-01

    Ellerman bombs (EBs) have been widely studied in recent years due to their dynamic, explosive nature and apparent links to the underlying photospheric magnetic field implying that they may be formed by magnetic reconnection in the photosphere. Despite a plethora of researches discussing the morphologies of EBs, there has been a limited investigation of how these events appear at the limb, specifically, whether they manifest as vertical extensions away from the disk. In this article, we make use of high-resolution, high-cadence observations of an Active Region at the solar limb, collected by the CRisp Imaging SpectroPolarimeter (CRISP) instrument, to identifymore » EBs and infer their physical properties. The upper atmosphere is also probed using the Solar Dynamic Observatory's Atmospheric Imaging Assembly (SDO/AIA). We analyze 22 EB events evident within these data, finding that 20 appear to follow a parabolic path away from the solar surface at an average speed of 9 km s{sup –1}, extending away from their source by 580 km, before retreating back at a similar speed. These results show strong evidence of vertical motions associated with EBs, possibly explaining the dynamical ''flaring'' (changing in area and intensity) observed in on-disk events. Two in-depth case studies are also presented that highlight the unique dynamical nature of EBs within the lower solar atmosphere. The viewing angle of these observations allows for a direct linkage between these EBs and other small-scale events in the Hα line wings, including a potential flux emergence scenario. The findings presented here suggest that EBs could have a wider-reaching influence on the solar atmosphere than previously thought, as we reveal a direct linkage between EBs and an emerging small-scale loop, and other near-by small-scale explosive events. However, as previous research found, these extensions do not appear to impact upon the Hα line core, and are not observed by the SDO/AIA EUV filters.« less

  2. Shock Formation Height in the Solar Corona Estimated from SDO and Radio Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Nitta, N.

    2011-01-01

    Wave transients at EUV wavelengths and type II radio bursts are good indicators of shock formation in the solar corona. We use recent EUV wave observations from SDO and combine them with metric type II radio data to estimate the height in the corona where the shocks form. We compare the results with those obtained from other methods. We also estimate the shock formation heights independently using white-light observations of coronal mass ejections that ultimately drive the shocks.

  3. Characterizing the True Background Corona with SDO/AIA

    NASA Technical Reports Server (NTRS)

    Napier, Kate; Winebarger, Amy; Alexander, Caroline

    2014-01-01

    Characterizing the nature of the solar coronal background would enable scientists to more accurately determine plasma parameters, and may lead to a better understanding of the coronal heating problem. Because scientists study the 3D structure of the Sun in 2D, any line of sight includes both foreground and background material, and thus, the issue of background subtraction arises. By investigating the intensity values in and around an active region, using multiple wavelengths collected from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) over an eight-hour period, this project aims to characterize the background as smooth or structured. Different methods were employed to measure the true coronal background and create minimum intensity images. These were then investigated for the presence of structure. The background images created were found to contain long-lived structures, including coronal loops, that were still present in all of the wavelengths, 193 Angstroms,171 Angstroms,131 Angstroms, and 211 Angstroms. The intensity profiles across the active region indicate that the background is much more structured than previously thought.

  4. H{α} Surges Aroused by Newly-emerging Satellite Bipolar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Wang, J. F.; Zhou, T. H.; Ji, H. S.

    2013-07-01

    An Hα surge event occurred at AR NOAA 11259 on 2011 July 22. According to the BBSO (Big Bear Solar Observatory) Hα line-center observations, three surges continuously ejected from the same region to the north of the main-sunspot of AR 11259. All of surges ejected along a straight trajectory, and looked like the reversed Eiffel Tower. The first and second surges had the same process. Two bright points firstly appeared to the north of the main-sunspot. After several minutes, a surge appeared between the two bright points, and then rapidly ejected when the two points got most brightness.When the surge reached the maximum height, it disappeared quickly. However, the third surge appeared without bright points, and its height was only half of the others. Compared with SDO/HMI (Solar Dynamics Observatory/Helioseismic and Magnetic Imager) line-of-sight magnetogram, more than one hour before the first surge appeared, a satellite bipolar magnetic field emerged from the surge-ejection region. The newly-emerging positive magnetic flux showed a distinct decrease several minutes earlier than the ejection of the surges. We assumed that the surges was associated with the reconnection between the newly-emerging bipolar magnetic field and the existing (sunspot) magnetic field.

  5. Multi-instrument observations of a failed flare eruption associated with MHD waves in a loop bundle

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Polito, V.; Nakariakov, V. M.; Del Zanna, G.

    2017-04-01

    Context. We present observations of a B7.9-class flare that occurred on the 24th January, 2015, using the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO), the EUV Imaging Spectrometer (EIS) and the X-Ray Telescope of Hinode. The flare triggers the eruption of a dense cool plasma blob as seen in AIA 171 Å, which is unable to completely break out and remains confined within a local bundle of active region loops. During this process, transverse oscillations of the threads are observed. The cool plasma is then observed to descend back to the chromosphere along each loop strand. At the same time, a larger diffuse co-spatial loop observed in the hot wavebands of SDO/AIA and Hinode/XRT is formed, exhibiting periodic intensity variations along its length. Aims: The formation and evolution of magnetohydrodynamic (MHD) waves depend upon the values of the local plasma parameters (e.g. density, temperature and magnetic field), which can hence be inferred by coronal seismology. In this study we aim to assess how the observed MHD modes are affected by the variation of density and temperature. Methods: We combined analysis of EUV/X-ray imaging and spectroscopy using SDO/AIA, Hinode/EIS and XRT. Results: The transverse oscillations of the cool loop threads are interpreted in terms of vertically polarised kink oscillations. The fitting procedure applied to the loop displacement time series gives a period of 3.5 to 4 min, and an amplitude of 5 Mm. The oscillations are strongly damped showing very low quality factor (1.5-2), which is defined as the ratio of the damping time and the oscillation period. The weak variation of the period of the kink wave, which is estimated from the fitting analysis, is in agreement with the density variations due to the presence of the plasma blob inferred from the intensity light curve at 171 Å. The coexisting intensity oscillations along the hot loop are interpreted as a slow MHD wave with a period of 10 min and phase speed of approximately 436 km s-1. Comparison between the fast and slow modes allows for the determination of the Alfvén speed, and consequently magnetic field values. The plasma-β inferred from the analysis is estimated to be approximately 0.1-0.3. Conclusions: We show that the evolution of the detected waves is determined by the temporal variations of the local plasma parameters, caused by the flare heating and the consequent cooling. We apply coronal seismology to both waves obtaining estimates of the background plasma parameters. Movies are available at http://www.aanda.org

  6. Recurrent coronal jets induced by repetitively accumulated electric currents

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Démoulin, P.; Schmieder, B.; Ding, M. D.; Vargas Domínguez, S.; Liu, Y.

    2013-07-01

    Context. Jets of plasma are frequently observed in the solar corona. A self-similar recurrent behavior is observed in a fraction of them. Aims: Jets are thought to be a consequence of magnetic reconnection; however, the physics involved is not fully understood. Therefore, we study some jet observations with unprecedented temporal and spatial resolutions. Methods: The extreme-ultraviolet (EUV) jets were observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory (SDO). The Helioseismic and Magnetic Imager (HMI) on board SDO measured the vector magnetic field, from which we derive the magnetic flux evolution, the photospheric velocity field, and the vertical electric current evolution. The magnetic configuration before the jets is derived by the nonlinear force-free field extrapolation. Results: Three EUV jets recurred in about one hour on 17 September 2010 in the following magnetic polarity of active region 11106. We derive that the jets are above a pair of parasitic magnetic bipoles that are continuously driven by photospheric diverging flows. The interaction drove the buildup of electric currents, which we observed as elongated patterns at the photospheric level. For the first time, the high temporal cadence of the HMI allows the evolution of such small currents to be followed. In the jet region, we found that the integrated absolute current peaks repetitively in phase with the 171 Å flux evolution. The current buildup and its decay are both fast, about ten minutes each, and the current maximum precedes the 171 Å also by about ten minutes. Then, the HMI temporal cadence is marginally fast enough to detect such changes. Conclusions: The photospheric current pattern of the jets is found to be associated with the quasi-separatrix layers deduced from the magnetic extrapolation. From previous theoretical results, the observed diverging flows are expected to continuously build such currents. We conclude that the magnetic reconnection occurs periodically, in the current layer created between the emerging bipoles and the large-scale active region field. The periodic magnetic reconnection induced the observed recurrent coronal jets and the decrease of the vertical electric current magnitude. Two movies are available in electronic form at http://www.aanda.org

  7. Discovery of a new subgroup of sulfur dioxygenases and characterization of sulfur dioxygenases in the sulfur metabolic network of Acidithiobacillus caldus

    PubMed Central

    Pang, Xin; Lin, Jianqiang; Liu, Xiangmei; Wang, Rui; Lin, Jianqun; Chen, Linxu

    2017-01-01

    Acidithiobacillus caldus is a chemolithoautotrophic sulfur-oxidizing bacterium that is widely used for bioleaching processes. Acidithiobacillus spp. are suggested to contain sulfur dioxygenases (SDOs) that facilitate sulfur oxidation. In this study, two putative sdo genes (A5904_0421 and A5904_1112) were detected in the genome of A. caldus MTH-04 by BLASTP searching with the previously identified SDO (A5904_0790). We cloned and expressed these genes, and detected the SDO activity of recombinant protein A5904_0421 by a GSH-dependent in vitro assay. Phylogenetic analysis indicated that A5904_0421and its homologous SDOs, mainly found in autotrophic bacteria, were distantly related to known SDOs and were categorized as a new subgroup of SDOs. The potential functions of genes A5904_0421 (termed sdo1) and A5904_0790 (termed sdo2) were investigated by generating three knockout mutants (Δsdo1, Δsdo2 and Δsdo1&2), two sdo overexpression strains (OE-sdo1 and OE-sdo2) and two sdo complemented strains (Δsdo1/sdo1’ and Δsdo2/sdo2’) of A. caldus MTH-04. Deletion or overexpression of the sdo genes did not obviously affect growth of the bacteria on S0, indicating that the SDOs did not play an essential role in the oxidation of extracellular elemental sulfur in A. caldus. The deletion of sdo1 resulted in complete inhibition of growth on tetrathionate, slight inhibition of growth on thiosulfate and increased GSH-dependent sulfur oxidation activity on S0. Transcriptional analysis revealed a strong correlation between sdo1 and the tetrathionate intermediate pathway. The deletion of sdo2 promoted bacterial growth on tetrathionate and thiosulfate, and overexpression of sdo2 altered gene expression patterns of sulfide:quinone oxidoreductase and rhodanese. Taken together, the results suggest that sdo1 is essential for the survival of A. caldus when tetrathionate is used as the sole energy resource, and sdo2 may also play a role in sulfur metabolism. PMID:28873420

  8. The COronal Solar Magnetism Observatory (COSMO) Large Aperture Coronagraph

    NASA Astrophysics Data System (ADS)

    Tomczyk, Steve; Gallagher, Dennis; Wu, Zhen; Zhang, Haiying; Nelson, Pete; Burkepile, Joan; Kolinksi, Don; Sutherland, Lee

    2013-04-01

    The COSMO is a facility dedicated to observing coronal and chromospheric magnetic fields. It will be located on a mountaintop in the Hawaiian Islands and will replace the current Mauna Loa Solar Observatory (MLSO). COSMO will provide unique observations of the global coronal magnetic fields and its environment to enhance the value of data collected by other observatories on the ground (e.g. SOLIS, BBO NST, Gregor, ATST, EST, Chinese Giant Solar Telescope, NLST, FASR) and in space (e.g. SDO, Hinode, SOHO, GOES, STEREO, Solar-C, Solar Probe+, Solar Orbiter). COSMO will employ a fleet of instruments to cover many aspects of measuring magnetic fields in the solar atmosphere. The dynamics and energy flow in the corona are dominated by magnetic fields. To understand the formation of CMEs, their relation to other forms of solar activity, and their progression out into the solar wind requires measurements of coronal magnetic fields. The large aperture coronagraph, the Chromospheric and Prominence Magnetometer and the K-Coronagraph form the COSMO instrument suite to measure magnetic fields and the polarization brightness of the low corona used to infer electron density. The large aperture coronagraph will employ a 1.5 meter fuse silica singlet lens, birefringent filters, and a spectropolarimeter to cover fields of view of up to 1 degree. It will observe the corona over a wide range of emission lines from 530.3 nm through 1083.0 nm allowing for magnetic field measurements over a wide range of coronal temperatures (e.g. FeXIV at 530.3 nm, Fe X at 637.4 nm, Fe XIII at 1074.7 and 1079.8 nm. These lines are faint and require the very large aperture. NCAR and NSF have provided funding to bring the large aperture coronagraph to a preliminary design review state by the end of 2013. As with all data from Mauna Loa, the data products from COSMO will be available to the community via the Mauna Loa website: http://mlso.hao.ucar.edu

  9. Comparing WSA coronal and solar wind model predictions driven by line-of-sight and vector HMI ADAPT maps

    NASA Astrophysics Data System (ADS)

    Arge, C. N.; Henney, C. J.; Shurkin, K.; Wallace, S.

    2017-12-01

    As the primary input to nearly all coronal models, reliable estimates of the global solar photospheric magnetic field distribution are critical for accurate modeling and understanding of solar and heliospheric magnetic fields. The Air Force Data Assimilative Photospheric flux Transport (ADAPT) model generates synchronic (i.e., globally instantaneous) maps by evolving observed solar magnetic flux using relatively well understood transport processes when measurements are not available and then updating modeled flux with new observations (available from both the Earth and the far-side of the Sun) using data assimilation methods that rigorously take into account model and observational uncertainties. ADAPT is capable of assimilating line-of-sight and vector magnetic field data from all observatory sources including the expected photospheric vector magnetograms from the Polarimetric and Helioseismic Imager (PHI) on the Solar Orbiter, as well as those generated using helioseismic methods. This paper compares Wang-Sheeley-Arge (WSA) coronal and solar wind modeling results at Earth and STEREO A & B using ADAPT input model maps derived from both line-of-site and vector SDO/HMI magnetograms that include methods for incorporating observations of a large, newly emerged (July 2010) far-side active region (AR11087).

  10. Evidence that Gender Differences in Social Dominance Orientation Result from Gendered Self-Stereotyping and Group-Interested Responses to Patriarchy

    ERIC Educational Resources Information Center

    Schmitt, Michael T.; Wirth, James H.

    2009-01-01

    Numerous studies have found that, compared to women, men express higher levels of social dominance orientation (SDO), an individual difference variable reflecting support for unequal, hierarchical relationships between groups. Recent research suggests that the often-observed gender difference in SDO results from processes related to gender group…

  11. Earth Eclipses the Sun

    NASA Image and Video Library

    2017-02-21

    Several times a day for a few days the Earth completely blocked the Sun for about an hour due to NASA's Solar Dynamics Observatory's orbital path (Feb. 15, 2017). The edge of the Earth is not crisp, but kind of fuzzy due to Earth's atmosphere. This frame from a video shows the ending of one such eclipse over -- just seven minutes. The sun is shown in a wavelength of extreme ultraviolet light. These eclipses re-occur about every six months. The Moon blocks SDO's view of the sun on occasion as well. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA21461

  12. Twisting Blob of Plasma

    NASA Image and Video Library

    2017-12-08

    A twisted blob of solar material – a hot, charged gas called plasma – can be seen erupting off the side of the sun on Sept. 26, 2014. The image is from NASA's Solar Dynamics Observatory, focusing in on ionized Helium at 60,000 degrees C. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Force-Free Magnetic Fields Calculated from Automated Tracing of Coronal Loops with AIA/SDO

    NASA Astrophysics Data System (ADS)

    Aschwanden, M. J.

    2013-12-01

    One of the most realistic magnetic field models of the solar corona is a nonlinear force-free field (NLFFF) solution. There exist about a dozen numeric codes that compute NLFFF solutions based on extrapolations of photospheric vector magnetograph data. However, since the photosphere and lower chromosphere is not force-free, a suitable correction has to be applied to the lower boundary condition. Despite of such "pre-processing" corrections, the resulting theoretical magnetic field lines deviate substantially from observed coronal loop geometries. - Here we developed an alternative method that fits an analytical NLFFF approximation to the observed geometry of coronal loops. The 2D coordinates of the geometry of coronal loop structures observed with AIA/SDO are traced with the "Oriented Coronal CUrved Loop Tracing" (OCCULT-2) code, an automated pattern recognition algorithm that has demonstrated the fidelity in loop tracing matching visual perception. A potential magnetic field solution is then derived from a line-of-sight magnetogram observed with HMI/SDO, and an analytical NLFFF approximation is then forward-fitted to the twisted geometry of coronal loops. We demonstrate the performance of this magnetic field modeling method for a number of solar active regions, before and after major flares observed with SDO. The difference of the NLFFF and the potential field energies allows us then to compute the free magnetic energy, which is an upper limit of the energy that is released during a solar flare.

  14. Time-Series Analysis of Supergranule Characterstics at Solar Minimum

    NASA Technical Reports Server (NTRS)

    Williams, Peter E.; Pesnell, W. Dean

    2013-01-01

    Sixty days of Doppler images from the Solar and Heliospheric Observatory (SOHO) / Michelson Doppler Imager (MDI) investigation during the 1996 and 2008 solar minima have been analyzed to show that certain supergranule characteristics (size, size range, and horizontal velocity) exhibit fluctuations of three to five days. Cross-correlating parameters showed a good, positive correlation between supergranulation size and size range, and a moderate, negative correlation between size range and velocity. The size and velocity do exhibit a moderate, negative correlation, but with a small time lag (less than 12 hours). Supergranule sizes during five days of co-temporal data from MDI and the Solar Dynamics Observatory (SDO) / Helioseismic Magnetic Imager (HMI) exhibit similar fluctuations with a high level of correlation between them. This verifies the solar origin of the fluctuations, which cannot be caused by instrumental artifacts according to these observations. Similar fluctuations are also observed in data simulations that model the evolution of the MDI Doppler pattern over a 60-day period. Correlations between the supergranule size and size range time-series derived from the simulated data are similar to those seen in MDI data. A simple toy-model using cumulative, uncorrelated exponential growth and decay patterns at random emergence times produces a time-series similar to the data simulations. The qualitative similarities between the simulated and the observed time-series suggest that the fluctuations arise from stochastic processes occurring within the solar convection zone. This behavior, propagating to surface manifestations of supergranulation, may assist our understanding of magnetic-field-line advection, evolution, and interaction.

  15. Nonlinear force-free field modeling of the solar magnetic carpet and comparison with SDO/HMI and Sunrise/IMAX observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitta, L. P.; Kariyappa, R.; Van Ballegooijen, A. A.

    2014-10-01

    In the quiet solar photosphere, the mixed polarity fields form a magnetic carpet that continuously evolves due to dynamical interaction between the convective motions and magnetic field. This interplay is a viable source to heat the solar atmosphere. In this work, we used the line-of-sight (LOS) magnetograms obtained from the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory, and the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory, as time-dependent lower boundary conditions, to study the evolution of the coronal magnetic field. We use a magneto-frictional relaxation method, including hyperdiffusion, to produce a time series of three-dimensional nonlinearmore » force-free fields from a sequence of photospheric LOS magnetograms. Vertical flows are added up to a height of 0.7 Mm in the modeling to simulate the non-force-freeness at the photosphere-chromosphere layers. Among the derived quantities, we study the spatial and temporal variations of the energy dissipation rate and energy flux. Our results show that the energy deposited in the solar atmosphere is concentrated within 2 Mm of the photosphere and there is not sufficient energy flux at the base of the corona to cover radiative and conductive losses. Possible reasons and implications are discussed. Better observational constraints of the magnetic field in the chromosphere are crucial to understand the role of the magnetic carpet in coronal heating.« less

  16. Features of Microwave Radiation and Magnetographic Characteristics of Solar Active Region NOAA 12242 Before the X1.8 Flare on December 20, 2014

    NASA Astrophysics Data System (ADS)

    Abramov-Maximov, V. E.; Borovik, V. N.; Opeikina, L. V.; Tlatov, A. G.; Yasnov, L. V.

    2017-12-01

    This paper continues the cycle of authors' works on the detection of precursors of large flares (M5 and higher classes) in active regions (ARs) of the Sun by their microwave radiation and magnetographic characteristics. Generalization of the detected precursors of strong flares can be used to develop methods for their prediction. This paper presents an analysis of the development of NOAA AR 12242, in which an X1.8 flare occurred on December 20, 2014. The analysis is based on regular multiazimuth and multiwavelength observations with the RATAN-600 radio telescope in the range 1.65-10 cm with intensity and circular polarization analysis and data from the Solar Dynamics Observatory (SDO). It was found that a new component appeared in the AR microwave radiation two days before the X-flare. It became dominant in the AR the day before the flare and significantly decreased after the flare. The use of multiazimuth observations from RATAN-600 and observations at 1.76 cm from the Nobeyama Radioheliograph made it possible to identify the radio source that appeared before the X-flare with the site of the closest convergence of opposite polarity fields near the neutral line in the AR. It was established that the X-flare occurred 20 h after the total gradient of the magnetic field of the entire region calculated from SDO/HMI data reached its maximum value. Analysis of the evolution of the microwave source that appeared before the X-flare in AR 12242 and comparison of its parameters with the parameters of other components of the AR microwave radiation showed that the new source can be classified as neutral line associated sources (NLSs), which were repeatedly detected by the RATAN-600 and other radio telescopes 1-3 days before the large flares.

  17. What Dominates the Coronal Emission Spectrum During the Cycle of Impulsive Heating and Cooling?

    NASA Technical Reports Server (NTRS)

    Bradshaw, Stephen J.; Klimchuk, James A.

    2011-01-01

    The smoking gun of small-scale, impulsive events heating the solar corona is expected to be the presence of a hot ( > 5 MK) plasma component. Evidence for this has been scarce, but has gradually begun to accumulate due to recent studies designed to constrain the high temperature part of the emission measure distribution. However, the detected hot component is often weaker than models predict and this is due in part to the common modeling assumption that the ionization balance remains in equilibrium. The launch of the latest generation of space-based observing instrumentation aboard Hinode and the Solar Dynamics Observatory (SDO) has brought the matter of the ionization state of the plasma firmly to the forefront. It is timely to consider exactly what emission current instruments would detect when observing a corona heated impulsively on small-scales by nanoflares. Only after we understand the full effects of nonequilibrium ionization can we draw meaningful conclusions about the plasma that is (or is not) present. We have therefore performed a series of hydrodynamic simulations for a variety of different nanoflare properties and initial conditions. Our study has led to several key conclusions. 1. Deviations from equilibrium are greatest for short-duration nanoflares at low initial coronal densities. 2. Hot emission lines are the most affected and are suppressed sometimes to the point of being invisible. 3. The emission detected in all of the SDO-AIA channels is generally dominated by warm, over-dense, cooling plasma. 4. It is difficult not to create coronal loops that emit strongly at 1.5 MK and in the range 2 to 5 MK, which are the most commonly observed kind, for a broad range of nanoflare scenarios. 5. The Fe XV (284.16 ) emission in most of our models is about 10 times brighter than the Ca XVII (192.82 ) emission, consistent with observations. Our overarching conclusion is that small-scale, impulsive heating inducing a nonequilibrium ionization state leads to predictions for observable quantities that are entirely consistent with what is actually observed.

  18. AAVSO Visual Sunspot Observations vs. SDO HMI Sunspot Catalog

    NASA Astrophysics Data System (ADS)

    Howe, R.

    2014-06-01

    (Abstract only) The most important issue with regard to using the SDO HMI data from the National Solar Observatory (NSO, http://www.nso.edu/staff/fwatson/STARA) is that their current model for creating sunspot counts does not split in groups and consequently does not provide a corresponding group count and Wolf number. As it is a different quantity, it cannot be mixed with the data from our sunspot networks. For the AAVSO with about seventy stations contributing each day, adding HMI sunspot data would anyway hardly change the resulting index. Perhaps, the best use of HMI data is for an external validation, by exploiting the fact that HMI provides a series that is rather close to the sunspot number and is acquired completely independently. So, it is unlikely to suffer from the same problems (jumps, biases) at the same time. This validation only works for rather short durations, as the lifetime of space instruments is limited and aging effects are often affecting the data over the mission. In addition, successive instruments have different properties: for example, the NSO model has not managed yet to reconcile the series from MDI and HMI. There is a ~10-15% jump. The first challenge that should be addressed by AAVSO using HMI data is the splitting in groups and deriving group properties. Then, together with the sunspot counts and areas per group, a lot more analyses and diagnostics can be derived (like the selective disappearance of the smallest sunspots?), that can help interpreting trends in the ratio SSN/other solar indices and many other solar effects.

  19. Decaying and decayless transverse oscillations of a coronal loop

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Nakariakov, V. M.; Verwichte, E.

    2013-04-01

    Aims: We investigate kink oscillations of loops observed in an active region with the Atmospheric Imaging Assembly (AIA) instrument on board the Solar Dynamics Observatory (SDO) spacecraft before and after a flare. Methods: The oscillations were depicted and analysed with time-distance maps, extracted from the cuts taken parallel or perpendicular to the loop axis. Moving loops were followed in time with steadily moving slits. The period of oscillations and its time variation were determined by best-fitting harmonic functions. Results: We show that before and well after the occurrence of the flare, the loops experience low-amplitude decayless oscillations. The flare and the coronal mass ejection associated to it trigger large-amplitude oscillations that decay exponentially in time. The periods of the kink oscillations in both regimes (about 240 s) are similar. An empirical model of the phenomenon in terms of a damped linear oscillator excited by a continuous low-amplitude harmonic driver and by an impulsive high-amplitude driver is found to be consistent with the observations. Two movies are available in electronic form at http://www.aanda.org

  20. Automated detection of solar eruptions

    NASA Astrophysics Data System (ADS)

    Hurlburt, N.

    2015-12-01

    Observation of the solar atmosphere reveals a wide range of motions, from small scale jets and spicules to global-scale coronal mass ejections (CMEs). Identifying and characterizing these motions are essential to advancing our understanding of the drivers of space weather. Both automated and visual identifications are currently used in identifying Coronal Mass Ejections. To date, eruptions near the solar surface, which may be precursors to CMEs, have been identified primarily by visual inspection. Here we report on Eruption Patrol (EP): a software module that is designed to automatically identify eruptions from data collected by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (SDO/AIA). We describe the method underlying the module and compare its results to previous identifications found in the Heliophysics Event Knowledgebase. EP identifies eruptions events that are consistent with those found by human annotations, but in a significantly more consistent and quantitative manner. Eruptions are found to be distributed within 15 Mm of the solar surface. They possess peak speeds ranging from 4 to 100 km/s and display a power-law probability distribution over that range. These characteristics are consistent with previous observations of prominences.

  1. Verification of the Solar Dynamics Observatory High Gain Antenna Pointing Algorithm Using Flight Data

    NASA Technical Reports Server (NTRS)

    Bourkland, Kristin L.; Liu, Kuo-Chia

    2011-01-01

    The Solar Dynamics Observatory (SDO), launched in 2010, is a NASA-designed spacecraft built to study the Sun. SDO has tight pointing requirements and instruments that are sensitive to spacecraft jitter. Two High Gain Antennas (HGAs) are used to continuously send science data to a dedicated ground station. Preflight analysis showed that jitter resulting from motion of the HGAs was a cause for concern. Three jitter mitigation techniques were developed and implemented to overcome effects of jitter from different sources. These mitigation techniques include: the random step delay, stagger stepping, and the No Step Request (NSR). During the commissioning phase of the mission, a jitter test was performed onboard the spacecraft, in which various sources of jitter were examined to determine their level of effect on the instruments. During the HGA portion of the test, the jitter amplitudes from the single step of a gimbal were examined, as well as the amplitudes due to the execution of various gimbal rates. The jitter levels were compared with the gimbal jitter allocations for each instrument. The decision was made to consider implementing two of the jitter mitigating techniques on board the spacecraft: stagger stepping and the NSR. Flight data with and without jitter mitigation enabled was examined, and it is shown in this paper that HGA tracking is not negatively impacted with the addition of the jitter mitigation techniques. Additionally, the individual gimbal steps were examined, and it was confirmed that the stagger stepping and NSRs worked as designed. An Image Quality Test was performed to determine the amount of cumulative jitter from the reaction wheels, HGAs, and instruments during various combinations of typical operations. The HGA-induced jitter on the instruments is well within the jitter requirement when the stagger step and NSR mitigation options are enabled.

  2. Pre-flare coronal dimmings

    NASA Astrophysics Data System (ADS)

    Zhang, Q. M.; Su, Y. N.; Ji, H. S.

    2017-02-01

    Context. Coronal dimmings are regions of decreased extreme-ultravoilet (EUV) and/or X-ray (originally Skylab, then Yohkoh/SXT) intensities, which are often associated with flares and coronal mass ejections (CMEs). The large-scale impulsive dimmings have been thoroughly observed and investigated. The pre-flare dimmings before the flare impulsive phase, however, have rarely been studied in detail. Aims: We focus on the pre-flare coronal dimmings. We report our multiwavelength observations of the GOES X1.6 solar flare and the accompanying halo CME that was produced by the eruption of a sigmoidal magnetic flux rope (MFR) in NOAA active region (AR) 12158 on 2014 September 10. Methods: The eruption was observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO). The photospheric line-of-sight magnetograms were observed by the Helioseismic and Magnetic Imager (HMI) on board SDO. The soft X-ray (SXR) fluxes were recorded by the GOES spacecraft. The halo CME was observed by the white-light coronagraphs of the Large Angle Spectroscopic Coronagraph (LASCO) on board SOHO. Results: About 96 min before the onset of the flare/CME, narrow pre-flare coronal dimmings appeared at the two ends of the twisted MFR. They extended very slowly, with their intensities decreasing with time, while their apparent widths (8-9 Mm) continued to be nearly constant. During the impulsive and decay phases of flare, typical fan-like twin dimmings appeared and expanded, with a much larger extent and lower intensities than the pre-flare dimmings. The percentage of the 171 Å intensity decrease reaches 40%. The pre-flare dimmings are most striking in 171, 193, and 211 Å with formation temperatures of 0.6-2.5 MK. The northern part of the pre-flare dimmings could also be recognized in 131 and 335 Å. Conclusions: To our knowledge, this is the first detailed study of pre-flare coronal dimmings; they can be explained by density depletion as a result of the gradual expansion of the coronal loop system surrounding the MFR during the slow rise of the MFR. Movie associated to Fig. 5 is available at http://www.aanda.org

  3. Understanding Coronal Dimming and its Relation to Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Mason, J. P.; Woods, T. N.; Caspi, A.; Hock, R. A.

    2013-12-01

    When extreme ultraviolet (EUV) emitting material in the corona is lost during a coronal mass ejection (CME), the solar spectral irradiance is impacted and these effects are observed in data from the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) and Atmospheric Imaging Assembly (AIA). This process is one of the physical mechanisms that can lead to the observation of 'coronal dimming,' a phenomenon lasting eight hours on average and rarely persisting longer than one day. Other mechanisms that can cause observed dimming include obscuration of bright material (e.g., flare arcade) by dark material (e.g., filament), temperature evolution (e.g., cool plasma being heated causing transient decreases in characteristic emission lines), and propagation of global waves. Each of these processes has a unique spectral signature, which will be explained and exemplified. In particular, the 7 August 2010 M1.0 flare with associated ~870 km/s CME will be analyzed in detail using both AIA and EVE to demonstrate new techniques for isolating dimming due to the CME ('core dimming'). Further analysis will estimate CME mass and velocity using only parameterization of core dimming and compare these estimates to traditionally calculated CME kinetics.

  4. An Observationally Constrained Model of a Flux Rope that Formed in the Solar Corona

    NASA Astrophysics Data System (ADS)

    James, Alexander W.; Valori, Gherardo; Green, Lucie M.; Liu, Yang; Cheung, Mark C. M.; Guo, Yang; van Driel-Gesztelyi, Lidia

    2018-03-01

    Coronal mass ejections (CMEs) are large-scale eruptions of plasma from the coronae of stars. Understanding the plasma processes involved in CME initiation has applications for space weather forecasting and laboratory plasma experiments. James et al. used extreme-ultraviolet (EUV) observations to conclude that a magnetic flux rope formed in the solar corona above NOAA Active Region 11504 before it erupted on 2012 June 14 (SOL2012-06-14). In this work, we use data from the Solar Dynamics Observatory (SDO) to model the coronal magnetic field of the active region one hour prior to eruption using a nonlinear force-free field extrapolation, and find a flux rope reaching a maximum height of 150 Mm above the photosphere. Estimations of the average twist of the strongly asymmetric extrapolated flux rope are between 1.35 and 1.88 turns, depending on the choice of axis, although the erupting structure was not observed to kink. The decay index near the apex of the axis of the extrapolated flux rope is comparable to typical critical values required for the onset of the torus instability, so we suggest that the torus instability drove the eruption.

  5. NASA's Solar Eclipse Composite Image July 11, 2010

    NASA Image and Video Library

    2017-12-08

    Eclipse 2010 Composite A solar eclipse photo (gray and white) from the Williams College Expedition to Easter Island in the South Pacific (July 11, 2010) was embedded with an image of the Sun’s outer corona taken by the Large Angle Spectrometric Coronagraph (LASCO) on the SOHO spacecraft and shown in red false color. LASCO uses a disk to blot out the bright sun and the inner corona so that the faint outer corona can be monitored and studied. Further, the dark silhouette of the moon was covered with an image of the Sun taken in extreme ultraviolet light at about the same time by the Atmospheric Imaging Assembly on Solar Dynamics Observatory (SDO). The composite brings out the correlation of structures in the inner and outer corona. Credits: Williams College Eclipse Expedition -- Jay M. Pasachoff, Muzhou Lu, and Craig Malamut; SOHO’s LASCO image courtesy of NASA/ESA; solar disk image from NASA’s SDO; compositing by Steele Hill, NASA Goddard Space Flight Center. NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  6. Wavelength Comparisons

    NASA Image and Video Library

    2018-04-02

    NASA's Solar Dynamics Observatory ran together three sequences of the sun taken in three different extreme ultraviolet wavelengths to better illustrate how different features that appear in one sequence are difficult if not impossible to see in the others (Mar. 20-21, 2018). In the red sequence (304 Angstroms), we can see very small spicules and some small prominences at the sun's edge, which are not easy to see in the other two sequences. In the second clip (193 Angstroms), we can readily observe the large and dark coronal hole, though it is difficult to make out in the others. In the third clip (171 wavelengths), we can see strands of plasma waving above the surface, especially above the one small, but bright, active region near the right edge. And these are just three of the 10 extreme ultraviolet wavelengths in which SDO images the sun every 12 seconds every day. That's a lot of data and a lot of science. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22360

  7. Macrospicule Jets in On-Disk Coronal Holes

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Sterling, A. C.; Moore, R. L.

    2014-01-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of six jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 A, examine the magnetic field configuration, and postulate the probable trigger mechanism of these events. We recently reported on another jet in the same coronal hole on 2011 February 27, approximately 13:04 Universal Time (Adams et al 2014, Astrophysical Journal, 783: 11); this jet is a previously-unrecognized variety of blowout jet. In this variety, the reconnection bright point is not made by interchange reconnection of initially-closed erupting field in the base of the jet with ambient open field. Instead, there is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field.

  8. SDO Reveals Star-Forming Eruptions

    NASA Image and Video Library

    2015-01-20

    Spectacular eruption: On June 7, 2011, SDO captured this image as a massive eruption lifted an enormous amount of cool, dark material into the corona. Most of that material fell back onto the sun, where the gravitational energy of the fall caused it to heat up to a million degrees and more. Scientists concluded that this event on the sun was a small-scale version of what happens as stars form and collect gases via gravity. Thus, AIA allowed us to study in detail a phenomenon that cannot be observed so closely anywhere else in the universe. Credit: NASA/SDO/AIA/LMSAL Read more: www.nasa.gov/content/goddard/sdo-telescope-collects-its-1... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Solar Demon: near real-time Flare, Dimming and EUV wave monitoring

    NASA Astrophysics Data System (ADS)

    Kraaikamp, Emil; Verbeeck, Cis

    Dimmings and EUV waves have been observed routinely in EUV images since 1996. They are closely associated with coronal mass ejections (CMEs), and therefore provide useful information for early space weather alerts. On the one hand, automatic detection and characterization of dimmings and EUV waves can be used to gain better understanding of the underlying physical mechanisms. On the other hand, every dimming and EUV wave provides extra information on the associated front side CME, and can improve estimates of the geo-effectiveness and arrival time of the CME. Solar Demon has been designed to detect and characterize dimmings, EUV waves, as well as solar flares in near real-time on Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) data. The detection modules are running continuously at the Royal Observatory of Belgium on both quick-look data, as well as synoptic science data. The output of Solar Demon can be accessed in near real-time on the Solar Demon website, and includes images, movies, light curves, and the numerical evolution of several parameters. Solar Demon is the result of collaboration between the FP7 projects AFFECTS and COMESEP. Flare detections of Solar Demon are integrated into the COMESEP alert system. Here we present the Solar Demon detection algorithms and their output. We will show several interesting flare, dimming and EUV wave events, and present general statistics of the detections made so far during solar cycle 24.

  10. Formation of Magnetic Flux Ropes during a Confined Flaring Well before the Onset of a Pair of Major Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Chintzoglou, Georgios; Patsourakos, Spiros; Vourlidas, Angelos

    2015-08-01

    NOAA active region (AR) 11429 was the source of twin super-fast coronal mass ejections (CMEs). The CMEs took place within an hour from each other, with the onset of the first taking place in the beginning of 2012 March 7. This AR fulfills all the requirements for a “super active region” namely, Hale's law incompatibility and a δ-spot magnetic configuration. One of the biggest storms of Solar Cycle 24 to date ({D}{st}=-143 nT) was associated with one of these events. Magnetic flux ropes (MFRs) are twisted magnetic structures in the corona, best seen in ˜10 MK hot plasma emission and are often considered the core of erupting structures. However, their “dormant” existence in the solar atmosphere (i.e., prior to eruptions), is an open question. Aided by multi-wavelength observations by the Solar Dynamics Observatory (SDO) and by the Solar Terrestrial Relations Observatory (STEREO) and a nonlinear force-free model for the coronal magnetic field, our work uncovers two separate, weakly twisted magnetic flux systems which suggest the existence of pre-eruption MFRs that eventually became the seeds of the two CMEs. The MFRs could have been formed during confined (i.e., not leading to major CMEs) flaring and sub-flaring events which took place the day before the two CMEs in the host AR 11429.

  11. Two Types of Long-duration Quasi-static Evolution of Solar Filaments

    NASA Astrophysics Data System (ADS)

    Xing, C.; Li, H. C.; Jiang, B.; Cheng, X.; Ding, M. D.

    2018-04-01

    In this Letter, we investigate the long-duration quasi-static evolution of 12 pre-eruptive filaments (four active region (AR) and eight quiescent filaments), mainly focusing on the evolution of the filament height in 3D and the decay index of the background magnetic field. The filament height in 3D is derived through two-perspective observations of Solar Dynamics Observatory (SDO) and Solar TErrestrial RElations Observatory (STEREO). The coronal magnetic field is reconstructed using the potential field source surface model. A new finding is that the filaments we studied show two types of long-duration evolution: one type comprises a long-duration static phase and a short, slow rise phase with a duration of less than 12 hr and a speed of 0.1–0.7 km s‑1, while the other one only presents a slow rise phase but with an extremely long duration of more than 60 hr and a smaller speed of 0.01–0.2 km s‑1. At the moment approaching the eruption, the decay index of the background magnetic field at the filament height is similar for both AR and quiescent filaments. The average value and upper limit are ∼0.9 and ∼1.4, close to the critical index of torus instability. Moreover, the filament height and background magnetic field strength are also found to be linearly and exponentially related with the filament length, respectively.

  12. HOMOLOGOUS JET-DRIVEN CORONAL MASS EJECTIONS FROM SOLAR ACTIVE REGION 12192

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L., E-mail: navdeep.k.panesar@nasa.gov

    We report observations of homologous coronal jets and their coronal mass ejections (CMEs) observed by instruments onboard the Solar Dynamics Observatory (SDO) and the Solar and Heliospheric Observatory (SOHO) spacecraft. The homologous jets originated from a location with emerging and canceling magnetic field at the southeastern edge of the giant active region (AR) of 2014 October, NOAA 12192. This AR produced in its interior many non-jet major flare eruptions (X- and M- class) that made no CME. During October 20 to 27, in contrast to the major flare eruptions in the interior, six of the homologous jets from the edgemore » resulted in CMEs. Each jet-driven CME (∼200–300 km s{sup −1}) was slower-moving than most CMEs, with angular widths (20°–50°) comparable to that of the base of a coronal streamer straddling the AR and were of the “streamer-puff” variety, whereby the preexisting streamer was transiently inflated but not destroyed by the passage of the CME. Much of the transition-region-temperature plasma in the CME-producing jets escaped from the Sun, whereas relatively more of the transition-region plasma in non-CME-producing jets fell back to the solar surface. Also, the CME-producing jets tended to be faster and longer-lasting than the non-CME-producing jets. Our observations imply that each jet and CME resulted from reconnection opening of twisted field that erupted from the jet base and that the erupting field did not become a plasmoid as previously envisioned for streamer-puff CMEs, but instead the jet-guiding streamer-base loop was blown out by the loop’s twist from the reconnection.« less

  13. An extreme ultraviolet wave associated with a failed eruption observed by the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Zheng, R.; Jiang, Y.; Yang, J.; Bi, Y.; Hong, J.; Yang, B.; Yang, D.

    2012-05-01

    Aims: Taking advantage of the high temporal and spatial resolution of the Solar Dynamics Observatory (SDO) observations, we present an extreme ultraviolet (EUV) wave associated with a failed filament eruption that generated no coronal mass ejection (CME) on 2011 March 1. We aim at understanding the nature and origin of this EUV wave. Methods: Combining the high-quality observations in the photosphere, the chromosphere, and the corona, we studied the characteristics of the wave and its relations to the associated eruption. Results: The event occurred at an ephemeral region near a small active region. The continuous magnetic flux cancelation in the ephemeral region produced pre-eruption brightenings and two EUV jets, and excited the filament eruption, accompanying it with a microflare. After the eruption, the filament material appeared far from the eruption center, and the ambient loops seemed to be intact. It was evident that the filament eruption had failed and was not associated with a CME. The wave happened just after the north jet arrived, and apparently emanated ahead of the north jet, far from the eruption center. The wave propagated at nearly constant velocities in the range of 260-350 km s-1, with a slight negative acceleration in the last phase. Remarkably, the wave continued to propagate, and a loop in its passage was intact when wave and loop met. Conclusions: Our analysis confirms that the EUV wave is a true wave, which we interpret as a fast-mode wave. In addition, the close temporal and spatial relationship between the wave and the jet provides evidence that the wave was likely triggered by the jet when the CME failed to happen. Three movies are available in electronic form at http://www.aanda.org

  14. Comparison of Helioseismic Far-Side Active Region Detections with STEREO Far-Side EUV Observations of Solar Activity

    NASA Astrophysics Data System (ADS)

    Liewer, P. C.; Qiu, J.; Lindsey, C.

    2017-10-01

    Seismic maps of the Sun's far hemisphere, computed from Doppler data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) are now being used routinely to detect strong magnetic regions on the far side of the Sun (http://jsoc.stanford.edu/data/farside/). To test the reliability of this technique, the helioseismically inferred active region detections are compared with far-side observations of solar activity from the Solar TErrestrial RElations Observatory (STEREO), using brightness in extreme-ultraviolet light (EUV) as a proxy for magnetic fields. Two approaches are used to analyze nine months of STEREO and HMI data. In the first approach, we determine whether new large east-limb active regions are detected seismically on the far side before they appear Earth side and study how the detectability of these regions relates to their EUV intensity. We find that while there is a range of EUV intensities for which far-side regions may or may not be detected seismically, there appears to be an intensity level above which they are almost always detected and an intensity level below which they are never detected. In the second approach, we analyze concurrent extreme-ultraviolet and helioseismic far-side observations. We find that 100% (22) of the far-side seismic regions correspond to an extreme-ultraviolet plage; 95% of these either became a NOAA-designated magnetic region when reaching the east limb or were one before crossing to the far side. A low but significant correlation is found between the seismic signature strength and the EUV intensity of a far-side region.

  15. The association of a J-burst with a solar jet

    NASA Astrophysics Data System (ADS)

    Morosan, D. E.; Gallagher, P. T.; Fallows, R. A.; Reid, H.; Mann, G.; Bisi, M. M.; Magdalenić, J.; Rucker, H. O.; Thidé, B.; Vocks, C.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bell, M. E.; Bentum, M. J.; Best, P.; Blaauw, R.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Cerrigone, L.; Ciardi, B.; de Geus, E.; Duscha, S.; Eislöffel, J.; Falcke, H.; Garrett, M. A.; Grießmeier, J. M.; Gunst, A. W.; Hoeft, M.; Iacobelli, M.; Juette, E.; Kuper, G.; McFadden, R.; McKay-Bukowski, D.; McKean, J. P.; Mulcahy, D. D.; Munk, H.; Nelles, A.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Schwarz, D. J.; Sluman, J.; Smirnov, O.; Steinmetz, M.; Tagger, M.; ter Veen, S.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; van Weeren, R. J.; Wucknitz, O.; Zarka, P.

    2017-10-01

    Context. The Sun is an active star that produces large-scale energetic events such as solar flares and coronal mass ejections, and numerous smaller scale events such as solar jets. These events are often associated with accelerated particles that can cause emission at radio wavelengths. The reconfiguration of the solar magnetic field in the corona is believed to be the cause of the majority of solar energetic events and accelerated particles. Aims: Here, we investigate a bright J-burst that was associated with a solar jet and the possible emission mechanism causing these two phenomena. Methods: We used data from the Solar Dynamics Observatory (SDO) to observe a solar jet and radio data from the Low Frequency Array (LOFAR) and the Nançay Radioheliograph (NRH) to observe a J-burst over a broad frequency range (33-173 MHz) on 9 July 2013 at 11:06 UT. Results: The J-burst showed fundamental and harmonic components and was associated with a solar jet observed at extreme ultraviolet wavelengths with SDO. The solar jet occurred in the northern hemisphere at a time and location coincident with the radio burst and not inside a group of complex active regions in the southern hemisphere. The jet occurred in the negative polarity region of an area of bipolar plage. Newly emerged positive flux in this region appeared to be the trigger of the jet. Conclusions: Magnetic reconnection between the overlying coronal field lines and the newly emerged positive field lines is most likely the cause of the solar jet. Radio imaging provides a clear association between the jet and the J-burst, which shows the path of the accelerated electrons. These electrons travelled from a region in the vicinity of the solar jet along closed magnetic field lines up to the top of a closed magnetic loop at a height of 360 Mm. Such small-scale complex eruptive events arising from magnetic reconnection could facilitate accelerated electrons to produce continuously the large numbers of Type III bursts observed at low frequencies, in a similar way to the J-burst analysed here. The movie attached to Fig. 4 is available at http://www.aanda.org

  16. Observations of white-light flares in NOAA active region 11515: high occurrence rate and relationship with magnetic transients

    NASA Astrophysics Data System (ADS)

    Song, Y. L.; Tian, H.; Zhang, M.; Ding, M. D.

    2018-06-01

    Aims: There are two goals in this study. One is to investigate how frequently white-light flares (WLFs) occur in a flare-productive active region (NOAA active region 11515). The other is to investigate the relationship between WLFs and magnetic transients (MTs). Methods: We used the high-cadence (45 s) full-disk continuum filtergrams and line-of-sight magnetograms taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) to identify WLFs and MTs, respectively. Images taken by the Atmospheric Imaging Assembly (AIA) on board SDO were also used to show the flare morphology in the upper atmosphere. Results: We found at least 20 WLFs out of a total of 70 flares above C class (28.6%) in NOAA active region 11515 during its passage across the solar disk (E45°-W45°). Each of these WLFs occurred in a small region, with a short duration of about 5 min. The enhancement of the white-light continuum intensity is usually small, with an average enhancement of 8.1%. The 20 WLFs we observed were found along an unusual configuration of the magnetic field that was characterized by a narrow ribbon of negative field. Furthermore, the WLFs were found to be accompanied by MTs, with radical changes in magnetic field strength (or even a sign reversal) observed during the flare. In contrast, there is no obvious signature of MTs in the 50 flares without white-light enhancements. Conclusions: Our results suggest that WLFs occur much more frequently than previously thought, with most WLFs being fairly weak enhancements. This may explain why WLFs are reported rarely. Our observations also suggest that MTs and WLFs are closely related and appear cospatial and cotemporal, when considering HMI data. A greater enhancement of WL emission is often accompanied by a greater change in the line-of-sight component of the unsigned magnetic field. Considering the close relationship between MTs and WLFs, many previously reported flares with MTs may be WLFs. The movie is available at http://www.aanda.org

  17. Tight Loops Close-Up [video

    NASA Image and Video Library

    2014-05-19

    NASA's Solar Dynamics Observatory (SDO) zoomed in almost to its maximum level to watch tight, bright loops and much longer, softer loops shift and sway above an active region on the sun, while a darker blob of plasma in their midst was pulled about every which way (May 13-14, 2014). The video clip covers just over a day beginning at 14:19 UT on May 13. The frames were taken in the 171-angstroms wavelength of extreme ultraviolet light, but colorized red, instead of its usual bronze tone. This type of dynamic activity continues almost non-stop on the sun as opposing magnetic forces tangle with each other. Credit: NASA/Solar Dynamics Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Thermal shielding of an emerging active region

    NASA Astrophysics Data System (ADS)

    Régnier, S.

    2012-08-01

    Context. The interaction between emerging active regions and the pre-existing coronal magnetic field is important for better understanding the mechanisms of storage and release of magnetic energy from the convection zone to the high corona. Aims: We describe the first steps of an emerging active region within a pre-existing quiet-Sun corona in terms of the thermal and magnetic structure. Methods: We used unprecedented spatial, temporal and spectral coverage from the Atmospheric Imager Assembly (AIA) and from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Results: Starting on 30 May 2010 at 17:00 UT, we followed the emerging active region AR11076 within a quiet-Sun region for 8 h. Using several SDO/AIA filters that cover temperatures from 50 000 K to 10 MK, we show that the emerging process is characterised by a thermal shield at the interface between the emerging flux and pre-existing quiet-Sun corona. Conclusions: The active region 11076 is a peculiar example of an emerging active region because (i) the polarities emerge in a photospheric quiet-Sun region near a supergranular-like distribution, and (ii) the polarities that form the bipolar emerging structure do not rotate with respect to each other, which indicates a slight twist in the emerging flux bundle. There is a thermal shield at the interface between the emerging active region and the pre-existing quiet-Sun region. The thermal shielding structure deduced from all SDO/AIA channels is strongly asymmetric between the two polarities of the active region, suggesting that the heating mechanism for one polarity is probably magnetic reconnection, whilst it is caused by increasing magnetic pressure for the opposite polarity. Appendix A and two movies are available in electronic form at http://www.aanda.org

  19. Propagating Waves Transverse to the Magnetic Field in a Solar Prominence

    NASA Astrophysics Data System (ADS)

    Kucera, Therese A.; Knizhnik, K.; Lopez Ariste, A.; Luna Bennasar, M.; Schmieder, B.; Toot, D.

    2013-07-01

    We have observed a quiescent prominence with the Hinode Solar Optical Telescope (SOT, in Ca II and H-alpha lines), Sacramento Peak Observatory (in H-alpha, H-beta and Sodium-D lines), and THEMIS/MTR (Télescope Héliographique pour l'Étude du Magnétisme et des Instabilités Solaires/MulTi Raies, providing vector magnetograms), and SDO/AIA (Solar Dynamics Observatory Atmospheric Imaging Assembly, in EUV) over a 4 hour period on 2012 October 10. The small fields of view of SOT, Sac Peak and THEMIS are centered on a large pillar-like prominence footpoint extending towards the surface. This feature appears in the larger field of view of the 304 Å band, as a large, quasi-vertical column with material flowing horizontally on each side. The THEMIS/MTR data indicate that the magnetic field in the pillar is essentially horizontal and the observations in the optical wavelengths show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data are consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data show what appear to be moving wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along quasi-vertical columns. The pulses have a velocity of propagation of about 10 km/s, a period about 260 sec, and a wavelength around 2000 km. We interpret these waves in terms of fast magneto-sonic waves and discuss possible wave drivers.

  20. Structure and Dynamics of Quiescent Prominence Eruptions

    NASA Astrophysics Data System (ADS)

    Su, Y.; Lu, M.; van Ballegooijen, A.

    2012-05-01

    We present a survey on the fine structure and dynamics of quiescent prominence eruptions observed both on the disk and at the limb. We have identified 45 quiescent prominence eruptions by looking at the SDO (Solar Dynamics Observatory)/AIA (Atmospheric Imaging Assembly) daily movies from April to June in 2011. Among these events, there are 24 symmetric eruptions (coherent loop-like eruptions) and 21 asymmetric eruptions (one footpoint lifts off) as shown by AIA and STEREO/EUVI observations. Vertical filament threads are identified in 10 out of the 45 events, while horizontal threads are observed in almost all eruptions. We find 23 events with twisting/untwisting motions. For 14 selected limb events, we carry out a detailed study of the eruption dynamics using AIA observations at 304 Å. We find that the initial heights of these erupting prominences are located around 50-110 Mm above the limb. The eruptions start from a speed of less than 5 km/s, then increase to several tens km/s in the AIA field of view. The maximum speed of these events is 50 km/s. The acceleration plots show a positive acceleration in the range of 0 to 20 m/s2. No significant difference is identified in the dynamics of the symmetric and asymmetric eruptions.

  1. NASA Investigating the Life of Comet ISON

    NASA Image and Video Library

    2013-12-02

    Comet ISON comes in from the bottom right and moves out toward the upper right, growing more faint, in this time-lapse image from the ESA/NASA Solar and Heliospheric Observatory. The image of the sun at the center is from NASA's Solar Dynamics Observatory. Credit: ESA/NASA/SOHO/SDO/GSFC After several days of fading, scientists continue to work to determine and to understand the fate of Comet ISON: There's no doubt that the comet shrank in size considerably as it rounded the sun and there's no doubt that something made it out on the other side to shoot back into space. The question remains as to whether the bright spot seen moving away from the sun was simply debris, or whether a small nucleus of the original ball of ice was still there. Regardless, it is likely that it is now only dust. Comet ISON, which began its journey from the Oort Cloud some 3 million years ago, made its closest approach to the sun on Nov. 28, 2013. The comet was visible in instruments on NASA's Solar Terrestrial Relations Observatory, or STEREO, and the joint European Space Agency/NASA Solar and Heliospheric Observatory, or SOHO, via images called coronagraphs. Coronagraphs block out the sun and a considerable distance around it, in order to better observe the dim structures in the sun's atmosphere, the corona. As such, there was a period of several hours when the comet was obscured in these images, blocked from view along with the sun. During this period of time, NASA's Solar Dynamics Observatory could not see the comet, leading many scientists to surmise that the comet had disintegrated completely. However, something did reappear in SOHO and STEREO coronagraphs some time later – though it was significantly less bright. Read more: 1.usa.gov/18hGYag NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Onset of a Large Ejective Solar Eruption from a Typical Coronal-jet-base Field Configuration

    NASA Astrophysics Data System (ADS)

    Joshi, Navin Chandra; Sterling, Alphonse C.; Moore, Ronald L.; Magara, Tetsuya; Moon, Yong-Jae

    2017-08-01

    Utilizing multiwavelength observations and magnetic field data from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), SDO/Helioseismic and Magnetic Imager (HMI), the Geostationary Operational Environmental Satellite (GOES), and RHESSI, we investigate a large-scale ejective solar eruption of 2014 December 18 from active region NOAA 12241. This event produced a distinctive “three-ribbon” flare, having two parallel ribbons corresponding to the ribbons of a standard two-ribbon flare, and a larger-scale third quasi-circular ribbon offset from the other two. There are two components to this eruptive event. First, a flux rope forms above a strong-field polarity inversion line and erupts and grows as the parallel ribbons turn on, grow, and spread apart from that polarity inversion line; this evolution is consistent with the mechanism of tether-cutting reconnection for eruptions. Second, the eruption of the arcade that has the erupting flux rope in its core undergoes magnetic reconnection at the null point of a fan dome that envelops the erupting arcade, resulting in formation of the quasi-circular ribbon; this is consistent with the breakout reconnection mechanism for eruptions. We find that the parallel ribbons begin well before (˜12 minutes) the onset of the circular ribbon, indicating that tether-cutting reconnection (or a non-ideal MHD instability) initiated this event, rather than breakout reconnection. The overall setup for this large-scale eruption (diameter of the circular ribbon ˜105 km) is analogous to that of coronal jets (base size ˜104 km), many of which, according to recent findings, result from eruptions of small-scale “minifilaments.” Thus these findings confirm that eruptions of sheared-core magnetic arcades seated in fan-spine null-point magnetic topology happen on a wide range of size scales on the Sun.

  3. Exploring EUV Spicules Using 304 Angstrom He II Data from SDO AIA

    NASA Technical Reports Server (NTRS)

    Snyder, Ian R.; Sterling, Alphonse C.; Falconer, David A.; Moore, Ron L.

    2014-01-01

    We present results from a statistical study of He II 304 Angstrom Extreme Ultraviolet (EUV) spicules at the limb of the Sun. We also measured properties of one macrospicule; macrospicules are longer than most spicules, and much broader in width than spicules. We use high-cadence (12 second) and high-resolution (0.6 arcseconds pixels) resolution data from the Atmospheric Imaging Array (AIA) instrument on the Solar Dynamic Observatory (SDO). All of the observed events occurred near the solar north pole, where quiet Sun or coronal hole environments ensued. We examined the maximum lengths, maximum rise velocities, and lifetimes of 33 Extreme Ultraviolet (EUV) spicules and the macrospicule. For the bulk of the Extreme Ultraviolet (EUV) spicules these quantities are, respectively, approximately 10,000-40,000 kilometers, 20-100 kilometers per second, and approximately 100- approximately 1000 seconds. For the macrospicule the corresponding quantities were respectively approximately 60,000 kilometers, approximately 130 kilometers per second, approximately 1800 seconds, which is typical of macrospicules measured by other workers. Therefore macrospicules are taller, longer-lived, and faster than most Extreme Ultraviolet (EUV) spicules. The rise profiles of both the spicules and the macrospicules match well a second-order ("parabolic" ) trajectory, although the acceleration was often weaker than that of solar gravity in the profiles fitted to the trajectories. Our macrospicule also had an obvious brightening at its base at birth, while such brightening was not apparent for the Extreme Ultraviolet (EUV) spicules. Most of the Extreme Ultraviolet (EUV) spicules remained visible during their descent back to the solar surface, although a small percentage of the spicules and the macrospicule faded out before falling back to the surface. Our sample of macrospicules is not yet large enough to determine whether their initiation mechanism is identical to that of Extreme Ultraviolet (EUV) spicules.

  4.  X-RAYING THE DARK SIDE OF VENUS—SCATTER FROM VENUS’ MAGNETOTAIL?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afshari, M.; Peres, G.; Petralia, A.

    We analyze significant X-ray, EUV, and UV emission coming from the dark side of Venus observed with Hinode /XRT and Solar Dynamics Observatory /Atmospheric Imaging Assembly ( SDO /AIA) during a transit across the solar disk that occurred in 2012. As a check we have analyzed an analogous Mercury transit that occurred in 2006. We have used the latest version of the Hinode /XRT point spread function to deconvolve Venus and Mercury X-ray images, to remove instrumental scattering. After deconvolution, the flux from Venus’ shadow remains significant while that of Mercury becomes negligible. Since stray light contamination affects the XRT Ti-poly filtermore » data we use, we performed the same analysis with XRT Al-mesh filter data, not affected by the light leak. Even the latter data show residual flux. We have also found significant EUV (304 Å, 193 Å, 335 Å) and UV (1700 Å) flux in Venus’ shadow, measured with SDO /AIA. The EUV emission from Venus’ dark side is reduced, but still significant, when deconvolution is applied. The light curves of the average flux of the shadow in the X-ray, EUV, and UV bands appear different as Venus crosses the solar disk, but in any of them the flux is, at any time, approximately proportional to the average flux in a ring surrounding Venus, and therefore proportional to that of the solar regions around Venus’ obscuring disk line of sight. The proportionality factor depends on the band. This phenomenon has no clear origin; we suggest that it may be due to scatter occurring in the very long magnetotail of Venus.« less

  5. THE NONPOTENTIALITY OF CORONAE OF SOLAR ACTIVE REGIONS, THE DYNAMICS OF THE SURFACE MAGNETIC FIELD, AND THE POTENTIAL FOR LARGE FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrijver, Carolus J., E-mail: schrijver@lmsal.com

    Flares and eruptions from solar active regions (ARs) are associated with atmospheric electrical currents accompanying distortions of the coronal field away from a lowest-energy potential state. In order to better understand the origin of these currents and their role in M- and X-class flares, I review all AR observations made with Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager and SDO/Atmospheric Imaging Assembly from 2010 May through 2014 October within ≈40° from the disk center. I select the roughly 4% of all regions that display a distinctly nonpotential coronal configuration in loops with a length comparable to the scale of themore » AR, and all that emit GOES X-class flares. The data for 41 regions confirm, with a single exception, that strong-field, high-gradient polarity inversion lines (SHILs) created during emergence of magnetic flux into, and related displacement within, pre-existing ARs are associated with X-class flares. Obvious nonpotentiality in the AR-scale loops occurs in six of ten selected regions with X-class flares, all with relatively long SHILs along their primary polarity inversion line, or with a long internal filament there. Nonpotentiality can exist in ARs well past the flux-emergence phase, often with reduced or absent flaring. I conclude that the dynamics of the flux involved in the compact SHILs is of pre-eminent importance for the large-flare potential of ARs within the next day, but that their associated currents may not reveal themselves in AR-scale nonpotentiality. In contrast, AR-scale nonpotentiality, which can persist for many days, may inform us about the eruption potential other than those from SHILs which is almost never associated with X-class flaring.« less

  6. Magnetic Flux Cancellation as the Origin of Solar Quiet-region Pre-jet Minifilaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L., E-mail: navdeep.k.panesar@nasa.gov

    We investigate the origin of 10 solar quiet-region pre-jet minifilaments , using EUV images from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) and magnetograms from the SDO Helioseismic and Magnetic Imager (HMI). We recently found that quiet-region coronal jets are driven by minifilament eruptions, where those eruptions result from flux cancellation at the magnetic neutral line under the minifilament. Here, we study the longer-term origin of the pre-jet minifilaments themselves. We find that they result from flux cancellation between minority-polarity and majority-polarity flux patches. In each of 10 pre-jet regions, we find that opposite-polarity patches of magneticmore » flux converge and cancel, with a flux reduction of 10%–40% from before to after the minifilament appears. For our 10 events, the minifilaments exist for periods ranging from 1.5 hr to 2 days before erupting to make a jet. Apparently, the flux cancellation builds a highly sheared field that runs above and traces the neutral line, and the cool transition region plasma minifilament forms in this field and is suspended in it. We infer that the convergence of the opposite-polarity patches results in reconnection in the low corona that builds a magnetic arcade enveloping the minifilament in its core, and that the continuing flux cancellation at the neutral line finally destabilizes the minifilament field so that it erupts and drives the production of a coronal jet. Thus, our observations strongly support that quiet-region magnetic flux cancellation results in both the formation of the pre-jet minifilament and its jet-driving eruption.« less

  7. Contribution to the Solar Mean Magnetic Field from Different Solar Regions

    NASA Astrophysics Data System (ADS)

    Kutsenko, A. S.; Abramenko, V. I.; Yurchyshyn, V. B.

    2017-09-01

    Seven-year-long seeing-free observations of solar magnetic fields with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) were used to study the sources of the solar mean magnetic field, SMMF, defined as the net line-of-sight magnetic flux divided over the solar disk area. To evaluate the contribution of different regions to the SMMF, we separated all the pixels of each SDO/HMI magnetogram into three subsets: weak (BW), intermediate (BI), and strong (BS) fields. The BW component represents areas with magnetic flux densities below the chosen threshold; the BI component is mainly represented by network fields, remains of decayed active regions (ARs), and ephemeral regions. The BS component consists of magnetic elements in ARs. To derive the contribution of a subset to the total SMMF, the linear regression coefficients between the corresponding component and the SMMF were calculated. We found that i) when the threshold level of 30 Mx cm-2 is applied, the BI and BS components together contribute from 65% to 95% of the SMMF, while the fraction of the occupied area varies in a range of 2 - 6% of the disk area; ii) as the threshold magnitude is lowered to 6 Mx cm-2, the contribution from BI+BS grows to 98%, and the fraction of the occupied area reaches a value of about 40% of the solar disk. In summary, we found that regardless of the threshold level, only a small part of the solar disk area contributes to the SMMF. This means that the photospheric magnetic structure is an intermittent inherently porous medium, resembling a percolation cluster. These findings suggest that the long-standing concept that continuous vast unipolar areas on the solar surface are the source of the SMMF may need to be reconsidered.

  8. MINIFILAMENT ERUPTIONS THAT DRIVE CORONAL JETS IN A SOLAR ACTIVE REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David A.

    We present observations of eruptive events in an active region adjacent to an on-disk coronal hole on 2012 June 30, primarily using data from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA), SDO /Helioseismic and Magnetic Imager (HMI), and STEREO - B . One eruption is of a large-scale (∼100″) filament that is typical of other eruptions, showing slow-rise onset followed by a faster-rise motion starting as flare emissions begin. It also shows an “EUV crinkle” emission pattern, resulting from magnetic reconnections between the exploding filament-carrying field and surrounding field. Many EUV jets, some of which are surges,more » sprays and/or X-ray jets, also occur in localized areas of the active region. We examine in detail two relatively energetic ones, accompanied by GOES M1 and C1 flares, and a weaker one without a GOES signature. All three jets resulted from small-scale (∼20″) filament eruptions consistent with a slow rise followed by a fast rise occurring with flare-like jet-bright-point brightenings. The two more-energetic jets showed crinkle patters, but the third jet did not, perhaps due to its weakness. Thus all three jets were consistent with formation via erupting minifilaments, analogous to large-scale filament eruptions and to X-ray jets in polar coronal holes. Several other energetic jets occurred in a nearby portion of the active region; while their behavior was also consistent with their source being minifilament eruptions, we could not confirm this because their onsets were hidden from our view. Magnetic flux cancelation and emergence are candidates for having triggered the minifilament eruptions.« less

  9. Study on Precursor Activity of the X1.6 Flare in the Great AR 12192 with SDO , IRIS , and Hinode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamba, Yumi; Lee, Kyoung-Sun; Imada, Shinsuke

    The physical properties and their contribution to the onset of a solar flare are still uncleare even though chromospheric brightening is considered a precursor phenomenon of a flare. Many studies suggested that photospheric magnetic field changes cause destabilization of large-scale coronal structure. We aim to understand how a small photospheric change contributes to a flare and to reveal how the intermediary chromosphere behaves in the precursor phase. We analyzed the precursor brightening of the X1.6 flare on 2014 October 22 in the AR 12192 using the Interface Region Imaging Spectrograph ( IRIS ) and Hinode /EUV Imaging Spectrometer (EIS) data.more » We investigated a localized jet with the strong precursor brightening, and compared the intensity, Doppler velocity, and line width in C ii, Mg ii k, and Si iv lines by IRIS and He ii, Fe xii, and Fe xv lines by Hinode /EIS. We also analyzed the photospheric magnetic field and chromospheric/coronal structures using the Solar Dynamics Observatory ( SDO )/Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly. We found a significant blueshift (∼100 km s{sup −1}), which is related to the strong precursor brightening over a characteristic magnetic field structure, and the blueshift was observed at all of the temperatures. This might indicate that the flow is accelerated by Lorentz force. Moreover, the large-scale coronal loop that connects the foot points of the flare ribbons was destabilized just after the precursor brightening with the blueshift. It suggests that magnetic reconnection locally occurred in the lower chromosphere and it triggered magnetic reconnection of the X1.6 flare in the corona.« less

  10. Photospheric Current Spikes as Possible Predictors of Flares

    NASA Technical Reports Server (NTRS)

    Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.

    2016-01-01

    Flares involve generation of the largest current densities in the solar atmosphere. This suggests the hypothesis that prior to a large (M,X) flare there are related time dependent changes in the photospheric current distribution, and hence in the resistive heating rate in neutral line regions (NLRs). If this is true, these changes might be useful predictors of flares. Preliminary evidence supporting this hypothesis is presented. Results from a data driven, near photospheric, 3D magnetohydrodynamic type model suggest the model might be useful for predicting M and X flares several hours to several days in advance. The model takes as input the photospheric magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) satellite. The model computes quantities in every active region (AR) pixel for 14 ARs, with spurious Doppler periods due to SDO orbital motion filtered out of the time series of the magnetic field for each pixel. Spikes in the NLR resistive heating rate Q, appearing as increases by orders of magnitude above background values in the time series of Q are found to occur, and appear to be correlated with the occurrence of M or X flares a few hours to a few days later. The subset of spikes analyzed at the pixel level are found to occur on HMI and granulation scales of 1 arcsec and 12 minutes. Spikes are found in NLRs with and without M or X flares, and outside as well as inside NLRs, but the largest spikes are localized in the NLRs of ARs with M or X flares, and associated with horizontal magnetic field strengths approximately several hG, and vertical magnetic field strengths several orders of magnitude smaller. The spikes may be signatures of horizontal current sheets associated with emerging magnetic flux.

  11. Study on Precursor Activity of the X1.6 Flare in the Great AR 12192 with SDO, IRIS, and Hinode

    NASA Astrophysics Data System (ADS)

    Bamba, Yumi; Lee, Kyoung-Sun; Imada, Shinsuke; Kusano, Kanya

    2017-05-01

    The physical properties and their contribution to the onset of a solar flare are still uncleare even though chromospheric brightening is considered a precursor phenomenon of a flare. Many studies suggested that photospheric magnetic field changes cause destabilization of large-scale coronal structure. We aim to understand how a small photospheric change contributes to a flare and to reveal how the intermediary chromosphere behaves in the precursor phase. We analyzed the precursor brightening of the X1.6 flare on 2014 October 22 in the AR 12192 using the Interface Region Imaging Spectrograph (IRIS) and Hinode/EUV Imaging Spectrometer (EIS) data. We investigated a localized jet with the strong precursor brightening, and compared the intensity, Doppler velocity, and line width in C II, Mg II k, and Si IV lines by IRIS and He II, Fe xii, and Fe xv lines by Hinode/EIS. We also analyzed the photospheric magnetic field and chromospheric/coronal structures using the Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager and Atmospheric Imaging Assembly. We found a significant blueshift (˜100 km s-1), which is related to the strong precursor brightening over a characteristic magnetic field structure, and the blueshift was observed at all of the temperatures. This might indicate that the flow is accelerated by Lorentz force. Moreover, the large-scale coronal loop that connects the foot points of the flare ribbons was destabilized just after the precursor brightening with the blueshift. It suggests that magnetic reconnection locally occurred in the lower chromosphere and it triggered magnetic reconnection of the X1.6 flare in the corona.

  12. Photospheric Current Spikes as Possible Predictors of Flares

    NASA Technical Reports Server (NTRS)

    Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.

    2016-01-01

    Flares involve generation of the largest current densities in the solar atmosphere. This suggests the hypothesis that prior to a large (M,X) flare there are related time dependent changes in the photospheric current distribution, and hence in the resistive heating rate in neutral line regions (NLRs). If this is true, these changes might be useful predictors of flares. Evidence supporting this hypothesis is presented. Results from a data driven, near photospheric, 3D magnetohydrodynamic type model suggest the model might be useful for predicting M and X flares several hours to several days in advance. The model takes as input the photospheric magnetic field observed by the Helioseismic & Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) satellite. The model computes quantities in every active region (AR) pixel for 14 ARs, with spurious Doppler periods due to SDO orbital motion filtered out of the time series of the magnetic field for each pixel. Spikes in the NLR resistive heating rate Q, appearing as increases by orders of magnitude above background values in the time series of Q are found to occur, and appear to be correlated with the occurrence of M or X flares a few hours to a few days later. The subset of spikes analyzed at the pixel level are found to occur on HMI and granulation scales of 1 arcsec and 12 minutes. Spikes are found in NLRs with and without M or X flares, and outside as well as inside NLRs, but the largest spikes are localized in the NLRs of ARs with M or X flares, and associated with horizontal magnetic field strengths several hG, and vertical magnetic field strengths several orders of magnitude smaller, suggesting that the spikes are associated with current sheets.

  13. Joint NuSTAR and IRIS observation of a microflaring active region

    NASA Astrophysics Data System (ADS)

    Hannah, I. G.; Kleint, L.; Krucker, S.; Glesener, L.; Grefenstette, B.

    2017-12-01

    We present observations of a weakly microflaring active region observed in X-rays with NuSTAR, UV with IRIS and EUV with SDO/AIA. NuSTAR was pointed at this unnamed active region near the East limb between 23:27UT and 23:37UT 26-July-2016, finding mostly quiescent emission except for a small microflare about 23:35UT. The NuSTAR spectrum for the pre-microflare time (23:27UT to 23:34UT) is well fitted by a single thermal component of about 3MK and combined with SDO/AIA we can determine the differential emission measure (DEM), finding it, as expected, drops very sharply to higher temperatures. During the subsequent microflare, the increase in NuSTAR counts matches a little brightening loop observed with IRIS SJI 1400Å and SDO/AIA. Fortuitously the IRIS slit crosses this microflaring loop and we find an increased emission in Si IV 1394Å, Si IV 1403Å and O IV 1402Å but only average line widths and velocities. The NuSTAR microflare spectrum shows heating to higher temperatures and also allows us to investigate the energetics of this event.

  14. Eruptions from the Sun

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    The Sun often exhibits outbursts, launching material from its surface in powerful releases of energy. Recent analysis of such an outburst captured on video by several Sun-monitoring spacecraft may help us understand the mechanisms that launch these eruptions.Many OutburstsSolar jets are elongated, transient structures that are thought to regularly release magnetic energy from the Sun, contributing to coronal heating and solar wind acceleration. Coronal mass ejections (CMEs), on the other hand, are enormous blob-like explosions, violently ejecting energy and mass from the Sun at incredible speeds.But could these two types of events actually be related? According to a team of scientists at the University of Science and Technology of China, they may well be. The team, led by Jiajia Liu, has analyzed observations of a coronal jet that they believe prompted the launch of a powerful CME.Observing an ExplosionGif of a movie of the CME, taken by the Solar Dynamics Observatorys Atmospheric Imaging Assembly at a wavelength of 304. The original movie can be found in the article. [Liu et al.]An army of spacecraft was on hand to witness the event on 15 Jan 2013 including the Solar Dynamics Observatory (SDO), the Solar and Heliospheric Observatory (SOHO), and the Solar Terrestrial Relations Observatory (STEREO). The instruments on board these observatories captured the drama on the northern limb of the Sun as, at 19:32 UT, a coronal jet formed. Just eight minutes later, a powerful CME was released from the same active region.The fact that the jet and CME occurred in the same place at roughly the same time suggests theyre related. But did the initial motions of the CME blob trigger the jet? Or did the jet trigger the CME?Tying It All TogetherIn a recently published study, Liu and collaborators analyzed the multi-wavelength observations of this event to find the heights and positions of the jet and CME. From this analysis, they determined that the coronal jet triggered the release of material to form the CME, which then erupted into space with the jet at its core at speeds of over 1000 km/s.Based on observed clues of the magnetic field configurations, the team has put together a theory for how this event unfolded. They believe that sudden magnetic reconnection in an active region accelerated plasma to form a large-scale coronal jet. This burst of energy also provided a push on a blob of gas, threaded with magnetic field lines, that lay above the jet. The blob then rose, and when the field lines broke, it was released as a CME with the jet at its core.CitationJiajia Liu et al 2015 ApJ 813 115. doi:10.1088/0004-637X/813/2/115

  15. Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations

    NASA Astrophysics Data System (ADS)

    Su, Hua; Li, Wene; Yan, Xiao-Hai

    2018-01-01

    Retrieving the subsurface and deeper ocean (SDO) dynamic parameters from satellite observations is crucial for effectively understanding ocean interior anomalies and dynamic processes, but it is challenging to accurately estimate the subsurface thermal structure over the global scale from sea surface parameters. This study proposes a new approach based on Random Forest (RF) machine learning to retrieve subsurface temperature anomaly (STA) in the global ocean from multisource satellite observations including sea surface height anomaly (SSHA), sea surface temperature anomaly (SSTA), sea surface salinity anomaly (SSSA), and sea surface wind anomaly (SSWA) via in situ Argo data for RF training and testing. RF machine-learning approach can accurately retrieve the STA in the global ocean from satellite observations of sea surface parameters (SSHA, SSTA, SSSA, SSWA). The Argo STA data were used to validate the accuracy and reliability of the results from the RF model. The results indicated that SSHA, SSTA, SSSA, and SSWA together are useful parameters for detecting SDO thermal information and obtaining accurate STA estimations. The proposed method also outperformed support vector regression (SVR) in global STA estimation. It will be a useful technique for studying SDO thermal variability and its role in global climate system from global-scale satellite observations.

  16. Suicidal drug overdose in patients with systemic lupus erythematosus, a nationwide population-based case-control study.

    PubMed

    Tang, K T; Lin, C H; Chen, H H; Chen, Y H; Chen, D Y

    2016-02-01

    A four-fold increase of suicide mortality has been demonstrated in systemic lupus erythematosus (SLE) patients. Prior studies showed that the most common method of suicide attempts in SLE patients involves drug overdose. Therefore, we conducted a nationwide population-based case-control study to elucidate factors associated with drug overdose as suicide attempt in SLE patients. This study was based on the National Health Insurance Research Database in Taiwan. We identified all SLE patients from January 1, 2000 to December 31, 2010. Patients who had suicidal drug overdose (SDO) were selected as cases while age- and gender-matched patients who did not have SDO were selected as controls. The incidence rate of SDO in SLE patients was 291 cases per 100,000 person-years, higher than that in the general population (160 cases per 100,000 person-years). In a multivariate logistic regression analysis, we observed that SDO was associated with psychiatric disorders such as depressive disorders (odds ratio: 8.36, 95% confidence interval (CI): 5.60-12.48) and insomnia (odds ratio: 2.71, 95% CI: 1.73-4.25), and lower monthly income (odds ratios: 2.74 to 3.50) in SLE patients. SDO is associated with psychiatric disorders such as depressive disorders and insomnia, and lower monthly income in SLE patients. © The Author(s) 2015.

  17. Anomalous Temporal Behaviour of Broadband Ly Alpha Observations During Solar Flares from SDO/EVE

    NASA Technical Reports Server (NTRS)

    Milligan, Ryan O.; Chamberlin, Phillip C.

    2016-01-01

    Although it is the most prominent emission line in the solar spectrum, there has been a notable lack of studies devoted to variations in Lyman-alpha (Ly-alpha) emission during solar flares in recent years. However, the few examples that do exist have shown Ly-alpha emission to be a substantial radiator of the total energy budget of solar flares (of the order of 10 percent). It is also a known driver of fluctuations in the Earth's ionosphere. The EUV (Extreme Ultra-Violet) Variability Experiment (EVE) on board the Solar Dynamics Observatory (SDO) now provides broadband, photometric Ly-alpha data at 10-second cadence with its Multiple EUV Grating Spectrograph-Photometer (MEGS-P) component, and has observed scores of solar flares in the 5 years since it was launched. However, the MEGS-P time profiles appear to display a rise time of tens of minutes around the time of the flare onset. This is in stark contrast to the rapid, impulsive increase observed in other intrinsically chromospheric features (H-alpha, Ly-beta, LyC, C III, etc.). Furthermore, the emission detected by MEGS-P peaks around the time of the peak of thermal soft X-ray emission and not during the impulsive phase when energy deposition in the chromosphere (often assumed to be in the form of non-thermal electrons) is greatest. The time derivative of Ly-alpha lightcurves also appears to resemble that of the time derivative of soft X-rays, reminiscent of the Neupert effect. Given that spectrally-resolved Ly-alpha observations during flares from SORCE / SOLSTICE (Solar Radiation and Climate Experiment / Solar Stellar Irradiance Comparison Experiment) peak during the impulsive phase as expected, this suggests that the atypical behaviour of MEGS-P data is a manifestation of the broadband nature of the observations. This could imply that other lines andor continuum emission that becomes enhanced during flares could be contributing to the passband. Users are hereby urged to exercise caution when interpreting broadband Ly-alpha observations of solar flares. Comparisons have also been made with other broadband Ly-alpha photometers such as PROBA2 (Project for On-Board Autonomy-2) / LYRA (Lyman Alpha Radiometer) and GOES (Geostationary Operational Environmental Satellite) / EUVE (Extreme Ultraviolet Explorer).

  18. Mid-level Solar Flare

    NASA Image and Video Library

    2014-10-02

    NASA's Solar Dynamics Observatory captured these images of a solar flare on Oct. 2, 2014. The solar flare is the bright flash of light on the right limb of the sun. A burst of solar material erupting out into space can be seen just below it. Read more: 1.usa.gov/1mW8rel Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. The Collaborative Heliophysics Events Knowledgebase

    NASA Astrophysics Data System (ADS)

    Hurlburt, N. E.; Schuler, D.; Cheung, C.

    2010-12-01

    The Collaborative Heliophysics Events Knowledgebase (CHEK) leverages and integrates the existing resources developed by HEK for SDO (Hurlburt et al. 2010) to provide a collaborative framework for heliophysics researchers. This framework will enable an environment were researches can not only identify and locate relevant data, but can deploy a social network for sharing and expanding knowledge about heliophysical events. CHEK will expand the HEK and key HEK clients into the heliosphere and geospace, and create a heliophysics social network. We describe our design and goals of the CHEK project and discuss its relation to Citizen Science in the heliosphere. Hurlburt, N et al. 2010, “A Heliophysics Event Knowledgebase for Solar Dynamics Observatory,” Sol Phys., in press

  20. Solar Flare Prediction Science-to-Operations: the ESA/SSA SWE A-EFFort Service

    NASA Astrophysics Data System (ADS)

    Georgoulis, Manolis K.; Tziotziou, Konstantinos; Themelis, Konstantinos; Magiati, Margarita; Angelopoulou, Georgia

    2016-07-01

    We attempt a synoptical overview of the scientific origins of the Athens Effective Solar Flare Forecasting (A-EFFort) utility and the actions taken toward transitioning it into a pre-operational service of ESA's Space Situational Awareness (SSA) Programme. The preferred method for solar flare prediction, as well as key efforts to make it function in a fully automated environment by coupling calculations with near-realtime data-downloading protocols (from the Solar Dynamics Observatory [SDO] mission), pattern recognition (solar active-region identification) and optimization (magnetic connectivity by simulated annealing) will be highlighted. In addition, the entire validation process of the service will be described, with its results presented. We will conclude by stressing the need for across-the-board efforts and synergistic work in order to bring science of potentially limited/restricted interest into realizing a much broader impact and serving the best public interests. The above presentation was partially supported by the ESA/SSA SWE A-EFFort project, ESA Contract No. 4000111994/14/D/MRP. Special thanks go to the ESA Project Officers R. Keil, A. Glover, and J.-P. Luntama (ESOC), M. Bobra and C. Balmer of the SDO/HMI team at Stanford University, and M. Zoulias at the RCAAM of the Academy of Athens for valuable technical help.

  1. Multi-thermal dynamics and energetics of a coronal mass ejection in the low solar atmosphere

    NASA Astrophysics Data System (ADS)

    Hannah, I. G.; Kontar, E. P.

    2013-05-01

    Aims: The aim of this work is to determine the multi-thermal characteristics and plasma energetics of an eruptive plasmoid and occulted flare observed by the Solar Dynamics Observatory's Atmospheric Imaging Assembly (SDO/AIA). Methods: We study a 2010 Nov. 3 event (peaking at 12:20 UT in GOES soft X-rays) of a coronal mass ejection and occulted flare that demonstrates the morphology of a classic erupting flux rope. The high spatial and time resolution and six coronal channels of the SDO/AIA images allows the dynamics of the multi-thermal emission during the initial phases of eruption to be studied in detail. The differential emission measure is calculated, using an optimized version of a regularized inversion method, for each pixel across the six channels at different times, resulting in emission measure maps and movies in a variety of temperature ranges. Results: We find that the core of the erupting plasmoid is hot (8-11, 11-14 MK) with a similarly hot filamentary "stem" structure connecting it to the lower atmosphere, which could be interpreted as the current sheet in the flux rope model, though is wider than these models suggest. The velocity of the leading edge of the eruption is 597-664 km s-1 in the temperature range ≥3-4 MK and between 1029-1246 km s-1 for ≤2-3 MK. We estimate the density (in 11-14 MK) of the erupting core and stem during the impulsive phase to be about 3 × 109 cm-3, 6 × 109 cm-3, 9 × 108 cm-3 in the plasmoid core, stem, and surrounding envelope of material. This gives thermal energy estimates of 5 × 1029 erg, 1 × 1029 erg, and 2 × 1030 erg. The kinetic energy for the core and envelope is slightly lower. The thermal energy of the core and current sheet grows during the eruption, suggesting continuous influx of energy presumably via reconnection. Conclusions: The combination of the optimized regularized inversion method and SDO/AIA data allows the multi-thermal characteristics (i.e. velocity, density, and thermal energies) of the plasmoid eruption to be determined. A movie is available in electronic form at http://www.aanda.org

  2. Solar Scientist Confirm Existence of Flux Ropes on the Sun

    NASA Image and Video Library

    2017-12-08

    Caption: This is an image of magnetic loops on the sun, captured by NASA's Solar Dynamics Observatory (SDO). It has been processed to highlight the edges of each loop to make the structure more clear. A series of loops such as this is known as a flux rope, and these lie at the heart of eruptions on the sun known as coronal mass ejections (CMEs.) This is the first time scientists were able to discern the timing of a flux rope's formation. (Blended 131 Angstrom and 171 Angstrom images of July 19, 2012 flare and CME.) Credit: NASA/Goddard Space Flight Center/SDO ---- On July 18, 2012, a fairly small explosion of light burst off the lower right limb of the sun. Such flares often come with an associated eruption of solar material, known as a coronal mass ejection or CME – but this one did not. Something interesting did happen, however. Magnetic field lines in this area of the sun's atmosphere, the corona, began to twist and kink, generating the hottest solar material – a charged gas called plasma – to trace out the newly-formed slinky shape. The plasma glowed brightly in extreme ultraviolet images from the Atmospheric Imaging Assembly (AIA) aboard NASA’s Solar Dynamics Observatory (SDO) and scientists were able to watch for the first time the very formation of something they had long theorized was at the heart of many eruptive events on the sun: a flux rope. Eight hours later, on July 19, the same region flared again. This time the flux rope's connection to the sun was severed, and the magnetic fields escaped into space, dragging billions of tons of solar material along for the ride -- a classic CME. "Seeing this structure was amazing," says Angelos Vourlidas, a solar scientist at the Naval Research Laboratory in Washington, D.C. "It looks exactly like the cartoon sketches theorists have been drawing of flux ropes since the 1970s. It was a series of figure eights lined up to look like a giant slinky on the sun." To read more about this new discovery go to: 1.usa.gov/14UHsTt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. High Latitude Meridional Flow on the Sun May Explain North-South Polar Field Asymmetry

    NASA Technical Reports Server (NTRS)

    Kosak, Katie; Upton, Lisa; Hathaway, David

    2012-01-01

    We measured the flows of magnetic elements on the Sun at very high latitudes by analyzing magnetic images from the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. Magnetic maps constructed using a fixed, and north-south symmetric, meridional flow profile give weaker than observed polar fields in the North and stronger than observed polar fields in the South during the decline of Cycle 23 and rise of Cycle 24. Our measurements of the meridional flow at high latitudes indicate systematic north-south differences. In the fall of 2010 (when the North Pole was most visible), there was a strong flow in the North while in the spring of 2011 (when the South Pole was most visible) the flow there was weaker. With these results, we have a possible solution to this polar field asymmetry. The weaker flow in the South should keep the polar fields from becoming too strong while the stronger flow in the North should strengthen the field there. In order to gain a better understanding of the Solar Cycle and magnetic flux transport on the Sun, we need further observations and analyses of the Sun s polar regions in general and the polar meridional flow in particular.

  4. SDO/AIA AND HINODE/EIS OBSERVATIONS OF INTERACTION BETWEEN AN EUV WAVE AND ACTIVE REGION LOOPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Liheng; Zhang, Jun; Li, Ting

    2013-09-20

    We present detailed analysis of an extreme-ultraviolet (EUV) wave and its interaction with active region (AR) loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Hinode EUV Imaging Spectrometer (EIS). This wave was initiated from AR 11261 on 2011 August 4 and propagated at velocities of 430-910 km s{sup –1}. It was observed to traverse another AR and cross over a filament channel on its path. The EUV wave perturbed neighboring AR loops and excited a disturbance that propagated toward the footpoints of these loops. EIS observations of AR loops revealed that at the time of the wavemore » transit, the original redshift increased by about 3 km s{sup –1}, while the original blueshift decreased slightly. After the wave transit, these changes were reversed. When the EUV wave arrived at the boundary of a polar coronal hole, two reflected waves were successively produced and part of them propagated above the solar limb. The first reflected wave above the solar limb encountered a large-scale loop system on its path, and a secondary wave rapidly emerged 144 Mm ahead of it at a higher speed. These findings can be explained in the framework of a fast-mode magnetosonic wave interpretation for EUV waves, in which observed EUV waves are generated by expanding coronal mass ejections.« less

  5. Analysing spectroscopically the propagation of a CME from its source on the disk to its impact as it propagates outwards

    NASA Astrophysics Data System (ADS)

    Harra, Louise K.; Doschek, G. A.; Matthews, Sarah A.; De Pontieu, Bart; Long, David

    We analyse a complex coronal mass ejection observed by Hinode, SDO and IRIS. SDO AIA shows that the eruption occurs between several active regions with flaring occurring in all of them. Hinode EIS observed one of the flaring active regions that shows a fast outwards propagation which is related to the CME lifting off. The eruption is then observed as it propagates away from the Sun, pushing the existing post-flare loops downwards as it goes. Spectroscopic observations are made during this time with IRIS measuring the impact that this CME front has as it pushes the loops downwards. Strong enhancements in the cool Mg II emission at these locations that show complex dynamics. We discuss these new observations in context of CME models.

  6. Magnetogram Forecast: An All-Clear Space Weather Forecasting System

    NASA Technical Reports Server (NTRS)

    Barghouty, Nasser; Falconer, David

    2015-01-01

    Solar flares and coronal mass ejections (CMEs) are the drivers of severe space weather. Forecasting the probability of their occurrence is critical in improving space weather forecasts. The National Oceanic and Atmospheric Administration (NOAA) currently uses the McIntosh active region category system, in which each active region on the disk is assigned to one of 60 categories, and uses the historical flare rates of that category to make an initial forecast that can then be adjusted by the NOAA forecaster. Flares and CMEs are caused by the sudden release of energy from the coronal magnetic field by magnetic reconnection. It is believed that the rate of flare and CME occurrence in an active region is correlated with the free energy of an active region. While the free energy cannot be measured directly with present observations, proxies of the free energy can instead be used to characterize the relative free energy of an active region. The Magnetogram Forecast (MAG4) (output is available at the Community Coordinated Modeling Center) was conceived and designed to be a databased, all-clear forecasting system to support the operational goals of NASA's Space Radiation Analysis Group. The MAG4 system automatically downloads nearreal- time line-of-sight Helioseismic and Magnetic Imager (HMI) magnetograms on the Solar Dynamics Observatory (SDO) satellite, identifies active regions on the solar disk, measures a free-energy proxy, and then applies forecasting curves to convert the free-energy proxy into predicted event rates for X-class flares, M- and X-class flares, CMEs, fast CMEs, and solar energetic particle events (SPEs). The forecast curves themselves are derived from a sample of 40,000 magnetograms from 1,300 active region samples, observed by the Solar and Heliospheric Observatory Michelson Doppler Imager. Figure 1 is an example of MAG4 visual output

  7. Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments

    NASA Technical Reports Server (NTRS)

    Woods, T. N.; Eparvier, F. G.; Hock, R.; Jones, A. R.; Woodraska, D.; Judge, D.; Didkovsky, L.; Lean, J.; Mariska, J.; Warren, H.; hide

    2010-01-01

    The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth's upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105 nm with unprecedented spectral resolution (0.1 nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazingincidence spectrograph that measures the solar EUV irradiance in the 5 to 37 nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105 nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39 nm, and a MEGS-Photometer measures the Sun s bright hydrogen emission at 121.6 nm. The EVE data products include a near real-time space-weather product (Level 0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15 minutes. The EVE higher-level products are Level 2 with the solar EUV irradiance at higher time cadence (0.25 seconds for photometers and ten seconds for spectrographs) and Level 3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.

  8. Overview of Key Results from SDO Extreme ultraviolet Variability Experiment (EVE)

    NASA Astrophysics Data System (ADS)

    Woods, Tom; Eparvier, Frank; Jones, Andrew; Mason, James; Didkovsky, Leonid; Chamberlin, Phil

    2016-10-01

    The SDO Extreme ultraviolet Variability Experiment (EVE) includes several channels to observe the solar extreme ultraviolet (EUV) spectral irradiance from 1 to 106 nm. These channels include the Multiple EUV Grating Spectrograph (MEGS) A, B, and P channels from the University of Colorado (CU) and the EUV SpectroPhometer (ESP) channels from the University of Southern California (USC). The solar EUV spectrum is rich in many different emission lines from the corona, transition region, and chromosphere. The EVE full-disk irradiance spectra are important for studying the solar impacts in Earth's ionosphere and thermosphere and are useful for space weather operations. In addition, the EVE observations, with its high spectral resolution of 0.1 nm and in collaboration with AIA solar EUV images, have proven valuable for studying active region evolution and explosive energy release during flares and coronal eruptions. These SDO measurements have revealed interesting results such as understanding the flare variability over all wavelengths, discovering and classifying different flare phases, using coronal dimming measurements to predict CME properties of mass and velocity, and exploring the role of nano-flares in continual heating of active regions.

  9. PRE-FLARE CORONAL JET AND EVOLUTIONARY PHASES OF A SOLAR ERUPTIVE PROMINENCE ASSOCIATED WITH THE M1.8 FLARE: SDO AND RHESSI OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Bhuwan; Kushwaha, Upendra; Veronig, Astrid M.

    We investigate the triggering, activation, and ejection of a solar eruptive prominence that occurred in a multi-polar flux system of active region NOAA 11548 on 2012 August 18 by analyzing data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory , the Reuven Ramaty High Energy Solar Spectroscopic Imager , and the Extreme Ultraviolet Imager/Sun Earth Connection Coronal and Heliospheric Investigation on board the Solar Terrestrial Relation Observatory . Prior to the prominence activation, we observed striking coronal activities in the form of a blowout jet, which is associated with the rapid eruption of a cool flux rope. Furthermore, themore » jet-associated flux rope eruption underwent splitting and rotation during its outward expansion. These coronal activities are followed by the prominence activation during which it slowly rises with a speed of ∼12 km s{sup −1} while the region below the prominence emits gradually varying EUV and thermal X-ray emissions. From these observations, we propose that the prominence eruption is a complex, multi-step phenomenon in which a combination of internal (tether-cutting reconnection) and external (i.e., pre-eruption coronal activities) processes are involved. The prominence underwent catastrophic loss of equilibrium with the onset of the impulsive phase of an M1.8 flare, suggesting large-scale energy release by coronal magnetic reconnection. We obtained signatures of particle acceleration in the form of power-law spectra with hard electron spectral index ( δ  ∼ 3) and strong HXR footpoint sources. During the impulsive phase, a hot EUV plasmoid was observed below the apex of the erupting prominence that ejected in the direction of the prominence with a speed of ∼177 km s{sup −1}. The temporal, spatial, and kinematic correlations between the erupting prominence and the plasmoid imply that the magnetic reconnection supported the fast ejection of prominence in the lower corona.« less

  10. Diagnosing the Prominence-Cavity Connection in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Schmit, D. J.

    The energetic equilibrium of the corona is described by a balance of heating, thermal conduction, and radiative cooling. Prominences can be described by the thermal instability of coronal energy balance which leads to the formation of cool condensations. Observationally, the prominence is surrounded by a density depleted elliptical structure known as a cavity. In this dissertation, we use extreme ultraviolet remote sensing observations of the prominence-cavity system to diagnose the static and dynamic properties of these structures. The observations are compared with numerical models for the time-dependent coronal condensation process and the time-independent corona-prominence magnetic field. To diagnose the density of the cavity, we construct a three-dimensional structural model of the corona. This structural model allows us to synthesize extreme ultraviolet emission in the corona in a way that incorporates the projection effects which arise from the optically thin plasma. This forward model technique is used to constrain a radial density profile simultaneously in the cavity and the streamer. We use a χ2 minimization to find the density model which best matches a density sensitive line ratio (observed with Hinode/Extreme ultraviolet Imaging Spectrometer) and the white light scattered intensity (observed with Mauna Loa Solar Observatory MK4 coronagraph). We use extreme ultraviolet spectra and spectral images to diagnose the dynamics of the prominence and the surrounding corona. Based on the doppler shift of extreme ultraviolet coronal emission lines, we find that there are large regions of flowing plasma which appear to occur within cavities. These line of sight flows have speeds of 10 km/s-1 and projected spatial scales of 100 Mm. Using the Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO/AIA) dataset, we observe dynamic emission from the prominence-cavity system. The SDO/AIA dataset observes multiple spectral bandpasses with different temperature sensitivities. Time-dependent changes in the observed emission in these bandpass images represent changes in the thermodynamic properties of the emitting plasma. We find that the coronal region surrounding the prominence exhibits larger intensity variations (over tens of hours of observations) as compared to the streamer region. This variability is particularly strong in the cool coronal emission of the 171Å bandpass. We identify the source of this variability as strong brightening events that resemble concave-up loop segments and extend from the cool prominence plasma. Magnetic field lines are the basic structural building block of the corona. Energy and pressure balance in the corona occur along magnetic field lines. The large-scale extreme ultraviolet emission we observe in the corona is a conglomerate of many coronal loops projected along a line of sight. In order to calculate the plasma properties at a particular point in the corona, we use one-dimensional models for energy and pressure balance along field lines. In order to predict the extreme ultraviolet emission along a particular line of sight, we project these one-dimensional models onto the three-dimensional magnetic configuration provided by a MHD model for the coronal magnetic field. These results have allowed us to the establish the first comprehensive picture on the magnetic and energetic interaction of the prominence and the cavity. While the originally hypothesis that the cavity supplies mass to the prominence proved inaccurate, we cannot simply say that these structures are not related. Rather our findings suggest that the prominence and the cavity are distinct magnetic substructures that are complementary regions of a larger whole, specifically a magnetic flux rope. (Abstract shortened by UMI.).

  11. Detection of Quasi-Periodic Pulsations in Solar EUV Time Series

    NASA Astrophysics Data System (ADS)

    Dominique, M.; Zhukov, A. N.; Dolla, L.; Inglis, A.; Lapenta, G.

    2018-04-01

    Quasi-periodic pulsations (QPPs) are intrinsically connected to the mechanism of solar flares. They are regularly observed in the impulsive phase of flares since the 1970s. In the past years, the studies of QPPs regained interest with the advent of a new generation of soft X-ray/extreme ultraviolet radiometers that pave the way for statistical surveys. Since the amplitude of QPPs in these wavelengths is rather small, detecting them implies that the overall trend of the time series needs to be removed before applying any Fourier or wavelet transform. This detrending process is known to produce artificial detection of periods that must then be distinguished from real ones. In this paper, we propose a set of criteria to help identify real periods and discard artifacts. We apply these criteria to data taken by the Extreme Ultraviolet Variability Experiment (EVE)/ESP onboard the Solar Dynamics Observatory (SDO) and the Large Yield Radiometer (LYRA) onboard the PRoject for On-Board Autonomy 2 (PROBA2) to search for QPPs in flares stronger than M5.0 that occurred during Solar Cycle 24.

  12. Sun Says "Keep Right"

    NASA Image and Video Library

    2015-05-28

    A pair of giant filaments on the face of the sun have formed what appears to be an enormous arrow. If straightened out, each filament would be about as long as the sun’s diameter, 1 million miles long. Filaments are cooler clouds of solar material suspended above the sun's surface by powerful magnetic forces. Filaments can float for days without much change, though they can also erupt, releasing solar material in a shower that either rains back down or escapes out into space, becoming a moving cloud known as a coronal mass ejection, or CME. This image was captured on May 28, 2015, in combined wavelengths of extreme ultraviolet light by NASA's Solar Dynamics Observatory, which observes the sun 24 hours a day. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Satisfaction with Daily Occupations for Elderly People (SDO-E)—Adaptation and Psychometric Testing

    PubMed Central

    Wästberg, Birgitta; Eklund, Mona

    2017-01-01

    Satisfaction with everyday occupations has been shown to be important for health and well-being in various populations. Research into satisfaction with everyday occupations among elderly persons is, however, lacking. The aim was to investigate the psychometric properties of an adapted test version of the Satisfaction with Daily Occupations instrument (SDO) for elderly people, called SDO-E. Five hospital-based occupational therapists working with elderly people evaluated the content validity and usability of the SDO-E. The elderly participants consisted of 50 people from outside of the health services and 42 inpatients at an internal medicine clinic. They completed the SDO-E and rated their perceived health, activity level, and general satisfaction with daily occupations. The SDO-E showed fair content validity and utility, acceptable internal consistency, good preliminary construct validity and relevant known-groups validity. The SDO-E thus appears to be a useful screening tool for assessing activity level and satisfaction with daily occupations among elderly people, and a complement to other self-report instruments concerning factors connected with health and well-being. Future research should further explore the content validity of the SDO-E, particularly the views of the elderly themselves, and investigate the SDO-E in terms of sensitivity to change. PMID:28946667

  14. Heliophysics Data Environment: What's next? (Invited)

    NASA Astrophysics Data System (ADS)

    Martens, P.

    2010-12-01

    In the last two decades the Heliophysics community has witnessed the societal recognition of the importance of space weather and space climate for our technology and ecology, resulting in a renewed priority for and investment in Heliophysics. As a result of that and the explosive development of information technology, Heliophysics has experienced an exponential growth in the amount and variety of data acquired, as well as the easy electronic storage and distribution of these data. The Heliophysics community has responded well to these challenges. The first, most obvious and most needed response, was the development of Virtual Heliophysics Observatories. While the VxOs of Heliophysics still need a lot of work with respect to the expansion of search options and interoperability, I believe the basic structures and functionalities have been established, and that they meet the needs of the community. In the future we'll see a refinement, completion, and integration of VxOs, not a fundamentally different approach -- in my opinion. The challenge posed by the huge increase in amount of data is not met by VxOs alone. No individual scientist or group, even with the assistance of tons of graduate students, can analyze the torrent of data currently coming down from the fleet of heliospheric observatories. Once more information technology provides an opportunity: Automated feature recognition of solar imagery is feasible, has been implemented in a number of instances, and is strongly supported by NASA. For example, the SDO Feature Finding Team is developing a suite of 16 feature recognition modules for SDO imagery that operates in near-real time, produces space-weather warnings, and populates on-line event catalogs. Automated feature recognition -- "computer vision" -- not only save enormous amounts of time in the analysis of events, it also allows for a shift from the analysis of single events to that of sets of features and events -- the latter being by far the most important implication of computer vision. Consider some specific examples of possibilities here: From the on-line SDO metadata a user can produce with a few IDL line commands information that previously would have taken years to compile, e.g.: - Draw a butterfly diagram for Active Regions, - Find all filaments that coincide with sigmoids and correlate the automatically detected sigmoid handedness with filament chirality, - Correlate EUV jets with small scale flux emergence in coronal holes only, - Draw PIL maps with regions of high shear and large magnetic field gradients overlayed, to pinpoint potential flaring regions. Then correlate with actual flare occurrence. I emphasize that the access to those metadata will be provided by VxOs, and that the interplay between computer vision codes and data will be facilitated by VxOs. My vision for the near and medium future for the VxOs is then to provide a simple and seamless interface between data, cataloged metadata, and computer vision software, either existing or newly developed by the user. Heliospheric virtual observatories and computer vision systems will work together to constantly monitor the Sun, provide space weather warnings, populate catalogs of metadata, analyze trends, and produce real-time on-line imagery of current events.

  15. Hα Doppler shifts in a tornado in the solar corona

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Mein, P.; Mein, N.; Levens, P. J.; Labrosse, N.; Ofman, L.

    2017-01-01

    Context. High resolution movies in 193 Å from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamic Observatory (SDO) show apparent rotation in the leg of a prominence observed during a coordinated campaign. Such structures are commonly referred to as tornadoes. Time-distance intensity diagrams of the AIA data show the existence of oscillations suggesting that the structure is rotating. Aims: The aim of this paper is to understand if the cool plasma at chromospheric temperatures inside the tornado is rotating around its central axis. Methods: The tornado was also observed in Hα with a cadence of 30 s by the MSDP spectrograph, operating at the Solar Tower in Meudon. The MSDP provides sequences of simultaneous spectra in a 2D field of view from which a cube of Doppler velocity maps is retrieved. Results: The Hα Doppler maps show a pattern with alternatively blueshifted and redshifted areas of 5 to 10'' wide. Over time the blueshifted areas become redshifted and vice versa, with a quasi-periodicity of 40 to 60 min. Weaker amplitude oscillations with periods of 4 to 6 min are superimposed onto these large period oscillations. Conclusions: The Doppler pattern observed in Hα cannot be interpreted as rotation of the cool plasma inside the tornado. The Hα velocity observations give strong constraints on the possible interpretations of the AIA tornado.

  16. Extreme-ultraviolet observations of global coronal wave rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attrill, G. D. R.; Long, D. M.; Green, L. M.

    2014-11-20

    We present evidence of global coronal wave rotation in EUV data from SOHO/EIT, STEREO/EUVI, and SDO/AIA. The sense of rotation is found to be consistent with the helicity of the source region (clockwise for positive helicity, anticlockwise for negative helicity), with the source regions hosting sigmoidal structures. We also study two coronal wave events observed by SDO/AIA where no clear rotation (or sigmoid) is observed. The selected events show supporting evidence that they all originate with flux rope eruptions. We make comparisons across this set of observations (both with and without clear sigmoidal structures). On examining the magnetic configuration ofmore » the source regions, we find that the nonrotation events possess a quadrupolar magnetic configuration. The coronal waves that do show a rotation originate from bipolar source regions.« less

  17. Social dominance orientation and gender: the moderating role of gender identity.

    PubMed

    Wilson, Marc Stewart; Liu, James H

    2003-06-01

    The aim of this research was to investigate the claim that gender differences in levels of social dominance orientation (SDO; Pratto, Sidanius, Stallworth, & Malle, 1994), a personality variable measuring a general predisposition towards anti-egalitarianism, are essentially invariant (Sidanius & Pratto, 1999). Previous findings have indicated that (regardless of covariate) males display higher levels of SDO than females. Two studies were conducted to test the expectation (derived from social identity theory) that the gender-SDO relationship would be moderated by strength of gender group identification. Both samples (150 non-students and 163 students) completed the full SDO(6) measure, and measures of gender group identification. Consistent with predictions, strength of gender identification was found to moderate the gender-SDO relationship, such that increasing group identification was associated with increasing SDO scores for males, and decreasing SDO for females. This result raises questions concerning the theoretical basis of social dominance theory, and whether gender group membership should be accorded a different status from other 'arbitrary-set' group memberships.

  18. Observations and Modeling of Transition Region and Coronal Heating Associated with Spicules

    NASA Astrophysics Data System (ADS)

    De Pontieu, B.; Martinez-Sykora, J.; De Moortel, I.; Chintzoglou, G.; McIntosh, S. W.

    2017-12-01

    Spicules have been proposed as significant contributorsto the coronal energy and mass balance. While previous observationshave provided a glimpse of short-lived transient brightenings in thecorona that are associated with spicules, these observations have beencontested and are the subject of a vigorous debate both on the modelingand the observational side so that it remains unclear whether plasmais heated to coronal temperatures in association with spicules. We use high-resolution observations of the chromosphere and transition region with the Interface Region Imaging Spectrograph (IRIS) and ofthe corona with the Atmospheric Imaging Assembly (AIA) onboard theSolar Dynamics Observatory (SDO) to show evidence of the formation of coronal structures as a result of spicular mass ejections andheating of plasma to transition region and coronaltemperatures. Our observations suggest that a significant fraction of the highly dynamic loop fan environment associated with plage regions may be the result of the formation of such new coronal strands, a process that previously had been interpreted as the propagation of transient propagating coronal disturbances (PCD)s. Our observationsare supported by 2.5D radiative MHD simulations that show heating tocoronal temperatures in association with spicules. Our results suggest that heating and strong flows play an important role in maintaining the substructure of loop fans, in addition to the waves that permeate this low coronal environment. Our models also matches observations ofTR counterparts of spicules and provides an elegant explanation forthe high apparent speeds of these "network jets".

  19. Formation and evolution of coronal rain observed by SDO/AIA on February 22, 2012

    NASA Astrophysics Data System (ADS)

    Vashalomidze, Z.; Kukhianidze, V.; Zaqarashvili, T. V.; Oliver, R.; Shergelashvili, B.; Ramishvili, G.; Poedts, S.; De Causmaecker, P.

    2015-05-01

    Context. The formation and dynamics of coronal rain are currently not fully understood. Coronal rain is the fall of cool and dense blobs formed by thermal instability in the solar corona towards the solar surface with acceleration smaller than gravitational free fall. Aims: We aim to study the observational evidence of the formation of coronal rain and to trace the detailed dynamics of individual blobs. Methods: We used time series of the 171 Å and 304 Å spectral lines obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) above active region AR 11420 on February 22, 2012. Results: Observations show that a coronal loop disappeared in the 171 Å channel and appeared in the 304 Å line more than one hour later, which indicates a rapid cooling of the coronal loop from 1 MK to 0.05 MK. An energy estimation shows that the radiation is higher than the heat input, which indicates so-called catastrophic cooling. The cooling was accompanied by the formation of coronal rain in the form of falling cold plasma. We studied two different sequences of falling blobs. The first sequence includes three different blobs. The mean velocities of the blobs were estimated to be 50 km s-1, 60 km s-1 and 40 km s-1. A polynomial fit shows the different values of the acceleration for different blobs, which are lower than free-fall in the solar corona. The first and second blob move along the same path, but with and without acceleration, respectively. We performed simple numerical simulations for two consecutive blobs, which show that the second blob moves in a medium that is modified by the passage of the first blob. Therefore, the second blob has a relatively high speed and no acceleration, as is shown by observations. The second sequence includes two different blobs with mean velocities of 100 km s-1 and 90 km s-1, respectively. Conclusions: The formation of coronal rain blobs is connected with the process of catastrophic cooling. The different acceleration of different coronal rain blobs might be due to the different values in the density ratio of blob to corona. All blobs leave trails, which might be a result of continuous cooling in their tails. Two movies attached to Fig. 1 are available in electronic form at http://www.aanda.org

  20. On Flare-CME Characteristics from Sun to Earth Combining Remote-Sensing Image Data with In Situ Measurements Supported by Modeling

    NASA Astrophysics Data System (ADS)

    Temmer, Manuela; Thalmann, Julia K.; Dissauer, Karin; Veronig, Astrid M.; Tschernitz, Johannes; Hinterreiter, Jürgen; Rodriguez, Luciano

    2017-07-01

    We analyze the well-observed flare and coronal mass ejection (CME) from 1 October 2011 (SOL2011-10-01T09:18) covering the complete chain of effects - from Sun to Earth - to better understand the dynamic evolution of the CME and its embedded magnetic field. We study in detail the solar surface and atmosphere associated with the flare and CME using the Solar Dynamics Observatory (SDO) and ground-based instruments. We also track the CME signature off-limb with combined extreme ultraviolet (EUV) and white-light data from the Solar Terrestrial Relations Observatory (STEREO). By applying the graduated cylindrical shell (GCS) reconstruction method and total mass to stereoscopic STEREO-SOHO ( Solar and Heliospheric Observatory) coronagraph data, we track the temporal and spatial evolution of the CME in the interplanetary space and derive its geometry and 3D mass. We combine the GCS and Lundquist model results to derive the axial flux and helicity of the magnetic cloud (MC) from in situ measurements from Wind. This is compared to nonlinear force-free (NLFF) model results, as well as to the reconnected magnetic flux derived from the flare ribbons (flare reconnection flux) and the magnetic flux encompassed by the associated dimming (dimming flux). We find that magnetic reconnection processes were already ongoing before the start of the impulsive flare phase, adding magnetic flux to the flux rope before its final eruption. The dimming flux increases by more than 25% after the end of the flare, indicating that magnetic flux is still added to the flux rope after eruption. Hence, the derived flare reconnection flux is most probably a lower limit for estimating the magnetic flux within the flux rope. We find that the magnetic helicity and axial magnetic flux are lower in the interplanetary space by ˜ 50% and 75%, respectively, possibly indicating an erosion process. A CME mass increase of 10% is observed over a range of {˜} 4 - 20 R_{⊙}. The temporal evolution of the CME-associated core-dimming regions supports the scenario that fast outflows might supply additional mass to the rear part of the CME.

  1. FORMATION AND ERUPTION OF A SMALL FLUX ROPE IN THE CHROMOSPHERE OBSERVED BY NST, IRIS, AND SDO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Pankaj; Yurchyshyn, Vasyl; Cho, Kyung-Suk

    Using high-resolution images from the 1.6 m New Solar Telescope at Big Bear Solar Observatory, we report the direct evidence of chromospheric reconnection at the polarity inversion line between two small opposite polarity sunspots. Small jetlike structures (with velocities of ∼20–55 km s{sup −1}) were observed at the reconnection site before the onset of the first M1.0 flare. The slow rise of untwisting jets was followed by the onset of cool plasma inflow (∼10 km s{sup −1}) at the reconnection site, causing the onset of a two-ribbon flare. The reconnection between two sheared J-shaped cool Hα loops causes the formationmore » of a small twisted (S-shaped) flux rope in the chromosphere. In addition, Helioseismic and Magnetic Imager magnetograms show the flux cancellation (both positive and negative) during the first M1.0 flare. The emergence of negative flux and the cancellation of positive flux (with shear flows) continue until the successful eruption of the flux rope. The newly formed chromospheric flux rope becomes unstable and rises slowly with a speed of ∼108 km s{sup −1} during a second C8.5 flare that occurred after ∼3 hr of the first M1.0 flare. The flux rope was destroyed by repeated magnetic reconnection induced by its interaction with the ambient field (fan–spine topology) and looks like an untwisting surge (∼170 km s{sup −1}) in the coronal images recorded by the Solar Dynamics Observatory/Atmospheric Imaging Assembly. These observations suggest the formation of a chromospheric flux rope (by magnetic reconnection associated with flux cancellation) during the first M1.0 flare and its subsequent eruption/disruption during the second C8.5 flare.« less

  2. A SOLAR TORNADO OBSERVED BY AIA/SDO: ROTATIONAL FLOW AND EVOLUTION OF MAGNETIC HELICITY IN A PROMINENCE AND CAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xing; Morgan, Huw; Leonard, Drew

    During 2011 September 24, as observed by the Atmospheric Imaging Assembly instrument of the Solar Dynamic Observatory and ground-based H{alpha} telescopes, a prominence and associated cavity appeared above the southwest limb. On 2011 September 25 8:00 UT, material flows upward from the prominence core along a narrow loop-like structure, accompanied by a rise ({>=}50,000 km) of the prominence core and the loop. As the loop fades by 10:00, small blobs and streaks of varying brightness rotate around the top part of the prominence and cavity, mimicking a cyclone. The most intense and coherent rotation lasts for over three hours, withmore » emission in both hot ({approx}1 MK) and cold (hydrogen and helium) lines. We suggest that the cyclonic appearance and overall evolution of the structure can be interpreted in terms of the expansion of helical structures into the cavity, and the movement of plasma along helical structures which appears as a rotation when viewed along the helix axis. The coordinated movement of material between prominence and cavity suggests that they are structurally linked. Complexity is great due to the combined effect of these actions and the line-of-sight integration through the structure which contains tangled fields.« less

  3. On the plasma flow inside magnetic tornadoes on the Sun

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven; Steiner, Oskar

    2014-12-01

    High-resolution observations with the Swedish 1-m Solar Telescope (SST) and the Solar Dynamics Observatory (SDO) reveal rotating magnetic field structures that extend from the solar surface into the chromosphere and the corona. These so-called magnetic tornadoes are primarily detected as rings or spirals of rotating plasma in the Ca II 854.2 nm line core (also known as chromospheric swirls). Detailed numerical simulations show that the observed chromospheric plasma motion is caused by the rotation of magnetic field structures, which again are driven by photospheric vortex flows at their footpoints. Under the right conditions, two vortex flow systems are stacked on top of each other. We refer to the lower vortex, which extends from the low photosphere into the convection zone, as intergranular vortex flow (IVF). Once a magnetic field structure is co-located with an IVF, the rotation is mediated into the upper atmospheric layers and an atmospheric vortex flow (AVF, or magnetic tornado) is generated. In contrast to the recent work by Shelyag et al. (2013, ApJ, 776, L4), we demonstrate that particle trajectories in a simulated magnetic tornado indeed follow spirals and argue that the properties of the trajectories decisively depend on the location in the atmosphere and the strength of the magnetic field.

  4. The Formation and Maintenance of the Dominant Southern Polar Crown Cavity of Cycle 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karna, N.; Pesnell, W. D.; Zhang, J.

    2017-02-01

    In this article, we report a study of the longest-lived polar crown cavity of Solar Cycle 24, using an observation from 2013, and propose a physical mechanism to explain its sustained existence. We used high temporal and spatial resolution observations from the Atmospheric Imaging Assembly (AIA) and the Helioseismic Magnetic Imager (HMI) instruments on board the Solar Dynamics Observatory ( SDO ) to explore the structure and evolution of the cavity. Although it existed for more than a year, we examined the circumpolar cavity in great detail from 2013 March 21 to 2013 October 31. Our study reinforces the existingmore » theory of formation of polar crown filaments that involves two basic processes to form any polar crown cavity as well as the long-lived cavity that we studied here. First, the underlying polarity inversion line (PIL) of the circumpolar cavity is formed between (1) the trailing part of dozens of decayed active regions distributed in different longitudes and (2) the unipolar magnetic field in the polar coronal hole. Second, the long life of the cavity is sustained by the continuing flux cancellation along the PIL. The flux is persistently transported toward the polar region through surface meridional flow and diffusion. The continuing flux cancellation leads to the shrinking of the polar coronal hole.« less

  5. The Formation and Maintenance of the Dominant Southern Polar Crown Cavity of Cycle 24

    NASA Technical Reports Server (NTRS)

    Karna, N.; Zhang, J.; Pesnell, W. D.

    2017-01-01

    In this article, we report a study of the longest-lived polar crown cavity of Solar Cycle 24, using an observation from 2013, and propose a physical mechanism to explain its sustained existence. We used high temporal and spatial resolution observations from the Atmospheric Imaging Assembly (AIA) and the Helioseismic Magnetic Imager (HMI) instruments on board the Solar Dynamics Observatory (SDO) to explore the structure and evolution of the cavity. Although it existed for more than a year, we examined the circumpolar cavity in great detail from 2013 March 21 to 2013 October 31. Our study reinforces the existing theory of formation of polar crown filaments that involves two basic processes to form any polar crown cavity as well as the long-lived cavity that we studied here. First, the underlying polarity inversion line (PIL) of the circumpolar cavity is formed between (1) the trailing part of dozens of decayed active regions distributed in different longitudes and (2) the unipolar magnetic field in the polar coronal hole. Second, the long life of the cavity is sustained by the continuing flux cancellation along the PIL. The flux is persistently transported toward the polar region through surface meridional flow and diffusion. The continuing flux cancellation leads to the shrinking of the polar coronal hole.

  6. GROWING TRANSVERSE OSCILLATIONS OF A MULTISTRANDED LOOP OBSERVED BY SDO/AIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tongjiang; Ofman, Leon; Su, Yang

    The first evidence of transverse oscillations of a multistranded loop with growing amplitudes and internal coupling observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory is presented. The loop oscillation event occurred on 2011 March 8, triggered by a coronal mass ejection (CME). The multiwavelength analysis reveals the presence of multithermal strands in the oscillating loop, whose dynamic behaviors are temperature-dependent, showing differences in their oscillation amplitudes, phases, and emission evolution. The physical parameters of growing oscillations of two strands in 171 A are measured and the three-dimensional loop geometry is determined using STEREO-A/EUVI data. These strandsmore » have very similar frequencies, and between two 193 A strands a quarter-period phase delay sets up. These features suggest the coupling between kink oscillations of neighboring strands and the interpretation by the collective kink mode as predicted by some models. However, the temperature dependence of the multistranded loop oscillations was not studied previously and needs further investigation. The transverse loop oscillations are associated with intensity and loop width variations. We suggest that the amplitude-growing kink oscillations may be a result of continuous non-periodic driving by magnetic deformation of the CME, which deposits energy into the loop system at a rate faster than its loss.« less

  7. An X-ray survey of hot white dwarf stars - Evidence for a m(He)/n(H) versus Teff correlation

    NASA Technical Reports Server (NTRS)

    Petre, R.; Shipman, H. L.; Canizares, C. R.

    1986-01-01

    Observations of 13 white dwarf and subdwarf stars using the Einstein Observatory High Resolution Image are reported. Included are stars of classes DA, DB, DAV, sDO, and sDB, with optically determined effective temperatures in the range 10,000-60,000 K. X-ray emission was detected from two of the 13: the very hot (55,000 K) DA1 star WD 2309 + 105 (= EG 233), with a count rate one-fifth that of HZ 43, and the relatively cool (26,000 K) DA3 star WD 1052 - 273 (=GD 125). The effective temperatures determined from ultraviolet and optical observations were used to place limits on the He content of the white dwarf photospheres, presuming that trace photospheric He is the missing opacity source which quenches the thermal X-rays in these stars. When presently obtained results were combined with those available from the literature evidence was found for a correlation between Teff and n(He)/n(H), in which HZ 43 is a conspicuous exception to the general trend. Both this correlation and the exceptional behavior of HZ 43 are qualitatively accounted for by a radiative acceleration model, in which the rate of upward movement of the He is a function of temperature and surface gravity

  8. Automatic detection of white-light flare kernels in SDO/HMI intensitygrams

    NASA Astrophysics Data System (ADS)

    Mravcová, Lucia; Švanda, Michal

    2017-11-01

    Solar flares with a broadband emission in the white-light range of the electromagnetic spectrum belong to most enigmatic phenomena on the Sun. The origin of the white-light emission is not entirely understood. We aim to systematically study the visible-light emission connected to solar flares in SDO/HMI observations. We developed a code for automatic detection of kernels of flares with HMI intensity brightenings and study properties of detected candidates. The code was tuned and tested and with a little effort, it could be applied to any suitable data set. By studying a few flare examples, we found indication that HMI intensity brightening might be an artefact of the simplified procedure used to compute HMI observables.

  9. Chinese adolescents with higher social dominance orientation are less prosocial and less happy: A value-environment fit analysis.

    PubMed

    Yang, Ying; Li, Wenqi; Sheldon, Kennon M; Kou, Yu

    2018-01-10

    This study aims to investigate the relationship between social dominance orientation (SDO) and subjective well-being among Chinese adolescents (N = 4246), and to examine the mediating role of prosocial behaviour in this relationship. The structural equation model's results showed that SDO was negatively associated with prosocial behaviour and subjective well-being, that prosocial behaviour was positively associated with subjective well-being, and also that (low) prosocial behaviour partially mediated the negative relationship between SDO and subjective well-being. Multi-group analyses showed that the mediation model was generally similar between boys and girls, but that the negative relationship between SDO and prosocial behaviour was somewhat stronger among girls than boys. This study sheds light on how SDO is associated with positive outcomes among Chinese adolescents and highlights the mediating role of prosocial behaviour as an underlying mechanism between SDO and subjective well-being. Future studies are needed to further discover the role of culture values in the association between SDO and subjective well-being. © 2018 International Union of Psychological Science.

  10. Morphology Of A Hot Prominence Cavity Observed with Hinode/XRT and SDO/AIA

    NASA Technical Reports Server (NTRS)

    Weber, Mark A.; Reeves, K. K.; Gibson, S. E.; Kucera, T. A.

    2012-01-01

    Prominence cavities appear as circularly shaped voids in coronal emission over polarity inversion lines where a prominence channel is straddling the solar limb. The presence of chromospheric material suspended at coronal altitudes is a common but not necessary feature within these cavities. These voids are observed to change shape as a prominence feature rotates around the limb. We use a morphological model projected in cross-sections to fit the cavity emission in Hinode/XRT passbands, and then apply temperature diagnostics to XRT and SDO/AIA data to investigate the thermal structure. We find significant evidence that the prominence cavity is hotter than the corona immediately outside the cavity boundary. This investigation follows upon "Thermal Properties of A Solar Coronal Cavity Observed with the X-ray Telescope on Hinode" by Reeves et al., 2012, ApJ, in press.

  11. Determination of Differential Emission Measure from Solar Extreme Ultraviolet Images

    NASA Astrophysics Data System (ADS)

    Su, Yang; Veronig, Astrid M.; Hannah, Iain G.; Cheung, Mark C. M.; Dennis, Brian R.; Holman, Gordon D.; Gan, Weiqun; Li, Youping

    2018-03-01

    The Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) has been providing high-cadence, high-resolution, full-disk UV-visible/extreme ultraviolet (EUV) images since 2010, with the best time coverage among all the solar missions. A number of codes have been developed to extract plasma differential emission measures (DEMs) from AIA images. Although widely used, they cannot effectively constrain the DEM at flaring temperatures with AIA data alone. This often results in much higher X-ray fluxes than observed. One way to solve the problem is by adding more constraint from other data sets (such as soft X-ray images and fluxes). However, the spatial information of plasma DEMs are lost in many cases. In this Letter, we present a different approach to constrain the DEMs. We tested the sparse inversion code and show that the default settings reproduce X-ray fluxes that could be too high. Based on the tests with both simulated and observed AIA data, we provided recommended settings of basis functions and tolerances. The new DEM solutions derived from AIA images alone are much more consistent with (thermal) X-ray observations, and provide valuable information by mapping the thermal plasma from ∼0.3 to ∼30 MK. Such improvement is a key step in understanding the nature of individual X-ray sources, and particularly important for studies of flare initiation.

  12. NuSTAR Detection of X-Ray Heating Events in the Quiet Sun

    NASA Astrophysics Data System (ADS)

    Kuhar, Matej; Krucker, Säm; Glesener, Lindsay; Hannah, Iain G.; Grefenstette, Brian W.; Smith, David M.; Hudson, Hugh S.; White, Stephen M.

    2018-04-01

    The explanation of the coronal heating problem potentially lies in the existence of nanoflares, numerous small-scale heating events occurring across the whole solar disk. In this Letter, we present the first imaging spectroscopy X-ray observations of three quiet Sun flares during the Nuclear Spectroscopic Telescope ARray (NuSTAR) solar campaigns on 2016 July 26 and 2017 March 21, concurrent with the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) observations. Two of the three events showed time lags of a few minutes between peak X-ray and extreme ultraviolet emissions. Isothermal fits with rather low temperatures in the range 3.2–4.1 MK and emission measures of (0.6–15) × 1044 cm‑3 describe their spectra well, resulting in thermal energies in the range (2–6) × 1026 erg. NuSTAR spectra did not show any signs of a nonthermal or higher temperature component. However, as the estimated upper limits of (hidden) nonthermal energy are comparable to the thermal energy estimates, the lack of a nonthermal component in the observed spectra is not a constraining result. The estimated Geostationary Operational Environmental Satellite (GOES) classes from the fitted values of temperature and emission measure fall between 1/1000 and 1/100 A class level, making them eight orders of magnitude fainter in soft X-ray flux than the largest solar flares.

  13. Fully Automated Sunspot Detection and Classification Using SDO HMI Imagery in MATLAB

    DTIC Science & Technology

    2014-03-27

    FULLY AUTOMATED SUNSPOT DETECTION AND CLASSIFICATION USING SDO HMI IMAGERY IN MATLAB THESIS Gordon M. Spahr, Second Lieutenant, USAF AFIT-ENP-14-M-34...CLASSIFICATION USING SDO HMI IMAGERY IN MATLAB THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air...DISTRIUBUTION UNLIMITED. AFIT-ENP-14-M-34 FULLY AUTOMATED SUNSPOT DETECTION AND CLASSIFICATION USING SDO HMI IMAGERY IN MATLAB Gordon M. Spahr, BS Second

  14. X-class Solar Flare on March 29, 2014

    NASA Image and Video Library

    2014-03-31

    Extreme ultraviolet light streams out of an X-class solar flare as seen in this image captured on March 29, 2014, by NASA's Solar Dynamics Observatory. This image blends two wavelengths of light: 304 and 171 Angstroms, which help scientists observe the lower levels of the sun's atmosphere. More info: The sun emitted a significant solar flare, peaking at 1:48 p.m. EDT March 29, 2014, and NASA's Solar Dynamics Observatory captured images of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event impacted Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an X.1-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Thermodynamic Spectrum of Solar Flares Based on SDO/EVE Observations: Techniques and First Results

    NASA Technical Reports Server (NTRS)

    Wang, Yuming; Zhou, Zhenjun; Zhang, Jie; Liu, Kai; Liu, Rui; Shen, Chenglong; Chamberlin, Phillip C.

    2016-01-01

    The Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could potentially be useful for extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0 class, and reach the following statistical results. First, EUV peaks are always behind the soft X-ray (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections.

  16. Onset of a Large Ejective Solar Eruption from a Typical Coronal-jet-base Field Configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Navin Chandra; Magara, Tetsuya; Moon, Yong-Jae

    Utilizing multiwavelength observations and magnetic field data from the Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA), SDO /Helioseismic and Magnetic Imager (HMI), the Geostationary Operational Environmental Satellite ( GOES ), and RHESSI , we investigate a large-scale ejective solar eruption of 2014 December 18 from active region NOAA 12241. This event produced a distinctive “three-ribbon” flare, having two parallel ribbons corresponding to the ribbons of a standard two-ribbon flare, and a larger-scale third quasi-circular ribbon offset from the other two. There are two components to this eruptive event. First, a flux rope forms above a strong-field polarity inversionmore » line and erupts and grows as the parallel ribbons turn on, grow, and spread apart from that polarity inversion line; this evolution is consistent with the mechanism of tether-cutting reconnection for eruptions. Second, the eruption of the arcade that has the erupting flux rope in its core undergoes magnetic reconnection at the null point of a fan dome that envelops the erupting arcade, resulting in formation of the quasi-circular ribbon; this is consistent with the breakout reconnection mechanism for eruptions. We find that the parallel ribbons begin well before (∼12 minutes) the onset of the circular ribbon, indicating that tether-cutting reconnection (or a non-ideal MHD instability) initiated this event, rather than breakout reconnection. The overall setup for this large-scale eruption (diameter of the circular ribbon ∼10{sup 5} km) is analogous to that of coronal jets (base size ∼10{sup 4} km), many of which, according to recent findings, result from eruptions of small-scale “minifilaments.” Thus these findings confirm that eruptions of sheared-core magnetic arcades seated in fan–spine null-point magnetic topology happen on a wide range of size scales on the Sun.« less

  17. Critical Magnetic Field Strengths for Unipolar Solar Coronal Plumes in Quiet Regions and Coronal Holes?

    NASA Astrophysics Data System (ADS)

    Avallone, E. A.; Tiwari, S. K.; Panesar, N. K.; Moore, R. L.

    2017-12-01

    Coronal plumes are sporadic fountain-like structures that are bright in coronal emission. Each is a magnetic funnel rooted in a strong patch of dominant-polarity photospheric magnetic flux surrounded by a predominantly-unipolar magnetic network, either in a quiet region or a coronal hole. The heating processes that make plumes bright evidently involve the magnetic field in the base of the plume, but remain mysterious. Raouafi et al. (2014) inferred from observations that plume heating is a consequence of magnetic reconnection in the base, whereas Wang et al. (2016) showed that plume heating turns on/off from convection-driven convergence/divergence of the base flux. While both papers suggest that the base magnetic flux in their plumes is of mixed polarity, these papers provide no measurements of the abundance and strength of the evolving base flux or consider whether a critical magnetic field strength is required for a plume to become noticeably bright. To address plume production and evolution, we track the plume luminosity and the abundance and strength of the base magnetic flux over the lifetimes of six coronal plumes, using Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) 171 Å images and SDO/Helioseismic and Magnetic Imager (HMI) line-of-sight magnetograms. Three of these plumes are in coronal holes, three are in quiet regions, and each plume exhibits a unipolar base flux. We track the base magnetic flux over each plume's lifetime to affirm that its convergence and divergence respectively coincide with the appearance and disappearance of the plume in 171 Å images. We tentatively find that plume formation requires enough convergence of the base flux to surpass a field strength of ˜300-500 Gauss, and that quiet Sun and coronal-hole plumes both exhibit the same behavior in the response of their luminosity in 171 Å to the strength of the magnetic field in the base.

  18. Photospheric Current Spikes And Their Possible Association With Flares - Results from an HMI Data Driven Model

    NASA Astrophysics Data System (ADS)

    Goodman, M. L.; Kwan, C.; Ayhan, B.; Eric, S. L.

    2016-12-01

    A data driven, near photospheric magnetohydrodynamic model predicts spikes in the horizontal current density, and associated resistive heating rate. The spikes appear as increases by orders of magnitude above background values in neutral line regions (NLRs) of active regions (ARs). The largest spikes typically occur a few hours to a few days prior to M or X flares. The spikes correspond to large vertical derivatives of the horizontal magnetic field. The model takes as input the photospheric magnetic field observed by the Helioseismic & Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) satellite. This 2.5 D field is used to determine an analytic expression for a 3 D magnetic field, from which the current density, vector potential, and electric field are computed in every AR pixel for 14 ARs. The field is not assumed to be force-free. The spurious 6, 12, and 24 hour Doppler periods due to SDO orbital motion are filtered out of the time series of the HMI magnetic field for each pixel. The subset of spikes analyzed at the pixel level are found to occur on HMI and granulation scales of 1 arcsec and 12 minutes. Spikes are found in ARs with and without M or X flares, and outside as well as inside NLRs, but the largest spikes are localized in the NLRs of ARs with M or X flares. The energy to drive the heating associated with the largest current spikes comes from bulk flow kinetic energy, not the electromagnetic field, and the current density is highly non-force free. The results suggest that, in combination with the model, HMI is revealing strong, convection driven, non-force free heating events on granulation scales, and it is plausible these events are correlated with subsequent M or X flares. More and longer time series need to be analyzed to determine if such a correlation exists.

  19. THERMODYNAMIC SPECTRUM OF SOLAR FLARES BASED ON SDO/EVE OBSERVATIONS: TECHNIQUES AND FIRST RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuming; Zhou, Zhenjun; Liu, Kai

    2016-03-15

    The Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE) provides rich information on the thermodynamic processes of solar activities, particularly on solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could potentially be useful for extreme ultraviolet (EUV) astronomy to learn about the eruptive activities on distant astronomical objects. Through several cases, we illustrate what we can learn from the TDS charts. Furthermore, we apply the TDS method to 74 flares equal to or greater than the M5.0 class, and reach the following statistical results. First, EUV peaks are always behind the soft X-raymore » (SXR) peaks and stronger flares tend to have faster cooling rates. There is a power-law correlation between the peak delay times and the cooling rates, suggesting a coherent cooling process of flares from SXR to EUV emissions. Second, there are two distinct temperature drift patterns, called Type I and Type II. For Type I flares, the enhanced emission drifts from high to low temperature like a quadrilateral, whereas for Type II flares the drift pattern looks like a triangle. Statistical analysis suggests that Type II flares are more impulsive than Type I flares. Third, for late-phase flares, the peak intensity ratio of the late phase to the main phase is roughly correlated with the flare class, and the flares with a strong late phase are all confined. We believe that the re-deposition of the energy carried by a flux rope, which unsuccessfully erupts out, into thermal emissions is responsible for the strong late phase found in a confined flare. Furthermore, we show the signatures of the flare thermodynamic process in the chromosphere and transition region in the TDS charts. These results provide new clues to advance our understanding of the thermodynamic processes of solar flares and associated solar eruptions, e.g., coronal mass ejections.« less

  20. CCMC Plans to Support SDO Operations

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter

    2008-01-01

    The CCMC will actively support the SDO Mission. It will do this, wherever feasible, by installing and running those models which the SDO science planners deem both appropriate and necessary to enable the science goals of SDO. In this presentation I will outline our philosophy in offering this support, the models we are actively pursuing to enable this, and the modes in which we intend to run these models. I will discuss how users of SDO data will be able to request model runs and analyse their outputs. I will also describe the facilities which we have at our disposal to support this effort, and our expectations for the resource requirements which this support will need.

  1. Open questions on prominences from coordinated observations by IRIS, Hinode, SDO/AIA, THEMIS, and the Meudon/MSDP

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Tian, H.; Kucera, T.; López Ariste, A.; Mein, N.; Mein, P.; Dalmasse, K.; Golub, L.

    2014-09-01

    Context. A large prominence was observed by multiple instruments on the ground and in space during an international campaign on September 24, 2013, for three hours (12:12 UT -15:12 UT). Instruments used in the campaign included the newly launched (June 2013) Interface Region Imaging Spectrograph (IRIS), THEMIS (Tenerife), the Hinode Solar Optical Telescope (SOT), the Solar Dynamic Observatory's Atmospheric Imaging Assembly (SDO/AIA), and the Multichannel Subtractive Double Pass spectrograph (MSDP) in the Meudon Solar Tower. The movies obtained in 304 Å with the EUV imager SDO/AIA, and in Ca II line by SOT show the dynamic nature of the prominence. Aims: The aim of this work is to study the dynamics of the prominence fine structures in multiple wavelengths to understand their formation. Methods: The spectrographs IRIS and MSDP provided line profiles with a high cadence in Mg II h (2803.5 Å) and k (2796.4 Å) lines along four slit positions (IRIS), and in Hα in a 2D field of view (MSDP). The spectropolarimetry of THEMIS (Tenerife) allowed us to derive the magnetic field of the prominence using the He D3 line depolarization (Hanle effect combined with the Zeeman effect). Results: The magnetic field is found to be globally horizontal with a relatively weak field strength (8-15 Gauss). On the other hand, the Ca II movie reveals turbulent-like motion that is not organized in specific parts of the prominence. We tested the addition of a turbulent magnetic component. This model is compatible with the polarimetric observations at those places where the plasma turbulence peaks. On the other hand, the Mg II line profiles show multiple peaks well separated in wavelength. This is interpreted by the existence of small threads along the line of sight with a large dispersion of discrete values of Doppler shifts, from 5 km s-1 (a quasi-steady component) to 60-80 km s-1. Each peak corresponds to a Gaussian profile, and not to a reversed profile as was expected by the present non-LTE radiative transfer modeling. This is a very surprising behavior for the Mg II line observed in prominences. Conclusions: Turbulent fields on top of the macroscopic horizontal component of the magnetic field supporting the prominence give rise to the complex dynamics of the plasma. The plasma with the high velocities (70 km s-1 to 100 km s-1 if we take into account the transverse velocities) may correspond to condensation of plasma along more or less horizontal threads of the arch-shape structure visible in 304 Å. The steady flows (5 km s-1) would correspond to a more quiescent plasma (cool and prominence-corona transition region) of the prominence packed into dips in horizontal magnetic field lines. The very weak secondary peaks in the Mg II profiles may reflect the turbulent nature of parts of the prominence. Movies are available in electronic form at http://www.aanda.org

  2. Analysis of Photospheric Convection Cells with SDO/HMI

    NASA Technical Reports Server (NTRS)

    Williams, Peter E.; Pesnell, William Dean

    2010-01-01

    Supergranulation is a component of solar convection that assists in the outward transportation of internal energy. Supergranule cells are approximately 35 Mm across, have lifetimes on the order of a day and have divergent horizontal velocities of around 300 m/s, a factor of 10 higher than their central radial components. While they have been observed using Doppler methods for around half a century, their existence is also observed in other datasets such as magnetograms and Ca II K images. These datasets clearly show the influence of supergranulation on solar magnetism and how the local field is organized by the flows of supergranule cells. The Heliospheric and Magnetic Imager (HMI) aboard SDO is making fresh observations of convection phenomena at a higher cadence and a higher resolution that should make granular features visible. Granulation and supergranulation characteristics can now be compared within the same datasets, which may lead to further understanding of any mutual influences. The temporal and spatial enhancements of HMI will also reduce the noise level within studies of convection so that more detailed studies of their characteristics may be made. We present analyses of SDO/HMI Dopplergrams that provide new estimates of convection cell sizes, lifetimes, and velocity flows, as well as the rotation rates of the convection patterns across the solar disk. We make comparisons with previous data produced by MDI, as well as from data simulations.

  3. HEMISPHERIC ASYMMETRIES OF SOLAR PHOTOSPHERIC MAGNETISM: RADIATIVE, PARTICULATE, AND HELIOSPHERIC IMPACTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntosh, Scott W.; Burkepile, Joan; Miesch, Mark

    2013-03-10

    Among many other measurable quantities, the summer of 2009 saw a considerable low in the radiative output of the Sun that was temporally coincident with the largest cosmic-ray flux ever measured at 1 AU. Combining measurements and observations made by the Solar and Heliospheric Observatory (SOHO) and Solar Dynamics Observatory (SDO) spacecraft we begin to explore the complexities of the descending phase of solar cycle 23, through the 2009 minimum into the ascending phase of solar cycle 24. A hemispheric asymmetry in magnetic activity is clearly observed and its evolution monitored and the resulting (prolonged) magnetic imbalance must have hadmore » a considerable impact on the structure and energetics of the heliosphere. While we cannot uniquely tie the variance and scale of the surface magnetism to the dwindling radiative and particulate output of the star, or the increased cosmic-ray flux through the 2009 minimum, the timing of the decline and rapid recovery in early 2010 would appear to inextricably link them. These observations support a picture where the Sun's hemispheres are significantly out of phase with each other. Studying historical sunspot records with this picture in mind shows that the northern hemisphere has been leading since the middle of the last century and that the hemispheric ''dominance'' has changed twice in the past 130 years. The observations presented give clear cause for concern, especially with respect to our present understanding of the processes that produce the surface magnetism in the (hidden) solar interior-hemispheric asymmetry is the normal state-the strong symmetry shown in 1996 was abnormal. Further, these observations show that the mechanism(s) which create and transport the magnetic flux are slowly changing with time and, it appears, with only loose coupling across the equator such that those asymmetries can persist for a considerable time. As the current asymmetry persists and the basal energetics of the system continue to dwindle we anticipate new radiative and particulate lows coupled with increased cosmic-ray fluxes heading into the next solar minimum.« less

  4. High Gain Antenna Calibration on Three Spacecraft

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.

    2011-01-01

    This paper describes the alignment calibration of spacecraft High Gain Antennas (HGAs) for three missions. For two of the missions (the Lunar Reconnaissance Orbiter and the Solar Dynamics Observatory) the calibration was performed on orbit. For the third mission (the Global Precipitation Measurement core satellite) ground simulation of the calibration was performed in a calibration feasibility study. These three satellites provide a range of calibration situations-Lunar orbit transmitting to a ground antenna for LRO, geosynchronous orbit transmitting to a ground antenna fer SDO, and low Earth orbit transmitting to TDRS satellites for GPM The calibration results depend strongly on the quality and quantity of calibration data. With insufficient data the calibration Junction may give erroneous solutions. Manual intervention in the calibration allowed reliable parameters to be generated for all three missions.

  5. From the Sun with Love

    NASA Image and Video Library

    2017-12-08

    This Solar Dynamics Observatory (SDO) image of the Sun taken on January 20, 2012 in extreme ultraviolet light captures a heart-shaped dark coronal hole. Coronal holes are areas of the Sun's surface that are the source of open magnetic field lines that head way out into space. They are also the source regions of the fast solar wind, which is characterized by a relatively steady speed of approximately 800 km/s (about 1.8 million mph). NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Think Scientifically: The NASA Solar Dynamics Observatory's Elementary Science Literacy Program

    NASA Astrophysics Data System (ADS)

    Van Norden, Wendy M.

    2013-07-01

    The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solar science concepts, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions. These books are being distributed through teacher workshops and conferences, and are available free at http://sdo.gsfc.nasa.gov/epo/educators/thinkscientifically.php.

  7. The motivational bases of right-wing authoritarianism and social dominance orientation: relations to values and attitudes in the aftermath of September 11, 2001.

    PubMed

    Cohrs, J Christopher; Moschner, Barbara; Maes, Jürgen; Kielmann, Sven

    2005-10-01

    Research suggests that different motivational dynamics underlie right-wing authoritarianism (RWA) and social dominance orientation (SDO). These differences may be framed in the theory of basic human values. RWA may trace back to conservation versus openness-to-change values, and SDO to self-enhancement versus self-transcendence values. Based on a large-scale German survey, associations of RWA and SDO with personal values and attitudes in the aftermath of September 11, 2001, were analyzed. Results indicated that RWA related more strongly than SDO to conservation values and threat-related attitudes toward Islam as an expression of the motivational goals of social control and security, whereas RWA and SDO related equally to self-enhancement versus self-transcendence values and concern for negative consequences of military action as an expression of the motivational goal of altruistic concern. Thus, the motivational bases of RWA and SDO appear to be only partly different.

  8. Taking Race Off the Table: Agenda Setting and Support for Color-Blind Public Policy.

    PubMed

    Chow, Rosalind M; Knowles, Eric D

    2016-01-01

    Whites are theorized to support color-blind policies as an act of racial agenda setting-an attempt to defend the existing hierarchy by excluding race from public and institutional discourse. The present analysis leverages work distinguishing between two forms of social dominance orientation (SDO): passive opposition to equality (SDO-E) and active desire for dominance (SDO-D). We hypothesized that agenda setting, as a subtle hierarchy-maintenance strategy, would be uniquely tied to high levels of SDO-E. When made to believe that the hierarchy was under threat, Whites high in SDO-E increased their endorsement of color-blind policy (Study 1), particularly when the racial hierarchy was framed as ingroup advantage (Study 2), and became less willing to include race as a topic in a hypothetical presidential debate (Study 3). Across studies, Whites high in SDO-D showed no affinity for agenda setting as a hierarchy-maintenance strategy. © 2015 by the Society for Personality and Social Psychology, Inc.

  9. New Views of the Solar Corona from STEREO and SDO

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.

    2012-01-01

    In the last few years, we have been treated to an unusual visual feast of solar observations of the corona in EUV wavelengths. The observations from the two vantage points of STEREO/SECCHI are now capturing the entire solar atmosphere simultaneously in four wavelengths. The SDO/AIA images provide us with arcsecond resolution images of the full visible disk in ten wavelengths. All these data are captured with cadences of a few seconds to a few minutes. In this talk, I review some intriguing results from our first attempts to deal with these observations which touch upon the problems of coronal mass ejection initiation and solar wind generation. I will also discuss data processing techniques that may help us recover even more information from the images. The talk will contain a generous portion of beautiful EUV images and movies of the solar corona.

  10. Hi-C and AIA observations of transverse magnetohydrodynamic waves in active regions

    NASA Astrophysics Data System (ADS)

    Morton, R. J.; McLaughlin, J. A.

    2013-05-01

    The recent launch of the High resolution Coronal imager (Hi-C) provided a unique opportunity of studying the EUV corona with unprecedented spatial resolution. We utilize these observations to investigate the properties of low-frequency (50-200 s) active region transverse waves, whose omnipresence had been suggested previously. The five-fold improvement in spatial resolution over SDO/AIA reveals coronal loops with widths 150-310 km and that these loops support transverse waves with displacement amplitudes <50 km. However, the results suggest that wave activity in the coronal loops is of low energy, with typical velocity amplitudes <3 km s-1. An extended time-series of SDO data suggests that low-energy wave behaviour is typical of the coronal structures both before and after the Hi-C observations. Appendix A and five movies associated to Figs. A.2-A.6 are available in electronic form at http://www.aanda.org

  11. Hemispherical Nature of EUV Shocks Revealed by SOHO, STEREO, and SDO Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk; Nitta, N.; Akiyama, S.; Makela, P.; Yashiro, S.

    2011-01-01

    EUV wave transients associated with type II radio bursts are manifestation of CME-driven shocks in the solar corona. We use recent EUV wave observations from SOHO, STEREO, and SDO for a set of CMEs to show that the EUV transients have a spherical shape in the inner corona. We demonstrate this by showing that the radius of the EUV transient on the disk observed by one instrument is approximately equal to the height of the wave above the solar surface in an orthogonal view provided by another instrument. The study also shows that the CME-driven shocks often form very low in the corona at a heliocentric distance of 1.2 Rs, even smaller than the previous estimates from STEREO/CORl data (Gopalswamy et aI., 2009, Solar Phys. 259, 227). These results have important implications for the acceleration of solar energetic particles by CMEs

  12. Multi-wavelength Observation of Filament Eruption associated with M-class Flare

    NASA Astrophysics Data System (ADS)

    Kim, S.; Yurchyshyn, V.; Jiang, C.

    2017-12-01

    We have investigated a M-class flare associated with filament eruption which developed into a Halo CME. The M-class flare occurred in 2011 August 4. For this study, we used the Nobryama Radioheliograph (NoRH) 17 and 34 GHz, RHESSI Hard X-ray satellite, and Atmo- spheric Imaging Assembly (AIA) and the Heliospheric Magentic Imager(HMI) onboard the Solar Dynamic Observatory (SDO). During the pre-eruption phase, clear nonthermal emission was detected in microwaves of NoRH and hard-X-ray of RHESSI. At the moment that the nonthermal emission start, the nonthermal sources appeared at the one edge of the filament structure on a polarity inversion line, and the slowing rising filament structure in AIA 94A underwent a sudden acceleration on its ascendance. Magnetograms showed converging motion of magnetic elements at the source position of HXR and MW. Based on the results, we conjecture that the plausible trigger of the filament eruption is magnetic reconnections at the HXR source position by converging motion of magnetic elements. In addition, we will discuss on the magnetic flux variation before and after the eruption based on the result of Nonlinear force-free field model.

  13. Achieving Consistent Doppler Measurements from SDO/HMI Vector Field Inversions

    NASA Technical Reports Server (NTRS)

    Schuck, Peter W.; Antiochos, S. K.; Leka, K. D.; Barnes, Graham

    2016-01-01

    NASA's Solar Dynamics Observatory is delivering vector magnetic field observations of the full solar disk with unprecedented temporal and spatial resolution; however, the satellite is in a highly inclined geosynchronous orbit. The relative spacecraft-Sun velocity varies by +/-3 kms-1 over a day, which introduces major orbital artifacts in the Helioseismic Magnetic Imager (HMI) data. We demonstrate that the orbital artifacts contaminate all spatial and temporal scales in the data. We describe a newly developed three-stage procedure for mitigating these artifacts in the Doppler data obtained from the Milne-Eddington inversions in the HMI pipeline. The procedure ultimately uses 32 velocity-dependent coefficients to adjust 10 million pixels-a remarkably sparse correction model given the complexity of the orbital artifacts. This procedure was applied to full-disk images of AR 11084 to produce consistent Dopplergrams. The data adjustments reduce the power in the orbital artifacts by 31 dB. Furthermore, we analyze in detail the corrected images and show that our procedure greatly improves the temporal and spectral properties of the data without adding any new artifacts. We conclude that this new procedure makes a dramatic improvement in the consistency of the HMI data and in its usefulness for precision scientific studies.

  14. An SDO/AIA-Observed Filament Eruption Triggered by a Lid-Removal Onset Mechanism

    NASA Astrophysics Data System (ADS)

    Sterling, A. C.; Moore, R. L.; Falconer, D. A.; Knox, J. M.

    2013-12-01

    An eruption of a solar filament often presages the onset of a more general solar eruption, often leading to a solar flare and coronal mass ejection (CME). Among the mechanisms suggested for triggering eruptions are flux cancelation, flux emergence, tether-cutting reconnection, and breakout reconnection. Here we present an example of a filament eruption due to a different trigger mechanism, which we call ``lid removal,'' whereby a magnetic structure overlying the filament is removed by a preceding adjacent eruption, rendering MHD unstable the magnetic system containing the filament and resulting in the subsequent eruption of the filament. This filament eruption occurred on 23 Jan 2013, and was well-seen in SDO/AIA 193 Ang images. Prior to its eruption the filament was at an approximately constant height above the solar surface for ~4 hours, before smoothly lifting off. Evidence for the overlying ``lid'' field was difficult to discern in 193 Ang images, but was apparent in hotter coronal images, such as SDO/AIA 335. Removal of the lid field was due to an eruption of that field visible in the hotter-corona images. In this way, the lid-removal filament-eruption mechanism is similar to recent observations of connected or cascading eruptions originating from magnetically-linked locations.

  15. Hemispheric Patterns in Electric Current Helicity of Solar Magnetic Fields During Solar Cycle 24: Results from SOLIS, SDO and Hinode

    NASA Astrophysics Data System (ADS)

    Gusain, S.

    2017-12-01

    We study the hemispheric patterns in electric current helicity distribution on the Sun. Magnetic field vector in the photosphere is now routinely measured by variety of instruments. SOLIS/VSM of NSO observes full disk Stokes spectra in photospheric lines which are used to derive vector magnetograms. Hinode SP is a space based spectropolarimeter which has the same observable as SOLIS albeit with limited field-of-view (FOV) but high spatial resolution. SDO/HMI derives vector magnetograms from full disk Stokes measurements, with rather limited spectral resolution, from space in a different photospheric line. Further, these datasets now exist for several years. SOLIS/VSM from 2003, Hinode SP from 2006, and SDO HMI since 2010. Using these time series of vector magnetograms we compute the electric current density in active regions during solar cycle 24 and study the hemispheric distributions. Many studies show that the helicity parameters and proxies show a strong hemispheric bias, such that Northern hemisphere has preferentially negative and southern positive helicity, respectively. We will confirm these results for cycle 24 from three different datasets and evaluate the statistical significance of the hemispheric bias. Further, we discuss the solar cycle variation in the hemispheric helicity pattern during cycle 24 and discuss its implications in terms of solar dynamo models.

  16. Evolution and dynamics of orphan penumbrae in the solar photosphere: Analysis from multi-instrument observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuccarello, Francesca; Guglielmino, Salvo L.; Romano, Paolo, E-mail: fzu@oact.inaf.it

    2014-05-20

    We investigate the dynamics and magnetic properties of orphan penumbrae observed in the solar photosphere to understand the formation process of such structures. We observed two orphan penumbrae in active region NOAA 11089 during a coordinated observing campaign carried out in 2010 July, involving the Hinode/Solar Optical Telescope (SOT) and Dutch Open Telescope (DOT), benefiting also from continuous observations acquired by the SDO satellite. We follow their evolution during about three days. The two structures form in different ways: one seems to break off the penumbra of a nearby sunspot, the other is formed through the emergence of new flux.more » Then they fragment while evolving. The SDO Helioseismic and Magnetic Imager measurements indicate the presence of strong line-of-sight motions in the regions occupied by these orphan penumbrae, lasting for several hours and decreasing with time. This is confirmed by SOT spectro-polarimetric measurements of the Fe I 630.2 nm pair. The latter also show that Stokes parameters exhibit significant asymmetries in the orphan penumbral regions, typical of an uncombed filamentary structure. The orphan penumbrae lie above polarity inversion lines, where peculiar plasma motions take place with velocities larger than ±3 km s{sup –1}. The vector magnetic field in these regions is highly inclined, with the average magnetic field strength decreasing with time. The DOT observations in the Hα line and SDO Atmospheric Imaging Assembly measurements in the He II 30.4 nm line indicate that there is no counterpart for the orphan penumbrae at midchromospheric heights or above. Our findings suggest that in at least one of the features investigated the emerging flux may be trapped in the low atmospheric layers by the overlying pre-existing fields, forming these filamentary structures.« less

  17. Evolution and Dynamics of Orphan Penumbrae in the Solar Photosphere: Analysis from Multi-instrument Observations

    NASA Astrophysics Data System (ADS)

    Zuccarello, Francesca; Guglielmino, Salvo L.; Romano, Paolo

    2014-05-01

    We investigate the dynamics and magnetic properties of orphan penumbrae observed in the solar photosphere to understand the formation process of such structures. We observed two orphan penumbrae in active region NOAA 11089 during a coordinated observing campaign carried out in 2010 July, involving the Hinode/Solar Optical Telescope (SOT) and Dutch Open Telescope (DOT), benefiting also from continuous observations acquired by the SDO satellite. We follow their evolution during about three days. The two structures form in different ways: one seems to break off the penumbra of a nearby sunspot, the other is formed through the emergence of new flux. Then they fragment while evolving. The SDO Helioseismic and Magnetic Imager measurements indicate the presence of strong line-of-sight motions in the regions occupied by these orphan penumbrae, lasting for several hours and decreasing with time. This is confirmed by SOT spectro-polarimetric measurements of the Fe I 630.2 nm pair. The latter also show that Stokes parameters exhibit significant asymmetries in the orphan penumbral regions, typical of an uncombed filamentary structure. The orphan penumbrae lie above polarity inversion lines, where peculiar plasma motions take place with velocities larger than ±3 km s-1. The vector magnetic field in these regions is highly inclined, with the average magnetic field strength decreasing with time. The DOT observations in the Hα line and SDO Atmospheric Imaging Assembly measurements in the He II 30.4 nm line indicate that there is no counterpart for the orphan penumbrae at midchromospheric heights or above. Our findings suggest that in at least one of the features investigated the emerging flux may be trapped in the low atmospheric layers by the overlying pre-existing fields, forming these filamentary structures.

  18. NASA’s Solar Dynamics Observatory Captured Trio of Solar Flares April 2-3

    NASA Image and Video Library

    2017-12-08

    The sun emitted a trio of mid-level solar flares on April 2-3, 2017. The first peaked at 4:02 a.m. EDT on April 2, the second peaked at 4:33 p.m. EDT on April 2, and the third peaked at 10:29 a.m. EDT on April 3. NASA’s Solar Dynamics Observatory, which watches the sun constantly, captured images of the three events. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel. Learn more: go.nasa.gov/2oQVFju Caption: NASA's Solar Dynamics Observatory captured this image of a solar flare peaking at 10:29 a.m. EDT on April 3, 2017, as seen in the bright flash near the sun’s upper right edge. The image shows a subset of extreme ultraviolet light that highlights the extremely hot material in flares and which is typically colorized in teal. Credits: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Giant Sunspot Erupts on October 24, 2014

    NASA Image and Video Library

    2014-10-25

    SDO AIA image of the X3.1 flare in 131 angstrom light from 21:43 UT on October 24, 2014. Credit:NASA/SDO More info: The sun emitted a significant solar flare, peaking at 5:40 p.m. EDT on Oct. 24, 2014. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured images of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X3.1-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. The flare erupted from a particularly large active region -- labeled AR 12192 -- on the sun that is the largest in 24 years. This is the fourth substantial flare from this active region since Oct. 19. Credit: NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Magnetic Flux Cancelation as the Trigger of Solar Coronal Jets in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Panesar, Navdeep K.; Sterling, Alphonse C.; Moore, Ronald L.

    2018-02-01

    We investigate in detail the magnetic cause of minifilament eruptions that drive coronal-hole jets. We study 13 random on-disk coronal-hole jet eruptions, using high-resolution X-ray images from the Hinode/X-ray telescope(XRT), EUV images from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), and magnetograms from the SDO/Helioseismic and Magnetic Imager (HMI). For all 13 events, we track the evolution of the jet-base region and find that a minifilament of cool (transition-region-temperature) plasma is present prior to each jet eruption. HMI magnetograms show that the minifilaments reside along a magnetic neutral line between majority-polarity and minority-polarity magnetic flux patches. These patches converge and cancel with each other, with an average cancelation rate of ∼0.6 × 1018 Mx hr‑1 for all 13 jets. Persistent flux cancelation at the neutral line eventually destabilizes the minifilament field, which erupts outward and produces the jet spire. Thus, we find that all 13 coronal-hole-jet-driving minifilament eruptions are triggered by flux cancelation at the neutral line. These results are in agreement with our recent findings for quiet-region jets, where flux cancelation at the underlying neutral line triggers the minifilament eruption that drives each jet. Thus, from that study of quiet-Sun jets and this study of coronal-hole jets, we conclude that flux cancelation is the main candidate for triggering quiet-region and coronal-hole jets.

  1. How a terror attack affects right-wing authoritarianism, social dominance orientation, and their relationship to torture attitudes.

    PubMed

    Lindén, Magnus; Björklund, Fredrik; Bäckström, Martin

    2018-06-29

    Self-reported level of right-wing authoritarianism (RWA), the two facets of social dominance orientation (SDO-Dominance and SDO-Egalitarianism) and pro-torture attitudes were measured both in the immediate aftermath (terror salience, N = 152) of the terror attacks in Paris and Brussels and when terrorism was not salient. Results showed that RWA and pro-torture attitudes, but not SDO-Dominance and SDO-Egalitarianism, were significantly higher immediately after (non-salience, N = 140). Furthermore, RWA and SDO both predicted pro-torture attitudes more strongly under terror salience. We argue that the reason why RWA is higher under terror salience is a response to external threat, and that SDO-Dominance may be more clearly related to acceptance of torture and other human-rights violations, across context. Future research on the effects of terror-related events on sociopolitical and pro-torture attitudes should focus on person-situation interactions and also attempt to discriminate between trait and state aspects of authoritarianism. © 2018 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  2. Sparkling extreme-ultraviolet bright dots observed with Hi-C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Régnier, S.; Alexander, C. E.; Walsh, R. W.

    Observing the Sun at high time and spatial scales is a step toward understanding the finest and fundamental scales of heating events in the solar corona. The high-resolution coronal (Hi-C) instrument has provided the highest spatial and temporal resolution images of the solar corona in the EUV wavelength range to date. Hi-C observed an active region on 2012 July 11 that exhibits several interesting features in the EUV line at 193 Å. One of them is the existence of short, small brightenings 'sparkling' at the edge of the active region; we call these EUV bright dots (EBDs). Individual EBDs havemore » a characteristic duration of 25 s with a characteristic length of 680 km. These brightenings are not fully resolved by the SDO/AIA instrument at the same wavelength; however, they can be identified with respect to the Hi-C location of the EBDs. In addition, EBDs are seen in other chromospheric/coronal channels of SDO/AIA, which suggests a temperature between 0.5 and 1.5 MK. Based on their frequency in the Hi-C time series, we define four different categories of EBDs: single peak, double peak, long duration, and bursty. Based on a potential field extrapolation from an SDO/HMI magnetogram, the EBDs appear at the footpoints of large-scale, trans-equatorial coronal loops. The Hi-C observations provide the first evidence of small-scale EUV heating events at the base of these coronal loops, which have a free magnetic energy of the order of 10{sup 26} erg.« less

  3. MHD Modeling of the Sympathetic Eruptions Observed on August 1, 2010

    NASA Astrophysics Data System (ADS)

    Mikic, Z.; Torok, T.; Titov, V. S.; Downs, C.; Linker, J.; Lionello, R.; Riley, P.

    2013-12-01

    The multiple solar eruptions observed by SDO on August 1, 2010 present a special challenge to theoretical models of CME initiation. SDO captured in detail a remarkable chain of sympathetic eruptions that involved the entire visible hemisphere of the Sun (Schrijver et al. 2011). It consisted of several flares and six filament eruptions/CMEs, and triggered a geomagnetic storm on August 3 (de Toma et al. 2010). This series of eruptions was also observed by the two STEREO spacecraft. This collection of observations presents a unique opportunity to understand sympathetic eruptions theoretically. We have previously simulated the three principal filament eruptions (and their associated CMEs) that characterized this event. We have had some success in reproducing their observed synchronicity. We will present further simulations that attempt to get a better match with observations. Such simulations will help us to understand the possible mechanisms by which the various filament eruptions/CMEs may be linked. The modeling of such events is very useful for incorporation into future space weather prediction models. Research supported by NASA's Heliophysics Theory and Living With a Star Programs, and NSF/FESD.

  4. SDO/AIA Observations of Quasi-periodic Fast (~1000 km/s) Propagating (QFP) Waves as Evidence of Fast-mode Magnetosonic Waves in the Low Corona: Statistics and Implications

    NASA Astrophysics Data System (ADS)

    Liu, W.; Ofman, L.; Title, A. M.; Zhao, J.; Aschwanden, M. J.

    2011-12-01

    Recent EUV imaging observations from SDO/AIA led to the discovery of quasi-periodic fast (~2000 km/s) propagating (QFP) waves in active regions (Liu et al. 2011). They were interpreted as fast-mode magnetosonic waves and reproduced in 3D MHD simulations (Ofman et al. 2011). Since then, we have extended our study to a sample of more than a dozen such waves observed during the SDO mission (2010/04-now). We will present the statistical properties of these waves including: (1) Their projected speeds measured in the plane of the sky are about 400-2200 km/s, which, as the lower limits of their true speeds in 3D space, fall in the expected range of coronal Alfven or fast-mode speeds. (2) They usually originate near flare kernels, often in the wake of a coronal mass ejection, and propagate in narrow funnels of coronal loops that serve as waveguides. (3) These waves are launched repeatedly with quasi-periodicities in the 30-200 seconds range, often lasting for more than one hour; some frequencies coincide with those of the quasi-periodic pulsations (QPPs) in the accompanying flare, suggestive a common excitation mechanism. We obtained the k-omega diagrams and dispersion relations of these waves using Fourier analysis. We estimate their energy fluxes and discuss their contribution to coronal heating as well as their diagnostic potential for coronal seismology.

  5. Observations of decay-less low-amplitude kink oscillations of EUV coronal loops

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Nakariakov, Valery; Anfinogentov, Sergey

    The high spatial and temporal resolution observations at Extreme Ultra-Violet (EUV) wavelengths from the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) reveal new features in kink oscillations of coronal loops. We show that, in addition to the well-known rapidly decaying oscillations, a new type of kink waves is present, characterized by low-amplitude and undamped oscillations, that we define as decay-less. Typical periods range from 2.5 to 12 min in both regimes and are different for different loops, increasing with the loop length. Estimates of the loop lengths are supported by three dimensional reconstruction of the loop geometry. The amplitude for the decay-less regime is about 1 Mm, close to the spatial resolution of the AIA instruments. The oscillation phase, measured by the cross-correlation method, is found to be constant along each analysed loop, and the spatial structure of the phase of the oscillations corresponds to the fundamental standing kink mode. We show that the observed behaviours are consistent with the empirical model of a damped linear oscillator excited by a continuous low-amplitude harmonic driver, in addition to an eventual impulsive high-amplitude driver. The observed life-time of the oscillations is likely to be determined by the observational conditions rather than any physical damping. However, the balance between the driving and damping is a necessary ingredient of this model. The properties of this type of transverse oscillations make them interesting object of study in the framework of resonant absorption theory and coronal heating process.

  6. Tracking Waves from Sunspots Gives New Solar Insight

    NASA Image and Video Library

    2017-12-08

    While it often seems unvarying from our viewpoint on Earth, the sun is constantly changing. Material courses through not only the star itself, but throughout its expansive atmosphere. Understanding the dance of this charged gas is a key part of better understanding our sun – how it heats up its atmosphere, how it creates a steady flow of solar wind streaming outward in all directions, and how magnetic fields twist and turn to create regions that can explode in giant eruptions. Now, for the first time, researchers have tracked a particular kind of solar wave as it swept upward from the sun's surface through its atmosphere, adding to our understanding of how solar material travels throughout the sun. Scientists analyzed sunspot images from a trio of observatories -- including the Big Bear Solar Observatory, which captured this footage -- to make the first-ever observations of a solar wave traveling up into the sun’s atmosphere from a sunspot. Tracking solar waves like this provides a novel tool for scientists to study the atmosphere of the sun. The imagery of the journey also confirms existing ideas, helping to nail down the existence of a mechanism that moves energy – and therefore heat – into the sun’s mysteriously-hot upper atmosphere, called the corona. A study on these results was published Oct. 11, 2016, in The Astrophysical Journal Letters. Image credit: Zhao et al/NASA/SDO/IRIS/BBSO Read more: go.nasa.gov/2dRv80g NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Deformation and deceleration of coronal wave

    NASA Astrophysics Data System (ADS)

    Xue, Z. K.; Qu, Z. Q.; Yan, X. L.; Zhao, L.; Ma, L.

    2013-08-01

    Aims: We studied the kinematics and morphology of two coronal waves to better understand the nature and origin of coronal waves. Methods: Using multi-wavelength observations of the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) and the Extreme Ultraviolet Imager (EUVI) on board the twin spacecraft Solar-TErrestrial RElations Observatory (STEREO), we present morphological and dynamic characteristics of consecutive coronal waves on 2011 March 24. We also show the coronal magnetic field based on the potential field source surface model. Results: This event contains several interesting aspects. The first coronal wave initially appeared after a surge-like eruption. Its front was changed and deformed significantly from a convex shape to a line-shaped appearance, and then to a concave configuration during its propagation to the northwest. The initial speeds ranged from 947 km s-1 to 560 km s-1. The first wave decelerated significantly after it passed through a filament channel. After the deceleration, the final propagation speeds of the wave were from 430 km s-1 to 312 km s-1. The second wave was found to appear after the first wave in the northwest side of the filament channel. Its wave front was more diffused and the speed was around 250 km s-1, much slower than that of the first wave. Conclusions: The deformation of the first coronal wave was caused by the different speeds along different paths. The sudden deceleration implies that the refraction of the first wave took place at the boundary of the filament channel. The event provides evidence that the first coronal wave may be a coronal MHD shock wave, and the second wave may be the apparent propagation of the brightenings caused by successive stretching of the magnetic field lines.

  8. Solar Golden Arches

    NASA Image and Video Library

    2017-12-08

    The magnetic field lines between a pair of active regions formed a beautiful set of swaying arches, seen in this footage captured by NASA’s Solar Dynamics Observatory on April 24-26, 2017. The arches are traced out by charged particles spinning along the magnetic field lines. These arches, which form a connection between regions of opposite magnetic polarity, are visible in exquisite detail in this wavelength of extreme ultraviolet light. Extreme ultraviolet light is typically invisible to our eyes, but is colorized here in gold. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Meridional Flow in Solar Cycle 24: The Impact on the Polar Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Upton, Lisa; Hathaway, David; Kosak, Katie

    2012-01-01

    Axisymmetric flows, Differential Rotation and Meridional Flow (MF), were measured by tracking the motion of magnetic elements on the surface of the Sun using data obtained by the Helioseismic and Magnetic Imager (HMI) on the NASA Solar Dynamics Observatory (SDO) Mission. HMI provides the highest resolution full ]disk magnetograms available to date. This dramatically reduces the noise in axisymmetric flows, particularly at high latitudes (i.e. near the poles). The MF was found to vary greatly from one Carrington Rotation to the next. Furthermore, a distinct north ]south difference was found in the MF at high latitudes: Flow in the South was persistently weaker than flow in the North. Conclusions will be drawn concerning the MF variability, north ]south differences, and the impact on the polar magnetic field strengths and the timing of their reversals.

  10. More Macrospicule Jets in On-Disk Coronal Holes

    NASA Astrophysics Data System (ADS)

    Adams, Mitzi; Sterling, Alphonse; Moore, Ronald

    2015-04-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or at disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of about ten jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 Å, examine the magnetic field configuration and flux changes in the jet area, and discuss the probable trigger mechanism of these events. We reported on another jet in this same coronal hole on 2011 February 27, ~13:04 UT (Adams et al 2014, ApJ, 783: 11). That jet is a previously unrecognized variety of blowout jet, in which the base-edge bright point is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field. In contrast, in the presently-accepted "standard" picture for blowout jets, the base-edge bright point is made by interchange reconnection of initially-closed erupting jet-base field with ambient open field. This poster presents further evidence of the production of the base-edge bright point in blowout jets by internal reconnection. Our observations suggest that most of the bigger and brighter EUV jets in coronal holes are blowout jets of the new-found variety.

  11. THE CONTRACTION OF OVERLYING CORONAL LOOP AND THE ROTATING MOTION OF A SIGMOID FILAMENT DURING ITS ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, X. L.; Qu, Z. Q.; Xue, Z. K.

    We present an observation of overlying coronal loop contraction and rotating motion of the sigmoid filament during its eruption on 2012 May 22 observed by the Solar Dynamics Observatory (SDO). Our results show that the twist can be transported into the filament from the lower atmosphere to the higher atmosphere. The successive contraction of the coronal loops was due to a suddenly reduced magnetic pressure underneath the filament, which was caused by the rising of the filament. Before the sigmoid filament eruption, there was a counterclockwise flow in the photosphere at the right feet of the filament and the contractionmore » loops and a convergence flow at the left foot of the filament. The hot and cool materials have inverse motion along the filament before the filament eruption. Moreover, two coronal loops overlying the filament first experienced brightening, expansion, and contraction successively. At the beginning of the rising and rotation of the left part of the filament, the second coronal loop exhibited rapid contraction. The top of the second coronal loop also showed counterclockwise rotation during the contraction process. After the contraction of the second loop, the left part of the filament rotated counterclockwise and expanded toward the right of NOAA AR 11485. During the filament expansion, the right part of the filament also exhibited counterclockwise rotation like a tornado.« less

  12. The Contraction of Overlying Coronal Loop and the Rotating Motion of a Sigmoid Filament during Its Eruption

    NASA Astrophysics Data System (ADS)

    Yan, X. L.; Pan, G. M.; Liu, J. H.; Qu, Z. Q.; Xue, Z. K.; Deng, L. H.; Ma, L.; Kong, D. F.

    2013-06-01

    We present an observation of overlying coronal loop contraction and rotating motion of the sigmoid filament during its eruption on 2012 May 22 observed by the Solar Dynamics Observatory (SDO). Our results show that the twist can be transported into the filament from the lower atmosphere to the higher atmosphere. The successive contraction of the coronal loops was due to a suddenly reduced magnetic pressure underneath the filament, which was caused by the rising of the filament. Before the sigmoid filament eruption, there was a counterclockwise flow in the photosphere at the right feet of the filament and the contraction loops and a convergence flow at the left foot of the filament. The hot and cool materials have inverse motion along the filament before the filament eruption. Moreover, two coronal loops overlying the filament first experienced brightening, expansion, and contraction successively. At the beginning of the rising and rotation of the left part of the filament, the second coronal loop exhibited rapid contraction. The top of the second coronal loop also showed counterclockwise rotation during the contraction process. After the contraction of the second loop, the left part of the filament rotated counterclockwise and expanded toward the right of NOAA AR 11485. During the filament expansion, the right part of the filament also exhibited counterclockwise rotation like a tornado.

  13. The EVE Doppler Sensitivity and Flare Observations

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Woods, T. N.; Chamberlin, P. C.; Didkovsky, L.; Del Zanna, G.

    2011-01-01

    The Extreme-ultraviolet Variability Experiment (EVE) obtains continuous EUV spectra of the Sun viewed as a star. Its primary objective is the characterization of solar spectral irradiance, but its sensitivity and stability make it extremely interesting for observations of variability on time scales down to the limit imposed by its basic 10 s sample interval. In this paper we characterize the Doppler sensitivity of the EVE data. We find that the 30.4 nm line of He II has a random Doppler error below 0.001 nm (1 pm, better than 10 km/s as a redshift), with ample stability to detect the orbital motion of its satellite, the Solar Dynamics Observatory (SDO). Solar flares also displace the spectrum, both because of Doppler shifts and because of EVE's optical layout, which (as with a slitless spectrograph) confuses position and wavelength. As a flare develops, the centroid of the line displays variations that reflect Doppler shifts and therefore flare dynamics. For the impulsive phase of the flare SOL2010-06-12, we find the line centroid to have a redshift of 16.8 +/- 5.9 km/s relative to that of the flare gradual phase (statistical errors only). We find also that high-temperature lines, such as Fe XXIV 19.2 nm, have well-determined Doppler components for major flares, with decreasing apparent blueshifts as expected from chromospheric evaporation flows.

  14. Magnetic Structure of a Composite Solar Microwave Burst

    NASA Astrophysics Data System (ADS)

    Lee, Jeongwoo; White, Stephen M.; Liu, Chang; Kliem, Bernhard; Masuda, Satoshi

    2018-03-01

    A composite flare consisting of an impulsive flare SOL2015-06-21T01:42 (GOES class M2.0) and a more gradual, long-duration flare SOL2015-06-21T02:36 (M2.6) from NOAA Active Region 12371, is studied using observations with the Nobeyama Radioheliograph (NoRH) and the Solar Dynamics Observatory (SDO). While composite flares are defined by their characteristic time profiles, in this paper we present imaging observations that demonstrate the spatial relationship of the two flares and allow us to address the nature of the evolution of a composite event. The NoRH maps show that the first flare is confined not only in time, but also in space, as evidenced by the stagnation of ribbon separation and the stationarity of the microwave source. The NoRH also detected another microwave source during the second flare, emerging from a different location where thermal plasma is so depleted that accelerated electrons could survive longer against Coulomb collisional loss. The AIA 131 Å images show that a sigmoidal EUV hot channel developed after the first flare and erupted before the second flare. We suggest that this eruption removed the high-lying flux to let the separatrix dome underneath reconnect with neighboring flux and the second microwave burst follow. This scenario explains how the first microwave burst is related to the much-delayed second microwave burst in this composite event.

  15. More Macrospicule Jets in On-Disk Coronal Holes

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Sterling, A. C.; Moore, R. L.

    2015-01-01

    We examine the magnetic structure and dynamics of multiple jets found in coronal holes close to or on disk center. All data are from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO). We report on observations of about ten jets in an equatorial coronal hole spanning 2011 February 27 and 28. We show the evolution of these jets in AIA 193 A, examine the magnetic field configuration and flux changes in the jet area, and discuss the probable trigger mechanism of these events. We reported on another jet in this same coronal hole on 2011 February 27, (is) approximately 13:04 UT (Adams et al 2014, ApJ, 783: 11). That jet is a previously-unrecognized variety of blowout jet, in which the base-edge bright point is a miniature filament-eruption flare arcade made by internal reconnection of the legs of the erupting field. In contrast, in the presently-accepted 'standard' picture for blowout jets, the base-edge bright point is made by interchange reconnection of initially-closed erupting jet-base field with ambient open field. This poster presents further evidence of the production of the base-edge bright point in blowout jets by internal reconnection. Our observations suggest that most of the bigger and brighter EUV jets in coronal holes are blowout jets of the new-found variety.

  16. Center-to-Limb Variability of Hot Coronal EUV Emissions During Solar Flares

    NASA Astrophysics Data System (ADS)

    Thiemann, E. M. B.; Chamberlin, P. C.; Eparvier, F. G.; Epp, L.

    2018-02-01

    It is generally accepted that densities of quiet-Sun and active region plasma are sufficiently low to justify the optically thin approximation, and this is commonly used in the analysis of line emissions from plasma in the solar corona. However, the densities of solar flare loops are substantially higher, compromising the optically thin approximation. This study begins with a radiative transfer model that uses typical solar flare densities and geometries to show that hot coronal emission lines are not generally optically thin. Furthermore, the model demonstrates that the observed line intensity should exhibit center-to-limb variability (CTLV), with flares observed near the limb being dimmer than those occurring near disk center. The model predictions are validated with an analysis of over 200 flares observed by the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO), which uses six lines, with peak formation temperatures between 8.9 and 15.8 MK, to show that limb flares are systematically dimmer than disk-center flares. The data are then used to show that the electron column density along the line of sight typically increases by 1.76 × 10^{19} cm^{-2} for limb flares over the disk-center flare value. It is shown that the CTLV of hot coronal emissions reduces the amount of ionizing radiation propagating into the solar system, and it changes the relative intensities of lines and bands commonly used for spectral analysis.

  17. Social Determinants of Health and Adolescent Pregnancy: An Analysis From the National Longitudinal Study of Adolescent to Adult Health.

    PubMed

    Maness, Sarah B; Buhi, Eric R; Daley, Ellen M; Baldwin, Julie A; Kromrey, Jeffrey D

    2016-06-01

    Although rates of adolescent pregnancy are at an all-time low in the United States, racial/ethnic and geographic disparities persist. This research used National Longitudinal Study of Adolescent to Adult Health (Add Health) data to analyze empirical relationships between social determinants of health (SDoH) and adolescent pregnancy. Examining relationships between the SDoH and adolescent pregnancy provides support for funding priorities and interventions that expand on the current focus on individual- and interpersonal-level factors. On the basis of the Healthy People 2020 Social Determinants of Health Framework, the identification of proxy measures for SDoH within the Add Health study allowed for an analysis of relationships to adolescent pregnancy (N = 9,204). Logistic regression examined associations between adolescent pregnancy and each measure of SDoH. Results indicated that 6 of 17 measures of SDoH had an empirical relationship with adolescent pregnancy. Measures negatively associated with adolescent pregnancy included the following: feeling close to others at school, receipt of high school diploma, enrollment in higher education, participation in volunteering or community service, reporting litter or trash in the neighborhood environment as a big problem, and living in a two-parent home. Findings from this study support the need for increased research and intervention focus in SDoH related to areas of education and social and community context. Results of this study provide information for the allocation of resources to best address SDoH that show a link with adolescent pregnancy. Areas of future research can further explore the areas in which SDoH show a relationship with adolescent pregnancy. Copyright © 2016 The Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  18. The role of ingroup threat and conservative ideologies on prejudice against immigrants in two samples of Italian adults.

    PubMed

    Caricati, Luca; Mancini, Tiziana; Marletta, Giuseppe

    2017-01-01

    This research investigated the relationship among perception of ingroup threats (realistic and symbolic), conservative ideologies (social dominance orientation [SDO] and right-wing authoritarianism [RWA]), and prejudice against immigrants. Data were collected with a cross-sectional design in two samples: non-student Italian adults (n = 223) and healthcare professionals (n = 679). Results were similar in both samples and indicated that symbolic and realistic threats, as well as SDO and RWA, positively and significantly predicted anti-immigrant prejudice. Moreover, the model considering SDO and RWA as mediators of threats' effects on prejudice showed a better fit than the model in which ingroup threats mediated the effects of SDO and RWA on prejudice against immigrants. Accordingly, SDO and RWA partially mediated the effect of both symbolic and realistic threats, which maintained a significant effect on prejudice against immigrants, however.

  19. Fall 2011 Eclipse Season Begins

    NASA Image and Video Library

    2017-12-08

    The Fall 2011 eclipse season started on September 11. Here is an AIA 171 image from 0657 UT with the first eclipse! SDO has eclipse seasons twice a year near each equinox. For three weeks near midnight Las Cruces time (about 0700 UT) our orbit has the Earth pass between SDO and the Sun. These eclipses can last up to 72 minutes in the middle of an eclipse season. The current eclipse season started on September 11 and lasts until October 4. To read more about SDO go to: sdo.gsfc.nasa.gov/ Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Fall 2011 Eclipse Season Begins

    NASA Image and Video Library

    2011-09-13

    The Fall 2011 eclipse season started on September 11, 2011. Here is an AIA 304 image from 0658 UT. SDO has eclipse seasons twice a year near each equinox. For three weeks near midnight Las Cruces time (about 0700 UT) our orbit has the Earth pass between SDO and the Sun. These eclipses can last up to 72 minutes in the middle of an eclipse season. The current eclipse season started on September 11 and lasts until October 4. To read more about SDO go to: sdo.gsfc.nasa.gov/ Credit: NASA/GSFC/SDO NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Concurrent validity and sensitivity to change of Direct Behavior Rating Single-Item Scales (DBR-SIS) within an elementary sample.

    PubMed

    Smith, Rhonda L; Eklund, Katie; Kilgus, Stephen P

    2018-03-01

    The purpose of this study was to evaluate the concurrent validity, sensitivity to change, and teacher acceptability of Direct Behavior Rating single-item scales (DBR-SIS), a brief progress monitoring measure designed to assess student behavioral change in response to intervention. Twenty-four elementary teacher-student dyads implemented a daily report card intervention to promote positive student behavior during prespecified classroom activities. During both baseline and intervention, teachers completed DBR-SIS ratings of 2 target behaviors (i.e., Academic Engagement, Disruptive Behavior) whereas research assistants collected systematic direct observation (SDO) data in relation to the same behaviors. Five change metrics (i.e., absolute change, percent of change from baseline, improvement rate difference, Tau-U, and standardized mean difference; Gresham, 2005) were calculated for both DBR-SIS and SDO data, yielding estimates of the change in student behavior in response to intervention. Mean DBR-SIS scores were predominantly moderately to highly correlated with SDO data within both baseline and intervention, demonstrating evidence of the former's concurrent validity. DBR-SIS change metrics were also significantly correlated with SDO change metrics for both Disruptive Behavior and Academic Engagement, yielding evidence of the former's sensitivity to change. In addition, teacher Usage Rating Profile-Assessment (URP-A) ratings indicated they found DBR-SIS to be acceptable and usable. Implications for practice, study limitations, and areas of future research are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Counter-streaming flows in a giant quiet-Sun filament observed in the extreme ultraviolet

    NASA Astrophysics Data System (ADS)

    Diercke, A.; Kuckein, C.; Verma, M.; Denker, C.

    2018-03-01

    Aim. The giant solar filament was visible on the solar surface from 2011 November 8-23. Multiwavelength data from the Solar Dynamics Observatory (SDO) were used to examine counter-streaming flows within the spine of the filament. Methods: We use data from two SDO instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI), covering the whole filament, which stretched over more than half a solar diameter. Hα images from the Kanzelhöhe Solar Observatory (KSO) provide context information of where the spine of the filament is defined and the barbs are located. We apply local correlation tracking (LCT) to a two-hour time series on 2011 November 16 of the AIA images to derive horizontal flow velocities of the filament. To enhance the contrast of the AIA images, noise adaptive fuzzy equalization (NAFE) is employed, which allows us to identify and quantify counter-streaming flows in the filament. We observe the same cool filament plasma in absorption in both Hα and EUV images. Hence, the counter-streaming flows are directly related to this filament material in the spine. In addition, we use directional flow maps to highlight the counter-streaming flows. Results: We detect counter-streaming flows in the filament, which are visible in the time-lapse movies in all four examined AIA wavelength bands (λ171 Å, λ193 Å, λ304 Å, and λ211 Å). In the time-lapse movies we see that these persistent flows lasted for at least two hours, although they became less prominent towards the end of the time series. Furthermore, by applying LCT to the images we clearly determine counter-streaming flows in time series of λ171 Å and λ193 Å images. In the λ304 Å wavelength band, we only see minor indications for counter-streaming flows with LCT, while in the λ211 Å wavelength band the counter-streaming flows are not detectable with this method. The diverse morphology of the filament in Hα and EUV images is caused by different absorption processes, i.e., spectral line absorption and absorption by hydrogen and helium continua, respectively. The horizontal flows reach mean flow speeds of about 0.5 km s-1 for all wavelength bands. The highest horizontal flow speeds are identified in the λ171 Å band with flow speeds of up to 2.5 km s-1. The results are averaged over a time series of 90 minutes. Because the LCT sampling window has finite width, a spatial degradation cannot be avoided leading to lower estimates of the flow velocities as compared to feature tracking or Doppler measurements. The counter-streaming flows cover about 15-20% of the whole area of the EUV filament channel and are located in the central part of the spine. Conclusions: Compared to the ground-based observations, the absence of seeing effects in AIA observations reveal counter-streaming flows in the filament even with a moderate image scale of 0. ''6 pixel-1. Using a contrast enhancement technique, these flows can be detected and quantified with LCT in different wavelengths. We confirm the omnipresence of counter-streaming flows also in giant quiet-Sun filaments. A movie associated to Fig. 6 is available at http://https://www.aanda.org

  3. Helioseismology Observations of Solar Cycles and Dynamo Modeling

    NASA Astrophysics Data System (ADS)

    Kosovichev, A. G.; Guerrero, G.; Pipin, V.

    2017-12-01

    Helioseismology observations from the SOHO and SDO, obtained in 1996-2017, provide unique insight into the dynamics of the Sun's deep interior for two solar cycles. The data allow us to investigate variations of the solar interior structure and dynamics, and compare these variations with dynamo models and simulations. We use results of the local and global helioseismology data processing pipelines at the SDO Joint Science Operations Center (Stanford University) to study solar-cycle variations of the differential rotation, meridional circulation, large-scale flows and global asphericity. By comparing the helioseismology results with the evolution of surface magnetic fields we identify characteristic changes associated the initiation and development of Solar Cycles 23 and 24. For the physical interpretation of observed variations, the results are compared with the current mean-field dynamo models and 3D MHD dynamo simulations. It is shown that the helioseismology inferences provide important constraints on the solar dynamo mechanism, may explain the fundamental difference between the two solar cycles, and also give information about the next solar cycle.

  4. Full disk view of the sun June 21, 2010

    NASA Image and Video Library

    2017-12-08

    Full disk view of the sun from SDO, telescope AIA 335 on June 2, 2010. To learn more about SDO go to: sdo.gsfc.nasa.gov/ NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  5. Tethered Prominence-CME Systems Captured during the 2012 November 13 and 2013 November 3 Total Solar Eclipses

    NASA Astrophysics Data System (ADS)

    Druckmüller, Miloslav; Habbal, Shadia R.; Alzate, Nathalia; Emmanouilidis, Constantinos

    2017-12-01

    We report on white light observations of high latitude tethered prominences acquired during the total solar eclipses of 2012 November 13 and 2013 November 3, at solar maximum, with a field of view spanning several solar radii. Distinguished by their pinkish hue, characteristic of emission from neutral hydrogen and helium, the four tethered prominences were akin to twisted flux ropes, stretching out to the limit of the field of view, while remaining anchored at the Sun. Cotemporal observations in the extreme ultraviolet from the Solar Dynamics Observatory (SDO/AIA) clearly showed that the pinkish emission from the cool (≈ {10}4-{10}5 K) filamentary prominences was cospatial with the 30.4 nm He II emission, and was directly linked to filamentary structures emitting at coronal temperatures ≥slant {10}6 K in 17.1 and 19.3 nm. The tethered prominences evolved from typical tornado types. Each one formed the core of different types of coronal mass ejections (CMEs), as inferred from coordinated LASCO C2, C3, and STEREO A and B coronagraph observations. Two of them evolved into a series of faint, unstructured puffs. One was a normal CME. The most striking one was a “light-bulb” type CME, whose three-dimensional structure was confirmed from all four coronagraphs. These first uninterrupted detections of prominence-CME systems anchored at the Sun, and stretching out to at least the edge of the field of view of LASCO C3, provide the first observational confirmation for the source of counter-streaming electron fluxes measured in interplanetary CMEs, or ICMEs.

  6. Measuring the magnetic field of a trans-equatorial loop system using coronal seismology

    NASA Astrophysics Data System (ADS)

    Long, D. M.; Valori, G.; Pérez-Suárez, D.; Morton, R. J.; Vásquez, A. M.

    2017-07-01

    Context. EIT waves are freely-propagating global pulses in the low corona which are strongly associated with the initial evolution of coronal mass ejections (CMEs). They are thought to be large-amplitude, fast-mode magnetohydrodynamic waves initially driven by the rapid expansion of a CME in the low corona. Aims: An EIT wave was observed on 6 July 2012 to impact an adjacent trans-equatorial loop system which then exhibited a decaying oscillation as it returned to rest. Observations of the loop oscillations were used to estimate the magnetic field strength of the loop system by studying the decaying oscillation of the loop, measuring the propagation of ubiquitous transverse waves in the loop and extrapolating the magnetic field from observed magnetograms. Methods: Observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory (SDO/AIA) and the Coronal Multi-channel Polarimeter (CoMP) were used to study the event. An Empirical Mode Decomposition analysis was used to characterise the oscillation of the loop system in CoMP Doppler velocity and line width and in AIA intensity. Results: The loop system was shown to oscillate in the 2nd harmonic mode rather than at the fundamental frequency, with the seismological analysis returning an estimated magnetic field strength of ≈ 5.5 ± 1.5 G. This compares to the magnetic field strength estimates of ≈1-9 G and ≈3-9 G found using the measurements of transverse wave propagation and magnetic field extrapolation respectively. A movie associated to Figs. 1 and 2 is available at http://www.aanda.org

  7. Synchronized observations of bright points from the solar photosphere to the corona

    NASA Astrophysics Data System (ADS)

    Tavabi, Ehsan

    2018-05-01

    One of the most important features in the solar atmosphere is the magnetic network and its relationship to the transition region (TR) and coronal brightness. It is important to understand how energy is transported into the corona and how it travels along the magnetic field lines between the deep photosphere and chromosphere through the TR and corona. An excellent proxy for transportation is the Interface Region Imaging Spectrograph (IRIS) raster scans and imaging observations in near-ultraviolet (NUV) and far-ultraviolet (FUV) emission channels, which have high time, spectral and spatial resolutions. In this study, we focus on the quiet Sun as observed with IRIS. The data with a high signal-to-noise ratio in the Si IV, C II and Mg II k lines and with strong emission intensities show a high correlation with TR bright network points. The results of the IRIS intensity maps and dopplergrams are compared with those of the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) instruments onboard the Solar Dynamical Observatory (SDO). The average network intensity profiles show a strong correlation with AIA coronal channels. Furthermore, we applied simultaneous observations of the magnetic network from HMI and found a strong relationship between the network bright points in all levels of the solar atmosphere. These features in the network elements exhibited regions of high Doppler velocity and strong magnetic signatures. Plenty of corona bright points emission, accompanied by the magnetic origins in the photosphere, suggest that magnetic field concentrations in the network rosettes could help to couple the inner and outer solar atmosphere.

  8. FIVE YEARS OF SYNTHESIS OF SOLAR SPECTRAL IRRADIANCE FROM SDID/SISA AND SDO /AIA IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontenla, J. M.; Codrescu, M.; Fedrizzi, M.

    In this paper we describe the synthetic solar spectral irradiance (SSI) calculated from 2010 to 2015 using data from the Atmospheric Imaging Assembly (AIA) instrument, on board the Solar Dynamics Observatory spacecraft. We used the algorithms for solar disk image decomposition (SDID) and the spectral irradiance synthesis algorithm (SISA) that we had developed over several years. The SDID algorithm decomposes the images of the solar disk into areas occupied by nine types of chromospheric and 5 types of coronal physical structures. With this decomposition and a set of pre-computed angle-dependent spectra for each of the features, the SISA algorithm ismore » used to calculate the SSI. We discuss the application of the basic SDID/SISA algorithm to a subset of the AIA images and the observed variation occurring in the 2010–2015 period of the relative areas of the solar disk covered by the various solar surface features. Our results consist of the SSI and total solar irradiance variations over the 2010–2015 period. The SSI results include soft X-ray, ultraviolet, visible, infrared, and far-infrared observations and can be used for studies of the solar radiative forcing of the Earth’s atmosphere. These SSI estimates were used to drive a thermosphere–ionosphere physical simulation model. Predictions of neutral mass density at low Earth orbit altitudes in the thermosphere and peak plasma densities at mid-latitudes are in reasonable agreement with the observations. The correlation between the simulation results and the observations was consistently better when fluxes computed by SDID/SISA procedures were used.« less

  9. Exploring EUV Spicules Using 304 Ang He II Data from SDO/AIA

    NASA Technical Reports Server (NTRS)

    Snyder, Ian; Sterling, Alphonse C.; Falconer, David A.; Moore, Ronald L.

    2015-01-01

    We present results from a statistical study of He II 304 Angstrom EUV spicules and macrospicules at the limb of the Sun. We use high-cadence (12 sec) and high-resolution (0.6 arcsec pixels) resolution data from the Atmospheric Imaging Array (AIA) instrument on the Solar Dynamic Observatory (SDO). All of the observed events occurred in quiet or coronal hole regions near the solar pole. Spicules and macrospicules are typically transient jet-like chromospheric-material features, the macrospicules are wider and have taller maximum heights than the spicules. We looked for characteristics of the populations of these two phenomena that might indicate whether they have the same or different initiation mechanisms. We examined the maximum heights, time-averaged rise velocities, and lifetimes of about two dozen EUV spicules and about five EUV macrospicules. For spicules, these quantities are, respectively, approx. 5-30 km, 5-50 km/s, and a few 100- approx. 1000 sec. Macrospicules were approx. 60,000 km, 55 km/s, and had lifetimes of approx. 1800 sec. Therefore the macrospicules were taller and longer-lived than the spicules, and had velocities comparable to that of the fastest spicules. The rise profiles of both the spicules and the macrospicules matched well a second-order ("parabolic'') trajectory, although the acceleration was generally weaker than that of solar gravity in the profiles fitted to the trajectories. The Macrospicules also had obvious brightenings at their bases at their birth, while such brightenings were not apparent for most of the spicules. Most of the spicules and several of the macrospicules remained visible during their decent back to the solar surface, although a small percentage of the spicules faded out before their fall was completed. Are findings are suggestive of the two phenomena possibly having different initiation mechanisms, but this is not yet conclusive. Qualitatively the EUV 304 Angstrom spicules match well the properties quoted for "Type I'' Hinode Ca II spicules, even though we observed these 304 Angstrom spicules at a polar location, where typically only "Type II'' spicules are seen in the Hinode Ca II images. A.C.S. and R.L.M. were supported by funding from the Heliophysics Division of NASA's Science Mission Directorate through the Living With a Star Targeted Research and Technology Program, and the Hinode Project. I.S. was supported by NSF's Research Experience for Undergraduates Program

  10. 2011 Space Weather Workshop to Be Held in April

    NASA Astrophysics Data System (ADS)

    Peltzer, Thomas

    2011-04-01

    The annual Space Weather Workshop will be held in Boulder, Colo., 26-29 April 2011. The workshop will bring customers, forecasters, commercial service providers, researchers, and government agencies together in a lively dialogue about space weather. The workshop will include 4 days of plenary sessions on a variety of topics, with poster sessions focusing on the Sun, interplanetary space, the magnetosphere, and the ionosphere. The conference will address the remarkably diverse impacts of space weather on today's technology. Highlights on this year's agenda will include presentations on space weather impacts on the Global Positioning System (GPS), the Solar Terrestrial Relations Observatory's (STEREO) mission milestone of a 360° view of the Sun, the latest from NASA's Solar Dynamics Observatory (SDO), and space weather impacts on emergency response by the Federal Emergency Management Agency (FEMA). Additionally, the vulnerabilities of satellites and the power grid to space weather will be addressed. Additional highlights will include the Commercial Space Weather Interest Group's (CSWIG) roundtable session and a presentation from the Office of the Federal Coordinator for Meteorology (OFCM). The CSWIG roundtable session on the growth of the space weather enterprise will feature distinguished panelists. As always, lively interaction between the audience and the panel is anticipated. The OFCM will present the National Space Weather Program's new strategic plan.

  11. Great Ball of Fire - Activity from August 1 CME Subsides

    NASA Image and Video Library

    2010-08-06

    NASA image release August 6, 2010 On August 1, 2010, almost the entire Earth-facing side of the sun erupted in a tumult of activity. This image from the Solar Dynamics Observatory of the news-making solar event on August 1 shows the C3-class solar flare (white area on upper left), a solar tsunami (wave-like structure, upper right), multiple filaments of magnetism lifting off the stellar surface, large-scale shaking of the solar corona, radio bursts, a coronal mass ejection and more. This multi-wavelength extreme ultraviolet snapshot from the Solar Dynamics Observatory shows the sun's northern hemisphere in mid-eruption. Different colors in the image represent different gas temperatures. Earth's magnetic field is still reverberating from the solar flare impact on August 3, 2010, which sparked aurorae as far south as Wisconsin and Iowa in the United States. Analysts believe a second solar flare is following behind the first flare and could re-energize the fading geomagnetic storm and spark a new round of Northern Lights. Credit: NASA/SDO/AIA NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  12. Sun Emits an X2.2 Flare on March 11, 2015

    NASA Image and Video Library

    2015-03-11

    The sun emitted a significant solar flare, peaking at 12:22 p.m. EDT on March 11, 2015. NASA’s Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X2.2-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. This image was captured by NASA's Solar Dynamics Observatory and shows a blend of light from the 171 and 131 Ångström wavelengths. The Earth is shown to scale. Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. A Statistical Study of Solar Sources of Wide Coronal Mass Ejections in 2011

    NASA Astrophysics Data System (ADS)

    Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Makela, P. A.; Xie, H.; Olmedo, O. A.

    2013-12-01

    Solar surface signatures of coronal mass ejections (CMEs) are flares, filament eruptions/disappearances, EUVI waves, dimmings, and post-eruption arcades. After the SDO launch we have an excellent opportunity to investigate the solar sources of CMEs because of the high spatial- and temporal-resolution images from SDO/AIA and multiple views from SOHO, SDO, and STEREO-A/B. We examined the solar sources of all wide CMEs (width ≥ 60°) observed by either SOHO/LASCO or STEREO/SECCHI in 2011. Out of the 597 wide CMEs identified, 322 (54%) were associated with active region flares (FLs) and 164 (27%) with eruptive quiescent prominences (EPs). In 88 cases (15%) only EUV dimmings (DIMs) were observed. For the remaining 23 (4%) CMEs we were not able to identify the solar sources (UNK), i.e. they were stealth CMEs. The average speed and width of the CMEs are, 481 km/s and 115° for FLs, 349 km/s and 90° for EPs, 270 km/s and 78° for DIMs, and 171 km/s and 90° for UNKs, respectively. According to Ma et al. (2010), one third of CMEs observed by STEREO-A/B from 2009 Jan. 1 to Aug. 31 was categorized as stealth CMEs. Our study shows that the rate of stealth CMEs is much smaller for wide CMEs. We also compared the average appearance latitude of CMEs between the stealth and all wide CMEs and found that the stealth CMEs appeared from higher latitude (48°) than the general population (35°). Reference: Ma et al. (2010) ApJ, 722, 289

  14. Different meanings of the social dominance orientation concept: predicting political attitudes over time.

    PubMed

    Jetten, Jolanda; Iyer, Aarti

    2010-06-01

    We examined predictors of political attitude change by assessing the independent and interactive effect of social dominance orientation (SDO) as a context-dependent versus an individual difference construct. In a longitudinal study, British students' political orientation was assessed before entering university (T1) and after being at university for 2 months (T2) and 6 months (T3; N=109). Results showed that initial SDO (T1) did not predict political attitudes change nor did it predict self-selected entry into course with hierarchy enhancing or hierarchy-attenuating ideologies. More support was obtained for a contextually determined model whereby SDO (T2) mediated the relationship between social class (T1) and political attitude change (T3). We also found support for mediated moderation in accounting for effects of initial SDO on political attitude change. Findings suggest that SDO as a concept that is sensitive to group dynamics is best suited to explain shifts in political attitudes.

  15. Evidence for two-loop interaction from IRIS and SDO observations of penumbral brightenings

    NASA Astrophysics Data System (ADS)

    Alissandrakis, C. E.; Koukras, A.; Patsourakos, S.; Nindos, A.

    2017-07-01

    Aims: We investigate small scale energy release events which can provide clues on the heating mechanism of the solar corona. Methods: We analyzed spectral and imaging data from the Interface Region Imaging Spectrograph (IRIS), images from the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatoty (SDO), and magnetograms from the Helioseismic and Magnetic Imager (HMI) aboard SDO. Results: We report observations of small flaring loops in the penumbra of a large sunspot on July 19, 2013. Our main event consisted of a loop spanning 15'', from the umbral-penumbral boundary to an opposite polarity region outside the penumbra. It lasted approximately 10 min with a two minute impulsive peak and was observed in all AIA/SDO channels, while the IRIS slit was located near its penumbral footpoint. Mass motions with an apparent velocity of 100 km s-1 were detected beyond the brightening, starting in the rise phase of the impulsive peak; these were apparently associated with a higher-lying loop. We interpret these motions in terms of two-loop interaction. IRIS spectra in both the C II and Si iv lines showed very extended wings, up to about 400 km s-1, first in the blue (upflows) and subsequently in the red wing. In addition to the strong lines, emission was detected in the weak lines of Cl I, O I and C I, as well as in the Mg II triplet lines. Absorption features in the profiles of the C II doublet, the Si iv doublet and the Mg II h and k lines indicate the existence of material with a lower source function between the brightening and the observer. We attribute this absorption to the higher loop and this adds further credibility to the two-loop interaction hypothesis. Tilts were detected in the absorption spectra, as well as in the spectra of Cl I, O I, and C I lines, possibly indicating rotational motions from the untwisting of magnetic flux tubes. Conclusions: We conclude that the absorption features in the C II, Si iv and Mg II profiles originate in a higher-lying, descending loop; as this approached the already activated lower-lying loop, their interaction gave rise to the impulsive peak, the very broad line profiles and the mass motions. Movies associated to Figs. A.1-A.3 are available at http://www.aanda.org

  16. Space Weather Workshop 2010 to Be Held in April

    NASA Astrophysics Data System (ADS)

    Peltzer, Thomas

    2010-03-01

    The annual Space Weather Workshop will be held in Boulder, Colo., 27-30 April 2010. The workshop will bring customers, forecasters, commercial service providers, researchers, and government agencies together in a lively dialogue about space weather. The workshop will include 4 days of plenary sessions on a variety of topics, with poster sessions focusing on the Sun, interplanetary space, the magnetosphere, and the ionosphere. The conference will address the remarkably diverse impacts of space weather on today's technology. Highlights on this year's agenda include ionospheric storms and their impacts on the Global Navigation Satellite System (GNSS), an update on NASA's recently launched Solar Dynamics Observatory (SDO), and new space weather-related activities in the Federal Emergency Management Agency (FEMA). Also this year, the Commercial Space Weather Interest Group will feature a presentation by former NOAA administrator, Vice Admiral Conrad Lautenbacher, U.S. Navy (Ret.).

  17. The Magnetic Evolution of Coronal Hole Bright Points

    NASA Astrophysics Data System (ADS)

    He, Y.; Muglach, K.

    2017-12-01

    Space weather refers to the state of the heliosphere and the geospace environment that are caused primarily by solar activity. Coronal mass ejections and flares originate in active regions and filaments close to the solar surface and can cause geomagnetic storms and solar energetic particles events, which can damage both spacecraft and ground-based systems that are critical for society's well-being. Coronal bright points are small-scale magnetic regions on the sun that seem to be similar to active regions, but are about an order of magnitude smaller. Due to their shorter lifetime, the complete evolutionary cycle of these mini active regions can be studied, from the time they appear in extreme-ultraviolet (EUV) images to the time they fade. We are using data from the Solar Dynamics Observatory (SDO) to study both the coronal EUV flux and the photospheric magnetic field and compare them to activities of the coronal bright point.

  18. Arching Eruption

    NASA Image and Video Library

    2015-06-30

    NASA’s Solar Dynamics Observatory caught this image of an eruption on the side of the sun on June 18, 2015. The eruption ultimately escaped the sun, growing into a substantial coronal mass ejection, or CME — a giant cloud of solar material traveling through space. This imagery is shown in the 304 Angstrom wavelength of extreme ultraviolet light, a wavelength that highlights material in the low parts of the sun’s atmosphere and that is typically colorized in red. The video clip covers about four hours of the event. Credit: NASA/Goddard/SDO Download: svs.gsfc.nasa.gov/goto?11908 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Extreme Ultraviolet Variability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS): Radiometric Calibrations and Results

    NASA Technical Reports Server (NTRS)

    Hock, R. A.; Woods, T. N.; Crotser, D.; Eparvier, F. G.; Woodraska, D. L.; Chamberlin, P. C.; Woods, E. C.

    2010-01-01

    The NASA Solar Dynamics Observatory (SDO), scheduled for launch in early 2010, incorporates a suite of instruments including the Extreme Ultraviolet Variability Experiment (EVE). EVE has multiple instruments including the Multiple Extreme ultraviolet Grating Spectrographs (MEGS) A, B, and P instruments, the Solar Aspect Monitor (SAM), and the Extreme ultraviolet SpectroPhotometer (ESP). The radiometric calibration of EVE, necessary to convert the instrument counts to physical units, was performed at the National Institute of Standards and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF III) located in Gaithersburg, Maryland. This paper presents the results and derived accuracy of this radiometric calibration for the MEGS A, B, P, and SAM instruments, while the calibration of the ESP instrument is addressed by Didkovsky et al. . In addition, solar measurements that were taken on 14 April 2008, during the NASA 36.240 sounding-rocket flight, are shown for the prototype EVE instruments.

  20. TIME-DEPENDENT DENSITY DIAGNOSTICS OF SOLAR FLARE PLASMAS USING SDO/EVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milligan, Ryan O.; Kennedy, Michael B.; Mathioudakis, Mihalis

    2012-08-10

    Temporally resolved electron density measurements of solar flare plasmas are presented using data from the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The EVE spectral range contains emission lines formed between 10{sup 4} and 10{sup 7} K, including transitions from highly ionized iron ({approx}>10 MK). Using three density-sensitive Fe XXI ratios, peak electron densities of 10{sup 11.2}-10{sup 12.1} cm{sup -3} were found during four X-class flares. While previous measurements of densities at such high temperatures were made at only one point during a flaring event, EVE now allows the temporal evolution of these high-temperature densities to bemore » determined at 10 s cadence. A comparison with GOES data revealed that the peak of the density time profiles for each line ratio correlated well with that of the emission measure time profile for each of the events studied.« less

  1. Shifting Plasma

    NASA Image and Video Library

    2017-12-08

    Strands of solar material at the sun's edge shifted and twisted back and forth over a 22-hour period in this footage captured May 2-3, 2017, by NASA’s Solar Dynamics Observatory. In this close-up, the strands are being manipulated by strong magnetic forces associated with active regions. To give a sense of scale, the strands that hover above the sun are more than several times the size of Earth. These images were taken in a wavelength of extreme ultraviolet light, which is typically invisible to our eyes, but was colorized here in red. go.nasa.gov/2qJzPD2 Credit: NASA/Goddard/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. ACHIEVING CONSISTENT DOPPLER MEASUREMENTS FROM SDO /HMI VECTOR FIELD INVERSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuck, Peter W.; Antiochos, S. K.; Leka, K. D.

    NASA’s Solar Dynamics Observatory is delivering vector magnetic field observations of the full solar disk with unprecedented temporal and spatial resolution; however, the satellite is in a highly inclined geosynchronous orbit. The relative spacecraft–Sun velocity varies by ±3 km s{sup −1} over a day, which introduces major orbital artifacts in the Helioseismic Magnetic Imager (HMI) data. We demonstrate that the orbital artifacts contaminate all spatial and temporal scales in the data. We describe a newly developed three-stage procedure for mitigating these artifacts in the Doppler data obtained from the Milne–Eddington inversions in the HMI pipeline. The procedure ultimately uses 32more » velocity-dependent coefficients to adjust 10 million pixels—a remarkably sparse correction model given the complexity of the orbital artifacts. This procedure was applied to full-disk images of AR 11084 to produce consistent Dopplergrams. The data adjustments reduce the power in the orbital artifacts by 31 dB. Furthermore, we analyze in detail the corrected images and show that our procedure greatly improves the temporal and spectral properties of the data without adding any new artifacts. We conclude that this new procedure makes a dramatic improvement in the consistency of the HMI data and in its usefulness for precision scientific studies.« less

  3. A Small-Scale Flux Rope and its Associated CME and Shock.

    NASA Astrophysics Data System (ADS)

    Feng, L.; Ying, B.; Lu, L.; Zhang, J.

    2016-12-01

    A magnetic flux rope (MFR) is thought be a key ingredient of a coronal mass ejection (CME). It has been extensively explored after the Solar Dynamics Observatory (SDO) mission was launched. Previous studies are often concentrated on large-scale MFRs whose size are comparable to the active regions they reside. In this paper, we investigate the properties of a small-scale magnetic flux rope (SMFR) of a limb event observed by Atmospheric Imaging Assembly (AIA) . This SMFR originated from a very small and compact region at the edge of the active region and appeared mainly in the AIA 94 Å passband. It drove a coronal mass ejection (CME) and a type II burst was associated with the CME-driven shock. The type II burst started with a very high frequency. We obtain the compression ratio of the shock from the band splitting of the type II emissions and further derive the Alfvénic Mach number and the coronal magnetic field strength. On the other hand,we study the CME structure in LASCO coronagraph images and address its characteristics through measuring its mass and energy. Compared to the nature of the standard model of the CME, this CME triggered by the SMF are found to be different in some aspects.

  4. Coronal loop seismology using damping of standing kink oscillations by mode coupling

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Goddard, C. R.; Nisticò, G.; Anfinogentov, S.; Nakariakov, V. M.

    2016-05-01

    Context. Kink oscillations of solar coronal loops are frequently observed to be strongly damped. The damping can be explained by mode coupling on the condition that loops have a finite inhomogeneous layer between the higher density core and lower density background. The damping rate depends on the loop density contrast ratio and inhomogeneous layer width. Aims: The theoretical description for mode coupling of kink waves has been extended to include the initial Gaussian damping regime in addition to the exponential asymptotic state. Observation of these damping regimes would provide information about the structuring of the coronal loop and so provide a seismological tool. Methods: We consider three examples of standing kink oscillations observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) for which the general damping profile (Gaussian and exponential regimes) can be fitted. Determining the Gaussian and exponential damping times allows us to perform seismological inversions for the loop density contrast ratio and the inhomogeneous layer width normalised to the loop radius. The layer width and loop minor radius are found separately by comparing the observed loop intensity profile with forward modelling based on our seismological results. Results: The seismological method which allows the density contrast ratio and inhomogeneous layer width to be simultaneously determined from the kink mode damping profile has been applied to observational data for the first time. This allows the internal and external Alfvén speeds to be calculated, and estimates for the magnetic field strength can be dramatically improved using the given plasma density. Conclusions: The kink mode damping rate can be used as a powerful diagnostic tool to determine the coronal loop density profile. This information can be used for further calculations such as the magnetic field strength or phase mixing rate.

  5. Multi-thermal observations of the 2010 October 16 flare:heating of a ribbon via loops, or a blast wave?

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Inglis, A.; Aschwanden, M.; Dennis, B.

    2011-05-01

    On 2010 October 16th SDO/AIA observed its first flare using automatic exposure control. Coincidentally, this flare also exhibited a large number of interesting features. Firstly, a large ribbon significantly to the solar west of the flare kernel was ignited and was visible in all AIA wavelengths, posing the question as to how this energy was deposited and how it relates to the main flare site. A faint blast wave also emanates from the flare kernel, visible in AIA and observed traveling to the solar west at an estimated speed of 1000 km/s. This blast wave is associated with a weak white-light CME observed with STEREO B and a Type II radio burst observed from Green Bank Observatory (GBSRBS). One possibility is that this blast wave is responsible for the heating of the ribbon. However, closer scrutiny reveals that the flare site and the ribbon are in fact connected magnetically via coronal loops which are heated during the main energy release. These loops are distinct from the expected hot, post-flare loops present within the main flare kernel. RHESSI spectra indicate that these loops are heated to approximately 10 MK in the immediate flare aftermath. Using the multi-temperature capabilities of AIA in combination with RHESSI, and by employing the cross-correlation mapping technique, we are able to measure the loop temperatures as a function of time over several post-flare hours and hence measure the loop cooling rate. We find that the time delay between the appearance of loops in the hottest channel, 131 A, and the cool 171 A channel, is 70 minutes. Yet the causality of this event remains unclear. Is the ribbon heated via these interconnected loops or via a blast wave?

  6. Quasi-periodic Counter-propagating Fast Magnetosonic Wave Trains from Neighboring Flares: SDO/AIA Observations and 3D MHD Modeling

    NASA Astrophysics Data System (ADS)

    Ofman, Leon; Liu, Wei

    2018-06-01

    Since their discovery by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) in the extreme ultraviolet, rapid (phase speeds of ∼1000 km s‑1), quasi-periodic, fast-mode propagating (QFP) wave trains have been observed accompanying many solar flares. They typically propagate in funnel-like structures associated with the expanding magnetic field topology of the active regions (ARs). The waves provide information on the associated flare pulsations and the magnetic structure through coronal seismology (CS). The reported waves usually originate from a single localized source associated with the flare. Here we report the first detection of counter-propagating QFPs associated with two neighboring flares on 2013 May 22, apparently connected by large-scale, trans-equatorial coronal loops. We present the first results of a 3D MHD model of counter-propagating QFPs in an idealized bipolar AR. We investigate the excitation, propagation, nonlinearity, and interaction of the counter-propagating waves for a range of key model parameters, such as the properties of the sources and the background magnetic structure. In addition to QFPs, we also find evidence of trapped fast- (kink) and slow-mode waves associated with the event. We apply CS to determine the magnetic field strength in an oscillating loop during the event. Our model results are in qualitative agreement with the AIA-observed counter-propagating waves and used to identify the various MHD wave modes associated with the observed event, providing insights into their linear and nonlinear interactions. Our observations provide the first direct evidence of counter-propagating fast magnetosonic waves that can potentially lead to turbulent cascade and carry significant energy flux for coronal heating in low-corona magnetic structures.

  7. Possibilities for Estimating Horizontal Electrical Currents in Active Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Fursyak, Yu. A.; Abramenko, V. I.

    2017-12-01

    Part of the "free" magnetic energy associated with electrical current systems in the active region (AR) is released during solar flares. This proposition is widely accepted and it has stimulated interest in detecting electrical currents in active regions. The vertical component of an electric current in the photosphere can be found by observing the transverse magnetic field. At present, however, there are no direct methods for calculating transverse electric currents based on these observations. These calculations require information on the field vector measured simultaneously at several levels in the photosphere, which has not yet been done with solar instrumentation. In this paper we examine an approach to calculating the structure of the square of the density of a transverse electrical current based on a magnetogram of the vertical component of the magnetic field in the AR. Data obtained with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamic Observatory (SDO) for the AR of NOAA AR 11283 are used. It is shown that (1) the observed variations in the magnetic field of a sunspot and the proposed estimate of the density of an annular horizontal current around the spot are consistent with Faraday's law and (2) the resulting estimates of the magnitude of the square of the density of the horizontal current {j}_{\\perp}^2 = (0.002- 0.004) A2/m4 are consistent with previously obtained values of the density of a vertical current in the photosphere. Thus, the proposed estimate is physically significant and this method can be used to estimate the density and structure of transverse electrical currents in the photosphere.

  8. Propagating Disturbances in Coronal Loops: A Detailed Analysis of Propagation Speeds

    NASA Astrophysics Data System (ADS)

    Kiddie, G.; De Moortel, I.; Del Zanna, G.; McIntosh, S. W.; Whittaker, I.

    2012-08-01

    Quasi-periodic disturbances have been observed in the outer solar atmosphere for many years. Although first interpreted as upflows (Schrijver et al., Solar Phys. 187, 261, 1999), they have been widely regarded as slow magneto-acoustic waves, due to their observed velocities and periods. However, recent observations have questioned this interpretation, as periodic disturbances in Doppler velocity, line width, and profile asymmetry were found to be in phase with the intensity oscillations (De Pontieu and McIntosh, Astrophys. J. 722, 1013, 2010; Tian, McIntosh, and De Pontieu, Astrophys. J. Lett. 727, L37, 2011), suggesting that the disturbances could be quasi-periodic upflows. Here we conduct a detailed analysis of the velocities of these disturbances across several wavelengths using the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). We analysed 41 examples, including both sunspot and non-sunspot regions of the Sun. We found that the velocities of propagating disturbances (PDs) located at sunspots are more likely to be temperature dependent, whereas the velocities of PDs at non-sunspot locations do not show a clear temperature dependence. This suggests an interpretation in terms of slow magneto-acoustic waves in sunspots but the nature of PDs in non-sunspot (plage) regions remains unclear. We also considered on what scale the underlying driver is affecting the properties of the PDs. Finally, we found that removing the contribution due to the cooler ions in the 193 Å wavelength suggests that a substantial part of the 193 Å emission of sunspot PDs can be attributed to the cool component of 193 Å.

  9. On the Formation Mechanism of A Long-lived Polar Crown Cavity

    NASA Astrophysics Data System (ADS)

    Karna, Nishu; Pesnell, William D.; Zhang, Jie

    2016-10-01

    We report the study of the longest-lived polar crown cavity of Solar Cycle 24th observed in the year 2013 and propose a physical mechanism to explain the sustained existence. We used high temporal and spatial resolution observations from the Atmospheric Imaging Assembly (AIA) and the Helioseismic Magnetic Imager (HMI) instruments on board the Solar Dynamics Observatory (SDO) to explore the structure and evolution. We examined the circumpolar cavity in great detail from March 21, 2013, till October 31, 2013, while it existed for more than one year. Our study suggests two necessary conditions to form a long stable circumpolar cavity or any polar crown cavity. First, the underlying polarity inversion line (PIL) of the circumpolar cavity is formed between the trailing part of dozens of decayed active regions distributed in different longitudes and the unipolar magnetic field in the polar coronal hole. Second, the long life of the cavity is sustained by the continuing flux cancellation along the polarity inversion line. The flux is persistently transported toward the polar region through surface meridional flow and diffusion, which also leads to the shrinking of the polar coronal hole. Comparing with the existing theory of the formation of polarity inversion lines, we introduce a new category named as "Diffused trailing flux and polar coronal hole interaction region" to explain the polar crown cavity. The existence of such region also helps explain the process of polar reversal, which provides insight into the solar cycle.

  10. FORMATION OF THE PENUMBRA AND START OF THE EVERSHED FLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murabito, M.; Guglielmino, S. L.; Zuccarello, F.

    We studied the variations of line of sight photospheric plasma flows during the formation phase of the penumbra around a pore in active region NOAA 11490. We used a high spatial, spectral, and temporal resolution data set acquired by the Interferometric BIdimensional Spectrometer operating at the NSO/Dunn Solar Telescope as well as data taken by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory satellite ( SDO /HMI). Before the penumbra formed we observed a redshift of the spectral line in the inner part of the annular zone surrounding the pore as well as a blueshift of materialmore » associated with opposite magnetic polarity farther away from the pore. We found that the onset of the classical Evershed flow occurs on a very short timescale (1 to 3 hr) while the penumbra is forming. During the same time interval we found changes in the magnetic field inclination in the penumbra, with the vertical field actually changing sign near the penumbral edge, while the total magnetic field showed a significant increase, about 400 G. To explain these and other observations related to the formation of the penumbra and the onset of the Evershed flow we propose a scenario in which the penumbra is formed by magnetic flux dragged down from the canopy surrounding the initial pore. The Evershed flow starts when the sinking magnetic field dips below the solar surface and magnetoconvection sets in.« less

  11. Joint SDO and IRIS Observations of a Novel, Hybrid Prominence-Coronal Rain Complex

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Antolin, Patrick; Sun, Xudong; Gao, Lijia; Vial, Jean-Claude; Gibson, Sarah; Okamoto, Takenori; Berger, Thomas; Uitenbroek, Han; De Pontieu, Bart

    2016-10-01

    Solar prominences and coronal rain are intimately related phenomena, both involving cool material at chromospheric temperatures within the hot corona and both playing important roles as part of the return flow of the chromosphere-corona mass cycle. At the same time, they exhibit distinct morphologies and dynamics not yet well understood. Quiescent prominences consist of numerous long-lasting, filamentary downflow threads, while coronal rain is more transient and falls comparably faster along well-defined curved paths. We report here a novel, hybrid prominence-coronal rain complex in an arcade-fan geometry observed by SDO/AIA and IRIS, which provides new insights to the underlying physics of such contrasting behaviors. We found that the supra-arcade fan region hosts a prominence sheet consisting of meandering threads with broad line widths. As the prominence material descends to the arcade, it turns into coronal rain sliding down coronal loops with line widths 2-3 times narrower. This contrast suggests that distinct local plasma and magnetic conditions determine the fate of the cool material, a scenario supported by our magnetic field extrapolations from SDO/HMI. Specifically, the supra-arcade fan (similar to those in solar flares; e.g., McKenzie 2013) is likely situated in a current sheet, where the magnetic field is weak and the plasma-beta could be close to unity, thus favoring turbulent flows like those prominence threads. In contrast, the underlying arcade has a stronger magnetic field and most likely a low-beta environment, such that the material is guided along magnetic field lines to appear as coronal rain. We will discuss the physical implications of these observations beyond prominence and coronal rain.

  12. Development of a Squadron Premishap Training Program

    DTIC Science & Technology

    1994-03-01

    an aircraft mishap notification checklist? 0 Yes 0 No Comment b. Did the SDO follow the aircraft mishap notification checklist provided in the...squadron premishap plan? o Yes 0 No Comment c. If so, is this checklist readily available to the squadron watch team and do they all know where to find it? O...Yes 0 No Comment d. Did the SDO verify that SAR, the crash/fire department, and medical were notified? o Yes 0 No Comment If not, make sure the SDO

  13. SYSTEMATIC CENTER-TO-LIMB VARIATION IN MEASURED HELIOSEISMIC TRAVEL TIMES AND ITS EFFECT ON INFERENCES OF SOLAR INTERIOR MERIDIONAL FLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Junwei; Nagashima, Kaori; Bogart, R. S.

    We report on a systematic center-to-limb variation in measured helioseismic travel times, which must be taken into account for an accurate determination of solar interior meridional flows. The systematic variation, found in time-distance helioseismology analysis using SDO/HMI and SDO/AIA observations, is different in both travel-time magnitude and variation trend for different observables. It is not clear what causes this systematic effect. Subtracting the longitude-dependent east-west travel times, obtained along the equatorial area, from the latitude-dependent north-south travel times, obtained along the central meridian area, gives remarkably similar results for different observables. We suggest this as an effective procedure for removingmore » the systematic center-to-limb variation. The subsurface meridional flows obtained from inversion of the corrected travel times are approximately 10 m s{sup -1} slower than those obtained without removing the systematic effect. The detected center-to-limb variation may have important implications in the derivation of meridional flows in the deep interior and needs to be better understood.« less

  14. Systematic Center-To-Limb Variation in Measured Helioseismic Travel Times and Its Effect on Inferences of Solar Interior Meridional Flows

    NASA Technical Reports Server (NTRS)

    Zhao, Junwei; Nagashima, Kaori; Bogart, R. S.; Kosovichev, Alexander; Duvall, T. L., Jr.

    2012-01-01

    We report on a systematic center-to-limb variation in measured helioseismic travel times, which must be taken into account for an accurate determination of solar interior meridional flows. The systematic variation, found in time-distance helioseismology analysis using SDO/HMI and SDO/AIA observations, is different in both travel-time magnitude and variation trend for different observables. It is not clear what causes this systematic effect. Subtracting the longitude-dependent east-west travel times, obtained along the equatorial area, from the latitude-dependent north-south travel times, obtained along the central meridian area, gives remarkably similar results for different observables. We suggest this as an effective procedure for removing the systematic center-to-limb variation. The subsurface meridional flows obtained from inversion of the corrected travel times are approximately 10 m s-1 slower than those obtained without removing the systematic effect. The detected center-to-limb variation may have important implications in the derivation of meridional flows in the deep interior and needs to be better understood.

  15. A solar tornado caused by flares

    NASA Astrophysics Data System (ADS)

    Panesar, N. K.; Innes, D. E.; Tiwari, S. K.; Low, B. C.

    2014-01-01

    An enormous solar tornado was observed by SDO/AIA on 25 September 2011. It was mainly associated with a quiescent prominence with an overlying coronal cavity. We investigate the triggering mechanism of the solar tornado by using the data from two instruments: SDO/AIA and STEREO-A/EUVI, covering the Sun from two directions. The tornado appeared near to the active region NOAA 11303 that produced three flares. The flares directly influenced the prominence-cavity system. The release of free magnetic energy from the active region by flares resulted in the contraction of the active region field. The cavity, owing to its superior magnetic pressure, expanded to fill this vacated space in the corona. We propose that the tornado developed on the top of the prominence due to the expansion of the prominence-cavity system.

  16. A surgical intervention for the body politic: Generation Squeeze applies the Advocacy Coalition Framework to social determinants of health knowledge translation.

    PubMed

    Kershaw, Paul; Swanson, Eric; Stucchi, Andrea

    2017-06-16

    The World Health Organization Commission on the Social Determinants of Health (SDoH) observes that building political will is central to all its recommendations, because governments respond to those who organize and show up. Since younger Canadians are less likely to vote or to organize in between elections, they are less effective at building political will than their older counterparts. This results in an age gap between SDoH research and government budget priorities. Whereas Global AgeWatch ranks Canada among the top countries for aging, UNICEF ranks Canada among the least generous OECD (Organisation for Economic Co-operation and Development) countries for the generations raising young children. A surgical intervention into the body politic. Guided by the "health political science" literature, the intervention builds a non-profit coalition to perform science-based, non-partisan democratic engagement to increase incentives for policy-makers to translate SDoH research about younger generations into government budget investments. All four national parties integrated policy recommendations from the intervention into their 2015 election platforms. Three referred to, or consulted with, the intervention during the election. The intervention coincided with all parties committing to the single largest annual increase in spending on families with children in over a decade. Since many population-level decisions are made in political venues, the concept of population health interventions should be broadened to include activities designed to mobilize SDoH science in the world of politics. Such interventions must engage with the power dynamics, values, interests and institutional factors that mediate the path by which science shapes government budgets.

  17. Analysis of a 12-Hour Artifact in LF Oscillations of the Magnetic Field of Sunspots According to SDO/HMI Data

    NASA Astrophysics Data System (ADS)

    Efremov, V. I.; Parfinenko, L. D.; Solov'ev, A. A.

    2017-12-01

    The properties of the 12-h artifact in the data of the SDO/HMI instrument (Helioseismic and Magnetic Imager) caused by the nonzero radial velocity of the station relative to the Sun are investigated. The study has been carried out with respect to long-period oscillations of the magnetic field of sunspots for different station positions in the Earth's orbit by the alternative spectral method of singular decomposition of the signal CaterPillarSSA. Features of artifact filtering, both in special positions of the station (at the points of aphelion and perihelion) and at arbitrarily selected orbital points, are considered. It is shown that the 12-h artifact mode can be completely filtered from the time series of the observed variable, not only at these two orbital points (because of the symmetry of the station's radial velocity with respect to the zero mean here) but also at any others. It is shown that only a 12-h mode is physically justified, while the 24-h harmonic appears only as an artifact in the Fourier decomposition of the amplitude-modulated signal. It is emphasized that the values of the magnetic field measured with SDO/HMI are sensitive only to the station's radial velocity absolute values with respect to the Sun and do not depend on its direction. It has been noted that the periods of sunspot oscillation as a whole obtained from SDO/HMI data after orbital artifact filtration fit well into the dependence diagram of the period of sunspot oscillations on the value of its magnetic field strength constructed earlier by SOHO/MDIdata.

  18. Tools for Coordinated Planning Between Observatories

    NASA Technical Reports Server (NTRS)

    Jones, Jeremy; Fishman, Mark; Grella, Vince; Kerbel, Uri; Maks, Lori; Misra, Dharitri; Pell, Vince; Powers, Edward I. (Technical Monitor)

    2001-01-01

    With the realization of NASA's era of great observatories, there are now more than three space-based telescopes operating in different wavebands. This situation provides astronomers with a unique opportunity to simultaneously observe with multiple observatories. Yet scheduling multiple observatories simultaneously is highly inefficient when compared to observations using only one single observatory. Thus, programs using multiple observatories are limited not due to scientific restrictions, but due to operational inefficiencies. At present, multi-observatory programs are conducted by submitting observing proposals separately to each concerned observatory. To assure that the proposed observations can be scheduled, each observatory's staff has to check that the observations are valid and meet all the constraints for their own observatory; in addition, they have to verify that the observations satisfy the constraints of the other observatories. Thus, coordinated observations require painstaking manual collaboration among the observatory staff at each observatory. Due to the lack of automated tools for coordinated observations, this process is time consuming, error-prone, and the outcome of the requests is not certain until the very end. To increase observatory operations efficiency, such manpower intensive processes need to undergo re-engineering. To overcome this critical deficiency, Goddard Space Flight Center's Advanced Architectures and Automation Branch is developing a prototype effort called the Visual Observation Layout Tool (VOLT). The main objective of the VOLT project is to provide visual tools to help automate the planning of coordinated observations by multiple astronomical observatories, as well as to increase the scheduling probability of all observations.

  19. Peering into the "black box" of education interventions and attitude change: Audience characteristics moderate the effectiveness…and then only toward specific targets.

    PubMed

    Mansoori-Rostam, Sara Michelle; Tate, Charlotte Chucky

    2017-01-01

    To probe the inconsistent link between education and attitude change toward minority social groups, we conducted a field study that focused on audience characteristics and education about lesbian, gay, and transgender (LGT) targets. Participants enrolled in a sexuality course were compared to those in a neurology course, both taught by the same professor. Multiple regression analyses predicted attitude change toward LGT targets from social dominance orientation (SDO), right-wing authoritarianism (RWA), ratings of professor's characteristics, SDO by course interaction, and RWA by course interaction. Only the SDO by course interaction significantly predicted attitude change. Simple slopes analyses indicated that high-SDO participants in the sexuality course showed the most positive attitude change. These findings suggest that education may reduce prejudice for certain audience characteristics.

  20. Hypocholesterolemic effect of sericin-derived oligopeptides in high-cholesterol fed rats.

    PubMed

    Lapphanichayakool, Phakhamon; Sutheerawattananonda, Manote; Limpeanchob, Nanteetip

    2017-01-01

    The beneficial effect of cholesterol-lowering proteins and/or peptides derived from various dietary sources is continuously reported. A non-dietary protein from silk cocoon, sericin, has also demonstrated cholesterol-lowering activity. A sericin hydrolysate prepared by enzymatic hydrolysis was also expected to posses this effect. The present study was aimed at investigating the cholesterol-lowering effect of sericin peptides, so called "sericin-derived oligopeptides" (SDO) both in vivo and in vitro. The results showed that SDO at all three doses tested (10 mg kg -1  day -1 , 50 mg kg -1  day -1 , and 200 mg kg -1  day -1 ) suppressed serum total and non-HDL cholesterol levels in rats fed a high-cholesterol diet. Triglyceride and HDL-cholesterol levels were not significantly changed among all groups. The fecal contents of bile acids and cholesterol did not differ among high-cholesterol fed rats. SDO dose-dependently reduced cholesterol solubility in lipid micelles, and inhibited cholesterol uptake in monolayer Caco-2 cells. SDO also effectively bound to all three types of bile salts including taurocholate, deoxytaurocholate, and glycodeoxycholate. Direct interaction with bile acids of SDO may disrupt micellar cholesterol solubility, and subsequently reduce the absorption of dietary cholesterol in intestines. Taking all data together, SDO or sericin peptides exhibit a beneficial effect on blood cholesterol levels and could be potentially used as a health-promoting dietary supplement or nutraceutical product.

Top