Sample records for observatory sky survey

  1. Using Virtual Observatory Services in Sky View

    NASA Technical Reports Server (NTRS)

    McGlynn, Thomas A.

    2007-01-01

    For over a decade Skyview has provided astronomers and the public with easy access to survey and imaging data from all wavelength regimes. SkyView has pioneered many of the concepts that underlie the Virtual Observatory. Recently SkyView has been released as a distributable package which uses VO protocols to access image and catalog services. This chapter describes how to use the Skyview as a local service and how to customize it to access additional VO services and local data.

  2. The SkyMapper Transient Survey

    NASA Astrophysics Data System (ADS)

    Scalzo, R. A.; Yuan, F.; Childress, M. J.; Möller, A.; Schmidt, B. P.; Tucker, B. E.; Zhang, B. R.; Onken, C. A.; Wolf, C.; Astier, P.; Betoule, M.; Regnault, N.

    2017-07-01

    The SkyMapper 1.3 m telescope at Siding Spring Observatory has now begun regular operations. Alongside the Southern Sky Survey, a comprehensive digital survey of the entire southern sky, SkyMapper will carry out a search for supernovae and other transients. The search strategy, covering a total footprint area of 2 000 deg2 with a cadence of ⩽5 d, is optimised for discovery and follow-up of low-redshift type Ia supernovae to constrain cosmic expansion and peculiar velocities. We describe the search operations and infrastructure, including a parallelised software pipeline to discover variable objects in difference imaging; simulations of the performance of the survey over its lifetime; public access to discovered transients; and some first results from the Science Verification data.

  3. Optical infrared sky survey

    NASA Technical Reports Server (NTRS)

    Craine, E. R.

    1978-01-01

    A description is presented of a photographic survey of the northern sky currently underway at Steward Observatory. The survey is being conducted at a principal bandpass of 8000-9000 A supplemented by a V bandpass. The survey is the first of its type conducted using a small (20-in. aperture) wide-field telescope, a very large-format (146 mm) image intensifier with a red-extended, multialkali photocathode. The output phosphor of the intensifier is photographed with IIaD emulsion on film. One of the goals of the survey is to catalog red stellar objects on the photographs and to examine in detail regions of the sky which are obscured by hydrogen emission on conventional photographs.

  4. The Great Observatories All-Sky LIRG Survey: Herschel Image Atlas and Aperture Photometry

    NASA Astrophysics Data System (ADS)

    Chu, Jason K.; Sanders, D. B.; Larson, K. L.; Mazzarella, J. M.; Howell, J. H.; Díaz-Santos, T.; Xu, K. C.; Paladini, R.; Schulz, B.; Shupe, D.; Appleton, P.; Armus, L.; Billot, N.; Chan, B. H. P.; Evans, A. S.; Fadda, D.; Frayer, D. T.; Haan, S.; Ishida, C. M.; Iwasawa, K.; Kim, D.-C.; Lord, S.; Murphy, E.; Petric, A.; Privon, G. C.; Surace, J. A.; Treister, E.

    2017-04-01

    Far-infrared images and photometry are presented for 201 Luminous and Ultraluminous Infrared Galaxies [LIRGs: log ({L}{IR}/{L}⊙ )=11.00{--}11.99, ULIRGs: log ({L}{IR}/{L}⊙ )=12.00{--}12.99], in the Great Observatories All-Sky LIRG Survey (GOALS), based on observations with the Herschel Space Observatory Photodetector Array Camera and Spectrometer (PACS) and the Spectral and Photometric Imaging Receiver (SPIRE) instruments. The image atlas displays each GOALS target in the three PACS bands (70, 100, and 160 μm) and the three SPIRE bands (250, 350, and 500 μm), optimized to reveal structures at both high and low surface brightness levels, with images scaled to simplify comparison of structures in the same physical areas of ˜100 × 100 kpc2. Flux densities of companion galaxies in merging systems are provided where possible, depending on their angular separation and the spatial resolution in each passband, along with integrated system fluxes (sum of components). This data set constitutes the imaging and photometric component of the GOALS Herschel OT1 observing program, and is complementary to atlases presented for the Hubble Space Telescope, Spitzer Space Telescope, and Chandra X-ray Observatory. Collectively, these data will enable a wide range of detailed studies of active galactic nucleus and starburst activity within the most luminous infrared galaxies in the local universe. Based on Herschel Space Observatory observations. Herschel is an ESA space observatory with science instruments provided by the European-led Principal Investigator consortia, and important participation from NASA.

  5. Dark Sky Collaborators: Arizona (AZ) Observatories, Communities, and Businesses

    NASA Astrophysics Data System (ADS)

    Del Castillo, Elizabeth Alvarez; Corbally, Christopher; Falco, Emilio E.; Green, Richard F.; Hall, Jeffrey C.; Williams, G. Grant

    2015-03-01

    With outdoor lighting ordinances in Arizona first in place around observatories in 1958 and 1972, then throughout the state since 1986, Arizonans have extensive experience working with communities and businesses to preserve our dark skies. Though communities are committed to the astronomy sector in our state, astronomers must collaborate with other stakeholders to implement solutions. Ongoing education and public outreach is necessary to enable ordinance updates as technology changes. Despite significant population increases, sky brightness measurements over the last 20 years show that ordinance updates are worth our efforts as we seek to maintain high quality skies around our observatories. Collaborations are being forged and actions taken to promote astronomy for the longer term in Arizona.

  6. C-BASS: The C-Band All Sky Survey

    NASA Astrophysics Data System (ADS)

    Pearson, Timothy J.; C-BASS Collaboration

    2016-06-01

    The C-Band All Sky Survey (C-BASS) is a project to image the whole sky at a wavelength of 6 cm (frequency 5 GHz), measuring both the brightness and the polarization of the sky. Correlation polarimeters are mounted on two separate telescopes, one at the Owens Valley Observatory (OVRO) in California and another in South Africa, allowing C-BASS to map the whole sky. The OVRO instrument has completed observations for the northern part of the survey. We are working on final calibration of intensity and polarization. The southern instrument has recently started observations for the southern part of the survey from its site at Klerefontein near Carnarvon in South Africa. The principal aim of C-BASS is to allow the subtraction of polarized Galactic synchrotron emission from the data produced by CMB polarization experiments, such as WMAP, Planck, and dedicated B-mode polarization experiments. In addition it will contribute to studies of: (1) the local (< 1 kpc) Galactic magnetic field and cosmic-ray propagation; (2) the distribution of the anomalous dust emission, its origin and the physical processes that affect it; (3) modeling of Galactic total intensity emission, which may allow CMB experiments access to the currently inaccessible region close to the Galactic plane. Observations at many wavelengths from radio to infrared are needed to fully understand the foregrounds. At 5 GHz, C-BASS maps synchrotron polarization with minimal corruption by Faraday rotation, and complements the full-sky maps from WMAP and Planck. I will present the project status, show results of component separation in selected sky regions, and describe the northern survey data products.C-BASS (http://www.astro.caltech.edu/cbass/) is a collaborative project between the Universities of Oxford and Manchester in the UK, the California Institute of Technology (supported by the National Science Foundation and NASA) in the USA, the Hartebeesthoek Radio Astronomy Observatory (supported by the Square Kilometre

  7. SkyMapper Southern Survey: First Data Release (DR1)

    NASA Astrophysics Data System (ADS)

    Wolf, Christian; Onken, Christopher A.; Luvaul, Lance C.; Schmidt, Brian P.; Bessell, Michael S.; Chang, Seo-Won; Da Costa, Gary S.; Mackey, Dougal; Martin-Jones, Tony; Murphy, Simon J.; Preston, Tim; Scalzo, Richard A.; Shao, Li; Smillie, Jon; Tisserand, Patrick; White, Marc C.; Yuan, Fang

    2018-02-01

    We present the first data release of the SkyMapper Southern Survey, a hemispheric survey carried out with the SkyMapper Telescope at Siding Spring Observatory in Australia. Here, we present the survey strategy, data processing, catalogue construction, and database schema. The first data release dataset includes over 66 000 images from the Shallow Survey component, covering an area of 17 200 deg2 in all six SkyMapper passbands uvgriz, while the full area covered by any passband exceeds 20 000 deg2. The catalogues contain over 285 million unique astrophysical objects, complete to roughly 18 mag in all bands. We compare our griz point-source photometry with Pan-STARRS1 first data release and note an RMS scatter of 2%. The internal reproducibility of SkyMapper photometry is on the order of 1%. Astrometric precision is better than 0.2 arcsec based on comparison with Gaia first data release. We describe the end-user database, through which data are presented to the world community, and provide some illustrative science queries.

  8. Status of the NASA SETI Sky Survey microwave observing project

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Gulkis, S.; Wilck, H. C.; Olsen, E. T.; Garyantes, M. F.; Burns, D. J.; Asmar, P. R.; Brady, R. B.; Deich, W. T. S.; Renzetti, N. A.

    1992-01-01

    The Sky Survey observing program is one of two complementary strategies that NASA plans to use in its microwave Search for Extraterrestrial Intelligence (SETI). The primary objective of the Sky Survey is to search the entire sky over the frequency range 1000-10,000 MHz for evidence of narrow band signals of extraterrestrial, intelligent origin. Spectrum analyzers with upwards of 10 million channels and data rates in excess of 10 gigabits per second are required to complete the survey in less than 7 years. To lay the foundation for the operational SETI Sky Survey, a prototype system has been built to test and refine real time signal detection algorithms, to test scan strategies and observatory control functions, and to test algorithms designed to reject radio frequency interference. This paper presents a high level description of the prototype hardware and reports on the preparations to deploy the system to the 34-m antenna at the research and development station of NASA's Deep Space Communication Complex, Goldstone, California.

  9. The night sky brightness at McDonald Observatory

    NASA Technical Reports Server (NTRS)

    Kalinowski, J. K.; Roosen, R. G.; Brandt, J. C.

    1975-01-01

    Baseline observations of the night sky brightness in B and V are presented for McDonald Observatory. In agreement with earlier work by Elvey and Rudnick (1937) and Elvey (1943), significant night-to-night and same-night variations in sky brightness are found. Possible causes for these variations are discussed. The largest variation in sky brightness found during a single night is approximately a factor of two, a value which corresponds to a factor-of-four variation in airglow brightness. The data are used to comment on the accuracy of previously published surface photometry of M 81.

  10. Automatic Rotational Sky Quality Meter (R-SQM) Design and Software for Astronomical Observatories

    NASA Astrophysics Data System (ADS)

    Dogan, E.; Ozbaldan, E. E.; Shameoni, Niaei M.; Yesilyaprak, C.

    2016-12-01

    We have presented the new design of Sky Quality Meter (SQM) device that is an automatic rotational model of sky quality meter (R-SQM) carried out by DAG (Eastern Anatolia Observatory) Technical Team. R-SQM is required for determining the long-term changes of sky quality of an astronomical observatory and consists of four SQM devices mounted on a rotating shaft with different angles for scanning all sky. This system is controlled by a Raspberry Pi control card and a step motor with its driver and a special software.

  11. Status of the NASA SETI Sky Survey microwave observing project.

    PubMed

    Klein, M J; Gulkis, S; Wilck, H C; Olsen, E T; Garyantes, M F; Burns, D J; Asmar, P R; Brady, R B; Deich, W T; Renzetti, N A

    1992-01-01

    The Sky Survey observing program is one of two complementary strategies that NASA plans to use in its microwave Search for Extraterrestrial Intelligence (SETI). The primary objective of the Sky Survey is to search the entire sky over the frequency range 1000-10,000 MHz for evidence of narrow band signals of extraterrestrial, intelligent origin. Spectrum analyzers with upwards of 10 million channels and data rates in excess of 10 gigabits per second are required to complete the survey in less than 7 years. To lay the foundation for the operational SETI Sky Survey, a prototype system has been built to test and refine real time signal detection algorithms, to test scan strategies and observatory control functions, and to test algorithms designed to reject radio frequency interference. This paper presents a high level description of the prototype hardware and software and reports on the preparations to deploy the system to the 34-m antenna at the research and development station of NASA's Deep Space Communication Complex, Goldstone, California.

  12. Near infrared photographic sky survey - A field index

    NASA Technical Reports Server (NTRS)

    Rossano, G. S.; Craine, E. R.

    1980-01-01

    The book presents an index of previously cataloged objects located in the fields of the northern sky included in the Steward Observatory Near Infrared Photographic Sky Survey, which was intended to be used for identification purposes in an effort to locate extremely red objects. The objects included in the index were taken from 16 catalogs of bright nebulae, dark nebulae, infrared objects, reflection nebulae, supernova remnants and other objects, and appear with their corresponding field numbers, computed field center coordinates, object name and 1950 epoch equatorial coordinates, as well as supplementary descriptive information as available. An appendix is also provided in which the center coordinates of each field are listed.

  13. SkyDOT: a publicly accessible variability database, containing multiple sky surveys and real-time data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starr, D. L.; Wozniak, P. R.; Vestrand, W. T.

    2002-01-01

    SkyDOT (Sky Database for Objects in Time-Domain) is a Virtual Observatory currently comprised of data from the RAPTOR, ROTSE I, and OGLE I1 survey projects. This makes it a very large time domain database. In addition, the RAPTOR project provides SkyDOT with real-time variability data as well as stereoscopic information. With its web interface, we believe SkyDOT will be a very useful tool for both astronomers, and the public. Our main task has been to construct an efficient relational database containing all existing data, while handling a real-time inflow of data. We also provide a useful web interface allowing easymore » access to both astronomers and the public. Initially, this server will allow common searches, specific queries, and access to light curves. In the future we will include machine learning classification tools and access to spectral information.« less

  14. The LWA1 Low Frequency Sky Survey

    NASA Astrophysics Data System (ADS)

    Dowell, Jayce; Taylor, Gregory B.; LWA Collaboration

    2015-01-01

    The LWA1 Low Frequency Sky Survey is a survey of the sky visible from the first station of the Long Wavelength Array (LWA1) across the frequency range of 35 to 80 MHz. The primary motivation behind this effort is to improve our understanding of the sky at these frequencies. In particular, an understanding of the low frequency foreground emission is necessary for work on detecting the epoch of reionization and the cosmic dark ages where the foreground signal dwarfs the expected redshifted HI signal by many orders of magnitude (Pritchard & Loeb 2012, Rep. Prog. Phys., 75, 086901). The leading model for the sky in the frequency range of 20 to 200 MHz is the Global Sky Model (GSM) by de Oliveria-Costas et al. (2008, MNRAS, 288, 247). This model is based upon a principle component analysis of 11 sky maps ranging in frequency from 10 MHz to 94 GHz. Of these 11 maps, only four are below 1 GHz; 10 MHz from Caswell (1976, MNRAS, 177, 601), 22 MHz from Roger et al. (1999, A&AS, 137, 7), 45 MHz from Alvarez et al. (1997, A&AS, 124, 315) and Maeda et al. (1999, A&AS, 140, 145), and 408 MHz from Haslam et al. (1982, A&AS, 47, 1). Thus, within this model, the region of interest to both cosmic dawn and the epoch of reionization is largely unconstrained based on the available survey data, and are also limited in terms of the spatial coverage and calibration. A self-consistent collection of maps is necessary for both our understanding of the sky and the removal of the foregrounds that mask the redshifted 21-cm signal.We present the current state of the survey and discuss the imaging and calibration challenges faced by dipole arrays that are capable of imaging nearly 2π steradians of sky simultaneously over a large fractional bandwidth.Construction of the LWA has been supported by the Office of Naval Research under Contract N00014-07-C-0147. Support for operations and continuing development of the LWA1 is provided by the National Science Foundation under grants AST-1139963 and AST

  15. NASA SETI microwave observing project: Sky Survey element

    NASA Technical Reports Server (NTRS)

    Klein, M. J.

    1991-01-01

    The SETI Sky Survey Observing Program is one of two complimentary strategies that NASA plans to use in its microwave Search for Extraterrestrial Intelligence (SETI). The primary objective of the sky survey is to search the entire sky over the frequency range of 1.0 to 10.0 GHz for evidence of narrow band signals of extraterrestrial intelligent origin. Frequency resolutions of 30 Hz or narrower will be used across the entire band. Spectrum analyzers with upwards of ten million channels are required to keep the survey time approximately 6 years. Data rates in excess of 10 megabits per second will be generated in the data taking process. Sophisticated data processing techniques will be required to determine the ever changing receiver baselines, and to detect and archive potential SETI signals. Existing radio telescopes, including several of NASA's Deep Space Network (DSN) 34 meter antennas located at Goldstone, CA and Tidbinbilla, Australia will be used for the observations. The JPL has the primary responsibility to develop and carry out the sky survey. In order to lay the foundation for the full scale SETI Sky Survey, a prototype system is being developed at the JPL. The system will be installed at the new 34-m high efficiency antenna at the Deep Space Station (DSS) 13 research and development station, Goldstone, CA, where it will be used to initiate the observational phase of the NASA SETI Sky Survey. It is anticipated that the early observations will be useful to test signal detection algorithms, scan strategies, and radio frequency interference rejection schemes. The SETI specific elements of the prototype system are: (1) the Wide Band Spectrum Analyzer (WBSA); a 2-million channel fast Fourier transformation (FFT) spectrum analyzer which covers an instantaneous bandpass of 40 MHz; (2) the signal detection processor; and (3) the SETI Sky Survey Manager, a network-based C-language environment that provides observatory control, performs data acquisition and analysis

  16. A large-format imager for the SkyMapper Survey Telescope

    NASA Astrophysics Data System (ADS)

    Granlund, A.; Conroy, P. G.; Keller, S. C.; Oates, A. P.; Schmidt, B.; Waterson, M. F.; Kowald, E.; Dawson, M. I.

    2006-06-01

    The Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) at Mt Stromlo Observatory is developing a wide-field Cassegrain Imager for the new 1.3m SkyMapper Survey Telescope under construction for Siding Spring Observatory, NSW, Australia. The Imager features a fast-readout, low-noise 268 Million pixel CCD mosaic that provides a 5.7 square degree field of view. Given the close relative sizes of the telescope and Imager, the work is proceeding in close collaboration with the telescope's manufacturer, Electro Optics Systems Pty Ltd (Canberra, Australia). The design of the SkyMapper Imager focal plane is based on E2V (Chelmsford, UK) deep depletion CCDs. These devices have 2048 x 4096 15 micron pixels, and provide a 91% filling factor in our mosaic configuration of 4 x 8 chips. In addition, the devices have excellent quantum efficiency from 300nm-950nm, near perfect cosmetics, and low-read noise, making them well suited to the all-sky ultraviolet through near-IR Southern Sky Survey to be conducted by the telescope. The array will be controlled using modified versions of the new IOTA controllers being developed for Pan-STARRS by Onaka and Tonry et al. These controllers provide a cost effective, low-volume, high speed solution for our detector read-out requirements. The system will have an integrated 6-filter exchanger, and Shack-Hartmann optics, and will be cooled by closed-cycle helium coolers. This paper will present the specifications, and opto-mechanical and detector control design of the SkyMapper Imager, including the test results of the detector characterisation and manufacturing progress.

  17. Spectroscopic and Photometric Survey of Northern Sky for the ESA PLATO space mission

    NASA Astrophysics Data System (ADS)

    Ženovienė, Renata; Bagdonas, Vilius; Drazdauskas, Arnas; Janulis, Rimvydas; Klebonas, Lukas; Mikolaitis, Šarūnas; Pakštienė, Erika; Tautvaišienė, Gražina

    2018-04-01

    The ESA-PLATO 2.0 mission will perform an in-depth analysis of the large part of the sky-sphere searching for extraterrestrial telluric-like planets. At the Molėtai Astronomical Observatory of Vilnius University, we started a spectroscopic and photometric survey of the northern sky fields that potentially will be targeted by the PLATO mission. We aim to contribute in developing the PLATO input catalogue by delivering a long-duration stellar variability information and a full spectroscopic characterization of brightest targets. First results of this survey are overviewed.

  18. Which Observatories have the Clearest Skies? A Comparative Analysis of 2004 as Seen by the Night Sky Live Global Network of CONCAMs

    NASA Astrophysics Data System (ADS)

    Pereira, W. E.; Muzzin, V.; Merlo, M.; Shamir, L.; Nemiroff, R. J.; Night Sky Live Collaboration

    2004-12-01

    Nearly identical fisheye CONCAMs are now deployed at many major observatories as part of the Night Sky Live (NSL) global network and return real-time data to http://NightSkyLive.net . Combined, these images create a unique ability to assess and compare the relative ground-truth clarity of the skies above these observatories every few minutes. To this end, data and images from CONCAMs are used to estimate the fraction of time that stars are detectable in at least half the sky for each month of 2004. This preliminary comparison was done by visual inspection of on-line archived CONCAM images. Sites involved include Mauna Kea (Hawaii), Haleakala (Hawaii), Siding Spring (Australia), Canary Islands (Spain), Kitt Peak (Arizona), Cerro Pachon (Chile), Wise (Israel), and Sutherland (South Africa).

  19. THE 70 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgartner, W. H.; Tueller, J.; Markwardt, C. B.

    2013-08-15

    We present the catalog of sources detected in 70 months of observations with the Burst Alert Telescope (BAT) hard X-ray detector on the Swift gamma-ray burst observatory. The Swift-BAT 70 month survey has detected 1171 hard X-ray sources (more than twice as many sources as the previous 22 month survey) in the 14-195 keV band down to a significance level of 4.8{sigma}, associated with 1210 counterparts. The 70 month Swift-BAT survey is the most sensitive and uniform hard X-ray all-sky survey and reaches a flux level of 1.03 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 50% of themore » sky and 1.34 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 90% of the sky. The majority of new sources in the 70 month survey continue to be active galactic nuclei, with over 700 in the catalog. As part of this new edition of the Swift-BAT catalog, we also make available eight-channel spectra and monthly sampled light curves for each object detected in the survey in the online journal and at the Swift-BAT 70 month Web site.« less

  20. Far infrared all-sky survey

    NASA Technical Reports Server (NTRS)

    Richards, Paul L.

    1991-01-01

    An all-sky survey at submillimeter waves is examined. Far-infrared all-sky surveys were performed using high-thoroughput bolometric detectors from a one-meter balloon telescope. Based on the large-bodied experience obtained with the original all-sky survey telescope, a number of radically different approaches were implemented. Continued balloon measurements of the spectrum of the cosmic microwave background were performed.

  1. NRAO Makes Available VLA Sky Survey Maps

    NASA Astrophysics Data System (ADS)

    1994-06-01

    An original and comprehensive data set potentially full of scientific surprises now is available to astronomers, students and the public through the information superhighway. Radio images of the sky produced by the Very Large Array radio telescope -- one of the premier astronomical instruments in the world -- as part of a massive survey now are stored in an electronic repository avail- able over the Internet computer communications network. "Each of these sensitive new sky maps shows about a thou- sand radio-emitting objects, most of which have never been seen before," said Dr. J. J. Condon, leader of the National Radio As- tronomy Observatory (NRAO) survey team. "We are releasing them as soon as they are completed because they contain more data than we could possibly analyze by ourselves." "By using electronic distribution, we can open this tre- mendous resource of information for computer analysis by all as- tronomers immediately, without waiting for traditional publication," Condon added. The radio images are copyright NRAO/ AUI. Permission is granted for use of the material without charge for scholarly, educational and private non-commercial purposes. "It is entirely conceivable -- even probable -- that valuable discoveries will be made by students or amateur astrono- mers who devote the time to study these maps carefully," said team member Dr. W. D. Cotton. "Making this new information available electronically means that more people can participate in adding to its scientific value." The maps are a product of the NRAO VLA Sky Survey (NVSS), which began its observational phase in September of 1993 and will cover 82 percent of the sky when completed by the end of 1996. The NVSS is expected to produce a catalog of more than two million ra- dio-emitting objects in the sky, and it is the first sky survey sensitive to linearly polarized emission from radio sources beyond our own Milky Way galaxy. "The NVSS is being made as a service to the entire astronomical

  2. Robotic Spectroscopy at the Dark Sky Observatory

    NASA Astrophysics Data System (ADS)

    Rosenberg, Daniel E.; Gray, Richard O.; Mashburn, Jonathan; Swenson, Aaron W.; McGahee, Courtney E.; Briley, Michael M.

    2018-06-01

    Spectroscopic observations using the classification-resolution Gray-Miller spectrograph attached to the Dark Sky Observatory 32 inch telescope (Appalachian State University, North Carolina) have been automated with a robotic script called the “Robotic Spectroscopist” (RS). RS runs autonomously during the night and controls all operations related to spectroscopic observing. At the heart of RS are a number of algorithms that first select and center the target star in the field of an imaging camera and then on the spectrograph slit. RS monitors the observatory weather station, and suspends operations and closes the dome when weather conditions warrant, and can reopen and resume observations when the weather improves. RS selects targets from a list using a queue-observing protocol based on observer-assigned priorities, but also uses target-selection criteria based on weather conditions, especially seeing. At the end of the night RS transfers the data files to the main campus, where they are reduced with an automatic pipeline. Our experience has shown that RS is more efficient and consistent than a human observer, and produces data sets that are ideal for automatic reduction. RS should be adaptable for use at other similar observatories, and so we are making the code freely available to the astronomical community.

  3. Infrared Sky Surveys

    NASA Astrophysics Data System (ADS)

    Price, Stephan D.

    2009-02-01

    A retrospective is given on infrared sky surveys from Thomas Edison’s proposal in the late 1870s to IRAS, the first sensitive mid- to far-infrared all-sky survey, and the mid-1990s experiments that filled in the IRAS deficiencies. The emerging technology for space-based surveys is highlighted, as is the prominent role the US Defense Department, particularly the Air Force, played in developing and applying detector and cryogenic sensor advances to early mid-infrared probe-rocket and satellite-based surveys. This technology was transitioned to the infrared astronomical community in relatively short order and was essential to the success of IRAS, COBE and ISO. Mention is made of several of the little known early observational programs that were superseded by more successful efforts.

  4. An all-sky catalogue of solar-type dwarfs for exoplanetary transit surveys

    NASA Astrophysics Data System (ADS)

    Nascimbeni, V.; Piotto, G.; Ortolani, S.; Giuffrida, G.; Marrese, P. M.; Magrin, D.; Ragazzoni, R.; Pagano, I.; Rauer, H.; Cabrera, J.; Pollacco, D.; Heras, A. M.; Deleuil, M.; Gizon, L.; Granata, V.

    2016-12-01

    Most future surveys designed to discover transiting exoplanets, including TESS and PLATO, will target bright (V ≲ 13) and nearby solar-type stars having a spectral type later than F5. In order to enhance the probability of identifying transits, these surveys must cover a very large area on the sky, because of the intrinsically low areal density of bright targets. Unfortunately, no existing catalogue of stellar parameters is both deep and wide enough to provide a homogeneous input list. As the first Gaia data release exploitable for this purpose is expected to be released not earlier than late 2017, we have devised an improved reduced-proper-motion (RPM) method to discriminate late field dwarfs and giants by combining the fourth U.S. Naval Observatory CCD Astrograph Catalog (UCAC4) proper motions with AAVSO Photometric All-Sky Survey DR6 photometry, and relying on Radial Velocity Experiment DR4 as an external calibrator. The output, named UCAC4-RPM, is a publicly available, complete all-sky catalogue of solar-type dwarfs down to V ≃ 13.5, plus an extension to log g > 3.0 subgiants. The relatively low amount of contamination (defined as the fraction of false positives; <30 per cent) also makes UCAC4-RPM a useful tool for the past and ongoing ground-based transit surveys, which need to discard candidate signals originating from early-type or giant stars. As an application, we show how UCAC4-RPM may support the preparation of the TESS (that will map almost the entire sky) input catalogue and the input catalogue of PLATO, planned to survey more than half of the whole sky with exquisite photometric precision.

  5. Measuring and Characterizing Sky Brightness over the Nighttime in Tucson and Surrounding Observatory Mountaintops

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Jensen, L.; Pompea, S. M.

    2012-12-01

    Research interns are using 6 Sky Quality Meters (SQM) around Tucson and 4 more on nearby observatory mountaintops to measure the night sky brightness and characterize its behavior over the entire night over the summer and during the academic school year. The "SQM" devices are inexpensive, yet reliable, computer-free devices, automatically log data, and have housing to protect them from weather. The students download the data onto a computer every few weeks. Two devices are at a central location on the roof of the National Optical Astronomy Observatory (NOAO) and the others are 9 miles N, E, S and W. Four more devices are on observatory mountaintops, namely Mount Lemmon, Mount Hopkins and 2 on Kitt Peak. For the pair of devices at NOAO and on Kitt Peak, one is in the housing unit and the other is exposed to the night sky to track the lossiness of the glass in the housing unit. The SQM is next to the sophisticated and more expensive "Night Sky Brightness Monitor" (NSBM) on Mount Lemmon, Mount Hopkins and, in the future, Kitt Peak. The student interns compare the SQM to the NSBM data on the mountaintops, weather data (temperature and humidity), internal temperature of the SQM, the all-sky camera that is up on Kitt Peak and the SQM results from Tucson. Weather stations already exist very close to all of the locations (usually within a mile or a few feet). We discuss the students' analysis of the data and conclusions as well as the challenges and successes of the program and its plans for expansion.

  6. A prototype for the PASS Permanent All Sky Survey

    NASA Astrophysics Data System (ADS)

    Deeg, H. J.; Alonso, R.; Belmonte, J. A.; Horne, K.; Alsubai, K.; Collier Cameron, A.; Doyle, L. R.

    2004-10-01

    A prototype system for the Permanent All Sky Survey (PASS) project is presented. PASS is a continuous photometric survey of the entire celestial sphere with a high temporal resolution. Its major objectives are the detection of all giant-planet transits (with periods up to some weeks) across stars up to mag 10.5, and to deliver continuously photometry that is useful for the study of any variable stars. The prototype is based on CCD cameras with short focal length optics on a fixed mount. A small dome to house it at Teide Observatory, Tenerife, is currently being constructed. A placement at the antarctic Dome C is also being considered. The prototype will be used for a feasibility study of PASS, to define the best observing strategies, and to perform a detailed characterization of the capabilities and scope of the survey. Afterwards, a first partial sky surveying will be started with it. That first survey may be able to detect transiting planets during its first few hundred hours of operation. It will also deliver a data set around which software modules dealing with the various scientific objectives of PASS will be developed. The PASS project is still in its early phase and teams interested in specific scientific objectives, in providing technical expertise, or in participating with own observations are invited to collaborate.

  7. The All Sky Automated Survey

    NASA Astrophysics Data System (ADS)

    Pojmański, G.

    2004-10-01

    The All Sky Automated Survey is a low cost project, the ultimate goal of which is detection and investigation of any kind of the photometric variability present all over the sky. The current system consists of 4 instruments covering 36x36, 9x9 (2 units) and 2x2 degrees, equipped with 2Kx2K CCDs, V,R,I standard filters and custom made automated mounts. All are working in Las Campanas Observatory, Chile in fully automated mode. In the ASAS-3 phase of the project we have been taking data at a rate of 1 measurement per 1-3 days for all available objects brighter than V=14, located south of δ=+28 deg. So far over 2 TB of images has been collected and analyzed, leading to a photometric light curve catalog of over 10 million sources. A preliminary search for variability revealed over 40,000 bright, variable sources (over 75 % were not previously known). Direct access to the data is available over the Internet: http://www.astrouw.edu.pl/˜ gp/asas. At present the ASAS Alert System is being tested. Events, like outbursts of CV's or Novae, eclipses etc. are reported within a few minutes after first detection. Due to large number of artifacts in these data raw events require verification, which can take up to 24 hours.

  8. Sky Survey Provides New Radio View of Universe

    NASA Astrophysics Data System (ADS)

    2004-10-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) have overcome longstanding technical hurdles to map the sky at little-explored radio frequencies that may provide a tantalizing look deep into the early Universe. The scientists have released images and data covering half of the sky visible from the VLA, and hope to complete their survey within a year. Radio Galaxies A "rogues' gallery" of radio galaxy types seen in the VLSS. CREDIT: NRAO/AUI/NSF (Click on Image for Graphics Page) The VLA Low-frequency Sky Survey (VLSS) is producing sky images made at an observing frequency of 74 MHz, a far lower frequency than used for most current radio-astronomy research. "Because of the Earth's ionosphere, such a low frequency has proven very difficult for high-quality imaging, and it is only in the past few years that we have developed the techniques that make a project like the VLSS possible," said Rick Perley, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Because the high-quality VLSS images will give astronomers a look at the Universe through what essentially is a new "window," they expect the images to reveal some rare and important objects. "We expect to find very distant radio galaxies -- galaxies spewing jets of material at nearly light speed and powered by supermassive black holes," said Joseph Lazio of the Naval Research Laboratory in Washington, DC. "By determining just how distant these radio galaxies are, we will learn how early the black holes formed in the history of the Universe," he added. Another tantalizing possibility is that the low-frequency images may reveal "halos" and "relics" produced by collisions of galaxies in clusters. If the halos and relics are found in the distant, and thus early, Universe, it will give scientists important clues about the timetable for formation of large-scale structure. In addition, the astronomers hope that the VLSS images may show previously-undiscovered pulsars -- superdense

  9. Toward a Serial International Approach of the High Mountain Observatories, within important Dark Sky Value

    NASA Astrophysics Data System (ADS)

    Cotte, Michel

    2015-08-01

    Practical approach of Dark Sky places as possible WH sites leads some of us to underline the exceptional role of high mountain observatories as “Windows to the Universe” for the Human being. Till today, such places keep very important dark sky properties and consequently important astronomical functions.We have to take count that quality of the sky at a given place and dark sky conservation policy is something very important, but not enough by itself to justify inscription on the WH List. It must be related to important cultural or/and natural value. That means presence of significant heritage features in the field of astronomy and science for listing as WH cultural property, or with other natural attributes of exceptional significance to be listed as WH natural property. Case of both natural and cultural WH high value place is also possible as “mixt WH site”.The Dark Sky place must also meet to a sufficient integrity/authenticity degree for the today tangible heritage of astronomy and to a very significant contribution to the international history of science and astronomy as intangible attribute of the place. That point must be demonstrated by a serious comparative analysis with similar places in the world and in the region. In case of serial nomination as examined there, each individual site must contribute significantly to the Outstanding Universal Value of the global series.First, we intend to give a short account of the today trend for a possible serial nomination of the most significant high mountain observatory keeping important heritage of their major periods for the sky observation (Western Europe, Chile, North America, etc.).Second, communication will present a case study with Pic du Midi in French Pyrenees, coming from the early origin of mountain scientific stations and observatories (end of 19th C) in Europe, with a long, continuous and important astronomical and scientific history till today with active programs of sky and atmosphere

  10. Cool White Dwarfs Found in the UKIRT Infrared Deep Sky Survey

    NASA Astrophysics Data System (ADS)

    Leggett, S. K.; Lodieu, N.; Tremblay, P.-E.; Bergeron, P.; Nitta, A.

    2011-07-01

    We present the results of a search for cool white dwarfs in the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). The UKIDSS LAS photometry was paired with the Sloan Digital Sky Survey to identify cool hydrogen-rich white dwarf candidates by their neutral optical colors and blue near-infrared colors, as well as faint reduced proper motion magnitudes. Optical spectroscopy was obtained at Gemini Observatory and showed the majority of the candidates to be newly identified cool degenerates, with a small number of G- to K-type (sub)dwarf contaminants. Our initial search of 280 deg2 of sky resulted in seven new white dwarfs with effective temperature T eff ≈ 6000 K. The current follow-up of 1400 deg2 of sky has produced 13 new white dwarfs. Model fits to the photometry show that seven of the newly identified white dwarfs have 4120 K <=T eff <= 4480 K, and cooling ages between 7.3 Gyr and 8.7 Gyr; they have 40 km s-1 <= v tan <= 85 km s-1 and are likely to be thick disk 10-11 Gyr-old objects. The other half of the sample has 4610 K <=T eff <= 5260 K, cooling ages between 4.3 Gyr and 6.9 Gyr, and 60 km s-1 <= v tan <= 100 km s-1. These are either thin disk remnants with unusually high velocities, or lower-mass remnants of thick disk or halo late-F or G stars.

  11. The VLA Sky Survey

    NASA Astrophysics Data System (ADS)

    Lacy, Mark; VLASS Survey Team, VLASS Survey Science Group

    2018-01-01

    The VLA Sky Survey (VLASS), which began in September 2017, is a seven year project to image the entire sky north of Declination -40 degrees in three epochs. The survey is being carried out in I,Q and U polarization at a frequency of 2-4GHz, and a resolution of 2.5 arcseconds, with each epoch being separated by 32 months. Raw data from the survey, along with basic "quicklook" images are made freely available shortly after observation. Within a few months, NRAO will begin making available further basic data products, including refined images and source lists. In this talk I shall describe the science goals and methodology of the survey, the current survey status, and some early results, along with plans for collaborations with external groups to produce enhanced, high level data products.

  12. INTEGRAL/IBIS 7-year All-Sky Hard X-ray Survey. I. Image reconstruction

    NASA Astrophysics Data System (ADS)

    Krivonos, R.; Revnivtsev, M.; Tsygankov, S.; Sazonov, S.; Vikhlinin, A.; Pavlinsky, M.; Churazov, E.; Sunyaev, R.

    2010-09-01

    This paper is the first in a series devoted to the hard X-ray whole sky survey performed by the INTEGRAL observatory over seven years. Here we present an improved method for image reconstruction with the IBIS coded mask telescope. The main improvements are related to the suppression of systematic effects that strongly limit sensitivity in the region of the Galactic plane (GP), especially in the crowded field of the Galactic center (GC). We extended the IBIS/ISGRI background model to take into account the Galactic ridge X-ray emission (GRXE). To suppress residual systematic artifacts on a reconstructed sky image, we applied nonparametric sky image filtering based on wavelet decomposition. The implemented modifications of the sky reconstruction method decrease the systematic noise in the ~20 Ms deep field of GC by ~44%, and practically remove it from the high-latitude sky images. New observational data sets, along with an improved reconstruction algorithm, allow us to conduct the hard X-ray survey with the best currently available minimal sensitivity 3.7 × 10-12 erg s-1 cm-2 ~ 0.26 mCrab in the 17-60 keV band at a 5σ detection level. The survey covers 90% of the sky down to the flux limit of 6.2 × 10-11 erg s-1 cm-2 (~4.32 mCrab) and 10% of the sky area down to the flux limit of 8.6 × 10-12 erg s-1 cm-2 (~0.60 mCrab). Based on observations with INTEGRAL, an ESA project with the instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic, and Poland, and with the participation of Russia and the USA.

  13. The 105-Month Swift-BAT All-Sky Hard X-Ray Survey

    NASA Technical Reports Server (NTRS)

    Oh, Kyuseok; Koss, Michael; Markwardt, Craig B.; Schawinski, Kevin; Baumgartner, Wayne H.; Barthelmy, Scott D.; Cenko, S. Bradley; Gehrels, Neil; Mushotzky, Richard; Petulante, Abigail; hide

    2018-01-01

    We present a catalog of hard X-ray sources detected in the first 105 months of observations with the Burst Alert Telescope (BAT) coded-mask imager on board the Swift observatory. The 105-month Swift-BAT survey is a uniform hard X-ray all-sky survey with a sensitivity of 8.40 x 10(exp -12) erg s(exp -1) cm(exp -2) over 90% of the sky and 7.24 x 10(exp -12) erg s(exp -1) cm(exp -2) over 50% of the sky in the 14-195 keV band. The Swift-BAT 105-month catalog provides 1632 (422 new detections) hard X-ray sources in the 14-195 keV band above the 4.8 sigma significance level. Adding to the previously known hard X-ray sources, 34% (144/422) of the new detections are identified as Seyfert active galactic nuclei (AGNs) in nearby galaxies (z < 0.2). The majority of the remaining identified sources are X-ray binaries (7%, 31) and blazars/BL Lac objects (10%, 43). As part of this new edition of the Swift-BAT catalog, we release eight-channel spectra and monthly sampled light curves for each object in the online journal and at the Swift-BAT 105-month website.

  14. The 105-Month Swift-BAT All-sky Hard X-Ray Survey

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Koss, Michael; Markwardt, Craig B.; Schawinski, Kevin; Baumgartner, Wayne H.; Barthelmy, Scott D.; Cenko, S. Bradley; Gehrels, Neil; Mushotzky, Richard; Petulante, Abigail; Ricci, Claudio; Lien, Amy; Trakhtenbrot, Benny

    2018-03-01

    We present a catalog of hard X-ray sources detected in the first 105 months of observations with the Burst Alert Telescope (BAT) coded-mask imager on board the Swift observatory. The 105-month Swift-BAT survey is a uniform hard X-ray all-sky survey with a sensitivity of 8.40× {10}-12 {erg} {{{s}}}-1 {cm}}-2 over 90% of the sky and 7.24× {10}-12 {erg} {{{s}}}-1 {cm}}-2 over 50% of the sky in the 14–195 keV band. The Swift-BAT 105-month catalog provides 1632 (422 new detections) hard X-ray sources in the 14–195 keV band above the 4.8σ significance level. Adding to the previously known hard X-ray sources, 34% (144/422) of the new detections are identified as Seyfert active galactic nuclei (AGNs) in nearby galaxies (z< 0.2). The majority of the remaining identified sources are X-ray binaries (7%, 31) and blazars/BL Lac objects (10%, 43). As part of this new edition of the Swift-BAT catalog, we release eight-channel spectra and monthly sampled light curves for each object in the online journal and at the Swift-BAT 105-month website.

  15. Full-Sky Maps of the VHF Radio Sky with the Owens Valley Radio Observatory Long Wavelength Array

    NASA Astrophysics Data System (ADS)

    Eastwood, Michael W.; Hallinan, Gregg

    2018-05-01

    21-cm cosmology is a powerful new probe of the intergalactic medium at redshifts 20 >~ z >~ 6 corresponding to the Cosmic Dawn and Epoch of Reionization. Current observations of the highly-redshifted 21-cm transition are limited by the dynamic range they can achieve against foreground sources of low-frequency (<200 MHz) of radio emission. We used the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA) to generate a series of new modern high-fidelity sky maps that capture emission on angular scales ranging from tens of degrees to ~15 arcmin, and frequencies between 36 and 73 MHz. These sky maps were generated from the application of Tikhonov-regularized m-mode analysis imaging, which is a new interferometric imaging technique that is uniquely suited for low-frequency, wide-field, drift-scanning interferometers.

  16. Discovery of Four Field Methane (T-Type) Dwarfs with the Two Micron All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam J.; Kirkpatrick, J. Davy; Brown, Michael E.; Reid, I. Neill; Gizis, John E.; Dahn, Conard C.; Monet, David G.; Beichman, Charles A.; Liebert, James; Cutri, Roc M.; Skrutskie, Michael F.

    1999-09-01

    We report the discovery of four field methane (``T''-type) brown dwarfs using Two Micron All-Sky Survey (2MASS) data. One additional methane dwarf, previously discovered by the Sloan Digital Sky Survey, was also identified. Near-infrared spectra clearly show the 1.6 and 2.2 μm CH4 absorption bands characteristic of objects with Teff<~1300 K as well as broadened H2O bands at 1.4 and 1.9 μm. Comparing the spectra of these objects with that of Gl 229B, we propose that all new 2MASS T dwarfs are warmer than 950 K, in order from warmest to coolest: 2MASS J1217-03, 2MASS J1225-27, 2MASS J1047+21, and 2MASS J1237+65. Based on this preliminary sample, we find a warm T dwarf surface density of 0.0022 T dwarfs deg-2, or ~90 warm T dwarfs over the whole sky detectable to J<16. The resulting space density upper limit, 0.01 T dwarfs pc-3, is comparable to that of the first L dwarf sample from Kirkpatrick et al. Portions of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by generous financial support of the W. M. Keck Foundation.

  17. A Survey of z ~ 6 Quasars in the Sloan Digital Sky Survey Deep Stripe. I. A Flux-Limited Sample at zAB < 21

    NASA Astrophysics Data System (ADS)

    Jiang, Linhua; Fan, Xiaohui; Annis, James; Becker, Robert H.; White, Richard L.; Chiu, Kuenley; Lin, Huan; Lupton, Robert H.; Richards, Gordon T.; Strauss, Michael A.; Jester, Sebastian; Schneider, Donald P.

    2008-03-01

    We present the discovery of five quasars at z ~ 6 selected from 260 deg2 of the Sloan Digital Sky Survey (SDSS) southern survey, a deep imaging survey obtained by repeatedly scanning a stripe along the celestial equator. The five quasars with 20 < zAB < 21 are 1-2 magnitudes fainter than the luminous z ~ 6 quasars discovered in the SDSS main survey. One of them was independently discovered by the UKIRT Infrared Deep Sky Survey. These quasars, combined with another z ~ 6 quasar known in this region, make a complete flux-limited quasar sample at zAB < 21. The sample spans the redshift range 5.85 <= z <= 6.12 and the luminosity range -26.5 <= M 1450 <= -25.4 (H 0 = 70 km s-1 Mpc-1, Ω m = 0.3, and ΩΛ = 0.7). We use the 1/Va method to determine that the comoving quasar spatial density at langzrang = 6.0 and langM 1450rang = -25.8 is (5.0 ± 2.1) × 10-9 Mpc-3 mag-1. We model the bright-end quasar luminosity function (QLF) at z ~ 6 as a power law Φ(L 1450) vprop L β 1450. The slope β calculated from a combination of our sample and the luminous SDSS quasar sample is -3.1 ± 0.4, significantly steeper than the slope of the QLF at z ~ 4. Based on the derived QLF, we find that the quasar/active galactic nucleus (AGN) population cannot provide enough photons to ionize the intergalactic medium (IGM) at z ~ 6 unless the IGM is very homogeneous and the luminosity (L*1450) at which the QLF power law breaks is very low. Based on observations obtained with the Sloan Digital Sky Survey, which is owned and operated by the Astrophysical Research Consortium; the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution; the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile; the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration, and was made possible by the generous financial

  18. Dwarfs Cooler Than M: The Definition of Spectral Type L Using Discoveries from the 2-Micron All-Sky Survey (2MASS)

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J.; Reid, I.; Liebert, J.; Cutri, R.; Nelson, B.; Beichman, C.; Dahn, C.; Monet, D.; Gizis, J.; Skrutskie, M.

    1998-01-01

    Before the 2-Micron All-Sky Survey (2MASS) began, only six objects were known with spectral types later than M9.5 V. In the first 371 sq. deg. of actual 2MASS survey data, we have identified another twenty such objects spectroscopically confirmed using the Low Resolution Imaging Spectrograph (LRIS) at the W.M. Keck Observatory.

  19. VLITE Surveys the Sky: A 340 MHz Companion to the VLA Sky Survey (VLASS)

    NASA Astrophysics Data System (ADS)

    Peters, Wendy; Clarke, Tracy; Brisken, Walter; Cotton, William; Richards, Emily E.; Giacintucci, Simona; Kassim, Namir

    2018-01-01

    The VLA Low Band Ionosphere and Transient Experiment (VLITE; ) is a commensal observing system on the Karl G. Janksy Very Large Array (VLA) which was developed by the Naval Research Laboratory and NRAO. A 64 MHz sub-band from the prime focus 240-470 MHz dipoles is correlated during nearly all regular VLA observations. VLITE uses dedicated samplers and fibers, as well as a custom designed, real-time DiFX software correlator, and requires no additional resources from the VLA system running the primary science program. The experiment has been operating since November 2014 with 10 antennas; a recent expansion in summer 2017 increased that number to 16 and more than doubled the number of baselines.The VLA Sky Survey (VLASS; surveys/vlass >), is an ongoing survey of the entire sky visible to the VLA at a frequency of 2-4 GHz. The observations are made using an "on-the-fly" (OTF) continuous RA scanning technique which fills in the sky by observing along rows of constant declination. VLITE breaks the data into 2-second integrations and correlates these at a central position every 1.5 degrees. All data for each correlator position is imaged separately, corrected and weighted by an appropriately elongated primary beam model, and then combined in the image plane to create a mosaic of the sky. A catalog of the sources is extracted to provide a 340 MHz sky model.We present preliminary images and catalogs from the 2017 VLASS observations which began in early September, 2017, and continued on a nearly daily basis throughout the fall. In addition to providing a unique sky model at 340 MHz, these data complement VLASS by providing spectral indices for all cataloged sources.

  20. The Two Micron All Sky Survey

    NASA Technical Reports Server (NTRS)

    Kleinmann, S. G.; Lysaght, M. G.; Pughe, W. L.; Schneider, S. E.; Skrutskie, M. F.; Weinberg, M. D.; Price, S. D.; Matthews, K.; Soifer, B. T.; Huchra, J. P.

    1994-01-01

    The Two Micron All Sky Survey (2MASS) will provide a uniform survey of the entire sky at three near-infrared wavebands: J(lambda(sub eff) = 1.25 micrometers), H(lambda(sub eff) = 1.65 micrometers), and K(sub s)(lambda(sub eff) = 2.16 micrometers). A major goal of the survey is to probe large scale structures in the Milky Way and in the Local Universe, exploiting the relatively high transparency of the interstellar medium in the near-infrared, and the high near-infrared luminosities of evolved low- and intermediate-mass stars. A sensitive overview of the near-infrared sky is also an essential next step to maximize the gains achievable with infrared array technology. Our assessment of the astrophysical questions that might be addressed with these new arrays is currently limited by the very bright flux limit of the only preceding large scale near-infrared sky survey, the Two Micron Sky Survey carried out at Caltech in the late 1960's. Near-infrared instruments based on the new array technology have already obtained spectra of objects 1 million times fainter than the limit of the TMSS! This paper summarizes the essential parameters of the 2MASS project and the rationale behind those choices, and gives an overview of results obtained with a prototype camera that has been in operation since May 1992. We conclude with a list of expected data products and a statement of the data release policy.

  1. Results from the Pan-STARRS1 Sky Surveys

    NASA Astrophysics Data System (ADS)

    Chambers, Kenneth C.; PS1 Science Consortium

    2015-01-01

    Results from the Pan-STARRS1 Sky Surveys spanning the field of astronomy from Near Earth Objects to Cosmology will be presented.Scientific highlights from the PS1 Sky Surveys include: the photometric and astrometric reference catalog with unprecedented size, accuracy, and dynamic range discovery of 1200 NEO's, 120 PHAs, 60 comets; discovery of rotational break up as the origin of catastrophic disruption of solar system bodies; first free floating planet PSO 318-22 and other ultra-cool objects; first 3-dimensional map of dust in the Milky Way; new distances to molecular clouds; new stellar streams in the Milky Way and new globular clusters; new satellite galaxies of M31; eclipsing binaries in M31 - an important step for the distance ladder; micro-lensing events and other variables in M31: super-luminous and under-luminous stellar explosions; first clear tidal disruption of star by supermassive black hole; many new high redshift quasars; and a new determination of the dark energy equation of state from SnIa photometry.The nearly 4 year Pan-STARRS1 Science Mission has now completed. The reprocessing of the entire data set is underway. The Public Release of the entire image, catalog and metadata set of the PS1 Sky Surveys is scheduled for April 1, 2015 from the STScI MAST archive. It is expected that a great many more scientific results will come with community access to the data set.The Pan-STARRS1 Surveys have been made possible through contributions of the Institute for Astronomy of the University of Hawaii; the Max-Planck Society and its participating institutes: the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching; The Johns Hopkins University; Durham University; the University of Edinburgh; Queen's University Belfast; the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated; the National Central University of Taiwan; the Space Telescope

  2. Sloan Digital Sky Survey IV: Mapping the Milky Way, nearby galaxies, and the distant universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanton, Michael R.; Bershady, Matthew A.; Abolfathi, Bela

    Here, we describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (medianmore » $$z\\sim 0.03$$). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between $$z\\sim 0.6$$ and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.« less

  3. Sloan Digital Sky Survey IV: Mapping the Milky Way, nearby galaxies, and the distant universe

    DOE PAGES

    Blanton, Michael R.; Bershady, Matthew A.; Abolfathi, Bela; ...

    2017-06-29

    Here, we describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (medianmore » $$z\\sim 0.03$$). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between $$z\\sim 0.6$$ and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.« less

  4. Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    NASA Astrophysics Data System (ADS)

    Blanton, Michael R.; Bershady, Matthew A.; Abolfathi, Bela; Albareti, Franco D.; Allende Prieto, Carlos; Almeida, Andres; Alonso-García, Javier; Anders, Friedrich; Anderson, Scott F.; Andrews, Brett; Aquino-Ortíz, Erik; Aragón-Salamanca, Alfonso; Argudo-Fernández, Maria; Armengaud, Eric; Aubourg, Eric; Avila-Reese, Vladimir; Badenes, Carles; Bailey, Stephen; Barger, Kathleen A.; Barrera-Ballesteros, Jorge; Bartosz, Curtis; Bates, Dominic; Baumgarten, Falk; Bautista, Julian; Beaton, Rachael; Beers, Timothy C.; Belfiore, Francesco; Bender, Chad F.; Berlind, Andreas A.; Bernardi, Mariangela; Beutler, Florian; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blomqvist, Michael; Bolton, Adam S.; Boquien, Médéric; Borissova, Jura; van den Bosch, Remco; Bovy, Jo; Brandt, William N.; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Burgasser, Adam J.; Burtin, Etienne; Busca, Nicolás G.; Cappellari, Michele; Delgado Carigi, Maria Leticia; Carlberg, Joleen K.; Carnero Rosell, Aurelio; Carrera, Ricardo; Chanover, Nancy J.; Cherinka, Brian; Cheung, Edmond; Gómez Maqueo Chew, Yilen; Chiappini, Cristina; Doohyun Choi, Peter; Chojnowski, Drew; Chuang, Chia-Hsun; Chung, Haeun; Cirolini, Rafael Fernando; Clerc, Nicolas; Cohen, Roger E.; Comparat, Johan; da Costa, Luiz; Cousinou, Marie-Claude; Covey, Kevin; Crane, Jeffrey D.; Croft, Rupert A. C.; Cruz-Gonzalez, Irene; Garrido Cuadra, Daniel; Cunha, Katia; Damke, Guillermo J.; Darling, Jeremy; Davies, Roger; Dawson, Kyle; de la Macorra, Axel; Dell'Agli, Flavia; De Lee, Nathan; Delubac, Timothée; Di Mille, Francesco; Diamond-Stanic, Aleks; Cano-Díaz, Mariana; Donor, John; Downes, Juan José; Drory, Niv; du Mas des Bourboux, Hélion; Duckworth, Christopher J.; Dwelly, Tom; Dyer, Jamie; Ebelke, Garrett; Eigenbrot, Arthur D.; Eisenstein, Daniel J.; Emsellem, Eric; Eracleous, Mike; Escoffier, Stephanie; Evans, Michael L.; Fan, Xiaohui; Fernández-Alvar, Emma; Fernandez-Trincado, J. G.; Feuillet, Diane K.; Finoguenov, Alexis; Fleming, Scott W.; Font-Ribera, Andreu; Fredrickson, Alexander; Freischlad, Gordon; Frinchaboy, Peter M.; Fuentes, Carla E.; Galbany, Lluís; Garcia-Dias, R.; García-Hernández, D. A.; Gaulme, Patrick; Geisler, Doug; Gelfand, Joseph D.; Gil-Marín, Héctor; Gillespie, Bruce A.; Goddard, Daniel; Gonzalez-Perez, Violeta; Grabowski, Kathleen; Green, Paul J.; Grier, Catherine J.; Gunn, James E.; Guo, Hong; Guy, Julien; Hagen, Alex; Hahn, ChangHoon; Hall, Matthew; Harding, Paul; Hasselquist, Sten; Hawley, Suzanne L.; Hearty, Fred; Gonzalez Hernández, Jonay I.; Ho, Shirley; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Holzer, Parker H.; Huehnerhoff, Joseph; Hutchinson, Timothy A.; Hwang, Ho Seong; Ibarra-Medel, Héctor J.; da Silva Ilha, Gabriele; Ivans, Inese I.; Ivory, KeShawn; Jackson, Kelly; Jensen, Trey W.; Johnson, Jennifer A.; Jones, Amy; Jönsson, Henrik; Jullo, Eric; Kamble, Vikrant; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco-Shu; Klaene, Mark; Knapp, Gillian R.; Kneib, Jean-Paul; Kollmeier, Juna A.; Lacerna, Ivan; Lane, Richard R.; Lang, Dustin; Law, David R.; Lazarz, Daniel; Lee, Youngbae; Le Goff, Jean-Marc; Liang, Fu-Heng; Li, Cheng; Li, Hongyu; Lian, Jianhui; Lima, Marcos; Lin, Lihwai; Lin, Yen-Ting; Bertran de Lis, Sara; Liu, Chao; de Icaza Lizaola, Miguel Angel C.; Long, Dan; Lucatello, Sara; Lundgren, Britt; MacDonald, Nicholas K.; Deconto Machado, Alice; MacLeod, Chelsea L.; Mahadevan, Suvrath; Geimba Maia, Marcio Antonio; Maiolino, Roberto; Majewski, Steven R.; Malanushenko, Elena; Malanushenko, Viktor; Manchado, Arturo; Mao, Shude; Maraston, Claudia; Marques-Chaves, Rui; Masseron, Thomas; Masters, Karen L.; McBride, Cameron K.; McDermid, Richard M.; McGrath, Brianne; McGreer, Ian D.; Medina Peña, Nicolás; Melendez, Matthew; Merloni, Andrea; Merrifield, Michael R.; Meszaros, Szabolcs; Meza, Andres; Minchev, Ivan; Minniti, Dante; Miyaji, Takamitsu; More, Surhud; Mulchaey, John; Müller-Sánchez, Francisco; Muna, Demitri; Munoz, Ricardo R.; Myers, Adam D.; Nair, Preethi; Nandra, Kirpal; Correa do Nascimento, Janaina; Negrete, Alenka; Ness, Melissa; Newman, Jeffrey A.; Nichol, Robert C.; Nidever, David L.; Nitschelm, Christian; Ntelis, Pierros; O'Connell, Julia E.; Oelkers, Ryan J.; Oravetz, Audrey; Oravetz, Daniel; Pace, Zach; Padilla, Nelson; Palanque-Delabrouille, Nathalie; Alonso Palicio, Pedro; Pan, Kaike; Parejko, John K.; Parikh, Taniya; Pâris, Isabelle; Park, Changbom; Patten, Alim Y.; Peirani, Sebastien; Pellejero-Ibanez, Marcos; Penny, Samantha; Percival, Will J.; Perez-Fournon, Ismael; Petitjean, Patrick; Pieri, Matthew M.; Pinsonneault, Marc; Pisani, Alice; Poleski, Radosław; Prada, Francisco; Prakash, Abhishek; Queiroz, Anna Bárbara de Andrade; Raddick, M. Jordan; Raichoor, Anand; Barboza Rembold, Sandro; Richstein, Hannah; Riffel, Rogemar A.; Riffel, Rogério; Rix, Hans-Walter; Robin, Annie C.; Rockosi, Constance M.; Rodríguez-Torres, Sergio; Roman-Lopes, A.; Román-Zúñiga, Carlos; Rosado, Margarita; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Ruggeri, Rossana; Rykoff, Eli S.; Salazar-Albornoz, Salvador; Salvato, Mara; Sánchez, Ariel G.; Aguado, D. S.; Sánchez-Gallego, José R.; Santana, Felipe A.; Santiago, Basílio Xavier; Sayres, Conor; Schiavon, Ricardo P.; da Silva Schimoia, Jaderson; Schlafly, Edward F.; Schlegel, David J.; Schneider, Donald P.; Schultheis, Mathias; Schuster, William J.; Schwope, Axel; Seo, Hee-Jong; Shao, Zhengyi; Shen, Shiyin; Shetrone, Matthew; Shull, Michael; Simon, Joshua D.; Skinner, Danielle; Skrutskie, M. F.; Slosar, Anže; Smith, Verne V.; Sobeck, Jennifer S.; Sobreira, Flavia; Somers, Garrett; Souto, Diogo; Stark, David V.; Stassun, Keivan; Stauffer, Fritz; Steinmetz, Matthias; Storchi-Bergmann, Thaisa; Streblyanska, Alina; Stringfellow, Guy S.; Suárez, Genaro; Sun, Jing; Suzuki, Nao; Szigeti, Laszlo; Taghizadeh-Popp, Manuchehr; Tang, Baitian; Tao, Charling; Tayar, Jamie; Tembe, Mita; Teske, Johanna; Thakar, Aniruddha R.; Thomas, Daniel; Thompson, Benjamin A.; Tinker, Jeremy L.; Tissera, Patricia; Tojeiro, Rita; Hernandez Toledo, Hector; de la Torre, Sylvain; Tremonti, Christy; Troup, Nicholas W.; Valenzuela, Octavio; Martinez Valpuesta, Inma; Vargas-González, Jaime; Vargas-Magaña, Mariana; Vazquez, Jose Alberto; Villanova, Sandro; Vivek, M.; Vogt, Nicole; Wake, David; Walterbos, Rene; Wang, Yuting; Weaver, Benjamin Alan; Weijmans, Anne-Marie; Weinberg, David H.; Westfall, Kyle B.; Whelan, David G.; Wild, Vivienne; Wilson, John; Wood-Vasey, W. M.; Wylezalek, Dominika; Xiao, Ting; Yan, Renbin; Yang, Meng; Ybarra, Jason E.; Yèche, Christophe; Zakamska, Nadia; Zamora, Olga; Zarrouk, Pauline; Zasowski, Gail; Zhang, Kai; Zhao, Gong-Bo; Zheng, Zheng; Zheng, Zheng; Zhou, Xu; Zhou, Zhi-Min; Zhu, Guangtun B.; Zoccali, Manuela; Zou, Hu

    2017-07-01

    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z˜ 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z˜ 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July.

  5. The NASA SETI sky survey: Recent developments

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Gulkis, S.; Olsen, E. T.; Renzetti, N. A.

    1989-01-01

    NASA's Search for Extraterrestrial Intelligence (SETI) project utilizes two complementary search strategies: a sky survey and a targeted search. The SETI team at the Jet Propulsion Laboratory (JPL) in Pasadena, California, has primary responsibility to develop and carry out the sky survey part. Described here is progress that has been made developing the major elements of the survey including a 2-million channel wideband spectrum analyzer system that is being designed and constructed by JPL for the Deep Space Network (DSN). The system will be a multiuser instrument; it will serve as a prototype for the SETI sky survey processor. This prototype system will be used to test the signal detection and observational strategies on DSN antennas in the near future.

  6. The NASA SETI sky survey - Recent developments

    NASA Technical Reports Server (NTRS)

    Klein, Michael J.; Gulkis, Samuel; Olsen, Edward T.; Renzetti, Nicholas A.

    1988-01-01

    NASA's Search for Extraterrestrial Intelligence (SETI) project utilizes two complimentary search strategies: a sky survey and a targeted search. The SETI team at the Jet Propulsion Laboratory have primary responsibility to develop and carry out the sky survey part of the Microwave Observing Project. The paper describes progress that has been made to develop the major elements of the survey including a two-million channel wideband spectrum analyzer system that is being developed and constructed by JPL for the Deep Space Network. The new system will be a multiuser instrument that will serve as a prototype for the SETI Sky Survey processor. This system will be used to test the signal detection and observational strategies on deep-space network antennas in the near future.

  7. Bernhard Schmidt and the Schmidt Telescope for Mapping the Sky

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, G.

    Bernhard Voldemar Schmidt (1879--1935) was born in Estonia. He ran an optical workshop in Mittweida, Saxonia, between 1901 and 1927. Astronomers appreciated the quality of his telescopes. Starting in 1925, working freelance in Hamburg Observatory, he developed a short focal length optical system with a large field of view. He succeeded in inventing the ``Schmidt Telescope'' in 1930, which allows the imaging a large field of the sky without any distortions. Shortly after Schmidt's death, the director of the observatory published details on the invention and production of the Schmidt Telescope. After World War II, Schmidt telescopes have been widely used. The first large Schmidt telescope was built in 1948, the ``Big Schmidt'' (126 cm), Mount Palomar, USA. Schmidt telescopes are also important tools for cosmology. The result of the Palomar Observatory Sky Surveys (1949--1958, 1985--1999) is a data base of about 20 million galaxies and over 100 million stars, supplemented in 1971 by the ESO Schmidt for the southern sky. Also high resolution spectrometers can be fitted to the Schmidt telescope. The 80 cm Schmidt telescope of Hamburg Observatory, planned since 1936, finished 1955, is on Calar Alto, Spain, since 1975. Combined with two objective prisms, it was used for a Quasar survey project.

  8. Modeling the effects of phosphor converted LED lighting to the night sky of the Haleakala Observatory, Hawaii

    NASA Astrophysics Data System (ADS)

    Aubé, M.; Simoneau, A.; Wainscoat, R.; Nelson, L.

    2018-05-01

    The goal of this study is to evaluate the current level of light pollution in the night sky at the Haleakala Observatory on the island of Maui in Hawaii. This is accomplished with a numerical model that was tested in the first International Dark Sky Reserve located in Mont-Mégantic National Park in Canada. The model uses ground data on the artificial light sources present in the region of study, geographical data, and remotely sensed data for: 1) the nightly upward radiance; 2) the terrain elevation; and, 3) the ground spectral reflectance of the region. The results of the model give a measure of the current state of the sky spectral radiance at the Haleakala Observatory. Then, using the current state as a reference point, multiple light conversion plans are elaborated and evaluated using the model. We can thus estimate the expected impact of each conversion plan on the night sky radiance spectrum. A complete conversion to white (LEDs) with (CCT) of 4000K and 3000K are contrasted with a conversion using (PC) amber (LEDs). We include recommendations concerning the street lamps to be used in sensitive areas like the cities of Kahului and Kihei and suggest best lighting practices related to the color of lamps used at night.

  9. Promoting Dark Sky Protection in Chile: the Gabriel Mistral IDA Dark Sky Sanctuary and Other AURA Initiatives

    NASA Astrophysics Data System (ADS)

    Smith, R. Chris; Smith, Malcolm; Pompea, Stephen; Sanhueza, Pedro; AURA-Chile EPO Team

    2018-01-01

    For over 20 years, AURA has been leading efforts promoting the protection of dark skies in northern Chile. Efforts began in the early 1990s at AURA's Cerro Tololo Inter-American Observatory (CTIO), working in collaboration with other international observatories in Chile including Las Campanas Observatory (LCO) and the European Southern Observatory (ESO). CTIO also partnered with local communities, for example supporting Vicuña's effort to establish the first municipal observatory in Chile. Today we have developed a multifaceted effort of dark sky protection, including proactive government relations at national and local levels, a strong educational and public outreach program, and a program of highlighting international recognition of the dark skies through the IDA Dark Sky Places program. Work on international recognition has included the declaration of the Gabriel Mistral IDA Dark Sky Sanctuary, the first such IDA sanctuary in the world.

  10. The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Albareti, Franco D.; Allende Prieto, Carlos; Almeida, Andres; Anders, Friedrich; Anderson, Scott; Andrews, Brett H.; Aragón-Salamanca, Alfonso; Argudo-Fernández, Maria; Armengaud, Eric; Aubourg, Eric; Avila-Reese, Vladimir; Badenes, Carles; Bailey, Stephen; Barbuy, Beatriz; Barger, Kat; Barrera-Ballesteros, Jorge; Bartosz, Curtis; Basu, Sarbani; Bates, Dominic; Battaglia, Giuseppina; Baumgarten, Falk; Baur, Julien; Bautista, Julian; Beers, Timothy C.; Belfiore, Francesco; Bershady, Matthew; Bertran de Lis, Sara; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael; Blomqvist, Michael; Bolton, Adam S.; Borissova, J.; Bovy, Jo; Nielsen Brandt, William; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Burtin, Etienne; Busca, Nicolás G.; Orlando Camacho Chavez, Hugo; Cano Díaz, M.; Cappellari, Michele; Carrera, Ricardo; Chen, Yanping; Cherinka, Brian; Cheung, Edmond; Chiappini, Cristina; Chojnowski, Drew; Chuang, Chia-Hsun; Chung, Haeun; Cirolini, Rafael Fernando; Clerc, Nicolas; Cohen, Roger E.; Comerford, Julia M.; Comparat, Johan; Correa do Nascimento, Janaina; Cousinou, Marie-Claude; Covey, Kevin; Crane, Jeffrey D.; Croft, Rupert; Cunha, Katia; Darling, Jeremy; Davidson, James W., Jr.; Dawson, Kyle; Da Costa, Luiz; Da Silva Ilha, Gabriele; Deconto Machado, Alice; Delubac, Timothée; De Lee, Nathan; De la Macorra, Axel; De la Torre, Sylvain; Diamond-Stanic, Aleksandar M.; Donor, John; Downes, Juan Jose; Drory, Niv; Du, Cheng; Du Mas des Bourboux, Hélion; Dwelly, Tom; Ebelke, Garrett; Eigenbrot, Arthur; Eisenstein, Daniel J.; Elsworth, Yvonne P.; Emsellem, Eric; Eracleous, Michael; Escoffier, Stephanie; Evans, Michael L.; Falcón-Barroso, Jesús; Fan, Xiaohui; Favole, Ginevra; Fernandez-Alvar, Emma; Fernandez-Trincado, J. G.; Feuillet, Diane; Fleming, Scott W.; Font-Ribera, Andreu; Freischlad, Gordon; Frinchaboy, Peter; Fu, Hai; Gao, Yang; Garcia, Rafael A.; Garcia-Dias, R.; Garcia-Hernández, D. A.; Garcia Pérez, Ana E.; Gaulme, Patrick; Ge, Junqiang; Geisler, Douglas; Gillespie, Bruce; Gil Marin, Hector; Girardi, Léo; Goddard, Daniel; Gomez Maqueo Chew, Yilen; Gonzalez-Perez, Violeta; Grabowski, Kathleen; Green, Paul; Grier, Catherine J.; Grier, Thomas; Guo, Hong; Guy, Julien; Hagen, Alex; Hall, Matt; Harding, Paul; Harley, R. E.; Hasselquist, Sten; Hawley, Suzanne; Hayes, Christian R.; Hearty, Fred; Hekker, Saskia; Hernandez Toledo, Hector; Ho, Shirley; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Holzer, Parker H.; Hu, Jian; Huber, Daniel; Hutchinson, Timothy Alan; Hwang, Ho Seong; Ibarra-Medel, Héctor J.; Ivans, Inese I.; Ivory, KeShawn; Jaehnig, Kurt; Jensen, Trey W.; Johnson, Jennifer A.; Jones, Amy; Jullo, Eric; Kallinger, T.; Kinemuchi, Karen; Kirkby, David; Klaene, Mark; Kneib, Jean-Paul; Kollmeier, Juna A.; Lacerna, Ivan; Lane, Richard R.; Lang, Dustin; Laurent, Pierre; Law, David R.; Leauthaud, Alexie; Le Goff, Jean-Marc; Li, Chen; Li, Cheng; Li, Niu; Li, Ran; Liang, Fu-Heng; Liang, Yu; Lima, Marcos; Lin, Lihwai; Lin, Lin; Lin, Yen-Ting; Liu, Chao; Long, Dan; Lucatello, Sara; MacDonald, Nicholas; MacLeod, Chelsea L.; Mackereth, J. Ted; Mahadevan, Suvrath; Geimba Maia, Marcio Antonio; Maiolino, Roberto; Majewski, Steven R.; Malanushenko, Olena; Malanushenko, Viktor; Dullius Mallmann, Nícolas; Manchado, Arturo; Maraston, Claudia; Marques-Chaves, Rui; Martinez Valpuesta, Inma; Masters, Karen L.; Mathur, Savita; McGreer, Ian D.; Merloni, Andrea; Merrifield, Michael R.; Meszáros, Szabolcs; Meza, Andres; Miglio, Andrea; Minchev, Ivan; Molaverdikhani, Karan; Montero-Dorta, Antonio D.; Mosser, Benoit; Muna, Demitri; Myers, Adam; Nair, Preethi; Nandra, Kirpal; Ness, Melissa; Newman, Jeffrey A.; Nichol, Robert C.; Nidever, David L.; Nitschelm, Christian; O’Connell, Julia; Oravetz, Audrey; Oravetz, Daniel J.; Pace, Zachary; Padilla, Nelson; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John; Paris, Isabelle; Park, Changbom; Peacock, John A.; Peirani, Sebastien; Pellejero-Ibanez, Marcos; Penny, Samantha; Percival, Will J.; Percival, Jeffrey W.; Perez-Fournon, Ismael; Petitjean, Patrick; Pieri, Matthew; Pinsonneault, Marc H.; Pisani, Alice; Prada, Francisco; Prakash, Abhishek; Price-Jones, Natalie; Raddick, M. Jordan; Rahman, Mubdi; Raichoor, Anand; Barboza Rembold, Sandro; Reyna, A. M.; Rich, James; Richstein, Hannah; Ridl, Jethro; Riffel, Rogemar A.; Riffel, Rogério; Rix, Hans-Walter; Robin, Annie C.; Rockosi, Constance M.; Rodríguez-Torres, Sergio; Rodrigues, Thaíse S.; Roe, Natalie; Lopes, A. Roman; Román-Zúñiga, Carlos; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Ruggeri, Rossana; Runnoe, Jessie C.; Salazar-Albornoz, Salvador; Salvato, Mara; Sanchez, Sebastian F.; Sanchez, Ariel G.; Sanchez-Gallego, José R.; Santiago, Basílio Xavier; Schiavon, Ricardo; Schimoia, Jaderson S.; Schlafly, Eddie; Schlegel, David J.; Schneider, Donald P.; Schönrich, Ralph; Schultheis, Mathias; Schwope, Axel; Seo, Hee-Jong; Serenelli, Aldo; Sesar, Branimir; Shao, Zhengyi; Shetrone, Matthew; Shull, Michael; Silva Aguirre, Victor; Skrutskie, M. F.; Slosar, Anže; Smith, Michael; Smith, Verne V.; Sobeck, Jennifer; Somers, Garrett; Souto, Diogo; Stark, David V.; Stassun, Keivan G.; Steinmetz, Matthias; Stello, Dennis; Storchi Bergmann, Thaisa; Strauss, Michael A.; Streblyanska, Alina; Stringfellow, Guy S.; Suarez, Genaro; Sun, Jing; Taghizadeh-Popp, Manuchehr; Tang, Baitian; Tao, Charling; Tayar, Jamie; Tembe, Mita; Thomas, Daniel; Tinker, Jeremy; Tojeiro, Rita; Tremonti, Christy; Troup, Nicholas; Trump, Jonathan R.; Unda-Sanzana, Eduardo; Valenzuela, O.; Van den Bosch, Remco; Vargas-Magaña, Mariana; Vazquez, Jose Alberto; Villanova, Sandro; Vivek, M.; Vogt, Nicole; Wake, David; Walterbos, Rene; Wang, Yuting; Wang, Enci; Weaver, Benjamin Alan; Weijmans, Anne-Marie; Weinberg, David H.; Westfall, Kyle B.; Whelan, David G.; Wilcots, Eric; Wild, Vivienne; Williams, Rob A.; Wilson, John; Wood-Vasey, W. M.; Wylezalek, Dominika; Xiao, Ting; Yan, Renbin; Yang, Meng; Ybarra, Jason E.; Yeche, Christophe; Yuan, Fang-Ting; Zakamska, Nadia; Zamora, Olga; Zasowski, Gail; Zhang, Kai; Zhao, Cheng; Zhao, Gong-Bo; Zheng, Zheng; Zheng, Zheng; Zhou, Zhi-Min; Zhu, Guangtun; Zinn, Joel C.; Zou, Hu

    2017-12-01

    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in 2014 July. It pursues three core programs: the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2), Mapping Nearby Galaxies at APO (MaNGA), and the Extended Baryon Oscillation Spectroscopic Survey (eBOSS). As well as its core program, eBOSS contains two major subprograms: the Time Domain Spectroscopic Survey (TDSS) and the SPectroscopic IDentification of ERosita Sources (SPIDERS). This paper describes the first data release from SDSS-IV, Data Release 13 (DR13). DR13 makes publicly available the first 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA. It includes new observations from eBOSS, completing the Sloan Extended QUasar, Emission-line galaxy, Luminous red galaxy Survey (SEQUELS), which also targeted variability-selected objects and X-ray-selected objects. DR13 includes new reductions of the SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification, and new reductions of the SDSS-III APOGEE-1 data, improving stellar parameters for dwarf stars and cooler stars. DR13 provides more robust and precise photometric calibrations. Value-added target catalogs relevant for eBOSS, TDSS, and SPIDERS and an updated red-clump catalog for APOGEE are also available. This paper describes the location and format of the data and provides references to important technical papers. The SDSS web site, http://www.sdss.org, provides links to the data, tutorials, examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ∼6 yr operations of SDSS-IV.

  11. Using machine learning techniques to automate sky survey catalog generation

    NASA Technical Reports Server (NTRS)

    Fayyad, Usama M.; Roden, J. C.; Doyle, R. J.; Weir, Nicholas; Djorgovski, S. G.

    1993-01-01

    We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomar Observatory Sky Survey provides comprehensive photographic coverage of the northern celestial hemisphere. The photographic plates are being digitized into images containing on the order of 10(exp 7) galaxies and 10(exp 8) stars. Since the size of this data set precludes manual analysis and classification of objects, our approach is to develop a software system which integrates independently developed techniques for image processing and data classification. Image processing routines are applied to identify and measure features of sky objects. Selected features are used to determine the classification of each object. GID3* and O-BTree, two inductive learning techniques, are used to automatically learn classification decision trees from examples. We describe the techniques used, the details of our specific application, and the initial encouraging results which indicate that our approach is well-suited to the problem. The benefits of the approach are increased data reduction throughput, consistency of classification, and the automated derivation of classification rules that will form an objective, examinable basis for classifying sky objects. Furthermore, astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems given automatically cataloged data.

  12. Research at Appalachian State University's Dark Sky Observatory

    NASA Astrophysics Data System (ADS)

    Caton, D. B.

    2003-12-01

    Astronomical research at Appalachian State University centers around the interests of the three observational astronomers on the faculty, and primarily involves observational work at our Dark Sky Observatory (DSO). ASU is a member of the 16-campus University of North Carolina system, and is a comprehensive university with about 13,000 students. Besides the usual constraint found in such a setting (teaching loads of 9-12 hours/semester), we face the challenges of maintaining a significant observatory facility in an era of shrinking state budgets. The DSO facility is 20 miles from campus, adding additional problems. This scenario differs from those of the other panelists, who are at private institutions and/or use shared facilities. The character of students at ASU also adds constraints--many have to hold part-time jobs that limit their participation in the very research that could contribute significantly to their success. Particularly, their need to leave for the summer for gainful employment at the very time that faculty have the most time for research is a loss for all concerned. In spite of these challenges, we have a long record of maintaining research programs in eclipsing binary star photometry, stellar spectroscopy and QSO/AGN monitoring. Undergraduate students are involved in all aspects of the work, from becoming competent at solo observing to publication of the results and presentation of papers and posters at meetings. Graduate students in our Masters in Applied Physics program (emphasis on instrumentation), have constructed instruments and control systems for the observatory. Most of what we have achieved would have been impossible without the support of the National Science Foundation. We have been fortunate to acquire funds under the Division of Undergraduate Education's ILI program and the Research at Undergraduate Institutions program. Among other things, this support provided our main telescope, CCD cameras, and some student stipends.

  13. Northern Sky Variability Survey: Public Data Release

    NASA Astrophysics Data System (ADS)

    Woźniak, P. R.; Vestrand, W. T.; Akerlof, C. W.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Kehoe, R.; Kinemuchi, K.; Lee, B. C.; Marshall, S.; McGowan, K. E.; McKay, T. A.; Rykoff, E. S.; Smith, D. A.; Szymanski, J.; Wren, J.

    2004-04-01

    The Northern Sky Variability Survey (NSVS) is a temporal record of the sky over the optical magnitude range from 8 to 15.5. It was conducted in the course of the first-generation Robotic Optical Transient Search Experiment (ROTSE-I) using a robotic system of four comounted unfiltered telephoto lenses equipped with CCD cameras. The survey was conducted from Los Alamos, New Mexico, and primarily covers the entire northern sky. Some data in southern fields between declinations 0° and -38° are also available, although with fewer epochs and noticeably lesser quality. The NSVS contains light curves for approximately 14 million objects. With a 1 yr baseline and typically 100-500 measurements per object, the NSVS is the most extensive record of stellar variability across the bright sky available today. In a median field, bright unsaturated stars attain a point-to-point photometric scatter of ~0.02 mag and position errors within 2". At Galactic latitudes |b|<20deg, the data quality is limited by severe blending due to the ~14" pixel size. We present basic characteristics of the data set and describe data collection, analysis, and distribution. All NSVS photometric measurements are available for on-line public access from the Sky Database for Objects in Time-Domain (SkyDOT) at Los Alamos National Laboratory. Copies of the full survey photometry may also be requested on tape. Based on observations obtained with the ROTSE-I robotic telescope, which was operated at Los Alamos National Laboratory.

  14. Science with the VLA Sky Survey (VLASS)

    NASA Astrophysics Data System (ADS)

    Murphy, Eric J.; Baum, Stefi Alison; Brandt, W. Niel; Chandler, Claire J.; Clarke, Tracy E.; Condon, James J.; Cordes, James M.; Deustua, Susana E.; Dickinson, Mark; Gugliucci, Nicole E.; Hallinan, Gregg; Hodge, Jacqueline; Lang, Cornelia C.; Law, Casey J.; Lazio, Joseph; Mao, Sui Ann; Myers, Steven T.; Osten, Rachel A.; Richards, Gordon T.; Strauss, Michael A.; White, Richard L.; Zauderer, Bevin; Extragalactic Science Working Group, Galactic Science Working Group, Transient Science Working Group

    2015-01-01

    The Very Large Array Sky Survey (VLASS) was initiated to develop and carry out a new generation large radio sky survey using the recently upgraded Karl G. Jansky Very Large Array. The proposed VLASS is a modern, multi-tiered survey with the VLA designed to provide a broad, cohesive science program with forefront scientific impact, capable of generating unexpected scientific discoveries, generating involvement from all astronomical communities, and leaving a lasting legacy value for decades.VLASS will observe from 2-4 GHz and is structured to combine comprehensive all sky coverage with sequentially deeper coverage in carefully identified parts of the sky, including the Galactic plane, and will be capable of informing time domain studies. This approach enables both focused and wide ranging scientific discovery through the coupling of deeper narrower tiers with increasing sky coverage at shallower depths, addressing key science issues and providing a statistical interpretational framework. Such an approach provides both astronomers and the citizen scientist with information for every accessible point of the radio sky, while simultaneously addressing fundamental questions about the nature and evolution of astrophysical objects.VLASS will follow the evolution of galaxies and their central black hole engines, measure the strength and topology of cosmic magnetic fields, unveil hidden explosions throughout the Universe, and chart our galaxy for stellar remnants and ionized bubbles. Multi-wavelength communities studying rare objects, the Galaxy, radio transients, or galaxy evolution out to the peak of the cosmic star formation rate density will equally benefit from VLASS.Early drafts of the VLASS proposal are available at the VLASS website (https://science.nrao.edu/science/surveys/vlass/vlass), and the final proposal will be posted in early January 2015 for community comment before undergoing review in March 2015. Upon approval, VLASS would then be on schedule to start

  15. Science Goals for an All-sky Viewing Observatory in X-rays

    NASA Astrophysics Data System (ADS)

    Remillard, R. A.; Levine, A. M.; Morgan, E. H.; Bradt, H. V.

    2003-03-01

    We describe a concept for a NASA SMEX Mission that will provide a comprehensive investigation of cosmic explosions. These range from the short flashes at cosmological distances in Gamma-ray bursts, to the moments of relativistic mass ejections in Galactic microquasars, to the panorama of outbursts used to identify the stellar-scale black holes in our Galaxy. With an equatorial launch, an array of 31 cameras can cover 97% of the sky with an average exposure efficiency of 65%. Coded mask cameras with Xe detectors (1.5-12 keV) are chosen for their ability to distinguish thermal and non-thermal processes, while providing high throughput and msec time resolution to capture the detailed evolution of bright events. This mission, with 1' position accuracy, would provide a long-term solution to the critical needs for monitoring services for Chandra and GLAST, with possible overlap into the time frame for Constellation-X. The sky coverage would create additional science opportunities beyond the X-ray missions: "eyes" for LIGO and partnerships for time-variability with LOFAR and dedicated programs at optical observatories. Compared to the RXTE ASM, AVOX offers improvements by a factor of 40 in instantaneous sky coverage and a factor of 10 in sensitivity to faint X-ray sources (i.e. to 0.8 mCrab at 3 sigma in 1 day).

  16. Asteroid Lightcurve Analysis at the Oakley Southern Sky Observatory: 2011 November-December

    NASA Astrophysics Data System (ADS)

    Melton, Elizabeth; Carver, Spencer; Harris, Andrew; Karnemaat, Ryan; Klaasse, Matthew; Ditteon, Richard

    2012-07-01

    Photometric data for 26 asteroids were collected over 20 nights of observing during 2011 November through December at the Oakley Southern Sky Observatory. The asteroids were: 664 Judith, 739 Mandeville, 781 Kartvelia, 871 Amneris, 971 Alsatia, 1577 Reiss, 2068 Dangreen, 2745 San Martin, 2870 Haupt, 2909 Hoshino- ie, 3041 Webb, 4359 Berlage, 4363 Sergej, 4804 Pasteur, 5870 Baltimore, (5874) 1989 XB, 6121 Plachinda, 6172 Prokofeana, 6402 Holstein, (10765) 1990 UZ , 12738 Satoshimiki, 16358 Plesetsk, (23276) 2000 YT101, (24475) 2000 VN2, (96487) 1998 JU1, (98129) 2000 SD25.

  17. The Infrared Sky: A Survey of Surveys

    DTIC Science & Technology

    1988-02-01

    that thme IT instru- c’Orr.Sponding spectral types. Thus, Hall (1961) recog- went would be imore productive iii thme Southern Henii- milted relati~el...the southern sky began in February 1967 unider AFCHL Iroam thevir % isual appearanice", A comiclusion concurrently sponsorship but unusually poor...survey is theonly exteisive iear-infrared diechnations between - 330 and - 469; the most southerly Southern Hemisphere survey to date with published re

  18. Recent results from the Compton Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michelson, P.F.; Hansen, W.W.

    1994-12-01

    The Compton Observatory is an orbiting astronomical observatory for gamma-ray astronomy that covers the energy range from about 30 keV to 30 GeV. The Energetic Gamma Ray Experiment Telescope (EGRET), one of four instruments on-board, is capable of detecting and imaging gamma radiation from cosmic sources in the energy range from approximately 20 MeV to 30 GeV. After about one month of tests and calibration following the April 1991 launch, a 15-month all sky survey was begun. This survey is now complete and the Compton Observatory is well into Phase II of its observing program which includes guest investigator observations.more » Among the highlights from the all-sky survey discussed in this presentation are the following: detection of five pulsars with emission above 100 MeV; detection of more than 24 active galaxies, the most distant at redshift greater than two; detection of many high latitude, unidentified gamma-ray sources, some showing significant time variability; detection of at least two high energy gamma-ray bursts, with emission in one case extending to at least 1 GeV. EGRET has also detected gamma-ray emission from solar flares up to energies of at least 2 GeV and has observed gamma-rays from the Large Magellanic Cloud.« less

  19. The Malaysian Robotic Solar Observatory (P29)

    NASA Astrophysics Data System (ADS)

    Othman, M.; Asillam, M. F.; Ismail, M. K. H.

    2006-11-01

    Robotic observatory with small telescopes can make significant contributions to astronomy observation. They provide an encouraging environment for astronomers to focus on data analysis and research while at the same time reducing time and cost for observation. The observatory will house the primary 50cm robotic telescope in the main dome which will be used for photometry, spectroscopy and astrometry observation activities. The secondary telescope is a robotic multi-apochromatic refractor (maximum diameter: 15 cm) which will be housed in the smaller dome. This telescope set will be used for solar observation mainly in three different wavelengths simultaneously: the Continuum, H-Alpha and Calcium K-line. The observatory is also equipped with an automated weather station, cloud & rain sensor and all-sky camera to monitor the climatic condition, sense the clouds (before raining) as well as to view real time sky view above the observatory. In conjunction with the Langkawi All-Sky Camera, the observatory website will also display images from the Malaysia - Antarctica All-Sky Camera used to monitor the sky at Scott Base Antarctica. Both all-sky images can be displayed simultaneously to show the difference between the equatorial and Antarctica skies. This paper will describe the Malaysian Robotic Observatory including the systems available and method of access by other astronomers. We will also suggest possible collaboration with other observatories in this region.

  20. An automated extinction and sky brightness monitor for the Indian Astronomical Observatory, Hanle

    NASA Astrophysics Data System (ADS)

    Sharma, Tarun Kumar; Parihar, Padmakar; Banyal, R. K.; Dar, Ajaz Ahmad; Kemkar, P. M. M.; Stanzin, Urgain; Anupama, G. C.

    2017-09-01

    We have developed a simple and portable device that makes precise and automated measurements of night sky extinction. Our instrument uses a commercially available telephoto lens for light collection, which is retrofitted to a custom-built telescope mount, a thermoelectrically cooled CCD for imaging, and a compact enclosure with electronic control to facilitate remote observations. The instrument is also capable of measuring the sky brightness and detecting the presence of thin clouds that otherwise would remain unnoticed. The measurements of sky brightness made by our simple device are more accurate than those made using a large telescope. Another capability of the device is that it can provide an instantaneous measurement of atmospheric extinction, which is extremely useful for exploring the nature of short-term extinction variation. The instrument was designed and developed primarily in order to characterize and investigate thoroughly the Indian Astronomical Observatory (IAO), Hanle for the establishment of India's future large-telescope project. The device was installed at the IAO, Hanle in 2014 May. In this paper, we present the instrument details and discuss the results of extinction data collected for about 250 nights.

  1. Transient Optical Sky survey

    NASA Astrophysics Data System (ADS)

    Hadjiyska, Elena Ivanova

    2009-06-01

    Optical transients have been studied in isolated cases, but never mapped into a comprehensive data base in the past. These events vary in duration and signature, yet they are united under the umbrella of time varying observables and represent a significant portion of the dynamical processes in the universe. The Transient Optical Sky Survey (TOSS) System is a dedicated, ground-based system of small optical telescopes, observing nightly at fixed Declination while gathering 90 sec exposures and thus creating a repeated partial map of the sky. Presented here is a brief overview of some of the signatures of transient events and a description of the TOSS system along with the data acquired during the 2008-2009 observing campaign, potentially producing over 100,000 light curves.

  2. Asteroid Lightcurve Analysis at the Oakley Southern Sky Observatory: 2009 April - May

    NASA Astrophysics Data System (ADS)

    Ditteon, Richard; Kirkpatrick, Elaine; Doering, Katelyn

    2010-01-01

    Photometric data for 30 asteroids were collected over 23 nights of observing during 2009 April and May at the Oakley Southern Sky Observatory. The asteroids were: 255 Oppavia, 957 Camelia, 1097 Vicia, 1454 Kalevala, 2009 Voloshina, 2217 Eltigen, 2610 Tuva, 2665 Schrutka, 2670 Chuvashia, 2869 Nepryadva, 3219 Komaki, 3432 Kobuchizawa, 3909 Gladys, 3999 Aristarchus, 4147 Lennon, 4154 Rumsey, 4358 Lynn, 4417 Lecar, 4654 Gor’kavyj, 5350 Epetersen, 5567 Durisen, (5773) 1989 NO, (5787) 1992 FA1, 5839 GOI, (6073) 1939 UB, (7255) 1993 VY1, 8151 Andranada, 13018 Geoffjames, (14720) 2000 CQ85, and (29665) 1998 WD24.

  3. Strategy for the IRAS all-sky survey

    NASA Technical Reports Server (NTRS)

    Lundy, S. A.

    1984-01-01

    IRAS (the Infrared Astronomical Satellite) was launched on January 25, 1983 (January 26 GMT) with the primary purpose of performing an infrared survey of the entire celestial sphere. To ensure completeness and reliability, every point of sky was to be covered by a minimum of four separate scans of the telescope field-of-view, and as much as possible with six, with certain added timing constraints on the elapsed interval between scans. These strong requirements for sky coverage, combined with a restricted, rotating viewing-window, made extensive planning for the survey strategy, both pre-launch and during operations, a necessity. The result was that on November 21 (November 22 GMT), when the liquid helium required for cooling was depleted, 96 percent of the sky was covered to the minimum depth of four and 71 percent was coverd to depth six or more.

  4. Early German plans for southern observatories

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, G.

    2002-07-01

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century, Heidelberg and Potsdam astronomers proposed a southern observatory. Then Göttingen astronomers suggested building an observatory in Windhoek for photographing the sky and measuring the solar constant. In 1910 Karl Schwarzschild (1873-1916), after a visit to observatories in the United States, pointed out the usefulness of an observatory in South West Africa, in a climate superior to that in Germany, giving German astronomers access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhoek to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963.

  5. Cloud Base Height Measurements at Manila Observatory: Initial Results from Constructed Paired Sky Imaging Cameras

    NASA Astrophysics Data System (ADS)

    Lagrosas, N.; Tan, F.; Antioquia, C. T.

    2014-12-01

    Fabricated all sky imagers are efficient and cost effective instruments for cloud detection and classification. Continuous operation of this instrument can result in the determination of cloud occurrence and cloud base heights for the paired system. In this study, a fabricated paired sky imaging system - consisting two commercial digital cameras (Canon Powershot A2300) enclosed in weatherproof containers - is developed in Manila Observatory for the purpose of determining cloud base heights at the Manila Observatory area. One of the cameras is placed on the rooftop of Manila Observatory and the other is placed on the rooftop of the university dormitory, 489m from the first camera. The cameras are programmed to simultaneously gather pictures every 5 min. Continuous operation of these cameras were implemented since the end of May of 2014 but data collection started end of October 2013. The data were processed following the algorithm proposed by Kassianov et al (2005). The processing involves the calculation of the merit function that determines the area of overlap of the two pictures. When two pictures are overlapped, the minimum of the merit function corresponds to the pixel column positions where the pictures have the best overlap. In this study, pictures of overcast sky prove to be difficult to process for cloud base height and were excluded from processing. The figure below shows the initial results of the hourly average of cloud base heights from data collected from November 2013 to July 2014. Measured cloud base heights ranged from 250m to 1.5km. These are the heights of cumulus and nimbus clouds that are dominant in this part of the world. Cloud base heights are low in the early hours of the day indicating low convection process during these times. However, the increase in the convection process in the atmosphere can be deduced from higher cloud base heights in the afternoon. The decrease of cloud base heights after 15:00 follows the trend of decreasing solar

  6. Gaia, an all-sky survey for standard photometry

    NASA Astrophysics Data System (ADS)

    Carrasco, J. M.; Weiler, M.; Jordi, C.; Fabricius, C.

    2017-03-01

    Gaia ESA's space mission (launched in 2013) includes two low resolution spectroscopic instruments (one in the blue, BP, and another in the red, RP, wavelength domains) to classify and derive the astrophysical parameters of the observed sources. As it is well known, Gaia is a full-sky unbiased survey down to about 20th magnitude. The scanning law yields a rather uniform coverage of the sky over the full extent (a minimum of 5 years) of the mission. Gaia data reduction is a global one over the full mission. Both sky coverage and data reduction strategy ensure an unprecedented all-sky homogeneous spectrophotometric survey. Certainly, that survey is of interest for current and future on-ground and space projects, like LSST, PLATO, EUCLID and J-PAS/J-PLUS among others. These projects will benefit from the large amount (more than one billion) and wide variety of objects observed by Gaia with good quality spectrophotometry. Synthetic photometry derived from Gaia spectrophotometry for any passband can be used to expand the set of standard sources for these new instruments to come. In the current Gaia data release scenario, BP/RP spectrophotometric data will be available in the third release (in 2018, TBC). Current preliminary results allow us to estimate the precision of synthetic photometry derived from the Gaia data. This already allows the preparation of the on-going and future surveys and space missions. We discuss here the exploitation of the Gaia spectrophotometry as standard reference due to its full-sky coverage and its expected photometric uncertainties derived from the low resolution Gaia spectra.

  7. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-01-01

    This photograph shows the High Energy Astronomy Observatory (HEAO)-1 being assembled at TRW Systems of Redondo Beach, California. The HEAO was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center. The first observatory, designated HEAO-1, was launched on August 12, 1977 aboard an Atlas/Centaur launch vehicle and was designed to survey the sky for additional x-ray and gamma-ray sources as well as pinpointing their positions. The HEAO-1 was originally identified as HEAO-A but the designation was changed once the spacecraft achieved orbit.

  8. Educating for the Preservation of Dark Skies

    NASA Astrophysics Data System (ADS)

    Preston, Sandra Lee; Cianciolo, Frank; Wetzel, Marc; Finkelstein, Keely; Wren, William; Nance, Craig

    2015-08-01

    The stars at night really are big and bright deep in the heart of Texas at the McDonald Observatory near Fort Davis, Texas. Each year 80,000 visitors from all over the world make the pilgrimage to the Observatory to attend one of the three-times-a-week star parties. Many experience, for the first time, the humbling, splendor of a truly dark night sky. Over the last several years, the Observatory has experienced dramatic increases in visitation demonstrating the public’s appetite for science education, in general, and interest in the night sky, in particular. This increasing interest in astronomy is, ironically, occurring at a time when most of humanity’s skies are becoming increasingly light-polluted frustrating this natural interest. Dark skies and knowledgeable education and outreach staff are an important resource in maintaining the public’s interest in astronomy, support for astronomical research, and local tourism.This year Observatory educators were inspired by the observance of the International Year of Light to promote healthy outdoor lighting through its popular Astronomy Day distance learning program. This program reaches tens of thousands of K-12 students in Texas and other states with a message of how they can take action to preserve dark skies. As well, more than a thousand Boy Scouts visiting during the summer months receive a special program, which includes activities focusing on good lighting practices, thereby earning them credits toward an astronomy badge.The Observatory also offers a half-a-dozen K-12 teacher professional development workshops onsite each year, which provide about 90 teachers with dark skies information, best-practice lighting demonstrations, and red flashlights. Multi-year workshops for National Park and State of Texas Parks personnel are offered on dark sky preservation and sky interpretation at McDonald and a Dark Skies fund for retrofitting lights in the surrounding area has been established. The Observatory also uses

  9. Two More Candidate AM Canum Venaticorum (am CVn) Binaries from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Anderson, Scott F.; Becker, Andrew C.; Haggard, Daryl; Prieto, Jose Luis; Knapp, Gillian R.; Sako, Masao; Halford, Kelly E.; Jha, Saurabh; Martin, Blake; Holtzman, Jon; Frieman, Joshua A.; Garnavich, Peter M.; Hayward, Suzanne; Ivezić, Željko; Mukadam, Anjum S.; Sesar, Branimir; Szkody, Paula; Malanushenko, Viktor; Richmond, Michael W.; Schneider, Donald P.; York, Donald G.

    2008-06-01

    AM CVn systems are a select group of ultracompact binaries with the shortest orbital periods of any known binary subclass; mass transfer is likely from a low-mass (partially-)degenerate secondary onto a white dwarf primary, driven by gravitational radiation. In the past few years, the Sloan Digital Sky Survey (SDSS) has provided five new AM CVns. Here we report on two further candidates selected from more recent SDSS data. SDSS J1208+3550 is similar to the earlier SDSS discoveries, recognized as an AM CVn via its distinctive spectrum which is dominated by helium emission. From the expanded SDSS Data Release 6 (DR6) spectroscopic area, we provide an updated surface density estimate for such AM CVns of order 10-3.1-10-2.5 deg-2 for 15 < g < 20.5. In addition, we present another new candidate AM CVn, SDSS J2047+0008, which was discovered in the course of follow-up of SDSS-II supernova candidates. It shows nova-like outbursts in multi-epoch imaging data; in contrast to the other SDSS AM CVn discoveries, its (outburst) spectrum is dominated by helium absorption lines, reminiscent of KL Dra, and 2003aw. The variability selection of SDSS J2047+0008 from the 300 deg2 of SDSS Stripe 82 presages further AM CVn discoveries in future deep, multicolor, and time-domain surveys such as the Large Synoptic Survey Telescope (LSST). The new additions bring the total SDSS yield to seven AM CVns thus far, a substantial contribution to this rare subclass, versus the dozen previously known. Includes optical observations obtained with the Sloan Digital Sky Survey I and II and the Apache Point Observatory (APO) 3.5 m telescope which is owned and operated by the Astrophysical Research Consortium (ARC), and the WIYN Observatory which is a joint facility of the University of Wisconsin, Indiana University, Yale University, and NOAO.

  10. The SPHEREx All-Sky Spectral Survey

    NASA Astrophysics Data System (ADS)

    Bock, James; SPHEREx Science Team

    2018-01-01

    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A in August 2017, is an all-sky survey satellite designed to address all three science goals in NASA's astrophysics division, with a single instrument, a wide-field spectral imager. SPHEREx will probe the physics of inflation by measuring non-Gaussianity by studying large-scale structure, surveying a large cosmological volume at low redshifts, complementing high-z surveys optimized to constrain dark energy. The origin of water and biogenic molecules will be investigated in all phases of planetary system formation - from molecular clouds to young stellar systems with protoplanetary disks - by measuring ice absorption spectra. We will chart the origin and history of galaxy formation through a deep survey mapping large-scale spatial power in two deep fields located near the ecliptic poles. Following in the tradition of all-sky missions such as IRAS, COBE and WISE, SPHEREx will be the first all-sky near-infrared spectral survey. SPHEREx will create spectra (0.75 – 4.2 um at R = 41; and 4.2 – 5 um at R = 135) with high sensitivity making background-limited observations using a passively-cooled telescope with a wide field-of-view for large mapping speed. During its two-year mission, SPHEREx will produce four complete all-sky maps that will serve as a rich archive for the astronomy community. With over a billion detected galaxies, hundreds of millions of high-quality stellar and galactic spectra, and over a million ice absorption spectra, the archive will enable diverse scientific investigations including studies of young stellar systems, brown dwarfs, high-redshift quasars, galaxy clusters, the interstellar medium, asteroids and comets. All aspects of the instrument and spacecraft have high heritage. SPHEREx requires no new technologies and carries large technical and resource margins on every aspect of the design. SPHEREx is a partnership between Caltech and JPL, following the

  11. Managing Astronomy Research Data: Data Practices in the Sloan Digital Sky Survey and Large Synoptic Survey Telescope Projects

    ERIC Educational Resources Information Center

    Sands, Ashley Elizabeth

    2017-01-01

    Ground-based astronomy sky surveys are massive, decades-long investments in scientific data collection. Stakeholders expect these datasets to retain scientific value well beyond the lifetime of the sky survey. However, the necessary investments in knowledge infrastructures for managing sky survey data are not yet in place to ensure the long-term…

  12. 2MASS - The 2 Micron All Sky Survey

    NASA Technical Reports Server (NTRS)

    Kleinmann, S. G.

    1992-01-01

    This paper describes a new sky survey to be carried out in three wavebands, J(1.25 m), H(1.65 m), and K(2.2 m). The limiting sensitivity of the survey, 10 sigma detection of point sources with K not greater than 14 mag, coupled with its all-sky coverage, were selected primarily to support studies of the large-scale structure of the Milky Way and the Local Universe. The survey requires construction of a pair of observing facilities, one each for the Northern and Southern Hemispheres. Operations are scheduled to begin in 1995. The data will begin becoming publicly available soon thereafter.

  13. A deep proper motion catalog within the Sloan digital sky survey footprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munn, Jeffrey A.; Harris, Hugh C.; Tilleman, Trudy M.

    2014-12-01

    A new proper motion catalog is presented, combining the Sloan Digital Sky Survey (SDSS) with second epoch observations in the r band within a portion of the SDSS imaging footprint. The new observations were obtained with the 90prime camera on the Steward Observatory Bok 90 inch telescope, and the Array Camera on the U.S. Naval Observatory, Flagstaff Station, 1.3 m telescope. The catalog covers 1098 square degrees to r = 22.0, an additional 1521 square degrees to r = 20.9, plus a further 488 square degrees of lesser quality data. Statistical errors in the proper motions range from 5 masmore » year{sup −1} at the bright end to 15 mas year{sup −1} at the faint end, for a typical epoch difference of six years. Systematic errors are estimated to be roughly 1 mas year{sup −1} for the Array Camera data, and as much as 2–4 mas year{sup −1} for the 90prime data (though typically less). The catalog also includes a second epoch of r band photometry.« less

  14. Variable Star Discoveries for Research Education at the Phillips Academy Observatory

    NASA Astrophysics Data System (ADS)

    Odden, Caroline; Yoon, Seokjun; Zhu, Emily; Little, John; Taylor, Isabel; Kim, Ji Seok; Briggs, John W.

    2014-06-01

    The discovery and publication of unknown variable stars by high school students is a highly engaging activity in a new hands-on research course developed at Phillips Academy in Andover, Massachusetts. Students use MPO Canopus software to recognize candidate variable stars in image series typically recorded for asteroid rotation studies. Follow-up observations are made using the 16-inch DFM telescopes at the Phillips Academy Observatory and at the HUT Observatory near Eagle, Colorado, as well as with a remote-access 20-inch at New Mexico Skies Observatory near Mayhill, New Mexico. The Catalina Sky Survey can provide additional photometric measurements. Confirmed variables, with light curves and periods, are submitted to the International Variable Star Index and Journal of the American Association of Variable Star Observers. Asteroid rotation studies are published in Minor Planet Bulletin.

  15. The All-Sky Automated Survey for Supernovae

    NASA Astrophysics Data System (ADS)

    Bersier, D.

    2016-12-01

    This is an overview of the All-Sky Automated Survey for SuperNovae - ASAS-SN. We briefly present the hardware and capabilities of the survey and describe the most recent science results, in particular tidal disruption events and supernovae, including the brightest SN ever found.

  16. ROSAT all-sky survey on the Einstein EMSS sample

    NASA Technical Reports Server (NTRS)

    Maccacaro, Tomasso

    1992-01-01

    The cosmological evolution and the luminosity function (XLF) of X ray selected Active Galactic Nuclei (AGN's) are discussed. The sample used is extracted from the Einstein Observatory Extended Medium Sensitivity Surveys (EMSS) and consists of more than 420 objects. Preliminary results from the ROSAT All-Sky Survey data confirm the correctness of the optical identification of the EMSS sources, thus giving confidence to the results obtained from the analysis of the AGN's sample. The XLF observed at different redshifts (up to z approx. 2) gives direct evidence of cosmological evolution. Data have been analyzed within the framework of luminosity evolution models and the two most common evolutionary forms, L sub x(Z) = L sub x(0) x e(sup Cr) and L sub x(Z) = L sub x(0) x (1 + z)(exp C), have been considered. Luminosity dependent evolution is required if the evolution function has the exponential form, whereas the simpler pure luminosity evolution model is still acceptable if the evolution function has the power law form. Using the whole sample of objects the number-counts and the de-evolved (z = 0) XLF have been derived. A comparison of the EMSS data with preliminary ROSAT results presented at this meeting indicates an overall agreement.

  17. SETI prototype system for NASA's Sky Survey microwave observing project - A progress report

    NASA Technical Reports Server (NTRS)

    Klein, M. J.; Gulkis, S.; Wilck, H. C.

    1990-01-01

    Two complementary search strategies, a Targeted Search and a Sky Survey, are part of NASA's SETI microwave observing project scheduled to begin in October of 1992. The current progress in the development of hardware and software elements of the JPL Sky Survey data processing system are presented. While the Targeted Search stresses sensitivity allowing the detection of either continuous or pulsed signals over the 1-3 GHz frequency range, the Sky Survey gives up sensitivity to survey the 99 percent of the sky that is not covered by the Targeted Search. The Sky Survey spans a larger frequency range from 1-10 GHz. The two searches will deploy special-purpose digital signal processing equipment designed and built to automate the observing and data processing activities. A two-million channel digital wideband spectrum analyzer and a signal processor system will serve as a prototype for the SETI Sky Survey processor. The design will permit future expansion to meet the SETI requirement that the processor concurrently search for left and right circularly polarized signals.

  18. ISS images for Observatory protection

    NASA Astrophysics Data System (ADS)

    Sánchez de Miguel, Alejandro; Zamorano, Jaime

    2015-08-01

    Light pollution is the main factor of degradation of the astronomical quality of the sky along the history. Astronomical observatories have been monitoring how the brightness of the sky varies using photometric measures of the night sky brightness mainly at zenith. Since the sky brightness depends in other factors such as sky glow, aerosols, solar activity and the presence of celestial objects, the continuous increase of light pollution in these enclaves is difficult to trace except when it is too late.Using models of light dispersion on the atmosphere one can determine which light pollution sources are increasing the sky brightness at the observatories. The input satellite data has been provided by DMSP/OLS and SNPP/VIIRS. Unfortunately their panchromatic bands (color blinded) are not useful to detect in which extension the increase is due to the dramatic change produced by the irruption of LED technology in outdoor lighting. The only instrument in the space that is able to distinguish between the various lighting technologies are the DSLR cameras used by the astronauts onboard the ISS.Current status for some astronomical observatories that have been imaged from the ISS is presented. We are planning to send an official request to NASA with a plan to get images for the most important astronomical observatories. We ask support for this proposal by the astronomical community and especially by the US-based researchers.

  19. Moon night sky brightness simulation for the Xinglong station

    NASA Astrophysics Data System (ADS)

    Yao, Song; Zhang, Hao-Tong; Yuan, Hai-Long; Zhao, Yong-Heng; Dong, Yi-Qiao; Bai, Zhong-Rui; Deng, Li-Cai; Lei, Ya-Juan

    2013-10-01

    Using a sky brightness monitor at the Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences, we collected data from 22 dark clear nights and 90 moon nights. We first measured the sky brightness variation with time for dark nights and found a clear correlation between sky brightness and human activity. Then with a modified sky brightness model of moon nights and data from these nights, we derived the typical value for several important parameters in the model. With these results, we calculated the sky brightness distribution under a given moon condition for the Xinglong station. Furthermore, we simulated the sky brightness distribution of a moon night for a telescope with a 5° field of view (such as LAMOST). These simulations will be helpful for determining the limiting magnitude and exposure time, as well as planning the survey for LAMOST during moon nights.

  20. White Dwarfs in the UKIRT Infrared Deep Sky Survey Data Release 9

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Leggett, S. K.; Lodieu, N.; Freytag, B.; Bergeron, P.; Kalirai, J. S.; Ludwig, H.-G.

    2014-06-01

    We have identified 8 to 10 new cool white dwarfs from the Large Area Survey (LAS) Data Release 9 of the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS). The data set was paired with the Sloan Digital Sky Survey to obtain proper motions and a broad ugrizYJHK wavelength coverage. Optical spectroscopic observations were secured at Gemini Observatory and confirm the degenerate status for eight of our targets. The final sample includes two additional white dwarf candidates with no spectroscopic observations. We rely on improved one-dimensional model atmospheres and new multi-dimensional simulations with CO5BOLD to review the stellar parameters of the published LAS white dwarf sample along with our additional discoveries. Most of the new objects possess very cool atmospheres with effective temperatures below 5000 K, including two pure-hydrogen remnants with a cooling age between 8.5 and 9.0 Gyr, and tangential velocities in the range 40 km s-1 <=v tan <= 60 km s-1. They are likely thick disk 10-11 Gyr old objects. In addition, we find a resolved double degenerate system with v tan ~ 155 km s-1 and a cooling age between 3.0 and 5.0 Gyr. These white dwarfs could be disk remnants with a very high velocity or former halo G stars. We also compare the LAS sample with earlier studies of very cool degenerates and observe a similar deficit of helium-dominated atmospheres in the range 5000 < T eff (K) < 6000. We review the possible explanations for the spectral evolution from helium-dominated toward hydrogen-rich atmospheres at low temperatures.

  1. The Einstein Observatory Extended Medium-Sensitivity Survey. I - X-ray data and analysis

    NASA Technical Reports Server (NTRS)

    Gioia, I. M.; Maccacaro, T.; Schild, R. E.; Wolter, A.; Stocke, J. T.

    1990-01-01

    This paper presents the results of the analysis of the X-ray data and the optical identification for the Einstein Observatory Extended Medium-Sensitivity Survey (EMSS). The survey consists of 835 serendipitous sources detected at or above 4 times the rms level in 1435 imaging proportional counter fields with centers located away from the Galactic plane. Their limiting sensitivities are about (5-300) x 10 to the -14th ergs/sq cm sec in the 0.3-3.5-keV energy band. A total area of 778 square deg of the high-Galactic-latitude sky has been covered. The data have been analyzed using the REV1 processing system, which takes into account the nonuniformities of the detector. The resulting EMSS catalog of X-ray sources is a flux-limited and homogeneous sample of astronomical objects that can be used for statistical studies.

  2. Future Sky Surveys: New Discovery Frontiers

    NASA Astrophysics Data System (ADS)

    Tyson, J. Anthony; Borne, Kirk D.

    2012-03-01

    Driven by the availability of new instrumentation, there has been an evolution in astronomical science toward comprehensive investigations of new phenomena. Major advances in our understanding of the Universe over the history of astronomy have often arisen from dramatic improvements in our capability to observe the sky to greater depth, in previously unexplored wavebands, with higher precision, or with improved spatial, spectral, or temporal resolution. Substantial progress in the important scientific problems of the next decade (determining the nature of dark energy and dark matter, studying the evolution of galaxies and the structure of our own Milky Way, opening up the time domain to discover faint variable objects, and mapping both the inner and outer Solar System) can be achieved through the application of advanced data mining methods and machine learning algorithms operating on the numerous large astronomical databases that will be generated from a variety of revolutionary future sky surveys. Over the next decade, astronomy will irrevocably enter the era of big surveys and of really big telescopes. New sky surveys (some of which will produce petabyte-scale data collections) will begin their operations, and one or more very large telescopes (ELTs = Extremely Large Telescopes) will enter the construction phase. These programs and facilities will generate a remarkable wealth of data of high complexity, endowed with enormous scientific knowledge discovery potential. New parameter spaces will be opened, in multiple wavelength domains as well as the time domain, across wide areas of the sky, and down to unprecedented faint source flux limits. The synergies of grand facilities, massive data collections, and advanced machine learning algorithms will come together to enable discoveries within most areas of astronomical science, including Solar System, exo-planets, star formation, stellar populations, stellar death, galaxy assembly, galaxy evolution, quasar evolution

  3. The FIRST Survey: Faint Images of the Radio Sky at Twenty Centimeters

    NASA Astrophysics Data System (ADS)

    Becker, Robert H.; White, Richard L.; Helfand, David J.

    1995-09-01

    The FIRST survey to produce Faint Images of the Radio Sky at Twenty centimeters is now underway using the NRAO Very Large Array. We describe here the scientific motivation for a large-area sky survey at radio frequencies which has a sensitivity and angular resolution comparable to the Palomar Observatory Sky Survey, and we recount the history that led to the current survey project. The technical design of the survey is covered in detail, including a description and justification of the grid pattern chosen, the rationale behind the integration time and angular resolution selected, and a summary of the other considerations which informed our planning for the project. A comprehensive description of the automated data analysis pipeline we have developed is presented. We also report here the results of the first year of FIRST observations. A total of 144 hr of time in 1993 April and May was used for a variety of tests, as well as to cover an initial strip of the survey extending between 07h 15m and 16h 30m in a 2°.8 wide declination zone passing through the local zenith (28.2 <δ < 31.0). A total of 2153 individual pointings yielded an image database containing 1039 merged images 46'.5 × 34'.5 in extent with 1".8 pixels and a typical rms of 0.13 mJy. A catalog derived from this 300 deg2 region contains 28,000 radio sources. We have performed extensive tests on the images and source list in order to establish the photometric and astrometric accuracy of these data products. We find systematic astrometric errors of < 0".05 individual sources down to the 1 mJy survey flux density threshold have 90% confidence error circles with radii of < 1". CLEAN bias introduces a systematic underestimate of point-source flux densities of ˜0.25 mJy; the bias is more severe for extended sources. Nonetheless, a comparison with a published deep survey field demonstrates that we successfully detect 39/49 sources with integrated flux densities greater than 0.75 mJy, including 19 of 20

  4. Galactic SNR Candidates in the ROSAT All-Sky Survey

    NASA Technical Reports Server (NTRS)

    Schaudel, Daniel; Becker, Werner; Voges, Wolfgand; Reich, Wolfgang; Weisskopf, Martin; Six, N. Frank (Technical Monitor)

    2001-01-01

    Identified radio supernova remnants (SNRS) in the Galaxy comprise an incomplete sample of the SNR population due to various selection effects. ROSAT performed the first all-sky survey with an imaging X-ray telescope, and thus provides another window for finding SNRS and compact objects that may reside within them. Performing a search for extended X-ray sources in the ROSAT all-sky survey database about 350 objects were identified as SNR candidates in recent years. Continuing this systematic search, we have reanalyzed the ROSAT all-sky survey (BASS) data of these candidates and correlated the results with radio surveys like NVSS, ATNF, Molonglo, and Effelsberg. A further correlation with SIMBAD and NED were used for subsequent identification purpose. About 50 of the 350 candidates turned out to be likely galaxies or clusters of galaxies. We found 14 RASS sources which are very promising SNR candidates and are currently subject of further follow-up studies. We will provide the details of the identification campaign and present first results.

  5. The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment

    NASA Astrophysics Data System (ADS)

    Abolfathi, Bela; Aguado, D. S.; Aguilar, Gabriela; Allende Prieto, Carlos; Almeida, Andres; Tasnim Ananna, Tonima; Anders, Friedrich; Anderson, Scott F.; Andrews, Brett H.; Anguiano, Borja; Aragón-Salamanca, Alfonso; Argudo-Fernández, Maria; Armengaud, Eric; Ata, Metin; Aubourg, Eric; Avila-Reese, Vladimir; Badenes, Carles; Bailey, Stephen; Balland, Christophe; Barger, Kathleen A.; Barrera-Ballesteros, Jorge; Bartosz, Curtis; Bastien, Fabienne; Bates, Dominic; Baumgarten, Falk; Bautista, Julian; Beaton, Rachael; Beers, Timothy C.; Belfiore, Francesco; Bender, Chad F.; Bernardi, Mariangela; Bershady, Matthew A.; Beutler, Florian; Bird, Jonathan C.; Bizyaev, Dmitry; Blanc, Guillermo A.; Blanton, Michael R.; Blomqvist, Michael; Bolton, Adam S.; Boquien, Médéric; Borissova, Jura; Bovy, Jo; Andres Bradna Diaz, Christian; Nielsen Brandt, William; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Burgasser, Adam J.; Burtin, Etienne; Busca, Nicolás G.; Cañas, Caleb I.; Cano-Díaz, Mariana; Cappellari, Michele; Carrera, Ricardo; Casey, Andrew R.; Cervantes Sodi, Bernardo; Chen, Yanping; Cherinka, Brian; Chiappini, Cristina; Doohyun Choi, Peter; Chojnowski, Drew; Chuang, Chia-Hsun; Chung, Haeun; Clerc, Nicolas; Cohen, Roger E.; Comerford, Julia M.; Comparat, Johan; Correa do Nascimento, Janaina; da Costa, Luiz; Cousinou, Marie-Claude; Covey, Kevin; Crane, Jeffrey D.; Cruz-Gonzalez, Irene; Cunha, Katia; da Silva Ilha, Gabriele; Damke, Guillermo J.; Darling, Jeremy; Davidson, James W., Jr.; Dawson, Kyle; de Icaza Lizaola, Miguel Angel C.; de la Macorra, Axel; de la Torre, Sylvain; De Lee, Nathan; de Sainte Agathe, Victoria; Deconto Machado, Alice; Dell’Agli, Flavia; Delubac, Timothée; Diamond-Stanic, Aleksandar M.; Donor, John; José Downes, Juan; Drory, Niv; du Mas des Bourboux, Hélion; Duckworth, Christopher J.; Dwelly, Tom; Dyer, Jamie; Ebelke, Garrett; Davis Eigenbrot, Arthur; Eisenstein, Daniel J.; Elsworth, Yvonne P.; Emsellem, Eric; Eracleous, Michael; Erfanianfar, Ghazaleh; Escoffier, Stephanie; Fan, Xiaohui; Fernández Alvar, Emma; Fernandez-Trincado, J. G.; Cirolini, Rafael Fernando; Feuillet, Diane; Finoguenov, Alexis; Fleming, Scott W.; Font-Ribera, Andreu; Freischlad, Gordon; Frinchaboy, Peter; Fu, Hai; Gómez Maqueo Chew, Yilen; Galbany, Lluís; García Pérez, Ana E.; Garcia-Dias, R.; García-Hernández, D. A.; Garma Oehmichen, Luis Alberto; Gaulme, Patrick; Gelfand, Joseph; Gil-Marín, Héctor; Gillespie, Bruce A.; Goddard, Daniel; González Hernández, Jonay I.; Gonzalez-Perez, Violeta; Grabowski, Kathleen; Green, Paul J.; Grier, Catherine J.; Gueguen, Alain; Guo, Hong; Guy, Julien; Hagen, Alex; Hall, Patrick; Harding, Paul; Hasselquist, Sten; Hawley, Suzanne; Hayes, Christian R.; Hearty, Fred; Hekker, Saskia; Hernandez, Jesus; Hernandez Toledo, Hector; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Hou, Jiamin; Hsieh, Bau-Ching; Hunt, Jason A. S.; Hutchinson, Timothy A.; Hwang, Ho Seong; Jimenez Angel, Camilo Eduardo; Johnson, Jennifer A.; Jones, Amy; Jönsson, Henrik; Jullo, Eric; Sakil Khan, Fahim; Kinemuchi, Karen; Kirkby, David; Kirkpatrick, Charles C., IV; Kitaura, Francisco-Shu; Knapp, Gillian R.; Kneib, Jean-Paul; Kollmeier, Juna A.; Lacerna, Ivan; Lane, Richard R.; Lang, Dustin; Law, David R.; Le Goff, Jean-Marc; Lee, Young-Bae; Li, Hongyu; Li, Cheng; Lian, Jianhui; Liang, Yu; Lima, Marcos; Lin, Lihwai; Long, Dan; Lucatello, Sara; Lundgren, Britt; Mackereth, J. Ted; MacLeod, Chelsea L.; Mahadevan, Suvrath; Geimba Maia, Marcio Antonio; Majewski, Steven; Manchado, Arturo; Maraston, Claudia; Mariappan, Vivek; Marques-Chaves, Rui; Masseron, Thomas; Masters, Karen L.; McDermid, Richard M.; McGreer, Ian D.; Melendez, Matthew; Meneses-Goytia, Sofia; Merloni, Andrea; Merrifield, Michael R.; Meszaros, Szabolcs; Meza, Andres; Minchev, Ivan; Minniti, Dante; Mueller, Eva-Maria; Muller-Sanchez, Francisco; Muna, Demitri; Muñoz, Ricardo R.; Myers, Adam D.; Nair, Preethi; Nandra, Kirpal; Ness, Melissa; Newman, Jeffrey A.; Nichol, Robert C.; Nidever, David L.; Nitschelm, Christian; Noterdaeme, Pasquier; O’Connell, Julia; Oelkers, Ryan James; Oravetz, Audrey; Oravetz, Daniel; Aquino Ortíz, Erik; Osorio, Yeisson; Pace, Zach; Padilla, Nelson; Palanque-Delabrouille, Nathalie; Alonso Palicio, Pedro; Pan, Hsi-An; Pan, Kaike; Parikh, Taniya; Pâris, Isabelle; Park, Changbom; Peirani, Sebastien; Pellejero-Ibanez, Marcos; Penny, Samantha; Percival, Will J.; Perez-Fournon, Ismael; Petitjean, Patrick; Pieri, Matthew M.; Pinsonneault, Marc; Pisani, Alice; Prada, Francisco; Prakash, Abhishek; Queiroz, Anna Bárbara de Andrade; Raddick, M. Jordan; Raichoor, Anand; Barboza Rembold, Sandro; Richstein, Hannah; Riffel, Rogemar A.; Riffel, Rogério; Rix, Hans-Walter; Robin, Annie C.; Rodríguez Torres, Sergio; Román-Zúñiga, Carlos; Ross, Ashley J.; Rossi, Graziano; Ruan, John; Ruggeri, Rossana; Ruiz, Jose; Salvato, Mara; Sánchez, Ariel G.; Sánchez, Sebastián F.; Sanchez Almeida, Jorge; Sánchez-Gallego, José R.; Santana Rojas, Felipe Antonio; Santiago, Basílio Xavier; Schiavon, Ricardo P.; Schimoia, Jaderson S.; Schlafly, Edward; Schlegel, David; Schneider, Donald P.; Schuster, William J.; Schwope, Axel; Seo, Hee-Jong; Serenelli, Aldo; Shen, Shiyin; Shen, Yue; Shetrone, Matthew; Shull, Michael; Silva Aguirre, Víctor; Simon, Joshua D.; Skrutskie, Mike; Slosar, Anže; Smethurst, Rebecca; Smith, Verne; Sobeck, Jennifer; Somers, Garrett; Souter, Barbara J.; Souto, Diogo; Spindler, Ashley; Stark, David V.; Stassun, Keivan; Steinmetz, Matthias; Stello, Dennis; Storchi-Bergmann, Thaisa; Streblyanska, Alina; Stringfellow, Guy S.; Suárez, Genaro; Sun, Jing; Szigeti, Laszlo; Taghizadeh-Popp, Manuchehr; Talbot, Michael S.; Tang, Baitian; Tao, Charling; Tayar, Jamie; Tembe, Mita; Teske, Johanna; Thakar, Aniruddha R.; Thomas, Daniel; Tissera, Patricia; Tojeiro, Rita; Tremonti, Christy; Troup, Nicholas W.; Urry, Meg; Valenzuela, O.; van den Bosch, Remco; Vargas-González, Jaime; Vargas-Magaña, Mariana; Vazquez, Jose Alberto; Villanova, Sandro; Vogt, Nicole; Wake, David; Wang, Yuting; Weaver, Benjamin Alan; Weijmans, Anne-Marie; Weinberg, David H.; Westfall, Kyle B.; Whelan, David G.; Wilcots, Eric; Wild, Vivienne; Williams, Rob A.; Wilson, John; Wood-Vasey, W. M.; Wylezalek, Dominika; Xiao, Ting; Yan, Renbin; Yang, Meng; Ybarra, Jason E.; Yèche, Christophe; Zakamska, Nadia; Zamora, Olga; Zarrouk, Pauline; Zasowski, Gail; Zhang, Kai; Zhao, Cheng; Zhao, Gong-Bo; Zheng, Zheng; Zheng, Zheng; Zhou, Zhi-Min; Zhu, Guangtun; Zinn, Joel C.; Zou, Hu

    2018-04-01

    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as “The Cannon” and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.

  6. NASA'S Great Observatories

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Why are space observatories important? The answer concerns twinkling stars in the night sky. To reach telescopes on Earth, light from distant objects has to penetrate Earth's atmosphere. Although the sky may look clear, the gases that make up our atmosphere cause problems for astronomers. These gases absorb the majority of radiation emanating from celestial bodies so that it never reaches the astronomer's telescope. Radiation that does make it to the surface is distorted by pockets of warm and cool air, causing the twinkling effect. In spite of advanced computer enhancement, the images finally seen by astronomers are incomplete. NASA, in conjunction with other countries' space agencies, commercial companies, and the international community, has built observatories such as the Hubble Space Telescope, the Compton Gamma Ray Observatory, and the Chandra X-ray Observatory to find the answers to numerous questions about the universe. With the capabilities the Space Shuttle provides, scientist now have the means for deploying these observatories from the Shuttle's cargo bay directly into orbit.

  7. The Palomar-Quest Synoptic Sky Survey

    NASA Astrophysics Data System (ADS)

    Mahabal, A.; Djorgovski, S. G.; Graham, M.; Williams, R.; Granett, B.; Bogosavljevic, M.; Baltay, C.; Rabinowitz, D.; Bauer, A.; Andrews, P.; Morgan, N.; Snyder, J.; Ellman, N.; Brunner, R.; Rengstorf, A. W.; Musser, J.; Gebhard, M.; Mufson, S.

    2003-12-01

    Exploration of the time domain is rapidly becoming one of the most exciting areas of astronomy. The Palomar-Quest synoptic sky survey has recently started producing a steady stream of data. In driftscan mode the survey covers Declination strips 4.6 deg wide, between -25 and +30 deg, at least twice in each of the two filter sets, one Johnson-Cousin's UBRI and one SDSS r'i'z'z', at a rate of about 500 square degrees per night. The scans are separated by time baselines of days to months, and we anticipate that they will extend to multi-year time scales over the next 3 to 5 years or beyond. The unprecedented amount of data makes this the largest synoptic survey of its kind both in terms of area covered and depth. We would search for both variable and transient objects, including supernovae, variable AGN, GRB orphan afterglows, cataclysmic variables, interesting stellar flares, novae, other types of variable stars, and possibly even entirely new types of objects or phenomena. We are in the process of designing a real-time data reduction pipeline which would enable a rapid discovery and spectroscopic follow-up of transients and other intersting objects. This survey can be seen as a precursor for the even larger synoptic sky surveys with LSST and PanSTARRS.

  8. THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smee, Stephen A.; Gunn, James E.; Uomoto, Alan

    2013-07-12

    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measuremore » redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near ultraviolet to the near infrared, with a resolving power R = \\lambda/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 < \\lambda < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.« less

  9. Distribution to the Astronomy Community of the Compressed Digitized Sky Survey

    NASA Technical Reports Server (NTRS)

    Postman, Marc

    1996-01-01

    The Space Telescope Science Institute has compressed an all-sky collection of ground-based images and has printed the data on a two volume, 102 CD-ROM disc set. The first part of the survey (containing images of the southern sky) was published in May 1994. The second volume (containing images of the northern sky) was published in January 1995. Software which manages the image retrieval is included with each volume. The Astronomical Society of the Pacific (ASP) is handling the distribution of the lOx compressed data and has sold 310 sets as of October 1996. ASP is also handling the distribution of the recently published 100x version of the northern sky survey which is publicly available at a low cost. The target markets for the 100x compressed data set are the amateur astronomy community, educational institutions, and the general public. During the next year, we plan to publish the first version of a photometric calibration database which will allow users of the compressed sky survey to determine the brightness of stars in the images.

  10. Distribution to the Astronomy Community of the Compressed Digitized Sky Survey

    NASA Astrophysics Data System (ADS)

    Postman, Marc

    1996-03-01

    The Space Telescope Science Institute has compressed an all-sky collection of ground-based images and has printed the data on a two volume, 102 CD-ROM disc set. The first part of the survey (containing images of the southern sky) was published in May 1994. The second volume (containing images of the northern sky) was published in January 1995. Software which manages the image retrieval is included with each volume. The Astronomical Society of the Pacific (ASP) is handling the distribution of the lOx compressed data and has sold 310 sets as of October 1996. ASP is also handling the distribution of the recently published 100x version of the northern sky survey which is publicly available at a low cost. The target markets for the 100x compressed data set are the amateur astronomy community, educational institutions, and the general public. During the next year, we plan to publish the first version of a photometric calibration database which will allow users of the compressed sky survey to determine the brightness of stars in the images.

  11. Very large radio surveys of the sky

    PubMed Central

    Condon, J. J.

    1999-01-01

    Recent advances in electronics and computing have made possible a new generation of large radio surveys of the sky that yield an order-of-magnitude higher sensitivity and positional accuracy. Combined with the unique properties of the radio universe, these quantitative improvements open up qualitatively different and exciting new scientific applications of radio surveys. PMID:10220365

  12. The AST3 controlling and operating software suite for automatic sky survey

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Shang, Zhaohui; Ma, Bin; Hu, Keliang

    2016-07-01

    We have developed a specialized software package, called ast3suite, to achieve the remote control and automatic sky survey for AST3 (Antarctic Survey Telescope) from scratch. It includes several daemon servers and many basic commands. Each program does only one single task, and they work together to make AST3 a robotic telescope. A survey script calls basic commands to carry out automatic sky survey. Ast3suite was carefully tested in Mohe, China in 2013 and has been used at Dome, Antarctica in 2015 and 2016 with the real hardware for practical sky survey. Both test results and practical using showed that ast3suite had worked very well without any manual auxiliary as we expected.

  13. IRAS sky survey atlas: Explanatory supplement

    NASA Technical Reports Server (NTRS)

    Wheelock, S. L.; Gautier, T. N.; Chillemi, J.; Kester, D.; Mccallon, H.; Oken, C.; White, J.; Gregorich, D.; Boulanger, F.; Good, J.

    1994-01-01

    This Explanatory Supplement accompanies the IRAS Sky Survey Atlas (ISSA) and the ISSA Reject Set. The first ISSA release in 1991 covers completely the high ecliptic latitude sky, absolute value of beta is greater than 50 deg, with some coverage down to the absolute value of beta approx. equal to 40 deg. The second ISSA release in 1992 covers ecliptic latitudes of 50 deg greater than the absolute value of beta greater than 20 deg, with some coverage down to the absolute value of beta approx. equal to 13 deg. The remaining fields covering latitudes within 20 deg of the ecliptic plane are of reduced quality compared to the rest of the ISSA fields and therefore are released as a separate IPAC product, the ISSA Reject Set. The reduced quality is due to contamination by zodiacal emission residuals. Special care should be taken when using the ISSA Reject images. In addition to information on the ISSA images, some information is provided in this Explanatory Supplement on the IRAS Zodiacal History File (ZOHF), Version 3.0, which was described in the December 1988 release memo. The data described in this Supplement are available at the National Space Science Data Center (NSSDC) at the Goddard Space Flight Center. The interested reader is referred to the NSSDC for access to the IRAS Sky Survey Atlas (ISSA).

  14. From Sky to Archive: Long Term Management of Sky Survey Data

    NASA Astrophysics Data System (ADS)

    Darch, Peter T.; Sands, Ashley E.; Borgman, Christine; Golshan, Milena S.; Traweek, Sharon

    2017-01-01

    Sky survey data may remain scientifically valuable long beyond the end of a survey’s operational period, both for continuing inquiry and for calibrating and testing instruments for subsequent generations of surveys. Astronomy infrastructure has many stakeholders, including those concerned with data management. Research libraries are increasingly partnering with scholars to sustain access to data.The Sloan Digital Sky Survey (SDSS) was among the first major scientific projects to partner with libraries in this way, embarking on a data transfer process with two university libraries. We report on a qualitative case study of this process.Ideally, long-term sustainability of sky survey data would be a key part of planning and construction, but rarely does this occur. Teams are under pressure to deliver a project on time and on budget that produces high-quality data during its operational period, leaving few resources available to plan long-term data management. The difficulty of planning is further compounded by the complexity of predicting circumstances and needs of the astronomy community in future decades. SDSS team members regarded libraries, long-lived institutions concerned with access to scholarship, as a potential solution to long-term data sustainability.As the SDSS data transfer was the first of this scale attempted - 160 TB of data - astronomers and library staff were faced with scoping the range of activities involved. They spent two years planning this five-year process. While successful overall as demonstration projects, the libraries encountered many obstacles. We found all parties experienced difficulty in articulating their notions of “scientific data,” “archiving,” “serving,” and “providing access” to the datasets. Activities and interpretations of the data transfer process varied by institutional motivations for participation and by available infrastructure. We conclude several, rather than a single, “library solutions” for long

  15. Under Connecticut Skies: Exploring 100 Years of Astronomy at Van Vleck Observatory in Middletown, Connecticut

    NASA Astrophysics Data System (ADS)

    Kilgard, Roy E.; Williams, Amrys; Erickson, Paul; Herbst, William; Redfield, Seth

    2017-01-01

    Under Connecticut Skies examines the history of astronomy at Van Vleck Observatory, located on the campus of Wesleyan University in Middletown, Connecticut. Since its dedication in June of 1916, Van Vleck has been an important site of astronomical research, teaching, and public outreach. Over a thousand visitors pass through the observatory each year, and regular public observing nights happen year-round in cooperation with the Astronomical Society of Greater Hartford. Our project explores the place-based nature of astronomical research, the scientific instruments, labor, and individuals that have connected places around the world in networks of observation, and the broader history of how observational astronomy has linked local people, amateur observers, professional astronomers, and the tools and objects that have facilitated their work under Connecticut’s skies over the past 100 years. Our research team has produced a historical exhibition to help commemorate the observatory’s centennial that opened to the public in May of 2016. Our work included collecting, documenting, and interpretting this history through objects, archival documents, oral histories, photographs, and more. The result is both a museum and a working history "laboratory" for use by student and professional researchers. In addition to the exhibit itself, we have engaged in new interpretive programs to help bring the history of astronomy to life. Future work will include digitization of documents and teaching slides, further collection of oral histories, and expanding the collection to the web for use by off-site researches.

  16. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1982-01-01

    This artist's conception depicts the High Energy Astronomy Observatory (HEAO)-1 in orbit. The first observatory, designated HEAO-1, was launched on August 12, 1977 aboard an Atlas/Centaur launch vehicle and was designed to survey the sky for additional x-ray and gamma-ray sources as well as pinpointing their positions. The HEAO-1 was originally identified as HEAO-A but the designation was changed once the spacecraft achieved orbit. The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. Hardware support for the imaging instruments was provided by American Science and Engineeing. The HEAO spacecraft were built by TRW, Inc. under project management of the Marshall Space Flight Center.

  17. KELT RR Lyrae Variable Stars Observed by NKU Schneider and Michigan State Observatories

    NASA Astrophysics Data System (ADS)

    De Lee, Nathan M.; Brueneman, Stacy; Hicks, Logan; Russell, Neil; Kinemuchi, Karen; Pepper, Joshua; Rodriguez, Joseph; Paegert, Martin; Smith, Horace A.

    2017-01-01

    In this poster we will discuss our ongoing program to use extant light curves from the Kilodegree Extremely Little Telescope (KELT) survey to find and characterize RR Lyrae (RRL) stars in the disk and inner halo of the Milky Way. RRL stars are of particular interest because they are standard candles and can be used to map out structure in the galaxy. The periods and shape of RRL light curves also contain information about their Oosterhoff type, which can probe galactic formation history, and metallicity respectively. Although there have been several large photometric surveys for RR Lyrae in the nearby galaxy (OGLE, NSVS, ASAS, and MACHO to name a few), they have each been limited in either sky coverage or number of epochs. The KELT survey represents a new generation of surveys that has many epochs over a large portion of the sky. KELT samples over 70% of the entire sky, and has a long-time-baseline of up to 11 years with a very high cadence rate of less than 20 minutes. This translates to upwards of 11,000 epochs per light curve with completeness out to 3 kpc from the Sun. This poster will present follow-up multi-color photometry taken of RR Lyrae candidate stars found in the KELT survey. These stars were observed using an 11inch telescope at the NKU Schneider Observatory. We also have archival photometry of these stars from the Michigan State Observatory. We will discuss photometric accuracies, cadence, and initial analysis of these stars. We will also discuss the capabilities of our new observatory as well as future follow-up and analysis plans.

  18. Site Protection Program and Progress Report of Ali Observatory, Tibet

    NASA Astrophysics Data System (ADS)

    Yao, Yongqiang; Zhou, Yunhe; Wang, Xiaohua; He, Jun; Zhou, Shu

    2015-08-01

    The Ali observatory, Tibet, is a promising new site identified through ten year site survey over west China, and it is of significance to establish rules of site protection during site development. The site protection program is described with five aspects: site monitoring, technical support, local government support, specific organization, and public education. The long-term sky brightness monitoring is ready with site testing instruments and basic for light pollution measurement; the monitoring also includes directions of main light sources, providing periodical reports and suggestions for coordinating meetings. The technical supports with institutes and manufacturers help to publish lighting standards and replace light fixtures; the research pays special attention to the blue-rich sources, which impact the important application of high altitude sites. An official leading group towards development and protection of astronomical resources has been established by Ali government; one of its tasks is to issue regulations against light pollution, including special restrictions of airport, mine, and winter heating, and to supervise lighting inspection and rectification. A site protection office under the official group and local astronomical society are organized by Ali observatory; the office can coordinate in government levels and promote related activities. A specific website operated by the protection office releases activity propaganda, evaluation results, and technical comparison with other observatories. Both the site protection office and Ali observatory take responsibility for public education, including popular science lectures, light pollution and energy conservation education. Ali Night Sky Park has been constructed and opens in 2014, and provides a popular place and observational experience. The establishment of Ali Observatory and Night Sky Park brings unexpected social influence, and the starry sky trip to Ali becomes a new format of culture

  19. The National Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Hanisch, Robert J.

    2001-06-01

    The National Virtual Observatory is a distributed computational facility that will provide access to the ``virtual sky''-the federation of astronomical data archives, object catalogs, and associated information services. The NVO's ``virtual telescope'' is a common framework for requesting, retrieving, and manipulating information from diverse, distributed resources. The NVO will make it possible to seamlessly integrate data from the new all-sky surveys, enabling cross-correlations between multi-Terabyte catalogs and providing transparent access to the underlying image or spectral data. Success requires high performance computational systems, high bandwidth network services, agreed upon standards for the exchange of metadata, and collaboration among astronomers, astronomical data and information service providers, information technology specialists, funding agencies, and industry. International cooperation at the onset will help to assure that the NVO simultaneously becomes a global facility. .

  20. VizieR Online Data Catalog: Northern Sky Variability Survey (Wozniak+, 2004)

    NASA Astrophysics Data System (ADS)

    Wozniak, P. R.; Vestrand, W. T.; Akerlof, C. W.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Kehoe, R.; Kinemuchi, K.; Lee, B. C.; Marshall, S.; McGowan, K. E.; McKay, T. A.; Rykoff, E. S.; Smith, D. A.; Szymanski, J.; Wren, J.

    2004-11-01

    The Northern Sky Variability Survey (NSVS) is a temporal record of the sky over the optical magnitude range from 8 to 15.5. It was conducted in the course of the first-generation Robotic Optical Transient Search Experiment (ROTSE-I) using a robotic system of four comounted unfiltered telephoto lenses equipped with CCD cameras. The survey was conducted from Los Alamos, New Mexico, and primarily covers the entire northern sky. Some data in southern fields between declinations 0{deg} and -38{deg} are also available, although with fewer epochs and noticeably lesser quality. The NSVS contains light curves for approximately 14 million objects. With a 1-yr baseline and typically 100-500 measurements per object, the NSVS is the most extensive record of stellar variability across the bright sky available today. In a median field, bright unsaturated stars attain a point-to-point photometric scatter of ~0.02mag and position errors within 2. At Galactic latitudes |b|<20{deg}, the data quality is limited by severe blending due to the ~14" pixel size. We present basic characteristics of the data set and describe data collection, analysis, and distribution. All NSVS photometric measurements are available for on-line public access from the Sky Database for Objects in Time-Domain (SkyDOT) at Los Alamos National Laboratory. Copies of the full survey photometry may also be requested on tape. (7 data files).

  1. Synoptic Sky Surveys: Lessons Learned and Challenges Ahead

    NASA Astrophysics Data System (ADS)

    Djorgovski, Stanislav G.; CRTS Team

    2014-01-01

    A new generation of synoptic sky surveys is now opening the time domain for a systematic exploration, presenting both great new scientific opportunities as well as the challenges. These surveys are touching essentially all subfields of astronomy, producing large statistical samples of the known types of objects and events (e.g., SNe, AGN, variable stars of many kinds), and have already uncovered previously unknown subtypes of these (e.g., rare or peculiar types of SNe). They are generating new science now, and paving the way for even larger surveys to come, e.g., the LSST. Our ability to fully exploit such forthcoming facilities depends critically on the science, methodology, and experience that are being accumulated now. Among the outstanding challenges the foremost is our ability to conduct an effective follow-up of the interesting events discovered by the surveys in any wavelength regime. The follow-up resources, especially spectroscopy, are already be severely limited, and this problem will grow by orders of magnitude. This requires an intelligent down-selection of the most astrophysically interesting events to follow. The first step in that process is an automated, real-time, iterative classification of transient events, that incorporates heterogeneous data from the surveys themselves, archival information (spatial, temporal, and multiwavelength), and the incoming follow-up observations. The second step is an optimal automated event prioritization and allocation of the available follow-up resources that also change in time. Both of these challenges are highly non-trivial, and require a strong cyber-infrastructure based on the Virtual Observatory data grid, and the various astroinformatics efforts now under way. This is inherently an astronomy of telescope-computational systems, that increasingly depends on novel machine learning and artificial intelligence tools. Another arena with a strong potential for discovery is an archival, non-time-critical exploration

  2. ATLAS: A High-cadence All-sky Survey System

    NASA Astrophysics Data System (ADS)

    Tonry, J. L.; Denneau, L.; Heinze, A. N.; Stalder, B.; Smith, K. W.; Smartt, S. J.; Stubbs, C. W.; Weiland, H. J.; Rest, A.

    2018-06-01

    Technology has advanced to the point that it is possible to image the entire sky every night and process the data in real time. The sky is hardly static: many interesting phenomena occur, including variable stationary objects such as stars or QSOs, transient stationary objects such as supernovae or M dwarf flares, and moving objects such as asteroids and the stars themselves. Funded by NASA, we have designed and built a sky survey system for the purpose of finding dangerous near-Earth asteroids (NEAs). This system, the “Asteroid Terrestrial-impact Last Alert System” (ATLAS), has been optimized to produce the best survey capability per unit cost, and therefore is an efficient and competitive system for finding potentially hazardous asteroids (PHAs) but also for tracking variables and finding transients. While carrying out its NASA mission, ATLAS now discovers more bright (m < 19) supernovae candidates than any ground based survey, frequently detecting very young explosions due to its 2 day cadence. ATLAS discovered the afterglow of a gamma-ray burst independent of the high energy trigger and has released a variable star catalog of 5 × 106 sources. This is the first of a series of articles describing ATLAS, devoted to the design and performance of the ATLAS system. Subsequent articles will describe in more detail the software, the survey strategy, ATLAS-derived NEA population statistics, transient detections, and the first data release of variable stars and transient light curves.

  3. Early German Plans for a Southern Observatory

    NASA Astrophysics Data System (ADS)

    Wolfschmidt, Gudrun

    As early as the 18th and 19th centuries, French and English observers were active in South Africa. Around the beginning of the 20th century the Heidelberg astronomer Max Wolf (1863-1932) proposed a southern observatory. In 1907 Hermann Carl Vogel (1841-1907), director of the Astrophysical Observatory Potsdam, suggested a southern station in Spain. His ideas for building an observatory in Windhuk for photographing the sky and measuring the solar constant were taken over by the Göttingen astronomers. In 1910 Karl Schwarzschild (1873-1916), after having visited the observatories in America, pointed out the usefulness of an observatory in South West Africa, where it would have better weather than in Germany and also give access to the southern sky. Seeing tests were begun in 1910 by Potsdam astronomers, but WW I stopped the plans. In 1928 Erwin Finlay-Freundlich (1885-1964), inspired by the Hamburg astronomer Walter Baade (1893-1960), worked out a detailed plan for a southern observatory with a reflecting telescope, spectrographs and an astrograph with an objective prism. Paul Guthnick (1879-1947), director of the Berlin observatory, in cooperation with APO Potsdam and Hamburg, made a site survey to Africa in 1929 and found the conditions in Windhuk to be ideal. Observations were started in the 1930s by Berlin and Breslau astronomers, but were stopped by WW II. In the 1950s, astronomers from Hamburg and The Netherlands renewed the discussion in the framework of European cooperation, and this led to the founding of ESO in 1963, as is well described by Blaauw (1991). Blaauw, Adriaan: ESO's Early History. The European Southern Observatory from Concept to Reality. Garching bei München: ESO 1991.

  4. Night Sky Brightness at San Pedro Martir Observatory

    NASA Astrophysics Data System (ADS)

    Plauchu-Frayn, I.; Richer, M. G.; Colorado, E.; Herrera, J.; Córdova, A.; Ceseña, U.; Ávila, F.

    2017-03-01

    We present optical UBVRI zenith night sky brightness measurements collected on 18 nights during 2013 to 2016 and SQM measurements obtained daily over 20 months during 2014 to 2016 at the Observatorio Astronómico Nacional on the Sierra San Pedro Mártir (OAN-SPM) in México. The UBVRI data is based upon CCD images obtained with the 0.84 m and 2.12 m telescopes, while the SQM data is obtained with a high-sensitivity, low-cost photometer. The typical moonless night sky brightness at zenith averaged over the whole period is U = 22.68, B = 23.10, V = 21.84, R = 21.04, I = 19.36, and SQM = 21.88 {mag} {{arcsec}}-2, once corrected for zodiacal light. We find no seasonal variation of the night sky brightness measured with the SQM. The typical night sky brightness values found at OAN-SPM are similar to those reported for other astronomical dark sites at a similar phase of the solar cycle. We find a trend of decreasing night sky brightness with decreasing solar activity during period of the observations. This trend implies that the sky has become darker by Δ U = 0.7, Δ B = 0.5, Δ V = 0.3, Δ R=0.5 mag arcsec-2 since early 2014 due to the present solar cycle.

  5. The LOFAR Multifrequency Snapshot Sky Survey (MSSS): Status and Results

    NASA Astrophysics Data System (ADS)

    Heald, George; LOFAR Collaboration

    2014-01-01

    The Multifrequency Snapshot Sky Survey (MSSS) is the first large-area survey of the northern sky with the Low Frequency Array (LOFAR). By producing images of the sky at 16 frequencies from 30 to 160 MHz, MSSS probes the low-frequency sky at a sensitivity of order 10 mJy/beam, and angular resolution of 1-2 arcmin or better. It thus dramatically expands the frequency range sampled in high-resolution radio surveys, and, crucially, provides low-frequency spectral information about the detected sources. Using LOFAR's unique multi-beaming mode, the survey requires only a rather modest investment in observing time. MSSS began observations in late 2011, and has nearly completed observations in both frequency components (8 frequencies spanning the 30 to 74 MHz range, and another 8 spanning 120 to 160 MHz). MSSS has driven the initial development of the first production version of LOFAR's automatic Imaging Pipeline and spearheaded efforts aimed at solving some of the ongoing low-frequency calibration challenges. In this contribution, I will briefly review the survey design, including an overview of MSSS science topics. I will also present a status update, highlighting early results from the survey such as an in-depth look at the 100 square degree “MSSS Verification Field,” new sources discovered in MSSS images, and a sneak peek at the full survey area. I will conclude by describing plans for the future of MSSS, including the possibility of reprocessing the data to obtain enhanced data products such as higher resolution imaging and polarization. LOFAR, the Low Frequency Array designed and constructed by ASTRON, has facilities in several countries, that are owned by various parties (each with their own funding sources), and that are collectively operated by the International LOFAR Telescope (ILT) foundation under a joint scientific policy.

  6. KELT RR Lyrae Variable Stars Observed by the NKU Schneider Observatory

    NASA Astrophysics Data System (ADS)

    De Lee, Nathan M.; Russell, Neil; Kinemuchi, Karen; Pepper, Joshua; Rodriguez, Joseph E.; Paegert, Martin

    2016-01-01

    In this poster we will discuss our ongoing program to use extant light curves from the Kilodegree Extremely Little Telescope (KELT) survey to find and characterize RR Lyrae (RRL) stars in the disk and inner halo of the Milky Way. RRL stars are of particular interest because they are standard candles and can be used to map out structure in the galaxy. The periods and shape of RRL light curves also contain information about their Oosterhoff type, which can probe galactic formation history, and metallicity respectively. Although there have been several large photometric surveys for RR Lyrae in the nearby galaxy (OGLE, NSVS, ASAS, and MACHO to name a few), they have each been limited in either sky coverage or number of epochs. The KELT survey represents a new generation of surveys that has many epochs over a large portion of the sky. KELT samples over 60% of the sky in both northern and southern hemispheres, and has a long-time-baseline of 4-10 years with a very high cadence rate of less than 20 minutes. This translates into 4,000 to 10,000+ epochs per light curve with completeness out to 3 kpc from the Sun. This poster will present follow-up data taken of RR Lyrae candidate stars found in the KELT survey. These stars were observed using an 11inch telescope at the NKU Schneider Observatory. We will discuss photometric accuracies, cadence, and initial analysis of these stars. We will also discuss the capabilities of our new observatory as well as future follow-up and analysis plans.

  7. Frequency of College Students' Night-Sky Watching Behaviors

    ERIC Educational Resources Information Center

    Kelly, William E.; Kelly, Kathryn E.; Batey, Jason

    2006-01-01

    College students (N = 112) completed the Noctcaelador Inventory, a measure of psychological attachment to the night-sky, and estimated various night-sky watching related activities: frequency and duration of night-sky watching, astro-tourism, ownership of night-sky viewing equipment, and attendance of observatories or planetariums. The results…

  8. Continuing Long Term Optical and Infrared Reverberation Mapping of 17 Sloan Digital Sky Survey Quasars

    NASA Astrophysics Data System (ADS)

    Gorjian, Varoujan; Barth, Aaron; Brandt, Niel; Dawson, Kyle; Green, Paul; Ho, Luis; Horne, Keith; Jiang, Linhua; McGreer, Ian; Schneider, Donald; Shen, Yue; Tao, Charling

    2018-05-01

    Previous Spitzer reverberation monitoring projects searching for UV/optical light absorbed and re-emitted in the IR by dust have been limited to low luminosity active galactic nuclei (AGN) that could potentially show reverberation within a single cycle ( 1 year). Cycle 11-12's two year baseline allowed for the reverberation mapping of 17 high-luminosity quasars from the Sloan Digital Sky Survey Reverberation Mapping project. We continued this monitoring in Cycle 13 and now propose to extend this program in Cycle 14. By combining ground-based monitoring from Pan-STARRS, CFHT, and Steward Observatory telescopes with Spitzer data we have for the first time detected dust reverberation in quasars. By continuing observations with this unqiue combination of resources we should detect reverberation in more objects and reduce the uncertainties for the remaining sources.

  9. The Wide-Field Infrared Survey Explorer (WISE): Mission Description and Initial On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Wright, Edward L.; Eisenhardt, Peter R. M.; Mainzer, Amy; Ressler, Michael E.; Cutri, Roc M.; Jarrett, Thomas; Kirkpatrick, J. Davy; Padgett, Deborah; McMillan, Robert S.; Skrutskie,Michael; hide

    2010-01-01

    The all sky surveys done by the Palomar Observatory Schmidt, the European Southern Observatory Schmidt, and the United Kingdom Schmidt, the InfraRed Astronomical Satellite and the 2 Micron All Sky Survey have proven to be extremely useful tools for astronomy with value that lasts for decades. The Wide-field Infrared Survey Explorer is mapping the whole sky following its launch on 14 December 2009. WISE began surveying the sky on 14 Jan 2010 and completed its first full coverage of the sky on July 17. The survey will continue to cover the sky a second time until the cryogen is exhausted (anticipated in November 2010). WISE is achieving 5 sigma point source sensitivities better than 0.08, 0.11, 1 and 6 mJy in unconfused regions on the ecliptic in bands centered at wavelengths of 3.4, 4.6, 12 and 22 micrometers. Sensitivity improves toward the ecliptic poles due to denser coverage and lower zodiacal background. The angular resolution is 6.1", 6.4", 6.5" and 12.0" at 3.4, 4.6, 12 and 22 micrometers, and the astrometric precision for high SNR sources is better than 0.15".

  10. The VLA Sky Survey (VLASS): Overview and First Results

    NASA Astrophysics Data System (ADS)

    Myers, Steven T.; VLASS Survey Team, Survey Science Group (SSG)

    2018-01-01

    The VLA Sky Survey (VLASS) is a 5520 hour spectropolarimetric synoptic survey covering the 33885 square degrees of the sky above Declination -40 degrees from 2-4 GHz at 2.5" angular resolution using the upgraded Karl G. Jansky Very Large Array (VLA). Over the survey duration of 7 years, each area of the sky will be covered in 3 epochs spaced 32 months apart, to a projected depth of 0.12mJy/beam rms noise per epoch and 0.07mJy/beam for 3 epochs combined. The VLASS employs on-the-fly mosaicking (OTFM) to rapidly scan the sky with a net speed of approximately 20 sq. degrees per hour. The high-level science goals for the survey include the identification and precise location of radio transients, the measurement of magnetic fields in our galaxy and beyond, and the study of radio emission from galaxies and active galactic nuclei throughout the Universe. The ability of the VLASS to see through dust allows us to unveil phenomena such as hidden cosmic explosions, emission from deep within our galaxy, and supermassive black holes buried within host galaxies.The VLASS was proposed in 2014 by our community-led Survey Science Group (SSG). VLASS Pilot observations were taken in mid-2016, and the first epoch covering half the area (VLASS1.1) commenced in September 2017. The raw data from the VLASS are available in the NRAO archive immediately with no proprietary period. The Basic Data Products (BDP) that will be produced by the survey team are public and will additionally include: calibrated visibility data, quick-look continuum images (with a goal of posting to the archive within 1 week of observation), single-epoch and cumulative combined-epoch images, spectral image cubes, and basic object catalogs. Single-epoch and cumulative images are in intensity and linear polarization (Stokes IQU). In addition to the BDP provided by NRAO and served through the NRAO archive, there are plans for Enhanced Data Products and Services to be provided by the community in partnership with the

  11. The second ROSAT All-Sky Survey source catalogue: the deepest X-ray All-Sky Survey before eROSITA

    NASA Astrophysics Data System (ADS)

    Boller, T.; Freyberg, M.; Truemper, J.

    2014-07-01

    We present the second ROSAT all-sky survey source catalogue (RASS2, (Boller, Freyberg, Truemper 2014, submitted)). The RASS2 is an extension of the ROSAT Bright Source Catalogue (BSC) and the ROSAT Faint Source Catalogue (FSC). The total number of sources in the second RASS catalogue is 124489. The extensions include (i) the supply of new user data products, i.e., X-ray images, X-ray spectra, and X-ray light curves, (ii) a visual screening of each individual detection, (iii) an improved detection algorithm compared to the SASS II processing. This results into an as most as reliable and as most as complete catalogue of point sources detected during the ROSAT Survey observations. We discuss for the first time the intra-day timing and spectral properties of the second RASS catalogue. We find new highly variable sources and we discuss their timing properties. Power law fits have been applied which allows to determine X-ray fluxes, X-ray absorbing columns, and X-ray photon indices. We give access to the second RASS catalogue and the associated data products via a web-interface to allow the community to perform further scientific exploration. The RASS2 catalogue provides the deepest X-ray All-Sky Survey before eROSITA data will become available.

  12. Everyday astronomy @ Sydney Observatory

    NASA Astrophysics Data System (ADS)

    Parello, S. L.

    2008-06-01

    Catering to a broad range of audiences, including many non-English speaking visitors, Sydney Observatory offers everything from school programmes to public sessions, day care activities to night observing, personal interactions to web-based outreach. With a history of nearly 150 years of watching the heavens, Sydney Observatory is now engaged in sharing the wonder with everybody in traditional and innovative ways. Along with time-honoured tours of the sky through two main telescopes, as well as a small planetarium, Sydney Observatory also boasts a 3D theatre, and offers programmes 363 days a year - rain or shine, day and night. Additionally, our website neversleeps, with a blog, YouTube videos, and night sky watching podcasts. And for good measure, a sprinkling of special events such as the incomparable Festival of the Stars, for which most of northern Sydney turns out their lights. Sydney Observatory is the oldest working observatory in Australia, and we're thrilled to be looking forward to our 150th Anniversary next year in anticipation of the International Year of Astronomy immediately thereafter.

  13. The Virtual Observatory: I

    NASA Astrophysics Data System (ADS)

    Hanisch, R. J.

    2014-11-01

    The concept of the Virtual Observatory arose more-or-less simultaneously in the United States and Europe circa 2000. Ten pages of Astronomy and Astrophysics in the New Millennium: Panel Reports (National Academy Press, Washington, 2001), that is, the detailed recommendations of the Panel on Theory, Computation, and Data Exploration of the 2000 Decadal Survey in Astronomy, are dedicated to describing the motivation for, scientific value of, and major components required in implementing the National Virtual Observatory. European initiatives included the Astrophysical Virtual Observatory at the European Southern Observatory, the AstroGrid project in the United Kingdom, and the Euro-VO (sponsored by the European Union). Organizational/conceptual meetings were held in the US at the California Institute of Technology (Virtual Observatories of the Future, June 13-16, 2000) and at ESO Headquarters in Garching, Germany (Mining the Sky, July 31-August 4, 2000; Toward an International Virtual Observatory, June 10-14, 2002). The nascent US, UK, and European VO projects formed the International Virtual Observatory Alliance (IVOA) at the June 2002 meeting in Garching, with yours truly as the first chair. The IVOA has grown to a membership of twenty-one national projects and programs on six continents, and has developed a broad suite of data access protocols and standards that have been widely implemented. Astronomers can now discover, access, and compare data from hundreds of telescopes and facilities, hosted at hundreds of organizations worldwide, stored in thousands of databases, all with a single query.

  14. The Growing Threat of Light Pollution to Ground-Based Observatories

    NASA Astrophysics Data System (ADS)

    Green, Richard F.; Luginbuhl, Christian; Wainscoat, Richard J.; Duriscoe, Dan

    2018-01-01

    With few exceptions, growing sky glow from artificial sources negatively impacts the sky background recorded at major observatories around the world. We report techniques for measuring night sky brightness and extracting the contribution of artificial sky glow at observatories and other protected sites. The increase in artificial ambient light and its changing spectrum with LED replacements is likely to be significant. A compendium of worldwide regulatory approaches to astronomical site protection gives insight on multiple effective strategies.

  15. First Science Verification of the VLA Sky Survey Pilot

    NASA Astrophysics Data System (ADS)

    Cavanaugh, Amy

    2017-01-01

    My research involved analyzing test images by Steve Myers for the upcoming VLA Sky Survey. This survey will cover the entire sky visible from the VLA site in S band (2-4 GHz). The VLA will be in B configuration for the survey, as it was when the test images were produced, meaning a resolution of approximately 2.5 arcseconds. Conducted using On-the-Fly mode, the survey will have a speed of approximately 20 deg2 hr-1 (including overhead). New Python imaging scripts are being developed and improved to process the VLASS images. My research consisted of comparing a continuum test image over S band (from the new imaging scripts) to two previous images of the same region of the sky (from the CNSS and FIRST surveys), as well as comparing the continuum image to single spectral windows (from the new imaging scripts and of the same sky region). By comparing our continuum test image to images from CNSS and FIRST, we tested on-the-Fly mode and the imaging script used to produce our images. Another goal was to test whether individual spectral windows could be used in combination to calculate spectral indices close to those produced over S band (based only on our continuum image). Our continuum image contained 64 sources as opposed to the 99 sources found in the CNSS image. The CNSS image also had lower noise level (0.095 mJy/beam compared to 0.119 mJy/beam). Additionally, when our continuum image was compared to the CNSS image, separation showed no dependence on total flux density (in our continuum image). At lower flux densities, sources in our image were brighter than the same ones in the CNSS image. When our continuum image was compared to the FIRST catalog, the spectral index difference showed no dependence on total flux (in our continuum image). In conclusion, the quality of our images did not completely match the quality of the CNSS and FIRST images. More work is needed in developing the new imaging scripts.

  16. GASS: the Parkes Galactic all-sky survey. II. Stray-radiation correction and second data release

    NASA Astrophysics Data System (ADS)

    Kalberla, P. M. W.; McClure-Griffiths, N. M.; Pisano, D. J.; Calabretta, M. R.; Ford, H. Alyson; Lockman, F. J.; Staveley-Smith, L.; Kerp, J.; Winkel, B.; Murphy, T.; Newton-McGee, K.

    2010-10-01

    Context. The Parkes Galactic all-sky survey (GASS) is a survey of Galactic atomic hydrogen (H i) emission in the southern sky observed with the Parkes 64-m Radio Telescope. The first data release was published by McClure-Griffiths et al. (2009). Aims: We remove instrumental effects that affect the GASS and present the second data release. Methods: We calculate the stray-radiation by convolving the all-sky response of the Parkes antenna with the brightness temperature distribution from the Leiden/Argentine/Bonn (LAB) all sky 21-cm line survey, with major contributions from the 30-m dish of the Instituto Argentino de Radioastronomía (IAR) in the southern sky. Remaining instrumental baselines are corrected using the LAB data for a first guess of emission-free baseline regions. Radio frequency interference is removed by median filtering. Results: After applying these corrections to the GASS we find an excellent agreement with the Leiden/Argentine/Bonn (LAB) survey. The GASS is the highest spatial resolution, most sensitive, and is currently the most accurate H i survey of the Galactic H i emission in the southern sky. We provide a web interface for generation and download of FITS cubes.

  17. Public Outreach at Appalachian State University's Dark Sky Observatory Cline Visitor Center

    NASA Astrophysics Data System (ADS)

    Caton, Daniel B.; Hawkins, L.; Smith, A. B.

    2012-01-01

    With the recent completion of the Cline Visitor Center we have begun a program of public nights at our Dark Sky Observatory's 32-inch telescope. Events are ticketed online using an inexpensive commercial ticketing service and are limited to two groups of 60 visitors per night that arrive for 1.5-hour sessions. We are installing two large (70-inch) flat panel displays in the Center and planning additional exhibits to entertain visitors while they await their turn at the telescope's eyepiece. The facility is fully ADA compliant, with eyepiece access via a DFM Engineering Articulated Relay Eyepiece, and a wheelchair lift if needed. We present some of our experiences in this poster and encourage readers to offer suggestions. The Visitor Center was established with the support of Mr. J. Donald Cline, for which we are very grateful. The telescope was partially funded by the National Science Foundation.

  18. The All-Sky Swift - INTEGRAL X-Ray Survey

    NASA Astrophysics Data System (ADS)

    Michelson, Peter

    All-sky surveys at hard X-ray energies (above 15 keV) have proven to be a powerful technique in detecting Galactic and extragalactic source populations. Most of the radiation at hard X-ray energies originates in non-thermal processes. These processes take place in extreme conditions of gravitational fields, of electromagnetic field, and also in explosive events. Such extreme conditions can be found in the Milk Way in the vicinity of neutron stars, black holes, and supernovae. Also extragalactic sources are known to be hard X-ray emitters like Active Galactic Nuclei (AGNs), blazars, and Clusters of Galaxies. Currently the most sensitive flying hard X-ray detectors are the Burst Alert Telescope (BAT) on board the NASA mission Swift and the INTEGRAL Soft-Gamma Ray Imager (IBIS/ISGRI) on board the ESA mission INTEGRAL. BAT and IBIS/ISGRI are coded- mask telescopes that shed continuously light on the Galactic and the extragalactic source populations. However, coded-mask telescopes suffer from heavy systematic effects (errors) preventing them from reaching their theoretical limiting sensitivity. Furthermore, by design, they block ~50% of the incident photons causing and increase of statistical noise. As a consequence BAT and IBIS/ISGRI are not sensitive enough to detect faint objects. In addition it has been proven that the Galactic survey of these instruments is limited by systematic uncertainties. Therefore, further observations on the Galactic plane will not improve the sensitivity of the survey of BAT and IBIS/ISGRI. In this project we show that it is possible to overcome the limits of BAT and of IBIS/ISGRI by combining their observations in the 18 55 keV energy range. We call it the SIX survey that stands for Swift - INTEGRAL X-ray survey. Two major advantages are obtained by merging the observations of BAT and IBIS/ISGRI: 1) the exposure is greatly enhanced (sum of BAT and IBIS/ISGRI) and therefore the sensitivity is improved; 2) the systematic errors of both

  19. High-Resolution Spectroscopic Study of Extremely Metal-Poor Star Candidates from the SkyMapper Survey

    NASA Astrophysics Data System (ADS)

    Jacobson, Heather R.; Keller, Stefan; Frebel, Anna; Casey, Andrew R.; Asplund, Martin; Bessell, Michael S.; Da Costa, Gary S.; Lind, Karin; Marino, Anna F.; Norris, John E.; Peña, José M.; Schmidt, Brian P.; Tisserand, Patrick; Walsh, Jennifer M.; Yong, David; Yu, Qinsi

    2015-07-01

    The SkyMapper Southern Sky Survey is carrying out a search for the most metal-poor stars in the Galaxy. It identifies candidates by way of its unique filter set which allows for estimation of stellar atmospheric parameters. The set includes a narrow filter centered on the Ca ii K 3933 Å line, enabling a robust estimate of stellar metallicity. Promising candidates are then confirmed with spectroscopy. We present the analysis of Magellan Inamori Kyocera Echelle high-resolution spectroscopy of 122 metal-poor stars found by SkyMapper in the first two years of commissioning observations. Forty-one stars have [{Fe}/{{H}}]≤slant -3.0. Nine have [{Fe}/{{H}}]≤slant -3.5, with three at [{Fe}/{{H}}]∼ -4. A 1D LTE abundance analysis of the elements Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, Ba, and Eu shows these stars have [X/Fe] ratios typical of other halo stars. One star with low [X/Fe] values appears to be “Fe-enhanced,” while another star has an extremely large [Sr/Ba] ratio: \\gt 2. Only one other star is known to have a comparable value. Seven stars are “CEMP-no” stars ([{{C}}/{Fe}]\\gt 0.7, [{Ba}/{Fe}]\\lt 0). 21 stars exhibit mild r-process element enhancements (0.3≤slant [{Eu}/{Fe}]\\lt 1.0), while four stars have [{Eu}/{Fe}]≥slant 1.0. These results demonstrate the ability to identify extremely metal-poor stars from SkyMapper photometry, pointing to increased sample sizes and a better characterization of the metal-poor tail of the halo metallicity distribution function in the future. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  20. Recent Advances and Achievements at The Catalina Sky Survey

    NASA Astrophysics Data System (ADS)

    Leonard, Gregory J.; Christensen, Eric J.; Fuls, Carson; Gibbs, Alex; Grauer, Al; Johnson, Jess A.; Kowalski, Richard; Larson, Stephen M.; Matheny, Rose; Seaman, Rob; Shelly, Frank

    2017-10-01

    The Catalina Sky Survey (CSS) is a NASA-funded project fully dedicated to discover and track near-Earth objects (NEOs). Since its founding nearly 20 years ago CSS remains at the forefront of NEO surveys, and recent improvements in both instrumentation and software have increased both survey productivity and data quality. In 2016 new large-format (10K x 10K) cameras were installed on both CSS survey telescopes, the 1.5-m reflector and the 0.7-m Schmidt, increasing the field of view, and hence nightly sky coverage by 4x and 2.4x respectively. The new cameras, coupled with improvements in the reduction and detection pipelines, and revised sky-coverage strategies have yielded a dramatic upward trend of NEO discovery rates. CSS has also developed a custom adaptive queue manager for scheduling NEO follow-up astrometry using a remotely operated and recently renovated 1-m Cassegrain reflector telescope, improvements that have increased the production of follow-up astrometry for newly discovered NEOs and arc extensions for previously discovered objects by CSS and other surveys. Additionally, reprocessing of archival CSS data (which includes some 46 million individual astrometric measurements) through the new reduction and detection pipeline will allow for improved orbit determinations and increased arc extensions for hundreds of thousands of asteroids. Reprocessed data will soon feed into a new public archive of CSS images and catalog data products made available through NASA’s Planetary Data System (PDS). For the future, CSS is working towards improved NEO follow-up capabilities through a combination of access to larger telescopes, instrument upgrades and follow-up scheduling tools.

  1. Dark Skies: Local Success, Global Challenge

    NASA Astrophysics Data System (ADS)

    Lockwood, G. W.

    2009-01-01

    The Flagstaff, Arizona 1987 lighting code reduced the growth rate of man-made sky glow by a third. Components of the code include requirements for full cutoff lighting, lumens per acre limits in radial zones around observatories, and use of low-pressure sodium monochromatic lighting for roadways and parking lots. Broad public acceptance of Flagstaff's lighting code demonstrates that dark sky preservation has significant appeal and few visibility or public safety negatives. An inventory by C. Luginbuhl et al. of the light output and shielding of a sampling of various zoning categories (municipal, commercial, apartments, single-family residences, roadways, sports facilities, industrial, etc.), extrapolated over the entire city, yields a total output of 139 million lumens. Commercial and industrial sources account for 62% of the total. Outdoor sports lighting increases the total by 24% on summer evenings. Flagstaff's per capita lumen output is 2.5 times greater than the nominal 1,000 lumens per capita assumed by R. Garstang in his early sky glow modeling work. We resolved the discrepancy with respect to Flagstaff's measured sky glow using an improved model that includes substantial near ground attenuation by foliage and structures. A 2008 university study shows that astronomy contributes $250M annually to Arizona's economy. Another study showed that the application of lighting codes throughout Arizona could reduce energy consumption significantly. An ongoing effort led by observatory directors statewide will encourage lighting controls in currently unregulated metropolitan areas whose growing sky glow threatens observatory facilities more than 100 miles away. The national press (New York Times, the New Yorker, the Economist, USA Today, etc.) have publicized dark sky issues but frequent repetition of the essential message and vigorous action will be required to steer society toward darker skies and less egregious waste.

  2. South Galactic Cap u-band Sky Survey (SCUSS): Data Release

    NASA Astrophysics Data System (ADS)

    Zou, Hu; Zhou, Xu; Jiang, Zhaoji; Peng, Xiyan; Fan, Dongwei; Fan, Xiaohui; Fan, Zhou; He, Boliang; Jing, Yipeng; Lesser, Michael; Li, Cheng; Ma, Jun; Nie, Jundan; Shen, Shiyin; Wang, Jiali; Wu, Zhenyu; Zhang, Tianmeng; Zhou, Zhimin

    2016-02-01

    The South Galactic Cap u-band Sky Survey (SCUSS) is a deep u-band imaging survey in the south Galactic cap using the 2.3 m Bok telescope. The survey observations were completed at the end of 2013, covering an area of about 5000 square degrees. We release the data in the region with an area of about 4000 deg2 that is mostly covered by the Sloan digital sky survey. The data products contain calibrated single-epoch images, stacked images, photometric catalogs, and a catalog of star proper motions derived by Peng et al. The median seeing and magnitude limit (5σ) are about 2.″0 and 23.2 mag, respectively. There are about 8 million objects having measurements of absolute proper motions. All the data and related documentations can be accessed through the SCUSS data release website http://batc.bao.ac.cn/Uband/data.html.

  3. The Sixth Data Release of the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Adelman-McCarthy, Jennifer K.; Agüeros, Marcel A.; Allam, Sahar S.; Allende Prieto, Carlos; Anderson, Kurt S. J.; Anderson, Scott F.; Annis, James; Bahcall, Neta A.; Bailer-Jones, C. A. L.; Baldry, Ivan K.; Barentine, J. C.; Bassett, Bruce A.; Becker, Andrew C.; Beers, Timothy C.; Bell, Eric F.; Berlind, Andreas A.; Bernardi, Mariangela; Blanton, Michael R.; Bochanski, John J.; Boroski, William N.; Brinchmann, Jarle; Brinkmann, J.; Brunner, Robert J.; Budavári, Tamás; Carliles, Samuel; Carr, Michael A.; Castander, Francisco J.; Cinabro, David; Cool, R. J.; Covey, Kevin R.; Csabai, István; Cunha, Carlos E.; Davenport, James R. A.; Dilday, Ben; Doi, Mamoru; Eisenstein, Daniel J.; Evans, Michael L.; Fan, Xiaohui; Finkbeiner, Douglas P.; Friedman, Scott D.; Frieman, Joshua A.; Fukugita, Masataka; Gänsicke, Boris T.; Gates, Evalyn; Gillespie, Bruce; Glazebrook, Karl; Gray, Jim; Grebel, Eva K.; Gunn, James E.; Gurbani, Vijay K.; Hall, Patrick B.; Harding, Paul; Harvanek, Michael; Hawley, Suzanne L.; Hayes, Jeffrey; Heckman, Timothy M.; Hendry, John S.; Hindsley, Robert B.; Hirata, Christopher M.; Hogan, Craig J.; Hogg, David W.; Hyde, Joseph B.; Ichikawa, Shin-ichi; Ivezić, Željko; Jester, Sebastian; Johnson, Jennifer A.; Jorgensen, Anders M.; Jurić, Mario; Kent, Stephen M.; Kessler, R.; Kleinman, S. J.; Knapp, G. R.; Kron, Richard G.; Krzesinski, Jurek; Kuropatkin, Nikolay; Lamb, Donald Q.; Lampeitl, Hubert; Lebedeva, Svetlana; Lee, Young Sun; French Leger, R.; Lépine, Sébastien; Lima, Marcos; Lin, Huan; Long, Daniel C.; Loomis, Craig P.; Loveday, Jon; Lupton, Robert H.; Malanushenko, Olena; Malanushenko, Viktor; Mandelbaum, Rachel; Margon, Bruce; Marriner, John P.; Martínez-Delgado, David; Matsubara, Takahiko; McGehee, Peregrine M.; McKay, Timothy A.; Meiksin, Avery; Morrison, Heather L.; Munn, Jeffrey A.; Nakajima, Reiko; Neilsen, Eric H., Jr.; Newberg, Heidi Jo; Nichol, Robert C.; Nicinski, Tom; Nieto-Santisteban, Maria; Nitta, Atsuko; Okamura, Sadanori; Owen, Russell; Oyaizu, Hiroaki; Padmanabhan, Nikhil; Pan, Kaike; Park, Changbom; Peoples, John, Jr.; Pier, Jeffrey R.; Pope, Adrian C.; Purger, Norbert; Raddick, M. Jordan; Re Fiorentin, Paola; Richards, Gordon T.; Richmond, Michael W.; Riess, Adam G.; Rix, Hans-Walter; Rockosi, Constance M.; Sako, Masao; Schlegel, David J.; Schneider, Donald P.; Schreiber, Matthias R.; Schwope, Axel D.; Seljak, Uroš; Sesar, Branimir; Sheldon, Erin; Shimasaku, Kazu; Sivarani, Thirupathi; Allyn Smith, J.; Snedden, Stephanie A.; Steinmetz, Matthias; Strauss, Michael A.; SubbaRao, Mark; Suto, Yasushi; Szalay, Alexander S.; Szapudi, István; Szkody, Paula; Tegmark, Max; Thakar, Aniruddha R.; Tremonti, Christy A.; Tucker, Douglas L.; Uomoto, Alan; Vanden Berk, Daniel E.; Vandenberg, Jan; Vidrih, S.; Vogeley, Michael S.; Voges, Wolfgang; Vogt, Nicole P.; Wadadekar, Yogesh; Weinberg, David H.; West, Andrew A.; White, Simon D. M.; Wilhite, Brian C.; Yanny, Brian; Yocum, D. R.; York, Donald G.; Zehavi, Idit; Zucker, Daniel B.

    2008-04-01

    This paper describes the Sixth Data Release of the Sloan Digital Sky Survey. With this data release, the imaging of the northern Galactic cap is now complete. The survey contains images and parameters of roughly 287 million objects over 9583 deg2, including scans over a large range of Galactic latitudes and longitudes. The survey also includes 1.27 million spectra of stars, galaxies, quasars, and blank sky (for sky subtraction) selected over 7425 deg2. This release includes much more stellar spectroscopy than was available in previous data releases and also includes detailed estimates of stellar temperatures, gravities, and metallicities. The results of improved photometric calibration are now available, with uncertainties of roughly 1% in g, r, i, and z, and 2% in u, substantially better than the uncertainties in previous data releases. The spectra in this data release have improved wavelength and flux calibration, especially in the extreme blue and extreme red, leading to the qualitatively better determination of stellar types and radial velocities. The spectrophotometric fluxes are now tied to point-spread function magnitudes of stars rather than fiber magnitudes. This gives more robust results in the presence of seeing variations, but also implies a change in the spectrophotometric scale, which is now brighter by roughly 0.35 mag. Systematic errors in the velocity dispersions of galaxies have been fixed, and the results of two independent codes for determining spectral classifications and redshifts are made available. Additional spectral outputs are made available, including calibrated spectra from individual 15 minute exposures and the sky spectrum subtracted from each exposure. We also quantify a recently recognized underestimation of the brightnesses of galaxies of large angular extent due to poor sky subtraction; the bias can exceed 0.2 mag for galaxies brighter than r = 14 mag.

  4. Nightscape Photography Reclaims the Natural Sky

    NASA Astrophysics Data System (ADS)

    Tafreshi, Babak

    2015-08-01

    Nightscape photos and timelapse videos, where the Earth & sky are framed together with an astronomical purpose, support the dark skies activities by improving public awareness. TWAN or The World at Night program (www.twanight.org) presents the world's best collection of such landscape astrophotos and aims to introduce the night sky as a part of nature, an essential element of our living environment besides being the astronomers lab. The nightscape images also present views of our civilizations landmarks, both natural and historic sites, against the night-time backdrop of stars, planets, and celestial events. In this context TWAN is a bridge between art, science and culture.TWAN images contribute to programs such as the Dark Sky Parks by the International Dark Sky Association or Starlight reserves by assisting local efforts in better illustrating their dark skies and by producing stunning images that not only educate the local people on their night sky heritage also communicate with the governments that are responsible to support the dark sky area.Since 2009 TWAN organizes the world's largest annual photo contest on nightscape imaging, in collaboration with the Dark Skies Awareness, National Optical Astronomy Observatory, and Astronomers Without Borders. The International Earth & Sky Photo Contest promotes the photography that documents the beauty of natural skies against the problem of light pollution. In 2014 the entries received from about 50 countries and the contest result news was widely published in the most popular sources internationally.*Babak A. Tafreshi is a photographer and science communicator. He is the creator of The World At Night program, and a contributing photographer to the National Geographic, Sky&Telescope magazine, and the European Southern Observatory. http://twanight.org/tafreshi

  5. Dark Skies as a Universal Resource: Citizen Scientists Measuring Sky Brightness

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Isbell, D.; Pompea, S. M.

    2007-12-01

    The international star-hunting event known as GLOBE at Night returned March 8-21, 2007 in two flavors: the classic GLOBE at Night activity incorporating unaided-eye observations which debuted last year, and a new effort to obtain precise measurements of urban dark skies using digital sky-brightness meters. Both flavors of the program were designed to aid in heightening the awareness about the impact of artificial lighting on local environments, and the ongoing loss of a dark night sky as a natural resource for much of the world's population. To make possible the digital GLOBE at Night program, NSF funded 135 low-cost, digital sky-quality meter (manufactured by Unihedron). With these, citizen-scientists took direct measurements of the integrated sky brightness across a wide swath of night sky. Along with related materials developed by the National Optical Astronomy Observatory (NOAO), the meters were distributed to citizen-scientists in 21 U.S. states plus Washington DC, and in 5 other countries, including Chile, where NOAO has a major observatory. The citizen- scientists were selected from teachers, their students, astronomers at mountain-top observatories, International Dark-Sky Association members and staff from 19 small science centers. Most sites had a coordinator, who instructed local educators in the proper use of the meters and develop a plan to share them as widely as possible during the 2-week window. The local teams pooled their data for regional analysis and in some cases shared the results with their schools and local policymakers. Building upon the worldwide participation sparked by the first GLOBE at Night campaign in March 2006, the observations this year approached 8500 (from 60 countries), 85% higher than the number from last year. The success of GLOBE at Night 2007 is a major step toward the International Year of Astronomy in 2009, when one goal is to make the digital data collection into a worldwide activity. In this presentation, we will outline

  6. The UKIRT Infrared Deep Sky Survey (UKIDSS)

    NASA Astrophysics Data System (ADS)

    Lawrence, A.; Warren, S. J.; Almaini, O.; Edge, A. C.; Hambly, N. C.; Jameson, R. F.; Lucas, P.; Casali, M.; Adamson, A.; Dye, S.; Emerson, J. P.; Foucaud, S.; Hewett, P.; Hirst, P.; Hodgkin, S. T.; Irwin, M. J.; Lodieu, N.; McMahon, R. G.; Simpson, C.; Smail, I.; Mortlock, D.; Folger, M.

    2007-08-01

    We describe the goals, design, implementation, and initial progress of the UKIRT Infrared Deep Sky Survey (UKIDSS), a seven-year sky survey which began in 2005 May. UKIDSS is being carried out using the UKIRT Wide Field Camera (WFCAM), which has the largest étendue of any infrared astronomical instrument to date. It is a portfolio of five survey components covering various combinations of the filter set ZYJHK and H2. The Large Area Survey, the Galactic Clusters Survey, and the Galactic Plane Survey cover approximately 7000deg2 to a depth of K ~ 18; the Deep Extragalactic Survey covers 35deg2 to K ~ 21, and the Ultra Deep Survey covers 0.77deg2 to K ~ 23. Summed together UKIDSS is 12 times larger in effective volume than the 2MASS survey. The prime aim of UKIDSS is to provide a long-term astronomical legacy data base; the design is, however, driven by a series of specific goals - for example, to find the nearest and faintest substellar objects, to discover Population II brown dwarfs, if they exist, to determine the substellar mass function, to break the z = 7 quasar barrier; to determine the epoch of re-ionization, to measure the growth of structure from z = 3 to the present day, to determine the epoch of spheroid formation, and to map the Milky Way through the dust, to several kpc. The survey data are being uniformly processed. Images and catalogues are being made available through a fully queryable user interface - the WFCAM Science Archive (http://surveys.roe.ac.uk/wsa). The data are being released in stages. The data are immediately public to astronomers in all ESO member states, and available to the world after 18 months. Before the formal survey began, UKIRT and the UKIDSS consortia collaborated in obtaining and analysing a series of small science verification (SV) projects to complete the commissioning of the camera. We show some results from these SV projects in order to demonstrate the likely power of the eventual complete survey. Finally, using the data

  7. Asteroid Lightcurve Analysis at the Oakley Southern Sky Observatory: 2009 October thru 2010 April

    NASA Astrophysics Data System (ADS)

    Albers, Kenda; Kragh, Katherine; Monnier, Adam; Pligge, Zachary; Stolze, Kellen; West, Josh; Yim, Arnold; Ditteon, Richard

    2010-10-01

    Photometric data for 44 asteroids were collected over 54 nights of observing during 2009 October thru 2010 April at the Oakley Southern Sky Observatory. The asteroids were: 826 Henrika, 918 Itha, 983 Gunila, 1049 Gotho, 1167 Dubiago, 1181 Lilith, 1227 Geranium, 1604 Tombaugh, 1636 Porter, 1826 Miller, 1977 Shura, 2004 Lexell, 2196 Ellicott, 2303 Retsina, 2307 Garuda, 2601 Bologna, 2609 Kiril-Metodi, 2851 Harbin, 2881 Meiden, 3118 Claytonsmith, 3324 Avsyuk, 3640 Gostin, 4207 Chernova, 4536 Drewpinsky, 4838 Billmclaughlin, 5235 Jean-Loup, 5274 Degewij, 5240 Kwasan, (6019) 1991 RO6, 6091 Mitsuru, 6961 Ashitaka, (7111) 1985 QA1, (8228) 1996 YB2, 11017 Billputnam, (13023) 1988 XT1, (14741) 2000 EQ49, 15938 Bohnenblust, 16463 Nayoro, (17633) 1996 JU, (21023) 1989 DK, 21558 Alisonliu, (21594) 1998 VP31, (34459) 2000 SC91, and (189099) 2001 RO.

  8. X ray observations of late-type stars using the ROSAT all-sky survey

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.; Fleming, Thomas A.

    1992-03-01

    The ROSAT mission made the first x ray survey of the entire sky using an imaging detector. Although ROSAT is a joint NASA/German project and involves direct American participation during its second phase of pointed observations, the all-sky survey remains the sole property of the German investigators. NASA grant represented the first use of ROSAT data analysis funds to support direct American participation in the ROSAT all-sky survey. The project involved a collaborative agreement between the Joint Institute for Laboratory Astrophysics (JILA) and the Max-Planck-Institut fur Extraterrestrische Physik (MPE) where JILA supplied MPE with a post-doctoral research associate with experience in the field of stellar (coronal) x ray emission to work within their ROSAT group. In return, members of the cool star research group at JILA were given the opportunity to collaborate on projects involving ROSAT all-sky survey data. Both sides have benefitted (and still benefit) from this arrangement since MPE suffers from a shortage of researchers who are interested in x ray emission from 'normal' stars and white dwarfs. MPE has also drawn upon experience in optical identification of x ray sources from the Einstein Extended Medium Sensitivity Survey in planning their own identification strategies for the ROSAT all-sky survey. The JILA cool stars group has benefitted since access to all-sky survey data has expanded the scope of their already extensive research programs involving multiwavelength observations of late-type stars. ROSAT was successfully launched on 1 June 1990 and conducted the bulk of the survey from 30 July 1990 to 25 January 1991. Data gaps in the survey have subsequently been made up. At the time of this writing (February 1992), the survey data have been processed once with the Standard Analysis Software System (SASS). A second processing will soon begin with improvements made to the SASS to correct errors and bugs found while carrying out scientific projects with data

  9. X ray observations of late-type stars using the ROSAT all-sky survey

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.; Fleming, Thomas A.

    1992-01-01

    The ROSAT mission made the first x ray survey of the entire sky using an imaging detector. Although ROSAT is a joint NASA/German project and involves direct American participation during its second phase of pointed observations, the all-sky survey remains the sole property of the German investigators. NASA grant represented the first use of ROSAT data analysis funds to support direct American participation in the ROSAT all-sky survey. The project involved a collaborative agreement between the Joint Institute for Laboratory Astrophysics (JILA) and the Max-Planck-Institut fur Extraterrestrische Physik (MPE) where JILA supplied MPE with a post-doctoral research associate with experience in the field of stellar (coronal) x ray emission to work within their ROSAT group. In return, members of the cool star research group at JILA were given the opportunity to collaborate on projects involving ROSAT all-sky survey data. Both sides have benefitted (and still benefit) from this arrangement since MPE suffers from a shortage of researchers who are interested in x ray emission from 'normal' stars and white dwarfs. MPE has also drawn upon experience in optical identification of x ray sources from the Einstein Extended Medium Sensitivity Survey in planning their own identification strategies for the ROSAT all-sky survey. The JILA cool stars group has benefitted since access to all-sky survey data has expanded the scope of their already extensive research programs involving multiwavelength observations of late-type stars. ROSAT was successfully launched on 1 June 1990 and conducted the bulk of the survey from 30 July 1990 to 25 January 1991. Data gaps in the survey have subsequently been made up. At the time of this writing (February 1992), the survey data have been processed once with the Standard Analysis Software System (SASS). A second processing will soon begin with improvements made to the SASS to correct errors and bugs found while carrying out scientific projects with data

  10. The Two Micron All Sky Survey

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol

    The 2 Micron All Sky Survey (2MASS) project, a collaboration between the University of Massachusetts (Dr. Mike Skrutskie, PI) and the Infrared Processing and Analysis Center, JPL/Caltech funded primarily by NASA and the NSF, will scan the entire sky utilizing two new, highly automated 1.3m telescopes at Mt. Hopkins, AZ and at CTIO, Chile. Each telescope simultaneously scans the sky at J, H and Ks with a three channel camera using 256x256 arrays of HgCdTe detectors to detect point sources brighter than about 1 mJy (to SNR=10), with a pixel size of 2.0 arcseconds. The data rate is $\\sim 19$ Gbyte per night, with a total processed data volume of 13 Tbytes of images and 0.5 Tbyte of tabular data. The 2MASS data is archived nightly into the Infrared Science Information System at IPAC, which is based on an Informix database engine, judged at the time of purchase to have the best commercially available indexing and parallelization flexibility, and a 5 Tbyte-capacity RAID multi-threaded disk system with multi-server shared disk architecture. I will discuss the challenges of processing and archiving the 2MASS data, and of supporting intelligent query access to them by the astronomical community across the net, including possibilities for cross-correlation with other remote data sets.

  11. The MEarth project: an all-sky survey for transiting Earth-like exoplanets orbiting nearby M-dwarfs

    NASA Astrophysics Data System (ADS)

    Irwin, Jonathan; Berta-Thompson, Zachory K.; Charbonneau, David; Dittmann, Jason; Newton, Elisabeth R.

    2015-01-01

    The MEarth project is an operational all-sky survey searching for transiting Earth-like exoplanets around 3,000 of the closest mid-to-late M-dwarfs. These will be among the best planets in their size class for atmospheric characterization using present day and near-future instruments such as HST, JWST and ground-based Extremely Large Telescopes (ELTs), by virtue of the large observational signal sizes afforded by their small and bright host stars. We present an update on the status and recent scientific results of the survey from our two observing stations: MEarth-North at Fred Lawrence Whipple Observatory, Mount Hopkins, Arizona, and MEarth-South at Cerro Tololo Inter-American Observatory, Chile. MEarth-North discovered the transiting mini-Neptune exoplanet GJ 1214b, which currently has the best-studied atmosphere of any exoplanet in its size class. In addition to searching for planets, we actively pursue stellar astrophysics topics and characterization of the target star sample using MEarth data and supplementary spectroscopic follow-up. This has included measuring astrometric parallaxes for more than 1500 nearby stars, the discovery of 6 new low-mass eclipsing binaries amenable to direct measurement of the masses and radii of their components, and rotation periods, spectral classifications, metallicities and activity indices for hundreds of stars. The MEarth light curves themselves also provide a detailed record of the photometric behavior of the target stars, which include the most favorable and interesting targets to search for small and potentially habitable planets. This will be a valuable resource for all future surveys searching for planets around these stars. All light curves gathered during the survey are made publicly available after one year.The MEarth project gratefully acknowledges funding from the David and Lucile Packard Fellowship for Science and Engineering, the National Science Foundation under grants AST-0807690, AST-1109468, and AST-1004488

  12. The SuperCOSMOS all-sky galaxy catalogue

    NASA Astrophysics Data System (ADS)

    Peacock, J. A.; Hambly, N. C.; Bilicki, M.; MacGillivray, H. T.; Miller, L.; Read, M. A.; Tritton, S. B.

    2016-10-01

    We describe the construction of an all-sky galaxy catalogue, using SuperCOSMOS scans of Schmidt photographic plates from the UK Schmidt Telescope and Second Palomar Observatory Sky Survey. The photographic photometry is calibrated using Sloan Digital Sky Survey data, with results that are linear to 2 per cent or better. All-sky photometric uniformity is achieved by matching plate overlaps and also by requiring homogeneity in optical-to-2MASS colours, yielding zero-points that are uniform to 0.03 mag or better. The typical AB depths achieved are BJ < 21, RF < 19.5 and IN < 18.5, with little difference between hemispheres. In practice, the IN plates are shallower than the BJ and RF plates, so for most purposes we advocate the use of a catalogue selected in these two latter bands. At high Galactic latitudes, this catalogue is approximately 90 per cent complete with 5 per cent stellar contamination; we quantify how the quality degrades towards the Galactic plane. At low latitudes, there are many spurious galaxy candidates resulting from stellar blends: these approximately match the surface density of true galaxies at |b| = 30°. Above this latitude, the catalogue limited in BJ and RF contains in total about 20 million galaxy candidates, of which 75 per cent are real. This contamination can be removed, and the sky coverage extended, by matching with additional data sets. This SuperCOSMOS catalogue has been matched with 2MASS and with WISE, yielding quasi-all-sky samples of respectively 1.5 million and 18.5 million galaxies, to median redshifts of 0.08 and 0.20. This legacy data set thus continues to offer a valuable resource for large-angle cosmological investigations.

  13. Studying the Light Pollution around Urban Observatories: Columbus State University’s WestRock Observatory

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Brendon Andrew; Johnson, Michael

    2017-01-01

    Light pollution plays an ever increasing role in the operations of observatories across the world. This is especially true in urban environments like Columbus, GA, where Columbus State University’s WestRock Observatory is located. Light pollution’s effects on an observatory include high background levels, which results in a lower signal to noise ratio. Overall, this will limit what the telescope can detect, and therefore limit the capabilities of the observatory as a whole.Light pollution has been mapped in Columbus before using VIIRS DNB composites. However, this approach did not provide the detailed resolution required to narrow down the problem areas around the vicinity of the observatory. The purpose of this study is to assess the current state of light pollution surrounding the WestRock observatory by measuring and mapping the brightness of the sky due to light pollution using light meters and geographic information system (GIS) software.Compared to VIIRS data this study allows for an improved spatial resolution and a direct measurement of the sky background. This assessment will enable future studies to compare their results to the baseline established here, ensuring that any changes to the way the outdoors are illuminated and their effects can be accurately measured, and counterbalanced.

  14. All-Sky Infrared Survey

    NASA Image and Video Library

    2009-11-17

    This infrared view of the whole sky highlights the flat plane of our Milky Way galaxy line across middle of image. NASA WISE, will take a similar infrared census of the whole sky, only with much improved resolution and sensitivity.

  15. The Einstein All-Sky IPC slew survey

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Plummer, David; Fabbiano, G.

    1989-01-01

    The construction of the Einstein All-Sky Imaging Proportional Counter (IPC) slew survey is considered. It contains approximately 1000 sources between 10(exp -12) and 10(exp -10) erg/sq cm/s with a concentration toward the ecliptic poles and away from the galactic plane. Several sizable samples of bright soft X-ray selected objects for follow-up ROSAT and ASTRO-D observations and statistical study are presented. The survey source list is expected to be available by late 1989. Both paper and remote access online data base versions are to be available. An identification program is considered.

  16. The ADS All Sky Survey: footprints of astronomy literature, in the sky

    NASA Astrophysics Data System (ADS)

    Pepe, Alberto; Goodman, A. A.; Muench, A. A.; Seamless Astronomy Group at the CfA

    2014-01-01

    The ADS All-Sky Survey (ADSASS) aims to transform the NASA Astrophysics Data System (ADS), widely known for its unrivaled value as a literature resource for astronomers, into a data resource. The ADS is not a data repository per se, but it implicitly contains valuable holdings of astronomical data, in the form of images, tables and object references contained within articles. The objective of the ADSASS effort is to extract these data and make them discoverable and available through existing data viewers. In this talk, the ADSASS viewer - http://adsass.org/ - will be presented: a sky heatmap of astronomy articles based on the celestial objects they reference. The ADSASS viewer is as an innovative research and visual search tool for it allows users to explore astronomical literature based on celestial location, rather than keyword string. The ADSASS is a NASA-funded initiative carried out by the Seamless Astronomy Group at the Harvard-Smithsonian Center for Astrophysics.

  17. Supplementing the Digitized Sky Survey for UV-Mission Planning

    NASA Technical Reports Server (NTRS)

    McLean, Brian

    2004-01-01

    The Space Telescope Science Institute worked on a project to augment the Digitized Sky Survey archive by completing the scanning and processing of the POSS-I blue survey. This will provide an additional valuable resource to support UV-mission planning. All of the data will be made available through the NASA optical/UV archive (MAST) at STScI. The activities completed during this project are included.

  18. Surveying Galaxy Evolution in the Far-Infrared: A Far-Infrared All-Sky Survey Concept

    NASA Technical Reports Server (NTRS)

    Benford, D. J.; Amato, M. J.; Dwek, E.; Freund, M. M.; Gardner, J. P.; Kashlinsky, A.; Leisawitz, D. T.; Mather, J. C.; Moseley, S. H.; Shafer, R. A.

    2004-01-01

    Half of the total luminosity in the Universe is emitted at rest wavelengths approximately 80-100 microns. At the highest known galaxy redshifts (z greater than or equal to 6) this energy is redshifted to approximately 600 microns. Quantifying the evolution of galaxies at these wavelengths is crucial to our understanding of the formation of structure in the Universe following the big bang. Surveying the whole sky will find the rare and unique objects, enabling follow-up observations. SIRCE, the Survey of Infrared Cosmic Evolution, is such a mission concept under study at NASA's Goddard Space Flight Center. A helium-cooled telescope with ultrasensitive detectors can image the whole sky to the confusion limit in 6 months. Multiple wavelength bands permit the extraction of photometric redshifts, while a large telescope yields a low confusion limit. We discuss the implications of such a survey for galaxy formation and evolution, large-scale structure, star formation, and the structure of interstellar dust.

  19. Latest news from the High Altitude Water Cherenkov Observatory

    NASA Astrophysics Data System (ADS)

    González Muñoz, A.; HAWC Collaboration

    2016-07-01

    The High Altitude Water Cherenkov Observatory is an air shower detector designed to study very-high-energy gamma rays (˜ 100 GeV to ˜ 100 TeV). It is located in the Pico de Orizaba National Park, Mexico, at an elevation of 4100 m. HAWC started operations since August 2013 with 111 tanks and in April of 2015 the 300 tanks array was completed. HAWC's unique capabilities, with a field of view of ˜ 2 sr and a high duty cycle of 5%, allow it to survey 2/3 of the sky every day. These features makes HAWC an excellent instrument for searching new TeV sources and for the detection of transient events, like gamma-ray bursts. Moreover, HAWC provides almost continuous monitoring of already known sources with variable gamma-ray fluxes in most of the northern and part of the southern sky. These observations will bring new information about the acceleration processes that take place in astrophysical environments. In this contribution, some of the latest scientific results of the observatory will be presented.

  20. A Regional, Multi-Stakeholder Collaboration for Dark-Sky Protection in Flagstaff, Arizona

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey C.

    2018-01-01

    Flagstaff, Arizona is home to almost $200M in astronomical assets, including Lowell Observatory's 4.3-meter Discovery Channel Telescope and the Navy Precision Optical Interferometer, a partnership of Lowell, the U. S. Naval Observatory, and the Naval Research Laboratory. The City of Flagstaff and surrounding Coconino County have comprehensive and effective dark-sky ordinances, but continued regional growth has the potential to degrade the area's dark skies to a level at which observatory missions could be compromised. As a result, a wide array of stakeholders (the observatories, the City, the County, local dark-sky advocates, the business and tourism communities, the national parks and monuments, the Navajo Nation, the U. S. Navy, and others) have engaged in three complementary efforts to ensure that Flagstaff and Coconino County protect the area's dark skies while meeting the needs of the various communities and providing for continued growth and development. In this poster, I will present the status of Flagstaff's conversion to LED outdoor lighting, the Mission Compatibility Study carried out by the Navy to evaluate the dark-sky effects of buildout in Flagstaff, and the Joint Land Use Study (JLUS) presently underway among all the aforementioned stakeholders. Taken in sum, the efforts represent a comprehensive and constructive approach to dark-sky preservation region-wide, and they show what can be achieved when a culture of dark-sky protection is present and deliberate efforts are undertaken to maintain it for decades to come.

  1. The eleventh and twelfth data releases of the Sload Digital Sky Survey: final data from SDSS-III

    DOE PAGES

    Alam, S.; Slosar, A.; Albareti, F. D.; ...

    2015-07-01

    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12more » adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg 2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg 2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg 2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra.« less

  2. The eleventh and twelfth data release of the Sloan Digital Sky Survey: Final data from SDSS-III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Shadab; Albareti, Franco D.; Prieto, Carlos Allende

    2015-07-20

    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12more » adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg 2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg 2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg 2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra.« less

  3. THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Shadab; Albareti, Franco D.; Prieto, Carlos Allende

    2015-07-15

    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12more » adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg{sup 2} of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg{sup 2} of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg{sup 2}; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra.« less

  4. The Eleventh and Twelfth Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III

    NASA Astrophysics Data System (ADS)

    Alam, Shadab; Albareti, Franco D.; Allende Prieto, Carlos; Anders, F.; Anderson, Scott F.; Anderton, Timothy; Andrews, Brett H.; Armengaud, Eric; Aubourg, Éric; Bailey, Stephen; Basu, Sarbani; Bautista, Julian E.; Beaton, Rachael L.; Beers, Timothy C.; Bender, Chad F.; Berlind, Andreas A.; Beutler, Florian; Bhardwaj, Vaishali; Bird, Jonathan C.; Bizyaev, Dmitry; Blake, Cullen H.; Blanton, Michael R.; Blomqvist, Michael; Bochanski, John J.; Bolton, Adam S.; Bovy, Jo; Shelden Bradley, A.; Brandt, W. N.; Brauer, D. E.; Brinkmann, J.; Brown, Peter J.; Brownstein, Joel R.; Burden, Angela; Burtin, Etienne; Busca, Nicolás G.; Cai, Zheng; Capozzi, Diego; Carnero Rosell, Aurelio; Carr, Michael A.; Carrera, Ricardo; Chambers, K. C.; Chaplin, William James; Chen, Yen-Chi; Chiappini, Cristina; Chojnowski, S. Drew; Chuang, Chia-Hsun; Clerc, Nicolas; Comparat, Johan; Covey, Kevin; Croft, Rupert A. C.; Cuesta, Antonio J.; Cunha, Katia; da Costa, Luiz N.; Da Rio, Nicola; Davenport, James R. A.; Dawson, Kyle S.; De Lee, Nathan; Delubac, Timothée; Deshpande, Rohit; Dhital, Saurav; Dutra-Ferreira, Letícia; Dwelly, Tom; Ealet, Anne; Ebelke, Garrett L.; Edmondson, Edward M.; Eisenstein, Daniel J.; Ellsworth, Tristan; Elsworth, Yvonne; Epstein, Courtney R.; Eracleous, Michael; Escoffier, Stephanie; Esposito, Massimiliano; Evans, Michael L.; Fan, Xiaohui; Fernández-Alvar, Emma; Feuillet, Diane; Filiz Ak, Nurten; Finley, Hayley; Finoguenov, Alexis; Flaherty, Kevin; Fleming, Scott W.; Font-Ribera, Andreu; Foster, Jonathan; Frinchaboy, Peter M.; Galbraith-Frew, J. G.; García, Rafael A.; García-Hernández, D. A.; García Pérez, Ana E.; Gaulme, Patrick; Ge, Jian; Génova-Santos, R.; Georgakakis, A.; Ghezzi, Luan; Gillespie, Bruce A.; Girardi, Léo; Goddard, Daniel; Gontcho, Satya Gontcho A.; González Hernández, Jonay I.; Grebel, Eva K.; Green, Paul J.; Grieb, Jan Niklas; Grieves, Nolan; Gunn, James E.; Guo, Hong; Harding, Paul; Hasselquist, Sten; Hawley, Suzanne L.; Hayden, Michael; Hearty, Fred R.; Hekker, Saskia; Ho, Shirley; Hogg, David W.; Holley-Bockelmann, Kelly; Holtzman, Jon A.; Honscheid, Klaus; Huber, Daniel; Huehnerhoff, Joseph; Ivans, Inese I.; Jiang, Linhua; Johnson, Jennifer A.; Kinemuchi, Karen; Kirkby, David; Kitaura, Francisco; Klaene, Mark A.; Knapp, Gillian R.; Kneib, Jean-Paul; Koenig, Xavier P.; Lam, Charles R.; Lan, Ting-Wen; Lang, Dustin; Laurent, Pierre; Le Goff, Jean-Marc; Leauthaud, Alexie; Lee, Khee-Gan; Lee, Young Sun; Licquia, Timothy C.; Liu, Jian; Long, Daniel C.; López-Corredoira, Martín; Lorenzo-Oliveira, Diego; Lucatello, Sara; Lundgren, Britt; Lupton, Robert H.; Mack, Claude E., III; Mahadevan, Suvrath; Maia, Marcio A. G.; Majewski, Steven R.; Malanushenko, Elena; Malanushenko, Viktor; Manchado, A.; Manera, Marc; Mao, Qingqing; Maraston, Claudia; Marchwinski, Robert C.; Margala, Daniel; Martell, Sarah L.; Martig, Marie; Masters, Karen L.; Mathur, Savita; McBride, Cameron K.; McGehee, Peregrine M.; McGreer, Ian D.; McMahon, Richard G.; Ménard, Brice; Menzel, Marie-Luise; Merloni, Andrea; Mészáros, Szabolcs; Miller, Adam A.; Miralda-Escudé, Jordi; Miyatake, Hironao; Montero-Dorta, Antonio D.; More, Surhud; Morganson, Eric; Morice-Atkinson, Xan; Morrison, Heather L.; Mosser, Benôit; Muna, Demitri; Myers, Adam D.; Nandra, Kirpal; Newman, Jeffrey A.; Neyrinck, Mark; Nguyen, Duy Cuong; Nichol, Robert C.; Nidever, David L.; Noterdaeme, Pasquier; Nuza, Sebastián E.; O'Connell, Julia E.; O'Connell, Robert W.; O'Connell, Ross; Ogando, Ricardo L. C.; Olmstead, Matthew D.; Oravetz, Audrey E.; Oravetz, Daniel J.; Osumi, Keisuke; Owen, Russell; Padgett, Deborah L.; Padmanabhan, Nikhil; Paegert, Martin; Palanque-Delabrouille, Nathalie; Pan, Kaike; Parejko, John K.; Pâris, Isabelle; Park, Changbom; Pattarakijwanich, Petchara; Pellejero-Ibanez, M.; Pepper, Joshua; Percival, Will J.; Pérez-Fournon, Ismael; P´rez-Ra`fols, Ignasi; Petitjean, Patrick; Pieri, Matthew M.; Pinsonneault, Marc H.; Porto de Mello, Gustavo F.; Prada, Francisco; Prakash, Abhishek; Price-Whelan, Adrian M.; Protopapas, Pavlos; Raddick, M. Jordan; Rahman, Mubdi; Reid, Beth A.; Rich, James; Rix, Hans-Walter; Robin, Annie C.; Rockosi, Constance M.; Rodrigues, Thaíse S.; Rodríguez-Torres, Sergio; Roe, Natalie A.; Ross, Ashley J.; Ross, Nicholas P.; Rossi, Graziano; Ruan, John J.; Rubiño-Martín, J. A.; Rykoff, Eli S.; Salazar-Albornoz, Salvador; Salvato, Mara; Samushia, Lado; Sánchez, Ariel G.; Santiago, Basílio; Sayres, Conor; Schiavon, Ricardo P.; Schlegel, David J.; Schmidt, Sarah J.; Schneider, Donald P.; Schultheis, Mathias; Schwope, Axel D.; Scóccola, C. G.; Scott, Caroline; Sellgren, Kris; Seo, Hee-Jong; Serenelli, Aldo; Shane, Neville; Shen, Yue; Shetrone, Matthew; Shu, Yiping; Silva Aguirre, V.; Sivarani, Thirupathi; Skrutskie, M. F.; Slosar, Anže; Smith, Verne V.; Sobreira, Flávia; Souto, Diogo; Stassun, Keivan G.; Steinmetz, Matthias; Stello, Dennis; Strauss, Michael A.; Streblyanska, Alina; Suzuki, Nao; Swanson, Molly E. C.; Tan, Jonathan C.; Tayar, Jamie; Terrien, Ryan C.; Thakar, Aniruddha R.; Thomas, Daniel; Thomas, Neil; Thompson, Benjamin A.; Tinker, Jeremy L.; Tojeiro, Rita; Troup, Nicholas W.; Vargas-Magaña, Mariana; Vazquez, Jose A.; Verde, Licia; Viel, Matteo; Vogt, Nicole P.; Wake, David A.; Wang, Ji; Weaver, Benjamin A.; Weinberg, David H.; Weiner, Benjamin J.; White, Martin; Wilson, John C.; Wisniewski, John P.; Wood-Vasey, W. M.; Ye`che, Christophe; York, Donald G.; Zakamska, Nadia L.; Zamora, O.; Zasowski, Gail; Zehavi, Idit; Zhao, Gong-Bo; Zheng, Zheng; Zhou, Xu; Zhou, Zhimin; Zou, Hu; Zhu, Guangtun

    2015-07-01

    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new near-infrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra.

  5. Early Results from the Wisconsin H-Alpha Mapper Southern Sky Survey

    NASA Astrophysics Data System (ADS)

    Haffner, L. Matthew; Reynolds, R. J.; Madsen, G. J.; Hill, A. S.; Barger, K. A.; Jaehnig, K. P.; Mierkiewicz, E. J.; Percival, J. W.

    2010-01-01

    After a successful eleven-year campaign at Kitt Peak, we moved the Wisconsin H-Alpha Mapper (WHAM) to Cerro Tololo in early 2009. Here we present some of the early data after the first nine months under southern skies. These maps begin to complete the first all-sky, kinematic survey of the diffuse Hα emission from the Milky Way. Much of this emission arises from the Warm Ionized Medium (WIM), a significant component of the ISM that extends a few kiloparsecs above the Galactic disk. The WHAM instrument consists of a 0.6 m primary lens housed in a steerable siderostat coupled to a 15 cm dual-etalon Fabry-Perot spectrometer. The optical configuration delivers a spatially integrated spectrum from a one-degree beam on the sky covering 200 km/s with 12 km/s spectral resolution. Short, 30-second exposures allow us to cover the observable sky in about two years at sensitivity levels of about 0.1 R (EM 0.2 pc cm-6). While this first look at the data focuses on the Hα survey, WHAM is also capable of observing many other optical emission lines, revealing fascinating trends in the temperature and ionization state of the WIM. Our ongoing studies of the physical conditions of diffuse ionized gas will continue in the south following the Hα survey. In addition, future observations using our survey mode will cover the full velocity range of the Magellanic Stream, Bridge, and Clouds to trace the ionized gas associated with these neighboring systems. WHAM is supported by NSF award AST-0607512 and has made this smooth relocation south due to the excellent staff at KPNO and CTIO.

  6. The Great Observatories Origins Deep Survey

    NASA Astrophysics Data System (ADS)

    Dickinson, Mark

    2008-05-01

    Observing the formation and evolution of ordinary galaxies at early cosmic times requires data at many wavelengths in order to recognize, separate and analyze the many physical processes which shape galaxies' history, including the growth of large scale structure, gravitational interactions, star formation, and active nuclei. Extremely deep data, covering an adequately large volume, are needed to detect ordinary galaxies in sufficient numbers at such great distances. The Great Observatories Origins Deep Survey (GOODS) was designed for this purpose as an anthology of deep field observing programs that span the electromagnetic spectrum. GOODS targets two fields, one in each hemisphere. Some of the deepest and most extensive imaging and spectroscopic surveys have been carried out in the GOODS fields, using nearly every major space- and ground-based observatory. Many of these data have been taken as part of large, public surveys (including several Hubble Treasury, Spitzer Legacy, and ESO Large Programs), which have produced large data sets that are widely used by the astronomical community. I will review the history of the GOODS program, highlighting results on the formation and early growth of galaxies and their active nuclei. I will also describe new and upcoming observations, such as the GOODS Herschel Key Program, which will continue to fill out our portrait of galaxies in the young universe.

  7. The Exoplanet Microlensing Survey by the Proposed WFIRST Observatory

    NASA Technical Reports Server (NTRS)

    Barry, Richard; Kruk, Jeffrey; Anderson, Jay; Beaulieu, Jean-Philippe; Bennett, David P.; Catanzarite, Joseph; Cheng, Ed; Gaudi, Scott; Gehrels, Neil; Kane, Stephen; hide

    2012-01-01

    The New Worlds, New Horizons report released by the Astronomy and Astrophysics Decadal Survey Board in 2010 listed the Wide Field Infrared Survey Telescope (WFIRST) as the highest-priority large space mission for the . coming decade. This observatory will provide wide-field imaging and slitless spectroscopy at near infrared wavelengths. The scientific goals are to obtain a statistical census of exoplanets using gravitational microlensing. measure the expansion history of and the growth of structure in the Universe by multiple methods, and perform other astronomical surveys to be selected through a guest observer program. A Science Definition Team has been established to assist NASA in the development of a Design Reference Mission that accomplishes this diverse array of science programs with a single observatory. In this paper we present the current WFIRST payload concept and the expected capabilities for planet detection. The observatory. with science goals that are complimentary to the Kepler exoplanet transit mission, is designed to complete the statistical census of planetary systems in the Galaxy, from habitable Earth-mass planets to free floating planets, including analogs to all of the planets in our Solar System except Mercury. The exoplanet microlensing survey will observe for 500 days spanning 5 years. This long temporal baseline will enable the determination of the masses for most detected exoplanets down to 0.1 Earth masses.

  8. Goals and strategies in the global control design of the OAJ Robotic Observatory

    NASA Astrophysics Data System (ADS)

    Yanes-Díaz, A.; Rueda-Teruel, S.; Antón, J. L.; Rueda-Teruel, F.; Moles, M.; Cenarro, A. J.; Marín-Franch, A.; Ederoclite, A.; Gruel, N.; Varela, J.; Cristóbal-Hornillos, D.; Chueca, S.; Díaz-Martín, M. C.; Guillén, L.; Luis-Simoes, R.; Maícas, N.; Lamadrid, J. L.; López-Sainz, A.; Hernández-Fuertes, J.; Valdivielso, L.; Mendes de Oliveira, C.; Penteado, P.; Schoenell, W.; Kanaan, A.

    2012-09-01

    There are many ways to solve the challenging problem of making a high performance robotic observatory from scratch. The Observatorio Astrofísico de Javalambre (OAJ) is a new astronomical facility located in the Sierra de Javalambre (Teruel, Spain) whose primary role will be to conduct all-sky astronomical surveys. The OAJ control system has been designed from a global point of view including astronomical subsystems as well as infrastructures and other facilities. Three main factors have been considered in the design of a global control system for the robotic OAJ: quality, reliability and efficiency. We propose CIA (Control Integrated Architecture) design and OEE (Overall Equipment Effectiveness) as a key performance indicator in order to improve operation processes, minimizing resources and obtaining high cost reduction whilst maintaining quality requirements. The OAJ subsystems considered for the control integrated architecture are the following: two wide-field telescopes and their instrumentation, active optics subsystems, facilities for sky quality monitoring (seeing, extinction, sky background, sky brightness, cloud distribution, meteorological station), domes and several infrastructure facilities such as water supply, glycol water, water treatment plant, air conditioning, compressed air, LN2 plant, illumination, surveillance, access control, fire suppression, electrical generators, electrical distribution, electrical consumption, communication network, Uninterruptible Power Supply and two main control rooms, one at the OAJ and the other remotely located in Teruel, 40km from the observatory, connected through a microwave radio-link. This paper presents the OAJ strategy in control design to achieve maximum quality efficiency for the observatory processes and operations, giving practical examples of our approach.

  9. Chapter 28: Theory SkyNode

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Norman, M. L.

    Here we present a working example of a Basic SkyNode serving theoretical data. The data is taken from the Simulated Cluster Archive (SCA), a set of simulated X-ray clusters, where each cluster was computed using four different physics models. The LCA Theory SkyNode (LCATheory) tables contain columns of the integrated physical properties of the clusters at various redshifts. The ease of setting up a Theory SkyNode is an important result, because it represents a clear way to present theory data to the Virtual Observatory. Also, our Theory SkyNode provides a prototype for additional simulated object catalogs, which will be created from other simulations by our group, and hopefully others.

  10. TASS - The Amateur Sky Survey

    NASA Astrophysics Data System (ADS)

    Droege, T. F.; Albertson, C.; Gombert, G.; Gutzwiller, M.; Molhant, N. W.; Johnson, H.; Skvarc, J.; Wickersham, R. J.; Richmond, M. W.; Rybski, P.; Henden, A.; Beser, N.; Pittinger, M.; Kluga, B.

    1997-05-01

    As a non-astronomer watching Shoemaker/Levy 9 crash into Jupiter through postings on sci.astro, it occurred to me that it might be fun to build a comet finding machine. After wild speculations on how such a device might be built - I considered a 26" x 40" fresnel lens and a string of pin diodes -- postings to sci.astro brought me down to earth. I quickly made contact with both professionals and amateurs and found that there was interesting science to be done with an all sky survey. After several prototype drift scan cameras were built using various CCDs, I determined the real problem was software. How does one get the software written for an all sky survey? Willie Sutton could tell you, "Go where the programmers are." Our strategy has been to build a bunch of drift scan cameras and just give them away (without software) to programmers found on the Internet. This author reports more success by this technique than when he had a business and hired and paid programmers at a cost of a million or so a year. To date, 22 drift scan cameras have been constructed. Most of these are operated as triplets spaced 15 degrees apart in Right Ascension and with I, V, I filters. The cameras use 135mm fl, f.2.8 camera lenses for a plate scale of 14 arc seconds per pixel and reach magnitude 13. With 512 pixels across the drift scan direction and running through the night, a triplet will collect 200 Mb of data on three overlapping areas of 3 x 120 degrees each. To date four of the triplets and one single have taken data. Production has started on 25 second generation cameras using 2k x 2k devices and a barn door mount.

  11. Transient Astrophysics Observatory (TAO)

    NASA Astrophysics Data System (ADS)

    Racusin, J. L.; TAO Team

    2016-10-01

    The Transient Astrophysics Observatory (TAO) is a NASA MidEx mission concept (formerly known as Lobster) designed to provide simultaneous wide-field gamma-ray, X-ray, and near-infrared observations of the sky.

  12. A New Sky Brightness Monitor

    NASA Astrophysics Data System (ADS)

    Crawford, David L.; McKenna, D.

    2006-12-01

    A good estimate of sky brightness and its variations throughout the night, the months, and even the years is an essential bit of knowledge both for good observing and especially as a tool in efforts to minimize sky brightness through local action. Hence a stable and accurate monitor can be a valuable and necessary tool. We have developed such a monitor, with the financial help of Vatican Observatory and Walker Management. The device is now undergoing its Beta test in preparation for production. It is simple, accurate, well calibrated, and automatic, sending its data directly to IDA over the internet via E-mail . Approximately 50 such monitors will be ready soon for deployment worldwide including most major observatories. Those interested in having one should enquire of IDA about details.

  13. Fireballs in the Sky

    NASA Astrophysics Data System (ADS)

    Day, B. H.; Bland, P.

    2016-12-01

    Fireballs in the Sky is an innovative Australian citizen science program that connects the public with the research of the Desert Fireball Network (DFN). This research aims to understand the early workings of the solar system, and Fireballs in the Sky invites people around the world to learn about this science, contributing fireball sightings via a user-friendly app. To date, more than 23,000 people have downloaded the app world-wide and participated in planetary science. The Fireballs in the Sky app allows users to get involved with the Desert Fireball Network research, supplementing DFN observations and providing enhanced coverage by reporting their own meteor sightings to DFN scientists. Fireballs in the Sky reports are used to track the trajectories of meteors - from their orbit in space to where they might have landed on Earth. Led by Phil Bland at Curtin University in Australia, the Desert Fireball Network (DFN) uses automated observatories across Australia to triangulate trajectories of meteorites entering the atmosphere, determine pre-entry orbits, and pinpoint their fall positions. Each observatory is an autonomous intelligent imaging system, taking 1000×36Megapixel all-sky images throughout the night, using neural network algorithms to recognize events. They are capable of operating for 12 months in a harsh environment, and store all imagery collected. We developed a completely automated software pipeline for data reduction, and built a supercomputer database for storage, allowing us to process our entire archive. The DFN currently stands at 50 stations distributed across the Australian continent, covering an area of 2.5 million km^2. Working with DFN's partners at NASA's Solar System Exploration Research Virtual Institute, the team is expanding the network beyond Australia to locations around the world. Fireballs in the Sky allows a growing public base to learn about and participate in this exciting research.

  14. Setting up the Sloan Digital Sky Survey Standard Star Network: The Starware

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Tucker, D. L.; Brinkmann, J.; Annis, J.; Briggs, J. W.; Doi, M.; Fukugita, M.; Gunn, J. E.; Hamabe, M.; Ichikawa, S.; Ichikawa, T.; Kent, S.; McKay, T. A.; McMillan, R.; Merrelli, A.; Newberg, H. J.; Richmond, M. W.; Watanabe, M.

    1998-12-01

    The Sloan Digital Sky Survey (SDSS) has achieved first light. Though still in the engineering shakedown year, the image quality of some of these early runs is useable for science results. Although similar to the Thuan-Gunn ugriz system, the SDSS u'g'r'i'z' system has wider effective bandwidths and covers almost the entire spectrum from the 3000 Angstroms/ to 11 000 Angstroms. This is a new photometric system; therefore, calibration of a network of primary standard stars is needed before the survey science results can be interpreted properly. Beginning in earnest in March 1998, we started the calibration observations to define the SDSS u'g'r'i'z' standard star system using the 40-inch Ritchey-Chretien telescope at the United States Naval Observatory's Flagstaff, Arizona Station. As described in the paper announcing the system [Fukugita et al. 1996], the zeropoints for each of the five filters will be set by the metal-poor F subdwarfs BD+17:4708, BD+26:2606 & BD+21:0607. In this paper, we describe the rest of the stars being considered as potential standards to define this new system, changes from the preliminary list presented last year [Smith et al. 1998], and give some early (NOT YET OFFICIAL) results. Descriptions of the reduction software (D.L. Tucker et al.) and the hardware used to obtain these observations (J. Brinkmann et al.) are described in companion posters.

  15. Distributing Variable Star Data to the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Kinne, Richard C.; Templeton, M. R.; Henden, A. A.; Zografou, P.; Harbo, P.; Evans, J.; Rots, A. H.; LAZIO, J.

    2013-01-01

    Effective distribution of data is a core element of effective astronomy today. The AAVSO is the home of several different unique databases. The AAVSO International Database (AID) contains over a century of photometric and time-series data on thousands of individual variable stars comprising over 22 million observations. The AAVSO Photometric All-Sky Survey (APASS) is a new photometric catalog containing calibrated photometry in Johnson B, V and Sloan g', r' and i' filters for stars with magnitudes of 10 < V < 17. The AAVSO is partnering with researchers and technologists at the Virtual Astronomical Observatory (VAO) to solve the data distribution problem for these datasets by making them available via various VO tools. We give specific examples of how these data can be accessed through Virtual Observatory (VO) toolsets and utilized for astronomical research.

  16. The VLA Sky Survey (VLASS): Description and Science Goals

    NASA Astrophysics Data System (ADS)

    Lacy, Mark; Baum, Stefi Alison; Chandler, Claire J.; Chatterjee, Shami; Murphy, Eric J.; Myers, Steven T.; VLASS Survey Science Group

    2016-01-01

    The VLA Sky Survey (VLASS) will cover 80% of the sky to a target depth of 70muJy in the 2-4GHz S-band of the Karl G. Jansky Very Large Array. With a resolution of 2.5 arcseconds, it will deliver the highest angular resolution of any wide area radio survey. Each area of the survey will be observed in three epochs spaced by 32 months in order to investigate the transient radio source population over an unprecedented combination of depth and area, resulting in a uniquely powerful search for hidden explosions in the Universe. The survey will be carried out in full polarization, allowing the characterization of the magneto-ionic medium in AGN and intervening galaxies over a wide range of redshifts, and the study of Faraday rotating foregrounds such as ionized bubbles in the Milky Way. The high angular resolution will allow us to make unambiguous identifications of nearly 10 million radio sources, comprised of both extragalactic objects and more nearby radio sources in the Milky Way, through matching to wide area optical/IR surveys such as SDSS, PanSTARRS, DES, LSST, EUCLID, WFIRST and WISE. Integral to the VLASS plan is an Education and Public Outreach component that will seek to inform and educate both the scientific community and the general public about radio astronomy through the use of social media, citizen science and educational activities. We will discuss opportunities for community involvement in VLASS, including the development of Enhanced Data Products and Services that will greatly increase the scientific utility of the survey.

  17. Teaching Astronomy Through Art: Under Southern Skies -- Aboriginal and Western Scientific Perspectives of the Australian Night Sky

    NASA Astrophysics Data System (ADS)

    Majewski, S. R.; Boles, M. S.; Patterson, R. J.

    1999-12-01

    We have created an exhibit, Under Southern Skies -- Aboriginal and Western Scientific Perspectives of the Australian Night Sky, which has shown since June, 1999 in newly refurbished exhibit space at the Leander McCormick Observatory. The University of Virginia has a long and continuing tradition of astrometry starting with early parallax work at the McCormick Observatory, extending to our own NSF CAREER Award-funded projects, and including a long-term, ongoing southern parallax program at Mt. Stromlo and Siding Springs Observatories in Australia. Recently, through a gift of Mr. John Kluge, the University of Virginia has obtained one of the most extensive collections of Australian Aboriginal art outside of Australia. The goal of our exhibit is to unite the University's scientific, artistic and cultural connections to Australia through an exhibit focusing on different perspectives of the Australian night sky. We have brought together Australian Aboriginal bark and canvas paintings that feature astronomical themes, e.g., Milky Way, Moon, Magellanic Cloud and Seven Sisters Dreamings, from the Kluge-Ruhe and private collections. These paintings, from the Central Desert and Arnhem Land regions of Australia, are intermingled with modern, large format, color astronomical images of the same scenes. Descriptive panels and a small gallery guide explain the cultural, artistic and scientific aspects of the various thematic groupings based on particular southern hemisphere night sky objects and associated Aboriginal traditions and stories. This unusual combination of art and science not only provides a unique avenue for educating the public about both astronomy and Australian Aboriginal culture, but highlights mankind's ancient and continuing connection to the night sky. We appreciate funding from NSF CAREER Award #AST-9702521, a Cottrell Scholar Award from The Research Corporation, and the Dept. of Astronomy and Ruhe-Kluge Collection at the University of Virginia.

  18. Social Media Programs at the National Optical Astronomy Observatory

    NASA Astrophysics Data System (ADS)

    Sparks, Robert T.; Walker, Constance Elaine; Pompea, Stephen M.

    2015-08-01

    Observatories and other science research organizations want to share their research and activities with the public. The last several years, social media has become and increasingly important venue for communicating information about observatory activities, research and education and public outreach.The National Optical Astronomy Observatory (NOAO) uses a wide variety of social media to communicate with different audiences. NOAO is active on social media platforms including Facebook, Twitter, Google+ and Pinterest. Our social media accounts include those for the National Optical Astronomy Observatory, Cerro Tololo Inter-American Observatory, Kitt Peak National Observatory and our dark skies conservation program Globe at Night.Our social media programs have a variety of audiences. NOAO uses social media to announce and promote NOAO sponsored meetings, observatory news and proposal deadlines to the professional astronomical community. Social media accounts are used to disseminate NOAO press releases, images from the observatory and other science using data from NOAO telescopes.Social media is important in our Education and Public Outreach programs (EPO). Globe at Night has very active facebook and twitter accounts encouraging people to become involved in preserving dark skies. Social media plays a role in recruiting teachers for professional development workshops such as Project Astro.NOAO produces monthly podcasts for the 365 Days of Astronomy podcast featuring interviews with NOAO astronomers. Each podcast highlights the science of an NOAO astronomer, an NOAO operated telescope or instrument, or an NOAO program. A separate series of podcasts is produced for NOAO’s Dark Skies Education programs. All the podcasts are archived at 365daysofastronomy.org.

  19. Latest Results of the SETHI Survey at Arecibo

    NASA Astrophysics Data System (ADS)

    Korpela, E. J.; Demorest, P.; Heien, E.; Heiles, C.; Werthimer, D.

    2004-10-01

    SETH i is a survey of the distribution of galactic neutral hydrogen being performed comensally at the NAIC Arecibo Observatory. At the same time that observers use receivers in the Gregorian dome, SETHi is recording a 2.5MHz band centered at 1420 MHz from a flat feed on Carriage House 1. During normal astronomical observations, the SETH i feed scans across the sky at twice the sidereal rate. During 4 years of observations, we have accumulated over 15,000 hours of data covering most of the sky accessible to Arecibo. This survey has higher angular resolution than existing single dish surveys and higher sensitivity than existing or planned interferometric surveys.

  20. Deep near-infrared survey of the Southern Sky (DENIS)

    NASA Technical Reports Server (NTRS)

    Deul, E.

    1992-01-01

    DENIS (Deep Near-Infrared Survey of the Southern Sky) will be the first complete census of astronomical sources in the near-infrared spectral range. The challenges of this novel survey are both scientific and technical. Phenomena radiating in the near-infrared range from brown dwarfs to galaxies in the early stages of cosmological evolution, the scientific exploitation of data relevant over such a wide range requires pooling expertise from several of the leading European astronomical centers. The technical challenges of a project which will provide an order of magnitude more sources than given by the IRAS space mission, and which will involve advanced data-handling and image-processing techniques, likewise require pooling of hardware and software resources, as well as of human expertise. The DENIS project team is composed of some 40 scientists, computer specialists, and engineers located in 5 European Community countries (France, Germany, Italy, The Netherlands, and Spain), with important contributions from specialists in Australia, Brazil, Chile, and Hungary. DENIS will survey the entire southern sky in 3 colors, namely in the I band at a wavelength of 0.8 micron, in the 1.25 micron J band, and in the 2.15 micron K' band. The sensitivity limits will be 18th magnitude in the I band, 16th in the J band, and 14.5th in the K' band. The angular resolution achieved will be 1 arcsecond in the I band, and 3.0 arcseconds in the J and K' bands. The European Southern Observatory 1 m telescope on La Silla will be dedicated to survey use during operations expected to last four years, commencing in late 1993. DENIS aims to provide the astronomical community with complete digitized infrared images of the full southern sky and a catalogue of extracted objects, both of the best quality and in readily accessible form. This will be achieved through dedicated software packages and specialized catalogues, and with assistance from the Leiden and Paris Data Analysis Centers. The data

  1. Ancient "Observatories" - A Relevant Concept?

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    It is quite common, when reading popular books on astronomy, to see a place referred to as "the oldest observatory in the world". In addition, numerous books on archaeoastronomy, of various levels of quality, frequently refer to the existence of "prehistoric" or "ancient" observatories when describing or citing monuments that were certainly not built with the primary purpose of observing the skies. Internet sources are also guilty of this practice. In this chapter, the different meanings of the word observatory will be analyzed, looking at how their significances can be easily confused or even interchanged. The proclaimed "ancient observatories" are a typical result of this situation. Finally, the relevance of the concept of the ancient observatory will be evaluated.

  2. Prediction of transits of Solar system objects in Kepler/K2 images: an extension of the Virtual Observatory service SkyBoT

    NASA Astrophysics Data System (ADS)

    Berthier, J.; Carry, B.; Vachier, F.; Eggl, S.; Santerne, A.

    2016-05-01

    All the fields of the extended space mission Kepler/K2 are located within the ecliptic. Many Solar system objects thus cross the K2 stellar masks on a regular basis. We aim at providing to the entire community a simple tool to search and identify Solar system objects serendipitously observed by Kepler. The sky body tracker (SkyBoT) service hosted at Institut de mécanique céleste et de calcul des éphémérides provides a Virtual Observatory compliant cone search that lists all Solar system objects present within a field of view at a given epoch. To generate such a list in a timely manner, ephemerides are pre-computed, updated weekly, and stored in a relational data base to ensure a fast access. The SkyBoT web service can now be used with Kepler. Solar system objects within a small (few arcminutes) field of view are identified and listed in less than 10 s. Generating object data for the entire K2 field of view (14°) takes about a minute. This extension of the SkyBoT service opens new possibilities with respect to mining K2 data for Solar system science, as well as removing Solar system objects from stellar photometric time series.

  3. The Pan-STARRS1 Surveys

    NASA Astrophysics Data System (ADS)

    Chambers, Kenneth C.

    2014-01-01

    Pan-STARRS1 is approaching the completion of the PS1 Science Mission. Operations of the PS1 System include the Observatory, Telescope, 1.4 Gigapixel Camera, Image Processing Pipeline , PSPS relational database and reduced science product software servers. The Pan-STARRS1 Surveys include: (1) A 3pi Steradian Survey, (2) A Medium Deep survey of 10 PS1 footprints spaced around the sky; (3) A solar system survey optimized for Near Earth Objects, (4) a Stellar Transit Survey; and (5) a Deep Survey of M31. The PS1 3pi Survey has now covered the sky north of dec=-30 with more than 12 visits in five bands: g,r,i,z and y or over ~60 epochs per 0.25 arcsec resolution element on the sky. The performance of the PS1 system, sky coverage, cadence, and data quality of the Pan-STARRS1 Surveys will be presented as well as progress in reprocessing of the data taken to date and the plans for the public release of all Pan-STARRS1 data products in the spring of 2015. The Pan-STARRS1 Surveys (PS1) have been made possible through contributions of the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation under Grant No. AST-1238877, the University of Maryland, and Eotvos Lorand University (ELTE).

  4. Validation of Observations Obtained with a Liquid Mirror Telescope by Comparison with Sloan Digital Sky Survey Observations

    NASA Astrophysics Data System (ADS)

    Borra, E. F.

    2015-06-01

    The results of a search for peculiar astronomical objects using very low resolution spectra obtained with the NASA Orbital Debris Observatory (NODO) 3 m diameter liquid mirror telescope (LMT) are compared with results of spectra obtained with the Sloan Digital Sky Survey (SDSS). The main purpose of this comparison is to verify whether observations taken with this novel type of telescope are reliable. This comparison is important because LMTs are an inexpensive novel type of telescope that is very useful for astronomical surveys, particularly surveys in the time domain, and validation of the data taken with an LMT by comparison with data from a classical telescope will validate their reliability. We start from a published data analysis that classified as peculiar only 206 of the 18,000 astronomical objects observed with the NODO LMT. A total of 29 of these 206 objects were found in the SDSS. The reliability of the NODO data can be seen through the results of the detailed analysis that, in practice, incorrectly identified less than 0.3% of the 18,000 spectra as peculiar objects, most likely because they are variable stars. We conclude that the LMT gave reliable observations, comparable to those that would have been obtained with a telescope using a glass mirror.

  5. Data Processing Factory for the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Stoughton, Christopher; Adelman, Jennifer; Annis, James T.; Hendry, John; Inkmann, John; Jester, Sebastian; Kent, Steven M.; Kuropatkin, Nickolai; Lee, Brian; Lin, Huan; Peoples, John, Jr.; Sparks, Robert; Tucker, Douglas; Vanden Berk, Dan; Yanny, Brian; Yocum, Dan

    2002-12-01

    The Sloan Digital Sky Survey (SDSS) data handling presents two challenges: large data volume and timely production of spectroscopic plates from imaging data. A data processing factory, using technologies both old and new, handles this flow. Distribution to end users is via disk farms, to serve corrected images and calibrated spectra, and a database, to efficiently process catalog queries. For distribution of modest amounts of data from Apache Point Observatory to Fermilab, scripts use rsync to update files, while larger data transfers are accomplished by shipping magnetic tapes commercially. All data processing pipelines are wrapped in scripts to address consecutive phases: preparation, submission, checking, and quality control. We constructed the factory by chaining these pipelines together while using an operational database to hold processed imaging catalogs. The science database catalogs all imaging and spectroscopic object, with pointers to the various external files associated with them. Diverse computing systems address particular processing phases. UNIX computers handle tape reading and writing, as well as calibration steps that require access to a large amount of data with relatively modest computational demands. Commodity CPUs process steps that require access to a limited amount of data with more demanding computations requirements. Disk servers optimized for cost per Gbyte serve terabytes of processed data, while servers optimized for disk read speed run SQLServer software to process queries on the catalogs. This factory produced data for the SDSS Early Data Release in June 2001, and it is currently producing Data Release One, scheduled for January 2003.

  6. Protecting Dark Skies as a State-Wide Resource

    NASA Astrophysics Data System (ADS)

    Allen, Lori E.; Walker, Constance E.; Hall, Jeffrey C.; Larson, Steve; Williams, Grant; Falco, Emilio; Hinz, Joannah; Fortin, Pascal; Brocious, Dan; Corbally, Christopher; Gabor, Paul; Veillet, Christian; Shankland, Paul; Jannuzi, Buell; Cotera, Angela; Luginbuhl, Christian

    2018-01-01

    The state of Arizona contains the highest concentration of research telescopes in the continental United States, contributing more than a quarter of a billion dollars annually to the state's economy. Protecting the dark skies above these observatories is both good for astronomy and good for the state's economy. In this contribution we describe how a coalition of Arizona observatories is working together to protect our dark skies. Efforts date back to the creation of one of the first Outdoor Lighting Codes in the United States and continue today, including educational outreach, public policy engagement, and consensus building. We review some proven strategies, highlight recent successes and look at current threats.

  7. VizieR Online Data Catalog: WISE All-Sky Data Release (Cutri+ 2012)

    NASA Astrophysics Data System (ADS)

    Cutri, R. M.; et al.

    2012-04-01

    The Wide-field Infrared Survey Explorer (WISE; see Wright et al. 2010AJ....140.1868W) is a NASA Medium Class Explorer mission that conducted a digital imaging survey of the entire sky in the 3.4, 4.6, 12 and 22um mid-infrared bandpasses (hereafter W1, W2, W3 and W4). WISE will produce and release to the world astronomical and educational communities and general public a digital Image Atlas covering the sky in the four survey bands, and a reliable Source Catalog containing accurate photometry and astrometry for over 300 million objects. The WISE Catalog and Atlas will enable a broad variety of research efforts ranging from the search for the closest stars and brown dwarfs to the most luminous galaxies in the Universe. WISE science data products will serve as an important reference data set for planning observations and interpreting data obtained with future ground and space-borne observatories, such as JWST. WISE was launched on 2009-12-14 from Vandenberg SLC2W. (1 data file).

  8. Lens and Camera Arrays for Sky Surveys and Space Surveillance

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Cox, D.; McGraw, J.; Zimmer, P.

    2016-09-01

    In recent years, a number of sky survey projects have chosen to use arrays of commercial cameras coupled with commercial photographic lenses to enable low-cost, wide-area observation. Projects such as SuperWASP, FAVOR, RAPTOR, Lotis, PANOPTES, and DragonFly rely on multiple cameras with commercial lenses to image wide areas of the sky each night. The sensors are usually commercial astronomical charge coupled devices (CCDs) or digital single reflex (DSLR) cameras, while the lenses are large-aperture, highend consumer items intended for general photography. While much of this equipment is very capable and relatively inexpensive, this approach comes with a number of significant limitations that reduce sensitivity and overall utility of the image data. The most frequently encountered limitations include lens vignetting, narrow spectral bandpass, and a relatively large point spread function. Understanding these limits helps to assess the utility of the data, and identify areas where advanced optical designs could significantly improve survey performance.

  9. Stellar and planetary remnants in digital sky surveys

    NASA Astrophysics Data System (ADS)

    Girven, Jonathan

    Large scale digital sky surveys have produced an unprecedented volume of uniform data covering both vast proportions of the sky and a wide range of wavelength, from the ultraviolet to the near-infrared. The challenge facing astronomers today is how to use this multitude of information to extract trends, outliers and and rare objects. For example, a large sample of single white dwarf stars has the potential to probe the Galaxy through the luminosity function. The aim of this work was to study stellar and planetary remnants in these surveys. In the last few decades, it has been shown that a handful of white dwarfs have remnants of planetary systems around them, in the form of a dusty disc. These are currently providing the best constraints on the composition of extra-solar planetary systems. Finding significant numbers of dusty discs is only possible in large scale digital sky surveys. I ultilised the SDSS DR7 and colour-colour diagrams to and DA white dwarfs from optical photometry. This nearly doubled the number of spectroscopically confirmed DA white dwarfs in the SDSS compared with DR4 [Eisenstein et al., 2006], and introduced nearly 10; 000 photometric-only DA white dwarf candidates. I further cross-matched our white dwarf catalogue with UKIDSS LAS DR8 to carry out the currently largest and deepest untargeted search for low-mass companions to, and dust discs around, DA white dwarfs. Simultaneously, I analyzed Spitzer observations of 15 white dwarfs with metal-polluted atmospheres, all but one having helium-dominated atmospheres. Three of these stars were found to have an infrared excess consistent with a dusty disc. I used the total sample to estimate a typical disc lifetime of log[tdisc(yr)] = 5:6+1:1, which is compatible with the relatively large range estimated from different theoretical models. Subdwarf population synthesis models predicted a vast population of subdwarfs with F to K-type companions, produced in the effcient RLOF formation channel. I used a

  10. Measurements of 427 Double Stars With Speckle Interferometry: The Winter/Spring 2017 Observing Program at Brilliant Sky Observatory, Part 1

    NASA Astrophysics Data System (ADS)

    Harshaw, Richard

    2018-04-01

    In the winter and spring of 2017, an aggressive observing program of measuring close double stars with speckle interferometry and CCD imaging was undertaken at Brilliant Sky Observatory, my observing site in Cave Creek, Arizona. A total of 596 stars were observed, 8 of which were rejected for various reasons, leaving 588 pairs. Of these, 427 were observed and measured with speckle interferometry, while the remaining 161 were measured with a CCD. This paper reports the results of the observations of the 427 speckle cases. A separate paper in this issue will report the CCD measurements of the 161 other pairs.

  11. The influence of the observatory latitude on the study of ultra high energy cosmic rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anjos, Rita C. dos; De Souza, Vitor; De Almeida, Rogerio M.

    2017-07-01

    Recent precision measurements of the Ultra High Energy Cosmic Rays (UHECR) arrival directions, spectrum and parameters related to the mass of the primary particle have been done by the HiRes, Pierre Auger and Telescope Array (TA) Observatories. In this paper, distributions of arrival directions of events in the nearby Universe are assumed to correlate with sources in the 2MASS Redshift Survey (2MRS), IRAS 1.2 Jy Survey, Palermo Swift-BAT and Swift-BAT catalogs, and the effect of the latitude of the observatory on the measurement of the energy spectrum and on the capability of measuring anisotropy is studied. The differences between givenmore » latitudes on the northern and southern hemispheres are quantified. It is shown that the latitude of the observatory: a) has an influence on the total flux measured and b) imposes an important limitation on the capability of measuring an anisotropic sky.« less

  12. Pi of the Sky full system and the new telescope

    NASA Astrophysics Data System (ADS)

    Mankiewicz, L.; Batsch, T.; Castro-Tirado, A.; Czyrkowski, H.; Cwiek, A.; Cwiok, M.; Dabrowski, R.; Jelínek, M.; Kasprowicz, G.; Majcher, A.; Majczyna, A.; Malek, K.; Nawrocki, K.; Obara, L.; Opiela, R.; Piotrowski, L. W.; Siudek, M.; Sokolowski, M.; Wawrzaszek, R.; Wrochna, G.; Zaremba, M.; Żarnecki, A. F.

    2014-12-01

    The Pi of the Sky is a system of wide field of view robotic telescopes, which search for short timescale astrophysical phenomena, especially for prompt optical GRB emission. The system was designed for autonomous operation, monitoring a large fraction of the sky to a depth of 12(m}-13({m)) and with time resolution of the order of 1 - 10 seconds. The system design and observation strategy were successfully tested with a prototype detector operational at Las Campanas Observatory, Chile from 2004-2009 and moved to San Pedro de Atacama Observatory in March 2011. In October 2010 the first unit of the final Pi of the Sky detector system, with 4 CCD cameras, was successfully installed at the INTA El Arenosillo Test Centre in Spain. In July 2013 three more units (12 CCD cameras) were commissioned and installed, together with the first one, on a new platform in INTA, extending sky coverage to about 6000 square degrees.

  13. Lens Systems for Sky Surveys and Space Surveillance

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; McGraw, J.; Zimmer, P.

    2013-09-01

    Since the early days of astrophotography, lens systems have played a key role in capturing images of the night sky. The first images were attempted with visual-refractors. These were soon followed with color-corrected refractors and finally specially designed photo-refractors. Being telescopes, these instruments were of long-focus and imaged narrow fields of view. Simple photographic lenses were soon put into service to capture wide-field images. These lenses also had the advantage of requiring shorter exposure times than possible using large refractors. Eventually, lenses were specifically designed for astrophotography. With the introduction of the Schmidt-camera and related catadioptric systems, the popularity of astrograph lenses declined, but surprisingly, a few remained in use. Over the last 30 years, as small CCDs have displaced large photographic plates, lens systems have again found favor for their ability to image great swaths of sky in a relatively small and simple package. In this paper, we follow the development of lens-based astrograph systems from their beginnings through the current use of both commercial and custom lens systems for sky surveys and space surveillance. Some of the optical milestones discussed include the early Petzval-type portrait lenses, the Ross astrographic lens and the current generation of optics such as the commercial 200mm camera lens by Canon, and the Russian VT-53e in service with ISON.

  14. Double-lined M dwarf eclipsing binaries from Catalina Sky Survey and LAMOST

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Hsiu; Lin, Chien-Cheng

    2017-02-01

    Eclipsing binaries provide a unique opportunity to determine fundamental stellar properties. In the era of wide-field cameras and all-sky imaging surveys, thousands of eclipsing binaries have been reported through light curve classification, yet their basic properties remain unexplored due to the extensive efforts needed to follow them up spectroscopically. In this paper we investigate three M2-M3 type double-lined eclipsing binaries discovered by cross-matching eclipsing binaries from the Catalina Sky Survey with spectroscopically classified M dwarfs from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope survey data release one and two. Because these three M dwarf binaries are faint, we further acquire radial velocity measurements using GMOS on the Gemini North telescope with R˜ 4000, enabling us to determine the mass and radius of individual stellar components. By jointly fitting the light and radial velocity curves of these systems, we derive the mass and radius of the primary and secondary components of these three systems, in the range between 0.28-0.42M_⊙ and 0.29-0.67R_⊙, respectively. Future observations with a high resolution spectrograph will help us pin down the uncertainties in their stellar parameters, and render these systems benchmarks to study M dwarfs, providing inputs to improving stellar models in the low mass regime, or establishing an empirical mass-radius relation for M dwarf stars.

  15. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2001-12-01

    N° 73-2001 - Paris, 5 December 2001 The aim of AVO is to give astronomers instant access to the vast databanks now being built up by the world's observatories and forming what is in effect a "digital sky". Using AVO astronomers will be able, for example, to retrieve the elusive traces of the passage of an asteroid as it passes the Earth and so predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded, adding invaluable data to the study of the evolution of stars. Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data -corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being digitally reconstructed in the databanks. The volume and complexity of data and information available to astronomers are overwhelming. Hence the problem of how astronomers can possibly manage, distribute and analyse this great wealth of data. The Astrophysical Virtual Observatory will enable them to meet the challenge and "put the Universe online". AVO is a three-year project, funded by the European Commission under its Research and Technological Development (RTD) scheme, to design and implement a virtual observatory for the European astronomical community. The Commission has awarded a contract valued at EUR 4m for the project, starting on 15 November. AVO will provide software tools to enable astronomers to access the multi-wavelength data archives over the Internet and so give them the capability to resolve fundamental questions about the Universe by probing the digital sky. Equivalent searches of the "real" sky would, in comparison, both be prohibitively costly and take far too long. Towards a Global Virtual Observatory The

  16. Proof of Concept for a Simple Smartphone Sky Monitor

    NASA Astrophysics Data System (ADS)

    Kantamneni, Abhilash; Nemiroff, R. J.; Brisbois, C.

    2013-01-01

    We present a novel approach of obtaining a cloud and bright sky monitor by using a standard smartphone with a downloadable app. The addition of an inexpensive fisheye lens can extend the angular range to the entire sky visible above the device. A preliminary proof of concept image shows an optical limit of about visual magnitude 5 for a 70-second exposure. Support science objectives include cloud monitoring in a manner similar to the more expensive cloud monitors in use at most major astronomical observatories, making expensive observing time at these observatories more efficient. Primary science objectives include bright meteor tracking, bright comet tracking, and monitoring the variability of bright stars. Citizen science objectives include crowd sourcing of many networked sky monitoring smartphones typically in broader support of many of the primary science goals. The deployment of a citizen smartphone array in an active science mode could leverage the sky monitoring data infrastructure to track other non-visual science opportunities, including monitoring the Earth's magnetic field for the effects of solar flares and exhaustive surface coverage for strong seismic events.

  17. SKYMONITOR: A Global Network for Sky Brightness Measurements

    NASA Astrophysics Data System (ADS)

    Davis, Donald R.; Mckenna, D.; Pulvermacher, R.; Everett, M.

    2010-01-01

    We are implementing a global network to measure sky brightness at dark-sky critical sites with the goal of creating a multi-decade database. The heart of this project is the Night Sky Brightness Monitor (NSBM), an autonomous 2 channel photometer which measures night sky brightness in the visual wavelengths (Mckenna et al, AAS 2009). Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The NSBM consists of two parts, a remote unit and a base station with an internet connection. Currently these devices use 2.4 Ghz transceivers with a range of 100 meters. The remote unit is battery powered with daytime recharging using a solar panel. Data received by the base unit is transmitted via email protocol to IDA offices in Tucson where it will be collected, archived and made available to the user community via a web interface. Two other versions of the NSBM are under development: one for radio sensitive areas using an optical fiber link and the second that reads data directly to a laptop for sites without internet access. NSBM units are currently undergoing field testing at two observatories. With support from the National Science Foundation, we will construct and install a total of 10 units at astronomical observatories. With additional funding, we will locate additional units at other sites such as National Parks, dark-sky preserves and other sites where dark sky preservation is crucial. We will present the current comparison with the National Park Service sky monitoring camera. We anticipate that the SKYMONITOR network will be functioning by the end of 2010.

  18. Classification of Variable Objects in Massive Sky Monitoring Surveys

    NASA Astrophysics Data System (ADS)

    Woźniak, Przemek; Wyrzykowski, Łukasz; Belokurov, Vasily

    2012-03-01

    The era of great sky surveys is upon us. Over the past decade we have seen rapid progress toward a continuous photometric record of the optical sky. Numerous sky surveys are discovering and monitoring variable objects by hundreds of thousands. Advances in detector, computing, and networking technology are driving applications of all shapes and sizes ranging from small all sky monitors, through networks of robotic telescopes of modest size, to big glass facilities equipped with giga-pixel CCD mosaics. The Large Synoptic Survey Telescope will be the first peta-scale astronomical survey [18]. It will expand the volume of the parameter space available to us by three orders of magnitude and explore the mutable heavens down to an unprecedented level of sensitivity. Proliferation of large, multidimensional astronomical data sets is stimulating the work on new methods and tools to handle the identification and classification challenge [3]. Given exponentially growing data rates, automated classification of variability types is quickly becoming a necessity. Taking humans out of the loop not only eliminates the subjective nature of visual classification, but is also an enabling factor for time-critical applications. Full automation is especially important for studies of explosive phenomena such as γ-ray bursts that require rapid follow-up observations before the event is over. While there is a general consensus that machine learning will provide a viable solution, the available algorithmic toolbox remains underutilized in astronomy by comparison with other fields such as genomics or market research. Part of the problem is the nature of astronomical data sets that tend to be dominated by a variety of irregularities. Not all algorithms can handle gracefully uneven time sampling, missing features, or sparsely populated high-dimensional spaces. More sophisticated algorithms and better tools available in standard software packages are required to facilitate the adoption of

  19. A Wide-field Camera and Fully Remote Operations at the Wyoming Infrared Observatory

    NASA Astrophysics Data System (ADS)

    Findlay, Joseph R.; Kobulnicky, Henry A.; Weger, James S.; Bucher, Gerald A.; Perry, Marvin C.; Myers, Adam D.; Pierce, Michael J.; Vogel, Conrad

    2016-11-01

    Upgrades at the 2.3 meter Wyoming Infrared Observatory telescope have provided the capability for fully remote operations by a single operator from the University of Wyoming campus. A line-of-sight 300 Megabit s-1 11 GHz radio link provides high-speed internet for data transfer and remote operations that include several realtime video feeds. Uninterruptable power is ensured by a 10 kVA battery supply for critical systems and a 55 kW autostart diesel generator capable of running the entire observatory for up to a week. The construction of a new four-element prime-focus corrector with fused-silica elements allows imaging over a 40‧ field of view with a new 40962 UV-sensitive prime-focus camera and filter wheel. A new telescope control system facilitates the remote operations model and provides 20″ rms pointing over the usable sky. Taken together, these improvements pave the way for a new generation of sky surveys supporting space-based missions and flexible-cadence observations advancing emerging astrophysical priorities such as planet detection, quasar variability, and long-term time-domain campaigns.

  20. Operation of U.S. Geological Survey unmanned digital magnetic observatories

    USGS Publications Warehouse

    Wilson, L.R.

    1990-01-01

    The precision and continuity of data recorded by unmanned digital magnetic observatories depend on the type of data acquisition equipment used and operating procedures employed. Three generations of observatory systems used by the U.S. Geological Survey are described. A table listing the frequency of component failures in the current observatory system has been compiled for a 54-month period of operation. The cause of component failure was generally mechanical or due to lightning. The average percentage data loss per month for 13 observatories operating a combined total of 637 months was 9%. Frequency distributions of data loss intervals show the highest frequency of occurrence to be intervals of less than 1 h. Installation of the third generation system will begin in 1988. The configuration of the third generation observatory system will eliminate most of the mechanical problems, and its components should be less susceptible to lightning. A quasi-absolute coil-proton system will be added to obtain baseline control for component variation data twice daily. Observatory data, diagnostics, and magnetic activity indices will be collected at 12-min intervals via satellite at Golden, Colorado. An improvement in the quality and continuity of data obtained with the new system is expected. ?? 1990.

  1. The LOFAR Two-metre Sky Survey. I. Survey description and preliminary data release

    NASA Astrophysics Data System (ADS)

    Shimwell, T. W.; Röttgering, H. J. A.; Best, P. N.; Williams, W. L.; Dijkema, T. J.; de Gasperin, F.; Hardcastle, M. J.; Heald, G. H.; Hoang, D. N.; Horneffer, A.; Intema, H.; Mahony, E. K.; Mandal, S.; Mechev, A. P.; Morabito, L.; Oonk, J. B. R.; Rafferty, D.; Retana-Montenegro, E.; Sabater, J.; Tasse, C.; van Weeren, R. J.; Brüggen, M.; Brunetti, G.; Chyży, K. T.; Conway, J. E.; Haverkorn, M.; Jackson, N.; Jarvis, M. J.; McKean, J. P.; Miley, G. K.; Morganti, R.; White, G. J.; Wise, M. W.; van Bemmel, I. M.; Beck, R.; Brienza, M.; Bonafede, A.; Calistro Rivera, G.; Cassano, R.; Clarke, A. O.; Cseh, D.; Deller, A.; Drabent, A.; van Driel, W.; Engels, D.; Falcke, H.; Ferrari, C.; Fröhlich, S.; Garrett, M. A.; Harwood, J. J.; Heesen, V.; Hoeft, M.; Horellou, C.; Israel, F. P.; Kapińska, A. D.; Kunert-Bajraszewska, M.; McKay, D. J.; Mohan, N. R.; Orrú, E.; Pizzo, R. F.; Prandoni, I.; Schwarz, D. J.; Shulevski, A.; Sipior, M.; Smith, D. J. B.; Sridhar, S. S.; Steinmetz, M.; Stroe, A.; Varenius, E.; van der Werf, P. P.; Zensus, J. A.; Zwart, J. T. L.

    2017-02-01

    The LOFAR Two-metre Sky Survey (LoTSS) is a deep 120-168 MHz imaging survey that will eventually cover the entire northern sky. Each of the 3170 pointings will be observed for 8 h, which, at most declinations, is sufficient to produce 5″ resolution images with a sensitivity of 100 μJy/beam and accomplish the main scientific aims of the survey, which are to explore the formation and evolution of massive black holes, galaxies, clusters of galaxies and large-scale structure. Owing to the compact core and long baselines of LOFAR, the images provide excellent sensitivity to both highly extended and compact emission. For legacy value, the data are archived at high spectral and time resolution to facilitate subarcsecond imaging and spectral line studies. In this paper we provide an overview of the LoTSS. We outline the survey strategy, the observational status, the current calibration techniques, a preliminary data release, and the anticipated scientific impact. The preliminary images that we have released were created using a fully automated but direction-independent calibration strategy and are significantly more sensitive than those produced by any existing large-area low-frequency survey. In excess of 44 000 sources are detected in the images that have a resolution of 25″, typical noise levels of less than 0.5 mJy/beam, and cover an area of over 350 square degrees in the region of the HETDEX Spring Field (right ascension 10h45m00s to 15h30m00s and declination 45°00'00″ to 57°00'00″). The catalogue (full Table 3) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A104

  2. Gamma-sky.net: Portal to the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Voruganti, Arjun; Deil, Christoph; Donath, Axel; King, Johannes

    2017-01-01

    http://gamma-sky.net is a novel interactive website designed for exploring the gamma-ray sky. The Map View portion of the site is powered by the Aladin Lite sky atlas, providing a scalable survey image tesselated onto a three-dimensional sphere. The map allows for interactive pan and zoom navigation as well as search queries by sky position or object name. The default image overlay shows the gamma-ray sky observed by the Fermi-LAT gamma-ray space telescope. Other survey images (e.g. Planck microwave images in low/high frequency bands, ROSAT X-ray image) are available for comparison with the gamma-ray data. Sources from major gamma-ray source catalogs of interest (Fermi-LAT 2FHL, 3FGL and a TeV source catalog) are overlaid over the sky map as markers. Clicking on a given source shows basic information in a popup, and detailed pages for every source are available via the Catalog View component of the website, including information such as source classification, spectrum and light-curve plots, and literature references. We intend for gamma-sky.net to be applicable for both professional astronomers as well as the general public. The website started in early June 2016 and is being developed as an open-source, open data project on GitHub (https://github.com/gammapy/gamma-sky). We plan to extend it to display more gamma-ray and multi-wavelength data. Feedback and contributions are very welcome!

  3. New ultracool subdwarfs identified in large-scale surveys using Virtual Observatory tools

    NASA Astrophysics Data System (ADS)

    Lodieu, N.; Espinoza Contreras, M.; Zapatero Osorio, M. R.; Solano, E.; Aberasturi, M.; Martín, E. L.; Rodrigo, C.

    2017-02-01

    Aims: We aim to develop an efficient method to search for late-type subdwarfs (metal-depleted dwarfs with spectral types ≥M5) to improve the current statistics. Our objectives are to improve our knowledge of metal-poor low-mass dwarfs, bridge the gap between the late-M and L types, determine their surface density, and understand the impact of metallicity on the stellar and substellar mass function. Methods: We carried out a search cross-matching the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) and the Two Micron All Sky Survey (2MASS), and different releases of SDSS and the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) using STILTS, Aladin, and Topcat developed as part of the Virtual Observatory tools. We considered different photometric and proper motion criteria for our selection. We identified 29 and 71 late-type subdwarf candidates in each cross-correlation over 8826 and 3679 sq. deg, respectively (2312 sq. deg overlap). We obtained our own low-resolution optical spectra for 71 of our candidates: 26 were observed with the Gran Telescopio de Canarias (GTC; R 350, λλ5000-10 000 Å), six with the Nordic Optical Telescope (NOT; R 450, λλ5000-10 700 Å), and 39 with the Very Large Telescope (VLT; R 350, λλ6000-11 000 Å). We also retrieved spectra for 30 of our candidates from the SDSS spectroscopic database (R 2000 and λλ 3800-9400 Å), nine of these 30 candidates with an independent spectrum in our follow-up. We classified 92 candidates based on 101 optical spectra using two methods: spectral indices and comparison with templates of known subdwarfs. Results: We developed an efficient photometric and proper motion search methodology to identify metal-poor M dwarfs. We confirmed 86% and 94% of the candidates as late-type subdwarfs from the SDSS vs. 2MASS and SDSS vs. UKIDSS cross-matches, respectively. These subdwarfs have spectral types ranging between M5 and L0.5 and SDSS magnitudes in the r = 19.4-23.3 mag range

  4. Site Protection Efforts at the AURA Observatory in Chile

    NASA Astrophysics Data System (ADS)

    Smith, R. Chris; Smith, Malcolm G.; Sanhueza, Pedro

    2015-08-01

    The AURA Observatory (AURA-O) was the first of the major international observatories to be established in northern Chile to exploit the optimal astronomical conditions available there. The site was originally established in 1962 to host the Cerro Tololo Inter-American Observatory (CTIO). It now hosts more than 20 operational telescopes, including some of the leading U.S. and international astronomical facilities in the southern hemisphere, such as the Blanco 4m telescope on Cerro Tololo and the Gemini-South and SOAR telescopes on Cerro Pachón. Construction of the next generation facility, the Large Synoptic Survey Telescope (LSST), has recently begun on Cerro Pachón, while additional smaller telescopes continue to be added to the complement on Cerro Tololo.While the site has become a major platform for international astronomical facilities over the last 50 years, development in the region has led to an ever-increasing threat of light pollution around the site. AURA-O has worked closely with local, regional, and national authorities and institutions (in particular with the Chilean Ministries of Environment and Foreign Relations) in an effort to protect the site so that future generations of telescopes, as well as future generations of Chileans, can benefit from the dark skies in the region. We will summarize our efforts over the past 15 years to highlight the importance of dark sky protection through education and public outreach as well as through more recent promotion of IDA certifications in the region and support for the World Heritage initiatives described by others in this conference.

  5. A Remotely Operated Observatory for Minor Planet Photometry

    NASA Astrophysics Data System (ADS)

    Ditteon, Richard

    2008-05-01

    In October of 2007 Rose-Hulman Institute of Technology in Terre Haute, Indiana began operating the Oakley Southern Sky Observatory (E09) located near Siding Spring Observatory in New South Wales, Australia. The observatory houses a 0.5-m, f/8.4 Ritchey-Chretien telescope mounted on a Paramount ME, German equatorial mount. Attached to the telescope is an STL-1001E CCD camera which has 1024 by 1024, 24 µm pixels, a two-stage thermoelectric cooler, and built in color filter wheel with BVRI and clear filters. Image scale is 1.2 arcseconds per pixel. A cloud sensor is used to monitor sky conditions. The observatory has a roll-off roof with limit switches to detect when the roof is fully open and fully closed. In addition, a switch has been added to the mount to detect when the telescope is parked and that it is safe to open or close the roof. All of the hardware is controlled by a custom program which reads a simple text file containing the sequence of images and targets to be collected each night. The text file is loaded onto the control computer once each day, then the software waits until sunset to determine if the sky is clear. When conditions are favorable, power is turned on, the roof opens, twilight flats, dark and bias frames are recorded, and when it is fully dark data frames are recorded. Images are transferred via the Internet back to Rose-Hulman by another program running in the background. The observatory closes itself before dawn or if it gets cloudy. Currently we are using the observatory for photometry of minor planets. Students are responsible for selecting targets, processing the returned images, determining the period and light curve of each minor planet and writing a paper for publication. Recent results will be presented.

  6. Second ROSAT all-sky survey (2RXS) source catalogue

    NASA Astrophysics Data System (ADS)

    Boller, Th.; Freyberg, M. J.; Trümper, J.; Haberl, F.; Voges, W.; Nandra, K.

    2016-04-01

    Aims: We present the second ROSAT all-sky survey source catalogue, hereafter referred to as the 2RXS catalogue. This is the second publicly released ROSAT catalogue of point-like sources obtained from the ROSAT all-sky survey (RASS) observations performed with the position-sensitive proportional counter (PSPC) between June 1990 and August 1991, and is an extended and revised version of the bright and faint source catalogues. Methods: We used the latest version of the RASS processing to produce overlapping X-ray images of 6.4° × 6.4° sky regions. To create a source catalogue, a likelihood-based detection algorithm was applied to these, which accounts for the variable point-spread function (PSF) across the PSPC field of view. Improvements in the background determination compared to 1RXS were also implemented. X-ray control images showing the source and background extraction regions were generated, which were visually inspected. Simulations were performed to assess the spurious source content of the 2RXS catalogue. X-ray spectra and light curves were extracted for the 2RXS sources, with spectral and variability parameters derived from these products. Results: We obtained about 135 000 X-ray detections in the 0.1-2.4 keV energy band down to a likelihood threshold of 6.5, as adopted in the 1RXS faint source catalogue. Our simulations show that the expected spurious content of the catalogue is a strong function of detection likelihood, and the full catalogue is expected to contain about 30% spurious detections. A more conservative likelihood threshold of 9, on the other hand, yields about 71 000 detections with a 5% spurious fraction. We recommend thresholds appropriate to the scientific application. X-ray images and overlaid X-ray contour lines provide an additional user product to evaluate the detections visually, and we performed our own visual inspections to flag uncertain detections. Intra-day variability in the X-ray light curves was quantified based on the

  7. HIGH-VELOCITY CLOUDS IN THE GALACTIC ALL SKY SURVEY. I. CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, V. A.; Kummerfeld, J. K.; McClure-Griffiths, N. M.

    2013-11-01

    We present a catalog of high-velocity clouds (HVCs) from the Galactic All Sky Survey (GASS) of southern sky neutral hydrogen, which has 57 mK sensitivity and 1 km s{sup –1} velocity resolution and was obtained with the Parkes Telescope. Our catalog has been derived from the stray-radiation-corrected second release of GASS. We describe the data and our method of identifying HVCs and analyze the overall properties of the GASS population. We catalog a total of 1693 HVCs at declinations <0°, including 1111 positive velocity HVCs and 582 negative velocity HVCs. Our catalog also includes 295 anomalous velocity clouds (AVCs). Themore » cloud line-widths of our HVC population have a median FWHM of ∼19 km s{sup –1}, which is lower than that found in previous surveys. The completeness of our catalog is above 95% based on comparison with the HIPASS catalog of HVCs upon which we improve by an order of magnitude in spectral resolution. We find 758 new HVCs and AVCs with no HIPASS counterpart. The GASS catalog will shed unprecedented light on the distribution and kinematic structure of southern sky HVCs, as well as delve further into the cloud populations that make up the anomalous velocity gas of the Milky Way.« less

  8. New ultracool subdwarfs identified in large-scale surveys using Virtual Observatory tools. I. UKIDSS LAS DR5 vs. SDSS DR7

    NASA Astrophysics Data System (ADS)

    Lodieu, N.; Espinoza Contreras, M.; Zapatero Osorio, M. R.; Solano, E.; Aberasturi, M.; Martín, E. L.

    2012-06-01

    Aims: The aim of the project is to improve our knowledge of the low-mass and low-metallicity population to investigate the influence of metallicity on the stellar (and substellar) mass function. Methods: We present the results of a photometric and proper motion search aimed at discovering ultracool subdwarfs in large-scale surveys. We employed and combined the Fifth Data Release (DR5) of the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) and the Sloan Digital Sky Survey (SDSS) Data Release 7 complemented with ancillary data from the Two Micron All-Sky Survey (2MASS), the DEep Near-Infrared Survey (DENIS) and the SuperCOSMOS Sky Surveys (SSS). Results: The SDSS DR7 vs. UKIDSS LAS DR5 search returned a total of 32 ultracool subdwarf candidates, only two of which are recognised as a subdwarf in the literature. Twenty-seven candidates, including the two known ones, were followed-up spectroscopically in the optical between 600 and 1000 nm, thus covering strong spectral features indicative of low metallicity (e.g., CaH), 21 with the Very Large Telescope, one with the Nordic Optical Telescope, and five were extracted from the Sloan spectroscopic database to assess (or refute) their low-metal content. We confirm 20 candidates as subdwarfs, extreme subdwarfs, or ultra-subdwarfs with spectral types later than M5; this represents a success rate of ≥ 60%. Among those 20 new subdwarfs, we identify two early-L subdwarfs that are very likely located within 100 pc, which we propose as templates for future searches because they are the first examples of their subclass. Another seven sources are solar-metallicity M dwarfs with spectral types between M4 and M7 without Hα emission, suggesting that they are old M dwarfs. The remaining five candidates do not have spectroscopic follow-up yet; only one remains as a bona-fide ultracool subdwarf after revision of their proper motions. We assigned spectral types based on the current classification schemes and, when

  9. The Great Observatories Origins Deep Survey Spitzer Legacy Science Program

    NASA Astrophysics Data System (ADS)

    Dickinson, M.; GOODS Team

    2005-12-01

    The Great Observatories Origins Deep Survey (GOODS) is a multiwavelength anthology of deep field programs using NASA's Great Observatories and the most powerful ground-based facilities to create a public data resource for studying the formation and evolution of galaxies and active galactic nuclei (AGN) throughout cosmic history. GOODS incorporates a Spitzer Legacy Program, which has obtained the deepest observations with that telescope at 3.6 to 24 microns. The Spitzer/IRAC data detect the rest-frame near-infrared light from galaxies out to z ˜ 6, providing valuable information on their stellar populations and masses. The MIPS 24μ m data are a sensitive probe of re-emitted energy from dust-obscured star formation and AGN out to z ˜ 3. I will very briefly introduce the survey and summarize science highlights from the Spitzer data.

  10. HRMS Sky Survey Techniques for Separating the Rare Interesting Signal from the Multitude of Background Signals

    NASA Technical Reports Server (NTRS)

    Olsen, E.; Backus, C.; Gulkis, S.; Levin, S.

    1993-01-01

    The NASA High Resolution Microwave Survey (HRMS) Sky Survey component will survey the entire celestial sphere over the microwave frequency band to search for signals of intelligent origin which originate from beyond our solar system.

  11. The Catalina Sky Survey for Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Christensen, E.

    The Catalina Sky Survey (CSS) specializes in the detection of the closest transients in our transient universe: near-Earth objects (NEOs). CSS is the leading NEO survey program since 2005, with a discovery rate of 500-600 NEOs per year. This rate is set to substantially increase starting in 2014 with the deployment of wider FOV cameras at both survey telescopes, while a proposed 3-telescope system in Chile would provide a new and significant capability in the Southern Hemisphere beginning as early as 2015. Elements contributing to the success of CSS may be applied to other surveys, and include 1) Real-time processing, identification, and reporting of interesting transients; 2) Human-assisted validation to ensure a clean transient stream that is efficient to the limits of the system (˜ 1σ); 3) an integrated follow-up capability to ensure threshold or high-priority transients are properly confirmed and followed up. Additionally, the open-source nature of the CSS data enables considerable secondary science (i.e. CRTS), and CSS continues to pursue collaborations to maximize the utility of the data.

  12. The New Progress of the Starry Sky Project of China

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua

    2015-08-01

    Since the 28th General Assembly of IAU, the SSPC team made new progress:1. Enhanced the function of the SSPC team-- Established the contact with IAU C50, IUCN Dark Skies Advisory Group, AWB and IDA,and undertakes the work of the IDA Beijing Chapter.-- Got supports from China’s National Astronomical Observatories, Beijing Planetarium, and Shanghai Science and Technology Museum.-- Signed cooperation agreements with Lighting Research Center, English Education Group and law Firm; formed the team force.2. Put forward a proposal to national top institutionThe SSPC submitted the first proposal about dark sky protection to the Chinese People’s Political Consultative Conference.3. Introduced the Criteria and Guideline of dark sky protectionThe SSPC team translated 8 documents of IDA, and provided a reference basis for Chinese dark sky protection.4. Actively establish dark sky places-- Plan a Dark Sky Reserve around Ali astronomical observatory (5,100m elevation) in Tibet. China’s Xinhua News Agency released the news.-- Combining with Hangcuo Lake, a National Natural Reserve and Scenic in Tibet, to plan and establish the Dark Sky Park.-- Cooperated with Shandong Longgang Tourism Group to construct the Dream Sky Theme Park in the suburbs of Jinan city.In the IYL 2015, the SSPC is getting further development:First, make dark sky protection enter National Ecological Strategy of “Beautiful China”. We call on: “Beautiful China” needs “Beautiful Night Sky” China should care the shared starry sky, and left this resource and heritage for children.Second, hold “Cosmic Light” exhibition in Shanghai Science and Technology Museum on August.Third, continue to establish Dark Sky Reserve, Park and Theme Park. We want to make these places become the bases of dark sky protection, astronomical education and ecological tourism, and develop into new cultural industry.Fourth, actively join international cooperation.Now, “Blue Sky, White Cloud and Starry Sky “have become

  13. Two-dimensional Topology of the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Hoyle, Fiona; Vogeley, Michael S.; Gott, J. Richard, III; Blanton, Michael; Tegmark, Max; Weinberg, David H.; Bahcall, N.; Brinkmann, J.; York, D.

    2002-12-01

    We present the topology of a volume-limited sample of 11,884 galaxies, selected from an apparent magnitude limited sample of over 100,000 galaxies observed as part of the Sloan Digital Sky Survey (SDSS). The data currently cover three main regions on the sky: one in the Galactic north and one in the south, both at zero degrees declination, and one area in the north at higher declination. Each of these areas covers a wide range of survey longitude but a narrow range of survey latitude, allowing the two-dimensional genus to be measured. The genus curves of the SDSS subsamples are similar, after appropriately normalizing these measurements for the different areas. We sum the genus curves from the three areas to obtain the total genus curve of the SDSS. The total curve has a shape similar to the genus curve derived from mock catalogs drawn from the Hubble volume ΛCDM simulation and is similar to that of a Gaussian random field. Likewise, comparison with the genus of the Two-Degree Field Galaxy Redshift Survey, after normalization for the difference in area, reveals remarkable similarity in the topology of these samples. We test for the effects of galaxy-type segregation by splitting the SDSS data into thirds, based on the u*-r* colors of the galaxies, and measure the genus of the reddest and bluest subsamples. This red/blue split in u*-r* is essentially a split by morphology, as explained by Strateva and coworkers. We find that the genus curve for the reddest galaxies exhibits a ``meatball'' shift of the topology-reflecting the concentration of red galaxies in high-density regions-compared to the bluest galaxies and the full sample, in agreement with predictions from simulations.

  14. Objectives and first results of the NASA SETI sky survey field tests at Goldstone

    NASA Technical Reports Server (NTRS)

    Gulkis, S.; Klein, M. J.; Olsen, E. T.; Crow, R. B.; Gosline, R. M.; Downs, G. S.; Quirk, M. P.; Lokshin, A.; Solomon, J.

    1986-01-01

    Field tests of SETI (Search for Extraterrestrial Intelligence) prototype hardware and software began in March 1985 at Goldstone. With emphasis on the sky survey component of the NASA SETI search strategy, the article describes the survey characteristics, the detection strategy, and preliminary results of system tests.

  15. All Sky Observations with BATSE and GBM

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2008-01-01

    The Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO) monitored the entire sky from 1991-2000. I will review highlights of BATSE observations including gamma ray bursts, black hole candidates, accreting pulsars, and active galaxies. On 2008 June 11, the Fermi Gamma Ray Space Telescope was launched. The Gamma ray Burst Monitor (GBM) on board Fermi continues the all-sky monitoring legacy started with BATSE. I will review early results and planned observations with GBM.

  16. RUNAWAY M DWARF CANDIDATES FROM THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favia, Andrej; West, Andrew A.; Theissen, Christopher A., E-mail: andrej.favia@umit.maine.edu

    2015-11-01

    We present a sample of 20 runaway M dwarf candidates (RdMs) within 1 kpc of the Sun whose Galactocentric (GC) velocities exceed 400 km s{sup −1}. The candidates were selected from the Sloan Digital Sky Survey (SDSS) DR7 M Dwarf Catalog of West et al. Our RdMs have SDSS+USNO-B proper motions that are consistent with those recorded in the PPMXL, LSPM, and combined Wide-field Infrared Survey Explorer +SDSS+Two-micron All-sky Survey catalogs. Sixteen RdMs are classified as dwarfs, while the remaining four RdMs are subdwarfs. We model the Galactic potential using a bulge-disk-halo profile. Our fastest RdM, with a GC velocitymore » of 658.5 ± 236.9 km s{sup −1}, is a possible hypervelocity candidate, as it is unbound in 77% of our simulations. About half of our RdMs have kinematics that are consistent with ejection from the Galactic center. Seven of our RdMs have kinematics consistent with an ejection scenario from M31 or M32 to within 2 σ , although our distance-limited survey makes such a realization unlikely. No more than four of our RdMs may have originated from the Leo stream. We propose that to within measurement errors, most of our bound RdMs are likely disk runaways or halo objects, and may have been accelerated through a series of multi-body interactions within the Galactic disk or possibly supernovae explosions.« less

  17. Google Sky: A Digital View of the Night Sky

    NASA Astrophysics Data System (ADS)

    Connolly, A. Scranton, R.; Ornduff, T.

    2008-11-01

    From its inception Astronomy has been a visual science, from careful observations of the sky using the naked eye, to the use of telescopes and photographs to map the distribution of stars and galaxies, to the current era of digital cameras that can image the sky over many decades of the electromagnetic spectrum. Sky in Google Earth (http://earth.google.com) and Google Sky (http://www.google.com/sky) continue this tradition, providing an intuitive visual interface to some of the largest astronomical imaging surveys of the sky. Streaming multi-color imagery, catalogs, time domain data, as well as annotating interesting astronomical sources and events with placemarks, podcasts and videos, Sky provides a panchromatic view of the universe accessible to anyone with a computer. Beyond a simple exploration of the sky Google Sky enables users to create and share content with others around the world. With an open interface available on Linux, Mac OS X and Windows, and translations of the content into over 20 different languages we present Sky as the embodiment of a virtual telescope for discovery and sharing the excitement of astronomy and science as a whole.

  18. Measurements of 161 Double Stars With a High-Speed CCD: The Winter/Spring 2017 Observing Program at Brilliant Sky Observatory, Part 2

    NASA Astrophysics Data System (ADS)

    Harshaw, Richard

    2018-04-01

    In the winter and spring of 2017, an aggressive observing program of measuring close double stars with speckle interferometry and CCD imaging was undertaken at Brilliant Sky Observatory, my observing site in Cave Creek, Arizona. A total of 596 stars were observed, 8 of which were rejected for various reasons, leaving 588 pairs. Of these, 427 were observed and measured with speckle interferometry, while the remaining 161 were measured with a CCD. This paper reports the results of the observations of the 161 CCD cases. A separate paper in this issue will report the speckle measurements of the 427 other pairs.

  19. Protection of Hawaii's Observatories from Light Pollution

    NASA Astrophysics Data System (ADS)

    Wainscoat, Richard J.

    2018-01-01

    Maunakea Observatory, located on the island of Hawaii, is among the world darkest sites for astronomy. Strong efforts to preserve the dark night sky over the last forty years have proven successful. Artificial light presently adds only approximately 2% to the natural night sky brightness. The techniques being used to protect Maunakea from light pollution will be described, along with the challenges that are now being faced.Haleakala Observatory, located on the island of Maui, is also an excellent observing site, and is among the best sites in the United States. Lighting restrictions in Maui County are much weaker, and consequently, the night sky above Haleakala is less well protected. Haleakala is closer to Honolulu and the island of Oahu (population approximately 1 million), and the glow from Oahu makes the northwestern sky brighter.Much of the lighting across most of the United States, including Hawaii, is presently being converted to LED lighting. This provides an opportunity to replace existing poorly shielded lights with properly shielded LED fixtures, but careful spectral management is essential. It is critically important to only use LED lighting that is deficient in blue and green light. LED lighting also is easy to dim. Dimming of lights later at night, when there is no need for brighter lighting, is an important tool for reducing light pollution.Techniques used to protect astronomical observatories from light pollution are similar to the techniques that must be used to protect animals that are affected by light at night, such as endangered birds and turtles. These same techniques are compatible with recent human health related lighting recommendations from the American Medical Association.

  20. Dark Sky Protection and Education - Izera Dark Sky Park

    NASA Astrophysics Data System (ADS)

    Berlicki, Arkadiusz; Kolomanski, Sylwester; Mrozek, Tomasz; Zakowicz, Grzegorz

    2015-08-01

    Darkness of the night sky is a natural component of our environment and should be protected against negative effects of human activities. The night darkness is necessary for balanced life of plants, animals and people. Unfortunately, development of human civilization and technology has led to the substantial increase of the night-sky brightness and to situation where nights are no more dark in many areas of the World. This phenomenon is called "light pollution" and it can be rank among such problems as chemical pollution of air, water and soil. Besides the environment, the light pollution can also affect e.g. the scientific activities of astronomers - many observatories built in the past began to be located within the glow of city lights making the night observations difficult, or even impossible.In order to protect the natural darkness of nights many so-called "dark sky parks" were established, where the darkness is preserved, similar to typical nature reserves. The role of these parks is not only conservation but also education, supporting to make society aware of how serious the problem of the light pollution is.History of the dark sky areas in Europe began on November 4, 2009 in Jizerka - a small village situated in the Izera Mountains, when Izera Dark Sky Park (IDSP) was established - it was the first transboundary dark sky park in the World. The idea of establishing that dark sky park in the Izera Mountains originated from a need to give to the society in Poland and Czech Republic the knowledge about the light pollution. Izera Dark Sky Park is a part of the astro-tourism project "Astro Izery" that combines tourist attraction of Izera Valley and astronomical education under the wonderful starry Izera sky. Besides the IDSP, the project Astro Izery consists of the set of simple astronomical instruments (gnomon, sundial), natural educational trail "Solar System Model", and astronomical events for the public. In addition, twice a year we organize a 3-4 days

  1. The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Christopher P.; Alexandroff, Rachael; Allende Prieto, Carlos

    2012-11-19

    The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar spectra, along with the data presented in previous data releases. These spectra were obtained with the new BOSS spectrograph and were taken between 2009 December and 2011 July. In addition, the stellar parameters pipeline, which determines radial velocities, surface temperatures, surface gravities, and metallicities of stars, has been updated and refined with improvements in temperaturemore » estimates for stars with T_eff<5000 K and in metallicity estimates for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars presented in DR8, including stars from SDSS-I and II, as well as those observed as part of the SDSS-III Sloan Extension for Galactic Understanding and Exploration-2 (SEGUE-2). The astrometry error introduced in the DR8 imaging catalogs has been corrected in the DR9 data products. The next data release for SDSS-III will be in Summer 2013, which will present the first data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) along with another year of data from BOSS, followed by the final SDSS-III data release in December 2014.« less

  2. Optimizing Spectroscopic and Photometric Galaxy Surveys: Same-Sky Benefits for Dark Energy and Modified Gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, Donnacha; Lahav, Ofer; Bridle, Sarah

    The combination of multiple cosmological probes can produce measurements of cosmological parameters much more stringent than those possible with any individual probe. We examine the combination of two highly correlated probes of late-time structure growth: (i) weak gravitational lensing from a survey with photometric redshifts and (ii) galaxy clustering and redshift space distortions from a survey with spectroscopic redshifts. We choose generic survey designs so that our results are applicable to a range of current and future photometric redshift (e.g. KiDS, DES, HSC, Euclid) and spectroscopic redshift (e.g. DESI, 4MOST, Sumire) surveys. Combining the surveys greatly improves their power tomore » measure both dark energy and modified gravity. An independent, non-overlapping combination sees a dark energy figure of merit more than 4 times larger than that produced by either survey alone. The powerful synergies between the surveys are strongest for modified gravity, where their constraints are orthogonal, producing a non-overlapping joint figure of merit nearly 2 orders of magnitude larger than either alone. Our projected angular power spectrum formalism makes it easy to model the cross-correlation observable when the surveys overlap on the sky, producing a joint data vector and full covariance matrix. We calculate a same-sky improvement factor, from the inclusion of these cross-correlations, relative to non-overlapping surveys. We find nearly a factor of 4 for dark energy and more than a factor of 2 for modified gravity. The exact forecast figures of merit and same-sky benefits can be radically affected by a range of forecasts assumption, which we explore methodically in a sensitivity analysis. We show that that our fiducial assumptions produce robust results which give a good average picture of the science return from combining photometric and spectroscopic surveys.« less

  3. SPIDERS: selection of spectroscopic targets using AGN candidates detected in all-sky X-ray surveys

    NASA Astrophysics Data System (ADS)

    Dwelly, T.; Salvato, M.; Merloni, A.; Brusa, M.; Buchner, J.; Anderson, S. F.; Boller, Th.; Brandt, W. N.; Budavári, T.; Clerc, N.; Coffey, D.; Del Moro, A.; Georgakakis, A.; Green, P. J.; Jin, C.; Menzel, M.-L.; Myers, A. D.; Nandra, K.; Nichol, R. C.; Ridl, J.; Schwope, A. D.; Simm, T.

    2017-07-01

    SPIDERS (SPectroscopic IDentification of eROSITA Sources) is a Sloan Digital Sky Survey IV (SDSS-IV) survey running in parallel to the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) cosmology project. SPIDERS will obtain optical spectroscopy for large numbers of X-ray-selected active galactic nuclei (AGN) and galaxy cluster members detected in wide-area eROSITA, XMM-Newton and ROSAT surveys. We describe the methods used to choose spectroscopic targets for two sub-programmes of SPIDERS X-ray selected AGN candidates detected in the ROSAT All Sky and the XMM-Newton Slew surveys. We have exploited a Bayesian cross-matching algorithm, guided by priors based on mid-IR colour-magnitude information from the Wide-field Infrared Survey Explorer survey, to select the most probable optical counterpart to each X-ray detection. We empirically demonstrate the high fidelity of our counterpart selection method using a reference sample of bright well-localized X-ray sources collated from XMM-Newton, Chandra and Swift-XRT serendipitous catalogues, and also by examining blank-sky locations. We describe the down-selection steps which resulted in the final set of SPIDERS-AGN targets put forward for spectroscopy within the eBOSS/TDSS/SPIDERS survey, and present catalogues of these targets. We also present catalogues of ˜12 000 ROSAT and ˜1500 XMM-Newton Slew survey sources that have existing optical spectroscopy from SDSS-DR12, including the results of our visual inspections. On completion of the SPIDERS programme, we expect to have collected homogeneous spectroscopic redshift information over a footprint of ˜7500 deg2 for >85 per cent of the ROSAT and XMM-Newton Slew survey sources having optical counterparts in the magnitude range 17 < r < 22.5, producing a large and highly complete sample of bright X-ray-selected AGN suitable for statistical studies of AGN evolution and clustering.

  4. Zernike analysis of all-sky night brightness maps.

    PubMed

    Bará, Salvador; Nievas, Miguel; Sánchez de Miguel, Alejandro; Zamorano, Jaime

    2014-04-20

    All-sky night brightness maps (calibrated images of the night sky with hemispherical field-of-view (FOV) taken at standard photometric bands) provide useful data to assess the light pollution levels at any ground site. We show that these maps can be efficiently described and analyzed using Zernike circle polynomials. The relevant image information can be compressed into a low-dimensional coefficients vector, giving an analytical expression for the sky brightness and alleviating the effects of noise. Moreover, the Zernike expansions allow us to quantify in a straightforward way the average and zenithal sky brightness and its variation across the FOV, providing a convenient framework to study the time course of these magnitudes. We apply this framework to analyze the results of a one-year campaign of night sky brightness measurements made at the UCM observatory in Madrid.

  5. Sky Survey Detected This Small Asteroid

    NASA Image and Video Library

    2017-06-30

    This frame from a sequence of four images taken during one night of observation by NASA's Catalina Sky Survey near Tucson, Arizona, shows the speck of light that moves relative to the background stars is a small asteroid that was, at the time, about as far away as the moon. This asteroid, named 2014 AA, was the second one ever detected on course to impact Earth. It was estimated to be about 6 to 10 feet (2 to 3 meters) in diameter, and it harmlessly hit Earth's atmosphere over the Atlantic Ocean about 20 hours after its discovery in these images. The images were taken Jan. 1, 2014. They provide an example of how asteroids are typically discovered by detection of their motion relative to background stars. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21712

  6. Infrared near-Earth-object survey modeling for observatories interior to the Earth's orbit

    NASA Astrophysics Data System (ADS)

    Buie, M.

    2014-07-01

    The search for and dynamical characterization of the near-Earth population of objects (NEOs) has been a busy topic for surveys for many years. Most of the work thus far has been from ground-based optical surveys such as the Catalina Sky Survey and LINEAR. These surveys have essentially reached a complete inventory of objects down to 1 km diameter and have shown that the known objects do not pose any significant impact threat. Smaller objects are correspondingly smaller threats but there are more of them and fewer of them have so far been discovered. The next generation of surveys is looking to extend their reach down to much smaller sizes. From an impact risk perspective, those objects as small as 30--40 m are still of interest (similar in size to the Tunguska bolide). Smaller objects than this are largely of interest from a space resource or in-situ analysis efforts. A recent mission concept promoted by the B612 Foundation and Ball Aerospace calls for an infrared survey telescope in a Venus-like orbit, known as the Sentinel Mission. This wide-field facility has been designed to complete the inventory down to a 140 m diameter while also providing substantial constraints on the NEO population down to a Tunguska-sized object. I have been working to develop a suite of tools to provide survey modeling for this class of survey telescope. The purpose of the tool is to uncover hidden complexities that govern mission design and operation while also working to quantitatively understand the orbit quality provided on its catalog of objects without additional followup assets. The baseline mission design calls for a 6.5 year survey lifetime. This survey model is a statistically based tool for establishing completeness as a function of object size and survey duration. Effects modeled include the ability to adjust the field-of-regard (includes all pointing restrictions), field-of-view, focal plane array fill factor, and the observatory orbit. Consequences tracked include time

  7. A catalogue of clusters of galaxies identified from all sky surveys of 2MASS, WISE, and SuperCOSMOS

    NASA Astrophysics Data System (ADS)

    Wen, Z. L.; Han, J. L.; Yang, F.

    2018-03-01

    We identify 47 600 clusters of galaxies from photometric data of Two Micron All Sky Survey (2MASS), Wide-field Infrared Survey Explorer (WISE), and SuperCOSMOS, among which 26 125 clusters are recognized for the first time and mostly in the sky outside the Sloan Digital Sky Survey (SDSS) area. About 90 per cent of massive clusters of M500 > 3 × 1014 M⊙ in the redshift range of 0.025 < z < 0.3 have been detected from such survey data, and the detection rate drops down to 50 per cent for clusters with a mass of M500 ˜ 1 × 1014 M⊙. Monte Carlo simulations show that the false detection rate for the whole cluster sample is less than 5 per cent. By cross-matching with ROSAT and XMM-Newton sources, we get 779 new X-ray cluster candidates which have X-ray counterparts within a projected offset of 0.2 Mpc.

  8. VizieR Online Data Catalog: The VLA Low-frequency Sky Survey at 74MHz (Perley+ 2006)

    NASA Astrophysics Data System (ADS)

    Perley, R. A.; Condon, J. J.; Cotton, W. D.; Cohen, A. S.; Lane, W. M.; Kassim, N. E.; Lazio, T. J. W.; Erickson, W. C.

    2006-08-01

    The VLA Low-Frequency Sky Survey (VLSS) is a 74MHz (4m) continuum survey covering the entire sky north of -30{deg} declination. Using the VLA in B- and BnA-configurations, we will map the entire survey region at a resolution of 80" and with an average rms noise of 0.1 Jy/beam. For a detailed description of the survey and its scientific motivations, please see the original proposal to the NRAO skeptical review committee. The VLSS is being made as a service to the astronomical community, and the principal data products are being released to the public as soon as they are produced and verified. Details and access to the images can be found at http://lwa.nrl.navy.mil/VLSS/ (1 data file).

  9. VizieR Online Data Catalog: The VLA Low-frequency Sky Survey at 74MHz (Cohen+ 2007)

    NASA Astrophysics Data System (ADS)

    Cohen, A. S.; Lane, W. M.; Cotton, W. D.; Kassim, N. E.; Lazio, T. J. W.; Perley, R. A.; Condon, J. J.; Erickson, W. C.

    2006-08-01

    The VLA Low-Frequency Sky Survey (VLSS) is a 74MHz (4m) continuum survey covering the entire sky north of -30{deg} declination. Using the VLA in B- and BnA-configurations, we will map the entire survey region at a resolution of 80" and with an average rms noise of 0.1 Jy/beam. For a detailed description of the survey and its scientific motivations, please see the original proposal to the NRAO skeptical review committee. The VLSS is being made as a service to the astronomical community, and the principal data products are being released to the public as soon as they are produced and verified. Details and access to the images can be found at http://lwa.nrl.navy.mil/VLSS/ (1 data file).

  10. The NCU Lu-Lin Observatory Survived the Taiwan 921 Earthquake

    NASA Astrophysics Data System (ADS)

    Tsay, W. S.; Chang, K. H.; Li, H. H.

    1999-12-01

    The NCU (National Central University) Lu-Lin Observatory is located at Mt. Front Lu-Lin, 120o 52' 25" E and 23o 28' 07" N, a 2862-m peak in the Yu-Shan National Park. The construction of Lu-Lin Observatory was finished in January 1999. Fortunately the Lu-Lin Observatory survived the Taiwan 921 Earthquake that was 7.3 on the Ritcher scale. We are proud of the design of Lu-Lin Observatory adopted H-beam and steel wall even the center of earthquake was only 40 km away. The initial study of Lu-Lin site was started since late 1989. Later on, a three-year project was founded by the National Science Council , which supported the development of a modern seeing monitor for this site survey study from 1990 through 1993. The average seeing of Lu-Lin site is about 1.39 arc-second with average 200 clear nights annually. The sky background of this site is 20.72 mag/arcsec2 in V band and 21.22 mag/arcsec2 in B band. The Lu-Lin observatory is developed for both research and education activity. A homemade 76-cm Super Light Telescope (SLT) and three TAOS's 50-cm robotic telescopes will be the two major research facilities. This work is supported by the National Science Council of Taiwan.

  11. Design of a multiband near-infrared sky brightness monitor using an InSb detector.

    PubMed

    Dong, Shu-Cheng; Wang, Jian; Tang, Qi-Jie; Jiang, Feng-Xin; Chen, Jin-Ting; Zhang, Yi-Hao; Wang, Zhi-Yue; Chen, Jie; Zhang, Hong-Fei; Jiang, Hai-Jiao; Zhu, Qing-Feng; Jiang, Peng; Ji, Tuo

    2018-02-01

    Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

  12. Design of a multiband near-infrared sky brightness monitor using an InSb detector

    NASA Astrophysics Data System (ADS)

    Dong, Shu-cheng; Wang, Jian; Tang, Qi-jie; Jiang, Feng-xin; Chen, Jin-ting; Zhang, Yi-hao; Wang, Zhi-yue; Chen, Jie; Zhang, Hong-fei; Jiang, Hai-jiao; Zhu, Qing-feng; Jiang, Peng; Ji, Tuo

    2018-02-01

    Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

  13. Real-time control of the robotic lunar observatory telescope

    USGS Publications Warehouse

    Anderson, J.M.; Becker, K.J.; Kieffer, H.H.; Dodd, D.N.

    1999-01-01

    The US Geological Survey operates an automated observatory dedicated to the radiometry of the Moon with the objective of developing a multispectral, spatially resolved photometric model of the Moon to be used in the calibration of Earth-orbiting spacecraft. Interference filters are used with two imaging instruments to observe the Moon in 32 passbands from 350-2500 nm. Three computers control the telescope mount and instruments with a fourth computer acting as a master system to control all observation activities. Real-time control software has been written to operate the instrumentation and to automate the observing process. The observing software algorithms use information including the positions of objects in the sky, the phase of the Moon, and the times of evening and morning twilight to decide how to observe program objects. The observatory has been operating in a routine mode since late 1995 and is expected to continue through at least 2002 without significant modifications.

  14. SPHEREx: Probing the Physics of Inflation with an All-Sky Spectroscopic Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Dore, Olivier; SPHEREx Science Team

    2018-01-01

    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A in August 2017, is an all-sky survey satellite designed to address all three science goals in NASA’s astrophysics division: probe the origin and destiny of our Universe; explore whether planets around other stars could harbor life; and explore the origin and evolution of galaxies. These themes are addressed by a single survey, with a single instrument.In this poster, we describe how SPHEREx can probe the physics of inflationary non-Gaussianity by measuring large-scale structure with galaxy redshifts over a large cosmological volume at low redshifts, complementing high-redshift surveys optimized to constrain dark energy.SPHEREx will be the first all-sky near-infrared spectral survey, creating a legacy archive of spectra. In particular, it will measure the redshifts of over 500 million galaxies of all types, an unprecedented dataset. Using this catalog, SPHEREx will reduce the uncertainty in fNL -- a parameter describing the inflationary initial conditions -- by a factor of more than 10 compared with CMB measurements. At the same time, this catalog will enable strong scientific synergies with Euclid, WFIRST and LSST

  15. SkyMapper Filter Set: Design and Fabrication of Large-Scale Optical Filters

    NASA Astrophysics Data System (ADS)

    Bessell, Michael; Bloxham, Gabe; Schmidt, Brian; Keller, Stefan; Tisserand, Patrick; Francis, Paul

    2011-07-01

    The SkyMapper Southern Sky Survey will be conducted from Siding Spring Observatory with u, v, g, r, i, and z filters that comprise glued glass combination filters with dimensions of 309 × 309 × 15 mm. In this article we discuss the rationale for our bandpasses and physical characteristics of the filter set. The u, v, g, and z filters are entirely glass filters, which provide highly uniform bandpasses across the complete filter aperture. The i filter uses glass with a short-wave pass coating, and the r filter is a complete dielectric filter. We describe the process by which the filters were constructed, including the processes used to obtain uniform dielectric coatings and optimized narrowband antireflection coatings, as well as the technique of gluing the large glass pieces together after coating using UV transparent epoxy cement. The measured passbands, including extinction and CCD QE, are presented.

  16. The Effects of Lamp Spectral Distribution on Sky Glow over Observatories

    DTIC Science & Technology

    2015-01-01

    overhead sky glow as a function of distance up to 300 km, from a variety of lamp types, including common gas discharge lamps and several types of LED...distance up to 300 km, from a variety of lamp types, in- cluding common gas discharge lamps and several types of LED lamps . We conclude for both...MAR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE The Effects of Lamp Spectral Distribution on Sky Glow

  17. Dark Skies are a Universal Resource. So are Quiet Skies!

    NASA Astrophysics Data System (ADS)

    Maddalena, Ronald J.; Heatherly, S.

    2008-05-01

    You've just purchased your first telescope. But where to set it up? Certainly not a WalMart parking lot. Too much light pollution! In the same way that man-made light obscures our night sky and blinds ground-based optical telescopes, man-made radio signals blind radio telescopes as well. NRAO developed the Quiet Skies project to increase awareness of radio frequency interference (RFI) and radio astronomy in general by engaging students in local studies of RFI. To do that we created a sensitive detector which measures RFI. We produced 20 of these, and assembled kits containing detectors and supplementary materials for loan to schools. Students conduct experiments to measure the properties of RFI in their area, and input their measurements into a web-based data base. The Quiet Skies project is a perfect complement to the IYA Dark Skies Awareness initiative. We hope to place 500 Quiet Skies detectors into the field through outreach to museums and schools around the world. Should we be successful, we will sustain this global initiative via a continuing loan program. One day we hope to have a publicly generated image of the Earth which shows RFI much as the Earth at Night image illustrates light pollution. The poster will present the components of the project in detail, including our plans for IYA, and various low-cost alternative strategies for introducing RFI and radio astronomy to the public. We will share the results of some of the experiments already being performed by high school students. Development of the Quiet Skies project was funded by a NASA IDEAS grant. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  18. A new all-sky map of Galactic high-velocity clouds from the 21-cm HI4PI survey

    NASA Astrophysics Data System (ADS)

    Westmeier, Tobias

    2018-02-01

    High-velocity clouds (HVCs) are neutral or ionized gas clouds in the vicinity of the Milky Way that are characterized by high radial velocities inconsistent with participation in the regular rotation of the Galactic disc. Previous attempts to create a homogeneous all-sky H I map of HVCs have been hampered by a combination of poor angular resolution, limited surface brightness sensitivity and suboptimal sampling. Here, a new and improved H I map of Galactic HVCs based on the all-sky HI4PI survey is presented. The new map is fully sampled and provides significantly better angular resolution (16.2 versus 36 arcmin) and column density sensitivity (2.3 versus 3.7 × 1018 cm-2 at the native resolution) than the previously available LAB survey. The new HVC map resolves many of the major HVC complexes in the sky into an intricate network of narrow H I filaments and clumps that were not previously resolved by the LAB survey. The resulting sky coverage fraction of high-velocity H I emission above a column density level of 2 × 1018 cm-2 is approximately 15 per cent, which reduces to about 13 per cent when the Magellanic Clouds and other non-HVC emission are removed. The differential sky coverage fraction as a function of column density obeys a truncated power law with an exponent of -0.93 and a turnover point at about 5 × 1019 cm-2. H I column density and velocity maps of the HVC sky are made publicly available as FITS images for scientific use by the community.

  19. Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Ayala Solares, H. A.; Barber, A. S.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Berley, D.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; de la Fuente, E.; De León, C.; DeYoung, T.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Gerhardt, M.; González Munöz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hinton, J.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lara, A.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Raya, G. Luis; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salazar, H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.; Wood, J.; Yapici, T.; Yodh, G. B.; Younk, P. W.; Zepeda, A.; Zhou, H.

    2017-07-01

    The Crab Nebula is the brightest TeV gamma-ray source in the sky and has been used for the past 25 years as a reference source in TeV astronomy, for calibration and verification of new TeV instruments. The High Altitude Water Cherenkov Observatory (HAWC), completed in early 2015, has been used to observe the Crab Nebula at high significance across nearly the full spectrum of energies to which HAWC is sensitive. HAWC is unique for its wide field of view, nearly 2 sr at any instant, and its high-energy reach, up to 100 TeV. HAWC’s sensitivity improves with the gamma-ray energy. Above ˜1 TeV the sensitivity is driven by the best background rejection and angular resolution ever achieved for a wide-field ground array. We present a time-integrated analysis of the Crab using 507 live days of HAWC data from 2014 November to 2016 June. The spectrum of the Crab is fit to a function of the form φ {(E)={φ }0(E/{E}0)}-α -β \\cdot {ln(E/{E}0)}. The data is well fitted with values of α = 2.63 ± 0.03, β = 0.15 ± 0.03, and {{log}}10({φ }0 {{cm}}2 {{s}} {TeV})=-12.60+/- 0.02 when E 0 is fixed at 7 TeV and the fit applies between 1 and 37 TeV. Study of the systematic errors in this HAWC measurement is discussed and estimated to be ±50% in the photon flux between 1 and 37 TeV. Confirmation of the Crab flux serves to establish the HAWC instrument’s sensitivity for surveys of the sky. The HAWC all-sky survey will be the deepest survey of the northern sky ever conducted in the multi-TeV band.

  20. The GMRT High Resolution Southern Sky Survey for Pulsars and Transients. I. Survey Description and Initial Discoveries

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, B.; Cooper, S.; Malenta, M.; Roy, J.; Chengalur, J.; Keith, M.; Kudale, S.; McLaughlin, M.; Ransom, S. M.; Ray, P. S.; Stappers, B. W.

    2016-02-01

    We are conducting a survey for pulsars and transients using the Giant Metrewave Radio Telescope (GMRT). The GMRT High Resolution Southern Sky (GHRSS) survey is an off-Galactic plane (| b| > 5) survey in the declination range -40° to -54° at 322 MHz. With the high time (up to 30.72 μs) and frequency (up to 0.016275 MHz) resolution observing modes, the 5σ detection limit is 0.5 mJy for a 2 ms pulsar with a 10% duty cycle at 322 MHz. The total GHRSS sky coverage of 2866 deg2 will result from 1953 pointings, each covering 1.8 deg2. The 10σ detection limit for a 5 ms transient burst is 1.6 Jy for the GHRSS survey. In addition, the GHRSS survey can reveal transient events like rotating radio transients or fast radio bursts. With 35% of the survey completed (I.e., 1000 deg2), we report the discovery of 10 pulsars, 1 of which is a millisecond pulsar (MSP), which is among the highest pulsar per square degree discovery rates for any off-Galactic plane survey. We re-detected 23 known in-beam pulsars. Utilizing the imaging capability of the GMRT, we also localized four of the GHRSS pulsars (including the MSP) in the gated image plane within ±10″. We demonstrated rapid convergence in pulsar timing with a more precise position than is possible with single-dish discoveries. We also show that we can localize the brightest transient sources with simultaneously obtained lower time resolution imaging data, demonstrating a technique that may have application in the Square Kilometre Array.

  1. Armagh Observatory - Historic Building Information Modelling for Virtual Learning in Building Conservation

    NASA Astrophysics Data System (ADS)

    Murphy, M.; Chenaux, A.; Keenaghan, G.; GIbson, V..; Butler, J.; Pybusr, C.

    2017-08-01

    In this paper the recording and design for a Virtual Reality Immersive Model of Armagh Observatory is presented, which will replicate the historic buildings and landscape with distant meridian markers and position of its principal historic instruments within a model of the night sky showing the position of bright stars. The virtual reality model can be used for educational purposes allowing the instruments within the historic building model to be manipulated within 3D space to demonstrate how the position measurements of stars were made in the 18th century. A description is given of current student and researchers activities concerning on-site recording and surveying and the virtual modelling of the buildings and landscape. This is followed by a design for a Virtual Reality Immersive Model of Armagh Observatory use game engine and virtual learning platforms and concepts.

  2. Ambitious Survey Spots Stellar Nurseries

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Astronomers scanning the skies as part of ESO's VISTA Magellanic Cloud survey have now obtained a spectacular picture of the Tarantula Nebula in our neighbouring galaxy, the Large Magellanic Cloud. This panoramic near-infrared view captures the nebula itself in great detail as well as the rich surrounding area of sky. The image was obtained at the start of a very ambitious survey of our neighbouring galaxies, the Magellanic Clouds, and their environment. The leader of the survey team, Maria-Rosa Cioni (University of Hertfordshire, UK) explains: "This view is of one of the most important regions of star formation in the local Universe - the spectacular 30 Doradus star-forming region, also called the Tarantula Nebula. At its core is a large cluster of stars called RMC 136, in which some of the most massive stars known are located." ESO's VISTA telescope [1] is a new survey telescope at the Paranal Observatory in Chile (eso0949). VISTA is equipped with a huge camera that detects light in the near-infrared part of the spectrum, revealing a wealth of detail about astronomical objects that gives us insight into the inner workings of astronomical phenomena. Near-infrared light has a longer wavelength than visible light and so we cannot see it directly for ourselves, but it can pass through much of the dust that would normally obscure our view. This makes it particularly useful for studying objects such as young stars that are still enshrouded in the gas and dust clouds from which they formed. Another powerful aspect of VISTA is the large area of the sky that its camera can capture in each shot. This image is the latest view from the VISTA Magellanic Cloud Survey (VMC). The project will scan a vast area - 184 square degrees of the sky (corresponding to almost one thousand times the apparent area of the full Moon) including our neighbouring galaxies the Large and Small Magellanic Clouds. The end result will be a detailed study of the star formation history and three

  3. The 2HWC HAWC Observatory Gamma-Ray Catalog

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Ayala Solares, H. A.; Barber, A. S.; Baughman, B.; Bautista-Elivar, N.; Becerra Gonzalez, J.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Berley, D.; Bernal, A.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; de la Fuente, E.; De León, C.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Engel, K.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Garfias, F.; Gerhardt, M.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hinton, J.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lara, A.; Lauer, R. J.; Lee, W. H.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Raya, G. Luis; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salazar, H.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Vianello, G.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wisher, I. G.; Wood, J.; Yapici, T.; Younk, P. W.; Zepeda, A.; Zhou, H.

    2017-07-01

    We present the first catalog of TeV gamma-ray sources realized with data from the newly completed High Altitude Water Cherenkov Observatory (HAWC). It is the most sensitive wide field-of-view TeV telescope currently in operation, with a one-year survey sensitivity of ˜5%-10% of the flux of the Crab Nebula. With an instantaneous field of view >1.5 sr and >90% duty cycle, it continuously surveys and monitors the sky for gamma-ray energies between hundreds of GeV and tens of TeV. HAWC is located in Mexico, at a latitude of 19° N, and was completed in 2015 March. Here, we present the 2HWC catalog, which is the result of the first source search performed with the complete HAWC detector. Realized with 507 days of data, it represents the most sensitive TeV survey to date for such a large fraction of the sky. A total of 39 sources were detected, with an expected number of false detections of 0.5 due to background fluctuation. Out of these sources, 19 are new sources that are not associated with previously known TeV sources (association criteria: <0.°5 away). The source list, including the position measurement, spectrum measurement, and uncertainties, is reported, then each source is briefly discussed. Of the 2HWC associated sources, 10 are reported in TeVCat as PWN or SNR: 2 as blazars and the remaining eight as unidentified.

  4. Touch the Cosmos: The 2012 International Earth and Sky Photo Contest

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Tafreshi, B.; Simmons, M.

    2013-04-01

    In April 2012, the National Optical Astronomy Observatory in partnership with The World At Night organized the Third International Earth and Sky Photo Contest on the importance of preserving dark skies for the Dark Skies Awareness theme of Global Astronomy Month. At the Fall 2012 ASP conference, a presentation on the Earth and Sky Photo Contest was made. The intended outcomes of the 10-minute oral talk were 1) to inspire visual learners to be more aware of the disappearing starry night sky due to light pollution, 2) to provide some basic understanding of what the issues are surrounding light pollution, 3) to provide incentive to get people to participate in the photo contest as a way of promoting dark skies awareness and 4) to provide a stepping stone to more active involvement in dark skies preservation. With more than half of the world's population in cities, Earth and Sky photos of dark, starry skies offer the next best thing to being there.

  5. The GMRT 150 MHz all-sky radio survey. First alternative data release TGSS ADR1

    NASA Astrophysics Data System (ADS)

    Intema, H. T.; Jagannathan, P.; Mooley, K. P.; Frail, D. A.

    2017-02-01

    We present the first full release of a survey of the 150 MHz radio sky, observed with the Giant Metrewave Radio Telescope (GMRT) between April 2010 and March 2012 as part of the TIFR GMRT Sky Survey (TGSS) project. Aimed at producing a reliable compact source survey, our automated data reduction pipeline efficiently processed more than 2000 h of observations with minimal human interaction. Through application of innovative techniques such as image-based flagging, direction-dependent calibration of ionospheric phase errors, correcting for systematic offsets in antenna pointing, and improving the primary beam model, we created good quality images for over 95 percent of the 5336 pointings. Our data release covers 36 900 deg2 (or 3.6 π steradians) of the sky between -53° and +90° declination (Dec), which is 90 percent of the total sky. The majority of pointing images have a noise level below 5 mJy beam-1 with an approximate resolution of 25''×25'' (or 25''×25''/ cos(Dec-19°) for pointings south of 19° declination). We have produced a catalog of 0.62 Million radio sources derived from an initial, high reliability source extraction at the seven sigma level. For the bulk of the survey, the measured overall astrometric accuracy is better than two arcseconds in right ascension and declination, while the flux density accuracy is estimated at approximately ten percent. Within the scope of the TGSS alternative data release (TGSS ADR) project, the source catalog, as well as 5336 mosaic images (5°×5°) and an image cutout service, are made publicly available at the CDS as a service to the astronomical community. Next to enabling a wide range of different scientific investigations, we anticipate that these survey products will provide a solid reference for various new low-frequency radio aperture array telescopes (LOFAR, LWA, MWA, SKA-low), and can play an important role in characterizing the epoch-of-reionisation (EoR) foreground. The TGSS ADR project aims at

  6. SkyQuery - A Prototype Distributed Query and Cross-Matching Web Service for the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Thakar, A. R.; Budavari, T.; Malik, T.; Szalay, A. S.; Fekete, G.; Nieto-Santisteban, M.; Haridas, V.; Gray, J.

    2002-12-01

    We have developed a prototype distributed query and cross-matching service for the VO community, called SkyQuery, which is implemented with hierarchichal Web Services. SkyQuery enables astronomers to run combined queries on existing distributed heterogeneous astronomy archives. SkyQuery provides a simple, user-friendly interface to run distributed queries over the federation of registered astronomical archives in the VO. The SkyQuery client connects to the portal Web Service, which farms the query out to the individual archives, which are also Web Services called SkyNodes. The cross-matching algorithm is run recursively on each SkyNode. Each archive is a relational DBMS with a HTM index for fast spatial lookups. The results of the distributed query are returned as an XML DataSet that is automatically rendered by the client. SkyQuery also returns the image cutout corresponding to the query result. SkyQuery finds not only matches between the various catalogs, but also dropouts - objects that exist in some of the catalogs but not in others. This is often as important as finding matches. We demonstrate the utility of SkyQuery with a brown-dwarf search between SDSS and 2MASS, and a search for radio-quiet quasars in SDSS, 2MASS and FIRST. The importance of a service like SkyQuery for the worldwide astronomical community cannot be overstated: data on the same objects in various archives is mapped in different wavelength ranges and looks very different due to different errors, instrument sensitivities and other peculiarities of each archive. Our cross-matching algorithm preforms a fuzzy spatial join across multiple catalogs. This type of cross-matching is currently often done by eye, one object at a time. A static cross-identification table for a set of archives would become obsolete by the time it was built - the exponential growth of astronomical data means that a dynamic cross-identification mechanism like SkyQuery is the only viable option. SkyQuery was funded by a

  7. It’s about time: How do sky surveys manage uncertainty about scientific needs many years into the future

    NASA Astrophysics Data System (ADS)

    Darch, Peter T.; Sands, Ashley E.

    2016-06-01

    Sky surveys, such as the Sloan Digital Sky Survey (SDSS) and the Large Synoptic Survey Telescope (LSST), generate data on an unprecedented scale. While many scientific projects span a few years from conception to completion, sky surveys are typically on the scale of decades. This paper focuses on critical challenges arising from long timescales, and how sky surveys address these challenges.We present findings from a study of LSST, comprising interviews (n=58) and observation. Conceived in the 1990s, the LSST Corporation was formed in 2003, and construction began in 2014. LSST will commence data collection operations in 2022 for ten years.One challenge arising from this long timescale is uncertainty about future needs of the astronomers who will use these data many years hence. Sources of uncertainty include scientific questions to be posed, astronomical phenomena to be studied, and tools and practices these astronomers will have at their disposal. These uncertainties are magnified by the rapid technological and scientific developments anticipated between now and the start of LSST operations.LSST is implementing a range of strategies to address these challenges. Some strategies involve delaying resolution of uncertainty, placing this resolution in the hands of future data users. Other strategies aim to reduce uncertainty by shaping astronomers’ data analysis practices so that these practices will integrate well with LSST once operations begin.One approach that exemplifies both types of strategy is the decision to make LSST data management software open source, even now as it is being developed. This policy will enable future data users to adapt this software to evolving needs. In addition, LSST intends for astronomers to start using this software well in advance of 2022, thereby embedding LSST software and data analysis approaches in the practices of astronomers.These findings strengthen arguments for making the software supporting sky surveys available as open

  8. VizieR Online Data Catalog: Second ROSAT all-sky survey (2RXS) source catalog (Boller+, 2016)

    NASA Astrophysics Data System (ADS)

    Boller, T.; Freyberg, M. J.; Truemper, J.; Haberl, F.; Voges, W.; Nandra, K.

    2016-03-01

    We have re-analysed the photon event files from the ROSAT all-sky survey. The main goal was to create a catalogue of point-like sources, which is referred to as the 2RXS source catalogue. We improved the reliability of detections by an advanced detection algorithm and a complete screening process. New data products were created to allow timing and spectral analysis. Photon event files with corrected astrometry and Moon rejection (RASS-3.1 processing) were made available in FITS format. The 2RXS catalogue will serve as the basic X-ray all-sky survey catalogue until eROSITA data become available. (2 data files).

  9. HRMS sky survey wideband feed system design for DSS 24 beam waveguide antenna

    NASA Technical Reports Server (NTRS)

    Stanton, P. H.; Lee, P. R.; Reilly, H. F.

    1993-01-01

    The High-Resolution Microwave Survey (HRMS) Sky Survey project will be implemented on the DSS 24 beam waveguide (BWG) antenna over the frequency range of 2.86 to 10 GHz. Two wideband, ring-loaded, corrugated feed horns were designed to cover this range. The horns match the frequency-dependent gain requirements for the DSS 24 BWG system. The performance of the feed horns and the calculated system performance of DSS 24 are presented.

  10. Footprint Database and web services for the Herschel space observatory

    NASA Astrophysics Data System (ADS)

    Verebélyi, Erika; Dobos, László; Kiss, Csaba

    2015-08-01

    Using all telemetry and observational meta-data, we created a searchable database of Herschel observation footprints. Data from the Herschel space observatory is freely available for everyone but no uniformly processed catalog of all observations has been published yet. As a first step, we unified the data model for all three Herschel instruments in all observation modes and compiled a database of sky coverage information. As opposed to methods using a pixellation of the sphere, in our database, sky coverage is stored in exact geometric form allowing for precise area calculations. Indexing of the footprints allows for very fast search among observations based on pointing, time, sky coverage overlap and meta-data. This enables us, for example, to find moving objects easily in Herschel fields. The database is accessible via a web site and also as a set of REST web service functions which makes it usable from program clients like Python or IDL scripts. Data is available in various formats including Virtual Observatory standards.

  11. The Ultimate Private Observatory

    NASA Astrophysics Data System (ADS)

    Aymond, J.

    2009-03-01

    An amateur astronomer from Washington Parish, Southeast Louisiana, USA has designed and built an amazing observatory. It is not only an astronomical observatory, but a home theater, and tornado shelter designed to take a direct hit from an F5 tornado. The facility is fully equipped and automated, with a hydraulically driven roof that weighs 20,571 lbs., which lifts up, then rolls away to the end of the tracks. This leaves the user sitting inside of four 14-foot high walls open to the night sky. It has two premium quality telescopes for viewing deep space and objects inside the solar system. The chair that the observer sits on is also hydraulically driven.

  12. Update on the KELT Transit Survey: Hot Planets around Hot Stars

    NASA Astrophysics Data System (ADS)

    Gaudi, B. Scott; Stassun, Keivan G.; Pepper, Joshua; KELT Collaboration

    2018-01-01

    The KELT Transit Survey consists of a pair of small-aperture, wide-angle automated telescopes located at Winer Observatory in Sonoita, Arizona and the South African Astronomical Observatory (SAAO) in Sutherland, South Africa. Together, they are surveying roughly 70% of the sky for transiting planets. By virtue of their small apertures (42 mm) and large fields-of-view (26 degrees x 26 degrees), KELT is most sensitive to hot Jupiters transiting relatively bright (V~8-11), and thus relatively hot stars. I will provide an update on the planets discovered by KELT, focusing in detail on our recent discoveries of very hot planets transiting several bright A and early F stars.

  13. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: TECHNICAL OVERVIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yue; Brandt, W. N.; Dawson, Kyle S.

    2015-01-01

    The Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project is a dedicated multi-object RM experiment that has spectroscopically monitored a sample of 849 broad-line quasars in a single 7 deg{sup 2} field with the SDSS-III Baryon Oscillation Spectroscopic Survey spectrograph. The RM quasar sample is flux-limited to i {sub psf} = 21.7 mag, and covers a redshift range of 0.1 < z < 4.5 without any other cuts on quasar properties. Optical spectroscopy was performed during 2014 January-July dark/gray time, with an average cadence of ∼4 days, totaling more than 30 epochs. Supporting photometric monitoring in the g and i bandsmore » was conducted at multiple facilities including the Canada-France-Hawaii Telescope (CFHT) and the Steward Observatory Bok telescope in 2014, with a cadence of ∼2 days and covering all lunar phases. The RM field (R.A., decl. = 14:14:49.00, +53:05:00.0) lies within the CFHT-LS W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07, with three prior years of multi-band PS1 light curves. The SDSS-RM six month baseline program aims to detect time lags between the quasar continuum and broad line region (BLR) variability on timescales of up to several months (in the observed frame) for ∼10% of the sample, and to anchor the time baseline for continued monitoring in the future to detect lags on longer timescales and at higher redshift. SDSS-RM is the first major program to systematically explore the potential of RM for broad-line quasars at z > 0.3, and will investigate the prospects of RM with all major broad lines covered in optical spectroscopy. SDSS-RM will provide guidance on future multi-object RM campaigns on larger scales, and is aiming to deliver more than tens of BLR lag detections for a homogeneous sample of quasars. We describe the motivation, design, and implementation of this program, and outline the science impact expected from the resulting data for RM and general quasar science.« less

  14. Target Selection for the SDSS-IV APOGEE-2 Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zasowski, G.; Cohen, R. E.; Carlberg, J. K.

    APOGEE-2 is a high-resolution, near-infrared spectroscopic survey observing ∼3 × 10{sup 5} stars across the entire sky. It is the successor to APOGEE and is part of the Sloan Digital Sky Survey IV (SDSS-IV). APOGEE-2 is expanding on APOGEE’s goals of addressing critical questions of stellar astrophysics, stellar populations, and Galactic chemodynamical evolution using (1) an enhanced set of target types and (2) a second spectrograph at Las Campanas Observatory in Chile. APOGEE-2 is targeting red giant branch and red clump stars, RR Lyrae, low-mass dwarf stars, young stellar objects, and numerous other Milky Way and Local Group sources across the entiremore » sky from both hemispheres. In this paper, we describe the APOGEE-2 observational design, target selection catalogs and algorithms, and the targeting-related documentation included in the SDSS data releases.« less

  15. Radio Transients in 1333 deg2 of the VLA Sky Survey Pilot

    NASA Astrophysics Data System (ADS)

    Dong, Dillon; Hallinan, Gregg; Myers, Steven T.; Mooley, Kunal; VLASS Survey Team, VLASS Survey Science Group (SSG)

    2018-01-01

    The VLA Sky Survey (VLASS) is an ongoing project by the NRAO to map ~34,000 deg2 of the sky at 3GHz, over 3 epochs spanning 6 years. In preparation for the full survey, a set of fields covering 2480 deg2 was recently observed as the VLASS pilot project. We searched 1333 deg2 of the VLASS pilot for radio transients with characteristic decay timescales between weeks and years, such as the synchrotron afterglows of supernovae, tidal disruption events, and long/short gamma ray bursts. These radio afterglows are thought to be roughly isotropic and extinction-free, allowing us to observe transients that would be missed by optical/high energy surveys due to obscuration or off-axis jetting.Within the searched area, we identified 215 VLASS sources that have no counterpart in the FIRST survey and have a projected distance of < 50kpc from the nearest galaxy by angular distance in the CLU and GWENs galaxy catalogs. By selection, these targets are predominently located near low redshift (z < 0.05) galaxies, allowing us to study their host environments with a sub-kiloparsec spatial resolution. Prioritizing based on visual association with SDSS galaxies, we imaged and/or took spectra of the host environment of 60 targets with the Low Resolution Imaging Spectrometer (LRIS) on Keck 1. In this talk, we present the radio and optical results for the most exciting VLASS transients.

  16. Volcano monitoring at the U.S. Geological Survey's Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Heliker, Christina C.; Griggs, J. D.; Takahashi, T. Jane; Wright, Thomas L.; Spall, Henry

    1986-01-01

    The island of Hawaii has one of the youngest landscapes on Earth, formed by frequent addition of new lava to its surface.  Because Hawaiian are generally nonexplosive and easily accessible, the island has long attracted geologists interested in studying the extraordinary power of volcanic eruptions.  The U.S. Geological Survey's Hawaiian Volcano Observatory (HVO), now nearing its 75th anniversary. has been in the forefront of volcanology since the 1900's.  This issue of Earthquakes and volcanoes is devoted to the work of the Observatory and its role in studying the most recent eruptions of Hawaii's two currently active volcanoes, Kilauea and Mauna Loa.

  17. Volcano monitoring at the U.S. Geological Survey's Hawaiian Volcano Observatory

    USGS Publications Warehouse

    1986-01-01

    The island of Hawaii has one of the youngest landscapes on Earth, formed by the frequent addition of new lava to its surface. Because Hawaiian eruptions are generally nonexplosive and easily accessible, the island has long attracted geologists interested in studying the extraordinary power of volcanic eruption. The U.S. Geological Survey's Hawaiian Volcano Observatory (HVO), now nearing its 75th anniversary, has been in the forefront of volcanology since the early 1900s. This issue of Earthquakes and Volcanoes is devoted to the work of the Observatory and its role in studying the most recent eruptions of Hawaii's two currently active volcanoes, Kilauea and Mauna Loa.

  18. The effect of spatial and spectral heterogeneity of ground-based light sources on night-sky radiances

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.; Aubé, M.; Kohút, I.

    2010-12-01

    Nowadays, light pollution is a permanent problem at many observatories around the world. Elimination of excessive lighting during the night is not only about reduction of the total luminous power of ground-based light sources, but also involves experimenting with the spectral features of single lamps. Astronomical photometry is typically made at specific wavelengths, and thus the analysis of the spectral effects of light pollution is highly important. Nevertheless, studies on the spectral behaviour of night light are quite rare. Instead, broad-band or integral quantities (such as sky luminance) are preferentially measured and modelled. The knowledge of night-light spectra is necessary for the proper interpretation of narrow-band photometry data. In this paper, the night-sky radiances in the nominal spectral lines of the B (445 nm) and V (551 nm) filters are determined numerically under clear-sky conditions. Simultaneously, the corresponding sky-luminance patterns are computed and compared against the spectral radiances. It is shown that spectra, patterns and distances of the most important light sources (towns) surrounding an observatory are essential for determining the light pollution levels. In addition, the optical characteristics of the local atmosphere can change the angular behaviour of the sky radiance or luminance. All these effects are evaluated for two Slovakian observatories: Stará Lesná and Vartovka.

  19. ASASSN1: Bright Comet Discovered by the All Sky Automated Survey for SuperNovae

    NASA Astrophysics Data System (ADS)

    Prieto, JJ. L.; Shappee, B. J.; Brimacombe, J.; Stanek, K. Z.; Chen, Ping; Dong, Subo; Holoien, T. W.-S.; Kochanek, C. S.; Brown, J. S.; Shields, J. V.; Thompson, T. A.

    2017-07-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN, Shappee et al. 2014), using data from the quadruple 14-cm "Cassius" telescope on Cerro Tololo, Chile, we discovered a new moving transient source, now confirmed as a comet.

  20. The Russian-Ukrainian Observatories Network for the European Astronomical Observatory Route Project

    NASA Astrophysics Data System (ADS)

    Andrievsky, S. M.; Bondar, N. I.; Karetnikov, V. G.; Kazantseva, L. V.; Nefedyev, Y. A.; Pinigin, G. I.; Pozhalova, Zh. A.; Rostopchina-Shakhovskay, A. N.; Stepanov, A. V.; Tolbin, S. V.

    2011-09-01

    In 2004,the Center of UNESCO World Heritage has announced a new initiative "Astronomy & World Heritage" directed for search and preserving of objects,referred to astronomy,its history in a global value,historical and cultural properties. There were defined a strategy of thematic programme "Initiative" and general criteria for selecting of ancient astronomical objects and observatories. In particular, properties that are situated or have significance in relation to celestial objects or astronomical events; representations of sky and/or celestial bodies and astronomical events; observatories and instruments; properties closely connected with the history of astronomy. In 2005-2006,in accordance with the program "Initiative", information about outstanding properties connected with astronomy have been collected.In Ukraine such work was organized by astronomical expert group in Nikolaev Astronomical Observatory. In 2007, Nikolaev observatory was included to the Tentative List of UNESCO under # 5116. Later, in 2008, the network of four astronomical observatories of Ukraine in Kiev,Crimea, Nikolaev and Odessa,considering their high authenticities and integrities,was included to the Tentative List of UNESCO under # 5267 "Astronomical Observatories of Ukraine". In 2008-2009, a new project "Thematic Study" was opened as a successor of "Initiative". It includes all fields of astronomical heritage from earlier prehistory to the Space astronomy (14 themes in total). We present the Ukraine-Russian Observatories network for the "European astronomical observatory Route project". From Russia two observatories are presented: Kazan Observatory and Pulkovo Observatory in the theme "Astronomy from the Renaissance to the mid-twentieth century".The description of astronomical observatories of Ukraine is given in accordance with the project "Thematic study"; the theme "Astronomy from the Renaissance to the mid-twentieth century" - astronomical observatories in Kiev,Nikolaev and Odessa; the

  1. QUEST1 Variability Survey. III. Light Curve Catalog Update

    NASA Astrophysics Data System (ADS)

    Rengstorf, A. W.; Thompson, D. L.; Mufson, S. L.; Andrews, P.; Honeycutt, R. K.; Vivas, A. K.; Abad, C.; Adams, B.; Bailyn, C.; Baltay, C.; Bongiovanni, A.; Briceño, C.; Bruzual, G.; Coppi, P.; Della Prugna, F.; Emmet, W.; Ferrín, I.; Fuenmayor, F.; Gebhard, M.; Hernández, J.; Magris, G.; Musser, J.; Naranjo, O.; Oemler, A.; Rosenzweig, P.; Sabbey, C. N.; Sánchez, Ge.; Sánchez, Gu.; Schaefer, B.; Schenner, H.; Sinnott, J.; Snyder, J. A.; Sofia, S.; Stock, J.; van Altena, W.

    2009-03-01

    This paper reports an update to the QUEST1 (QUasar Equatorial Survey Team, Phase 1) Variability Survey (QVS) light curve catalog, which links QVS instrumental magnitude light curves to Sloan Digital Sky Survey (SDSS) objects and photometry. In the time since the original QVS catalog release, the overlap between publicly available SDSS data and QVS data has increased by 8% in sky coverage and 16,728 in number of matched objects. The astrometric matching and the treatment of SDSS masks have been refined for the updated catalog. We report on these improvements and present multiple bandpass light curves, global variability information, and matched SDSS photometry for 214,941 QUEST1 objects. Based on observations obtained at the Llano del Hato National Astronomical Observatory, operated by the Centro de Investigaciones de Astronomía for the Ministerio de Ciencia y Tecnologia of Venezuela.

  2. A SURVEY FOR NEW MEMBERS OF THE TAURUS STAR-FORMING REGION WITH THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luhman, K. L.; Mamajek, E. E.; Shukla, S. J.

    Previous studies have found that ∼1 deg{sup 2} fields surrounding the stellar aggregates in the Taurus star-forming region exhibit a surplus of solar-mass stars relative to denser clusters like IC 348 and the Orion Nebula Cluster. To test whether this difference reflects mass segregation in Taurus or a variation in the initial mass function, we have performed a survey for members of Taurus across a large field (∼40 deg{sup 2}) that was imaged by the Sloan Digital Sky Survey (SDSS). We obtained optical and near-infrared spectra of candidate members identified with those images and the Two Micron All Sky Survey, as wellmore » as miscellaneous candidates that were selected with several other diagnostics of membership. We have classified 22 of the candidates as new members of Taurus, which includes one of the coolest known members (M9.75). Our updated census of members within the SDSS field shows a surplus of solar-mass stars relative to clusters, although it is less pronounced than in the smaller fields toward the stellar aggregates that were surveyed for previously measured mass functions in Taurus. In addition to spectra of our new members, we include in our study near-IR spectra of roughly half of the known members of Taurus, which are used to refine their spectral types and extinctions. We also present an updated set of near-IR standard spectra for classifying young stars and brown dwarfs at M and L types.« less

  3. The 2HWC HAWC Observatory Gamma-Ray Catalog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abeysekara, A. U.; Barber, A. S.; Albert, A.

    2017-07-01

    We present the first catalog of TeV gamma-ray sources realized with data from the newly completed High Altitude Water Cherenkov Observatory (HAWC). It is the most sensitive wide field-of-view TeV telescope currently in operation, with a one-year survey sensitivity of ∼5%–10% of the flux of the Crab Nebula. With an instantaneous field of view >1.5 sr and >90% duty cycle, it continuously surveys and monitors the sky for gamma-ray energies between hundreds of GeV and tens of TeV. HAWC is located in Mexico, at a latitude of 19° N, and was completed in 2015 March. Here, we present the 2HWCmore » catalog, which is the result of the first source search performed with the complete HAWC detector. Realized with 507 days of data, it represents the most sensitive TeV survey to date for such a large fraction of the sky. A total of 39 sources were detected, with an expected number of false detections of 0.5 due to background fluctuation. Out of these sources, 19 are new sources that are not associated with previously known TeV sources (association criteria: <0.°5 away). The source list, including the position measurement, spectrum measurement, and uncertainties, is reported, then each source is briefly discussed. Of the 2HWC associated sources, 10 are reported in TeVCat as PWN or SNR: 2 as blazars and the remaining eight as unidentified.« less

  4. An all-sky survey of circular polarisation at 200 MHz

    NASA Astrophysics Data System (ADS)

    Lenc, Emil; Murphy, Tara; Lynch, C. R.; Kaplan, D. L.; Zhang, S. N.

    2018-05-01

    We present results from the first all-sky radio survey in circular polarisation. The survey uses the Murchison Widefield Array (MWA) to cover 30 900 sq. deg., over declinations south of +30° and north of -86° centred at 200 MHz (over a 169 - 231 MHz band). We achieve a spatial resolution of ˜3' and a typical sensitivity of 3.0 mJy PSF-1 over most of the survey region. We demonstrate a new leakage mitigation technique that reduces the leakage from total intensity into circular polarisation by an order of magnitude. In a blind survey of the imaged region, we detect 14 pulsars in circular polarisation above a 6σ threshold. We also detect six transient sources associated with artificial satellites. A targeted survey of 2 376 pulsars within the surveyed region yielded 33 detections above 4σ. Looking specifically at pulsars previously detected at 200 MHz in total intensity, this represents a 35% detection rate. We also conducted a targeted survey of 2 400 known flare stars, this resulted in two tentative detections above 4σ. A similar targeted search for 1 506 known exoplanets in the field yielded no detections above 4σ. The success of the survey suggests that similar surveys at longer wavelength bands and of deeper fields are warranted.

  5. VizieR Online Data Catalog: NuSTAR serendipitous survey: the 40-month catalog (Lansbury+, 2017)

    NASA Astrophysics Data System (ADS)

    Lansbury, G. B.; Stern, D.; Aird, J.; Alexander, D. M.; Fuentes, C.; Harrison, F. A.; Treister, E.; Bauer, F. E.; Tomsick, J. A.; Balokovic, M.; Del Moro, A.; Gandhi, P.; Ajello, M.; Annuar, A.; Ballantyne, D. R.; Boggs, S. E.; Brandt, W. N.; Brightman, M.; Chen, C.-T. J.; Christensen, F. E.; Civano, F.; Comastri, A.; Craig, W. W.; Forster, K.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R. C.; Jiang, B.; Jun, H. D.; Koss, M.; Marchesi, S.; Melo, A. D.; Mullaney, J. R.; Noirot, G.; Schulze, S.; Walton, D. J.; Zappacosta, L.; Zhang, W. W.

    2017-09-01

    Over the period from 2012 July to 2015 November, which is the focus of the current study, there are 510 individual NuSTAR exposures that have been incorporated into the serendipitous survey. These exposures were performed over 331 unique fields (i.e., 331 individual sky regions, each with contiguous coverage composed of one or more NuSTAR exposures), yielding a total sky area coverage of 13deg2. Table 1 lists the fields chronologically. The fields have a cumulative exposure time of 20.4Ms. We have undertaken a campaign of dedicated spectroscopic follow-up in the optical-IR bands, obtaining spectroscopic identifications for a large fraction (56%) of the total sample. Since NuSTAR performs science pointings across the whole sky, a successful ground-based follow-up campaign requires the use of observatories at a range of geographic latitudes, and preferably across a range of dates throughout the sidereal year. This has been achieved through observing programs with, primarily, the following telescopes over a multiyear period (2012 Oct 10 to 2016 Jul 10): the Hale Telescope at Palomar Observatory (5.1m; PIs F. A. Harrison and D. Stern); Keck I and II at the W. M. Keck Observatory (10m; PIs F. A. Harrison and D. Stern); the New Technology Telescope (NTT) at La Silla Observatory (3.6m; PI G. B. Lansbury); the Magellan I (Baade) and Magellan II (Clay) Telescopes at Las Campanas Observatory (6.5m; PIs E. Treister and F. E. Bauer); and the Gemini-South observatory (8.1m; PI E. Treister). (5 data files).

  6. OVERVIEW OF THE SDSS-IV MaNGA SURVEY: MAPPING NEARBY GALAXIES AT APACHE POINT OBSERVATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bundy, Kevin; Bershady, Matthew A.; Wake, David A.

    2015-01-01

    We present an overview of a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory), one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV) that began on 2014 July 1. MaNGA will investigate the internal kinematic structure and composition of gas and stars in an unprecedented sample of 10,000 nearby galaxies. We summarize essential characteristics of the instrument and survey design in the context of MaNGA's key science goals and present prototype observations to demonstrate MaNGA's scientific potential. MaNGA employs dithered observations with 17 fiber-bundle integral field units that vary inmore » diameter from 12'' (19 fibers) to 32'' (127 fibers). Two dual-channel spectrographs provide simultaneous wavelength coverage over 3600-10300 Å at R ∼ 2000. With a typical integration time of 3 hr, MaNGA reaches a target r-band signal-to-noise ratio of 4-8 (Å{sup –1} per 2'' fiber) at 23 AB mag arcsec{sup –2}, which is typical for the outskirts of MaNGA galaxies. Targets are selected with M {sub *} ≳ 10{sup 9} M {sub ☉} using SDSS-I redshifts and i-band luminosity to achieve uniform radial coverage in terms of the effective radius, an approximately flat distribution in stellar mass, and a sample spanning a wide range of environments. Analysis of our prototype observations demonstrates MaNGA's ability to probe gas ionization, shed light on recent star formation and quenching, enable dynamical modeling, decompose constituent components, and map the composition of stellar populations. MaNGA's spatially resolved spectra will enable an unprecedented study of the astrophysics of nearby galaxies in the coming 6 yr.« less

  7. ARAGO: a robotic observatrory for the variable sky

    NASA Astrophysics Data System (ADS)

    Boer, Michel; Acker, Agnes; Atteia, Jean-Luc; Buchholtz, Gilles; Colas, Francois; Deleuil, Magali; Dennefeld, Michel; Desert, Jean-Michel; Dolez, Noel; Eysseric, J.; Ferlet, Roger; Ferrari, Marc; Jean, Pierre; Klotz, Alain; Kouach, Driss; Lecavelier des Etangs, Alain; Lemaitre, Gerard R.; Marcowith, Alexandre; Marquette, Jean-Babtiste; Meunier, Jean-Pierre; Mochkovitch, Robert; Pain, Reynald; Pares, Laurent; Pinna, Henri; Pinna, Roger; Provost, Lionel; Roques, Sylvie; Schneider, Jean; Sivan, Jean-Pierre; Soubiran, Caroline; Thiebaut, Carole; Vauclair, Gerard; Verchere, Richard; Vidal-Madjar, Alfred

    2002-12-01

    We present the Advanced Robotic Agile Observatory (ARAGO), a project for a large variability survey of the sky, in the range 10-8Hz (year) to 1Hz. Among its scientific objectives are the detection of cosmic gamma-ray bursts, both on alert and serendipitously, orphan afterglows, extrasolar planets, AGNs, quasar microlensing, variable and flare stars, trans-neptunian asteroids, Earth-grazers, orbital debris, etc. A large Education and Public Outreach program will be an important part of the project. The telescope itself will be made of Silicon Carbide, allowing, among other advantages, a very light weight and agile capabilities. ARAGO will be fully autonomous, i.e. there will be no human intervention from the request to the data processing and result dissemination, nor to assist night or day operations. ARAGO will start routine observation by mid-2005.

  8. Hunting for extremely metal-poor emission-line galaxies in the Sloan Digital Sky Survey: MMT and 3.5 m APO observations

    NASA Astrophysics Data System (ADS)

    Izotov, Y. I.; Thuan, T. X.; Guseva, N. G.

    2012-10-01

    We present 6.5-m MMT and 3.5 m APO spectrophotometry of 69 H ii regions in 42 low-metallicity emission-line galaxies, selected from the data release 7 of the Sloan Digital Sky Survey to have mostly [O iii]λ4959/Hβ ≲ 1 and [N ii]λ6583/Hβ ≲ 0.1. The electron temperature-sensitive emission line [O iii] λ4363 is detected in 53 H ii regions allowing a direct abundance determination. The oxygen abundance in the remaining 16 H ii regions is derived using a semi-empirical method. The oxygen abundance of the galaxies in our sample ranges from 12 + log O/H ~ 7.1 to ~7.9, with 14 H ii regions in 7 galaxies with 12 + log O/H ≤ 7.35. In 5 of the latter galaxies, the oxygen abundance is derived here for the first time. Including other known extremely metal-deficient emission-line galaxies from the literature, e.g. SBS 0335-052W, SBS 0335-052E and I Zw 18, we have compiled a sample of the 17 most metal-deficient (with 12 + log O/H ≤ 7.35) emission-line galaxies known in the local universe. There appears to be a metallicity floor at 12 + log O/H ~ 6.9, suggesting that the matter from which dwarf emission-line galaxies formed was pre-enriched to that level by e.g. Population III stars. Based on observations with the Multiple Mirror telescope (MMT) and the 3.5 m Apache Point Observatory (APO). The MMT is operated by the MMT Observatory (MMTO), a joint venture of the Smithsonian Institution and the University of Arizona. The Apache Point Observatory 3.5-m telescope is owned and operated by the Astrophysical Research Consortium.Figures 1-3 and Tables 2-8 are available in electronic form at http://www.aanda.org

  9. The USNO-UKIRT K-band Hemisphere Survey

    NASA Astrophysics Data System (ADS)

    Dahm, Scott; Bruursema, Justice; Munn, Jeffrey A.; Vrba, Fred J.; Dorland, Bryan; Dye, Simon; Kerr, Tom; Varricatt, Watson; Irwin, Mike; Lawrence, Andy; McLaren, Robert; Hodapp, Klaus; Hasinger, Guenther

    2018-01-01

    We present initial results from the United States Naval Observatory (USNO) and UKIRT K-band Hemisphere Survey (U2HS), currently underway using the Wide Field Camera (WFCAM) installed on UKIRT on Maunakea. U2HS is a collaborative effort undertaken by USNO, the Institute for Astronomy, University of Hawaii, the Cambridge Astronomy Survey Unit (CASU) and the Wide Field Astronomy Unit (WFAU) in Edinburgh. The principal objective of the U2HS is to provide continuous northern hemisphere K-band coverage over a declination range of δ=0o – +60o by combining over 12,700 deg2 of new imaging with the existing UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Galactic Plane Survey (GPS) and Galactic Cluster Survey (GCS). U2HS will achieve a 5-σ point source sensitivity of K~18.4 mag (Vega), over three magnitudes deeper than the Two Micron All Sky Survey (2MASS). In this contribution we discuss survey design, execution, data acquisition and processing, photometric calibration and quality control. The data obtained by the U2HS will be made publicly available through the Wide Field Science Archive (WSA) maintained by the WFAU.

  10. Dark-Skies Awareness

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.

    2009-05-01

    The arc of the Milky Way seen from a truly dark location is part of our planet's natural heritage. More than one fifth of the world population, two thirds of the United States population and one half of the European Union population have already lost naked eye visibility of the Milky Way. This loss, caused by light pollution, is a serious and growing issue that impacts astronomical research, the economy, ecology, energy conservation, human health, public safety and our shared ability to see the night sky. For this reason, "Dark Skies” is a cornerstone project of the International Year of Astronomy. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs that: 1. Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking on Facebook and MySpace, a Second Life presence) 2. Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Nights in the (National) Parks, Sidewalk Astronomy) 3. Organize events in the arts (e.g., a photography contest) 4. Involve citizen-scientists in naked-eye and digital-meter star hunting programs (e.g., GLOBE at Night, "How Many Stars?", the Great World Wide Star Count and the radio frequency interference equivalent: "Quiet Skies") and 5. Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy (e.g., The Starlight Initiative, World Night in Defense of Starlight, International Dark Sky Week, International Dark-Sky Communities, Earth Hour, The Great Switch Out, a traveling exhibit, downloadable posters and brochures). The presentation will provide an update, describe how people can become involved and take a look ahead at the program's sustainability. For more information, visit www.darkskiesawareness.org.

  11. Fireballs in the Sky: an Augmented Reality Citizen Science Program

    NASA Astrophysics Data System (ADS)

    Day, B. H.; Bland, P.; Sayers, R.

    2017-12-01

    Fireballs in the Sky is an innovative Australian citizen science program that connects the public with the research of the Desert Fireball Network (DFN). This research aims to understand the early workings of the solar system, and Fireballs in the Sky invites people around the world to learn about this science, contributing fireball sightings via a user-friendly augmented reality mobile app. Tens of thousands of people have downloaded the app world-wide and participated in the science of meteoritics. The Fireballs in the Sky app allows users to get involved with the Desert Fireball Network research, supplementing DFN observations and providing enhanced coverage by reporting their own meteor sightings to DFN scientists. Fireballs in the Sky reports are used to track the trajectories of meteors - from their orbit in space to where they might have landed on Earth. Led by Phil Bland at Curtin University in Australia, the Desert Fireball Network (DFN) uses automated observatories across Australia to triangulate trajectories of meteorites entering the atmosphere, determine pre-entry orbits, and pinpoint their fall positions. Each observatory is an autonomous intelligent imaging system, taking 1000×36Megapixel all-sky images throughout the night, using neural network algorithms to recognize events. They are capable of operating for 12 months in a harsh environment, and store all imagery collected. We developed a completely automated software pipeline for data reduction, and built a supercomputer database for storage, allowing us to process our entire archive. The DFN currently stands at 50 stations distributed across the Australian continent, covering an area of 2.5 million km^2. Working with DFN's partners at NASA's Solar System Exploration Research Virtual Institute, the team is expanding the network beyond Australia to locations around the world. Fireballs in the Sky allows a growing public base to learn about and participate in this exciting research.

  12. Fireballs in the Sky: An Augmented Reality Citizen Science Program

    NASA Technical Reports Server (NTRS)

    Day, Brian

    2017-01-01

    Fireballs in the Sky is an innovative Australian citizen science program that connects the public with the research of the Desert Fireball Network (DFN). This research aims to understand the early workings of the solar system, and Fireballs in the Sky invites people around the world to learn about this science, contributing fireball sightings via a user-friendly augmented reality mobile app. Tens of thousands of people have downloaded the app world-wide and participated in the science of meteoritics. The Fireballs in the Sky app allows users to get involved with the Desert Fireball Network research, supplementing DFN observations and providing enhanced coverage by reporting their own meteor sightings to DFN scientists. Fireballs in the Sky reports are used to track the trajectories of meteors - from their orbit in space to where they might have landed on Earth. Led by Phil Bland at Curtin University in Australia, the Desert Fireball Network (DFN) uses automated observatories across Australia to triangulate trajectories of meteorites entering the atmosphere, determine pre-entry orbits, and pinpoint their fall positions. Each observatory is an autonomous intelligent imaging system, taking 1000 by 36 megapixel all-sky images throughout the night, using neural network algorithms to recognize events. They are capable of operating for 12 months in a harsh environment, and store all imagery collected. We developed a completely automated software pipeline for data reduction, and built a supercomputer database for storage, allowing us to process our entire archive. The DFN currently stands at 50 stations distributed across the Australian continent, covering an area of 2.5 million square kilometers. Working with DFN's partners at NASA's Solar System Exploration Research Virtual Institute, the team is expanding the network beyond Australia to locations around the world. Fireballs in the Sky allows a growing public base to learn about and participate in this exciting research.

  13. A future wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Mostafa, Miguel; HAWC Collaboration

    2017-01-01

    High-energy gamma-ray observations are an essential probe of cosmic-ray acceleration. Detection of the highest energies and the shortest timescales of variability are key motivations when designing the next generation of gamma-ray experiments. The Milagro experiment was the first-generation of gamma-ray detectors based on the water-Cherenkov technique, and demonstrated that it is possible to continuously monitor a large fraction of the TeV sky. The second-generation water-Cherenkov experiment, the High Altitude Water Cherenkov observatory, consists of an array of 300 water-Cherenkov detectors covering an area of 22,000 m2 at 4,100 m a.s.l. The larger effective area, the higher altitude, and the optical isolation of the detectors led to a 15-fold increase in sensitivity relative to Milagro. Instruments with a wide field of view and large duty cycle are capable of surveying the TeV sky, mapping the diffuse emission, detecting emission from extended regions, and observing transient events such as gamma ray bursts. They also have the potential for discovering electromagnetic counterparts to gravitational waves and astrophysical neutrinos. I will present the preliminary design of a third-generation water-Cherenkov observatory located at very high altitude in South America.

  14. RXTE All-Sky Slew Survey. Catalog of X-Ray Sources at B Greater Than 10 deg

    NASA Technical Reports Server (NTRS)

    Revnivtsev, M.; Sazonov, S.; Jahoda, K.; Gilfanov, M.

    2004-01-01

    We report results of a serendipitous hard X-ray (3-20 keV), nearly all-sky (absolute value of b greater than l0 deg.) survey based on RXTE/PCA observations performed during satellite reorientations in 1996-2002. The survey is 80% (90%) complete to a 4(sigma) limiting flux of approx. = 1.8 (2.5) x 10(exp -l1) erg/s sq cm in the 3-20 keV band. The achieved sensitivity in the 3-8 keV and 8-20 keV subbands is similar to and an order of magnitude higher than that of the previously record HEAO-1 A1 and HEAO-1 A4 all-sky surveys, respectively. A combined 7 x 10(exp 3) sq. deg area of the sky is sampled to flux levels below l0(exp -11) erg/ s sq cm (3-20 keV). In total 294 sources are detected and localized to better than 1 deg. 236 (80%) of these can be confidently associated with a known astrophysical object; another 22 likely result from the superposition of 2 or 3 closely located known sources. 35 detected sources remain unidentified, although for 12 of these we report a likely soft X-ray counterpart from the ROSAT all-sky survey bright source catalog. Of the reliably identified sources, 63 have local origin (Milky Way, LMC or SMC), 64 are clusters of galaxies and 100 are active galactic nuclei (AGN). The fact that the unidentified X-ray sources have hard spectra suggests that the majority of them are AGN, including highly obscured ones (N(sub H) greater than l0(exp 23)/sq cm). For the first time we present a log N-log S diagram for extragalactic sources above 4 x l0(exp -12) erg/ s sq cm at 8-20 keV. Key words. cosmo1ogy:observations - diffuse radiation - X-rays general

  15. Solar Wind Charge Exchange Contribution to the ROSAT All Sky Survey Maps

    NASA Astrophysics Data System (ADS)

    Uprety, Y.; Chiao, M.; Collier, M. R.; Cravens, T.; Galeazzi, M.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Lepri, S. T.; Liu, W.; McCammon, D.; Morgan, K.; Porter, F. S.; Prasai, K.; Snowden, S. L.; Thomas, N. E.; Ursino, E.; Walsh, B. M.

    2016-10-01

    DXL (Diffuse X-ray emission from the Local Galaxy) is a sounding rocket mission designed to estimate the contribution of solar wind charge eXchange (SWCX) to the diffuse X-ray background and to help determine the properties of the Local Hot Bubble. The detectors are large area thin-window proportional counters with a spectral response that is similar to that of the PSPC used in the ROSAT All Sky Survey (RASS). A direct comparison of DXL and RASS data for the same part of the sky viewed from quite different vantage points in the solar system, and the assumption of approximate isotropy for the solar wind, allowed us to quantify the SWCX contribution to all six RASS bands (R1-R7, excluding R3). We find that the SWCX contribution at l=140^\\circ ,b=0^\\circ , where the DXL path crosses the Galactic plane, is 33 % +/- 6 % ({statistical})+/- 12 % ({systematic}) for R1, 44 % +/- 6 % +/- 5 % for R2, 18 % +/- 12 % +/- 11 % for R4, 14 % +/- 11 % +/- 9 % for R5, and negligible for the R6 and R7 bands. Reliable models for the distribution of neutral H and He in the solar system permit estimation of the contribution of interplanetary SWCX emission over the the whole sky and correction of the RASS maps. We find that the average SWCX contribution in the whole sky is 26 % +/- 6 % +/- 13 % for R1, 30 % +/- 4 % +/- 4 % for R2, 8 % +/- 5 % +/- 5 % for R4, 6 % +/- 4 % +/- 4 % for R5, and negligible for R6 and R7.

  16. The ISOPHOT 170 μm Serendipity Survey. IV. The far-infrared sky atlas

    NASA Astrophysics Data System (ADS)

    Stickel, M.; Krause, O.; Klaas, U.; Lemke, D.

    2007-05-01

    Aims:To further increase the scientific utilization of the strip scanning measurements of the ISOPHOT Serendipity Survey (ISOSS), the slew data has been assembled to a sky atlas with ≈15% sky coverage in the hitherto unobserved far-infrared wavelength band around 170 μm. Methods: The redundant information of the brightnesses at slew crossings has been used to globally rescale and homogenize the slew brightnesses, leading to significantly increased photometric accuracy and reproducibility as well as the homogeneity of the maps. The corrected slew data were mapped with a constant grid size of 22.4 arcsec and are presented in 124 maps in galactic coordinates. Results: The collection of image plates represents the ISOSS Sky Atlas, which will become available from major data archives. Exemplary scientific results are described, which show the scientific potential of the data set combined with far-infrared imaging data from previous and upcoming missions. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands and the United Kingdom) and with the participation of ISAS and NASA. Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) are MPIA Heidelberg, ESAC Villafranca, AIP Potsdam, IPAC Pasadena, Imperial College London. Image files (FITS files) are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/466/1205 and the ISO Data Archive www.iso.vilspa.esa.es/

  17. Sloan Digital Sky Survey III photometric quasar clustering: Probing the initial conditions of the Universe

    DOE PAGES

    Ho, Shirley; Agarwal, Nishant; Myers, Adam D.; ...

    2015-05-22

    Here, the Sloan Digital Sky Survey has surveyed 14,555 square degrees of the sky, and delivered over a trillion pixels of imaging data. We present the large-scale clustering of 1.6 million quasars between z=0.5 and z=2.5 that have been classified from this imaging, representing the highest density of quasars ever studied for clustering measurements. This data set spans 0~ 11,00 square degrees and probes a volume of 80 h –3 Gpc 3. In principle, such a large volume and medium density of tracers should facilitate high-precision cosmological constraints. We measure the angular clustering of photometrically classified quasars using an optimalmore » quadratic estimator in four redshift slices with an accuracy of ~ 25% over a bin width of δ l ~ 10–15 on scales corresponding to matter-radiation equality and larger (0ℓ ~ 2–3).« less

  18. The Fifth Data Release of the Sloan Digital Sky Survey

    DTIC Science & Technology

    2007-10-01

    Gilmore,10 Karl Glazebrook,8 Jim Gray,24 Eva K . Grebel,25 James E. Gunn,5 Ernst de Haas,5 Patrick B . Hall,26 Michael Harvanek,4 Suzanne L. Hawley,2...THE FIFTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY Jennifer K . Adelman-McCarthy,1 Marcel A. Agüeros,2 Sahar S. Allam,1,3 Kurt S. J. Anderson,4...Scott F. Anderson,2 James Annis,1 Neta A. Bahcall,5 Coryn A. L. Bailer-Jones,6 Ivan K . Baldry,7,8 J. C. Barentine,4 Timothy C. Beers,9 V. Belokurov,10

  19. Winter sky brightness & cloud cover over Dome A

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Moore, A. M.; Fu, J.; Ashley, M.; Cui, X.; Feng, L.; Gong, X.; Hu, Z.; Laurence, J.; LuongVan, D.; Riddle, R. L.; Shang, Z.; Sims, G.; Storey, J.; Tothill, N.; Travouillon, T.; Wang, L.; Yang, H.; Yang, J.; Zhou, X.; Zhu, Z.; Burton, M. G.

    2014-01-01

    At the summit of the Antarctic plateau, Dome A offers an intriguing location for future large scale optical astronomical Observatories. The Gattini DomeA project was created to measure the optical sky brightness and large area cloud cover of the winter-time sky above this high altitude Antarctic site. The wide field camera and multi-filter system was installed on the PLATO instrument module as part of the Chinese-led traverse to Dome A in January 2008. This automated wide field camera consists of an Apogee U4000 interline CCD coupled to a Nikon fish-eye lens enclosed in a heated container with glass window. The system contains a filter mechanism providing a suite of standard astronomical photometric filters (Bessell B, V, R), however, the absence of tracking systems, together with the ultra large field of view 85 degrees) and strong distortion have driven us to seek a unique way to build our data reduction pipeline. We present here the first measurements of sky brightness in the photometric B, V, and R band, cloud cover statistics measured during the 2009 winter season and an estimate of the transparency. In addition, we present example light curves for bright targets to emphasize the unprecedented observational window function available from this ground-based location. A ~0.2 magnitude agreement of our simultaneous test at Palomar Observatory with NSBM(National Sky Brightness Monitor), as well as an 0.04 magnitude photometric accuracy for typical 6th magnitude stars limited by the instrument design, indicating we obtained reasonable results based on our ~7mm effective aperture fish-eye lens.

  20. Additional Ultracool White Dwarfs Found In The Sloan Digital Sky Survey

    DTIC Science & Technology

    2008-05-20

    Anderson,4 Patrick B . Hall,5 Jeffrey A. Munn,1 James Liebert,6 Gillian R. Knapp,7 D. Bizyaev,8 E. Malanushenko,8 V. Malanushenko,8 K . Pan,8 Donald P...ADDITIONAL ULTRACOOL WHITE DWARFS FOUND IN THE SLOAN DIGITAL SKY SURVEY Hugh C. Harris,1 Evalyn Gates,2 Geza Gyuk,2,3 Mark Subbarao ,2,3 Scott F...effective temperature of roughly 4000 K , the density of gas in the photosphere increases to a point where models of the atmosphere must include effects not

  1. The ROSAT All-Sky Survey view of the Large Magellanic Cloud (LMC)

    NASA Technical Reports Server (NTRS)

    Pietsch, W.; Denner, K.; Kahabka, P.; Pakull, M.; Schaeidt, S.

    1996-01-01

    During the Rosat all sky survey, centered on the Large Magellanic Cloud (LMC), 516 X-ray sources were detected. The field was covered from July 1990 to January 1991. The X-ray parameters of the sources, involving position, count rates, hardness ratios, extent, and time variability during the observations, are discussed. Identifications with objects from optical, radio and infrared wavelength allow the LMC candidates to be separated from the foreground stars and the background objects.

  2. A Survey of z>5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z~6

    NASA Astrophysics Data System (ADS)

    Fan, Xiaohui; Narayanan, Vijay K.; Lupton, Robert H.; Strauss, Michael A.; Knapp, Gillian R.; Becker, Robert H.; White, Richard L.; Pentericci, Laura; Leggett, S. K.; Haiman, Zoltán; Gunn, James E.; Ivezić, Željko; Schneider, Donald P.; Anderson, Scott F.; Brinkmann, J.; Bahcall, Neta A.; Connolly, Andrew J.; Csabai, István; Doi, Mamoru; Fukugita, Masataka; Geballe, Tom; Grebel, Eva K.; Harbeck, Daniel; Hennessy, Gregory; Lamb, Don Q.; Miknaitis, Gajus; Munn, Jeffrey A.; Nichol, Robert; Okamura, Sadanori; Pier, Jeffrey R.; Prada, Francisco; Richards, Gordon T.; Szalay, Alex; York, Donald G.

    2001-12-01

    ~6. The luminous quasars discussed in the paper have central black hole masses of several times 109 Msolar by the Eddington argument, with likely dark halo masses on the order of 1013 Msolar. Their observed space density provides a sensitive test of models of quasar and galaxy formation at high redshift. Based on observations obtained with the Sloan Digital Sky Survey and with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium; on observations obtained by staff of the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation (NSF) on behalf of the Gemini partnership: the NSF (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina) on observations obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, made possible by the generous financial support of the W. M. Keck Foundation; on observations obtained at the German-Spanish Astronomical Centre, Calar Alto Observatory, operated by the Max Planck Institute for Astronomy, Heidelberg, jointly with the Spanish National Commission for Astronomy; and on observations obtained at UKIRT, which is operated by the Joint Astronomy Centre on behalf of the UK Particle Physics and Astronomy Research Council.

  3. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0

    NASA Astrophysics Data System (ADS)

    Kochanek, C. S.; Shappee, B. J.; Stanek, K. Z.; Holoien, T. W.-S.; Thompson, Todd A.; Prieto, J. L.; Dong, Subo; Shields, J. V.; Will, D.; Britt, C.; Perzanowski, D.; Pojmański, G.

    2017-10-01

    The All-Sky Automated Survey for Supernovae (ASAS-SN) is working toward imaging the entire visible sky every night to a depth of V˜ 17 mag. The present data covers the sky and spans ˜2-5 years with ˜100-400 epochs of observation. The data should contain some ˜1 million variable sources, and the ultimate goal is to have a database of these observations publicly accessible. We describe here a first step, a simple but unprecedented web interface https://asas-sn.osu.edu/ that provides an up to date aperture photometry light curve for any user-selected sky coordinate. The V band photometry is obtained using a two-pixel (16.″0) radius aperture and is calibrated against the APASS catalog. Because the light curves are produced in real time, this web tool is relatively slow and can only be used for small samples of objects. However, it also imposes no selection bias on the part of the ASAS-SN team, allowing the user to obtain a light curve for any point on the celestial sphere. We present the tool, describe its capabilities, limitations, and known issues, and provide a few illustrative examples.

  4. Non-sky-averaged sensitivity curves for space-based gravitational-wave observatories

    NASA Astrophysics Data System (ADS)

    Vallisneri, Michele; Galley, Chad R.

    2012-06-01

    The signal-to-noise ratio (SNR) is used in gravitational-wave observations as the basic figure of merit for detection confidence and, together with the Fisher matrix, for the amount of physical information that can be extracted from a detected signal. SNRs are usually computed from a sensitivity curve, which describes the gravitational-wave amplitude needed by a monochromatic source of given frequency to achieve a threshold SNR. Although the term ‘sensitivity’ is used loosely to refer to the detector’s noise spectral density, the two quantities are not the same: the sensitivity includes also the frequency- and orientation-dependent response of the detector to gravitational waves and takes into account the duration of observation. For interferometric space-based detectors similar to LISA, which are sensitive to long-lived signals and have constantly changing position and orientation, exact SNRs need to be computed on a source-by-source basis. For convenience, most authors prefer to work with sky-averaged sensitivities, accepting inaccurate SNRs for individual sources and giving up control over the statistical distribution of SNRs for source populations. In this paper, we describe a straightforward end-to-end recipe to compute the non-sky-averaged sensitivity of interferometric space-based detectors of any geometry. This recipe includes the effects of spacecraft motion and of seasonal variations in the partially subtracted confusion foreground from Galactic binaries, and it can be used to generate a sampling distribution of sensitivities for a given source population. In effect, we derive error bars for the sky-averaged sensitivity curve, which provide a stringent statistical interpretation for previously unqualified statements about sky-averaged SNRs. As a worked-out example, we consider isotropic and Galactic-disk populations of monochromatic sources, as observed with the ‘classic LISA’ configuration. We confirm that the (standard) inverse-rms average

  5. Survey Strategy Optimization for the Atacama Cosmology Telescope

    NASA Technical Reports Server (NTRS)

    De Bernardis, F.; Stevens, J. R.; Hasselfield, M.; Alonso, D.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Crowley, K. T.; Devlin, M.; Wollack, E. J.

    2016-01-01

    In recent years there have been significant improvements in the sensitivity and the angular resolution of the instruments dedicated to the observation of the Cosmic Microwave Background (CMB). ACTPol is the first polarization receiver for the Atacama Cosmology Telescope (ACT) and is observing the CMB sky with arcmin resolution over approximately 2000 square degrees. Its upgrade, Advanced ACTPol (AdvACT), will observe the CMB in five frequency bands and over a larger area of the sky. We describe the optimization and implementation of the ACTPol and AdvACT surveys. The selection of the observed fields is driven mainly by the science goals, that is, small angular scale CMB measurements, B-mode measurements and cross-correlation studies. For the ACTPol survey we have observed patches of the southern galactic sky with low galactic foreground emissions which were also chosen to maximize the overlap with several galaxy surveys to allow unique cross-correlation studies. A wider field in the northern galactic cap ensured significant additional overlap with the BOSS spectroscopic survey. The exact shapes and footprints of the fields were optimized to achieve uniform coverage and to obtain cross-linked maps by observing the fields with different scan directions. We have maximized the efficiency of the survey by implementing a close to 24-hour observing strategy, switching between daytime and nighttime observing plans and minimizing the telescope idle time. We describe the challenges represented by the survey optimization for the significantly wider area observed by AdvACT, which will observe roughly half of the low-foreground sky. The survey strategies described here may prove useful for planning future ground-based CMB surveys, such as the Simons Observatory and CMB Stage IV surveys.

  6. Sky and Elemental Planetary Mapping Via Gamma Ray Emissions

    NASA Technical Reports Server (NTRS)

    Roland, John M.

    2011-01-01

    Low-energy gamma ray emissions ((is) approximately 30keV to (is) approximately 30MeV) are significant to astrophysics because many interesting objects emit their primary energy in this regime. As such, there has been increasing demand for a complete map of the gamma ray sky, but many experiments to do so have encountered obstacles. Using an innovative method of applying the Radon Transform to data from BATSE (the Burst And Transient Source Experiment) on NASA's CGRO (Compton Gamma-Ray Observatory) mission, we have circumvented many of these issues and successfully localized many known sources to 0.5 - 1 deg accuracy. Our method, which is based on a simple 2-dimensional planar back-projection approximation of the inverse Radon transform (familiar from medical CAT-scan technology), can thus be used to image the entire sky and locate new gamma ray sources, specifically in energy bands between 200keV and 2MeV which have not been well surveyed to date. Samples of these results will be presented. This same technique can also be applied to elemental planetary surface mapping via gamma ray spectroscopy. Due to our method's simplicity and power, it could potentially improve a current map's resolution by a significant factor.

  7. Searching for white dwarfs candidates in Sloan Digital Sky Survey Data

    NASA Astrophysics Data System (ADS)

    Należyty, Mirosław; Majczyna, Agnieszka; Ciechanowska, Anna; Madej, Jerzy

    2009-06-01

    Large amount of observational spectroscopic data are recently available from different observational projects, like Sloan Digital Sky Survey. It's become more urgent to identify white dwarfs stars based on data itself i.e. without modelling white dwarf atmospheres. In particular, existing methods of white dwarfs identification presented in Kleinman et al. (2004) and in Eisenstein et al. (2006) did not allow to find all the white dwarfs in examined data. We intend to test various criteria of searching for white dwarf candidates, based on photometric and spectral features.

  8. Developing an astronomical observatory in Paraguay

    NASA Astrophysics Data System (ADS)

    Troche-Boggino, Alexis E.

    Background: Paraguay has some heritage from the astronomy of the Guarani Indians. Buenaventura Suarez S.J. was a pioneer astronomer in the country in the XVIII century. He built various astronomical instruments and imported others from England. He observed eclipses of Jupiter's satellites and of the Sun and Moon. He published his data in a book and through letters. The Japanese O.D.A. has collaborated in obtaining equipment and advised their government to assist Paraguay in building an astronomical observatory, constructing a moving-roof observatory and training astronomers as observatory operators. Future: An astronomical center is on the horizon and some possible fields of research are being considered. Goal: To improve education at all possible levels by not only observing sky wonders, but also showing how instruments work and teaching about data and image processing, saving data and building a data base. Students must learn how a modern scientist works.

  9. The Aquarius Simulator and Cold-Sky Calibration

    NASA Technical Reports Server (NTRS)

    Le Vine, David M.; Dinnat, Emmanuel P.; Abraham, Saji; deMatthaeis, Paolo; Wentz, Frank J.

    2011-01-01

    A numerical simulator has been developed to study remote sensing from space in the spectral window at 1.413 GHz (L-band), and it has been used to optimize the cold-sky calibration (CSC) for the Aquarius radiometers. The celestial sky is a common cold reference in microwave radiometry. It is currently being used by the Soil Moisture and Ocean Salinity satellite, and it is planned that, after launch, the Aquarius/SAC-D observatory will periodically rotate to view "cold sky" as part of the calibration plan. Although radiation from the celestial sky is stable and relatively well known, it varies with location. In addition, radiation from the Earth below contributes to the measured signal through the antenna back lobes and also varies along the orbit. Both effects must be taken into account for a careful calibration. The numerical simulator has been used with the Aquarius configuration (antennas and orbit) to investigate these issues and determine optimum conditions for performing a CSC. This paper provides an overview of the simulator and the analysis leading to the selection of the optimum locations for a CSC.

  10. Information integration for a sky survey by data warehousing

    NASA Astrophysics Data System (ADS)

    Luo, A.; Zhang, Y.; Zhao, Y.

    The virtualization service of data system for a sky survey LAMOST is very important for astronomers The service needs to integrate information from data collections catalogs and references and support simple federation of a set of distributed files and associated metadata Data warehousing has been in existence for several years and demonstrated superiority over traditional relational database management systems by providing novel indexing schemes that supported efficient on-line analytical processing OLAP of large databases Now relational database systems such as Oracle etc support the warehouse capability which including extensions to the SQL language to support OLAP operations and a number of metadata management tools have been created The information integration of LAMOST by applying data warehousing is to effectively provide data and knowledge on-line

  11. A Review of Optical Sky Brightness and Extinction at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Kenyon, S. L.; Storey, J. W. V.

    2006-03-01

    The recent discovery of exceptional seeing conditions at Dome C, Antarctica, raises the possibility of constructing an optical observatory there with unique capabilities. However, little is known from an astronomer's perspective about the optical sky brightness and extinction at Antarctic sites. We review the contributions to sky brightness at high-latitude sites and calculate the amount of usable dark time at Dome C. We also explore the implications of the limited sky coverage of high-latitude sites and review optical extinction data from the South Pole. Finally, we examine the proposal of Baldry & Bland-Hawthorn to extend the amount of usable dark time through the use of polarizing filters.

  12. Data indexing techniques for the EUVE all-sky survey

    NASA Technical Reports Server (NTRS)

    Lewis, J.; Saba, V.; Dobson, C.

    1992-01-01

    This poster describes techniques developed for manipulating large full-sky data sets for the Extreme Ultraviolet Explorer project. The authors have adapted the quatrilateralized cubic sphere indexing algorithm to allow us to efficiently store and process several types of large data sets, such as full-sky maps of photon counts, exposure time, and count rates. A variation of this scheme is used to index sparser data such as individual photon events and viewing times for selected areas of the sky, which are eventually used to create EUVE source catalogs.

  13. Super-sample covariance approximations and partial sky coverage

    NASA Astrophysics Data System (ADS)

    Lacasa, Fabien; Lima, Marcos; Aguena, Michel

    2018-04-01

    Super-sample covariance (SSC) is the dominant source of statistical error on large scale structure (LSS) observables for both current and future galaxy surveys. In this work, we concentrate on the SSC of cluster counts, also known as sample variance, which is particularly useful for the self-calibration of the cluster observable-mass relation; our approach can similarly be applied to other observables, such as galaxy clustering and lensing shear. We first examined the accuracy of two analytical approximations proposed in the literature for the flat sky limit, finding that they are accurate at the 15% and 30-35% level, respectively, for covariances of counts in the same redshift bin. We then developed a harmonic expansion formalism that allows for the prediction of SSC in an arbitrary survey mask geometry, such as large sky areas of current and future surveys. We show analytically and numerically that this formalism recovers the full sky and flat sky limits present in the literature. We then present an efficient numerical implementation of the formalism, which allows fast and easy runs of covariance predictions when the survey mask is modified. We applied our method to a mask that is broadly similar to the Dark Energy Survey footprint, finding a non-negligible negative cross-z covariance, i.e. redshift bins are anti-correlated. We also examined the case of data removal from holes due to, for example bright stars, quality cuts, or systematic removals, and find that this does not have noticeable effects on the structure of the SSC matrix, only rescaling its amplitude by the effective survey area. These advances enable analytical covariances of LSS observables to be computed for current and future galaxy surveys, which cover large areas of the sky where the flat sky approximation fails.

  14. Creating Griffith Observatory

    NASA Astrophysics Data System (ADS)

    Cook, Anthony

    2013-01-01

    Griffith Observatory has been the iconic symbol of the sky for southern California since it began its public mission on May 15, 1935. While the Observatory is widely known as being the gift of Col. Griffith J. Griffith (1850-1919), the story of how Griffith’s gift became reality involves many of the people better known for other contributions that made Los Angeles area an important center of astrophysics in the 20th century. Griffith began drawing up his plans for an observatory and science museum for the people of Los Angeles after looking at Saturn through the newly completed 60-inch reflector on Mt. Wilson. He realized the social impact that viewing the heavens could have if made freely available, and discussing the idea of a public observatory with Mt. Wilson Observatory’s founder, George Ellery Hale, and Director, Walter Adams. This resulted, in 1916, in a will specifying many of the features of Griffith Observatory, and establishing a committee managed trust fund to build it. Astronomy popularizer Mars Baumgardt convinced the committee at the Zeiss Planetarium projector would be appropriate for Griffith’s project after the planetarium was introduced in Germany in 1923. In 1930, the trust committee judged funds to be sufficient to start work on creating Griffith Observatory, and letters from the Committee requesting help in realizing the project were sent to Hale, Adams, Robert Millikan, and other area experts then engaged in creating the 200-inch telescope eventually destined for Palomar Mountain. A Scientific Advisory Committee, headed by Millikan, recommended that Caltech Physicist Edward Kurth be put in charge of building and exhibit design. Kurth, in turn, sought help from artist Russell Porter. The architecture firm of John C. Austin and Fredrick Ashley was selected to design the project, and they adopted the designs of Porter and Kurth. Philip Fox of the Adler Planetarium was enlisted to manage the completion of the Observatory and become its

  15. Dark Skies Awareness Programs for the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.

    2008-12-01

    The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also our environment in terms of ecology, health, safety, economics and energy conservation. For this reason, "Dark Skies are a Universal Resource" is a cornerstone project for the U.S. International Year of Astronomy (IYA) program in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. These programs focus on citizen-scientist sky-brightness monitoring programs, a planetarium show, podcasting, social networking, a digital photography contest, the Good Neighbor Lighting Program, Earth Hour, National Dark Skies Week, a traveling exhibit, a video tutorial, Dark Skies Discovery Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy, and a Quiet Skies program. Many similar programs are available internationally through the "Dark Skies Awareness" Global Cornerstone Project. Working groups for both the national and international dark skies cornerstone projects are being chaired by the National Optical Astronomy Observatory (NOAO). The presenters from NOAO will provide the "know-how" and the means for session participants to become community advocates in promoting Dark Skies programs as public events at their home institutions. Participants will be able to get information on jump-starting their education programs through the use of well-developed instructional materials and kits. For more information, visit http://astronomy2009.us/darkskies/ and http://www.darkskiesawareness.org/.

  16. The thirteenth data release of the Sloan Digital Sky Survey: First spectroscopic data from the SDSS-IV survey mapping nearby galaxies at Apache Point Observatory

    DOE PAGES

    Franco D. Albareti

    2017-12-08

    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in July 2014. It pursues three core programs: APOGEE-2, MaNGA, and eBOSS. In addition, eBOSS contains two major subprograms: TDSS and SPIDERS. This paper describes the first data release from SDSS-IV, Data Release 13 (DR13), which contains new data, reanalysis of existing data sets and, like all SDSS data releases, is inclusive of previously released data. DR13 makes publicly available 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA, the first data released from this survey. It includes new observations from eBOSS, completing SEQUELS. Inmore » addition to targeting galaxies and quasars, SEQUELS also targeted variability-selected objects from TDSS and X-ray selected objects from SPIDERS. DR13 includes new reductions of the SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification. DR13 releases new reductions of the APOGEE-1 data from SDSS-III, with abundances of elements not previously included and improved stellar parameters for dwarf stars and cooler stars. For the SDSS imaging data, DR13 provides new, more robust and precise photometric calibrations. Several value-added catalogs are being released in tandem with DR13, in particular target catalogs relevant for eBOSS, TDSS, and SPIDERS, and an updated red-clump catalog for APOGEE. This paper describes the location and format of the data now publicly available, as well as providing references to the important technical papers that describe the targeting, observing, and data reduction. In conclusion, the SDSS website, this http URL, provides links to the data, tutorials and examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ~6-year operations of SDSS-IV.« less

  17. The thirteenth data release of the Sloan Digital Sky Survey: First spectroscopic data from the SDSS-IV survey mapping nearby galaxies at Apache Point Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco D. Albareti

    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in July 2014. It pursues three core programs: APOGEE-2, MaNGA, and eBOSS. In addition, eBOSS contains two major subprograms: TDSS and SPIDERS. This paper describes the first data release from SDSS-IV, Data Release 13 (DR13), which contains new data, reanalysis of existing data sets and, like all SDSS data releases, is inclusive of previously released data. DR13 makes publicly available 1390 spatially resolved integral field unit observations of nearby galaxies from MaNGA, the first data released from this survey. It includes new observations from eBOSS, completing SEQUELS. Inmore » addition to targeting galaxies and quasars, SEQUELS also targeted variability-selected objects from TDSS and X-ray selected objects from SPIDERS. DR13 includes new reductions of the SDSS-III BOSS data, improving the spectrophotometric calibration and redshift classification. DR13 releases new reductions of the APOGEE-1 data from SDSS-III, with abundances of elements not previously included and improved stellar parameters for dwarf stars and cooler stars. For the SDSS imaging data, DR13 provides new, more robust and precise photometric calibrations. Several value-added catalogs are being released in tandem with DR13, in particular target catalogs relevant for eBOSS, TDSS, and SPIDERS, and an updated red-clump catalog for APOGEE. This paper describes the location and format of the data now publicly available, as well as providing references to the important technical papers that describe the targeting, observing, and data reduction. In conclusion, the SDSS website, this http URL, provides links to the data, tutorials and examples of data access, and extensive documentation of the reduction and analysis procedures. DR13 is the first of a scheduled set that will contain new data and analyses from the planned ~6-year operations of SDSS-IV.« less

  18. Ultracool Dwarfs in the Ukirt Infrared Deep Sky Survey (UKIDSS)

    NASA Astrophysics Data System (ADS)

    Burningham, Ben; Pinfield, D.; Leggett, S. K.; Lodieu, N.; Warren, S. J.; Lucas, P. W.; Tamura, M.; Mortlock, D.; Kendall, T. R.; Jones, H. R.; Jameson, R. F.; Richard, M.; Martin, E. L.; UKIDSS Cool Dwarf Science Working Group

    2007-05-01

    The UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) presents an unparallelled resource for the study of field brown dwarfs. The UKIDSS Cool Dwarf Science Working Group (CDSWG) is carrying out a search for the lowest temperature brown dwarfs ever discovered, with the possibility of identifying a new spectral class of ultracool dwarf: the Y dwarf. CDSWG members identified 10 new T dwarfs in the early and first data releases of the LAS, including 2 objects with spectral types later than T7.5. One of these is thought to be the coolest T dwarf ever found with a spectral type of T8.5, and an estimated temperature of 650K. Data release 2 (DR2) took place on 1st March 2007, and already the most promising objects have been selected and followed-up photometrically and spectroscopically. In this contribution I will discuss the capabilities of UKIDSS for identifying ultracool dwarfs and summarise our latest results.

  19. Solar Wind Charge Exchange Contribution To The ROSAT Sky Survey Maps

    NASA Technical Reports Server (NTRS)

    Uprety, Y.; Chiao, M.; Collier, M. R.; Cravens, T.; Galeazzi, M.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Lepri, S. T.; Liu, W.; hide

    2016-01-01

    DXL (Diffuse X-ray emission from the Local Galaxy) is a sounding rocket mission designed to estimate the contribution of solar wind charge eXchange (SWCX) to the diffuse X-ray background and to help determine the properties of the Local Hot Bubble. The detectors are large area thin-window proportional counters with a spectral response that is similar to that of the PSPC (Position Sensitive Proportional Counters) used in the ROSAT All Sky Survey (RASS). A direct comparison of DXL and RASS data for the same part of the sky viewed from quite different vantage points in the solar system, and the assumption of approximate isotropy for the solar wind, allowed us to quantify the SWCX contribution to all six RASS bands (R1-R7, excluding R3). We find that the SWCX contribution at l = 140 degrees, b = 0 degrees, where the DXL path crosses the Galactic plane, is 33 percent plus or minus 6 percent (statistical) plus or minus 12 percent (systematic) for R1, 44 percent plus or minus 6 percent plus or minus 5 percent for R2, 18 percent plus or minus 12 percent plus or minus 11 percent for R4, 14 percent plus or minus 11 percent plus or minus 9 percent for R5, and negligible for the R6 and R7 bands. Reliable models for the distribution of neutral H and He in the solar system permit estimation of the contribution of interplanetary SWCX emission over the the whole sky and correction of the RASS maps. We find that the average SWCX contribution in the whole sky is 26 percent plus or minus 6 percent plus or minus 13 percent for R1, 30 percent plus or minus 4 percent plus or minus 4 percent for R2, 8 percent plus or minus 5 percent plus or minus 5 percent for R4, 6 percent plus or minus 4 percent plus or minus 4 percent for R5, and negligible for R6 and R7.

  20. The Footprint Database and Web Services of the Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Dobos, László; Varga-Verebélyi, Erika; Verdugo, Eva; Teyssier, David; Exter, Katrina; Valtchanov, Ivan; Budavári, Tamás; Kiss, Csaba

    2016-10-01

    Data from the Herschel Space Observatory is freely available to the public but no uniformly processed catalogue of the observations has been published so far. To date, the Herschel Science Archive does not contain the exact sky coverage (footprint) of individual observations and supports search for measurements based on bounding circles only. Drawing on previous experience in implementing footprint databases, we built the Herschel Footprint Database and Web Services for the Herschel Space Observatory to provide efficient search capabilities for typical astronomical queries. The database was designed with the following main goals in mind: (a) provide a unified data model for meta-data of all instruments and observational modes, (b) quickly find observations covering a selected object and its neighbourhood, (c) quickly find every observation in a larger area of the sky, (d) allow for finding solar system objects crossing observation fields. As a first step, we developed a unified data model of observations of all three Herschel instruments for all pointing and instrument modes. Then, using telescope pointing information and observational meta-data, we compiled a database of footprints. As opposed to methods using pixellation of the sphere, we represent sky coverage in an exact geometric form allowing for precise area calculations. For easier handling of Herschel observation footprints with rather complex shapes, two algorithms were implemented to reduce the outline. Furthermore, a new visualisation tool to plot footprints with various spherical projections was developed. Indexing of the footprints using Hierarchical Triangular Mesh makes it possible to quickly find observations based on sky coverage, time and meta-data. The database is accessible via a web site http://herschel.vo.elte.hu and also as a set of REST web service functions, which makes it readily usable from programming environments such as Python or IDL. The web service allows downloading footprint data

  1. The Boulder magnetic observatory

    USGS Publications Warehouse

    Love, Jeffrey J.; Finn, Carol A.; Pedrie, Kolby L.; Blum, Cletus C.

    2015-08-14

    The Boulder magnetic observatory has, since 1963, been operated by the Geomagnetism Program of the U.S. Geological Survey in accordance with Bureau and national priorities. Data from the observatory are used for a wide variety of scientific purposes, both pure and applied. The observatory also supports developmental projects within the Geomagnetism Program and collaborative projects with allied geophysical agencies.

  2. VizieR Online Data Catalog: HerMES Large Mode Survey catalogue (Asboth+, 2016)

    NASA Astrophysics Data System (ADS)

    Asboth, V.; Conley, A.; Sayers, J.; Bethermin, M.; Chapman, S. C.; Clements, D. L.; Cooray, A.; Dannerbauer, H.; Farrah, D.; Glenn, J.; Golwala, S. R.; Halpern, M.; Ibar, E.; Ivison, R. J.; Maloney, P. R.; Marques-Chaves, R.; Martinez-Navajas, P. I.; Oliver, S. J.; Perez-Fournon, I.; Riechers, D. A.; Rowan-Robinson, M.; Scott, D.; Siegel, S. R.; Vieira, J. D.; Viero, M.; Wang, L.; Wardlow, J.; Wheeler, J.

    2018-01-01

    The HerMES Large Mode Survey (HeLMS) consists of a large area shallow observation of an equatorial field at wavelengths of 250, 350 and 500um, obtained using the SPIRE aboard the Herschel Space Observatory. HeLMS is an extension of HerMES (Oliver et al., 2012MNRAS.424.1614O, Cat. VIII/95 and VIII/103), a 'wedding cake' type survey containing small and deep maps and larger shallower observations of different fields. HeLMS covers about 302deg2 of the sky, making it the largest area observed in the HerMES. The HeLMS field spans 23h14mSky Survey;s Stripe 82 field (Abazajian et al., 2009ApJS..182..543A), one of the most highly observed areas of the sky, with extensive multiwavelength ancillary data coverage. The equatorial area has the advantage that it can be observed from almost any ground-based telescope site in the world. (1 data file).

  3. KIC 8462852: Maria Mitchell Observatory Photographic Photometry 1930 to 1985

    NASA Astrophysics Data System (ADS)

    Castelaz, Michael; Barker, Thurburn

    2018-01-01

    KIC 8462852 is an F3V star which decreased 20% in visual brightness twice from 5 to 20 days (Boyajian et al., 2016, MNRAS, 457, 3988) in 2011 and again in 2013. New observations show decreases of a few percent in May 2017 (Waagen 2017, AAVSO Alert Notice, 579), and reanalysis of Kepler data shows a variation of 928.25 days and 22 dimming events (Kiefer et al. 2017, accepted). Photometry from the All-Sky Automated Survey for Supernovae and the All-Sky Automated Survey (ASAS) indicate two brightening episodes and a steady decrease in magnitude of 6.3 +/- 1.4 mmag/yr (Simon et al 2017, accepted). Photometric studies from photographic plate collections include a light curve from 1338 Harvard College Observatory plates over the period 1890 to 1989 (Schaefer 2016, ApJ, 822, L34) that indicates KIC 8462852 is dimming 0.164 +/- 0.013 magnitudes per century. Hippke et al. (2016, ApJ, 825, 73) present B and V light curves from photometry from the Sonneberg Observatory photographic plate collection (Brauer and Fuhrmann 1992, Die Sterne, 68, 19) covering the period from 1934 to 1995. The light curve suggests less than 3% or 0.03 magnitude per century decrease in brightness, consistent with the ASAS light curve and Kepler data.Another consistent set of astronomical photographic plates with KIC 8462852 are in the Maria Mitchell Observatory (MMO) collection (Strelnitski 2009 in ASP Conference Series Vol. 410 p. 96). This collection is located in the Astronomical Photographic Data Archive at the Pisgah Astronomical Research Institute. We extracted the photographic magnitudes of KIC 8462852 from 743 plates from 1930 to 1988. We chose 8 nearby comparison stars within one spectral subclass and within 0.05 magnitudes of KIC 8462852, and not identified as variables. The photometry is calibrated to the USNO B filter, closest in bandpass to the emulsion wavelength sensitivity. The light curve of KIC 8462852 suggests a trend of about 0.1 +/- 0.07 magnitudes per century decrease, an

  4. Recent Local and State Action in Arizona to Maintain Sky Quality

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey C.; Shankland, P. D.; Green, R. F.; Jannuzi, B.

    2014-01-01

    The large number of observatories in Arizona has led to the development of a number of lighting control ordinances around the state, some quite strict. Several factors are now contributing to an increased need for active effort at the local, County, and State levels in maintaining the quality of these codes; these factors include an expansion of competing interests in the state, the increasing use of LED lighting, and the potential for major new investments through projects such as the Cherenkov Telescope Array (CTA) and enhancements to the Navy Precision Optical Interferometer. I will review recent strategies Arizona's observatories have used to effect maintenance of ordinances and preserve sky quality; cases include (1) a statewide effort in 2012 to curb a proliferation of electronic billboards and (2) engagement of a broad group of local, County, and State officials, as well as individuals from the private sector, in support of projects like CTA, including awareness of and support for dark-sky preservation.

  5. What does it mean to manage sky survey data? A model to facilitate stakeholder conversations

    NASA Astrophysics Data System (ADS)

    Sands, Ashley E.; Darch, Peter T.

    2016-06-01

    Astronomy sky surveys, while of great scientific value independently, can be deployed even more effectively when multiple sources of data are combined. Integrating discrete datasets is a non-trivial exercise despite investments in standard data formats and tools. Creating and maintaining data and associated infrastructures requires investments in technology and expertise. Combining data from multiple sources necessitates a common understanding of data, structures, and goals amongst relevant stakeholders.We present a model of Astronomy Stakeholder Perspectives on Data. The model is based on 80 semi-structured interviews with astronomers, computational astronomers, computer scientists, and others involved in the building or use of the Sloan Digital Sky Survey (SDSS) and Large Synoptic Survey Telescope (LSST). Interviewees were selected to ensure a range of roles, institutional affiliations, career stages, and level of astronomy education. Interviewee explanations of data were analyzed to understand how perspectives on astronomy data varied by stakeholder.Interviewees described sky survey data either intrinsically or extrinsically. “Intrinsic” descriptions of data refer to data as an object in and of itself. Respondents with intrinsic perspectives view data management in one of three ways: (1) “Medium” - securing the zeros and ones from bit rot; (2) “Scale” - assuring that changes in state are documented; or (3) “Content” - ensuring the scientific validity of the images, spectra, and catalogs.“Extrinsic” definitions, in contrast, define data in relation to other forms of information. Respondents with extrinsic perspectives view data management in one of three ways: (1) “Source” - supporting the integrity of the instruments and documentation; (2) “Relationship” - retaining relationships between data and their analytical byproducts; or (3) “Use” - ensuring that data remain scientifically usable.This model shows how data management can

  6. A Nearby Old Halo White Dwarf Candidate from the Sloan Digital Sky Survey

    DTIC Science & Technology

    2008-07-01

    Mi- cron All Sky Survey ( 2MASS ; Skrutskie et al. 2006) within 2′′ of the expected position of J1102+4113 at that epoch. To measure the flux in this...feature, we retrieved the 2MASS Atlas images covering this object, measured 3′′ radius aperture magnitudes 78 H A L L E T A L . V ol.136 Table 1...POSS2 50094.9138 . . . . . . . . . 18.41 . . . . . . . . . . . . . . . . . . 2MASS 50912.8346

  7. Virtual Observatories, Data Mining, and Astroinformatics

    NASA Astrophysics Data System (ADS)

    Borne, Kirk

    The historical, current, and future trends in knowledge discovery from data in astronomy are presented here. The story begins with a brief history of data gathering and data organization. A description of the development ofnew information science technologies for astronomical discovery is then presented. Among these are e-Science and the virtual observatory, with its data discovery, access, display, and integration protocols; astroinformatics and data mining for exploratory data analysis, information extraction, and knowledge discovery from distributed data collections; new sky surveys' databases, including rich multivariate observational parameter sets for large numbers of objects; and the emerging discipline of data-oriented astronomical research, called astroinformatics. Astroinformatics is described as the fourth paradigm of astronomical research, following the three traditional research methodologies: observation, theory, and computation/modeling. Astroinformatics research areas include machine learning, data mining, visualization, statistics, semantic science, and scientific data management.Each of these areas is now an active research discipline, with significantscience-enabling applications in astronomy. Research challenges and sample research scenarios are presented in these areas, in addition to sample algorithms for data-oriented research. These information science technologies enable scientific knowledge discovery from the increasingly large and complex data collections in astronomy. The education and training of the modern astronomy student must consequently include skill development in these areas, whose practitioners have traditionally been limited to applied mathematicians, computer scientists, and statisticians. Modern astronomical researchers must cross these traditional discipline boundaries, thereby borrowing the best of breed methodologies from multiple disciplines. In the era of large sky surveys and numerous large telescopes, the potential

  8. Source Detection with Bayesian Inference on ROSAT All-Sky Survey Data Sample

    NASA Astrophysics Data System (ADS)

    Guglielmetti, F.; Voges, W.; Fischer, R.; Boese, G.; Dose, V.

    2004-07-01

    We employ Bayesian inference for the joint estimation of sources and background on ROSAT All-Sky Survey (RASS) data. The probabilistic method allows for detection improvement of faint extended celestial sources compared to the Standard Analysis Software System (SASS). Background maps were estimated in a single step together with the detection of sources without pixel censoring. Consistent uncertainties of background and sources are provided. The source probability is evaluated for single pixels as well as for pixel domains to enhance source detection of weak and extended sources.

  9. Statistical Properties of a Two-Stage Procedure for Creating Sky Flats

    NASA Astrophysics Data System (ADS)

    Crawford, R. W.; Trueblood, M.

    2004-05-01

    Accurate flat fielding is an essential factor in image calibration and good photometry, yet no single method for creating flat fields is both practical and effective in all cases. At Winer Observatory, robotic telescope opera- tion and the research program of Near Earth Object follow-up astrometry favor the use of sky flats formed from the many images that are acquired during a night. This paper reviews the statistical properties of the median-combine process used to create sky flats and discusses a computationally efficient procedure for two-stage combining of many images to form sky flats with relatively high signal-to-noise ratio (SNR). This procedure is in use at Winer for the flat field calibration of unfiltered images taken for NEO follow-up astrometry.

  10. A Strategy for Urban Astronomical Observatory Site Preservation: The Southern Arizona Example

    NASA Astrophysics Data System (ADS)

    Craine, Eric R.; Craine, Brian L.; Craine, Patrick R.; Craine, Erin M.; Fouts, Scott

    2014-05-01

    Urbanized observatories are under financial pressures for numerous and complex reasons, including concerns that increasing sky brightness will continue to erode their scientific viability. The history of urbanized observatories is one of steady decline and divestiture. We argue that light at night (LAN) impacts of urban growth are inadequately understood, that current measurement techniques are incomplete in scope, and that both limit the effectiveness of mitigation programs. We give examples of these factors for Pima County, Arizona, and propose techniques and a program that could provide focus and power to mitigation efforts, and could extend the longevity of southern Arizona observatories.

  11. Asteroids Search Results in Large Photographic Sky Surveys

    NASA Astrophysics Data System (ADS)

    Shatokhina, S. V.; Kazantseva, L. V.; Yizhakevych, O. M.; Eglitis, I.; Andruk, V. M.

    Photographic observations of XX century contained numerous and varied information about all objects and events of the Universe fixed on plates. The original and interesting observations of small bodies of the Solar system in previous years can be selected and used for various scientific tasks. Existing databases and online services can help make such selection easily and quickly. The observations of chronologically earlier ppositions, photometric evaluation of brightness for long periods of time allow refining the orbits of asteroids and identifying various non-stationaries. Photographic observations of Northern Sky Survey project and observations of clusters in UBVR bands were used for global search for small bodies of Solar system. Total we founded 2486 positions of asteroids and 13 positions of comets. All positions were compared with ephemeris. It was found that 80 positions of asteroids have a moment of observation preceding their discovery, and 19 of them are chronologically the earliest observations of these asteroids in the world.

  12. Protecting the Local Dark-Sky Areas around the International Observatories in Chile.

    NASA Astrophysics Data System (ADS)

    Smith, M. G.

    2001-12-01

    This report covers efforts by IAU Commission 50's new Working Group on Light Pollution to slow or halt the spread of incipient light pollution near the VLT, the Magellan 6.5m telescopes, Gemini South, SOAR, Blanco and many smaller telescopes in Chile. An effort has just begun to protect the ALMA site in Northern Chile from RFI. Such work includes extensive outreach programs to the local population, schools and industry as well as to local, regional and national levels of government in Chile. The group is working internationally with such organizations as the IDA; one member has recently led the production of "The first world atlas of the artificial night-sky brightness". These efforts have resulted in the first national-level environmental legislation covering dark skies as part of a government effort to protect the environment. Chilean manufacturers are now producing competitive, full-cut-off, street lighting designed specifically to comply with the new legislation. The Chilean national tourism agency is supporting "Astronomical Tourism" based on the dark, clear skies of Chile. An international conference on Controlling Light Pollution and RFI will be held in La Serena, Chile on 5-7 March, 2002, backed up by a parallel meeting of Chilean amateur astronomers. Much work remains to be done. Most of this work is supported by funding from the US National Science Foundation through CTIO, and from ESO, OCIW and CONAMA.

  13. Some non-atlas work at ESO Sky Atlas Laboratory.

    NASA Astrophysics Data System (ADS)

    Madsen, C.

    The ESO Sky Atlas Laboratory (SAL) was set up in 1972 with the aim of producing the ESO Quick Blue Survey and later the joint ESO/SERC Survey of the Southern Sky. With the establishment of a Scientific Group, it became apparent that ESO had additional photographic needs, the fullfilment of which was also entrusted to SAL. Thus, in the course of the years, the "Photographic Section" evolved as a subdivision of the Sky Atlas Laboratory.

  14. A NEAR-INFRARED SPECTROSCOPIC SURVEY OF COOL WHITE DWARFS IN THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilic, Mukremin; Kowalski, Piotr M.; Von Hippel, Ted

    2009-07-15

    We present near-infrared photometric observations of 15 and spectroscopic observations of 38 cool white dwarfs (WDs). This is the largest near-infrared spectroscopic survey of cool WDs to date. Combining the Sloan Digital Sky Survey photometry and our near-infrared data, we perform a detailed model atmosphere analysis. The spectral energy distributions of our objects are explained fairly well by model atmospheres with temperatures ranging from 6300 K down to 4200 K. Two WDs show significant absorption in the infrared, and are best explained with mixed H/He atmosphere models. Based on the up-to-date model atmosphere calculations by Kowalski and Saumon, we findmore » that the majority of the stars in our sample have hydrogen-rich atmospheres. We do not find any pure helium atmosphere WDs below 5000 K, and we find a trend of increasing hydrogen to helium ratio with decreasing temperature. These findings present an important challenge to understanding the spectral evolution of WDs.« less

  15. VizieR Online Data Catalog: UV counterparts in HI clouds using ALFA surveys (Donovan+, 2015)

    NASA Astrophysics Data System (ADS)

    Donovan Meyer, J.; Peek, J. E. G.; Putman, M.; Grcevich, J.

    2017-10-01

    GALFA-HI is a survey of Galactic HI conducted with the ALFA seven-beam feed array on the 305 m Arecibo antenna. The survey has both high spatial (FWHM~4') and velocity (0.18 km/s) resolution over 13000 (7520 in DR1) degrees2 of sky between -650 and 650 km/s. Details of the observations and data reduction can be found in Peek et al. (2011ApJS..194...20P). The ALFALFA HI-line survey, now 40% complete, also uses the Arecibo Observatory and its seven-beam feed array to detect potential dwarf galaxies in the vicinity of the Milky Way. The survey, which covers over 7000 (2800 in α.40) deg2 of sky out to 18000 km/s, has the sensitivity to detect 105 Mȯ clouds with 20 km/s linewidths at a distance of 1 Mpc. (2 data files).

  16. VizieR Online Data Catalog: Herschel SPIRE/FTS 194-671um survey of GOALS LIRGs (Lu+, 2017)

    NASA Astrophysics Data System (ADS)

    Lu, N.; Zhao, Y.; Diaz-Santos, T.; Xu, C. K.; Gao, Y.; Armus, L.; Isaak, K. G.; Mazzarella, J. M.; van der Werf, P. P.; Appleton, P. N.; Charmandaris, V.; Evans, A. S.; Howell, J.; Iwasawa, K.; Leech, J.; Lord, S.; Petric, A. O.; Privon, G. C.; Sanders, D. B.; Schulz, B.; Surace, J. A.

    2017-06-01

    In this paper we presented a Herschel SPIRE/FTS 194-671um spectroscopic survey of 121 galaxies belonging to a complete, flux-limited sample of 123 luminous infrared galaxies (LIRGs) down to a total IR flux of 6.5x10-13W/m2, selected from the Great Observatories All-Sky LIRG Survey (GOALS; Armus+ 2009PASP..121..559A). All 123 observed targets are listed in Table 1. (3 data files).

  17. A Brown Dwarf Census from the SIMP Survey

    NASA Astrophysics Data System (ADS)

    Robert, Jasmin; Gagné, Jonathan; Artigau, Étienne; Lafrenière, David; Nadeau, Daniel; Doyon, René; Malo, Lison; Albert, Loïc; Simard, Corinne; Bardalez Gagliuffi, Daniella C.; Burgasser, Adam J.

    2016-10-01

    We have conducted a near-infrared (NIR) proper motion survey, the Sondage Infrarouge de Mouvement Propre, in order to discover field ultracool dwarfs (UCD) in the solar neighborhood. The survey was conducted by imaging ˜28% of the sky with the Caméra PAnoramique Proche-InfraRouge both in the southern hemisphere at the Cerro Tololo Inter-American Observatory 1.5 m telescope, and in the northern hemisphere at the Observatoire du Mont-Mégantic 1.6 m telescope and comparing the source positions from these observations with the Two Micron All-Sky Survey Point Source Catalog (2MASS PSC). Additional color criteria were used to further discriminate unwanted astrophysical sources. We present the results of an NIR spectroscopic follow-up of 169 M, L, and T dwarfs. Among the sources discovered are 2 young field brown dwarfs, 6 unusually red M and L dwarfs, 25 unusually blue M and L dwarfs, 2 candidate unresolved L+T binaries, and 24 peculiar UCDs. Additionally, we add 9 L/T transition dwarfs (L6-T4.5) to the already known objects.

  18. A SURVEY OF CN AND CH VARIATIONS IN GALACTIC GLOBULAR CLUSTERS FROM SLOAN DIGITAL SKY SURVEY SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smolinski, Jason P.; Beers, Timothy C.; Lee, Young Sun

    We present a homogeneous survey of the CN and CH band strengths in eight Galactic globular clusters observed during the course of the Sloan Extension for Galactic Understanding and Exploration sub-survey of the Sloan Digital Sky Survey. We confirm the existence of a bimodal CN distribution among red giant branch (RGB) stars in all of the clusters with metallicity greater than [Fe/H] = -1.7; the lowest metallicity cluster with an observed CN bimodality is M53, with [Fe/H] {approx_equal} -2.1. There is also some evidence for individual CN groups on the subgiant branches of M92, M2, and M13, and on themore » RGBs of M92 and NGC 5053. Finally, we quantify the correlation between overall cluster metallicity and the slope of the CN band strength-luminosity plot as a means of further demonstrating the level of CN enrichment in cluster giants. Our results agree well with previous studies reported in the literature.« less

  19. A Flight Through the Universe, by the Sloan Digital Sky Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aragon, Miguel; Subbarao, Mark; Szalay, Alex

    This animated flight through the universe was made by Miguel Aragon of Johns Hopkins University with Mark Subbarao of the Adler Planetarium and Alex Szalay of Johns Hopkins. There are close to 400,000 galaxies in the animation, with images of the actual galaxies in these positions (or in some cases their near cousins in type) derived from the Sloan Digital Sky Survey (SDSS) Data Release 7. Vast as this slice of the universe seems, its most distant reach is to redshift 0.1, corresponding to roughly 1.3 billion light years from Earth. SDSS Data Release 9 from the Baryon Oscillation Spectroscopicmore » Survey (BOSS), led by Berkeley Lab scientists, includes spectroscopic data for well over half a million galaxies at redshifts up to 0.8 -- roughly 7 billion light years distant -- and over a hundred thousand quasars to redshift 3.0 and beyond.« less

  20. Computer analysis of digital sky surveys using citizen science and manual classification

    NASA Astrophysics Data System (ADS)

    Kuminski, Evan; Shamir, Lior

    2015-01-01

    As current and future digital sky surveys such as SDSS, LSST, DES, Pan-STARRS and Gaia create increasingly massive databases containing millions of galaxies, there is a growing need to be able to efficiently analyze these data. An effective way to do this is through manual analysis, however, this may be insufficient considering the extremely vast pipelines of astronomical images generated by the present and future surveys. Some efforts have been made to use citizen science to classify galaxies by their morphology on a larger scale than individual or small groups of scientists can. While these citizen science efforts such as Zooniverse have helped obtain reasonably accurate morphological information about large numbers of galaxies, they cannot scale to provide complete analysis of billions of galaxy images that will be collected by future ventures such as LSST. Since current forms of manual classification cannot scale to the masses of data collected by digital sky surveys, it is clear that in order to keep up with the growing databases some form of automation of the data analysis will be required, and will work either independently or in combination with human analysis such as citizen science. Here we describe a computer vision method that can automatically analyze galaxy images and deduce galaxy morphology. Experiments using Galaxy Zoo 2 data show that the performance of the method increases as the degree of agreement between the citizen scientists gets higher, providing a cleaner dataset. For several morphological features, such as the spirality of the galaxy, the algorithm agreed with the citizen scientists on around 95% of the samples. However, the method failed to analyze some of the morphological features such as the number of spiral arms, and provided accuracy of just ~36%.

  1. New High Proper Motion Stars from the Digitized Sky Survey. II. Northern Stars with 0.5" yr-1 < μ < 2.0" yr-1 at High Galactic Latitudes

    NASA Astrophysics Data System (ADS)

    Lépine, Sébastien; Shara, Michael M.; Rich, R. Michael

    2003-08-01

    In a continuation of our systematic search for high proper motion stars in the Digitized Sky Survey, we have completed the analysis of northern sky fields at Galactic latitudes above 25°. With the help of our SUPERBLINK software, a powerful automated blink comparator developed by us, we have identified 1146 stars in the magnitude range 8survey now covers over 98% of the northern sky. We conclude that the Luyten catalogs were ~=90% complete in the northern sky for stars with 0.5"<μ<2.0" down to magnitude r=19. We discuss the incompleteness of the old Luyten proper-motion survey and estimate completeness limits for our new survey. Based on data mining of the Digitized Sky Survey, developed and operated by the Catalogs and Surveys Branch of the Space Telescope Science Institute, Baltimore.

  2. A seven-year northern sky survey of Ap stars for rapid variability

    NASA Technical Reports Server (NTRS)

    Nelson, Matthew J.; Kreidl, Tobias J.

    1993-01-01

    A high-speed photometric survey of 120 Ap stars in the northern sky, has been conducted, between 1985 and 1991, in order to search for rapid variability. Stars of spectral types, namely from B8 to F4, have been selected for the survey. The selected pulsational variable stars occupy the hotter regions of the instability strip of the Hertzsprung-Russel diagram. Noted is the absence of pulsations in the hotter B8-A3 Ap stars; this does not, however, preclude the existence of pulsations, since HD 218495 was recently discovered to be a rapidly oscillating Ap (roAp) star. The primary result of this study is that various combinations of photometric indices, while pointing towards roAp stars having the characteristic signatures of cool, SrCrEu stars, still fail to isolate the roAp phenomenon from similar nonpulsating Ap stars. Color-magnitude and color-color diagrams are presented in order to complete this survey.

  3. Aladin Lite: Lightweight sky atlas for browsers

    NASA Astrophysics Data System (ADS)

    Boch, Thomas

    2014-02-01

    Aladin Lite is a lightweight version of the Aladin tool, running in the browser and geared towards simple visualization of a sky region. It allows visualization of image surveys (JPEG multi-resolution HEALPix all-sky surveys) and permits superimposing tabular (VOTable) and footprints (STC-S) data. Aladin Lite is powered by HTML5 canvas technology and is easily embeddable on any web page and can also be controlled through a Javacript API.

  4. SkICAT: A cataloging and analysis tool for wide field imaging surveys

    NASA Technical Reports Server (NTRS)

    Weir, N.; Fayyad, U. M.; Djorgovski, S. G.; Roden, J.

    1992-01-01

    We describe an integrated system, SkICAT (Sky Image Cataloging and Analysis Tool), for the automated reduction and analysis of the Palomar Observatory-ST ScI Digitized Sky Survey. The Survey will consist of the complete digitization of the photographic Second Palomar Observatory Sky Survey (POSS-II) in three bands, comprising nearly three Terabytes of pixel data. SkICAT applies a combination of existing packages, including FOCAS for basic image detection and measurement and SAS for database management, as well as custom software, to the task of managing this wealth of data. One of the most novel aspects of the system is its method of object classification. Using state-of-theart machine learning classification techniques (GID3* and O-BTree), we have developed a powerful method for automatically distinguishing point sources from non-point sources and artifacts, achieving comparably accurate discrimination a full magnitude fainter than in previous Schmidt plate surveys. The learning algorithms produce decision trees for classification by examining instances of objects classified by eye on both plate and higher quality CCD data. The same techniques will be applied to perform higher-level object classification (e.g., of galaxy morphology) in the near future. Another key feature of the system is the facility to integrate the catalogs from multiple plates (and portions thereof) to construct a single catalog of uniform calibration and quality down to the faintest limits of the survey. SkICAT also provides a variety of data analysis and exploration tools for the scientific utilization of the resulting catalogs. We include initial results of applying this system to measure the counts and distribution of galaxies in two bands down to Bj is approximately 21 mag over an approximate 70 square degree multi-plate field from POSS-II. SkICAT is constructed in a modular and general fashion and should be readily adaptable to other large-scale imaging surveys.

  5. An Innovative Collaboration on Dark Skies Education

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Mayer, M.; EPO Students, NOAO

    2011-01-01

    Dark night skies are being lost all over the globe, and hundreds of millions of dollars of energy are being wasted in the process.. Improper lighting is the main cause of light pollution. Light pollution is a concern on many fronts, affecting safety, energy conservation, cost, human health, and wildlife. It also robs us of the beauty of viewing the night sky. In the U.S. alone, over half of the population cannot see the Milky Way from where they live. To help address this, the National Optical Astronomy Observatory Education and Public Outreach (NOAO EPO) staff created two programs: Dark Skies Rangers and GLOBE at Night. Through the two programs, students learn about the importance of dark skies and experience activities that illustrate proper lighting, light pollution's effects on wildlife and how to measure the darkness of their skies. To disseminate the programs locally in an appropriate yet innovative venue, NOAO partnered with the Cooper Center for Environmental Learning in Tucson, Arizona. Operated by the largest school district in Tucson and the University of Arizona College of Education, the Cooper Center educates thousands of students and educators each year about ecology, science, and the beauty and wonders of the Sonoran Desert. During the first academic year (2009-2010), we achieved our goal of reaching nearly 20 teachers in 40 classrooms of 1000 students. We gave two 3-hour teacher-training sessions and provided nineteen 2.5-hour on-site evening sessions on dark skies activities for the students of the teachers trained. One outcome of the program was the contribution of 1000 "GLOBE at Night 2010” night-sky brightness measurements by Tucson students. Training sessions at similar levels are continuing this year. The partnership, planning, lesson learned, and outcomes of NOAO's collaboration with the environmental center will be presented.

  6. GOALS, STRATEGIES AND FIRST DISCOVERIES OF AO327, THE ARECIBO ALL-SKY 327 MHz DRIFT PULSAR SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deneva, J. S.; Stovall, K.; Martinez, J. G.

    2013-09-20

    We report initial results from AO327, a drift survey for pulsars with the Arecibo telescope at 327 MHz. The first phase of AO327 will cover the sky at declinations of –1° to 28°, excluding the region within 5° of the Galactic plane, where high scattering and dispersion make low-frequency surveys sub-optimal. We record data from a 57 MHz bandwidth with 1024 channels and 125 μs sampling time. The 60 s transit time through the AO327 beam means that the survey is sensitive to very tight relativistic binaries even with no acceleration searches. To date we have detected 44 known pulsarsmore » with periods ranging from 3 ms to 2.21 s and discovered 24 new pulsars. The new discoveries include 3 ms pulsars, three objects with periods of a few tens of milliseconds typical of young as well as mildly recycled pulsars, a nuller, and a rotating radio transient. Five of the new discoveries are in binary systems. The second phase of AO327 will cover the sky at declinations of 28°-38°. We compare the sensitivity and search volume of AO327 to the Green Bank North Celestial Cap survey and the GBT350 drift survey, both of which operate at 350 MHz.« less

  7. A Survey For TNOs Using the APS POSS I Database

    NASA Astrophysics Data System (ADS)

    Rhoads, E.

    2005-05-01

    The digitized first epoch Palomar Observatory Sky Survey (POSS I) was an ideal and unused archive for the purpose of data mining Trans-Neptunian Objects (TNOs). When accounting for overlap in TNO phase space and the area of the plates covered by stars and galaxies, the effective sky coverage area for this search was 4931 square degrees for Plutinos, and 4992 square degrees for classical TNOs. Using constraints based on the properties of known TNOs, computer codes were used to separate TNO candidates from millions of stars and galaxies. Lists of possible TNO, Centaur, and asteroid candidates were created. The results of this survey yielded 17 reliable TNOs and TNO candidates, including Pluto, Quaoar, and Varuna. In addition to the TNOs, 27 Centaur and 29 Asteroid candidates were found. The TNO Quaoar was pre-covered, and the Main Belt Asteroid (395) Delia was also recovered.

  8. A Strategy for Urban Astronomical Observatory Site Preservation: The Southern Arizona Example (Abstract)

    NASA Astrophysics Data System (ADS)

    Craine, E. R.; Craine, B. L.; Craine, P. R.; Craine, E. M.; Fouts, S.

    2014-12-01

    (Abstract only) Urbanized observatories are under financial pressures for numerous and complex reasons, including concerns that increasing sky brightness will continue to erode their scientific viability. The history of urbanized observatories is one of steady decline and divestiture. We argue that light at night (LAN) impacts of urban growth are inadequately understood, that current measurement techniques are incomplete in scope, and that both limit the effectiveness of mitigation programs. We give examples of these factors for Pima County, Arizona, and propose techniques and a program that could provide focus and power to mitigation efforts, and could extend the longevity of southern Arizona observatories.

  9. A new survey of nebulae around Galactic Wolf-Rayet stars in the northern sky

    NASA Technical Reports Server (NTRS)

    Miller, Grant J.; Chu, You-Hua

    1993-01-01

    Interference filter CCD images have been obtained in H-alpha and forbidden O III 5007 A for 62 Wolf-Rayet (W-R) stars, representing a complete survey of nebulae around Galactic W-R stars in the northern sky. We find probable new ring nebulae around W-R stars number 113, 116 and 132, and possible new ring nebulae around W-R stars number 133 and 153. All survey images showing nebulosities around W-R stars are presented in this paper. New physical information is derived from the improved images of known ring nebulae. The absence of ring nebulae around most W-R stars is discussed.

  10. Tectonic motion site survey of the National Radio Astronomy Observatory, Green Bank, West Virginia

    NASA Technical Reports Server (NTRS)

    Webster, W. J., Jr.; Allenby, R. J.; Hutton, L. K.; Lowman, P. D., Jr.; Tiedemann, H. A.

    1979-01-01

    A geological and geophysical site survey was made of the area around the National Radio Astronomy Observatory (NRAO) to determine whether there are at present local tectonic movements that could introduce significant errors to Very Long Baseline Interferometry (VLBI) geodetic measurements. The site survey consisted of a literature search, photogeologic mapping with Landsat and Skylab photographs, a field reconnaissance, and installation of a seismometer at the NRAO. It is concluded that local tectonic movement will not contribute significantly to VLBI errors. It is recommended that similar site surveys be made of all locations used for VLBI or laser ranging.

  11. Connecting the time domain community with the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Graham, Matthew J.; Djorgovski, S. G.; Donalek, Ciro; Drake, Andrew J.; Mahabal, Ashish A.; Plante, Raymond L.; Kantor, Jeffrey; Good, John C.

    2012-09-01

    The time domain has been identied as one of the most important areas of astronomical research for the next decade. The Virtual Observatory is in the vanguard with dedicated tools and services that enable and facilitate the discovery, dissemination and analysis of time domain data. These range in scope from rapid notications of time-critical astronomical transients to annotating long-term variables with the latest modelling results. In this paper, we will review the prior art in these areas and focus on the capabilities that the VAO is bringing to bear in support of time domain science. In particular, we will focus on the issues involved with the heterogeneous collections of (ancilllary) data associated with astronomical transients, and the time series characterization and classication tools required by the next generation of sky surveys, such as LSST and SKA.

  12. Search for Indirect Signals of Dark Matter with The High Altitude Water Cherenkov (HAWC) Observatory

    NASA Astrophysics Data System (ADS)

    Baughman, Brian; Harding, Patrick; HAWC Collaboration

    2015-04-01

    The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view observatory sensitive to 100 GeV-100 TeV gamma rays and cosmic rays. Located at an elevation of 4100 m on the Sierra Negra volcano in Mexico, HAWC observes extensive air showers from gamma rays via their production of Cherenkov light within an array of water tanks. With a wide field-of-view observing 2/3 of the sky each day and a sensitivity of greater than 1 Crab per day, HAWC has the ability to probe a large fraction of the sky for the signals of TeV-mass dark matter. HAWC's sensitivity to dark matter for several astrophysical sources and some early limits from the built detector will be presented.

  13. On the limitations of statistical absorption studies with the Sloan Digital Sky Surveys I-III

    NASA Astrophysics Data System (ADS)

    Lan, Ting-Wen; Ménard, Brice; Baron, Dalya; Johnson, Sean; Poznanski, Dovi; Prochaska, J. Xavier; O'Meara, John M.

    2018-07-01

    We investigate the limitations of statistical absorption measurements with the Sloan Digital Sky Survey (SDSS) optical spectroscopic surveys. We show that changes in the data reduction strategy throughout different data releases have led to a better accuracy at long wavelengths, in particular for sky line subtraction, but a degradation at short wavelengths with the emergence of systematic spectral features with an amplitude of about 1 per cent. We show that these features originate from inaccuracy in the fitting of modelled F-star spectra used for flux calibration. The best-fitting models for those stars are found to systematically overestimate the strength of metal lines and underestimate that of Lithium. We also identify the existence of artefacts due to masking and interpolation procedures at the wavelengths of the hydrogen Balmer series leading to the existence of artificial Balmer α absorption in all SDSS optical spectra. All these effects occur in the rest frame of the standard stars and therefore present Galactic longitude variations due to the rotation of the Galaxy. We demonstrate that the detection of certain weak absorption lines reported in the literature is solely due to calibration effects. Finally, we discuss new strategies to mitigate these issues.

  14. The Apache Point Observatory Galactic Evolution Experiment (APOGEE)

    NASA Astrophysics Data System (ADS)

    Majewski, Steven R.; Schiavon, Ricardo P.; Frinchaboy, Peter M.; Allende Prieto, Carlos; Barkhouser, Robert; Bizyaev, Dmitry; Blank, Basil; Brunner, Sophia; Burton, Adam; Carrera, Ricardo; Chojnowski, S. Drew; Cunha, Kátia; Epstein, Courtney; Fitzgerald, Greg; García Pérez, Ana E.; Hearty, Fred R.; Henderson, Chuck; Holtzman, Jon A.; Johnson, Jennifer A.; Lam, Charles R.; Lawler, James E.; Maseman, Paul; Mészáros, Szabolcs; Nelson, Matthew; Nguyen, Duy Coung; Nidever, David L.; Pinsonneault, Marc; Shetrone, Matthew; Smee, Stephen; Smith, Verne V.; Stolberg, Todd; Skrutskie, Michael F.; Walker, Eric; Wilson, John C.; Zasowski, Gail; Anders, Friedrich; Basu, Sarbani; Beland, Stephane; Blanton, Michael R.; Bovy, Jo; Brownstein, Joel R.; Carlberg, Joleen; Chaplin, William; Chiappini, Cristina; Eisenstein, Daniel J.; Elsworth, Yvonne; Feuillet, Diane; Fleming, Scott W.; Galbraith-Frew, Jessica; García, Rafael A.; García-Hernández, D. Aníbal; Gillespie, Bruce A.; Girardi, Léo; Gunn, James E.; Hasselquist, Sten; Hayden, Michael R.; Hekker, Saskia; Ivans, Inese; Kinemuchi, Karen; Klaene, Mark; Mahadevan, Suvrath; Mathur, Savita; Mosser, Benoît; Muna, Demitri; Munn, Jeffrey A.; Nichol, Robert C.; O'Connell, Robert W.; Parejko, John K.; Robin, A. C.; Rocha-Pinto, Helio; Schultheis, Matthias; Serenelli, Aldo M.; Shane, Neville; Silva Aguirre, Victor; Sobeck, Jennifer S.; Thompson, Benjamin; Troup, Nicholas W.; Weinberg, David H.; Zamora, Olga

    2017-09-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE), one of the programs in the Sloan Digital Sky Survey III (SDSS-III), has now completed its systematic, homogeneous spectroscopic survey sampling all major populations of the Milky Way. After a three-year observing campaign on the Sloan 2.5 m Telescope, APOGEE has collected a half million high-resolution (R ˜ 22,500), high signal-to-noise ratio (>100), infrared (1.51-1.70 μm) spectra for 146,000 stars, with time series information via repeat visits to most of these stars. This paper describes the motivations for the survey and its overall design—hardware, field placement, target selection, operations—and gives an overview of these aspects as well as the data reduction, analysis, and products. An index is also given to the complement of technical papers that describe various critical survey components in detail. Finally, we discuss the achieved survey performance and illustrate the variety of potential uses of the data products by way of a number of science demonstrations, which span from time series analysis of stellar spectral variations and radial velocity variations from stellar companions, to spatial maps of kinematics, metallicity, and abundance patterns across the Galaxy and as a function of age, to new views of the interstellar medium, the chemistry of star clusters, and the discovery of rare stellar species. As part of SDSS-III Data Release 12 and later releases, all of the APOGEE data products are publicly available.

  15. Characterizing Sky Spectra Using SDSS BOSS Data

    NASA Astrophysics Data System (ADS)

    Florez, Lina Maria; Strauss, Michael A.

    2018-01-01

    In the optical/near-infrared spectra gathered by a ground-based telescope observing very faint sources, the strengths of the emission lines due to the Earth’s atmosphere can be many times larger than the fluxes of the sources we are interested in. Thus the limiting factor in faint-object spectroscopy is the degree to which systematics in the sky subtraction can be minimized. Longwards of 6000 Angstroms, the night-sky spectrum is dominated by multiple vibrational/rotational transitions of the OH radical from our upper atmosphere. While the wavelengths of these lines are the same in each sky spectrum, their relative strengths vary considerably as a function of time and position on the sky. The better we can model their strengths, the better we can hope to subtract them off. We expect that the strength of lines from common upper energy levels will be correlated with one another. We used flux-calibrated sky spectra from the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (SDSS BOSS) to explore these correlations. Our aim is to use these correlations for creating improved sky subtraction algorithms for the Prime Focus Spectrograph (PFS) on the 8.2-meter Subaru Telescope. When PFS starts gathering data in 2019, it will be the most powerful multi-object spectrograph in the world. Since PFS will be gathering data on sources as faint as 24th magnitude and fainter, it's of upmost importance to be able to accurately measure and subtract sky spectra from the data that we receive.

  16. Current Status of VO Compliant Data Service in Japanese Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Shirasaki, Y.; Komiya, Y.; Ohishi, M.; Mizumoto, Y.; Ishihara, Y.; Tsutsumi, J.; Hiyama, T.; Nakamoto, H.; Sakamoto, M.

    2012-09-01

    In these years, standards to build a Virtual Observatory (VO) data service have been established with the efforts in the International Virtual Observatory Alliance (IVOA). We applied these newly established standards (SSAP, TAP) to our VO service toolkit which was developed to implement earlier VO standards SIAP and (deprecated) SkyNode. The toolkit can be easily installed and provides a GUI interface to construct and manage VO service. In this paper, we describes the architecture of our toolkit and how it is used to start hosting VO service.

  17. Weak gravitational lensing analysis of Sloan Digital Sky Survey data

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel

    Weak gravitational lensing, the distortion of images of distant galaxies due to gravitational deflection of light by more nearby masses, is a powerful tool that can address a wide variety of problems in astrophysics and cosmology. Observation of weak lensing requires large amounts of data since it can only be measured as an average over millions of galaxy shapes. This thesis focuses on lensing-related science that can be addressed using data from the Sloan Digital Sky Survey (SDSS), an excellent source of high-quality data. First, we discuss technical issues related to observing lensing in the data, with a description of our Reglens pipeline and constraints on systematic errors in current data. This is followed by a comparison of an analytical model known as the halo model (which can be used to relate the observed lensing signal to properties of the lens galaxies) against the lensing signal in N-body simulations. After these preliminaries, we address several very different science questions using our reductions of the SDSS data. The first is the question of intrinsic alignments of galaxies (alignments of galaxies on the sky due to local structure), which may be a contaminant for future lensing surveys that seek to determine the cosmological model to high precision. Second, we use a halo model analysis of the lensing signal to determine the relationship between galaxy luminosity, stellar mass, and halo mass, and to measure satellite fractions, all of which can help distinguish between models of galaxy formation. The third application we consider is methodology for the detection of dark matter halo ellipticity, including a first attempt at detecting it with SDSS lensing data, these results may be used to distinguish between cosmological models and learn more about galaxy intrinsic alignments. Finally, we measure the matter distributions around Luminous Red Galaxies (LRGs), which not only teaches us about the properties of these galaxies, but also gives us information

  18. Galaxy Number Counts from the Sloan Digital Sky Survey Commissioning Data

    NASA Astrophysics Data System (ADS)

    Yasuda, Naoki; Fukugita, Masataka; Narayanan, Vijay K.; Lupton, Robert H.; Strateva, Iskra; Strauss, Michael A.; Ivezić, Željko; Kim, Rita S. J.; Hogg, David W.; Weinberg, David H.; Shimasaku, Kazuhiro; Loveday, Jon; Annis, James; Bahcall, Neta A.; Blanton, Michael; Brinkmann, Jon; Brunner, Robert J.; Connolly, Andrew J.; Csabai, István; Doi, Mamoru; Hamabe, Masaru; Ichikawa, Shin-Ichi; Ichikawa, Takashi; Johnston, David E.; Knapp, G. R.; Kunszt, Peter Z.; Lamb, D. Q.; McKay, Timothy A.; Munn, Jeffrey A.; Nichol, Robert C.; Okamura, Sadanori; Schneider, Donald P.; Szokoly, Gyula P.; Vogeley, Michael S.; Watanabe, Masaru; York, Donald G.

    2001-09-01

    We present bright galaxy number counts in five broad bands (u', g', r', i', z') from imaging data taken during the commissioning phase of the Sloan Digital Sky Survey (SDSS). The counts are derived from two independent stripes of imaging scans along the celestial equator, one each toward the northern and the southern Galactic cap, covering about 230 and 210 deg2, respectively. A careful study is made to verify the reliability of the photometric catalog. For galaxies brighter than r*=16, the catalog produced by automated software is examined against eye inspection of all objects. Statistically meaningful results on the galaxy counts are obtained in the magnitude range 12<=r*<=21, using a sample of 900,000 galaxies. The counts from the two stripes differ by about 30% at magnitudes brighter than r*=15.5, consistent with a local 2 σ fluctuation due to large-scale structure in the galaxy distribution. The shape of the number counts-magnitude relation brighter than r*=16 is well characterized by N~100.6m, the relation expected for a homogeneous galaxy distribution in a ``Euclidean'' universe. In the magnitude range 16Sky Survey. Information available at http://www.sdss.org.

  19. REVIEWS OF TOPICAL PROBLEMS: Sky surveys and deep fields of ground-based and space telescopes

    NASA Astrophysics Data System (ADS)

    Reshetnikov, Vladimir P.

    2005-11-01

    Selected results obtained in major observational sky surveys (DSS, 2MASS, 2dF, SDSS) and deep field observations (HDF, GOODS, UHDF, etc.) are reviewed. Modern surveys provide information on the characteristics and space distribution of millions of galaxies. Deep fields allow one to study galaxies at the stage of formation and to trace their evolution over billions of years. The wealth of observational data is altering the face of modern astronomy: the formulation of problems and their solutions are changing and all the previous knowledge, from planetary studies in the solar system to the most distant galaxies and quasars, is being revised.

  20. The KELT-North Transit Survey's First Planetary Detections

    NASA Astrophysics Data System (ADS)

    Beatty, Thomas G.; Bieryla, A.; Cohen, D.; Collins, K.; Eastman, J.; Fulton, B. J.; Gary, B.; Gaudi, B. S.; Hebb, L.; Jensen, E. L. N.; Latham, D. W.; Manner, M.; Pepper, J.; Siverd, R.; Stassun, K.; Street, R. A.

    2012-05-01

    I will present the first planetary detections from the KELT-North transit survey. KELT-North is a 42mm robotic camera system at Winer Observatory in Arizona, and survey operations are based out of the Ohio State and Vanderbilt Universities. The KELT-North survey fields are 26 by 26 degrees, and are arranged in a contiguous strip around the sky centered at a declination of +30 degrees. The small aperture and wide field of view of the telescope enables KELT-North to effectively survey some of the brightest stars in the Northern sky for transiting planets. Our focus is on planet candidates around stars between 8 < V < 10. These bright systems are of prime scientific interest, since they provide the best follow-up opportunities from the ground and space. We have been collecting science data since 2006, and actively vetting planet candidates since the spring of 2011. Over the past winter we recorded our first detections of sub-stellar companions. I will briefly discuss KELT-North survey operations before describing the results from our observations of these intriguing systems. We are grateful to the observers and the support staff at the FLWO 60- and 48-inch telescopes. This work was supported by NSF CAREER grant AST-1056524.

  1. The History of the CONCAM Project: All Sky Monitors in the Digital Age

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert; Shamir, Lior; Pereira, Wellesley

    2018-01-01

    The CONtinuous CAMera (CONCAM) project, which ran from 2000 to (about) 2008, consisted of real-time, Internet-connected, fisheye cameras located at major astronomical observatories. At its peak, eleven CONCAMs around the globe monitored most of the night sky, most of the time. Initially designed to search for transients and stellar variability, CONCAMs gained initial notoriety as cloud monitors. As such, CONCAMs made -- and its successors continue to make -- ground-based astronomy more efficient. The original, compact, fisheye-observatory-in-a-suitcase design underwent several iterations, starting with CONCAM0 and with the last version dubbed CONCAM3. Although the CONCAM project itself concluded after centralized funding diminished, today more locally-operated, commercially-designed, CONCAM-like devices operate than ever before. It has even been shown that modern smartphones can operate in a CONCAM-like mode. It is speculated that the re-instatement of better global coordination of current wide-angle sky monitors could lead to better variability monitoring of the brightest stars and transients.

  2. Temporal Variations of Telluric Water Vapor Absorption at Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Li, Dan; Blake, Cullen H.; Nidever, David; Halverson, Samuel P.

    2018-01-01

    Time-variable absorption by water vapor in Earth’s atmosphere presents an important source of systematic error for a wide range of ground-based astronomical measurements, particularly at near-infrared wavelengths. We present results from the first study on the temporal and spatial variability of water vapor absorption at Apache Point Observatory (APO). We analyze ∼400,000 high-resolution, near-infrared (H-band) spectra of hot stars collected as calibration data for the APO Galactic Evolution Experiment (APOGEE) survey. We fit for the optical depths of telluric water vapor absorption features in APOGEE spectra and convert these optical depths to Precipitable Water Vapor (PWV) using contemporaneous data from a GPS-based PWV monitoring station at APO. Based on simultaneous measurements obtained over a 3° field of view, we estimate that our PWV measurement precision is ±0.11 mm. We explore the statistics of PWV variations over a range of timescales from less than an hour to days. We find that the amplitude of PWV variations within an hour is less than 1 mm for most (96.5%) APOGEE field visits. By considering APOGEE observations that are close in time but separated by large distances on the sky, we find that PWV is homogeneous across the sky at a given epoch, with 90% of measurements taken up to 70° apart within 1.5 hr having ΔPWV < 1.0 mm. Our results can be used to help simulate the impact of water vapor absorption on upcoming surveys at continental observing sites like APO, and also to help plan for simultaneous water vapor metrology that may be carried out in support of upcoming photometric and spectroscopic surveys.

  3. Mapping the Infrared Universe: The Entire WISE Sky

    NASA Image and Video Library

    2012-03-14

    This is a mosaic of the images covering the entire sky as observed by NASA Wide-field Infrared Survey Explorer WISE, part of its All-Sky Data Release. In this mosaic, the Milky Way Galaxy runs horizontally across the map.

  4. Difference Imaging of Lensed Quasar Candidates in the Sloan Digital Sky Survey Supernova Survey Region

    NASA Astrophysics Data System (ADS)

    Lacki, Brian C.; Kochanek, Christopher S.; Stanek, Krzysztof Z.; Inada, Naohisa; Oguri, Masamune

    2009-06-01

    Difference imaging provides a new way to discover gravitationally lensed quasars because few nonlensed sources will show spatially extended, time variable flux. We test the method on the fields of lens candidates in the Sloan Digital Sky Survey (SDSS) Supernova Survey region from the SDSS Quasar Lens Search (SQLS) and one serendipitously discovered lensed quasar. Starting from 20,536 sources, including 49 SDSS quasars, 32 candidate lenses/lensed images, and one known lensed quasar, we find that 174 sources including 35 SDSS quasars, 16 candidate lenses/lensed images, and the known lensed quasar are nonperiodic variable sources. We can measure the spatial structure of the variable flux for 119 of these variable sources and identify only eight as candidate extended variables, including the known lensed quasar. Only the known lensed quasar appears as a close pair of sources on the difference images. Inspection of the remaining seven suggests they are false positives, and only two were spectroscopically identified quasars. One of the lens candidates from the SQLS survives our cuts, but only as a single image instead of a pair. This indicates a false positive rate of order ~1/4000 for the method, or given our effective survey area of order 0.82 deg2, ~5 per deg2 in the SDSS Supernova Survey. The fraction of quasars not found to be variable and the false positive rate would both fall if we had analyzed the full, later data releases for the SDSS fields. While application of the method to the SDSS is limited by the resolution, depth, and sampling of the survey, several future surveys such as Pan-STARRS, LSST, and SNAP will significantly improve on these limitations.

  5. Finding counterparts for all-sky X-ray surveys with NWAY: a Bayesian algorithm for cross-matching multiple catalogues

    NASA Astrophysics Data System (ADS)

    Salvato, M.; Buchner, J.; Budavári, T.; Dwelly, T.; Merloni, A.; Brusa, M.; Rau, A.; Fotopoulou, S.; Nandra, K.

    2018-02-01

    We release the AllWISE counterparts and Gaia matches to 106 573 and 17 665 X-ray sources detected in the ROSAT 2RXS and XMMSL2 surveys with |b| > 15°. These are the brightest X-ray sources in the sky, but their position uncertainties and the sparse multi-wavelength coverage until now rendered the identification of their counterparts a demanding task with uncertain results. New all-sky multi-wavelength surveys of sufficient depth, like AllWISE and Gaia, and a new Bayesian statistics based algorithm, NWAY, allow us, for the first time, to provide reliable counterpart associations. NWAY extends previous distance and sky density based association methods and, using one or more priors (e.g. colours, magnitudes), weights the probability that sources from two or more catalogues are simultaneously associated on the basis of their observable characteristics. Here, counterparts have been determined using a Wide-field Infrared Survey Explorer (WISE) colour-magnitude prior. A reference sample of 4524 XMM/Chandra and Swift X-ray sources demonstrates a reliability of ∼94.7 per cent (2RXS) and 97.4 per cent (XMMSL2). Combining our results with Chandra-COSMOS data, we propose a new separation between stars and AGN in the X-ray/WISE flux-magnitude plane, valid over six orders of magnitude. We also release the NWAY code and its user manual. NWAY was extensively tested with XMM-COSMOS data. Using two different sets of priors, we find an agreement of 96 per cent and 99 per cent with published Likelihood Ratio methods. Our results were achieved faster and without any follow-up visual inspection. With the advent of deep and wide area surveys in X-rays (e.g. SRG/eROSITA, Athena/WFI) and radio (ASKAP/EMU, LOFAR, APERTIF, etc.) NWAY will provide a powerful and reliable counterpart identification tool.

  6. A serendipitous all sky survey for bright objects in the outer solar system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, M. E.; Drake, A. J.; Djorgovski, S. G.

    2015-02-01

    We use seven year's worth of observations from the Catalina Sky Survey and the Siding Spring Survey covering most of the northern and southern hemisphere at galactic latitudes higher than 20° to search for serendipitously imaged moving objects in the outer solar system. These slowly moving objects would appear as stationary transients in these fast cadence asteroids surveys, so we develop methods to discover objects in the outer solar system using individual observations spaced by months, rather than spaced by hours, as is typically done. While we independently discover eight known bright objects in the outer solar system, the faintestmore » having V=19.8±0.1, no new objects are discovered. We find that the survey is nearly 100% efficient at detecting objects beyond 25 AU for V≲19.1 (V≲18.6 in the southern hemisphere) and that the probability that there is one or more remaining outer solar system object of this brightness left to be discovered in the unsurveyed regions of the galactic plane is approximately 32%.« less

  7. Improving precision of Pi of the Sky photometric measurements

    NASA Astrophysics Data System (ADS)

    Siudek, M.; Małek, K.; Mankiewicz, L.; Opiela, R.; Sokołowski, M.; Źarnecki, A. F.

    Pi of the Sky is a system of robotic telescopes designed for observations of short timescale astrophysical phenomena, like prompt optical GRB emission. The apparatus is designed to monitor a large fraction of the sky with 12^{m} - 13^{m} range and time resolution of the order of 1, 10 seconds. All measurements taken by the Pi of the Sky detector located in Las Campanas Observatory (LCO) in Chile are available on the Pi of the Sky website through a dedicated interface which also allows to download the selected data. Pi of the Sky database from period 2006 - 2009 contains more than 2 billions measurements of almost 17 millions of objects. In order to facilitate analysis of variable stars we have developed a system of dedicated filters to remove bad measurements or frames. They are needed to remove measurements affected by detector imperfections (hot pixels, measurement close to CCD edge, background due to opened shutter) or observation conditions (planet or planetoid passage, moon halo). With approximate color calibration algorithm taking into account appropriate corrections based on the spectral type of reference stars the photometry algorithm can be improved further. This process is illustrated by the analysis of the BG Ind system where we have been able to reduce the total systematic uncertainty to about 0.05 magnitudes.

  8. Sierra Stars Observatory Network: An Accessible Global Network

    NASA Astrophysics Data System (ADS)

    Williams, Richard; Beshore, Edward

    2011-03-01

    The Sierra Stars Observatory Network (SSON) is a unique partnership among professional observatories that provides its users with affordable high-quality calibrated image data. SSON comprises observatories in the Northern and Southern Hemisphere and is in the process of expanding to a truly global network capable of covering the entire sky 24 hours a day in the near future. The goal of SSON is to serve the needs of science-based projects and programs. Colleges, universities, institutions, and individuals use SSON for their education and research projects. The mission of SSON is to promote and expand the use of its facilities among the thousands of colleges and schools worldwide that do not have access to professional-quality automated observatory systems to use for astronomy education and research. With appropriate leadership and guidance educators can use SSON to help teach astronomy and do meaningful scientific projects. The relatively small cost of using SSON for this type of work makes it affordable and accessible for educators to start using immediately. Remote observatory services like SSON need to evolve to better support education and research initiatives of colleges, institutions and individual investigators. To meet these needs, SSON is developing a sophisticated interactive scheduling system to integrate among the nodes of the observatory network. This will enable more dynamic observations, including immediate priority interrupts, acquiring moving objects using ephemeris data, and more.

  9. A survey for TNOs using the APS POSS I database

    NASA Astrophysics Data System (ADS)

    Rhoads, E.; Humphries, R.; Woodward, C.; Larsen, J.

    2004-12-01

    The digitized first epoch Palomar Observatory Sky Survey (POSS I) is an ideal and unused archive for the purpose of data mining Trans-Neptunian Objects (TNOs). When accounting for overlap in TNO phase space and the area of the plates covered by stars and galaxies, the effective sky coverage area for this search was 4931 square degrees for Plutinos, and 4992 square degrees for classical TNOs. Using constraints based on the properties of known TNOs, computer codes were used to separate TNO candidates from millions of stars and galaxies. Lists of possible TNO, Centaur, and asteroid candidates were created. The results of this survey yielded 17 reliable TNOs and TNO candidates, including Pluto, Quaoar, and Varuna. In addition to the TNOs, 28 Centaur and 31 Asteroid candidates were found. The TNO Quaoar was pre-covered, and the Main Belt Asteroid (395) Delia was also recovered. I would like to thank the Minnesota Space Grant Consortium for helping to fund my research.

  10. Design and Characterization of the 4STAR Sun-Sky Spectrometer with Results from 4- Way Intercomparison of 4STAR, AATS-14, Prede, and Cimel Photometers at Mauna Loa Observatory.

    NASA Astrophysics Data System (ADS)

    Flynn, C. J.; Dunagan, S. E.; Johnson, R. R.; Schmid, B.; Shinozuka, Y.; Ramachandran, S.; Livingston, J. M.; Russell, P. B.; Redemann, J.; Tran, A. K.; Holben, B. N.

    2008-12-01

    including field of view (FOV) scans, repeatability testing of the fiber optic coupler, calibration of diffuse sky radiance with integrating sphere, and calibration of solar irradiance via Langley retrievals. Recent results from an intercomparison on Mauna Loa Observatory involving 4STAR, AATS-14, AERONET Cimel sun-sky photometers, and a Prede sun-sky photometer will be presented.

  11. ROTSE All-Sky Surveys for Variable Stars. I. Test Fields

    NASA Astrophysics Data System (ADS)

    Akerlof, C.; Amrose, S.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Hills, J.; Kehoe, R.; Lee, B.; Marshall, S.; McKay, T.; Pawl, A.; Schaefer, J.; Szymanski, J.; Wren, J.

    2000-04-01

    The Robotic Optical Transient Search Experiment I (ROTSE-I) experiment has generated CCD photometry for the entire northern sky in two epochs nightly since 1998 March. These sky patrol data are a powerful resource for studies of astrophysical transients. As a demonstration project, we present first results of a search for periodic variable stars derived from ROTSE-I observations. Variable identification, period determination, and type classification are conducted via automatic algorithms. In a set of nine ROTSE-I sky patrol fields covering roughly 2000 deg2, we identify 1781 periodic variable stars with mean magnitudes between mv=10.0 and mv=15.5. About 90% of these objects are newly identified as variable. Examples of many familiar types are presented. All classifications for this study have been manually confirmed. The selection criteria for this analysis have been conservatively defined and are known to be biased against some variable classes. This preliminary study includes only 5.6% of the total ROTSE-I sky coverage, suggesting that the full ROTSE-I variable catalog will include more than 32,000 periodic variable stars.

  12. Flat-Sky Pseudo-Cls Analysis for Weak Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Asgari, Marika; Taylor, Andy; Joachimi, Benjamin; Kitching, Thomas D.

    2018-05-01

    We investigate the use of estimators of weak lensing power spectra based on a flat-sky implementation of the 'Pseudo-CI' (PCl) technique, where the masked shear field is transformed without regard for masked regions of sky. This masking mixes power, and 'E'-convergence and 'B'-modes. To study the accuracy of forward-modelling and full-sky power spectrum recovery we consider both large-area survey geometries, and small-scale masking due to stars and a checkerboard model for field-of-view gaps. The power spectrum for the large-area survey geometry is sparsely-sampled and highly oscillatory, which makes modelling problematic. Instead, we derive an overall calibration for large-area mask bias using simulated fields. The effects of small-area star masks can be accurately corrected for, while the checkerboard mask has oscillatory and spiky behaviour which leads to percent biases. Apodisation of the masked fields leads to increased biases and a loss of information. We find that we can construct an unbiased forward-model of the raw PCls, and recover the full-sky convergence power to within a few percent accuracy for both Gaussian and lognormal-distributed shear fields. Propagating this through to cosmological parameters using a Fisher-Matrix formalism, we find we can make unbiased estimates of parameters for surveys up to 1,200 deg2 with 30 galaxies per arcmin2, beyond which the percent biases become larger than the statistical accuracy. This implies a flat-sky PCl analysis is accurate for current surveys but a Euclid-like survey will require higher accuracy.

  13. Introduction: The Night Sky Back Home

    NASA Astrophysics Data System (ADS)

    Upgren, A. R.

    2001-12-01

    Light pollution is a proper and fitting subject of great concern to all astronomers. Back before 1988, when the International Dark-Sky Association was founded, astronomical concern centered around and was mostly restricted to the large southwestern mountaintop observatories. This is understandable since these largest telescopes demand the darkest possible skies. The IDA was promoted and organized with this goal in mind. Today the IDA numbers almost 8000 members and is dominated by environmentalists and lighting engineers as much as or more than professional astronomers. Amateur astronomers from skygazers to those with CCD's on their telescopes are now of great importance in the realm of light pollution awareness and control. They are busy in almost every state and province working to pass ordinances restricting the worst in outdoor lighting. For example. Connecticut, a state with little professional astronomical observation, has passed the first law to require FCO (full-cutoff shielding) on every new and renovated street and highway light in the state. The needs of astronomers in places like New England differ from those of Arizona, California, and Hawaii where LPS is much preferred to HPS illumination. In the lesser climates, FCO and lumen constraints are of much greater concern. Almost every state still has very dark sky areas, well worth preserving. It is of the greatest importance for amateurs and professionals to work together to preserve dark skies wherever they are found. Our profession needs for its continued health, places near population centers where the Milky Way can still be seen. Many future astronomers will be brought into the field by the sights of a dark sky. I encourage the AAS to become more active, individually and collectively, in the multitude of efforts now in progress across the continent.

  14. A BROWN DWARF CENSUS FROM THE SIMP SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert, Jasmin; Gagné, Jonathan; Artigau, Étienne

    We have conducted a near-infrared (NIR) proper motion survey, the Sondage Infrarouge de Mouvement Propre, in order to discover field ultracool dwarfs (UCD) in the solar neighborhood. The survey was conducted by imaging ∼28% of the sky with the Caméra PAnoramique Proche-InfraRouge both in the southern hemisphere at the Cerro Tololo Inter-American Observatory 1.5 m telescope, and in the northern hemisphere at the Observatoire du Mont-Mégantic 1.6 m telescope and comparing the source positions from these observations with the Two Micron All-Sky Survey Point Source Catalog (2MASS PSC). Additional color criteria were used to further discriminate unwanted astrophysical sources. Wemore » present the results of an NIR spectroscopic follow-up of 169 M, L, and T dwarfs. Among the sources discovered are 2 young field brown dwarfs, 6 unusually red M and L dwarfs, 25 unusually blue M and L dwarfs, 2 candidate unresolved L+T binaries, and 24 peculiar UCDs. Additionally, we add 9 L/T transition dwarfs (L6–T4.5) to the already known objects.« less

  15. A survey of nebulae around Galactic Wolf-Rayet stars in the southern sky, 1

    NASA Technical Reports Server (NTRS)

    Marston, A. P.; Chu, Y.-H.; Garcia-Segura, G.

    1994-01-01

    Images are presented from the first half of a survey of all Galactic Wolf-Rayet stars in the catalog of van der Hucht et al. (1981) residing in the southern skies. Previous surveys used only existing broad-band photographic plates. Encouraged by successes using CCD imaging with interference filters of the LMC and northern Galaxy (Miller & Chu 1993), we have expanded the survey to the southern hemisphere. In the first half of our southern survey, H alpha and (O III) narrow-band CCD images of fields centered on known Wolf-Rayet stars have indicated the existence of six new ring nebulae as well as revealing previously unobserved morphological features in the known ring nebulae. An example of this is an almost perfect ring of (O III) emission residing interior to the previously observed H alpha filaments of the Wolf-Rayet ring nebulae RCW 104. Our surveys to date indicate that 21% of all Wolf-Rayet stars have ring nebulae, with WN-type Wolf-Rayet stars having a greater likelihood for an associated ring.

  16. Exploring the Digital Universe with Europe's Astrophysical Virtual Observatory

    NASA Astrophysics Data System (ADS)

    2001-12-01

    Vast Databanks at the Astronomers' Fingertips Summary A new European initiative called the Astrophysical Virtual Observatory (AVO) is being launched to provide astronomers with a breathtaking potential for new discoveries. It will enable them to seamlessly combine the data from both ground- and space-based telescopes which are making observations of the Universe across the whole range of wavelengths - from high-energy gamma rays through the ultraviolet and visible to the infrared and radio. The aim of the Astrophysical Virtual Observatory (AVO) project, which started on 15 November 2001, is to allow astronomers instant access to the vast databanks now being built up by the world's observatories and which are forming what is, in effect, a "digital sky" . Using the AVO, astronomers will, for example, be able to retrieve the elusive traces of the passage of an asteroid as it passes near the Earth and so enable them to predict its future path and perhaps warn of a possible impact. When a giant star comes to the end of its life in a cataclysmic explosion called a supernova, they will be able to access the digital sky and pinpoint the star shortly before it exploded so adding invaluable data to the study of the evolution of stars. Background information on the Astrophysical Virtual Observatory is available in the Appendix. PR Photo 34a/01 : The Astrophysical Virtual Observatory - an artist's impression. The rapidly accumulating database ESO PR Photo 34a/01 ESO PR Photo 34a/01 [Preview - JPEG: 400 x 345 pix - 90k] [Normal - JPEG: 800 x 689 pix - 656k] [Hi-Res - JPEG: 3000 x 2582 pix - 4.3M] ESO PR Photo 34a/01 shows an artist's impression of the Astrophysical Virtual Observatory . Modern observatories observe the sky continuously and data accumulates remorselessly in the digital archives. The growth rate is impressive and many hundreds of terabytes of data - corresponding to many thousands of billions of pixels - are already available to scientists. The real sky is being

  17. CALCLENS: weak lensing simulations for large-area sky surveys and second-order effects in cosmic shear power spectra

    NASA Astrophysics Data System (ADS)

    Becker, Matthew R.

    2013-10-01

    I present a new algorithm, Curved-sky grAvitational Lensing for Cosmological Light conE simulatioNS (CALCLENS), for efficiently computing weak gravitational lensing shear signals from large N-body light cone simulations over a curved sky. This new algorithm properly accounts for the sky curvature and boundary conditions, is able to produce redshift-dependent shear signals including corrections to the Born approximation by using multiple-plane ray tracing and properly computes the lensed images of source galaxies in the light cone. The key feature of this algorithm is a new, computationally efficient Poisson solver for the sphere that combines spherical harmonic transform and multigrid methods. As a result, large areas of sky (˜10 000 square degrees) can be ray traced efficiently at high resolution using only a few hundred cores. Using this new algorithm and curved-sky calculations that only use a slower but more accurate spherical harmonic transform Poisson solver, I study the convergence, shear E-mode, shear B-mode and rotation mode power spectra. Employing full-sky E/B-mode decompositions, I confirm that the numerically computed shear B-mode and rotation mode power spectra are equal at high accuracy (≲1 per cent) as expected from perturbation theory up to second order. Coupled with realistic galaxy populations placed in large N-body light cone simulations, this new algorithm is ideally suited for the construction of synthetic weak lensing shear catalogues to be used to test for systematic effects in data analysis procedures for upcoming large-area sky surveys. The implementation presented in this work, written in C and employing widely available software libraries to maintain portability, is publicly available at http://code.google.com/p/calclens.

  18. Real-time Transients from Palomar-QUEST Synoptic Sky Survey

    NASA Astrophysics Data System (ADS)

    Mahabal, Ashish A.; Drake, A.; Djorgovski, S. G.; Donalek, C.; Glikman, E.; Graham, M. J.; Williams, R.; Baltay, C.; Rabinowitz, D.; Bauer, A.; Ellman, N.; Lauer, R.; PQ Team Indiana

    2006-12-01

    The data from the driftscans of the Palomar-QUEST synoptic sky survey is now routinely processed in real-time. We describe here the various components of the pipeline. We search for both variable and transient objects, including supernovae, variable AGN, GRB orphan afterglows, cataclysmic variables, interesting stellar flares, novae, other types of variable stars, and do not exclude the possibility of even entirely new types of objects or phenomena. In order to flag as many asteroids as possible we have been doing two 4-hour scans of the same area covering 250 sq. deg and detect over a million sources. Flagging a source as a candidate transient requires detection in at least two filters besides its absence in fiducial sky constructed from past images. We use various software filters to eliminate instrument artifacts, and false alarms due to the proximity of bright, saturated stars which dominate the initial detection rate. This leaves up to a couple of hundred asteroids and genuine transients. Previously known asteroids are flagged through an automated comparison with a databases of known asteroids, and new ones through apparent motion. In the end, we have typically 10 20 astrophysical transients remaining per night, and we are currently working on their automated classification, and spectroscopic follow-up. We present preliminary results from real-time follow-up of a few candidates carried out with the Palomar 200-inch telescope as part of a pilot project. Finally we outline the plans for the much harder problem of classifying the transients more accurately for distribution through VOEventNet to astronomers interested only in specific types of transients, more details and overall setting of which is covered in our VOEventNet poster (Drake et al.)

  19. Extended Source/Galaxy All Sky 2

    NASA Image and Video Library

    2003-03-27

    This panoramic view encompasses the entire sky and reveals the distribution of galaxies beyond the Milky Way galaxy, which astronomers call extended sources, as observed by Two Micron All-Sky Survey. The image is assembled from a database of over 1.6 million galaxies listed in the survey’s All-Sky Survey Extended Source Catalog; more than half of the galaxies have never before been catalogued. The colors represent how the many galaxies appear at three distinct wavelengths of infrared light (blue at 1.2 microns, green at 1.6 microns, and red at 2.2 microns). Quite evident are the many galactic clusters and superclusters, as well as some streamers composing the large-scale structure of the nearby universe. The blue overlay represents the very close and bright stars from our own Milky Way galaxy. In this projection, the bluish Milky Way lies predominantly toward the upper middle and edges of the image. http://photojournal.jpl.nasa.gov/catalog/PIA04251

  20. Full-sky Gravitational Lensing Simulation for Large-area Galaxy Surveys and Cosmic Microwave Background Experiments

    NASA Astrophysics Data System (ADS)

    Takahashi, Ryuichi; Hamana, Takashi; Shirasaki, Masato; Namikawa, Toshiya; Nishimichi, Takahiro; Osato, Ken; Shiroyama, Kosei

    2017-11-01

    We present 108 full-sky gravitational lensing simulation data sets generated by performing multiple-lens plane ray-tracing through high-resolution cosmological N-body simulations. The data sets include full-sky convergence and shear maps from redshifts z = 0.05 to 5.3 at intervals of 150 {h}-1{Mpc} comoving radial distance (corresponding to a redshift interval of {{Δ }}z≃ 0.05 at the nearby universe), enabling the construction of a mock shear catalog for an arbitrary source distribution up to z = 5.3. The dark matter halos are identified from the same N-body simulations with enough mass resolution to resolve the host halos of the Sloan Digital Sky Survey (SDSS) CMASS and luminous red galaxies (LRGs). Angular positions and redshifts of the halos are provided by a ray-tracing calculation, enabling the creation of a mock halo catalog to be used for galaxy-galaxy and cluster-galaxy lensing. The simulation also yields maps of gravitational lensing deflections for a source redshift at the last scattering surface, and we provide 108 realizations of lensed cosmic microwave background (CMB) maps in which the post-Born corrections caused by multiple light scattering are included. We present basic statistics of the simulation data, including the angular power spectra of cosmic shear, CMB temperature and polarization anisotropies, galaxy-galaxy lensing signals for halos, and their covariances. The angular power spectra of the cosmic shear and CMB anisotropies agree with theoretical predictions within 5% up to {\\ell }=3000 (or at an angular scale θ > 0.5 arcmin). The simulation data sets are generated primarily for the ongoing Subaru Hyper Suprime-Cam survey, but are freely available for download at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.

  1. Full-sky Gravitational Lensing Simulation for Large-area Galaxy Surveys and Cosmic Microwave Background Experiments

    DOE PAGES

    Takahashi, Ryuichi; Hamana, Takashi; Shirasaki, Masato; ...

    2017-11-14

    We present 108 full-sky gravitational lensing simulation data sets generated by performing multiple-lens plane ray-tracing through high-resolution cosmological N-body simulations. The data sets include full-sky convergence and shear maps from redshifts z = 0.05 to 5.3 at intervals ofmore » $$150\\,{h}^{-1}\\mathrm{Mpc}$$ comoving radial distance (corresponding to a redshift interval of $${\\rm{\\Delta }}z\\simeq 0.05$$ at the nearby universe), enabling the construction of a mock shear catalog for an arbitrary source distribution up to z = 5.3. The dark matter halos are identified from the same N-body simulations with enough mass resolution to resolve the host halos of the Sloan Digital Sky Survey (SDSS) CMASS and luminous red galaxies (LRGs). Angular positions and redshifts of the halos are provided by a ray-tracing calculation, enabling the creation of a mock halo catalog to be used for galaxy–galaxy and cluster–galaxy lensing. The simulation also yields maps of gravitational lensing deflections for a source redshift at the last scattering surface, and we provide 108 realizations of lensed cosmic microwave background (CMB) maps in which the post-Born corrections caused by multiple light scattering are included. We present basic statistics of the simulation data, including the angular power spectra of cosmic shear, CMB temperature and polarization anisotropies, galaxy–galaxy lensing signals for halos, and their covariances. The angular power spectra of the cosmic shear and CMB anisotropies agree with theoretical predictions within 5% up to $${\\ell }=3000$$ (or at an angular scale $$\\theta \\gt 0.5$$ arcmin). The simulation data sets are generated primarily for the ongoing Subaru Hyper Suprime-Cam survey, but are freely available for download at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.« less

  2. Full-sky Gravitational Lensing Simulation for Large-area Galaxy Surveys and Cosmic Microwave Background Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Ryuichi; Hamana, Takashi; Shirasaki, Masato

    We present 108 full-sky gravitational lensing simulation data sets generated by performing multiple-lens plane ray-tracing through high-resolution cosmological N-body simulations. The data sets include full-sky convergence and shear maps from redshifts z = 0.05 to 5.3 at intervals ofmore » $$150\\,{h}^{-1}\\mathrm{Mpc}$$ comoving radial distance (corresponding to a redshift interval of $${\\rm{\\Delta }}z\\simeq 0.05$$ at the nearby universe), enabling the construction of a mock shear catalog for an arbitrary source distribution up to z = 5.3. The dark matter halos are identified from the same N-body simulations with enough mass resolution to resolve the host halos of the Sloan Digital Sky Survey (SDSS) CMASS and luminous red galaxies (LRGs). Angular positions and redshifts of the halos are provided by a ray-tracing calculation, enabling the creation of a mock halo catalog to be used for galaxy–galaxy and cluster–galaxy lensing. The simulation also yields maps of gravitational lensing deflections for a source redshift at the last scattering surface, and we provide 108 realizations of lensed cosmic microwave background (CMB) maps in which the post-Born corrections caused by multiple light scattering are included. We present basic statistics of the simulation data, including the angular power spectra of cosmic shear, CMB temperature and polarization anisotropies, galaxy–galaxy lensing signals for halos, and their covariances. The angular power spectra of the cosmic shear and CMB anisotropies agree with theoretical predictions within 5% up to $${\\ell }=3000$$ (or at an angular scale $$\\theta \\gt 0.5$$ arcmin). The simulation data sets are generated primarily for the ongoing Subaru Hyper Suprime-Cam survey, but are freely available for download at http://cosmo.phys.hirosaki-u.ac.jp/takahasi/allsky_raytracing/.« less

  3. The Renovation and Future Capabilities of the Thacher Observatory

    NASA Astrophysics Data System (ADS)

    O'Neill, Katie; Osuna, Natalie; Edwards, Nick; Klink, Douglas; Swift, Jonathan; Vyhnal, Chris; Meyer, Kurt

    2016-01-01

    The Thacher School is in the process of renovating the campus observatory with a new meter class telescope and full automation capabilities for the purpose of scientific research and education. New equipment on site has provided a preliminary site characterization including seeing and V-band sky brightness measurements. These data, along with commissioning data from the MINERVA project (which uses comparable hardware) are used to estimate the capabilities of the observatory once renovation is complete. Our V-band limiting magnitude is expected to be better than 21.3 for a one minute integration time, and we estimate that milli-magnitude precision photometry will be possible for a V=14.5 point source over approximately 5 min timescales. The quick response, autonomous operation, and multi-band photometric capabilities of the renovated observatory will make it a powerful follow-up science facility for exoplanets, eclipsing binaries, near-Earth objects, stellar variability, and supernovae.

  4. Sky Quality Meter measurements in a colour-changing world

    NASA Astrophysics Data System (ADS)

    Sánchez de Miguel, A.; Aubé, M.; Zamorano, J.; Kocifaj, M.; Roby, J.; Tapia, C.

    2017-05-01

    The Sky Quality Meter (SQM) has become the most common device used to track the evolution of the brightness of the sky from polluted regions to first-class astronomical observatories. A vast database of SQM measurements already exists for many places in the world. Unfortunately, the SQM operates over a wide spectral band and its spectral response interacts with the sky's spectrum in a complex manner. This is why the optical signals are difficult to interpret when the data are recorded in regions with different sources of artificial light. The brightness of the night sky is linked in a complex way to ground-based light emissions, while taking into account atmospheric-induced optical distortion as well as spectral transformation from the underlying ground surfaces. While the spectral modulation of the sky's radiance has been recognized, it still remains poorly characterized and quantified. The impact of the SQM's spectral characteristics on sky-brightness measurements is analysed here for different light sources, including low- and high-pressure sodium lamps, PC-amber and white LEDs, metal halide and mercury lamps. We show that a routine conversion of radiance to magnitude is difficult, or rather impossible, because the average wavelength depends on actual atmospheric and environment conditions, the spectrum of the source and device-specific properties. We correlate SQM readings with both the Johnson astronomical photometry bands and the human system of visual perception, assuming different lighting technologies. These findings have direct implications for the processing of SQM data and for their improvement and/or remediation.

  5. Exploring the particle nature of dark matter with the All-sky Medium Energy Gamma-ray Observatory (AMEGO)

    NASA Astrophysics Data System (ADS)

    Caputo, Regina; Meyer, Manuel; Sánchez-Conde, Miguel; AMEGO

    2018-01-01

    The era of precision cosmology has revealed that ~80% of the matter in the universe is dark matter. Two leading candidates, motivated by both particle and astrophysics, are Weakly Interacting Massive Particles (WIMPs) and Weakly Interacting Sub-eV Particles (WISPs) like axions and axionlike particles. Both WIMPs and WISPs have distinct gamma-ray signatures. Data from the Fermi Large Area Telescope (Fermi-LAT) continues to be an integral part of the search for these dark matter signatures spanning the 50 MeV to >300 GeV energy range in a variety of astrophysical targets. Thus far, there are no conclusive detections; however, there is an intriguing excess of gamma rays associated with Galactic center (GCE) that could be explained with WIMP annihilation. The angular resolution of the LAT at lower energies makes source selection challenging and the true nature of the detected signal remains unknown. WISP searches using, e.g. supernova explosions, spectra of blazars, or strongly magnetized environments, would also greatly benefit from increased angular and energy resolution, as well as from polarization measurements. To address these, we are developing AMEGO, the All-sky Medium Energy Gamma-ray Observatory. This instrument has a projected energy and angular resolution that will increase sensitivity by a factor of 20-50 over previous instruments. This will allow us to explore new areas of dark matter parameter space and provide unprecedented access to its particle nature.

  6. The Apache Point Observatory Galactic Evolution Experiment (APOGEE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, Steven R.; Brunner, Sophia; Burton, Adam

    2017-09-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE), one of the programs in the Sloan Digital Sky Survey III (SDSS-III), has now completed its systematic, homogeneous spectroscopic survey sampling all major populations of the Milky Way. After a three-year observing campaign on the Sloan 2.5 m Telescope, APOGEE has collected a half million high-resolution ( R  ∼ 22,500), high signal-to-noise ratio (>100), infrared (1.51–1.70 μ m) spectra for 146,000 stars, with time series information via repeat visits to most of these stars. This paper describes the motivations for the survey and its overall design—hardware, field placement, target selection, operations—and gives anmore » overview of these aspects as well as the data reduction, analysis, and products. An index is also given to the complement of technical papers that describe various critical survey components in detail. Finally, we discuss the achieved survey performance and illustrate the variety of potential uses of the data products by way of a number of science demonstrations, which span from time series analysis of stellar spectral variations and radial velocity variations from stellar companions, to spatial maps of kinematics, metallicity, and abundance patterns across the Galaxy and as a function of age, to new views of the interstellar medium, the chemistry of star clusters, and the discovery of rare stellar species. As part of SDSS-III Data Release 12 and later releases, all of the APOGEE data products are publicly available.« less

  7. A Sky Chock-Full of Black Holes

    NASA Image and Video Library

    2012-08-29

    With its all-sky infrared survey, NASA Wide-field Infrared Survey Explorer, or WISE, has identified millions of quasar candidates. Quasars are supermassive black holes with masses millions to billions times greater than our sun.

  8. Meteor Shower Forecast Improvements from a Survey of All-Sky Network Observations

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.; Sugar, Glenn; Brown, Peter G.; Cooke, William J.

    2015-01-01

    Meteoroid impacts are capable of damaging spacecraft and potentially ending missions. In order to help spacecraft programs mitigate these risks, NASA's Meteoroid Environment Office (MEO) monitors and predicts meteoroid activity. Temporal variations in near-Earth space are described by the MEO's annual meteor shower forecast, which is based on both past shower activity and model predictions. The MEO and the University of Western Ontario operate sister networks of all-sky meteor cameras. These networks have been in operation for more than 7 years and have computed more than 20,000 meteor orbits. Using these data, we conduct a survey of meteor shower activity in the "fireball" size regime using DBSCAN. For each shower detected in our survey, we compute the date of peak activity and characterize the growth and decay of the shower's activity before and after the peak. These parameters are then incorporated into the annual forecast for an improved treatment of annual activity.

  9. VISTA: Pioneering New Survey Telescope Starts Work

    NASA Astrophysics Data System (ADS)

    2009-12-01

    A new telescope - VISTA (the Visible and Infrared Survey Telescope for Astronomy) - has just started work at ESO's Paranal Observatory and has made its first release of pictures. VISTA is a survey telescope working at infrared wavelengths and is the world's largest telescope dedicated to mapping the sky. Its large mirror, wide field of view and very sensitive detectors will reveal a completely new view of the southern sky. Spectacular new images of the Flame Nebula, the centre of our Milky Way galaxy and the Fornax Galaxy Cluster show that it is working extremely well. VISTA is the latest telescope to be added to ESO's Paranal Observatory in the Atacama Desert of northern Chile. It is housed on the peak adjacent to the one hosting the ESO Very Large Telescope (VLT) and shares the same exceptional observing conditions. VISTA's main mirror is 4.1 metres across and is the most highly curved mirror of this size and quality ever made - its deviations from a perfect surface are less than a few thousandths of the thickness of a human hair - and its construction and polishing presented formidable challenges. VISTA was conceived and developed by a consortium of 18 universities in the United Kingdom [1] led by Queen Mary, University of London and became an in-kind contribution to ESO as part of the UK's accession agreement. The telescope design and construction were project-managed by the Science and Technology Facilities Council's UK Astronomy Technology Centre (STFC, UK ATC). Provisional acceptance of VISTA was formally granted by ESO at a ceremony at ESO's Headquarters in Garching, Germany, attended by representatives of Queen Mary, University of London and STFC, on 10 December 2009 and the telescope will now be operated by ESO. "VISTA is a unique addition to ESO's observatory on Cerro Paranal. It will play a pioneering role in surveying the southern sky at infrared wavelengths and will find many interesting targets for further study by the Very Large Telescope, ALMA and

  10. Galaxy-scale Bars in Late-type Sloan Digital Sky Survey Galaxies Do Not Influence the Average Accretion Rates of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Goulding, A. D.; Matthaey, E.; Greene, J. E.; Hickox, R. C.; Alexander, D. M.; Forman, W. R.; Jones, C.; Lehmer, B. D.; Griffis, S.; Kanek, S.; Oulmakki, M.

    2017-07-01

    Galaxy-scale bars are expected to provide an effective means for driving material toward the central region in spiral galaxies, and possibly feeding supermassive black holes (BHs). Here we present a statistically complete study of the effect of bars on average BH accretion. From a well-selected sample of 50,794 spiral galaxies (with {M}* ˜ 0.2{--}30× {10}10 {M}⊙ ) extracted from the Sloan Digital Sky Survey Galaxy Zoo 2 project, we separate those sources considered to contain galaxy-scale bars from those that do not. Using archival data taken by the Chandra X-ray Observatory, we identify X-ray luminous ({L}{{X}}≳ {10}41 {erg} {{{s}}}-1) active galactic nuclei and perform an X-ray stacking analysis on the remaining X-ray undetected sources. Through X-ray stacking, we derive a time-averaged look at accretion for galaxies at fixed stellar mass and star-formation rate, finding that the average nuclear accretion rates of galaxies with bar structures are fully consistent with those lacking bars ({\\dot{M}}{acc}≈ 3× {10}-5 {M}⊙ yr-1). Hence, we robustly conclude that large-scale bars have little or no effect on the average growth of BHs in nearby (z< 0.15) galaxies over gigayear timescales.

  11. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  12. CALCLENS: Weak lensing simulations for large-area sky surveys and second-order effects in cosmic shear power spectra

    NASA Astrophysics Data System (ADS)

    Becker, Matthew Rand

    I present a new algorithm, CALCLENS, for efficiently computing weak gravitational lensing shear signals from large N-body light cone simulations over a curved sky. This new algorithm properly accounts for the sky curvature and boundary conditions, is able to produce redshift- dependent shear signals including corrections to the Born approximation by using multiple- plane ray tracing, and properly computes the lensed images of source galaxies in the light cone. The key feature of this algorithm is a new, computationally efficient Poisson solver for the sphere that combines spherical harmonic transform and multigrid methods. As a result, large areas of sky (~10,000 square degrees) can be ray traced efficiently at high-resolution using only a few hundred cores. Using this new algorithm and curved-sky calculations that only use a slower but more accurate spherical harmonic transform Poisson solver, I study the convergence, shear E-mode, shear B-mode and rotation mode power spectra. Employing full-sky E/B-mode decompositions, I confirm that the numerically computed shear B-mode and rotation mode power spectra are equal at high accuracy ( ≲ 1%) as expected from perturbation theory up to second order. Coupled with realistic galaxy populations placed in large N-body light cone simulations, this new algorithm is ideally suited for the construction of synthetic weak lensing shear catalogs to be used to test for systematic effects in data analysis procedures for upcoming large-area sky surveys. The implementation presented in this work, written in C and employing widely available software libraries to maintain portability, is publicly available at http://code.google.com/p/calclens.

  13. The Data Release of the Sloan Digital Sky Survey-II Supernova Survey

    NASA Astrophysics Data System (ADS)

    Sako, Masao; Bassett, Bruce; Becker, Andrew C.; Brown, Peter J.; Campbell, Heather; Wolf, Rachel; Cinabro, David; D’Andrea, Chris B.; Dawson, Kyle S.; DeJongh, Fritz; Depoy, Darren L.; Dilday, Ben; Doi, Mamoru; Filippenko, Alexei V.; Fischer, John A.; Foley, Ryan J.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; Goobar, Ariel; Gupta, Ravi R.; Hill, Gary J.; Hayden, Brian T.; Hlozek, Renée; Holtzman, Jon A.; Hopp, Ulrich; Jha, Saurabh W.; Kessler, Richard; Kollatschny, Wolfram; Leloudas, Giorgos; Marriner, John; Marshall, Jennifer L.; Miquel, Ramon; Morokuma, Tomoki; Mosher, Jennifer; Nichol, Robert C.; Nordin, Jakob; Olmstead, Matthew D.; Östman, Linda; Prieto, Jose L.; Richmond, Michael; Romani, Roger W.; Sollerman, Jesper; Stritzinger, Max; Schneider, Donald P.; Smith, Mathew; Wheeler, J. Craig; Yasuda, Naoki; Zheng, Chen

    2018-06-01

    This paper describes the data release of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey conducted between 2005 and 2007. Light curves, spectra, classifications, and ancillary data are presented for 10,258 variable and transient sources discovered through repeat ugriz imaging of SDSS Stripe 82, a 300 deg2 area along the celestial equator. This data release is comprised of all transient sources brighter than r ≃ 22.5 mag with no history of variability prior to 2004. Dedicated spectroscopic observations were performed on a subset of 889 transients, as well as spectra for thousands of transient host galaxies using the SDSS-III BOSS spectrographs. Photometric classifications are provided for the candidates with good multi-color light curves that were not observed spectroscopically, using host galaxy redshift information when available. From these observations, 4607 transients are either spectroscopically confirmed, or likely to be, supernovae, making this the largest sample of supernova candidates ever compiled. We present a new method for SN host-galaxy identification and derive host-galaxy properties including stellar masses, star formation rates, and the average stellar population ages from our SDSS multi-band photometry. We derive SALT2 distance moduli for a total of 1364 SN Ia with spectroscopic redshifts as well as photometric redshifts for a further 624 purely photometric SN Ia candidates. Using the spectroscopically confirmed subset of the three-year SDSS-II SN Ia sample and assuming a flat ΛCDM cosmology, we determine Ω M = 0.315 ± 0.093 (statistical error only) and detect a non-zero cosmological constant at 5.7σ.

  14. Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data

    NASA Astrophysics Data System (ADS)

    Strateva, Iskra; Ivezić, Željko; Knapp, Gillian R.; Narayanan, Vijay K.; Strauss, Michael A.; Gunn, James E.; Lupton, Robert H.; Schlegel, David; Bahcall, Neta A.; Brinkmann, Jon; Brunner, Robert J.; Budavári, Tamás; Csabai, István; Castander, Francisco Javier; Doi, Mamoru; Fukugita, Masataka; Győry, Zsuzsanna; Hamabe, Masaru; Hennessy, Greg; Ichikawa, Takashi; Kunszt, Peter Z.; Lamb, Don Q.; McKay, Timothy A.; Okamura, Sadanori; Racusin, Judith; Sekiguchi, Maki; Schneider, Donald P.; Shimasaku, Kazuhiro; York, Donald

    2001-10-01

    We study the optical colors of 147,920 galaxies brighter than g*=21, observed in five bands by the Sloan Digital Sky Survey (SDSS) over ~100 deg2 of high Galactic latitude sky along the celestial equator. The distribution of galaxies in the g*-r* versus u*-g* color-color diagram is strongly bimodal, with an optimal color separator of u*-r*=2.22. We use visual morphology and spectral classification of subsamples of 287 and 500 galaxies, respectively, to show that the two peaks correspond roughly to early- (E, S0, and Sa) and late-type (Sb, Sc, and Irr) galaxies, as expected from their different stellar populations. We also find that the colors of galaxies are correlated with their radial profiles, as measured by the concentration index and by the likelihoods of exponential and de Vaucouleurs' profile fits. While it is well known that late-type galaxies are bluer than early-type galaxies, this is the first detection of a local minimum in their color distribution. In all SDSS bands, the counts versus apparent magnitude relations for the two color types are significantly different and demonstrate that the fraction of blue galaxies increases toward the faint end.

  15. Active galaxies observed during the Extreme Ultraviolet Explorer all-sky survey

    NASA Technical Reports Server (NTRS)

    Marshall, H. L.; Fruscione, A.; Carone, T. E.

    1995-01-01

    We present observations of active galactic nuclei (AGNs) obtained with the Extreme Ultraviolet Explorer (EUVE) during the all-sky survey. A total of 13 sources were detected at a significance of 2.5 sigma or better: seven Seyfert galaxies, five BL Lac objects, and one quasar. The fraction of BL Lac objects is higher in our sample than in hard X-ray surveys but is consistent with the soft X-ray Einstein Slew Survey, indicating that the main reason for the large number of BL Lac objects in the extreme ulktraviolet (EUV) and soft X-ray bands is their steeper X-ray spectra. We show that the number of AGNs observed in both the EUVE and ROSAT Wide Field Camera surveys can readily be explained by modelling the EUV spectra with a simple power law in the case of BL Lac objects and with an additional EUV excess in the case of Seyferts and quasars. Allowing for cold matter absorption in Seyfert galaxy hosts drive up the inferred average continuum slope to 2.0 +/- 0.5 (at 90% confidence), compared to a slope of 1.0 usually found from soft X-ray data. If Seyfert galaxies without EUV excesses form a significant fraction of the population, then the average spectrum of those with bumps should be even steeper. We place a conservative limit on neutral gas in BL Lac objects: N(sub H) less than 10(exp 20)/sq cm.

  16. New Observatory Outreach Programs for Students in Grades 3-12

    NASA Astrophysics Data System (ADS)

    Moorthy, Bhasker K.; Kabbes, J.; Page, K. A.; Cole, K.

    2013-06-01

    The Henize Observatory at Harper College, a community college in suburban Chicago, has conducted biweekly public viewing sessions from March to November for over ten years. Recently, we developed two complementary public education programs for primary and secondary school students. The Cosmic Explorers program allows students in Grades 3-6 to observe and identify night sky objects and receive small rewards for completing four “seasons” of observing in their Night Sky Passport. The Henize Docent program gives students in Grades 7-12 the opportunity to assist with observatory operations, including the Cosmic Explorers program, and learn about astronomy and nature interpretation methods. Together, these two programs have rejuvenated our public viewing sessions and generated a real excitement in the community. The success of these programs has presented new challenges for the observatory. Innovative solutions for crowd control and expanded training for volunteer staff were necessary to support the increased visitor load. Students in the docent program have been highly motivated and require training and challenges to keep them engaged. One unexpected benefit was increased interest in Harper College's Astronomy Club as students, particularly those in education, participate in these informal education opportunities. Both programs can be adapted to any venue with night time observing and access to telescopes. We will discuss the programs, their costs, program materials and marketing, challenges and solutions, and future plans. This work is supported by a Harper College Resource for Excellence Grant.

  17. The Great Observatories Origins Deep Survey (GOODS) Spitzer Legacy Science Program

    NASA Astrophysics Data System (ADS)

    Dickinson, M.; GOODS Team

    2004-12-01

    The Great Observatories Origins Deep Survey (GOODS) is an anthology of observing programs that are creating a rich, public, multiwavelength data set for studying galaxy formation and evolution. GOODS is observing two fields, one in each hemisphere, with extremely deep imaging and spectroscopy using the most powerful telescopes in space and on the ground. The GOODS Spitzer Legacy Science Program completes the trio of observations from NASA's Great Observatories, joining already-completed GOODS data from Chandra and Hubble. Barring unforeseen difficulties, the GOODS Spitzer observing program will have been completed by the end of 2004, and the first data products will have been released to the astronomical community. In this Special Oral Session, and in an accompanying poster session, the GOODS team presents early scientific results from this Spitzer Legacy program, as well as new research based on other GOODS data sets. I will introduce the session with a brief description of the Legacy observations and data set. Support for this work, part of the Spitzer Space Telescope Legacy Science Program, was provided by NASA through Contract Number 1224666 issued by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

  18. THE MILKY WAY TOMOGRAPHY WITH SLOAN DIGITAL SKY SURVEY. IV. DISSECTING DUST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Michael; Ivezic, Zeljko; Brooks, Keira J.

    2012-10-01

    We use Sloan Digital Sky Survey (SDSS) photometry of 73 million stars to simultaneously constrain best-fit main-sequence stellar spectral energy distribution (SED) and amount of dust extinction along the line of sight toward each star. Using a subsample of 23 million stars with Two Micron All Sky Survey (2MASS) photometry, whose addition enables more robust results, we show that SDSS photometry alone is sufficient to break degeneracies between intrinsic stellar color and dust amount when the shape of extinction curve is fixed. When using both SDSS and 2MASS photometry, the ratio of the total to selective absorption, R{sub V} ,more » can be determined with an uncertainty of about 0.1 for most stars in high-extinction regions. These fits enable detailed studies of the dust properties and its spatial distribution, and of the stellar spatial distribution at low Galactic latitudes (|b| < 30 Degree-Sign ). Our results are in good agreement with the extinction normalization given by the Schlegel et al. (SFD) dust maps at high northern Galactic latitudes, but indicate that the SFD extinction map appears to be consistently overestimated by about 20% in the southern sky, in agreement with recent study by Schlafly et al. The constraints on the shape of the dust extinction curve across the SDSS and 2MASS bandpasses disfavor the reddening law of O'Donnell, but support the models by Fitzpatrick and Cardelli et al. For the latter, we find a ratio of the total to selective absorption to be R{sub V} = 3.0 {+-} 0.1(random){+-}0.1 (systematic) over most of the high-latitude sky. At low Galactic latitudes (|b| < 5 Degree-Sign ), we demonstrate that the SFD map cannot be reliably used to correct for extinction because most stars are embedded in dust, rather than behind it, as is the case at high Galactic latitudes. We analyze three-dimensional maps of the best-fit R{sub V} and find that R{sub V} = 3.1 cannot be ruled out in any of the 10 SEGUE stripes at a precision level of {approx

  19. Mining the Kilo-Degree Survey for solar system objects

    NASA Astrophysics Data System (ADS)

    Mahlke, M.; Bouy, H.; Altieri, B.; Verdoes Kleijn, G.; Carry, B.; Bertin, E.; de Jong, J. T. A.; Kuijken, K.; McFarland, J.; Valentijn, E.

    2018-02-01

    Context. The search for minor bodies in the solar system promises insights into its formation history. Wide imaging surveys offer the opportunity to serendipitously discover and identify these traces of planetary formation and evolution. Aim. We aim to present a method to acquire position, photometry, and proper motion measurements of solar system objects (SSOs) in surveys using dithered image sequences. The application of this method on the Kilo-Degree Survey (KiDS) is demonstrated. Methods: Optical images of 346 deg2 fields of the sky are searched in up to four filters using the AstrOmatic software suite to reduce the pixel to catalog data. The SSOs within the acquired sources are selected based on a set of criteria depending on their number of observation, motion, and size. The Virtual Observatory SkyBoT tool is used to identify known objects. Results: We observed 20 221 SSO candidates, with an estimated false-positive content of less than 0.05%. Of these SSO candidates, 53.4% are identified by SkyBoT. KiDS can detect previously unknown SSOs because of its depth and coverage at high ecliptic latitude, including parts of the Southern Hemisphere. Thus we expect the large fraction of the 46.6% of unidentified objects to be truly new SSOs. Conclusions: Our method is applicable to a variety of dithered surveys such as DES, LSST, and Euclid. It offers a quick and easy-to-implement search for SSOs. SkyBoT can then be used to estimate the completeness of the recovered sample. The tables of raw data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A21

  20. Shared Skies Partnership: A Dual-Site All-Sky Live Remote Observing Initiative for Research and Education

    NASA Astrophysics Data System (ADS)

    Kielkopf, John F.; Hart, R.; Carter, B.; Collins, K. A.; Brown, C.; Hay, J.; Hons, A.; Marsden, S.

    2014-01-01

    The University of Southern Queensland's Mt. Kent Observatory in Queensland, Australia, and the University of Louisville's Moore Observatory in Kentucky, USA, are collaborating in the development of live remote observing for research, student training, and education. With a focus on flexible operation assisted by semi-autonomous controllers, rather than completely robotic data acquisition, the partnership provides interactive hands-on experience to students at all levels, optimized performance based on real-time observations, and flexible scheduling for transient events and targets of opportunity. Two sites on opposites sides of the globe cover the entire sky, and for equatorial regions allow nearly continuous coverage. The facilites include 0.5-m corrected Dall-Kirkham (CDK) telescopes at both sites, a 0.6 m Ritchie-Chretien telescope at Moore, and a new Nasmyth design 0.7-meter CDK at Mt. Kent instrumented for milli-magnitude precision photometry and wide field imaging, with spectrographs under development. We will describe the operational and data acquisition software, recent research results, and how remote access is being made available to students and observers.

  1. Measurement of Light Pollution of Iranian National Observatory

    NASA Astrophysics Data System (ADS)

    Son Hosseini, S.; Nasiri, S.

    2006-08-01

    The problem of Light pollution became important mainly since 1960, by growth of urban development and using more artificial lights and lamps at the nighttimes. Optical telescopes share the same range of wavelengths as are used to provide illumination of roadways, buildings and automobiles. The light glow that emanates from man made pollution will scatter off the atmosphere and affects the images taken by the observatory instruments. A method of estimating the night sky brightness produced by a city of known population and distance is useful in site testing of the new observatories, as well as in studying the likely future deterioration of existing sites. Now with planning the Iranian National Observatory that will house a 2-meter telescope and on the way of the site selection project, studying the light pollution is propounded in Iran. Thus, we need a site with the least light pollution, beside other parameters, i.e. seeing, meteorological, geophysical and local parameters. The seeing parameter is being measured in our 4 preliminary selected sites at Qom, Kashan, Kerman and Birjand since 2 years ago using an out of focus Differential Image Motion Monitor. These sites are selected among 33 candidate sites by studying the meteorological data obtained from the local synoptic stations and the Meteosat. We use the Walker's law to estimate the Sky glow of these sites having the population and the distances of the nearby regions. The results are corrected by the methods introduced by Treanor and Berry using the atmospheric extinction coefficients. The data obtained using an 11 inch telescope with a ST7 CCD camera for above sites are consistent with the estimated values of the light pollution mentioned above.

  2. Assessment of Systematic Chromatic Errors that Impact Sub-1% Photometric Precision in Large-Area Sky Surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T. S.

    Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is stable in time and uniform over the sky to 1% precision or better. Past surveys have achieved photometric precision of 1-2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmissionmore » and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors using photometry from the Dark Energy Survey (DES) as an example. We define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes, when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the systematic chromatic errors caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane, can be up to 2% in some bandpasses. We compare the calculated systematic chromatic errors with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput. The residual after correction is less than 0.3%. We also find that the errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less

  3. All-Sky Census of Variable Stars from the ATLAS Survey

    NASA Astrophysics Data System (ADS)

    Heinze, Aren Nathaniel; Tonry, John; Denneau, Larry; Stalder, Brian

    2018-01-01

    The Asteroid Terrestrial-Impact Last Alert Survey uses two custom-built 0.5 meter telescopes to scan the whole accessible sky down to magnitude 19.5 every two nights, with a cadence optimized to detect small asteroids on their 'final plunge' toward impact with Earth. This cadence is also well suited to the detection of variable stars with a huge range of periods and properties, while ATLAS' use of two filters provides additional scientific depth. From the first two years of ATLAS data we have constructed a catalog of several hundred thousand variable objects with periods from one hour to hundreds of days. These include RR Lyrae stars, Cepheids, eclipsing binaries, spotted stars, ellipsoidal variables, Miras; and other objects both regular and irregular. We describe the construction of this catalog, including our multi-step confirmation process for genuine variables; some big-picture scientific conclusions; and prospects for more detailed results.

  4. WFIRST Observatory Performance

    NASA Technical Reports Server (NTRS)

    Kruk, Jeffrey W.

    2012-01-01

    The WFIRST observatory will be a powerful and flexible wide-field near-infrared facility. The planned surveys will provide data applicable to an enormous variety of astrophysical science. This presentation will provide a description of the observatory and its performance characteristics. This will include a discussion of the point spread function, signal-to-noise budgets for representative observing scenarios and the corresponding limiting sensitivity. Emphasis will be given to providing prospective Guest Observers with information needed to begin thinking about new observing programs.

  5. Studying the Variability of Bright Stars with the CONCAM Sky Monitoring Network

    NASA Astrophysics Data System (ADS)

    Pereira, W. E.; Nemiroff, R. J.; Rafert, J. B.; Perez-Ramirez, D.

    2001-12-01

    CONCAMs have now been deployed at some of the world's major observatories including KPNO in Arizona, Mauna Kea in Hawaii, and Wise Observatory in Israel. Data from these mobile, inexpensive and continuous sky cameras, consisting of a fish-eye lens mated to a CCD camera and run by a laptop, has been ever-increasing. Initial efforts to carry out photometric analysis of CONCAM fits images have now been fortified by a more automated technique of analyzing this data. Results of such analyses - variability of several bright stars, in particular, are presented, as well as the use of these cameras as cloud monitors to remote observers.

  6. Towards an Automated Classification of Transient Events in Synoptic Sky Surveys

    NASA Technical Reports Server (NTRS)

    Djorgovski, S. G.; Donalek, C.; Mahabal, A. A.; Moghaddam, B.; Turmon, M.; Graham, M. J.; Drake, A. J.; Sharma, N.; Chen, Y.

    2011-01-01

    We describe the development of a system for an automated, iterative, real-time classification of transient events discovered in synoptic sky surveys. The system under development incorporates a number of Machine Learning techniques, mostly using Bayesian approaches, due to the sparse nature, heterogeneity, and variable incompleteness of the available data. The classifications are improved iteratively as the new measurements are obtained. One novel featrue is the development of an automated follow-up recommendation engine, that suggest those measruements that would be the most advantageous in terms of resolving classification ambiguities and/or characterization of the astrophysically most interesting objects, given a set of available follow-up assets and their cost funcations. This illustrates the symbiotic relationship of astronomy and applied computer science through the emerging disciplne of AstroInformatics.

  7. Worldwide Impact: International Year of Astronomy Dark Skies Awareness Programs

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.; Isbell, D.

    2009-12-01

    The arc of the Milky Way seen from a truly dark location is part of our planet's natural heritage. More than one fifth of the world population, two thirds of the United States population and one half of the European Union population have already lost naked eye visibility of the Milky Way. This loss, caused by light pollution, is a serious and growing issue that impacts astronomical research, the economy, ecology, energy conservation, human health, public safety and our shared ability to see the night sky. For this reason, “Dark Skies Awareness” is a global cornerstone project of the International Year of Astronomy. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs through: - New Technology (website, podcasts, social networking, Second Life) - Educational Materials (Great Switch Out, a traveling exhibit, brochures, posters, CDs, DVDs, educational kit) - The Arts (photo contest) - Events (Earth Hour, International Dark Sky Week, World Night in Defense of Starlight, Dark Skies Discovery Sites, Sidewalk Astronomy, Nights in the Parks) - Citizen Science Programs (5 star hunting programs & Quiet Skies) Dark Skies Communities (Starlight Initiative, International Dark Sky Communities) Many countries around the world have participated in these programs. We will highlight 24 countries in particular and focus on successful techniques used in aspects of the programs, results and impact on the audience, and plans and challenges for maintaining or extending the program beyond the International Year of Astronomy. The International Year of Astronomy 2009 is partially funded from a grant from the National Science Foundation (NSF) Astronomy Division. The National Optical Astronomy Observatory is host to the IYA2009 Dark Skies Awareness programs and is operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with NSF.

  8. Large-scale structure in the Southern Sky Redshift Survey

    NASA Technical Reports Server (NTRS)

    Park, Changbom; Gott, J. R., III; Da Costa, L. N.

    1992-01-01

    The power spectrum from the Southern Sky Redshift Survey and the CfA samples are measured in order to explore the amplitude of fluctuation in the galaxy density. At lambda of less than or equal to 30/h Mpc the observed power spectrum is quite consistent with the standard CDM model. At larger scales the data indicate an excess of power over the standard CDM model. The observed power spectrum from these optical galaxy samples is in good agreement with that drawn from the sparsely sampled IRAS galaxies. The shape of the power spectrum is also studied by examining the relation between the genus per unit volume and the smoothing length. It is found that, over Gaussian smoothing scales from 6 to 14/h Mpc, the power spectrum has a slope of about -1. The topology of the galaxy density field is studied by measuring the shift of the genus curve from the Gaussian case. Over all smoothing scales studied, the observed genus curves are consistent with a random phase distribution of the galaxy density field, as predicted by the inflationary scenarios.

  9. The Full-sky Astrometric Mapping Explorer - Astrometry for the New Millennium

    NASA Astrophysics Data System (ADS)

    Horner, S. D.; Germain, M. E.; Greene, T. P.; Harris, F. H.; Johnson, M. S.; Johnson, K. J.; Monet, D. G.; Murison, M. A.; Phillips, J. D.; Reasenberg, R. D.; Seidelmann, P. K.; Urban, S. E.; Vassar, R. H.

    FAME is designed to perform an all-sky, astrometric survey with unprecedented accuracy. It will create a rigid astrometric catalog of ~40,000,000 stars with visual band magnitudes 5 < V < 15. For bright stars, 5 < V < 9, FAME will determine positions and parallaxes accurate to < 50 microarcseconds, with proper motion errors < 50 microarcseconds/year. For fainter stars, 9 < V < 15, FAME will determine positions and parallaxes accurate to < 300 microarcseconds, with proper motion errors < 300 microarcseconds/year. It will also collect photometric data on these 40,000,000 stars in four Sloan DSS colors. The FAME data will provide a rigid, accurate, optical, astrometric grid. The proper motion data, combined with Hipparcos and other data should be ideal for use by the Space Interferometry Mission (SIM) to select its astrometric reference grid stars. FAME will also identify stars with nonlinear proper motions as candidates for further study by SIM, Terrestrial Planet Finder, and future ground based interferometers as possible planetary systems. The fundamental astrometric data provided at relatively low cost by FAME will help optimize the scientific return from these future projects. This is in addition to the considerable direct scientific return from FAME. It will redefine the extragalactic distance scale and provide a large, rich database of information on stellar properties that will enable numerous science investigations into stellar structure and evolution, the dynamics of the Milky Way, and stellar companions including brown dwarfs and giant planets. NASA has selected the Full-sky Astrometric Mapping Explorer (FAME) to be one of five MIDEX missions to be funded for a concept study. This concept study will be submitted to NASA on 18 June, with final selection, scheduled for September, of two of these missions for fli ght in 2003 or 2004. FAME is a joint development e ffort of the U.S. Naval Observatory, the Smithsonian Astrophysical Observatory, the Infrared

  10. Orbiting Geophysical Observatory Attitude Control Subsystem Design Survey. NASA/ERC Design Criteria Program, Guidance and Control

    NASA Technical Reports Server (NTRS)

    Mc Kenna, K. J.; Schmeichel, H.

    1968-01-01

    This design survey summarizes the history of the Orbiting Geophysical Observatories' (OGO) Attitude Control Subsystem (ACS) from the proposal phase through current flight experience. Problems encountered in design, fabrication, test, and on orbit are discussed. It is hoped that the experiences of the OGO program related here will aid future designers.

  11. Extended Source/Galaxy All Sky 1

    NASA Image and Video Library

    2003-03-27

    This panoramic view of the entire sky reveals the distribution of galaxies beyond our Milky Way galaxy, which astronomers call extended sources, as observed by Two Micron All-Sky Survey. The image is constructed from a database of over 1.6 million galaxies listed in the survey's Extended Source Catalog; more than half of the galaxies have never before been catalogued. The image is a representation of the relative brightnesses of these million-plus galaxies, all observed at a wavelength of 2.2 microns. The brightest and nearest galaxies are represented in blue, and the faintest, most distant ones are in red. This color scheme gives insights into the three dimensional large-scale structure of the nearby universe with the brightest, closest clusters and superclusters showing up as the blue and bluish-white features. The dark band in this image shows the area of the sky where our Milky Way galaxy blocks our view of distant objects, which, in this projection, lies predominantly along the edges of the image. http://photojournal.jpl.nasa.gov/catalog/PIA04252

  12. Calculating Proper Motions in the WFCAM Science Archive for the UKIRT Infrared Deep Sky Surveys

    NASA Astrophysics Data System (ADS)

    Collins, R.; Hambly, N.

    2012-09-01

    The ninth data release from the UKIRT Infrared Deep Sky Surveys (hereafter UKIDSS DR9), represents five years worth of observations by its wide-field camera (WFCAM) and will be the first to include proper motion values in its source catalogues for the shallow, wide-area surveys; the Large Area Survey (LAS), Galactic Clusters Survey (GCS) and (ultimately) Galactic Plane Survey (GPS). We, the Wide Field Astronomy Unit (WFAU) at the University of Edinburgh who prepare these regular data releases in the WFCAM Science Archive (WSA), describe in this paper how we make optimal use of the individual detection catalogues from each observation to derive high-quality astrometric fits for the positions of each detection enabling us to calculate a proper motion solution across multiple epochs and passbands when constructing a merged source catalogue. We also describe how the proper motion solutions affect the calculation of the various attributes provided in the database source catalogue tables, what measures of data quality we provide and a demonstration of the results for observations of the Pleiades cluster.

  13. A preliminary summary of a seismic-refraction survey in the vicinity of the Tonto Forest Observatory, Arizona

    USGS Publications Warehouse

    Roller, J.C.; Jackson, W.H.; Warren, D.H.; Healy, J.H.

    1964-01-01

    The U.S. Geological Survey complete d a seismic-refraction survey in the vicinity of the Tonto Forest Seismological Observatory (T.F.S.O.) in April and May 1964. More than 1200 km of reversed profiles were surveyed to determine the crustal structure and crustal and upper mantle velocities in this area. The purpose of this work was to provide information on wave-propagation paths of seismic events recorded at T.F.S.O. and to improve the performance of the Observatory in locating and identifying these events. First arrivals indicate that the Mohorovicic discontinuity dips to the northeast by as much as 6 degrees under T.F.S.O., and may even be displaced vertically by as much as 5 km immediately north of the Observatory near the boundary of the Basin and Range a n d t he Colorado Plateau Provinces. A preliminary examination of the first arrivals indicates that the crust at T.F.S.O. is at least 30 km thick and is made up of at least two seismic layers. A thin veneer at the surface with a velocity of approximately 4 km/sec is underlain by a layer with a velocity of approximately 5.9 km/sec to 6.1 km/sec. An intermediate layer with velocity of 6.6 to 7.0 km/sec is probably present in the lower crust, but is not revealed by first arrivals. The velocity of seismic waves in the upper mantle is about 7.9 km/sec.

  14. Sharing the skies: the Gemini Observatory international time allocation process

    NASA Astrophysics Data System (ADS)

    Margheim, Steven J.

    2016-07-01

    Gemini Observatory serves a diverse community of four partner countries (United States, Canada, Brazil, and Argentina), two hosts (Chile and University of Hawaii), and limited-term partnerships (currently Australia and the Republic of Korea). Observing time is available via multiple opportunities including Large and Long Pro- grams, Fast-turnaround programs, and regular semester queue programs. The slate of programs for observation each semester must be created by merging programs from these multiple, conflicting sources. This paper de- scribes the time allocation process used to schedule the overall science program for the semester, with emphasis on the International Time Allocation Committee and the software applications used.

  15. Mining the SDSS SkyServer SQL queries log

    NASA Astrophysics Data System (ADS)

    Hirota, Vitor M.; Santos, Rafael; Raddick, Jordan; Thakar, Ani

    2016-05-01

    SkyServer, the Internet portal for the Sloan Digital Sky Survey (SDSS) astronomic catalog, provides a set of tools that allows data access for astronomers and scientific education. One of SkyServer data access interfaces allows users to enter ad-hoc SQL statements to query the catalog. SkyServer also presents some template queries that can be used as basis for more complex queries. This interface has logged over 330 million queries submitted since 2001. It is expected that analysis of this data can be used to investigate usage patterns, identify potential new classes of queries, find similar queries, etc. and to shed some light on how users interact with the Sloan Digital Sky Survey data and how scientists have adopted the new paradigm of e-Science, which could in turn lead to enhancements on the user interfaces and experience in general. In this paper we review some approaches to SQL query mining, apply the traditional techniques used in the literature and present lessons learned, namely, that the general text mining approach for feature extraction and clustering does not seem to be adequate for this type of data, and, most importantly, we find that this type of analysis can result in very different queries being clustered together.

  16. Multifrequency observations of KAZ 102 during the ROSAT all-sky survey

    NASA Technical Reports Server (NTRS)

    Treves, A.; Fink, H. H.; Malkan, M.; Wilkes, B. J.; Baganoff, F.; Heidt, J.; Pian, E.; Sadun, A.; Schaeidt, S.; Bonnell, J. T.

    1995-01-01

    The bright quasar Kaz 102, which lies in the vicinity of the North Ecliptic Pole, was monitored during the ROSAT All Sky Survey for 121.5 days from 1990 July 30 to 1991 January 25. In the course of the survey, optical photometry with various filters was peformed at several epochs, together with UV (IUE) and optical spectrophotometry. The spectral energy distribution in the 3 x 10(exp 14) -3 x 10(exp 17) Hz range is obtained simultaneously among the various frequencies to less than or = 1 day. No clear case of variability can be made in the X-rays, while in the optical and UV variability of 10%-20% is apparent. An analysis of IUE and Einstein archives indicates a doubling timescale of years for the UV and soft X-ray flux. The X-ray photon index, which in 1979 was rather flat (Gamma = 0.8(+0.6 -0.4), in 1990/1991 was found to be Gamma = 2.22 +/- 0.13, a typical value for radio-quiet quasars in this energy range. The overall energy distribution and the variability are discussed.

  17. A Northern Sky Survey for Point-like Sources of EeV Neutral Particles with the Telescope Array Experiment

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-05-01

    We report on the search for steady point-like sources of neutral particles around 1018 eV between 2008 and 2013 May with the scintillator SD of the Telescope Array experiment. We found overall no significant point-like excess above 0.5 EeV in the northern sky. Subsequently, we also searched for coincidence with the Fermi bright Galactic sources. No significant coincidence was found within the statistical uncertainty. Hence, we set an upper limit on the neutron flux that corresponds to an averaged flux of 0.07 km-2 yr-1 for E\\gt 1 EeV in the northern sky at the 95% confidence level. This is the most stringent flux upper limit in a northern sky survey assuming point-like sources. The upper limit at the 95% confidence level on the neutron flux from Cygnus X-3 is also set to 0.2 km-2 yr-1 for E\\gt 0.5 EeV. This is an order of magnitude lower than previous flux measurements.

  18. Update on the KELT Transit Survey: Hot Planets around Hot, Bright Stars

    NASA Astrophysics Data System (ADS)

    Gaudi, B. Scott; KELT Collaboration

    2017-01-01

    The KELT Transit Survey consists of a pair of small-aperture, wide-angle automated telescope located at Winer Observatory in Sonoita, Arizona and the South African Astronomical Observatory (SAAO) in Sutherland, South Africa. Together, they are surveying roughly 60% of the sky for transiting planets. By virtue of their small apertures (42 mm) and large fields-of-view (26 degrees x 26 degrees), KELT is most sensitive to hot Jupiters transiting relatively bright (V~8-11), and thus relatively hot stars. Roughly half of the dwarf stars targeted by KELT are hotter than 6250K; such stars pose novel challenges, but also provide unique opportunities. I will provide an update on the most recent companions discovered by KELT, focusing in detail on a few particularly interesting systems. KELT is a joint collaboration between the Ohio State University, Vanderbilt University, and Lehigh University. This work was partially supported by NSF CAREER grant AST-1056524.

  19. The First US Naval Observatory CCD Astrograph Catalog

    NASA Astrophysics Data System (ADS)

    Zacharias, N.; Urban, S. E.; Zacharias, M. I.; Hall, D. M.; Wycoff, G. L.; Rafferty, T. J.; Germain, M. E.; Holdenried, E. R.; Pohlman, J. W.; Gauss, F. S.; Monet, D. G.; Winter, L.

    2000-10-01

    The USNO CCD Astrograph (UCA) started an astrometric survey in 1998 February at Cerro Tololo, Chile. This first, preliminary catalog (UCAC1) includes data taken up to 1999 November with about 80% of the Southern Hemisphere covered. Observing continues, and full sky coverage is expected by mid-2003 after moving the instrument to a Northern Hemisphere site in early 2001. The survey is performed in a single bandpass (579-642 nm), a twofold overlap pattern of fields, and with a long and a short exposure on each field. Stars in the magnitude range 10-14 have positional precisions of <=20 mas. At the limiting magnitude of R~16 mag, the positional precision is 70 mas. The UCAC aims at a density (stars per square degree) larger than that of the Guide Star Catalog (GSC) with a positional accuracy similar to Tycho. The UCAC program is a major step toward a high-precision densification of the optical reference frame in the post-Hipparcos era, and the first stage, the UCAC1 contains over 27 million stars. Preliminary proper motions are included, which were derived from Tycho-2, Hipparcos, and ground-based transit circle and photographic surveys for the bright stars (V<=12.5 mag) and the USNO A2.0 for the fainter stars. The accuracy of the proper motions varies widely, from 1 to over 15 mas yr-1. The UCAC1 is available on CD-ROM from the US Naval Observatory.

  20. A Study on New Song of the Sky Pacers

    NASA Astrophysics Data System (ADS)

    Ahn, Sang-Hyeon

    2009-12-01

    We investigated `Song of the Sky Pacers, Adopted to the New Methods' (新法步天歌), the latest version of Joseon's `Song of the Sky Pacers' (步天歌). Due to the influence of new knowledge on Chinese asterisms imported from the Ching dynasty, `Song of the Sky Pacers with New Star-Charts' was written in the eighteenth century. However, the disagreement between song and star-charts was causing confusion in practical applications such as Joseon's national examination for selecting astronomers. In order to improve this situation, Royal Observatory of the Joseon dynasty (觀象監) published `Song of the Sky Pacers, Adopted to the New Methods' based upon star-charts and song in the Sequel of I-Hsiang-K'ao-ch'eng (欽定儀象考成續編). The New Song was edited by a middle-class professional astronomer Yi Jun-yang (李俊養), and corrected by a nobleman Nam Byeong-gil (南秉吉). We establish a brief biography of Yi Jun-yang. The New Song preserves the genuine characteristics of previous Joseon's Song including the format of title of each lunar mansion and description on the location of the Milky Way in the asterisms. The description of the Milky Way was newly written based on the data in volume 31 and 32 of the Sequel of I-Hsiang-K'ao-ch'eng.

  1. Lick Observatory, California, and 20th Century Leadership in Optical Astronomy

    NASA Astrophysics Data System (ADS)

    Miller, Joseph

    2008-04-01

    With the establishment of the Lick Observatory on Mt. Hamilton in California in 1888 it was immediately established that an observatory located on a relatively high site far from city lights was a far superior location for optical astronomy than the previously common city locations. A few years after its beginning, astronomers at Lick convincingly demonstrated the clear advantage of the reflecting telescope for astrophysical research. Not only was a reflector achromatic over all wavelengths, but it could be made with a small focal ratio that provided high photographic speed. Furthermore, since light did not pass through the optic and it could be supported from behind, it could easily be made in large sizes. Over the first half of the 20^th century the establishment of the Mt. Wilson and Palomar Observatories expanded California's dominance in optical astronomy. Also with the new larger telescopes came major progress in the in design of focal plane instrumentation that allowed these telescopes to be superb tools for astrophysical research. The California observatories of the 20th century were largely independent of Federal funding for operations. Their facilities were were maintained and mostly used by their permanent staffs. This led to a style of doing forefront research that was highly effective, as both long-term survey-type programs and more speculative investigations with less-clear payoffs at the outset could be supported. Also the, the close connection of the scientists doing the research to the development of the telescopes and instruments they used for their research conferred advantages. At present, this style of doing astronomical observational research is a relatively small fraction of all this kind of research. At the end of the 20^th century the California pioneering advancement in ground-based optical astronomy was repeated with the creation of the Keck Observatory. A joint project of the University of California and the California Institute of

  2. Lessons from the MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.; Gould, R.; Leiker, S.; Antonucci, P.; Deutsch, F.

    1998-12-01

    Over the past several years, we have developed a fully integrated automated astronomical telescope system which combines the imaging power of a cooled CCD, with a self-contained and weatherized 15 cm reflecting optical telescope and mount. Each telescope can be pointed and focused remotely, and filters, field of view and exposure times can be changed easily. The MicroObservatory Net consists of five of these telescopes. They are being deployed around the world at widely distributed longitudes for access to distant night skies during local daytime. Remote access to the MicroObservatories over the Internet has been available to select schools since 1995. The telescopes can be controlled in real time or in delay mode, from any computer using Web-based software. Individuals have access to all of the telescope control functions without the need for an `on-site' operator. After a MicroObservatory completes a job, the user is automatically notified by e-mail that the image is available for viewing and downloading from the Web site. Images are archived at the Web site, along with sample challenges and a user bulletin board, all of which encourage collaboration between schools. The Internet address of the telescopes is http://mo-www.harvard.edu/MicroObservatory/. The telescopes were designed for classroom instruction by teachers, as well as for use by students and amateur astronomers for original scientific research projects. In this talk, we will review some of the experiences we, students and teachers have had in using the telescopes. Support for the MicroObservatory Net has been provided by the NSF, Apple Computer, Inc. and Kodak, Inc.

  3. Beyond the fibre: resolved properties of Sloan Digital Sky Survey galaxies

    NASA Astrophysics Data System (ADS)

    Gerssen, J.; Wilman, D. J.; Christensen, L.

    2012-02-01

    We have used the Visible Multi-Object Spectrograph (VIMOS) integral field spectrograph to map the emission-line properties in a sample of 24 star-forming galaxies selected from the Sloan Digital Sky Survey (SDSS) data base. In this paper we present and describe the sample, and explore some basic properties of SDSS galaxies with resolved emission-line fields. We fit the Hα+[N II] emission lines in each spectrum to derive maps of continuum, Hα flux, velocity and velocity dispersion. The Hα, Hβ, [N II] and [O III] emission lines are also fit in summed spectra for circular annuli of increasing radius. A simple mass model is used to estimate dynamical mass within 10 kpc, which compared to estimates of stellar mass shows that between 10 and 100 per cent of total mass is in stars. We present plots showing the radial behaviour of equivalent width (EW)[Hα], u-i colour and emission-line ratios. Although EW[Hα] and u-i colour trace current or recent star formation, the radial profiles are often quite different. Whilst line ratios do vary with annular radius, radial gradients in galaxies with central line ratios typical of active galactic nucleus (AGN) or low-ionization nuclear emission-line regions are mild, with a hard component of ionization required out to large radii. We use our VIMOS maps to quantify the fraction of Hα emission contained within the SDSS fibre, taking the ratio of total Hα flux to that of a simulated SDSS fibre. A comparison of the flux ratios to colour-based SDSS extrapolations shows a 175 per cent dispersion in the ratio of estimated to actual corrections in normal star-forming galaxies, with larger errors in galaxies containing AGN. We find a strong correlation between indicators of nuclear activity: galaxies with AGN-like line ratios and/or radio emission frequently show enhanced dispersion peaks in their cores, requiring non-thermal sources of heating. Altogether, about half of the galaxies in our sample show no evidence for nuclear activity

  4. Effects of surface reflectance on skylight polarization measurements at the Mauna Loa Observatory.

    PubMed

    Dahlberg, Andrew R; Pust, Nathan J; Shaw, Joseph A

    2011-08-15

    An all-sky imaging polarimeter was deployed in summer 2008 to the Mauna Loa Observatory in Hawaii to study clear-sky atmospheric skylight polarization. The imager operates in five wavebands in the visible and near infrared spectrum and has a fisheye lens for all-sky viewing. This paper describes the deployment and presents comparisons of the degree of skylight polarization observed to similar data observed by Coulson with a principal-plane scanning polarimeter in the late 1970s. In general, the results compared favorably to those of Coulson. In addition, we present quantitative results correlating a variation of the maximum degree of polarization over a range of 70-85% to fluctuation in underlying surface reflectance and upwelling radiance data from the GOES satellite. © 2011 Optical Society of America

  5. Unveiling the nature of INTEGRAL objects through optical spectroscopy. VI. A multi-observatory identification campaign

    NASA Astrophysics Data System (ADS)

    Masetti, N.; Mason, E.; Morelli, L.; Cellone, S. A.; McBride, V. A.; Palazzi, E.; Bassani, L.; Bazzano, A.; Bird, A. J.; Charles, P. A.; Dean, A. J.; Galaz, G.; Gehrels, N.; Landi, R.; Malizia, A.; Minniti, D.; Panessa, F.; Romero, G. E.; Stephen, J. B.; Ubertini, P.; Walter, R.

    2008-04-01

    Using 8 telescopes in the northern and southern hemispheres, plus archival data from two on-line sky surveys, we performed a systematic optical spectroscopic study of 39 putative counterparts of unidentified or poorly studied INTEGRAL sources in order to determine or at least better assess their nature. This was implemented within the framework of our campaign to reveal the nature of newly-discovered and/or unidentified sources detected by INTEGRAL. Our results show that 29 of these objects are active galactic nuclei (13 of which are of Seyfert 1 type, 15 are Seyfert 2 galaxies and one is possibly a BL Lac object) with redshifts between 0.011 and 0.316, 7 are X-ray binaries (5 with high-mass companions and 2 with low-mass secondaries), one is a magnetic cataclysmic variable, one is a symbiotic star and one is possibly an active star. Thus, the large majority (74%) of the identifications in this sample belongs to the AGN class. When possible, the main physical parameters for these hard X-ray sources were also computed using the multiwavelength information available in the literature. These identifications further underscore the importance of INTEGRAL in studying the hard X-ray spectra of all classes of X-ray emitting objects, and the effectiveness of a strategy of multi-catalogue cross-correlation plus optical spectroscopy to securely pinpoint the actual nature of still unidentified hard X-ray sources. Based on observations collected at the following observatories: ESO (La Silla, Chile), partly under program 079.A-0171(A); Astronomical Observatory of Bologna in Loiano (Italy); Astronomical Observatory of Asiago (Italy); Cerro Tololo Interamerican Observatory (Chile); Complejo Astronómico El Leoncito (San Juan, Argentina); South African Astronomical Observatory (Sutherland, South Africa); Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (Canary Islands, Spain); Anglo-Australian Observatory (Siding Spring, Australia); Apache Point

  6. An optical to IR sky brightness model for the LSST

    NASA Astrophysics Data System (ADS)

    Yoachim, Peter; Coughlin, Michael; Angeli, George Z.; Claver, Charles F.; Connolly, Andrew J.; Cook, Kem; Daniel, Scott; Ivezić, Željko; Jones, R. Lynne; Petry, Catherine; Reuter, Michael; Stubbs, Christopher; Xin, Bo

    2016-07-01

    To optimize the observing strategy of a large survey such as the LSST, one needs an accurate model of the night sky emission spectrum across a range of atmospheric conditions and from the near-UV to the near-IR. We have used the ESO SkyCalc Sky Model Calculator1, 2 to construct a library of template spectra for the Chilean night sky. The ESO model includes emission from the upper and lower atmosphere, scattered starlight, scattered moonlight, and zodiacal light. We have then extended the ESO templates with an empirical fit to the twilight sky emission as measured by a Canon all-sky camera installed at the LSST site. With the ESO templates and our twilight model we can quickly interpolate to any arbitrary sky position and date and return the full sky spectrum or surface brightness magnitudes in the LSST filter system. Comparing our model to all-sky observations, we find typical residual RMS values of +/-0.2-0.3 magnitudes per square arcsecond.

  7. Recognition of Terrestrial Impact Craters with COSMO-SkyMed

    NASA Astrophysics Data System (ADS)

    Virelli, M.; Staffieri, S.; Battagliere, M. L.; Komatsu, G.; Di Martino, M.; Flamini, E.; Coletta, A.

    2016-08-01

    All bodies having a solid surface, without distinction, show, with greater or lesser evidence, the marks left by the geological processes they undergone during their evolution. There is a geomorphological feature that is evident in all the images obtained by the probes sent to explore our planetary system: impact craters.Craters formed by the impact of small cosmic bodies have dimensions ranging from some meters to hundreds of kilometers. However, for example on the Lunar regolith particles, have been observed also sub- millimeter craters caused by dust impacts. The kinetic energy of the impactor, which velocity is in general of the order of tens km/s, is released in fractions of a second, generally in a explosive way, generating complex phenomena that transform not only the morphology of the surface involved by the impact, but also the mineralogy and crystallography of the impacted material. Even our planet is not immune to these impacts. At present, more than 180 geological structures recognized as of impact origin are known on Earth.In this article, we aim to show how these impact structures on Earth's surface are observed from space. To do this, we used the images obtained by the COSMO-SkyMed satellite constellation.Starting from 2013, ASI proposed, in collaboration with the Astrophysical Observatory of Turin and University D'Annunzio of Chieti, the realization of an Encyclopedic Atlas of Terrestrial Impact Craters using COSMO-SkyMed data that will become the first atlas of all recognized terrestrial impact craters based on images acquired by a X band radar. To observe these impact craters all radar sensor modes have been used, according to the size of the analyzed crater.The project includes research of any new features that could be classified as impact craters and, for the sites whereby it is considered necessary, the implementation of a geological survey on site to validate the observations.In this paper an overview of the Atlas of Terrestrial Impact

  8. THE BLUE TIP OF THE STELLAR LOCUS: MEASURING REDDENING WITH THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlafly, Edward F.; Finkbeiner, Douglas P.; Juric, Mario

    2010-12-10

    We present measurements of reddening due to dust using the colors of stars in the Sloan Digital Sky Survey (SDSS). We measure the color of main-sequence turnoff stars by finding the 'blue tip' of the stellar locus: the prominent blue edge in the distribution of stellar colors. The method is sensitive to color changes of order 18, 12, 7, and 8 mmag of reddening in the colors u - g, g - r, r - i, and i - z, respectively, in regions measuring 90' by 14'. We present maps of the blue tip colors in each of these bandsmore » over the entire SDSS footprint, including the new dusty southern Galactic cap data provided by the SDSS-III. The results disfavor the best-fit O'Donnell and Cardelli et al. reddening laws, but are described well by a Fitzpatrick reddening law with R{sub V} = 3.1. The Schlegel et al. (SFD) dust map is found to trace the dust well, but overestimates reddening by factors of 1.4, 1.0, 1.2, and 1.4 in u - g, g - r, r - i, and i - z largely due to the adopted reddening law. In select dusty regions of the sky, we find evidence for problems in the SFD temperature correction. A dust map normalization difference of 15% between the Galactic north and south sky may be due to these dust temperature errors.« less

  9. Protecting Dark Skies in Chile

    NASA Astrophysics Data System (ADS)

    Smith, R. Chris; Sanhueza, Pedro; Phillips, Mark

    2018-01-01

    Current projections indicate that Chile will host approximately 70% of the astronomical collecting area on Earth by 2030, augmenting the enormous area of ALMA with that of three next-generation optical telescopes: LSST, GMTO, and E-ELT. These cutting-edge facilities represent billions of dollars of investment in the astronomical facilities hosted in Chile. The Chilean government, Chilean astronomical community, and the international observatories in Chile have recognized that these investments are threatened by light pollution, and have formed a strong collaboration to work at managing the threats. We will provide an update on the work being done in Chile, ranging from training municipalities about new lighting regulations to exploring international recognition of the dark sky sites of Northern Chile.

  10. Educational Aspects of the CONCAM Sky Monitoring Project

    NASA Astrophysics Data System (ADS)

    Nemiroff, R. J.; Rafert, J. B.; Ftaclas, C.; Pereira, W. E.; Perez-Ramirez, D.

    2000-12-01

    We have built a prototype CONtinuous CAMera (CONCAM) that mates a fisheye lens to a CCD camera run by a laptop computer. Presently, one CONCAM is deployed at Kitt Peak National Observatory and another is being set up on Mauna Kea in Hawaii. CONCAMs can detect stars of visual magnitude 6 near the image center in a two-minute exposure. CONCAMs are weather-proof, take continuous data from 2 π steradians on the sky, are programmable over the internet, create data files downloadable over the internet, are small enough to fit inside a briefcase, and cost under \\$10 K. . Images archived at http://concam.net can be used to teach many introductory concepts. These include: the rotation of the Earth, the relative location and phase of the Moon, the location and relative motion of planets, the location of the Galactic plane, the motion of Earth satellites, the location and motion of comets, the motion of meteors, the radiant of a meteor shower, the relative locations of interesting stars, and the relative brightness changes of highly variable stars. Concam.net is not meant to replace first hand student observations of the sky, but rather to complement them with classroom-accessible actual-sky-image examples.

  11. Mapping the Infrared Sky Artist Concept

    NASA Image and Video Library

    2009-11-17

    This artist conception shows NASA Wide-field Infrared Survey Explorer mapping the whole sky in infrared. The mission will unveil hundreds of thousands of asteroids, and hundreds of millions of stars and galaxies.

  12. Astronomical publications of Melbourne Observatory

    NASA Astrophysics Data System (ADS)

    Andropoulos, Jenny Ioanna

    2014-05-01

    During the second half of the 19th century and the first half of the 20th century, four well-equipped government observatories were maintained in Australia - in Melbourne, Sydney, Adelaide and Perth. These institutions conducted astronomical observations, often in the course of providing a local time service, and they also collected and collated meteorological data. As well, some of these observatories were involved at times in geodetic surveying, geomagnetic recording, gravity measurements, seismology, tide recording and physical standards, so the term "observatory" was being used in a rather broad sense! Despite the international renown that once applied to Williamstown and Melbourne Observatories, relatively little has been written by modern-day scholars about astronomical activities at these observatories. This research is intended to rectify this situation to some extent by gathering, cataloguing and analysing the published astronomical output of the two Observatories to see what contributions they made to science and society. It also compares their contributions with those of Sydney, Adelaide and Perth Observatories. Overall, Williamstown and Melbourne Observatories produced a prodigious amount of material on astronomy in scientific and technical journals, in reports and in newspapers. The other observatories more or less did likewise, so no observatory of those studied markedly outperformed the others in the long term, especially when account is taken of their relative resourcing in staff and equipment.

  13. Searching for Faint Planetary Nebulae Using Digital Sky Surveys

    NASA Astrophysics Data System (ADS)

    Jacoby, George; Kronberger, M.; Patchick, D.; Teutsch, P.; Saloranta, J.; Howell, M.; Crisp, R.; Riddle, D.; Acker, A.; Frew, D.; Parker, Q.; Kaplan, E.

    2010-01-01

    Recent H-alpha surveys such as SHS and IPHAS have improved the completeness of the Galactic planetary nebula (PN) census. We now know of 3,000 PNe in the Galaxy, but this is far short of most estimates, typically 25,000 - 50,000 for the total population. The size of the Galactic PN population is required to derive an accurate estimate of the chemical enrichment rates of nitrogen, carbon, and helium. More importantly, a high PN count (>20,000) is strong evidence that most 1-8 M(Sun) main sequence stars will go through a PN phase, while a low count (<10,000) argues that special conditions (e.g., a close binary interaction) are required to form a PN and suggests that the Sun will not produce one. We describe a technique for finding hundreds of PNe by visually scanning the existing data collections of the digital sky surveys, thereby improving the census of Galactic PNe. We will also report on the actual yield of PN found with this technique after spectroscopic verification. This has been a collaborative effort between a group of dedicated amateur astronomers (Deepskyhunters) with follow-up by professionals using WIYN, OHP, and SAAO. Evan Kaplan was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program and the Department of Defense ASSURE program through Scientific Program Order No. 13 (AST-0754223) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF.

  14. Nonthermal processes around collapsed objects: High energy gamma ray sources in the radio sky

    NASA Technical Reports Server (NTRS)

    Helfand, David J.; Ruderman, Malvin; Applegate, James H.; Becker, Robert H.

    1993-01-01

    In our proposal responding to the initial Guest Observer NRA for the Compton Gamma Ray Observatory, 'Nonthermal Processes Around Collapsed Objects: High Energy Gamma Ray Sources in the Radio Sky', we stated that 'At high energies - the identity of the principal Galactic source population remains unknown' although the 'one certain source of high energy emission is young radio pulsars'. These two statements remain true, although at this writing, eighteen months after the beginning of the Compton allsky survey, much of the gamma-ray data required to greatly extend our knowledge of the Galaxy's high energy emission has been collected. The thrust of the program supported by our grant was to collect and analyze a complementary set of data on the Milky Way at radio wavelengths in order to help identify the dominant Pop 1 component of the Galaxy's gamma ray sources, and to pursue theoretical investigations on the origins and emission mechanisms of young pulsars, the one component of this population identified to date. We summarize here our accomplishments under the grant. In Section 2, we describe our VLA surveys of the Galactic Plane along with the current status of the radio source catalogs derived therefrom; unfortunately, owing to the TDRSS antenna problem and subsequent extension of the Sky Survey, we were not able to carry out a comparison with the EGRET data directly, although everything is now in place to do so as soon as it becomes available. In Section 2, we summarize our progress on the theoretical side, including the substantial completion of a dissertation on pulsar origins and work on the high energy emission mechanisms of isolated pulsars. We list the personnel supported by the grant in section 4 and provide a complete bibliography of publications supported in whole or in part by the grant in the final section.

  15. The Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) Quasar Survey: Quasar Properties from Data Release Two and Three

    NASA Astrophysics Data System (ADS)

    Dong, X. Y.; Wu, Xue-Bing; Ai, Y. L.; Yang, J. Y.; Yang, Q.; Wang, F.; Zhang, Y. X.; Luo, A. L.; Xu, H.; Yuan, H. L.; Zhang, J. N.; Wang, M. X.; Wang, L. L.; Li, Y. B.; Zuo, F.; Hou, W.; Guo, Y. X.; Kong, X.; Chen, X. Y.; Wu, Y.; Yang, H. F.; Yang, M.

    2018-05-01

    This is the second installment for the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) Quasar Survey, which includes quasars observed from 2013 September to 2015 June. There are 9024 confirmed quasars in DR2 and 10911 in DR3. After cross-match with the Sloan Digital Sky Survey (SDSS) quasar catalogs and NED, 12126 quasars are discovered independently. Among them, 2225 quasars were released by SDSS DR12 QSO catalog in 2014 after we finalized the survey candidates. 1801 sources were identified by SDSS DR14 as QSOs. The remaining 8100 quasars are considered as newly founded, and among them, 6887 quasars can be given reliable emission line measurements and the estimated black hole masses. Quasars found in LAMOST are mostly located at low-to-moderate redshifts, with a mean value of 1.5. The highest redshift observed in DR2 and DR3 is 5. We applied emission line measurements to Hα, Hβ, Mg II, and C IV. We deduced the monochromatic continuum luminosities using photometry data, and estimated the virial black hole masses for the newly discovered quasars. Results are compiled into a quasar catalog, which will be available online.

  16. Image acquisition in the Pi-of-the-Sky project

    NASA Astrophysics Data System (ADS)

    Jegier, M.; Nawrocki, K.; Poźniak, K.; Sokołowski, M.

    2006-10-01

    Modern astronomical image acquisition systems dedicated for sky surveys provide large amount of data in a single measurement session. During one session that lasts a few hours it is possible to get as much as 100 GB of data. This large amount of data needs to be transferred from camera and processed. This paper presents some aspects of image acquisition in a sky survey image acquisition system. It describes a dedicated USB linux driver for the first version of the "Pi of The Sky" CCD camera (later versions have also Ethernet interface) and the test program for the camera together with a driver-wrapper providing core device functionality. Finally, the paper contains description of an algorithm for matching several images based on image features, i.e. star positions and their brightness.

  17. Advances in a study of sky quality for astronomical observations in Colombia

    NASA Astrophysics Data System (ADS)

    González-Díaz, D.; Pinzón, G.

    2015-10-01

    The aim of this study is to determine the sky quality in Colombia for astronomical observations in the optic. About 10,000 images in infrared (6.7 mu m and 10.7 mu m) were analyzed from the GOES meteorological satellites in three night times taken during a period of five years (2008 to 2014). A novel methodology was followed to determine how clear or covered was the sky in a given image. Meteorological data also were used from the weather stations network of the national meteorological institute, IDEAM. A correlation between threshold temperature and altitude was found for a historical data series of about 30 years. The results of the average percentage of nights with clear skies per year or clear sky fraction (CSF) were validated with the reports on the number of hours of astronomical observation from the logbooks of Llano del Hato Observatory in Merida-Venezuela, obtaining a cumulative percentage difference during the five years less than 10%. Annual cloud covering was computed over the whole country and it was classified the nights as clear or usable based on the definition of a quality factor.

  18. Two years of LCOGT operations: the challenges of a global observatory

    NASA Astrophysics Data System (ADS)

    Volgenau, Nikolaus; Boroson, Todd

    2016-07-01

    With 18 telescopes distributed over 6 sites, and more telescopes being added in 2016, Las Cumbres Observatory Global Telescope Network is a unique resource for timedomain astronomy. The Network's continuous coverage of the night sky, and the optimization of the observing schedule over all sites simultaneously, have enabled LCOGTusers to produce significant science results. However, practical challenges to maximizing the Network's science output remain. The Network began providing observations for members of its Science Collaboration and other partners in May 2014. In the two years since then, LCOGT has made a number of improvements to increase the Network's science yield. We also now have two years' experience monitoring observatory performance; effective monitoring of an observatory that spans the globe is a complex enterprise. Here, we describe some of LCOGT's efforts to monitor the Network, assess the quality of science data, and improve communication with our users.

  19. Assessment of Systematic Chromatic Errors that Impact Sub-1% Photometric Precision in Large-Area Sky Surveys

    DOE PAGES

    Li, T. S.; DePoy, D. L.; Marshall, J. L.; ...

    2016-06-01

    Here, we report that meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations inmore » the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. In conclusion, the residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift

  20. Transient Science from Diverse Surveys

    NASA Astrophysics Data System (ADS)

    Mahabal, A.; Crichton, D.; Djorgovski, S. G.; Donalek, C.; Drake, A.; Graham, M.; Law, E.

    2016-12-01

    Over the last several years we have moved closer to being able to make digital movies of the non-static sky with wide-field synoptic telescopes operating at a variety of depths, resolutions, and wavelengths. For optimal combined use of these datasets, it is crucial that they speak and understand the same language and are thus interoperable. Initial steps towards such interoperability (e.g. the footprint service) were taken during the two five-year Virtual Observatory projects viz. National Virtual Observatory (NVO), and later Virtual Astronomical Observatory (VAO). Now with far bigger datasets and in an era of resource excess thanks to the cloud-based workflows, we show how the movement of data and of resources is required - rather than just one or the other - to combine diverse datasets for applications such as real-time astronomical transient characterization. Taking the specific example of ElectroMagnetic (EM) follow-up of Gravitational Wave events and EM transients (such as CRTS but also other optical and non-optical surveys), we discuss the requirements for rapid and flexible response. We show how the same methodology is applicable to Earth Science data with its datasets differing in spatial and temporal resolution as well as differing time-spans.

  1. Preliminary Parallaxes of 40 L and T Dwarfs from the US Naval Observatory Infrared Astronometry Program

    NASA Technical Reports Server (NTRS)

    Vrba, F. J.; Henden, A. A.; Liginbuhl, C. B.; Guetter, H. H.; Munn, J. A.

    2004-01-01

    We present preliminary trigonometric parallaxes and proper motions for 22 L dwarfs and 18 T dwarfs measured using the ASTROCAM infrared imager on the US naval Observatory (USNO) 1.55 m Strand Astrometric Reflector. The results presented here are based on observations obtained between 2000 September and 2002 November; about half of the objects have an observational time baseline of t 1:3 yr and half t 2:0 yr. Despite these short time baselines, the astrometric quality is sufficient to produce significant new results, especially for the nearer T dwarfs. Seven objects are in common with the USNO optical CCD parallax program for quality control and seven in common with the European Southern Observatory 3.5 m New Technology Telescope parallax program. We compare astrometric quality with both of these programs. Relative to absolute parallax corrections are made by employing Two Micron All Sky Survey and/or Sloan Digital Sky Survey photometry for reference-frame stars. We combine USNO infrared and optical parallaxes with the best available California Institute of Technology (CIT) system photometry to determine MJ , MH, and MK values for 37 L dwarfs between spectral types L0 and L8 and 19 T dwarfs between spectral types T0.5 and T8 and present selected absolute magnitude versus spectral type and color diagrams, based on these results. Luminosities and temperatures are estimated for these objects. Of special interest are the distances of several objects that are at or near the L-T dwarf boundary so that this important transition can be better understood. The previously reported early to mid T dwarf luminosity excess is clearly confirmed and found to be present at J, H, and K. The large number of objects that populate this luminosity-excess region indicate that it cannot be due entirely to selection effects. The T dwarf sequence is extended to MJ 16:9 by 2MASS J041519 0935, which, at d 5:74 pc, is found to be the lluminous LOG (L=L )pa

  2. Taking the Observatory to the Astronomer

    NASA Astrophysics Data System (ADS)

    Bisque, T. M.

    1997-05-01

    Since 1992, Software Bisque's Remote Astronomy Software has been used by the Mt. Wilson Institute to allow interactive control of a 24" telescope and digital camera via modem. Software Bisque now introduces a comparable, relatively low-cost observatory system that allows powerful, yet "user-friendly" telescope and CCD camera control via the Internet. Utilizing software developed for the Windows 95/NT operating systems, the system offers point-and-click access to comprehensive celestial databases, extremely accurate telescope pointing, rapid download of digital CCD images by one or many users and flexible image processing software for data reduction and analysis. Our presentation will describe how the power of the personal computer has been leveraged to provide professional-level tools to the amateur astronomer, and include a description of this system's software and hardware components. The system software includes TheSky Astronomy Software?, CCDSoft CCD Astronomy Software?, TPoint Telescope Pointing Analysis System? software, Orchestrate? and, optionally, the RealSky CDs. The system hardware includes the Paramount GT-1100? Robotic Telescope Mount, as well as third party CCD cameras, focusers and optical tube assemblies.

  3. GaLactic and Extragalactic All-Sky MWA-eXtended (GLEAM-X) survey: Pilot observations

    NASA Astrophysics Data System (ADS)

    Hurley-Walker, N.; Seymour, N.; Staveley-Smith, L.; Johnston-Hollitt, M.; Kapinska, A.; McKinley, B.

    2017-01-01

    This proposal is a pilot study for the extension of the highly successful GaLactic and Extragalactic MWA (GLEAM) survey (Wayth et al. 2015). The aim is to test out new observing strategies and data reduction techniques suitable for exploiting the longer baselines of the extended phase 2 MWA array. Deeper and wide surveys at higher resolution will enable a legion of science capabilities pertaining to galaxy evolution, clusters and the cosmic web, whilst maintaining the advantages over LOFAR including larger field-of-view, wider frequency coverage and better sensitivity to extended emission. We will continue the successful drift scan mode observing to test the feasibility of a large-area survey in 2017-B and onward. We will also target a single deep area with a bright calibrator source to establish the utility of focussed deep observations. In both cases, we will be exploring calibrating and imaging strategies across 72-231 MHz with the new long baselines. The published extragalactic sky catalogue (Hurley-Walker et al. 2017) improves the prospects for good ionospheric calibration in this new regime, as well as trivialising flux calibration. The new Alternative Data Release of the TIFR GMRT Sky Survey (TGSS-ADR1; Intema et al. 2016), which has 30" resolution and covers the proposed observing area, allows us to test whether our calibration and imaging strategy correctly recovers the true structure of (high surface-brightness) resolved sources. GLEAM-X will have lower noise, higher surface brightness sensitivity, and have considerably wider bandwidth than TGSS. These properties will enable a wide range of science, such as: Detecting and characterising cluster relics and haloes beyond z=0.45; Accurately determining radio source counts at multiple frequencies; Measuring the low-v luminosity function to z 0.5; Performing Galactic plane science such as HII region detection and cosmic tomography; Determining the typical ionospheric diffractive scale at the MRO, feeding into

  4. Dark Skies Awareness Programs for the U.S. International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; U. S. IYA Dark Skies Working Group

    2009-01-01

    The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also our ecology, health, safety, economics and energy conservation. For this reason, "Dark Skies are a Universal Resource” is one of seven primary themes of the U.S. International Year of Astronomy program in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. To reach this goal, activities have been developed that: 1) Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking, Second Life) 2) Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy Nights) 3) Organize an event in the arts (e.g., a photography contest) 4) Involve citizen-scientists in unaided-eye and digital-meter star counting programs, as well as RFI monitoring (e.g., GLOBE at Night and Quiet Skies) and 5) Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security (e.g., the Dark Skies Toolkit, Good Neighbor Lighting, Earth Hour, National Dark Skies Week, traveling exhibits and a 6-minute video tutorial). To deliver these programs, strategic networks have been established with astronomy clubs (ASP's Night Sky Network's astronomy clubs and the Astronomical League), science and nature centers (Astronomy from the Ground Up and the Association of Science and Technology), educational programs (Project ASTRO and GLOBE) and the International Dark-sky Association. The poster will describe the "know-how” and the means for people to become community advocates in promoting Dark Skies programs as public events at their home institutions. For more information, visit http://astronomy2009

  5. The Multi-site All-Sky CAmeRA (MASCARA). Finding transiting exoplanets around bright (mV < 8) stars

    NASA Astrophysics Data System (ADS)

    Talens, G. J. J.; Spronck, J. F. P.; Lesage, A.-L.; Otten, G. P. P. L.; Stuik, R.; Pollacco, D.; Snellen, I. A. G.

    2017-05-01

    This paper describes the design, operations, and performance of the Multi-site All-Sky CAmeRA (MASCARA). Its primary goal is to find new exoplanets transiting bright stars, 4 < mV < 8, by monitoring the full sky. MASCARA consists of one northern station on La Palma, Canary Islands (fully operational since February 2015), one southern station at La Silla Observatory, Chile (operational from early 2017), and a data centre at Leiden Observatory in the Netherlands. Both MASCARA stations are equipped with five interline CCD cameras using wide field lenses (24 mm focal length) with fixed pointings, which together provide coverage down to airmass 3 of the local sky. The interline CCD cameras allow for back-to-back exposures, taken at fixed sidereal times with exposure times of 6.4 sidereal seconds. The exposures are short enough that the motion of stars across the CCD does not exceed one pixel during an integration. Astrometry and photometry are performed on-site, after which the resulting light curves are transferred to Leiden for further analysis. The final MASCARA archive will contain light curves for 70 000 stars down to mV = 8.4, with a precision of 1.5% per 5 minutes at mV = 8.

  6. Custom Sky-Image Mosaics from NASA's Information Power Grid

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph; Collier, James; Craymer, Loring; Curkendall, David

    2005-01-01

    yourSkyG is the second generation of the software described in yourSky: Custom Sky-Image Mosaics via the Internet (NPO-30556), NASA Tech Briefs, Vol. 27, No. 6 (June 2003), page 45. Like its predecessor, yourSkyG supplies custom astronomical image mosaics of sky regions specified by requesters using client computers connected to the Internet. Whereas yourSky constructs mosaics on a local multiprocessor system, yourSkyG performs the computations on NASA s Information Power Grid (IPG), which is capable of performing much larger mosaicking tasks. (The IPG is high-performance computation and data grid that integrates geographically distributed 18 NASA Tech Briefs, September 2005 computers, databases, and instruments.) A user of yourSkyG can specify parameters describing a mosaic to be constructed. yourSkyG then constructs the mosaic on the IPG and makes it available for downloading by the user. The complexities of determining which input images are required to construct a mosaic, retrieving the required input images from remote sky-survey archives, uploading the images to the computers on the IPG, performing the computations remotely on the Grid, and downloading the resulting mosaic from the Grid are all transparent to the user

  7. Night-sky brightness monitoring in Hong Kong: a city-wide light pollution assessment.

    PubMed

    Pun, Chun Shing Jason; So, Chu Wing

    2012-04-01

    Results of the first comprehensive light pollution survey in Hong Kong are presented. The night-sky brightness was measured and monitored around the city using a portable light-sensing device called the Sky Quality Meter over a 15-month period beginning in March 2008. A total of 1,957 data sets were taken at 199 distinct locations, including urban and rural sites covering all 18 Administrative Districts of Hong Kong. The survey shows that the environmental light pollution problem in Hong Kong is severe-the urban night skies (sky brightness at 15.0 mag arcsec(- 2)) are on average ~ 100 times brighter than at the darkest rural sites (20.1 mag arcsec(- 2)), indicating that the high lighting densities in the densely populated residential and commercial areas lead to light pollution. In the worst polluted urban location studied, the night-sky at 13.2 mag arcsec(- 2) can be over 500 times brighter than the darkest sites in Hong Kong. The observed night-sky brightness is found to be affected by human factors such as land utilization and population density of the observation sites, together with meteorological and/or environmental factors. Moreover, earlier night skies (at 9:30 p.m. local time) are generally brighter than later time (at 11:30 p.m.), which can be attributed to some public and commercial lightings being turned off later at night. On the other hand, no concrete relationship between the observed sky brightness and air pollutant concentrations could be established with the limited survey sampling. Results from this survey will serve as an important database for the public to assess whether new rules and regulations are necessary to control the use of outdoor lightings in Hong Kong.

  8. An All-Sky Portable (ASP) Optical Catalogue

    NASA Astrophysics Data System (ADS)

    Flesch, Eric Wim

    2017-06-01

    This optical catalogue combines the all-sky USNO-B1.0/A1.0 and most-sky APM catalogues, plus overlays of SDSS optical data, into a single all-sky map presented in a sparse binary format that is easily downloaded at 9 Gb zipped. Total count is 1 163 237 190 sources and each has J2000 astrometry, red and blue magnitudes with PSFs and variability indicator, and flags for proper motion, epoch, and source survey and catalogue for each of the photometry and astrometry. The catalogue is available on http://quasars.org/asp.html, and additional data for this paper is available at http://dx.doi.org/10.4225/50/5807fbc12595f.

  9. Daytime Utilization of a University Observatory for Laboratory Instruction

    NASA Astrophysics Data System (ADS)

    Mattox, J. R.

    2006-08-01

    Scheduling convenience provides a strong incentive to fully explore effective utilization of educational observatories during daylight hours. I present two compelling daytime student activities that I developed at the Observatory at Fayetteville State University. My Introductory Astronomy Laboratory classes pursue these as separate investigations. My Physical Science classes complete both in a single lab period of 110 minutes duration. Both of these activities are also appropriate for High School student investigators, and could be used as demonstrations for younger students. Daylight Observation of Venus. With a clear sky, and when its elongation exceeds ~20˚, Venus is readily apparent in the daytime sky once a telescope is pointed at it. This is accomplished either with a digital pointing system, or with setting circles on a polar-aligned mount using the Sun to initialize the RA circle. Using the telescope pointing as a reference, it is also possible under optimal circumstances for students to see Venus in the daytime sky with naked eyes. Students are asked to write about the circumstances that made it possible to see Venus. Educational utilization of daytime observations of the Moon, Jupiter, Saturn, and the brightest stars are also discussed. Using a CCD Camera to Determine the Temperature of a Sunspot. After my students view the Sun with Eclipse Glasses and in projection using a 3-inch refractor, they analyze a CCD image of a sunspot (which they obtain if possible) to determine the ratio of its surface intensity relative to the normal solar surface. They then use the Stefan-Boltzmann law (usually with some coaching) to determine the sunspot temperature given the nominal surface temperature of the Sun. Appropriate safety precautions are presented given the hazards of magnified sunlight. Mitigation of dome seeing during daylight hours is discussed.

  10. The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys

    NASA Astrophysics Data System (ADS)

    DeMeo, F. E.; Carry, B.

    2013-09-01

    The distribution of asteroids across the main belt has been studied for decades to understand the current compositional distribution and what that tells us about the formation and evolution of our Solar System. All-sky surveys now provide orders of magnitude more data than targeted surveys. We present a method to bias-correct the asteroid population observed in the Sloan Digital Sky Survey (SDSS) according to size, distance, and albedo. We taxonomically classify this dataset consistent with the Bus and Binzel (Bus, S.J., Binzel, R.P. [2002]. Icarus 158, 146-177) and Bus-DeMeo et al. (DeMeo, F.E., Binzel, R.P., Slivan, S.M., Bus, S.J. [2009]. Icarus 202(July), 160-180) systems and present the resulting taxonomic distribution. The dataset includes asteroids as small as 5 km, a factor of three in diameter smaller than in previous work such as by Mothé-Diniz et al. (Mothé-Diniz, T., Carvano, J.M.Á., Lazzaro, D. [2003]. Icarus 162(March), 10-21). Because of the wide range of sizes in our sample, we present the distribution by number, surface area, volume, and mass whereas previous work was exclusively by number. While the distribution by number is a useful quantity and has been used for decades, these additional quantities provide new insights into the distribution of total material. We find evidence for D-types in the inner main belt where they are unexpected according to dynamical models of implantation of bodies from the outer Solar System into the inner Solar System during planetary migration (Levison, H.F., Bottke, W.F., Gounelle, M., Morbidelli, A., Nesvorný, D., Tsiganis, K. [2009]. Nature 460(July), 364-366). We find no evidence of S-types or other unexpected classes among Trojans and Hildas, albeit a bias favoring such a detection. Finally, we estimate for the first time the total amount of material of each class in the inner Solar System. The main belt’s most massive classes are C, B, P, V and S in decreasing order. Excluding the four most massive

  11. Heat balance and thermal management of the TMT Observatory

    NASA Astrophysics Data System (ADS)

    Thompson, Hugh; Vogiatzis, Konstantinos

    2014-08-01

    An extensive campaign of aero-thermal modeling of the Thirty Meter Telescope (TMT) has been carried out and presented in other papers. This paper presents a summary view of overall heat balance of the TMT observatory. A key component of this heat balance that can be managed is the internal sources of heat dissipation to the ambient air inside the enclosure. An engineering budget for both daytime and nighttime sources is presented. This budget is used to ensure that the overall effects on daytime cooling and nighttime seeing are tracked and fall within the modeled results that demonstrate that the observatory meets its performance requirements. In the daytime heat fluxes from air-conditioning, solar loading, infiltration, and deliberate venting through the enclosure top vent are included along with equipment heat sources. In the nighttime convective heat fluxes through the open aperture and vent doors, as well as radiation to the sky are tracked along with the nighttime residual heat dissipations after cooling from equipment in the observatory. The diurnal variation of thermal inertia of large masses, such as the telescope structure, is also included. Model results as well as the overall heat balance and thermal management strategy of the observatory are presented.

  12. Point Source All Sky

    NASA Image and Video Library

    2003-03-27

    This panoramic view encompasses the entire sky as seen by Two Micron All-Sky Survey. The measured brightnesses of half a billion stars (points) have been combined into colors representing three distinct wavelengths of infrared light: blue at 1.2 microns, green at 1.6 microns, and red at 2.2 microns. This image is centered on the core of our own Milky Way galaxy, toward the constellation of Sagittarius. The reddish stars seemingly hovering in the middle of the Milky Way's disc -- many of them never observed before -- trace the densest dust clouds in our galaxy. The two faint smudges seen in the lower right quadrant are our neighboring galaxies, the Small and Large Magellanic Clouds. http://photojournal.jpl.nasa.gov/catalog/PIA04250

  13. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1975-07-01

    This illustration is a schematic of the High Energy Astronomy Observatory (HEAO)-2 and its experiments. It shows the focal plane instruments (at the right) plus the associated electronics for operating the telescope as it transmitted its observations to the ground. A fifth instrument, the Monitor Proportional Counter, is located near the front of the telescope. Four separate astronomical instruments are located at the focus of this telescope and they could be interchanged for different types of observations as the observatory pointed at interesting areas of the Sky. Two of these instruments produced images; a High Resolution Imaging Detector and an Imaging Proportional Counter. The other two instruments, the Solid State Spectrometer and the Crystal Spectrometer, measured the spectra of x-ray objects. A fifth instrument, the Monitor Proportional Counter, continuously viewed space independently to study a wider band of x-ray wavelengths and to examine the rapid time variations in the sources. The HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.

  14. The brazilian indigenous planetary-observatory

    NASA Astrophysics Data System (ADS)

    Afonso, G. B.

    2003-08-01

    We have performed observations of the sky alongside with the Indians of all Brazilian regions that made it possible localize many indigenous constellations. Some of these constellations are the same as the other South American Indians and Australian aborigines constellations. The scientific community does not have much of this information, which may be lost in one or two generations. In this work, we present a planetary-observatory that we have made in the Park of Science Newton Freire-Maia of Paraná State, in order to popularize the astronomical knowledge of the Brazilian Indians. The planetary consists, essentially, of a sphere of six meters in diameter and a projection cylinder of indigenous constellations. In this planetary we can identify a lot of constellations that we have gotten from the Brazilian Indians; for instance, the four seasonal constellations: the Tapir (spring), the Old Man (summer), the Deer (autumn) and the Rhea (winter). A two-meter height wooden staff that is posted vertically on the horizontal ground similar to a Gnomon and stones aligned with the cardinal points and the soltices directions constitutes the observatory. A stone circle of ten meters in diameter surrounds the staff and the aligned stones. During the day we observe the Sun apparent motions and at night the indigenous constellations. Due to the great community interest in our work, we are designing an itinerant indigenous planetary-observatory to be used in other cities mainly by indigenous and primary schools teachers.

  15. Stellar activity for every TESS star in the Southern sky

    NASA Astrophysics Data System (ADS)

    Howard, Ward S.; Law, Nicholas; Fors, Octavi; Corbett, Henry T.; Ratzloff, Jeff; del Ser, Daniel

    2018-01-01

    Although TESS will search for Earths around more than 200,000 nearby stars, the life-impacting superflare occurrence of these stars remains poorly characterized. We monitor long-term stellar flare occurrence for every TESS star in the accessible sky at 2-minute cadence with the CTIO-based Evryscope, a combination of twenty-four telescopes, together giving instantaneous sky coverage of 8000 square degrees. In collaboration with Owens Valley Long Wavelength Array (LWA) all-sky monitoring, Evryscope also provides optical counterparts to radio flare, CME, and exoplanet-magnetosphere stellar activity searches. A Northern Evryscope will be installed at Mount Laguna Observatory, CA in collaboration with SDSU later this year, enabling stellar activity characterization for the full TESS target list and both continuous viewing zones, as well as providing 100% overlap with LWA radio activity. Targets of interest (e.g. Proxima Cen, TRAPPIST-1) are given special focus. We are currently sensitive to stellar activity down to 1% precision at g' ~ 10 and about 0.2 of a magnitude at g' ~ 15. With 2-minute cadence and a projected 5-year timeline, with 2+ years already recorded, we present preliminary results from an activity characterization of every Southern TESS target.

  16. Twilight sky brightness measurements as a useful tool for stratospheric aerosol investigations

    NASA Astrophysics Data System (ADS)

    Mateshvili, Nina; Fussen, Didier; Vanhellemont, Filip; Bingen, Christine; KyröLä, Erkki; Mateshvili, Iuri; Mateshvili, Giuli

    2005-05-01

    In this paper we demonstrate how twilight sky brightness measurements can be used to obtain information about stratospheric aerosols. Beside this, the measurements of the distribution and the variability of the twilight sky brightness may help to understand how the stratospheric aerosols affect the radiation field, which is important for correct calculations of photodissociation rates. Multispectral measurements of twilight sky brightness were carried out in Abastumani Observatory (41.8°N, 42.8°E), Georgia, South Caucasus, during the period (1991-1993) when the level of stratospheric aerosols was substantially enhanced after the 1991 Mount Pinatubo eruption. The twilight sky brightness was measured at 9 wavelengths (422, 474, 496, 542, 610, 642, 678, 713, and 820 nm) for solar zenith angles from 89° to 107°. There are clear indications of a growth of the stratospheric aerosol layer after the eruption of Mount Pinatubo that manifests itself by "humps" in twilight sky brightness dependences versus solar zenith angle. Similar features were obtained using a radiative transfer code constrained by the SAGE II aerosol optical thicknesses. It is shown how an enhancement of stratospheric aerosol loading perturbs the twilight sky brightness due to light scattering and absorption in the aerosol layer. The influence of ozone variations and background stratospheric aerosols on twilight sky brightness has also been analyzed. The optical thicknesses of the stratospheric aerosol layer obtained from the twilight measurements of 1990-1993 show a good agreement with SAGE II results. The spectral variations of the stratospheric aerosol extinction for pre-Pinatubo and post-Pinatubo measurements reflect the aerosol growth after the eruption. Finally, the utilization of twilight sky brightness measurements for validation of satellite-based measurements of the stratospheric aerosol is proposed.

  17. Observatory data and the Swarm mission

    NASA Astrophysics Data System (ADS)

    Macmillan, S.; Olsen, N.

    2013-11-01

    The ESA Swarm mission to identify and measure very accurately the different magnetic signals that arise in the Earth's core, mantle, crust, oceans, ionosphere and magnetosphere, which together form the magnetic field around the Earth, has increased interest in magnetic data collected on the surface of the Earth at observatories. The scientific use of Swarm data and Swarm-derived products is greatly enhanced by combination with observatory data and indices. As part of the Swarm Level-2 data activities plans are in place to distribute such ground-based data along with the Swarm data as auxiliary data products. We describe here the preparation of the data set of ground observatory hourly mean values, including procedures to check and select observatory data spanning the modern magnetic survey satellite era. We discuss other possible combined uses of satellite and observatory data, in particular those that may use higher cadence 1-second and 1-minute data from observatories.

  18. Dark Skies Ahead? Activities to Raise Awareness during the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Isbell, D.; Pompea, S.

    2007-12-01

    "Dark Skies as a Universal Resource” is one of 7 themes targeted for the International Year of Astronomy in 2009. The theme's goal is to raise public awareness of the impact of artificial lighting on local environments and the ongoing loss of a dark night sky as a natural resource for much of the world's population. To reach this goal, activities are being developed which highlight dark skies preservation issues 1) through new technology (e.g., programs at planetaria, blogging, podcasting); 2) at events such as star parties and observatory open houses; 3) in arts, entertainment and storytelling (e.g., art competitions, documentaries, lectures, native American traditions); 4) through unaided-eye and digital-meter star count programs involving citizen-scientists; and 5) by relating them to public health, economic issues, ecological consequences, energy conservation, safety and security. A centerpiece of the Dark Skies theme is the unaided-eye and digital-meter versions of the GLOBE at Night program. The unaided-eye version directs citizen-scientists on how to observe and record the brightness of the night sky by matching its appearance toward the constellation of Orion with one of 7 stellar maps of different limiting magnitudes. For the "digital” version, low-cost meters are used by citizen-scientists to measure the integrated sky brightness. Data sets and maps of both versions are supplied on-line for further capstone activities. In the presentation, we will outline the activities being developed as well as plans for funding, implementation, marketing and the connections to the global cornerstone IYA project, "Dark Skies Awareness".

  19. ISOPHOT 170 µm Serendipity Sky Survey: The First Galaxy Catalogue

    NASA Astrophysics Data System (ADS)

    Stickel, Manfred; Lemke, Dietrich; Klaas, Ulrich; Hotzel, Stephan; Toth, L. Viktor; Kessler, Martin F.; Laureijs, Rene; Burgdorf, Martin; Beichman, Chas A.; Rowan-Robinson, Michael; Efstathiou, Andeas; Bogun, Stefan; Richter, Gotthard; Braun, Michael

    The ISOPHOT Serendipity Survey utilized the slew time between ISO's pointed observations with strip scanning measurements of the sky in the far-infrared at 170 µm. From the slew data with low I100µm < 15 MJy/sr) cirrus background, 115 well-observed sources with a high signal-to-noise ratio in all four detector pixels having a galaxy association were extracted. The integral 170 µm fluxes measured from the Serendipity slews have been put on an absolute flux level by using a number of calibrator sources observed with ISOPHOT's photometric mapping mode. For all but a few galaxies, the 170 µm fluxes are determined for the first time, which represents a significant increase in the number of galaxies with measured FIR fluxes beyond the IRAS 100 µm limit. The vast majority of the galaxies are morphologically classified as spirals. The large fraction of sources with a high F170µm / F100µm flux ratio indicates that a very cold (T < 20 K) dust component is present in many galaxies. The typical mass of the coldest dust component is MDust = 107.5 +/- 0.5 M, a factor 2 - 10 larger than that derived from IRAS fluxes alone. As a consequence, the gas-to-dust ratios are much closer to the canonical value of ~~ 160 for the Milky Way. By relaxing the selection criteria, it is expected that the Serendipity survey will eventually lead to a catalogue of 170 µm fluxes for ~~ 1000 galaxies. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA. Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) are MPIA Heidelberg, ESA ISO SOC Villafranca, AIP Potsdam, IPAC Pasadena, Imperial College London.

  20. The Sloan Digital Sky Survey Quasar Catalog: Fourteenth data release

    NASA Astrophysics Data System (ADS)

    Pâris, Isabelle; Petitjean, Patrick; Aubourg, Éric; Myers, Adam D.; Streblyanska, Alina; Lyke, Brad W.; Anderson, Scott F.; Armengaud, Éric; Bautista, Julian; Blanton, Michael R.; Blomqvist, Michael; Brinkmann, Jonathan; Brownstein, Joel R.; Brandt, William Nielsen; Burtin, Étienne; Dawson, Kyle; de la Torre, Sylvain; Georgakakis, Antonis; Gil-Marín, Héctor; Green, Paul J.; Hall, Patrick B.; Kneib, Jean-Paul; LaMassa, Stephanie M.; Le Goff, Jean-Marc; MacLeod, Chelsea; Mariappan, Vivek; McGreer, Ian D.; Merloni, Andrea; Noterdaeme, Pasquier; Palanque-Delabrouille, Nathalie; Percival, Will J.; Ross, Ashley J.; Rossi, Graziano; Schneider, Donald P.; Seo, Hee-Jong; Tojeiro, Rita; Weaver, Benjamin A.; Weijmans, Anne-Marie; Yèche, Christophe; Zarrouk, Pauline; Zhao, Gong-Bo

    2018-05-01

    We present the data release 14 Quasar catalog (DR14Q) from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV). This catalog includes all SDSS-IV/eBOSS objects that were spectroscopically targeted as quasar candidates and that are confirmed as quasars via a new automated procedure combined with a partial visual inspection of spectra, have luminosities Mi [z = 2] < -20.5 (in a Λ CDM cosmology with H0 = 70 km s-1 Mpc-1, Ω M =0.3, and Ω Λ = 0.7), and either display at least one emission line with a full width at half maximum larger than 500 km s-1 or, if not, have interesting/complex absorption features. The catalog also includes previously spectroscopically-confirmed quasars from SDSS-I, II, and III. The catalog contains 526 356 quasars (144 046 are new discoveries since the beginning of SDSS-IV) detected over 9376 deg2 (2044 deg2 having new spectroscopic data available) with robust identification and redshift measured by a combination of principal component eigenspectra. The catalog is estimated to have about 0.5% contamination. Redshifts are provided for the Mg II emission line. The catalog identifies 21 877 broad absorption line quasars and lists their characteristics. For each object, the catalog presents five-band (u, g, r, i, z) CCD-based photometry with typical accuracy of 0.03 mag. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra, covering the wavelength region 3610-10 140 Å at a spectral resolution in the range 1300 < R < 2500, can be retrieved from the SDSS Science Archiver Server. http://www.sdss.org/dr14/algorithms/qso_catalog

  1. TWO NEW HALO DEBRIS STREAMS IN THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grillmair, C. J., E-mail: carl@ipac.caltech.edu

    2014-07-20

    Using photometry from Data Release 10 of the northern footprint of the Sloan Digital Sky Survey, we detect two new stellar streams with lengths of between 25° and 50°. The streams, which we designate Hermus and Hyllus, are at distances of between 15 and 23 kpc from the Sun and pass primarily through Hercules and Corona Borealis. Stars in the streams appear to be metal-poor, with [Fe/H] ∼ – 2.3, though we cannot rule out metallicities as high as [Fe/H] = –1.2. While Hermus passes within 1° (in projection) of the globular cluster NGC 6229, a roughly one magnitude difference in distancemore » modulus, combined with no signs of connecting with NGC 6229's Roche lobe, argue against any physical association between the two. Though the two streams almost certainly had different progenitors, similarities in preliminary orbit estimates suggest that those progenitors may themselves have been a product of a single accretion event.« less

  2. Measurements of airglow on Maunakea at Gemini Observatory

    NASA Astrophysics Data System (ADS)

    Roth, Katherine C.; Smith, Adam; Stephens, Andrew; Smirnova, Olesja

    2016-07-01

    Gemini Observatory on Maunakea has been collecting optical and infrared science data for almost 15 years. We have begun a program to analyze imaging data from two of the original facility instruments, GMOS and NIRI, in order to measure sky brightness levels in multiple infrared and optical broad-band filters. The present work includes data from mid-2016 back through late-2008. We present measured background levels as a function of several operational quantities (e.g. moon phase, hours from twilight, season). We find that airglow is a significant contributor to background levels in several filters. Gemini is primarily a queue scheduled telescope, with observations being optimally executed in order to provide the most efficient use of telescope time. We find that while most parameters are well-understood, the atmospheric airglow remains challenging to predict. This makes it difficult to schedule observations which require dark skies in these filters, and we suggest improvements to ensure data quality.

  3. SAGITTARIUS STREAM THREE-DIMENSIONAL KINEMATICS FROM SLOAN DIGITAL SKY SURVEY STRIPE 82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koposov, Sergey E.; Belokurov, Vasily; Evans, N. Wyn

    2013-04-01

    Using multi-epoch observations of the Stripe 82 region from the Sloan Digital Sky Survey (SDSS), we measure precise statistical proper motions of the stars in the Sagittarius (Sgr) stellar stream. The multi-band photometry and SDSS radial velocities allow us to efficiently select Sgr members and thus enhance the proper-motion precision to {approx}0.1 mas yr{sup -1}. We measure separately the proper motion of a photometrically selected sample of the main-sequence turn-off stars, as well as spectroscopically selected Sgr giants. The data allow us to determine the proper motion separately for the two Sgr streams in the south found in Koposov etmore » al. Together with the precise velocities from SDSS, our proper motions provide exquisite constraints of the three-dimensional motions of the stars in the Sgr streams.« less

  4. An Einstein Observatory SAO-based catalog of B-type stars

    NASA Technical Reports Server (NTRS)

    Grillo, F.; Sciortino, S.; Micela, G.; Vaiana, G. S.; Harnden, F. R., Jr.

    1992-01-01

    About 4000 X-ray images obtained with the Einstein Observatory are used to measure the 0.16-4.0 keV emission from 1545 B-type SAO stars falling in the about 10 percent of the sky surveyed with the IPC. Seventy-four detected X-ray sources with B-type stars are identified, and it is estimated that no more than 15 can be misidentified. Upper limits to the X-ray emission of the remaining stars are presented. In addition to summarizing the X-ray measurements and giving other relevant optical data, the present extensive catalog discusses the reduction process and analyzes selection effects associated with both SAO catalog completeness and IPC target selection procedures. It is concluded that X-ray emission, at the level of Lx not less than 10 exp 30 ergs/s, is quite common in B stars of early spectral types (B0-B3), regardless of luminosity class, but that emission, at the same level, becomes less common, or nonexistent, in later B-type stars.

  5. Sparsely sampling the sky: a Bayesian experimental design approach

    NASA Astrophysics Data System (ADS)

    Paykari, P.; Jaffe, A. H.

    2013-08-01

    The next generation of galaxy surveys will observe millions of galaxies over large volumes of the Universe. These surveys are expensive both in time and cost, raising questions regarding the optimal investment of this time and money. In this work, we investigate criteria for selecting amongst observing strategies for constraining the galaxy power spectrum and a set of cosmological parameters. Depending on the parameters of interest, it may be more efficient to observe a larger, but sparsely sampled, area of sky instead of a smaller contiguous area. In this work, by making use of the principles of Bayesian experimental design, we will investigate the advantages and disadvantages of the sparse sampling of the sky and discuss the circumstances in which a sparse survey is indeed the most efficient strategy. For the Dark Energy Survey (DES), we find that by sparsely observing the same area in a smaller amount of time, we only increase the errors on the parameters by a maximum of 0.45 per cent. Conversely, investing the same amount of time as the original DES to observe a sparser but larger area of sky, we can in fact constrain the parameters with errors reduced by 28 per cent.

  6. Build YOUR All-Sky View with Aladin

    NASA Astrophysics Data System (ADS)

    Oberto, A.; Fernique, P.; Boch, T.; Bonnarel, F.

    2011-07-01

    From the need to extend the display outside the boundaries of a single image, the Aladin team recently developed a new feature to visualize wide areas or even all of the sky. This all-sky view is particularly useful for visualization of very large objects and, with coverage of the whole sky, maps from the Planck satellite. To improve on this capability, some catalogs and maps have been built from many surveys (e.g., DSS, IRIS, GLIMPSE, SDSS, 2MASS) in mixed resolutions, allowing progressive display. The maps are constructed by mosaicing individual images. Now, we provide a new tool to build an all-sky view with your own images. From the images you have selected, it will compose a mosaic with several resolutions (HEALPix tessellation), and organize them to allow their progressive display in Aladin. For convenience, you can export it to a HEALPix map, or share it with the community through Aladin from your web site or eventually from the CDS image collection.

  7. Monitoring the Low-Energy Gamma-Ray Sky Using Earth Occultation with GLAST GBM

    NASA Technical Reports Server (NTRS)

    Case, G.; Wilson-Hodge, C.; Cherry, M.; Kippen, M.; Ling, J.; Radocinski, R.; Wheaton, W.

    2007-01-01

    Long term all-sky monitoring of the 20 keV - 2 MeV gamma-ray sky using the Earth occultation technique was demonstrated by the BATSE instrument on the Compton Gamma Ray Observatory. The principles and techniques used for the development of an end-to-end earth occultation data analysis system for BATSE can be extended to the GLAST Gamma-ray Burst Monitor (GBM), resulting in multiband light curves and time-resolved spectra in the energy range 8 keV to above 1 MeV for known gamma-ray sources and transient outbursts, as well as the discovery of new sources of gamma-ray emission. In this paper we describe the application of the technique to the GBM. We also present the expected sensitivity for the GBM.

  8. The missing links of neutron star evolution in the eROSITA all-sky X-ray survey

    NASA Astrophysics Data System (ADS)

    Pires, A. M.

    2017-12-01

    The observational manifestation of a neutron star is strongly connected with the properties of its magnetic field. During the star’s lifetime, the field strength and its changes dominate the thermo-rotational evolution and the source phenomenology across the electromagnetic spectrum. Signatures of magnetic field evolution are best traced among elusive groups of X-ray emitting isolated neutron stars (INSs), which are mostly quiet in the radio and γ-ray wavelengths. It is thus important to investigate and survey INSs in X-rays in the hope of discovering peculiar sources and the long-sought missing links that will help us to advance our understanding of neutron star evolution. The Extended Röntgen Survey with an Imaging Telescope Array (eROSITA), the primary instrument on the forthcoming Spectrum-RG mission, will scan the X-ray sky with unprecedented sensitivity and resolution. The survey has thus the unique potential to unveil the X-ray faint end of the neutron star population and probe sources that cannot be assessed by standard pulsar surveys.

  9. Promoting Dark Skies Awareness Programs Beyond the International Year of Astronomy 2009

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; Dark Skies Working Group

    2010-01-01

    The preservation of dark skies is a growing global concern, yet it is one of the easiest environmental problems people can address on local levels. For this reason, the goal of the International Year of Astronomy 2009 (IYA2009) Dark Skies Awareness Cornerstone Project is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs. These programs provide resources on light pollution for new technologies like a presence in Second Life and podcasts, for local thematic events at national parks and observatory open houses, for international thematic events like International Dark Skies Week and Earth Hour, for a program in the arts like an international photo contest, for global citizen-science programs that measure night sky brightness worldwide, and for educational materials like a kit with a light shielding demonstration. These programs have been successfully used around the world during IYA2009 to raise awareness of the effects of light pollution on public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy. The poster will provide an update, take a look ahead at the project's sustainability, and describe how people can be involved in the future. Information about the programs is at www.darkskiesawareness.org.

  10. The Angular Correlation Function of Galaxies from Early Sloan Digital Sky Survey Data

    NASA Astrophysics Data System (ADS)

    Connolly, Andrew J.; Scranton, Ryan; Johnston, David; Dodelson, Scott; Eisenstein, Daniel J.; Frieman, Joshua A.; Gunn, James E.; Hui, Lam; Jain, Bhuvnesh; Kent, Stephen; Loveday, Jon; Nichol, Robert C.; O'Connell, Liam; Postman, Marc; Scoccimarro, Roman; Sheth, Ravi K.; Stebbins, Albert; Strauss, Michael A.; Szalay, Alexander S.; Szapudi, István; Tegmark, Max; Vogeley, Michael S.; Zehavi, Idit; Annis, James; Bahcall, Neta; Brinkmann, J.; Csabai, István; Doi, Mamoru; Fukugita, Masataka; Hennessy, G. S.; Hindsley, Robert; Ichikawa, Takashi; Ivezić, Željko; Kim, Rita S. J.; Knapp, Gillian R.; Kunszt, Peter; Lamb, D. Q.; Lee, Brian C.; Lupton, Robert H.; McKay, Timothy A.; Munn, Jeff; Peoples, John; Pier, Jeff; Rockosi, Constance; Schlegel, David; Stoughton, Christopher; Tucker, Douglas L.; Yanny, Brian; York, Donald G.

    2002-11-01

    The Sloan Digital Sky Survey is one of the first multicolor photometric and spectroscopic surveys designed to measure the statistical properties of galaxies within the local universe. In this paper we present some of the initial results on the angular two-point correlation function measured from the early SDSS galaxy data. The form of the correlation function, over the magnitude interval 18surveys and narrower CCD galaxy surveys. On scales between 1' and 1° the correlation function is well described by a power law with an exponent of ~-0.7. The amplitude of the correlation function, within this angular interval, decreases with fainter magnitudes in good agreement with analysis from existing galaxy surveys. There is a characteristic break in the correlation function on scales of approximately 1°-2°. On small scales, θ<1', the SDSS correlation function does not appear to be consistent with the power-law form fitted to the 1'<θ<0.5d data. With a data set that is less than 2% of the full SDSS survey area, we have obtained high-precision measurements of the power-law angular correlation function on angular scales 1'<θ<1deg, which are robust to systematic uncertainties. Because of the limited area and the highly correlated nature of the error covariance matrix, these initial results do not yet provide a definitive characterization of departures from the power-law form at smaller and larger angles. In the near future, however, the area of the SDSS imaging survey will be sufficient to allow detailed analysis of the small- and large-scale regimes, measurements of higher order correlations, and studies of angular clustering as a function of redshift and galaxy type.

  11. Advantages of a Lunar Cryogenic Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Burke, James; Kaltenegger, Lisa

    2017-04-01

    ESA and collaborating agencies are preparing to establish a Moon Village at a south polar site. Robotic precursor missions will include resource prospecting in permanently shadowed cold traps. The environment there is favorable for infrared and millimeter-wave astronomy. In this paper we examine the evolutionary development of a cryogenic observatory, beginning with small telescopes robotically installed and operated in conjunction with prospecting precursor missions, and continuing into later phases supported from the Moon Village. Relay communications into and out of the cold traps may be shared or else provided by dedicated links. Candidate locations can be selected with the help of data from the Lunar Reconnaissance Orbiter. The first telescope will be primarily a proof-of-concept demonstrator but it can have scientific and applications uses too, supplementing other space-based survey instruments observing astrophysical objects and potentially hazardous asteroids and comets. A south polar site sees only half or the sky but that half includes the galactic center and many other interesting targets. The telescopes can stare at any object for as long as desired, providing monitoring capabilities for transiting or radial velocity planet searches, like NASA's TESS mission. In addition such telescopes are opening the prospect of gathering spectroscopic data on exoplanet atmospheres and cool stars - from UV information to assess the activity of a star to VIS to IR spectral data of the atmosphere and even atmospheric biosignatures. Preliminary design of the first telescope might be funded under a NASA call for lunar science payload concepts. An important additional product can be educational and outreach uses of the observatory, especially for the benefit of people in the developing world who can do southern hemisphere follow-up observations.

  12. Photometric properties of intermediate-redshift Type Ia supernovae observed by the Sloan Digital Sky Survey-II Supernova Survey

    DOE PAGES

    Takanashi, N.; Doi, M.; Yasuda, N.; ...

    2016-12-06

    We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less

  13. Photometric properties of intermediate-redshift Type Ia supernovae observed by the Sloan Digital Sky Survey-II Supernova Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takanashi, N.; Doi, M.; Yasuda, N.

    We have analyzed multi-band light curves of 328 intermediate redshift (0.05 <= z < 0.24) type Ia supernovae (SNe Ia) observed by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). The multi-band light curves were parameterized by using the Multi-band Stretch Method, which can simply parameterize light curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia which appeared in red host galaxies (u - r > 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) havemore » a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. Furthermore, these results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.« less

  14. McDonald Observatory Planetary Search - A high precision stellar radial velocity survey for other planetary systems

    NASA Technical Reports Server (NTRS)

    Cochran, William D.; Hatzes, Artie P.

    1993-01-01

    The McDonald Observatory Planetary Search program surveyed a sample of 33 nearby F, G, and K stars since September 1987 to search for substellar companion objects. Measurements of stellar radial velocity variations to a precision of better than 10 m/s were performed as routine observations to detect Jovian planets in orbit around solar type stars. Results confirm the detection of a companion object to HD114762.

  15. Circumsolar sky radiation and turbidity of the atmosphere.

    PubMed

    Angström, A

    1974-03-01

    A statistical treatment of field measurements carried out by the Astrophysical Observatory of the Smithsonian Institution is presented. The brightness of a band of sky 10 degrees wide, concentric with the sun, has been determined. Measurements were obtained at two high altitude stations (Table Mountain and Montezuma) with the aid of a pyranometer constructed by C. G. Abbot and L. B. Aldrich. The primary object was to obtain an idea of the integral scattering of the sun's radiation by the atmospheric aerosol. Results have been used to determine long-periodic changes in the scattering properties of the atmosphere and their relation to other phenomena.

  16. Absolute parameters of eclipsing binaries in Southern Hemisphere sky - II: QY Tel

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Sürgit, D.; Engelbrecht, C. A.; van Heerden, H. P.; Manick, R.

    2016-11-01

    This paper presents the first analysis of spectroscopic and photometric observations of the neglected southern eclipsing binary star, QY Tel. Spectroscopic observations were carried out at the South African Astronomical Observatory in 2013. New radial velocity curves from this study and V light curves from the All Sky Automated Survey were solved simultaneously using modern light and radial velocity curve synthesis methods. The final model describes QY Tel as a detached binary star where both component stars fill at least half of their Roche limiting lobes. The masses and radii were found to be 1.32 (± 0.06) M⊙, 1.74 (± 0.15) R⊙ and 1.44 (± 0.09) M⊙, 2.70 (± 0.16) R⊙ for the primary and secondary components of the system, respectively. The distance to QY Tel was calculated as 365 (± 40) pc, taking into account interstellar extinction. The evolution case of QY Tel is also examined. Both components of the system are evolved main-sequence stars with an age of approximately 3.2 Gy, when compared to Geneva theoretical evolution models.

  17. Predicting the sky from 30 MHz to 800 GHz: the extended Global Sky Model

    NASA Astrophysics Data System (ADS)

    Liu, Adrian

    We propose to construct the extended Global Sky Model (eGSM), a software package and associated data products that are capable of generating maps of the sky at any frequency within a broad range (30 MHz to 800 GHz). The eGSM is constructed from archival data, and its outputs will include not only "best estimate" sky maps, but also accurate error bars and the ability to generate random realizations of missing modes in the input data. Such views of the sky are crucial in the practice of precision cosmology, where our ability to constrain cosmological parameters and detect new phenomena (such as B-mode signatures from primordial gravitational waves, or spectral distortions of the Cosmic Microwave Background; CMB) rests crucially on our ability to remove systematic foreground contamination. Doing so requires empirical measurements of the foreground sky brightness (such as that arising from Galactic synchrotron radiation, among other sources), which are typically performed only at select narrow wavelength ranges. We aim to transcend traditional wavelength limits by optimally combining existing data to provide a comprehensive view of the foreground sky at any frequency within the broad range of 30 MHz to 800 GHz. Previous efforts to interpolate between multi-frequency maps resulted in the Global Sky Model (GSM) of de Oliveira-Costa et al. (2008), a software package that outputs foreground maps at any frequency of the user's choosing between 10 MHz and 100 GHz. However, the GSM has a number of shortcomings. First and foremost, the GSM does not include the latest archival data from the Planck satellite. Multi-frequency models depend crucially on data from Planck, WMAP, and COBE to provide high-frequency "anchor" maps. Another crucial shortcoming is the lack of error bars in the output maps. Finally, the GSM is only able to predict temperature (i.e., total intensity) maps, and not polarization information. With the recent release of Planck's polarized data products, the

  18. Dark Skies are a Universal Resource: Programs Planned for the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; US IYA Dark Skies Working Group

    2008-05-01

    The dark night sky is a natural resource that is being lost by much of the world's population. This loss is a growing, serious issue that impacts not only astronomical research, but also human health, ecology, safety, economics and energy conservation. One of the themes of the US Node targeted for the International Year of Astronomy (IYA) is "Dark Skies are a Universal Resource". The goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved locally in a variety of dark skies-related events. To reach this goal, activities are being developed that: 1) Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking) 2) Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Teaching Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy Nights) 3) Organize events in the arts (e.g., a photography contest) 4) Involve citizen-scientists in unaided-eye and digital-meter star counting programs (e.g., GLOBE at Night, "How Many Stars?” and the Great World Wide Star Count) and 5) Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security (e.g., The Great Switch Out, Earth Hour, National Dark Skies Week, traveling exhibits and a 6-minute video tutorial on lighting issues). To deliver these programs, strategic networks have been established with the ASP's Night Sky Network's astronomy clubs, Astronomy from the Ground Up's science and nature centers and the Project and Family ASTRO programs, as well as the International Dark-Sky Association, GLOBE and the Astronomical League, among others. The poster presentation will outline the activities being developed, the plans for funding, implementation, marketing and the connections to the global cornerstone IYA project, "Dark Skies Awareness".

  19. Archive interoperability in the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Genova, Françoise

    2003-02-01

    Main goals of Virtual Observatory projects are to build interoperability between astronomical on-line services, observatory archives, databases and results published in journals, and to develop tools permitting the best scientific usage from the very large data sets stored in observatory archives and produced by large surveys. The different Virtual Observatory projects collaborate to define common exchange standards, which are the key for a truly International Virtual Observatory: for instance their first common milestone has been a standard allowing exchange of tabular data, called VOTable. The Interoperability Work Area of the European Astrophysical Virtual Observatory project aims at networking European archives, by building a prototype using the CDS VizieR and Aladin tools, and at defining basic rules to help archive providers in interoperability implementation. The prototype is accessible for scientific usage, to get user feedback (and science results!) at an early stage of the project. ISO archive participates very actively to this endeavour, and more generally to information networking. The on-going inclusion of the ISO log in SIMBAD will allow higher level links for users.

  20. The Large Sky Area Multi-object Fiber Spectroscopic Telescope Quasar Survey: Quasar Properties from the First Data Release

    NASA Astrophysics Data System (ADS)

    Ai, Y. L.; Wu, Xue-Bing; Yang, Jinyi; Yang, Qian; Wang, Feige; Guo, Rui; Zuo, Wenwen; Dong, Xiaoyi; Zhang, Y.-X.; Yuan, H.-L.; Song, Y.-H.; Wang, Jianguo; Dong, Xiaobo; Yang, M.; -Wu, H.; Shen, S.-Y.; Shi, J.-R.; He, B.-L.; Lei, Y.-J.; Li, Y.-B.; Luo, A.-L.; Zhao, Y.-H.; Zhang, H.-T.

    2016-02-01

    We present preliminary results of the quasar survey in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) first data release (DR1), which includes the pilot survey and the first year of the regular survey. There are 3921 quasars reliably identified, among which 1180 are new quasars discovered in the survey. These quasars are at low to median redshifts, with a highest z of 4.83. We compile emission line measurements around the Hα, Hβ, Mg II, and C IV regions for the new quasars. The continuum luminosities are inferred from SDSS photometric data with model fitting, as the spectra in DR1 are non-flux-calibrated. We also compile the virial black hole mass estimates, with flags indicating the selection methods, and broad absorption line quasars. The catalog and spectra for these quasars are also available. Of the 3921 quasars, 28% are independently selected with optical-infrared colors, indicating that the method is quite promising for the completeness of the quasar survey. LAMOST DR1 and the ongoing quasar survey will provide valuable data for studies of quasars.

  1. High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This illustration is a schematic of the High Energy Astronomy Observatory (HEAO)-2 and its experiments. It shows the focal plane instruments (at the right) plus the associated electronics for operating the telescope as it transmitted its observations to the ground. A fifth instrument, the Monitor Proportional Counter, is located near the front of the telescope. Four separate astronomical instruments are located at the focus of this telescope and they could be interchanged for different types of observations as the observatory pointed at interesting areas of the Sky. Two of these instruments produced images; a High Resolution Imaging Detector and an Imaging Proportional Counter. The other two instruments, the Solid State Spectrometer and the Crystal Spectrometer, measured the spectra of x-ray objects. A fifth instrument, the Monitor Proportional Counter, continuously viewed space independently to study a wider band of x-ray wavelengths and to examine the rapid time variations in the sources. The HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978. The HEAO-2 was originally identified as HEAO-B but the designation was changed once the spacecraft achieved orbit.

  2. Seeing in the Dark: Weak Lensing from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Huff, Eric Michael

    Statistical weak lensing by large-scale structure { cosmic shear { is a promising cosmological tool, which has motivated the design of several large upcoming astronomical surveys. This Thesis presents a measurement of cosmic shear using coadded Sloan Digital Sky Survey (SDSS) imaging in 168 square degrees of the equatorial region, with r < 23:5 and i < 22:5, a source number density of 2.2 per arcmin2 and median redshift of zmed = 0.52. These coadds were generated using a new rounding kernel method that was intended to minimize systematic errors in the lensing measurement due to coherent PSF anisotropies that are otherwise prevalent in the SDSS imaging data. Measurements of cosmic shear out to angular separations of 2 degrees are presented, along with systematics tests of the catalog generation and shear measurement steps that demonstrate that these results are dominated by statistical rather than systematic errors. Assuming a cosmological model corresponding to WMAP7 (Komatsu et al., 2011) and allowing only the amplitude of matter fluctuations sigma8 to vary, the best-t value of the amplitude of matter fluctuations is sigma 8=0.636+0.109-0.154 (1sigma); without systematic errors this would be sigma8=0.636+0.099 -0.137 (1sigma). Assuming a flat Λ CDM model, the combined constraints with WMAP7 are sigma8=0.784+0.028 -0.026 (1sigma). The 2sigma error range is 14 percent smaller than WMAP7 alone. Aside from the intrinsic value of such cosmological constraints from the growth of structure, some important lessons are identified for upcoming surveys that may face similar issues when combining multi-epoch data to measure cosmic shear. Motivated by the challenges faced in the cosmic shear measurement, two new lensing probes are suggested for increasing the available weak lensing signal. Both use galaxy scaling relations to control for scatter in lensing observables. The first employs a version of the well-known fundamental plane relation for early type galaxies. This

  3. Winter sky brightness and cloud cover at Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Moore, Anna M.; Yang, Yi; Fu, Jianning; Ashley, Michael C. B.; Cui, Xiangqun; Feng, Long Long; Gong, Xuefei; Hu, Zhongwen; Lawrence, Jon S.; Luong-Van, Daniel M.; Riddle, Reed; Shang, Zhaohui; Sims, Geoff; Storey, John W. V.; Tothill, Nicholas F. H.; Travouillon, Tony; Wang, Lifan; Yang, Huigen; Yang, Ji; Zhou, Xu; Zhu, Zhenxi

    2013-01-01

    At the summit of the Antarctic plateau, Dome A offers an intriguing location for future large scale optical astronomical observatories. The Gattini Dome A project was created to measure the optical sky brightness and large area cloud cover of the winter-time sky above this high altitude Antarctic site. The wide field camera and multi-filter system was installed on the PLATO instrument module as part of the Chinese-led traverse to Dome A in January 2008. This automated wide field camera consists of an Apogee U4000 interline CCD coupled to a Nikon fisheye lens enclosed in a heated container with glass window. The system contains a filter mechanism providing a suite of standard astronomical photometric filters (Bessell B, V, R) and a long-pass red filter for the detection and monitoring of airglow emission. The system operated continuously throughout the 2009, and 2011 winter seasons and part-way through the 2010 season, recording long exposure images sequentially for each filter. We have in hand one complete winter-time dataset (2009) returned via a manned traverse. We present here the first measurements of sky brightness in the photometric V band, cloud cover statistics measured so far and an estimate of the extinction.

  4. Hunting the Southern Skies with SIMBA

    NASA Astrophysics Data System (ADS)

    2001-08-01

    ) when it is mounted in the telescope. SIMBA is unique because of its ability to quickly map large sky areas due to the fast scanning mode. In order to achieve low noise and good sensitivity, the instrument is cooled to only 0.3 deg above the absolute zero, i.e., to -272.85 °C. SIMBA consists of 37 horns (each providing one pixel on the sky) arranged in a hexagonal pattern, cf. Photo 28d/01 . To form images, the sky position of the telescope is changed according to a raster pattern - in this way all of a celestial object and the surrounding sky field may be "scanned" fast, at speeds of typically 80 arcsec per second. This makes SIMBA a very efficient facility: for instance, a fully sampled image of good sensitivity with a field size of 15 arcmin x 6 arcmin can be taken in 15 minutes. If higher sensitivity is needed (to observe fainter sources), more images may be obtained of the same field and then added together. Large sky areas can be covered by combining many images taken at different positions. The image resolution (the "telescope beamsize") is 22 arcsec, corresponding to the angular resolution of this 15-m telescope at the indicated wavelength. Note [1} Observations of the HDFS and CDFS fields in other wavebands with other telescopes at the ESO observatories have been reported earlier, e.g. within the ESO Imaging Survey Project (EIS) (the "EIS Deep-Survey"). It is the ESO policy on these fields to make data public world-wide.

  5. The Theoretical Astrophysical Observatory: Cloud-based Mock Galaxy Catalogs

    NASA Astrophysics Data System (ADS)

    Bernyk, Maksym; Croton, Darren J.; Tonini, Chiara; Hodkinson, Luke; Hassan, Amr H.; Garel, Thibault; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Hegarty, Sarah

    2016-03-01

    We introduce the Theoretical Astrophysical Observatory (TAO), an online virtual laboratory that houses mock observations of galaxy survey data. Such mocks have become an integral part of the modern analysis pipeline. However, building them requires expert knowledge of galaxy modeling and simulation techniques, significant investment in software development, and access to high performance computing. These requirements make it difficult for a small research team or individual to quickly build a mock catalog suited to their needs. To address this TAO offers access to multiple cosmological simulations and semi-analytic galaxy formation models from an intuitive and clean web interface. Results can be funnelled through science modules and sent to a dedicated supercomputer for further processing and manipulation. These modules include the ability to (1) construct custom observer light cones from the simulation data cubes; (2) generate the stellar emission from star formation histories, apply dust extinction, and compute absolute and/or apparent magnitudes; and (3) produce mock images of the sky. All of TAO’s features can be accessed without any programming requirements. The modular nature of TAO opens it up for further expansion in the future.

  6. Extreme Variability Quasars from the Sloan Digital Sky Survey and the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Rumbaugh, N.; Shen, Yue; Morganson, Eric; Liu, Xin; Banerji, M.; McMahon, R. G.; Abdalla, F. B.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Doel, P.; Frieman, J.; García-Bellido, J.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Martini, P.; Menanteau, F.; Plazas, A. A.; Reil, K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sheldon, E.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Walker, A. R.; Wester, W.; (DES Collaboration

    2018-02-01

    We perform a systematic search for long-term extreme variability quasars (EVQs) in the overlapping Sloan Digital Sky Survey and 3 Year Dark Energy Survey imaging, which provide light curves spanning more than 15 years. We identified ∼1000 EVQs with a maximum change in g-band magnitude of more than 1 mag over this period, about 10% of all quasars searched. The EVQs have L bol ∼ 1045–1047 erg s‑1 and L/L Edd ∼ 0.01–1. Accounting for selection effects, we estimate an intrinsic EVQ fraction of ∼30%–50% among all g≲ 22 quasars over a baseline of ∼15 yr. We performed detailed multi-wavelength, spectral, and variability analyses for the EVQs and compared them to their parent quasar sample. We found that EVQs are distinct from a control sample of quasars matched in redshift and optical luminosity: (1) their UV broad emission lines have larger equivalent widths; (2) their Eddington ratios are systematically lower; and (3) they are more variable on all timescales. The intrinsic difference in quasar properties for EVQs suggests that internal processes associated with accretion are the main driver for the observed extreme long-term variability. However, despite their different properties, EVQs seem to be in the tail of a continuous distribution of quasar properties, rather than standing out as a distinct population. We speculate that EVQs are normal quasars accreting at relatively low rates, where the accretion flow is more likely to experience instabilities that drive the changes in flux by a factor of a few on multi-year timescales.

  7. Calculation of Precipitable Water for Stratospheric Observatory for Infrared Astronomy Aircraft (SOFIA): Airplane in the Night Sky

    NASA Technical Reports Server (NTRS)

    Wen, Pey Chun; Busby, Christopher M.

    2011-01-01

    Stratospheric Observatory for Infrared Astronomy, or SOFIA, is the new generation airborne observatory station based at NASA s Dryden Aircraft Operations Facility, Palmdale, CA, to study the universe. Since the observatory detects infrared energy, water vapor is a concern in the atmosphere due to its known capacity to absorb infrared energy emitted by astronomical objects. Although SOFIA is hoping to fly above 99% of water vapor in the atmosphere it is still possible to affect astronomical observation. Water vapor is one of the toughest parameter to measure in the atmosphere, several atmosphere modeling are used to calculate water vapor loading. The water vapor loading, or Precipitable water, is being calculated by Matlab along the planned flight path. Over time, these results will help SOFIA to plan flights to regions of lower water vapor loading and hopefully improve the imagery collection of these astronomical features.

  8. Byurakan Astrophysical Observatory

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2016-09-01

    This booklet is devoted to NAS RA V. Ambartsumian Byurakan Astrophysical Observatory and is aimed at people interested in astronomy and BAO, pupils and students, BAO visitors and others. The booklet is made as a visiting card and presents concise and full information about BAO. A brief history of BAO, the biography of the great scientist Viktor Ambartsumian, brief biographies of 13 other deserved scientists formerly working at BAO (B.E. Markarian, G.A. Gurzadyan, L.V. Mirzoyan, M.A. Arakelian, et al.), information on BAO telescopes (2.6m, 1m Schmidt, etc.) and other scientific instruments, scientific library and photographic plate archive, Byurakan surveys (including the famous Markarian Survey included in the UNESCO Memory of the World International Register), all scientific meetings held in Byurakan, international scientific collaboration, data on full research staff of the Observatory, as well as former BAO researchers, who have moved to foreign institutions are given in the booklet. At the end, the list of the most important books published by Armenian astronomers and about them is given.

  9. BATSE imaging survey of the Galactic plane

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Barret, D.; Bloser, P. F.; Zhang, S. N.; Robinson, C.; Harmon, B. A.

    1997-01-01

    The burst and transient source experiment (BATSE) onboard the Compton Gamma Ray Observatory (CGRO) provides all sky monitoring capability, occultation analysis and occultation imaging which enables new and fainter sources to be searched for in relatively crowded fields. The occultation imaging technique is used in combination with an automated BATSE image scanner, allowing an analysis of large data sets of occultation images for detections of candidate sources and for the construction of source catalogs and data bases. This automated image scanner system is being tested on archival data in order to optimize the search and detection thresholds. The image search system, its calibration results and preliminary survey results on archival data are reported on. The aim of the survey is to identify a complete sample of black hole candidates in the galaxy and constrain the number of black hole systems and neutron star systems.

  10. Rosat sky survey observations of the eclipsing binary V471 Tauri

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Schmitt, J. H. M. M.; Clemens, J. C.; Pye, J. P.; Denby, M.; Harris, A. W.; Pankiewicz, G. S.

    1992-01-01

    Rosat observations of the DA white dwarf + K2V binary system V471 Tauri, obtained during the sky survey phase of the mission, are presented. A lower amplitude shorter time-scale variability is seen in both the soft X-ray and EUV bands. This is associated with the white dwarf pulsations previously discovered by Exosat and also observed at optical wavelengths. The minimum in the EUV light curve is found to coincide with the maximum in the optical. This direct comparison of the phases of the optical and EUV pulses confirms the prediction made by an earlier indirect comparison and shows conclusively that the V471 Tau oscillations cannot arise from nonradial g-mode pulsations in the white dwarf. They are argued to be caused by rotation of the white dwarf with accretion-darkened magnetic poles. On the basis of the EUV and optical pulse shapes, the accretion geometry is studied, and it is estimated that the rate of accretion onto the white dwarf is about (4-11) x 10 exp -13 solar mass/yr.

  11. Ashra (All-sky Survey High Resolution Air-shower detector)Current Status on Mauna Loa, Hawai`i

    NASA Astrophysics Data System (ADS)

    Hamilton, John; Fox, R. A.; Sasaki, M.; Asaoka, Y.; Ashra Collaboration

    2008-09-01

    Now in its third year of on-site activities, Ashra is commencing full testing of its array of Cherenkov and Nitrogen Fluorescence detectors. The All-sky Survey High Resolution Air-shower detector is located on the northern upper slopes of Mauna Loa at the 11,000 ft elevation level. Utilizing a clear view of 80% of the sky and an unobstructed view of Mauna Kea, anglular resolution of 1.2 arcmin, sensitive to the blue to UV light with the use of image intensifier and CMOS technology, Ashra is in a unique position for studying the sources of High Energy Cosmic Ray sources (GRB, etc) as well as potential observations of earth-grazing neutrino interactions. 2004 saw the successful deployment of a prototype detector on Haleakala, with confirmed detection of several GRBs. Since the summer of 2005, steady progress was made in constructing and installation of detectors and their weather-proofed housings. UH-Hilo undergraduate students provided summer interns for this international collaboration between ICRR Univ. Tokyo, Univ. Hawai`i-Hilo, Univ Hawai`i-Manoa, Ibaraki Univ., Toho Univ. Chiba Univ., Kanagawa Univ., Nagoya Univ. & Tokyo Institute of Technology.

  12. A Search for Nontoroidal Topological Lensing in the Sloan Digital Sky Survey Quasar Catalog

    NASA Astrophysics Data System (ADS)

    Fujii, Hirokazu; Yoshii, Yuzuru

    2013-08-01

    Flat space models with multiply connected topology, which have compact dimensions, are tested against the distribution of high-redshift (z >= 4) quasars of the Sloan Digital Sky Survey (SDSS). When the compact dimensions are smaller in size than the observed universe, topological lensing occurs, in which multiple images of single objects (ghost images) are observed. We improve on the recently introduced method to identify ghost images by means of four-point statistics. Our method is valid for any of the 17 multiply connected flat models, including nontoroidal ones that are compacted by screw motions or glide reflection. Applying the method to the data revealed one possible case of topological lensing caused by sixth-turn screw motion, however, it is consistent with the simply connected model by this test alone. Moreover, simulations suggest that we cannot exclude the other space models despite the absence of their signatures. This uncertainty mainly originates from the patchy coverage of SDSS in the south Galactic cap, and this situation will be improved by future wide-field spectroscopic surveys.

  13. The van Gogh of the Infrared Sky

    NASA Image and Video Library

    2011-04-25

    NASA Wide-field Infrared Survey Explorer is a little like the Vincent van Gogh of the infrared sky, providing the world with picturesque images of the cosmos by representing infrared light through color. This image is the nebula NGC 2174.

  14. Biasing and High-Order Statistics from the Southern-Sky Redshift Survey

    NASA Astrophysics Data System (ADS)

    Benoist, C.; Cappi, A.; da Costa, L. N.; Maurogordato, S.; Bouchet, F. R.; Schaeffer, R.

    1999-04-01

    We analyze different volume-limited samples extracted from the Southern-Sky Redshift Survey (SSRS2), using counts-in-cells to compute the count probability distribution function (CPDF). From the CPDF we derive volume-averaged correlation functions to fourth order and the normalized skewness and kurtosis S3=ξ3¯/ξ¯22 and S4=ξ4¯/ξ¯32. We find that the data satisfies the hierarchical relations in the range 0.3<~ξ2¯<~10. In this range we find S3 to be scale independent, with a value of ~1.8, in good agreement with the values measured from other optical redshift surveys probing different volumes, but significantly smaller than that inferred from the Automatic Plate Measuring Facility (APM) angular catalog. In addition, the measured values of S3 do not show a significant dependence on the luminosity of the galaxies considered. This result is supported by several tests of systematic errors that could affect our measures and estimates of the cosmic variance determined from mock catalogs extracted from N-body simulations. This result is in marked contrast to what would be expected from the strong dependence of the two-point correlation function on luminosity in the framework of a linear biasing model. We discuss the implications of our results and compare them to some recent models of the galaxy distribution that address the problem of bias.

  15. yourSky: Custom Sky-Image Mosaics via the Internet

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph

    2003-01-01

    yourSky (http://yourSky.jpl.nasa.gov) is a computer program that supplies custom astronomical image mosaics of sky regions specified by requesters using client computers connected to the Internet. [yourSky is an upgraded version of the software reported in Software for Generating Mosaics of Astronomical Images (NPO-21121), NASA Tech Briefs, Vol. 25, No. 4 (April 2001), page 16a.] A requester no longer has to engage in the tedious process of determining what subset of images is needed, nor even to know how the images are indexed in image archives. Instead, in response to a requester s specification of the size and location of the sky area, (and optionally of the desired set and type of data, resolution, coordinate system, projection, and image format), yourSky automatically retrieves the component image data from archives totaling tens of terabytes stored on computer tape and disk drives at multiple sites and assembles the component images into a mosaic image by use of a high-performance parallel code. yourSky runs on the server computer where the mosaics are assembled. Because yourSky includes a Web-interface component, no special client software is needed: ordinary Web browser software is sufficient.

  16. The Wide-field Infrared Survey Explorer

    NASA Astrophysics Data System (ADS)

    Wright, E. L.

    2009-12-01

    The Wide-field Infrared Survey Explorer (WISE) will map the whole sky in the thermal infrared, filling a gap in sensitive all-sky surveys between the 2MASS near infrared survey and the AKARI Far-Infrared Survey. WISE will survey the sky in 6 months following its launch and in-orbit checkout. Launch is currently scheduled for November, 2009. WISE should cover more than 95% of sky with sensitivities of 120, 160, 650 & 2600 μJy or better in bands centered at 3.3, 4.7, 12 & 23 μm wavelength. The angular resolution should be 6 arcsec except at 23 μm where diffraction gives 12 arcsec.

  17. Discovery of three strongly lensed quasars in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Williams, P. R.; Agnello, A.; Treu, T.; Abramson, L. E.; Anguita, T.; Apostolovski, Y.; Chen, G. C.-F.; Fassnacht, C. D.; Hsueh, J. W.; Lemaux, B. C.; Motta, V.; Oldham, L.; Rojas, K.; Rusu, C. E.; Shajib, A. J.; Wang, X.

    2018-06-01

    We present the discovery of three quasar lenses in the Sloan Digital Sky Survey, selected using two novel photometry-based selection techniques. The J0941+0518 system, with two point sources separated by 5.46 arcsec on either side of a galaxy, has source and lens redshifts 1.54 and 0.343. Images of J2257+2349 show two point sources separated by 1.67 arcsec on either side of an E/S0 galaxy. The extracted spectra show two images of the same quasar at zs = 2.10. SDSS J1640+1045 has two quasar spectra at zs = 1.70 and fits to the SDSS and Pan-STARRS images confirm the presence of a galaxy between the two point sources. We observed 56 photometrically selected lens candidates in this follow-up campaign, confirming three new lenses, re-discovering one known lens, and ruling out 36 candidates, with 16 still inconclusive. This initial campaign demonstrates the power of purely photometric selection techniques in finding lensed quasars.

  18. On the Photometric Calibration of FORS2 and the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Bramich, D.; Moehler, S.; Coccato, L.; Freudling, W.; Garcia-Dabó, C. E.; Müller, P.; Saviane, I.

    2012-09-01

    An accurate absolute calibration of photometric data to place them on a standard magnitude scale is very important for many science goals. Absolute calibration requires the observation of photometric standard stars and analysis of the observations with an appropriate photometric model including all relevant effects. In the FORS Absolute Photometry (FAP) project, we have developed a standard star observing strategy and modelling procedure that enables calibration of science target photometry to better than 3% accuracy on photometrically stable nights given sufficient signal-to-noise. In the application of this photometric modelling to large photometric databases, we have investigated the Sloan Digital Sky Survey (SDSS) and found systematic trends in the published photometric data. The amplitudes of these trends are similar to the reported typical precision (˜1% and ˜2%) of the SDSS photometry in the griz- and u-bands, respectively.

  19. Innocent Bystanders: Carbon Stars from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Green, Paul

    2013-03-01

    Among stars showing carbon molecular bands (C stars), the main-sequence dwarfs, likely in post-mass transfer binaries, are numerically dominant in the Galaxy. Via spectroscopic selection from the Sloan Digital Sky Survey, we retrieve 1220 high galactic latitude C stars, ~5 times more than previously known, including a wider variety than past techniques such as color or grism selection have netted, and additionally yielding 167 DQ white dwarfs. Of the C stars with proper motion measurements, we identify 69% clearly as dwarfs (dCs), while ~7% are giants. The dCs likely span absolute magnitudes Mi from ~6.5 to 10.5. "G-type" dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C2 bands. We report Balmer emission in 22 dCs, none of which are G-types. We find 8 new DA/dC stars in composite spectrum binaries, quadrupling the total sample of these "smoking guns" for AGB binary mass transfer. Eleven very red C stars with strong red CN bands appear to be "N"-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Leo A. Two such stars within 30' of each other may trace a previously unidentified dwarf galaxy or tidal stream at ~40 kpc. We explore the multiwavelength properties of the sample and report the first X-ray detection of a dC star, which shows strong Balmer emission. Our own spectroscopic survey additionally provides the dC surface density from a complete sample of dwarfs limited by magnitude, color, and proper motion.

  20. Gamma-Ray Astronomy Across 6 Decades of Energy: Synergy between Fermi, IACTs, and HAWC

    NASA Technical Reports Server (NTRS)

    Hui, C. Michelle

    2017-01-01

    Gamma Ray Observatories, Gamma-Ray Astrophysics, GeV TeV Sky Survey, Galaxy, Galactic Plane, Source Distribution, The gamma-ray sky is currently well-monitored with good survey coverage. Many instruments from different waveband/messenger (X rays, gamma rays, neutrinos, gravitational waves) available for simultaneous observations. Both wide-field and pointing instruments in development and coming online in the next decade LIGO

  1. The Arecibo Pisces-Perseus Supercluster Survey: Declination strip 23

    NASA Astrophysics Data System (ADS)

    Luna, Omar; Craig, David; Jones, Michael G.; Koopmann, Rebecca A.; Haynes, Martha P.; APPS Team, Undergraduate ALFALFA Team, ALFALFA Team

    2018-01-01

    We report on results of the Arecibo Pisces-Perseus Supercluster Survey (APPSS) along and near declination 23 degrees. APPSS is a targeted HI survey using the L-band wide receiever at the NAIC Arecibo observatory. It is designed to detect infall onto the Pisces-Perseus Supercluster (PPS) using a statistical comparison to models of the peculiar velocity flow field. We have investigated a subset of 67 galaxies in the PPS sky region along declination 23 degrees. For detected galaxies we have determined their systemic velocity, line width, integrated flux density, and HI mass. We will illustrate HI spectral properties of interesting detections in our region and will compare them with available optical and UV data from SDSS and the GALEX archives. We will also describe the data reduction process and the ongoing collaboration among faculty and undergraduate students of the Undergraduate ALFALFA Team.

  2. Commisioning and ``First-Light'' of the Willard L. Eccles Observatory at Frisco Peak

    NASA Astrophysics Data System (ADS)

    Springer, Wayne; Dawson, Kyle; Ricketts, Paul; Ramsrud, Nicolas; Samarasingha, Upul

    2010-10-01

    The University of Utah completed construction of the Willard L. Eccles Observatory located on Frisco Peak near Milford, Utah in October 2009. The observatory site is located on a prominent peak at an altitude of approximately 9600 feet in a region with minimal light pollution. The Frisco Peak site was chosen after careful consideration of many factors including climate, light pollution and available infrastructure. The facility houses a 32'' Schmidt-Cassegrain telescope manufactured by DFM Engineering of Longmont, CO. Commissioning and development of remote operation capabilities is currently being undertaken. Monitoring of the weather and seeing conditions are being performed and confirm the excellent nature of the site for astronomical observations. The observatory facilities will be used for educational and public outreach activities as well as research projects. A description of the facility and its planned use will be provided. Measurements of the ``seeing'' and night sky background from images obtained with the telescope will also be presented.

  3. The 60-month all-sky BAT Survey of AGN and the Anisotropy of Nearby AGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajello, M.; /KIPAC, Menlo Park; Alexander, D.M.

    2012-04-02

    Surveys above 10 keV represent one of the the best resources to provide an unbiased census of the population of Active Galactic Nuclei (AGN). We present the results of 60 months of observation of the hard X-ray sky with Swift/BAT. In this timeframe, BAT detected (in the 15-55 keV band) 720 sources in an all-sky survey of which 428 are associated with AGN, most of which are nearby. Our sample has negligible incompleteness and statistics a factor of {approx}2 larger over similarly complete sets of AGN. Our sample contains (at least) 15 bona-fide Compton-thick AGN and 3 likely candidates. Compton-thickmore » AGN represent a {approx}5% of AGN samples detected above 15 keV. We use the BAT dataset to refine the determination of the LogN-LogS of AGN which is extremely important, now that NuSTAR prepares for launch, towards assessing the AGN contribution to the cosmic X-ray background. We show that the LogN-LogS of AGN selected above 10 keV is now established to a {approx}10% precision. We derive the luminosity function of Compton-thick AGN and measure a space density of 7.9{sub -2.9}{sup +4.1} x 10{sup -5} Mpc{sup -3} for objects with a de-absorbed luminosity larger than 2 x 10{sup 42} erg s{sup -1}. As the BAT AGN are all mostly local, they allow us to investigate the spatial distribution of AGN in the nearby Universe regardless of absorption. We find concentrations of AGN that coincide spatially with the largest congregations of matter in the local ({le} 85 Mpc) Universe. There is some evidence that the fraction of Seyfert 2 objects is larger than average in the direction of these dense regions.« less

  4. AugerPrime: the upgrade of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Sarazin, Frederic; Pierre Auger Collaboration Collaboration

    2017-01-01

    The nature and origin of ultra-high energy cosmic-rays (UHECRs) remain largely a mystery despite a wealth of new information obtained in recent years at the Pierre Auger Observatory and elsewhere. Mass composition studies performed at Auger appear to challenge the historical view that the UHECR primaries (at least for energies greater than 1019 eV) are all protons, and the observation of a GZK-like flux suppression in the cosmic-ray spectrum is counterbalanced by the absence of point source observations and the relatively weak anisotropy of the UHECR sky. In order to resolve this apparent contradiction, the Pierre Auger collaboration is embarking in an upgrade of the Observatory (``AugerPrime'') with the goal of extending the mass composition measurements beyond the observed flux suppression. In this presentation, the science case for the upgrade and its technical realization will be described and discussed especially with regards to the existence of GZK photons and neutrinos. NSF PHY-1506486.

  5. First results from HAWC: monitoring the TeV gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Lauer, Robert J.

    2015-03-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a wide-field gamma-ray detector sensitive to primary energies between 100 GeV and 100 TeV. The array is being built at an altitude of 4100 m a.s.l. on the Sierra Negra volcano near Puebla, Mexico. Data taking has already started while construction continues, with the completion projected for early 2015. The design is optimized to detect extended air showers induced by gamma rays that pass through the array and to reconstruct the directions and energies of the primary photons. With a duty cycle close to 100% and a daily coverage of ~8 sr of the sky, HAWC will perform a survey of TeV emissions from many different sources. The northern active galactic nuclei will be monitored for up to 6 hours each day, providing unprecedented light curve coverage at energies comparable to those of imaging air Cherenkov telescopes. HAWC has been in scientific operation with more than 100 detector modules since August 2013. Here we present a preliminary look at the first results and discuss the efforts to integrate HAWC in multi-wavelength studies of extragalactic jets.

  6. Dark Skies Awareness Programs for the International Year of Astronomy

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.; US IYA Dark Skies Working Group

    2009-05-01

    The arc of the Milky Way seen from a truly dark location is part of our planet's cultural and natural heritage. More than 1/5 of the world population, 2/3 of the United States population and 1/2 of the European Union population have already lost naked-eye visibility of the Milky Way. This loss, caused by light pollution, is a serious and growing issue that impacts astronomical research, the economy, ecology, energy conservation, human health, public safety and our shared ability to see the night sky. For this reason, "Dark Skies” is a cornerstone project of the International Year of Astronomy. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs that: 1) Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking on Facebook and MySpace, a Second Life presence) 2) Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Nights in the (National) Parks, Sidewalk Astronomy) 3) Organize events in the arts (e.g., a photography contest) 4) Involve citizen-scientists in naked-eye and digital-meter star hunting programs (e.g., GLOBE at Night, "How Many Stars?", the Great World Wide Star Count and the radio frequency interference equivalent: "Quiet Skies") and 5) Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy (e.g., The Starlight Initiative, World Night in Defense of Starlight, International Dark Sky Week, International Dark-Sky Communities, Earth Hour, The Great Switch Out, a traveling exhibit, downloadable posters and brochures). The poster will provide an update, describe how people can continue to participate, and take a look ahead at the program's sustainability. For more information, visit www.darkskiesawareness.org.

  7. Development of Armenian-Georgian Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Mickaelian, Areg; Kochiashvili, Nino; Astsatryan, Hrach; Harutyunian, Haik; Magakyan, Tigran; Chargeishvili, Ketevan; Natsvlishvili, Rezo; Kukhianidze, Vasil; Ramishvili, Giorgi; Sargsyan, Lusine; Sinamyan, Parandzem; Kochiashvili, Ia; Mikayelyan, Gor

    2009-10-01

    The Armenian-Georgian Virtual Observatory (ArGVO) project is the first initiative in the world to create a regional VO infrastructure based on national VO projects and regional Grid. The Byurakan and Abastumani Astrophysical Observatories are scientific partners since 1946, after establishment of the Byurakan observatory . The Armenian VO project (ArVO) is being developed since 2005 and is a part of the International Virtual Observatory Alliance (IVOA). It is based on the Digitized First Byurakan Survey (DFBS, the digitized version of famous Markarian survey) and other Armenian archival data. Similarly, the Georgian VO will be created to serve as a research environment to utilize the digitized Georgian plate archives. Therefore, one of the main goals for creation of the regional VO is the digitization of large amounts of plates preserved at the plate stacks of these two observatories. The total amount of plates is more than 100,000 units. Observational programs of high importance have been selected and some 3000 plates will be digitized during the next two years; the priority is being defined by the usefulness of the material for future science projects, like search for new objects, optical identifications of radio, IR, and X-ray sources, study of variability and proper motions, etc. Having the digitized material in VO standards, a VO database through the regional Grid infrastructure will be active. This partnership is being carried out in the framework of the ISTC project A-1606 "Development of Armenian-Georgian Grid Infrastructure and Applications in the Fields of High Energy Physics, Astrophysics and Quantum Physics".

  8. Hyperspectral radiometer for automated measurement of global and diffuse sky irradiance

    NASA Astrophysics Data System (ADS)

    Kuusk, Joel; Kuusk, Andres

    2018-01-01

    An automated hyperspectral radiometer for the measurement of global and diffuse sky irradiance, SkySpec, has been designed for providing the SMEAR-Estonia research station with spectrally-resolved solar radiation data. The spectroradiometer has been carefully studied in the optical radiometry laboratory of Tartu Observatory, Estonia. Recorded signals are corrected for spectral stray light as well as for changes in dark signal and spectroradiometer spectral responsivity due to temperature effects. Comparisons with measurements of shortwave radiation fluxes made at the Baseline Surface Radiation Network (BSRN) station at Tõravere, Estonia, and with fluxes simulated using the atmospheric radiative transfer model 6S and Aerosol Robotic Network (AERONET) data showed that the spectroradiometer is a reliable instrument that provides accurate estimates of integrated fluxes and of their spectral distribution. The recorded spectra can be used to estimate the amount of atmospheric constituents such as aerosol and column water vapor, which are needed for the atmospheric correction of spectral satellite images.

  9. Close to the Sky

    NASA Astrophysics Data System (ADS)

    2007-11-01

    Today, a new ALMA outreach and educational book was publicly presented to city officials of San Pedro de Atacama in Chile, as part of the celebrations of the anniversary of the Andean village. ESO PR Photo 50a/07 ESO PR Photo 50a/07 A Useful Tool for Schools Entitled "Close to the sky: Biological heritage in the ALMA area", and edited in English and Spanish by ESO in Chile, the book collects unique on-site observations of the flora and fauna of the ALMA region performed by experts commissioned to investigate it and to provide key initiatives to protect it. "I thank the ALMA project for providing us a book that will surely be a good support for the education of children and youngsters of San Pedro de Atacama. Thanks to this publication, we expect our rich flora and fauna to be better known. I invite teachers and students to take advantage of this educational resource, which will be available in our schools", commented Ms. Sandra Berna, the Mayor of San Pedro de Atacama, who was given the book by representatives of the ALMA global collaboration project. Copies of the book 'Close to the sky' will be donated to all schools in the area, as a contribution to the education of students and young people in northern Chile. "From the very beginning of the project, ALMA construction has had a firm commitment to environment and local culture, protecting unique flora and fauna species and preserving old estancias belonging to the Likan Antai culture," said Jacques Lassalle, who represented ALMA at the hand-over. "Animals like the llama, the fox or the condor do not only live in the region where ALMA is now being built, but they are also key elements of the ancient Andean constellations. In this sense they are part of the same sky that will be explored by ALMA in the near future." ESO PR Photo 50c/07 ESO PR Photo 50c/07 Presentation of the ALMA book The ALMA Project is a giant, international observatory currently under construction on the high-altitude Chajnantor site in Chile

  10. Extreme Variability Quasars from the Sloan Digital Sky Survey and the Dark Energy Survey

    DOE PAGES

    Rumbaugh, N.

    2018-02-21

    Here, we perform a systematic search for long-term extreme variability quasars (EVQs) in the overlapping Sloan Digital Sky Survey (SDSS) and 3-Year Dark Energy Survey (DES) imaging, which provide light curves spanning more than 15 years. We also identified 1000 EVQs with a maximum g band magnitude change of more than 1 mag over this period, about 10% of all quasars searched. The EVQs have L bol 10 45 - 10 47 erg s -1 and L=L Edd 0:01-1. Accounting for selection effects, we estimate an intrinsic EVQ fraction of 30-50% among all g.22 quasars over a baseline of 15more » years. These EVQs are good candidates for so-called “changing-look quasars”, where a spectral transition between the two types of quasars (broad-line and narrow-line) is observed between the dim and bright states. We performed detailed multi-wavelength, spectral and variability analyses for the EVQs and compared to their parent quasar sample. We found that EVQs are distinct from a control sample of quasars matched in redshift and optical luminosity: (1) their UV broad emission lines have larger equivalent widths; (2) their Eddington ratios are systematically lower; and (3) they are more variable on all timescales. The intrinsic difference in quasar properties for EVQs suggest that internal processes associated with accretion are the main driver for the observed extreme long-term variability. In spit of their different properties, EVQs seem to be in the tail of a continuous distribution of quasar properties, rather than standing out as a distinct population. We speculate that EVQs are normal quasars accreting at relatively low accretion rates, where the accretion flow is more likely to experience instabilities that drive the factor of few changes in flux on multi-year timescales.« less

  11. Extreme Variability Quasars from the Sloan Digital Sky Survey and the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rumbaugh, N.

    Here, we perform a systematic search for long-term extreme variability quasars (EVQs) in the overlapping Sloan Digital Sky Survey (SDSS) and 3-Year Dark Energy Survey (DES) imaging, which provide light curves spanning more than 15 years. We also identified 1000 EVQs with a maximum g band magnitude change of more than 1 mag over this period, about 10% of all quasars searched. The EVQs have L bol 10 45 - 10 47 erg s -1 and L=L Edd 0:01-1. Accounting for selection effects, we estimate an intrinsic EVQ fraction of 30-50% among all g.22 quasars over a baseline of 15more » years. These EVQs are good candidates for so-called “changing-look quasars”, where a spectral transition between the two types of quasars (broad-line and narrow-line) is observed between the dim and bright states. We performed detailed multi-wavelength, spectral and variability analyses for the EVQs and compared to their parent quasar sample. We found that EVQs are distinct from a control sample of quasars matched in redshift and optical luminosity: (1) their UV broad emission lines have larger equivalent widths; (2) their Eddington ratios are systematically lower; and (3) they are more variable on all timescales. The intrinsic difference in quasar properties for EVQs suggest that internal processes associated with accretion are the main driver for the observed extreme long-term variability. In spit of their different properties, EVQs seem to be in the tail of a continuous distribution of quasar properties, rather than standing out as a distinct population. We speculate that EVQs are normal quasars accreting at relatively low accretion rates, where the accretion flow is more likely to experience instabilities that drive the factor of few changes in flux on multi-year timescales.« less

  12. Extreme Variability Quasars from the Sloan Digital Sky Survey and the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rumbaugh, N.; Shen, Yue; Morganson, Eric

    2018-02-20

    We perform a systematic search for long-term extreme variability quasars (EVQs) in the overlapping Sloan Digital Sky Survey (SDSS) and 3-Year Dark Energy Survey (DES) imaging, which provide light curves spanning more than 15 years. We identified ~1000 EVQs with a maximum g band magnitude change of more than 1 mag over this period, about 10% of all quasars searched. The EVQs have L_bol~10^45-10^47 erg/s and L/L_Edd~0.01-1. Accounting for selection effects, we estimate an intrinsic EVQ fraction of ~30-50% among all g<~22 quasars over a baseline of ~15 years. These EVQs are good candidates for so-called "changing-look quasars", where amore » spectral transition between the two types of quasars (broad-line and narrow-line) is observed between the dim and bright states. We performed detailed multi-wavelength, spectral and variability analyses for the EVQs and compared to their parent quasar sample. We found that EVQs are distinct from a control sample of quasars matched in redshift and optical luminosity: (1) their UV broad emission lines have larger equivalent widths; (2) their Eddington ratios are systematically lower; and (3) they are more variable on all timescales. The intrinsic difference in quasar properties for EVQs suggest that internal processes associated with accretion are the main driver for the observed extreme long-term variability. However, despite their different properties, EVQs seem to be in the tail of a continuous distribution of quasar properties, rather than standing out as a distinct population. We speculate that EVQs are normal quasars accreting at relatively low accretion rates, where the accretion flow is more likely to experience instabilities that drive the factor of few changes in flux on multi-year timescales.« less

  13. BANYAN. V. A SYSTEMATIC ALL-SKY SURVEY FOR NEW VERY LATE-TYPE LOW-MASS STARS AND BROWN DWARFS IN NEARBY YOUNG MOVING GROUPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagné, Jonathan; Lafrenière, David; Doyon, René

    2015-01-10

    We present the BANYAN All-Sky Survey (BASS) catalog, consisting of 228 new late-type (M4-L6) candidate members of nearby young moving groups (YMGs) with an expected false-positive rate of ∼13%. This sample includes 79 new candidate young brown dwarfs and 22 planetary-mass objects. These candidates were identified through the first systematic all-sky survey for late-type low-mass stars and brown dwarfs in YMGs. We cross-matched the Two Micron All Sky Survey and AllWISE catalogs outside of the galactic plane to build a sample of 98,970 potential ≥M5 dwarfs in the solar neighborhood and calculated their proper motions with typical precisions of 5-15more » mas yr{sup –1}. We selected highly probable candidate members of several YMGs from this sample using the Bayesian Analysis for Nearby Young AssociatioNs II tool (BANYAN II). We used the most probable statistical distances inferred from BANYAN II to estimate the spectral type and mass of these candidate YMG members. We used this unique sample to show tentative signs of mass segregation in the AB Doradus moving group and the Tucana-Horologium and Columba associations. The BASS sample has already been successful in identifying several new young brown dwarfs in earlier publications, and will be of great interest in studying the initial mass function of YMGs and for the search of exoplanets by direct imaging; the input sample of potential close-by ≥M5 dwarfs will be useful to study the kinematics of low-mass stars and brown dwarfs and search for new proper motion pairs.« less

  14. Mapping the radio sky from 0.1 to 100 MHz with NOIRE

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Laurens, A.; Briand, C.; Girard, J.; Bucher, M.; Puy, D.; Segret, B.; Bentum, M.

    2016-12-01

    The goal of the NOIRE study (Nanosats pour un Observatoire Interférométrique Radio dans l'Espace) is to assess the scientific interest and technical feasibility of a space borne radio interferometer operating from a few kHz to a few 10 MHz. Such observatory would be able to build a global sky map with an unprecedented spatial resolution depending on the selected technical implementation. We present a review of our understanding of the Galactic mapping, assessing the instrument requirement for such observations.

  15. Deep Space Climate Observatory (DSCOVR) lifted off from Cape Canaveral

    NASA Image and Video Library

    2015-02-13

    KSC-2015-1342 (02/11/2015) --- Backdropped by a bright blue sky, the SpaceX Falcon 9 rocket carrying NOAA’s Deep Space Climate Observatory spacecraft, or DSCOVR, soars away from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Liftoff occurred at 6:03 p.m. EST. DSCOVR is a partnership between NOAA, NASA and the U.S. Air Force, and will maintain the nation's real-time solar wind monitoring capabilities. To learn more about DSCOVR, visit www.nesdis.noaa.gov/DSCOVR. Photo credit: NASA/Ben Smegelsky..

  16. THE LARGE SKY AREA MULTI-OBJECT FIBER SPECTROSCOPIC TELESCOPE QUASAR SURVEY: QUASAR PROPERTIES FROM THE FIRST DATA RELEASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ai, Y. L.; Wu, Xue-Bing; Yang, Jinyi

    2016-02-15

    We present preliminary results of the quasar survey in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) first data release (DR1), which includes the pilot survey and the first year of the regular survey. There are 3921 quasars reliably identified, among which 1180 are new quasars discovered in the survey. These quasars are at low to median redshifts, with a highest z of 4.83. We compile emission line measurements around the Hα, Hβ, Mg ii, and C iv regions for the new quasars. The continuum luminosities are inferred from SDSS photometric data with model fitting, as the spectra inmore » DR1 are non-flux-calibrated. We also compile the virial black hole mass estimates, with flags indicating the selection methods, and broad absorption line quasars. The catalog and spectra for these quasars are also available. Of the 3921 quasars, 28% are independently selected with optical–infrared colors, indicating that the method is quite promising for the completeness of the quasar survey. LAMOST DR1 and the ongoing quasar survey will provide valuable data for studies of quasars.« less

  17. eGSM: A extended Sky Model of Diffuse Radio Emission

    NASA Astrophysics Data System (ADS)

    Kim, Doyeon; Liu, Adrian; Switzer, Eric

    2018-01-01

    Both cosmic microwave background and 21cm cosmology observations must contend with astrophysical foreground contaminants in the form of diffuse radio emission. For precise cosmological measurements, these foregrounds must be accurately modeled over the entire sky Ideally, such full-sky models ought to be primarily motivated by observations. Yet in practice, these observations are limited, with data sets that are observed not only in a heterogenous fashion, but also over limited frequency ranges. Previously, the Global Sky Model (GSM) took some steps towards solving the problem of incomplete observational data by interpolating over multi-frequency maps using principal component analysis (PCA).In this poster, we present an extended version of GSM (called eGSM) that includes the following improvements: 1) better zero-level calibration 2) incorporation of non-uniform survey resolutions and sky coverage 3) the ability to quantify uncertainties in sky models 4) the ability to optimally select spectral models using Bayesian Evidence techniques.

  18. Brazil to Join the European Southern Observatory

    NASA Astrophysics Data System (ADS)

    2010-12-01

    conducted where every aspect of this large project was scrutinised by an international panel of independent experts. The panel found that the E-ELT project is technically ready to enter the construction phase. The go-ahead for E-ELT construction is planned for 2011 and when operations start early in the next decade, European, Brazilian and Chilean astronomers will have access to this giant telescope. The president of ESO's governing body, the Council, Laurent Vigroux, concludes: "Astronomers in Brazil will benefit from collaborating with European colleagues, and naturally from having observing time at ESO's world-class observatories at La Silla and Paranal, as well as on ALMA, which ESO is constructing with its international partners." Notes [1] After ratification of Brazil's membership, the ESO Member States will be Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the

  19. Dark Skies Awareness Programs for the International Year of Astronomy: Involvement, Outcomes and Sustainability

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.

    2010-01-01

    The preservation of dark skies is a growing global concern, yet it is one of the easiest environmental problems people can address on local levels. For this reason, the goal of the IYA Dark Skies Awareness Cornerstone Project is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs. These programs provide resources on light pollution for new technologies like a presence in Second Life and podcasts, for local thematic events at national parks and observatory open houses, for international thematic events like International Dark Skies Week and Earth Hour, for a program in the arts like an international photo contest, for global citizen-science programs that measure night sky brightness worldwide, and for educational materials like a kit with a light shielding demonstration. These programs have been successfully used around the world during IYA to raise awareness of the effects of light pollution on public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy. The presentation will provide an update, take a look ahead at the project's sustainability, and describe how people can be involved in the future. Information about the programs is at www.darkskiesawareness.org.

  20. How to find and type red/brown dwarf stars in near-infrared imaging space observatories

    NASA Astrophysics Data System (ADS)

    Willemn Holwerda, Benne; Ryan, Russell; Bridge, Joanna; Pirzkal, Nor; Kenworthy, Matthew; Andersen, Morten; Wilkins, Stephen; Trenti, Michele; Meshkat, Tiffany; Bernard, Stephanie; Smit, Renske

    2018-01-01

    Here we evaluate the near-infrared colors of brown dwarfs as observed with four major infrared imaging space observatories: the Hubble Space Telescope (HST), the James Webb Space Telescope (JWST), the EUCLID mission, and the WFIRST telescope. We use the splat ISPEX spectroscopic library to map out the colors of the M, L, and T-type brown dwarfs. We identify which color-color combination is optimal for identifying broad type and which single color is optimal to then identify the subtype (e.g., T0-9). We evaluate each observatory separately as well as the the narrow-field (HST and JWST) and wide-field (EULID and WFIRST) combinations.HST filters used thus far for high-redshift searches (e.g. CANDELS and BoRG) are close to optimal within the available filter combinations. A clear improvement over HST is one of two broad/medium filter combinations on JWST: pairing F140M with either F150W or F162M discriminates well between brown dwarf subtypes. The improvement of JWST the filter set over the HST one is so marked that any combination of HST and JWST filters does not improve the classification.The EUCLID filter set alone performs poorly in terms of typing brown dwarfs and WFIRST performs only marginally better, despite a wider selection of filters. A combined EUCLID and WFIRST observation, using WFIRST's W146 and F062 and EUCLID's Y-band, allows for a much better discrimination between broad brown dwarf categories. In this respect, WFIRST acts as a targeted follow-up observatory for the all-sky EUCLID survey. However, subsequent subtyping with the combination of EUCLID and WFIRST observations remains uncertain due to the lack of medium or narrow-band filters in this wavelength range. We argue that a medium band added to the WFIRST filter selection would greatly improve its ability to preselect against brown dwarfs in high-latitude surveys.

  1. On-sky demonstration of matched filters for wavefront measurements using ELT-scale elongated laser guide stars

    NASA Astrophysics Data System (ADS)

    Basden, A. G.; Bardou, L.; Bonaccini Calia, D.; Buey, T.; Centrone, M.; Chemla, F.; Gach, J. L.; Gendron, E.; Gratadour, D.; Guidolin, I.; Jenkins, D. R.; Marchetti, E.; Morris, T. J.; Myers, R. M.; Osborn, J.; Reeves, A. P.; Reyes, M.; Rousset, G.; Lombardi, G.; Townson, M. J.; Vidal, F.

    2017-04-01

    The performance of adaptive optics systems is partially dependent on the algorithms used within the real-time control system to compute wavefront slope measurements. We demonstrate the use of a matched filter algorithm for the processing of elongated laser guide star (LGS) Shack-Hartmann images, using the CANARY adaptive optics instrument on the 4.2 m William Herschel Telescope and the European Southern Observatory Wendelstein LGS Unit placed 40 m away. This algorithm has been selected for use with the forthcoming Thirty Meter Telescope, but until now had not been demonstrated on-sky. From the results of a first observing run, we show that the use of matched filtering improves our adaptive optics system performance, with increases in on-sky H-band Strehl measured up to about a factor of 1.1 with respect to a conventional centre of gravity approach. We describe the algorithm used, and the methods that we implemented to enable on-sky demonstration.

  2. Deep Sky Diving with the ESO New Technology Telescope

    NASA Astrophysics Data System (ADS)

    1998-01-01

    Preparations for future cosmological observations with the VLT Within a few months, the first 8.2-meter Unit Telescope of the ESO Very Large Telescope (VLT) array will open its eye towards the sky above the Atacama desert. As documented by recent Press Photos from ESO, the construction work at the Paranal VLT Observatory is proceeding rapidly. Virtually all of the telescope components, including the giant Zerodur mirror (cf. ESO PR Photos 35a-l/97 ), are now on the mountain. While the integration of the telescope and its many optical, mechanical and electronic components continues, astronomers in the ESO member countries and at ESO are now busy defining the observing programmes that will be carried out with the new telescope, soon after it enters into operation. In this context, new and exciting observations have recently been obtained with the 3.5-m New Technology Telescope at the ESO La Silla Observatory, 600 km to the south of Paranal. How to record the faintest and most remote astronomical objects With its very large mirror surface (and correspondingly great light collecting power), as well as an unsurpassed optical quality, the VLT will be able to look exceedingly far out into the Universe, well beyond current horizons. The best technique to record the faintest possible light and thus the most remote celestial objects, is to combine large numbers of exposures of the same field with slightly different telescope pointing. This increases the total number of photons recorded and by imaging the stars and galaxies on different areas (pixels) of the detector, the signal-to-noise ratio and hence the visibility of the faintest objects is improved. The famous Hubble Deep Field Images were obtained in this way by combining over 300 single exposures and they show myriads of faint galaxies in the distant realms of the Universe. The NTT as test bench for the VLT ESO is in the fortunate situation of possessing a `prototype' model of the Very Large Telescope, the 3.5-m New

  3. New Galaxy-hunting Sky Camera Sees Redder Better | Berkeley Lab

    Science.gov Websites

    ) is now one of the best cameras on the planet for studying outer space at red wavelengths that are too . Mosaic-3's primary mission is to carry out a survey of roughly one-eighth of the sky (5,500 square survey is just one layer in the galaxy survey that is locating targets for DESI. Data from this survey

  4. Progress on the Low Frequency All Sky Monitor

    NASA Astrophysics Data System (ADS)

    Ford, Anthony; Jenet, F.; Craig, J.; Creighton, T. D.; Dartez, L. P.; Hicks, B.; Hinojosa, J.; Jaramillo, R.; Kassim, N. E.; Lunsford, G.; Miller, R. B.; Murray, J.; Ray, P. S.; Rivera, J.; Taylor, G. B.

    2013-01-01

    The Low Frequency All Sky Monitor is a system of geographically separated radio arrays dedicated to the study of radio transients. LoFASM consists of four stations, each comprised of 12 cross-dipole antennas designed to operate between 5-88MHz. The antennas and front end electronics for LoFASM were designed by the Naval Research Laboratory for the Long Wavelength Array project. Over the last year, undergraduate students from the University of Texas at Brownsville’s Center for Advanced Radio Astronomy have been establishing these stations around the continental US, consisting of sites located in Port Mansfield, Texas, the LWA North Arm site of the LWA1 Radio Observatory in New Mexico, adjacent to the North Arm of the Very Large Array, the Green Bank Radio Observatory, West Virginia, and NASA’s Goldstone tracking complex in California. In combination with the establishment of these sites was the development of the analog hardware, which consists of commercial off-the-shelf RF splitter/combiners and a custom amplifier and filter chain designed by colleagues at the University of New Mexico. This poster will expound on progress in site installation and development of the analog signal chain.

  5. Morphology of the southern African geomagnetic field derived from observatory and repeat station survey observations: 2005-2014

    NASA Astrophysics Data System (ADS)

    Kotzé, P. B.; Korte, M.

    2016-02-01

    Geomagnetic field data from four observatories and annual field surveys between 2005 and 2015 provide a detailed description of Earth's magnetic field changes over South Africa, Namibia and Botswana on time scales of less than 1 year. The southern African area is characterized by rapid changes in the secular variation pattern and lies in close proximity to the South Atlantic Anomaly (SAA) where the geomagnetic field intensity is almost 30 % weaker than in other regions at similar latitudes around the globe. Several geomagnetic secular acceleration (SA) pulses (geomagnetic jerks) around 2007, 2010 and 2012 could be identified over the last decade in southern Africa. We present a new regional field model for declination and horizontal and vertical intensity over southern Africa (Southern African REGional (SAREG)) which is based on field survey and observatory data and covering the time interval from 2005 to 2014, i.e. including the period between 2010 and 2013 when no low Earth-orbiting vector field satellite data are available. A comparative evaluation between SAREG and global field models like CHAOS-5, the CHAMP, Orsted and SAC-C model of the Earth's magnetic field and International Geomagnetic Reference Field (IGRF-12) reveals that a simple regional field model based on a relatively dense ground network is able to provide a realistic representation of the geomagnetic field in this area. We particularly note that a global field model like CHAOS-5 does not always indicate similar short-period patterns in the field components as revealed by observatory data, while representing the general secular variation reasonably well during the time interval without near-Earth satellite vector field data. This investigation further shows the inhomogeneous occurrence and distribution of secular variation impulses in the different geomagnetic field components and at different locations in southern African.

  6. FLARE: The Far Side Lunar Research Expedition. A design of a far side lunar observatory

    NASA Technical Reports Server (NTRS)

    Bishop, David W.; Chakrabarty, Rudhmala P.; Hannula, Dawn M.; Hargus, William A., Jr.; Melendrez, A. Dean; Niemann, Christopher J.; Neuenschwander, Amy L.; Padgett, Brett D.; Patel, Sanjiv R.; Wiesehuegel, Leland J.

    1991-01-01

    This document outlines the design completed by members of Lone Star Aerospace, Inc. (L.S.A.) of a lunar observatory on the far side of the Moon. Such a base would not only establish a long term human presence on the Moon, but would also allow more accurate astronomical data to be obtained. A lunar observatory is more desirable than an Earth based observatory for the following reasons: instrument weight is reduced due to the Moon's weaker gravity; near vacuum conditions exist on the Moon; the Moon has slow rotation to reveal the entire sky; and the lunar surface is stable for long baseline instruments. All the conditions listed above are favorable for astronomical data recording. The technical aspects investigated in the completion of this project included site selection, mission scenario, scientific instruments, communication and power systems, habitation and transportation, cargo spacecraft design, thermal systems, robotic systems, and trajectory analysis. The site selection group focused its efforts on finding a suitable location for the observatory. Hertzsprung, a large equatorial crater on the eastern limb, was chosen as the base site.

  7. The Sloan Digital Sky Survey Quasar Catalog: Twelfth data release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pâris, Isabelle; Petitjean, Patrick; Ross, Nicholas P.

    In this paper, we present the Data Release 12 Quasar catalog (DR12Q) from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. This catalog includes all SDSS-III/BOSS objects that were spectroscopically targeted as quasar candidates during the full survey and that are confirmed as quasars via visual inspection of the spectra, have luminosities M i [z = 2] < -20.5 (in a ΛCDM cosmology with H 0 = 70 km s -1 Mpc -1, Ω M = 0.3, and Ω Λ = 0.7), and either display at least one emission line with a full width atmore » half maximum (FWHM) larger than 500 km s -1 or, if not, have interesting/complex absorption features. The catalog also includes previously known quasars (mostly from SDSS-I and II) that were reobserved by BOSS. The catalog contains 297 301 quasars (272 026 are new discoveries since the beginning of SDSS-III) detected over 9376 deg 2 with robust identification and redshift measured by a combination of principal component eigenspectra. The number of quasars with z > 2.15 (184 101, of which 167 742 are new discoveries) is about an order of magnitude greater than the number of z > 2.15 quasars known prior to BOSS. Redshifts and FWHMs are provided for the strongest emission lines (C iv, C iii], Mg ii). The catalog identifies 29 580 broad absorption line quasars and lists their characteristics. For each object, the catalog presents five-band (u, g, r, i, z) CCD-based photometry with typical accuracy of 0.03 mag together with some information on the optical morphology and the selection criteria. When available, the catalog also provides information on the optical variability of quasars using SDSS and Palomar Transient Factory multi-epoch photometry. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra, covering the wavelength region 3600–10 500 Å at a spectral resolution in the range 1300 < R

  8. The Sloan Digital Sky Survey Quasar Catalog: Twelfth data release

    DOE PAGES

    Pâris, Isabelle; Petitjean, Patrick; Ross, Nicholas P.; ...

    2017-01-05

    In this paper, we present the Data Release 12 Quasar catalog (DR12Q) from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. This catalog includes all SDSS-III/BOSS objects that were spectroscopically targeted as quasar candidates during the full survey and that are confirmed as quasars via visual inspection of the spectra, have luminosities M i [z = 2] < -20.5 (in a ΛCDM cosmology with H 0 = 70 km s -1 Mpc -1, Ω M = 0.3, and Ω Λ = 0.7), and either display at least one emission line with a full width atmore » half maximum (FWHM) larger than 500 km s -1 or, if not, have interesting/complex absorption features. The catalog also includes previously known quasars (mostly from SDSS-I and II) that were reobserved by BOSS. The catalog contains 297 301 quasars (272 026 are new discoveries since the beginning of SDSS-III) detected over 9376 deg 2 with robust identification and redshift measured by a combination of principal component eigenspectra. The number of quasars with z > 2.15 (184 101, of which 167 742 are new discoveries) is about an order of magnitude greater than the number of z > 2.15 quasars known prior to BOSS. Redshifts and FWHMs are provided for the strongest emission lines (C iv, C iii], Mg ii). The catalog identifies 29 580 broad absorption line quasars and lists their characteristics. For each object, the catalog presents five-band (u, g, r, i, z) CCD-based photometry with typical accuracy of 0.03 mag together with some information on the optical morphology and the selection criteria. When available, the catalog also provides information on the optical variability of quasars using SDSS and Palomar Transient Factory multi-epoch photometry. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys. The calibrated digital spectra, covering the wavelength region 3600–10 500 Å at a spectral resolution in the range 1300 < R

  9. The Sky is for Everyone — Outreach and Education with the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Freistetter, F.; Iafrate, G.; Ramella, M.; Aida-Wp5 Team

    2010-12-01

    The Virtual Observatory (VO) is an international project to collect astronomical data (images, spectra, simulations, mission-logs, etc.), organise them and develop tools that let astronomers access this huge amount of information. The VO not only simplifies the work of professional astronomers, it is also a valuable tool for education and public outreach. For teachers and astronomers who actively promote astronomy to the public, the VO is a great opportunity to access and use real astronomical data, and have a taste of the daily life of astronomers.

  10. Survey of emission-line galaxies: Universidad Complutense de Madrid list

    NASA Technical Reports Server (NTRS)

    Zamorano, J.; Rego, Gallego, J.; Gallego, J. G.; Vitores, A. G.RA, R.; Gonzalez-Riestra, R..; Rodriguez-Caderot, G.

    1994-01-01

    A low-dispersion objective-prism survey for low-redshift emission-line galaxies (ELGs) is being carried out by the University Complutense de Madrid with the Schmidt telescope at the German-Spanish Observatory of Calar Alto (Almeria, Spain). A 4 deg full aperture prism, which provides a dispersion of 1950 A/mm, and IIIaF emulsion combination has been used to search for ELGs selected by the presence of H-alpha emission in their spectra. Our survey has proved to be able to recover objects already found by similar surveys with different techniques and, what is more important, to discover new objects not previously cataloged. A compilation of descriptions and positions, along with finding charts when necessary, is presented for 160 extragalactic emission-line objects. This is the first list, which contains objects located in a region of the sky covering 270 sq deg in 10 fields near alpha = 0(sup h) and delta = 20 deg.

  11. SOUTH POL: Revealing the Polarized Southern Sky

    NASA Astrophysics Data System (ADS)

    Magalhaes, Antonio Mario Mario; Ramírez, Edgar; Ribeiro, Nadili; Seriacopi, Daiane; Rubinho, Marcelo; Ferrari, Tiberio; Rodrigues, Claudia; Schoenell, William; Herpich, Fabio; Pereyra, Antonio

    2018-01-01

    SOUTH POL will be a survey of the Southern sky in optical polarized light. It will use a newly built polarimeter for T80-S, an 84 cm robotic telescope installed at Cerro Tololo (CTIO), Chile. It will initially cover the sky South of declination -15 deg with a polarimetric accuracy < 0.1% at V~14-15. The telescope and camera combination covers a field of about 2.0 square degrees.SOUTH POL will impact areas such as Cosmology, Extragalactic Astronomy, Interstellar Medium of the Galaxy and Magellanic Clouds, Star Formation, Stellar Envelopes, Stellar Explosions and Solar System.The polarimeter has just been commissioned in mid-November, 2017. The data reduction pipeline has already been built. We will describe the instrument and the data reduction, as well as a few of the science cases. The survey is expected to begin midway through the 1st semester of 2018. Both catalog data and raw images will be made available.

  12. Data analysis of the COMPTEL instrument on the NASA gamma ray observatory

    NASA Technical Reports Server (NTRS)

    Diehl, R.; Bennett, K.; Collmar, W.; Connors, A.; Denherder, J. W.; Hermsen, W.; Lichti, G. G.; Lockwood, J. A.; Macri, J.; Mcconnell, M.

    1992-01-01

    The Compton imaging telescope (COMPTEL) on the Gamma Ray Observatory (GRO) is a wide field of view instrument. The coincidence measurement technique in two scintillation detector layers requires specific analysis methods. Straightforward event projection into the sky is impossible. Therefore, detector events are analyzed in a multi-dimensional dataspace using a gamma ray sky hypothesis convolved with the point spread function of the instrument in this dataspace. Background suppression and analysis techniques have important implications on the gamma ray source results for this background limited telescope. The COMPTEL collaboration applies a software system of analysis utilities, organized around a database management system. The use of this system for the assistance of guest investigators at the various collaboration sites and external sites is foreseen and allows different detail levels of cooperation with the COMPTEL institutes, dependent on the type of data to be studied.

  13. Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data

    NASA Astrophysics Data System (ADS)

    Zehavi, Idit; Blanton, Michael R.; Frieman, Joshua A.; Weinberg, David H.; Mo, Houjun J.; Strauss, Michael A.; Anderson, Scott F.; Annis, James; Bahcall, Neta A.; Bernardi, Mariangela; Briggs, John W.; Brinkmann, Jon; Burles, Scott; Carey, Larry; Castander, Francisco J.; Connolly, Andrew J.; Csabai, Istvan; Dalcanton, Julianne J.; Dodelson, Scott; Doi, Mamoru; Eisenstein, Daniel; Evans, Michael L.; Finkbeiner, Douglas P.; Friedman, Scott; Fukugita, Masataka; Gunn, James E.; Hennessy, Greg S.; Hindsley, Robert B.; Ivezić, Željko; Kent, Stephen; Knapp, Gillian R.; Kron, Richard; Kunszt, Peter; Lamb, Donald Q.; Leger, R. French; Long, Daniel C.; Loveday, Jon; Lupton, Robert H.; McKay, Timothy; Meiksin, Avery; Merrelli, Aronne; Munn, Jeffrey A.; Narayanan, Vijay; Newcomb, Matt; Nichol, Robert C.; Owen, Russell; Peoples, John; Pope, Adrian; Rockosi, Constance M.; Schlegel, David; Schneider, Donald P.; Scoccimarro, Roman; Sheth, Ravi K.; Siegmund, Walter; Smee, Stephen; Snir, Yehuda; Stebbins, Albert; Stoughton, Christopher; SubbaRao, Mark; Szalay, Alexander S.; Szapudi, Istvan; Tegmark, Max; Tucker, Douglas L.; Uomoto, Alan; Vanden Berk, Dan; Vogeley, Michael S.; Waddell, Patrick; Yanny, Brian; York, Donald G.

    2002-05-01

    We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5700kms-1<=cz<=39,000kms-1, distributed in several long but narrow (2.5d-5°) segments, covering 690 deg2. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 h-1 Mpc. The two-dimensional correlation function ξ(rp,π) shows clear signatures of both the small-scale, ``fingers-of-God'' distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, ξ(r)=(r/6.1+/-0.2h-1Mpc)-1.75+/-0.03, for 0.1h-1Mpc<=r<=16h-1Mpc. The galaxy pairwise velocity dispersion is σ12~600+/-100kms-1 for projected separations 0.15h-1Mpc<=rp<=5h-1Mpc. When we divide the sample by color, the red galaxies exhibit a stronger and steeper real-space correlation function and a higher pairwise velocity dispersion than do the blue galaxies. The relative behavior of subsamples defined by high/low profile concentration or high/low surface brightness is qualitatively similar to that of the red/blue subsamples. Our most striking result is a clear measurement of scale-independent luminosity bias at r<~10h-1Mpc: subsamples with absolute magnitude ranges centered on M*-1.5, M*, and M*+1.5 have real-space correlation functions that are parallel power laws of slope ~-1.8 with correlation lengths of approximately 7.4, 6.3, and 4.7 h-1 Mpc, respectively.

  14. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1970-01-01

    This artist's concept depicts the third observatory, the High Energy Astronomy Observatory (HEAO)-3 in orbit. Designed and developed by TRW, Inc. under the direction of the Marshall Space Flight Center, the HEAO-3's mission was to survey and map the celestial sphere for gamma-ray flux and make detailed measurements of cosmic-ray particles. It carried three scientific experiments: a gamma-ray spectrometer, a cosmic-ray isotope experiment, and a heavy cosmic-ray nuclei experiment. The HEAO-3 was originally identified as HEAO-C but the designation was changed once the spacecraft achieved orbit.

  15. Asteroid Lightcurve Analysis at the Oakley Southern Observatory: 2011 January thru April

    NASA Astrophysics Data System (ADS)

    Ditteon, Richard; West, Josh

    2011-10-01

    Photometric data for 23 asteroids were collected over 26 nights of observing during 2011 January thru 2011 April at the Oakley Southern Sky Observatory. The asteroids were: 437 Rhodia, 930 Westphalia, 948 Jucunda, 1129 Neujmina, 1315 Bronislawa, 1377 Roberbauxa, 1598 Paloque, 1716 Peter, 2107 Ilmari, 2108 Otto Schmidt, 2233 Kuznetsov, 2290 Helffrich, 3001 Michelangelo, 3065 Sarahill, 4175 Billbaum, 4493 Naitomitsu, 6505 Muzzio, 6511 Furmanov, 7145 Linzexu, (7151) 1971 SX3, (17129) 1999 JM78, (18835) 1999 NK56, and 52266 Van Flandern.

  16. Atmospheric Seeing and Transparency Robotic Observatory

    NASA Astrophysics Data System (ADS)

    Cline, J. D.; Castelaz, M. W.

    2002-12-01

    A robotic 12.7 cm telescope and camera (together called OVIEW) have been designed to do photometry of 50 of the brightest stars in the local sky 24 hours a day. Each star is imaged through a broadband 500 nm filter. Software automatically analyzes the brightness of the star and the stellar seeing disk. The results are published in real-time on a web page. Comparison of stellar brightness with known apparent magnitude is a measure of transparency with instrument resolution of one arcsecond. We will describe the observatory, software, and website. We will also describe other telescopes on the Optical Ridge at the Pisgah Astronomical Research Institute (PARI). On the same pier as OVIEW is a second robotic 12.7 cm telescope and camera that image the sun and moon. The solar and lunar images are published live on the Internet. Also on the Optical Ridge is a robotic 20 cm telescope. This telescope is operated by UNC-Chapel Hill and has been operating on the Optical Ridge for more than 2 years surveying the plane of the Milky Way for binary low mass stars. UNC-Chapel Hill also operates a 25 cm telescope with an IR camera for photometry of gamma ray burst optical afterglows. An additional 25 cm telescope with a new 3.2 megapixel CCD is used for undergraduate research and W UMa binary star photometry. We acknowledge the AAS Small Grant Program for partial support of the solar/lunar telescope.

  17. DA white dwarfs in Sloan Digital Sky Survey Data Release 7 and a search for infrared excess emission

    NASA Astrophysics Data System (ADS)

    Girven, J.; Gänsicke, B. T.; Steeghs, D.; Koester, D.

    2011-10-01

    We present a method which uses colour-colour cuts on the Sloan Digital Sky Survey (SDSS) photometry to select white dwarfs with hydrogen-rich (DA) atmospheres without the recourse to spectroscopy. This method results in a sample of DA white dwarfs that is 95 per cent complete at an efficiency of returning a true DA white dwarf of 62 per cent. The approach was applied to SDSS Data Release 7 for objects with and without SDSS spectroscopy. This led to 4636 spectroscopicially confirmed DA white dwarfs with g≤ 19; a ˜70 per cent increase compared to Eisenstein et al.'s 2006 sample. Including the photometric-only objects, we estimate a factor of 3 increase in DA white dwarfs. We find that the SDSS spectroscopic follow-up is 44 per cent complete for DA white dwarfs with Teff≳ 8000 K. We further cross-correlated the SDSS sample with Data Release 8 of the UKIRT (United Kingdom Infrared Telescope) Infrared Deep Sky Survey (UKIDSS) Large Area Survey. The spectral energy distributions (SED) of both subsets, with and without SDSS spectroscopy, were fitted with white dwarf models to determine the fraction of DA white dwarfs with low-mass stellar companions or dusty debris discs via the detection of excess near-infrared emission. From the spectroscopic sample we find that 2.0 per cent of white dwarfs have an excess consistent with a brown dwarf type companion, with a firm lower limit of 0.8 per cent. From the white dwarfs with photometry only, we find that 1.8 per cent are candidates for having brown dwarf companions. Similarly, both samples show that ˜1 per cent of white dwarfs are candidates for having a dusty debris disc.

  18. An Hα Imaging Survey of the Low-surface-brightness Galaxies Selected from the Fall Sky Region of the 40% ALFALFA H I Survey

    NASA Astrophysics Data System (ADS)

    Lei, Feng-Jie; Wu, Hong; Du, Wei; Zhu, Yi-Nan; Lam, Man-I.; Zhou, Zhi-Min; He, Min; Jin, Jun-Jie; Cao, Tian-Wen; Zhao, Pin-Song; Yang, Fan; Wu, Chao-Jian; Li, Hong-Bin; Ren, Juan-Juan

    2018-03-01

    We present the observed Hα flux and derived star formation rates (SFRs) for a fall sample of low-surface-brightness galaxies (LSBGs). The sample is selected from the fall sky region of the 40% ALFALFA H I Survey–SDSS DR7 photometric data, and all the Hα images were obtained using the 2.16 m telescope, operated by the National Astronomy Observatories, Chinese Academy of Sciences. A total of 111 LSBGs were observed and Hα flux was measured in 92 of them. Though almost all the LSBGs in our sample are H I-rich, their SFRs, derived from the extinction and filter-transmission-corrected Hα flux, are less than 1 M ⊙ yr‑1. LSBGs and star-forming galaxies have similar H I surface densities, but LSBGs have much lower SFRs and SFR surface densities than star-forming galaxies. Our results show that LSBGs deviate from the Kennicutt–Schmidt law significantly, which indicates that they have low star formation efficiency. The SFRs of LSBGs are close to average SFRs in Hubble time and support previous arguments that most of the LSBGs are stable systems and they tend to seldom contain strong interactions or major mergers in their star formation histories.

  19. Four faint T dwarfs from the UKIRT Infrared Deep Sky Survey (UKIDSS) Southern Stripe

    NASA Astrophysics Data System (ADS)

    Chiu, Kuenley; Liu, Michael C.; Jiang, Linhua; Allers, Katelyn N.; Stark, Daniel P.; Bunker, Andrew; Fan, Xiaohui; Glazebrook, Karl; Dupuy, Trent J.

    2008-03-01

    We present the optical and near-infrared photometry and spectroscopy of four faint T dwarfs newly discovered from the UKIDSS first data release. The sample, drawn from an imaged area of ~136 deg2 to a depth of Y = 19.9 (5σ, Vega), is located in the Sloan Digital Sky Survey (SDSS) Southern Equatorial Stripe, a region of significant future deep imaging potential. We detail the selection and followup of these objects, three of which are spectroscopically confirmed brown dwarfs ranging from type T2.5 to T7.5, and one is photometrically identified as early T. Their magnitudes range from Y = 19.01 to 19.88 with derived distances from 34 to 98 pc, making these among the coldest and faintest brown dwarfs known. The T7.5 dwarf appears to be single based on 0.05-arcsec images from Keck laser guide star adaptive optics. The sample brings the total number of T dwarfs found or confirmed by UKIDSS data in this region to nine, and we discuss the projected numbers of dwarfs in the future survey data. We estimate that ~240 early and late T dwarfs are discoverable in the UKIDSS Large Area Survey (LAS) data, falling significantly short of published model projections and suggesting that initial mass functions and/or birth rates may be at the low end of possible models. Thus, deeper optical data have good potential to exploit the UKIDSS survey depth more fully, but may still find the potential Y dwarf sample to be extremely rare.

  20. True-sky demonstration of an autonomous star tracker

    NASA Astrophysics Data System (ADS)

    van Bezooijen, Roelof W.

    1994-07-01

    An autonomous star tracker (AST) is basically a `star field in, attitude out' device capable of determining its attitude without requiring any a priori attitude knowledge. In addition to this attitude acquisition capability, an AST can perform attitude updates autonomously and is able to provide its attitude `continuously' while tracking a star field. The Lockheed Palo Alto Research Laboratory is developing a reliable, low-cost, miniature AST that has a one arcsec overall accuracy, weighs less than 1.5 kg, consumes less than 7 watts of power, and is sufficiently sensitive to be used at all sky locations. The device performs attitude acquisition in a fraction of a second and outputs its attitude at a 10 Hz rate when operating in its tracking mode. Besides providing the functionality needed for future advanced attitude control and navigation systems, an AST also improves spacecraft reliability, mass, power, cost, and operating expenses. The AST comprises a-thermalized, refractive optics, a frame-transfer CCD with a sensitive area of 1024 by 1024 pixels, camera electronics implemented with application- specific integrated circuits, a compact single board computer with a radiation hard 32 bit RISC processor, and an all-sky guide star database. Star identification is performed by a memory- efficient and highly robust algorithm that finds the largest group of observed stars matching a group of guide stars. An important milestone has recently been achieved with the validation of the attitude acquisition capability through correct and rapid identification of all 704 true-sky star fields obtained at the Lick Observatory, using an uncalibrated prototype AST with a 512 by 1024 pixel frame-transfer CCD and a 50 mm f/1.2 lens that provided an effective 6.5 by 13.2 degree field of view. The overlapping fields cover 47% of the sky, including both rich and sparse areas. The paper contains a description of the AST, a summary of the functions enabled or improved by the device, an