Science.gov

Sample records for observe planetary systems

  1. Origins of planetary systems: Observations and analysis

    NASA Technical Reports Server (NTRS)

    Doyle, Laurance R.; Bernstein, Max

    1995-01-01

    This cooperative agreement was established with the scientific goal of understanding the conditions of early solar-type planetary systems. We investigated two facets of young solar systems: The effects on planetary bodies of young solar-type stellar mass loss, and photo-production of various organic materials due to radiation under comet-like conditions.

  2. Observations of an extreme planetary system

    NASA Astrophysics Data System (ADS)

    Raetz, Stefanie; Schmidt, Tobias O. B.; Briceno, Cesar; Neuhäuser, Ralph

    2015-12-01

    Almost 500 planet host stars are already known to be surrounded by more than one planet. Most of them (except HR8799) are old and all planets were found with the same or similar detection method.We present an unique planetary system. For the first time, a close in transiting and a wide directly imaged planet are found to orbit a common host star which is a low mass member of a young open cluster. The inner candidate is the first possible young transiting planet orbiting a previously known weak-lined T-Tauri star and was detected in our international monitoring campaign of young stellar clusters. The transit shape is changing between different observations and the transit even disappears and reappears. This unusual transit behaviour can be explained by a precessing planet transiting a gravity-darkened star.The outer candidate was discovered in the course of our direct imaging survey with NACO at ESO/VLT. Both objects are consistent with a <5 Jupiter mass planet. With ~2.4 Myrs it is among the youngest exoplanet systems. Both planets orbit its star in very extreme conditions. The inner planet is very close to its Roche limiting orbital radius while the outer planet is far away from its host star at a distance of ~660 au. The detailed analysis will provide important constraints on planet formation and migration time-scales and their relation to protoplanetary disc lifetimes. Furthermore, this system with two planets on such extreme orbits gives us the opportunity to study the possible outcome of planet-planet scattering theories for the first time by observations.I will report on our monitoring and photometric follow-up observations as well as on the direct detection and the integral field spectroscopy of this extreme planetary system.

  3. JWST Planetary Observations Within the Solar System

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan; Hammel, Heidi; Schaller, Emily; Sonneborn, George; Orton, Glenn; Rieke, George; Rieke, Marcia

    2010-01-01

    JWST provides capabilities unmatched by other telescopic facilities in the near to mid infrared part of the electromagnetic spectrum. Its combination of broad wavelength range, high sensitivity and near diffraction-limited imaging around two microns wavelength make it a high value facility for a variety of Solar System targets. Beyond Neptune, a class of cold, large bodies that include Pluto, Triton and Eris exhibits surface deposits of nitrogen, methane, and other molecules that are poorly observed from the ground, but for which JWST might provide spectral mapping at high sensitivity and spatial resolution difficult to match with the current generation of ground-based observatories. The observatory will also provide unique sensitivity in a variety of near and mid infrared windows for observing relatively deep into the atmospheres of Uranus and Neptune, searching there for minor species. It will examine the Jovian aurora in a wavelength regime where the background atmosphere is dark. Special provision of a subarray observing strategy may allow observation of Jupiter and Saturn over a larger wavelength range despite their large surface brightnesses, allowing for detailed observation of transient phenomena including large scale storms and impact-generation disturbances. JWST's observations of Saturn's moon Titan will overlap with and go beyond the 2017 end-of-mission for Cassini, providing an important extension to the time-series of meteorological studies for much of northern hemisphere summer. It will overlap with a number of other planetary missions to targets for which JWST can make unique types of observations. JWST provides a platform for linking solar system and extrasolar planet studies through its unique observational capabilities in both arenas.

  4. The Jupiter System Observer: Exploring the Origins of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Prockter, Louise; Senske, D.; Collins, G. C.; Cooper, J. F.; Hendrix, A.; Hibbitts, C.; Kivelson, M.; Schubert, G.; Showman, A.; Turtle, E.; Williams, D.

    2007-10-01

    The Jupiter System Observer (JSO) is one of four studies commissioned by NASA's Science Mission Directorate to examine the potential science return from a flagship-class mission to the outer solar system. JSO is a long-duration mission that will study the entire Jupiter system, focusing on both its individual components, including Jupiter's atmosphere, rocky and icy moons, rings, and magnetospheric phenomena, and the interactions between them. The wealth of data to be returned by JSO will enable a fuller understanding of a variety of magnetospheric, atmospheric, and geological processes, and will illuminate the question of how planetary systems form and evolve. The science team has outlined a number of significant science goals that can be accomplished by a spacecraft that tours the Jovian system for several years before ultimately ending up in Ganymede orbit. Ganymede was selected as the final destination for JSO because of its unique place in the Jovian system and the solar system - it is only the third body known to have its own dynamo-generated magnetic field. Ganymede is thought to contain a subsurface ocean and exhibits a surface with a variety of older and younger terrains, making it an excellent target for understanding the formation and evolution of icy satellites. Long-term monitoring of Jupiter's atmosphere and rings, Io's volcanism and torus, and high-resolution flyby imaging of Europa, Callisto and Io will enable an unprecedented study of the Jovian system as a solar system analog, and enables cross-cutting scientific objectives in the fields of atmospheres, geology, magnetospheres, and geophysics.

  5. Observational Research on Star and Planetary System Formation

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.

    1998-01-01

    Institute scientists collaborate with a number of NASA Ames scientists on observational studies of star and planetary system formation to their mutual benefit. As part of this collaboration, SETI scientists have, from 1988 to the present: (1) contributed to the technical studies at NASA Ames of the Stratospheric Observatory for Infrared Astronomy (SOFIA), an infrared 2.5 meter telescope in a Boeing 747, which will replace the Kuiper Airborne Observatory (KAO), a 0.9 meter telescope in a Lockheed C-141. SOFIA will be an important facility for the future exploration of the formation of stars and planetary systems, and the origins of life, and as such will be an important future facility to SETI scientists; (2) worked with the Laboratory Astrophysics Group at Ames, carrying out laboratory studies of the spectroscopic properties of ices and pre-biotic organics, which could be formed in the interstellar or interplanetary media; (3) helped develop a photometric approach for determining the Frequency of Earth-Sized Inner Planets (FRESIP) around solar-like stars, a project (now called Kepler) which complements the current efforts of the SETI Institute to find evidence for extraterrestrial intelligence; and (4) carried out independent observational research, in particular research on the formation of stars and planetary systems using both ground-based telescopes as well as the KAO.

  6. The Hunt for Observable Signatures of Terrestrial Planetary Systems (HOSTS)

    NASA Astrophysics Data System (ADS)

    Defrère, D.; Hinz, P.; Bryden, G.; Danchi, W. C.; Mennesson, B.; Millan-Gabet, R.; Skemer, A.; Stapeldfeld, K.; Weinberger, A.; Wyatt, M.; Absil, O.; Bailey, V.; Beichman, C.; Downey, E.; Grenz, P.; Haniff, C.; Hoffmann, W.; Kennedy, G.; Lebreton, J.; Leisenring, J.; Marion, L.; Mahon, T. M.; Montoya, M.; Rieke, G.; Roberge, A.; Serabyn, E.; Su, K.; Vaitheeswaran, V.; Vaz, A.

    2014-03-01

    The presence of large amounts of exozodiacal dust around nearby main sequence stars is considered as a potential threat for the direct imaging of Earth-like exoplanets and, hence, the search for biosignatures (Roberge et al. 2012). However, it is also considered as a signpost for the presence of terrestrial planets that might be hidden in the dust disk (Stark and Kuchner 2008). Characterizing exozodiacal dust around nearby sequence stars is therefore a crucial step toward one of the main goals of modern astronomy: finding extraterrestrial life. After briefly reviewing the latest results in this field, we present the exozodiacal dust survey on the Large Binocular Telescope Interferometer (LBTI). The survey is called HOSTS and is specifically designed to determine the prevalence and brightness of exozodiacal dust disks with the sensitivity required to prepare for future New Worlds Missions that will image Earth-like exoplanets. To achieve this objective, the LBTI science team has carefully established a balanced list of 50 nearby main-sequence stars that are likely candidates of these missions and/or can be observed with the best instrument performance (see companion abstract by Roberge et al.). Exozodiacal dust disk candidates detected by the Keck Interferometer Nuller will also be observed. The first results of the survey will be presented. To precisely detect exozodiacal dust, the LBTI combines the two 8-m primary mirrors of the LBT using N-band nulling interferometry. Interferometric combination provides the required angular resolution (70-90 mas) to resolve the habitable zone of nearby main sequence stars while nulling is used to subtract the stellar light and reach the required contrast of a few 10-4. A Kband fringe tracker ensures the stability of the null. The current performance of the instrument and the first nulling measurements will be presented.

  7. CONSTRAINING THE PLANETARY SYSTEM OF FOMALHAUT USING HIGH-RESOLUTION ALMA OBSERVATIONS

    SciTech Connect

    Boley, A. C.; Payne, M. J.; Ford, E. B.; Shabram, M.; Corder, S.; Dent, W. R. F.

    2012-05-01

    The dynamical evolution of planetary systems leaves observable signatures in debris disks. Optical images trace micron-sized grains, which are strongly affected by stellar radiation and need not coincide with their parent body population. Observations of millimeter-sized grains accurately trace parent bodies, but previous images lack the resolution and sensitivity needed to characterize the ring's morphology. Here we present ALMA 350 GHz observations of the Fomalhaut debris ring. These observations demonstrate that the parent body population is 13-19 AU wide with a sharp inner and outer boundary. We discuss three possible origins for the ring and suggest that debris confined by shepherd planets is the most consistent with the ring's morphology.

  8. The Hunt for Observable Signatures of Terrestrial Planetary Systems (HOSTS): LBTI's Zodiacal Dust Survey

    NASA Astrophysics Data System (ADS)

    Hinz, Philip

    2013-01-01

    The Large Binocular Telescope Interferometer (LBTI) is a NASA funded instrument, designed to carry out a survey of nearby stars for the existence of faint zodiacal dust disks. The survey is named the Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS). These observations will constrain the prevalence and brightness of dust in the habitable zone to reduce risk for future NASA exoplanet imaging missions. The instrument uses nulling interferometry at 10 microns wavelength to precisely measure the small amount of thermal radiation a zodiacal dust disk emits, and isolate it from the much brighter stellar signal. The LBTI is completing commissioning, and will begin initial observations in the upcoming year. The instrument status, early results, and survey plans will be summarized.

  9. Observational Constraints on Companions Inside of 10 AU in the HR 8799 Planetary System

    NASA Astrophysics Data System (ADS)

    Hinkley, Sasha; Carpenter, John M.; Ireland, Michael J.; Kraus, Adam L.

    2011-04-01

    We report the results of Keck L'-band non-redundant aperture masking of HR 8799, a system with four confirmed planetary mass companions at projected orbital separations of 14-68 AU. We use these observations to place constraints on the presence of planets and brown dwarfs at projected orbital separations inside of 10 AU—separations out of reach to more conventional direct imaging methods. No companions were detected at better than 99% confidence between orbital separations of 0.8 and 10 AU. Assuming an age of 30 Myr and adopting the Baraffe models, we place upper limits to planetary mass companions of 80, 60, and 11 M Jup at projected orbital separations of 0.8, 1, and 3-10 AU, respectively. Our constraints on massive companions to HR 8799 will help clarify ongoing studies of the orbital stability of this multi-planet system, and may illuminate future work dedicated to understanding the dust-free hole interior to ~6 AU.

  10. Target Selection for the LBTI Hunt for Observable Signatures of Terrestrial Planetary Systems

    NASA Astrophysics Data System (ADS)

    Roberge, A.; Weinberger, A.; Kennedy, G.; Defrère, D.; LBTI Instrument; Science Teams

    2014-03-01

    The Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) on the Large Binocular Telescope Interferometer (LBTI) will survey nearby stars for faint exozodiacal dust (exozodi). This warm circumstellar dust, analogous to the interplanetary dust found in the vicinity of the Earth in our own system, is produced in comet breakups and asteroid collisions. Exozodi will be the major source of astrophysical noise for a future space telescope aimed at direct imaging and spectroscopy of habitable zone terrestrial planets (exo-Earths). About 20% of nearby field stars have cold dust coming from planetesimals at large distances from the stars (Eiroa et al. 2013). Much less is known about exozodi; current detection limits for individual stars are at best ~ 500 times our solar system's level (aka. 500 zodi). LBTI-HOSTS will be the first survey capable of measuring exozodi at the 10 zodi level (3s). Detections of warm dust will also reveal new information about planetary system architectures and evolution. We describe the target star selection by the LBTI Science Team to satisfy the goals of the HOSTS survey - to inform mission design and target selection for a future exo-Earth mission. We are interested in both 1) actual stars likely to be observed by such a mission and 2) stars whose observation will enable sensible extrapolations for stars that cannot be observed with LBTI. We integrated two approaches to generate the HOSTS target list. The mission-driven approach concentrates on F, G, and K-type stars that are the best targets for future direct observations of exo-Earths, thereby providing model-independent "ground truth" dust observations. However, not every potential target of a future exo-Earth mission can be observed with LBTI. The sensitivity-driven approach selects targets based on maximizing the exozodi sensitivity that can be achieved, without consideration of exo-Earth mission constraints. This naturally chooses more luminous stars (A and early F

  11. Target Selection for the LBTI Hunt for Observable Signatures of Terrestrial Planetary Systems

    NASA Astrophysics Data System (ADS)

    Weinberger, Alycia J.; Roberge, A.; Kennedy, G.; Hinz, P.; Bryden, G.; Defrere, D.; Wyatt, M.; Stapelfeldt, K. R.; Rieke, G.; Danchi, W. C.; Mennesson, B.; Millan-Gabet, R.; Serabyn, G.; Skemer, A.; LBTI-HOSTS

    2014-01-01

    The Hunt for Observable Signatures of Terrestrial planetary Systems (HOSTS) on the Large Binocular Telescope Interferometer (LBTI) will survey nearby stars for faint exozodiacal dust (exozodi). About 20% of field stars have cold debris disks created by the collisions and evaporation of planetesimals. Much less is known about warm circumstellar dust, such as that found in the vicinity of the Earth in our own system. This dust is generated in asteroidal collisions and cometary breakups, and current detection limits are at best ~500 times our system's level, i.e. 500 zodi. LBTI-HOSTS will be the first survey capable of measuring exozodi at the 10 zodi level (3σ). Exozodi of this brightness would be the major source of astrophysical noise for a future space telescope aimed at direct imaging and spectroscopy of habitable zone terrestrial planets. Detections of warm dust will also reveal new information about planetary system architectures and evolution. We describe the target star selection by the LBTI Science Team to satisfy the goals of the HOSTS survey -- to fully inform target selection for a future exoEarth mission. We are interested in actual stars likely to be observed by a mission and stars whose observation will enable sensible extrapolations to those stars that cannot be observed. We integrated two approaches to generate the HOSTS target list. The mission-driven approach concentrates on F, G, and K-type stars that are the best targets for future direct observations of exoEarths, thereby providing model-independent “ground truth” dust observations. However, not every potential target of a future exoEarth mission can be observed with LBTI. The sensitivity-driven approach selects targets based only on what exozodi sensitivity could be achieved, without consideration of exoEarth mission constraints. This naturally selects more luminous stars (A and early F-type stars). In both cases, all stars are close enough to Earth such that their habitable zones are

  12. Confrontation Between a Quantized Periods of Some Exo-planetary Systems and Observations

    NASA Astrophysics Data System (ADS)

    El Fady Morcos, Abd

    2012-07-01

    Confrontation Between a Quantized Periods of Some Exo-planetary Systems and Observations A.B. Morcos Corot and Kepler were designed to detect Earth-like extra solar planets. The orbital elements and periods of these planets will contain some uncertainties. Many theoretical treatments depend on the idea of quantization were done aiming to find orbital elements of these exoplenets. In the present work, as an extension of previous works, the periods of some extoplanetary systems are calculated by using a simple derived formula. The orbital velocities of some of them are predicted . A comparison between the calculated and observed data is done References 1-J.M. Barnothy , the stability of the Solar System and of small Stellar Systems . (Y.Kazai edn,IAU,1974). 2-L.Nottale,Fractal Space-Time and Microphysics,Towards a Theory of Scale Relativity,( World Scientific, London,1994). 3-L. Nottale, A&A Lett. 315, L9 (1996). 4-L. Nottale, G. Schumacher and J. Gay, A&A , 322, 1018 , (1997). 5-L. Nottale, A&A , 361, 379 (2000). 6-A.G. Agnese and R.Festa, arXiv:astro-ph/9807186v1, (1998). 7-A.G. Agnese and R.Festa, arXiv:astro-ph/9910534v2. (1999). 8- A.B.Morcos, MG 12 , France (2009). 9- A.B.Morcs, Cospar 38 , Bremen , Germany (2010)

  13. The Birth of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    1997-01-01

    Models of planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large- enough to gravitationally trap substantial quantities of gas. Another potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  14. Planetary Ringmoon Systems

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Morrison, David (Technical Monitor)

    1994-01-01

    The last decade has seen an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Much of the structure revealed was thoroughly puzzling and fired the imagination of workers in a variety of disciplines. Consequently, we have also seen steady progress in our understanding of these systems as our intuitions (and our computers) catch up with the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron to-several-meter size particles which comprise ring systems (refs 1-5). The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems and families of regular satellites are invariably found together, and there is an emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system.

  15. Exploring Extrasolar Planetary Systems: New Observations of Extrasolar Planets Enabled by the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2012-01-01

    The search for extrasolar planets has been increasingly success over the last few years. In excess of 700 systems are now known, and Kepler has approx.2500 additional candidate systems, yet to be confirmed. Recently, progress has also been made in directly imaging extrasolar planets, both from the ground and in space. In this presentation will discuss the techniques employed to discover planetary systems, and highlight the capabilities, enabled by the James Webb Space Telescope (JWST). JWST is a large 6.5 meter aperture infrared telescope that is scheduled for launch in 2018, and will allow us to transition to characterizing the properties of these extrasolar planets and the planetary systems in which they reside.

  16. PREDICTING THE CONFIGURATION OF A PLANETARY SYSTEM: KOI-152 OBSERVED BY KEPLER

    SciTech Connect

    Wang Su; Ji Jianghui; Zhou Jilin E-mail: jijh@pmo.ac.cn

    2012-07-10

    The recent Kepler discovery of KOI-152 reveals a system of three hot super-Earth candidates that are in or near a 4:2:1 mean motion resonance. It is unlikely that they formed in situ; the planets probably underwent orbital migration during the formation and evolution process. The small semimajor axes of the three planets suggest that migration stopped at the inner edge of the primordial gas disk. In this paper, we focus on the influence of migration halting mechanisms, including migration 'dead zones', and inner truncation by the stellar magnetic field. We show that the stellar accretion rate, stellar magnetic field, and the speed of migration in the protoplanetary disk are the main factors affecting the final configuration of KOI-152. Our simulations suggest that three planets may be around a star with low star accretion rate or with high magnetic field. On the other hand, slow type I migration, which decreases to one-tenth of the linear analysis results, favors forming the configuration of KOI-152. Under such a formation scenario, the planets in the system are not massive enough to open gaps in the gas disk. The upper limits of the planetary masses are estimated to be about 15, 19, and 24 M{sub Circled-Plus }, respectively. Our results are also indicative of the near Laplacian configurations that are quite common in planetary systems.

  17. The Dynamics of the WASP-47 Planetary System: A Hot Jupiter, Two Additional Planets, and Observable Transit Timing Variations

    NASA Astrophysics Data System (ADS)

    Adams, Fred C.; Becker, Juliette C.; Vanderburg, Andrew; Rappaport, Saul; Schwengeler, Hans Martin

    2015-12-01

    New data from the K2 mission indicate that WASP-47, a previously known Hot Jupiter host, also hosts two additional transiting planets: a Neptune-sized outer planet and a super-Earth inner companion. The measured period ratios and size ratios for these planets are unusual (extreme) for Hot Jupiter systems. We measure the planetary properties from the K2 light curve and detect transit timing variations, thereby confirming the planetary nature of the outer planet. We performed a large ensemble of numerical simulations to study the dynamical stability of the system and to find the theoretically expected transit timing variations (TTVs). The system is stable provided that the orbital eccentricities are small. The theoretically predicted TTVs are in good agreement with those observed, and we use the TTVs to determine the masses of two planets, and place a limit on the third. The WASP-47 planetary system is important because the companion planets can both be inferred by TTVs and are also detected directly through transit observations. The depth of the Hot Jupiter’s transits make ground-based TTV measurements possible, and the brightness of the host star makes it amenable for precise radial velocity measurements. The system thus serves as a Rosetta Stone for understanding TTVs as a planet detection technique. Moreover, this compact set of planets in nearly circular, coplanar orbits demonstrates that at least a subset of Jupiter-size planets can migrate in close to their host star in a dynamically quiet manner. As final curiosity, WASP-47 hosts one of few extrasolar planetary systems that can observe Earth in transit.

  18. MODELING PLANETARY SYSTEM FORMATION WITH N-BODY SIMULATIONS: ROLE OF GAS DISK AND STATISTICS COMPARED TO OBSERVATIONS

    SciTech Connect

    Liu Huigen; Zhou Jilin; Wang Su

    2011-05-10

    During the late stage of planet formation, when Mars-sized cores appear, interactions among planetary cores can excite their orbital eccentricities, accelerate their merging, and thus sculpt their final orbital architecture. This study contributes to the final assembling of planetary systems with N-body simulations, including the type I or II migration of planets and gas accretion of massive cores in a viscous disk. Statistics on the final distributions of planetary masses, semimajor axes, and eccentricities are derived and are comparable to those of the observed systems. Our simulations predict some new orbital signatures of planetary systems around solar mass stars: 36% of the surviving planets are giant planets (>10 M{sub +}). Most of the massive giant planets (>30 M{sub +}) are located at 1-10 AU. Terrestrial planets are distributed more or less evenly at <1-2 AU. Planets in inner orbits may accumulate at the inner edges of either the protostellar disk (3-5 days) or its magnetorotational instability dead zone (30-50 days). There is a planet desert in the mass-eccentricity diagram, i.e., a lack of planets with masses 0.005-0.08M{sub J} in highly eccentric orbits (e > 0.3-0.4). The average eccentricity ({approx}0.15) of the giant planets (>10 M{sub +}) is greater than that ({approx}0.05) of the terrestrial planets (<10 M{sub +}). A planetary system with more planets tends to have smaller planet masses and orbital eccentricities on average.

  19. Evolution of Planetary Ringmoon Systems

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1995-01-01

    The last few decades have seen an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of these systems as our intuition (and our computers) catch up with the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is an emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system.

  20. Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Ksanfomaliti, L. V.

    2000-11-01

    The discovery of planetary systems around alien stars is an outstanding achievement of recent years. The idea that the Solar System may be representative of planetary systems in the Galaxy in general develops upon the knowledge, current until the last decade of the 20th century, that it is the only object of its kind. Studies of the known planets gave rise to a certain stereotype in theoretical research. Therefore, the discovery of exoplanets, which are so different from objects of the Solar System, alters our basic notions concerning the physics and very criteria of normal planets. A substantial factor in the history of the Solar System was the formation of Jupiter. Two waves of meteorite bombardment played an important role in that history. Ultimately there arose a stable low-entropy state of the Solar System, in which Jupiter and the other giants in stable orbits protect the inner planets from impacts by dangerous celestial objects, reducing this danger by many orders of magnitude. There are even variants of the anthropic principle maintaining that life on Earth owes its genesis and development to Jupiter. Some 20 companions more or less similar to Jupiter in mass and a few ``infrared dwarfs,'' have been found among the 500 solar-type stars belonging to the main sequence. Approximately half of the exoplanets discovered are of the ``hot-Jupiter'' type. These are giants, sometimes of a mass several times that of Jupiter, in very low orbits and with periods of 3-14 days. All of their parent stars are enriched with heavy elements, [Fe/H] = 0.1-0.2. This may indicate that the process of exoplanet formation depends on the chemical composition of the protoplanetary disk. The very existence of exoplanets of the hot-Jupiter type considered in the context of new theoretical work comes up against the problem of the formation of Jupiter in its real orbit. All the exoplanets in orbits with a semimajor axis of more than 0.15-0.20 astronomical units (AU) have orbital

  1. Planetary System Physics

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    2002-01-01

    Contents include a summary of publications followed by their abstracts titeled: 1. On microlensing rates and optical depth toward the Galactic center. 2. Newly discovered brown dwarfs not seen in microlensing timescale frequency distribution? 3. Origin and evolution of the natural satellites. 4. Probing the structure of the galaxy with microlensing. 5. Tides, Encyclopedia of Astronomy and Astrophysics. 6. The Puzzle of the Titan-Hyperion 4:3 Orbital Resonance. 7. On the Validity of the Coagulation Equation and the Nature of Runaway Growth. 8. Making Hyperion. 9. The MESSENGER mission to Mercury: Scientific objectives and implementation. 10. A Survey of Numerical Solutions to the Coagulation. 11. Probability of detecting a planetary companion during a microlensing event. 12. Dynamics and origin of the 2:l orbital resonances of the GJ876 planets. 13. Planetary Interior Structure Revealed by Spin Dynamics. 14. A primordial origin of the Laplace relation among the Galilean Satellites. 15. A procedure for determining the nature of Mercury's core. 16. Secular evolution of hierarchical planetary systems. 17. Tidally induced volcanism. 18. Extrasolar planets and mean motion resonances. 19. Comparison of a ground-based microlensing search for planets with a search from space.

  2. The Detection of Other Planetary Systems.

    ERIC Educational Resources Information Center

    Black, David C.

    1980-01-01

    This article reviews the historical and current observational status of searches for other planetary systems, discusses the nature of the observational problem, and indicates the prospects for success in the future. (DS)

  3. Finding the Needle in the Haystack: High-Fidelity Models of Planetary Systems for Simulating Exoplanet Observations

    NASA Astrophysics Data System (ADS)

    Lincowski, Andrew; Roberge, Aki; Stark, Christopher C.; Wilkins, Ashlee N.; Nesvold, Erika; Haystacks Team

    2015-01-01

    Future missions to characterize exoplanets will require instruments tailored to the problem of finding a habitable exoplanet: suppressing the bright star while still directly observing planets at small angular separations. This problem is compounded by interplanetary dust, which will likely be a significant source of astrophysical background noise. Instrument parameters must be constrained with detailed performance simulations, which must then be analyzed to determine if the instruments are capable of discerning the desired exoplanet characteristics. One valuable characteristic is the mass of the planet. A constraint on a planet's mass can quickly show if it is likely to be a rocky terrestrial planet, which may have the potential to form life as we know it. Unfortunately, it is difficult to measure the masses of small planets with traditional indirect techniques (e.g. radial velocity).A planet's gravitational effects on nearby interplanetary dust (or 'exozodi') can be more easily observed than the planet itself. A single observation of a planetary disk could constrain the mass of an exoplanet if the dust distribution varies sufficiently to be distinguished by future instruments. The NASA Haystacks team (PI: A. Roberge) has completed preliminary high-fidelity spectral image cubes of our entire Solar System at visible and near-infrared wavelengths, including star & planet spectra and scattered light from dust. In addition to these models, we present new planetary system architectures designed to test whether we can distinguish between mini-Neptune-mass planets and Earth-mass planets by their effects on the dust structure. These spectral image cubes will be processed through instrument simulators, allowing comparison of known disk structure with simulated observations of the disk. The results will help inform future exoplanet telescope missions in development (e.g. WFIRST/AFTA and ATLAST).Spectral image cubes will be available for download from a NASA website once

  4. LBT observations of the HR 8799 planetary system. First detection of HR 8799e in H band

    NASA Astrophysics Data System (ADS)

    Esposito, S.; Mesa, D.; Skemer, A.; Arcidiacono, C.; Claudi, R. U.; Desidera, S.; Gratton, R.; Mannucci, F.; Marzari, F.; Masciadri, E.; Close, L.; Hinz, P.; Kulesa, C.; McCarthy, D.; Males, J.; Agapito, G.; Argomedo, J.; Boutsia, K.; Briguglio, R.; Brusa, G.; Busoni, L.; Cresci, G.; Fini, L.; Fontana, A.; Guerra, J. C.; Hill, J. M.; Miller, D.; Paris, D.; Pinna, E.; Puglisi, A.; Quiros-Pacheco, F.; Riccardi, A.; Stefanini, P.; Testa, V.; Xompero, M.; Woodward, C.

    2013-01-01

    We have performed H and KS band observations of the planetary system around HR 8799 using the new AO system at the Large Binocular Telescope and the PISCES Camera. The excellent instrument performance (Strehl ratios up to 80% in H band) enabled the detection of the innermost planet, HR 8799e, at H band for the first time. The H and KS magnitudes of HR 8799e are similar to those of planets c and d, with planet e being slightly brighter. Therefore, HR 8799e is likely slightly more massive than c and d. We also explored possible orbital configurations and their orbital stability. We confirm that the orbits of planets b, c and e are consistent with being circular and coplanar; planet d should have either an orbital eccentricity of about 0.1 or be non-coplanar with respect to b and c. Planet e can not be in circular and coplanar orbit in a 4:2:1 mean motion resonances with c and d, while coplanar and circular orbits are allowed for a 5:2 resonance. The analysis of dynamical stability shows that the system is highly unstable or chaotic when planetary masses of about 5 MJ for b and 7 MJ for the other planets are adopted. Significant regions of dynamical stability for timescales of tens of Myr are found when adopting planetary masses of about 3.5, 5, 5, and 5 MJ for HR 8799b, c, d, and e respectively. These masses are below the current estimates based on the stellar age (30 Myr) and theoretical models of substellar objects. The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota and University of Virginia.

  5. On the Diversity of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    Models of planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. Modern theories of star and planet formation, which are based upon observations of the Solar System and of young stars and their environments, predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  6. Theoretical and observational planetary physics

    NASA Technical Reports Server (NTRS)

    Caldwell, J.

    1986-01-01

    This program supports NASA's deep space exploration missions, particularly those to the outer Solar System, and also NASA's Earth-orbital astronomy missions, using ground-based observations, primarily with the NASA IRTF at Mauna Kea, Hawaii, and also with such instruments as the Kitt Peak 4 meter Mayall telescope and the NRAO VLA facility in Socorro, New Mexico. An important component of the program is the physical interpretation of the observations. There were two major scientific discoveries resulting from 8 micrometer observations of Jupiter. The first is that at that wavelength there are two spots, one near each magnetic pole, which are typically the brightest and therefore warmest places on the planet. The effect is clearly due to precipitating high energy magnetospheric particles. A second ground-based discovery is that in 1985, Jupiter exhibited low latitude (+ or - 18 deg.) stratospheric wave structure.

  7. The search for forming planetary systems

    NASA Astrophysics Data System (ADS)

    Sargent, A. I.; Beckwith, S. V. W.

    1993-04-01

    The paper considers the probable sequence of events in the evolution of the solar system and examines examples of other stars observed in some of the gestational stages of planetary formation, which was made possible by recently developed technology, such as the Caltech's millimeter-wave array and IRAM millimeter-wave telescope. Indirect evidence obtained on the formation and evolution of a planetary system is described. Today's evidence strongly suggests that the solar system is not unique and that planetary systems are abundant in the Galaxy.

  8. Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel

    NASA Astrophysics Data System (ADS)

    Marshall, J. P.; Moro-Martín, A.; Eiroa, C.; Kennedy, G.; Mora, A.; Sibthorpe, B.; Lestrade, J.-F.; Maldonado, J.; Sanz-Forcada, J.; Wyatt, M. C.; Matthews, B.; Horner, J.; Montesinos, B.; Bryden, G.; del Burgo, C.; Greaves, J. S.; Ivison, R. J.; Meeus, G.; Olofsson, G.; Pilbratt, G. L.; White, G. J.

    2014-05-01

    Context. Stars form surrounded by gas- and dust-rich protoplanetary discs. Generally, these discs dissipate over a few (3-10) Myr, leaving a faint tenuous debris disc composed of second-generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main-sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own solar system, with its eight planets and two debris belts, is a prime example of an end state of this process. Aims: The Herschel DEBRIS, DUNES, and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100, and 160 μm with the sensitivity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the solar system's Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis. Methods: We have fitted the flux densities measured from recent Herschel observations with a simple two parameter (Td, LIR/L⋆) black-body model (or to the 3σ upper limits at 100 μm). From this uniform approach we calculated the fractional luminosity, radial extent and dust temperature. We then plotted the calculated dust luminosity or upper limits against the stellar properties, e.g. effective temperature, metallicity, and age, and identified correlations between these parameters. Results: A total of eleven debris discs are identified around the 37 stars in the sample. An incidence of ten cool debris discs around the Sun-like exoplanet host stars (29 ± 9%) is consistent with the detection rate found by DUNES (20.2 ± 2.0%). For the debris disc systems, the dust temperatures range from 20 to 80 K, and fractional

  9. Post-main-sequence planetary system evolution.

    PubMed

    Veras, Dimitri

    2016-02-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries. PMID:26998326

  10. Post-main-sequence planetary system evolution

    PubMed Central

    Veras, Dimitri

    2016-01-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries. PMID:26998326

  11. Post-main-sequence planetary system evolution.

    PubMed

    Veras, Dimitri

    2016-02-01

    The fates of planetary systems provide unassailable insights into their formation and represent rich cross-disciplinary dynamical laboratories. Mounting observations of post-main-sequence planetary systems necessitate a complementary level of theoretical scrutiny. Here, I review the diverse dynamical processes which affect planets, asteroids, comets and pebbles as their parent stars evolve into giant branch, white dwarf and neutron stars. This reference provides a foundation for the interpretation and modelling of currently known systems and upcoming discoveries.

  12. Theory of Planetary System Formation

    NASA Technical Reports Server (NTRS)

    Cassen, Patrick

    1996-01-01

    Observations and theoretical considerations support the idea that the Solar System formed by the collapse of tenuous interstellar matter to a disk of gas and dust (the primitive solar nebula), from which the Sun and other components separated under the action of dissipative forces and by the coagulation of solid material. Thus, planets are understood to be contemporaneous byproducts of star formation. Because the circumstellar disks of new stars are easier to observe than mature planetary systems, the possibility arises that the nature and variety of planets might be studied from observations of the conditions of their birth. A useful theory of planetary system formation would therefore relate the properties of circumstellar disks both to the initial conditions of star formation and to the consequent properties of planets to those of the disk. Although the broad outlines of such a theory are in place, many aspects are either untested, controversial, or otherwise unresolved; even the degree to which such a comprehensive theory is possible remains unknown.

  13. Submission of Earth-based ring occultation observations to the NASA planetary data system rings discipline node

    NASA Technical Reports Server (NTRS)

    French, Richard G.

    1993-01-01

    This is a technical report summarizing our progress in our program of contributing high quality Earth-based occultation observations to NASA's Planetary Data System (PDS) Rings Node. During our first year of funding, we selected five data sets for eventual inclusion in the PDS Rings Node. These were Uranus occultation observations obtained by the PI and co-workers from the IRTF of event stars U34 (26 April 1986), U1052 (5 May 1988), U65 (21 June 1990), U7872 (25 June 1991), and U7808 (28 June 1991). In our original proposal, we described four tasks: data sets to a common format; documentation of the occultation observations and associated calibrations; calculation of the occultation geometry for each event; establish prototype PDS templates. As discussed in our renewal proposal, submitted 8 June 1993, we have completed the first three tasks, and are working on the fourth. As an indication of our progress to date, we provide information about each of the data sets, their formats, the documentation, and the method used for reconstructing the occultation geometry.

  14. Sensor requirements for Earth and planetary observations

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.

    1990-01-01

    Future generations of Earth and planetary remote sensing instruments will require extensive developments of new long-wave and very long-wave infrared detectors. The upcoming NASA Earth Observing System (EOS) will carry a suite of instruments to monitor a wide range of atmospheric and surface parameters with an unprecedented degree of accuracy for a period of 10 to 15 years. These instruments will observe Earth over a wide spectral range extending from the visible to nearly 17 micrometers with a moderate to high spectral and spacial resolution. In addition to expected improvements in communication bandwidth and both ground and on-board computing power, these new sensor systems will need large two-dimensional detector arrays. Such arrays exist for visible wavelengths and, to a lesser extent, for short wavelength infrared systems. The most dramatic need is for new Long Wavelength Infrared (LWIR) and Very Long Wavelength Infrared (VLWIR) detector technologies that are compatible with area array readout devices and can operate in the temperature range supported by long life, low power refrigerators. A scientific need for radiometric and calibration accuracies approaching 1 percent translates into a requirement for detectors with excellent linearity, stability and insensitivity to operating conditions and space radiation. Current examples of the kind of scientific missions these new thermal IR detectors would enhance in the future include instruments for Earth science such as Orbital Volcanological Observations (OVO), Atmospheric Infrared Sounder (AIRS), Moderate Resolution Imaging Spectrometer (MODIS), and Spectroscopy in the Atmosphere using Far Infrared Emission (SAFIRE). Planetary exploration missions such as Cassini also provide examples of instrument concepts that could be enhanced by new IR detector technologies.

  15. On the Migratory Behavior of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Dawson, Rebekah Ilene

    For centuries, an orderly view of planetary system architectures dominated the discourse on planetary systems. However, there is growing evidence that many planetary systems underwent a period of upheaval, during which giant planets "migrated" from where they formed. This thesis addresses a question key to understanding how planetary systems evolve: is planetary migration typically a smooth, disk-driven process or a violent process involving strong multi-body gravitational interactions? First, we analyze evidence from the dynamical structure of debris disks dynamically sculpted during planets' migration. Based on the orbital properties our own solar systems Kuiper belt, we deduce that Neptune likely underwent both planet-planet scattering and smooth migration caused by interactions with leftover planetesimals. In another planetary system, beta Pictoris, we find that the giant planet discovered there must be responsible for the observed warp of the systems debris belt, reconciling observations that suggested otherwise. Second, we develop two new approaches for characterizing planetary orbits: one for distinguishing the signal of a planets orbit from aliases, spurious signals caused by gaps in the time sampling of the data, and another to measure the eccentricity of a planet's orbit from transit photometry, "the photoeccentric effect." We use the photoeccentric effect to determine whether any of the giant planets discovered by the Kepler Mission are currently undergoing planetary migration on highly elliptical orbits. We find a lack of such "super-eccentric" Jupiters, allowing us to place an upper limit on the fraction of hot Jupiters created by the stellar binary Kozai mechanism. Finally, we find new correlations between the orbital properties of planets and the metallicity of their host stars. Planets orbiting metal-rich stars show signatures of strong planet-planet gravitational interactions, while those orbiting metal-poor stars do not. Taken together, the

  16. IUE observations of Beta Pictoris - An IRAS candidate for a proto-planetary system

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Bruhweiler, F. C.

    1985-01-01

    The results of a preliminary analysis of high-resolution and low-resolution UV spectra of the edge-on extended-disk shell star Beta Pic, obtained with the IUE SWP and LWR instruments on November 5-6, 1984, are reported and compared with IRAS and ground-based observations. No selective UV extinction is detected, and the fine structure of the Fe II and C I absorption lines and the presence of metastable Fe II lines are considered consistent with a circumstellar nebula or extended envelope of density greater than 1000/cu cm and electron density (1-10) x 10 to the 8th/cu cm or less at 1-2 AU from the central star. The possibility that the extended orbiting disk is clumpy, as observed by Smith and Terrile (1985), is discussed.

  17. Secular Resonances In Planetary Systems

    NASA Astrophysics Data System (ADS)

    Malhotra, Renu

    2006-06-01

    Secular effects introduce very low frequencies in planetary systems. The consequences are quite varied. They include mundane effects on the planetary ephemerides and on Earthly seasons, but also more esoteric effects such as apsidal alignment or anti-alignment, fine-splitting of mean motion resonances, broadening of chaotic zones, and dramatic orbital instabilities. Secular effects may shape the overall architecture of mature planetary systems by determining the long term stability of major and minor planetary bodies. This talk will be partly tutorial and partly a review of secular resonance phenomena here in the solar system and elsewhere in extra-solar systems. I acknowledge research support from NASA-Origins of Solar Systems and NASA-Outer Planets research programs.

  18. IUE observations of new A star candidate proto-planetary systems

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    1994-01-01

    As a result of the detection of accreting gas in the A5e PMS Herbig Ae star, HR 5999, most of the observations for this IUE program were devoted to Herbig Ae stars rather than to main sequence A stars. Mid-UV emission at optical minimum light was detected for UX Ori (A1e), BF Ori (A5e), and CQ Tau (F2e). The presence of accreting gas in HD 45677 and HD 50138 prompted reclassification of these stars as Herbig Be stars rather than as protoplanetary nebulae. Detailed results are discussed.

  19. Resonance Trapping in Planetary Systems

    NASA Astrophysics Data System (ADS)

    Pour, Nader H.

    1998-09-01

    We study dynamics of a planetary system that consists of a star and two planets taking into account dynamical friction. Numerical integrations of a restricted planar circular three body model of this system indicate resonance capture. The main purpose of this paper is to present the results of an extensive numerical experiment performed on this model and also to present analytical arguments for the observed resonance trapping and its consequences. The equations of motion are written in terms of Delaunay variables and the recently developed method of partial averaging near resonance* is employed in order to account for the behavior of the system at resonance. * C.Chicone, B.Mashhoon and D.Retzloff, Ann.Inst.Henri Poincare, Vol.64, no 1, 1996, p.87-125.

  20. SPICE Supports Planetary Science Observation Geometry

    NASA Astrophysics Data System (ADS)

    Hall Acton, Charles; Bachman, Nathaniel J.; Semenov, Boris V.; Wright, Edward D.

    2015-11-01

    "SPICE" is an information system, comprising both data and software, providing scientists with the observation geometry needed to plan observations from instruments aboard robotic spacecraft, and to subsequently help in analyzing the data returned from those observations. The SPICE system has been used on the majority of worldwide planetary exploration missions since the time of NASA's Galileo mission to Jupiter. Along with its "free" price tag, portability and the absence of licensing and export restrictions, its stable, enduring qualities help make it a popular choice. But stability does not imply rigidity-improvements and new capabilities are regularly added. This poster highlights recent additions that could be of interest to planetary scientists.Geometry Finder allows one to find all the times or time intervals when a particular geometric condition exists (e.g. occultation) or when a particular geometric parameter is within a given range or has reached a maximum or minimum.Digital Shape Kernel (DSK) provides means to compute observation geometry using accurately modeled target bodies: a tessellated plate model for irregular bodies and a digital elevation model for large, regular bodies.WebGeocalc (WGC) provides a graphical user interface (GUI) to a SPICE "geometry engine" installed at a mission operations facility, such as the one operated by NAIF. A WGC user need have only a computer with a web browser to access this geometry engine. Using traditional GUI widgets-drop-down menus, check boxes, radio buttons and fill-in boxes-the user inputs the data to be used, the kind of calculation wanted, and the details of that calculation. The WGC server makes the specified calculations and returns results to the user's browser.Cosmographia is a mission visualization program. This tool provides 3D visualization of solar system (target) bodies, spacecraft trajectory and orientation, instrument field-of-view "cones" and footprints, and more.The research described in this

  1. Migration-induced architectures of planetary systems.

    PubMed

    Szuszkiewicz, Ewa; Podlewska-Gaca, Edyta

    2012-06-01

    The recent increase in number of known multi-planet systems gives a unique opportunity to study the processes responsible for planetary formation and evolution. Special attention is given to the occurrence of mean-motion resonances, because they carry important information about the history of the planetary systems. At the early stages of the evolution, when planets are still embedded in a gaseous disc, the tidal interactions between the disc and planets cause the planetary orbital migration. The convergent differential migration of two planets embedded in a gaseous disc may result in the capture into a mean-motion resonance. The orbital migration taking place during the early phases of the planetary system formation may play an important role in shaping stable planetary configurations. An understanding of this stage of the evolution will provide insight on the most frequently formed architectures, which in turn are relevant for determining the planet habitability. The aim of this paper is to present the observational properties of these planetary systems which contain confirmed or suspected resonant configurations. A complete list of known systems with such configurations is given. This list will be kept by us updated from now on and it will be a valuable reference for studying the dynamics of extrasolar systems and testing theoretical predictions concerned with the origin and the evolution of planets, which are the most plausible places for existence and development of life.

  2. Migration-induced architectures of planetary systems.

    PubMed

    Szuszkiewicz, Ewa; Podlewska-Gaca, Edyta

    2012-06-01

    The recent increase in number of known multi-planet systems gives a unique opportunity to study the processes responsible for planetary formation and evolution. Special attention is given to the occurrence of mean-motion resonances, because they carry important information about the history of the planetary systems. At the early stages of the evolution, when planets are still embedded in a gaseous disc, the tidal interactions between the disc and planets cause the planetary orbital migration. The convergent differential migration of two planets embedded in a gaseous disc may result in the capture into a mean-motion resonance. The orbital migration taking place during the early phases of the planetary system formation may play an important role in shaping stable planetary configurations. An understanding of this stage of the evolution will provide insight on the most frequently formed architectures, which in turn are relevant for determining the planet habitability. The aim of this paper is to present the observational properties of these planetary systems which contain confirmed or suspected resonant configurations. A complete list of known systems with such configurations is given. This list will be kept by us updated from now on and it will be a valuable reference for studying the dynamics of extrasolar systems and testing theoretical predictions concerned with the origin and the evolution of planets, which are the most plausible places for existence and development of life. PMID:22684330

  3. The Birth of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1997-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments, and they predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  4. The Birth of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Lissaur, Jack L.

    1997-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates.

  5. Architectures of Planetary System - Snapshots in Time

    NASA Astrophysics Data System (ADS)

    Montgomery, Michele; Goel, Amit

    2015-08-01

    Architectures of planetary systems are observable snapshots in time, a study of which can aide in our understanding of how planetary systems form and evolve dynamically. For example, if we compare architectures of exoplanetary systems having various stellar host ages with laws that apply to our own Solar System architecture, population, and age, we gain insights into when these laws hold with stellar age and which systems are outliers at various stellar ages. In this work, we study Keplerian motion in confirmed planetary systems as a function of stellar age. Systems eliminated from the study are those with unknown planetary orbital periods, unknown planetary semi-major axis, and/or unknown stellar ages, the latter of which eliminates several Kepler multi-planet systems. As expected, we find Keplerian motion holds for systems that are the age of the Solar System or older, but this result does not seem to hold true for younger systems. In this work we discuss these findings, we identify the outlier systems at various stellar ages from our statistical analysis, and we provide explanations as to why these exo-systems are outliers.

  6. Planetary Data System (PDS) Strategic Roadmap

    NASA Astrophysics Data System (ADS)

    Law, Emily; McNutt, Ralph; Crichton, Daniel J.; Morgan, Tom

    2016-07-01

    The Planetary Data System (PDS) archives and distributes scientific data from NASA planetary missions, astronomical observations, and laboratory measurements. NASA's Science Mission Directorate (SMD) sponsors the PDS. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research. The Planetary Science Division (PSD) within the SMD at NASA Headquarters has directed the PDS to set up a Roadmap team to formulate a PDS Roadmap for the period 2017-2026. The purpose of this activity is to provide a forecast of both the rapidly changing Information Technology (IT) environment and the changing expectations of the planetary science communities with respect to Planetary Data archives including, specifically, increasing assessability to all planetary data. The Roadmap team will also identify potential actions that could increase interoperability with other archive and curation elements within NASA and with the archives of other National Space Agencies. The Roadmap team will assess the current state of the PDS and report their findings to the PSD Director by April 15, 2017. This presentation will give an update of this roadmap activity and serve as an opportunity to engage the planetary community at large to provide input to the Roadmap.

  7. Modelling resonant planetary systems

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, V.

    2012-09-01

    Many discovered multi-planet systems are in meanmotion resonances. The aim of this work is to study dynamical processes leading to the formation of resonant configurations on the basis of a unified model described earlier [1]. The model includes gravitational interactions of planets and migration of planets due to the presence of a gas disc. For the observed systems 24 Sex, HD 37124, HD 73526, HD 82943, HD 128311, HD 160691, Kepler 9, NN Ser with planets moving in the 2:1 resonance, it is shown that the capture in this resonance occurs at very wide ranges of parameters of both type I and type II migration. Conditions of migration leading to the formation of the resonant systems HD 45364 и HD 200964 (3:2 and 4:3, respectively) are obtained. Formation scenarios are studied for the systems HD 102272, HD 108874, HD 181433, HD 202206 with planets in high order resonances. We discuss also how gravitational interactions of planets and planetesimal discs lead to the breakup of resonant configurations and the formation of systems similar to the 47 UMa system.

  8. Stability of inner planetary systems

    NASA Technical Reports Server (NTRS)

    Szebehely, V.

    1979-01-01

    The stability of inner planetary systems with arbitrary mass ratios is studied on the basis of the model of the plane restricted three-body problem. A quantitative stability criterion is obtained in terms of the difference between the critical value of the Jacobi constants (at which bifurcation can occur) and the critical value corresponding to a planetary orbit. An orbit is stable if it cannot leave a region that contains only the larger central body (Hill). For small values of the mass parameter, the maximum dimensionless radius of a Hill-stable orbit is 1 minus 2.4 times the cube root of the mass parameter.

  9. Mathematical optimization of matter distribution for a planetary system configuration

    NASA Astrophysics Data System (ADS)

    Morozov, Yegor; Bukhtoyarov, Mikhail

    2016-07-01

    Planetary formation is mostly a random process. When the humanity reaches the point when it can transform planetary systems for the purpose of interstellar life expansion, the optimal distribution of matter in a planetary system will determine its population and expansive potential. Maximization of the planetary system carrying capacity and its potential for the interstellar life expansion depends on planetary sizes, orbits, rotation, chemical composition and other vital parameters. The distribution of planetesimals to achieve maximal carrying capacity of the planets during their life cycle, and maximal potential to inhabit other planetary systems must be calculated comprehensively. Moving much material from one planetary system to another is uneconomic because of the high amounts of energy and time required. Terraforming of the particular planets before the whole planetary system is configured might drastically decrease the potential habitability the whole system. Thus a planetary system is the basic unit for calculations to sustain maximal overall population and expand further. The mathematical model of optimization of matter distribution for a planetary system configuration includes the input observed parameters: the map of material orbiting in the planetary system with specified orbits, masses, sizes, and the chemical compound for each, and the optimized output parameters. The optimized output parameters are sizes, masses, the number of planets, their chemical compound, and masses of the satellites required to make tidal forces. Also the magnetic fields and planetary rotations are crucial, but they will be considered in further versions of this model. The optimization criteria is the maximal carrying capacity plus maximal expansive potential of the planetary system. The maximal carrying capacity means the availability of essential life ingredients on the planetary surface, and the maximal expansive potential means availability of uranium and metals to build

  10. Stratospheric Balloons for Planetary Science and the Balloon Observation Platform for Planetary Science (BOPPS) Mission Summary

    NASA Technical Reports Server (NTRS)

    Kremic, Tibor; Cheng, Andrew F.; Hibbitts, Karl; Young, Eliot F.; Ansari, Rafat R.; Dolloff, Matthew D.; Landis, Rob R.

    2015-01-01

    NASA and the planetary science community have been exploring the potential contributions approximately 200 questions raised in the Decadal Survey have identified about 45 topics that are potentially suitable for addressing by stratospheric balloon platforms. A stratospheric balloon mission was flown in the fall of 2014 called BOPPS, Balloon Observation Platform for Planetary Science. This mission observed a number of planetary targets including two Oort cloud comets. The optical system and instrumentation payload was able to provide unique measurements of the intended targets and increase our understanding of these primitive bodies and their implications for us here on Earth. This paper will discuss the mission, instrumentation and initial results and how these may contribute to the broader planetary science objectives of NASA and the scientific community. This paper will also identify how the instrument platform on BOPPS may be able to contribute to future balloon-based science. Finally the paper will address potential future enhancements and the expected science impacts should those enhancements be implemented.

  11. Earth-like habitats in planetary systems

    NASA Astrophysics Data System (ADS)

    Fritz, J.; Bitsch, B.; Kührt, E.; Morbidelli, A.; Tornow, C.; Wünnemann, K.; Fernandes, V. A.; Grenfell, J. L.; Rauer, H.; Wagner, R.; Werner, S. C.

    2014-08-01

    Understanding the concept of habitability is clearly related to an evolutionary knowledge of the particular planet-in-question. However, additional indications so-called "systemic aspects" of the planetary system as a whole governs a particular planet's claim on habitability. In this paper we focus on such systemic aspects and discuss their relevance to the formation of an "Earth-like" habitable planet. This contribution summarizes our results obtained by lunar sample work and numerical models within the framework of the Research Alliance "Planetary Evolution and Life". We consider various scenarios which simulate the dynamical evolution of the Solar System and discuss the consequences for the likelihood of forming an Earth-like world orbiting another star. Our model approach is constrained by observations of the modern Solar System and the knowledge of its history. Results suggest that on the one hand the long-term presence of terrestrial planets is jeopardized due to gravitational interactions if giant planets are present. On the other hand the habitability of inner rocky planets may be supported in those planetary systems hosting giant planets. Gravitational interactions within a complex multiple-body structure including giant planets may supply terrestrial planets with materials which formed in the colder region of the proto-planetary disk. During these processes, water, the prime requisite for habitability, is delivered to the inner system. This may occur either during the main accretion phase of terrestrial planets or via impacts during a post-accretion bombardment. Results for both processes are summarized and discussed with reference to the lunar crater record. Starting from a scenario involving migration of the giant planets this contribution discusses the delivery of water to Earth, the modification of atmospheres by impacts in a planetary system context and the likelihood of the existence of extrasolar Earth-like habitable worlds.

  12. The final fate of planetary systems

    NASA Astrophysics Data System (ADS)

    Gaensicke, Boris

    2015-12-01

    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly

  13. Observations and Modeling of Tropical Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Laraia, Anne

    2016-01-01

    This thesis is a comprised of three different projects within the topic of tropical atmospheric dynamics. First, I analyze observations of thermal radiation from Saturn's atmosphere and from them, determine the latitudinal distribution of ammonia vapor near the 1.5-bar pressure level. The most prominent feature of the observations is the high brightness temperature of Saturn's subtropical latitudes on either side of the equator. After comparing the observations to a microwave radiative transfer model, I find that these subtropical bands require very low ammonia relative humidity below the ammonia cloud layer in order to achieve the high brightness temperatures observed. We suggest that these bright subtropical bands represent dry zones created by a meridionally overturning circulation. Second, I use a dry atmospheric general circulation model to study equatorial superrotation in terrestrial atmospheres. A wide range of atmospheres are simulated by varying three parameters: the pole-equator radiative equilibrium temperature contrast, the convective lapse rate, and the planetary rotation rate. A scaling theory is developed that establishes conditions under which superrotation occurs in terrestrial atmospheres. The scaling arguments show that superrotation is favored when the off-equatorial baroclinicity and planetary rotation rates are low. Similarly, superrotation is favored when the convective heating strengthens, which may account for the superrotation seen in extreme global-warming simulations. Third, I use a moist slab-ocean general circulation model to study the impact of a zonally-symmetric continent on the distribution of monsoonal precipitation. I show that adding a hemispheric asymmetry in surface heat capacity is sufficient to cause symmetry breaking in both the spatial and temporal distribution of precipitation. This spatial symmetry breaking can be understood from a large-scale energetic perspective, while the temporal symmetry breaking requires

  14. The Allegheny Observatory search for planetary systems

    NASA Technical Reports Server (NTRS)

    Gatewood, George D.

    1989-01-01

    The accomplishments of the observatory's search for planetary systems are summarized. Among these were the construction, implementation, and regular use of the Multichannel Astrometric Photometer (MAP), and the design, fabrication and use of the second largest refractor objective built since 1950. The MAP parallax and planetary observing programs are described. Various developments concerning alternate solid state photodetectors and telescope instrumentation are summarized. The extreme accuracy of the system is described in relation to a study of the position and velocity of the members of the open cluster Upgren 1. The binary star system stringently tests the theory of stellar evolution since it is composed of an evolved giant F5 III and a subgiant F5 IV star. A study that attempts to measure the luminosities, surface temperatures, and masses of these stars is discussed.

  15. Liberating exomoons in white dwarf planetary systems

    NASA Astrophysics Data System (ADS)

    Payne, Matthew J.; Veras, Dimitri; Holman, Matthew J.; Gänsicke, Boris T.

    2016-03-01

    Previous studies indicate that more than a quarter of all white dwarf (WD) atmospheres are polluted by remnant planetary material, with some WDs being observed to accrete the mass of Pluto in 106 yr. The short sinking time-scale for the pollutants indicates that the material must be frequently replenished. Moons may contribute decisively to this pollution process if they are liberated from their parent planets during the post-main-sequence evolution of the planetary systems. Here, we demonstrate that gravitational scattering events amongst planets in WD systems easily trigger moon ejection. Repeated close encounters within tenths of planetary Hill radii are highly destructive to even the most massive, close-in moons. Consequently, scattering increases both the frequency of perturbing agents in WD systems, as well as the available mass of polluting material in those systems, thereby enhancing opportunities for collision and fragmentation and providing more dynamical pathways for smaller bodies to reach the WD. Moreover, during intense scattering, planets themselves have pericentres with respect to the WD of only a fraction of an astronomical unit, causing extreme Hill-sphere contraction, and the liberation of moons into WD-grazing orbits. Many of our results are directly applicable to exomoons orbiting planets around main-sequence stars.

  16. Europlanet/IDIS: Combining Diverse Planetary Observations and Models

    NASA Astrophysics Data System (ADS)

    Schmidt, Walter; Capria, Maria Teresa; Chanteur, Gerard

    2013-04-01

    Planetary research involves a diversity of research fields from astrophysics and plasma physics to atmospheric physics, climatology, spectroscopy and surface imaging. Data from all these disciplines are collected from various space-borne platforms or telescopes, supported by modelling teams and laboratory work. In order to interpret one set of data often supporting data from different disciplines and other missions are needed while the scientist does not always have the detailed expertise to access and utilize these observations. The Integrated and Distributed Information System (IDIS) [1], developed in the framework of the Europlanet-RI project, implements a Virtual Observatory approach ([2] and [3]), where different data sets, stored in archives around the world and in different formats, are accessed, re-formatted and combined to meet the user's requirements without the need of familiarizing oneself with the different technical details. While observational astrophysical data from different observatories could already earlier be accessed via Virtual Observatories, this concept is now extended to diverse planetary data and related model data sets, spectral data bases etc. A dedicated XML-based Europlanet Data Model (EPN-DM) [4] was developed based on data models from the planetary science community and the Virtual Observatory approach. A dedicated editor simplifies the registration of new resources. As the EPN-DM is a super-set of existing data models existing archives as well as new spectroscopic or chemical data bases for the interpretation of atmospheric or surface observations, or even modeling facilities at research institutes in Europe or Russia can be easily integrated and accessed via a Table Access Protocol (EPN-TAP) [5] adapted from the corresponding protocol of the International Virtual Observatory Alliance [6] (IVOA-TAP). EPN-TAP allows to search catalogues, retrieve data and make them available through standard IVOA tools if the access to the archive

  17. Planetary system detection by POINTS

    NASA Technical Reports Server (NTRS)

    Reasenberg, Robert D.

    1993-01-01

    The final report and semiannual reports 1, 2, and 3 in response to the study of 'Planetary System Detection by POINTS' is presented. The grant covered the period from 15 Jun. 1988 through 31 Dec. 1989. The work during that period comprised the further development and refinement of the POINTS concept. The status of the POINTS development at the end of the Grant period was described by Reasenberg in a paper given at the JPL Workshop on Space Interferometry, 12-13 Mar. 1990, and distributed as CfA Preprint 3138. That paper, 'POINTS: a Small Astrometric Interferometer,' follows as Appendix-A. Our proposal P2276-7-09, dated July 1990, included a more detailed description of the state of the development of POINTS at the end of the tenure of Grant NAGW-1355. That proposal, which resulted in Grant NAGW-2497, is included by reference.

  18. Dynamical habitability of planetary systems.

    PubMed

    Dvorak, Rudolf; Pilat-Lohinger, Elke; Bois, Eric; Schwarz, Richard; Funk, Barbara; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Lammer, Helmut; Léger, Alain; Liseau, René; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Selsis, Frank; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.2. We theoretically highlight the studies concerning possible terrestrial planets in systems with a Jupiter-like planet. We emphasize that an orbit of a particular nature only will keep a planet within the habitable zone around a host star with respect to the semimajor axis and its eccentricity. In addition, some results are given for individual systems (e.g., Gl777A) with regard to the stability of orbits within habitable zones. We also review what is known about the orbits of planets in double-star systems around only one component (e.g., gamma Cephei) and around both stars (e.g., eclipsing binaries).

  19. Dynamical habitability of planetary systems.

    PubMed

    Dvorak, Rudolf; Pilat-Lohinger, Elke; Bois, Eric; Schwarz, Richard; Funk, Barbara; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Lammer, Helmut; Léger, Alain; Liseau, René; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Selsis, Frank; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.2. We theoretically highlight the studies concerning possible terrestrial planets in systems with a Jupiter-like planet. We emphasize that an orbit of a particular nature only will keep a planet within the habitable zone around a host star with respect to the semimajor axis and its eccentricity. In addition, some results are given for individual systems (e.g., Gl777A) with regard to the stability of orbits within habitable zones. We also review what is known about the orbits of planets in double-star systems around only one component (e.g., gamma Cephei) and around both stars (e.g., eclipsing binaries). PMID:20307181

  20. New missions for space-based observations of the moon, planets, and planetary systems with new all-reflecting coronagraph optics

    NASA Astrophysics Data System (ADS)

    Morgan, Thomas H.; Slater, David C.; Smartt, Raymond N.

    1997-10-01

    Creative new optical designs for coronagraphs which use only reflecting elements are extremely well suited for planetary studies which usually require detection of large, faint, tenuous sources about bright central planets (themselves worthy of study). These new coronagraphic designs not only allow the observation of extended atmospheres and coronae, they also allow critical observations of the central planet at the same time with instruments optimized for different wavelengths. The new coronagraphic systems can be more easily accommodated within the envelope of launch vehicle capabilities available today than can older, slower systems, and they permit simple spacecraft designs which reduce weight, power, and cost. They possess inherently higher end-to-end optical efficiencies. The very modest fluxes associated with many extended sources in the solar system, however, require state-of-the-art fabrication techniques, and place new demands on focal plane instrumentation. We focus here on an instrument designed to observe the lunar atmosphere. Also considered are several archetypical problems, including the study of the neutral cloud an ionized torus associated with Jupiter's moon Io and of comets.

  1. Orbital Stability of High Mass Planetary Systems

    NASA Astrophysics Data System (ADS)

    Morrison, Sarah J.; Kratter, Kaitlin M.

    2016-05-01

    In light of the observation of systems like HR 8799 that contain several planets with planet-star mass ratios larger than Jupiter's, we explore the relationships between planet separation, mass, and stability timescale for high mass multi-planet systems detectable via direct imaging. We discuss the role of overlap between 1st and sometimes 2nd order mean motion resonances, and show how trends in stability time vary from previous studies of lower mass multi-planet systems. We show that extrapolating empirically derived relationships between planet mass, separation, and stability timescale derived from lower mass planetary systems misestimate the stability timescales for higher mass planetary systems by more than an order of magnitude at separations near the Hill stability limit. We also address what metrics of planet separation are most useful for estimating a system's dynamical stability. We apply these results to young, gapped, debris disk systems of the ScoCen association in order to place limits on the maximum mass and number of planets that could persist for the lifetimes of the disks. These efforts will provide useful constraints for on-going direct imaging surveys. By setting upper limits on the most easily detectable systems, we can better interpret both new discoveries and non-dectections.

  2. Discovery of Planetary Systems With SIM

    NASA Technical Reports Server (NTRS)

    Marcy, Geoffrey W.; Butler, Paul R.; Frink, Sabine; Fischer, Debra; Oppenheimer, Ben; Monet, David G.; Quirrenbach, Andreas; Scargle, Jeffrey D.

    2004-01-01

    We are witnessing the birth of a new observational science: the discovery and characterization of extrasolar planetary systems. In the past five years, over 70 extrasolar planets have been discovered by precision Doppler surveys, most by members of this SIM team. We are using the data base of information gleaned from our Doppler survey to choose the best targets for a new SIN planet search. In the same way that our Doppler database now serves SIM, our team will return a reconnaissance database to focus Terrestrial Planet Finder (TPF) into a more productive, efficient mission.

  3. Planetary Regolith Delivery Systems for ISRU

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.; Townsend, Ivan I., III

    2012-01-01

    The challenges associated with collecting regolith on a planetary surface and delivering it to an in-situ resource utilization system differ significantly from similar activities conducted on Earth. Since system maintenance on a planetary body can be difficult or impossible to do, high reliability and service life are expected of a regolith delivery system. Mission costs impose upper limits on power and mass. The regolith delivery system must provide a leak-tight interface between the near-vacuum planetary surface and the pressurized ISRU system. Regolith delivery in amounts ranging from a few grams to tens of kilograms may be required. Finally, the spent regolith must be removed from the ISRU chamber and returned to the planetary environment via dust tolerant valves capable of operating and sealing over a large temperature range. This paper will describe pneumatic and auger regolith transfer systems that have already been field tested for ISRU, and discuss other systems that await future field testing.

  4. Architectures of planetary systems and implications for their formation

    PubMed Central

    Ford, Eric B.

    2014-01-01

    Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. Recently, NASA’s Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with closely spaced orbits and sizes between that of Earth and Neptune. These systems represent yet another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. Presently, we have limited knowledge about such planetary systems, mostly about their sizes and orbital periods. With the advent of long-term, nearly continuous monitoring by Kepler, the method of transit timing variations (TTVs) has blossomed as a new technique for characterizing the gravitational effects of mutual planetary perturbations for hundreds of planets. TTVs can provide precise, but complex, constraints on planetary masses, densities, and orbits, even for planetary systems with faint host stars. In the coming years, astronomers will translate TTV observations into increasingly powerful constraints on the formation and orbital evolution of planetary systems with low-mass planets. Between TTVs, improved Doppler surveys, high-contrast imaging campaigns, and microlensing surveys, astronomers can look forward to a much better understanding of planet formation in the coming decade. PMID:24778212

  5. Architectures of planetary systems and implications for their formation.

    PubMed

    Ford, Eric B

    2014-09-01

    Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. Recently, NASA's Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with closely spaced orbits and sizes between that of Earth and Neptune. These systems represent yet another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. Presently, we have limited knowledge about such planetary systems, mostly about their sizes and orbital periods. With the advent of long-term, nearly continuous monitoring by Kepler, the method of transit timing variations (TTVs) has blossomed as a new technique for characterizing the gravitational effects of mutual planetary perturbations for hundreds of planets. TTVs can provide precise, but complex, constraints on planetary masses, densities, and orbits, even for planetary systems with faint host stars. In the coming years, astronomers will translate TTV observations into increasingly powerful constraints on the formation and orbital evolution of planetary systems with low-mass planets. Between TTVs, improved Doppler surveys, high-contrast imaging campaigns, and microlensing surveys, astronomers can look forward to a much better understanding of planet formation in the coming decade.

  6. Architectures of planetary systems and implications for their formation.

    PubMed

    Ford, Eric B

    2014-09-01

    Doppler planet searches revealed that many giant planets orbit close to their host star or in highly eccentric orbits. These and subsequent observations inspired new theories of planet formation that invoke gravitation interactions in multiple planet systems to explain the excitation of orbital eccentricities and even short-period giant planets. Recently, NASA's Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Most of these systems include multiple planets with closely spaced orbits and sizes between that of Earth and Neptune. These systems represent yet another new and unexpected class of planetary systems and provide an opportunity to test the theories developed to explain the properties of giant exoplanets. Presently, we have limited knowledge about such planetary systems, mostly about their sizes and orbital periods. With the advent of long-term, nearly continuous monitoring by Kepler, the method of transit timing variations (TTVs) has blossomed as a new technique for characterizing the gravitational effects of mutual planetary perturbations for hundreds of planets. TTVs can provide precise, but complex, constraints on planetary masses, densities, and orbits, even for planetary systems with faint host stars. In the coming years, astronomers will translate TTV observations into increasingly powerful constraints on the formation and orbital evolution of planetary systems with low-mass planets. Between TTVs, improved Doppler surveys, high-contrast imaging campaigns, and microlensing surveys, astronomers can look forward to a much better understanding of planet formation in the coming decade. PMID:24778212

  7. Observations and Laboratory Data of Planetary Organics

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.

    2002-01-01

    Many efforts are underway to search for evidence of prebiotic materials in the outer solar system. Current and planned Mars missions obtain remote sensing observations that can be used to address the potential presence of prebiotic materials. Additional missions to, and continuing earth-based observations of, more distant solar system objects will also provide remote sensing observations that can be used to address the potential presence of prebiotic materials. I will present an overview of on-going observations, associated laboratory investigations of candidate materials, and theoretical modeling of observational data. In the past the room temperature reflectance spectra of many residues created from HC-bearing gases and solids have been reported. The results of an investigation of what effect temperatures more representative of outer solar system surfaces (50-140K) have on the reflectance spectra of these residues, and the associated interpretations, will be presented. The relatively organic-rich Tagish Lake Meteorite has been suggested as a spectral analog for Dtype asteroids. Using a new approach that relies upon iterative use of Hapke theory and Kraniers-Kronig analysis the optical constants of TLM were estimated. The approach and results of the analysis will be presented. Use of optical constants in scattering theories, such as the Hapke theory, provide the ability to determine quantitative estimates of the relative abundances and grain sizes of candidate surface components. This approach has been applied to interpret the reflectance spectra of several outer solar system surfaces. A summary will be provided describing the results of such modeling efforts.

  8. On the stability of circumbinary planetary systems

    NASA Astrophysics Data System (ADS)

    Popova, E. A.; Shevchenko, I. I.

    2016-07-01

    The dynamics of circumbinary planetary systems (the systems in which the planets orbit a central binary) with a small binary mass ratio discovered to date is considered. The domains of chaotic motion have been revealed in the "pericentric distance-eccentricity" plane of initial conditions for the planetary orbits through numerical experiments. Based on an analytical criterion for the chaoticity of planetary orbits in binary star systems, we have constructed theoretical curves that describe the global boundary of the chaotic zone around the central binary for each of the systems. In addition, based on Mardling's theory describing the separate resonance "teeth" (corresponding to integer resonances between the orbital periods of a planet and the binary), we have constructed the local boundaries of chaos. Both theoretical models are shown to describe adequately the boundaries of chaos on the numerically constructed stability diagrams, suggesting that these theories are efficient in providing analytical criteria for the chaoticity of planetary orbits.

  9. Planetary Systems and the Origins of Life

    NASA Astrophysics Data System (ADS)

    Pudritz, Ralph; Higgs, Paul; Stone, Jonathon

    2013-01-01

    Preface; Part I. Planetary Systems and the Origins of Life: 1. Observations of extrasolar planetary systems Shay Zucker; 2. The atmospheres of extrasolar planets L. Jeremy Richardson and Sara Seager; 3. Terrestrial planet formation Edward Thommes; 4. Protoplanetary disks, amino acids and the genetic code Paul Higgs and Ralph Pudritz; 5. Emergent phenomena in biology: the origin of cellular life David Deamer; Part II. Life on Earth: 6. Extremophiles: defining the envelope for the search for life in the Universe Lynn Rothschild; 7. Hyperthermophilic life on Earth - and on Mars? Karl Stetter; 8. Phylogenomics: how far back in the past can we go? Henner Brinkmann, Denis Baurain and Hervé Philippe; 9. Horizontal gene transfer, gene histories and the root of the tree of life Olga Zhaxybayeva and J. Peter Gogarten; 10. Evolutionary innovation versus ecological incumbency Adolf Seilacher; 11. Gradual origins for the Metazoans Alexandra Pontefract and Jonathan Stone; Part III. Life in the Solar System?: 12. The search for life on Mars Chris McKay; 13. Life in the dark dune spots of Mars: a testable hypothesis Eörs Szathmary, Tibor Ganti, Tamas Pocs, Andras Horvath, Akos Kereszturi, Szaniszlo Berzci and Andras Sik; 14. Titan: a new astrobiological vision from the Cassini-Huygens data François Raulin; 15. Europa, the Ocean Moon: tides, permeable ice, and life Richard Greenberg; Index.

  10. History of planetary science. The Pic du Midi Planetary Observation Project : 1941-1971

    NASA Astrophysics Data System (ADS)

    Dollfus, Audouin

    1998-08-01

    When, in 1941, Bernard Lyot attempted to observe planet Mars at Pic du Midi, he experienced unusual viewing conditions. He realized that this circumstance was not at all exceptional for the Pic but representative of a remarkable property of the high altitude site. He decided to design, and put into operation at the top of the mountain a refractor, 60 cm in diameter, specially conceived for high angular resolution. With such a capability, Henry Camichel, Jean Focas and Audouin Dollfus initiated a deep and long-term research project based upon planetary surface exploration, with high telescopic magnification. Visual analysis, photographic work, double image micrometry, photometric and polarimetric sensing were the most frequently used techniques and they were combined. Full exploitation of all these approaches required 30 years of continuous work, essentially coordinated by Observatoire de Paris at Meudon. The project was completed almost at the time when spacecraft missions within the Solar System began to replace telescopic work for planetary physics. At this time, the Pic du Midi work have released new basic physical properties about planets and satellites. Knowledge was acquired and fundamental problems settled, which are reviewed.

  11. (abstract) The Distribution of Carbon in the Outer Solar System: New Constraints on Planetary Formation Mechanisms from Groundbased Spectroscopic Observations of Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Mickelson, M. E.; Larson, L. E.

    1994-01-01

    New limits on the methane mixing ratio within the well-mixed tropospheres of Uranus and Neptune place significant constraints on planetary formation mechanisms within the outer solar system. Our results support the conclusion of other researchers that a nontrivial amount of methane in the outer solar system was incorporated into the planets by dissolution of carbon-bearing planetesimals during the early evolutionary stages of both Uranus and Neptune.

  12. The ultimate fate of planetary systems

    NASA Astrophysics Data System (ADS)

    Wachlin, F. C.; Vauclair, S.; Vauclair, G.; Althaus, L. G.

    2016-08-01

    In recent years, the increasing evidence that a significant fraction of white dwarfs is accreting matter from a debris disk has triggered a significant scientific interest. Its mere existence suggests that the planetary system which had formed around the star was able to survive all previous phases of stellar evolution, including those implying dramatic size changes as well as mass loss events of the central star. The computation of accretion rates provides us important information about the original planetary system. Unfortunately the present estimations do not take into account a physical process that may happen when heavy material falls ontop a lighter one, generating turbulences that dilutes the accreted material. This process affects directly the computed accretion rates, since if it takes place, larger accretion rates become necessary in order to explain the amount of surface contamination observed. In this work we present the results of numerical simulations that show that this destabilizing physical process actually occurs. Its impact on an accreting DA white dwarf model is presented.

  13. Research and Development of External Occultor Technology for the Direct Observation of Extrasolar Planetary Systems : JPL Starshades Project

    NASA Technical Reports Server (NTRS)

    Franz, Herbert; Stadeler, Mehnert

    2012-01-01

    Our group conducted work during the Summer of 2012 assembling and developing JPL's Starshades Project under the Technology Development for Exoplanet Missions(TDEM) initiative created by NASA, specifically TDEM stage 2. The goal of the work conducted at JPL by our group was to construct four occultor petals, the main optical components of the Starshade, for the analysis of joint deployment characteristics and of mechanical strain. A Starshade is an optical structure measuring approximately 30 meters in diameter that uses the effects of light diffraction off sheer edges, light scattering, and negative interference between waves to negate all on-axis light in a telescope's image, providing very high contrast that allows planets orbiting a target star to be observed. We completed our engineering goals in the time span of 10 weeks, during which the assembly processes of manufacture, alignment, and structural bonding took place. The Starshade technology and construction process is further discussed in the body of this paper.

  14. Jupiter System Observer

    NASA Technical Reports Server (NTRS)

    Senske, Dave; Prockter, Louise

    2008-01-01

    This slide presentation reviews the scientific philosophy that is guiding the planning behind the Jupiter System Observer (JSO). The JSO would be a long-term platform for studying Jupiter and the complete Jovian system. The goal is to advance the understanding of the fundamental processes of planetary systems, their formation and evolution.

  15. Ideas for a three-aircraft planetary observing fleet

    NASA Astrophysics Data System (ADS)

    Carlson, David J.; Schumann, Ulrich

    2003-04-01

    A new generation of research aircraft, based on modern mid-sized business jets, will provide access to upper regions of the atmosphere and remote regions of the planet not reachable by the current research aircraft. Equipped with extensive research modifications, modern instruments, and advanced air-to-ground communication systems, these new aircraft will allow investigators to attack key questions in global atmospheric dynamics, global cycles of water and carbon, global energy budgets, and regional and global air quality and chemical transport. A three-aircraft fleet of these aircraft could provide unprecedented coordinated intercalibrated coverage of the planetary atmosphere and surfaces in a manner that greatly enhances the total ground, ocean, and satellite observing system.

  16. UNSTABLE PLANETARY SYSTEMS EMERGING OUT OF GAS DISKS

    SciTech Connect

    Matsumura, Soko; Thommes, Edward W.; Chatterjee, Sourav; Rasio, Frederic A.

    2010-05-01

    The discovery of over 400 extrasolar planets allows us to statistically test our understanding of the formation and dynamics of planetary systems via numerical simulations. Traditional N-body simulations of multiple-planet systems without gas disks have successfully reproduced the eccentricity (e) distribution of the observed systems by assuming that the planetary systems are relatively closely packed when the gas disk dissipates, so that they become dynamically unstable within the stellar lifetime. However, such studies cannot explain the small semimajor axes a of extrasolar planetary systems, if planets are formed, as the standard planet formation theory suggests, beyond the ice line. In this paper, we numerically study the evolution of three-planet systems in dissipating gas disks, and constrain the initial conditions that reproduce the observed a and e distributions simultaneously. We adopt initial conditions that are motivated by the standard planet formation theory, and self-consistently simulate the disk evolution and planet migration, by using a hybrid N-body and one-dimensional gas disk code. We also take into account eccentricity damping, and investigate the effect of saturation of corotation resonances on the evolution of planetary systems. We find that the a distribution is largely determined in a gas disk, while the e distribution is determined after the disk dissipation. We also find that there may be an optimum disk mass which leads to the observed a-e distribution. Our simulations generate a larger fraction of planetary systems trapped in mean-motion resonances (MMRs) than the observations, indicating that the disk's perturbation to the planetary orbits may be important to explain the observed rate of MMRs. We also find a much lower occurrence of planets on retrograde orbits than the current observations of close-in planets suggest.

  17. Testing proposed planetary systems - to destruction

    NASA Astrophysics Data System (ADS)

    Horner, J.; Wittenmyer, R. A.; Marshall, J. P.; Hinse, T. C.; Robertson, P.

    2014-08-01

    J Horner, R A Wittenmyer, J P Marshall, T C Hinse and P Robertson examine the dynamics of exoplanet systems and find that some of them don't last long. The stability of planetary systems offers a check on the likelihood of proposed multiple-exoplanet systems.

  18. Spreading the passion for scientifically useful planetary observations

    NASA Astrophysics Data System (ADS)

    Kardasis, E.; Vourliotis, E.; Bellias, I.; Maravelias, G.; Vakalopoulos, E.; Papadeas, P.; Marouda, K.; Voutyras, O.

    2015-10-01

    Τhe "March 2015 - Planetary Observation Project (POP)" was a series of talks and hands-on workshops focused on planetary observation organized in March 2015 by the planetary section of the Hellenic Amateur Astronomy Association. Building on our previous experience (Voutyras et al. 2013), which also includes more than 500 attendants in our 2013-2014 series of lectures in Astronomy, we identified that there is a lack of more focused lectures/workshops on observing techniques. In particular, POP's structure included two talks and two workshops aiming to inspire and educate astronomy enthusiasts. The talks tried to stimulate the participants about the importance of ground-based observations by presenting the most current scientific news and puzzling problems that we are facing in the observation of planets. During the hands-on workshops the beauty of planetary observation was used to inspire participants. However, we trained participants on observing techniques and image processing to enable them to produce scientifically useful results. All POP's events were open to the public and free, meaning both out-of-charge and freely available material provided to the participants (through our website). The project offered attendants unique experiences that may have a significant impact with potential lifelong benefits. In this work we present an overview of the project structure that may work as a prototype for similar outreach programs.

  19. Planetary radio astronomy observations from Voyager 1 near Saturn

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Pearce, J. B.; Evans, D. R.; Carr, T. D.; Schauble, J. J.; Alexander, J. K.; Kaiser, M. L.; Desch, M. D.; Pedersen, M.; Lecacheux, A.

    1981-01-01

    The Voyager 1 planetary radio astronomy experiment detected two distinct kinds of radio emissions from Saturn. The first, Saturn kilometric radiation, is strongly polarized, bursty, tightly correlated with Saturn's rotation, and exhibits complex dynamic spectral features somewhat reminiscent of those in Jupiter's radio emission. It appears in radio frequencies below about 1.2 megahertz. The second kind of radio emission, Saturn electrostatic discharge, is unpolarized, extremely impulsive, loosely correlated with Saturn's rotation, and very broadband, appearing throughout the observing range of the experiment (20.4 kilohertz to 40.2 megahertz). Its sources appear to lie in the planetary rings.

  20. Planetary radio astronomy observations from voyager 1 near saturn.

    PubMed

    Warwick, J W; Pearce, J B; Evans, D R; Carr, T D; Schauble, J J; Alexander, J K; Kaiser, M L; Desch, M D; Pedersen, M; Lecacheux, A; Daigne, G; Boischot, A; Barrow, C H

    1981-04-10

    The Voyager 1 planetary radio astronomy experiment detected two distinct kinds of radio emissions from Saturn. The first, Saturn kilometric radiation, is strongly polarized, bursty, tightly correlated with Saturn's rotation, and exhibits complex dynamic spectral features somewhat reminiscent of those in Jupiter's radio emission. It appears in radio frequencies below about 1.2 megahertz. The second kind of radio emission, Saturn electrostatic discharge, is unpolarized, extremely impulsive, loosely correlated with Saturn's rotation, and very broadband, appearing throughout the observing range of the experiment (20.4 kilohertz to 40.2 megahertz). Its sources appear to lie in the planetary rings.

  1. Tidal Dynamics of Transiting Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Fabrycky, Daniel C.

    2008-05-01

    The transits of extrasolar planets have revealed a wealth of information about their structures and atmospheres. Because of increased transit likelihood, these planets have small semi-major axes; therefore the planets we know the best are those which are tidally evolved. Transiting planets have not yet been found in multiple-planet systems, but will eventually be an excellent probe of their dynamics. This talk addresses both sides of the coin: theories of tidal dynamics on the one side, clever observations to constrain those theories on the other. On the theory side: Small orbits may be established via eccentricity pumping by a third body (e.g., Kozai cycles) plus tidal dissipation; (b) Oblique spins (Cassini states) may be created and maintained through a secular resonance between orbital precession and spin precession; and (c) Second planets may evolve out of coorbital configurations (near Lagrange points) and mean motion resonance (e.g., the Laplace resonance among Jupiter's satellites) by tidal dissipation. On the observation side: (a) Spectroscopic transit measurements assess the spin orientation of the host star relative to the orbit of the transiting planet; (b) Transit timing measurements can discover second planets and characterize the dynamics of resonant planetary systems; (c) The instantaneous orbital configuration of two-planet systems can indicate the precession rate of the transiting planet, yielding its Love number and probing its internal structure. I gratefully acknowledge funding by the Michelson Fellowship, supported by the National Aeronautics and Space Administration and administered by the Michelson Science Center.

  2. A review of the scientific rationale and methods used in the search for other planetary systems

    NASA Technical Reports Server (NTRS)

    Black, D. C.

    1985-01-01

    Planetary systems appear to be one of the crucial links in the chain leading from simple molecules to living systems, particularly complex (intelligent?) living systems. Although there is currently no observational proof of the existence of any planetary system other than our own, techniques are now being developed which will permit a comprehensive search for other planetary systems. The scientific rationale for and methods used in such a search effort are reviewed here.

  3. Overview of the Planetary Data System

    NASA Technical Reports Server (NTRS)

    McMahon, Susan K.

    1994-01-01

    This article describes why there is a PDS (Planetary Data System), what the PDS has accompished, how it is organized, what innovations it has added, and what plans for the future. Terms are defined which are used in this article and in the related articles.

  4. Communication System Architecture for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Braham, Stephen P.; Alena, Richard; Gilbaugh, Bruce; Glass, Brian; Norvig, Peter (Technical Monitor)

    2001-01-01

    Future human missions to Mars will require effective communications supporting exploration activities and scientific field data collection. Constraints on cost, size, weight and power consumption for all communications equipment make optimization of these systems very important. These information and communication systems connect people and systems together into coherent teams performing the difficult and hazardous tasks inherent in planetary exploration. The communication network supporting vehicle telemetry data, mission operations, and scientific collaboration must have excellent reliability, and flexibility.

  5. In situ observations of the atmospheres of terrestrial planetary bodies

    NASA Astrophysics Data System (ADS)

    Harri, Ari-Matti

    2005-11-01

    Direct observations of planetary atmospheres are scarce and significantly more data are needed for the understanding of their behavior. The principal theme of this dissertation is the exploration of planetary atmospheres by means of in situ observations, focusing on investigations performed by payloads operating on the planetary surface. The contextual frame includes the whole palette of planetary exploration including definition of scientific objectives, observational strategies, scientific payload and data analysis, as well as development of technological solutions and simulation models for planetary missions. Thus approach also led to the initiation of the planetary missions MetNet and NetLander to Mars. This work contributes to both in situ atmospheric observations and atmospheric modeling, which are strongly intertwined. Modeling efforts require observations to give solid background and foundation for the simulations, and on the other hand, definition of observational strategies and instrumentation gets guidance from modeling efforts to optimize the use of mission resources, as is successfully demonstrated in this dissertation. The dissertation consists of Summary and nine original scientific publications. Publications 1 to 7 and Summary address the development of new atmospheric science payloads for exploration missions to Mars and Titan, a Saturnian moon. Actual and planned missions included are the Mars-96 Program and its Small Surface Stations and Penetrators during the years 1988-1996, PPI/HASI onboard the Cassini/Huygens spacecraft to Saturn and its moon Titan in 1989-2005, the MET-P payload onboard the Mars Polar Lander in 1997-1999, the BAROBIT instrument for the Beagle 2 lander in 2001-2003, the NetLander Mars Mission in 1997-2001 and the ongoing Mars MetNet Mission, started in 2000. Specifically, Publication 4 reviews the sensor qualification process that facilitated the use of new type of atmospheric sensors at Mars, while Publications 2 and 7, as

  6. Origin and formation of planetary systems.

    PubMed

    Alibert, Y; Broeg, C; Benz, W; Wuchterl, G; Grasset, O; Sotin, C; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Liseau, Réne; Lammer, Helmut; Beichman, Charles; Danchi, William; Fridlund, Malcolm; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Selsis, Frank; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    To estimate the occurrence of terrestrial exoplanets and maximize the chance of finding them, it is crucial to understand the formation of planetary systems in general and that of terrestrial planets in particular. We show that a reliable formation theory should not only explain the formation of the Solar System, with small terrestrial planets within a few AU and gas giants farther out, but also the newly discovered exoplanetary systems with close-in giant planets. Regarding the presently known exoplanets, we stress that our current knowledge is strongly biased by the sensitivity limits of current detection techniques (mainly the radial velocity method). With time and improved detection methods, the diversity of planets and orbits in exoplanetary systems will definitely increase and help to constrain the formation theory further. In this work, we review the latest state of planetary formation in relation to the origin and evolution of habitable terrestrial planets.

  7. Origin and formation of planetary systems.

    PubMed

    Alibert, Y; Broeg, C; Benz, W; Wuchterl, G; Grasset, O; Sotin, C; Eiroa, Carlos; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Liseau, Réne; Lammer, Helmut; Beichman, Charles; Danchi, William; Fridlund, Malcolm; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Selsis, Frank; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    To estimate the occurrence of terrestrial exoplanets and maximize the chance of finding them, it is crucial to understand the formation of planetary systems in general and that of terrestrial planets in particular. We show that a reliable formation theory should not only explain the formation of the Solar System, with small terrestrial planets within a few AU and gas giants farther out, but also the newly discovered exoplanetary systems with close-in giant planets. Regarding the presently known exoplanets, we stress that our current knowledge is strongly biased by the sensitivity limits of current detection techniques (mainly the radial velocity method). With time and improved detection methods, the diversity of planets and orbits in exoplanetary systems will definitely increase and help to constrain the formation theory further. In this work, we review the latest state of planetary formation in relation to the origin and evolution of habitable terrestrial planets. PMID:20307180

  8. A new inclination instability in planetary systems

    NASA Astrophysics Data System (ADS)

    Madigan, Ann-Marie

    2015-08-01

    I describe a new instability in Keplerian disks of massive particles on eccentric orbits. Gravitational torques between the orbits align their angles of pericenter and drive exponential growth in orbital inclination. This instability implies specific ratios for Kepler elements of the orbits, similar to what is seen in the inner Oort Cloud of our solar system. I also discuss implications for extra-solar planetary systems and for nuclear star clusters in the centers of galaxies.

  9. The complex planetary synchronization structure of the solar system

    NASA Astrophysics Data System (ADS)

    Scafetta, N.

    2014-01-01

    The complex planetary synchronization structure of the solar system, which since Pythagoras of Samos (ca. 570-495 BC) is known as the music of the spheres, is briefly reviewed from the Renaissance up to contemporary research. Copernicus' heliocentric model from 1543 suggested that the planets of our solar system form a kind of mutually ordered and quasi-synchronized system. From 1596 to 1619 Kepler formulated preliminary mathematical relations of approximate commensurabilities among the planets, which were later reformulated in the Titius-Bode rule (1766-1772), which successfully predicted the orbital position of Ceres and Uranus. Following the discovery of the ~ 11 yr sunspot cycle, in 1859 Wolf suggested that the observed solar variability could be approximately synchronized with the orbital movements of Venus, Earth, Jupiter and Saturn. Modern research has further confirmed that (1) the planetary orbital periods can be approximately deduced from a simple system of resonant frequencies; (2) the solar system oscillates with a specific set of gravitational frequencies, and many of them (e.g., within the range between 3 yr and 100 yr) can be approximately constructed as harmonics of a base period of ~ 178.38 yr; and (3) solar and climate records are also characterized by planetary harmonics from the monthly to the millennial timescales. This short review concludes with an emphasis on the contribution of the author's research on the empirical evidences and physical modeling of both solar and climate variability based on astronomical harmonics. The general conclusion is that the solar system works as a resonator characterized by a specific harmonic planetary structure that also synchronizes the Sun's activity and the Earth's climate. The special issue Pattern in solar variability, their planetary origin and terrestrial impacts (Mörner et al., 2013) further develops the ideas about the planetary-solar-terrestrial interaction with the personal contribution of 10

  10. Circumbinary Planetary Systems at Home and Abroad

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin M.; Shannon, Andrew B.; Youdin, Andrew; Kenyon, Scott

    2014-05-01

    The Kepler mission has revealed a new class of (main-sequence) planetary system: circumbinaries. In these systems, a tight binary is orbited by one or more planets. From a dynamical perspective, these systems are not new, but rather a scaled up version of the Pluto-Charon system. In this talk I will discuss what we can learn from a detailed study of the dynamics of both Pluto-Charon and Kepler circumbinary systems. I will describe how circumbinary planets may be crucial for our understanding of binary star formation, and why these unique systems may be excellent places to search for habitable zone planets.

  11. Photometric Observations of the Binary Nuclei of Three Abell Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Afşar, M.; Ibanoǧlu, C.

    2004-07-01

    CCD photometric observations of the three Abell planetary nebulae (Abell 63, Abell 46 and Abell 41) nuclei are presented. These systems are binary systems which allow us to derive model-independent parameters. Also the results of the light curve solution of UU Sge (binary nucleus of Abell 63) are discussed.

  12. Improving the Planetary Ephemeris with Astrometric Observations of Cassini

    NASA Astrophysics Data System (ADS)

    Jones, Dayton L.; Fomalont, E.; Dhawan, V.; Romney, J.; Lanyi, G.; Border, J.; Folkner, B.; Jacobson, B.

    2009-05-01

    During the past three years we have carried out a series of astrometric VLBA observations of the Cassini spacecraft. At each epoch, we used phase referencing to obtain high precision relative positions between Cassini and an angularly nearby calibration source. The calibration sources were separately tied to nearby defining sources of the International Celestial Reference Frame (ICRF) through additional phase-referenced VLBA experiments. By combining our position measurements of Cassini with a model of Cassini's orbit around Saturn (from Doppler measurements by the Deep Space Network), we are able to determine the ICRF position of Saturn at each epoch to about 0.3 mas. This is about 2 km at the average distance of Saturn. These results will improve the Saturn ephemeris, particularly in ecliptic latitude (the plane of Saturn's orbit). The error in latitude decreases dramatically as the total time span of VLBA data approaches 1/4 of Saturn's orbital period in 2011-2012. Saturn is the first outer planet whose ephemeris can be improved and more closely tied to the ICRF and the inner solar system through long-term observations of an orbiter. The planned Juno mission to Jupiter will allow this technique to be applied there also. The planetary ephemeris is an essential tool for studies of solar system dynamics, interplanetary spacecraft navigation, and test of general relativity. It requires continuous maintenance and improvement. This research has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, and has relied on observations by the Very Long Baseline Array, a facility of the National Science Foundation operated by the National Radio Astronomy Observatory under a cooperative agreement with Associated Universities, Inc.

  13. Carbon Chemistry in Planetary Nebulae: Observations of the CCH Radical

    NASA Astrophysics Data System (ADS)

    Schmidt, Deborah Rose; Ziurys, Lucy

    2015-08-01

    The presence of infrared (IR) emission features observed in interstellar environments is consistent with models that suggest they are produced by complex organic species containing both aliphatic and aromatic components (Kwok & Zhang 2011). These IR signals change drastically over the course of the AGB, proto-planetary, and planetary nebulae phases, and this dramatic variation is yet to be understood. The radical CCH is a potential tracer of carbon chemistry and its evolution in dying stars. CCH is very common in carbon-rich circumstellar envelopes of AGB stars, and is present in the proto-planetary nebulae. It has also been observed at one position in the very young planetary nebula, NGC 7027 (Hasegawa & Kwok 2001), as well as at one position in the Helix Nebula (Tenenbaum et al. 2009) - a dense clump east of the central white dwarf. In order to further probe the chemistry of carbon, we have initiated a search for CCH in eight PNe previously detected in HCN and HCO+ from a survey conducted by Schmidt and Ziurys, using the telescopes of the Arizona Radio Observatory (ARO). Observations of the N=1→0 transition of CCH at 87 GHz have been conducted using the new ARO 12-m ALMA prototype antenna, while measurements of the N=3→2 transition at 262 GHz are being made with the ARO Sub-Millimeter Telescope (SMT). We also have extended our study in the Helix Nebula. Thus far, CCH has been detected at 8 new positions across the Helix Nebula, and appears to be widespread in this source. The radical has also been identified in K4-47, M3-28, K3-17, and K3-58. These sources represent a range of nebular ages. Additional observations are currently being conducted for CCH in other PNe, as well as abundance analyses. These results will be presented.

  14. The Evolution and Disruption of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Laughlin, Gregory; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Planetary systems that encounter passing stars can experience severe orbital disruption, and the efficiency of this process is greatly enhanced when the impinging systems are binary pairs rather than single stars. Using a Monte Carlo approach, we have performed nearly half a million numerical experiments to examine the long term ramifications of planetary scattering on planetary systems. We have concluded that systems which form in dense environments such as Orion's Trapezium cluster have roughly a ten percent chance of being seriously disrupted. We have also used our programs to explore the long-term prospects for our own Solar system. Given the current interstellar environment, we have computed the odds that Earth will find its orbit seriously disrupted prior to the emergence of a runaway greenhouse effect driven by the Sun's increasing luminosity. This estimate includes both direct disruption events and scattering processes that seriously alter the orbits of the Jovian planets, which then force severe changes upon the Earth's orbit. We then explore the consequences of the Earth being thrown into deep space. The surface biosphere would rapidly shut down under conditions of zero insolation, but the Earth's radioactive heat is capable of maintaining life deep underground, and perhaps in hydrothermal vent communities, for some time to come. Although unlikely for the Earth, this scenario may be common throughout the universe, since many environments where liquid water could exist (e.g., Europa and Callisto) must derive their energy from internal (rather than external) heating.

  15. New approaches to planetary exploration - Spacecraft and information systems design

    NASA Technical Reports Server (NTRS)

    Diaz, A. V.; Neugebauer, M.; Stuart, J.; Miller, R. B.

    1983-01-01

    Approaches are recommended for use by the NASA Solar System Exploration Committee (SSEC) in lowering the costs of planetary missions. The inclusion of off-the-shelf hardware, i.e., configurations currently in use for earth orbits and constructed on a nearly assembly-line basis, is suggested. Alterations would be necessary for the thermal control, power supply, telecommunications equipment, and attitude sensing in order to be serviceable as a planetary observer spacecraft. New technology can be developed only when cost reduction for the entire mission would be realized. The employment of lower-cost boost motors, or even integrated boost motors, for the transfer out of earth orbit is indicated, as is the development of instruments that do not redundantly gather the same data as previous planetary missions. Missions under consideration include a Mars geoscience climatology Orbiter, a lunar geoscience Orbiter, a near-earth asteroid rendezvous, a Mars aeronomy Orbiter, and a Venus atmospheric probe.

  16. Kepler's Planetary Systems in Motion

    NASA Video Gallery

    The animation shows an overhead view of the orbital position of the planets in systems with multiple transiting planets discovered by NASA's Kepler mission as of Jan. 2012. All the colored planets ...

  17. Earth As an Evolving Planetary System

    NASA Astrophysics Data System (ADS)

    Meert, Joseph G.

    2005-05-01

    ``System'' is an overused buzzword in textbooks covering geological sciences. Describing the Earth as a system of component parts is a reasonable concept, but providing a comprehensive framework for detailing the system is a more formidable task. Kent Condie lays out the systems approach in an easy-to-read introductory chapter in Earth as an Evolving Planetary System. In the book, Condie makes a valiant attempt at taking the mélange of diverse subjects in the solid Earth sciences and weaving them into a coherent tapestry.

  18. Planetary radio astronomy observations during the Voyager 1 Titan flyby

    NASA Technical Reports Server (NTRS)

    Daigne, G.; Pedersen, B. M.; Kaiser, M. L.; Desch, M. D.

    1982-01-01

    During the Voyager 1 Titan flyby, unusual radio emissions were observed by the planetary radio astronomy experiment in the 20- to 97-kHz frequency range. It is shown that Titan itself is not the source of the observed radio emission. The emission features are attributed to modification of the normal Saturn kilometric radiation by propagation effects in enhanced density structures within the Titan wake. Furthermore, spiky emissions observed in the magnetic wake of Titan are interpreted in terms of local electrostatic instabilities at the electron plasma frequency. From these measurements a range of electron densities in the wake region is derived, and the consistency of the results is discussed.

  19. Planetary magnetism in the outer solar system.

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.

    1973-01-01

    A brief review of the salient considerations which apply to the existence of magnetic fields in connection with planetary and subplanetary objects in the outer solar system is given. Consideration is given to internal dynamo fields, fields which might originate from interaction with the solar wind or magnetospheres (externally driven dynamos) and lastly fossil magnetic fields such as have been discovered on the moon. Where possible, connection is made between magnetism, means of detection, and internal body properties.

  20. History of the Planetary Systems

    NASA Astrophysics Data System (ADS)

    Dreyer, J. L. E.

    2014-10-01

    Introduction. The earliest cosmological ideas; 1. The early Greek philosophers; 2. The Pythagorean school; 3. Plato; 4. The homocentric spheres of Eudoxus; 5. Aristotle; 6. Herakleides and Aristarchus; 7. The theory of Epicycles; 8. The dimensions of the world; 9. The Ptolemaic system; 10. Medieval cosmology; 11. Oriental astronomers; 12. The revival of astronomy in Europe; 13. Copernicus; 14. Tycho Brahe and his contemporaries; 15. Kepler; 16. Conclusion; Index.

  1. User friendly database for Neptune planetary radio astronomy observations

    NASA Technical Reports Server (NTRS)

    Evans, David R.

    1993-01-01

    Planetary Radio Astronomy (PRA) data from the Voyager Neptune encounter were cleaned and reformatted in a variety of formats. Most of these formats are new and have been specifically designed to provide easy access and use of the data without the need to understand esoteric characteristics of the PRA instrument or the Voyager spacecraft. Several data sets were submitted to the Planetary Data System (PDS) and have either appeared already on peer reviewed CDROM's or are in the process of being reviewed for inclusion in forthcoming CD-ROM's. Many of the data sets are also available online electronically through computer networks; it is anticipated that as time permits, the PDS will make all the data sets that were a part of this contract available both online and on CD-ROM's.

  2. Designing planetary protection into the Mars Observer mission.

    PubMed

    Sweetser, T H; Halsell, C A; Cesarone, R J

    1995-03-01

    Planetary protection has been an important consideration during the process of designing the Mars Observer mission. It affected trajectory design of both the interplanetary transfer and the orbits at Mars; these in turn affected the observation strategies developed for the mission. The Project relied mainly on the strategy of collision avoidance to prevent contamination of Mars. Conservative estimates of spacecraft reliability and Martian atmosphere density were used to evaluate decisions concerning the interplanetary trajectory, the orbit insertion phase at Mars, and operations in orbit at Mars and afterwards. Changes in the trajectory design, especially in the orbit insertion phase, required a refinement of those estimates.

  3. Long-term evolution and stability of planetary systems

    NASA Astrophysics Data System (ADS)

    Juric, Mario

    This dissertation studies the dynamical evolution and stability of planetary systems over long time spans (10 8 -10 9 years). I investigated the dynamical evolution of few-planet systems by simulating ensembles of systems consisting of hundreds to thousands of randomly constructed members. I looked at ways to classify the systems according to their dynamical activity, and found the median Hill separation of an ensemble to be a sufficiently good criterion for separation into active (those exhibiting frequent planetary close encounters, collisions or ejections) and inactive ensembles. I examined the evolution of dynamical parameters in active systems. I found that in ensembles of dynamically active (initially unstable) systems the eccentricity distribution evolves towards the same equilibrium form, irrespective of the distribution it began with. Furthermore, this equilibrium distribution is indistinguishable, within observational errors, from the distribution found in extrasolar planets. This is to my knowledge the first successful detailed theoretical reproduction of the form of observed exoplanet eccentricity distribution. I further looked for quantities that can be used as indicators of long-term stability of planetary systems, specifically the angular momentum deficit (AMD) as originally proposed by Laskar. I found that the quantity Q , defined as the ratio of minimum AMD required for a planetary collision to occur in secular theory and the total AMD of the system, may be used to predict the likelihood of decay of a planetary system. Qualitatively, the decay in systems having Q [Special characters omitted.] 1 is highly probable, while systems with Q [Special characters omitted.] 1 were found to be stable. To conduct the above investigations, I developed a new integrator package (VENUS), and the HYBRID/EE integration scheme designed for nearly-symplectic long-term integrations. VENUS implements integration algorithms for few-body planetary system integrations

  4. Planetary Rings: a Brief History of Observation and Theory

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.

    2000-05-01

    Over several centuries, and extending down to today, the ring systems encircling Saturn and the other jovian planets have provided an endless source of speculation and theorizing for astronomers, theologians, and physicists. In the past two decades they have also become a testing ground for dynamical models of more distant astrophysical disks, such as those which surround protostars and even the stellar disks of spiral galaxies. I will review some of the early theories, and their sometimes rude confrontation with observational data, starting with Christiaan Huygens and touching on seminal contributions by Laplace, Bessel, Maxwell, Barnard, Russell (of H-R diagram fame) and Jeffreys. In the modern era, observations at infrared and radio wavelengths have revealed Saturn's rings to be composed of large chunks of almost pure water ice, and to have a vertical thickness measured in tens of meters. A renaissance in planetary rings studies occurred in the period 1977--1981, first with the discoveries of the narrow, dark and non-circular rings of Uranus and the tenuous jovian ring system, and capped off by the spectacular images returned during the twin Voyager flybys of Saturn. Along with the completely unsuspected wealth of detail these observations revealed came an unwelcome problem: are the rings ancient or are we privileged to live at a special time in history? The answer to this still-vexing question may lie in the complex gravitational interactions recent studies have revealed between the rings themselves and their retinues of attendant satellites. Between the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the galactic context), electromagnetic resonances, many-armed spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to a collective instability, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto

  5. High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). I. Lucky imaging observations of 101 systems in the southern hemisphere

    NASA Astrophysics Data System (ADS)

    Evans, D. F.; Southworth, J.; Maxted, P. F. L.; Skottfelt, J.; Hundertmark, M.; Jørgensen, U. G.; Dominik, M.; Alsubai, K. A.; Andersen, M. I.; Bozza, V.; Bramich, D. M.; Burgdorf, M. J.; Ciceri, S.; D'Ago, G.; Figuera Jaimes, R.; Gu, S.-H.; Haugbølle, T.; Hinse, T. C.; Juncher, D.; Kains, N.; Kerins, E.; Korhonen, H.; Kuffmeier, M.; Mancini, L.; Peixinho, N.; Popovas, A.; Rabus, M.; Rahvar, S.; Schmidt, R. W.; Snodgrass, C.; Starkey, D.; Surdej, J.; Tronsgaard, R.; von Essen, C.; Wang, Yi-Bo; Wertz, O.

    2016-05-01

    Context. Wide binaries are a potential pathway for the formation of hot Jupiters. The binary fraction among host stars is an important discriminator between competing formation theories, but has not been well characterised. Additionally, contaminating light from unresolved stars can significantly affect the accuracy of photometric and spectroscopic measurements in studies of transiting exoplanets. Aims: We observed 101 transiting exoplanet host systems in the Southern hemisphere in order to create a homogeneous catalogue of both bound companion stars and contaminating background stars, in an area of the sky where transiting exoplanetary systems have not been systematically searched for stellar companions. We investigate the binary fraction among the host stars in order to test theories for the formation of hot Jupiters. Methods: Lucky imaging observations from the Two Colour Instrument on the Danish 1.54 m telescope at La Silla were used to search for previously unresolved stars at small angular separations. The separations and relative magnitudes of all detected stars were measured. For 12 candidate companions to 10 host stars, previous astrometric measurements were used to evaluate how likely the companions are to be physically associated. Results: We provide measurements of 499 candidate companions within 20 arcsec of our sample of 101 planet host stars. 51 candidates are located within 5 arcsec of a host star, and we provide the first published measurements for 27 of these. Calibrations for the plate scale and colour performance of the Two Colour Instrument are presented. Conclusions: We find that the overall multiplicity rate of the host stars is 38+17-13 %, consistent with the rate among solar-type stars in our sensitivity range, suggesting that planet formation does not preferentially occur in long period binaries compared to a random sample of field stars. Long period stellar companions (P> 10 yr) appear to occur independently of short period companions

  6. The Planetary Data System Information Model for Geometry Metadata

    NASA Astrophysics Data System (ADS)

    Guinness, E. A.; Gordon, M. K.

    2014-12-01

    The NASA Planetary Data System (PDS) has recently developed a new set of archiving standards based on a rigorously defined information model. An important part of the new PDS information model is the model for geometry metadata, which includes, for example, attributes of the lighting and viewing angles of observations, position and velocity vectors of a spacecraft relative to Sun and observing body at the time of observation and the location and orientation of an observation on the target. The PDS geometry model is based on requirements gathered from the planetary research community, data producers, and software engineers who build search tools. A key requirement for the model is that it fully supports the breadth of PDS archives that include a wide range of data types from missions and instruments observing many types of solar system bodies such as planets, ring systems, and smaller bodies (moons, comets, and asteroids). Thus, important design aspects of the geometry model are that it standardizes the definition of the geometry attributes and provides consistency of geometry metadata across planetary science disciplines. The model specification also includes parameters so that the context of values can be unambiguously interpreted. For example, the reference frame used for specifying geographic locations on a planetary body is explicitly included with the other geometry metadata parameters. The structure and content of the new PDS geometry model is designed to enable both science analysis and efficient development of search tools. The geometry model is implemented in XML, as is the main PDS information model, and uses XML schema for validation. The initial version of the geometry model is focused on geometry for remote sensing observations conducted by flyby and orbiting spacecraft. Future releases of the PDS geometry model will be expanded to include metadata for landed and rover spacecraft.

  7. The Saturn Ring Observer: In situ studies of planetary rings

    NASA Astrophysics Data System (ADS)

    Nicholson, P. D.; Tiscareno, M. S.; Spilker, L. J.

    2010-12-01

    As part of the Planetary Science Decadal Survey recently undertaken by the NRC's Space Studies Board for the National Academy of Sciences, studies were commissioned for a number of potential missions to outer planet targets. One of these studies examined the technological feasibility of a mission to carry out in situ studies of Saturn's rings, from a spacecraft placed in a circular orbit above the ring plane: the Saturn Ring Observer. The technical findings and background are discussed in a companion poster by T. R. Spilker et al. Here we outline the science goals of such a mission. Most of the fundamental interactions in planetary rings occur on spatial scales that are unresolved by flyby or orbiter spacecraft. Typical particle sizes in the rings of Saturn are in the 1 cm - 10 m range, and average interparticle spacings are a few meters. Indirect evidence indicates that the vertical thickness of the rings is as little as 5 - 10 m, which implies a velocity dispersion of only a few mm/sec. Theories of ring structure and evolution depend on the unknown characteristics of interparticle collisions and on the size distribution of the ring particles. The SRO could provide direct measurements of both the coefficient of restitution -- by monitoring individual collisions -- and the particles’ velocity dispersion. High-resolution observations of individual ring particles should also permit estimates of their spin states. Numerical simulations of Saturn’s rings incorporating both collisions and self-gravity predict that the ring particles are not uniformly distributed, but are instead clustered into elongated structures referred to as “self-gravity wakes”, which are continually created and destroyed on an orbital timescale. Theory indicates that the average separation between wakes in the A ring is of order 30-100 m. Direct imaging of self-gravity wakes, including their formation and subsequent dissolution, would provide critical validation of these models. Other

  8. Completing the Copernican Revolution: The search for other planetary systems

    NASA Technical Reports Server (NTRS)

    Black, David C.

    1995-01-01

    The past few decades have witnessed significant advances in our understanding of how stars form, and there has been an associated increase in our knowledge of conditions and phenomena in the early solar system. These have led to the formulation of a paradigm for the origin of the solar system that is sufficiently complete that its basic elements can be tested directly through observations. A simple, but profound, consequence of the paradigm is that most if not all stars should be accompanied by planetary systems. The accuracy of instruments that can be used in such searches has improved to the point that Jupiter-like companions to a number of nearby stars could be detected. However, the results to date are that no other planetary systems have been detected, and the absence of detection is becoming statistically significant, particularly as it relates to the existence of brown dwarf companions to main-sequence stars.

  9. Completing The Copernican Revolution: The Search for Other Planetary Systems

    NASA Astrophysics Data System (ADS)

    Black, David C.

    The past few decades have witnessed significant advances in our understanding of how stars form, and there has been an associated increase in our knowledge of conditions and phenomena in the early solar system. These have led to the formulation of a paradigm for the origin of the solar system that is sufficiently complete that its basic elements can be tested directly through observations. A simple, but profound, consequence of the paradigm is that most if not all stars should be accompanied by planetary systems. The accuracy of instruments that can be used in such searches has improved to the point that Jupiter-like companions to a number of nearby stars could be detected. However, the results to date are that no other planetary systems have been detected, and the absence of detection is becoming statistically significant, particularly as it relates to the existence of brown dwarf companions to main-sequence stars.

  10. DYNAMICS OF PLANETARY SYSTEMS IN STAR CLUSTERS

    SciTech Connect

    Spurzem, R.; Giersz, M.; Heggie, D. C.; Lin, D. N. C.

    2009-05-20

    At least 10%-15% of nearby Sunlike stars have known Jupiter-mass planets. In contrast, very few planets are found in mature open and globular clusters such as the Hyades and 47 Tuc. We explore here the possibility that this dichotomy is due to the postformation disruption of planetary systems associated with the stellar encounters in long-lived clusters. One supporting piece of evidence for this scenario is the discovery of freely floating low-mass objects in star forming regions. We use two independent numerical approaches, a hybrid Monte Carlo and a direct N-body method, to simulate the impact of the encounters. We show that the results of numerical simulations are in reasonable agreement with analytical determinations in the adiabatic and impulsive limits. They indicate that distant stellar encounters generally do not significantly modify the compact and nearly circular orbits. However, moderately close stellar encounters, which are likely to occur in dense clusters, can excite planets' orbital eccentricity and induce dynamical instability in systems that are closely packed with multiple planets. The disruption of planetary systems occurs primarily through occasional nearly parabolic, nonadiabatic encounters, though eccentricity of the planets evolves through repeated hyperbolic adiabatic encounters that accumulate small-amplitude changes. The detached planets are generally retained by the potential of their host clusters as free floaters in young stellar clusters such as {sigma} Orionis. We compute effective cross sections for the dissolution of planetary systems and show that, for all initial eccentricities, dissolution occurs on timescales that are longer than the dispersion of small stellar associations, but shorter than the age of typical open and globular clusters. Although it is much more difficult to disrupt short-period planets, close encounters can excite modest eccentricity among them, such that subsequent tidal dissipation leads to orbital decay

  11. Occurrence of Earth-like bodies in planetary systems.

    PubMed

    Wetherill, G W

    1991-08-01

    Present theories of terrestrial planet formation predict the rapid ;;runaway formation'' of planetary embryos. The sizes of the embryos increase with heliocentric distance. These embryos then merge to form planets. In earlier Monte Carlo simulations of the merger of these embryos it was assumed that embryos did not form in the asteroid belt, but this assumption may not be valid. Simulations in which runaways were allowed to form in the asteroid belt show that, although the initial distributions of mass, energy, and angular momentum are different from those observed today, during the growth of the planets these distributions spontaneously evolve toward those observed, simply as a result of known solar system processes. Even when a large planet analogous to ;;Jupiter'' does not form, an Earth-sized planet is almost always found near Earth's heliocentric distance. These results suggest that occurrence of Earth-like planets may be a common feature of planetary systems.

  12. The dynamical fate of planetary systems in young star clusters

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaochen; Kouwenhoven, M. B. N.; Wang, Long

    2015-11-01

    We carry out N-body simulations to examine the effects of dynamical interactions on planetary systems in young open star clusters. We explore how the planetary populations in these star clusters evolve, and how this evolution depends on the initial amount of substructure, the virial ratio, the cluster mass and density, and the initial semi-major axis of the planetary systems. The fraction of planetary systems that remains intact as a cluster member, fBPS, is generally well-described by the functional form fBPS = f0(1 + [a/a0]c)-1, where (1 - f0) is the fraction of stars that escapes from the cluster, a0 the critical semi-major axis for survival, and c a measure for the width of the transition region. The effect of the initial amount of substructure over time t can be quantified as fBPS = A(t) + B(D), where A(t) decreases nearly linearly with time, and B(D) decreases when the clusters are initially more substructured. Provided that the orbital separation of planetary systems is smaller than the critical value a0, those in clusters with a higher initial stellar density (but identical mass) have a larger probability of escaping the cluster intact. These results help us to obtain a better understanding of the difference between the observed fractions of exoplanets-hosting stars in star clusters and in the Galactic field. It also allows us to make predictions about the free-floating planet population over time in different stellar environments.

  13. Planetary Systems: Crossing the Jupiter Threshold

    NASA Astrophysics Data System (ADS)

    Marcy, G. W.; Butler, R. P.

    1995-05-01

    We describe stellar Doppler measurements with a precision of 3 m s() -1, cabable of detecting extra-solar planets having masses less than one Jupiter-mass. No planetary systems around main sequence stars have yet been detected, nor does there exist a compelling detection of a brown dwarf, as a stellar companion or otherwise. Several groups are engaged in detecting planetary systems by using precise radial velocities to detect the wobble of the host star (cf. Campbell and Walker, 1988, ApJ,331,902 ; Cochran and Hatzes (1994, in ``Planetary Systems: Formation, Evolution, and Detection'', Kluwer Acad.). Among current search efforts, the Lick Observatory Planetary Search is extensive in both sample size and span of spectra types (Marcy and Butler, 1992, PASP,104,270). The project consists of a Doppler survey of 100 main sequence stars of spectral type, F, G, K, and M. The Lick Obs. full--format echelle gathers all Doppler information from 5000 to 5800 Ang. The wavelength calibration is accomplished with a gaseous iodine absorption cell placed at the slit of the Hamilton spectrometer which superimposes sharp I_2 lines on the stellar spectrum. The I_2 lines also provide the PSF of the spectrometer. A great breakthrough has occurred in the Doppler precision as a result of the improved Schmidt camera on the Hamilton. The Lick echelle now boasts a PSF with FWHM = 1.25 pixels for a narrow (0.3 arcsec) slit. The Doppler precision achieved is 3 m s() -1, based on velocity scatter during the past 5 months in our standard star, tau Ceti (G8V) . The velocities exhibit a standard deviation of 4 m s() -1 per exposure. However, we routinely obtain 4 quick exposures of the brightest target stars on our survey and average the 4 velocities. Such averaging for tau Ceti velocities yields a scatter of 3 m s() -1 due to errors in our Doppler measurements. For comparison, our Jupiter perturbs the Sun by 12.5 m s() -1 rendering Jupiter--like planets detectable at the 4--sigma level, even for

  14. Collisional and Dynamical Evolution of Planetary Systems

    NASA Technical Reports Server (NTRS)

    Weidenschilling, Stuart J.

    2004-01-01

    Senior Scientst S. J. Weidenschilling presents his final administrative report in the research program entitled "Collisional and Dynamical Evolution of Planetary Systems," on which he was the Principal Investigator. This research program produced the following publications: 1) "Jumping Jupiters" in binary star systems. F. Marzari, S. J. Weidenschilling, M. Barbieri and V. Granata. Astrophys. J., in press, 2005; 2) Formation of the cores of the outer planets. To appear in "The Outer Planets" (R. Kallenbach, ED), ISSI Conference Proceedings (Space Sci. Rev.), in press, 2005; 3) Accretion dynamics and timescales: Relation to chondrites. S. J. Weidenschilling and J. Cuzzi. In Meteorites and the Early Solar System LI (D. Lauretta et al., Eds.), Univ. of Arizona Press, 2005; 4) Asteroidal heating and thermal stratification of the asteroid belt. A. Ghosh, S. J.Weidenschilling, H. Y. McSween, Jr. and A. Rubin. In Meteorites and the Early Solar System I1 (D. Lauretta et al., Eds.), Univ. of Arizona Press, 2005.

  15. Other Planetary Systems: The View From Our Neighborhood

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Witteborn, Fred C. (Technical Monitor)

    1995-01-01

    The structure and contents of the Solar System offer an initial model for other planetary systems in this and other galaxies. Our knowledge of the bodies in the Solar System and their physical conditions has grown enormously in the three decades of planetary exploration. Parallel to the uncovering of new facts has been a great expansion of our understanding of just how these conditions came to be. Telescopic studies and missions to all the planets (except Pluto) have shown spectacular and unexpected diversity among those planets, their satellites, the asteroids, and the comets. Highlights include the organic-rich crust of comets, volcanic activity on planetary satellites, randomly oriented magnetic fields of the major planets, the existence of a huge population of planetesimals just beyond Neptune, dramatic combinations of exogenic and endogenic forces shaping the solid bodies throughout the Solar System, and much more. Simultaneously, computational, laboratory, and conceptual advances have shown that the Solar System is not fully evolved either dynamically or chemically. The discovery of clearly identified interstellar (presolar) material in the meteorites and comets connects us directly with the matter in the molecular cloud from which the Solar System originated. At the same time, an increased understanding of the chemistry of comets and the impact history of the planets has demonstrated the dependence of the origin and evolution of life on Earth on powerful exogenic factors. This presentation summarizes some of the new knowledge of the Solar System and proposes specific character ist ics that may be observed in (or used as criteria for identification of) extrasolar planetary systems.

  16. Dynamics of Populations of Planetary Systems (IAU C197)

    NASA Astrophysics Data System (ADS)

    Knezevic, Zoran; Milani, Andrea

    2005-05-01

    1. Resonances and stability of extra-solar planetary systems C. Beaugé, N. Callegari, S. Ferraz-Mello and T. A. Michtchenko; 2. Formation, migration, and stability of extrasolar planetary systems Fred C. Adams; 3. Dynamical evolution of extrasolar planetary systems Ji-Lin Zhou and Yi-Sui Sun; 4. Dynamics of planetesimals: the role of two-body relaxation Eiichiro Kokubo; 5. Fitting orbits Andrzej J. Maciejewski, Krzysztof Gozdziewski and Szymon Kozlowski; 6. The secular planetary three body problem revisited Jacques Henrard and Anne-Sophie Libert; 7. Dynamics of extrasolar systems at the 5/2 resonance: application to 47 UMa Dionyssia Psychoyos and John D. Hadjidemetriou; 8. Our solar system as model for exosolar planetary systems Rudolf Dvorak, Áron Süli and Florian Freistetter; 9. Planetary motion in double stars: the influence of the secondary Elke Pilat-Lohinger; 10. Planetary orbits in double stars: influence of the binary's orbital eccentricity Daniel Benest and Robert Gonczi; 11. Astrometric observations of 51 Peg and Gliese 623 at Pulkovo observatory with 65 cm refractor N. A. Shakht; 12. Observations of 61 Cyg at Pulkovo Denis L. Gorshanov, N. A. Shakht, A. A. Kisselev and E. V. Poliakow; 13. Formation of the solar system by instability Evgeny Griv and Michael Gedalin; 14. Behaviour of a two-planetary system on a cosmogonic time-scale Konstantin V. Kholshevnikov and Eduard D. Kuznetsov; 15. Boundaries of the habitable zone: unifying dynamics, astrophysics, and astrobiology Milan M. Cirkovic; 16. Asteroid proper elements: recent computational progress Fernando Roig and Cristian Beaugé; 17. Asteroid family classification from very large catalogues Anne Lemaitre; 18. Non-gravitational perturbations and evolution of the asteroid main belt David Vokrouhlicky, M. Broz and W. F. Bottke, D. Nesvorny and A. Morbidelli; 19. Diffusion in the asteroid belt Harry Varvoglis; 20. Accurate model for the Yarkovsky effect David Capek and David Vokrouhlicky; 21. The

  17. Planetary lightning flash and thundercloud observation with spacecraft and telescope

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Sato, M.; Hoshino, H.; Fukuhara, T.; Watanabe, M.; Nakajima, K.; Yair, Y.; Fischer, G.; Aplin, K.

    2011-10-01

    It has been revealed that lightning is an good proxy of atmospheric circulation in the Earth. In planetary exploration, such as Venus and Jupiter, where very limited in-situ measurements can be made, the lightning measurement would be a powerful tool. Recently it is reported that the magnetometer on board Venus Express detected whistler mode waves whose source could be lightning discharge occurring well below the spacecraft. In order to identify the discharge phenomena in the atmosphere of Venus without ambiguity, we sent a high-speed optical sensor to Venus, the lightning and airglow camera, LAC onboard Akatsuki. In Jupiter, the latest observational and theoretical studies suggest that strong moist convective clouds, that is thunderclouds, in Jupiter's atmosphere are very important. It is not only because of an essential ingredient of meteorology of Jupiter, which determines the large scale structures such as belt/zone and big ovals, but also as a potentially very useful tool for probing the water abundance of the deep atmosphere, which is crucial to constrain the behavior of volatiles in early solar system. We would suggest a very simple high-speed imaging unit onboard Jovian orbiter, Optical Lightning Detector, OLD, optimized for detecting optical emissions from lightning discharge in Jupiter. OLD consists of radiation-tolerant CMOS sensors and two H Balmer Alpha line (656.3nm) filters. In normal sampling mode the frame intervals is 29ms with a full frame format of 512x512 pixels and in high-speed sampling mode the interval could be reduced down to 0.1ms by concentrating a limited area of 30x30 pixels. Weight, size and power consumption are about 1kg, 16x7x5.5 cm (sensor) and 16x12x4 cm (circuit), and 4W, respectively, though they can be reduced according to the spacecraft resources in EJSM orbiters. Also we plan to investigate the optical flashes using a ground-based middle-sized telescope, which will be built by Hokkaido University, with narrow-band high speed

  18. The search for extra-solar planetary systems.

    PubMed

    Paresce, F

    1992-01-01

    I review the observational evidence for planetary systems around nearby stars and, using our own solar system as a guide, assess the stringent requirements that new searches need to meet in order to unambiguously establish the presence of another planetary system. Basically, these requirements are: 1 milliarcsecond or better positional accuracy for astrometric techniques, 9 orders of magnitude or better star to planet luminosity ratio discrimination at 0.5 to 1" separation in the optical for direct imaging techniques, 10 meters sec-1 or better radial velocity accuracy for reflex motion techniques and +/-1% or better brightness fluctuation accuracy for planet/star occultation measurements. The astrometric accuracy is in reach of HST, direct imaging will require much larger telescopes and/or a 50 times smoother mirror than HST while the reflex motion and occultation techniques best performed on the ground are just becoming viable and promise exciting new discoveries. On the other band, new indirect evidence on the existence of other planetary systems also comes from the observation of large dusty disks around nearby main sequence stars not too dissimilar from our sun. In one particular case, that of Beta Pictoris, a flattened disk seen nearly edge-on has been imaged in the optical and near IR down to almost 70 AU of the star. It probably represents a young planetary system in its clearing out phase as planetesimals collide, erode and are swept out of the inner system by radiation pressure. The hypothesized Kuiper belt around our solar system may be the analogous structure in a later evolutionary stage. Features of this type have been detected in the far IR and sub-millimeter wavelength regions around 50-100 nearby main sequence and pre-main sequence stars. I discuss a battery of new accurate observations planned in the near future of these objects some of which may actually harbour planets or planetesimals that will certainly dramatically improve our knowledge of

  19. Natural fracture systems on planetary surfaces: Genetic classification and pattern randomness

    NASA Technical Reports Server (NTRS)

    Rossbacher, Lisa A.

    1987-01-01

    One method for classifying natural fracture systems is by fracture genesis. This approach involves the physics of the formation process, and it has been used most frequently in attempts to predict subsurface fractures and petroleum reservoir productivity. This classification system can also be applied to larger fracture systems on any planetary surface. One problem in applying this classification system to planetary surfaces is that it was developed for ralatively small-scale fractures that would influence porosity, particularly as observed in a core sample. Planetary studies also require consideration of large-scale fractures. Nevertheless, this system offers some valuable perspectives on fracture systems of any size.

  20. Planetary Protection Considerations in EVA System Design

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.; Kosmo, Joseph J.

    2011-01-01

    very little expression of these anomalies. hardware from the human-occupied area may limit (although not likely eliminate) external materials in the human habitat. Definition of design-to requirements is critical to understanding technical feasibility and costs. The definition of Planetary Protection needs in relation to EVA mission and system element development cost impacts should be considered and interpreted in terms of Plausible Protection criteria. Since EVA operations will have the most direct physical interaction with the Martian surface, PP needs should be considered in the terms of mitigating hardware and operations impacts and costs.

  1. Dynamics of the 3:1 Resonant Planetary Systems

    NASA Astrophysics Data System (ADS)

    Alves, Alan; Michtchenko, T. A.

    2013-05-01

    Abstract (2,250 Maximum Characters): Many of the discovered exoplanetary systems are involved inside mean-motion resonances. In this work we focus on the dynamics of the 3:1 mean-motion resonant planetary systems. Our main purpose is to understand the dynamics in the vicinity of the apsidal corotation resonance (ACR) which are stationary solutions of the resonant problem. We apply the semi-analytical method (Michtchenko et al., 2006) to construct the averaged three-body Hamiltonian of a planetary system near a 3:1 resonance. Then we obtain the families of ACR, composed of symmetric and asymmetric solutions. Using the symmetric stable solutions we observe the law of structures (Ferraz-Mello,1988), for different mass ratio of the planets. We also study the evolution of the frequencies of σ1, resonant angle, and Δω, the secular angle. The resonant domains outside the immediate vicinity of ACR are studied using dynamical maps techniques. We compared the results obtained to planetary systems near a 3:1 MMR, namely 55 Cnc b-c, HD 60532 b-c and Kepler 20 b-c.

  2. Urey prize lecture: On the diversity of plausible planetary systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.

    1995-01-01

    Models of planet formation and of the orbital stability of planetary systems are used to predict the variety of planetary and satellite systems that may be present within our galaxy. A new approximate global criterion for orbital stability of planetary systems based on an extension of the local resonance overlap criterion is proposed. This criterion implies that at least some of Uranus' small inner moons are significantly less massive than predicted by estimates based on Voyager volumes and densities assumed to equal that of Miranda. Simple calculations (neglecting planetary gravity) suggest that giant planets which acrete substantial amounts of gas while their envelopes are extremely distended ultimately rotate rapidly in the prgrade direction.

  3. CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA

    SciTech Connect

    Borucki, William J.; Koch, David G.; Bryson, Stephen T.; Lissauer, Jack J.; Basri, Gibor; Marcy, Geoffrey W.; Batalha, Natalie; Brown, Timothy M.; Caldwell, Douglas; DeVore, Edna; Jenkins, Jon M.; Christensen-Dalsgaard, Joergen; Cochran, William D.; Dunham, Edward W.; Gautier, Thomas N.; Geary, John C.; Latham, David W.; Gilliland, Ronald; Gould, Alan; Howell, Steve B. E-mail: Martin.Still@nasa.gov

    2011-07-20

    On 2011 February 1 the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16. There are 1235 planetary candidates with transit-like signatures detected in this period. These are associated with 997 host stars. Distributions of the characteristics of the planetary candidates are separated into five class sizes: 68 candidates of approximately Earth-size (R{sub p} < 1.25 R{sub +}), 288 super-Earth-size (1.25 R{sub +} {<=} R{sub p} < 2 R{sub +}), 662 Neptune-size (2 R{sub +} {<=} R{sub p} < 6 R{sub +}), 165 Jupiter-size (6 R{sub +} {<=} R{sub p} < 15 R{sub +}), and 19 up to twice the size of Jupiter (15 R{sub +} {<=} R{sub p} < 22 R{sub +}). In the temperature range appropriate for the habitable zone, 54 candidates are found with sizes ranging from Earth-size to larger than that of Jupiter. Six are less than twice the size of the Earth. Over 74% of the planetary candidates are smaller than Neptune. The observed number versus size distribution of planetary candidates increases to a peak at two to three times the Earth-size and then declines inversely proportional to the area of the candidate. Our current best estimates of the intrinsic frequencies of planetary candidates, after correcting for geometric and sensitivity biases, are 5% for Earth-size candidates, 8% for super-Earth-size candidates, 18% for Neptune-size candidates, 2% for Jupiter-size candidates, and 0.1% for very large candidates; a total of 0.34 candidates per star. Multi-candidate, transiting systems are frequent; 17% of the host stars have multi-candidate systems, and 34% of all the candidates are part of multi-candidate systems.

  4. Continuing Studies in Support of Ultraviolet Observations of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Clark, John

    1997-01-01

    This program was a one-year extension of an earlier Planetary Atmospheres program grant, covering the period 1 August 1996 through 30 September 1997. The grant was for supporting work to complement an active program observing planetary atmospheres with Earth-orbital telescopes, principally the Hubble Space Telescope (HST). The recent concentration of this work has been on HST observations of Jupiter's upper atmosphere and aurora, but it has also included observations of Io, serendipitous observations of asteroids, and observations of the velocity structure in the interplanetary medium. The observations of Jupiter have been at vacuum ultraviolet wavelengths, including imaging and spectroscopy of the auroral and airglow emissions. The most recent HST observations have been at the same time as in situ measurements made by the Galileo orbiter instruments, as reflected in the meeting presentations listed below. Concentrated efforts have been applied in this year to the following projects: The analysis of HST WFPC 2 images of Jupiter's aurora, including the Io footprint emissions. We have performed a comparative analysis of the lo footprint locations with two magnetic field models, studied the statistical properties of the apparent dawn auroral storms on Jupiter, and found various other repeated patterns in Jupiter's aurora. Analysis and modeling of airglow and auroral Ly alpha emission line profiles from Jupiter. This has included modeling the aurora] line profiles, including the energy degradation of precipitating charged particles and radiative transfer of the emerging emissions. Jupiter's auroral emission line profile is self-absorbed, since it is produced by an internal source, and the resulting emission with a deep central absorption from the overlying atmosphere permits modeling of the depth of the emissions, plus the motion of the emitting layer with respect to the overlying atmospheric column from the observed Doppler shift of the central absorption. By contrast

  5. Exo-Planetary Phoenix: Rebirth of Planetary Systems Beyond the Main Sequence

    NASA Astrophysics Data System (ADS)

    Marengo, M.

    2014-04-01

    Mounting evidence suggests that planetary systems may be a common feature of stars that have evolved beyond the main sequence. Warm debris disks around white dwarfs and "pulsar" planets orbiting a neutron star are a strong indication that planetary systems may, at least in same cases, survive the dramatic phenomena leading to stellar death. A close look at these late evolutionary stages, however, suggests that these systems may be more than mere survivors of doomed pre-existing exo-planetary systems. The circumstellar environment of post-main sequence stars bears surprising similarities to the conditions leading to pre-main sequence planetary formation: a metal-rich environment often characterized by the presence of circumstellar or circumbinary disks. Are these conditions conducive to the birth of a second-generation planetary system, like a phoenix rising from the ashes of ancient worlds? In this talk we will discuss how the physical conditions in the winds of dusty giant stars may be favorable for renewed planetary formation, with particular emphasis on the effects of enhanced metallicity, binarity and the timescales available for the formation of a new generation of planets.

  6. Observation of luminous transient phenomena on planetary bodies

    NASA Astrophysics Data System (ADS)

    di Martino, M.; Carbognani, A.

    In this paper, we review the possibility of space observations fro the most important luminous transient phenomena occurring on planetary bodies. The construction of a bread board of a CCD camera having a field of view of 120 degrees and a sensitivity able to detect events of visual magnitude +6, together with the realization of the relative operation software, has been funded by the European Space Agency (ESA). This project has been developed by the firm Galileo Avionica S.p.A. (Campi Bisenzio, Italy). The estimated cost for such a space-qualified camera is estimated between 3 and 4 Million US$. It could fly as a piggy-back payload on a space platform and/or a constellation od satellites conceived for different space missions.

  7. Planetary nebula progenitors that swallow binary systems

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2016-01-01

    I propose that some irregular messy planetary nebulae (PNe) owe their morphologies to triple-stellar evolution where tight binary systems evolve inside and/or on the outskirts of the envelope of asymptotic giant branch (AGB) stars. In some cases, the tight binary system can survive, in others, it is destroyed. The tight binary system might break up with one star leaving the system. In an alternative evolution, one of the stars of the broken-up tight binary system falls towards the AGB envelope with low specific angular momentum, and drowns in the envelope. In a different type of destruction process, the drag inside the AGB envelope causes the tight binary system to merge. This releases gravitational energy within the AGB envelope, leading to a very asymmetrical envelope ejection, with an irregular and messy PN as a descendant. The evolution of the triple-stellar system can be in a full common envelope evolution or in a grazing envelope evolution. Both before and after destruction (if destruction takes place), the system might launch pairs of opposite jets. One pronounced signature of triple-stellar evolution might be a large departure from axisymmetrical morphology of the descendant PN. I estimate that about one in eight non-spherical PNe is shaped by one of these triple-stellar evolutionary routes.

  8. Planetary Formation and Dynamics in Binary Systems

    NASA Astrophysics Data System (ADS)

    Xie, J. W.

    2013-01-01

    As of today, over 500 exoplanets have been detected since the first exoplanet was discovered around a solar-like star in 1995. The planets in binaries could be common as stars are usually born in binary or multiple star systems. Although current observations show that the planet host rate in multiple star systems is around 17%, this fraction should be considered as a lower limit because of noticeable selection effects against binaries in planet searches. Most of the current known planet-bearing binary systems are S-types, meaning the companion star acts as a distant satellite, typically orbiting the inner star-planet system over 100 AU away. Nevertheless, there are four systems with a smaller separation of 20 AU, including the Gamma Cephei, GJ 86, HD 41004, and HD 196885. In addition to the planets in circumprimary (S-type) orbits discussed above, planets in circumbinary (P-type) orbits have been found in only two systems. In this thesis, we mainly study the planet formation in the S-type binary systems. In chapter 1, we first summarize current observational facts of exoplanets both in single-star and binary systems, then review the theoretical models of planet formation, with special attention to the application in binary systems. Perturbative effects from stellar companions render the planet formation process in binary systems even more complex than that in single-star systems. The perturbations from a binary companion can excite planetesimal orbits, and increase their mutual impact velocities to the values that might exceed their escape velocity or even the critical velocity for the onset of eroding collisions. The intermediate stage of the formation process---from planetesimals to planetary embryos---is thus the most problematic. In the following chapters, we investigate whether and how the planet formation goes through such a problematic stage. In chapter 2, we study the effects of gas dissipation on the planetesimals' mutual accretion. We find that in a

  9. Voyager 1 planetary radio astronomy observations near Jupiter

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Pearce, J. B.; Riddle, A. C.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Thieman, J. R.; Carr, T. D.; Gulkis, S.; Boischot, A.

    1979-01-01

    Results from the first low-frequency radio receiver to be transported into the Jupiter magnetosphere are reported. Dramatic new information was obtained, both because Voyager was near or in Jupiter's radio emission sources and because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio spectral arcs, from above 30 to about 1 MHz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Detailed studies are in progress and are outlined briefly.

  10. Voyager 1 Planetary Radio Astronomy Observations Near Jupiter

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Pearce, J. B.; Riddle, A. C.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Thieman, J. R.; Carr, T. B.; Gulkis, S.; Boischot, A.

    1979-01-01

    Results are reported from the first low frequency radio receiver to be transported into the Jupiter magnetosphere. Dramatic new information was obtained both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio arcs, from above 30 MHz to about 1 MHz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Studies in progress are outlined briefly.

  11. Voyager 1 planetary radio astronomy observations near jupiter.

    PubMed

    Warwick, J W; Pearce, J B; Riddle, A C; Alexander, J K; Desch, M D; Kaiser, M L; Thieman, J R; Carr, T D; Gulkis, S; Boischot, A; Harvey, C C; Pedersen, B M

    1979-06-01

    We report results from the first low-frequency radio receiver to be transported into the Jupiter magnetosphere. We obtained dramatic new information, both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio spectral arcs, from above 30 to about 1 megahertz, occurred in patterns correlated with planetary longitude. A newly discovered kilometric wavelength radio source may relate to the plasma torus near Io's orbit. In situ wave resonances near closest approach define an electron density profile along the Voyager trajectory and form the basis for a map of the torus. Detailed studies are in progress and are out-lined briefly.

  12. PLANET-PLANET SCATTERING LEADS TO TIGHTLY PACKED PLANETARY SYSTEMS

    SciTech Connect

    Raymond, Sean N.; Barnes, Rory; Veras, Dimitri; Armitage, Philip J.; Gorelick, Noel; Greenberg, Richard

    2009-05-01

    The known extrasolar multiple-planet systems share a surprising dynamical attribute: they cluster just beyond the Hill stability boundary. Here we show that the planet-planet scattering model, which naturally explains the observed exoplanet eccentricity distribution, can reproduce the observed distribution of dynamical configurations. We calculated how each of our scattered systems would appear over an appropriate range of viewing geometries; as Hill stability is weakly dependent on the masses, the mass-inclination degeneracy does not significantly affect our results. We consider a wide range of initial planetary mass distributions and find that some are poor fits to the observed systems. In fact, many of our scattering experiments overproduce systems very close to the stability boundary. The distribution of dynamical configurations of two-planet systems may provide better discrimination between scattering models than the distribution of eccentricity. Our results imply that, at least in their inner regions which are weakly affected by gas or planetesimal disks, planetary systems should be 'packed', with no large gaps between planets.

  13. Flash LIDAR Systems for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Dissly, Richard; Weinberg, J.; Weimer, C.; Craig, R.; Earhart, P.; Miller, K.

    2009-01-01

    Ball Aerospace offers a mature, highly capable 3D flash-imaging LIDAR system for planetary exploration. Multi mission applications include orbital, standoff and surface terrain mapping, long distance and rapid close-in ranging, descent and surface navigation and rendezvous and docking. Our flash LIDAR is an optical, time-of-flight, topographic imaging system, leveraging innovations in focal plane arrays, readout integrated circuit real time processing, and compact and efficient pulsed laser sources. Due to its modular design, it can be easily tailored to satisfy a wide range of mission requirements. Flash LIDAR offers several distinct advantages over traditional scanning systems. The entire scene within the sensor's field of view is imaged with a single laser flash. This directly produces an image with each pixel already correlated in time, making the sensor resistant to the relative motion of a target subject. Additionally, images may be produced at rates much faster than are possible with a scanning system. And because the system captures a new complete image with each flash, optical glint and clutter are easily filtered and discarded. This allows for imaging under any lighting condition and makes the system virtually insensitive to stray light. Finally, because there are no moving parts, our flash LIDAR system is highly reliable and has a long life expectancy. As an industry leader in laser active sensor system development, Ball Aerospace has been working for more than four years to mature flash LIDAR systems for space applications, and is now under contract to provide the Vision Navigation System for NASA's Orion spacecraft. Our system uses heritage optics and electronics from our star tracker products, and space qualified lasers similar to those used in our CALIPSO LIDAR, which has been in continuous operation since 2006, providing more than 1.3 billion laser pulses to date.

  14. Forever Alone? Testing Single Eccentric Planetary Systems for Multiple Companions

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Wang, Songhu; Horner, Jonathan; Tinney, C. G.; Butler, R. P.; Jones, H. R. A.; O'Toole, S. J.; Bailey, J.; Carter, B. D.; Salter, G. S.; Wright, D.; Zhou, Ji-Lin

    2013-09-01

    Determining the orbital eccentricity of an extrasolar planet is critically important for understanding the system's dynamical environment and history. However, eccentricity is often poorly determined or entirely mischaracterized due to poor observational sampling, low signal-to-noise, and/or degeneracies with other planetary signals. Some systems previously thought to contain a single, moderate-eccentricity planet have been shown, after further monitoring, to host two planets on nearly circular orbits. We investigate published apparent single-planet systems to see if the available data can be better fit by two lower-eccentricity planets. We identify nine promising candidate systems and perform detailed dynamical tests to confirm the stability of the potential new multiple-planet systems. Finally, we compare the expected orbits of the single- and double-planet scenarios to better inform future observations of these interesting systems.

  15. FOREVER ALONE? TESTING SINGLE ECCENTRIC PLANETARY SYSTEMS FOR MULTIPLE COMPANIONS

    SciTech Connect

    Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G.; Bailey, J.; Salter, G. S.; Wright, D.; Wang Songhu; Zhou Jilin; Butler, R. P.; Jones, H. R. A.; O'Toole, S. J.; Carter, B. D.

    2013-09-15

    Determining the orbital eccentricity of an extrasolar planet is critically important for understanding the system's dynamical environment and history. However, eccentricity is often poorly determined or entirely mischaracterized due to poor observational sampling, low signal-to-noise, and/or degeneracies with other planetary signals. Some systems previously thought to contain a single, moderate-eccentricity planet have been shown, after further monitoring, to host two planets on nearly circular orbits. We investigate published apparent single-planet systems to see if the available data can be better fit by two lower-eccentricity planets. We identify nine promising candidate systems and perform detailed dynamical tests to confirm the stability of the potential new multiple-planet systems. Finally, we compare the expected orbits of the single- and double-planet scenarios to better inform future observations of these interesting systems.

  16. High spatial resolution mid-infrared studies of planetary systems

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew

    I present the results of six papers related the formation and evolution of planets and planetary systems, all of which are based on high-resolution, ground-based, mid-infrared observations. The first three chapters are studies of T Tauri binaries. T Tauri stars are young, low mass stars, whose disks form the building blocks of extrasolar planets. The first chapter is a study of the 0.68"/0.12" triple system, T Tauri. Our spatially resolved N-band photometry reveals silicate absorption towards one component, T Tau Sa, indicating the presence of an edge-on disk, which is in contrast to the other components. The second chapter is an adaptive optics fed N-band spectroscopy study of the 0.88" binary, UY Aur. We find that the dust grains around UY Aur A are ISM-like, while the mineralogy of the dust around UY Aur B is more uncertain, due to self-extinction. The third chapter presents a survey of spatially resolved silicate spectroscopy for nine T Tauri binaries. We find with 90%-95% confidence that the silicate features of the binaries are more similar than those of randomly paired single stars. This implies that a shared binary property, such as age or composition, is an important parameter in dust grain evolution. The fourth chapter is a study of the planetary system, 2MASS 1207. We explore the source of 2MASS 1207 b's under-luminosity, which has typically been explained as the result of an edge-on disk of large, grey-extincting dust grains. We find that the edge-on disk theory is incompatible with several lines of evidence, and suggest that 2MASS 1207 b's appearance can be explained by a thick cloudy atmosphere, which might be typical among young, planetary systems. The fifth chapter is a study of the white dwarf, Sirius B, which in the context of this thesis is being studied as a post-planetary system. Our N-band imaging demonstrates that Sirius B does not have an infrared excess, in contrast to previous results. The sixth chapter is a study of mid

  17. STABILITY OF SATELLITES IN CLOSELY PACKED PLANETARY SYSTEMS

    SciTech Connect

    Payne, Matthew J.; Holman, Matthew J.; Deck, Katherine M.; Perets, Hagai B.

    2013-10-01

    We perform numerical integrations of four-body (star, planet, planet, satellite) systems to investigate the stability of satellites in planetary systems with tightly packed inner planets (STIPs). We find that the majority of closely spaced stable two-planet systems can stably support satellites across a range of parameter-space which is only slightly decreased compared to that seen for the single-planet case. In particular, circular prograde satellites remain stable out to ∼0.4 R{sub H} (where R{sub H} is the Hill radius) as opposed to 0.5 R{sub H} in the single-planet case. A similarly small restriction in the stable parameter-space for retrograde satellites is observed, where planetary close approaches in the range 2.5-4.5 mutual Hill radii destabilize most satellites orbits only if a ∼ 0.65 R{sub H} . In very close planetary pairs (e.g., the 12:11 resonance) the addition of a satellite frequently destabilizes the entire system, causing extreme close approaches and the loss of satellites over a range of circumplanetary semi-major axes. The majority of systems investigated stably harbored satellites over a wide parameter-space, suggesting that STIPs can generally offer a dynamically stable home for satellites, albeit with a slightly smaller stable parameter-space than the single-planet case. As we demonstrate that multi-planet systems are not a priori poor candidates for hosting satellites, future measurements of satellite occurrence rates in multi-planet systems versus single-planet systems could be used to constrain either satellite formation or past periods of strong dynamical interaction between planets.

  18. TOPS: Toward Other Planetary Systems. A report by the solar system exploration division

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report describes a general plan and the pertinent technological requirements for TOPS (Toward Other Planetary Systems), a staged program to ascertain the prevalence and character of other planetary systems and to construct a definitive picture of the formation of stars and their planets. The first stages focus on discovering and studying a significant number of fully formed planetary systems, as well as expanding current studies of protoplanetary systems. As the TOPS Program evolves, emphasis will shift toward intensive study of the discovered systems and of individual planets. Early stages of the TOPS Program can be undertaken with ground-based observations and space missions comparable in scale to those now being performed. In the long term, however, TOPS will become an ambitious program that challenges our capabilities and provides impetus for major space initiatives and new technologies.

  19. Photochemical hazes in planetary atmospheres: solar system bodies and beyond

    NASA Astrophysics Data System (ADS)

    Imanaka, Hiroshi; Cruikshank, Dale P.; McKay, Christopher P.

    2015-11-01

    Recent transit observations of exoplanets have demonstrated the possibility of a wide prevalence of haze/cloud layers at high altitudes. Hydrocarbon photochemical haze could be the candidate for such haze particles on warm sub-Neptunes, but the lack of evidence for methane poses a puzzle for such hydrocarbon photochemical haze. The CH4/CO ratios in planetary atmospheres vary substantially from their temperature and dynamics. An understanding of haze formation rates and plausible optical properties in a wide diversity of planetary atmospheres is required to interpret the current and future observations.Here, we focus on how atmospheric compositions, specifically CH4/CO ratios, affect the haze production rates and their optical properties. We have conducted a series of cold plasma experiments to constrain the haze mass production rates from gas mixtures of various CH4/CO ratios diluted either in H2 or N2 atmosphere. The mass production rates in the N2-CH4-CO system are much greater than those in the H2-CH4-CO system. They are rather insensitive to the CH4/CO ratios larger than at 0.3. Significant formation of solid material is observed both in H2-CO and N2-CO systems without CH4 in the initial gas mixtures. The complex refractive indices were derived for haze samples from N2-CH4, H2-CH4, and H2-CO gas mixtures. These are the model atmospheres for Titan, Saturn, and exoplanets, respectively. The imaginary part of the complex refractive indices in the UV-Vis region are distinct among these samples, which can be utilized for modeling these planetary atmospheres.

  20. Survival of habitable planets in unstable planetary systems

    NASA Astrophysics Data System (ADS)

    Carrera, Daniel; Davies, Melvyn B.; Johansen, Anders

    2016-09-01

    Many observed giant planets lie on eccentric orbits. Such orbits could be the result of strong scatterings with other giant planets. The same dynamical instability that produces these scatterings may also cause habitable planets in interior orbits to become ejected, destroyed, or be transported out of the habitable zone. We say that a habitable planet has resilient habitability if it is able to avoid ejections and collisions and its orbit remains inside the habitable zone. Here we model the orbital evolution of rocky planets in planetary systems where giant planets become dynamically unstable. We measure the resilience of habitable planets as a function of the observed, present-day masses and orbits of the giant planets. We find that the survival rate of habitable planets depends strongly on the giant planet architecture. Equal-mass planetary systems are far more destructive than systems with giant planets of unequal masses. We also establish a link with observation; we find that giant planets with present-day eccentricities higher than 0.4 almost never have a habitable interior planet. For a giant planet with an present-day eccentricity of 0.2 and semimajor axis of 5 AU orbiting a Sun-like star, 50% of the orbits in the habitable zone are resilient to the instability. As semimajor axis increases and eccentricity decreases, a higher fraction of habitable planets survive and remain habitable. However, if the habitable planet has rocky siblings, there is a significant risk of rocky planet collisions that would sterilize the planet.

  1. Dynamical simulations of the HR8799 planetary system

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Horner, J.; Carter, A.

    2010-10-01

    HR8799 is a young (20-160 Myr) A-dwarf main sequence star with a debris disc detected by IRAS (InfraRed Astronomical Satellite). In 2008, it was one of two stars around which exoplanets were directly imaged for the first time. The presence of three Jupiter-mass planets around HR8799 provoked much interest in modelling the dynamical stability of the system. Initial simulations indicated that the observed planetary architecture was unstable on timescales much shorter than the lifetime of the star (~105 yr). Subsequent models suggested that the system could be stable if the planets were locked in a 1:2:4 mutual mean motion resonance (MMR). In this work, we have examined the influence of varying orbital eccentricity and the semi-major axis on the stability of the three-planet system, through dynamical simulations using the MERCURY n-body integrator. We find that, in agreement with previous work on this system, the 1:2:4 MMR is the most stable planetary configuration, and that the system stability is dominated by the interaction between the inner pair of planets. In contrast to previous results, we find that with small eccentricities, the three-planet system can be stable for timescales comparable to the system lifetime and, potentially, much longer.

  2. The Planetary Nebula System of M94

    NASA Astrophysics Data System (ADS)

    Herrmann, Kimberly; Ciardullo, Robin; Jacoby, George; Feldmeier, John

    2006-02-01

    Our understanding of galaxy formation is severely limited by poorly known galaxy mass profiles. Rotation curves reveal dark matter halos around disk galaxies, but halo and visible disk mass profiles cannot be decoupled using rotation curves alone. Most analyses therefore rely on the ``maximal disk'' method that assumes the disk mass-to-light ratio (M/L) is constant with radius. Absorption-line spectroscopy has shown that the constant M/L hypothesis is reasonable in a galaxy's inner regions. However, only two galaxies have data more than ~ 1.5 scale lengths from their nuclei: M33 and M83. Planetary nebula (PN) velocity measurements over the central ~ 6 disk scale lengths in M33 indicate that the galaxy's disk M/L increases by a factor of ~ 5 radially outward. Preliminary PN results for M83 also suggest a varying disk M/L. We propose to study the distribution of disk mass in normal spiral galaxies by measuring the z-motions of PNe in nearby, face-on systems. Last year, we conducted an [O III] (lambda) 5007 survey of M94 with the WIYN telescope and discovered ~ 200 PN candidates. We now propose to use Hydra to measure the PN radial velocities so we may trace the system's disk surface-mass density over ~ 6 scale lengths, and thereby better constrain the radial profiles of the galaxy's dark halo.

  3. PDS4: Developing the Next Generation Planetary Data System

    NASA Technical Reports Server (NTRS)

    Crichton, D.; Beebe, R.; Hughes, S.; Stein, T.; Grayzeck, E.

    2011-01-01

    The Planetary Data System (PDS) is in the midst of a major upgrade to its system. This upgrade is a critical modernization of the PDS as it prepares to support the future needs of both the mission and scientific community. It entails improvements to the software system and the data standards, capitalizing on newer, data system approaches. The upgrade is important not only for the purpose of capturing results from NASA planetary science missions, but also for improving standards and interoperability among international planetary science data archives. As the demands of the missions and science community increase, PDS is positioning itself to evolve and meet those demands.

  4. Towards real-time stereovision systems for planetary missions

    NASA Astrophysics Data System (ADS)

    Parkes, Stephen Maxwell

    1993-01-01

    Stereovision algorithms applicable to planetary mobile vehicles are considered. Stereovision systems have an important role to play in planetary exploration from digital elevation modeling of planetary surfaces to navigation of semiautonomous vehicles and control of robotic manipulators. Real time stereovision systems require very high processing power which can only be met by a heterogeneous multiprocessor processing architecture. The current and future processing technologies are examined together with the constraints on space-based electronic systems. The integrated multiprocessor system being developed for digital signal and image processing applications is described.

  5. Planetary radio astronomy observations from Voyager 2 near Saturn

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Evans, D. R.; Romig, J. H.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Aubier, M.; Leblanc, Y.; Lecacheux, A.; Pedersen, B. M.

    1982-01-01

    Planetary radio astronomy measurements obtained by Voyager 2 near Saturn have added further evidence that Saturnian kilometric radiation is emitted by a strong dayside source at auroral latitudes in the northern hemisphere and by a weaker source at complementary latitudes in the southern hemisphere. These emissions are variable because of Saturn's rotation and, on longer time scales, probably because of influences of the solar wind and Dione. The electrostatic discharge bursts first discovered by Voyager 1 and attributed to emissions from the B ring were again observed with the same broadband spectral properties and an episodic recurrence period of about 10 hours, but their occurrence frequency was only about 30 percent of that detected by Voyager 1. While crossing the ring plane at a distance of 2.88 Saturn radii, the spacecraft detected an intense noise event extending to above 1 megahertz and lasting about 150 seconds. The event is interpreted to be a consequence of the impact, vaporization, and ionization of charged, micrometer-size G ring particles distributed over a vertical thickness of about 1500 kilometers.

  6. Planetary radio astronomy observations from voyager 2 near saturn.

    PubMed

    Warwick, J W; Evans, D R; Romig, J H; Alexander, J K; Desch, M D; Kaiser, M L; Aubier, M; Leblanc, Y; Lecacheux, A; Pedersen, B M

    1982-01-29

    Planetary radio astronomy measurements obtained by Voyager 2 near Saturn have added further evidence that Saturnian kilometric radiation is emitted by a strong dayside source at auroral latitudes in the northern hemisphere and by a weaker source at complementary latitudes in the southern hemisphere. These emissions are variable because of Saturn's rotation and, on longer time scales, probably because of influences of the solar wind and Dione. The electrostatic discharge bursts first discovered by Voyager 1 and attributed to emissions from the B ring were again observed with the same broadband spectral properties and an episodic recurrence period of about 10 hours, but their occurrence frequency was only about 30 percent of that detected by Voyager 1. While crossing the ring plane at a distance of 2.88 Saturn radii, the spacecraft detected an intense noise event extending to above 1 megahertz and lasting about 150 seconds. The event is interpreted to be a consequence of the impact, vaporization, and ionization of charged, micrometer-size G ring particles distributed over a vertical thickness of about 1500 kilometers.

  7. An Observational Study of Pulsations in Proto-Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Hrivnak, Bruce J.; Lu, Wenxian; Henson, Gary D.; Hillwig, Todd C.

    2016-01-01

    We have been carrying out a long-term monitoring program to study the light variability in proto-planetary nebulae (PPNe). PPNe are post-Asymptotic Giant Branch objects in transition between the AGB and PN phases in the evolution of low and intermediate-mass stars. As such, it is not surprising that they display pulsational variability. We have been carrying out photometric monitoring of 30 of these at the Valparaiso University campus observatory over the last 20 years, with the assistance of undergraduate students. The sample size has been enlarged over the past six years by observations made using telescopes in the SARA consortium at KPNO and CTIO. Periods have been determined for those of F-G spectral types. We have also enlarged the sample with PPNe from outside the Milky Way by determining periods of eight PPNe in the lower metalicity environment of the Magellanic Clouds. Periods for the entire sample range from 35 to 160 days. Some clear patterns have emerged, with those of higher temperature possessing shorter periods and smaller amplitudes, indicating a reduction in period and pulsation amplitude as the objects evolve. Radial velocity monitoring of several of the brightest of these has allowed us to document their changes in brightness, color, and size during a pulsation cycle. The results of this study will be presented. This research is supported by grants from the National Science Foundation (most recently AST 1413660), with additional student support from the Indiana Space Grant Consortium.

  8. Spitzer mid-infrared spectroscopic observations of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Mata, H.; Ramos-Larios, G.; Guerrero, M. A.; Nigoche-Netro, A.; Toalá, J. A.; Fang, X.; Rubio, G.; Kemp, S. N.; Navarro, S. G.; Corral, L. J.

    2016-06-01

    We present Spitzer Space Telescope archival mid-infrared (mid-IR) spectroscopy of a sample of 11 planetary nebulae (PNe). The observations, acquired with the Spitzer Infrared Spectrograph (IRS), cover the spectral range 5.2-14.5 μm that includes the H2 0-0 S(2) to S(7) rotational emission lines. This wavelength coverage has allowed us to derive the Boltzmann distribution and calculate the H2 rotational excitation temperature (Tex). The derived excitation temperatures have consistent values ≃900 ± 70 K for different sources despite their different structural components. We also report the detection of mid-IR ionic lines of [Ar III], [S IV], and [Ne II] in most objects, and polycyclic aromatic hydrocarbon features in a few cases. The decline of the [Ar III]/[Ne II] line ratio with the stellar effective temperature can be explained either by a true neon enrichment or by high density circumstellar regions of PNe that presumably descend from higher mass progenitor stars.

  9. The Planetary Data System Distributed Inventory System

    NASA Technical Reports Server (NTRS)

    Hughes, J. Steven; McMahon, Susan K.

    1996-01-01

    The advent of the World Wide Web (Web) and the ability to easily put data repositories on-line has resulted in a proliferation of digital libraries. The heterogeneity of the underlying systems, the autonomy of the individual sites, and distributed nature of the technology has made both interoperability across the sites and the search for resources within a site major research topics. This article will describe a system that addresses both issues using standard Web protocols and meta-data labels to implement an inventory of on-line resources across a group of sites. The success of this system is strongly dependent on the existence of and adherence to a standards architecture that guides the management of meta-data within participating sites.

  10. Solar and Planetary Observations with a Lunar Radio Telescope

    NASA Astrophysics Data System (ADS)

    Kassim, N.; Weiler, K. W.; Lazio, J. W.; MacDowall, R. J.; Jones, D. L.; Bale, S. D.; Demaio, L.; Kasper, J. C.

    2006-05-01

    Ground-based radio telescopes cannot observe at frequencies below about 10 MHz (wavelengths longer than 30 m) because of ionospheric absorption. The Lunar Imaging Radio Array (LIRA) is a mission concept in which an array of radio telescopes is deployed on the Moon, as part of the Vision for Space Exploration, with the aim of extending radio observations to lower frequencies than are possible from the Earth. LIRA would provide the capability for dedicated monitoring of solar and planetary bursts as well as the search for magnetospheric emissions from extrasolar planets. The highest sensitivity observations can be accomplished by locating LIRA on the far side of the Moon. The array would be composed of 10-12 radial arms, each 1-2 km in length. Each arm would have several hundred dipole antennas and feedlines printed on a very thin sheet of kapton with a total mass of about 300 kg. This would provide a convenient way to deploy thousands of individual antennas and a centrally condensed distribution of array baselines. The lunar farside provides shielding from terrestrial natural and technological radio interference and freedom from the corrupting influence of Earth's ionosphere. This paper will describe the science case for LIRA as well as various options for array deployment and data transmission to Earth. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Basic research in radio astronomy at the NRL is supported by the Office of Naval Research.

  11. The Planetary Data System Web Catalog Interface--Another Use of the Planetary Data System Data Model

    NASA Technical Reports Server (NTRS)

    Hughes, S.; Bernath, A.

    1995-01-01

    The Planetary Data System Data Model consists of a set of standardized descriptions of entities within the Planetary Science Community. These can be real entities in the space exploration domain such as spacecraft, instruments, and targets; conceptual entities such as data sets, archive volumes, and data dictionaries; or the archive data products such as individual images, spectrum, series, and qubes.

  12. The Rocky World of Young Planetary Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Panel A of Inset Panel B of Inset Panel C of Inset

    This artist's concept illustrates how planetary systems arise out of massive collisions between rocky bodies. New findings from NASA's Spitzer Space Telescope show that these catastrophes continue to occur around stars even after they have developed full-sized planets, when they are as old as one hundred million years. For reference, our own Sun, at 4.5 billion years old, is far past this late stage of planet formation.

    In this image, a young star is shown circled by full-sized planets, and rings of dust beyond. These rings, also called 'debris discs,' arise when embryonic planets smash into each other. One of these collisions is illustrated in the inset of Figure 1.

    Spitzer was able to see the dust generated by these collisions with its powerful infrared vision.

  13. The Planetary Data System--preparing for a New Decade

    NASA Astrophysics Data System (ADS)

    Morgan, Thomas H.; Knopf, William P.; Grayzeck, Edwin J.

    2015-11-01

    In order to improve NASA’s ability to serve the Planetary Science Community, the Planetary Data System (PDS) has been transformed. NASA has used the highly successful virtual institute model (e.g., for NASA’s Astrobiology Program) to re-compete the Science Nodes within the PDS Structure. The new institute structure will facilitate our efforts within the PDS to improve both archive searchability and product discoverability. We will continue the adaption of the new PDS4 Standard, and enhance our ability to work with other archive/curation activities within NASA and with the community of space faring nations (through the IPDA). PDS science nodes will continue to work with NASA missions from the initial Announcement of Opportunity through the end of mission to define, organize, and document the data. This process includes peer-review of data sets by members of the science community to ensure that the data sets are scientifically useful, effectively organized, and well documented.The Science nodes were selected through a Cooperative Agreement Notice (NNH15ZDA006C) which specifically allowed the community to propose specific archive concepts. The selected nodes are: Cartography and Imaging Sciences, Rings-Moon Systems, Planetary Geosciences, Planetary Plasma Interactions, Atmospheres, and Small Bodies. Other elements of the PDS include an Engineering Node, the Navigation and Ancillary Information Facility, and a small project office.The prime role of the PDS is unchanged. We archive and distribute scientific data from NASA planetary missions, astronomical observations, and laboratory measurements. NASA’s Science Mission Directorate sponsors the PDS. Its purpose is to ensure the long-term usability of NASA data and to stimulate advanced research.In this presentation we discuss recent changes in the PDS, and our future activities to build on the new Institute. Near term efforts include developing a PDS Roadmap for the next decade lead by PDS Chief Scientist, Dr

  14. A system architecture for a planetary rover

    NASA Technical Reports Server (NTRS)

    Smith, D. B.; Matijevic, J. R.

    1989-01-01

    Each planetary mission requires a complex space vehicle which integrates several functions to accomplish the mission and science objectives. A Mars Rover is one of these vehicles, and extends the normal spacecraft functionality with two additional functions: surface mobility and sample acquisition. All functions are assembled into a hierarchical and structured format to understand the complexities of interactions between functions during different mission times. It can graphically show data flow between functions, and most importantly, the necessary control flow to avoid unambiguous results. Diagrams are presented organizing the functions into a structured, block format where each block represents a major function at the system level. As such, there are six blocks representing telecomm, power, thermal, science, mobility and sampling under a supervisory block called Data Management/Executive. Each block is a simple collection of state machines arranged into a hierarchical order very close to the NASREM model for Telerobotics. Each layer within a block represents a level of control for a set of state machines that do the three primary interface functions: command, telemetry, and fault protection. This latter function is expanded to include automatic reactions to the environment as well as internal faults. Lastly, diagrams are presented that trace the system operations involved in moving from site to site after site selection. The diagrams clearly illustrate both the data and control flows. They also illustrate inter-block data transfers and a hierarchical approach to fault protection. This systems architecture can be used to determine functional requirements, interface specifications and be used as a mechanism for grouping subsystems (i.e., collecting groups of machines, or blocks consistent with good and testable implementations).

  15. Planetary Dynamics and Evolution in Evolved Binary Systems

    NASA Astrophysics Data System (ADS)

    Perets, Hagai; Kratter, K.; Kenyon, S.

    2011-09-01

    Exo-planets typically form in protoplanetary disks left over from the formation of their host star. We discuss additional evolutionary routes which may may exist in old evolved binary systems. Stellar evolution in binaries could lead to the formation of symbiotic stars, where mass is lost from one star and (partially) transferred to its binary companion, forming an accretion disk. Planetary orbits around the mass losing star can expand and destabilize, and may result in chaotic evolution. Possible outcomes include exchange of the planet to the companion star, ejection, collision, or tidal capture by one of the binary components. We show that the conditions in the newly formed accretion disk could be very similar to protoplanetary disks. Planets around the accreting companion may interact with the disk, leading to (re)growth and (re)migration of the planets. The disk may also provide the necessary environment for the formation of a new, second generation of planets in both circumstellar or circumbinary configurations. Pre-existing planets and/or planetesimals may serve as seeds for the formation of the second generation planets. Such systems should be found in white dwarf binary systems, and may show various unique observational signatures. Most notably, second generation planets could form in environments which are unfavorable for first generation planets. The phase space available for these planets could be forbidden (unstable) to first generation planets in the pre-evolved progenitor binaries. Planets may also form in double compact object binaries and in metal poor environments. Observations of exo-planets in such unfavorable regions could possibly serve to uniquely identify their second generation character. Finally, we point out a few observed candidate second generation planetary systems (Gl 86, HD 27442 and observed circumbinary planet candidates). A second generation origin for these systems could explain their unique configurations.

  16. Mission operations systems for planetary exploration

    NASA Technical Reports Server (NTRS)

    Mclaughlin, William I.; Wolff, Donna M.

    1988-01-01

    The purpose of the paper is twofold: (1) to present an overview of the processes comprising planetary mission operations as conducted at the Jet Propulsion Laboratory, and (2) to present a project-specific and historical context within which this evolving process functions. In order to accomplish these objectives, the generic uplink and downlink functions are described along with their specialization to current flight projects. Also, new multimission capabilities are outlined, including prototyping of advanced-capability software for subsequent incorporation into more automated future operations. Finally, a specific historical ground is provided by listing some major operations software plus a genealogy of planetary missions beginning with Mariner 2 in 1962.

  17. The distribution of period ratios in Kepler planetary systems

    NASA Astrophysics Data System (ADS)

    Steffen, Jason H.; Hwang, Jason A.

    2015-01-01

    Kepler's multi-planet systems are a valuable tool to understand the architectures and dynamics of the inner parts of planetary systems. I present an analysis of the distribution of orbital period ratios from candidate systems identified in the Quarter 8 catalog (Burke et al. 2014). This distribution is corrected for the effects of geometric transit probabilities and the completeness of the data reduction pipeline. We find that the distribution of period ratios falls as a power law with exponent -1.26 ± 0.05. We also identify a new, statistically significant feature near a period ratio of 2.2. These observations may provide insights into the formation and evolution of these systems.

  18. Observing Planetary Nebulae with JWST and Extremely Large Telescopes

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra

    2015-01-01

    Most stars in the Universe that leave the main sequence in a Hubble time will end their lives evolving through the Planetary Nebula (PN) evolutionary phase. The heavy mass loss which occurs during the preceding AGB phase is important across astrophysics, dramatically changing the course of stellar evolution, dominantly contributing to the dust content of the interstellar medium, and influencing its chemical composition. The evolution from the AGB phase to the PN phases remains poorly understood, especially the dramatic transformation that occurs in the morphology of the mass-ejecta as AGB stars and their round circumstellar envelopes evolve into mostly PNe, the majority of which deviate strongly from spherical symmetry. In addition, although the PN [OIII] luminosity function (PNLF) has been used as a standard candle (on par with distance indicators such as Cepheids), we do not understand why it works. It has been argued that the resolution of these issues may be linked to binarity and associated processes such as mass transfer and common envelope evolution.Thus, understanding the formation and evolution of PNe is of wide astrophysical importance. PNe have long been known to emit across a very large span of wavelengths, from the radio to X-rays. Extensive use of space-based observatories at X-ray (Chandra/ XMM-Newton), optical (HST) and far-infrared (Spitzer, Herschel) wavelengths in recent years has produced significant new advances in our knowledge of these objects. Given the expected advent of the James Webb Space Telescope in the near future, and ground-based Extremely Large Telescope(s) somewhat later, this talk will focus on future high-angular-resolution, high-sensitivity observations at near and mid-IR wavelengths with these facilities that can help in addressing the major unsolved problems in the study of PNe.

  19. On-Board Perception System For Planetary Aerobot Balloon Navigation

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Scheid, Robert E.; T. Salomon, Phil

    1996-01-01

    NASA's Jet Propulsion Laboratory is implementing the Planetary Aerobot Testbed to develop the technology needed to operate a robotic balloon aero-vehicle (Aerobot). This earth-based system would be the precursor for aerobots designed to explore Venus, Mars, Titan and other gaseous planetary bodies. The on-board perception system allows the aerobot to localize itself and navigate on a planet using information derived from a variety of celestial, inertial, ground-imaging, ranging, and radiometric sensors.

  20. Access to planetary science for the broad public: a more familiar planetary nomenclature and terminology system

    NASA Astrophysics Data System (ADS)

    Hargitai, H.

    The Planetary Sciences in the last decades has accumulated an amount of knowledge that is comparable to other Earth Sciences. The study of planets is not any more a computation of orbital data, but the investigation and description of surface features of dozens of planetary bodies, including our own Earth. This way, it is only an extention of the present Earth sciences like geography, geology, geophisics, meteorolgy etc. In Hungary, Planetary Science studies has been made for decades, but especially today, numerous popular scientific works are published, and the subject of planetology (and also exobiology linked to it) is taught in more and more secondary schools and universities. This ma kes a demand for a Hungarian language terminology and nomenclature in the relatively new discipline of Planetology. It is needed because the present terminology of geosciences is not adequeate for the description of the surface conditions and structures in other planetary bodies. In the mean time it has to be in accord with the Earth-based system. Since this is areal discipline in its subject, it is of high importance that the areas studied be identifiable easily, unambiguously and descriptively. This make s the translation/transcription of IAU's nomenclature our second goal. This is not a simple transliteration of the proper names used in planetary body nomenclatures, but the task is also the setting of the basic rules used in the making of Hungarian nomenclature system. It would be useful, if the system would be useable for any body of the solar system. It has to fit into the system of both the IAU's nomenlcature and the Hungarian geographic name system [1]. This makes a double task: to make a system that is appropriate both linguistically and scientifically. At the same time, in popular science and elementary education, the planetary features' common names and some basic terms should be in the mother languages of the readers, and not in latin or English (outside the anglophone

  1. Planetary system disruption by Galactic perturbations to wide binary stars.

    PubMed

    Kaib, Nathan A; Raymond, Sean N; Duncan, Martin

    2013-01-17

    Nearly half the exoplanets found within binary star systems reside in very wide binaries with average stellar separations greater than 1,000 astronomical units (one astronomical unit (AU) being the Earth-Sun distance), yet the influence of such distant binary companions on planetary evolution remains largely unstudied. Unlike their tighter counterparts, the stellar orbits of wide binaries continually change under the influence of the Milky Way's tidal field and impulses from other passing stars. Here we report numerical simulations demonstrating that the variable nature of wide binary star orbits dramatically reshapes the planetary systems they host, typically billions of years after formation. Contrary to previous understanding, wide binary companions may often strongly perturb planetary systems, triggering planetary ejections and increasing the orbital eccentricities of surviving planets. Although hitherto not recognized, orbits of giant exoplanets within wide binaries are statistically more eccentric than those around isolated stars. Both eccentricity distributions are well reproduced when we assume that isolated stars and wide binaries host similar planetary systems whose outermost giant planets are scattered beyond about 10 AU from their parent stars by early internal instabilities. Consequently, our results suggest that although wide binaries eventually remove the most distant planets from many planetary systems, most isolated giant exoplanet systems harbour additional distant, still undetected planets. PMID:23292514

  2. Planetary system disruption by Galactic perturbations to wide binary stars.

    PubMed

    Kaib, Nathan A; Raymond, Sean N; Duncan, Martin

    2013-01-17

    Nearly half the exoplanets found within binary star systems reside in very wide binaries with average stellar separations greater than 1,000 astronomical units (one astronomical unit (AU) being the Earth-Sun distance), yet the influence of such distant binary companions on planetary evolution remains largely unstudied. Unlike their tighter counterparts, the stellar orbits of wide binaries continually change under the influence of the Milky Way's tidal field and impulses from other passing stars. Here we report numerical simulations demonstrating that the variable nature of wide binary star orbits dramatically reshapes the planetary systems they host, typically billions of years after formation. Contrary to previous understanding, wide binary companions may often strongly perturb planetary systems, triggering planetary ejections and increasing the orbital eccentricities of surviving planets. Although hitherto not recognized, orbits of giant exoplanets within wide binaries are statistically more eccentric than those around isolated stars. Both eccentricity distributions are well reproduced when we assume that isolated stars and wide binaries host similar planetary systems whose outermost giant planets are scattered beyond about 10 AU from their parent stars by early internal instabilities. Consequently, our results suggest that although wide binaries eventually remove the most distant planets from many planetary systems, most isolated giant exoplanet systems harbour additional distant, still undetected planets.

  3. Ancillary Data Services of NASA's Planetary Data System

    NASA Technical Reports Server (NTRS)

    Acton, C.

    1994-01-01

    JPL's Navigation and Ancillary Information Facility (NAIF) has primary responsibility for design and implementation of the SPICE ancillary information system, supporting a wide range of space science mission design, observation planning and data analysis functions/activities. NAIF also serves as the geometry and ancillary data node of the Planetary Data System (PDS). As part of the PDS, NAIF archives SPICE and other ancillary data produced by flight projects. NAIF then distributes these data, and associated data access software and high-level tools, to researchers funded by NASA's Office of Space Science. Support for a broader user community is also offered to the extent resources permit. This paper describes the SPICE system and customer support offered by NAIF.

  4. A possible architecture of the planetary system HR 8799

    NASA Astrophysics Data System (ADS)

    Reidemeister, M.; Krivov, A. V.; Schmidt, T. O. B.; Fiedler, S.; Müller, S.; Löhne, T.; Neuhäuser, R.

    2009-08-01

    HR 8799 is a nearby A-type star with a debris disk and three planetary candidates, which have been imaged directly. We undertake a coherent analysis of various observational data for all known components of the system, including the central star, imaged companions, and dust. Our goal is to elucidate the architecture and evolutionary status of the system. We try to further constrain the age and orientation of the system, the orbits and masses of the companions, and the location of dust. On the basis of the high luminosity of debris dust and dynamical constraints, we argue for a rather young system's age of ⪉50 Myr. The system must be seen nearly, but not exactly, pole-on. Our analysis of the stellar rotational velocity yields an inclination of 13-30°, whereas i ⪆ 20° is needed for the system to be dynamically stable, which suggests a probable inclination range of 20-30°. The spectral energy distribution, including the Spitzer/IRS spectrum in the mid-infrared as well as IRAS, ISO, JCMT, and IRAM observations, is naturally reproduced by two dust rings associated with two planetesimal belts. The inner “asteroid belt” is located at ~10 AU inside the orbit of the innermost companion and a “Kuiper belt” at ⪆100 AU is just exterior to the orbit of the outermost companion. The dust masses in the inner and outer ring are estimated to be ≈1 × 10-5 and 4 × 10-2 Earth masses, respectively. We show that all three planetary candidates may be stable in the mass range suggested in the discovery paper by Marois et al. (2008) (between 5 and 13 Jupiter masses), but only for some of all possible orientations. For (M_b, M_c, M_d) = (5, 7, 7) Jupiter masses, an inclination i ⪆ 20° is required and the line of nodes of the system's symmetry plane on the sky must lie within between 0° an 50° from north eastward. For higher masses M_b, M_c, Md from (7, 10, 10) to (11, 13, 13), the constraints on both angles are even more stringent. Stable orbits imply a double (4

  5. Planetary Cosmogony of the Solar System: the Origin of Meteoroids

    NASA Astrophysics Data System (ADS)

    Bagrov, A. V.

    2006-08-01

    Astrophysical theories cannot explain origin of refractory particles in interstellar media larger than sub-micron dust-grains; so proto-planetary nebula must be mixture of volatiles and dust particles only. Coagulation of such initial particles cannot produce hardened alloys of refractory matter, as meteoroids are. Chemical separation of refractory elements and their melting can take place in nuclei of huge bodies of Earth-size planets only; otherwise temperature inside low-dimension planetesimals will never reach values of melting of iron or silicates. A new cosmogony proposed by author bases on idea that formation of planets takes place on pre-solar stage of evolution of proto-stellar/proto-planetary nebula. In this case internal cores of forming planets are rapidly heated by radioactivity of short-living isotopes; and planet become mostly melted. If such planet is collided by large planetesimal lost by another star (with kinetic energy about 4·10^32 J), it can be totally destroyed into number of moldings. Fragments of internal parts of the planet would remain on orbits close to the former planet one, when other moldings may be ejected to the periphery of solar system. Going through proto-planetary disk, ejected swallows will heap snowflakes of volatiles and produce planetesimals of the second generation. They became population of the Kuiper Belt. When they are dragged into comet orbits they lost their volatiles due to solar radiation, and produce meteoroid streams. Meteoroids are refractory long-living particles, the largest of them having stabile orbits and being not dragged by Poynting-Robertson effect. To prove this hypothesis a special TV observations of meteors are done since 2002. The hypothesis predicts that all particles in one stream are of the same mineral composition and of the same density.

  6. Solar System Observations with JWST

    NASA Technical Reports Server (NTRS)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; Ferruit, Pierre

    2014-01-01

    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid- infrared, with sensitivity and spatial-spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010 (Lunine et al., 2010). It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV in 2012.

  7. Debris Disks as Tracers of Nearby Planetary Systems

    NASA Technical Reports Server (NTRS)

    Stapelfeldt, Karl

    2012-01-01

    Many main-sequence stars possess tenuous circumstellar dust clouds believed to trace extrasolar analogs of the Sun's asteroid and Kuiper Belts. While most of these "debris disks" are known only from far-infrared photometry, dozens are now spatially resolved. In this talk, I'll review the observed structural properties of debris disks as revealed by imaging with the Hubble, Spitzer, and Herschel Space Telescopes. I will show how modeling of the far-infrared spectral energy distributions of resolved disks can be used to constrain their dust particle sizes and albedos. I will review cases of disks whose substructures suggest planetary perturbations, including a newly-discovered eccentric ring system. I'll conclude with thoughts on the potential of upcoming and proposed facilities to resolve similar structures around a greatly expanded sample of nearby debris systems.

  8. Comments on collision mechanics in ring systems. [planetary rings

    NASA Technical Reports Server (NTRS)

    Hartmann, W. K.

    1982-01-01

    Collisions within planetary ring systems, especially Saturn's, are discussed. The particles may have coherent icy cores and less coherent granular or frosty surface layers, consistent with thermal eclipse observations. Collisions do not cause catastrophic fragmentation of the particles, although minor surface erosion and reaccretion is possible. Evolution by collisional fragmentation is thus not as important as in the asteroid belt. Models suggest that the fractional number of projectile masses dislodged when solid (or solid-core) projectiles strike solid ice or granular surface layers does not exceed the order of 10 to the minus 7th to minus 9th power. Even at this rate, the half life of ring particles would be less than the age of the solar system in crowded ring regions unless there was very efficient reaccretion. A plausible ring particle model involves solid ice cores with granular surface layers that exchange material by slow erosion and efficient reaccretion; the granular layers protect the cores from rapid erosion.

  9. Planetary system formation in thermally evolving viscous protoplanetary discs.

    PubMed

    Nelson, Richard P; Hellary, Phil; Fendyke, Stephen M; Coleman, Gavin

    2014-04-28

    Observations of extrasolar planets are providing new opportunities for furthering our understanding of planetary formation processes. In this paper, we review planet formation and migration scenarios and describe some recent simulations that combine planetary accretion and gas-disc-driven migration. While the simulations are successful at forming populations of low- and intermediate-mass planets with short orbital periods, similar to those that are being observed by ground- and space-based surveys, our models fail to form any gas giant planets that survive migration into the central star. The simulation results are contrasted with observations, and areas of future model development are discussed.

  10. Planetary system formation in thermally evolving viscous protoplanetary discs.

    PubMed

    Nelson, Richard P; Hellary, Phil; Fendyke, Stephen M; Coleman, Gavin

    2014-04-28

    Observations of extrasolar planets are providing new opportunities for furthering our understanding of planetary formation processes. In this paper, we review planet formation and migration scenarios and describe some recent simulations that combine planetary accretion and gas-disc-driven migration. While the simulations are successful at forming populations of low- and intermediate-mass planets with short orbital periods, similar to those that are being observed by ground- and space-based surveys, our models fail to form any gas giant planets that survive migration into the central star. The simulation results are contrasted with observations, and areas of future model development are discussed. PMID:24664913

  11. Planetary Object Geophysical Observer (POGO): A New Approach to Small Body Landed Science

    NASA Astrophysics Data System (ADS)

    Adams, E. Y.; Murchie, S. L.; Hohlfeld, E. M.; Peplowski, P. N.

    2016-10-01

    The Planetary Object Geophysical Observer, or POGO, is a geochemical landed package designed for ballistic deployment to its target body, to survive landing at 5 m/s, and to achieve its core objectives from any landed orientation.

  12. Lidar observations of the planetary boundary layer during FASINEX

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.; Boers, R.; Palm, S. P.

    1988-01-01

    Data are presented on the planetary boundary layer (PBL) over the ocean acquired with an airborne downward-looking lidar during the Frontal Air-Sea Interaction Experiment (FASINEX) with the purpose of studying the impact of an ocean front on air-sea interactions. No changes in the PBL structure were detected by lidar. Lidar data were then used along with other readily available remotely-sensed data and a one-dimensional boundary-layer-growth model to infer the mean PBL moisture and temperature structure and to estimate the surface fluxes of heat and moisture.

  13. Laboratory Simulations of Planetary Surfaces: Understanding Regolith Physical Properties from Astronomical Photometric Observations

    NASA Astrophysics Data System (ADS)

    Nelson, Robert M.; Hapke, Bruce W.; Boryta, Mark D.; Manatt, Ken S.; Smythe, William D.

    2015-08-01

    Abstract BodySolar system bodies are observed at many scattering angles. The reflection and polarization change with phase angle of light scattered from particulates has been studied for a century in the lab in efforts to understand clouds, aerosols, planetary ring systems and planetary regoliths. These effects must be understood in order to infer surface properties from astronomical data. The increase in reflectance with decreasing phase angle, the ‘Opposition Effect’ (OE), has been well documented in astronomical observations and laboratory studies. Variations in linear polarization with phase angle have also been well studied. Nevertheless, there is no generally accepted physical explanation. Our lab studies show that the OE in particulate materials is due to two processes, Shadow Hiding (SHOE) and Coherent Backscattering (CBOE). SHOE arises because, as phase angle nears zero, shadows cast by regolith grains upon one another become less visible. CBOE results from constructive interference between rays traveling the same path but in opposite directions. The CBOE process assumes the returned radiation is multiply scattered. We have deconstructed the scattering process using a goniometric photopolarimeter (GPP). This permits us to present samples with light that is linearly polarized in, and perpendicular to, the scattering plane. We make angular scattering measurements of the light scattered from a simulated planetary surface. The GPP also illuminates samples with both right handed and left handed circularly polarized light. This permits us to measure the phase curve, the linear and circular polarization ratios and the linear polarization as a function of phase angle. These GPP measurements permit us to quantify the amount of multiple scattering in a particulate medium in the laboratory. At smaller phase angles in highly reflective material such as Al2O3, multiple scattering increases. This is a consequence of coherent backscattering of photons that are

  14. Planetary Data Systems (PDS) Imaging Node Atlas II

    NASA Technical Reports Server (NTRS)

    Stanboli, Alice; McAuley, James M.

    2013-01-01

    The Planetary Image Atlas (PIA) is a Rich Internet Application (RIA) that serves planetary imaging data to the science community and the general public. PIA also utilizes the USGS Unified Planetary Coordinate system (UPC) and the on-Mars map server. The Atlas was designed to provide the ability to search and filter through greater than 8 million planetary image files. This software is a three-tier Web application that contains a search engine backend (MySQL, JAVA), Web service interface (SOAP) between server and client, and a GWT Google Maps API client front end. This application allows for the search, retrieval, and download of planetary images and associated meta-data from the following missions: 2001 Mars Odyssey, Cassini, Galileo, LCROSS, Lunar Reconnaissance Orbiter, Mars Exploration Rover, Mars Express, Magellan, Mars Global Surveyor, Mars Pathfinder, Mars Reconnaissance Orbiter, MESSENGER, Phoe nix, Viking Lander, Viking Orbiter, and Voyager. The Atlas utilizes the UPC to translate mission-specific coordinate systems into a unified coordinate system, allowing the end user to query across missions of similar targets. If desired, the end user can also use a mission-specific view of the Atlas. The mission-specific views rely on the same code base. This application is a major improvement over the initial version of the Planetary Image Atlas. It is a multi-mission search engine. This tool includes both basic and advanced search capabilities, providing a product search tool to interrogate the collection of planetary images. This tool lets the end user query information about each image, and ignores the data that the user has no interest in. Users can reduce the number of images to look at by defining an area of interest with latitude and longitude ranges.

  15. From Bursts to Back-Projection: Signal Processing Techniques for Earth and Planetary Observing Radars

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    Discusses: (1) JPL Radar Overview and Historical Perspective (2) Signal Processing Needs in Earth and Planetary Radars (3) Examples of Current Systems and techniques (4) Future Perspectives in signal processing for radar missions

  16. Planetary Protection Considerations for Life Support and Habitation Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Hogan, John A.

    2010-01-01

    Life support systems for future human missions beyond low Earth orbit may include a combination of existing hardware components and advanced technologies. Discipline areas for technology development include atmosphere revitalization, water recovery, solid waste management, crew accommodations, food production, thermal systems, environmental monitoring, fire protection and radiation protection. Life support systems will be influenced by in situ resource utilization (ISRU), crew mobility and the degree of extravehicular activity. Planetary protection represents an additional set of requirements that technology developers have generally not considered. Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future exploration missions, including venting and discharge of liquids and solids, ejection of wastes, use of ISRU, requirements for cabin atmospheric trace contaminant concentrations, cabin leakage and restrictions on what materials, organisms, and technologies that may be brought on missions. Compliance with planetary protection requirements may drive development of new capabilities or processes (e.g. in situ sterilization, waste containment, contaminant measurement) and limit or prohibit certain kinds of operations or processes (e.g. unfiltered venting). Ultimately, there will be an effect on mission costs, including the mission trade space. Planetary protection requirements need to be considered early in technology development programs. It is expected that planetary protection will have a major impact on technology selection for future missions.

  17. "Planetary Orbit" Systems Composed of Cycloparaphenylenes.

    PubMed

    Bachrach, Steven M; Zayat, Zeina-Christina

    2016-06-01

    Cycloparaphenylenes (CPP) can serve as both guest and host in a complex. Geometric analysis indicates that optimal binding occurs when the CPP nanohoops differ by five phenyl rings. Employing C-PCM(THF)/ωB97X-D/6-31G(d) computations, we find that the strongest binding does occur when the host and guest differ by five phenyl rings. The guest CPP is modestly inclined relative to the plane of the host CPP except when the host and guest differ by four phenyl rings, when the inclination angle becomes >40°. The distortion/interaction model shows that interaction dominates and is best when the host and guest differ by five phenyl rings. The computed (1)H NMR shifts of the guest CPP are shifted by about 1 ppm upfield relative to their position when unbound. This distinct chemical shift should aid in experimental detection of these CPP planetary orbit complexes. PMID:27163409

  18. "Planetary Orbit" Systems Composed of Cycloparaphenylenes.

    PubMed

    Bachrach, Steven M; Zayat, Zeina-Christina

    2016-06-01

    Cycloparaphenylenes (CPP) can serve as both guest and host in a complex. Geometric analysis indicates that optimal binding occurs when the CPP nanohoops differ by five phenyl rings. Employing C-PCM(THF)/ωB97X-D/6-31G(d) computations, we find that the strongest binding does occur when the host and guest differ by five phenyl rings. The guest CPP is modestly inclined relative to the plane of the host CPP except when the host and guest differ by four phenyl rings, when the inclination angle becomes >40°. The distortion/interaction model shows that interaction dominates and is best when the host and guest differ by five phenyl rings. The computed (1)H NMR shifts of the guest CPP are shifted by about 1 ppm upfield relative to their position when unbound. This distinct chemical shift should aid in experimental detection of these CPP planetary orbit complexes.

  19. Planetary radio astronomy observations from Voyager 2 near Jupiter

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Pearce, J. B.; Riddle, A. C.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Thieman, J. R.; Carr, T. D.; Gulkis, S.; Boischot, A.

    1979-01-01

    The Voyager 2 Planetary Radio Astronomy experiment to Jupiter has confirmed and extended to higher zenomagnetic latitudes results from the identical experiment carried by Voyager 1. The kilometric emissions discovered by Voyager 1 often extended to 1 megahertz or higher on Voyager 2 and often consisted of negatively, or less frequently, positively drifting narrowband bursts. On the basis of tentative identification of plasma wave emissions similar to those detected by Voyager 1, the plasma torus associated with Io appeared somewhat denser to Voyager 2 than it did to Voyager 1. The paper reports on quasi-periodic sinusoidal or impulsive bursts in the broadcast band range of wavelengths (800 to 1800 kHz). A Faraday effect appears at decametric frequencies, which probably results from propagation of the radiation near its sources on Jupiter. Finally, the occurrence of decametric emission in homologous arc families is discussed.

  20. Planetary radio astronomy observations from voyager 2 near jupiter.

    PubMed

    Pearce, J B; Riddle, A C; Warwick, J W; Alexander, J K; Desch, M D; Kaiser, M L; Thieman, J R; Carr, T D; Gulkis, S; Boischot, A; Leblanc, Y; Pedersen, B M; Staelin, D H

    1979-11-23

    The Voyager 2 Planetary Radio Astronomy experiment to Jupiter has confirmed and extended to higher zenomagnetic latitudes results from the identical experiment carried by Voyager 1. The kilometric emissions discovered by Voyager 1 often extended to 1 megahertz or higher on Voyager 2 and often consisted of negatively or, less frequently, positively drifting narrowband bursts. On the basis of tentative identification of plasma wave emissions similar to those detected by Voyager 1, the plasma torus associated with Io appeared somewhat denser to Voyager 2 than it did to Voyager 1. We report here on quasiperiodic sinusoidal or impulsive bursts in the broadcast band range of wavelengths (800 to 1800 kilohertz). A Faraday effect appears at decametric frequencies, which probably results from propagation of the radiation near its sources on Jupiter. Finally, we discuss the occurrence of decametric emission in homologous arc families.

  1. Planetary Systems Associated with Main-Sequence Stars.

    PubMed

    Brown, H

    1964-09-11

    The luminosity function is used to estimate the number of invisible planet-like objects in the neighborhood of the sun, taking into account the likely chemical composition of planets in relation to the composition of main-sequence stars. There may be about 60 objects more massive than Mars for every visible star. An attempt is made to estimate the distribution of these planet-like cold bodies in relation to stars. It is suggested that stars, together with cold objects, were formed in clusters of bodies of random size distribution. Clusters averaging about 50 bodies each account for the observed distribution of frequencies of double and triple star systems relative to single stars. On this basis, virtually every star should have a planetary system associated with it. As a corollary, systems of cold bodies in which there are no luminous stars should be abundant. The possible distribution of planets around such stars has been studied, making use of the observed orbital characteristics of double star systems. It is concluded that favorable conditions for life processes may be far more abundant than has generally been thought possible.

  2. Planetary Systems Associated with Main-Sequence Stars.

    PubMed

    Brown, H

    1964-09-11

    The luminosity function is used to estimate the number of invisible planet-like objects in the neighborhood of the sun, taking into account the likely chemical composition of planets in relation to the composition of main-sequence stars. There may be about 60 objects more massive than Mars for every visible star. An attempt is made to estimate the distribution of these planet-like cold bodies in relation to stars. It is suggested that stars, together with cold objects, were formed in clusters of bodies of random size distribution. Clusters averaging about 50 bodies each account for the observed distribution of frequencies of double and triple star systems relative to single stars. On this basis, virtually every star should have a planetary system associated with it. As a corollary, systems of cold bodies in which there are no luminous stars should be abundant. The possible distribution of planets around such stars has been studied, making use of the observed orbital characteristics of double star systems. It is concluded that favorable conditions for life processes may be far more abundant than has generally been thought possible. PMID:17743661

  3. Gas disks to gas giants: simulating the birth of planetary systems.

    PubMed

    Thommes, Edward W; Matsumura, Soko; Rasio, Frederic A

    2008-08-01

    The ensemble of now more than 250 discovered planetary systems displays a wide range of masses, orbits and, in multiple systems, dynamical interactions. These represent the end point of a complex sequence of events, wherein an entire protostellar disk converts itself into a small number of planetary bodies. Here, we present self-consistent numerical simulations of this process, which produce results in agreement with some of the key trends observed in the properties of the exoplanets. Analogs to our own solar system do not appear to be common, originating from disks near the boundary between barren and (giant) planet-forming.

  4. A COMPREHENSIVE CHARACTERIZATION OF THE 70 VIRGINIS PLANETARY SYSTEM

    SciTech Connect

    Kane, Stephen R.; Hinkel, Natalie R.; Boyajian, Tabetha S.; Fischer, Debra A.; Henry, Gregory W.; Feng, Y. Katherina; Wright, Jason T.; Braun, Kaspar von; Howard, Andrew W.

    2015-06-10

    An on-going effort in the characterization of exoplanetary systems is the accurate determination of host star properties. This effort extends to the relatively bright host stars of planets discovered with the radial velocity method. The Transit Ephemeris Refinement and Monitoring Survey (TERMS) is aiding in these efforts as part of its observational campaign for exoplanet host stars. One of the first known systems is that of 70 Virginis, which harbors a jovian planet in an eccentric orbit. Here we present a complete characterization of this system with a compilation of TERMS photometry, spectroscopy, and interferometry. We provide fundamental properties of the host star through direct interferometric measurements of the radius (1.5% uncertainty) and through spectroscopic analysis. We combined 59 new Keck HIRES radial velocity measurements with the 169 previously published from the ELODIE, Hamilton, and HIRES spectrographs, to calculate a refined orbital solution and construct a transit ephemeris for the planet. These newly determined system characteristics are used to describe the Habitable Zone of the system with a discussion of possible additional planets and related stability simulations. Finally, we present 19 years of precision robotic photometry that constrain stellar activity and rule out central planetary transits for a Jupiter-radius planet at the 5σ level, with reduced significance down to an impact parameter of b = 0.95.

  5. Relating binary-star planetary systems to central configurations

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri

    2016-11-01

    Binary-star exoplanetary systems are now known to be common, for both wide and close binaries. However, their orbital evolution is generally unsolvable. Special cases of the N-body problem which are in fact completely solvable include dynamical architectures known as central configurations. Here, I utilize recent advances in our knowledge of central configurations to assess the plausibility of linking them to coplanar exoplanetary binary systems. By simply restricting constituent masses to be within stellar or substellar ranges characteristic of planetary systems, I find that (i) this constraint reduces by over 90 per cent the phase space in which central configurations may occur, (ii) both equal-mass and unequal-mass binary stars admit central configurations, (iii) these configurations effectively represent different geometrical extensions of the Sun-Jupiter-Trojan-like architecture, (iv) deviations from these geometries are no greater than 10°, and (v) the deviation increases as the substellar masses increase. This study may help restrict future stability analyses to architectures which resemble exoplanetary systems, and might hint at where observers may discover dust, asteroids and/or planets in binary-star systems.

  6. A Comprehensive Characterization of the 70 Virginis Planetary System

    NASA Astrophysics Data System (ADS)

    Kane, Stephen R.; Boyajian, Tabetha S.; Henry, Gregory W.; Feng, Y. Katherina; Hinkel, Natalie R.; Fischer, Debra A.; von Braun, Kaspar; Howard, Andrew W.; Wright, Jason T.

    2015-06-01

    An on-going effort in the characterization of exoplanetary systems is the accurate determination of host star properties. This effort extends to the relatively bright host stars of planets discovered with the radial velocity method. The Transit Ephemeris Refinement and Monitoring Survey (TERMS) is aiding in these efforts as part of its observational campaign for exoplanet host stars. One of the first known systems is that of 70 Virginis, which harbors a jovian planet in an eccentric orbit. Here we present a complete characterization of this system with a compilation of TERMS photometry, spectroscopy, and interferometry. We provide fundamental properties of the host star through direct interferometric measurements of the radius (1.5% uncertainty) and through spectroscopic analysis. We combined 59 new Keck HIRES radial velocity measurements with the 169 previously published from the ELODIE, Hamilton, and HIRES spectrographs, to calculate a refined orbital solution and construct a transit ephemeris for the planet. These newly determined system characteristics are used to describe the Habitable Zone of the system with a discussion of possible additional planets and related stability simulations. Finally, we present 19 years of precision robotic photometry that constrain stellar activity and rule out central planetary transits for a Jupiter-radius planet at the 5σ level, with reduced significance down to an impact parameter of b = 0.95.

  7. Demonstration of Imaging Fourier Transform Spectrometer (FTS) Performance for Planetary and Geostationary Earth Observing

    NASA Technical Reports Server (NTRS)

    Revercomb, Henry E.; Sromovsky, Lawrence A.; Fry, Patrick M.; Best, Fred A.; LaPorte, Daniel D.

    2001-01-01

    The combination of massively parallel spatial sampling and accurate spectral radiometry offered by imaging FTS makes it extremely attractive for earth and planetary remote sensing. We constructed a breadboard instrument to help assess the potential for planetary applications of small imaging FTS instruments in the 1 - 5 micrometer range. The results also support definition of the NASA Geostationary Imaging FTS (GIFTS) instrument that will make key meteorological and climate observations from geostationary earth orbit. The Planetary Imaging FTS (PIFTS) breadboard is based on a custom miniaturized Bomen interferometer that uses corner cube reflectors, a wishbone pivoting voice-coil delay scan mechanism, and a laser diode metrology system. The interferometer optical output is measured by a commercial infrared camera procured from Santa Barbara Focalplane. It uses an InSb 128x128 detector array that covers the entire FOV of the instrument when coupled with a 25 mm focal length commercial camera lens. With appropriate lenses and cold filters the instrument can be used from the visible to 5 micrometers. The delay scan is continuous, but slow, covering the maximum range of +/- 0.4 cm in 37.56 sec at a rate of 500 image frames per second. Image exposures are timed to be centered around predicted zero crossings. The design allows for prediction algorithms that account for the most recent fringe rate so that timing jitter produced by scan speed variations can be minimized. Response to a fixed source is linear with exposure time nearly to the point of saturation. Linearity with respect to input variations was demonstrated to within 0.16% using a 3-point blackbody calibration. Imaging of external complex scenes was carried out at low and high spectral resolution. These require full complex calibration to remove background contributions that vary dramatically over the instrument FOV. Testing is continuing to demonstrate the precise radiometric accuracy and noise characteristics.

  8. Organic materials in planetary and protoplanetary systems: nature or nurture?

    NASA Astrophysics Data System (ADS)

    Dalle Ore, C. M.; Fulchignoni, M.; Cruikshank, D. P.; Barucci, M. A.; Brunetto, R.; Campins, H.; de Bergh, C.; Debes, J. H.; Dotto, E.; Emery, J. P.; Grundy, W. M.; Jones, A. P.; Mennella, V.; Orthous-Daunay, F. R.; Owen, T.; Pascucci, I.; Pendleton, Y. J.; Pinilla-Alonso, N.; Quirico, E.; Strazzulla, G.

    2011-09-01

    Aims: The objective of this work is to summarize the discussion of a workshop aimed at investigating the properties, origins, and evolution of the materials that are responsible for the red coloration of the small objects in the outer parts of the solar system. Because of limitations or inconsistencies in the observations and, until recently, the limited availability of laboratory data, there are still many questions on the subject. Our goal is to approach two of the main questions in a systematic way: - Is coloring an original signature of materials that are presolar in origin ("nature") or stems from post-formational chemical alteration, or weathering ("nurture")? - What is the chemical signature of the material that causes spectra to be sloped towards the red in the visible? We examine evidence available both from the laboratory and from observations sampling different parts of the solar system and circumstellar regions (disks). Methods: We present a compilation of brief summaries gathered during the workshop and describe the evidence towards a primordial vs. evolutionary origin for the material that reddens the small objects in the outer parts of our, as well as in other, planetary systems. We proceed by first summarizing laboratory results followed by observational data collected at various distances from the Sun. Results: While laboratory experiments show clear evidence of irradiation effects, particularly from ion bombardment, the first obstacle often resides in the ability to unequivocally identify the organic material in the observations. The lack of extended spectral data of good quality and resolution is at the base of this problem. Furthermore, that both mechanisms, weathering and presolar, act on the icy materials in a spectroscopically indistinguishable way makes our goal of defining the impact of each mechanism challenging. Conclusions: Through a review of some of the workshop presentations and discussions, encompassing laboratory experiments as well

  9. On the dynamics of the three dimensional planetary systems

    NASA Astrophysics Data System (ADS)

    Antoniadou, K.

    2013-09-01

    Over the last decades, there has been a tremendous increase in research on extrasolar planets. Many exosolar systems, which consist of a Star and two Planets, seem to be locked in 4/3, 3/2, 2/1, 5/2, 3/1 and 4/1 mean motion resonance (MMR). We herewith present the model used to simulate three dimensional planetary systems and provide planar families of periodic orbits (PO), which belong to all possible configurations that each MMR has, along with their linear horizontal and vertical stability. We focus on depicting stable spatial families (most of them up to mutual inclination of 60o) generated by PO of planar circular families, because the trapping in MMR could be a consequence of planetary migration process. We attempt to connect the linear stability of PO with long-term stability of a planetary system close to them. This can stimulate the search of real planetary systems in the vicinity of stable spatial PO-counterbalanced by the planets’ orbital elements, masses and MMR; all of which could constitute a suitable environment convenient to host them.

  10. Towards a sustainable modular robot system for planetary exploration

    NASA Astrophysics Data System (ADS)

    Hossain, S. G. M.

    This thesis investigates multiple perspectives of developing an unmanned robotic system suited for planetary terrains. In this case, the unmanned system consists of unit-modular robots. This type of robot has potential to be developed and maintained as a sustainable multi-robot system while located far from direct human intervention. Some characteristics that make this possible are: the cooperation, communication and connectivity among the robot modules, flexibility of individual robot modules, capability of self-healing in the case of a failed module and the ability to generate multiple gaits by means of reconfiguration. To demonstrate the effects of high flexibility of an individual robot module, multiple modules of a four-degree-of-freedom unit-modular robot were developed. The robot was equipped with a novel connector mechanism that made self-healing possible. Also, design strategies included the use of series elastic actuators for better robot-terrain interaction. In addition, various locomotion gaits were generated and explored using the robot modules, which is essential for a modular robot system to achieve robustness and thus successfully navigate and function in a planetary environment. To investigate multi-robot task completion, a biomimetic cooperative load transportation algorithm was developed and simulated. Also, a liquid motion-inspired theory was developed consisting of a large number of robot modules. This can be used to traverse obstacles that inevitably occur in maneuvering over rough terrains such as in a planetary exploration. Keywords: Modular robot, cooperative robots, biomimetics, planetary exploration, sustainability.

  11. Small reactor power systems for manned planetary surface bases

    SciTech Connect

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  12. Small reactor power systems for manned planetary surface bases

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1987-01-01

    A preliminary feasibility study of the potential application of small nuclear reactor space power systems to manned planetary surface base missions was conducted. The purpose of the study was to identify and assess the technology, performance, and safety issues associated with integration of reactor power systems with an evolutionary manned planetary surface exploration scenario. The requirements and characteristics of a variety of human-rated modular reactor power system configurations selected for a range of power levels from 25 kWe to hundreds of kilowatts is described. Trade-off analyses for reactor power systems utilizing both man-made and indigenous shielding materials are provided to examine performance, installation and operational safety feasibility issues. The results of this study have confirmed the preliminary feasibility of a wide variety of small reactor power plant configurations for growth oriented manned planetary surface exploration missions. The capability for power level growth with increasing manned presence, while maintaining safe radiation levels, was favorably assessed for nominal 25 to 100 kWe modular configurations. No feasibility limitations or technical barriers were identified and the use of both distance and indigenous planetary soil material for human rated radiation shielding were shown to be viable and attractive options.

  13. Operation of the Planetary Plasma Interactions Node of the Planetary Data System

    NASA Technical Reports Server (NTRS)

    Walker, Raymond J.

    1997-01-01

    Five years ago NASA selected the Planetary Plasma Interactions (PPI) Node at UCLA to help the scientific community locate, access and preserve particles and fields data from planetary missions. We propose to continue to serve for 5 more years. During the first five years we have served the scientific community by providing them with high quality data products. We worked with missions and individual scientists to secure the highest quality data possible and to thoroughly document it. We validated the data, placed it on long lasting media and made sure it was properly archived for future use. So far we have prepared and archived over 10(exp 11) bytes of data from 26 instruments on 4 spacecraft. We have produced 106 CD-ROMs with peer reviewed data. In so doing, we have developed an efficient system to prepare and archive the data and thereby have been able to steadily increase the rate at which the data are produced. Although we produced a substantial archive during the initial five years, we have an even larger amount of work in progress. This includes preparing CD-ROM data sets with all of the Voyager, Pioneer and Ulysses data at Jupiter and Saturn. We will have the Jupiter data ready for the Galileo encounter in December, 1995. We are also completing the Pioneer Venus data restoration. The Galileo Venus archive and radio science data from Magellan will be prepared early in the next period. We are assisting the Small Bodies Node of PDS in the preparation of comet data and will be archiving the asteroid data from Galileo. We will be moving in several new directions as well. We will archive the PPI Node's first Earth based data with data from the International Jupiter Watch and Hubble data taken in support of Ulysses particles and field observations. We will work with the Cassini mission in archive planning efforts. For the inner planets we will begin an archive of Mars data starting with Phobos data and will support the US and Russian Mars missions in the late 1990's

  14. Analogs from LEO: Mapping Earth Observations to Planetary Science & Astrobiology. (Invited)

    NASA Astrophysics Data System (ADS)

    Hand, K. P.; Painter, T. H.

    2010-12-01

    If, as Charles Lyell articulated ‘the present is the key to the past’ for terrestrial geology, then perhaps by extension the Earth, our planet, is the key to understanding other planets. This is the basic premise behind planetary analogs. Many planetary science missions, however, utilize orbiters and are therefore constrained to remote sensing. This is the reverse of how we developed our understanding of Earth’s environments; remote sensing is a relatively new tool for understanding environments and processes on Earth. Here we present several cases and comparisons between Earth’s cryosphere and icy worlds of the outer Solar System (e.g. Europa, Titan, and Enceladus), where much of our knowledge is limited to remote observations (the sole exception being the Huygens probe to Titan). Three regions are considered: glaciers in the Sierra Nevada, the permafrost lakes of Alaska’s North Slope, and spreading centers of the ocean floor. Two key issues are examined: 1) successes and limitations for understanding processes that shape icy worlds, and 2) successes and limitations for assessing the habitability of icy worlds from orbit. Finally, technological considerations for future orbiting mission to icy worlds are presented.

  15. Extrasolar Planetary Systems and the Principle of Mediocrity

    NASA Astrophysics Data System (ADS)

    Franck, S.; von Bloh, W.; Bounama, C.

    2007-03-01

    We estimate the likelihood to find habitable Earth-like planets on stable orbits for 86 selected extrasolar planetary systems, where luminosity, effective temperature and stellar age are known. For determining the habitable zone (HZ) an integrated system approach is used taking into account a variety of climatological, biogeochemical, and geodynamical processes. Habitability is linked to the photosynthetic activity on the planetary surface. We find that habitability strongly depends on the age of the stellar system and the characteristics of a virtual Earth-like planet. In particular the portion of land / ocean coverages plays an important role. We approximated the conditions for orbital stability using a method based on the Hill radius. Almost 60% of the investigated systems could harbour habitable Earth-like planets on stable orbits. In 18 extrasolar systems we find even better prerequisites for dynamic habitability than in our own solar system.

  16. On the formation age of the first planetary system

    NASA Astrophysics Data System (ADS)

    Hara, T.; Kunitomo, S.; Shigeyasu, M.; Kajiura, D.

    2008-05-01

    Recently, it has been observed the extreme metal-poor stars in the Galactic halo, which must be formed just after Pop III objects. On the other hand, the first gas clouds of mass 106 M are supposed to be formed at z 10, 20, and 30 for the 1σ, 2σ and 3σ, where the density perturbations are assumed of the standard ΛCDM cosmology. Usually it is approximated that the distribution of the density perturbation amplitudes is gaussian where σ means the standard deviation. If we could apply this gaussian distribution to the extreme small probability, the gas clouds would be formed at z 40, 60, and 80 for the 4σ, 6σ, and 8σ where the probabilities are approximately 3 × 10-5, 10-9, and 10-15. Within our universe, there are almost 1016 ( 1022M/106M) clouds of mass 106M. Then the first gas clouds must be formed around z 80, where the time is 20 Myr ( 13.7/(1 + z)3/2 Gyr). Even within our galaxy, there are 105 ( 1011M/106M) clouds, then the first gas clouds within our galaxy must be formed around z 40, where the time is 54 Myr ( 13.7/(1+z)3/2Gyr). The evolution time for massive star ( 102 M) is 3 Myr and the explosion of the massive supernova distributes the metal within a cloud. The damping time of the supernova shock wave in the adiabatic and isothermal era is several Myr and stars of the second generation (Pop II) are formed within a free fall time 20 Myr. Even if the gas cloud is metal poor, there is a lot of possibility to form the planets around such stars. The first planetary systems could be formed within 6 × 107 years after the Big Bang in the universe. Even in our galaxies, the first planetary systems could be formed within 1.7 × 108 years. If the abundance of heavy elements such as Fe is small compared to the elements of C, N, O, the planets must be the one where the rock fraction is small. It is interesting to wait the observations of planets around metal-poor stars. For the panspermia theory, the origin of life could be expected in such systems.

  17. ARE PLANETARY SYSTEMS FILLED TO CAPACITY? A STUDY BASED ON KEPLER RESULTS

    SciTech Connect

    Fang, Julia; Margot, Jean-Luc

    2013-04-20

    We used a sample of Kepler candidate planets with orbital periods less than 200 days and radii between 1.5 and 30 Earth radii (R{sub Circled-Plus }) to determine the typical dynamical spacing of neighboring planets. To derive the intrinsic (i.e., free of observational bias) dynamical spacing of neighboring planets, we generated populations of planetary systems following various dynamical spacing distributions, subjected them to synthetic observations by the Kepler spacecraft, and compared the properties of observed planets in our simulations with actual Kepler detections. We found that, on average, neighboring planets are spaced 21.7 mutual Hill radii apart with a standard deviation of 9.5. This dynamical spacing distribution is consistent with that of adjacent planets in the solar system. To test the packed planetary systems hypothesis, the idea that all planetary systems are dynamically packed or filled to capacity, we determined the fraction of systems that are dynamically packed by performing long-term (10{sup 8} years) numerical simulations. In each simulation, we integrated a system with planets spaced according to our best-fit dynamical spacing distribution but containing an additional planet on an intermediate orbit. The fraction of simulations exhibiting signs of instability provides an approximate lower bound on the fraction of systems that are dynamically packed; we found that {>=}31%, {>=}35%, and {>=}45% of two-planet, three-planet, and four-planet systems are dynamically packed, respectively. Such sizeable fractions suggest that many planetary systems are indeed filled to capacity. This feature of planetary systems is another profound constraint that formation and evolution models must satisfy.

  18. VLA Reveals a Close Pair of Potential Planetary Systems

    NASA Astrophysics Data System (ADS)

    1998-09-01

    in Cambridge, MA. "However, we don't think these solar systems would be able to form outer, icy planets like Uranus and Neptune, because of the small size of the dust disks." The new observations "imply that young protoplanetary disks can contain considerably more mass within (a distance equal to Saturn's orbital radius) than astronomers have been willing to contemplate," wrote Alan P. Boss of the Carnegie Institution of Washington in an accompanying Nature article analyzing the results. If the stars were a few times closer together, the researchers point out, the gravitational effects of both would disrupt the disks and prevent any planets from forming. "If these disks form planetary systems, they would be among the closest possible adjacent sets of planets in the universe," said Rodriguez. Boss suggested that a giant planet formed near the edge of one of the disks might be ejected from the system by the gravitational effect of the companion star. This, he says, might explain the possible "runaway planet" shown in a Hubble Space Telescope image released in May. In that result, a planet appears to have been ejected by a binary-star system similar in size to that seen by the VLA. Further observations are required to confirm that result. In addition to Rodriguez and Wilner, the researchers are Paola D'Alessio, Salvador Curiel, Yolanda Gomez, Susana Lizano, Jorge Canto, and Alejandro C. Raga of the National Autonomous University in Mexico City; Paul Ho of the Harvard-Smithsonian Center for Astrophysics; Jose M. Torrelles of the Astrophysical Institute of Andalucia in Spain; and Alan Pedlar of the Jodrell Bank observatory in Britain. The observations of the double-star system were made at a radio wavelength of 7 millimeters, a wavelength at which emission from cosmic dust is readily detected. Astronomers long realized that the VLA had sufficient resolving power - the ability to see fine detail - to make images of the dust disks around young stars that form the building

  19. Understanding Vibration Spectra of Planetary Gear Systems for Fault Detection

    NASA Technical Reports Server (NTRS)

    Mosher, Marianne

    2003-01-01

    An understanding of the vibration spectra is very useful for any gear fault detection scheme based upon vibration measurements. The vibration measured from planetary gears is complicated. Sternfeld noted the presence of sidebands about the gear mesh harmonics spaced at the planet passage frequency in spectra measured near the ring gear of a CH-47 helicopter. McFadden proposes a simple model of the vibration transmission that predicts high spectral amplitudes at multiples of the planet passage frequency, for planetary gears with evenly spaced planets. This model correctly predicts no strong signal at the meshing frequency when the number of teeth on the ring gear is not an integer multiple of the number of planets. This paper will describe a model for planetary gear vibration spectra developed from the ideas started in reference. This model predicts vibration to occur only at frequencies that are multiples of the planet repetition passage frequency and clustered around gear mesh harmonics. Vibration measurements will be shown from tri-axial accelerometers mounted on three different planetary gear systems and compared with the model. The model correctly predicts the frequencies with large components around the first several gear mesh harmonics in measurements for systems with uniformly and nonuniformly spaced planet gears. Measurements do not confirm some of the more detailed features predicted by the model. Discrepancies of the ideal model to the measurements are believed due to simplifications in the model and will be discussed. Fault detection will be discussed applying the understanding will be discussed.

  20. Formation, Orbital and Internal Evolutions of Young Planetary Systems

    NASA Astrophysics Data System (ADS)

    Baruteau, Clément; Bai, Xuening; Mordasini, Christoph; Mollière, Paul

    2016-05-01

    The growing body of observational data on extrasolar planets and protoplanetary disks has stimulated intense research on planet formation and evolution in the past few years. The extremely diverse, sometimes unexpected physical and orbital characteristics of exoplanets lead to frequent updates on the mainstream scenarios for planet formation and evolution, but also to the exploration of alternative avenues. The aim of this review is to bring together classical pictures and new ideas on the formation, orbital and internal evolutions of planets, highlighting the key role of the protoplanetary disk in the various parts of the theory. We begin by briefly reviewing the conventional mechanism of core accretion by the growth of planetesimals, and discuss a relatively recent model of core growth through the accretion of pebbles. We review the basic physics of planet-disk interactions, recent progress in this area, and discuss their role in observed planetary systems. We address the most important effects of planets internal evolution, like cooling and contraction, the mass-luminosity relation, and the bulk composition expressed in the mass-radius and mass-mean density relations.

  1. Voyager energetic particle observations at interplanetary shocks and upstream of planetary bow shocks - 1977-1990

    NASA Technical Reports Server (NTRS)

    Krimigis, S. M.

    1992-01-01

    The Voyager 1 and 2 vehicles include instrumentation that makes comprehensive electron and ion measurements in several energy channels with good energy, temporal, and compositional resolution. Data gathered from 1977 to 1988, including observations downstream and upstream of four planetary bow shocks (earth, Saturn, Uranus, Jupiter) and numerous interplanetary shocks to about 30 AU, are analyzed in the context of the Fermi and shock drift acceleration models. Overall results indicate that electrons and ions observed upstream of planetary bow shocks have their source inside the parent magnetosphere, with first order Fermi acceleration playing a secondary role at best.

  2. ON THE HABITABLE ZONES OF CIRCUMBINARY PLANETARY SYSTEMS

    SciTech Connect

    Kane, Stephen R.; Hinkel, Natalie R.

    2013-01-01

    The effect of the stellar flux on exoplanetary systems is becoming an increasingly important property as more planets are discovered in the habitable zone (HZ). The Kepler mission has recently uncovered circumbinary planets with relatively complex HZs due to the combined flux from the binary host stars. Here, we derive HZ boundaries for circumbinary systems and show their dependence on the stellar masses, separation, and time while accounting for binary orbital motion and the orbit of the planet. We include stability regimes for planetary orbits in binary systems with respect to the HZ. These methods are applied to several of the known circumbinary planetary systems such as Kepler-16, 34, 35, and 47. We also quantitatively show the circumstances under which single-star approximations break down for HZ calculations.

  3. Billions of Planetary Systems: Turning Point at Mid-20th Century

    NASA Astrophysics Data System (ADS)

    Dick, S. J.

    2002-12-01

    The search for planetary systems, an elusive goal for most of the 20th century, is reminiscent of the search for stellar parallax in earlier centuries. Of the latter, John Herschel once wrote that it seemed within reach of the astronomer, "only to elude his seizure when apparently just within his grasp, continually hovering just beyond the limits of his distinct apprehension, and so leading him on in hopeless, endless, and exhausting pursuit." Such was the case for planetary systems, until the discovery of pulsar planets in 1992, and of planets around solar-type stars beginning in 1995. For the early decades of the century the Jeans-Jeffreys tidal theory of planet formation via close stellar encounters predicted that planets should be very rare. But the 15 years between 1943 and 1958 saw a remarkable turning point in the fortunes of planetary systems. It began with Russell's criticism of the Jeans-Jeffreys theory, but was fueled by the revival of a modified nebular hypothesis (von Weizsacker, 1944), developments in fields as diverse as double star astronomy (Kuiper, 1951), the measurement of stellar rotation periods (Struve, 1950), and geochemistry (Urey, 1952) and - most surprising of all - by claims that planetary systems, or their effects had actually been observed (Strand, 1943; Reuyl and Holmberg, 1943). Struve (1952) even suggested a means for planet detection by the radial velocity method. As Harlow Shapley made clear in his work Of Stars and Men: Human Response to an Expanding Universe (1958), the new cosmology was a continual force in the background favoring abundant planetary systems. All this work was in the background as Peter van de Kamp played out his solitary search for planetary systems, culminating in the announcement (1963) of a planet around Barnard's star. The limits that Herschel spoke of have now been breached, and the search is no longer solitary.

  4. Planetary observations at a wavelength of 1. 32 mm

    SciTech Connect

    Ulich, B.L.; Dickel, J.R.; De Pater, I.

    1984-12-01

    Observations at a wavelength of 1.32 mm have been made of the Jovian planets, Ceres, the satellites Callisto and Ganymede, and the HII region DR 21. The observed brightness temperatures are presented. Those of the Jovian planets agree with the values expected from model atmosphere calculations, except that of Jupiter, which is lower than expected. Ceres and the satellites do not have atmospheres so their emission arised in their subsurface layers. The observed brightness temperatures are intermediate between those measured at infrared and centimeter wavelengths. 30 references.

  5. Planetary systems and real planetary nebulae from planet destruction near white dwarfs

    NASA Astrophysics Data System (ADS)

    Bear, Ealeal; Soker, Noam

    2015-07-01

    We suggest that tidal destruction of Earth-like and icy planets near a white dwarf (WD) might lead to the formation of one or more low-mass - Earth-like and lighter - planets in tight orbits around the WD. The formation of the new WD planetary system starts with a tidal breakup of the parent planet to planetesimals near the tidal radius of about 1 R⊙. Internal stress forces keep the planetesimal from further tidal breakup when their radius is less than about 100 km. We speculate that the planetesimals then bind together to form new sub-Earth daughter-planets at a few solar radii around the WD. More massive planets that contain hydrogen supply the WD with fresh nuclear fuel to reincarnate its stellar-giant phase. Some of the hydrogen will be inflated in a large envelope. The envelope blows a wind to form a nebula that is later (after the entire envelope is lost) ionized by the hot WD. We term this glowing ionized nebula that originated from a planet a real planetary nebula (RPN). This preliminary study of daughter-planets from a planet and the RPN scenarios are of speculative nature. More detailed studies must follow to establish whether the suggested scenarios can indeed take place.

  6. Long-term stability of the HR 8799 planetary system without resonant lock

    NASA Astrophysics Data System (ADS)

    Götberg, Ylva; Davies, Melvyn B.; Mustill, Alexander J.; Johansen, Anders; Church, Ross P.

    2016-08-01

    HR 8799 is a star accompanied by four massive planets on wide orbits. The observed planetary configuration has been shown to be unstable on a timescale much shorter than the estimated age of the system (~30 Myr) unless the planets are locked into mean motion resonances. This condition is characterised by small-amplitude libration of one or more resonant angles that stabilise the system by preventing close encounters. We simulate planetary systems similar to the HR 8799 planetary system, exploring the parameter space in separation between the orbits, planetary masses and distance from the Sun to the star. We find systems that look like HR 8799 and remain stable for longer than the estimated age of HR 8799. None of our systems are forced into resonances. We find, with nominal masses (Mb = 5 MJup and Mc,d,e = 7 MJup) and in a narrow range of orbit separations, that 5 of 100 systems match the observations and lifetime. Considering a broad range of orbit separations, we find 12 of 900 similar systems. The systems survive significantly longer because of their slightly increased initial orbit separations compared to assuming circular orbits from the observed positions. A small increase in separation leads to a significant increase in survival time. The low eccentricity the orbits develop from gravitational interaction is enough for the planets to match the observations. With lower masses, but still comfortably within the estimated planet mass uncertainty, we find 18 of 100 matching and long-lived systems in a narrow orbital separation range. In the broad separation range, we find 82 of 900 matching systems. Our results imply that the planets in the HR 8799 system do not have to be in strong mean motion resonances. We also investigate the future of wide-orbit planetary systems using our HR 8799 analogues. We find that 80% of the systems have two planets left after strong planet-planet scattering and these are on eccentric orbits with semi-major axes of a1 ~ 10 AU and a2

  7. Stable Configurations of the Upsilon Andromedae Planetary System

    NASA Astrophysics Data System (ADS)

    Deitrick, R.; Barnes, R.; McArthur, B.; Quinn, T.; Luger, R.; Antonsen, A.; Benedict, G. F.

    2014-03-01

    The υ Andromedae system is the first exoplanetary system to have the relative inclinations of two planets' orbital planes directly measured (McArthur et al. 2010), and therefore offers our first window into the 3-dimensional configurations of planetary systems. We present a full 3-dimensional, dynamically stable configuration for the 3 planets of the system. This work follows up on McArthur et al (2010), which revealed that the orbits of the outer 2 planets, c and d, are inclined by 30O, much larger than the relative inclinations of the planets in our Solar System. The inner planet's orbital plane was not detected. We used N-body simulations to search for stable 3-planet configurations that are consistent with the combined radial velocity and astrometric solution. Planet b could have only been detected by HST astrometry if it was at extremely low inclination. Because of this, its true mass and orbital plane are unconstrained by the observations, but our stability analysis limits their ranges significantly. The system appears to be close to the stability boundary, as we find that only 10 trials out of 1000 are robustly stable on 100 Myr timescales, or ~8 billion orbits of planet b. We find planet b's orbits must lie close to the fundamental plane of planets c and d, but can be either prograde or retrograde. These solutions predict b's mass is in the range 2 - 9 MJup and has an inclination angle from the sky plane of less than 45O. Crossfield et al. (2010) detected the planet via brightness variations in the combined light curve ("phase curve"), and argued that such a configuration would require b's radius to be ~1.8 RJup, relatively large for a planet of its age. However, the eccentricity of b in several of our stable solutions reaches > 0.1, inducing upwards of 1019 watts in the interior of the planet via tidal dissipation. Ibgui et al. (2009) find that this energy source could inflate the radius to the amount required for Crossfield et al., and thus we have

  8. Planetary science: Birth of a Solar System

    NASA Astrophysics Data System (ADS)

    Cameron, A. G. W.

    2002-08-01

    Radioisotope dating of meteorites suggests that planets formed in the Solar System over shorter timescales than had been thought. There are consequences for how the Moon formed, but is this the final word?

  9. Planetary Rings

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.

    1994-01-01

    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  10. Vibration in Planetary Gear Systems with Unequal Planet Stiffnesses

    NASA Technical Reports Server (NTRS)

    Frater, J. L.; August, R.; Oswald, F. B.

    1982-01-01

    An algorithm suitable for a minicomputer was developed for finding the natural frequencies and mode shapes of a planetary gear system which has unequal stiffnesses between the Sun/planet and planet/ring gear meshes. Mode shapes are represented in the form of graphical computer output that illustrates the lateral and rotational motion of the three coaxial gears and the planet gears. This procedure permits the analysis of gear trains utilizing nonuniform mesh conditions and user specified masses, stiffnesses, and boundary conditions. Numerical integration of the equations of motion for planetary gear systems indicates that this algorithm offers an efficient means of predicting operating speeds which may result in high dynamic tooth loads.

  11. Uranus occults SAO158687. [stellar occultation and planetary parametric observation

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Veverka, J.; Millis, R. L.

    1977-01-01

    Experience gained in obtaining atmospheric parameters, oblatenesses, and diameters of Jupiter and Mars from recent stellar occultations by these planets is used to predict what can be learned from the March 1977 occultation of the star SAO158687 by Uranus. The spectra of this star and Uranus are compared to indicate the relative instrument intensities of the two objects, the four passbands where the relative intensities are most nearly equal are listed, and expected photon fluxes from the star are computed on the assumption that it has UBVRI colors appropriate for a K5 main-sequence object. It is shown that low photon noise errors can be achieved by choosing appropriate passbands for observation, and the rms error expected for the Uranus temperature profiles obtained from the occultation light curves is calculated. It is suggested that observers of this occultation should record their data digitally for optimum time resolution.

  12. A Planetary Park system for the Moon and beyond

    NASA Astrophysics Data System (ADS)

    Cockell, Charles; Horneck, Gerda

    Deutschland International space exploration programs foresee the establishment of human settlements on the Moon and on Mars within the next decades, following a series of robotic precursor missions. These increasing robotic visits and eventual human exploration and settlements may have an environmental impact on scientifically important sites and sites of natural beauty in the form of contamination with microorganisms and spacecraft parts, or even pollution as a consequence of in situ resource use. This concern has already been reflected in the Moon Treaty, "The Agreement Governing the Activities of States on the Moon and Other Celestial Bodies" of the United Nations, which follows the Outer Space Treaty of the UN. However, so far, the Moon Treaty has not been ratified by any nation which engages in human space programs or has plans to do so. Planetary protection guidelines as formulated by the Committee on Space Research (COSPAR) are based on the Outer Space Treaty and follow the objectives: (i) to prevent contamination by terrestrial microorganisms if this might jeopardize scientific investi-gations of possible extraterrestrial life forms, and (ii) to protect the Earth from the potential hazard posed by extraterrestrial material brought back to the Earth. As a consequence, they group exploratory missions according to the type of mission and target body in five different categories, requesting specific means of cleaning and sterilization. However, the protection of extraterrestrial environments might also encompass ethical and other non-instrumental reasons. In order to allow intense scientific research and exploitation, and on the other hand to preserve regions of the Moon for research and use by future generations, we proposed the introduction of a planetary (or lunar) park system, which would protect areas of scientific, historic and intrinsic value under a common scheme. A similar placePlaceNamePlanetary PlaceTypePark system could be established on Mars well

  13. A dynamical analysis of the Kepler-11 planetary system

    NASA Astrophysics Data System (ADS)

    Migaszewski, Cezary; Słonina, Mariusz; Goździewski, Krzysztof

    2012-11-01

    The Kepler-11 planetary system hosts at least six transiting super-Earth planets detected through the precise photometric observations of the Kepler mission (Lissauer et al.). In this paper, we re-analyse the available Kepler data, using the direct N-body approach rather than an indirect transit timing variation method as employed in the discovery paper. The orbital modelling in the realm of the direct approach relies on the whole data set, not only on the mid-transits times. Most of the results in the original paper are confirmed and extended. We constrained the mass of the outermost planet g to less than 30 M⊕. The mutual inclinations between orbits b and c as well as between orbits d and e are determined with a good precision, in the range of [1°, 5°]. Having several solutions to the four qualitative orbital models of the Kepler-11 system, we analyse its global dynamics with the help of dynamical maps. They reveal a sophisticated structure of the phase space, with narrow regions of regular motion. The dynamics are governed by a dense net of three- and four-body mean motion resonances, forming the Arnold web. Overlapping of these resonances is a main source of instability. We found that the Kepler-11 system may be long-term stable only in particular multiple resonant configurations with small relative inclinations. The mass-radius data derived for all companions reveal a clear anticorrelation between the mean density of the planets and their distance from the star. This may reflect the formation and early evolution history of the system.

  14. Constraints on common envelope magnetic fields from observations of jets in planetary nebulae

    NASA Astrophysics Data System (ADS)

    Tocknell, James; De Marco, Orsola; Wardle, Mark

    2014-04-01

    The common envelope (CE) interaction describes the swallowing of a nearby companion by a growing, evolving star. CEs that take place during the asymptotic giant branch phase of the primary may lead to the formation of a planetary nebula (PN) with a post-CE close binary in the middle. We have used published observations of masses and kinematics of jets in four post-CE PN to infer physical characteristics of the CE interaction. In three of the four systems studied, Abell 63, ETHOS 1 and the Necklace PN, the kinematics indicate that the jets were launched a few thousand years before the CE and we favour a scenario where this happened before Roche lobe overflow, although better models of wind accretion and wind Roche lobe overflow are needed. The magnetic fields inferred to launch pre-CE jets are of the order of a few gauss. In the fourth case, NGC 6778, the kinematics indicate that the jets were launched about 3000 yr after the CE interaction. Magnetic fields of the order of a few hundreds to a few thousands gauss are inferred in this case, approximately in line with predictions of post-CE magnetic fields. However, we remark that in the case of this system, we have not been able to find a reasonable scenario for the formation of the two jet pairs observed: the small orbital separation may preclude the formation of even one accretion disc able to supply the necessary accretion rate to cause the observed jets.

  15. Nanotube-based Sensors and Systems for Outer Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Noca, F.; Hunt, B. D.; Hoenk, M. E.; Choi, D.; Kowalczyk, R.; Williams, R.; Xu, J.; Koumoutsakos, P.

    2001-01-01

    Direct sensing and processing at the nanometer scale offer NASA the opportunity to expand its capabilities in deep space exploration, particularly for the search for signatures of life, the analysis of planetary oceans and atmospheres, and communications systems. Carbon nanotubes, with their unique mechanical, electrical, and radiation-tolerant properties, are a promising tool for this exploration. We are developing devices based on carbon nanotubes, including sensors, actuators, and oscillators. Additional information is contained in the original extended abstract.

  16. POSSIBLE TRANSIT TIMING VARIATIONS OF THE TrES-3 PLANETARY SYSTEM

    SciTech Connect

    Jiang, Ing-Guey; Wu, Yu-Ting; Chien, Ping; Lin, Yi-Ling; Chen, Hong-Yu; Hu, Juei-Hwa; Yeh, Li-Chin; Thakur, Parijat; Sun Zhao; Ji Jianghui

    2013-03-15

    Five newly observed transit light curves of the TrES-3 planetary system are presented. Together with other light-curve data from the literature, 23 transit light curves in total, which cover an overall timescale of 911 epochs, have been analyzed through a standard procedure. From these observational data, the system's orbital parameters are determined and possible transit timing variations (TTVs) are investigated. Given that a null TTV produces a fit with reduced {chi}{sup 2} = 1.52, our results agree with previous work, that TTVs might not exist in these data. However, a one-frequency oscillating TTV model, giving a fit with a reduced {chi}{sup 2} = 0.93, does possess a statistically higher probability. It is thus concluded that future observations and dynamical simulations for this planetary system will be very important.

  17. Solar system exploration from the Moon: Synoptic and comparative study of bodies in our Planetary system

    NASA Astrophysics Data System (ADS)

    Bruston, P.; Mumma, M. J.

    1994-06-01

    An observational approach to Planetary Sciences and exploration from Earth applies to a quite limited number of targets, but most of these are spatially complex, and exhibit variability and evolution on a number of temporal scales which lie within the scope of possible observations. Advancing our understanding of the underlying physics requires the study of interactions between the various elements of such systems, and also requires study of the comparative response of both a given object to various conditions and of comparable objects to similar conditions. These studies are best conducted in 'campaigns', i.e. comprehensive programs combining simultaneous coherent observations of every interacting piece of the puzzle. The requirements include both imaging and spectroscopy over a wide spectral range, from UV to IR. While temporal simultaneity of operation in various modes is a key feature, these observations are also conducted over extended periods of time. The moon is a prime site offering long unbroken observation times and high positional stability, observations at small angular separation from the sun, comparative studies of planet Earth, and valuable technical advantages. A lunar observatory should become a central piece of any coherent set of planetary missions, supplying in-situ explorations with the synoptic and comparative data necessary for proper advance planning, correlative observations during the active exploratory phase, and follow-up studies of the target body or of related objects.

  18. Solar system exploration from the Moon: Synoptic and comparative study of bodies in our Planetary system

    NASA Technical Reports Server (NTRS)

    Bruston, P.; Mumma, M. J.

    1994-01-01

    An observational approach to Planetary Sciences and exploration from Earth applies to a quite limited number of targets, but most of these are spatially complex, and exhibit variability and evolution on a number of temporal scales which lie within the scope of possible observations. Advancing our understanding of the underlying physics requires the study of interactions between the various elements of such systems, and also requires study of the comparative response of both a given object to various conditions and of comparable objects to similar conditions. These studies are best conducted in 'campaigns', i.e. comprehensive programs combining simultaneous coherent observations of every interacting piece of the puzzle. The requirements include both imaging and spectroscopy over a wide spectral range, from UV to IR. While temporal simultaneity of operation in various modes is a key feature, these observations are also conducted over extended periods of time. The moon is a prime site offering long unbroken observation times and high positional stability, observations at small angular separation from the sun, comparative studies of planet Earth, and valuable technical advantages. A lunar observatory should become a central piece of any coherent set of planetary missions, supplying in-situ explorations with the synoptic and comparative data necessary for proper advance planning, correlative observations during the active exploratory phase, and follow-up studies of the target body or of related objects.

  19. The imaging node for the Planetary Data System

    USGS Publications Warehouse

    Eliason, E.M.; LaVoie, S.K.; Soderblom, L.A.

    1996-01-01

    The Planetary Data System Imaging Node maintains and distributes the archives of planetary image data acquired from NASA's flight projects with the primary goal of enabling the science community to perform image processing and analysis on the data. The Node provides direct and easy access to the digital image archives through wide distribution of the data on CD-ROM media and on-line remote-access tools by way of Internet services. The Node provides digital image processing tools and the expertise and guidance necessary to understand the image collections. The data collections, now approaching one terabyte in volume, provide a foundation for remote sensing studies for virtually all the planetary systems in our solar system (except for Pluto). The Node is responsible for restoring data sets from past missions in danger of being lost. The Node works with active flight projects to assist in the creation of their archive products and to ensure that their products and data catalogs become an integral part of the Node's data collections.

  20. Birth of an Unusual Planetary System

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This artist's animation shows a brown dwarf surrounded by a swirling disc of planet-building dust. NASA's Spitzer Space Telescope spotted such a disc around a surprisingly low-mass brown dwarf, or 'failed star.' The brown dwarf, called OTS 44, is only 15 times the size of Jupiter, making it the smallest brown dwarf known to host a planet-forming, or protoplanetary disc.

    Astronomers believe that this unusual system will eventually spawn planets. If so, they speculate that OTS 44's disc has enough mass to make one small gas giant and a few Earth-sized rocky planets.

    OTS 44 is about 2 million years old. At this relatively young age, brown dwarfs are warm and appear reddish in color. With age, they grow cooler and darker.

  1. Planetary radio astronomy observations from Voyager-2 near Saturn

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.; Evans, D. R.; Romig, J. H.; Alexander, J. K.; Desch, M. D.; Kaiser, M. L.; Aubier, M.; Leblanc, Y.; Lecacheux, A.; Pedersen, B. M.

    1981-01-01

    Voyager-2 planetry radio astronomy measurements obtained near Saturn are discussed. They indicate that Saturnian kilometric radiation is emitted by a strong, dayside source at auroral latitudes in the northern hemisphere and by a weaker (by more than an order of magnitude) source at complementary latitudes in the southern hemisphere. These emissions are variable both due to Saturn's rotation and, on longer time scales, probably due to influences of the solar wind and the satellite Dione. The Saturn electrostatic discharge bursts first discovered by Voyager-1 and attributed to emissions from the B-ring were again observed with the same broadband spectral properties and a 10(h)11(m) + or - 5(m) episodic recurrence period but with an occurrence frequency of only of about 30 percent of that detected with Voyager-1. During the crossing of the ring plane at a distance of 2.88 R sub S, an intense noise event is interpreted to be consequence of the impact/vaporization/ionization of charged micron-size G-ring particles distributed over a total vertical thickness of about 1500 km.

  2. SPICE: A Geometry Information System Supporting Planetary Mapping, Remote Sensing and Data Mining

    NASA Technical Reports Server (NTRS)

    Acton, C.; Bachman, N.; Semenov, B.; Wright, E.

    2013-01-01

    SPICE is an information system providing space scientists ready access to a wide assortment of space geometry useful in planning science observations and analyzing the instrument data returned therefrom. The system includes software used to compute many derived parameters such as altitude, LAT/LON and lighting angles, and software able to find when user-specified geometric conditions are obtained. While not a formal standard, it has achieved widespread use in the worldwide planetary science community

  3. Tracking Advanced Planetary Systems (TAPAS) with HARPS-N . I. A multiple planetary system around the red giant star TYC 1422-614-1

    NASA Astrophysics Data System (ADS)

    Niedzielski, A.; Villaver, E.; Wolszczan, A.; Adamów, M.; Kowalik, K.; Maciejewski, G.; Nowak, G.; García-Hernández, D. A.; Deka, B.; Adamczyk, M.

    2015-01-01

    Context. Stars that have evolved off the main sequence are crucial for expanding the frontiers of knowledge on exoplanets toward higher stellar masses and for constraining star-planet interaction mechanisms. These stars have an intrinsic activity, however, which complicates the interpretation of precise radial velocity (RV) measurements, and therefore they are often avoided in planet searches. Over the past ten years, we have monitored about 1000 evolved stars for RV variations in search for low-mass companions under the Penn State - Toruń Centre for Astronomy Planet Search program with the Hobby-Eberly Telescope. Selected prospective candidates that required higher RV precision measurements have been followed with HARPS-N at the 3.6 m Telescopio Nazionale Galileo. Aims: We aim to detect planetary systems around evolved stars, to be able to build sound statistics on the frequency and intrinsic nature of these systems, and to deliver in-depth studies of selected planetary systems with evidence of star-planet interaction processes. Methods: We obtained 69 epochs of precise RV measurements for TYC 1422-614-1 collected over 3651 days with the Hobby-Eberly Telescope, and 17 epochs of ultra-precise HARPS-N data collected over 408 days. We complemented these RV data with photometric time-series from the All Sky Automatic Survey archive. Results: We report the discovery of a multiple planetary system around the evolved K2 giant star TYC 1422-614-1. The system orbiting the 1.15 M⊙ star is composed of a planet with mass msini = 2.5 MJ in a 0.69 AU orbit, and a planet or brown dwarf with msini = 10 MJ in an orbit of 1.37 AU. The multiple planetary system orbiting TYC 1422-614-1 is the first finding of the TAPAS project, a HARPS-N monitoring of evolved planetary systems identified with the Hobby-Eberly Telescope. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University

  4. Stable Configurations of the υ Andromedae Planetary System

    NASA Astrophysics Data System (ADS)

    Deitrick, Russell; Barnes, Rory; McArthur, Barbara; Quinn, Thomas R.; Luger, Rodrigo; Antonsen, Adrienne; Benedict, G. Fritz

    2015-05-01

    The υ Andromedae system is the first exoplanetary system to have the relative inclinations of two planets' orbital planes directly measured (McArthur et al. 2010), and therefore offers our first window into the 3-dimensional configurations of planetary systems. We present a full 3-dimensional, dynamically stable configuration for the 3 planets of the system, following up on McArthur et al (2010), which revealed that the orbits of the outer 2 planets are inclined by 30 deg. We used N-body simulations to search for stable 3-planet configurations that are consistent with the combined radial velocity and astrometric solution. The inner-most planet, b, could have only been detected by HST astrometry if it was at extremely low inclination. Because of this, its true mass and orbital plane are unconstrained by the observations, but our stability analysis limits their ranges significantly.The system appears to be close to the stability boundary, as we find that only 10 trials out of 1000 are robustly stable on 100 Myr timescales, or ~8 billion orbits of planet b. We find planet b's orbit must lie close to the fundamental plane of planets c and d, but can be either prograde or retrograde. These solutions predict b's mass is in the range 2 - 9 MJup and has an inclination angle from the sky plane of less than 45 deg. Crossfield et al. (2010) detected the planet via brightness variations in the combined light curve, and argued that such a configuration would require b's radius to be ~1.8 RJup, relatively large for a planet of its age. However, the eccentricity of b in several of our stable solutions reaches > 0.1, inducing upwards of 1019 watts in the interior of the planet via tidal dissipation. Ibgui et al. (2009) find that this energy source could inflate the radius to the amount required for Crossfield et al., and thus we have solutions that are consistent with all observational constraints.The Gaia telescope (Casertano et al. 2008) will refine the orbits of planets c and

  5. Observational Studies of the Clearing Phase in Proto-Planetary Disks Surrounding Intermediate Mass Stars

    NASA Technical Reports Server (NTRS)

    Grady, Carol A.

    1999-01-01

    A detailed study of circumstellar gas associated with young, intermediate-mass stars has demonstrated that, far from being unique or an infrequently occurring phenomenon, beta Pic-like infall activity is routinely observed in stars younger than 10-50 Myr when the observer's line of sight lies within 15 degrees of the disk mid-plane. Detailed studies of 2 Herbig Ae/Be stars, AB Aur and HD 163296 demonstrate that enhanced infall episodes last 20-60 hours, comparable to the duration of similar episodes in beta Pictoris. The infall activity is consistent with detection of the comae of swarms of star-grazing bodies of asteroidal to cometary composition. Episodic fluctuations in the infall activity are clearly present by approximately 6 Myr, and may indicate the presence of massive planets within the disk. This study has therefore, directly contributed to NASA's Origins of Planetary Systems theme by identifying under what conditions extra-solar planetesimals can be remotely sensed, indicating that such bodies appear to be routinely detectable among young stars in the 1-10 Myr range, and suggesting that temporal studies of spectroscopic variability may provide a means of identifying those systems harboring massive planets. This study has resulted in 2 refereed review papers, 13 other refereed papers, and 17 conference papers.

  6. Saturn's magnetosphere: An example of dynamic planetary systems

    SciTech Connect

    Krimigis, Stamatios M.

    2011-01-04

    Planetary magnetospheres are prime examples of interacting plasma regimes at different scales. There is the principal interaction with the solar wind that seems to be the main driver of the dynamics at Mercury and Earth. But these inner planet magnetospheres are relatively simple when compared to those of the outer planets which are primarily driven by planetary rotation and include internal plasma sources from various moons and rings, in addition to those from the planetary ionospheres and the solar wind. Io's volcanic source at Jupiter is a prime example, but now Enceladus at Saturn has joined the fray, while Titan is a surprisingly minor player despite its thick nitrogen atmosphere and its continued bombardment by energetic particles. Mass loading of plasma leads to interchange instability in the inner magnetospheres at both Jupiter and Saturn, while ionospheric slippage, among other processes, seems to contribute to a variable rotation period in the spin-aligned dipole field of Saturn, manifested in auroral kilometric radiation (SKR), components of the magnetic field itself, and the plasma periodicities measured at several energies. Through use of the ENA (energetic neutral atom) technique, it is now possible to observe bulk motions of the plasma and their connection to planetary auroral processes. Such imaging at Saturn by Cassini has revealed the location of a region of post-midnight acceleration events that seem to corotate with the planet and coincide with auroral brightening and SKR. Periodic injections of plasma have been identified and repeat at the Kronian rotation period of 10.8 hours. A semi-permanent but asymmetric ring current has also been imaged, located between the orbits of the satellites Rhea ({approx}9 RS) and Titan ({approx}20 R{sub S}), with a maximum at {approx}10{+-} 1R{sub S} and dominated by the hot (>3 keV) plasma component.

  7. An old disk still capable of forming a planetary system.

    PubMed

    Bergin, Edwin A; Cleeves, L Ilsedore; Gorti, Uma; Zhang, Ke; Blake, Geoffrey A; Green, Joel D; Andrews, Sean M; Evans, Neal J; Henning, Thomas; Oberg, Karin; Pontoppidan, Klaus; Qi, Chunhua; Salyk, Colette; van Dishoeck, Ewine F

    2013-01-31

    From the masses of the planets orbiting the Sun, and the abundance of elements relative to hydrogen, it is estimated that when the Solar System formed, the circumstellar disk must have had a minimum mass of around 0.01 solar masses within about 100 astronomical units of the star. (One astronomical unit is the Earth-Sun distance.) The main constituent of the disk, gaseous molecular hydrogen, does not efficiently emit radiation from the disk mass reservoir, and so the most common measure of the disk mass is dust thermal emission and lines of gaseous carbon monoxide. Carbon monoxide emission generally indicates properties of the disk surface, and the conversion from dust emission to gas mass requires knowledge of the grain properties and the gas-to-dust mass ratio, which probably differ from their interstellar values. As a result, mass estimates vary by orders of magnitude, as exemplified by the relatively old (3-10 million years) star TW Hydrae, for which the range is 0.0005-0.06 solar masses. Here we report the detection of the fundamental rotational transition of hydrogen deuteride from the direction of TW Hydrae. Hydrogen deuteride is a good tracer of disk gas because it follows the distribution of molecular hydrogen and its emission is sensitive to the total mass. The detection of hydrogen deuteride, combined with existing observations and detailed models, implies a disk mass of more than 0.05 solar masses, which is enough to form a planetary system like our own. PMID:23364742

  8. Argus: An Io observer mission concept study from the 2014 NASA/JPL Planetary Science Summer School

    NASA Astrophysics Data System (ADS)

    Hays, L. E.; Holstein-Rathlou, C.; Becerra, P.; Basu, K.; Davis, B.; Fox, V. K.; Herman, J. F. C.; Hughes, A. C. G.; Keane, J. T.; Marcucci, E.; Mendez-Ramos, E.; Nelessen, A.; Neveu, M.; Parrish, N. L.; Scheinberg, A. L.; Wrobel, J. S.

    2014-12-01

    Jupiter's satellite Io represents the ideal target for studying extreme tidal heating and volcanism, two of the most important processes in the formation and evolution of planetary bodies. The 2011 Planetary Decadal Survey identified an Io Observer as a high-priority New Frontiers class mission to be considered for the decade 2013-2022. In response to the 2009 New Frontiers Announcement of Opportunity, we propose a mission concept for an Io Observer mission, named Argus (after the mythical watchman of Io), developed by the students of the August 2014 session of the Planetary Science Summer School hosted by NASA's Jet Propulsion Laboratory, together with JPL's Team X. The goals of our mission are: (i) Study the effects of tidal heating and its implications for habitability in the Solar System and beyond; (ii) Investigate active lava flows on Io as an analog for early Earth; (iii) Analyze the interaction of Io with the Jovian system through material exchange and magnetospheric activity; (iv) Study the internal structure of Io, as well as its chemical and tectonic history in order to gain insight into its formation and that of the other Galilean satellites.

  9. Fractionated robotic architectures for planetary surface mobility systems

    NASA Astrophysics Data System (ADS)

    Alibay, Farah; Desaraju, Vishnu R.; Duda, Jessica E.; Hoffman, Jeffrey A.

    2014-02-01

    Planetary surface exploration missions are becoming increasingly complex and future missions promise to be even more ambitious than those that have occurred thus far. To deal with this complexity, this paper proposes a fractionated approach to planetary surface exploration. Fractionation involves splitting up large vehicles into several smaller ones that work together in order to achieve the science goals. It is believed that fractionation of rovers can lead to increased value delivery and productivity, as well as helping manage complexity. A science goal-driven methodology for generating a tradespace of multi-vehicle architectures in the early stages of mission design is detailed. A set of carefully designed metrics are then put forward as a way to help compare multi-vehicle architectures to each other and to the single vehicle (monolithic) equivalent. These include science value delivery, productivity, system- and vehicle-level complexity, and mass metrics. Through two Mars-based case studies, the advantages and limitations of fractionation are explored. Fractionation is found to be particularly advantageous when the science goals are broad, when there are competing requirements between goals, and when the exploration environment is particularly treacherous. Additionally, multi-vehicle systems entail simpler vehicles with lower vehicle-level complexity, lower mission risk and higher productivity over the mission duration, as well as being more easily upgradeable. On the other hand, they lead to higher system-level complexity, and can somewhat increase the overall mass of the system. Thus, through this methodology, it was demonstrated that the fractionation of planetary surface exploration systems leads to mass being traded for higher science return and lower risk during the mission, and to complexity being shifted from design complexity to operational complexity. Multi-vehicle systems involve more testing and on-board automation than single vehicles, but they

  10. XML-based information system for planetary sciences

    NASA Astrophysics Data System (ADS)

    Carraro, F.; Fonte, S.; Turrini, D.

    2009-04-01

    EuroPlaNet (EPN in the following) has been developed by the planetological community under the "Sixth Framework Programme" (FP6 in the following), the European programme devoted to the improvement of the European research efforts through the creation of an internal market for science and technology. The goal of the EPN programme is the creation of a European network aimed to the diffusion of data produced by space missions dedicated to the study of the Solar System. A special place within the EPN programme is that of I.D.I.S. (Integrated and Distributed Information Service). The main goal of IDIS is to offer to the planetary science community a user-friendly access to the data and information produced by the various types of research activities, i.e. Earth-based observations, space observations, modeling, theory and laboratory experiments. During the FP6 programme IDIS development consisted in the creation of a series of thematic nodes, each of them specialized in a specific scientific domain, and a technical coordination node. The four thematic nodes are the Atmosphere node, the Plasma node, the Interiors & Surfaces node and the Small Bodies & Dust node. The main task of the nodes have been the building up of selected scientific cases related with the scientific domain of each node. The second work done by EPN nodes have been the creation of a catalogue of resources related to their main scientific theme. Both these efforts have been used as the basis for the development of the main IDIS goal, i.e. the integrated distributed service. An XML-based data model have been developed to describe resources using meta-data and to store the meta-data within an XML-based database called eXist. A search engine has been then developed in order to allow users to search resources within the database. Users can select the resource type and can insert one or more values or can choose a value among those present in a list, depending on selected resource. The system searches for all

  11. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems

    PubMed Central

    Lithwick, Yoram; Wu, Yanqin

    2014-01-01

    In the inner solar system, the planets’ orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations. PMID:24367108

  12. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems.

    PubMed

    Lithwick, Yoram; Wu, Yanqin

    2014-09-01

    In the inner solar system, the planets' orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations. PMID:24367108

  13. Secular chaos and its application to Mercury, hot Jupiters, and the organization of planetary systems.

    PubMed

    Lithwick, Yoram; Wu, Yanqin

    2014-09-01

    In the inner solar system, the planets' orbits evolve chaotically, driven primarily by secular chaos. Mercury has a particularly chaotic orbit and is in danger of being lost within a few billion years. Just as secular chaos is reorganizing the solar system today, so it has likely helped organize it in the past. We suggest that extrasolar planetary systems are also organized to a large extent by secular chaos. A hot Jupiter could be the end state of a secularly chaotic planetary system reminiscent of the solar system. However, in the case of the hot Jupiter, the innermost planet was Jupiter (rather than Mercury) sized, and its chaotic evolution was terminated when it was tidally captured by its star. In this contribution, we review our recent work elucidating the physics of secular chaos and applying it to Mercury and to hot Jupiters. We also present results comparing the inclinations of hot Jupiters thus produced with observations.

  14. Northern Late Winter Planetary Waves: MRO/MARCI Observations and Mars Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Hollingsworth, J. L.; Kahre, M. A.; Haberle, R. M.; Wolff, M. J.

    2014-12-01

    As does Earth, Mars presents pronounced global atmospheric circulation patterns. Solar differential heating drives mean meridional overturning (Hadley) circulations which are deep and intense, are hemispherically asymmetric, and where a cross-equatorial single cell dominates. Within middle and high latitudes, thermally indirect eddy-driven (Ferrel) circulation cells have been indicated. Differently, however, large-amplitude orography on planetary and continental scales on Mars can force very non-Earth-like hemispheric circulation patterns. Recent observations from the Mars Reconnaissance Orbiter, "Mars Color Imager" (MARCI) instrument are utilized that emphasize water ice clouds in ultra-violet (UV) wavelengths, and these measurements have been binned into "daily global maps" (DGMs) of water-ice cloud optical depth. The presence of large-scale, extratropical quasi-stationary atmospheric wave disturbances in middle and late winter of the northern hemisphere have been found to be present in such DGMs. In combination with such observations, a full-physics Mars global climate model (NASA ARC marsgcm 2.1) is applied to place the observations into context. During late northern winter, it is found that strong, forced Rossby modes (i.e., planetary waves) exist, and with direct correlation to column-integrated cloud opacity undulating spatial patterns. At this season, zonal wavenumber s = 2 dominates (in contrast to wavenumber s = 1), consistent with MGS/TES analyses at this particular season (Banfield et al., 2003). Large-scale, planetary waves dictate the "coherence" of the northern polar vortex. Fundamentally, such forced planetary waves influence the polar vortex's impermeability (wave-induced) to tracer transport (e.g., dust and water-ice aerosol) and temporal mean water vapor spatial variations. The large-scale dynamical features of such planetary waves will be highlighted and discussed.

  15. Exploration Planetary Surface Structural Systems: Design Requirements and Compliance

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.

    2011-01-01

    The Lunar Surface Systems Project developed system concepts that would be necessary to establish and maintain a permanent human presence on the Lunar surface. A variety of specific system implementations were generated as a part of the scenarios, some level of system definition was completed, and masses estimated for each system. Because the architecture studies generally spawned a large number of system concepts and the studies were executed in a short amount of time, the resulting system definitions had very low design fidelity. This paper describes the development sequence required to field a particular structural system: 1) Define Requirements, 2) Develop the Design and 3) Demonstrate Compliance of the Design to all Requirements. This paper also outlines and describes in detail the information and data that are required to establish structural design requirements and outlines the information that would comprise a planetary surface system Structures Requirements document.

  16. On the formation of compact planetary systems via concurrent core accretion and migration

    NASA Astrophysics Data System (ADS)

    Coleman, Gavin A. L.; Nelson, Richard P.

    2016-04-01

    We present the results of planet formation N-body simulations based on a comprehensive physical model that includes planetary mass growth through mutual embryo collisions and planetesimal/boulder accretion, viscous disc evolution, planetary migration and gas accretion on to planetary cores. The main aim of this study is to determine which set of model parameters leads to the formation of planetary systems that are similar to the compact low-mass multiplanet systems that have been discovered by radial velocity surveys and the Kepler mission. We vary the initial disc mass, solids-to-gas ratio and the sizes of the boulders/planetesimals, and for a restricted volume of the parameter space we find that compact systems containing terrestrial planets, super-Earths and Neptune-like bodies arise as natural outcomes of the simulations. Disc models with low values of the solids-to-gas ratio can only form short-period super-Earths and Neptunes when small planetesimals/boulders provide the main source of accretion, since the mobility of these bodies is required to overcome the local isolation masses for growing embryos. The existence of short-period super-Earths around low-metallicity stars provides strong evidence that small, mobile bodies (planetesimals, boulders or pebbles) played a central role in the formation of the observed planets.

  17. Towards an International Planetary Community Built on Open Source Software: the Evolution of the Planetary Data System

    NASA Astrophysics Data System (ADS)

    Crichton, D. J.; Ramirez, P.; Hardman, S.; Hughes, J. S.

    2012-12-01

    Access to the worldwide planetary science research results from robotic exploration of the solar system has become a key driver in internationalizing the data standards from the Planetary Data System. The Planetary Data System, through international agency collaborations with the International Planetary Data Alliance (IPDA), has been developing a next generation set of data standards and technical implementation known as PDS4. PDS4 modernizes the PDS towards a world-wide online data system providing data and technical standards for improving access and interoperability among planetary archives. Since 2006, the IPDA has been working with the PDS to ensure that the next generation PDS is capable of allowing agency autonomy in building compatible archives while providing mechanisms to link the archive together. At the 7th International Planetary Data Alliance (IPDA) Meeting in Bangalore, India, the IPDA discussed and passed a resolution paving the way to adopt the PDS4 data standards. While the PDS4 standards have matured, another effort has been underway to move the PDS, a set of distributed discipline oriented science nodes, into a fully, online, service-oriented architecture. In order to accomplish this goal, the PDS has been developing a core set of software components that form the basis for many of the functions needed by a data system. These include the ability to harvest, validate, register, search and distribute the data products defined by the PDS4 data standards. Rather than having each group build their own independent implementations, the intention is to ultimately govern the implementation of this software through an open source community. This will enable not only sharing of software among U.S. planetary science nodes, but also has the potential of improving collaboration not only on core data management software, but also the tools by the international community. This presentation will discuss the progress in developing an open source infrastructure

  18. The planetary nebula system and dynamics of NGC 5128. I - Planetary nebulae as standard candles

    NASA Technical Reports Server (NTRS)

    Hui, Xiaohui; Ford, Holland C.; Ciardullo, Robin; Jacoby, George H.

    1993-01-01

    We present the result of a planetary nebula (PN) survey of the nearby giant elliptical galaxy NGC 5128 performed with CCD cameras at the prime focus of the CTIO 4 m telescope. By comparing CCD images centered on the characteristic emission line forbidden O III 5007 A and on the adjacent continuum, we identify a total of 785 PNs in areas extending 20 kpc along the photometric major axis and covering the whole galaxy to 10 kpc. From these data, we form a complete sample of 224 PNs extending to a dereddened limiting magnitude of m5007 = 24.8, which extends 1.5 mag down the PN luminosity function (PNLF). Adopting a foreground extinction of E(B-V) = 0.1, we derive a distance to the galaxy of 3.5 +/- 0.2 Mpc, in excellent agreement with the surface brightness fluctuation method. No population effect on the bright cutoff of PNLF is observed in the isophotal radius range of 2-16 kpc, but the luminosity specific PN density seems to increase with radius inside of 7 kpc, in agreement with the alpha(2.5)-color relation observed for other galaxies.

  19. Deploying Object Oriented Data Technology to the Planetary Data System

    NASA Technical Reports Server (NTRS)

    Kelly, S.; Crichton, D.; Hughes, J. S.

    2003-01-01

    How do you provide more than 350 scientists and researchers access to data from every instrument in Odyssey when the data is curated across half a dozen institutions and in different formats and is too big to mail on a CD-ROM anymore? The Planetary Data System (PDS) faced this exact question. The solution was to use a metadata-based middleware framework developed by the Object Oriented Data Technology task at NASA s Jet Propulsion Laboratory. Using OODT, PDS provided - for the first time ever - data from all mission instruments through a single system immediately upon data delivery.

  20. Gravitational microlensing by double stars and planetary systems

    NASA Technical Reports Server (NTRS)

    Mao, Shunde; Paczynski, Bohdan

    1991-01-01

    Almost all stars are in binary systems. When the separation between the two components is comparable to the Einstein ring radius corresponding to the combined mass of the binary acting as a gravitational lens, then an extra pair of images can be created, and the light curve of a lensed source becomes complicated. It is estimated that about 10 percent of all lensing episodes of the Galactic bulge stars will strongly display the binary nature of the lens. The effect is strong even if the companion is a planet. A massive search for microlensing of the Galactic bulge stars may lead to a discovery of the first extrasolar planetary systems.

  1. Planetary spacecraft - SEPS interface design. [Solar Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Pless, L. C.

    1980-01-01

    The interactions between a spacecraft which would rendezvous with the comet Tempel II, the stage, and the mission design are summarized along with solar electric propulsion system design issues. Attention is given to data communication, the spacecraft pointing control system, spacecraft power, plasma interactions, the release of a probe to study the comet Halley, and thruster usage. It was concluded that for a planetary mission design using a low-thrust stage, the control of the mission should reside in the payload spacecraft and that the power should be provided by the stage; the NASA standard 28 VDC bus is recommended.

  2. Conceptual definition of Automated Power Systems Management. [for planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Imamura, M. S.; Skelly, L.; Weiner, H.

    1977-01-01

    Automated Power Systems Management (APSM) is defined as the capability of a spacecraft power system to automatically perform monitoring, computational, command, and control functions without ground intervention. Power systems for future planetary spacecraft must have this capability because they must perform up to 10 years, and accommodate real-time changes in mission execution autonomously. Specific APSM functions include fault detection, isolation, and correction; system performance and load profile prediction; power system optimization; system checkout; and data storage and transmission control. This paper describes the basic method of implementing these specific functions. The APSM hardware includes a central power system computer and a processor dedicated to each major power system subassembly along with digital interface circuitry. The major payoffs anticipated are in enhancement of spacecraft reliability and life and reduction of overall spacecraft program cost.

  3. A novel wireless light sensing device for planetary and astronomical observations

    NASA Astrophysics Data System (ADS)

    Durga Prasad, K.; Murty, S. V. S.; Chandrasekhar, T.

    2014-11-01

    A novel and versatile wireless light sensing device has been designed and tested for stellar and planetary photometric observations. The device weighing few 10 s of grams finds a number of potential applications in the fields of astronomy and in situ planetary exploration. A Wireless Sensor Network (WSN) using a number of these devices has been deployed to successfully carry out simultaneous photometric observations under different conditions viz. sunlight, twilight, moonlight etc. Observation of a star of known magnitude for flux calibration at low intensity has been carried out by coupling the device to a 1.2 m telescope which demonstrates its sensitivity. A WSN using these devices is further capable of spatio-temporal investigations of sky background intensities. Such a network can also be used to effectively monitor certain astronomical events (lunar eclipse, asteroid occultation etc.) simultaneously from several locations. The capability of the device, level of miniaturization and its versatility makes it a potential tool for many photometric applications.

  4. Radial Velocity Detection of Extra-Solar Planetary Systems

    NASA Technical Reports Server (NTRS)

    Cochran, William D.

    1998-01-01

    The McDonald Observatory Planetary Search (MOPS) was designed to search for Jovian-mass planets in orbit around solar-type stars by making high-precision measurements of the Radial Velocity (RV) of a star, to attempt to detect the reflex orbital motion of the star around the star-planet barycenter. In our solar system, the velocity of the Sun around the Sun-Jupiter barycenter averages 12.3 m/ s. The MOPS survey started operation in September 1987, and searches 36 bright, nearby, solar-type dwarfs to 10 m/s precision. The survey was started using telluric O2 absorption lines as the velocity reference metric. Observations use the McDonald Observatory 2.7-m Harlan Smith Telescope coude spectrograph with the six-foot camera. This spectrograph configuration isolates a single order of the echelle grating on a Texas Instruments 800 x 800 CCD. The telluric line method gave us a routine radial velocity precision of about 15 m/s for stars down to about 5-th magnitude. However, the data obtained with this technique suffered from some source of long-term systematic errors, which was probably the intrinsic velocity variability of the terrestrial atmosphere, i.e. winds. In order to eliminate this systematic error and to improve our overall measurement precision, we installed a stabilized I2 gas absorption cell as the velocity metric for the MOPS in October 1990. In use at the telescope, the cell is placed directly in front of the spectrograph entrance slit, with starlight passing through the cell. The use of this sealed stabilized I2 cell removes potential problems with possible long-term drifts in the velocity metric. The survey now includes a sample of 36 nearby F, G, and K type stars of luminosity class V or IV-V.

  5. Constraints on Common Envelope Magnetic Fields from Observations of Jets in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    De Marco, Orsola; Tocknell, J.; Wardle, M.

    2014-01-01

    The common envelope (CE) interaction describes the swallowing of a nearby companion by a growing, evolving star. CEs that take place during the asymptotic giant branch phase of the primary and may lead to the formation of a planetary nebula (PN) with a post-CE close binary in the middle. We have used published observations of masses and kinematics of jets in four post-CE PN to infer physical characteristics of the CE interaction. In three of the four systems studied, Abell 63, ETHOS 1 and the Necklace PN, the kinematics indicate that the jets were launched a few thousand years before the CE and we favour a scenario where this happened before Roche lobe overflow, although better models of wind accretion and wind Roche lobe overflow are needed. The magnetic fields inferred to launch pre-CE jets are of the order of a few Gauss. In the fourth case, NGC 6778, the kinematics indicate that the jets were launched about 3000 years after the CE interaction. Magnetic fields of the order of a few hundreds to a few thousands Gauss are inferred in this case, approximately in line with predictions of post-CE magnetic fields. However, we remark that in the case of this system, we cannot find a reasonable scenario for the formation of the two jet pairs observed: the small orbital separation would preclude the formation of even one accretion disk able to supply the necessary accretion rate to cause the observed jets. Additional and improved observations of post-CE PN will provide a powerful tool to constrain the CE interaction.

  6. A Stable Configuration for the Upsilon Andromedae Planetary System

    NASA Astrophysics Data System (ADS)

    Deitrick, Russell; Barnes, R.; McArthur, B.; Quinn, T.; Benedict, G.; Antonsen, A.; Luger, R.

    2013-10-01

    Here we present a fully 3-dimensional, dynamically stable configuration for the 3 planets of the Upsilon Andromedae system. This work is a direct follow-up to McArthur et al (2010), which gave a 3-dimensional picture of the orbits of planets c and d but left the orbital plane of planet b unknown. Previous dynamical studies of the system found a stable configuration for planets c and d but failed to identify a stable solution for 3 planets. We searched for 3-planet configurations that are both consistent with the combined radial velocity and astrometric solution, and dynamically stable using N-body simulations. As planet b is not detected astrometrically, its inclination and longitude of ascending node are unconstrained by observations, but our stability analysis limits their ranges significantly. The system appears to be close to the stability boundary, as we find that only 10 trials out of 1000 are robustly stable. We find planet b's orbits must lie close to the fundamental plane of planets c and d, but can be either prograde or retrograde. These solutions predict b's mass is in the range 1.8 - 9 M_Jup. These results require planet b's orbit to lie very near the sky plane and hence when combined with the results of Crossfield et al (2010), predict that Ups And b is indeed an inflated hot Jupiter with a radius of > 1.5 R_Jup. This large radius would make the planet one of the largest known exoplanets and would require a large, continual heating source. In our solutions we find that the planet spends a significant amount of time with an eccentricity greater than 0.1, suggesting that tidal heating could be substantial. Using an equilibrium tidal model, we find that if Upsilon Andromedae b has a radius of 1.8 R_Jup and a tidal Q of 10^6, tides generate an average of ~2.5 x 10^19 W of power over the planet's eccentricity cycle. Our work presents the complete orbital architecture of this system, provides new constraints on planet b's interior, and lays a foundation

  7. Understanding the assembly of Kepler's compact planetary systems

    NASA Astrophysics Data System (ADS)

    Hands, T. O.; Alexander, R. D.; Dehnen, W.

    2014-11-01

    The Kepler mission has recently discovered a number of exoplanetary systems, such as Kepler-11 and Kepler-32, in which ensembles of several planets are found in very closely packed orbits (often within a few per cent of an au of one another). These compact configurations present a challenge for traditional planet formation and migration scenarios. We present a dynamical study of the assembly of these systems, using an N-body method which incorporates a parametrized model of planet migration in a turbulent protoplanetary disc. We explore a wide parameter space, and find that under suitable conditions it is possible to form compact, close-packed planetary systems via traditional disc-driven migration. We find that simultaneous migration of multiple planets is a viable mechanism for the assembly of tightly packed planetary systems, as long as the disc provides significant eccentricity damping and the level of turbulence in the disc is modest. We discuss the implications of our preferred parameters for the protoplanetary discs in which these systems formed, and comment on the occurrence and significance of mean-motion resonances in our simulations.

  8. Optimal Asteroid Mass Determination from Planetary Range Observations: A Study of a Simplified Test Model

    NASA Technical Reports Server (NTRS)

    Kuchynka, P.; Laskar, J.; Fienga, A.

    2011-01-01

    Mars ranging observations are available over the past 10 years with an accuracy of a few meters. Such precise measurements of the Earth-Mars distance provide valuable constraints on the masses of the asteroids perturbing both planets. Today more than 30 asteroid masses have thus been estimated from planetary ranging data (see [1] and [2]). Obtaining unbiased mass estimations is nevertheless difficult. Various systematic errors can be introduced by imperfect reduction of spacecraft tracking observations to planetary ranging data. The large number of asteroids and the limited a priori knowledge of their masses is also an obstacle for parameter selection. Fitting in a model a mass of a negligible perturber, or on the contrary omitting a significant perturber, will induce important bias in determined asteroid masses. In this communication, we investigate a simplified version of the mass determination problem. Instead of planetary ranging observations from spacecraft or radar data, we consider synthetic ranging observations generated with the INPOP [2] ephemeris for a test model containing 25000 asteroids. We then suggest a method for optimal parameter selection and estimation in this simplified framework.

  9. The planetary system to KIC 11442793: A compact analogue to the solar system

    SciTech Connect

    Cabrera, J.; Csizmadia, Sz.; Rauer, H.; Erikson, A.; Dreyer, C.; Eigmüller, Ph.; Lehmann, H.; Hatzes, A.; Dvorak, R.; Gandolfi, D.

    2014-01-20

    We announce the discovery of a planetary system with seven transiting planets around a Kepler target, a current record for transiting systems. Planets b, c, e, and f are reported for the first time in this work. Planets d, g, and h were previously reported in the literature, although here we revise their orbital parameters and validate their planetary nature. Planets h and g are gas giants and show strong dynamical interactions. The orbit of planet g is perturbed in such a way that its orbital period changes by 25.7 hr between two consecutive transits during the length of the observations, which is the largest such perturbation found so far. The rest of the planets also show mutual interactions: planets d, e, and f are super-Earths close to a mean motion resonance chain (2:3:4), and planets b and c, with sizes below 2 Earth radii, are within 0.5% of the 4:5 mean motion resonance. This complex system presents some similarities to our solar system, with small planets in inner orbits and gas giants in outer orbits. It is, however, more compact. The outer planet has an orbital distance around 1 AU, and the relative position of the gas giants is opposite to that of Jupiter and Saturn, which is closer to the expected result of planet formation theories. The dynamical interactions between planets are also much richer.

  10. Journal Bearing Analysis Suite Released for Planetary Gear System Evaluation

    NASA Technical Reports Server (NTRS)

    Brewe, David E.; Clark, David A.

    2005-01-01

    Planetary gear systems are an efficient means of achieving high reduction ratios with minimum space and weight. They are used in helicopter, aerospace, automobile, and many industrial applications. High-speed planetary gear systems will have significant dynamic loading and high heat generation. Hence, they need jet lubrication and associated cooling systems. For units operating in critical applications that necessitate high reliability and long life, that have very large torque loading, and that have downtime costs that are significantly greater than the initial cost, hydrodynamic journal bearings are a must. Computational and analytical tools are needed for sufficiently accurate modeling to facilitate optimal design of these systems. Sufficient physics is needed in the model to facilitate parametric studies of design conditions that enable optimal designs. The first transient journal bearing code to implement the Jacobsson-Floberg-Olsson boundary conditions, using a mass-conserving algorithm devised by Professor Emeritus Harold Elrod of Columbia University, was written by David E. Brewe of the U.S. Army at the NASA Lewis Research Center1 in 1983. Since then, new features and improved modifications have been built into the code by several contributors supported through Army and NASA funding via cooperative agreements with the University of Toledo (Professor Ted Keith, Jr., and Dr. Desikakary Vijayaraghavan) and National Research Council Programs (Dr. Vijayaraghavan). All this was conducted with the close consultation of Professor Elrod and the project management of David Brewe.

  11. ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION

    SciTech Connect

    R. C. O'Brien; S. D. Howe; J. E. Werner

    2010-09-01

    The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

  12. Continuing Improvement in the Planetary Ephemeris with VLBA Observations of Cassini

    NASA Astrophysics Data System (ADS)

    Jones, Dayton L.; Folkner, William M.; Jacobson, Robert A.; Jacobs, Christopher S.; Romney, Jonathan D.; Dhawan, Vivek; Fomalont, Edward B.

    2016-06-01

    During the past decade a continuing series of measurements of the barycentric position of the Saturn system in the inertial International Celestial Reference Frame (ICRF) has led to a significant improvement in our knowledge of Saturn's orbit. This in turn has improved the current accuracy and time range of the solar system ephemeris produced and maintained by the Jet Propulsion Laboratory. Our observing technique involves high-precision astrometry of the radio signal from Cassini with the NRAO Very Long Baseline Array, combined with solutions for the orbital motion of Cassini about the Saturn barycenter from Doppler tracking by the Deep Space Network. Our VLBA astrometry is done in a phase-referencing mode, providing nrad-level relative positions between Cassini and angularly nearby extragalactic radio sources. The positions of those reference radio sources are tied to the ICRF through dedicated VLBI observations by several groups around the world. We will present recent results from our astrometric observations of Cassini through early 2016. This program will continue until the end of the Cassini mission in 2017, although future improvement in Saturn's orbit will be more incremental because we have already covered more that a quarter of Saturn's orbital period. The Juno mission to Jupiter, which will orbit Jupiter for about 1.5 years starting in July 2016, will provide an excellent opportunity for us to apply the same VLBA astrometry technique to improve the orbit of Jupiter by a factor of several. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This work made use of the Swinburne University of Technology software correlator, developed as part of the Australian Major National Research Facilities Program and operated under license. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract

  13. Probing the terrestrial regions of planetary systems: warm debris disks with emission features

    SciTech Connect

    Ballering, Nicholas P.; Rieke, George H.; Gáspár, András

    2014-09-20

    Observations of debris disks allow for the study of planetary systems, even where planets have not been detected. However, debris disks are often only characterized by unresolved infrared excesses that resemble featureless blackbodies, and the location of the emitting dust is uncertain due to a degeneracy with the dust grain properties. Here, we characterize the Spitzer Infrared Spectrograph spectra of 22 debris disks exhibiting 10 μm silicate emission features. Such features arise from small warm dust grains, and their presence can significantly constrain the orbital location of the emitting debris. We find that these features can be explained by the presence of an additional dust component in the terrestrial zones of the planetary systems, i.e., an exozodiacal belt. Aside from possessing exozodiacal dust, these debris disks are not particularly unique; their minimum grain sizes are consistent with the blowout sizes of their systems, and their brightnesses are comparable to those of featureless warm debris disks. These disks are in systems of a range of ages, though the older systems with features are found only around A-type stars. The features in young systems may be signatures of terrestrial planet formation. Analyzing the spectra of unresolved debris disks with emission features may be one of the simplest and most accessible ways to study the terrestrial regions of planetary systems.

  14. SEQ-POINTER: Next generation, planetary spacecraft remote sensing science observation design tool

    NASA Astrophysics Data System (ADS)

    Boyer, Jeffrey S.

    1994-11-01

    Since Mariner, NASA-JPL planetary missions have been supported by ground software to plan and design remote sensing science observations. The software used by the science and sequence designers to plan and design observations has evolved with mission and technological advances. The original program, PEGASIS (Mariners 4, 6, and 7), was re-engineered as POGASIS (Mariner 9, Viking, and Mariner 10), and again later as POINTER (Voyager and Galileo). Each of these programs were developed under technological, political, and fiscal constraints which limited their adaptability to other missions and spacecraft designs. Implementation of a multi-mission tool, SEQ POINTER, under the auspices of the JPL Multimission Operations Systems Office (MOSO) is in progress. This version has been designed to address the limitations experienced on previous versions as they were being adapted to a new mission and spacecraft. The tool has been modularly designed with subroutine interface structures to support interchangeable celestial body and spacecraft definition models. The computational and graphics modules have also been designed to interface with data collected from previous spacecraft, or on-going observations, which describe the surface of each target body. These enhancements make SEQ POINTER a candidate for low-cost mission usage, when a remote sensing science observation design capability is required. The current and planned capabilities of the tool will be discussed. The presentation will also include a 5-10 minute video presentation demonstrating the capabilities of a proto-Cassini Project version that was adapted to test the tool. The work described in this abstract was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  15. SEQ-POINTER: Next generation, planetary spacecraft remote sensing science observation design tool

    NASA Technical Reports Server (NTRS)

    Boyer, Jeffrey S.

    1994-01-01

    Since Mariner, NASA-JPL planetary missions have been supported by ground software to plan and design remote sensing science observations. The software used by the science and sequence designers to plan and design observations has evolved with mission and technological advances. The original program, PEGASIS (Mariners 4, 6, and 7), was re-engineered as POGASIS (Mariner 9, Viking, and Mariner 10), and again later as POINTER (Voyager and Galileo). Each of these programs were developed under technological, political, and fiscal constraints which limited their adaptability to other missions and spacecraft designs. Implementation of a multi-mission tool, SEQ POINTER, under the auspices of the JPL Multimission Operations Systems Office (MOSO) is in progress. This version has been designed to address the limitations experienced on previous versions as they were being adapted to a new mission and spacecraft. The tool has been modularly designed with subroutine interface structures to support interchangeable celestial body and spacecraft definition models. The computational and graphics modules have also been designed to interface with data collected from previous spacecraft, or on-going observations, which describe the surface of each target body. These enhancements make SEQ POINTER a candidate for low-cost mission usage, when a remote sensing science observation design capability is required. The current and planned capabilities of the tool will be discussed. The presentation will also include a 5-10 minute video presentation demonstrating the capabilities of a proto-Cassini Project version that was adapted to test the tool. The work described in this abstract was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  16. Significant achievements in the Planetary Geology Program. [geologic processes, comparative planetology, and solar system evolution

    NASA Technical Reports Server (NTRS)

    Head, J. W. (Editor)

    1978-01-01

    Developments reported at a meeting of principal investigators for NASA's planetology geology program are summarized. Topics covered include: constraints on solar system formation; asteriods, comets, and satellites; constraints on planetary interiors; volatiles and regoliths; instrument development techniques; planetary cartography; geological and geochemical constraints on planetary evolution; fluvial processes and channel formation; volcanic processes; Eolian processes; radar studies of planetary surfaces; cratering as a process, landform, and dating method; and the Tharsis region of Mars. Activities at a planetary geology field conference on Eolian processes are reported and techniques recommended for the presentation and analysis of crater size-frequency data are included.

  17. Planetary rings

    SciTech Connect

    Greenberg, R.; Brahic, A.

    1984-01-01

    Among the topics discussed are the development history of planetary ring research, the view of planetary rings in astronomy and cosmology over the period 1600-1900, the characteristics of the ring systems of Saturn and Uranus, the ethereal rings of Jupiter and Saturn, dust-magnetosphere interactions, the effects of radiation forces on dust particles, the collisional interactions and physical nature of ring particles, transport effects due to particle erosion mechanisms, and collision-induced transport processes in planetary rings. Also discussed are planetary ring waves, ring particle dynamics in resonances, the dynamics of narrow rings, the origin and evolution of planetary rings, the solar nebula and planetary disk, future studies of the planetary rings by space probes, ground-based observatories and earth-orbiting satellites, and unsolved problems in planetary ring dynamics.

  18. Spectrophotometric observations of a peculiar nitrogen-rich planetary nebula NGC 2440

    NASA Astrophysics Data System (ADS)

    Louise, R.

    1982-06-01

    By using the Boller and Chivens spectrograph with a moderate dispersion (59 A/mm) in the red spectral region, 65 spectra covering the whole surface of the planetary nebula NGC 2440 were obtained. Intensities of H-alpha, forbidden N II lines 6548-6584 A and forbidden S II lines 6717-6731 A are derived using the IDS system available at the ESO in La Silla (Chile). The nebula is known to be a nitrogen-rich nebula (Peimbert, 1978) surrounded by secondary structures (Minkowski, 1964). The unusual high value of the forbidden N II lines/H-alpha in the central core (approximately 3.0) is certainly due to the nitrogen overabundance occurring in that part of the nebula. Its variations from the center to the outer regions are interpreted as a consequence of small-scale ionization structure (Capriotti, Cromwell and Williams, 1971). The observations show clearly an outward increase of both forbidden N II lines/H-alpha and I(6717)/I(6713) ratios.

  19. Unified Planetary Coordinates System: A Searchable Database of Geodetic Information

    NASA Technical Reports Server (NTRS)

    Becker, K. J.a; Gaddis, L. R.; Soderblom, L. A.; Kirk, R. L.; Archinal, B. A.; Johnson, J. R.; Anderson, J. A.; Bowman-Cisneros, E.; LaVoie, S.; McAuley, M.

    2005-01-01

    Over the past 40 years, an enormous quantity of orbital remote sensing data has been collected for Mars from many missions and instruments. Unfortunately these datasets currently exist in a wide range of disparate coordinate systems, making it extremely difficult for the scientific community to easily correlate, combine, and compare data from different Mars missions and instruments. As part of our work for the PDS Imaging Node and on behalf of the USGS Astrogeology Team, we are working to solve this problem and to provide the NASA scientific research community with easy access to Mars orbital data in a unified, consistent coordinate system along with a wide variety of other key geometric variables. The Unified Planetary Coordinates (UPC) system is comprised of two main elements: (1) a database containing Mars orbital remote sensing data computed using a uniform coordinate system, and (2) a process by which continual maintainance and updates to the contents of the database are performed.

  20. Melt production in large-scale impact events: Planetary observations and implications

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Grieve, Richard A. F.

    1992-01-01

    Differences in scaling relationships for crater formation and the generation of impact melt should lead to a variety of observable features and phenomena. These relationships infer that the volume of the transient cavity (and final crater) relative to the volume of impact melt (and the depth to which melting occurs) decreases as the effects of gravity and impact velocity increase. Since planetary gravity and impact velocity are variables in the calculation of cavity and impact-melt volumes, the implications of the model calculation will vary between planetary bodies. Details of the model calculations of impact-melt generation as a function of impact and target physical conditions were provided elsewhere, as were attempts to validate the model through ground-truth data on melt volumes, shock attenuation, and morphology from terrestrial impact craters.

  1. The Search for Young Planetary Systems And the Evolution of Young Stars

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Boden, Andrew; Ghez, Andrea; Hartman, Lee W.; Hillenbrand, Lynn; Lunine, Jonathan I.; Simon, Michael J.; Stauffer, John R.; Velusamy, Thangasamy

    2004-01-01

    The Space Interferometer Mission (SIM) will provide a census of planetary systems by con- ducting a broad survey of 2,000 stars that will be sensitive to the presence of planets with masses as small as approx. 15 Earth masses (1 Uranus mass) and a deep survey of approx. 250 of the nearest, stars with a mass limit of approx.3 Earth masses. The broad survey will include stars spanning a wide range of ages, spectral types, metallicity, and other important parameters. Within this larger context, the Young Stars and Planets Key Project will study approx. 200 stars with ages from 1 Myr to 100 Myr to understand the formation and dynamical evolution of gas giant planets. The SIM Young Stars and Planets Project will investigate both the frequency of giant planet formation and the early dynamical history of planetary systems. We will gain insight into how common the basic architecture of our solar system is compared with recently discovered systems with close-in giant planets by examining 200 of the nearest (less than 150 pc) and youngest (1-100 Myr) solar-type stars for planets. The sensitivity of the survey for stars located 140 pc away is shown in the planet mass-separation plane. We expect to find anywhere from 10 (assuming that only the presently known fraction of stars. 5-7%, has planets) to 200 (all young stars have planets) planetary systems. W-e have set our sensitivity threshold to ensure the detection of Jupiter-mass planets in the critical orbital range of 1 to 5 AU. These observations, when combined with the results of planetary searches of mature stars, will allow us to test theories of planetary formation and early solar system evolution. By searching for planets around pre-main sequence stars carefully selected to span an age range from 1 to 100 Myr, we will learn a t what epoch and with what frequency giant planets are found at the water-ice snowline where they are expected to form. This will provide insight into the physical mechanisms by which planets form

  2. Exploring Planetary System Evolution Through High-Contrast Imaging

    NASA Astrophysics Data System (ADS)

    Esposito, Thomas; Fitzgerald, Michael P.; Kalas, Paul; Graham, James R.; Millar-Blanchaer, Max; Gpies Team

    2015-01-01

    Direct imaging of circumstellar disks provides unique information about planetary system construction and evolution. Several hundred nearby main-sequence stars are known to host debris disks, which are produced by mutual collisions of orbiting planetesimals during a phase thought to coincide with terrestrial planet formation. Therefore, detection of the dust in such systems through scattered near-infrared starlight offers a view of the circumstellar environment during the epoch of planet assembly. We have used ground-based coronagraphic angular differential imaging (ADI) with Keck NIRC2 and Gemini Planet Imager (GPI) to investigate disk structures that may act as signposts of planets. ADI and its associated image processing algorithms (e.g., LOCI) are powerful tools for suppressing the stellar PSF and quasistatic speckles that can contaminate disk signal. However, ADI PSF-subtraction also attenuates disk surface brightness in a spatially- and parameter-dependent manner, thereby biasing photometry and compromising inferences regarding the physical processes responsible for the dust distribution. To account for this disk "self-subtraction," we developed a novel technique to forward model the disk structure and compute a self-subtraction map for a given ADI-processed image. Applying this method to NIRC2 near-IR imaging of the HD 32297 debris disk, we combined the high signal-to-noise ratio (S/N) of ADI data with unbiased photometry to measure midplane curvature in the edge-on disk and a break in the disk's radial brightness profile. Such a break may indicate the location of a planetesimal ring that is a source of the light-scattering micron-sized grains. For the HD 61005 debris disk, we examined similar data together with GPI 1.6-micron polarization data and detected the dust ring's swept-back morphology, brightness asymmetry, stellocentric offset, and inner clearing. To study the physical mechanism behind these features, we explored how eccentricity and mutual

  3. Development Of Electrical Power Systems For Test-Bed Rovers Aiming To Planetary Surface Exploration

    NASA Astrophysics Data System (ADS)

    Shimada, Takanobu; Otsuki, Massatsugu; Toyota, Hiroyuki; Ishigami, Genya; Kubota, Takashi

    2011-10-01

    Planetary surface exploration rovers are promisingly expected to safely travel over long distances and to make in-situ scientific observations. The authors have developed an innovative test-bed rover having a novel mobility system, lightweight manipulators, and advanced guidance and navigation functions. Electrical power systems (EPSs) of rovers require stable power supply to realize long-range travel on planetary surfaces. However, a power management scheme for the rover is different from that used for orbiting (or interplanetary) spacecrafts because the power spent by the rover significantly varies along with the rover's motion profile. The authors performed several field tests in a desert using the test-bed rover that uses the newly developed EPS. The developed autonomous power management and control for the rover have been tested and evaluated through the field tests. This paper reports the functions and performance of the developed EPS and the obtained experimental results via the field tests.

  4. The orbital dynamics and long-term stability of planetary systems

    NASA Astrophysics Data System (ADS)

    Deck, Katherine; Holman, Matthew; Winn, Joshua N.; Agol, Eric; Carter, Joshua; Payne, Matthew; Nesvorny, David; Sanchis-Ojeda, Roberto; Isaacson, Howard; Torres, Guillermo; Lissauer, Jack J.

    2015-01-01

    A large population of low-mass exoplanets with short orbital periods has been discovered using the transit method. At least 40% of these planets are actually part of compact systems with more than one planet. The closeness of the planetary orbits in these multi-planet systems leads to strong dynamical interactions that imprint themselves on the transit light curve as transit timing variations (TTVs). By modeling the orbital evolution of these planetary systems, one can fit the observed variations and strongly constrain the masses and orbits of the interacting planets, parameters which, given the faintness of the host stars, often cannot be determined using other techniques. This type of analysis is performed for KOI-984, a system with a single transiting planet perturbed by at least one non-transiting companion. By modeling the gravitational interaction between the planets using our code TTVFast, we are able to show that in the context of a two-planet model, the planetary orbits must be distinctly non-coplanar. However, solutions with two non-transiting companions with nearly coplanar orbits cannot be ruled out, given the data, and so we cannot yet determine the true three dimensional architecture of the system.The dynamical interactions that lead to observable TTVs can also lead to orbital instability and chaos. The Kepler 36 system has the closest confirmed pair of planets to date, with unique TTVs that tightly constrain the orbits, in turn allowing for detailed analysis of the long-term dynamics of the system. We find the system to be strongly chaotic, characterized by the very human timescale of ~10 years. We are able to understand the source of this rapid chaos, and to show that despite its presence, the system can be long-lived. But how compact can two planetary orbits be before being unstable? We consider more generally the long-term stability of two-planet systems within the framework of first-order resonance overlap. We determine a stability criterion for

  5. ARCHITECTURE OF PLANETARY SYSTEMS BASED ON KEPLER DATA: NUMBER OF PLANETS AND COPLANARITY

    SciTech Connect

    Fang, Julia; Margot, Jean-Luc

    2012-12-20

    We investigated the underlying architecture of planetary systems by deriving the distribution of planet multiplicity (number of planets) and the distribution of orbital inclinations based on the sample of planet candidates discovered by the Kepler mission. The scope of our study included solar-like stars and planets with orbital periods less than 200 days and with radii between 1.5 and 30 Earth radii, and was based on Kepler planet candidates detected during Quarters 1-6. We created models of planetary systems with different distributions of planet multiplicity and inclinations, simulated observations of these systems by Kepler, and compared the properties of the transits of detectable objects to actual Kepler planet detections. Specifically, we compared with both the Kepler sample's transit numbers and normalized transit duration ratios in order to determine each model's goodness of fit. We did not include any constraints from radial velocity surveys. Based on our best-fit models, 75%-80% of planetary systems have one or two planets with orbital periods less than 200 days. In addition, over 85% of planets have orbital inclinations less than 3 Degree-Sign (relative to a common reference plane). This high degree of coplanarity is comparable to that seen in our solar system. These results have implications for planet formation and evolution theories. Low inclinations are consistent with planets forming in a protoplanetary disk, followed by evolution without significant and lasting perturbations from other bodies capable of increasing inclinations.

  6. Dynamical Instabilities and the Formation of Extrasolar Planetary Systems

    PubMed

    Rasio; Ford

    1996-11-01

    The existence of a dominant massive planet, Jupiter, in our solar system, although perhaps essential for long-term dynamical stability and the development of life, may not be typical of planetary systems that form around other stars. In a system containing two Jupiter-like planets, the possibility exists that a dynamical instability will develop. Computer simulations suggest that in many cases this instability leads to the ejection of one planet while the other is left in a smaller, eccentric orbit. In extreme cases, the eccentric orbit has a small enough periastron distance that it may circularize at an orbital period as short as a few days through tidal dissipation. This may explain the recently detected Jupiter-mass planets in very tight circular orbits and wider eccentric orbits around nearby stars.

  7. Astrometry of the Planetary-System Millisecond Pulsar B1257+12

    NASA Astrophysics Data System (ADS)

    Nunes, N. V.; Bartel, N.

    We present the VLBI determined position of the millisecond pulsar PSR B1257+12 which has been shown to have a planetary system (Wolszczan & Frail 1992). The position determination for epoch June 20, 1992 is: alphaJ2000 = \\ra[13 0 3.05005](5), deltaJ2000 = + \\dec[12 40 56.7043] (34). We indicate how the combination of such pulsar observations along with timing observations can be used to directly tie the solar-system dynamic reference frames and the extragalactic reference frame.

  8. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS. II. PREDICTIONS FOR OUTER EXTRASOLAR PLANETARY SYSTEMS

    SciTech Connect

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2010-03-10

    We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ('planetesimals'). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M{sub +} from 10 to 20 AU. For large planet masses (M {approx}> M{sub Sat}), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a {approx}< 3 AU) is consistent with isolated planet-planet scattering. We explain the observed mass dependence-which is in the opposite sense from that predicted by the simplest scattering models-as a consequence of strong correlations between planet masses in the same system. At somewhat larger radii, initial planetary mass correlations and disk effects can yield similar modest changes to the eccentricity distribution. Nonetheless, strong damping of eccentricity for low-mass planets at large radii appears to be a secure signature of the dynamical influence of disks. Radial velocity

  9. The planetary data system educational CD-ROM

    NASA Technical Reports Server (NTRS)

    Guinness, E. A.; Arvidson, R. E.; Martin, M.; Dueck, S.

    1993-01-01

    The Planetary Data System (PDS) is producing a special educational CD-ROM that contains samples of PDS datasets and is expected to be released in 1993. The CD-ROM will provide university-level instructors with PDS-compatible materials and information that can be used to construct student problem sets using real datasets. The main purposes of the CD-ROM are to facilitate wide use of planetary data and to introduce a large community to the PDS. To meet these objectives the Educational CD-ROM will also contain software to manipulate the data, background discussions about scientific questions that can be addressed with the data, and a suite of exercises that illustrate analysis techniques. Students will also be introduced to the SPICE concept, which is a new way of maintaining geometry and instrument information. The exercises will be presented at the freshman through graduate student levels. With simplification, some of the material should also be of use at the high school level.

  10. Phenomenology of Neptune's radio emissions observed by the Voyager planetary radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Pedersen, B. M.; Lecacheux, A.; Zarka, P.; Aubier, M. G.; Kaiser, M. L.; Desch, M. D.

    1992-01-01

    The Neptune flyby in 1989 added a new planet to the known number of magnetized planets generating nonthermal radio emissions. We review the Neptunian radio emission morphology as observed by the planetary radio astronomy experiment on board Voyager 2 during a few weeks before and after closest approach. We present the characteristics of the two observed recurrent main components of the Neptunian kilometric radiation, i.e., the 'smooth' and the 'bursty' emissions, and we describe the many specific features of the radio spectrum during closest approach.

  11. Planetary-scale wave structures of the earth's atmosphere revealed from the COSMIC observations

    NASA Astrophysics Data System (ADS)

    Anisetty, S. K. A. V. Prasad Rao; Brahmanandam, P. S.; Uma, G.; Babu, A. Narendra; Huang, Ching-Yuang; Kumar, G. Anil; Ram, S. Tulasi; Wang, Hsiao-Lan; Chu, Yen-Hsyang

    2014-02-01

    GPS radio occultation (GPS RO) method, an active satellite-to-satellite remote sensing technique, is capable of producing accurate, all-weather, round the clock, global refractive index, density, pressure, and temperature profiles of the troposphere and stratosphere. This study presents planetary-scale equatorially trapped Kelvin waves in temperature profiles retrieved using COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) satellites during 2006-2009 and their interactions with background atmospheric conditions. It is found that the Kelvin waves are not only associated with wave periods of higher than 10 days (slow Kelvin waves) with higher zonal wave numbers (either 1 or 2), but also possessing downward phase progression, giving evidence that the source regions of them are located at lower altitudes. A thorough verification of outgoing longwave radiation (OLR) reveals that deep convection activity has developed regularly over the Indonesian region, suggesting that the Kelvin waves are driven by the convective activity. The derived Kelvin waves show enhanced (diminished) tendencies during westward (eastward) phase of the quasi-biennial oscillation (QBO) in zonal winds, implying a mutual relation between both of them. The El Niño and Southern Oscillation (ENSO) below 18 km and the QBO features between 18 and 27 km in temperature profiles are observed during May 2006-May 2010 with the help of an adaptive data analysis technique known as Hilbert Huang Transform (HHT). Further, temperature anomalies computed using COSMIC retrieved temperatures are critically evaluated during different phases of ENSO, which has revealed interesting results and are discussed in light of available literature.

  12. Can The Periods of Some Extra-Solar Planetary Systems be Quantized?

    NASA Astrophysics Data System (ADS)

    El Fady Morcos, Abd

    A simple formula was derived before by Morcos (2013 ), to relate the quantum numbers of planetary systems and their periods. This formula is applicable perfectly for the solar system planets, and some extra-solar planets , of stars of approximately the same masses like the Sun. This formula has been used to estimate the periods of some extra-solar planet of known quantum numbers. The used quantum numbers were calculated previously by other authors. A comparison between the observed and estimated periods, from the given formula has been done. The differences between the observed and calculated periods for the extra-solar systems have been calculated and tabulated. It is found that there is an error of the range of 10% The same formula has been also used to find the quantum numbers, of some known periods, exo-planet. Keywords: Quantization; Periods; Extra-Planetary; Extra-Solar Planet REFERENCES [1] Agnese, A. G. and Festa, R. “Discretization on the Cosmic Scale Inspirred from the Old Quantum Mechanics,” 1998. http://arxiv.org/abs/astro-ph/9807186 [2] Agnese, A. G. and Festa, R. “Discretizing ups-Andro- medae Planetary System,” 1999. http://arxiv.org/abs/astro-ph/9910534. [3] Barnothy, J. M. “The Stability of the Solar Systemand of Small Stellar Systems,” Proceedings of the IAU Sympo-sium 62, Warsaw, 5-8 September 1973, pp. 23-31. [4] Morcos, A.B. , “Confrontation between Quantized Periods of Some Extra-Solar Planetary Systems and Observations”, International Journal of Astronomy and Astrophysics, 2013, 3, 28-32. [5] Nottale, L. “Fractal Space-Time and Microphysics, To-wards a Theory of Scale Relativity,” World Scientific, London, 1994. [6] Nottale , L., “Scale-Relativity and Quantization of Extra- Solar Planetary Systems,” Astronomy & Astrophysics, Vol. 315, 1996, pp. L9-L12 [7] Nottale, L., Schumacher, G. and Gay, J. “Scale-Relativity and Quantization of the Solar Systems,” Astronomy & Astrophysics letters, Vol. 322, 1997, pp. 1018-10 [8

  13. Observations of the planetary nebula RWT 152 with OSIRIS/GTC

    NASA Astrophysics Data System (ADS)

    Aller, A.; Miranda, L. F.; Olguín, L.; Solano, E.; Ulla, A.

    2016-11-01

    RWT 152 is one of the few known planetary nebulae with an sdO central star. We present subarcsecond red tunable filter Hα imaging and intermediate-resolution, long-slit spectroscopy of RWT 152 obtained with OSIRIS/GTC (Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy/Gran Telescopio Canarias) with the goal of analysing its properties. The Hα image reveals a bipolar nebula with a bright equatorial region and multiple bubbles in the main lobes. A faint circular halo surrounds the main nebula. The nebular spectra reveal a very low excitation nebula with weak emission lines from H+, He+ and double-ionized metals, and absence of emission lines from neutral and single-ionized metals, except for an extremely faint [N II] λ6584 emission line. These spectra may be explained if RWT 152 is a density-bounded planetary nebula. Low nebular chemical abundances of S, O, Ar, N and Ne are obtained in RWT 152, which, together with the derived high peculiar velocity (˜ 92-131 km s-1), indicate that this object is a halo planetary nebula. The available data are consistent with RWT 152 evolving from a low-mass progenitor (˜1 M⊙) formed in a metal-poor environment.

  14. The effect of latent heat release on synoptic-to-planetary wave interactions and its implication for satellite observations: Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Branscome, Lee E.; Bleck, Rainer

    1989-01-01

    Simple models are being developed to simulate interaction of planetary and synoptic-scale waves incorporating the effects of large-scale topography; eddy heat and momentum fluxes (or nonlinear dynamics); radiative heating/cooling; and latent heat release (precipitation) in synoptic-scale waves. The importance of latent heat release is determined in oceanic storm tracks for temporal variability and time-mean behavior of planetary waves. The model results were compared with available observations of planetary and synoptic-scale wave variability and time-mean circulation. The usefulness of monitoring precipitation in oceanic storm tracks by satellite observing systems was ascertained. The modeling effort includes two different low-order quasi-geostrophic models-time-dependent version and climatological mean version. The modeling also includes a low-order primitive equation model. A time-dependent, multi-level version will be used to validate the two-level Q-G models and examine effects of spherical geometry.

  15. Lunar and Planetary Science XXXV: Outer Solar System

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session 'Outer Solar System" inlcuded:Monte Carlo Modeling of [O I] 630 nm Auroral Emission on Io; The Detection of Iron Sulfide on Io; Io and Loki in 2003 as Seen from the Infrared Telescope Facility Using Mutual Satellite and Jupiter Occultations; Mapping of the Zamama-Thor Region of Io; First Solar System Results of the Spitzer Space Telescope; Mapping the Surface of Pluto with the Hubble Space Telescope; Experimental Study on Fischer-Tropsch Catalysis in the Circum-Saturnian Subnebula; New High-Pressure Phases of Ammonia Dihydrate; Gas Hydrate Stability at Low Temperatures and High Pressures with Applications to Mars and Europa; Laboratory UV Photolysis of Planetary Ice Analogs Containing H2O + CO2 (1:1); The OH Stretch Infrared Band of Water Ice and Its Temperature and Radiation Dependence; Band Position Variations in Reflectance Spectra of the Jovian Satellite Ganymede; Comparison of Porosity and Radar Models for Europa s Near Surface; Combined Effects of Diurnal and Nonsynchronous Surface Stresses on Europa; Europa s Northern Trailing Hemisphere: Lineament Stratigraphic Framework; Europa at the Highest Resolution: Implications for Surface Processes and Landing Sites; Comparison of Methods to Determine Furrow System Centers on Ganymede and Callisto; Resurfacing of Ganymede by Liquid-Water Volcanism; Layered Ejecta Craters on Ganymede: Comparisons with Martian Analogs; Evaluation of the Possible Presence of CO2-Clathrates in Europa s Icy Shell or Seafloor; Geosciences at Jupiter s Icy Moons: The Midas Touch; Planetary Remote Sensing Science Enabled by MIDAS (Multiple Instrument Distributed Aperture Sensor); and In Situ Surveying of Saturn s Rings.

  16. 55 CANCRI: A COPLANAR PLANETARY SYSTEM THAT IS LIKELY MISALIGNED WITH ITS STAR

    SciTech Connect

    Kaib, Nathan A.; Duncan, Martin J.; Raymond, Sean N.

    2011-12-15

    Although the 55 Cnc system contains multiple, closely packed planets that are presumably in a coplanar configuration, we use numerical simulations to demonstrate that they are likely to be highly inclined to their parent star's spin axis. Due to perturbations from its distant binary companion, this planetary system precesses like a rigid body about its parent star. Consequently, the parent star's spin axis and the planetary orbit normal likely diverged long ago. Because only the projected separation of the binary is known, we study this effect statistically, assuming an isotropic distribution for wide binary orbits. We find that the most likely projected spin-orbit angle is {approx}50 Degree-Sign , with a {approx}30% chance of a retrograde configuration. Transit observations of the innermost planet-55 Cnc e-may be used to verify these findings via the Rossiter-McLaughlin effect. 55 Cancri may thus represent a new class of planetary systems with well-ordered, coplanar orbits that are inclined with respect to the stellar equator.

  17. Evolution of Planetary Ice-Ocean Systems: Effects of Salinity

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, D.; McNamara, A. K.

    2015-12-01

    Planetary oceanography is enjoying renewed attention thanks to not only the detection of several exoplanetary ocean worlds but also due to the expanding family of ocean worlds within our own star system. Our solar system is now believed to host about nine ocean worlds including Earth, some dwarf planets and few moons of Jupiter and Saturn. Amongst them, Europa, like Earth is thought to have an ice Ih-liquid water system. However, the thickness of the Europan ice-ocean system is much larger than that of the Earth. The evolution of this system would determine the individual thicknesses of the ice shell and the ocean. In turn, these thicknesses can alter the course of evolution of the system. In a pure H2O system, the thickness of the ice shell would govern if heat loss occurs entirely by conduction or if the shell begins to convect as it attains a threshold thickness. This switch between conduction-convection regimes could determine the longevity of the subsurface ocean and hence define the astrobiological potential of the planetary body at any given time. In reality, however, the system is not pure water ice. The detected induced magnetic field infers a saline ocean layer. Salts are expected to act as an anti-freeze allowing a subsurface ocean to persist over long periods but the amount of salts would determine the extent of that effect. In our current study, we use geodynamic models to examine the effect of salinity on the evolution of ice-ocean system. An initial ocean with different salinities is allowed to evolve. The effect of salinity on thickness of the two layers at any time is examined. We also track how salinity controls the switch between conductive-convective modes. The study shows that for a given time period, larger salinities can maintain a thick vigorously convecting ocean while the smaller salinities behave similar to a pure H2O system leading to a thick convecting ice-shell. A range of salinities identified can potentially predict the current state

  18. Enviromnental Control and Life Support Systems for Mars Missions - Issues and Concerns for Planetary Protection

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin

    2015-01-01

    Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future human planetary exploration missions. Ultimately, there will be an effect on mission costs, including the mission trade space when planetary protection requirements begin to drive vehicle deisgn in a concrete way. Planetary protection requirements need to be considered early in technology development and mission programs in order to estimate these impacts and push back on requirements or find efficient ways to perform necessary functions. It is expected that planetary protection will be a significant factor during technology selection and system architecture design for future missions.

  19. Constraining Planetary Migration Mechanisms in Systems of Giant Planets

    NASA Astrophysics Data System (ADS)

    Dawson, Rebekah I.; Murray-Clay, Ruth A.; Johnson, John Asher

    2014-01-01

    It was once widely believed that planets formed peacefully in situ in their proto-planetary disks and subsequently remain in place. Instead, growing evidence suggests that many giant planets undergo dynamical rearrangement that results in planets migrating inward in the disk, far from their birthplaces. However, it remains debated whether this migration is caused by smooth planet-disk interactions or violent multi-body interactions. Both classes of model can produce Jupiter-mass planets orbiting within 0.1 AU of their host stars, also known as hot Jupiters. In the latter class of model, another planet or star in the system perturbs the Jupiter onto a highly eccentric orbit, which tidal dissipation subsequently shrinks and circularizes during close passages to the star. We assess the prevalence of smooth vs. violent migration through two studies. First, motivated by the predictions of Socrates et al. (2012), we search for super-eccentric hot Jupiter progenitors by using the ``photoeccentric effect'' to measure the eccentricities of Kepler giant planet candidates from their transit light curves. We find a significant lack of super- eccentric proto-hot Jupiters compared to the number expected, allowing us to place an upper limit on the fraction of hot Jupiters created by stellar binaries. Second, if both planet-disk and multi-body interactions commonly cause giant planet migration, physical properties of the proto-planetary environment may determine which is triggered. We identify three trends in which giant planets orbiting metal rich stars show signatures of planet-planet interactions: (1) gas giants orbiting within 1 AU of metal-rich stars have a range of eccentricities, whereas those orbiting metal- poor stars are restricted to lower eccentricities; (2) metal-rich stars host most eccentric proto-hot Jupiters undergoing tidal circularization; and (3) the pile-up of short-period giant planets, missing in the Kepler sample, is a feature of metal-rich stars and is

  20. Probing Nearby Planetary Systems by Debris Disk Imaging

    NASA Technical Reports Server (NTRS)

    Stapelfeldt, Karl

    2011-01-01

    Many main-sequence stars possess tenuous circumstellar dust clouds believed to trace extrasolar analogs of the Sun's asteroidand Kuiper Belts. While most of these "debris disks" are known only from far-infrared photometry, a growing number of them are now spatially resolved. In this talk, I'll review what is currently known about the structure of debris disks. Using images from the Hubble, Spitzer, and Herschel Space Telescopes, I will show how modeling of these resolved systems can place strong constraints on dust particle properties in the disks. Some of the disks show disturbed structures suggestive of planetary perturbations: specific cases will be discussed where directly-imaged exoplanets are clearly affecting debris disk structure. I'll conclude with thoughts on the future of high contrast exoplanet imaging.

  1. Detection of the water reservoir in a forming planetary system.

    PubMed

    Hogerheijde, Michiel R; Bergin, Edwin A; Brinch, Christian; Cleeves, L Ilsedore; Fogel, Jeffrey K J; Blake, Geoffrey A; Dominik, Carsten; Lis, Dariusz C; Melnick, Gary; Neufeld, David; Panić, Olja; Pearson, John C; Kristensen, Lars; Yildiz, Umut A; van Dishoeck, Ewine F

    2011-10-21

    Icy bodies may have delivered the oceans to the early Earth, yet little is known about water in the ice-dominated regions of extrasolar planet-forming disks. The Heterodyne Instrument for the Far-Infrared on board the Herschel Space Observatory has detected emission lines from both spin isomers of cold water vapor from the disk around the young star TW Hydrae. This water vapor likely originates from ice-coated solids near the disk surface, hinting at a water ice reservoir equivalent to several thousand Earth oceans in mass. The water's ortho-to-para ratio falls well below that of solar system comets, suggesting that comets contain heterogeneous ice mixtures collected across the entire solar nebula during the early stages of planetary birth. PMID:22021851

  2. Isotopic enrichment of forming planetary systems from supernova pollution

    NASA Astrophysics Data System (ADS)

    Lichtenberg, Tim; Parker, Richard J.; Meyer, Michael R.

    2016-08-01

    Heating by short-lived radioisotopes (SLRs) such as 26Al and 60Fe fundamentally shaped the thermal history and interior structure of Solar System planetesimals during the early stages of planetary formation. The subsequent thermo-mechanical evolution, such as internal differentiation or rapid volatile degassing, yields important implications for the final structure, composition and evolution of terrestrial planets. SLR-driven heating in the Solar System is sensitive to the absolute abundance and homogeneity of SLRs within the protoplanetary disk present during the condensation of the first solids. In order to explain the diverse compositions found for extrasolar planets, it is important to understand the distribution of SLRs in active planet formation regions (star clusters) during their first few Myr of evolution. By constraining the range of possible effects, we show how the imprint of SLRs can be extrapolated to exoplanetary systems and derive statistical predictions for the distribution of 26Al and 60Fe based on N-body simulations of typical to large clusters (103-104 stars) with a range of initial conditions. We quantify the pollution of protoplanetary disks by supernova ejecta and show that the likelihood of enrichment levels similar to or higher than the Solar System can vary considerably, depending on the cluster morphology. Furthermore, many enriched systems show an excess in radiogenic heating compared to Solar System levels, which implies that the formation and evolution of planetesimals could vary significantly depending on the birth environment of their host stars.

  3. Isotopic enrichment of forming planetary systems from supernova pollution

    NASA Astrophysics Data System (ADS)

    Lichtenberg, Tim; Parker, Richard J.; Meyer, Michael R.

    2016-11-01

    Heating by short-lived radioisotopes (SLRs) such as 26Al and 60Fe fundamentally shaped the thermal history and interior structure of Solar system planetesimals during the early stages of planetary formation. The subsequent thermo-mechanical evolution, such as internal differentiation or rapid volatile degassing, yields important implications for the final structure, composition and evolution of terrestrial planets. SLR-driven heating in the Solar system is sensitive to the absolute abundance and homogeneity of SLRs within the protoplanetary disc present during the condensation of the first solids. In order to explain the diverse compositions found for extrasolar planets, it is important to understand the distribution of SLRs in active planet formation regions (star clusters) during their first few Myr of evolution. By constraining the range of possible effects, we show how the imprint of SLRs can be extrapolated to exoplanetary systems and derive statistical predictions for the distribution of 26Al and 60Fe based on N-body simulations of typical to large clusters (103-104 stars) with a range of initial conditions. We quantify the pollution of protoplanetary discs by supernova ejecta and show that the likelihood of enrichment levels similar to or higher than the Solar system can vary considerably, depending on the cluster morphology. Furthermore, many enriched systems show an excess in radiogenic heating compared to Solar system levels, which implies that the formation and evolution of planetesimals could vary significantly depending on the birth environment of their host stars.

  4. The search for other planetary systems - Progress to date and future prospects (The Rudolph Pesek Lecture)

    NASA Technical Reports Server (NTRS)

    Black, David C.

    1991-01-01

    The notion is addressed which links the formation of stars and the existence of planets, and the lack of supporting observational data is discussed in relation to a NASA astrometric project. The program cited is called Towards Other Planetary Systems (TOPS) and includes ground-based astrometric and radial-velocity studies for both direct and indirect scrutiny of unknown planets. The TOPS program also envisages space-based astrometric systems that can operate with an accuracy of not less than 10 microarcseconds, and the possibility is mentioned of a moon-based astrometric platform.

  5. Planetary system evolution and the Vega stars: The potential for ESA's Infrared Space Observatory

    NASA Technical Reports Server (NTRS)

    Stencel, Robert E.; Backman, Dana E.

    1994-01-01

    ESA's Infrared Space Observatory (ISO), scheduled for launch within the next 2-3 years, will place a complement of powerful infrared imagers and spectrometers into high orbit, with an operational life anticipated to be about 18 months. During this time, numerous scientific investigations of every conceivable astrophysical target will be made. The purpose of this paper is to consider the instrumental complement in terms of specific observations of Vega-like systems with cold, infrared excesses, in order to investigate problems relating to the evolution of planetary systems, and to optimize the scientific results possible with ISO on such topics.

  6. Model/observational data cross analysis in planetary plasma sciences with IMPEx

    NASA Astrophysics Data System (ADS)

    Genot, V. N.; Khodachenko, M.; Kallio, E. J.; Al-Ubaidi, T.; Alexeev, I. I.; Gangloff, M.; Bourrel, N.; andre, N.; Modolo, R.; Hess, S.; Topf, F.; Perez-Suarez, D.; Belenkaya, E. S.; Kalegaev, V. V.; Hakkinen, L. V.

    2013-12-01

    This presentation details how the FP7 IMPEx (http://impex-fp7.oeaw.ac.at/) infrastructure helps scientists in inter-comparing observational and model data in planetary plasma sciences. Within the project, data originate from multiple sources : large observational databases (CDAWeb, AMDA at CDPP, CLWeb at IRAP), simulation databases for hybrid and MHD codes (FMI, LATMOS), planetary magnetic field models database and online services (SINP). To navigate in this large data ensemble, IMPEx offers a distributed framework in which these data may be visualized, analyzed, and shared thanks to a set of interoperable tools (AMDA, 3DView, CLWeb). A simulation data model, based on SPASE, has been designed to ease data exchange within the infrastructure. On the communication point of view, the Virtual Observatory paradigm is followed and the architecture is based on web services and the IVOA protocol SAMP. These choices enabled a high level versatility with the goal to allow other model or data providers to distribute their own resources via the IMPEx infrastructure. A detailed use case based on Mars data and hybrid models will be proposed showing how the tools may be operated synchronously to manipulate heterogeneous data sets. Facilitating the analysis of the future MAVEN observations is one possible application of the IMPEx infrastructure.

  7. TIMED/SABER observations of global cold point mesopause variability at diurnal and planetary wave scales

    NASA Astrophysics Data System (ADS)

    John, Sherine Rachel; Kumar, Karanam Kishore

    2011-06-01

    Cold point mesopause is characterized by the coldest point in the temperature profile of the Earth's atmosphere. TIMED/SABER observations of cold point mesopause and its variability at diurnal and planetary wave scales are discussed in this study. For the first time, the diurnal and semidiurnal tidal modulations of mesopause are quantified on a global scale during all the four seasons, namely, winter, vernal equinox, summer, and autumnal equinox. The composite of diurnal variations of mesopause height and temperature are discussed during each season and using least squares fit, diurnal and semidiurnal tidal amplitudes and phases are obtained. Most of the features exhibited by the diurnal variation of mesopause height are consistent with the present understanding of the migrating tides. The diurnal tidal modulations of mesopause show its peak over equatorial latitude and change its phase around 20° latitude. The phase of the diurnal tidal modulation is consistent during all seasons expect for a phase shift of 4-6 h observed during boreal summer. The similarities/discrepancies between the latitudinal structure of migrating tides and the diurnal variation of mesopause height are discussed. The results reveal that the diurnal tidal modulations of mesopause height show hemispherical asymmetry, which is not reflected in mesopause temperature. The diurnal and semidiurnal amplitudes in mesopause height across the globe are comparable in magnitude and it is found that over equatorial and low latitudes, the variability of mesopause is maximum at these scales as compared to seasonal scales. Quantification of mesopause height at diurnal scales is very important as it also changes the chemistry of that region. In the present study, an attempt is also made to demonstrate the modulation of the mesopause by propagating planetary waves. The results emphatically show that propagating planetary waves do modulate the mesopause height.

  8. IMPEx : enabling model/observational data comparison in planetary plasma sciences

    NASA Astrophysics Data System (ADS)

    Génot, V.; Khodachenko, M.; Kallio, E. J.; Al-Ubaidi, T.; Alexeev, I. I.; Topf, F.; Gangloff, M.; André, N.; Bourrel, N.; Modolo, R.; Hess, S.; Perez-Suarez, D.; Belenkaya, E. S.; Kalegaev, V.

    2013-09-01

    The FP7 IMPEx infrastructure, whose general goal is to encourage and facilitate inter-comparison between observational and model data in planetary plasma sciences, is now established for 2 years. This presentation will focus on a tour of the different achievements which occurred during this period. Within the project, data originate from multiple sources : large observational databases (CDAWeb, AMDA at CDPP, CLWeb at IRAP), simulation databases for hybrid and MHD codes (FMI, LATMOS), planetary magnetic field models database and online services (SINP). Each of these databases proposes dedicated access to their models and runs (HWA@FMI, LATHYS@LATMOS, SMDC@SINP). To gather this large data ensemble, IMPEx offers a distributed framework in which these data may be visualized, analyzed, and shared thanks to interoperable tools; they comprise of AMDA - an online space physics analysis tool -, 3DView - a tool for data visualization in 3D planetary context -, and CLWeb - an online space physics visualization tool. A simulation data model, based on SPASE, has been designed to ease data exchange within the infrastructure. On the communication point of view, the VO paradigm has been retained and the architecture is based on web services and the IVOA protocol SAMP. The presentation will focus on how the tools may be operated synchronously to manipulate these heterogeneous data sets. Use cases based on in-flight missions and associated model runs will be proposed for the demonstration. Finally the motivation and functionalities of the future IMPEx portal will be exposed. As requirements to and potentialities of joining the IMPEx infrastructure will be shown, the presentation could be seen as an invitation to other modeling teams in the community which may be interested to promote their results via IMPEx.

  9. Revised planetary protection policy for solar system exploration.

    PubMed

    DeVincenzi, D L; Stabekis, P D

    1984-01-01

    In order to control contamination of planets by terrestrial microorganisms and organic constituents, U.S. planetary missions have been governed by a planetary protection (or planetary quarantine) policy which has changed little since 1972. This policy has recently been reviewed in light of new information obtained from planetary exploration during the past decade and because of changes to, or uncertainties in, some parameters used in the existing quantitative approach. On the basis of this analysis, a revised planetary protection policy with the following key features is proposed: deemphasizing the use of mathematical models and quantitative analyses; establishing requirements for target planet/mission type (i.e., orbiter, lander, etc.) combinations; considering sample return missions a separate category; simplifying documentation; and imposing implementing procedures (i.e., trajectory biasing, cleanroom assembly, spacecraft sterilization, etc.) by exception, i.e., only if the planet/mission combination warrants such controls.

  10. Chaotic diffusion in the Gliese-876 planetary system

    NASA Astrophysics Data System (ADS)

    Martí, J. G.; Cincotta, P. M.; Beaugé, C.

    2016-07-01

    Chaotic diffusion is supposed to be responsible for orbital instabilities in planetary systems after the dissipation of the protoplanetary disc, and a natural consequence of irregular motion. In this paper, we show that resonant multiplanetary systems, despite being highly chaotic, not necessarily exhibit significant diffusion in phase space, and may still survive virtually unchanged over time-scales comparable to their age. Using the GJ-876 system as an example, we analyse the chaotic diffusion of the outermost (and less massive) planet. We construct a set of stability maps in the surrounding regions of the Laplace resonance. We numerically integrate ensembles of close initial conditions, compute Poincaré maps and estimate the chaotic diffusion present in this system. Our results show that, the Laplace resonance contains two different regions: an inner domain characterized by low chaoticity and slow diffusion, and an outer one displaying larger values of dynamical indicators. In the outer resonant domain, the stochastic borders of the Laplace resonance seem to prevent the complete destruction of the system. We characterize the diffusion for small ensembles along the parameters of the outermost planet. Finally, we perform a stability analysis of the inherent chaotic, albeit stable Laplace resonance, by linking the behaviour of the resonant variables of the configurations to the different sub-structures inside the three-body resonance.

  11. An Assessment of Ground-Based Techniques for Detecting Other Planetary Systems. Volume 2: Position papers

    NASA Technical Reports Server (NTRS)

    Black, D. C.; Brunk, W. E.

    1980-01-01

    The capabilities of several astronomical interferomenter system concepts are assessed and the effects of the Earth's atmosphere on astrometric precision are examined in detail. Included is an examination of the use of small aperture interferometry to detect planets in binary star systems. It is estimated that, for differential astrometric observation, an amplitude interferometer having two separate telescopes should permit observations of stars as faint as 14th magnitude and a positional accuracy of 0.00005 arc-sec. Instrumental, atmospheric, and photon noise errors that apply to interferometric observation are examined. It is suggested that the effects of atmospheric turbulence may be eliminated with the use of two color refractometer systems. Several sites for future telescopes dedicated to the search for planetary systems are identified.

  12. Variability of Elemental Abundances in the Local Neighborhood and its Effect on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Pagano, Michael D.; Young, P. A.

    2014-01-01

    Does a true range of elemental compositions amongst local stars exist? How does this variation effect possible planetary systems around these stars? Through calculating and analyzing the variation in elemental abundances of nearby stars, the actual range in stellar abundances can be determined using statistical methods. This research emphasizes the improvement needed within the field of stellar abundance determination, both by the ease of measuring and by standardization. An intrinsic variation has been found to exist for almost all of the elements studied by most abundance-finding groups. Specifically, this research determines abundances for our own set of F, G, and K stars 400 stars) from spectroscopic planet hunting surveys for 27 elements, including: C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, La, Ce, Nd, Eu, and Hf, where some elements are not measured in all stars. Abundances of the elements in many known exosolar planet host stars are calculated for the purpose of hypothesizing new ways to visualize how stellar abundances could affect planetary systems, planetary formation, and mineralogy. For example, the emphasis on the unusual stellar abundances of Tau Ceti is being heavily analyzed. Tau Ceti is theorized to have 5 planets of Super-Earth masses orbiting in near habitable zone distances(Tuomi, M. et al. 2013). Spectroscopic analysis finds that the Mg/Si ratio is extremely high 2) for this star, which could lead to alterations in planetary properties. Tau Ceti's low metallicity and Oxygen abundance leads to changes in the location of the traditional habitable zone. In addition, the abundance results of a spectroscopic survey of around 400 stars will be presented. This is completed by observing mineralogical ratios, such as Mg/Si and C/O, as well as constructing other useful ratios for determining the effects of individual stellar abundances.

  13. International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae.

    PubMed

    Aller, L H; Keyes, C D

    1980-03-01

    Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation. PMID:16592781

  14. Observations and models of deuterated H3+ in proto-planetary disks.

    PubMed

    Ceccarelli, Cecilia; Dominik, Carsten

    2006-11-15

    Young, gas-rich proto-planetary disks orbiting around solar-type young stars represent a crucial phase in disk evolution and planetary formation. Of particular relevance is to observationally track the evolution of the gas, which governs the overall evolution of the disk and is eventually dispersed. However, the bulk of the mass resides in the plane, which is so cold and dense that virtually all heavy-element-bearing molecules freeze out onto the dust grains and disappear from the gas phase. In this paper, we show that the ground-state ortho-H2D+ transition is the best, if not the only, tracer of the disk-plane gas. We report the theoretical models of the chemical structure of the plane of the disk, where the deuterated forms of H3+, including H2D+, play a major role. We also compare the theoretical predictions with the observations obtained towards the disk of the young star DM Tau and show that the ionization rate is probably enhanced there, perhaps owing to the penetration of X-rays from the central object through the disk plane. We conclude by remarking that the ground-state ortho-H2D+ transition is such a powerful diagnostic that it may also reveal the matter in the dark halos of external galaxies, if it is hidden in cold, dense and small clouds, as several theories predict.

  15. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  16. Planetary System Formation in the Protoplanetary Disk around HL Tauri

    NASA Astrophysics Data System (ADS)

    Akiyama, Eiji; Hasegawa, Yasuhiro; Hayashi, Masahiko; Iguchi, Satoru

    2016-02-01

    We reprocess the Atacama Large Millimeter/Submillimeter Array (ALMA) long-baseline science verification data taken toward HL Tauri. Assuming the observed gaps are opened up by currently forming, unseen bodies, we estimate the mass of such hypothetical bodies based on the following two approaches: the Hill radius analysis and a more elaborate approach developed from the angular momentum transfer analysis in gas disks. For the former, the measured gap widths are used for estimating the mass of the bodies, while for the latter, the measured gap depths are utilized. We show that their masses are comparable to or less than the mass of Jovian planets. By evaluating Toomre’s gravitational instability (GI) condition and cooling effect, we find that the GI might be a mechanism to form the bodies in the outer region of the disk. As the disk might be gravitationally unstable only in the outer region of the disk, inward planetary migration would be needed to construct the current architecture of the observed disk. We estimate the gap-opening mass and show that type II migration might be able to play such a role. Combining GIs with inward migration, we conjecture that all of the observed gaps may be a consequence of bodies that might have originally formed at the outer part of the disk, and have subsequently migrated to the current locations. While ALMA’s unprecedented high spatial resolution observations can revolutionize our picture of planet formation, more dedicated observational and theoretical studies are needed to fully understand the HL Tauri images.

  17. Correlations between CEV and planetary surface systems architecture planning

    NASA Astrophysics Data System (ADS)

    Bell, Larry

    2007-06-01

    This paper will present key issues and concepts that illustrate interrelationships between crew exploration vehicle (CEV) and planetary surface systems design decisions associated with human exploration of the Moon and the Mars. Such decisions will influence surface element sizing, configurations and deployment. Important implications include impacts and constraints upon habitat module efficiencies, safety and surface implementation. A correlation between planning for CEV and surface system requirements demands an integrated approach. Launch and orbital transfer means must be analyzed in parallel with comprehensive payload needs and element design options. Accordingly, studies should address a variety of option drivers and alternatives, including:Surface landing strategies applicable for the Moon and the Mars that place payloads above, in plane with and below landers.Surface element geometrics and configurations that orient landing elements (including habitats) in vertical vs. horizontal orientations.Habitat model options that apply conventional ISS-type fixed pressure vessels and expandable (inflatable and telescoping) approaches.Influences of sizes and types upon design and operations of surface mobility systems.Surface transport requirements/options that involve use of pressurized and unpressurized vehicles.Surface element configurations requirements/options and their influences upon deployment, crew safety, evolutionary growth and other factors.

  18. On the Dynamical State of the HD 82943 Planetary System

    NASA Astrophysics Data System (ADS)

    Tan, Xianyu; Lee, M. H.; Howard, A. W.; Marcy, G. W.; Johnson, J. A.; Wright, J. T.

    2012-05-01

    We present new results from an analysis of radial velocity data of the HD 82943 planetary system based on 10 years of measurements obtained with the Keck telescope. Previous study has shown that the HD 82943 system has two planets that are likely in 2:1 mean-motion resonance (MMR), with the orbital periods about 220 and 440 days (Lee et al. 2006). However, alternative fits that are qualitatively different have also been suggested, with the two planets in 1:1 resonance or the addition of a third planet possibly in a Laplace 4:2:1 resonance with the other two (Gozdziewski & Konacki 2006; Beague et al. 2008). Here we use the chi-square minimization method combined with parameter grid search to investigate the orbital parameters and dynamical states of the qualitatively different types of fits. Our results tend to support the 2:1 MMR configuration for this system. The fits of coplanar 2:1 MMR show a chi-square minimum at 20 degree inclination that is dynamically stable with both resonant angles librating around 0 degree. The fits of 1:1 resonance and 3-planet Laplace resonance are ruled out according to chi-square statistic and dynamical instability. This work is supported in part by Hong Kong RGC grant HKU 7034/09P.

  19. PLANETARY PHASE VARIATIONS OF THE 55 CANCRI SYSTEM

    SciTech Connect

    Kane, Stephen R.; Gelino, Dawn M.; Ciardi, David R.; Dragomir, Diana; Von Braun, Kaspar

    2011-10-20

    Characterization of the composition, surface properties, and atmospheric conditions of exoplanets is a rapidly progressing field as the data to study such aspects become more accessible. Bright targets, such as the multi-planet 55 Cancri system, allow an opportunity to achieve high signal-to-noise for the detection of photometric phase variations to constrain the planetary albedos. The recent discovery that innermost planet, 55 Cancri e, transits the host star introduces new prospects for studying this system. Here we calculate photometric phase curves at optical wavelengths for the system with varying assumptions for the surface and atmospheric properties of 55 Cancri e. We show that the large differences in geometric albedo allows one to distinguish between various surface models, that the scattering phase function cannot be constrained with foreseeable data, and that planet b will contribute significantly to the phase variation, depending upon the surface of planet e. We discuss detection limits and how these models may be used with future instrumentation to further characterize these planets and distinguish between various assumptions regarding surface conditions.

  20. Physical properties of the planetary systems WASP-45 and WASP-46 from simultaneous multiband photometry

    NASA Astrophysics Data System (ADS)

    Ciceri, S.; Mancini, L.; Southworth, J.; Lendl, M.; Tregloan-Reed, J.; Brahm, R.; Chen, G.; D'Ago, G.; Dominik, M.; Figuera Jaimes, R.; Galianni, P.; Harpsøe, K.; Hinse, T. C.; Jørgensen, U. G.; Juncher, D.; Korhonen, H.; Liebig, C.; Rabus, M.; Bonomo, A. S.; Bott, K.; Henning, Th.; Jordán, A.; Sozzetti, A.; Alsubai, K. A.; Andersen, J. M.; Bajek, D.; Bozza, V.; Bramich, D. M.; Browne, P.; Calchi Novati, S.; Damerdji, Y.; Diehl, C.; Elyiv, A.; Giannini, E.; Gu, S.-H.; Hundertmark, M.; Kains, N.; Penny, M.; Popovas, A.; Rahvar, S.; Scarpetta, G.; Schmidt, R. W.; Skottfelt, J.; Snodgrass, C.; Surdej, J.; Vilela, C.; Wang, X.-B.; Wertz, O.

    2016-02-01

    Accurate measurements of the physical characteristics of a large number of exoplanets are useful to strongly constrain theoretical models of planet formation and evolution, which lead to the large variety of exoplanets and planetary-system configurations that have been observed. We present a study of the planetary systems WASP-45 and WASP-46, both composed of a main-sequence star and a close-in hot Jupiter, based on 29 new high-quality light curves of transits events. In particular, one transit of WASP-45 b and four of WASP-46 b were simultaneously observed in four optical filters, while one transit of WASP-46 b was observed with the NTT obtaining a precision of 0.30 mmag with a cadence of roughly 3 min. We also obtained five new spectra of WASP-45 with the FEROS spectrograph. We improved by a factor of 4 the measurement of the radius of the planet WASP-45 b, and found that WASP-46 b is slightly less massive and smaller than previously reported. Both planets now have a more accurate measurement of the density (0.959 ± 0.077 ρJup instead of 0.64 ± 0.30 ρJup for WASP-45 b, and 1.103 ± 0.052 ρJup instead of 0.94 ± 0.11 ρJup for WASP-46 b). We tentatively detected radius variations with wavelength for both planets, in particular in the case of WASP-45 b we found a slightly larger absorption in the redder bands than in the bluer ones. No hints for the presence of an additional planetary companion in the two systems were found either from the photometric or radial velocity measurements.

  1. Far-infrared line observations of planetary nebulae. 1: The O 3 spectrum

    NASA Technical Reports Server (NTRS)

    Dinerstein, H. L.; Lester, D. F.; Werner, M. W.

    1985-01-01

    Observations of the far-infrared fine structure lines of O III have been obtained for six planetary nebulae. The infrared measurements are combined with optical O III line fluxes to probe physical conditions in the gas. From the observed line intensity ratios, a simultaneous solution was obtained for electron temperature and density, as well as means of evaluating the importance of inhomogeneities. Densities determined from the far-infrared O III lines agree well density diagnostics from other ions, indicating a fairly homogeneous density in the emitting gas. Temperatures are determined separately from the O III 4363/5007 A and 5007 A/52 micron intensity ratios and compared. Systematically higher values are derived from the former ratio, which is expected from a nebula which is not isothermal. Allowance for the presence of temperature variations within these nebulae raises their derived oxygen abundances, determinations to be reconciled with the solar value.

  2. Radio Jupiter after Voyager: An overview of the Planetary Radio Astronomy observations

    NASA Technical Reports Server (NTRS)

    Boischot, A.; Lecacheux, A.; Kaiser, M. L.; Desch, M. D.; Alexander, J. K.; Warwick, J. W.

    1980-01-01

    Jupiter's low frequency radio emission morphology as observed by the Planetary Radio Astronomy (PRA) instrument onboard the Voyager spacecraft is reviewed. The PRA measurement capabilities and limitations are summarized following over two years of experience with the instrument. As a direct consequence of the PRA spacecraft observations, unprecedented in terms of their sensitivity and frequency coverage, at least three previous unrecognized emission components were discovered: broadband and narrow band kilometric emission and the lesser arc decametric emission. Their properties are reviewed. In addition, the fundamental structure of the decameter and hectometer wavelength emission, which is believed to be almost exclusively in the form of complex but repeating arc structures in the frequency time domain, is described. Dramatic changes in the emission morphology of some components as a function of Sun-Jupiter-spacecraft angle (local time) are described. Finally, the PRA in suit measurements of the Io plasma torus hot to cold electron density and temperature ratios are summarized.

  3. Antarctic Polar Descent and Planetary Wave Activity Observed in ISAMS CO from April to July 1992

    NASA Technical Reports Server (NTRS)

    Allen, D. R.; Stanford, J. L.; Nakamura, N.; Lopez-Valverde, M. A.; Lopez-Puertas, M.; Taylor, F. W.; Remedios, J. J.

    2000-01-01

    Antarctic polar descent and planetary wave activity in the upper stratosphere and lower mesosphere are observed in ISAMS CO data from April to July 1992. CO-derived mean April-to-May upper stratosphere descent rates of 15 K/day (0.25 km/day) at 60 S and 20 K/day (0.33 km/day) at 80 S are compared with descent rates from diabatic trajectory analyses. At 60 S there is excellent agreement, while at 80 S the trajectory-derived descent is significantly larger in early April. Zonal wavenumber 1 enhancement of CO is observed on 9 and 28 May, coincident with enhanced wave 1 in UKMO geopotential height. The 9 May event extends from 40 to 70 km and shows westward phase tilt with height, while the 28 May event extends from 40 to 50 km and shows virtually no phase tilt with height.

  4. Remote Raman System for Planetary Landers: Data Reduction and Analysis

    NASA Technical Reports Server (NTRS)

    Horton, K. A.; Domergue-Schmidt, N.; Sharma, S. K.; Deb, P.; Lucey, P. G.

    2000-01-01

    Raman spectroscopy is typically envisioned as an in situ analysis technique. Raman spectra measured remotely (10s of meters) from a planetary lander can be calibrated to spectral radiance and the Raman scattering efficiency can be determined.

  5. Jupiter System Observer

    NASA Technical Reports Server (NTRS)

    Senske, Dave; Kwok, Johnny

    2008-01-01

    This slide presentation reviews the proposed mission for the Jupiter System Observer. The presentation also includes overviews of the mission timeline, science goals, and spacecraftspecifications for the satellite.

  6. A model for nitrogen isotopic variations in the lunar regolith - Possible solar system contributions from a nearby planetary nebula

    NASA Technical Reports Server (NTRS)

    Ray, J.; Heymann, D.

    1980-01-01

    To account for the observed secular increase of the N-15/N-14 ratio in lunar samples, a model is developed which envisions an encounter between a planetary nebula and the solar system during the first few hundred million years of its history. The principal effects of the encounter for the sun's outer convective zone, and hence solar wind, due to accretion of planetary nebula material with its distinct nucleosynthetic history are delineated. Associated material contributions to planets and meteorite parent bodies are considered and contraints relevant to this possibility are discussed.

  7. Observational evidence of planetary wave influences on ozone enhancements over upper troposphere North Africa

    NASA Astrophysics Data System (ADS)

    Mengistu Tsidu, Gizaw; Ture, Kassahun; Sivakumar, V.

    2013-07-01

    MOZAIC instrument measured enhanced ozone on two occasions in February, 1996 and 1997 at cruise altitude over North Africa. The cause and source of ozone enhancements over the region are investigated using additional reanalysis data from ERA-Interim. The ERA-Interim reprocessed GOME ozone indicated existence of enhancement as well. Both observational data revealed that the increase in ozone has wider latitudinal coverage extending from North Europe upto North Africa. The geopotential heights and zonal wind from ERA-Interim have indicated existence of planetary-scale flow that allowed meridional airmass exchanges between subtropics and higher latitudes. The presence of troughs-ridge pattern are attributable to large amplitude waves of zonal wavenumber 1-5 propagating eastward in the winter hemisphere westerly current as determined from Hayashi spectra as well as local fractional variance spectra determined from Multitaper Method-Singular Value Decomposition (MTM-SVD) spectral method. MTM-SVD is also used to understand the role of these waves on ozone enhancement and variability during the observation period in a mechanistic approach. A joint analysis of driving field, such as wind and potential vorticity (PV) for which only signals of the dominant zonal wavenumbers of prevailing planetary waves are retained, has revealed strong linkage between wave activity and ozone enhancement over the region at a temporal cycle of 5.8 days. One of these features is the displacement of the polar vortex southward during the enhancements, allowing strong airmass, energy and momentum exchanges. Evidence of cutoff laws that are formed within the deep trough, characteristics of Rossby wave breaking, is also seen in the ozone horizontal distribution at different pressure levels during the events. The reconstruction of signals with the cycle of 5.8 days has shown that the time and strength of enhancement depend on the circulation patterns dictated by planetary-scale flow relative to the

  8. Dynamics of Convergent Migration and Mean Motion Resonances in Planetary Systems

    NASA Astrophysics Data System (ADS)

    Ketchum, Jacob A.

    Recent observations of solar systems orbiting other stars show that exoplanets display an enormous range of physical properties and that planetary systems display a diverse set of architectures, which motivate further studies in planetary dynamics. Part of the richness of this dynamical problem arises from the intrinsic complexity of N-body systems, even in the absence of additional forces. The realm of physical behavior experienced by such systems is enormous, and includes mean motion resonances (MMR), secular interactions, and sensitive dependence on the initial conditions (chaos). Additional complications arise from other forces that are often present: During the early stages of evolution, circumstellar disks provide torques that influence orbital elements, and turbulent fluctuations act on young planets. Over longer time scales, solar systems are affected by tidal forces from both stars and planets, and by general relativistic corrections that lead to orbital precession. This thesis addresses a subset of these dynamical problems, including the capture rates of planets into MMR, collision probabilities for migrating rocky planets interacting with Jovian planets, and the exploration of the ``nodding'' phenomenon (where systems move in and out of MMR). This latter effect can have important implications for interpreting transit timing variations (TTV), a method to detect smaller planets due to their interaction with larger transiting bodies.

  9. Insights into Planet Formation from Debris Disks - II. Giant Impacts in Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Wyatt, Mark C.; Jackson, Alan P.

    2016-03-01

    Giant impacts refer to collisions between two objects each of which is massive enough to be considered at least a planetary embryo. The putative collision suffered by the proto-Earth that created the Moon is a prime example, though most Solar System bodies bear signatures of such collisions. Current planet formation models predict that an epoch of giant impacts may be inevitable, and observations of debris around other stars are providing mounting evidence that giant impacts feature in the evolution of many planetary systems. This chapter reviews giant impacts, focussing on what we can learn about planet formation by studying debris around other stars. Giant impact debris evolves through mutual collisions and dynamical interactions with planets. General aspects of this evolution are outlined, noting the importance of the collision-point geometry. The detectability of the debris is discussed using the example of the Moon-forming impact. Such debris could be detectable around another star up to 10 Myr post-impact, but model uncertainties could reduce detectability to a few 100 yr window. Nevertheless the 3 % of young stars with debris at levels expected during terrestrial planet formation provide valuable constraints on formation models; implications for super-Earth formation are also discussed. Variability recently observed in some bright disks promises to illuminate the evolution during the earliest phases when vapour condensates may be optically thick and acutely affected by the collision-point geometry. The outer reaches of planetary systems may also exhibit signatures of giant impacts, such as the clumpy debris structures seen around some stars.

  10. PHYSICAL PROPERTIES OF THE 0.94-DAY PERIOD TRANSITING PLANETARY SYSTEM WASP-18

    SciTech Connect

    Southworth, John; Anderson, D. R.; Maxted, P. F. L.; Hinse, T. C.; Dominik, M.; Mathiasen, M.; Browne, P.; Glitrup, M.; Joergensen, U. G.; Harpsoee, K.; Liebig, C.; Maier, G.; Bozza, V.; Calchi Novati, S.; Mancini, L.; Burgdorf, M.; Dreizler, S.; Hessman, F.; Hundertmark, M.; Finet, F.

    2009-12-10

    We present high-precision photometry of five consecutive transits of WASP-18, an extrasolar planetary system with one of the shortest orbital periods known. Through the use of telescope defocusing we achieve a photometric precision of 0.47-0.83 mmag per observation over complete transit events. The data are analyzed using the JKTEBOP code and three different sets of stellar evolutionary models. We find the mass and radius of the planet to be M {sub b} = 10.43 +- 0.30 +- 0.24 M {sub Jup} and R {sub b} = 1.165 +- 0.055 +- 0.014 R {sub Jup} (statistical and systematic errors), respectively. The systematic errors in the orbital separation and the stellar and planetary masses, arising from the use of theoretical predictions, are of a similar size to the statistical errors and set a limit on our understanding of the WASP-18 system. We point out that seven of the nine known massive transiting planets (M {sub b} > 3 M {sub Jup}) have eccentric orbits, whereas significant orbital eccentricity has been detected for only four of the 46 less-massive planets. This may indicate that there are two different populations of transiting planets, but could also be explained by observational biases. Further radial velocity observations of low-mass planets will make it possible to choose between these two scenarios.

  11. Planetary Airplane Extraction System Development and Subscale Testing

    NASA Technical Reports Server (NTRS)

    Teter, John E., Jr.

    2006-01-01

    The Aerial Regional-scale Environmental Survey (ARES) project employs an airplane as the science platform from which to collect science data in the previously inaccessible, thin atmosphere of Mars. In order for the airplane to arrive safely in the Martian atmosphere a number of sequences must occur. A critical element in the entry sequence at Mars is an extraction maneuver to separate the airplane quickly (in less than a second) from its protective backshell to reduce the possibility of re-contact, potentially leading to mission failure. This paper describes the development, testing, and lessons learned from building a 1/3 scale model of this airplane extraction system. This design, based on the successful Mars Exploration Rover (MER) extraction mechanism, employs a series of trucks rolling along tracks located on the surface of the central parachute can. Numerous tests using high speed video were conducted at the Langley Research Center (LaRC) to validate this concept. One area of concern was that that although the airplane released cleanly, a pitching moment could be introduced. While targeted for a Mars mission, this concept will enable environmental surveys by aircraft in other planetary bodies with a sensible atmosphere such as Venus or Saturn s moon, Titan.

  12. Planetary Airplane Extraction System Development and Subscale Testing

    NASA Technical Reports Server (NTRS)

    Teter, John E., Jr.

    2006-01-01

    The Aerial Regional-scale Environmental Survey (ARES) project will employ an airplane as the science platform from which to collect science data in the previously inaccessible, thin atmosphere of Mars. In order for the airplane to arrive safely in the Martian atmosphere, a number of sequences must occur. A critical element in the entry sequence at Mars is an extraction maneuver to separate the airplane quickly (in less than a second) from its protective backshell to reduce the possibility of re-contact, potentially leading to mission failure. This paper describes the development, testing, and lessons learned from building a 1/3 scale model of this airplane extraction system. This design, based on the successful Mars Exploration Rover (MER) extraction mechanism, employs a series of trucks rolling along tracks located on the surface of the central parachute can. Numerous tests using high speed video were conducted at the Langley Research Center to validate this concept. One area of concern was that that although the airplane released cleanly, a pitching moment could be introduced. While targeted for a Mars mission, this concept will enable environmental surveys by aircraft in other planetary bodies with a sensible atmosphere such as Venus or Saturn's moon, Titan.

  13. Use of a multimission system for cost effective support of planetary science data processing

    NASA Technical Reports Server (NTRS)

    Green, William B.

    1994-01-01

    JPL's Multimission Operations Systems Office (MOSO) provides a multimission facility at JPL for processing science instrument data from NASA's planetary missions. This facility, the Multimission Image Processing System (MIPS), is developed and maintained by MOSO to meet requirements that span the NASA family of planetary missions. Although the word 'image' appears in the title, MIPS is used to process instrument data from a variety of science instruments. This paper describes the design of a new system architecture now being implemented within the MIPS to support future planetary mission activities at significantly reduced operations and maintenance cost.

  14. Passage of a ''Nemesis''-like object through the planetary system

    SciTech Connect

    Hills, J.G.

    1985-09-01

    The probability that passing stars could have perturbed the hypothetical stellar companion, Nemesis, into an orbit that penetrates the planetary system is about 15%. The planetary orbits crossed by Nemesis would become highly eccentric, and some would even become hyperbolic. If Nemesis ejects Jupiter from the solar system, the semimajor axis of the orbit of Nemesis would shrink down to a few hundred AU. The probability of any object in the inner edge of the Oort cloud at a semimajor axis of 2 x 10/sup 4/ AU having passed inside the orbit of Saturn is about 80%. The apparent lack of damage to the planetary orbits implies a low probability of there being any objects more massive than 0.02 M/sub sun/ in the inner edge of the Oort comet cloud. However, several objects less massive than 0.01 M/sub sun/ or 10 Jupiter masses could pass through the planetary system from the Oort cloud without causing any significant damage to the planetary orbits. The lack of damage to the planetary system also requires that no black dwarf more massive than 0.05 M/sub sun/ has entered the planetary system from interstellar space.

  15. On the verification of the planetary system around PSR 1257 + 12

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    1993-01-01

    The magnitude and nature of residuals expected in the times of pulsar arrival (TOA) of the millisecond pulsar PSR 1257 + 12 as a function of the observational time span is estimated so that an observing progam may be planned to optimize the detection of a perturbation signature of a possible planetary system. The numerical and analytic procedures for evaluating the residuals are described. Calculations results are given in which a recognizable signature is shown to be a modulation of the amplitude of the TOA residual differences as a function of both epoch and observational interval. A supplementary approach involving intensive closely spaced observations over selected time intervals to find the time of a particular zero crossing of the TOA residuals is also discussed.

  16. Light scattering by randomly oriented cubes and parallelepipeds. [for interpretation of observed data from planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Liou, K. N.; Cai, Q.; Pollack, J. B.; Cuzzi, J. N.

    1983-01-01

    In this paper, the geometric ray tracing theory for the scattering of light by hexagonal cylinders to cubes and parallelepipeds has been modified. Effects of the real and imaginary parts of the refractive index and aspect ratio of the particle on the scattering phase function and the degree of linear polarization are investigated. Causes of the physical features in the scattering polarization patterns are identified in terms of the scattering contribution due to geometric reflections and refractions. The single-scattering phase function and polarization data presented in this paper should be of some use for the interpretation of observed scattering and polarization data from planetary atmospheres and for the physical understanding of the transfer of radiation in an atmosphere containing nonspherical particles.

  17. Hubble space telescope observations and geometric models of compact multipolar planetary nebulae

    SciTech Connect

    Hsia, Chih-Hao; Chau, Wayne; Zhang, Yong; Kwok, Sun E-mail: wwlljj1314@gmail.com E-mail: sunkwok@hku.hk

    2014-05-20

    We report high angular resolution Hubble Space Telescope observations of 10 compact planetary nebulae (PNs). Many interesting internal structures, including multipolar lobes, arcs, two-dimensional rings, tori, and halos, are revealed for the first time. These results suggest that multipolar structures are common among PNs, and these structures develop early in their evolution. From three-dimensional geometric models, we have determined the intrinsic dimensions of the lobes. Assuming the lobes are the result of interactions between later-developed fast winds and previously ejected asymptotic giant branch winds, the geometric structures of these PNs suggest that there are multiple phases of fast winds separated by temporal variations and/or directional changes. A scenario of evolution from lobe-dominated to cavity-dominated stages is presented. The results reported here will provide serious constraints on any dynamical models of PNs.

  18. Hubble Space Telescope Observations and Geometric Models of Compact Multipolar Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Hsia, Chih-Hao; Chau, Wayne; Zhang, Yong; Kwok, Sun

    2014-05-01

    We report high angular resolution Hubble Space Telescope observations of 10 compact planetary nebulae (PNs). Many interesting internal structures, including multipolar lobes, arcs, two-dimensional rings, tori, and halos, are revealed for the first time. These results suggest that multipolar structures are common among PNs, and these structures develop early in their evolution. From three-dimensional geometric models, we have determined the intrinsic dimensions of the lobes. Assuming the lobes are the result of interactions between later-developed fast winds and previously ejected asymptotic giant branch winds, the geometric structures of these PNs suggest that there are multiple phases of fast winds separated by temporal variations and/or directional changes. A scenario of evolution from lobe-dominated to cavity-dominated stages is presented. The results reported here will provide serious constraints on any dynamical models of PNs.

  19. Determination of hyperfine-induced transition rates from observations of a planetary nebula.

    PubMed

    Brage, Tomas; Judge, Philip G; Proffitt, Charles R

    2002-12-31

    Observations of the planetary nebula NGC3918 made with the STIS instrument on the Hubble Space Telescope reveal the first unambiguous detection of a hyperfine-induced transition 2s2p 3P(o)(0)-->2s2 1S0 in the berylliumlike emission line spectrum of N IV at 1487.89 A. A nebular model allows us to confirm a transition rate of 4x10(-4) sec(-1)+/-33% for this line. The measurement represents the first independent confirmation of the transition rate of hyperfine-induced lines in low ionization stages, and it provides support for the techniques used to compute these transitions for the determination of very low densities and isotope ratios. PMID:12513129

  20. Multiple mean motion resonances in the HR 8799 planetary system

    NASA Astrophysics Data System (ADS)

    Goździewski, Krzysztof; Migaszewski, Cezary

    2014-06-01

    HR 8799 is a nearby star hosting at least four ˜10 mJup planets in wide orbits up to ˜70 au, detected through the direct, high-contrast infrared imaging. Large companions and debris discs reported interior to ˜10 au, and exterior to ˜100 au indicate massive protoplanetary disc in the past. The dynamical state of the HR 8799 system is not yet fully resolved, due to limited astrometric data covering tiny orbital arcs. We construct a new orbital model of the HR 8799 system, assuming rapid migration of the planets after their formation in wider orbits. We found that the HR 8799 planets are likely involved in double Laplace resonance, 1e:2d:4c:8b MMR. Quasi-circular planetary orbits are coplanar with the stellar equator and inclined by ˜25° to the sky plane. This best-fitting orbital configuration matches astrometry, debris disc models, and mass estimates from cooling models. The multiple mean motion resonance (MMR) is stable for the age of the star ˜160 Myr, for at least 1 Gyr unless significant perturbations to the N-body dynamics are present. We predict four configurations with the fifth hypothetical innermost planet HR 8799f in ˜9.7 au, or ˜7.5 au orbit, extending the MMR chain to triple Laplace resonance 1f:2e:4d:8c:16b MMR or to the 1f:3e:6d:12c:24b MMR, respectively. Our findings may establish strong boundary conditions for the system formation and its early history.

  1. Volcanic water flows could have flooded Ganymede's planetary rift system

    SciTech Connect

    Allison, M.L.; Clifford, S.M.

    1985-01-01

    Global expansion on Ganymede of only 1 or 2% created a planetary rift system which was resurfaced over a significant period of the planet's history creating bright, grooved terrain. The most reasonable model entails flooding of grabens by water or slush magmas which rose to the surface along normal faults in the rift system. Various models exist for the origin of the water magmas including isostatic rise of freezing ice I or diapirs of unstable ice III. A model considering the heat balance at the surface of an ice-covered water flow is constructed with the simplifying assumption that both laminar flow and a solid ice cover are achieved relatively soon after eruption. The ice cover will thicken until the underlying flowing water is entirely frozen. Energy into the system comes from solar radiation and the latent heat of freezing. Energy lost will be by evaporative and radiative cooling at the ice surface and by conduction into the substratum. Solving the heat balance allows a prediction for the volume of magma that can flood the surface. For example a flow 5 m thick will take tens of days to freeze, so that discharge rates equal to that of average terrestrial basalt flows could flood relatively large areas of the surface before freezing. Volcanic flooding is therefore a physically viable mechanism for the origin of bright terrain. During freezing the water/ice volume increases, lifting and fracturing the ice cover. These fractures may localize continued tectonic forces producing large displacements and creating the present grooved terrain.

  2. Propagation characteristics of extratropical planetary waves observed in the ATSR global sea surface temperature record

    NASA Astrophysics Data System (ADS)

    Hill, Katherine L.; Robinson, Ian S.; Cipollini, Paolo

    2000-09-01

    This paper examines the characteristics of planetary wave signatures that have been found in the Along Track Scanning Radiometer averaged sea surface temperature (ASST) record for 1991-1996. Longitude-time plots for every latitude between 5° and 50°, north and south, reveal westward propagating wave-like patterns at many locations, whose speed decreases with latitude like baroclinic Rossby waves. A two-dimensional Radon transform method is used to measure the wave speed and its variation with location and time, which broadly matches the Rossby wave speeds predicted by the most recent theory and those measured by TOPEX altimetry, although there are some discrepancies. At low latitudes the thermally detected speeds are slower than expected, a possible consequence of sampling limitations. Wave signatures are clearest between 25° and 40°S, where the meridional temperature gradient is strongest. Here observed speeds are 20-30% greater than theoretical predictions. Planetary wave speed varies considerably with longitude. In general, it increases toward the west of ocean basins, and distinct differences between ocean basins are evident. The propagation characteristics of the waves appear to change abruptly at locations consistent with latitudinal variations in seafloor bathymetry, particularly midocean ridges. In addition, eastward propagating signatures are found in the Southern Ocean. The results demonstrate the value of the ASST data set as a tool for studying basin-scale wave processes as a complement to the use of altimetry. By observing the thermal signature of Rossby waves the method has the potential to clarify their influence on air-sea interaction processes and to contribute to climate modeling studies.

  3. Hubble Space Telescope Wide Field Planetary Camera 2 Observations of Neptune

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Two groups have recently used the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC 2) to acquire new high-resolution images of the planet Neptune. Members of the WFPC-2 Science Team, lead by John Trauger, acquired the first series of images on 27 through 29 June 1994. These were the highest resolution images of Neptune taken since the Voyager-2 flyby in August of 1989. A more comprehensive program is currently being conducted by Heidi Hammel and Wes Lockwood. These two sets of observations are providing a wealth of new information about the structure, composition, and meteorology of this distant planet's atmosphere.

    Neptune is currently the most distant planet from the sun, with an orbital radius of 4.5 billion kilometers (2.8 billion miles, or 30 Astronomical Units). Even though its diameter is about four times that of the Earth (49,420 vs. 12,742 km), ground-based telescopes reveal a tiny blue disk that subtends less than 1/1200 of a degree (2.3 arc-seconds). Neptune has therefore been a particularly challenging object to study from the ground because its disk is badly blurred by the Earth's atmosphere. In spite of this, ground-based astronomers had learned a great deal about this planet since its position was first predicted by John C. Adams and Urbain Leverrier in 1845. For example, they had determined that Neptune was composed primarily of hydrogen and helium gas, and that its blue color caused by the presence of trace amounts of the gas methane, which absorbs red light. They had also detected bright cloud features whose brightness changed with time, and tracked these clouds to infer a rotation period between 17 and 22 hours.

    When the Voyager-2 spacecraft flew past the Neptune in 1989, its instruments revealed a surprising array of meteorological phenomena, including strong winds, bright, high-altitude clouds, and two large dark spots attributed to long-lived giant storm systems. These bright clouds and dark spots were tracked as they

  4. Observations of the Natural Planetary Satellites for Dynamical and Physical Purpose

    NASA Astrophysics Data System (ADS)

    Arlot, J. E.; Thuillot, W.; Fienga, A.; Bec-Borsenberger, A.; Baron, N.; Berthier, J.; Colas, F.; Descamps, P.

    1999-12-01

    At the Institut de mecanique celeste-Bureau des longitudes, we started several programs of observation of the natural planetary satellites. First, we took the opportunity of the transit of the Earth and the Sun in the equatorial plane of Jupiter to observe the mutual phenomena of the Galilean satellites. These observations provide astrometric data of high accuracy useful for dynamical studies of the motions of the satellites and photometric data allowing to characterize the surfaces of the satellites. A campaign was organized leading to 400 light curves made throughout the world in about 40 countries. Second, we started astrometric CCD observations of the faint satellites of Jupiter JVI to JXIII and of the satellite of Saturn Phoebe (SIX) for dynamical purpose at Observatoire de Haute Provence using the 120cm-telescope. PPM, Hipparcos and USNO A.2 catalogue were used for calibration in order to get absolute J2000 R.A. and declination of these objects. In August and December, 1998, CCD observations provided 43 absolute positions of JVI, 23 of JVII, 53 of JVIII, 35 of JIX, 29 of JX, 27 of JXI, 18 of JXII, 16 of JXIII and 135 of SIX (Phoebe). A campaign will also take place in 1999.

  5. Pebble Accretion and the Diversity of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Chambers, J. E.

    2016-07-01

    This paper examines the standard model of planet formation, including pebble accretion, using numerical simulations. Planetary embryos that are large enough to become giant planets do not form beyond the ice line within a typical disk lifetime unless icy pebbles stick at higher speeds than in experiments using rocky pebbles. Systems like the solar system (small inner planets and giant outer planets) can form if icy pebbles are stickier than rocky pebbles, and if the planetesimal formation efficiency increases with pebble size, which prevents the formation of massive terrestrial planets. Growth beyond the ice line is dominated by pebble accretion. Most growth occurs early, when the surface density of the pebbles is high due to inward drift of the pebbles from the outer disk. Growth is much slower after the outer disk is depleted. The outcome is sensitive to the disk radius and turbulence level, which control the lifetime and maximum size of pebbles. The outcome is sensitive to the size of the largest planetesimals because there is a threshold mass for the onset of pebble accretion. The planetesimal formation rate is unimportant, provided that some large planetesimals form while the pebbles remain abundant. Two outcomes are seen, depending on whether pebble accretion begins while the pebbles are still abundant. Either multiple gas-giant planets form beyond the ice line, small planets form close to the star, and a Kuiper-belt-like disk of bodies is scattered outward by the giant planets; or no giants form and the bodies remain an Earth-mass or smaller.

  6. A dynamical analysis of the proposed circumbinary HW Virginis planetary system

    NASA Astrophysics Data System (ADS)

    Horner, J.; Hinse, T. C.; Wittenmyer, R. A.; Marshall, J. P.; Tinney, C. G.

    2012-12-01

    In 2009, the discovery of two planets orbiting the evolved binary star system HW Virginis (HW Vir) was announced, based on systematic variations in the timing of eclipses between the two stars. The planets invoked in that work were significantly more massive than Jupiter, and moved on orbits that were mutually crossing - an architecture which suggests that mutual encounters and strong gravitational interactions are almost guaranteed. In this work, we perform a highly detailed analysis of the proposed HW Vir planetary system. First, we consider the dynamical stability of the system as proposed in the discovery work. Through a mapping process involving 91 125 individual simulations, we find that the system is so unstable that the planets proposed simply cannot exist, due to mean lifetimes of less than a thousand years across the whole parameter space. We then present a detailed re-analysis of the observational data on HW Vir, deriving a new orbital solution that provides a very good fit to the observational data. Our new analysis yields a system with planets more widely spaced, and of lower mass, than that proposed in the discovery work, and yields a significantly greater (and more realistic) estimate of the uncertainty in the orbit of the outermost body. Despite this, a detailed dynamical analysis of this new solution similarly reveals that it also requires the planets to move on orbits that are simply not dynamically feasible. Our results imply that some mechanism other than the influence of planetary companions must be the principal cause of the observed eclipse timing variations for HW Vir. If the system does host exoplanets, they must move on orbits differing greatly from those previously proposed. Our results illustrate the critical importance of performing dynamical analyses as a part of the discovery process for multiple-planet exoplanetary systems.

  7. Probing the innermost regions of the beta Pic planetary system with near-infrared interferometry

    NASA Astrophysics Data System (ADS)

    Absil, O.; Defrére, D.; Le Bouquin, J.-B.; Augereau, J.-C., Lebreton, J.; Lagrange, A.-M.

    2014-09-01

    In this talk, I will review the near-infrared interferometric view of the innermost regions (< 4 AU) around beta Pictoris. I will first present the results of VLTI/AMBER and VLTI/PIONIER observations aiming to detect faint companions around beta Pic. These data sets allow us to exclude the presence of companions a few hundred times as faint as the central star at angular separations up to about 100 mas. The median sensitivity in our search region corresponds to a brown dwarf of about 30 Mjup at beta Pic's age. I will then discuss the search for hot circumstellar dust that we carried out with VLTI/PIONIER. Based on accurate squared visibilities obtained at short baselines, we have been able to identify the presence of resolved circumstellar emission with an integrated brightness amounting to about 1.4% of the stellar brightness in H band. The spectral shape of the detected excess across the H band is consistant with thermal emission and/or reflected light from hot dust grains located in the innermost regions of the planetary system, although forward scattering by dust grains located further away (but still within the PIONIER field-of-view, i.e., close to the line of sight) could also significantly contribute to the detected circumstellar emission. I will conclude with a brief discussion of the implications of these interferometric observations on our view of the planetary system architecture around beta Pic.

  8. Three-body effects in the PSR 1257+12 planetary system

    NASA Astrophysics Data System (ADS)

    Malhotra, R.

    1993-04-01

    A detailed theoretical analysis of the three-body effects in the putative planetary system of PSR 1257+12 is presented. Ways in which these effects are manifested in the pattern of pulse arrival times are discussed; the dominant perturbation is described as a modulation of the phases of the near-sinusoidal signals of the two planetary companions. Explicit formulas for the time dependence of the oscillating orbital elements that are needed for an improved timing model for this system are provided. If a timing model with fixed, independent Keplerian orbits continues to be used for the timing analysis, and if two planets are indeed orbiting this pulsar, then the three-body effects should become detectable by means of a growth in the postfit residuals as more observations are accumulated. If the typical error in the pulse arrival time measurements is about 10 microsec, the amplitude of the postfit residuals will increase beyond this level with three to five years of timing observations.

  9. Observations and 3D Hydrodynamical models of planetary nebulae with Wolf Rayet type central stars

    NASA Astrophysics Data System (ADS)

    Rechy-García, J. S.; Velázquez, P. F.; Peña, M.; Raga, A. C.

    2016-10-01

    We present high-resolution, long-slit spectroscopic observations of two planetary nebulae with [WC] central stars located near the galactic bulge, M 1-32 and M 3-15. The observations were obtained with the 2.1-m telescope at the Observatorio Astronómico Nacional, San Pedro Mártir. M 1-32 shows wide wings on the base of its emission lines and M 3-15 has two very faint high-velocity knots. In order to model both PNe we built a three-dimensional model consisting of a jet interacting with an equatorially concentrated slow wind, emulating the presence of a dense torus, using the Yguazú hydrodynamical code. From our hydrodynamical models, we obtained position-velocity (PV) diagrams in the [N II]λ6583 line for comparison with the observations. We find that the spectral characteristics of M 1-32 and M 3-15 can be explained with the same physical model -a jet moving inside an AGB wind- using different parameters (physical conditions and position angles of the jet). In agreement with our model and observations, these objects contain a dense torus seeing pole-on and a bipolar jet escaping thorough the poles. Then we propose to classify this kind of objects as spectroscopic bipolar nebulae, although they have been classified morphologically as compact, round, or elliptical nebulae or with "close collimated lobes".

  10. Observing System Simulation Experiments

    NASA Technical Reports Server (NTRS)

    Prive, Nikki

    2015-01-01

    This presentation gives an overview of Observing System Simulation Experiments (OSSEs). The components of an OSSE are described, along with discussion of the process for validating, calibrating, and performing experiments. a.

  11. Proposal for a Unified Classification System of Shock Metamorphosed Planetary Silicate Rocks — Call for Comments

    NASA Astrophysics Data System (ADS)

    Stöffler, D.; Metzler, K.

    2016-08-01

    A new classification system for progressive shock metamorphism of planetary silicate rocks is proposed. It is based exclusively on rock types and the shock effects of their mineral constituents independently of their source planets or planetoids.

  12. Main-sequence progenitor configurations of the NN Ser candidate circumbinary planetary system are dynamically unstable

    NASA Astrophysics Data System (ADS)

    Mustill, Alexander; Marshall, Jonathan; Villaver, Eva; Veras, Dimitri; Davis, Philip; Horner, Jonathan; Witenmyer, Robert

    2013-07-01

    Recent observations of the NN Serpentis post-common envelope binary system have revealed eclipse timing variations that have been attributed to the presence of two Jovian-mass exo-planets. Under the assumption that these planets are real and survived from the binary's Main-Sequence state, we reconstruct initial binaries that give rise to the present NN Ser configuration and test the dynamical stability of the original system. Under standard assumptions regarding binary evolution, we find that survival of the planets through the entire Main-Sequence life-time is very unlikely. Hence, we conclude that the planets are not survivors from before the Common Envelope phase, implying that either they formed recently out of material ejected from the primary, or that the observed signals are of non-planetary origin.

  13. Main-sequence progenitor configurations of the NN Ser candidate circumbinary planetary system are dynamically unstable

    NASA Astrophysics Data System (ADS)

    Mustill, Alexander J.; Marshall, Jonathan P.; Villaver, Eva; Veras, Dimitri; Davis, Philip J.; Horner, Jonathan; Wittenmyer, Robert A.

    2013-12-01

    Recent observations of the NN Serpentis post-common envelope binary system have revealed eclipse timing variations that have been attributed to the presence of two Jovian-mass exo-planets. Under the assumption that these planets are real and survived from the binary's main-sequence state, we reconstruct initial binaries that give rise to the present NN Ser configuration and test the dynamical stability of the original system. Under standard assumptions about binary evolution, we find that survival of the planets through the entire main-sequence lifetime is very unlikely. Hence, we conclude that the planets are not survivors from before the common envelope phase, implying that either they formed recently out of material ejected from the primary or that the observed signals are of non-planetary origin.

  14. Hubble Space Telescope Wide Field Planetary Camera 2 Observations of Neptune

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Two groups have recently used the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC 2) to acquire new high-resolution images of the planet Neptune. Members of the WFPC-2 Science Team, lead by John Trauger, acquired the first series of images on 27 through 29 June 1994. These were the highest resolution images of Neptune taken since the Voyager-2 flyby in August of 1989. A more comprehensive program is currently being conducted by Heidi Hammel and Wes Lockwood. These two sets of observations are providing a wealth of new information about the structure, composition, and meteorology of this distant planet's atmosphere.

    Neptune is currently the most distant planet from the sun, with an orbital radius of 4.5 billion kilometers (2.8 billion miles, or 30 Astronomical Units). Even though its diameter is about four times that of the Earth (49,420 vs. 12,742 km), ground-based telescopes reveal a tiny blue disk that subtends less than 1/1200 of a degree (2.3 arc-seconds). Neptune has therefore been a particularly challenging object to study from the ground because its disk is badly blurred by the Earth's atmosphere. In spite of this, ground-based astronomers had learned a great deal about this planet since its position was first predicted by John C. Adams and Urbain Leverrier in 1845. For example, they had determined that Neptune was composed primarily of hydrogen and helium gas, and that its blue color caused by the presence of trace amounts of the gas methane, which absorbs red light. They had also detected bright cloud features whose brightness changed with time, and tracked these clouds to infer a rotation period between 17 and 22 hours.

    When the Voyager-2 spacecraft flew past the Neptune in 1989, its instruments revealed a surprising array of meteorological phenomena, including strong winds, bright, high-altitude clouds, and two large dark spots attributed to long-lived giant storm systems. These bright clouds and dark spots were tracked as they

  15. THE LINK BETWEEN PLANETARY SYSTEMS, DUSTY WHITE DWARFS, AND METAL-POLLUTED WHITE DWARFS

    SciTech Connect

    Debes, John H.; Walsh, Kevin J.; Stark, Christopher

    2012-03-10

    It has long been suspected that metal-polluted white dwarfs (types DAZ, DBZ, and DZ) and white dwarfs with dusty disks possess planetary systems, but a specific physical mechanism by which planetesimals are perturbed close to a white dwarf has not yet been fully posited. In this paper, we demonstrate that mass loss from a central star during post-main-sequence evolution can sweep planetesimals into interior mean motion resonances with a single giant planet. These planetesimals are slowly removed through chaotic excursions of eccentricity that in time create radial orbits capable of tidally disrupting the planetesimal. Numerical N-body simulations of the solar system show that a sufficient number of planetesimals are perturbed to explain white dwarfs with both dust and metal pollution, provided other white dwarfs have more massive relic asteroid belts. Our scenario requires only one Jupiter-sized planet and a sufficient number of asteroids near its 2:1 interior mean motion resonance. Finally, we show that once a planetesimal is perturbed into a tidal crossing orbit, it will become disrupted after the first pass of the white dwarf, where a highly eccentric stream of debris forms the main reservoir for dust-producing collisions. These simulations, in concert with observations of white dwarfs, place interesting limits on the frequency of planetary systems around main-sequence stars, the frequency of planetesimal belts, and the probability that dust may obscure future terrestrial planet finding missions.

  16. SPECTROSCOPIC OBSERVATIONS OF PLANETARY NEBULAE IN THE NORTHERN SPUR OF M31

    SciTech Connect

    Fang, X.; Liu, X.-W.; Zhang, Y.; Garcia-Benito, R.

    2013-09-10

    We present spectroscopy of three planetary nebulae (PNe) in the Northern Spur of the Andromeda galaxy (M31) obtained with the Double Spectrograph on the 5.1 m Hale Telescope at the Palomar Observatory. The samples were selected from the observations of Merrett et al. Our purpose is to investigate the formation of the substructures of M31 using PNe as a tracer of chemical abundances. The [O III] {lambda}4363 line is detected in the spectra of two objects, enabling temperature determinations. Ionic abundances are derived from the observed collisionally excited lines, and elemental abundances of nitrogen, oxygen, neon, sulfur, and argon are estimated. We study the correlations between oxygen and the {alpha}-element abundance ratios using our sample and the M31 disk and bulge PNe from the literature. In one of the three PNe, we observed a relatively higher oxygen abundance compared to the disk sample of M31 at similar galactocentric distances. The results of at least one of the three Northern Spur PNe might be in line with the proposed possible origin of the Northern Spur substructure of M31, i.e., the Northern Spur is connected to the Southern Stream and both substructures comprise the tidal debris of the satellite galaxies of M31.

  17. The HARPS search for southern extra-solar planets. XXVII. Seven new planetary systems

    NASA Astrophysics Data System (ADS)

    Moutou, C.; Mayor, M.; Lo Curto, G.; Ségransan, D.; Udry, S.; Bouchy, F.; Benz, W.; Lovis, C.; Naef, D.; Pepe, F.; Queloz, D.; Santos, N. C.; Sousa, S. G.

    2011-03-01

    We are conducting a planet search survey with HARPS since seven years. The volume-limited stellar sample includes all F2 to M0 main-sequence stars within 57.5 pc, where extrasolar planetary signatures are systematically searched for with the radial-velocity technics. In this paper, we report the discovery of new substellar companions of seven main-sequence stars and one giant star, detected through multiple Doppler measurements with the instrument HARPS installed on the ESO 3.6 m telescope, La Silla, Chile. These extrasolar planets orbit the stars HD 1690, HD 25171, HD 33473A, HD 89839, HD 113538, HD 167677, and HD 217786. The already-published giant planet around HD 72659 is also analysed here, and its elements are better determined by the addition of HARPS and Keck data. The other discoveries are giant planets in distant orbits, ranging from 0.3 to 29 MJup in mass and between 0.7 and 10 years in orbital period. The low metallicity of most of these new planet-hosting stars reinforces the current trend for long-distance planets around metal-poor stars. Long-term radial-velocity surveys allow probing the outskirts of extrasolar planetary systems, although confidence in the solution may be low until more than one orbital period is fully covered by the observations. For many systems discussed in this paper, longer baselines are necessary to refine the radial-velocity fit and derive planetary parameters. The radial-velocity time series of stars BD -114672 and HIP 21934 are also analysed and their behaviour interpreted in terms of the activity cycle of the star, rather than long-period planetary companions. Based on observations made with the HARPS instrument on the ESO 3.6 m telescope at La Silla Observatory under programme IDs 072.C-0488(E) and 085.C-0019.RV data are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/527/A63

  18. Observability of complex systems

    PubMed Central

    Liu, Yang-Yu; Slotine, Jean-Jacques; Barabási, Albert-László

    2013-01-01

    A quantitative description of a complex system is inherently limited by our ability to estimate the system’s internal state from experimentally accessible outputs. Although the simultaneous measurement of all internal variables, like all metabolite concentrations in a cell, offers a complete description of a system’s state, in practice experimental access is limited to only a subset of variables, or sensors. A system is called observable if we can reconstruct the system’s complete internal state from its outputs. Here, we adopt a graphical approach derived from the dynamical laws that govern a system to determine the sensors that are necessary to reconstruct the full internal state of a complex system. We apply this approach to biochemical reaction systems, finding that the identified sensors are not only necessary but also sufficient for observability. The developed approach can also identify the optimal sensors for target or partial observability, helping us reconstruct selected state variables from appropriately chosen outputs, a prerequisite for optimal biomarker design. Given the fundamental role observability plays in complex systems, these results offer avenues to systematically explore the dynamics of a wide range of natural, technological and socioeconomic systems. PMID:23359701

  19. Planetary Magnetism

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  20. A planetary nervous system for social mining and collective awareness

    NASA Astrophysics Data System (ADS)

    Giannotti, F.; Pedreschi, D.; Pentland, A.; Lukowicz, P.; Kossmann, D.; Crowley, J.; Helbing, D.

    2012-11-01

    We present a research roadmap of a Planetary Nervous System (PNS), capable of sensing and mining the digital breadcrumbs of human activities and unveiling the knowledge hidden in the big data for addressing the big questions about social complexity. We envision the PNS as a globally distributed, self-organizing, techno-social system for answering analytical questions about the status of world-wide society, based on three pillars: social sensing, social mining and the idea of trust networks and privacy-aware social mining. We discuss the ingredients of a science and a technology necessary to build the PNS upon the three mentioned pillars, beyond the limitations of their respective state-of-art. Social sensing is aimed at developing better methods for harvesting the big data from the techno-social ecosystem and make them available for mining, learning and analysis at a properly high abstraction level. Social mining is the problem of discovering patterns and models of human behaviour from the sensed data across the various social dimensions by data mining, machine learning and social network analysis. Trusted networks and privacy-aware social mining is aimed at creating a new deal around the questions of privacy and data ownership empowering individual persons with full awareness and control on own personal data, so that users may allow access and use of their data for their own good and the common good. The PNS will provide a goal-oriented knowledge discovery framework, made of technology and people, able to configure itself to the aim of answering questions about the pulse of global society. Given an analytical request, the PNS activates a process composed by a variety of interconnected tasks exploiting the social sensing and mining methods within the transparent ecosystem provided by the trusted network. The PNS we foresee is the key tool for individual and collective awareness for the knowledge society. We need such a tool for everyone to become fully aware of how

  1. Global Observation of Planetary-Scale Waves in UARS HRDI and WINDII MLT Winds

    NASA Technical Reports Server (NTRS)

    Lieberman, Ruth

    1999-01-01

    The purpose of this study is to use examine planetary-scale motions in the UARS mesosphere and lower thermospheric data. The actual study was confined to HRDI winds and temperatures, since these observations were more continuous, and spanned the 60-120 km range. Three classes of waves were studied: fast equatorial Kelvin waves, nonmigrating tides, and the midlatitude 2-day wave. The purpose of the Kelvin wave and the 2-day wave studies was to test whether the waves significantly affect the mean flow. Such studies require high-quality spectral definitions in order to derive the wave heat and momentum flux divergence which can act in comination to drive the mean flow. Accordingly, HRDI winds from several special observing campaigns were used for analyses of fast (periods under 5 days) waves. The campaigns are characterized by continuous viewing by HRDI in 2 viewing directions, for periods of 10-12 days. Data sampled in this manner lend themselves quite well to "asynoptic spectral analysis", from which motions with periods as low as one day can be retrieved with relatively minimal aliasing.

  2. Radio Jupiter after Voyager - An overview of the planetary radio astronomy observations

    NASA Technical Reports Server (NTRS)

    Boischot, A.; Lecacheux, A.; Kaiser, M. L.; Desch, M. D.; Alexander, J. K.; Warwick, J. W.

    1981-01-01

    An overview of Jupiter's low-frequency radio emission morphology as observed by the planetary radio astronomy (PRA) instrument onboard the Voyager spacecraft is presented. The PRA measurement capabilities and limitations are summarized, based on over two years of experience with the instrument. As a direct consequence of the PRA spacecraft observations, unprecedented in terms of their sensitivity and frequency coverage, at least three previously-unrecognized emission components have been discovered: broadband and narrow-band kilometric emission, and the lesser-arc decametric emission. Their properties are reviewed. In addition, the fundamental structure of the decameter wavelength and hectometer wavelength emission, now believed to be almost exclusively in the form of complex but repeating arc structures in the frequencytime domain, is described. Dramatic changes in the emission morphology of some components as a function of the sun-Jupiter-spacecraft angle (local time) are described. Finally, the PRA in situ measurements of the Io plasma torus hot-to-cold electron density and temperature ratios are summarized.

  3. FUSE Observations of Neutron-Capture Elements in Wolf-Rayet Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Dinerstein, H.

    We propose to obtain FUSE observations of planetary nebula central stars of the WC Wolf-Rayet ([WC]) class, in order to search for the products of neutron-capture processes in these stars and provide constraints on their evolutionary status. Although the origin of the [WC]'s is controversial, their H-deficient, C-rich surface compositions indicate that they have experienced a high degree of mixing and/or mass loss. Thus one might expect the nebulae they produce to show enhanced concentrations of He-burning and other nuclear products, such as nuclei produced by slow neutron capture during the AGB phase. We have already detected an absorption line from one such element, Germanium (Sterling, Dinerstein, & Bowers 2002), while conducting a search for H2 absorption from nebular molecular material FUSE GI programs A085 and B069). Since the strongest Ge enhancements were found in PNe with [WC] central stars, we propose to enlarge the sample of such objects observed by FUSE. THIS TEMPORARY AND PARTIAL SCRIPT COVERS ONE TARGET, HE 2-99, AND REQUESTS AN EXPOSURE TIME OF 15 KSEC. PHASE 2 INFORMATION FOR THE REMAINDER OF THE PROGRAM'S TOTAL TIME ALLOCATION OF 60 KSEC WILL BE SUBMITTED AT A LATER TIME.

  4. The Earth Observing System

    NASA Astrophysics Data System (ADS)

    Wilson, Stan; Dozier, Jeff

    1991-09-01

    The Earth Observing System (EOS), the centerpiece of NASA's Mission to Planet Earth, is to study the interactions of the atmosphere, land, oceans, and living organisms, using the perspective of space to observe the earth as a global environmental system. To better understand the role of clouds in global change, EOS will measure incoming and emitted radiation at the top of the atmosphere. Then, to study characteristics of the atmosphere that influence radiation transfer between the top of the atmosphere and the surface, EOS wil observe clouds, water vapor and cloud water, aerosols, temperature and humidity, and directional effects. To elucidate the role of anthropogenic greenhouse gas and terrestrial and marine plants as a source or sink for carbon, EOS will observe the biological productivity of lands and oceans. EOS will also study surface properties that affect biological productivity at high resolution spatially and spectrally.

  5. Global Responses of Gravity Waves to Planetary Wave Variations during Stratospheric Sudden Warming Observed by SABER

    NASA Astrophysics Data System (ADS)

    Cullens, C. Y.; England, S.; Immel, T. J.

    2015-12-01

    This study describes the global responses of observed gravity waves (GWs) to winter planetary wave (PW) variations during stratospheric sudden warmings (SSWs) using TIMED-SABER temperature measurements. GWs affect the ionosphere and thermosphere, and it is important to understand global variations of GWs from the lower atmosphere to the thermosphere during SSWs in order to advance our understanding of vertical coupling. The responses of GWs to SSWs are shown by calculating correlations between vertical components of Eliassen-Palm (EP) fluxes in the winter polar stratosphere and global GW temperature amplitudes derived from SABER observations. Consistent with previous ground-based and satellite observations, winter EP fluxes show positive correlations with GWs in the winter hemisphere. More interestingly, winter stratospheric EP fluxes are positively correlated with GWs in the tropics and in the summer mesosphere, indicating global variations of GWs in response to PW variations in the winter hemisphere. To study the mechanism of GW response to SSWs, global wind simulations from SD-WACCM are used. Zonal wind anomalies (differences in the wind before and during SSWs) extend from the winter stratosphere to the summer mesosphere. By comparing anomalies in background winds to the observed patterns in the correlations between GWs and winter EP fluxes, we find that regions of positive correlation follow change in background winds and zero-wind lines. The results indicate that responses of SABER GWs in the summer hemisphere to winter PW variations during SSWs are likely caused by changes in GW propagation due to the changes in atmospheric circulation. These observed changes in global GWs during SSWs can affect the ionosphere and thermosphere, and studying global GW variation during SSWs is important for understanding mechanisms of vertical coupling.

  6. Global responses of gravity waves to planetary waves during stratospheric sudden warming observed by SABER

    NASA Astrophysics Data System (ADS)

    Cullens, Chihoko Y.; England, Scott L.; Immel, Thomas J.

    2015-12-01

    This study describes the global responses of observed gravity waves (GWs) to winter planetary wave (PW) variations during stratospheric sudden warmings (SSWs) using TIMED-SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) temperature measurements. Previous studies have shown responses of atmospheric temperature and parameterized GW drag to SSWs; however, the responses of global GW observations to SSWs have not been presented before. The responses are shown by calculating correlations between vertical components of Eliassen-Palm (EP) fluxes in the winter polar stratosphere and global GW temperature amplitudes derived from SABER observations. Consistent with previous ground-based and satellite observations, winter EP fluxes show positive correlations with GWs in the winter hemisphere. More interestingly, winter stratospheric EP fluxes are positively correlated with GWs in the tropics and in the summer mesosphere, indicating global variations of GWs in response to PW variations in the winter hemisphere. To study the mechanism of GW response to SSWs, global wind simulations from Specified Dynamics Whole Atmosphere Community Climate Model are used. Zonal wind anomalies (differences in the wind before and during SSWs) extend from the winter stratosphere to the summer mesosphere. By comparing anomalies in background winds to the observed patterns in the correlations between GWs and winter EP fluxes, we find that regions of positive correlation follow changes in background winds and zero-wind lines. The results indicate that responses of SABER GWs in the summer hemisphere to winter PW variations during SSWs are likely caused by changes in GW propagation due to the changes in winds and atmospheric circulation.

  7. Human Planetary Landing System (HPLS) Capability Roadmap NRC Progress Review

    NASA Technical Reports Server (NTRS)

    Manning, Rob; Schmitt, Harrison H.; Graves, Claude

    2005-01-01

    Capability Roadmap Team. Capability Description, Scope and Capability Breakdown Structure. Benefits of the HPLS. Roadmap Process and Approach. Current State-of-the-Art, Assumptions and Key Requirements. Top Level HPLS Roadmap. Capability Presentations by Leads. Mission Drivers Requirements. "AEDL" System Engineering. Communication & Navigation Systems. Hypersonic Systems. Super to Subsonic Decelerator Systems. Terminal Descent and Landing Systems. A Priori In-Situ Mars Observations. AEDL Analysis, Test and Validation Infrastructure. Capability Technical Challenges. Capability Connection Points to other Roadmaps/Crosswalks. Summary of Top Level Capability. Forward Work.

  8. Machine Learning Algorithms For Predicting the Instability Timescales of Compact Planetary Systems

    NASA Astrophysics Data System (ADS)

    Tamayo, Daniel; Ali-Dib, Mohamad; Cloutier, Ryan; Huang, Chelsea; Van Laerhoven, Christa L.; Leblanc, Rejean; Menou, Kristen; Murray, Norman; Obertas, Alysa; Paradise, Adiv; Petrovich, Cristobal; Rachkov, Aleksandar; Rein, Hanno; Silburt, Ari; Tacik, Nick; Valencia, Diana

    2016-10-01

    The Kepler mission has uncovered hundreds of compact multi-planet systems. The dynamical pathways to instability in these compact systems and their associated timescales are not well understood theoretically. However, long-term stability is often used as a constraint to narrow down the space of orbital solutions from the transit data. This requires a large suite of N-body integrations that can each take several weeks to complete. This computational bottleneck is therefore an important limitation in our ability to characterize compact multi-planet systems.From suites of numerical simulations, previous studies have fit simple scaling relations between the instability timescale and various system parameters. However, the numerically simulated systems can deviate strongly from these empirical fits.We present a new approach to the problem using machine learning algorithms that have enjoyed success across a broad range of high-dimensional industry applications. In particular, we have generated large training sets of direct N-body integrations of synthetic compact planetary systems to train several regression models (support vector machine, gradient boost) that predict the instability timescale. We find that ensembling these models predicts the instability timescale of planetary systems better than previous approaches using the simple scaling relations mentioned above.Finally, we will discuss how these models provide a powerful tool for not only understanding the current Kepler multi-planet sample, but also for characterizing and shaping the radial-velocity follow-up strategies of multi-planet systems from the upcoming Transiting Exoplanet Survey Satellite (TESS) mission, given its shorter observation baselines.

  9. The occurrence of Jovian planets and the habitability of planetary systems.

    PubMed

    Lunine, J

    2001-01-30

    Planets of mass comparable to or larger than Jupiter's have been detected around over 50 stars, and for one such object a definitive test of its nature as a gas giant has been accomplished with data from an observed planetary transit. By virtue of their strong gravitational pull, giant planets define the dynamical and collisional environment within which terrestrial planets form. In our solar system, the position and timing of the formation of Jupiter determined the amount and source of the volatiles from which Earth's oceans and the source elements for life were derived. This paper reviews and brings together diverse observational and modeling results to infer the frequency and distribution of giant planets around solar-type stars and to assess implications for the habitability of terrestrial planets. PMID:11158551

  10. The occurrence of Jovian planets and the habitability of planetary systems

    PubMed Central

    Lunine, Jonathan I.

    2001-01-01

    Planets of mass comparable to or larger than Jupiter's have been detected around over 50 stars, and for one such object a definitive test of its nature as a gas giant has been accomplished with data from an observed planetary transit. By virtue of their strong gravitational pull, giant planets define the dynamical and collisional environment within which terrestrial planets form. In our solar system, the position and timing of the formation of Jupiter determined the amount and source of the volatiles from which Earth's oceans and the source elements for life were derived. This paper reviews and brings together diverse observational and modeling results to infer the frequency and distribution of giant planets around solar-type stars and to assess implications for the habitability of terrestrial planets. PMID:11158551

  11. The circumstellar gas surrounding 51 Ophiuchi - A candidate proto-planetary system similar to Beta Pictoris

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Silvis, J. M. S.

    1993-01-01

    Combined archival and recent International Ultraviolet Explorer (IUE) observations of the star, 51 Oph, reveal the presence of variable, accreting gas with velocities as large as + 100 km/s relative to the system. The electron number density of the circumstellar gas is comparable to that observed around the candidate proto-planetary system, Beta Pic. In addition to the cooler gas, absorption from Al III, Si IV, and C IV is present over the velocity range of the accreting gas. The presence of Si IV and C IV in the spectrum of a B9.5 star provides evidence for collisional ionization of the circumstellar gas like that observed in Beta Pic. The combination of H-alpha profiles with double emission peaks to comparable strength, together with detection of transient mass ejection events similar to those observed in other Be stars, suggests that the inclination of the 51 Oph system is within 10-15 deg of the equatorial plane. Collectively these data imply that the 51 Oph system is similar to Beta Pic in both system constituents and orientation, and may be in a similar evolutionary state.

  12. The spatial distribution of planetary ion fluxes near Mars observed by MAVEN

    NASA Astrophysics Data System (ADS)

    Brain, D. A.; McFadden, J. P.; Halekas, J. S.; Connerney, J. E. P.; Bougher, S. W.; Curry, S.; Dong, C. F.; Dong, Y.; Eparvier, F.; Fang, X.; Fortier, K.; Hara, T.; Harada, Y.; Jakosky, B. M.; Lillis, R. J.; Livi, R.; Luhmann, J. G.; Ma, Y.; Modolo, R.; Seki, K.

    2015-11-01

    We present the results of an initial effort to statistically map the fluxes of planetary ions on a closed surface around Mars. Choosing a spherical shell ~1000 km above the planet, we map both outgoing and incoming ion fluxes (with energies >25 eV) over a 4 month period. The results show net escape of planetary ions behind Mars and strong fluxes of escaping ions from the northern hemisphere with respect to the solar wind convection electric field. Planetary ions also travel toward the planet, and return fluxes are particularly strong in the southern electric field hemisphere. We obtain a lower bound estimate for planetary ion escape of ~3 × 1024 s-1, accounting for the ~10% of ions that return toward the planet and assuming that the ~70% of the surface covered so far is representative of the regions not yet visited by Mars Atmosphere and Volatile EvolutioN (MAVEN).

  13. Uranus. [Scientific study of planetary structure, ring systems, and magnetosphere

    SciTech Connect

    Bergstralh, J.T.

    1987-03-01

    Observations and theoretical investigations of the Uranus (U) system from the period 1983-1986 are reviewed, with an emphasis on the Voyager 2 encounter with U on January 26, 1986. Topics addressed include the bulk U composition, structure, and heat flux; the U atmospheric composition, structure, and circulation; the U rings; the major and minor U satellites; the U magnetosphere; and the Lyman-alpha 'electroglow' observed on the sunlit hemisphere of U. 191 references.

  14. Radio Search for Water in Exo-Planetary Systems

    NASA Astrophysics Data System (ADS)

    Cosmovici, C.; Pluchino, S.; Salerno, E.; Montebugnoli, S.; Zoni, L.; Bartolini, M.

    By using a fast multichannel spectrometer coupled to the 32 m radiotelescope at Medicina (Bologna, Italy) we started 1999 the search for the water MASER line at 22 GHz (1.35 cm) on exoplanets. Up to now 32 exoplanetary systems have been observed and suspect transient emissions have been identified in some cases. In order to confirm the observations improving the detection limits a new challenging multichannel spectrometer (SPECTRA-1) was developed.

  15. Water delivery to the Habitable zone and impact probabilities in the early phases of planetary systems in binary star systems

    NASA Astrophysics Data System (ADS)

    Bancelin, D.; Pilat-Lohinger, E.; Eggl, S.; Dvorak, R.

    2014-11-01

    By now, observations of exoplanets have found more than 50 binary star systems hosting 71 planets. We expect these numbers to increase as more than 70Â % of the main sequence stars in the solar neighbourhood are members of binary or multiple systems. The planetary motion in binary star systems depends strongly on both the parameters of the stellar system (stellar separation and eccentricity) and the architecture of the planetary system (number of planets and their orbital behaviour). In case a terrestrial planet moves in the so-called habitable zone (HZ) of its host star, the habitability of such a planet depends on many parameters. A crucial factor is certainly the amount of water. Water is the main ingredient defining an habitable planet. Therefore, the main question we would like to answer in our study is if a dry or almost dry planet can be fed with water by a bombardement of wet small bodies in such binary systems. First simulations of planetary formation in such systems show the stochastic behaviour of the water to mass ratio of planetary embryos (Haghighipour and Raymond 2007). After the embryo formation, a remnent disc of small bodies can be found around the main star. It mainly contains asteroids and comets whose initial water distribution depends on their position relative to the snow-line. After the gas dissipation, the disc is free to move under gravitation. They can interact with embryos located in the habitable zone and thus alter their initial water content. In our study, we consider different binary star configurations of G, K and M for the secondary star (the primary is a G-type), with various ranges of semi-major axis (from 25 AU to 100 AU) and eccentricity (from 0.1 to 0.5), and analyse the dynamics of small bodies moving under the gravitational perturbation of the binary star system, a Jupiter-like planet and an Earth-like planet, where the latter is randomly placed in the habitable zone. We mainly focus on water-rich asteroids with semi

  16. Using the ABLE facility to observe urbanization effects on planetary boundary layer processes

    SciTech Connect

    Coulter, R.L.; Klazura, J.; Lesht, B.M.; Shannon, J.D.; Sisterson, D.L.; Wesely, M.L.

    1998-12-31

    The Argonne Boundary Layer Experiments (ABLE) facility, located in south central Kansas, east of Wichita, is devoted primarily to investigations of and within the planetary boundary layer (PBL), including the dynamics of the mixed layer during both day and night; effects of varying land use and landform; the interactive role of precipitation, runoff, and soil moisture; storm development; and energy budgets on scales of 10 to 100 km. With an expected lifetime of 10--15 years, the facility is well situated to observe the effects of gradual urbanization on PBL dynamics and structure as the Wichita urban area expands to the east and several small municipalities located within the study area expand. Combining the continuous measurements of ABLE with (1) ancillary continuous measurements of, for example, the Atmospheric Radiation Measurement (ARM) program and the Global Energy Water Cycle Experiment (GEWEX) programs and with (2) shorter, more intensive studies within ABLE, such as the Cooperative Atmosphere Surface Exchange Studies (CASES) Program, allows hypothesized features of urbanization, including heat island effects, precipitation enhancement, and modification of the surface energy budget partitioning, to be studied.

  17. Planetary maps

    USGS Publications Warehouse

    ,

    1992-01-01

    An important goal of the USGS planetary mapping program is to systematically map the geology of the Moon, Mars, Venus, and Mercury, and the satellites of the outer planets. These geologic maps are published in the USGS Miscellaneous Investigations (I) Series. Planetary maps on sale at the USGS include shaded-relief maps, topographic maps, geologic maps, and controlled photomosaics. Controlled photomosaics are assembled from two or more photographs or images using a network of points of known latitude and longitude. The images used for most of these planetary maps are electronic images, obtained from orbiting television cameras, various optical-mechanical systems. Photographic film was only used to map Earth's Moon.

  18. Nucleosynthesis Predictions for Intermediate-Mass AGB Stars: Comparison to Observations of Type I Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Karakas, Amanda I.; vanRaai, Mark A.; Lugaro, Maria; Sterling, Nicholas C.; Dinerstein, Harriet L.

    2008-01-01

    Type I planetary nebulae (PNe) have high He/H and N/O ratios and are thought to be descendants of stars with initial masses of approx. 3-8 Stellar Mass. These characteristics indicate that the progenitor stars experienced proton-capture nucleosynthesis at the base of the convective envelope, in addition to the slow neutron capture process operating in the He-shell (the s-process). We compare the predicted abundances of elements up to Sr from models of intermediate-mass asymptotic giant branch (AGB) stars to measured abundances in Type I PNe. In particular, we compare predictions and observations for the light trans-iron elements Se and Kr, in order to constrain convective mixing and the s-process in these stars. A partial mixing zone is included in selected models to explore the effect of a C-13 pocket on the s-process yields. The solar-metallicity models produce enrichments of [(Se, Kr)/Fe] less than or approx. 0.6, consistent with Galactic Type I PNe where the observed enhancements are typically less than or approx. 0.3 dex, while lower metallicity models predict larger enrichments of C, N, Se, and Kr. O destruction occurs in the most massive models but it is not efficient enough to account for the greater than or approx. 0.3 dex O depletions observed in some Type I PNe. It is not possible to reach firm conclusions regarding the neutron source operating in massive AGB stars from Se and Kr abundances in Type I PNe; abundances for more s-process elements may help to distinguish between the two neutron sources. We predict that only the most massive (M grester than or approx.5 Stellar Mass) models would evolve into Type I PNe, indicating that extra-mixing processes are active in lower-mass stars (3-4 Stellar Mass), if these stars are to evolve into Type I PNe.

  19. Using K2 to Investigate Planetary Systems Orbiting Low-Mass Stars

    NASA Astrophysics Data System (ADS)

    Dressing, Courtney D.; Newton, Elisabeth R.; Charbonneau, David; Schlieder, Joshua E.; K2 CHAI Consortium

    2016-10-01

    The NASA K2 mission is using the repurposed Kepler spacecraft to search for transiting planets in multiple fields along the ecliptic plane. Unlike the original Kepler mission, which stared at a single region of the sky for four years, K2 observes each field for a much shorter timespan of roughly 80 days. While planets in the habitable zones of Sun-like stars would be unlikely to transit even once during an 80-day interval, planets in the habitable zones of faint low-mass stars have much shorter orbital periods and may even transit multiple times during a single K2 campaign. Accordingly, M and K dwarfs are frequently nominated as K2 Guest Observer targets and K2 has already observed significantly more low-mass stars than the original Kepler mission. While the K2 data are therefore an enticing resource for studying the properties and frequency of planetary systems orbiting low-mass stars, many K2 target stars are not well-characterized and some candidate low-mass stars are actually giants or reddened Sun-like stars. We are improving the characterization of K2 planetary systems orbiting low-mass stars by using SpeX on the NASA Infrared Telescope Facility and TripleSpec on the 200-inch Hale Telescope at Palomar Observatory to acquire near-infrared spectra of K2 target stars. We then employ empirically-based relations to determine the temperatures, radii, luminosities, and metallicities of K2 planet candidate host stars. Refining the stellar parameters allows us to identify astrophysical false positives and better constrain the radii and insolation flux environments of bona fide transiting planets. I will present our resulting catalog of stellar properties and discuss the prospects for using K2 data to investigate whether planet occurrence rates for mid-M dwarfs are similar to those for early-M and late-K dwarfs.

  20. Infrared sensor system using robotics technology for inter-planetary mission

    NASA Astrophysics Data System (ADS)

    Hihara, Hiroki; Takano, Yousuke; Sano, Junpei; Iwase, Kaori; Kawakami, Satoko; Otake, Hisashi; Okada, Tatsuaki; Funase, Ryu; Takada, Jun; Masuda, Tetsuya

    2015-09-01

    Infrared sensor system is a major concern for inter-planetary missions in order to investigate the nature and the formation processes of planets and asteroids. Since it takes long time for the communication of inter-planetary probes, automatic and autonomous functions are essential for provisioning observation sequence including the setup procedures of peripheral equipment. Robotics technology which has been adopted on HAYABUSA2 asteroid probe provides functions for setting up onboard equipment, sensor signal calibration, and post signal processing. HAYABUSA2 was launched successfully in 2014 for the exploration of C class near-Earth asteroid 162173 (1999JU3). An optical navigation camera with telephoto lens (ONC-T), a thermal-infrared imager (TIR), and a near infrared spectrometer (NIRS3) have been developed for the observation of geology, thermo-physical properties, and organic or hydrated materials on the asteroid. ONC-T and TIR are used for those scientific purposes as well as assessment of landing site selection and safe descent operation onto the asteroid surface for sample acquisition. NIRS3 is used to characterize the mineralogy of the asteroid surface by observing the 3-micron band, where the particular diagnostic absorption features due to hydrated minerals appear. Modifications were required in order to apply robotics technology for the probe due to the difference of operation on satellites from robot operation environment. The major difference is time line consideration, because the standardized robotics operation software development system is based on event driven framework. The consistency between the framework of time line and event driven scheme was established for the automatic and autonomous operation for HAYABUSA2.

  1. The Earth Observing System

    NASA Technical Reports Server (NTRS)

    Shaffer, Lisa Robock

    1992-01-01

    The restructuring of the NASA Earth Observing System (EOS), designed to provide comprehensive long term observations from space of changes occurring on the Earth from natural and human causes in order to have a sound scientific basis for policy decisions on protection of the future, is reported. In response to several factors, the original program approved in the fiscal year 1991 budget was restructured and somewhat reduced in scope. The resulting program uses three different sized launch vehicles to put six different spacecraft in orbit in the first phase, followed by two replacement launches for each of five of the six satellites to maintain a long term observing capability to meet the needs of global climate change research and other science objectives. The EOS system, including the space observatories, the data and information system, and the interdisciplinary global change research effort, are approved and proceeding. Elements of EOS are already in place, such as the research investigations and initial data system capabilities. The flights of precursor satellite and Shuttle missions, the ongoing data analysis, and the evolutionary enhancements to the integrated Earth science data management capabilities are all important building blocks to the full EOS program.

  2. Chaotic Exchange of Solid Material Between Planetary Systems: Implications for Lithopanspermia

    PubMed Central

    Belbruno, Edward; Malhotra, Renu; Savransky, Dmitry

    2012-01-01

    Abstract We examined a low-energy mechanism for the transfer of meteoroids between two planetary systems embedded in a star cluster using quasi-parabolic orbits of minimal energy. Using Monte Carlo simulations, we found that the exchange of meteoroids could have been significantly more efficient than previously estimated. Our study is relevant to astrobiology, as it addresses whether life on Earth could have been transferred to other planetary systems in the Solar System's birth cluster and whether life on Earth could have been transferred from beyond the Solar System. In the Solar System, the timescale over which solid material was delivered to the region from where it could be transferred via this mechanism likely extended to several hundred million years (as indicated by the 3.8–4.0 Ga epoch of the Late Heavy Bombardment). This timescale could have overlapped with the lifetime of the Solar birth cluster (∼100–500 Myr). Therefore, we conclude that lithopanspermia is an open possibility if life had an early start. Adopting parameters from the minimum mass solar nebula, considering a range of planetesimal size distributions derived from observations of asteroids and Kuiper Belt objects and theoretical coagulation models, and taking into account Oort Cloud formation models, we discerned that the expected number of bodies with mass>10 kg that could have been transferred between the Sun and its nearest cluster neighbor could be of the order of 1014 to 3·1016, with transfer timescales of tens of millions of years. We estimate that of the order of 3·108·l (km) could potentially be life-bearing, where l is the depth of Earth's crust in kilometers that was ejected as the result of the early bombardment. Key Words: Extrasolar planets—Interplanetary dust—Interstellar meteorites—Lithopanspermia. Astrobiology 12, 754–774. PMID:22897115

  3. Chaotic exchange of solid material between planetary systems: implications for lithopanspermia.

    PubMed

    Belbruno, Edward; Moro-Martín, Amaya; Malhotra, Renu; Savransky, Dmitry

    2012-08-01

    We examined a low-energy mechanism for the transfer of meteoroids between two planetary systems embedded in a star cluster using quasi-parabolic orbits of minimal energy. Using Monte Carlo simulations, we found that the exchange of meteoroids could have been significantly more efficient than previously estimated. Our study is relevant to astrobiology, as it addresses whether life on Earth could have been transferred to other planetary systems in the Solar System's birth cluster and whether life on Earth could have been transferred from beyond the Solar System. In the Solar System, the timescale over which solid material was delivered to the region from where it could be transferred via this mechanism likely extended to several hundred million years (as indicated by the 3.8-4.0 Ga epoch of the Late Heavy Bombardment). This timescale could have overlapped with the lifetime of the Solar birth cluster (∼100-500 Myr). Therefore, we conclude that lithopanspermia is an open possibility if life had an early start. Adopting parameters from the minimum mass solar nebula, considering a range of planetesimal size distributions derived from observations of asteroids and Kuiper Belt objects and theoretical coagulation models, and taking into account Oort Cloud formation models, we discerned that the expected number of bodies with mass>10 kg that could have been transferred between the Sun and its nearest cluster neighbor could be of the order of 10(14) to 3·10(16), with transfer timescales of tens of millions of years. We estimate that of the order of 3·10(8)·l (km) could potentially be life-bearing, where l is the depth of Earth's crust in kilometers that was ejected as the result of the early bombardment. PMID:22897115

  4. Chaotic exchange of solid material between planetary systems: implications for lithopanspermia.

    PubMed

    Belbruno, Edward; Moro-Martín, Amaya; Malhotra, Renu; Savransky, Dmitry

    2012-08-01

    We examined a low-energy mechanism for the transfer of meteoroids between two planetary systems embedded in a star cluster using quasi-parabolic orbits of minimal energy. Using Monte Carlo simulations, we found that the exchange of meteoroids could have been significantly more efficient than previously estimated. Our study is relevant to astrobiology, as it addresses whether life on Earth could have been transferred to other planetary systems in the Solar System's birth cluster and whether life on Earth could have been transferred from beyond the Solar System. In the Solar System, the timescale over which solid material was delivered to the region from where it could be transferred via this mechanism likely extended to several hundred million years (as indicated by the 3.8-4.0 Ga epoch of the Late Heavy Bombardment). This timescale could have overlapped with the lifetime of the Solar birth cluster (∼100-500 Myr). Therefore, we conclude that lithopanspermia is an open possibility if life had an early start. Adopting parameters from the minimum mass solar nebula, considering a range of planetesimal size distributions derived from observations of asteroids and Kuiper Belt objects and theoretical coagulation models, and taking into account Oort Cloud formation models, we discerned that the expected number of bodies with mass>10 kg that could have been transferred between the Sun and its nearest cluster neighbor could be of the order of 10(14) to 3·10(16), with transfer timescales of tens of millions of years. We estimate that of the order of 3·10(8)·l (km) could potentially be life-bearing, where l is the depth of Earth's crust in kilometers that was ejected as the result of the early bombardment.

  5. Estimating Physical Parameters by Means of Radio Continuum Observations: the Case of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Gil, Sol; Vázquez, R.; Contreras, M. E.; Iñiguez-Garín, E.; Guillén, P. F.

    2009-12-01

    For over four decades, physical parameters such as electron density, total ionized mass, and emission measure from H II regions, have been derived using radio continuum observations applying the formalism by Mezger & Henderson (1967, Astrophysical Journal, 147, 471), which assumes filled sphere, cylinder, and gaussian models. These models are good approximations when applied to H II regions. However, in the case of most of the planetary nebulae (PNe), we must take into account that emission comes mainly from a shell, and not from a filled body. In this work, we have followed the Mezger & Henderson formalism for a spherical shell model in order to derive physical parameters. Our results are compared with those from the filled sphere model. We conclude that physical parameters obtained using the shell model differ from those derived from the filled sphere model, by a factor of (1-α2)3/8 for electron density, (1-α2)3/4 for total ionized mass, and (1-α2)3/2 for emission measure. In all the cases, α is the internal radius of the shell, given in terms of its external radius. If we assume typical values for PNe shell thicknesses, the differences in the physical parameters derived for the two models range from 22% to 32% (electron density), 40% to 54% (ionized mass), and 64% to 78% (emission measure). We have applied the shell model to few PNe observed in radio continuum with the VLA (archive data). We also explore the feasibility for extending this study to other typical PNe morphologies (elliptical, bipolar, etc.). This work is supported by grants CONACYT 102582 and PAPIIT-UNAM IN109509. SSG thanks CONACYT for her graduate scholarship.

  6. High-contrast near-infrared studies of planetary systems and their circumstellar environments

    NASA Astrophysics Data System (ADS)

    Rodigas, Timothy John

    Planets are thought to form in circumstellar disks, leaving behind planetesimals that collide to produce dusty debris disks. Characterizing the architectures of planetary systems, along with the structures and compositions of debris disks, can therefore help answer questions about how planets form. In this thesis, I present the results of five papers (three published, two in preparation) concerning the properties of extrasolar planetary systems and their circumstellar environments. Chapters 2 and 3 are studies of radial velocity (RV) exoplanetary systems. For years astronomers have been puzzled about the large number of RV-detected planets that have eccentric orbits (e > 0.1). In Chapter 2 I show that this problem can partially be explained by showing that two circular-orbit planets can masquerade as a single planet on an eccentric orbit. I use this finding to predict that planets with mildly eccentric orbits are the most likely to have massive companions on wide orbits, potentially detectable by future direct imaging observations. Chapter 3 presents such a direct imaging study of the 14 Her planetary system. I significantly constrain the phase space of the putative candidate 14 Her c and demonstrate the power of direct imaging/RV overlap. Chapters 4 and 5 are high-contrast 2-4 micron imaging studies of the edge-on debris disks around HD 15115 and HD 32297. HD 15115's color is found to be gray, implying large grains 1-10 microns in size reside in stable orbits in the disk. HD 32297's disk color is red from 1-4 microns. Cometary material (carbon, silicates, and porous water ice) are a good match at 1-2 microns but not at L'. Tholins, organic material that is found in outer solar system bodies, or small silicates can explain the disk's red color but not the short wavelength data. Chapter 6 presents a dynamical study of dust grains in the presence of massive planets. I show that the width of a debris disk increases proportionally with the mass of its shepherding

  7. Oral Reading Observation System Observer's Training Manual.

    ERIC Educational Resources Information Center

    Brady, Mary Ella; And Others

    A self-instructional program for use by teachers of the handicapped, this training manual was developed to teach accurate coding with the Oral Reading Observation System (OROS)an observation system designed to code teacher-pupil verbal interaction during oral reading instruction. The body of the manual is organized to correspond to the nine…

  8. A Comprehensive Study of Planetary-Scale Atmospheric Waves in the Mesosphere and Lower Thermosphere As Observed By Timed/Saber

    NASA Astrophysics Data System (ADS)

    Liu, G.; England, S.; Immel, T. J.; Frey, H. U.

    2014-12-01

    A comprehensive study of planetary-scale atmospheric waves in the mesosphere and lower thermosphere (MLT) is conducted by analyzing the multiple years of temperature observations from TIMED/SABER covering 2002-2011. Occurrences and properties of these waves are studied for various cases, with 62% of them are the zonal wavenumber-1 component, 20 % are the wavenumber-2 and 18% are the wavenumber-3. The mean wave amplitudes and vertical wavelengths are calculated to be 8 K and 30 km for the wavenumber-1, 5.5 K and 25 km for the wavenumber-2, and 5 K and 20 km for the wavenumber-3. These exhibit the signatures of planetary-scale atmospheric waves, which are believed to be important in the vertical coupling of the lower atmosphere with the ionosphere/thermosphere/mesosphere (ITM) system.

  9. Observing Infrared Emission Lines of Neutron-Capture Species in Planetary Nebulae: New Detections with IGRINS

    NASA Astrophysics Data System (ADS)

    Dinerstein, Harriet L.; Sterling, N. C.; Kaplan, Kyle F.; Bautista, Manuel A.

    2015-08-01

    As the former envelopes of evolved stars, planetary nebulae (PNe) present an opportunity to study slow neutron-capture reactions (the “s-process”) during the AGB. Such studies differ from those of AGB stars in two ways. First, PNe represent the end point of self-enrichment and dredge-up in the star and most of its mass return to the ISM, enabling us to infer the nucleosynthetic yield of a specific element. Second, some s-process products are observable in PNe but difficult or impossible to observe in cool stars. These include some species with nuclear charge Z in the 30’s for which the major synthesis sites are uncertain. Optical emission lines of trans-iron species have been observed in some PNe, but are faint and can suffer from blending with lines of more abundant elements (Péquignot & Baluteau 1994, A&A, 283, 593; Sharpee et al. 2007, ApJ, 659, 1265). Observing infrared transitions from low energy states has proven to be a fruitful alternate approach. We used K-band lines of Se (Z=34) and Kr (Z=36) to study the demographics of their abundances in a large sample of Milky Way PNe (Dinerstein 2001, ApJ, 550, L223; Sterling & Dinerstein 2008, ApJ, 174, 158; Sterling, Porter, & Dinerstein 2015, submitted). An L-band emission line of Zn identified by Dinerstein & Geballe (2001, ApJ, 562, 515) and further observed by Smith, Zijlstra, & Dinerstein 2014 (MNRAS, 441, 3161), can be used as a tracer of the Fe-group, enabling determinations of the key stellar population diagnostic ratio [alpha/Fe] in PNe (see poster by Dinerstein et al., Focus Meeting 4). Using IGRINS, a high spectral resolution H and K band spectrometer (Park & Jaffe et al. 2014, Proc SPIE, 9147), we have discovered several new lines not previously reported in any astronomical object. Our detection of an H-band line of Rb (Z=37) confirms previous claims of optical Rb detections and indicates enrichment by a factor of ~4 in the PN NGC 7027 (Sterling, Dinerstein, Kaplan, & Bautista, in preparation

  10. ECHOES OF A DECAYING PLANETARY SYSTEM: THE GASEOUS AND DUSTY DISKS SURROUNDING THREE WHITE DWARFS

    SciTech Connect

    Melis, C.; Jura, M.; Klein, B.; Zuckerman, B.; Albert, L.

    2010-10-20

    We have performed a comprehensive ground-based observational program aimed at characterizing the circumstellar material orbiting three single white dwarf stars previously known to possess gaseous disks. Near-infrared imaging unambiguously detects excess infrared emission toward Ton 345 and allows us to refine models for the circumstellar dust around two of the three white dwarf stars. We find that each white dwarf hosts gaseous and dusty disks that are roughly spatially coincident, a result that is consistent with a scenario in which dusty and gaseous material has its origin in remnant parent bodies of the white dwarfs' planetary systems. We briefly describe a new model for the gas disk heating mechanism in which the gaseous material behaves like a 'Z II' region. In this Z II region, gas primarily composed of metals is photoionized by ultraviolet light and cools through optically thick allowed Ca II-line emission.

  11. Earth-size Planets in the PSR B1257+12 Planetary System

    NASA Astrophysics Data System (ADS)

    Konacki, M.; Wolszczan, A.

    2003-05-01

    The field of extrasolar planets has emerged in 1992 with the detection of three terrestrial-mass planets orbiting the millisecond pulsar PSR B1257+12 by Wolszczan & Frail . The pulsar has been observed with the 305 m Arecibo radiotelescope since its discovery in 1990. The pulse arrival time measurements of the pulsar B1257+12 collected over the years 1990-2003 with the Mark-III and the Penn State Pulsar Machine-1 backends supplemented with the new semi-analytical theory of the dynamics of the PSR B1257+12 planetary system allow us now to determine the masses of the planets B and C. The derived masses are respectively 4.3+/-0.2 and 3.9+/-0.2 Earth masses, making it the first determination of the extrasolar planet masses in the Earth-size regime.

  12. Torsional vibrations and dynamic loads in a basic planetary gear system

    NASA Technical Reports Server (NTRS)

    August, R.; Kasuba, R.

    1986-01-01

    An iterative method has been developed for analyzing dynamic loads in a light weight basic planetary gear system. The effects of fixed, semi-floating, and fully-floating sun gear conditions have been emphasized. The load dependent variable gear mesh stiffness were incorporated into a practical torsional dynamic model of a planetary gear system. The dynamic model consists of input and output units, shafts, and a planetary train. In this model, the sun gear has three degrees of freedom; two transverse and one rotational. The planets, ring gear, and the input and output units have one degree of freedom, (rotation) thus giving a total of nine degrees of freedoms for the basic system. The ring gear has a continuous radial support. The results indicate that the fixed sun gear arrangement with accurate or errorless gearing offers in general better performance than the floating sun gear system.

  13. Field geologic observation and sample collection strategies for planetary surface exploration: Insights from the 2010 Desert RATS geologist crewmembers

    NASA Astrophysics Data System (ADS)

    Hurtado, José M.; Young, Kelsey; Bleacher, Jacob E.; Garry, W. Brent; Rice, James W.

    2013-10-01

    Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic fieldwork, the Desert RATS (Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crewmembers who participated in the 2010 field test. We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies related to duplication of samples and observations; logistical constraints on the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to "flexibly execute" their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives.

  14. Mesospheric CO2 ice clouds on Mars observed by Planetary Fourier Spectrometer onboard Mars Express

    NASA Astrophysics Data System (ADS)

    Aoki, Shohei; Giuranna, Marco; Sato, Yuki; Nakagawa, Hiromu; Sato, Takao M.; Wolkenberg, Paulina; Murata, Isao; Kasaba, Yasumasa

    2016-04-01

    We investigate mesospheric CO2 ice clouds on Mars detected by the Planetary Fourier Spectrometer (PFS) onboard Mars Express (MEx). The relatively high spectral resolution of PFS allows firm identification of the clouds' reflection spike. A total of 279 occurrences of the CO2 ice clouds features has been detected at the bottom of 4.3 μm CO2 band from the MEx/PFS data during the period from MY27 to MY32. 115 occurrences out of them are also confirmed by simultaneous observations by MEx/OMEGA imaging spectrometer. The spatial and seasonal distributions of the CO2 ice clouds observed by PFS are consistent with the previous studies: the CO2 ice clouds are only observed between Ls=0° and 140° at distinct longitudinal corridors around the equatorial region (±20°N). The CO2 ice clouds are preferentially detected at local time between 15-17h. The relatively high spectral resolution of PFS allows us to investigate the spectral shape of the CO2 ice clouds features. The CO2 ice clouds reflection spike is peaked between 4.24 and 4.29 μm, with no evidence of the secondary peak at 4.32-4.34 μm observed by MEx/OMEGA (Määttänen et al., 2010). In most of the cases (about 75%), the peak is present between 4.245 and 4.255 μm. Moreover, small secondary peaks are found around 4.28 μm (about 15 occurrences). These spectral features cannot be reproduced by the synthetic spectra with the assumption of a spherical particle shape in our radiative transfer model (DISORT). This can be due to the fact that the available CO2 ice reflective indexes are either inaccurate or inappropriate for the mesospheric temperatures, or that the particle shape is not spherical. Accurate measurements of the reflective index depending on temperature and detailed comparison with the model taking into account non-spherical shapes will give a clue to solve this issue.

  15. INTRODUCTION: Nobel Symposium 135: Physics of Planetary Systems (18 22 June 2007, Lidingö, Stockholm, Sweden)

    NASA Astrophysics Data System (ADS)

    Piskunov, Nikolai; Rickman, Hans; Gustafsson, Bengt

    2008-07-01

    Since the discovery of the first planet, orbiting a sun-like star outside of our solar system, astronomy has changed dramatically. This event inspired a wide spectrum of activities not just in observational astronomy but in all fields related to planets from star formation to astrobiology. The discovery itself was the result of long and systematic work on perfecting measuring techniques and collecting data. Once the required level of precision was reached news about extrasolar planets started to appear frequently not just in scientific journals but also in the general media. Although fast progress is quite obvious in many areas related to planetary sciences for this Nobel symposium, dedicated to the Physics of Planetary Systems, we selected five topics where a number of particularly important breakthroughs happened in the last decade. These are: detection of exoplanets planet birthplaces: observations and modelling planet formation evolution of planetary systems planet characterization. We dedicated a full session, consisting of a few review talks and a joint discussion, to each of these topics. The format was a success, but what made this meeting so remarkable was the quality of the talks. We are very thankful to the world leading scientists for coming to Lidingö and making this symposium a truly memorable event. This book contains most of their contributions for you to enjoy. We are very thankful to the Nobel Foundation for generous sponsorship which made this symposium possible.

  16. Suzaku Observations of Charge Exchange Emission from Solar System Objects

    NASA Technical Reports Server (NTRS)

    Ezoe, Y.; Fujimoto, R.; Yamasaki, N. Y.; Mitsuda, K.; Ohashi, T.; Ishikawa, K.; Oishi, S.; Miyoshi, Y; Terada, N.; Futaana, Y.; Porter, F. S.; Brown, G. V.

    2012-01-01

    Recent results of charge exchange emission from solar system objects observed with the Japanese Suzaku satellite are reviewed. Suzaku is of great importance to investigate diffuse X-ray emission like the charge exchange from planetary exospheres and comets. The Suzaku studies of Earth's exosphere, Martian exosphere, Jupiter's aurorae, and comets are overviewed.

  17. Analysis of a planetary-rotation system for evaporated optical coatings

    SciTech Connect

    Oliver, J. B.

    2016-01-01

    The impact of planetary-design considerations for optical coating deposition is analyzed, including the ideal number of planets, variations in system performance, and the deviation of planet motion from the ideal. System capacity is maximized for four planets, although substrate size can significantly influence this result. Guidance is provided in the design of high-performance deposition systems based on the relative impact of different error modes. As a result, errors in planet mounting such that the planet surface is not perpendicular to its axis of rotation are particularly problematic, suggesting planetary design modifications would be appropriate.

  18. Observing Dynamics in Large-Scale Birkeland Currents with the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE)

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Korth, H.; Waters, C. L.; Barnes, R. J.; Olson, C.

    2015-12-01

    The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides continuous global observations of the magnetic perturbations that predominantly reflect Birkeland currents. The data are acquired by avionics magnetometers of the Iridium satellites and allow measurements from 66 satellites in near-polar circular, low altitude orbits. The configuration of the Iridium satellite constellation determines the longitude sampling spacing of ~ 2 hours and the re-sampling cadence of the system which is 9 minutes. From 2008 to 2013 the AMPERE system was developed which included new flight software on the Iridium satellites to allow telemetry of higher rate data to the ground and the Science Data Center to derive Birkeland current perturbations from the data and invert these signals to derive the global distributions of the currents using data windows of ten minutes. There were many challenges in developing AMPERE including automating inter-calibration between satellites and the baseline determination and removals. The results of AMPERE provide stunning confirmation of many of the statistical estimates for the distribution of currents but more significantly open a new window to understand their instantaneous distribution and dynamics. Examples of new features of the currents and their dynamics revealed by AMPERE are presented. In addition, prospects for new data products and increased data quality anticipated from AMPERE-NEXT to be implemented on the Iridium-NEXT generation of satellites are discussed.

  19. Seasonal analysis of the planetary boundary-layer afternoon and evening transition through observational measurements

    NASA Astrophysics Data System (ADS)

    Sastre, Mariano; Román-Cascón, Carlos; Yagüe, Carlos; Arrillaga, Jon A.; Maqueda, Gregorio

    2016-04-01

    From a typically convective diurnal situation to a stably stratified nocturnal one, the atmospheric boundary layer (ABL) experiences the so-called afternoon and evening transition. This period is complex to study due to the presence of many different forcings, usually weak and opposite [1]. In this work, the transitional processes are studied by using 6-year data from permanent instrumentation at CIBA, a research center located in the Spanish Northern plateau. These measurements include particulate matter (PM) and turbulent records. Certain variables display a twin pattern in their time evolution for all the seasons, only differing in their absolute values. On the contrary, the air specific humidity behaves differently for each season, which is distinct to the results from a previous study at a different location [2]. Besides, a common pattern of increasing PM values near sunset is found, with a number of influences playing a role in PM concentrations: stability, turbulence and ABL thickness among others. In particular, the competing thermal and mechanical turbulent effects result in PM concentration reduction (settling on the ground or being advected) or increase, depending in each case on the specific season and particle group. Furthermore, the relative importance of the bigger PM (between 2.5 and 10 μm) is linked to the wind minimum around sunset, especially during summer. [1] Lothon, M. and coauthors (2014): The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence, Atmos. Chem. Phys., 14, 10931-10960. [2] Wingo, S. M. and Knupp, K. R. (2015): Multi-platform observations characterizing the afternoon-to-evening transition of the planetary boundary layer in Northern Alabama, USA, Boundary-Layer Meteorol., 155, 29-53.

  20. Field Geologic Observation and Sample Collection Strategies for Planetary Surface Exploration: Insights from the 2010 Desert RATS Geologist Crewmembers

    NASA Technical Reports Server (NTRS)

    Hurtado, Jose M., Jr.; Young, Kelsey; Bleacher, Jacob E.; Garry, W. Brent; Rice, James W., Jr.

    2012-01-01

    Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic field- work, the Desert RATS(Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crew members who participated in the 2010 field test.We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies relatedtoduplicationofsamplesandobservations;logisticalconstraintson the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to flexibly execute their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives.

  1. Herschel/HIFI observations of molecular emission in protoplanetary nebulae and young planetary nebulae

    NASA Astrophysics Data System (ADS)

    Bujarrabal, V.; Alcolea, J.; Soria-Ruiz, R.; Planesas, P.; Teyssier, D.; Cernicharo, J.; Decin, L.; Dominik, C.; Justtanont, K.; de Koter, A.; Marston, A. P.; Melnick, G.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Schmidt, M.; Schöier, F. L.; Szczerba, R.; Waters, L. B. F. M.

    2012-01-01

    Aims: We aim to study the physical conditions, particularly the excitation state, of the intermediate-temperature gas in protoplanetary nebulae and young planetary nebulae (PPNe, PNe). The information that the observations of the different components deliver is of particular importance for understanding the evolution of these objects. Methods: We performed Herschel/HIFI observations of intermediate-excitation molecular lines in the far-infrared/submillimeter range in a sample of ten nebulae. The high spectral resolution provided by HIFI allows the accurate measurement of the line profiles. The dynamics and evolution of these nebulae are known to result from the presence of several gas components, notably fast bipolar outflows and slow shells (that often are the fossil AGB shells), and the interaction between them. Because of the diverse kinematic properties of the different components, their emissions can be identified in the line profiles. The observation of these high-energy transitions allows an accurate study of the excitation conditions, particularly in the warm gas, which cannot be properly studied from the low-energy lines. Results: We have detected FIR/sub-mm lines of several molecules, in particular of 12CO, 13CO, and H2O. Emission from other species, like NH3, OH, H218O, HCN, SiO, etc., has been also detected. Wide profiles showing sometimes spectacular line wings have been found. We have mainly studied the excitation properties of the high-velocity emission, which is known to come from fast bipolar outflows. From comparison with general theoretical predictions, we find that CRL 618 shows a particularly warm fast wind, with characteristic kinetic temperature Tk ≳ 200 K. In contrast, the fast winds in OH 231.8+4.2 and NGC 6302 are cold, Tk ~ 30 K. Other nebulae, like CRL 2688, show intermediate temperatures, with characteristic values around 100 K. We also discuss how the complex structure of the nebulae can affect our estimates, considering two

  2. Mass outflow in the nearby proto-planetary system, Beta Pictoris

    NASA Technical Reports Server (NTRS)

    Bruhweiler, Frederick C.; Grady, C. A.; Kondo, Yoji

    1991-01-01

    Previous spectral studies of circumstallar dust around the nearby, candidate proto-planetary system, Beta Pictoris, has detected only infalling gas. The lack of detectable mass outflow has been critical in the interpretation of the origin of the circumstellar gas and in our understanding of the evolutionary status of the Beta Pictoris system. IUE high-dispersion spectra are presented which show, in addition to infall, the presence of mass outflow, with a maximum observed outflow velocity of -60 km/s, and a corresponding instantaneous outflow rate of 1.1 x 10 to the -14th solar mass/yr, or 1.1 x 10 to the -11th Jupiter mass/yr. This mass outflow rate and terminal velocity are comparable to the magnitudes of mass infall rates and terminal velocities observed from late 1986 through early 1988. The implications of these observations on our understanding of the mechanisms producing infall from the surrounding circumstellar disk are discussed, as are the implications for our understanding of the evolutionary status of the Beta Pic system.

  3. Resolving Close Encounters: Stability in the HD 5319 and HD 7924 Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kane, Stephen R.

    2016-10-01

    Radial velocity searches for exoplanets have detected many multi-planet systems around nearby bright stars. An advantage of this technique is that it generally samples the orbit outside of the inferior/superior conjunction, potentially allowing the Keplerian elements of eccentricity and argument of periastron to be well characterized. The orbital architectures for some of these systems show signs of close planetary encounters that may render the systems unstable as described. We provide an in-depth analysis of two such systems: HD 5319 and HD 7924, for which the scenario of coplanar orbits results in their rapid destabilization. The poorly constrained periastron arguments of the outer planets in these systems further emphasizes the need for detailed investigations. An exhaustive scan of parameter space via dynamical simulations reveals specific mutual inclinations between the two outer planets in each system that allow for stable configurations over long timescales. We compare these configurations with those presented by mean-motion resonance as possible stability sources. Finally, we discuss the relevance to interpretation of multi-planet Keplerian orbits and suggest additional observations that will help to resolve the system stabilities.

  4. Application of hybrid propulsion systems to planetary missions

    NASA Technical Reports Server (NTRS)

    Don, J. P.; Phen, R. L.

    1971-01-01

    The feasibility and application of hybrid rocket propulsion to outer-planet orbiter missions is assessed in this study and guidelines regarding future development are provided. A Jupiter Orbiter Mission was selected for evaluation because it is the earliest planetary mission which may require advanced chemical propulsion. Mission and spacecraft characteristics which affect the selection and design of propulsion subsystems are presented. Alternative propulsion subsystems, including space-storable bipropellant liquids, a solid/monopropellant vernier, and a hybrid, are compared on the basis of performance, reliability, and cost. Cost-effectiveness comparisons are made for a range of assumptions including variation in (1) the level of need for spacecraft performance (determined in part by launch vehicle injected mass capability), and (2) achievable reliability at corresponding costs. The results indicated that the hybrid and space-storable bipropellant mechanizations are competitive.

  5. Connection between the spherical albedo and the observable characteristics of a planetary atmosphere

    SciTech Connect

    Fomin, N.N.; Yanovitskii, E.G.

    1986-07-01

    Semiempirical dependences of the geometrical albedo and the reflection coefficient at the center of a planetary disk on the spherical albedo are found. The nonsteady analogs of these quantities are studied on the basis of the approximate equations obtained. These analogs can be used in the analysis of radiation transfer in forbidden molecular absorption bands.

  6. A detailed dynamical investigation of the proposed QS Virginis planetary system

    NASA Astrophysics Data System (ADS)

    Horner, J.; Wittenmyer, R. A.; Hinse, T. C.; Marshall, J. P.; Mustill, A. J.; Tinney, C. G.

    2013-11-01

    In recent years, a number of planetary systems have been proposed to orbit-evolved binary star systems. The presence of planets is invoked to explain observed variations in the timing of mutual eclipses between the primary and secondary components of the binary star system. The planets recently proposed orbiting the cataclysmic variable system QS Virginis are the latest in this ongoing series of `extreme planets'. The two planets proposed to orbit QS Virginis would move on mutually crossing orbits - a situation that is almost invariably unstable on very short time-scales. In this work, we present the results of a detailed dynamical study of the orbital evolution of the two proposed planets, revealing that they are dynamically unstable on time-scales of less than one thousand years across the entire range of orbital elements that provide a plausible fit to the observational data, and regardless of their mutual orbital inclination. We conclude that the proposed planets around the cataclysmic variable QS Virginis simply cannot exist.

  7. Argus: A concept study for an Io observer mission from the 2014 NASA/JPL Planetary Science Summer School

    NASA Astrophysics Data System (ADS)

    Becerra, Patricio; Holstein-Rathlou, Christina; Hays, Lindsay E.; Keane, James T.; Neveu, Marc; Basu, Ko; Davis, Byron; Mendez-Ramos, Eugina; Nelessen, Adam; Fox, Valerie; Herman, Jonathan F.; Parrish, Nathan L.; Hughes, Andrea C.; Marcucci, Emma; Scheinberg, Aaron; Wrobel, Jonathan S.

    2014-11-01

    Jupiter’s moon Io is the ideal target to study extreme tidal heating and volcanism, two major processes shaping the formation and evolution of planetary bodies. In response to the 2009 New Frontiers Announcement of Opportunity, we propose an Io Observer mission concept named Argus (after the mythical watchman of Io). This concept was developed by the students of the August 2014 session of NASA’s Planetary Science Summer School, together with the Jet Propulsion Laboratory’s Team X.The science objectives of our mission are: (1) study the physical process of tidal heating and its implications for habitability in the Solar System and beyond; (2) investigate active lava flows on Io as an analog for volcanism on early Earth; (3) analyze the interaction between Io and the Jovian system via material exchange and magnetospheric activity; (4) study Io’s chemistry and geologic history to gain insight into the formation and evolution of the Galilean satellites. Our mission consists of a Jupiter-orbiting spacecraft performing ten close flybys of Io. The orbital inclination of ~31 degrees minimizes the total radiation dose received, at the cost of having to perform fast flybys (13 km/s).The instrument payload includes: (1) IGLOO, a multi-band camera for regional (500 m/pixel) and high-resolution (50 m/pixel) imaging; (2) IoLA, a laser altimeter to measure the triaxial shape and diurnal tidal deformation, and topographic profiles of individual surface features; (3) IGNITERS, a thermal emission radiometer/spectrometer to map nighttime temperatures, thermal inertia, and characterize Io’s atmosphere; (4) IoNIS, a near-infrared spectrometer to map global (10 km/pixel) and local (2 km/pixel) surface composition; (5) IoFLEX, a magnetometer and (6) IoPEX, a plasma particle analyzer to characterize the magnetic environment and understand the nature of Io’s induced and possible intrinsic magnetic fields; (7) IRAGE, a gravity science experiment to probe Io’s interior

  8. Planetary radar

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.

    1980-01-01

    The radar astronomy activities supported by the Deep Space Network during June, July, and August 1980 are reported. The planetary bodies observed were Venus, Mercury, and the asteroid Toro. Data were obtained at both S and X band, and the observations were considered successful.

  9. Limits of photosynthesis in extrasolar planetary systems for earth-like planets.

    PubMed

    Franck, S; von Bloh, W; Bounama, C; Steffen, M; Schonberner, D; Schellnhuber, H J

    2001-01-01

    We present a general modeling scheme for investigating the possibility of photosynthesis-based life on extrasolar planets. The scheme focuses on the identification of the habitable zone in main-sequence-star planetary systems with planets of Earth mass and size. Our definition of habitability is based on the long-term possibility of photosynthetic biomass production as a function of mean planetary surface temperature and atmospheric CO2-content. All the astrophysical, climatological, biogeochemical, and geodynamic key processes involved in the generation of photosynthesis-driven life conditions are taken into account. Implicitly, a co-genetic origin of the central star and the orbiting planet is assumed. The numerical solution of an advanced geodynamic model yields realistic look-up diagrams for determining the limits of photosynthesis in extrasolar planetary systems, assuming minimum CO2 levels set by the demand of C4 photosynthesis.

  10. Stellar rotation-planetary orbit period commensurability in the HAT-P-11 system

    SciTech Connect

    Béky, Bence; Holman, Matthew J.; Noyes, Robert W.; Kipping, David M.

    2014-06-10

    A number of planet host stars have been observed to rotate with a period equal to an integer multiple of the orbital period of their close planet. We expand this list by analyzing Kepler data of HAT-P-11 and finding a period ratio of 6:1. In particular, we present evidence for a long-lived spot on the stellar surface that is eclipsed by the planet in the same position four times, every sixth transit. We also identify minima in the out-of-transit light curve and confirm that their phase with respect to the stellar rotation is mostly stationary for the 48 month time frame of the observations, confirming the proposed rotation period. For comparison, we apply our methods to Kepler-17 and confirm the findings of Bonomo and Lanza that the period ratio is not exactly 8:1 in that system. Finally, we provide a hypothesis on how interactions between a star and its planet could possibly result in an observed commensurability for systems where the stellar differential rotation profile happens to include a period at some latitude that is commensurable to the planetary orbit.

  11. Helium 584 Å and H Lyman-α Airglow in Giant Planetary Atmospheres: Modeling, Observations, and Implications

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher; Esposito, Larry W.

    2016-07-01

    The atmosphere of the outer planets is mainly composed of H2 and neutral atomic helium. The study of He 584 Å and H Lyman-α brightnesses is interesting as the EUV and FUV (Extreme and Far Ultraviolet) planetary airglow have the potential to yield useful information about mixing and other important parameters in their thermospheres. Time variation, asymmetries, and polar enhancement of the airglow are also possible and analysis of the public archived NASA mission data sets (i.e. Voyager and Cassini) can help solve some of the outstanding problems associated with these phenomena. The comparison of observations with results from sophisticated photochemical and radiative transfer models can also help ameliorate unexplained differences in the dynamical processes operating within planetary upper atmospheres. Powerful analysis techniques allow us to extract information on atmospheric mixing, temperatures, and temporal changes due to the solar and seasonal cycles from the variations in distribution and intensity of airglow emissions that result. The presentation will discuss the implications of interpretations from comparison of modeling and observations in giant planetary atmospheres.

  12. Ultraviolet observations of close-binary and pulsating nuclei of planetary nebulae; Winds and shells around low-mass supergiants; The close-binary nucleus of the planetary nebula HFG-1; A search for binary nuclei of planetary nebulae; UV monitoring of irregularly variable planetary nuclei; and The pulsating nucleus of the planetary nebula Lo 4

    NASA Technical Reports Server (NTRS)

    Bond, Howard E.

    1992-01-01

    A brief summary of the research highlights is presented. The topics covered include the following: binary nuclei of planetary nebulae; other variable planetary nuclei; low-mass supergiants; and other IUE-related research.

  13. Delivery of Volatiles to Habitable Planets in Extrasolar Planetary Systems

    NASA Technical Reports Server (NTRS)

    Chambers, John E.; Kress, Monika E.; Bell, K. Robbins; Cash, Michele; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The Earth can support life because: (1) its orbit lies in the Sun's habitable zone', and (2) it contains enough volatile material (e.g. water and organics) for life to flourish. However, it seems likely that the Earth was drier when it formed because it accreted in a part of the Sun's protoplanetary nebula that was too hot for volatiles to condense. If this is correct, water and organics must have been delivered to the habitable zone, after dissipation of the solar nebula, from a 'wet zone' in the asteroid belt or the outer solar system, where the nebula was cool enough for volatiles to condense. Material from the wet zone would have been delivered to the Earth by Jupiter and Saturn. Gravitational perturbations from these giant planets made much of the wet zone unstable, scattering volatile-rich planetesimals and protoplanets across the Solar System. Some of these objects ultimately collided with the inner Planets which themselves lie in a stable part of the Solar System. Giant planets are now being discovered orbiting other sunlike stars. To date, these planets have orbits and masses very different from Jupiter and Saturn, such that few if any of these systems is likely to have terrestrial planets in the star's habitable zone. However, new discoveries are anticipated due to improved detector sensitivity and the increase in the timespan of observations. Here we present numerical experiments examining the range of giant-planet characteristics that: (1) allow stable terrestrial Planets to exist in a star's habitable zone, and (2) make a large part of the star's wet zone weakly unstable, thus delivering volatiles to the terrestrial planets over an extended period of time after the dissipation of the solar nebula.

  14. Surface Telerobotics: Development and Testing of a Crew Controlled Planetary Rover System

    NASA Technical Reports Server (NTRS)

    Bualat, Maria G.; Fong, Terrence; Allan, Mark; Bouyssounouse, Xavier; Cohen, Tamar; Kobayashi, Linda

    2013-01-01

    In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and operational risks. These assumptions, however, have not been grounded by experimental data. Moreover, to date, no crew-controlled surface telerobot has been fully tested in a high-fidelity manner. To address these issues, we developed the "Surface Telerobotics" tests to do three things: 1) Demonstrate interactive crew control of a mobile surface telerobot in the presence of short communications delay. 2) Characterize a concept of operations for a single astronaut remotely operating a planetary rover with limited support from ground control. 3) Characterize system utilization and operator work-load for a single astronaut remotely operating a planetary rover with limited support from ground control.

  15. HIP 3678: a hierarchical triple stellar system in the centre of the planetary nebula NGC 246

    NASA Astrophysics Data System (ADS)

    Adam, C.; Mugrauer, M.

    2014-11-01

    We report the detection of a new low-mass stellar companion to the white dwarf HIP 3678 A, the central star of the planetary nebula NGC 246. The newly found companion is located about 1 arcsec (at projected separation of about 500 au) north-east of HIP 3678 A, and shares a common proper motion with the white dwarf and its known comoving companion HIP 3678 B. The hypothesis that the newly detected companion is a non-moving background object can be rejected on a significance level of more than 8σ, by combining astrometric measurements from the literature with follow-up astrometry, obtained with Wide Field Planetary Camera 2/Hubble Space Telescope and NACO/Very Large Telescope. From our deep NACO imaging data, we can rule out additional stellar companions of the white dwarf with projected separations between 130 up to 5500 au. In the deepest high-contrast NACO observation, we achieve a detection limit in the Ks band of about 20 mag, which allows the detection of brown dwarf companions with masses down to 36 Mjup at an assumed age of the system of 260 Myr. To approximate the masses of the companions HIP 3678 B and C, we use the evolutionary Baraffe et al. models and obtain about 0.85 M⊙ for HIP 3678 B and about 0.1 M⊙ for HIP 3678 C. According to the derived absolute photometry, HIP 3678 B should be a early to mid-K dwarf (K2-K5), while HIP 3678 C should be a mid M dwarf with a spectral type in the range between M5 and M6.

  16. ABSORBING GAS AROUND THE WASP-12 PLANETARY SYSTEM

    SciTech Connect

    Fossati, L.; Floeer, L.; Ayres, T. R.; Haswell, C. A.; Bohlender, D.; Kochukhov, O. E-mail: lfloeer@astro.uni-bonn.de E-mail: C.A.Haswell@open.ac.uk E-mail: oleg.kochukhov@physics.uu.se

    2013-04-01

    Near-UV observations of the planet host star WASP-12 uncovered the apparent absence of the normally conspicuous core emission of the Mg II h and k resonance lines. This anomaly could be due either to (1) a lack of stellar activity, which would be unprecedented for a solar-like star of the imputed age of WASP-12 or (2) extrinsic absorption, from the intervening interstellar medium (ISM) or from material within the WASP-12 system itself, presumably ablated from the extreme hot Jupiter WASP-12 b. HIRES archival spectra of the Ca II H and K lines of WASP-12 show broad depressions in the line cores, deeper than those of other inactive and similarly distant stars and similar to WASP-12's Mg II h and k line profiles. We took high-resolution ESPaDOnS and FIES spectra of three early-type stars within 20' of WASP-12 and at similar distances, which show the ISM column is insufficient to produce the broad Ca II depression observed in WASP-12. The EBHIS H I column density map supports and strengthens this conclusion. Extrinsic absorption by material local to the WASP-12 system is therefore the most likely cause of the line core anomalies. Gas escaping from the heavily irradiated planet could form a stable and thick circumstellar disk/cloud. The anomalously low stellar activity index ( log R{sup '}{sub HK}) of WASP-12 is evidently a direct consequence of the extra core absorption, so similar HK index deficiencies might signal the presence of translucent circumstellar gas around other stars hosting evaporating planets.

  17. The NSDB database of astrometric observations of the natural planetary satellites and the Gaia astrometric reference catalogue

    NASA Astrophysics Data System (ADS)

    Arlot, Jean-Eudes; Lainey, Valery; Robert, Vincent

    2015-08-01

    The study of the dynamics of the Natural Planetary Satellites needs a large sample of observational astrometric data to determinate orbital and physical parameters. More, some small effects may be detected through precise astrometric observations such as tidal effects which modify slightly the orbits of the satellites. For that goal, databases gather observations from the XIXth to the XXIth centuries starting with old photographic observations until today observations from space probes.Unfortunately, the old data have a poor astrometric accuracy due to the unprecise refernce star catalogues available at the time of the observations. Since phtographic plates are still available, it is possible to remake the astrometric reduction of the plates using today catalogues. The problem of the proper motion of the stars which prevents to reduce data older than 40 years will now be solved by the future Gaia reference star catalogues the astrometric accuracy being equal to one mas on more than one century.A search for the most interesting old plates and tests of digitization and reduction of these plates have been made using UCAC reference satr catalogues and the results are more than promissing, allowing to increase of one order of magnitude the accuracy of the observations. Using such data, cumulative small effects on the dynamics of the natural planetary satellites could now be detected as soon as the Gaia reference star catalogue will be available.

  18. A study of the selection of microcomputer architectures to automate planetary spacecraft power systems

    NASA Technical Reports Server (NTRS)

    Nauda, A.

    1982-01-01

    Performance and reliability models of alternate microcomputer architectures as a methodology for optimizing system design were examined. A methodology for selecting an optimum microcomputer architecture for autonomous operation of planetary spacecraft power systems was developed. Various microcomputer system architectures are analyzed to determine their application to spacecraft power systems. It is suggested that no standardization formula or common set of guidelines exists which provides an optimum configuration for a given set of specifications.

  19. On possible circumbinary configurations of the planetary systems of α Centauri and EZ Aquarii

    NASA Astrophysics Data System (ADS)

    Popova, E. A.; Shevchenko, I. I.

    2016-04-01

    Possible configurations of the planetary systems of the binary stars α Cen A-BandEZAqr A-C are analyzed. The P-type orbits—circumbinary ones, i.e., the orbits around both stars of the binary, are studied. The choice of these systems is dictated by the fact that α Cen is closest to us in the Galaxy, while EZ Aqr is the closest system whose circumbinary planets, as it turns out, may reside in the "habitability zone." The analysis has been performed within the framework of the planar restricted three-body problem. The stability diagrams of circumbinary motion have been constructed: on representative sets of initial data (in the pericentric distance-eccentricity plane), we have computed the Lyapunov spectra of planetary motion and identified the domains of regular and chaotic motion through their statistical analysis. Based on present views of the dynamics and architecture of circumbinary planetary systems, we have determined the most probable planetary orbits to be at the centers of the main resonance cells, at the boundary of the dynamical chaos domain around the parent binary star, which allows the semimajor axes of the orbits to be predicted. In the case of EZ Aqr, the orbit of the circumbinary planet is near the habitability zone and, given that the boundary of this zone is uncertain, may belong to it.

  20. Planetary astronomy

    NASA Technical Reports Server (NTRS)

    Morrison, David; Hunten, Donald; Ahearn, Michael F.; Belton, Michael J. S.; Black, David; Brown, Robert A.; Brown, Robert Hamilton; Cochran, Anita L.; Cruikshank, Dale P.; Depater, Imke

    1991-01-01

    The authors profile the field of astronomy, identify some of the key scientific questions that can be addressed during the decade of the 1990's, and recommend several facilities that are critically important for answering these questions. Scientific opportunities for the 1990' are discussed. Areas discussed include protoplanetary disks, an inventory of the solar system, primitive material in the solar system, the dynamics of planetary atmospheres, planetary rings and ring dynamics, the composition and structure of the atmospheres of giant planets, the volcanoes of IO, and the mineralogy of the Martian surface. Critical technology developments, proposed projects and facilities, and recommendations for research and facilities are discussed.

  1. A Population of planetary systems characterized by short-period, Earth-sized planets

    NASA Astrophysics Data System (ADS)

    Steffen, Jason H.; Coughlin, Jeffrey L.

    2016-10-01

    We analyze data from the Quarter 1–17 Data Release 24 (Q1–Q17 DR24) planet candidate catalog from NASA’s Kepler mission, specifically comparing systems with single transiting planets to systems with multiple transiting planets, and identify a population of exoplanets with a necessarily distinct system architecture. Such an architecture likely indicates a different branch in their evolutionary past relative to the typical Kepler system. The key feature of these planetary systems is an isolated, Earth-sized planet with a roughly 1-d orbital period. We estimate that at least 24 of the 144 systems we examined (≳17%) are members of this population. Accounting for detection efficiency, such planetary systems occur with a frequency similar to the hot Jupiters.

  2. UV Capabilities to Probe the Formation of Planetary Systems: From the ISM to Planets

    NASA Astrophysics Data System (ADS)

    Gómez de Castro, Ana I.; Lecavelier, Alain; D'Avillez, Miguel; Linsky, Jeffrey L.; Cernicharo, José

    2006-06-01

    Planetary systems are angular momentum reservoirs generated during star formation. Solutions to three of the most important problems in contemporary astrophysics are needed to understand the entire process of planetary system formation: The physics of the ISM. Stars form from dense molecular clouds that contain ˜ 30% of the total interstellar medium (ISM) mass. The structure, properties and lifetimes of molecular clouds are determined by the overall dynamics and evolution of a very complex system the ISM. Understanding the physics of the ISM is of prime importance not only for Galactic but also for extragalactic and cosmological studies. Most of the ISM volume (˜ 65%) is filled with diffuse gas at temperatures between 3000 and 300 000 K, representing about 50% of the ISM mass. The physics of accretion and outflow. Powerful outflows are known to regulate angular momentum transport during star formation, the so-called accretion outflow engine. Elementary physical considerations show that, to be efficient, the acceleration region for the outflows must be located close to the star (within 1 AU) where the gravitational field is strong. According to recent numerical simulations, this is also the region where terrestrial planets could form after 1 Myr. One should keep in mind that today the only evidence for life in the Universe comes from a planet located in this inner disk region (at 1 AU) from its parent star. The temperature of the accretion outflow engine is between 3000 and 10 7 K. After 1 Myr, during the classical T Tauri stage, extinction is small and the engine becomes naked and can be observed at ultraviolet wavelengths. The physics of planet formation. Observations of volatiles released by dust, planetesimals and comets provide an extremely powerful tool for determining the relative abundances of the vaporizing species and for studying the photochemical and physical processes acting in the inner parts of young planetary systems. This region is illuminated by

  3. Implementation of cartographic symbols for planetary mapping in geographic information systems

    NASA Astrophysics Data System (ADS)

    Nass, A.; van Gasselt, S.; Jaumann, R.; Asche, H.

    2011-09-01

    The steadily growing international interest in the exploration of planets in our Solar System and many advances in the development of space-sensor technology have led to the launch of a multitude of planetary missions to Mercury, Venus, the Earth's moon, Mars and various Outer-Solar System objects, such as the Jovian and Saturnian satellites. Camera instruments carried along on these missions image surfaces in different wavelength ranges and under different viewing angles, permitting additional data to be derived, such as spectral data or digital terrain models. Such data enable researchers to explore and investigate the development of planetary surfaces by analyzing and interpreting the inventory of surface units and structures. Results of such work are commonly abstracted and represented in thematic, mostly geological and geomorphological, maps. In order to facilitate efficient collaboration among different planetary research disciplines, mapping results need to be prepared, described, managed, archived, and visualized in a uniform way. These tasks have been increasingly carried out by means of computer-based geographic information systems (GIS or GI systems) which have come to be widely employed in the field of planetary research since the last two decades. In this paper we focus on the simplification of mapping processes, putting specific emphasis on a cartographically correct visualization of planetary mapping data using GIS-based environments. We present and discuss the implementation of a set of standardized cartographic symbols for planetary mapping based on the Digital Cartographic Standard for Geologic Map Symbolization as prepared by the United States Geological Survey (USGS) for the Federal Geographic Data Committee (FGDC). Furthermore, we discuss various options to integrate this symbol catalog into generic GI systems, and more specifically into the Environmental Systems Research Institute's (ESRI) ArcGIS environment, and focus on requirements for

  4. The effect of latent heat release on synoptic-to-planetary wave interactions and its implication for satellite observations: Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Branscome, Lee E.; Bleck, Rainer; Obrien, Enda

    1990-01-01

    The project objectives are to develop process models to investigate the interaction of planetary and synoptic-scale waves including the effects of latent heat release (precipitation), nonlinear dynamics, physical and boundary-layer processes, and large-scale topography; to determine the importance of latent heat release for temporal variability and time-mean behavior of planetary and synoptic-scale waves; to compare the model results with available observations of planetary and synoptic wave variability; and to assess the implications of the results for monitoring precipitation in oceanic-storm tracks by satellite observing systems. Researchers have utilized two different models for this project: a two-level quasi-geostrophic model to study intraseasonal variability, anomalous circulations and the seasonal cycle, and a 10-level, multi-wave primitive equation model to validate the two-level Q-G model and examine effects of convection, surface processes, and spherical geometry. It explicitly resolves several planetary and synoptic waves and includes specific humidity (as a predicted variable), moist convection, and large-scale precipitation. In the past year researchers have concentrated on experiments with the multi-level primitive equation model. The dynamical part of that model is similar to the spectral model used by the National Meteorological Center for medium-range forecasts. The model includes parameterizations of large-scale condensation and moist convection. To test the validity of results regarding the influence of convective precipitation, researchers can use either one of two different convective schemes in the model, a Kuo convective scheme or a modified Arakawa-Schubert scheme which includes downdrafts. By choosing one or the other scheme, they can evaluate the impact of the convective parameterization on the circulation. In the past year researchers performed a variety of initial-value experiments with the primitive-equation model. Using initial

  5. COSPAR Workshop on Planetary Protection for Outer Planet Satellites and Small Solar System Bodies

    NASA Astrophysics Data System (ADS)

    Ehrenfreund, Pascale; Rummel, John; Peter, Nicolas

    The COSPAR Panel on Planetary Protection (PPP) held a COSPAR Workshop to consider the planetary protection status of Outer Planet satellites and other small Solar System bodies, and the measures that should be taken (or not) to protect them from Earth-sourced biological and organic contamination. The starting point for the 2009 COSPAR Planetary Protection Workshop at the European Space Policy Institute (ESPI) in Vienna was to consider the prob-abilistic approach in place in the COSPAR Planetary Protection Policy for the protection of Europa. The participants of this Workshop discussed the application of the approach and the associated formulation and parameterization to other Outer Planet satellites and small bodies. This application, as well as other considerations brought forward by the group, resulted in a full consideration of the various Outer Planet satellites and other Small Solar system bodies. The report on this workshop contains recommendations for the categorization of missions that may encounter or closely study the Outer Solar System in the future. Subsequently, the Work-shop also reviewed the consequences of applying these recommendations to the Outer Planets Flagship missions that have been under consideration by ESA, NASA, and their cooperating partners. A further workshop, concentrating on the specifics of Titan and Ganymede missions, was proposed by the group.

  6. Science requirements for PRoViScout, a robotics vision system for planetary exploration

    NASA Astrophysics Data System (ADS)

    Hauber, E.; Pullan, D.; Griffiths, A.; Paar, G.

    2011-10-01

    The robotic exploration of planetary surfaces, including missions of interest for geobiology (e.g., ExoMars), will be the precursor of human missions within the next few decades. Such exploration will require platforms which are much more self-reliant and capable of exploring long distances with limited ground support in order to advance planetary science objectives in a timely manner. The key to this objective is the development of planetary robotic onboard vision processing systems, which will enable the autonomous on-site selection of scientific and mission-strategic targets, and the access thereto. The EU-funded research project PRoViScout (Planetary Robotics Vision Scout) is designed to develop a unified and generic approach for robotic vision onboard processing, namely the combination of navigation and scientific target selection. Any such system needs to be "trained", i.e. it needs (a) scientific requirements which the system needs to address, and (b) a data base of scientifically representative target scenarios which can be analysed. We present our preliminary list of science requirements, based on previous experience from landed Mars missions.

  7. Outer-planet scattering can gently tilt an inner planetary system

    NASA Astrophysics Data System (ADS)

    Gratia, Pierre; Fabrycky, Daniel

    2016-09-01

    Chaotic dynamics are expected during and after planet formation, and a leading mechanism to explain large eccentricities of gas giant exoplanets is planet-planet gravitational scattering. The same scattering has been invoked to explain misalignments of planetary orbital planes with respect to their host star's spin. However, an observational puzzle is presented by Kepler-56, which has two inner planets (b and c) that are nearly coplanar with each other, yet are more than 45 degrees inclined to their star's equator. Thus the spin-orbit misalignment might be primordial. Instead, we further develop the hypothesis in the discovery paper, that planets on wider orbits generated misalignment through scattering, and as a result gently torqued the inner planets away from the equator plane of the star. We integrated the equations of motion for Kepler-56 b and c along with an unstable outer system initialized with either two or three Jupiter-mass planets. We address here whether the violent scattering that generates large mutual inclinations can leave the inner system intact, tilting it gently. In almost all of the cases initially with two outer planets, either the inner planets remain nearly coplanar with each other in the star's equator plane, or they are scattered violently to high mutual inclination and high spin-orbit misalignment. On the contrary, of the systems with three unstable outer planets, a spin-orbit misalignment large enough to explain the observations is generated 28% of the time for coplanar inner planets, which is consistent with the observed frequency of this phenomenon reported so far. We conclude that multiple-planet scattering in the outer parts of the system may account for this new population of coplanar planets hosted by oblique stars.

  8. Diversity of planetary systems in low-mass disks. Terrestrial-type planet formation and water delivery

    NASA Astrophysics Data System (ADS)

    Ronco, M. P.; de Elía, G. C.

    2014-07-01

    Context. Several studies, observational and theoretical, suggest that planetary systems with only rocky planets are the most common in the Universe. Aims: We study the diversity of planetary systems that might form around Sun-like stars in low-mass disks without gas-giant planets. We focus especially on the formation process of terrestrial planets in the habitable zone (HZ) and analyze their water contents with the goal to determine systems of astrobiological interest. In addition, we study the formation of planets on wide orbits because they can be detected with the microlensing technique. Methods: N-body simulations of high resolution were developed for a wide range of surface density profiles. A bimodal distribution of planetesimals and planetary embryos with different physical and orbital configurations was used to simulate the planetary accretion process. The surface density profile combines a power law for the inside of the disk of the form r-γ, with an exponential decay to the outside. We performed simulations adopting a disk of 0.03 M⊙ and values of γ = 0.5, 1 and 1.5. Results: All our simulations form planets in the HZ with different masses and final water contents depending on the three different profiles. For γ = 0.5, our simulations produce three planets in the HZ with masses ranging from 0.03 M⊕ to 0.1 M⊕ and water contents between 0.2 and 16 Earth oceans (1 Earth ocean =2.8 × 10-4 M⊕). For γ = 1, three planets form in the HZ with masses between 0.18 M⊕ and 0.52 M⊕ and water contents from 34 to 167 Earth oceans. Finally, for γ = 1.5, we find four planets in the HZ with masses ranging from 0.66 M⊕ to 2.21 M⊕ and water contents between 192 and 2326 Earth oceans. This profile shows distinctive results because it is the only one of those studied here that leads to the formation of water worlds. Conclusions: Since planetary systems with γ = 1 and 1.5 present planets in the HZ with suitable masses to retain a long-lived atmosphere and

  9. Richest Planetary System Discovered - Up to seven planets orbiting a Sun-like star

    NASA Astrophysics Data System (ADS)

    2010-08-01

    seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems" by C. Lovis et al.). The team is composed of C. Lovis, D. Ségransan, M. Mayor, S. Udry, F. Pepe, and D. Queloz (Observatoire de Genève, Université de Genève, Switzerland), W. Benz (Universität Bern, Switzerland), F. Bouchy (Institut d'Astrophysique de Paris, France), C. Mordasini (Max-Planck-Institut für Astronomie, Heidelberg, Germany), N. C. Santos (Universidade do Porto, Portugal), J. Laskar (Observatoire de Paris, France), A. Correia (Universidade de Aveiro, Portugal), and J.-L. Bertaux (Université Versailles Saint-Quentin, France) and G. Lo Curto (ESO). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  10. Overview of a Proposed Flight Validation of Aerocapture System Technology for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Hall, Jeffery L.; Oh, David; Munk, Michelle M.

    2006-01-01

    Aerocapture System Technology for Planetary Missions is being proposed to NASA's New Millennium Program for flight aboard the Space Technology 9 (ST9) flight opportunity. The proposed ST9 aerocapture mission is a system-level flight validation of the aerocapture maneuver as performed by an instrumented, high-fidelity flight vehicle within a true in-space and atmospheric environment. Successful validation of the aerocapture maneuver will be enabled through the flight validation of an advanced guidance, navigation, and control system as developed by Ball Aerospace and two advanced Thermal Protection System (TPS) materials, Silicon Refined Ablative Material-20 (SRAM-20) and SRAM-14, as developed by Applied Research Associates (ARA) Ablatives Laboratory. The ST9 aerocapture flight validation will be sufficient for immediate infusion of these technologies into NASA science missions being proposed for flight to a variety of Solar System destinations possessing a significant planetary atmosphere.

  11. Multi-Year Radar Observations of Planetary Waves at High Conjugate Latitudes (Invited)

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.; Iimura, H.; Janches, D.; Mitchell, N. J.; Singer, W.

    2013-12-01

    Meteor radars at nearly conjugate latitudes from ~54o to 68o S and N are enabling multi-year studies of planetary wave (PW) structure and seasonal, interannual, and inter-hemispheric variability. The various PWs exhibit dramatically different seasonal and inter-hemispheric variability, strongly variable amplitude and phase structures with altitude, latitude, and time, and episodic maxima in E-P flux components. This talk will review these features defined with meteor radars at Rothera Station and Ferraz Base (62 and 68 S), on Tierra del Fuego (54 S), and at Juliusruh, Germany and Esrange, Sweden (55 and 68 N).

  12. Planetary Protection Concerns During Pre-Launch Radioisotope Power System Final Integration Activities

    NASA Technical Reports Server (NTRS)

    Chen, Fei; McKay, Terri; Spry, James A.; Colozza, Anthony J.; DiStefano, Salvador

    2012-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is a next-generation radioisotope-based power system that is currently being developed as an alternative to the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Power sources such as these may be needed for proposed missions to solar system planets and bodies that have challenging Planetary Protection (PP) requirements (e.g. Mars, Europa, Enceladus) that may support NASA s search for life, remnants of past life, and the precursors of life. One concern is that the heat from the ASRG could potentially create a region in which liquid water may occur. As advised by the NASA Planetary Protection Officer, when deploying an ASRG to Mars, the current COSPAR/NASA PP policy should be followed for Category IVc mission. Thus, sterilization processing of the ASRG to achieve bioburden reduction would be essential to meet the Planetary Protection requirements. Due to thermal constraints and associated low temperature limits of elements of the ASRG, vapor hydrogen peroxide (VHP) was suggested as a candidate alternative sterilization process to complement dry heat microbial reduction (DHMR) for the assembled ASRG. The following proposed sterilization plan for the ASRG anticipates a mission Category IVc level of cleanliness. This plan provides a scenario in which VHP is used as the final sterilization process. Keywords: Advanced Stirling Radioisotope Generator (ASRG), Planetary Protection (PP), Vapor hydrogen peroxide (VHP) sterilization.

  13. Planetary Magnetism

    SciTech Connect

    Russell, C.T.

    1980-02-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io.

  14. Planetary magnetism

    NASA Technical Reports Server (NTRS)

    Russell, C. T.

    1980-01-01

    Planetary spacecraft have now probed the magnetic fields of all the terrestrial planets, the moon, Jupiter, and Saturn. These measurements reveal that dynamos are active in at least four of the planets, Mercury, the earth, Jupiter, and Saturn but that Venus and Mars appear to have at most only very weak planetary magnetic fields. The moon may have once possessed an internal dynamo, for the surface rocks are magnetized. The large satellites of the outer solar system are candidates for dynamo action in addition to the large planets themselves. Of these satellites the one most likely to generate its own internal magnetic field is Io.

  15. A History of the NASA Planetary Data System (PDS) Imaging Node's Map-A-Planet Legacy Web Services

    NASA Astrophysics Data System (ADS)

    Garcia, P. A.; Isbell, C. E.; Gaddis, L. R.

    2015-06-01

    NASA Planetary Data System (PDS) Imaging Node’s Map-A-Planet Legacy Web Services have served the planetary data community for more than fifteen years. Here we look back at the evolution and development of the services over the that time.

  16. Implementation the NASA Planetary Data System PDS4 Providing Access to LADEE Data

    NASA Astrophysics Data System (ADS)

    Beebe, Reta F.; Huber , Lyle; Neakrase, Lynn; Reese, Shannon; Crichton, Daniel; Hardman, Sean; Delory, Gregory; Neese, Carol

    2014-11-01

    The NASA Planetary Data System (PDS) is responsible for archiving all planetary data acquired by robotic missions, and observational campaigns with ground/space-based observatories. PDS has moved to version 4 of its archive system. PDS4 uses XML to enhance search and retrieval capabilities. Although the efforts are system wide, the Atmospheres Node has acted as the lead node and is presenting a preliminary users interface for retrieval of LADEE data. LADEE provides the first opportunity to test out the end-to-end process of archiving data from an active mission into the new PDS4 architecture. The limited number of instruments, with simple data structures, is an ideal test of PDS4. XML uses schema (analogous to blueprints) to control the structure of the corresponding XML labels. In the case of PDS4, these schemas allow management of the labels and their content by forcing validation dictated by the underlying Information Model (IM). The use of a central IM is a vast improvement over PDS3 because of the uniformity it provides across all nodes. PDS4 has implemented a product-centric approach for archiving data and supplemental documentation. Another major change involves the Central Registry, where all products are registered and accessible to search engines. Under PDS4, documents, data, and other ancillary data are all products that are registered in the system. Together with the XML implementation, the Registry allows the search routines to be more complex and inclusive than they have been in the past. For LADEE, the PDS nodes and LADEE instrument teams worked together to identify data products that LADEE would produce. Documentation describing instruments and data products were produced by the teams and peer reviewed by PDS. XML label templates were developed by the PDS and provided to the instrument teams to integrate into their pipelines. Data from the primary mission (100 days) have been certified and harvested into the registry and are accessible through the

  17. A secular model for efficient exploration of mutually-inclined planetary systems

    NASA Astrophysics Data System (ADS)

    Deitrick, Russell; Barnes, Rory

    2015-01-01

    Dynamical studies of exoplanets largely assume coplanarity because of the lack of inclination information in many cases. However, the multiplanet system Upsilon Andromedae has orbital planes inclined by 30 degrees, models of planet-planet scattering predict large mutual inclinations, and astrometry missions such as Gaia have the power to reveal the 3 dimensional architecture of planetary systems. As the dynamics of systems with non-planar orbits will be key to understanding origins, and ultimately habitability where applicable, we present a computationally efficient model for the orbital evolution of planetary systems with modest inclinations and eccentricities which are not in a mean motion resonance. Specifically, our model is based on the disturbing function and extends to 4th order in eccentricity and inclination. We present comparisons to N-body models for known systems, such as the Solar System and Upsilon Andromedae, and hypothetical systems with a range of orbital configurations. We describe the eccentricity and inclination conditions under which the model is valid. We further calculate the rotational evolution of planets based on the orbital evolution and the stellar torque and find a wide range of obliquity evolution is possible. As obliquity is a key driver of planetary climate, Earth-like planets in non-planar systems may have climates dominated by their orbital evolution.

  18. Planetary transit observations at the University Observatory Jena: TrES-2

    NASA Astrophysics Data System (ADS)

    Raetz, St.; Mugrauer, M.; Schmidt, T. O. B.; Roell, T.; Eisenbeiss, T.; Hohle, M. M.; Koeltzsch, A.; Vaňko, M.; Ginski, Ch.; Marka, C.; Moualla, M.; Tetzlaff, N.; Seifahrt, A.; Broeg, Ch.; Koppenhoefer, J.; Raetz, M.; Neuhäuser, R.

    2009-05-01

    We report on observations of several transit events of the transiting planet TrES-2 obtained with the Cassegrain-Teleskop-Kamera at the University Observatory Jena. Between March 2007 and November 2008 ten different transits and almost a complete orbital period were observed. Overall, in 40 nights of observation 4291 exposures (in total 71.52 h of observation) of the TrES-2 parent star were taken. With the transit timings for TrES-2 from the 34 events published by the TrES-network, the Transit Light Curve project and the Exoplanet Transit Database plus our own ten transits, we find that the orbital period is P=(2.470614± 0.000001) d, a slight change by ˜ 0.6 s compared to the previously published period. We present new ephemeris for this transiting planet. Furthermore, we found a second dip after the transit which could either be due to a blended variable star or occultation of a second star or even an additional object in the system. Our observations will be useful for future investigations of timing variations caused by additional perturbing planets and/or stellar spots and/or moons. Based on observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University Jena and the 80cm telescope of the Wendelstein Observatory of the Ludwig-Maximilians-University Munich.

  19. Searching for a gas cloud surrounding the WASP-18 planetary system

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Ayres, T. R.; Haswell, C. A.; Jenkins, J. S.; Bisikalo, D.; Bohlender, D.; Flöer, L.; Kochukhov, O.

    2014-11-01

    Near-UV (NUV) Hubble Space Telescope (HST) observations of the extreme hot-Jupiter WASP-12b revealed the presence of diffuse exospheric gas extending beyond the planet's Roche lobe. Furthermore the NUV observations showed a complete lack of the normally bright core emission of the Mg ii h&k resonance lines, in agreement with the measured anomalously low stellar activity index (log R' HK ). Comparisons with other distant and inactive stars, and the analysis of radio and optical measurements of the intervening interstellar medium (ISM), led us to the conclusion that the system is surrounded by a circumstellar gas cloud, likely formed of material lost by the planet. Similar anomalous log R' HK index deficiencies might therefore signal the presence of translucent circumstellar gas around other stars hosting evaporating planets; we identified five such systems and WASP-18 is one of them. Both radio and optical observations of the region surrounding WASP-18 point towards a negligible ISM absorption along the WASP-18 line of sight. Excluding the unlikely possibility of an intrinsic anomalously low stellar activity, we conclude that the system is probably surrounded by a circumstellar gas cloud, presumably formed of material lost by the planet. Nevertheless only a far-UV spectrum of the star would provide a definite answer. Theoretical modelling suggests WASP-18b undergoes negligible mass loss, in contrast to the probable presence of a circumstellar gas cloud formed of material lost by the planet. The solution might be the presence either of an extra energy source driving mass loss (e.g., the reconnection of the stellar and planetary magnetic fields inside the planet atmosphere) or of an evaporating third body (e.g., moon).

  20. Constraints on the Architecture of the HD 95086 Planetary System with the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Rameau, Julien; Nielsen, Eric L.; De Rosa, Robert J.; Blunt, Sarah C.; Patience, Jenny; Doyon, René; Graham, James R.; Lafrenière, David; Macintosh, Bruce; Marchis, Franck; Bailey, Vanessa; Chilcote, Jeffrey K.; Duchene, Gaspard; Esposito, Thomas M.; Hung, Li-Wei; Konopacky, Quinn M.; Maire, Jérôme; Marois, Christian; Metchev, Stanimir; Perrin, Marshall D.; Pueyo, Laurent; Rajan, Abhijith; Savransky, Dmitry; Wang, Jason J.; Ward-Duong, Kimberly; Wolff, Schuyler G.; Ammons, S. Mark; Hibon, Pascale; Ingraham, Patrick; Kalas, Paul; Morzinski, Katie M.; Oppenheimer, Rebecca; Rantakyearö, Fredrik T.; Thomas, Sandrine

    2016-05-01

    We present astrometric monitoring of the young exoplanet HD 95086 b obtained with the Gemini Planet Imager between 2013 and 2016. A small but significant position angle change is detected at constant separation; the orbital motion is confirmed with literature measurements. Efficient Monte Carlo techniques place preliminary constraints on the orbital parameters of HD 95086 b. With 68% confidence, a semimajor axis of {61.7}-8.4+20.7 au and an inclination of 153\\fdg {0}-13.5+9.7 are favored, with eccentricity less than 0.21. Under the assumption of a coplanar planet-disk system, the periastron of HD 95086 b is beyond 51 au with 68% confidence. Therefore, HD 95086 b cannot carve the entire gap inferred from the measured infrared excess in the SED of HD 95086. We use our sensitivity to additional planets to discuss specific scenarios presented in the literature to explain the geometry of the debris belts. We suggest that either two planets on moderately eccentric orbits or three to four planets with inhomogeneous masses and orbital properties are possible. The sensitivity to additional planetary companions within the observations presented in this study can be used to help further constrain future dynamical simulations of the planet-disk system.

  1. Secondary aerosol formation in the planetary boundary layer: observations on board on a Zeppelin and analysis by back plume approach

    NASA Astrophysics Data System (ADS)

    Kazanas, Konstantinos; Rubach, Florian; Tillmann, Ralf; Mentel, Thomas; Elbern, Hendrik; Wahner, Andreas; Zeppelin Pegasos-Team 2012

    2014-05-01

    The airship Zeppelin NT is an airborne platform capable of flying at low speed throughout the entire planetary boundary layer (PBL), thus the Zeppelin is an ideal platform to study regional processes in the lowest layers of the atmosphere with high spatial resolution. Atmospheric aerosol as a medium long lived tracer substance is of particular interest due to its influence on the global radiation budget. Due to its lifetime of up to several days secondary aerosol at a certain location can result from local production or from transport processes. Flight patterns during the PEGASOS campaign 2012 in the Po Valley included vertical profiles and transects through regions of interest We analysed one flight with North-South transects between the Apennin and San Pietro Capofiume and one flight with vertical profiles near the supersite San Pietro Capofiume to shed light on local production and transport processes. Model analyses were performed by using 12 hour back plumes for selected points of measurements to determine the regions which contributed to the air mass under observation. This analysis was done using the EURopean Air pollution Dispersion and Inverse Modelling (EURAD-IM) system. As a novel method, adjoint (backward) plumes are applied to identify the spread of originating air masses in terms of horizontal and vertical extension, and the influence of precursor species. Flight patterns include 5 points of measurement along the transect on 21.06.2012 and the lowest (ca. 80m), highest (ca. 708m), and medium height (299 to 464m) of 7 vertical profiles on the 20.06.2012.

  2. Quantifying planetary limits of Earth system processes relevant to human activity using a thermodynamic view of the whole Earth system

    NASA Astrophysics Data System (ADS)

    Kleidon, Axel

    2014-05-01

    Food, water, and energy play, obviously, a central role in maintaining human activity. In this contribution, I derive estimates for the fundamental limits on the rates by which these resources are provided by Earth system processes and the levels at which these can be used sustainably. The key idea here is that these resources are, directly or indirectly, generated out of the energy associated with the absorption of sunlight, and that the energy conversions from sunlight to other forms ultimately limit the generation of these resources. In order to derive these conversion limits, we need to trace the links between the processes that generate food, water and energy to the absorption of sunlight. The resource "food" results from biomass production by photosynthesis, which requires light and a sufficient magnitude of gas exchange of carbon dioxide at the surface, which is maintained by atmospheric motion which in turn is generated out of differential radiative heating and cooling. The resource "water" is linked to hydrologic cycling, with its magnitude being linked to the latent heat flux of the surface energy balance and water vapor transport in the atmosphere which is also driven by differential radiative heating and cooling. The availability of (renewable) energy is directly related to the generation of different forms of energy of climate system processes, such as the kinetic energy of atmospheric motion, which, again, relates to radiative heating differences. I use thermodynamics and its limits as a basis to establish the planetary limits of these processes and use a simple model to derive first-order estimates. These estimates compare quite well with observations, suggesting that this thermodynamic view of the whole Earth system provides an objective, physical basis to define and quantify planetary boundaries as well as the factors that shape these boundaries.

  3. Telepresence for planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.; Stoker, Carol R.

    1991-01-01

    Telepresence from a manned central base to unmanned rovers is discussed as a possible solution to the problem of human presence in planetary field geology. Some issues that are essential to planetary surface field work are examined with reference to results of the Amboy field study. The discussion emphasizes the exploration behavior and user-based requirements for effective telepresence systems for planetary exploration.

  4. THE THREE-DIMENSIONAL ARCHITECTURE OF THE υ ANDROMEDAE PLANETARY SYSTEM

    SciTech Connect

    Deitrick, Russell; Barnes, Rory; Quinn, Thomas R.; Luger, Rodrigo; Antonsen, Adrienne; McArthur, Barbara; Fritz Benedict, G.

    2015-01-01

    The υ Andromedae system is the first exoplanetary system to have the relative inclination of two planets' orbital planes directly measured, and therefore offers our first window into the three-dimensional configurations of planetary systems. We present, for the first time, full three-dimensional, dynamically stable configurations for the three planets of the system consistent with all observational constraints. While the outer two planets, c and d, are inclined by ∼30°, the inner planet's orbital plane has not been detected. We use N-body simulations to search for stable three-planet configurations that are consistent with the combined radial velocity and astrometric solution. We find that only 10 trials out of 1000 are robustly stable on 100 Myr timescales, or ∼8 billion orbits of planet b. Planet b's orbit must lie near the invariable plane of planets c and d, but can be either prograde or retrograde. These solutions predict that b's mass is in the range of 2-9 M {sub Jup} and has an inclination angle from the sky plane of less than 25°. Combined with brightness variations in the combined star/planet light curve ({sup p}hase curve{sup )}, our results imply that planet b's radius is ∼1.8 R {sub Jup}, relatively large for a planet of its age. However, the eccentricity of b in several of our stable solutions reaches >0.1, generating upward of 10{sup 19} W in the interior of the planet via tidal dissipation, possibly inflating the radius to an amount consistent with phase curve observations.

  5. The Three-dimensional Architecture of the υ Andromedae Planetary System

    NASA Astrophysics Data System (ADS)

    Deitrick, Russell; Barnes, Rory; McArthur, Barbara; Quinn, Thomas R.; Luger, Rodrigo; Antonsen, Adrienne; Benedict, G. Fritz

    2015-01-01

    The υ Andromedae system is the first exoplanetary system to have the relative inclination of two planets' orbital planes directly measured, and therefore offers our first window into the three-dimensional configurations of planetary systems. We present, for the first time, full three-dimensional, dynamically stable configurations for the three planets of the system consistent with all observational constraints. While the outer two planets, c and d, are inclined by ~30°, the inner planet's orbital plane has not been detected. We use N-body simulations to search for stable three-planet configurations that are consistent with the combined radial velocity and astrometric solution. We find that only 10 trials out of 1000 are robustly stable on 100 Myr timescales, or ~8 billion orbits of planet b. Planet b's orbit must lie near the invariable plane of planets c and d, but can be either prograde or retrograde. These solutions predict that b's mass is in the range of 2-9 M Jup and has an inclination angle from the sky plane of less than 25°. Combined with brightness variations in the combined star/planet light curve ("phase curve"), our results imply that planet b's radius is ~1.8 R Jup, relatively large for a planet of its age. However, the eccentricity of b in several of our stable solutions reaches >0.1, generating upward of 1019 W in the interior of the planet via tidal dissipation, possibly inflating the radius to an amount consistent with phase curve observations.

  6. Channel coding and data compression system considerations for efficient communication of planetary imaging data

    NASA Technical Reports Server (NTRS)

    Rice, R. F.

    1974-01-01

    End-to-end system considerations involving channel coding and data compression are reported which could drastically improve the efficiency in communicating pictorial information from future planetary spacecraft. In addition to presenting new and potentially significant system considerations, this report attempts to fill a need for a comprehensive tutorial which makes much of this very subject accessible to readers whose disciplines lie outside of communication theory.

  7. International Ultraviolet Explorer observations of the white dwarf nucleus of the very old, diffuse planetary nebula, IW-2

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Feibelman, Walter A.

    1993-01-01

    UV low-dispersion spectra of the central star of the faint planetary nebula, IW-2, were obtained with the IUE. The apparent large diameter of the very diffuse nebula, about half that of the moon, as seen on the Palomar Sky Survey plates by Ishida and Weinberger (1987), indicates this object to be potentially quite evolved, and nearby. The IUE spectra clearly reveal a hot stellar continuum extending over the entire wavelength range of the short-wavelength prime camera (1200-2000 A). This object with V = 17.7 +/- 0.4 is definitely one of the faintest stars ever successfully observed with the IUE. Comparisons of the IUE observed fluxes with those from white dwarf model atmospheres suggest extinction near E(B - V) = 0.45 for a white dwarf of T(eff) roughly 100,000 K. Constraints from estimates of the nebular emission measure and observed visual magnitude also argue for a white dwarf of T(eff) roughly 100,000 K at a distance of 300 to 350 pc. The nucleus of IW-2 is one of the most evolved stars to be identified with a planetary nebula.

  8. Cross-sections for planetary systems interacting with passing stars and binaries

    NASA Astrophysics Data System (ADS)

    Li, Gongjie; Adams, Fred

    2015-08-01

    Most planetary systems are formed within stellar clusters, and these environments can shape their properties. This paper considers scattering encounters between solar systems and passing cluster members, and calculates the corresponding interaction cross-sections. The target solar systems are generally assumed to have four giant planets, with a variety of starting states, including circular orbits with the semimajor axes of our planets, a more compact configuration, an ultracompact state with multiple mean motion resonances, and systems with massive planets. We then consider the effects of varying the cluster velocity dispersion, the relative importance of binaries versus single stars, different stellar host masses, and finite starting eccentricities of the planetary orbits. For each state of the initial system, we perform an ensemble of numerical scattering experiments and determine the cross-sections for eccentricity increase, inclination angle increase, planet ejection, and capture. This paper reports results from over 2 million individual scattering simulations. Using supporting analytic considerations, and fitting functions to the numerical results, we find a universal formula that gives the crosssections as a function of stellar host mass, cluster velocity dispersion, starting planetary orbital radius, and final eccentricity. The resulting cross-sections can be used in a wide variety of applications. As one example, we revisit constraints on the birth aggregate of our Solar system due to dynamical scattering and find N ≤104 (consistent with previous estimates).

  9. Observations of a two-layer soil moisture influence on surface energy dynamics and planetary boundary layer characteristics in a semiarid shrubland

    NASA Astrophysics Data System (ADS)

    Sanchez-Mejia, Zulia Mayari; Papuga, Shirley A.

    2014-01-01

    We present an observational analysis examining soil moisture control on surface energy dynamics and planetary boundary layer characteristics. Understanding soil moisture control on land-atmosphere interactions will become increasingly important as climate change continues to alter water availability. In this study, we analyzed 4 years of data from the Santa Rita Creosote Ameriflux site. We categorized our data independently in two ways: (1) wet or dry seasons and (2) one of the four cases within a two-layer soil moisture framework for the root zone based on the presence or absence of moisture in shallow (0-20 cm) and deep (20-60 cm) soil layers. Using these categorizations, we quantified the soil moisture control on surface energy dynamics and planetary boundary layer characteristics using both average responses and linear regression. Our results highlight the importance of deep soil moisture in land-atmosphere interactions. The presence of deep soil moisture decreased albedo by about 10%, and significant differences were observed in evaporative fraction even in the absence of shallow moisture. The planetary boundary layer height (PBLh) was largest when the whole soil profile was dry, decreasing by about 1 km when the whole profile was wet. Even when shallow moisture was absent but deep moisture was present the PBLh was significantly lower than when the entire profile was dry. The importance of deep moisture is likely site-specific and modulated through vegetation. Therefore, understanding these relationships also provides important insights into feedbacks between vegetation and the hydrologic cycle and their consequent influence on the climate system.

  10. Planetary Protection: X-ray Super-Flares Aid Formation of "Solar Systems"

    NASA Astrophysics Data System (ADS)

    2005-05-01

    New results from NASA's Chandra X-ray Observatory imply that X-ray super-flares torched the young Solar System. Such flares likely affected the planet-forming disk around the early Sun, and may have enhanced the survival chances of Earth. By focusing on the Orion Nebula almost continuously for 13 days, a team of scientists used Chandra to obtain the deepest X-ray observation ever taken of this or any star cluster. The Orion Nebula is the nearest rich stellar nursery, located just 1,500 light years away. These data provide an unparalleled view of 1400 young stars, 30 of which are prototypes of the early Sun. The scientists discovered that these young suns erupt in enormous flares that dwarf - in energy, size, and frequency -- anything seen from the Sun today. Illustration of Large Flares Illustration of Large Flares "We don't have a time machine to see how the young Sun behaved, but the next best thing is to observe Sun-like stars in Orion," said Scott Wolk of Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "We are getting a unique look at stars between one and 10 million years old - a time when planets form." A key result is that the more violent stars produce flares that are a hundred times as energetic as the more docile ones. This difference may specifically affect the fate of planets that are relatively small and rocky, like the Earth. "Big X-ray flares could lead to planetary systems like ours where Earth is a safe distance from the Sun," said Eric Feigelson of Penn State University in University Park, and principal investigator for the international Chandra Orion Ultradeep Project. "Stars with smaller flares, on the other hand, might end up with Earth-like planets plummeting into the star." Animation of X-ray Flares from a Young Sun Animation of X-ray Flares from a "Young Sun" According to recent theoretical work, X-ray flares can create turbulence when they strike planet-forming disks, and this affects the position of rocky planets as they

  11. Options for Affordable Planetary Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Gaddis, Steve; Porter, Ron; VanDyke, Melissa; Martin, Jim; Godfroy, Tom; Bragg-Sitton, Shannon; Garber, Anne; Pearson, Boise

    2006-01-01

    Nuclear fission systems could serve as "workhorse" power plants for the Vision for Space Exploration. In this context, the "workhorse" power plant is defined as a system that could provide power anywhere on the surface of the moon or Mars, land on the moon using a Robotic Lunar Exploration Program (RLEP)-developed lander, and would be a viable, affordable option once power requirements exceed that which can be provided by existing energy systems.

  12. Global Architecture of Planetary Systems (GAPS), a project for the whole Italian Community.

    NASA Astrophysics Data System (ADS)

    Poretti, E.; Boccato, C.; Claudi, R.; Cosentino, R.; Covino, E.; Desidera, S.; Gratton, R.; Lanza, A. F.; Maggio, A.; Micela, G.; Molinari, E.; Pagano, I.; Piotto, G.; Smareglia, R.; Sozzetti, A.; GAPS Collaboration

    The GAPS project is running since 2012 with the goal to optimize the science return of the HARPS-N instrument mounted at Telescopio Nazionale Galileo. A large number of astronomers is working together to allow the Italian community to gain an international position adequate to the HARPS-N capabilities in the exoplanetary researches. Relevant scientific results are being obtained on both the main guidelines of the collaboration, i.e., the discovery surveys and the characterization studies. The planetary system discovered around the southern component of the binary XO-2 and its characterization together with that of the system orbiting the northern component are a good example of the completeness of the topics matched by the GAPS project. The dynamics of some planetary systems are investigated by studying the Rossiter-McLaughlin effect, while host stars are characterized by means of asteroseismology and star-planet interaction.

  13. A DOUBLE PLANETARY SYSTEM AROUND THE EVOLVED INTERMEDIATE-MASS STAR HD 4732

    SciTech Connect

    Sato, Bun'ei; Omiya, Masashi; Harakawa, Hiroki; Nagasawa, Makiko; Ida, Shigeru; Wittenmyer, Robert A.; Izumiura, Hideyuki; Kambe, Eiji; Takeda, Yoichi; Kokubo, Eiichiro; Yoshida, Michitoshi; Itoh, Yoichi; Ando, Hiroyasu

    2013-01-01

    We report the detection of a double planetary system orbiting around the evolved intermediate-mass star HD 4732 from precise Doppler measurements at Okayama Astrophysical Observatory and Australian Astronomical Observatory. The star is a K0 subgiant with a mass of 1.7 M {sub Sun} and solar metallicity. The planetary system is composed of two giant planets with minimum mass of msin i = 2.4 M {sub J}, orbital period of 360.2 days and 2732 days, and eccentricity of 0.13 and 0.23, respectively. Based on dynamical stability analysis for the system, we set the upper limit on the mass of the planets to be about 28 M {sub J} (i > 5 Degree-Sign ) in the case of coplanar prograde configuration.

  14. Two Eyes on the Prize: Revealing the Complete Architectures of Planetary Systems through Transit Timing with Kepler and Spitzer

    NASA Astrophysics Data System (ADS)

    Fabrycky, Daniel; Stevenson, Kevin; Ballard, Sarah; Agol, Eric; Holman, Matthew; Bean, Jacob; Ragozzine, Darin

    2013-11-01

    The transit timing variation (TTV) technique has recently become a crucial method for determining the complete architectures (i.e., planet masses, orbital eccentricities, inclinations, and resonant properties) of extrasolar planetary systems. This technique has blossomed because of the Kepler mission's discovery of systems with multiple transiting planets and individual planets exhibiting very large TTVs. All of Kepler's results in this area so far have been for relatively short-period planets, but Kepler has also discovered dynamically-interacting systems with planets that have longer periods, similar to those of the Solar System. However, the ill-timed failure of the Kepler telescope has left us with an incomplete picture of these systems due to a lack of the required time baseline. Fortunately, Spitzer is positioned to leverage the unique potential that these planets offer, by extending the time baseline of transit observations. We propose to observe transits of seven Kepler-discovered planets in four particularly compelling systems to precisely determine their transit times. Combining the legacy Kepler transit times with the new times from Spitzer will give us the baseline that is needed to confirm and characterize these dynamically interacting systems of planets. This information will allow us to assess the complete architectures of these systems -- we will discover planets that do not transit and determine the masses and orbital properties of all the planets. For 6 planets in these systems, the TTVs will allow us to measure the planetary masses to better than 20%, which will approximately double the number of cool giant planets with known masses and radii. Several of the systems have mean-motion resonances between the planets, and characterizing these interactions yields information on the formation and migration of giant planets. The required precision and duration of these observations render Spitzer the only remaining instrument capable of such study.

  15. Evolving the Technical Infrastructure of the Planetary Data System for the 21st Century

    NASA Technical Reports Server (NTRS)

    Beebe, Reta F.; Crichton, D.; Hughes, S.; Grayzeck, E.

    2010-01-01

    The Planetary Data System (PDS) was established in 1989 as a distributed system to assure scientific oversight. Initially the PDS followed guidelines recommended by the National Academies Committee on Data Management and Computation (CODMAC, 1982) and placed emphasis on archiving validated datasets. But overtime user demands, supported by increased computing capabilities and communication methods, have placed increasing demands on the PDS. The PDS must add additional services to better enable scientific analysis within distributed environments and to ensure that those services integrate with existing systems and data. To face these challenges the Planetary Data System (PDS) must modernize its architecture and technical implementation. The PDS 2010 project addresses these challenges. As part of this project, the PDS has three fundamental project goals that include: (1) Providing more efficient client delivery of data by data providers to the PDS (2) Enabling a stable, long-term usable planetary science data archive (3) Enabling services for the data consumer to find, access and use the data they require in contemporary data formats. In order to achieve these goals, the PDS 2010 project is upgrading both the technical infrastructure and the data standards to support increased efficiency in data delivery as well as usability of the PDS. Efforts are underway to interface with missions as early as possible and to streamline the preparation and delivery of data to the PDS. Likewise, the PDS is working to define and plan for data services that will help researchers to perform analysis in cost-constrained environments. This presentation will cover the PDS 2010 project including the goals, data standards and technical implementation plans that are underway within the Planetary Data System. It will discuss the plans for moving from the current system, version PDS 3, to version PDS 4.

  16. Young planetary nebulae: Hubble Space Telescope imaging and new morphological classifications system

    NASA Astrophysics Data System (ADS)

    Sahai, R.; Villar, G. G., III; Morris, M.

    Using Hubble Space Telescope images of about 120 young planetary nebulae (PNe), most of which have not previously been published, we have devised a comprehensive morphological classification system for these objects, with minimal prejudice regarding their underlying physical cause. However, in many cases, physical causes are readily suggested by the primary geometry, along with the kinematics that have been measured in some systems. Secondary characteristics in our system such as ansae indicate the impact of a jet upon a slower-moving, prior wind; a waist is the signature of a strong equatorial concentration of matter, whether it be outflowing or in a bound Keplerian disk, and point symmetry indicates a secular trend (presumably precession in the orientation of the central driver of a rapid, collimated outflow). This system generalizes a recently-devised system for pre-planetary nebulae, which are the immediate progenitors of planetary nebulae. Unlike previous classification studies, we have focussed primarily on young PNs rather than all PNs, because the former best show the influences or symmetries imposed on them by the dominant physical processes operating at the first and primary stage of the shaping process. Older PNs develop instabilities, interact with the ambient interstellar medium, and are subject to the passage of photoionization fronts, all of which obscure the underlying symmetries and geometries imposed early on.

  17. ANCIENT PLANETARY SYSTEMS ARE ORBITING A LARGE FRACTION OF WHITE DWARF STARS

    SciTech Connect

    Zuckerman, B.; Melis, C.; Klein, B.; Jura, M.; Koester, D. E-mail: cmelis@ucsd.ed E-mail: jura@astro.ucla.ed

    2010-10-10

    Infrared studies have revealed debris likely related to planet formation in orbit around {approx}30% of youthful, intermediate mass, main-sequence stars. We present evidence, based on atmospheric pollution by various elements heavier than helium, that a comparable fraction of the white dwarf descendants of such main-sequence stars are orbited by planetary systems. These systems have survived, at least in part, through all stages of stellar evolution that precede the white dwarf. During the time interval ({approx}200 million years) that a typical polluted white dwarf in our sample has been cooling it has accreted from its planetary system the mass of one of the largest asteroids in our solar system (e.g., Vesta or Ceres). Usually, this accreted mass will be only a fraction of the total mass of rocky material that orbits these white dwarfs; for plausible planetary system configurations we estimate that this total mass is likely to be at least equal to that of the Sun's asteroid belt, and perhaps much larger. We report abundances of a suite of eight elements detected in the little studied star G241-6 that we find to be among the most heavily polluted of all moderately bright white dwarfs.

  18. FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROPERTIES OF DEBRIS DUST AROUND SOLAR-TYPE STARS

    SciTech Connect

    Carpenter, John M.; Hillenbrand, Lynne A.; Bouwman, Jeroen; Henning, Thomas; Wolf, Sebastian; Mamajek, Eric E.; Meyer, Michael R.; Kim, Jinyoung Serena; Pascucci, Ilaria; Backman, Dana E.; Hollenbach, David; Moro-Martin, Amaya; Silverstone, Murray D.; Stauffer, John R.

    2009-03-15

    We present Spitzer photometric (IRAC and MIPS) and spectroscopic (IRS low resolution) observations for 314 stars in the Formation and Evolution of Planetary Systems Legacy program. These data are used to investigate the properties and evolution of circumstellar dust around solar-type stars spanning ages from approximately 3 Myr-3 Gyr. We identify 46 sources that exhibit excess infrared emission above the stellar photosphere at 24 {mu}m, and 21 sources with excesses at 70 {mu}m. Five sources with an infrared excess have characteristics of optically thick primordial disks, while the remaining sources have properties akin to debris systems. The fraction of systems exhibiting a 24 {mu}m excess greater than 10.2% above the photosphere is 15% for ages < 300 Myr and declines to 2.7% for older ages. The upper envelope to the 70 {mu}m fractional luminosity appears to decline over a similar age range. The characteristic temperature of the debris inferred from the IRS spectra range between 60 and 180 K, with evidence for the presence of cooler dust to account for the strength of the 70 {mu}m excess emission. No strong correlation is found between dust temperature and stellar age. Comparison of the observational data with disk models containing a power-law distribution of silicate grains suggests that the typical inner-disk radius is {approx}> 10 AU. Although the interpretation is not unique, the lack of excess emission shortward of 16 {mu}m and the relatively flat distribution of the 24 {mu}m excess for ages {approx}< 300 Myr is consistent with steady-state collisional models.

  19. Space Weathering Impact on Solar System Surfaces and Planetary Mission Science

    NASA Technical Reports Server (NTRS)

    Cooper, John F.

    2011-01-01

    We often look "through a glass, darkly" at solar system bodies with tenuous atmospheres and direct surface exposure to the local space environment. Space weathering exposure acts via universal space-surface interaction processes to produce a thin patina of outer material covering, potentially obscuring endogenic surface materials of greatest interest for understanding origins and interior evolution. Examples of obscuring exogenic layers are radiation crusts on cometary nuclei and iogenic components of sulfate hydrate deposits on the trailing hemisphere of Europa. Weathering processes include plasma ion implantation into surfaces, sputtering by charged particles and solar ultraviolet photons, photolytic chemistry driven by UV irradiation, and radiolytic chemistry evolving from products of charged particle irradiation. Regolith structure from impacts, and underlying deeper structures from internal evolution, affects efficacy of certain surface interactions, e.g. sputtering as affected by porosity and surface irradiation dosage as partly attenuated by local topographic shielding. These processes should be regarded for mission science planning as potentially enabling, e.g. since direct surface sputtering, and resultant surface-bound exospheres, can provide in-situ samples of surface composition to ion and neutral mass spectrometers on orbital spacecraft. Sample return for highest sensitivity compOSitional and structural analyses at Earth will usually be precluded by limited range of surface sampling, long times for return, and high cost. Targeted advancements in instrument technology would be more cost efficient for local remote and in-situ sample analysis. More realistic laboratory simulations, e.g. for bulk samples, are needed to interpret mission science observations of weathered surfaces. Space environment effects on mission spacecraft and science operations must also be specified and mitigated from the hourly to monthly changes in space weather and from longer

  20. System control of an autonomous planetary mobile spacecraft

    NASA Technical Reports Server (NTRS)

    Dias, William C.; Zimmerman, Barbara A.

    1990-01-01

    The goal is to suggest the scheduling and control functions necessary for accomplishing mission objectives of a fairly autonomous interplanetary mobile spacecraft, while maximizing reliability. Goals are to provide an extensible, reliable system conservative in its use of on-board resources, while getting full value from subsystem autonomy, and avoiding the lure of ground micromanagement. A functional layout consisting of four basic elements is proposed: GROUND and SYSTEM EXECUTIVE system functions and RESOURCE CONTROL and ACTIVITY MANAGER subsystem functions. The system executive includes six subfunctions: SYSTEM MANAGER, SYSTEM FAULT PROTECTION, PLANNER, SCHEDULE ADAPTER, EVENT MONITOR and RESOURCE MONITOR. The full configuration is needed for autonomous operation on Moon or Mars, whereas a reduced version without the planning, schedule adaption and event monitoring functions could be appropriate for lower-autonomy use on the Moon. An implementation concept is suggested which is conservative in use of system resources and consists of modules combined with a network communications fabric. A language concept termed a scheduling calculus for rapidly performing essential on-board schedule adaption functions is introduced.

  1. Mars planetary geodesy using earth-based observations of Mars landers

    NASA Technical Reports Server (NTRS)

    Edwards, C. D., Jr.; Kahn, R. D.; Folkner, W. M.; Preston, R. A.

    1992-01-01

    The potential for earth-based radiometric observations of a network of Mars surface landers to provide accurate determination of the Mars rotational orientation in inertial space is investigated. An error budget is presented for the carrier phase data type and related to system requirements for the surface landers. Differencing the carrier phase observations for a pair of Mars landers can provide extremely high precision due to common-mode error cancellation. Results of a covariance analysis are presented which show that Mars orientation can be determined to better than 10 milliarcsec, corresponding to decimeter distances at the planet surface. Recommendations on how to incorporate these concepts into future Mars missions, such as the Mars Environmental Survey, are discussed.

  2. Family System of Advanced Charring Ablators for Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Congdon, William M.; Curry, Donald M.

    2005-01-01

    Advanced Ablators Program Objectives: 1) Flight-ready(TRL-6) ablative heat shields for deep-space missions; 2) Diversity of selection from family-system approach; 3) Minimum weight systems with high reliability; 4) Optimized formulations and processing; 5) Fully characterized properties; and 6) Low-cost manufacturing. Definition and integration of candidate lightweight structures. Test and analysis database to support flight-vehicle engineering. Results from production scale-up studies and production-cost analyses.

  3. Earth Observing System, Introduction

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Much is known about the Earth, but the unifying concepts are still only beginning to be established. An exposition of the key issues in Earth science is neither simple or concise. From the scientific questions at hand there are many interconnections among them and the view of the Earth as a system is essential to their solution. The Earth science goals for the 1990's are presented for the following areas: hydrologic cycle; biogeochemical cycles; climatological processes; geophysical processes; oceanography; and solid earth.

  4. A new evolved planetary system with water-rich debris: the tip of the iceberg?

    NASA Astrophysics Data System (ADS)

    Raddi, Roberto

    2015-12-01

    The detection of metals in white dwarf atmospheres, with a composition resembling that of Solar system asteroids, is unmistakable evidence for recent or ongoing accretion of planetary debris. We present the spectral analysis of SDSS J1242+5226, which is one of the most heavily metal-polluted white dwarfs. We detect atmospheric traces of hydrogen and eight metals, notably including oxygen. The chemical signature exhibited by the metal abundances matches the building blocks of formed planets. The excess of oxygen with respect to other trace metals, and the large hydrogen mass that we measure, suggest the likely accretion of water-rich exo-planetary debris, making this star the second of its kind. Accumulation of hydrogen with increasing cooling age, in this and other white dwarfs, exceeds the equivalent content in water-ice and hydrated minerals within the Solar system asteroid Ceres. This evidence suggests that water-rich asteroids may be common around other stars.

  5. Lunar and Planetary Science XXXV: Early Solar System Chronology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section discuss: 1) Mg Isotopic Systematics in Eutectites; 2) Diffusion Kinetics of Cr in Olivine; 3) The W Isotope Composition of Eucrite Metals; 4) U-Pb and Hf-W Chronometry; 5) Fe-60 in Silicate from a Semarkona Chondrule; 6) The Isotope Geochemistry of Nickel in Chondrites and Iron Meteorites; 7) Iron-60 in the Early Solar System; 8) Endemic Mo Isotopic Anomalies in Iron and Carbonaceous Meteorites; 9) Solar System Iron and Tungsten Isotope Abundances; 10) Li and B Isotope Variations in CAI; 11) Short-lived Radionuclides and Early Solar System Irradiation; Ru Endemic Isotope Anomalies in Meteorites; 12) Cl-36 in Ca-Al rich inclusions from a carbonaceous chondrite.

  6. Lunar and Planetary Science XXXV: Early Solar System Chronology

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The following topics were presented in this report: Iron Isotopic Fractionation During Vacuum Evaporation of Molten W?stite and Solar Compositions; Mg Isotope Ratio Zonation in CAIs - New Constraints on CAI Evolution; Sm-Nd Systematics of Chondrites; AMS Measurement of Mg-24(He-3,p)Al-26 Cross Section, Implications for the Al-26 Production in the Early Solar System; On Early Solar System Chronology: Implications of an Initially Heterogeneous Distribution of Short-lived Radionuclides; Revisiting Extraterrestrial U Isotope Ratios; Helium-Shell Nucleosynthesis and Extinct Radioactivities; High Spatial Resolution Ion Microprobe Measurements Refine Chronology of Orgueil Carbonate Formation; and Calibration of the Galactic Cosmic Ray Flux.

  7. Concept of planetary gear system to control fluid mixture ratio

    NASA Technical Reports Server (NTRS)

    Mcgroarty, J. D.

    1966-01-01

    Mechanical device senses and corrects for fluid flow departures from the selected flow ratio of two fluids. This system has been considered for control of rocket engine propellant mixture control but could find use wherever control of the flow ratio of any two fluids is desired.

  8. PLANETARY SCIENCE: Solar System Scientists Look to Find an Edge.

    PubMed

    Kerr, R A

    2000-10-27

    For several years, ever-improving telescope technology has allowed astronomers to peer farther and farther beyond Neptune to discover a rapidly increasing number of bodies littering the outer reaches of the solar system. Now many researchers agree that an end is in sight, although some remain skeptical.

  9. PLANETARY SCIENCE: Solar System Scientists Look to Find an Edge.

    PubMed

    Kerr, R A

    2000-10-27

    For several years, ever-improving telescope technology has allowed astronomers to peer farther and farther beyond Neptune to discover a rapidly increasing number of bodies littering the outer reaches of the solar system. Now many researchers agree that an end is in sight, although some remain skeptical. PMID:17780502

  10. Seabed observation & sampling system

    USGS Publications Warehouse

    Blackwood, D.; Parolski, K.

    2001-01-01

    SEABOSS has proved to be a valuable addition to the USGS data-acquisition and processing field program. It has allowed researchers to collect high-quality images and seabed samples in a timely manner. It is a simple, dependable and trouble-free system with a track record of over 3,000 deployments. When used as part of the USGS seafloor mapping acquisition, processing, and ground-truth program, SEABOSS has been invaluable in providing information quickly and efficiently, with a minimum of downtime. SEABOSS enables scientists to collect high-quality images and samples of the seabed, essential to the study of sedimentary environments and biological habitats and to the interpretation of side-scan sonar and multibeam imagery, the most common tools for mapping the seabed.

  11. Support requirements for remote sensor systems on unmanned planetary missions, phase 3

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results of a study to determine the support requirements for remote sensor systems on unmanned planetary flyby and orbiter missions are presented. Sensors and experiment groupings for selected missions are also established. Computer programs were developed to relate measurement requirements to support requirements. Support requirements were determined for sensors capable of performing required measurements at various points along the trajectories of specific selected missions.

  12. A Small Fission Power System for NASA Planetary Science Missions

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Casani, John; Elliott, John; Fleurial, Jean-Pierre; MacPherson, Duncan; Nesmith, William; Houts, Michael; Bechtel, Ryan; Werner, James; Kapernick, Rick; Poston, David; Qualls, Arthur Lou; Lipinski, Ron; Radel, Ross; Bailey, Sterling; Weitzberg, Abraham

    2011-01-01

    In March 2010, the Decadal Survey Giant Planets Panel (GPP) requested a short-turnaround study to evaluate the feasibility of a small Fission Power System (FPS) for future unspecified National Aeronautics and Space Administration (NASA) science missions. FPS technology was considered a potential option for power levels that might not be achievable with radioisotope power systems. A study plan was generated and a joint NASA and Department of Energy (DOE) study team was formed. The team developed a set of notional requirements that included 1-kW electrical output, 15-year design life, and 2020 launch availability. After completing a short round of concept screening studies, the team selected a single concept for concentrated study and analysis. The selected concept is a solid block uranium-molybdenum reactor core with heat pipe cooling and distributed thermoelectric power converters directly coupled to aluminum radiator fins. This paper presents the preliminary configuration, mass summary, and proposed development program.

  13. A Small Fission Power System for NASA Planetary Science Missions

    NASA Astrophysics Data System (ADS)

    Mason, L.; Casani, J.; Elliott, J.; Fleurial, J.-P.; Macpherson, D.; Nesmith, B.; Houts, M.; Bechtel, R.; Werner, J.; Kapernick, R.; Poston, D.; Qualls, L.; Lipinski, R.; Radel, R.; Bailey, S.; Weitzberg, A.

    In March 2010, the Decadal Survey Giant Planets Panel (GPP) requested a short-turnaround study to evaluate the feasibility of a small Fission Power System (FPS) for future unspecified National Aeronautics and Space Administration (NASA) science missions. FPS technology was considered a potential option for power levels that might not be achievable with radioisotope power systems. A study plan was generated and a joint NASA and Department of Energy (DOE) study team was formed. The team developed a set of notional requirements that included 1-kW electrical output, 15-year design life, and 2020 launch availability. After completing a short round of concept screening studies, the team selected a single concept for concentrated study and analysis. The selected concept is a solid block uranium-molybdenum reactor core with heat pipe cooling and distributed thermoelectric power converters directly coupled to aluminum radiator fins. This paper presents the preliminary configuration, mass summary, and proposed development program.

  14. Dynamical Evolution of Planetary Embryos

    NASA Technical Reports Server (NTRS)

    Wetherill, George W.

    2002-01-01

    During the past decade, progress has been made by relating the 'standard model' for the formation of planetary systems to computational and observational advances. A significant contribution to this has been provided by this grant. The consequence of this is that the rigor of the physical modeling has improved considerably. This has identified discrepancies between the predictions of the standard model and recent observations of extrasolar planets. In some cases, the discrepancies can be resolved by recognition of the stochastic nature of the planetary formation process, leading to variations in the final state of a planetary system. In other cases, it seems more likely that there are major deficiencies in the standard model, requiring our identifying variations to the model that are not so strongly constrained to our Solar System.

  15. Dynamical Simulations of Extrasolar Planetary Systems with Debris Disks Using a GPU Accelerated N-Body Code

    NASA Astrophysics Data System (ADS)

    Moore, Alexander

    This thesis begins with a description of a hybrid symplectic integrator named QYMSYM which is capable of planetary system simulations. This integrator has been programmed with the Compute Unified Device Architecture (CUDA) language which allows for implementation on Graphics Processing Units (GPUs). With the enhanced compute performance made available by this choice, QYMSYM was used to study the effects debris disks have on the dynamics of the extrasolar planetary systems HR 8799 and KOI-730. The four planet system HR 8799 was chosen because it was known to have relatively small regions of stability in orbital phase space. Using this fact, it can be shown that a simulated debris disk of moderate mass around HR 8799 can easily pull this system out of these regions of stability. In other cases it is possible to migrate the system to a region of stability - although this requires significantly more mass and a degree of fine tuning. These findings suggest that previous studies on the stability of HR 8799 which do not include a debris disk may not accurately report on the size and location of the stable orbital phase space available for the planets. This insight also calls into question the practice of using dynamical simulations to help constrain observed planetary orbital data. Next, by studying the stability of another four planet system, KOI-730, whose planets are in an 8:6:4:3 mean motion resonance, we were additionally able to determine mass constraints on debris disks for KOI-730 like Kepler objects. Noting that planet inclinations increase by a couple of degrees when migrating through a Neptune mass debris disk, and that planet candidates discovered by the Kepler Space Telescope are along the line of site, it is concluded that significant planetary migration did not occur among the Kepler objects. This result indicates that Kepler objects like KOI-730 have relatively small or stable debris disks which did not cause migration of their planets - ruling out late

  16. System for Packaging Planetary Samples for Return to Earth

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bar-Cohen, Yoseph; Backes, paul G.; Sherrit, Stewart; Bao, Xiaoqi; Scott, James S.

    2010-01-01

    A system is proposed for packaging material samples on a remote planet (especially Mars) in sealed sample tubes in preparation for later return to Earth. The sample tubes (Figure 1) would comprise (1) tubes initially having open tops and closed bottoms; (2) small, bellows-like collapsible bodies inside the tubes at their bottoms; and (3) plugs to be eventually used to close the tops of the tubes. The top inner surface of each tube would be coated with solder. The side of each plug, which would fit snugly into a tube, would feature a solder-filled ring groove. The system would include equipment for storing, manipulating, filling, and sealing the tubes. The containerization system (see Figure 2) will be organized in stations and will include: the storage station, the loading station, and the heating station. These stations can be structured in circular or linear pattern to minimize the manipulator complexity, allowing for compact design and mass efficiency. The manipulation of the sample tube between stations is done by a simple manipulator arm. The storage station contains the unloaded sample tubes and the plugs before sealing as well as the sealed sample tubes with samples after loading and sealing. The chambers at the storage station also allow for plug insertion into the sample tube. At the loading station the sample is poured or inserted into the sample tube and then the tube is topped off. At the heating station the plug is heated so the solder ring melts and seals the plug to the sample tube. The process is performed as follows: Each tube is filled or slightly overfilled with sample material and the excess sample material is wiped off the top. Then, the plug is inserted into the top section of the tube packing the sample material against the collapsible bellowslike body allowing the accommodation of the sample volume. The plug and the top of the tube are heated momentarily to melt the solder in order to seal the tube.

  17. Life support system definition study for long duration planetary missions

    NASA Technical Reports Server (NTRS)

    Slavin, T.; Meyer, P.; Reysa, R.

    1989-01-01

    The development of a mission planners life support systems (LSS) guidebook for providing data on the impact of various LSS on mission parameters such as mass, power, and volume is discussed. The factors utilized to define LSS case study mission drivers, and driver and mission impact parameter definitions are described. An example of a guidebook table for a specific set of LSS drivers is provided. Four approaches for physical/chemical closed-loop LSS are examined. A preliminary LSS guidebook for a lunar base is presented.

  18. The origin of planetary impactors in the inner solar system.

    PubMed

    Strom, Robert G; Malhotra, Renu; Ito, Takashi; Yoshida, Fumi; Kring, David A

    2005-09-16

    Insights into the history of the inner solar system can be derived from the impact cratering record of the Moon, Mars, Venus, and Mercury and from the size distributions of asteroid populations. Old craters from a unique period of heavy bombardment that ended approximately 3.8 billion years ago were made by asteroids that were dynamically ejected from the main asteroid belt, possibly due to the orbital migration of the giant planets. The impactors of the past approximately 3.8 billion years have a size distribution quite different from that of the main belt asteroids but very similar to that of near-Earth asteroids. PMID:16166515

  19. An extrasolar planetary system with three Neptune-mass planets.

    PubMed

    Lovis, Christophe; Mayor, Michel; Pepe, Francesco; Alibert, Yann; Benz, Willy; Bouchy, François; Correia, Alexandre C M; Laskar, Jacques; Mordasini, Christoph; Queloz, Didier; Santos, Nuno C; Udry, Stéphane; Bertaux, Jean-Loup; Sivan, Jean-Pierre

    2006-05-18

    Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 au (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.

  20. MarsVac: Pneumatic Sampling System for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Mungas, G.; Chu, P.; Craft, J.; Davis, K.

    2008-12-01

    We are proposing a Mars Sample Return scheme whereby a sample of regolith is acquired directly into a Mars Ascent Vehicle using a pneumatic system. Unlike prior developments that used suction to collect fines, the proposed system uses positive pressure to move the regolith. We envisage 3 pneumatic tubes to be embedded inside the 3 legs of the lander. Upon landing, the legs will burry themselves into the regolith and the tubes will fill up with regolith. With one puff of gas, the regolith can be lifted into a sampling chamber onboard of the Mars Ascent Vehicle. An additional chamber can be opened to acquire atmospheric gas and dust. The entire MSR will require 1) an actuator to open/close sampling chamber and 2) a valve to open gas cylinder. In the most recent study related to lunar excavation and funded under the NASA SBIR program we have shown that it is possible lift over 3000 grams of soil with only 1 gram of gas at 1atm. Tests conducted under Mars atmospheric pressure conditions (5 torr). In September of 2008, we will be performing tests at 1/6thg (Moon) and 1/3g (Mars) to determine mass lifting efficiencies in reduced gravities.

  1. On the Dynamical State of the HD 82943 Planetary System

    NASA Astrophysics Data System (ADS)

    Lee, Man Hoi; Tan, X.; Ford, E. B.; Payne, M. J.; Howard, A. W.; Marcy, G. W.; Johnson, J. A.; Wright, J. T.

    2011-09-01

    Previous analysis of radial velocity data of the star HD 82943 has shown that it hosts a pair of planets that are likely in 2:1 mean-motion resonance, with the orbital periods about 220 and 440 days (Lee et al. 2006). However, alternative fits that are qualitatively different have also been suggested, with the two planets in 1:1 resonance or the addition of a third planet possibly in a Laplace resonance with the other two (Gozdziewski & Konacki 2006; Beaugé et al. 2008). We present a new analysis of the HD 82943 system based on 10 years of radial velocity measurements obtained with the Keck telescope. An efficient and reliable method to explore the parameter space is needed because of the large number of model parameters and the cost of orbital integrations. We compare the results obtained using different approaches: multiple-Keplerian or N-body fitting, combined with the least-squares method on parameter grids or the Markov chain Monte Carlo method. A systematic exploration of the parameter space that combines statistical and dynamical analysis is performed to assess the viability of the different types of fits for the HD 82943 system. This work is supported in part by Hong Kong RGC grant HKU 7034/09P.

  2. Planetary missions

    NASA Technical Reports Server (NTRS)

    Mclaughlin, William I.

    1989-01-01

    The scientific and engineering aspects of near-term missions for planetary exploration are outlined. The missions include the Voyager Neptune flyby, the Magellan survey of Venus, the Ocean Topography Experiment, the Mars Observer mission, the Galileo Jupiter Orbiter and Probe, the Comet Rendezvous Asteroid Flyby mission, the Mars Rover Sample Return mission, the Cassini mission to Saturn and Titan, and the Daedalus probe to Barnard's star. The spacecraft, scientific goals, and instruments for these missions are noted.

  3. Continued development of the radio science technique as a tool for planetary and solar system exploration

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A possible alternative to a spacecraft monostatic radar system for surface studies of Titan is introduced. The results of a short study of the characteristics of a bistatic radar investigation of Titan's surface, presented in terms of the Voyager 1 flyby and a proposed Galileo orbiter of Saturn are outlined. The critical factors which need to be addressed in order to optimize the radio occultation technique for the study of clouds and cloud regions in planetary atmospheres are outlined. Potential improvements in the techniques for measuring small-scale structures in planetary atmospheres and ionospheres are addressed. The development of a technique for vastly improving the radial resolution from the radio occultation measurements of the rings of Saturn is discussed.

  4. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Rasky, Daniel; Hintze, Paul; Sibille, Laurent

    2012-01-01

    In this paper we will discuss a new mass-efficient and innovative way of protecting high-mass spacecraft during planetary Entry, Descent & Landing (EDL). Heat shields fabricated in situ can provide a thermal-protection system (TPS) for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from regolith materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Two regolith processing and manufacturing methods will be discussed: 1) Compression and sintering of the regolith to yield low density materials; 2) Formulations of a High-temperature silicone RTV (Room Temperature Vulcanizing) compound are used to bind regolith particles together. The overall positive results of torch flame impingement tests and plasma arc jet testing on the resulting samples will also be discussed.

  5. Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In Situ Fabrication

    NASA Technical Reports Server (NTRS)

    Hogue, Michael D.; Mueller, Robert P.; Rasky, Daniel J.; Hintze, Paul E.; Sibille, Laurent

    2011-01-01

    In this paper we will discuss a new mass-efficient and innovative way of protecting high-mass spacecraft during planetary Entry, Descent & Landing (EDL). Heat shields fabricated in situ can provide a thermal-protection system (TPS) for spacecraft that routinely enter a planetary atmosphere. By fabricating the heat shield with space resources from regolith materials available on moons and asteroids, it is possible to avoid launching the heat-shield mass from Earth. Three regolith processing and manufacturing methods will be discussed: 1) oxygen & metal extraction ISRU processes produce glassy melts enriched in alumina and titania, processed to obtain variable density, high melting point and heat-resistance; 2) compression and sintering of the regolith yield low density materials; 3) in-situ derived high-temperature polymers are created to bind regolith particles together, with a lower energy budget.

  6. The influence of the great inequality on the secular disturbing function of the planetary system.

    NASA Technical Reports Server (NTRS)

    Musen, P.

    1971-01-01

    This paper derives the contribution by the great inequality to the secular disturbing function of the principal planets. Andoyer's expansion of the planetary disturbing function and von Zeipel's method of eliminating the periodic terms is employed; thereby, the corrected secular disturbing function for the planetary system is derived. The conclusion is drawn that the canonicity of the equations for the secular variation of the heliocentric elements can be preserved if there be retained, in the secular disturbing function, terms only of the second and fourth order relative to the eccentricity and inclinations. The Krylov-Bogoliubov method is suggested for eliminating periodic terms, if it is desired to include the secular perturbations of the fifth and higher order in the heliocentric elements. The additional part of the secular disturbing function derived in this paper can be included in existing theories of the secular effects of principal planets.

  7. NEAT: An Astrometric Mission to Detect and Characterize Nearby Habitable Planetary Systems

    NASA Astrophysics Data System (ADS)

    Malbet, Fabien; Crouzier, Antoine; Goullioud, Renaud; Lagage, Pierre-Olivier; Léger, Alain; Shao, Mike

    2014-04-01

    Many planets have been detected so far but very few around nearby stars that could allow characterization of their atmosphere thanks to their proximity. There are known exoplanets around less than 8.3% of the FGK stars of the Solar neighborhood (d<20 pc) and the vast majority of them are giant planets. Within the ESA Cosmic Vision 2015-2025 plan, the scientific goal of the NEAT (Nearby Earth Astrometric Telescope) mission is to detect and characterize planetary systems around these nearby stars in an exhaustive way down to 1 Earth-mass in the habitable zone. This survey would provide the actual planetary masses, the full characterization of the orbits including their inclination, for all the components of the planetary system down to the Earth-mass limit. NEAT will continue the work performed by Hipparcos and Gaia by reaching a precision that is improved by two orders of magnitude on pointed targets compared to Gaia. We present the free-flyer concept that has been submitted to the 2010 ESA call for M3 missions with two satellites flying in formation 40m apart.

  8. Systemic effects of geoengineering by terrestrial carbon dioxide removal on carbon related planetary boundaries

    NASA Astrophysics Data System (ADS)

    Heck, Vera; Donges, Jonathan; Lucht, Wolfgang

    2015-04-01

    The planetary boundaries framework as proposed by Rockström et al. (2009) provides guidelines for ecological boundaries, the transgression of which is likely to result in a shift of Earth system functioning away from the relatively stable Holocene state. As the climate change boundary is already close to be transgressed, several geoengineering (GE) methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control the Earth's energy balance. One of the proposed GE methods is carbon extraction from the atmosphere via biological carbon sequestration. In case mitigation efforts fail to substantially reduce greenhouse gas emissions, this form of GE could act as potential measure to reduce atmospheric carbon dioxide concentrations. We here study the possible influences of human interactions in the Earth system on carbon related planetary boundaries in the form of geoengineering (terrestrial carbon dioxide removal). We use a conceptual model specifically designed to investigate fundamental carbon feedbacks between land, ocean and atmosphere (Anderies et al., 2013) and modify it to include an additional geoengineering component. With that we analyze the existence and stability of a safe operating space for humanity, which is here conceptualized in three of the 9 proposed dimensions, namely climate change, ocean acidification and land-use. References: J. M. Anderies et al., The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries. Environ. Res. Lett., 8(4):044048 (2013) J. Rockström et al., A safe operating space for humanity. Nature 461 (7263), 472-475 (2009)

  9. Trends in Planetary Data Analysis. Executive summary of the Planetary Data Workshop

    NASA Technical Reports Server (NTRS)

    Evans, N.

    1984-01-01

    Planetary data include non-imaging remote sensing data, which includes spectrometric, radiometric, and polarimetric remote sensing observations. Also included are in-situ, radio/radar data, and Earth based observation. Also discussed is development of a planetary data system. A catalog to identify observations will be the initial entry point for all levels of users into the data system. There are seven distinct data support services: encyclopedia, data index, data inventory, browse, search, sample, and acquire. Data systems for planetary science users must provide access to data, process, store, and display data. Two standards will be incorporated into the planetary data system: Standard communications protocol and Standard format data unit. The data system configuration must combine a distributed system with those of a centralized system. Fiscal constraints have made prioritization important. Activities include saving previous mission data, planning/cost analysis, and publishing of proceedings.

  10. Variability of Elemental Abundances in the Local Neighborhood and its Effect on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Pagano, Michael

    As the detection of planets become commonplace around our neighboring stars, scientists can now begin exploring their possible properties and habitability. Using statistical analysis I determine a true range of elemental compositions amongst local stars and how this variation could affect possible planetary systems. Through calculating and analyzing the variation in elemental abundances of nearby stars, the actual range in stellar abundances can be determined using statistical methods. This research emphasizes the diversity of stellar elemental abundances and how that could affect the environment from which planets form. An intrinsic variation has been found to exist for almost all of the elements studied by most abundance-finding groups. Specifically, this research determines abundances for a set of 458 F, G, and K stars from spectroscopic planet hunting surveys for 27 elements, including: C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ba, La, Ce, Nd, Eu, and Hf. Abundances of the elements in many known exosolar planet host stars are calculated for the purpose investigating new ways to visualize how stellar abundances could affect planetary systems, planetary formation, and mineralogy. I explore the Mg/Si and C/O ratios as well as place these abundances on ternary diagrams with Fe. Lastly, I emphasize the unusual stellar abundance of tau Ceti. tau Ceti is measured to have 5 planets of Super-Earth masses orbiting in near habitable zone distances. Spectroscopic analysis finds that the Mg/Si ratio is extremely high (˜ 2) for this star, which could lead to alterations in planetary properties. tau Ceti's low metallicity and oxygen abundance account for a change in the location of the traditional habitable zone, which helps clarify a new definition of habitable planets.

  11. A Ground-Based Profiling Differential Absorption LIDAR System for Measuring CO2 in the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Andrews, Arlyn E.; Burris, John F.; Abshire, James B.; Krainak, Michael A.; Riris, Haris; Sun, Xiao-Li; Collatz, G. James

    2002-01-01

    Ground-based LIDAR observations can potentially provide continuous profiles of CO2 through the planetary boundary layer and into the free troposphere. We will present initial atmospheric measurements from a prototype system that is based on components developed by the telecommunications industry. Preliminary measurements and instrument performance calculations indicate that an optimized differential absorption LIDAR (DIAL) system will be capable of providing continuous hourly averaged profiles with 250m vertical resolution and better than 1 ppm precision at 1 km. Precision increases (decreases) at lower (higher) altitudes and is directly proportional to altitude resolution and acquisition time. Thus, precision can be improved if temporal or vertical resolution is sacrificed. Our approach measures absorption by CO2 of pulsed laser light at 1.6 microns backscattered from atmospheric aerosols. Aerosol concentrations in the planetary boundary layer are relatively high and are expected to provide adequate signal returns for the desired resolution. The long-term goal of the project is to develop a rugged, autonomous system using only commercially available components that can be replicated inexpensively for deployment in a monitoring network.

  12. The Limits of Organic Life in Planetary Systems

    NASA Astrophysics Data System (ADS)

    Baross, John

    2006-12-01

    Since Earth is the only planet that unequivocally supports living ecosystems, it is logical to first look for life elsewhere that resembles Earth-life. Earth-life requires liquid water, either light or a chemical energy source, other nutrients including nitrogen, phosphorus, sulfur, iron and a large number of elements in trace concentration. Additionally, chemical disequilibria are required to fuel the maintenance and growth of organisms. Thus the search for extraterrestrial life is focused on planets and moons that currently have or have had liquid water; that have a history of geological and geophysical properties that favor the synthesis of organic compounds and their polymerization; and that provide the energy sources and nutrients needed to sustain life. However, inasmuch as we can use Earth-life as a point of comparison, we are also limited by our almost complete lack of data about possible alternative biochemistries. We begin any extraterrestrial search by assuming carbon-based life. The key arguments in favor of carbon-based life are the ubiquity of organic compounds in the universe and the ability of carbon to form stable compounds with a high number of different inorganic elements, thus creating the wide variety of structural, catalytic and informational macromolecules that make up Earth-life. But how versatile and adequate is the carbon-based life model to environmental conditions that have either not been adequately explored on Earth, or that extend beyond the bounds found on Earth? Are there alternate carbon-based biochemistries that would allow organisms to exist under more extreme conditions than can Earth-life? What are the limitations to evolutionary innovations in carbon-based life? These questions will be discussed with emphasis on our search for life on planets and moons that have environmental conditions that are outside the bounds of Earth life including Titan, deep subsurface of Europa and Earth-like planets in other solar systems.

  13. The Aula Espazio Observatory At The Universidad Del Pais Vasco (Spain): Planetary Observations For Graduate And Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Perez-Hoyos, Santiago; Sanchez-Lavega, A.; Hueso, R.; Rojas, J. F.

    2010-10-01

    The Aula Espazio Gela is a facility at the School of Technical Engineering of the Universidad del Pais Vasco (Bilbao, Spain) dedicated to the education of undergarduated and gratuated students in the research and technology of space science activities. It also promotes the collaboration between the University and industrial spatial sector. One of the main elements of this facility is an astronomical observatory that is oriented to the activities of the students of the Master in Space Science and Technology. The main instrument is a 50 cm aperture Dall-Kirham telescope with equatorial mount completely robotized that includes different CCD cameras. Here we present some of the projects developed by graduate and under-graduate students in the field of the solar system. Explicitly we present some studies dedicated to the studies of planetary atmospheres and to acquire skills on the software management of planetary images. Aknowledgements: This project is supported by the Dpto. Innovación y Promoción Económica de la Diputación Foral de Bizkaia (Basque Country).

  14. Can the solar system planetary motion be used to forecast the multidecadal variability of climate?

    NASA Astrophysics Data System (ADS)

    Scafetta, N.

    2008-12-01

    Global warming has been and will be significantly modified by natural decadal-scale climate variability. For example, the pacific decadal oscillation (PDO) has entered a cool phase that is expected to induce a global cooling in the following two decades. A cooling of the global climate, not predicted by the Intergovernmental Panel on Climate Change (IPCC) projections, has been observed since 2002. The causes of the natural decadal and multidecadal scale climate fluctuations remain unexplained. This makes particularly problematic the evaluation of the climate models and of their theoretical forecasts for the 21st century. Here I investigate whether multidecadal internal climate variations are extraterrestrially induced. The movement of the Sun relative to the center of mass of the solar system (CMSS) is used as a proxy of the extraterrestrial forcing. I show that large natural climate variations with peak-to-trough amplitude of about 0.1 oC and 0.24 oC and with periods of about 20 and 60 years, respectively, match equivalent oscillations found in the dynamics of the Sun relative to the CMSS. Several other frequency components match as well. Thus, the solar planetary index can be used to forecast multidecadal natural climate oscillations for the 21st century. These projections indicate that climate will stabilize or cool until 2030. An indirect consequence of these findings is that at least 60% of the global warming observed since 1975 has been induced by the combined effect of the above two natural climate oscillations. This suggests that the anthropogenic effect on global warming has been exaggerated by the climate model simulations and projections published by the IPCC.

  15. Dynamics of the 3/1 planetary mean-motion resonance: an application to the HD60532 b-c planetary system

    NASA Astrophysics Data System (ADS)

    Alves, A. J.; Michtchenko, T. A.; Tadeu dos Santos, M.

    2016-03-01

    In this paper, we use a semi-analytical approach to analyze the global structure of the phase space of the planar planetary 3/1 mean-motion resonance. The case where the outer planet is more massive than its inner companion is considered. We show that the resonant dynamics can be described using two fundamental parameters, the total angular momentum and the spacing parameter. The topology of the Hamiltonian function describing the resonant behaviour is investigated on a large domain of the phase space without time-expensive numerical integrations of the equations of motion, and without any restriction on the magnitude of the planetary eccentricities. The families of the Apsidal Corotation Resonances (ACR) parameterized by the planetary mass ratio are obtained and their stability is analyzed. The main dynamical features in the domains around the ACR are also investigated in detail by means of spectral analysis techniques, which allow us to detect the regions of different regimes of motion of resonant systems. The construction of dynamical maps for various values of the total angular momentum shows the evolution of domains of stable motion with the eccentricities, identifying possible configurations suitable for exoplanetary systems.

  16. The Key Roles of the Gas Disk in the Formation and Evolution of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Liu, H. G.

    2012-11-01

    The detection of exoplanets becomes hotter and hotter, especially the detection of Earth-like exoplanets. With the accumulation of observational data and the progress of Kepler mission of NASA, more exoplanets can be found or confirmed. The understanding of formation and evolution of exoplanets will be largely improved when much more samples are provided. According to the acknowledged theories of planet formation, the protoplanet is formed in the protoplanetary disc. Due to the interactions between the disc and protoplanets, the property of the disc plays a key role during the formation and evolution of planets. We investigate the later stage of planet formation, when the Mars-sized cores appear and the gas disc has not been depleted yet. Interactions among the planetary cores can excite their orbital eccentricities, accelerate their mergings, and thus sculpture their final orbital architecture. The interactions between the cores and gas discs lead to the type I and II migrations as well as the eccentricity damping. However, the rates of type I, II migrations are still uncertain in different disc models. In chapter 1, we introduce the main methods of exoplanet detection and the achievements of Kepler space telescope. We also list some examples of exoplanetary systems to show their diversity. The acknowledged theories of planet formation, including the gravitational instability and core accretion scenarios, are presented in detail in chapter 2. The studies in chapter 3 contribute to the final assembling of planetary systems with N-body simulations, including the type I and II migrations of planets, the eccentricity damping, and the gas accretion of massive cores in a viscous disk. In order to compare the observations in statistics, we use the Monte Carlo method to set a distribution of different discs. Our results of simulations interpret the distribution of exoplanets and may be a guidance for the further observations. In chapter 5, considering the uncertainty of

  17. Planetary Society

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Carl Sagan, Bruce Murray and Louis Friedman founded the non-profit Planetary Society in 1979 to advance the exploration of the solar system and to continue the search for extraterrestrial life. The Society has its headquarters in Pasadena, California, but is international in scope, with 100 000 members worldwide, making it the largest space interest group in the world. The Society funds a var...

  18. Measurement of Spin-Orbit Alignment in an Extrasolar Planetary System

    NASA Astrophysics Data System (ADS)

    Winn, Joshua N.; Noyes, Robert W.; Holman, Matthew J.; Charbonneau, David; Ohta, Yasuhiro; Taruya, Atsushi; Suto, Yasushi; Narita, Norio; Turner, Edwin L.; Johnson, John A.; Marcy, Geoffrey W.; Butler, R. Paul; Vogt, Steven S.

    2005-10-01

    We determine the stellar, planetary, and orbital properties of the transiting planetary system HD 209458 through a joint analysis of high-precision radial velocities, photometry, and timing of the secondary eclipse. Of primary interest is the strong detection of the Rossiter-McLaughlin effect, the alteration of photospheric line profiles that occurs because the planet occults part of the rotating surface of the star. We develop a new technique for modeling this effect and use it to determine the inclination of the planetary orbit relative to the apparent stellar equator (λ=-4.4d+/-1.4d), and the line-of-sight rotation speed of the star (vsinI*=4.70+/-0.16 km s-1). The uncertainty in these quantities has been reduced by an order of magnitude relative to the pioneering measurements by Queloz and collaborators. The small but nonzero misalignment is probably a relic of the planet formation epoch, because the expected timescale for tidal coplanarization is larger than the age of the star. Our determination of vsinI* is a rare case in which rotational line broadening has been isolated from other broadening mechanisms.

  19. NASA's Planetary Data System: Support for the Delivery of Derived Data Sets at the Atmospheres Node

    NASA Astrophysics Data System (ADS)

    Chanover, Nancy J.; Beebe, Reta; Neakrase, Lynn; Huber, Lyle; Rees, Shannon; Hornung, Danae

    2015-11-01

    NASA’s Planetary Data System is charged with archiving electronic data products from NASA planetary missions that are sponsored by NASA’s Science Mission Directorate. This archive, currently organized by science disciplines, uses standards for describing and storing data that are designed to enable future scientists who are unfamiliar with the original experiments to analyze the data, and to do this using a variety of computer platforms, with no additional support. These standards address the data structure, description contents, and media design. The new requirement in the NASA ROSES-2015 Research Announcement to include a Data Management Plan will result in an increase in the number of derived data sets that are being delivered to the PDS. These data sets may come from the Planetary Data Archiving, Restoration and Tools (PDART) program, other Data Analysis Programs (DAPs) or be volunteered by individuals who are publishing the results of their analysis. In response to this increase, the PDS Atmospheres Node is developing a set of guidelines and user tools to make the process of archiving these derived data products more efficient. Here we provide a description of Atmospheres Node resources, including a letter of support for the proposal stage, a communication schedule for the planned archive effort, product label samples and templates in extensible markup language (XML), documentation templates, and validation tools necessary for producing a PDS4-compliant derived data bundle(s) efficiently and accurately.

  20. Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2011-01-01

    Systems analysis of a planetary entry (SAPE), descent, and landing (EDL) is a multidisciplinary activity in nature. SAPE improves the performance of the systems analysis team by automating and streamlining the process, and this improvement can reduce the errors that stem from manual data transfer among discipline experts. SAPE is a multidisciplinary tool for systems analysis of planetary EDL for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. It performs EDL systems analysis for any planet, operates cross-platform (i.e., Windows, Mac, and Linux operating systems), uses existing software components and open-source software to avoid software licensing issues, performs low-fidelity systems analysis in one hour on a computer that is comparable to an average laptop, and keeps discipline experts in the analysis loop. SAPE uses Python, a platform-independent, open-source language, for integration and for the user interface. Development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE currently includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and interface for structural sizing.

  1. Exploring our outer solar system - The Giant Planet System Observers

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.; Sittler, E. C., Jr.; Sturner, S. J.; Pitman, J. T.

    As space-faring peoples now work together to plan and implement future missions that robotically prepare for landing humans to explore the Moon, and later Mars, the time is right to develop evolutionary approaches for extending this next generation of exploration beyond Earth's terrestrial planet neighbors to the realm of the giant planets. And while initial fly-by missions have been hugely successful in providing exploratory surveys of what lies beyond Mars, we need to consider now what robotic precursor mission capabilities we need to emplace that prepare us properly, and comprehensively, for long-term robotic exploration, and eventual human habitation, beyond Mars to the outer reaches of our solar system. To develop practical strategies that can establish prioritized capabilities, and then develop a means for achieving those capabilities within realistic budget and technology considerations, and in reasonable timeframes, is our challenge. We suggest one component of such an approach to future outer planets exploration is a series of Giant Planets System Observer (GPSO) missions that provide for long- duration observations, monitoring, and relay functions to help advance our understanding of the outer planets and thereby enable a sound basis for planning their eventual exploration by humans. We envision these missions as being comparable to taking Hubble-class remote-sensing facilities, along with the space physics capabilities of long-lived geospace and heliospheric missions, to the giant planet systems and dedicating long observing lifetimes (HST, 16 yr.; Voyagers, 29 yr.) to the exhaustive study and characterization of those systems. GPSO missions could feature 20-yr+ extended mission lifetimes, direct inject trajectories to maximize useful lifetime on target, placement strategies that take advantage of natural environment shielding (e.g., Ganymede magnetic field) where possible, orbit designs having favorable planetary system viewing geometries, comprehensive

  2. Accretion of planetary matter and the lithium problem in the 16 Cygni stellar system

    NASA Astrophysics Data System (ADS)

    Deal, Morgan; Richard, Olivier; Vauclair, Sylvie

    2015-12-01

    Context. The 16 Cygni system is composed of two solar analogues with similar masses and ages. A red dwarf is in orbit around 16 Cygni A, and 16 Cygni B hosts a giant planet. The abundances of heavy elements are similar in the two stars, but lithium is much more depleted in 16 Cygni B than in 16 Cygni A, by a factor of at least 4.7. Aims: The interest of studying the 16 Cygni system is that the two star have the same age and the same initial composition. The differences currently observed must be due to their different evolution, related to the fact that one of them hosts a planet while the other does not. Methods: We computed models of the two stars that precisely fit the observed seismic frequencies. We used the Toulouse Geneva Evolution Code (TGEC), which includes complete atomic diffusion (including radiative accelerations). We compared the predicted surface abundances with the spectroscopic observations and confirm that another mixing process is needed. We then included the effect of accretion-induced fingering convection. Results: The accretion of planetary matter does not change the metal abundances but leads to lithium destruction, which depends upon the accreted mass. A fraction of the Earth's mass is enough to explain the lithium surface abundances of 16 Cygni B. We also checked the beryllium abundances. Conclusions: In the case of accretion of heavy matter onto stellar surfaces, the accreted heavy elements do not remain in the outer convective zones, but are mixed downwards by fingering convection induced by the unstable μ-gradient. Depending on the accreted mass, this mixing process may transport lithium down to its nuclear destruction layers and lead to an extra lithium depletion at the surface. A fraction of the Earth's mass is enough to explain a lithium ratio of 4.7 in the 16 Cygni system. In this case beryllium is not destroyed. Such a process may be frequent in planet-hosting stars and should be studied in other cases in the future.

  3. Planetary Camera observations of NGC 1275 - Discovery of a central population of compact massive blue star clusters

    NASA Technical Reports Server (NTRS)

    Holtzman, Jon A.; Faber, S. M.; Shaya, Edward J.; Lauer, Tod R.; Groth, Edward J.; Hunter, Deidre A.; Baum, William A.; Ewald, S. P.; Hester, J. J.; Light, Robert M.

    1992-01-01

    The discovery of a population of bright blue pointlike sources within 5 kpc of the nucleus of NGC 1275 using HST Planetary Camera observations is reported. The typical object has MV of about -12 to -14. They are all blue, with V - R of less than about 0.3. The color distribution and lack of excess H-alpha emission are consistent with nearly all being continuum sources. Many sources are unresolved even with the HST and consequently have sizes of less than about 15 pc. It is suggested that these are young star clusters that will evolve to look like globular clusters. They are bluer than any clusters seen in the Milky Way or M87, and brighter than the blue clusters seen in the LMC. Ages of several hundred million years or less and corresponding masses of 10 exp 5 - 10 exp 8 solar masses are derived.

  4. Mars Express observations of high altitude planetary ion beams and their relation to the "energetic plume" loss channel

    NASA Astrophysics Data System (ADS)

    Liemohn, Michael W.; Johnson, Blake C.; Fränz, Markus; Barabash, Stas

    2014-12-01

    This study presents observational evidence of high-energy (ions >2 keV) beams of planetary ions above Mars' induced magnetospheric boundary (IMB) and relates them with the energetic plume loss channel calculated from numerical models. A systematic search of the Mars Express (MEX) ion data using an orbit filtering criteria is described, using magnetometer data from Mars Global Surveyor (MGS) to determine the solar wind motional electric field (Esw) direction. Two levels of statistical survey are presented, one focused on times when the MEX orbit was directly in line with the Esw and another for all angles between the MEX location and the Esw. For the first study, within the 3 year overlap of MGS and MEX, nine brief intervals were found with clear and unambiguous high-energy O+ observations consistent with the energetic plume loss channel. The second survey used a point-by-point determination of MEX relative to the E-field and contained many thousands of 192 s measurements. This study yielded only a weak indication for an Esw-aligned plume. Furthermore, the y-z components of the weighted average velocities in the bins of this y-z spatial domain survey do not systematically point in the Esw direction. The first survey implies the existence of this plume and shows that its characteristics are seemingly consistent with the expected energy and flight direction from numerical studies; the second study softens the finding and demonstrates that there are many planetary ions beyond the IMB moving in unexpected directions. Several possible explanations for this discrepancy are discussed.

  5. Postdispersion system for astronomical observations with Fourier transform spectrometers in the thermal infrared

    NASA Technical Reports Server (NTRS)

    Wiedermann, Guenter; Jennings, D. E.; Hanel, R. H.; Kunde, V. G.; Moseley, S. H.

    1989-01-01

    A postdispersion system for astronomical observations with Fourier transform spectrometers in the thermal infrared has been developed which improves the sensitivity of radiation noise limited observations by reducing the spectral range incident on the detector. Special attention is given to the first-generation blocked impurity band detector. Planetary, solar, and stellar observations are reported.

  6. The Elephant in the Room: Effects of Distant, Massive Companions on Planetary System Architectures

    NASA Astrophysics Data System (ADS)

    Knutson, Heather

    2016-06-01

    Over the past two decades ongoing radial velocity and transit surveys have been astoundingly successful in detecting thousands of new planetary systems around nearby stars. These systems include apparently single gas giant planets on short period orbits, closely packed systems of up to 5-6 “super-Earths”, and relatively empty systems with either one or no small planets interior to 0.5 AU. Despite our success in cataloguing the diverse properties of these systems, we are still struggling to develop narratives that can explain their apparently divergent formation and migration histories. This is in large part due to our lack of knowledge about the potential presence of massive outer companions in these systems, which can play a pivotal role in the shaping the final properties of the inner planets. In my talk I will discuss current efforts to complete the census for known planetary systems by searching for outer gas giant planets with long term radial velocity monitoring and wide separation stellar companions with high contrast imaging and spectroscopy. I will then demonstrate how statistical constraints on this population of outer companions can be used to test current theories for planet formation and migration.

  7. PC Software graphics tool for conceptual design of space/planetary electrical power systems

    NASA Technical Reports Server (NTRS)

    Truong, Long V.

    1995-01-01

    This paper describes the Decision Support System (DSS), a personal computer software graphics tool for designing conceptual space and/or planetary electrical power systems. By using the DSS, users can obtain desirable system design and operating parameters, such as system weight, electrical distribution efficiency, and bus power. With this tool, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. The DSS is a user-friendly, menu-driven tool with online help and a custom graphical user interface. An example design and results are illustrated for a typical space power system with multiple types of power sources, frequencies, energy storage systems, and loads.

  8. Technology status of a fluorine-hydrazine propulsion system for planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Bond, D. L.

    1979-01-01

    The basic technology exists and a system integration program is well underway to allow incorporation of a fluorine-hydrazine propulsion system into future spacecraft required for unmanned planetary missions. These spacecraft would be inserted in earth orbit using the Space Transportation System Shuttle and given its initial sendoff by the Inertial Upper Stage (IUS). The design of a typical propulsion system, assessment of thermal and structural impacts on a selected spacecraft and comparative studies with conventional propulsion systems have been completed. A major part of the current JPL Program involves assembly of a 3650 N thrust demonstration system using titanium tanks, flight weight components and structure. This system will be used to demonstrate the state-of-the-art throughout a representative flight system's qualification.

  9. Planetary Sciences

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Lissauer, Jack J.

    2015-01-01

    1. Introduction; 2. Dynamics; 3. Solar heating and energy transport; 4. Planetary atmospheres; 5. Planetary surfaces; 6. Planetary interiors; 7. Magnetic fields and plasmas; 8. Meteorites; 9. Minor planets; 10. Comets; 11. Planetary rings; 12. Extrasolar planets; 13. Planet formation; 14. Planets and life; Appendixes; References; Index.

  10. The issue of development and validation of a planetary balloon system

    NASA Astrophysics Data System (ADS)

    Vargas, André

    When we talk of planetary balloon system, everyone think about the free flight of the balloon in the atmosphere of the planet, following the winds and currently being achieving its scientific mission. But before the scientific mission flight, a subsystem, in the descent module, is manda-tory for the set up of the balloon in flight conditions from a folded configuration used during the interplanetary transfer. To develop such a system, the first step is to find or produce material that will enable the manufacture of a balloon capable of withstanding the environment of the planet, and which fulfills the requirements of the scientific mission in terms of flight profile, payload mass and flight duration. The second step consists in the development and validation of the subsystem, in the descent module, which permits the deployment of the aerostat and the inflation of the balloon, during the entry in the atmosphere of the planet, after main parachute stabilization and, of course, before landing on the surface of the planet. An important issue is relative to the strategy for the validations of deployment inflation phase, testing on the Earth, whose characteristics, as atmosphere (pressure temperature profile, composition, heat-ing fluxes) and gravity, are usually quite unlike that the planet. For the system validation, it is necessary to develop models (thermodynamic for flight phase and mechanics kinematic for deployment inflation phase). After the definition of similarity criteria between the planet and the Earth, these models will permit to transpose the test results on Earth to predict and to validate the behavior of the balloon system on the planet. The purpose of this paper is to pro-vide a brief overview of the issues relative to the development and the validation of a planetary balloon system. We have to deal with a lot of technical challenges as long duration folding of the balloon in its container, aerostat deployment and balloon inflation, and separations

  11. The CoRoT-7 planetary system: two orbiting super-Earths

    NASA Astrophysics Data System (ADS)

    Queloz, D.; Bouchy, F.; Moutou, C.; Hatzes, A.; Hébrard, G.; Alonso, R.; Auvergne, M.; Baglin, A.; Barbieri, M.; Barge, P.; Benz, W.; Bordé, P.; Deeg, H. J.; Deleuil, M.; Dvorak, R.; Erikson, A.; Ferraz Mello, S.; Fridlund, M.; Gandolfi, D.; Gillon, M.; Guenther, E.; Guillot, T.; Jorda, L.; Hartmann, M.; Lammer, H.; Léger, A.; Llebaria, A.; Lovis, C.; Magain, P.; Mayor, M.; Mazeh, T.; Ollivier, M.; Pätzold, M.; Pepe, F.; Rauer, H.; Rouan, D.; Schneider, J.; Segransan, D.; Udry, S.; Wuchterl, G.

    2009-10-01

    is ρ=5.6± 1.3 g cm-3, similar to the Earth. The CoRoT-7 planetary system provides us with the first insight into the physical nature of short period super-Earth planets recently detected by radial velocity surveys. These planets may be denser than Neptune and therefore likely made of rocks like the Earth, or a mi