Sample records for observed angular dependence

  1. Measures and models for angular correlation and angular-linear correlation. [correlation of random variables

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.; Wehrly, T.

    1976-01-01

    Population models for dependence between two angular measurements and for dependence between an angular and a linear observation are proposed. The method of canonical correlations first leads to new population and sample measures of dependence in this latter situation. An example relating wind direction to the level of a pollutant is given. Next, applied to pairs of angular measurements, the method yields previously proposed sample measures in some special cases and a new sample measure in general.

  2. Giant angular dependence of electromagnetic induced transparency in THz metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Changji; Huang, Yuanyuan; Yao, Zehan; Yu, Leilei; Jin, Yanping; Xu, Xinlong

    2018-02-01

    The giant electromagnetic induced transparency (EIT) phenomenon is observed in symmetrical metamaterials with angular dependence in the THz region. This is due to the asymmetrical electromagnetic field distribution on the surface of the metamaterials, which induces asymmetric current distribution. Blueshift with the increase of the unit cell period has been observed, which is due to the unusual electromagnetic interaction between units at oblique incidence. This EIT demonstrates an angular dependent high Q-factor, which is sensitive to the dielectric environment. The angle-induced EIT effect could pave the way for future tunable sensing applications in the THz region.

  3. Dependencies of lepton angular distribution coefficients on the transverse momentum and rapidity of Z bosons produced in p p collisions at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Wen -Chen; McClellan, Randall Evan; Peng, Jen -Chieh

    Here, high precision data of lepton angular distributions formore » $$\\gamma^*/Z$$ production in $pp$ collisions at the LHC, covering broad ranges of dilepton transverse momenta ($$q_T$$) and rapidity ($y$), were recently reported. Strong $$q_T$$ dependencies were observed for several angular distribution coefficients, $$A_i$$, including $$A_0 - A_4$$. Significant $y$ dependencies were also found for the coefficients $$A_1$$, $$A_3$$ and $$A_4$$, while $$A_0$$ and $$A_2$$ exhibit very weak rapidity dependence. Using an intuitive geometric picture we show that the $$q_T$$ and $y$ dependencies of the angular distributions coefficients can be well described.« less

  4. Dependencies of lepton angular distribution coefficients on the transverse momentum and rapidity of Z bosons produced in p p collisions at the LHC

    DOE PAGES

    Chang, Wen -Chen; McClellan, Randall Evan; Peng, Jen -Chieh; ...

    2017-09-21

    Here, high precision data of lepton angular distributions formore » $$\\gamma^*/Z$$ production in $pp$ collisions at the LHC, covering broad ranges of dilepton transverse momenta ($$q_T$$) and rapidity ($y$), were recently reported. Strong $$q_T$$ dependencies were observed for several angular distribution coefficients, $$A_i$$, including $$A_0 - A_4$$. Significant $y$ dependencies were also found for the coefficients $$A_1$$, $$A_3$$ and $$A_4$$, while $$A_0$$ and $$A_2$$ exhibit very weak rapidity dependence. Using an intuitive geometric picture we show that the $$q_T$$ and $y$ dependencies of the angular distributions coefficients can be well described.« less

  5. Angular dependence of spin-orbit spin-transfer torques

    NASA Astrophysics Data System (ADS)

    Lee, Ki-Seung; Go, Dongwook; Manchon, Aurélien; Haney, Paul M.; Stiles, M. D.; Lee, Hyun-Woo; Lee, Kyung-Jin

    2015-04-01

    In ferromagnet/heavy-metal bilayers, an in-plane current gives rise to spin-orbit spin-transfer torque, which is usually decomposed into fieldlike and dampinglike torques. For two-dimensional free-electron and tight-binding models with Rashba spin-orbit coupling, the fieldlike torque acquires nontrivial dependence on the magnetization direction when the Rashba spin-orbit coupling becomes comparable to the exchange interaction. This nontrivial angular dependence of the fieldlike torque is related to the Fermi surface distortion, determined by the ratio of the Rashba spin-orbit coupling to the exchange interaction. On the other hand, the dampinglike torque acquires nontrivial angular dependence when the Rashba spin-orbit coupling is comparable to or stronger than the exchange interaction. It is related to the combined effects of the Fermi surface distortion and the Fermi sea contribution. The angular dependence is consistent with experimental observations and can be important to understand magnetization dynamics induced by spin-orbit spin-transfer torques.

  6. Rigidly rotating zero-angular-momentum observer surfaces in the Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Frolov, Andrei V.; Frolov, Valeri P.

    2014-12-01

    A stationary observer in the Kerr spacetime has zero angular momentum if their angular velocity ω has a particular value, which depends on the position of the observer. Worldlines of such zero-angular-momentum observers (ZAMOs) with the same value of the angular velocity ω form a three-dimensional surface, which has the property that the Killing vectors generating time translation and rotation are tangent to it. We call such a surface a rigidly rotating ZAMO surface. This definition allows for a natural generalization to the surfaces inside the black hole, where ZAMO trajectories formally become spacelike. A general property of such a surface is that there exist linear combinations of the Killing vectors with constant coefficients which make them orthogonal on it. In this paper we discuss properties of the rigidly rotating ZAMO surfaces both outside and inside the black hole and the relevance of these objects to a couple of interesting physical problems.

  7. Pump/Probe Angular Dependence of Hanle Electromagnetically Induced Transparency

    NASA Astrophysics Data System (ADS)

    Jackson, Richard; Campbell, Kaleb; Crescimanno, Michael; Bali, Samir

    2015-05-01

    We investigate the dependence of Hanle Electromagnetically Induced Transparency (EIT) on angular separation between pump and probe field propagation directions in room-temperature Rb vapor. We observe the FWHM of the probe transmission spectrum and the amplitude of the EIT signal while varying the angular separation from 0 to 1 milliradian. Following the work of Ref., we examine potential applications in information storage and retrieval. We are grateful to Miami University for their generous financial support, and to the Miami University Instrumentation lab for their invaluable contributions.

  8. Polarization, spectral, and spatial emission characteristics of chiral semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Maksimov, A. A.; Peshcherenko, A. B.; Filatov, E. V.; Tartakovskii, I. I.; Kulakovskii, V. D.; Tikhodeev, S. G.; Lobanov, S. V.; Schneider, C.; Höfling, S.

    2017-11-01

    A detailed study of the degree of circular polarization and the angular dependence of the emission spectra of an array of InAs quantum dots embedded in GaAs photonic nanostructures with chiral symmetry in the absence of an external magnetic field is carried out. A strong angular dependence of the spectra and the degree of circular polarization of radiation from quantum dots, as well as a significant effect of the lattice period of the photonic crystal on the radiation characteristics, is observed. The dispersion of photonic modes near the (±3, 0) and (±2, ±2) Bragg resonances is investigated in detail. The experimentally observed polarization, spectral, and angular characteristics of the quantum-dot emission are explained in the framework of a theory describing radiative processes in chiral photonic nanostructures.

  9. On a relativistic particle and a relativistic position-dependent mass particle subject to the Klein–Gordon oscillator and the Coulomb potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitória, R.L.L.; Furtado, C., E-mail: furtado@fisica.ufpb.br; Bakke, K., E-mail: kbakke@fisica.ufpb.br

    2016-07-15

    The relativistic quantum dynamics of an electrically charged particle subject to the Klein–Gordon oscillator and the Coulomb potential is investigated. By searching for relativistic bound states, a particular quantum effect can be observed: a dependence of the angular frequency of the Klein–Gordon oscillator on the quantum numbers of the system. The meaning of this behaviour of the angular frequency is that only some specific values of the angular frequency of the Klein–Gordon oscillator are permitted in order to obtain bound state solutions. As an example, we obtain both the angular frequency and the energy level associated with the ground statemore » of the relativistic system. Further, we analyse the behaviour of a relativistic position-dependent mass particle subject to the Klein–Gordon oscillator and the Coulomb potential.« less

  10. Milky Way scattering properties and intrinsic sizes of active galactic nuclei cores probed by very long baseline interferometry surveys of compact extragalactic radio sources

    NASA Astrophysics Data System (ADS)

    Pushkarev, A. B.; Kovalev, Y. Y.

    2015-10-01

    We have measured the angular sizes of radio cores of active galactic nuclei (AGNs) and analysed their sky distributions and frequency dependences to study synchrotron opacity in AGN jets and the strength of angular broadening in the interstellar medium. We have used archival very long baseline interferometry (VLBI) data of more than 3000 compact extragalactic radio sources observed at frequencies, ν, from 2 to 43 GHz to measure the observed angular size of VLBI cores. We have found a significant increase in the angular sizes of the extragalactic sources seen through the Galactic plane (|b| ≲ 10°) at 2, 5 and 8 GHz, about one-third of which show significant scattering. These sources are mainly detected in directions to the Galactic bar, the Cygnus region and a region with galactic longitudes 220° ≲ l ≲ 260° (the Fitzgerald window). The strength of interstellar scattering of the AGNs is found to correlate with the Galactic Hα intensity, free-electron density and Galactic rotation measure. The dependence of scattering strengths on source redshift is insignificant, suggesting that the dominant scattering screens are located in our Galaxy. The observed angular size of Sgr A* is found to be the largest among thousands of AGNs observed over the sky; we discuss possible reasons for this strange result. Excluding extragalactic radio sources with significant scattering, we find that the angular size of opaque cores in AGNs scales typically as ν-1, confirming predictions of a conical synchrotron jet model with equipartition.

  11. Nonlinear management of the angular momentum of soliton clusters: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Fratalocchi, Andrea; Piccardi, Armando; Peccianti, Marco; Assanto, Gaetano

    2007-06-01

    We demonstrate, both theoretically and experimentally, how to acquire nonlinear control over the angular momentum of a cluster of solitary waves. Our results, stemming from a universal theoretical model, show that the angular momentum can be adjusted by acting on the global energy input in the system. The phenomenon is experimentally ascertained in nematic liquid crystals by observing a power-dependent rotation of a two-soliton ensemble.

  12. Scale dependencies of proton spin constituents with a nonperturbative αs

    NASA Astrophysics Data System (ADS)

    Jia, Shaoyang; Huang, Feng

    2012-11-01

    By introducing the contribution from dynamically generated gluon mass, we present a brand new parametrized form of QCD beta function to get an inferred limited running behavior of QCD coupling constant αs. This parametrized form is regarded as an essential factor to determine the scale dependencies of the proton spin constituents at the very low scale. In order to compare with experimental results directly, we work within the gauge-invariant framework to decompose the proton spin. Utilizing the updated next-to-next-leading-order evolution equations for angular momentum observables within a modified minimal subtraction scheme, we indicate that gluon contribution to proton spin cannot be ignored. Specifically, by assuming asymptotic limits of the total quark/gluon angular momentum valid, respectively, the scale dependencies of quark angular momentum Jq and gluon angular momentum Jg down to Q2˜1GeV2 are presented, which are comparable with the preliminary analysis of deeply virtual Compton scattering experiments by HERMES and JLab. After solving scale dependencies of quark spin ΔΣq, orbital angular momenta of quarks Lq are given by subtraction, presenting a holistic picture of proton spin partition within up and down quarks at a low scale.

  13. Form features provide a cue to the angular velocity of rotating objects

    PubMed Central

    Blair, Christopher David; Goold, Jessica; Killebrew, Kyle; Caplovitz, Gideon Paul

    2013-01-01

    As an object rotates, each location on the object moves with an instantaneous linear velocity dependent upon its distance from the center of rotation, while the object as a whole rotates with a fixed angular velocity. Does the perceived rotational speed of an object correspond to its angular velocity, linear velocities, or some combination of the two? We had observers perform relative speed judgments of different sized objects, as changing the size of an object changes the linear velocity of each location on the object’s surface, while maintaining the object’s angular velocity. We found that the larger a given object is, the faster it is perceived to rotate. However, the observed relationships between size and perceived speed cannot be accounted for simply by size-related changes in linear velocity. Further, the degree to which size influences perceived rotational speed depends on the shape of the object. Specifically, perceived rotational speeds of objects with corners or regions of high contour curvature were less affected by size. The results suggest distinct contour features, such as corners or regions of high or discontinuous contour curvature, provide cues to the angular velocity of a rotating object. PMID:23750970

  14. Form features provide a cue to the angular velocity of rotating objects.

    PubMed

    Blair, Christopher David; Goold, Jessica; Killebrew, Kyle; Caplovitz, Gideon Paul

    2014-02-01

    As an object rotates, each location on the object moves with an instantaneous linear velocity, dependent upon its distance from the center of rotation, whereas the object as a whole rotates with a fixed angular velocity. Does the perceived rotational speed of an object correspond to its angular velocity, linear velocities, or some combination of the two? We had observers perform relative speed judgments of different-sized objects, as changing the size of an object changes the linear velocity of each location on the object's surface, while maintaining the object's angular velocity. We found that the larger a given object is, the faster it is perceived to rotate. However, the observed relationships between size and perceived speed cannot be accounted for simply by size-related changes in linear velocity. Further, the degree to which size influences perceived rotational speed depends on the shape of the object. Specifically, perceived rotational speeds of objects with corners or regions of high-contour curvature were less affected by size. The results suggest distinct contour features, such as corners or regions of high or discontinuous contour curvature, provide cues to the angular velocity of a rotating object. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. Terrestrial-passage theory: failing a test.

    PubMed

    Reed, Charles F; Krupinski, Elizabeth A

    2009-01-01

    Terrestrial-passage theory proposes that the 'moon' and 'sky' illusions occur because observers learn to expect an elevation-dependent transformation of visual angle. The transformation accompanies daily movement through ordinary environments of fixed-altitude objects. Celestial objects display the same visual angle at all elevations, and hence are necessarily non-conforming with the ordinary transformation. On hypothesis, observers should target angular sizes to appear greater at elevation than at horizon. However, in a sample of forty-eight observers there was no significant difference between the perceived angular size of a constellation of stars at horizon and that predicted for a specific elevation. Occurrence of the illusion was not restricted to those observers who expected angular expansion. These findings fail to support the terrestrial-passage theory of the illusion.

  16. Angular dependence of the nanoDot OSL dosimeter.

    PubMed

    Kerns, James R; Kry, Stephen F; Sahoo, Narayan; Followill, David S; Ibbott, Geoffrey S

    2011-07-01

    Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight/OSL system from Landauer, Inc. The purpose of this study was to examine the angular dependence of the nanoDot dosimeter, which is part of the InLight system. Relative dosimeter response data were taken at several angles in 6 and 18 MV photon beams, as well as a clinical proton beam. These measurements were done within a phantom at a depth beyond the build-up region. To verify the observed angular dependence, additional measurements were conducted as well as Monte Carlo simulations in MCNPX. When irradiated with the incident photon beams parallel to the plane of the dosimeter, the nanoDot response was 4% lower at 6 MV and 3% lower at 18 MV than the response when irradiated with the incident beam normal to the plane of the dosimeter. Monte Carlo simulations at 6 MV showed similar results to the experimental values. Examination of the results in Monte Carlo suggests the cause as partial volume irradiation. In a clinical proton beam, no angular dependence was found. A nontrivial angular response of this OSLD was observed in photon beams. This factor may need to be accounted for when evaluating doses from photon beams incident from a variety of directions.

  17. Angular dependence of the nanoDot OSL dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan

    Purpose: Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight/OSL system from Landauer, Inc. The purpose of this study was to examine the angular dependence of the nanoDot dosimeter, which is part of the InLight system. Methods: Relative dosimeter response data were taken at several angles in 6 and 18 MV photon beams, asmore » well as a clinical proton beam. These measurements were done within a phantom at a depth beyond the build-up region. To verify the observed angular dependence, additional measurements were conducted as well as Monte Carlo simulations in MCNPX. Results: When irradiated with the incident photon beams parallel to the plane of the dosimeter, the nanoDot response was 4% lower at 6 MV and 3% lower at 18 MV than the response when irradiated with the incident beam normal to the plane of the dosimeter. Monte Carlo simulations at 6 MV showed similar results to the experimental values. Examination of the results in Monte Carlo suggests the cause as partial volume irradiation. In a clinical proton beam, no angular dependence was found. Conclusions: A nontrivial angular response of this OSLD was observed in photon beams. This factor may need to be accounted for when evaluating doses from photon beams incident from a variety of directions.« less

  18. Angular dependence of the nanoDot OSL dosimeter

    PubMed Central

    Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan; Followill, David S.; Ibbott, Geoffrey S.

    2011-01-01

    Purpose: Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight∕OSL system from Landauer, Inc. The purpose of this study was to examine the angular dependence of the nanoDot dosimeter, which is part of the InLight system.Methods: Relative dosimeter response data were taken at several angles in 6 and 18 MV photon beams, as well as a clinical proton beam. These measurements were done within a phantom at a depth beyond the build-up region. To verify the observed angular dependence, additional measurements were conducted as well as Monte Carlo simulations in MCNPX.Results: When irradiated with the incident photon beams parallel to the plane of the dosimeter, the nanoDot response was 4% lower at 6 MV and 3% lower at 18 MV than the response when irradiated with the incident beam normal to the plane of the dosimeter. Monte Carlo simulations at 6 MV showed similar results to the experimental values. Examination of the results in Monte Carlo suggests the cause as partial volume irradiation. In a clinical proton beam, no angular dependence was found.Conclusions: A nontrivial angular response of this OSLD was observed in photon beams. This factor may need to be accounted for when evaluating doses from photon beams incident from a variety of directions. PMID:21858992

  19. Geodesics In A Spinning String Spacetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culetu, Hristu

    2006-11-28

    The geodesics equations for a rotating observer in a spinning string geometry are investigated using the Euler - Lagrange equations. For test particles with vanishing angular momentum, the radial equation of motion does not depend on the angular velocity {omega} but on the angular momentum of the string. A massless particle moves tachyonic but iteed tends asymptotically to unit velocity after a time of the order of few Planck time b. The spacetime has a horizon at r = 0, irrespective of the value of {omega} but its angular velocity is given by {omega} - 1/b. The Sagnac time delaymore » is computed proving to depend both on {omega} and the radius of the circular orbit. The velocity of an ingoing massive test particle approaches zero very close to the spinning string, as if it were rejected by it.« less

  20. Direct observation of temperature-driven magnetic symmetry transitions by vectorial resolved MOKE magnetometry

    NASA Astrophysics Data System (ADS)

    Cuñado, Jose Luis F.; Pedrosa, Javier; Ajejas, Fernando; Perna, Paolo; Miranda, Rodolfo; Camarero, Julio

    2017-10-01

    Angle- and temperature-dependent vectorial magnetometry measurements are necessary to disentangle the effective magnetic symmetry in magnetic nanostructures. Here we present a detailed study on an Fe(1 0 0) thin film system with competing collinear biaxial (four-fold symmetry) and uniaxial (two-fold) magnetic anisotropies, carried out with our recently developed full angular/broad temperature range/vectorial-resolved magneto-optical Kerr effect magnetometer, named TRISTAN. The data give direct views on the angular and temperature dependence of the magnetization reversal pathways, from which characteristic axes, remanences, critical fields, domain wall types, and effective magnetic symmetry are obtained. In particular, although the remanence shows four-fold angular symmetry for all investigated temperatures (15 K-400 K), the critical fields show strong temperature and angular dependencies and the reversal mechanism changes for specific angles at a given (angle-dependent) critical temperature, showing signatures of an additional collinear two-fold symmetry. This symmetry-breaking is more relevant as temperature increases to room temperature. It originates from the competition between two anisotropy contributions with different symmetry and temperature evolution. The results highlight the importance of combining temperature and angular studies, and the need to look at different magnetic parameters to unravel the underlying magnetic symmetries and temperature evolutions of the symmetry-breaking effects in magnetic nanostructures.

  1. Effect of incidence/observation angles and angular diversity on speckle reduction by wavelength diversity in laser projection systems.

    PubMed

    Yamada, Hirotaka; Moriyasu, Kengo; Sato, Hiroto; Hatanaka, Hidekazu

    2017-12-11

    The speckle reduction for laser projectors has been vigorously studied because speckle causes a serious deterioration in image quality. Most speckle reduction methods can be categorized into wavelength diversity, angular diversity and polarization diversity, which are usually treated independently. In this paper, it is shown that the effect of wavelength diversity and angular diversity on speckle reduction is not independent, and that the effect of wavelength also depends on incidence and observation angles on screen. The speckle reduction effect by wavelength diversity is smaller when the angular diversity is larger. Also, the speckle reduction effect is investigated on various screens including matte and silver screens, and it is shown that the effect of wavelength diversity is larger on matte screen than on silver screen.

  2. The angular dependence of pulse shape discrimination and detection sensitivity in cylindrical and cubic EJ-309 organic liquid scintillators

    NASA Astrophysics Data System (ADS)

    Jones, A. R.; Joyce, M. J.

    2017-01-01

    Liquid scintillators are used widely for neutron detection and for the assay of nuclear materials. However, due to the constituents of the detector and the nitrogen void within the detector cell, usually incorporated to accommodate any expansion that might occur to avoid leakage, fluctuations in detector response have been observed associated with the orientation of the detector when in use. In this work the angular dependence of the pulse-shape discrimination performance in an EJ309 liquid scintillator has been investigated with 252Cf in terms of the separation of γ -ray and neutron events, described quantitatively by the figure-of-merit. A subtle dependence in terms of pulse-shape discrimination is observed. In contrast, a more significant dependence of detection sensitivity with the angle of orientation is evident.

  3. Characterization of MOSFET dosimeter angular dependence in three rotational axes measured free-in-air and in soft-tissue equivalent material.

    PubMed

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-09-01

    When performing dose measurements on an X-ray device with multiple angles of irradiation, it is necessary to take the angular dependence of metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters into account. The objective of this study was to investigate the angular sensitivity dependence of MOSFET dosimeters in three rotational axes measured free-in-air and in soft-tissue equivalent material using dental photon energy. Free-in-air dose measurements were performed with three MOSFET dosimeters attached to a carbon fibre holder. Soft tissue measurements were performed with three MOSFET dosimeters placed in a polymethylmethacrylate (PMMA) phantom. All measurements were made in the isocenter of a dental cone-beam computed tomography (CBCT) scanner using 5º angular increments in the three rotational axes: axial, normal-to-axial and tangent-to-axial. The measurements were referenced to a RADCAL 1015 dosimeter. The angular sensitivity free-in-air (1 SD) was 3.7 ± 0.5 mV/mGy for axial, 3.8 ± 0.6 mV/mGy for normal-to-axial and 3.6 ± 0.6 mV/mGy for tangent-to-axial rotation. The angular sensitivity in the PMMA phantom was 3.1 ± 0.1 mV/mGy for axial, 3.3 ± 0.2 mV/mGy for normal-to-axial and 3.4 ± 0.2 mV/mGy for tangent-to-axial rotation. The angular sensitivity variations are considerably smaller in PMMA due to the smoothing effect of the scattered radiation. The largest decreases from the isotropic response were observed free-in-air at 90° (distal tip) and 270° (wire base) in the normal-to-axial and tangent-to-axial rotations, respectively. MOSFET dosimeters provide us with a versatile dosimetric method for dental radiology. However, due to the observed variation in angular sensitivity, MOSFET dosimeters should always be calibrated in the actual clinical settings for the beam geometry and angular range of the CBCT exposure.

  4. Characterization of MOSFET dosimeter angular dependence in three rotational axes measured free-in-air and in soft-tissue equivalent material

    PubMed Central

    Koivisto, Juha; Kiljunen, Timo; Wolff, Jan; Kortesniemi, Mika

    2013-01-01

    When performing dose measurements on an X-ray device with multiple angles of irradiation, it is necessary to take the angular dependence of metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters into account. The objective of this study was to investigate the angular sensitivity dependence of MOSFET dosimeters in three rotational axes measured free-in-air and in soft-tissue equivalent material using dental photon energy. Free-in-air dose measurements were performed with three MOSFET dosimeters attached to a carbon fibre holder. Soft tissue measurements were performed with three MOSFET dosimeters placed in a polymethylmethacrylate (PMMA) phantom. All measurements were made in the isocenter of a dental cone-beam computed tomography (CBCT) scanner using 5º angular increments in the three rotational axes: axial, normal-to-axial and tangent-to-axial. The measurements were referenced to a RADCAL 1015 dosimeter. The angular sensitivity free-in-air (1 SD) was 3.7 ± 0.5 mV/mGy for axial, 3.8 ± 0.6 mV/mGy for normal-to-axial and 3.6 ± 0.6 mV/mGy for tangent-to-axial rotation. The angular sensitivity in the PMMA phantom was 3.1 ± 0.1 mV/mGy for axial, 3.3 ± 0.2 mV/mGy for normal-to-axial and 3.4 ± 0.2 mV/mGy for tangent-to-axial rotation. The angular sensitivity variations are considerably smaller in PMMA due to the smoothing effect of the scattered radiation. The largest decreases from the isotropic response were observed free-in-air at 90° (distal tip) and 270° (wire base) in the normal-to-axial and tangent-to-axial rotations, respectively. MOSFET dosimeters provide us with a versatile dosimetric method for dental radiology. However, due to the observed variation in angular sensitivity, MOSFET dosimeters should always be calibrated in the actual clinical settings for the beam geometry and angular range of the CBCT exposure. PMID:23520268

  5. Angular dependence of dose sensitivity of nanoDot optically stimulated luminescent dosimeters in different radiation geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jursinic, Paul A., E-mail: pjursinic@wmcc.org

    2015-10-15

    Purpose: A type of in vivo dosimeter, an optically stimulated luminescent dosimeter, OSLD, may have dose sensitivity that depends on the angle of incidence of radiation. This work measures how angular dependence of a nanoDot changes with the geometry of the phantom in which irradiation occurs and with the intrinsic structure of the nanoDot. Methods: The OSLDs used in this work were nanoDot dosimeters (Landauer, Inc., Glenwood, IL), which were read with a MicroStar reader (Landauer, Inc., Glenwood, IL). Dose to the OSLDs was delivered by 6 MV x-rays. NanoDots with various intrinsic sensitivities were irradiated in numerous phantoms thatmore » had geometric shapes of cylinders, rectangles, and a cube. Results: No angular dependence was seen in cylindrical phantoms, cubic phantoms, or rectangular phantoms with a thickness to width ratio of 0.3 or 1.5. An angular dependence of 1% was observed in rectangular phantoms with a thickness to width of 0.433–0.633. A group of nanoDots had sensitive layers with mass density of 2.42–2.58 g/cm{sup 3} and relative sensitivity of 0.92–1.09 and no difference in their angular dependence. Within experimental uncertainty, nanoDot measurements agree with a parallel-plate ion chamber at a depth of maximum dose. Conclusions: When irradiated in cylindrical, rectangular, and cubic phantoms, nanoDots show a maximum angular dependence of 1% or less at an incidence angle of 90°. For a sample of 78 new nanoDots, the range of their relative intrinsic sensitivity is 0.92–1.09. For a sample of ten nanoDots, on average, the mass in the sensitive layer is 73.1% Al{sub 2}O{sub 3}:C and 26.9% polyester. The mass density of the sensitive layer of a nanoDot disc is between 2.42 and 2.58 g/cm{sup 3}. The angular dependence is not related to Al{sub 2}O{sub 3}:C loading of the nanoDot disc. The nanoDot at the depth of maximum dose has no more angular dependence than a parallel-plate ion chamber.« less

  6. Angular analysis of the B 0 → K *0 μ + μ - decay using 3 fb-1 of integrated luminosity

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borisyak, M.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dungs, K.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Fabianska, M.; Falabella, A.; Färber, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; dos Reis, A. C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zhukov, V.; Zucchelli, S.

    2016-02-01

    An angular analysis of the B 0 → K *0(→ K + π -) μ + μ - decay is presented. The dataset corresponds to an integrated luminosity of 3.0 fb-1 of pp collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine CP-averaged observables and CP asymmetries, taking account of possible contamination from decays with the K + π - system in an S-wave configuration. The angular observables and their correlations are reported in bins of q 2, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for q 2-dependent decay amplitudes in the region 1.1 < q 2 < 6.0 GeV2/ c 4, the zero-crossing points of several angular observables are computed. A global fit is performed to the complete set of CP-averaged observables obtained from the maximum likelihood fit. This fit indicates differences with predictions based on the Standard Model at the level of 3.4 standard deviations. These differences could be explained by contributions from physics beyond the Standard Model, or by an unexpectedly large hadronic effect that is not accounted for in the Standard Model predictions. [Figure not available: see fulltext.

  7. Angular analysis of the B o → K *oμ +μ – decay using 3 fb –1 of integrated luminosity

    DOE PAGES

    Aaij, R.; Abellán Beteta, C.; Adeva, B.; ...

    2016-02-16

    An angular analysis of the B o → K *o (→ K +π –)μ +μ – decay is presented. The dataset corresponds to an integrated luminosity of 3.0 fb –1 of pp collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine CP-averaged observables and CP asymmetries, taking account of possible contamination from decays with the K +π – system in an S-wave configuration. The angular observables and their correlations are reported in bins of q 2, the invariant mass squared of the dimuon system. The observables are determined both from anmore » unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for q 2 -dependent decay amplitudes in the region 1.1 < q 2 < 6.0 GeV 2/c 4, the zero-crossing points of several angular observables are computed. A global fit is performed to the complete set of CP-averaged observables obtained from the maximum likelihood fit. This fit indicates differences with predictions based on the Standard Model at the level of 3.4 standard deviations. These differences could be explained by contributions from physics beyond the Standard Model, or by an unexpectedly large hadronic effect that is not accounted for in the Standard Model predictions.« less

  8. Predicting stellar angular diameters from V, IC, H and K photometry

    NASA Astrophysics Data System (ADS)

    Adams, Arthur D.; Boyajian, Tabetha S.; von Braun, Kaspar

    2018-01-01

    Determining the physical properties of microlensing events depends on having accurate angular sizes of the source star. Using long baseline optical interferometry, we are able to measure the angular sizes of nearby stars with uncertainties ≤2 per cent. We present empirically derived relations of angular diameters which are calibrated using both a sample of dwarfs/subgiants and a sample of giant stars. These relations are functions of five colour indices in the visible and near-infrared, and have uncertainties of 1.8-6.5 per cent depending on the colour used. We find that a combined sample of both main-sequence and evolved stars of A-K spectral types is well fitted by a single relation for each colour considered. We find that in the colours considered, metallicity does not play a statistically significant role in predicting stellar size, leading to a means of predicting observed sizes of stars from colour alone.

  9. Angular phase shift in polarization-angle dependence of microwave-induced magnetoresistance oscillations

    NASA Astrophysics Data System (ADS)

    Liu, Han-Chun; Samaraweera, Rasanga L.; Mani, R. G.; Reichl, C.; Wegscheider, W.

    2016-12-01

    We examine the microwave frequency (f ) variation of the angular phase shift, θ0, observed in the polarization-angle dependence of microwave-induced magnetoresistance oscillations in a high-mobility GaAs/AlGaAs two-dimensional electron system. By fitting the diagonal resistance Rx x versus θ plots to an empirical cosine square law, we extract θ0 and trace its quasicontinuous variation with f . The results suggest that the overall average of θ0 extracted from Hall bar device sections with length-to-width ratios of L /W =1 and 2 is the same. We compare the observations with expectations arising from the "ponderomotive force" theory for microwave radiation-induced transport phenomena.

  10. Energy dependence and angular dependence of an optically stimulated luminescence dosimeter in the mammography energy range.

    PubMed

    Kawaguchi, Ai; Matsunaga, Yuta; Suzuki, Shoichi; Chida, Koichi

    2017-03-01

    This study aimed to investigate the energy dependence and the angular dependence of commercially available optically stimulated luminescence (OSL) point dosimeters in the mammography energy range. The energy dependence was evaluated to calculate calibration factors (CFs). The half-value layer range was 0.31-0.60 mmAl (Mo/Mo 22-28 kV, Mo/Rh 28-32 kV, and W/Rh 30-34 kV at 2-kV intervals). Mo/Rh 28 kV was the reference condition. Angular dependence was tested by rotating the X-ray tube from -90° to 90° in 30° increments, and signal counts from angled nanoDots were normalized to the 0° signal counts. Angular dependence was compared with three tube voltage and target/filter combinations (Mo/Mo 26 kV, Mo/Rh 28 kV and W/Rh 32 kV). The CFs of energy dependence were 0.94-1.06. In Mo/Mo 26-28 kV and Mo/Rh 28-32 kV, the range of CF was 0.99-1.01, which was very similar. For angular dependence, the most deteriorated normalized values (Mo/Mo, 0.37; Mo/Rh, 0.43; and W/Rh, 0.58) were observed when the X-ray tube was rotated at a 90° angle, compared to 0°. The most angular dependences of ± 30°, 60°, and 90° decreased by approximately 4%, 14%, and 63% respectively. The mean deteriorated measurement 30° intervals from 0° to ± 30° was 2%, from ± 30° to ± 60° was 8%, and from ± 60° to ± 90° was 40%. The range of energy dependence in typical mammography energy range was not as much as that in general radiography and computed tomography. For accurate measurement using nanoDot, the tilt needs to be under 30°. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  11. On the competition of forces in the Kerr field

    NASA Astrophysics Data System (ADS)

    Semerak, O.

    1994-11-01

    'Rotosphere', where the component of 4-acceleration, radial relative to the symmetry axis, of the stationary observer depends on his angular velocity in a way going against our intuition, is demarcated in the Kerr spacetime. Stationary observers with extremal value of this acceleration ('extremelly accelerated observers') are introduced and their privileged relation to circular geodesics in the equatorial plane is found. Possible translation of the results into 'force' language is based on the definition of the 'centrifugal force' with respect to the zero-angular-momentum observers. It yields, in particular, a simple interpretation of the behavior of acceleration of the stationary observer in terms of gravitational, Coriolis and centrifugal forces.

  12. Jet angularity measurements for single inclusive jet production

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Lee, Kyle; Ringer, Felix

    2018-04-01

    We study jet angularity measurements for single-inclusive jet production at the LHC. Jet angularities depend on a continuous parameter a allowing for a smooth interpolation between different traditional jet shape observables. We establish a factorization theorem within Soft Collinear Effective Theory (SCET) where we consistently take into account in- and out-of-jet radiation by making use of semi-inclusive jet functions. For comparison, we elaborate on the differences to jet angularities measured on an exclusive jet sample. All the necessary ingredients for the resummation at next-to-leading logarithmic (NLL) accuracy are presented within the effective field theory framework. We expect semiinclusive jet angularity measurements to be feasible at the LHC and we present theoretical predictions for the relevant kinematic range. In addition, we investigate the potential impact of jet angularities for quark-gluon discrimination.

  13. Large-visual-angle microstructure inspired from quantitative design of Morpho butterflies' lamellae deviation using the FDTD/PSO method.

    PubMed

    Wang, Wanlin; Zhang, Wang; Chen, Weixin; Gu, Jiajun; Liu, Qinglei; Deng, Tao; Zhang, Di

    2013-01-15

    The wide angular range of the treelike structure in Morpho butterfly scales was investigated by finite-difference time-domain (FDTD)/particle-swarm-optimization (PSO) analysis. Using the FDTD method, different parameters in the Morpho butterflies' treelike structure were studied and their contributions to the angular dependence were analyzed. Then a wide angular range was realized by the PSO method from quantitatively designing the lamellae deviation (Δy), which was a crucial parameter with angular range. The field map of the wide-range reflection in a large area was given to confirm the wide angular range. The tristimulus values and corresponding color coordinates for various viewing directions were calculated to confirm the blue color in different observation angles. The wide angular range realized by the FDTD/PSO method will assist us in understanding the scientific principles involved and also in designing artificial optical materials.

  14. Uncertainties for two-dimensional models of solar rotation from helioseismic eigenfrequency splitting

    NASA Technical Reports Server (NTRS)

    Genovese, Christopher R.; Stark, Philip B.; Thompson, Michael J.

    1995-01-01

    Observed solar p-mode frequency splittings can be used to estimate angular velocity as a function of position in the solar interior. Formal uncertainties of such estimates depend on the method of estimation (e.g., least-squares), the distribution of errors in the observations, and the parameterization imposed on the angular velocity. We obtain lower bounds on the uncertainties that do not depend on the method of estimation; the bounds depend on an assumed parameterization, but the fact that they are lower bounds for the 'true' uncertainty does not. Ninety-five percent confidence intervals for estimates of the angular velocity from 1986 Big Bear Solar Observatory (BBSO) data, based on a 3659 element tensor-product cubic-spline parameterization, are everywhere wider than 120 nHz, and exceed 60,000 nHz near the core. When compared with estimates of the solar rotation, these bounds reveal that useful inferences based on pointwise estimates of the angular velocity using 1986 BBSO splitting data are not feasible over most of the Sun's volume. The discouraging size of the uncertainties is due principally to the fact that helioseismic measurements are insensitive to changes in the angular velocity at individual points, so estimates of point values based on splittings are extremely uncertain. Functionals that measure distributed 'smooth' properties are, in general, better constrained than estimates of the rotation at a point. For example, the uncertainties in estimated differences of average rotation between adjacent blocks of about 0.001 solar volumes across the base of the convective zone are much smaller, and one of several estimated differences we compute appears significant at the 95% level.

  15. Angular momentum of dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Kurapati, Sushma; Chengalur, Jayaram N.; Pustilnik, Simon; Kamphuis, Peter

    2018-05-01

    Mass and specific angular momentum are two fundamental physical parameters of galaxies. We present measurements of the baryonic mass and specific angular momentum of 11 void dwarf galaxies derived from neutral hydrogen (HI) synthesis data. Rotation curves were measured using 3D and 2D tilted ring fitting routines, and the derived curves generally overlap within the error bars, except in the central regions where, as expected, the 3D routines give steeper curves. The specific angular momentum of void dwarfs is found to be high compared to an extrapolation of the trends seen for higher mass bulge-less spirals, but comparable to that of other dwarf irregular galaxies that lie outside of voids. As such, our data show no evidence for a dependence of the specific angular momentum on the large scale environment. Combining our data with the data from the literature, we find a baryonic threshold of ˜109.1 M⊙ for this increase in specific angular momentum. Interestingly, this threshold is very similar to the mass threshold below which the galaxy discs start to become systematically thicker. This provides qualitative support to the suggestion that the thickening of the discs, as well as the increase in specific angular momentum, are both results of a common physical mechanism, such as feedback from star formation. Quantitatively, however, the amount of star formation observed in our dwarfs appears insufficient to produce the observed increase in specific angular momentum. It is hence likely that other processes, such as cold accretion of high angular momentum gas, also play a role in increasing the specific angular momentum.

  16. SU-E-T-472: Improvement of IMRT QA Passing Rate by Correcting Angular Dependence of MatriXX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Q; Watkins, W; Kim, T

    2015-06-15

    Purpose: Multi-channel planar detector arrays utilized for IMRT-QA, such as the MatriXX, exhibit an incident-beam angular dependent response which can Result in false-positive gamma-based QA results, especially for helical tomotherapy plans which encompass the full range of beam angles. Although MatriXX can use with gantry angle sensor to provide automatically angular correction, this sensor does not work with tomotherapy. The purpose of the study is to reduce IMRT-QA false-positives by correcting for the MatriXX angular dependence. Methods: MatriXX angular dependence was characterized by comparing multiple fixed-angle irradiation measurements with corresponding TPS computed doses. For 81 Tomo-helical IMRT-QA measurements, two differentmore » correction schemes were tested: (1) A Monte-Carlo dose engine was used to compute MatriXX signal based on the angular-response curve. The computed signal was then compared with measurement. (2) Uncorrected computed signal was compared with measurements uniformly scaled to account for the average angular dependence. Three scaling factor (+2%, +2.5%, +3%) were tested. Results: The MatriXX response is 8% less than predicted for a PA beam even when the couch is fully accounted for. Without angular correction, only 67% of the cases pass the >90% points γ<1 (3%, 3mm). After full angular correction, 96% of the cases pass the criteria. Of three scaling factors, +2% gave the highest passing rate (89%), which is still less than the full angular correction method. With a stricter γ(2%,3mm) criteria, the full angular correction method was still able to achieve the 90% passing rate while the scaling method only gives 53% passing rate. Conclusion: Correction for the MatriXX angular dependence reduced the false-positives rate of our IMRT-QA process. It is necessary to correct for the angular dependence to achieve the IMRT passing criteria specified in TG129.« less

  17. Growth dependent magnetization reversal in Co2MnAl full Heusler alloy thin films

    NASA Astrophysics Data System (ADS)

    Barwal, Vineet; Husain, Sajid; Behera, Nilamani; Goyat, Ekta; Chaudhary, Sujeet

    2018-02-01

    Angular dependent magnetization reversal has been investigated in Co2MnAl (CMA) full Heusler alloy thin films grown on Si(100) at different growth temperatures (Ts) by DC-magnetron sputtering. An M -shaped curve is observed in the in-plane angular (0°-360°) dependent coercivity (ADC) by magneto-optical Kerr effect measurements. The dependence of the magnetization reversal on Ts is investigated in detail to bring out the structure-property correlation with regards to ADC in these polycrystalline CMA thin films. This magnetization reversal ( M -shaped ADC behavior) is well described by the two-phase model, which is a combination of Kondorsky (domain wall motion) and Stoner Wohlfarth (coherent rotation) models. In this model, magnetization reversal starts with depinning of domain walls, with their gradual displacement explained by the Kondorsky model, and at a higher field (when the domain walls merge), the system follows coherent rotation before reaching its saturation following the Stoner Wohlfarth model. Further, the analysis of angular dependent squareness ratio (Mr/Ms) indicates that our films clearly exhibited twofold uniaxial anisotropy, which is related to self-steering effect arising due to the obliquely incident flux during the film-growth.

  18. CONNECTING ANGULAR MOMENTUM AND GALACTIC DYNAMICS: THE COMPLEX INTERPLAY BETWEEN SPIN, MASS, AND MORPHOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teklu, Adelheid F.; Remus, Rhea-Silvia; Dolag, Klaus

    The evolution and distribution of the angular momentum of dark matter (DM) halos have been discussed in several studies over the past decades. In particular, the idea arose that angular momentum conservation should allow us to infer the total angular momentum of the entire DM halo from measuring the angular momentum of the baryonic component, which is populating the center of the halo, especially for disk galaxies. To test this idea and to understand the connection between the angular momentum of the DM halo and its galaxy, we use a state-of-the-art, hydrodynamical cosmological simulation taken from the set of Magneticummore » Pathfinder simulations. Thanks to the inclusion of the relevant physical processes, the improved underlying numerical methods, and high spatial resolution, we successfully produce populations of spheroidal and disk galaxies self-consistently. Thus, we are able to study the dependence of galactic properties on their morphology. We find that (1) the specific angular momentum of stars in disk and spheroidal galaxies as a function of their stellar mass compares well with observational results; (2) the specific angular momentum of the stars in disk galaxies is slightly smaller compared to the specific angular momentum of the cold gas, in good agreement with observations; (3) simulations including the baryonic component show a dichotomy in the specific stellar angular momentum distribution when splitting the galaxies according to their morphological type (this dichotomy can also be seen in the spin parameter, where disk galaxies populate halos with slightly larger spin compared to spheroidal galaxies); (4) disk galaxies preferentially populate halos in which the angular momentum vector of the DM component in the central part shows a better alignment to the angular momentum vector of the entire halo; and (5) the specific angular momentum of the cold gas in disk galaxies is approximately 40% smaller than the specific angular momentum of the total DM halo and shows a significant scatter.« less

  19. Effect of Illumination Angle on the Performance of Dusted Thermal Control Surfaces in a Simulated Lunar Environment

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2009-01-01

    JSC-1A lunar simulant has been applied to AZ93 and AgFEP thermal control surfaces on aluminum substrates in a simulated lunar environment. The temperature of these surfaces was monitored as they were heated with a solar simulator using varying angles of incidence and cooled in a 30 K coldbox. Thermal modeling was used to determine the solar absorptivity (a) and infrared emissivity (e) of the thermal control surfaces in both their clean and dusted states. It was found that even a sub-monolayer of dust can significantly raise the a of either type of surface. A full monolayer can increase the a/e ratio by a factor of 3 to 4 over a clean surface. Little angular dependence of the a of pristine thermal control surfaces for both AZ93 and AgFEP was observed, at least until 30 from the surface. The dusted surfaces showed the most angular dependence of a when the incidence angle was in the range of 25 to 35 . Samples with a full monolayer, like those with no dust, showed little angular dependence in a. The e of the dusted thermal control surfaces was within the spread of clean surfaces, with the exception of high dust coverage, where a small increase was observed at shallow angles.

  20. Demonstrating the conservation of angular momentum using spherical magnets

    NASA Astrophysics Data System (ADS)

    Lindén, Johan; Slotte, Joakim; Källman, Kjell-Mikael

    2018-01-01

    An experimental setup for demonstrating the conservation of angular momentum of rotating spherical magnets is described. Two spherical Nd-Fe-B magnets are placed on a double inclined plane and projected towards each other with pre-selected impact parameters ranging from zero to a few tens of millimeters. After impact, the two magnets either revolve vigorously around the common center of mass or stop immediately, depending on the value of the impact parameter. Using a pick-up coil connected to an oscilloscope, the angular frequency for the rotating magnets was measured, and an estimate for the angular momentum was obtained. A high-speed video camera captured the impact and was used for measuring linear and angular velocities of the magnets. A very good agreement between the initial angular momentum before the impact and the final angular momentum of the revolving dumbbell is observed. The two rotating magnets, and the rotating electromagnetic field emanating from them, can also be viewed as a toy model for the newly discovered gravitational waves, where two black holes collide after revolving around each other. (Enhanced online)

  1. Spectroscopy of Pionic Atoms in 122Sn (d, 3He) Reaction and Angular Dependence of the Formation Cross Sections

    NASA Astrophysics Data System (ADS)

    Nishi, T.; Itahashi, K.; Berg, G. P. A.; Fujioka, H.; Fukuda, N.; Fukunishi, N.; Geissel, H.; Hayano, R. S.; Hirenzaki, S.; Ichikawa, K.; Ikeno, N.; Inabe, N.; Itoh, S.; Iwasaki, M.; Kameda, D.; Kawase, S.; Kubo, T.; Kusaka, K.; Matsubara, H.; Michimasa, S.; Miki, K.; Mishima, G.; Miya, H.; Nagahiro, H.; Nakamura, M.; Noji, S.; Okochi, K.; Ota, S.; Sakamoto, N.; Suzuki, K.; Takeda, H.; Tanaka, Y. K.; Todoroki, K.; Tsukada, K.; Uesaka, T.; Watanabe, Y. N.; Weick, H.; Yamakami, H.; Yoshida, K.; piAF Collaboration

    2018-04-01

    We observed the atomic 1 s and 2 p states of π- bound to 121Sn nuclei as distinct peak structures in the missing mass spectra of the 122Sn(d ,3He) nuclear reaction. A very intense deuteron beam and a spectrometer with a large angular acceptance let us achieve a potential of discovery, which includes the capability of determining the angle-dependent cross sections with high statistics. The 2 p state in a Sn nucleus was observed for the first time. The binding energies and widths of the pionic states are determined and found to be consistent with previous experimental results of other Sn isotopes. The spectrum is measured at finite reaction angles for the first time. The formation cross sections at the reaction angles between 0° and 2° are determined. The observed reaction-angle dependence of each state is reproduced by theoretical calculations. However, the quantitative comparison with our high-precision data reveals a significant discrepancy between the measured and calculated formation cross sections of the pionic 1 s state.

  2. Angular shaping of fluorescence from synthetic opal-based photonic crystal.

    PubMed

    Boiko, Vitalii; Dovbeshko, Galyna; Dolgov, Leonid; Kiisk, Valter; Sildos, Ilmo; Loot, Ardi; Gorelik, Vladimir

    2015-01-01

    Spectral, angular, and temporal distributions of fluorescence as well as specular reflection were investigated for silica-based artificial opals. Periodic arrangement of nanosized silica globules in the opal causes a specific dip in the defect-related fluorescence spectra and a peak in the reflectance spectrum. The spectral position of the dip coincides with the photonic stop band. The latter is dependent on the size of silica globules and the angle of observation. The spectral shape and intensity of defect-related fluorescence can be controlled by variation of detection angle. Fluorescence intensity increases up to two times at the edges of the spectral dip. Partial photobleaching of fluorescence was observed. Photonic origin of the observed effects is discussed.

  3. Effect of Range and Angular Velocity of Passive Movement on Somatosensory Evoked Magnetic Fields.

    PubMed

    Sugawara, Kazuhiro; Onishi, Hideaki; Yamashiro, Koya; Kojima, Sho; Miyaguchi, Shota; Kotan, Shinichi; Tsubaki, Atsuhiro; Kirimoto, Hikari; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki

    2016-09-01

    To clarify characteristics of each human somatosensory evoked field (SEF) component following passive movement (PM), PM1, PM2, and PM3, using high spatiotemporal resolution 306-channel magnetoencephalography and varying PM range and angular velocity. We recorded SEFs following PM under three conditions [normal range-normal velocity (NN), small range-normal velocity (SN), and small range-slow velocity (SS)] with changing movement range and angular velocity in 12 participants and calculated the amplitude, equivalent current dipole (ECD) location, and the ECD strength for each component. All components were observed in six participants, whereas only PM1 and PM3 in the other six. Clear response deflections at the ipsilateral hemisphere to PM side were observed in seven participants. PM1 amplitude was larger under NN and SN conditions, and mean ECD location for PM1 was at primary motor area. PM3 amplitude was larger under SN condition and mean ECD location for PM3 under SS condition was at primary somatosensory area. PM1 amplitude was dependent on the angular velocity of PM, suggesting that PM1 reflects afferent input from muscle spindle, whereas PM3 amplitude was dependent on the duration. The ECD for PM3 was located in the primary somatosensory cortex, suggesting that PM3 reflects cutaneous input. We confirmed the hypothesis for locally distinct generators and characteristics of each SEF component.

  4. Observable Deviations from Homogeneity in an Inhomogeneous Universe

    NASA Astrophysics Data System (ADS)

    Giblin, John T., Jr.; Mertens, James B.; Starkman, Glenn D.

    2016-12-01

    How does inhomogeneity affect our interpretation of cosmological observations? It has long been wondered to what extent the observable properties of an inhomogeneous universe differ from those of a corresponding Friedmann-Lemaître-Robertson-Walker (FLRW) model, and how the inhomogeneities affect that correspondence. Here, we use numerical relativity to study the behavior of light beams traversing an inhomogeneous universe, and construct the resulting Hubble diagrams. The universe that emerges exhibits an average FLRW behavior, but inhomogeneous structures contribute to deviations in observables across the observer’s sky. We also investigate the relationship between angular diameter distance and the angular extent of a source, finding deviations that grow with source redshift. These departures from FLRW are important path-dependent effects, with implications for using real observables in an inhomogeneous universe such as our own.

  5. Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs

    NASA Astrophysics Data System (ADS)

    Inoue, Shunya; Kashino, Junichi; Matsutani, Akihiro; Ohtsuki, Hideo; Miyashita, Takahiro; Koyama, Fumio

    2014-09-01

    We report on the design and fabrication of a highly angular dependent high contrast grating (HCG) mirror. The modeling and experiment on amorphous-Si/SiO2 HCG clearly show the large angular dependence of reflectivity, which enables single transverse-mode operations of large-area VCSELs. We fabricate 980 nm VCSELs with the angular dependent HCG functioning as a spatial frequency filter. We obtained the single transverse mode operation of the fabricated device in contrast to conventional VCSELs with semiconductor multilayer mirrors.

  6. Analysis of underwater radiance observations: Apparent optical properties and analytic functions describing the angular radiance distribution

    NASA Astrophysics Data System (ADS)

    Aas, Eyvind; HøJerslev, Niels K.

    1999-04-01

    A primary data set consisting of 70 series of angular radiance distributions observed in clear blue western Mediterranean water and a secondary set of 12 series from the more green and turbid Lake Pend Oreille, Idaho, have been analyzed. The results demonstrate that the main variation of the shape of the downward radiance distribution occurs within the Snell cone. Outside the cone the variation of the shape decreases with increasing zenith angle. The most important shape changes of the upward radiance appear within the zenith angle range 90°-130°. The variation in shape reaches its minimum around nadir, where an almost constant upward radiance distribution implies that a flat sea surface acts like a Lambert emitter within ±8% in the zenith angle interval 140°-180° in air. The ratio Q of upward irradiance and nadir radiance, as well as the average cosines μd and μu for downward and upward radiance, respectively, have rather small standard deviations, ≤10%, within the local water type. In contrast, the irradiance reflectance R has been observed to change up to 400% with depth in the western Mediterranean, while the maximum observed change of Q with depth is only 40%. The dependence of Q on the solar elevation for blue light at 5 m depth in the Mediterranean coincides with observations from the central Atlantic as well as with model computations. The corresponding dependence of μd shows that diffuse light may have a significant influence on its value. Two simple functions describing the observed angular radiance distributions are proposed, and both functions can be determined by two field observations as input parameters. The ɛ function approximates the azimuthal means of downward radiance with an average error ≤7% and of upward radiance with an error of ˜1%. The α function describes the zenith angle dependence of the azimuthal means of upward radiance with an average error ≤7% in clear ocean water, increasing to ≤20% in turbid lake water. The a function suggests that the range of variation for μu falls between 0 and 1/2, and for Q it is between π and 2π. The limits of both ranges are confirmed by observations. By combining the ɛ and α functions, a complete angular description of the upward radiance field is achieved.

  7. Materials characterisation by angle-resolved scanning transmission electron microscopy.

    PubMed

    Müller-Caspary, Knut; Oppermann, Oliver; Grieb, Tim; Krause, Florian F; Rosenauer, Andreas; Schowalter, Marco; Mehrtens, Thorsten; Beyer, Andreas; Volz, Kerstin; Potapov, Pavel

    2016-11-16

    Solid-state properties such as strain or chemical composition often leave characteristic fingerprints in the angular dependence of electron scattering. Scanning transmission electron microscopy (STEM) is dedicated to probe scattered intensity with atomic resolution, but it drastically lacks angular resolution. Here we report both a setup to exploit the explicit angular dependence of scattered intensity and applications of angle-resolved STEM to semiconductor nanostructures. Our method is applied to measure nitrogen content and specimen thickness in a GaN x As 1-x layer independently at atomic resolution by evaluating two dedicated angular intervals. We demonstrate contrast formation due to strain and composition in a Si- based metal-oxide semiconductor field effect transistor (MOSFET) with Ge x Si 1-x stressors as a function of the angles used for imaging. To shed light on the validity of current theoretical approaches this data is compared with theory, namely the Rutherford approach and contemporary multislice simulations. Inconsistency is found for the Rutherford model in the whole angular range of 16-255 mrad. Contrary, the multislice simulations are applicable for angles larger than 35 mrad whereas a significant mismatch is observed at lower angles. This limitation of established simulations is discussed particularly on the basis of inelastic scattering.

  8. A Collapsar Model with Disk Wind: Implications for Supernovae Associated with Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Hayakawa, Tomoyasu; Maeda, Keiichi

    2018-02-01

    We construct a simple but self-consistent collapsar model for gamma-ray bursts (GRBs) and SNe associated with GRBs (GRB-SNe). Our model includes a black hole, an accretion disk, and the envelope surrounding the central system. The evolutions of the different components are connected by the transfer of the mass and angular momentum. To address properties of the jet and the wind-driven SNe, we consider competition of the ram pressure from the infalling envelope and those from the jet and wind. The expected properties of the GRB jet and the wind-driven SN are investigated as a function of the progenitor mass and angular momentum. We find two conditions that should be satisfied if the wind-driven explosion is to explain the properties of the observed GRB-SNe: (1) the wind should be collimated at its base, and (2) it should not prevent further accretion even after the launch of the SN explosion. Under these conditions, some relations seen in the properties of the GRB-SNe could be reproduced by a sequence of different angular momentum in the progenitors. Only the model with the largest angular momentum could explain the observed (energetic) GRB-SNe, and we expect that the collapsar model can result in a wide variety of observational counterparts, mainly depending on the angular momentum of the progenitor star.

  9. Angular dependant micro-ESR characterization of a locally doped Gd3+:Al2O3 hybrid system for quantum applications

    NASA Astrophysics Data System (ADS)

    Wisby, I. S.; de Graaf, S. E.; Gwilliam, R.; Adamyan, A.; Kubatkin, S. E.; Meeson, P. J.; Tzalenchuk, A. Ya.; Lindstrom, T.

    Rare-earth doped crystals interfaced with superconducting quantum circuitry are an attractive platform for quantum memory and transducer applications. Here we present a detailed characterization of a locally implanted Gd3+ in Al2O3 system coupled to a superconducting micro-resonator, by performing angular dependent micro-electron-spin-resonance (micro-ESR) measurements at mK temperatures. The device is fabricated using a hard Si3N4 mask to facilitate a local ion-implantation technique for precision control of the dopant location. The technique is found not to degrade the internal quality factor of the resonators which remains above 105 (1). We find the measured angular dependence of the micro-ESR spectra to be in excellent agreement with the modelled Hamiltonian, supporting the conclusion that the dopant ions are successfully integrated into their relevant lattice sites whilst maintaining crystalline symmetries. Furthermore, we observe clear contributions from individual microwave field components of our micro-resonator, emphasising the need for controllable local implantation. 1 Wisby et al. Appl. Phys. Lett. 105, 102601 (2014)

  10. Lepton-Flavor-Dependent Angular Analysis of B→K^{*}ℓ^{+}ℓ^{-}.

    PubMed

    Wehle, S; Niebuhr, C; Yashchenko, S; Adachi, I; Aihara, H; Al Said, S; Asner, D M; Aulchenko, V; Aushev, T; Ayad, R; Aziz, T; Babu, V; Bakich, A M; Bansal, V; Barberio, E; Bartel, W; Behera, P; Bhuyan, B; Biswal, J; Bobrov, A; Bondar, A; Bonvicini, G; Bozek, A; Bračko, M; Browder, T E; Červenkov, D; Chang, P; Chekelian, V; Chen, A; Cheon, B G; Chilikin, K; Chistov, R; Cho, K; Choi, Y; Cinabro, D; Dash, N; Dingfelder, J; Doležal, Z; Drásal, Z; Dutta, D; Eidelman, S; Epifanov, D; Farhat, H; Fast, J E; Ferber, T; Fulsom, B G; Gaur, V; Gabyshev, N; Garmash, A; Gillard, R; Goldenzweig, P; Golob, B; Grzymkowska, O; Guido, E; Haba, J; Hara, T; Hayasaka, K; Hayashii, H; Hedges, M T; Hou, W-S; Hsu, C-L; Iijima, T; Inami, K; Inguglia, G; Ishikawa, A; Itoh, R; Iwasaki, Y; Jacobs, W W; Jaegle, I; Jeon, H B; Jin, Y; Joffe, D; Joo, K K; Julius, T; Kaliyar, A B; Kang, K H; Karyan, G; Katrenko, P; Kawasaki, T; Kichimi, H; Kiesling, C; Kim, D Y; Kim, H J; Kim, J B; Kim, K T; Kim, M J; Kim, S H; Kinoshita, K; Koch, L; Kodyš, P; Korpar, S; Kotchetkov, D; Križan, P; Krokovny, P; Kuhr, T; Kulasiri, R; Kumita, T; Kuzmin, A; Kwon, Y-J; Lange, J S; Li, C H; Li, L; Li, Y; Li Gioi, L; Libby, J; Liventsev, D; Lubej, M; Luo, T; Masuda, M; Matsuda, T; Miyabayashi, K; Miyake, H; Mizuk, R; Mohanty, G B; Mori, T; Mussa, R; Nakano, E; Nakao, M; Nanut, T; Nath, K J; Natkaniec, Z; Nayak, M; Nisar, N K; Nishida, S; Ogawa, S; Ono, H; Onuki, Y; Pakhlova, G; Pal, B; Park, C-S; Park, C W; Park, H; Paul, S; Pesántez, L; Piilonen, L E; Pulvermacher, C; Rauch, J; Ritter, M; Rostomyan, A; Sakai, Y; Sandilya, S; Santelj, L; Sanuki, T; Sato, Y; Savinov, V; Schlüter, T; Schneider, O; Schnell, G; Schwanda, C; Schwartz, A J; Seino, Y; Senyo, K; Seon, O; Seong, I S; Sevior, M E; Shen, C P; Shibata, T-A; Shiu, J-G; Shwartz, B; Simon, F; Sinha, R; Solovieva, E; Starič, M; Strube, J F; Sumisawa, K; Sumiyoshi, T; Takizawa, M; Tamponi, U; Tenchini, F; Trabelsi, K; Tsuboyama, T; Uchida, M; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Ushiroda, Y; Usov, Y; Vahsen, S E; Van Hulse, C; Varner, G; Varvell, K E; Vorobyev, V; Vossen, A; Waheed, E; Wang, C H; Wang, M-Z; Wang, P; Watanabe, M; Watanabe, Y; Widmann, E; Williams, K M; Won, E; Yamamoto, H; Yamashita, Y; Ye, H; Yook, Y; Yuan, C Z; Yusa, Y; Zhang, Z P; Zhilich, V; Zhukova, V; Zhulanov, V; Ziegler, M; Zupanc, A

    2017-03-17

    We present a measurement of angular observables and a test of lepton flavor universality in the B→K^{*}ℓ^{+}ℓ^{-} decay, where ℓ is either e or μ. The analysis is performed on a data sample corresponding to an integrated luminosity of 711  fb^{-1} containing 772×10^{6} BB[over ¯] pairs, collected at the ϒ(4S) resonance with the Belle detector at the asymmetric-energy e^{+}e^{-} collider KEKB. The result is consistent with standard model (SM) expectations, where the largest discrepancy from a SM prediction is observed in the muon modes with a local significance of 2.6σ.

  11. Correction of measured Gamma-Knife output factors for angular dependence of diode detectors and PinPoint ionization chamber.

    PubMed

    Hršak, Hrvoje; Majer, Marija; Grego, Timor; Bibić, Juraj; Heinrich, Zdravko

    2014-12-01

    Dosimetry for Gamma-Knife requires detectors with high spatial resolution and minimal angular dependence of response. Angular dependence and end effect time for p-type silicon detectors (PTW Diode P and Diode E) and PTW PinPoint ionization chamber were measured with Gamma-Knife beams. Weighted angular dependence correction factors were calculated for each detector. The Gamma-Knife output factors were corrected for angular dependence and end effect time. For Gamma-Knife beams angle range of 84°-54°. Diode P shows considerable angular dependence of 9% and 8% for the 18 mm and 14, 8, 4 mm collimator, respectively. For Diode E this dependence is about 4% for all collimators. PinPoint ionization chamber shows angular dependence of less than 3% for 18, 14 and 8 mm helmet and 10% for 4 mm collimator due to volumetric averaging effect in a small photon beam. Corrected output factors for 14 mm helmet are in very good agreement (within ±0.3%) with published data and values recommended by vendor (Elekta AB, Stockholm, Sweden). For the 8 mm collimator diodes are still in good agreement with recommended values (within ±0.6%), while PinPoint gives 3% less value. For the 4 mm helmet Diodes P and E show over-response of 2.8% and 1.8%, respectively. For PinPoint chamber output factor of 4 mm collimator is 25% lower than Elekta value which is generally not consequence of angular dependence, but of volumetric averaging effect and lack of lateral electronic equilibrium. Diodes P and E represent good choice for Gamma-Knife dosimetry. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Generalized extended Navier-Stokes theory: correlations in molecular fluids with intrinsic angular momentum.

    PubMed

    Hansen, J S; Daivis, Peter J; Dyre, Jeppe C; Todd, B D; Bruus, Henrik

    2013-01-21

    The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies. To account for the correlations at these scales, we derive a phenomenological expression for the frequency dependent rotational viscosity and wavevector and frequency dependent longitudinal spin viscosity. From this we observe a significant coupling enhancement between the molecular angular velocity and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points.

  13. Angular behavior of synchrotron radiation harmonics.

    PubMed

    Bagrov, V G; Bulenok, V G; Gitman, D M; Jara, Jose Acosta; Tlyachev, V B; Jarovoi, A T

    2004-04-01

    The detailed analysis of angular dependence of the synchrotron radiation (SR) is presented. Angular distributions of linear and circular polarization integrated over all harmonics, well known for relativistic electron energies, are extended to include radiation from electrons that are not fully relativistic. In particular, we analyze the angular dependence of the integral SR intensity and peculiarities of the angular dependence of the first harmonics SR. Studying spectral SR intensities, we have discovered their unexpected angular behavior, completely different from that of the integral SR intensity; namely, for any given synchrotron frequency, maxima of the spectral SR intensities recede from the orbit plane with increasing particle energy. Thus, in contrast with the integral SR intensity, the spectral ones have the tendency to deconcentrate themselves on the orbit plane.

  14. First Predictions of the Angular Power Spectrum of the Astrophysical Gravitational Wave Background

    NASA Astrophysics Data System (ADS)

    Cusin, Giulia; Dvorkin, Irina; Pitrou, Cyril; Uzan, Jean-Philippe

    2018-06-01

    We present the first predictions for the angular power spectrum of the astrophysical gravitational wave background constituted of the radiation emitted by all resolved and unresolved astrophysical sources. Its shape and amplitude depend on both the astrophysical properties on galactic scales and on cosmological properties. We show that the angular power spectrum behaves as Cℓ∝1 /ℓ on large scales and that relative fluctuations of the signal are of order 30% at 100 Hz. We also present the correlations of the astrophysical gravitational wave background with weak lensing and galaxy distribution. These numerical results pave the way to the study of a new observable at the crossroad between general relativity, astrophysics, and cosmology.

  15. Band structure effects in the energy loss of low-energy protons and deuterons in thin films of Pt

    NASA Astrophysics Data System (ADS)

    Celedón, C. E.; Sánchez, E. A.; Salazar Alarcón, L.; Guimpel, J.; Cortés, A.; Vargas, P.; Arista, N. R.

    2015-10-01

    We have investigated experimentally and by computer simulations the energy-loss and angular distribution of low energy (E < 10 keV) protons and deuterons transmitted through thin polycrystalline platinum films. The experimental results show significant deviations from the expected velocity dependence of the stopping power in the range of very low energies with respect to the predictions of the Density Functional Theory for a jellium model. This behavior is similar to those observed in other transition metals such as Cu, Ag and Au, but different from the linear dependence recently observed in another transition metal, Pd, which belongs to the same Group of Pt in the Periodic Table. These differences are analyzed in term of the properties of the electronic bands corresponding to Pt and Pd, represented in terms of the corresponding density of states. The present experiments include also a detailed study of the angular dependence of the energy loss and the angular distributions of transmitted protons and deuterons. The results are compared with computer simulations based on the Monte Carlo method and with a theoretical model that evaluates the contributions of elastic collisions, path length effects in the inelastic energy losses, and the effects of the foil roughness. The results of the analysis obtained from these various approaches provide a consistent and comprehensive description of the experimental findings.

  16. Angular-momentum-assisted dissociation of CO in strong optical fields

    NASA Astrophysics Data System (ADS)

    Mullin, Amy; Ogden, Hannah; Murray, Matthew; Liu, Qingnan; Toro, Carlos

    2017-04-01

    Filaments are produced in CO gas by intense, chirped laser pulses. Visible emission from C2 is observed as a result of chemical reactions of highly excited CO. At laser intensities greater than 1014 W cm-2, the C2 emission shows a strong dependence on laser polarization. Oppositely chirped pulses of light with ω0 = 800 nm are recombined spatially and temporally to generate angularly accelerating electric fields (up to 30 THz) that either have an instantaneous linear polarization or act as a dynamic polarization grating that oscillates among linear and circular polarizations. The angularly accelerating linear polarization corresponds to an optical centrifuge that concurrently drives molecules into high rotational states (with J 50) and induces strong-field dissociation. Higher order excitation is observed for the time-varying laser polarization configuration that does not induce rotational excitation. The results indicate that the presence of rotational angular momentum lowers the threshold for CO dissociation in strong optical fields by coupling nuclear and electronic degrees of freedom. Support from NSF CHE-1058721 and the University of Maryland.

  17. Study on pixel matching method of the multi-angle observation from airborne AMPR measurements

    NASA Astrophysics Data System (ADS)

    Hou, Weizhen; Qie, Lili; Li, Zhengqiang; Sun, Xiaobing; Hong, Jin; Chen, Xingfeng; Xu, Hua; Sun, Bin; Wang, Han

    2015-10-01

    For the along-track scanning mode, the same place along the ground track could be detected by the Advanced Multi-angular Polarized Radiometer (AMPR) with several different scanning angles from -55 to 55 degree, which provides a possible means to get the multi-angular detection for some nearby pixels. However, due to the ground sample spacing and spatial footprint of the detection, the different sizes of footprints cannot guarantee the spatial matching of some partly overlap pixels, which turn into a bottleneck for the effective use of the multi-angular detected information of AMPR to study the aerosol and surface polarized properties. Based on our definition and calculation of t he pixel coincidence rate for the multi-angular detection, an effective multi-angle observation's pixel matching method is presented to solve the spatial matching problem for airborne AMPR. Assuming the shape of AMPR's each pixel is an ellipse, and the major axis and minor axis depends on the flying attitude and each scanning angle. By the definition of coordinate system and origin of coordinate, the latitude and longitude could be transformed into the Euclidian distance, and the pixel coincidence rate of two nearby ellipses could be calculated. Via the traversal of each ground pixel, those pixels with high coincidence rate could be selected and merged, and with the further quality control of observation data, thus the ground pixels dataset with multi-angular detection could be obtained and analyzed, providing the support for the multi-angular and polarized retrieval algorithm research in t he next study.

  18. Ion guiding accompanied by formation of neutrals in polyethylene terephthalate polymer nanocapillaries: Further insight into a self-organizing process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juhasz, Z.; Sulik, B.; Racz, R.

    2010-12-15

    A relatively large yield of neutralized atoms was observed when 3 keV Ar{sup 7+} ions were guided trough polyethylene terephthalate nanocapillaries. Time and deposited-charge dependence of the angular distribution of both the guided ions and the neutrals was measured simultaneously using a two-dimensional multichannel plate detector. The yield of neutrals increased significantly faster than that of guided ions and saturated typically at a few percent level. In accordance with earlier observations, both the yield and the mean emission angle of the guided ions exhibited strong oscillations. For the atoms, the equilibrium was achieved not only faster, but also without significantmore » oscillations in yield and angular position. A phase analysis of these time dependencies provides insight into the dynamic features of the self-organizing mechanisms, which leads to ion guiding in insulating nanocapillaries.« less

  19. Testing General Relativity with the Shadow Size of Sgr A(*).

    PubMed

    Johannsen, Tim; Broderick, Avery E; Plewa, Philipp M; Chatzopoulos, Sotiris; Doeleman, Sheperd S; Eisenhauer, Frank; Fish, Vincent L; Genzel, Reinhard; Gerhard, Ortwin; Johnson, Michael D

    2016-01-22

    In general relativity, the angular radius of the shadow of a black hole is primarily determined by its mass-to-distance ratio and depends only weakly on its spin and inclination. If general relativity is violated, however, the shadow size may also depend strongly on parametric deviations from the Kerr metric. Based on a reconstructed image of Sagittarius A^{*} (Sgr A^{*}) from a simulated one-day observing run of a seven-station Event Horizon Telescope (EHT) array, we employ a Markov chain Monte Carlo algorithm to demonstrate that such an observation can measure the angular radius of the shadow of Sgr A^{*} with an uncertainty of ∼1.5  μas (6%). We show that existing mass and distance measurements can be improved significantly when combined with upcoming EHT measurements of the shadow size and that tight constraints on potential deviations from the Kerr metric can be obtained.

  20. OBSERVABLE DEVIATIONS FROM HOMOGENEITY IN AN INHOMOGENEOUS UNIVERSE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giblin, John T. Jr.; Mertens, James B.; Starkman, Glenn D.

    How does inhomogeneity affect our interpretation of cosmological observations? It has long been wondered to what extent the observable properties of an inhomogeneous universe differ from those of a corresponding Friedmann–Lemaître–Robertson–Walker (FLRW) model, and how the inhomogeneities affect that correspondence. Here, we use numerical relativity to study the behavior of light beams traversing an inhomogeneous universe, and construct the resulting Hubble diagrams. The universe that emerges exhibits an average FLRW behavior, but inhomogeneous structures contribute to deviations in observables across the observer’s sky. We also investigate the relationship between angular diameter distance and the angular extent of a source, findingmore » deviations that grow with source redshift. These departures from FLRW are important path-dependent effects, with implications for using real observables in an inhomogeneous universe such as our own.« less

  1. The angular electronic band structure and free particle model of aromatic molecules: High-frequency photon-induced ring current

    NASA Astrophysics Data System (ADS)

    Öncan, Mehmet; Koç, Fatih; Şahin, Mehmet; Köksal, Koray

    2017-05-01

    This work introduces an analysis of the relationship of first-principles calculations based on DFT method with the results of free particle model for ring-shaped aromatic molecules. However, the main aim of the study is to reveal the angular electronic band structure of the ring-shaped molecules. As in the case of spherical molecules such as fullerene, it is possible to observe a parabolic dispersion of electronic states with the variation of angular quantum number in the planar ring-shaped molecules. This work also discusses the transition probabilities between the occupied and virtual states by analyzing the angular electronic band structure and the possibility of ring currents in the case of spin angular momentum (SAM) or orbital angular momentum (OAM) carrying light. Current study focuses on the benzene molecule to obtain its angular electronic band structure. The obtained electronic band structure can be considered as a useful tool to see the transition probabilities between the electronic states and possible contribution of the states to the ring currents. The photoinduced current due to the transfer of SAM into the benzene molecule has been investigated by using analytical calculations within the frame of time-dependent perturbation theory.

  2. Diverse trends of electron correlation effects for properties with different radial and angular factors in an atomic system: a case study in Ca+

    NASA Astrophysics Data System (ADS)

    Kumar, Pradeep; Li, Cheng-Bin; Sahoo, B. K.

    2018-03-01

    Dependencies of electron correlation effects with the rank and radial behavior of spectroscopic properties are analyzed in the singly charged calcium ion (Ca+). To demonstrate these trends, we have determined field shift constants, magnetic dipole and electric quadrupole hyperfine structure constants, Landé g J factors, and electric quadrupole moments that are described by electronic operators with different radial and angular factors. Radial dependencies are investigated by comparing correlation trends among the properties that have similar angular factors and vice versa. To highlight these observations, we present results from the mean-field approach to all-orders along with intermediate contributions. Contributions from higher relativistic corrections are also given. These findings suggest that sometime lower-order approximations can give results agreeing with the experimental results, but inclusion of some of higher-order correlation effects can cause large disagreement with the experimental values. Therefore, validity of a method for accurate evaluation of atomic properties can be tested by performing calculations of several properties simultaneously that have diverse dependencies on the angular and radial factors and comparing with the available experimental results. Nevertheless, it is imperative to include full triple and quadrupole excitations in the all-order many-body methods for high-precision calculations that are yet to be developed adopting spherical coordinate system for atomic studies.

  3. The angular distribution of diffusely backscattered light

    NASA Astrophysics Data System (ADS)

    Vera, M. U.; Durian, D. J.

    1997-03-01

    The diffusion approximation predicts the angular distribution of light diffusely transmitted through an opaque slab to depend only on boundary reflectivity, independent of scattering anisotropy, and this has been verified by experiment(M.U. Vera and D.J. Durian, Phys. Rev. E 53) 3215 (1996). Here, by contrast, we demonstrate that the angular distribution of diffusely backscattered light depends on scattering anisotropy as well as boundary reflectivity. To model this observation scattering anisotropy is added to the diffusion approximation by a discontinuity in the photon concentration at the source point that is proportional to the average cosine of the scattering angle. We compare the resulting predictions with random walk simulations and with measurements of diffusely backscattered intensity versus angle for glass frits and aqueous suspensions of polystyrene spheres held in air or immersed in a water bath. Increasing anisotropy and boundary reflectivity each tend to flatten the predicted distributions, and for different combinations of anisotropy and reflectivity the agreement between data and predictions ranges from qualitatively to quantitatively good.

  4. The impact of fibre orientation on T1-relaxation and apparent tissue water content in white matter.

    PubMed

    Schyboll, Felix; Jaekel, Uwe; Weber, Bernd; Neeb, Heiko

    2018-02-20

    Recent MRI studies have shown that the orientation of nerve fibres relative to the main magnetic field affects the R 2 *(= 1/T 2 *) relaxation rate in white matter (WM) structures. The underlying physical causes have been discussed in several studies but are still not completely understood. However, understanding these effects in detail is of great importance since this might serve as a basis for the development of new diagnostic tools and/or improve quantitative susceptibility mapping techniques. Therefore, in addition to the known angular dependence of R 2 *, the current study investigates the relationship between fibre orientation and the longitudinal relaxation rate, R 1 (= 1/T 1 ), as well as the apparent water content. For a group of 16 healthy subjects, a series of gradient echo, echo-planar and diffusion weighted images were acquired at 3T from which the decay rates, the apparent water content and the diffusion direction were reconstructed. The diffusion weighted data were used to determine the angle between the principle fibre direction and the main magnetic field to examine the angular dependence of R 1 and apparent water content. The obtained results demonstrate that both parameters depend on the fibre orientation and exhibit a positive correlation with the angle between fibre direction and main magnetic field. These observations could be helpful to improve and/or constrain existing biophysical models of brain microstructure by imposing additional constraints resulting from the observed angular dependence R 1 and apparent water content in white matter.

  5. Electrorotation of novel electroactive polymer composites in uniform DC and AC electric fields

    NASA Astrophysics Data System (ADS)

    Zrinyi, Miklós; Nakano, Masami; Tsujita, Teppei

    2012-06-01

    Novel electroactive polymer composites have been developed that could spin in uniform DC and AC electric fields. The angular displacement as well as rotation of polymer disks around an axis that is perpendicular to the direction of the applied electric field was studied. It was found that the dynamics of the polymer rotor is very complex. Depending on the strength of the static DC field, three regimes have been observed: no rotation occurs below a critical threshold field intensity, oscillatory motion takes place just above this value and continuous rotation can be observed above the critical threshold field intensity. It was also found that low frequency AC fields could also induce angular deformation.

  6. ENERGY AND ANGULAR DEPENDENCE OF RADIOPHOTOLUMINESCENT GLASS DOSEMETERS FOR EYE LENS DOSIMETRY.

    PubMed

    Silva, E H; Knežević, Ž; Struelens, L; Covens, P; Ueno, S; Vanhavere, F; Buls, N

    2016-09-01

    Recent studies demonstrated that lens opacities can occur at lower radiation doses than previously accepted. In view of these studies, the International Commission of Radiological Protection recommended in 2011 to reduce the eye lens dose limit from 150 mSv/y to 20 mSv/y. This implies in the need of monitoring doses received by the eye lenses. In this study, small rod radiophotoluminescent glass dosemeters (GD-300 series; AGC, Japan) were characterized in terms of their energy (ISO 4037 X-rays narrow spectrum series, S-Cs and S-Co) and angular dependence (0  up to 90 degrees, with 2 ISO energies: N-60 and S-Cs). All acquisitions were performed at SCK•CEN-Belgium, using the ORAMED proposed cylindrical phantom. For selected energies (N-60, N-80, N-100, N-120 and N-250), the response of dosemeters irradiated on the ISO water slab phantom, at the Ruđer Bošković Institute-Croatia, was compared to those irradiated on the cylindrical phantom. GD-300 series showed good energy dependence, relative to S-Cs, on the cylindrical phantom. From 0 up to 45 degrees, the dosemeters showed no significant angular dependence, regardless whether they were tested when placed vertically or horizontally on the cylindrical phantom. However, at higher angles, some angular dependence was observed, mainly when the dosemeters were irradiated with low-energy photons (N-60). Results showed that GD-300 series have good properties related to Hp(3), although some improvements may be necessary. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Angular dependence of Kβ/Kα intensity ratios of thick Ti and Cu pure elements from 10-25 keV electron bombardment

    NASA Astrophysics Data System (ADS)

    Singh, B.; Kumar, S.; Prajapati, S.; Singh, B. K.; Llovet, X.; Shanker, R.

    2018-02-01

    Measurements yielding the first results on angular dependence of Kβ/Kα X-ray intensity ratios of thick Ti (Z = 22) and Cu (Z = 29) targets induced by 10-25 keV electrons are presented. The measurements were done by rotating the target surface around the electron beam direction in the angular detection range 105° ≤ θ ≤ 165° in the reflection mode using an energy dispersive Si PIN photodiode detector. The measured angular dependence of Kβ/Kα intensity ratios is shown to be almost isotropic for Ti and Cu targets for the range of detection angles, 105° ≤ θ ≤ 150°, while there is a very weak increase beyond 150° for both targets. No dependence of Kβ/Kα intensity ratios on impact energy is observed; while on average, the value of the Kβ/Kα X-ray intensity ratio for Cu is larger by about 8% than that for Ti, which indicates a weak Z-dependence of the target. The experimental results are compared with those obtained from PENELOPE MC calculations and from the Evaluated Atomic Data Library (EADL) ratios. These results on Kβ/Kα X-ray intensity ratios are found to be in reasonable agreement in the detection angle range 105° ≤ θ ≤ 150° to within uncertainties, whereas the simulation and experimental results show a very slight increase in the intensity ratio with θ as the latter attains higher values. The results presented in this work provide a direct check on the accuracy of PENELOPE at oblique incidence angles for which there has been a lack of measurements in the literature until now.

  8. B B ¯ angular correlations at the LHC in the parton Reggeization approach merged with higher-order matrix elements

    NASA Astrophysics Data System (ADS)

    Karpishkov, A. V.; Nefedov, M. A.; Saleev, V. A.

    2017-11-01

    We calculate the angular distribution spectra between beauty (B ) and antibeauty (B ¯) mesons in proton-proton collisions in the leading order approximation of the parton Reggeization approach consistently merged with the next-to-leading order corrections from the emission of an additional hard gluon. To describe b-quark hadronization we use the universal scale-dependent parton-to-meson fragmentation functions extracted from the world e+e- annihilation data. We have obtained good agreement between our predictions and data from the CMS Collaboration at the energy √{S }=7 TeV for B B ¯ angular correlations within uncertainties and without free parameters. Predictions for analogous correlation observables at √{S }=13 TeV are provided.

  9. Quantized magnetoresistance in atomic-size contacts.

    PubMed

    Sokolov, Andrei; Zhang, Chunjuan; Tsymbal, Evgeny Y; Redepenning, Jody; Doudin, Bernard

    2007-03-01

    When the dimensions of a metallic conductor are reduced so that they become comparable to the de Broglie wavelengths of the conduction electrons, the absence of scattering results in ballistic electron transport and the conductance becomes quantized. In ferromagnetic metals, the spin angular momentum of the electrons results in spin-dependent conductance quantization and various unusual magnetoresistive phenomena. Theorists have predicted a related phenomenon known as ballistic anisotropic magnetoresistance (BAMR). Here we report the first experimental evidence for BAMR by observing a stepwise variation in the ballistic conductance of cobalt nanocontacts as the direction of an applied magnetic field is varied. Our results show that BAMR can be positive and negative, and exhibits symmetric and asymmetric angular dependences, consistent with theoretical predictions.

  10. Spectromicroscopy study of interfacial Co/NiO(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Laan, Gerrit; Telling, Neil; Potenza, Alberto

    2010-09-26

    Photoemission electron microscopy (PEEM) with linearly polarized x-rays is used to determine the orientation of antiferromagnetic domains by monitoring the relative peak intensities at the 3d transition metal L{sub 2} absorption edge. In such an analysis the orientations of the x-ray polarization E and magnetization H with respect to the crystalline axes has to be taken into account. We address this problem by presenting a general expression of the angular dependence for both x-ray absorption spectroscopy and x-ray magnetic linear dichroism (XMLD) for arbitrary direction of E and H in the (001) cubic plane. In cubic symmetry the angular dependentmore » XMLD is a linear combination of two spectra with different photon energy dependence, which reduces to one spectrum when E or H is along a high-symmetry axis. The angular dependent XMLD can be separated into an isotropic term, which is symmetric along H, and an anisotropic term, which depends on the orientation of the crystal axes. The anisotropic term has maximal intensity when E and H have equal but opposite angles with respect to the [100] direction. The Ni{sup 2+} L{sub 2} edge has the peculiarity that the isotropic term vanishes, which means that the maximum in the XMLD intensity is observed not only for E {parallel} H {parallel} [100] but also for (E {parallel} [110], H {parallel} [110]). We apply the angular dependent theory to determine the spin orientation near the Co/NiO(100) interface. The PEEM images show that the ferromagnetic Co moments and antiferromagnetic NiO moments are aligned perpendicular to each other. By rotating the sample with respect to the linear x-ray polarization we furthermore find that the perpendicular coupling with the ferromagnetic Co layer at the interface causes a canting of the antiferromagnetic Ni moments. This shows that taking into account the angular dependence of the XMLD in the detailed analysis of PEEM images leads to an accurate retrieval of the spin axes of the antiferromagnetic domains.« less

  11. Asymmetric angular dependence of spin-transfer torques in CoFe/Mg-B-O/CoFe magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Ling, E-mail: lingtang@zjut.edu.cn; Xu, Zhi-Jun, E-mail: xzj@zjut.edu.cn; Zuo, Xian-Jun

    Using a first-principles noncollinear wave-function-matching method, we studied the spin-transfer torques (STTs) in CoFe/Mg-B-O/CoFe(001) magnetic tunnel junctions (MTJs), where three different types of B-doped MgO in the spacer are considered, including B atoms replacing Mg atoms (Mg{sub 3}BO{sub 4}), B atoms replacing O atoms (Mg{sub 4}BO{sub 3}), and B atoms occupying interstitial positions (Mg{sub 4}BO{sub 4}) in MgO. A strong asymmetric angular dependence of STT can be obtained both in ballistic CoFe/Mg{sub 3}BO{sub 4} and CoFe/Mg{sub 4}BO{sub 4} based MTJs, whereas a nearly symmetric STT curve is observed in the junctions based on CoFe/Mg{sub 4}BO{sub 3}. Furthermore, the asymmetry ofmore » the angular dependence of STT can be suppressed significantly by the disorder of B distribution. Such skewness of STTs in the CoFe/Mg-B-O/CoFe MTJs could be attributed to the interfacial resonance states induced by the B diffusion into MgO spacer.« less

  12. Understanding GRETINA using angular correlation method

    NASA Astrophysics Data System (ADS)

    Austin, Madeline

    2015-10-01

    The ability to trace the path of gamma rays through germanium is not only necessary for taking full advantage of GRETINA but also a promising possibility for homeland security defense against nuclear threats. This research tested the current tracking algorithm using the angular correlation method by comparing results from raw and tracked data to the theoretical model for Co-60. It was found that the current tracking method is unsuccessful in reproducing angular correlation. Variations to the tracking algorithm were made in the FM value, tracking angle, number of angles of separation observed, and window of coincidence in attempt to improve correlation results. From these variations it was observed that having a larger FM improved results, reducing the number of observational angles worsened correlation, and that overall larger tracking angles improved with larger windows of coincidence and vice-verse. Future research would be to refine the angle of measurement for raw data and to explore the possibility of an energy dependence by testing other elements. This work is supported by the United States Department of Energy, Office of Science, under Contract Number DE-AC02-06CH11357

  13. REVIEWS OF TOPICAL PROBLEMS: The differential rotation of stars

    NASA Astrophysics Data System (ADS)

    Kitchatinov, Leonid L.

    2005-05-01

    Astronomical observations of recent years have substantially extended our knowledge of the rotation of stars. Helioseismology has found out that the equator-to-pole decline in the angular velocity observed on the solar surface traces down to the deep interior of the Sun. New information has been gained regarding the dependence of the rotational nonuniformities on the angular velocity and mass of the star. These achievements have prompted the development of the theory of differential rotation, which is the focal point of this review. Nonuniform rotation results from the interaction of turbulent convection with rotation. The investigation into the turbulent mechanisms of angular-momentum transport has reached a level at which the obtained results can serve as the basis for developing quantitative models of stellar rotation. Such models contain virtually no free parameters but closely reproduce the helioseismological data on the internal rotation of the Sun. The theoretical predictions on the differential rotation of the stars agree with observations. A brief discussion is held here on the relation between the magnetic activity of stars and the nonuniformity of their rotation and on prospects for further development of the theory.

  14. High Temperature Deformation of Twin-Roll Cast Al-Mn-Based Alloys after Equal Channel Angular Pressing.

    PubMed

    Málek, Přemysl; Šlapáková Poková, Michaela; Cieslar, Miroslav

    2015-11-12

    Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed-the strain rate dependence of the parameter m , the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range.

  15. Helical paths, gravitaxis, and separation phenomena for mass-anisotropic self-propelling colloids: Experiment versus theory

    NASA Astrophysics Data System (ADS)

    Campbell, Andrew I.; Wittkowski, Raphael; ten Hagen, Borge; Löwen, Hartmut; Ebbens, Stephen J.

    2017-08-01

    The self-propulsion mechanism of active colloidal particles often generates not only translational but also rotational motion. For particles with an anisotropic mass density under gravity, the motion is usually influenced by a downwards oriented force and an aligning torque. Here we study the trajectories of self-propelled bottom-heavy Janus particles in three spatial dimensions both in experiments and by theory. For a sufficiently large mass anisotropy, the particles typically move along helical trajectories whose axis is oriented either parallel or antiparallel to the direction of gravity (i.e., they show gravitaxis). In contrast, if the mass anisotropy is small and rotational diffusion is dominant, gravitational alignment of the trajectories is not possible. Furthermore, the trajectories depend on the angular self-propulsion velocity of the particles. If this component of the active motion is strong and rotates the direction of translational self-propulsion of the particles, their trajectories have many loops, whereas elongated swimming paths occur if the angular self-propulsion is weak. We show that the observed gravitational alignment mechanism and the dependence of the trajectory shape on the angular self-propulsion can be used to separate active colloidal particles with respect to their mass anisotropy and angular self-propulsion, respectively.

  16. Simulated cosmic microwave background maps at 0.5 deg resolution: Basic results

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Bennett, C. L.; Kogut, A.

    1995-01-01

    We have simulated full-sky maps of the cosmic microwave background (CMB) anisotropy expected from cold dark matter (CDM) models at 0.5 deg and 1.0 deg angular resolution. Statistical properties of the maps are presented as a function of sky coverage, angular resolution, and instrument noise, and the implications of these results for observability of the Doppler peak are discussed. The rms fluctuations in a map are not a particularly robust probe of the existence of a Doppler peak; however, a full correlation analysis can provide reasonable sensitivity. We find that sensitivity to the Doppler peak depends primarily on the fraction of sky covered, and only secondarily on the angular resolution and noise level. Color plates of the simulated maps are presented to illustrate the anisotropies.

  17. Online time-differential perturbed angular correlation study with an 19O beam - Residence sites of oxygen atoms in highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Sato, W.; Ueno, H.; Watanabe, H.; Miyoshi, H.; Yoshimi, A.; Kameda, D.; Ito, T.; Shimada, K.; Kaihara, J.; Suda, S.; Kobayashi, Y.; Shinohara, A.; Ohkubo, Y.; Asahi, K.

    2008-01-01

    The online time-differential perturbed angular correlation (TDPAC) method was applied to a study of the physical states of a probe 19F, the β- decay product of 19O (t1/2 = 26.9 s), implanted in highly oriented pyrolytic graphite. The observed magnitude of the electric field gradient at the probe nucleus, ∣Vzz∣ = 2.91(17) × 1022 V m-2, suggests that the incident 19O atoms are stabilized at an interlayer position with point group C3v. Exhibiting observed TDPAC spectra having a clear sample-to-detector configuration dependence, we demonstrate the applicability of the present online method with a short-lived radioactive 19O beam.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dam, Dick van, E-mail: a.d.v.dam@tue.nl; Haverkort, Jos E. M.; Abujetas, Diego R.

    The emission from nanowires can couple to waveguide modes supported by the nanowire geometry, thus governing the far-field angular pattern. To investigate the geometry-induced coupling of the emission to waveguide modes, we acquire Fourier microscopy images of the photoluminescence of nanowires with diameters ranging from 143 to 208 nm. From the investigated diameter range, we conclude that a few nanometers difference in diameter can abruptly change the coupling of the emission to a specific mode. Moreover, we observe a diameter-dependent width of the Gaussian-shaped angular pattern in the far-field emission. This dependence is understood in terms of interference of the guidedmore » modes, which emit at the end facets of the nanowire. Our results are important for the design of quantum emitters, solid state lighting, and photovoltaic devices based on nanowires.« less

  19. Angular dependent XPS study of surface band bending on Ga-polar n-GaN

    NASA Astrophysics Data System (ADS)

    Huang, Rong; Liu, Tong; Zhao, Yanfei; Zhu, Yafeng; Huang, Zengli; Li, Fangsen; Liu, Jianping; Zhang, Liqun; Zhang, Shuming; Dingsun, An; Yang, Hui

    2018-05-01

    Surface band bending and composition of Ga-polar n-GaN with different surface treatments were characterized by using angular dependent X-ray photoelectron spectroscopy. Upward surface band bending of varying degree was observed distinctly upon to the treatment methods. Besides the nitrogen vacancies, we found that surface states of oxygen-containing absorbates (O-H component) also contribute to the surface band bending, which lead the Fermi level pined at a level further closer to the conduction band edge on n-GaN surface. The n-GaN surface with lower surface band bending exhibits better linear electrical properties for Ti/GaN Ohmic contacts. Moreover, the density of positively charged surface states could be derived from the values of surface band bending.

  20. Angular Size Test on the Expansion of the Universe

    NASA Astrophysics Data System (ADS)

    López-Corredoira, Martín

    Assuming the standard cosmological model to be correct, the average linear size of the galaxies with the same luminosity is six times smaller at z = 3.2 than at z = 0; and their average angular size for a given luminosity is approximately proportional to z-1. Neither the hypothesis that galaxies which formed earlier have much higher densities nor their luminosity evolution, merger ratio, and massive outflows due to a quasar feedback mechanism are enough to justify such a strong size evolution. Also, at high redshift, the intrinsic ultraviolet surface brightness would be prohibitively high with this evolution, and the velocity dispersion much higher than observed. We explore here another possibility of overcoming this problem: considering different cosmological scenarios, which might make the observed angular sizes compatible with a weaker evolution. One of the explored models, a very simple phenomenological extrapolation of the linear Hubble law in a Euclidean static universe, fits quite well the angular size versus redshift dependence, also approximately proportional to z-1 with this cosmological model. There are no free parameters derived ad hoc, although the error bars allow a slight size/luminosity evolution. The supernova Ia Hubble diagram can also be explained in terms of this model without any ad-hoc-fitted parameter. NB: I do not argue here that the true universe is static. My intention is just to discuss which intellectual theoretical models fit better some data of the observational cosmology.

  1. Response of semicircular canal dependent units in vestibular nuclei to rotation of a linear acceleration vector without angular acceleration

    PubMed Central

    Benson, A. J.; Guedry, F. E.; Jones, G. Melvill

    1970-01-01

    1. Recent experiments have shown that rotation of a linear acceleration vector round the head can generate involuntary ocular nystagmus in the absence of angular acceleration. The present experiments examine the suggestion that adequate stimulation of the semicircular canals may contribute to this response. 2. Decerebrate cats were located in a stereotaxic device on a platform, slung from four parallel cables, which could be driven smoothly round a circular orbit without inducing significant angular movement of the platform. This Parallel Swing Rotation (PSR) generated a centripetal acceleration of 4·4 m/sec2 which rotated round the head at 0·52 rev/sec. 3. The discharge frequency of specifically lateral canal-dependent neural units in the vestibular nuclei of cats was recorded during PSR to right and left, and in the absence of motion. The dynamic responses to purely angular motion were also examined on a servo-driven turntable. 4. Without exception all proven canal-dependent cells examined (twenty-nine cells in nine cats) were more active during PSR in the direction of endolymph circulation assessed to be excitatory to the unit, than during PSR in the opposite direction. 5. The observed changes in discharge frequency are assessed to have been of a magnitude appropriate for the generation of the involuntary oculomotor response induced by the same stimulus in the intact animal. 6. The findings suggest that a linear acceleration vector which rotates in the plane of the lateral semicircular canals can be an adequate stimulus to ampullary receptors, though an explanation which invokes the modulation of canal cells by a signal dependent upon the sequential activation of macular receptors cannot be positively excluded. PMID:5501270

  2. Large angular scale CMB anisotropy from an excited initial mode

    NASA Astrophysics Data System (ADS)

    Sojasi, A.; Mohsenzadeh, M.; Yusofi, E.

    2016-07-01

    According to inflationary cosmology, the CMB anisotropy gives an opportunity to test predictions of new physics hypotheses. The initial state of quantum fluctuations is one of the important options at high energy scale, as it can affect observables such as the CMB power spectrum. In this study a quasi-de Sitter inflationary background with approximate de Sitter mode function built over the Bunch-Davies mode is applied to investigate the scale-dependency of the CMB anisotropy. The recent Planck constraint on spectral index motivated us to examine the effect of a new excited mode function (instead of pure de Sitter mode) on the CMB anisotropy at large angular scales. In so doing, it is found that the angular scale-invariance in the CMB temperature fluctuations is broken and in the limit ℓ < 200 a tiny deviation appears. Also, it is shown that the power spectrum of CMB anisotropy is dependent on a free parameter with mass dimension H << M * < M p and on the slow-roll parameter ɛ. Supported by the Islamic Azad University, Rasht Branch, Rasht, Iran

  3. A study of angular dependence in the ablation rate of polymers by nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Pedder, James E. A.; Holmes, Andrew S.

    2006-02-01

    Measurements of ablation rate have traditionally been carried out only at normal incidence. However, in real-world applications ablation is often carried out at oblique angles, and it is useful to have prior knowledge of the ablation rate in this case. Detailed information about the angular dependence is also important for the development of ablation simulation tools, and can provide additional insight into the ablation mechanism. Previously we have reported on the angular dependence of direct-write ablation at 266 nm wavelength in solgel and polymer materials. In this paper we present a systematic study of angular dependence for excimer laser ablation of two polymer materials of interest for microfabrication: polycarbonate and SU8 photoresist. The results are used to improve simulation models to aid in mask design.

  4. Texture in steel plates revealed by laser ultrasonic surface acoustic waves velocity dispersion analysis.

    PubMed

    Yin, Anmin; Wang, Xiaochen; Glorieux, Christ; Yang, Quan; Dong, Feng; He, Fei; Wang, Yanlong; Sermeus, Jan; Van der Donck, Tom; Shu, Xuedao

    2017-07-01

    A photoacoustic, laser ultrasonics based approach in an Impulsive Stimulated Scattering (ISS) implementation was used to investigate the texture in polycrystalline metal plates. The angular dependence of the 'polycrystalline' surface acoustic wave (SAW) velocity measured along regions containing many grains was experimentally determined and compared with simulated results that were based on the angular dependence of the 'single grain' SAW velocity within single grains and the grain orientation distribution. The polycrystalline SAW velocities turn out to vary with texture. The SAW velocities and their angular variations for {110} texture were found to be larger than that the ones for {111} texture or the strong γ fiber texture. The SAW velocities for {001} texture were larger than for {111} texture, but with almost the same angular dependence. The results infer the feasibility to apply angular SAW angular dispersion measurements by laser ultrasonics for on-line texture monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. High-order orbital angular momentum mode generator based on twisted photonic crystal fiber.

    PubMed

    Fu, Cailing; Liu, Shen; Wang, Ying; Bai, Zhiyong; He, Jun; Liao, Changrui; Zhang, Yan; Zhang, Feng; Yu, Bin; Gao, Shecheng; Li, Zhaohui; Wang, Yiping

    2018-04-15

    High-order orbital angular momentum (OAM) modes, namely, OAM +5 and OAM +6 , were generated and demonstrated experimentally by twisting a solid-core hexagonal photonic crystal fiber (PCF) during hydrogen-oxygen flame heating. Leaky orbital resonances in the cladding depend strongly on the twist rate and length of the helical PCF. Moreover, the generated high-order OAM mode could be a polarized mode. The secret of the successful observation of high-order modes is that leaky orbital resonances in the twisted PCF cladding have a high coupling efficiency of more than -20  dB.

  6. Effect of gravity opientation on the thermal performance of Stirling-type pulse tube cryocoolers

    NASA Technical Reports Server (NTRS)

    Ronald, Ross G., Jr.; Johnson, D. L.

    2003-01-01

    This paper extends the investigation of angular orientation effects to the refrigeration performance of high frequency (-40 Hz) Stirling-type pulse tube cryocoolers typical of those used in long-life space applications. Strong orientation effects on the performance of such cryocoolers have recently been observed during system-level testing of both linear and U-tube type pulse tubes. To quantify the angular dependency effects, data have been gathered on both U-tube and linear type pulse tubes of two different manufacturers as a function of orientation angle, cold-tip temperature, and compressor stroke.

  7. Energy-dependent angular shifts in the photoelectron momentum distribution for atoms in elliptically polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Xie, Hui; Li, Min; Luo, Siqiang; Li, Yang; Zhou, Yueming; Cao, Wei; Lu, Peixiang

    2017-12-01

    We measure the photoelectron momentum distributions from atoms ionized by strong elliptically polarized laser fields at the wavelengths of 400 and 800 nm, respectively. The momentum distributions show distinct angular shifts, which sensitively depend on the electron energy. We find that the deflection angle with respect to the major axis of the laser ellipse decreases with the increase of the electron energy for large ellipticities. This energy-dependent angular shift is well reproduced by both numerical solutions of the time-dependent Schrödinger equation and the classical-trajectory Monte Carlo model. We show that the ionization time delays among the electrons with different energies are responsible for the energy-dependent angular shifts. On the other hand, for small ellipticities, we find the deflection angle increases with increasing the electron energy, which might be caused by electron rescattering in the elliptically polarized fields.

  8. SU-E-T-644: Evaluation of Angular Dependence Correction for 2D Array Detector Using for Quality Assurance of Volumetric Modulated Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karthikeyan, N; Ganesh, K M; Vikraman, S

    2014-06-15

    Purpose: To evaluate the angular dependence correction for Matrix Evolution 2D array detector in quality assurance of volumetric modulated arc therapy(VMAT). Methods: Total ten patients comprising of different sites were planned for VMAT and taken for the study. Each plan was exposed on Matrix Evolution 2D array detector with Omnipro IMRT software based on the following three different methods using 6MV photon beams from Elekta Synergy linear accelerator. First method, VMAT plan was delivered on Matrix Evolution detector as it gantry mounted with dedicated holder with build-up of 2.3cm. Second, the VMAT plan was delivered with the static gantry anglemore » on to the table mounted setup. Third, the VMAT plan was delivered with actual gantry angle on Matrix Evolution detector fixed in Multicube phantom with gantry angle sensor and angular dependence correction were applied to quantify the plan quality. For all these methods, the corresponding QA plans were generated in TPS and the dose verification was done for both point and 2D fluence analysis with pass criteria of 3% dose difference and 3mm distance to agreement. Results: The measured point dose variation for the first method was observed as 1.58±0.6% of mean and SD with TPS calculated. For second and third method, the mean and standard deviation(SD) was observed as 1.67±0.7% and 1.85±0.8% respectively. The 2D fluence analysis of measured and TPS calculated has the mean and SD of 97.9±1.1%, 97.88±1.2% and 97.55±1.3% for first, second and third methods respectively. The calculated two-tailed Pvalue for point dose and 2D fluence analysis shows the insignificance with values of 0.9316 and 0.9015 respectively, among the different methods of QA. Conclusion: The qualitative evaluation of angular dependence correction for Matrix Evolution 2D array detector shows its competency in accuracy of quality assurance measurement of composite dose distribution of volumetric modulated arc therapy.« less

  9. Rotational evolution of slow-rotator sequence stars

    NASA Astrophysics Data System (ADS)

    Lanzafame, A. C.; Spada, F.

    2015-12-01

    Context. The observed relationship between mass, age and rotation in open clusters shows the progressive development of a slow-rotator sequence among stars possessing a radiative interior and a convective envelope during their pre-main sequence and main-sequence evolution. After 0.6 Gyr, most cluster members of this type have settled on this sequence. Aims: The observed clustering on this sequence suggests that it corresponds to some equilibrium or asymptotic condition that still lacks a complete theoretical interpretation, and which is crucial to our understanding of the stellar angular momentum evolution. Methods: We couple a rotational evolution model, which takes internal differential rotation into account, with classical and new proposals for the wind braking law, and fit models to the data using a Monte Carlo Markov chain (MCMC) method tailored to the problem at hand. We explore to what extent these models are able to reproduce the mass and time dependence of the stellar rotational evolution on the slow-rotator sequence. Results: The description of the evolution of the slow-rotator sequence requires taking the transfer of angular momentum from the radiative core to the convective envelope into account. We find that, in the mass range 0.85-1.10 M⊙, the core-envelope coupling timescale for stars in the slow-rotator sequence scales as M-7.28. Quasi-solid body rotation is achieved only after 1-2 Gyr, depending on stellar mass, which implies that observing small deviations from the Skumanich law (P ∝ √{t}) would require period data of older open clusters than is available to date. The observed evolution in the 0.1-2.5 Gyr age range and in the 0.85-1.10 M⊙ mass range is best reproduced by assuming an empirical mass dependence of the wind angular momentum loss proportional to the convective turnover timescale and to the stellar moment of inertia. Period isochrones based on our MCMC fit provide a tool for inferring stellar ages of solar-like main-sequence stars from their mass and rotation period that is largely independent of the wind braking model adopted. These effectively represent gyro-chronology relationships that take the physics of the two-zone model for the stellar angular momentum evolution into account.

  10. Theoretical issues on the spontaneous rotation of axisymmetric plasmas

    NASA Astrophysics Data System (ADS)

    Coppi, B.; Zhou, T.

    2014-09-01

    An extensive series of experiments have confirmed that the observed ‘spontaneous rotation’ phenomenon in axisymmetric plasmas is related to the confinement properties of these plasmas and connected to the excitation of collective modes associated with these properties (Coppi 2000 18th IAEA Fusion Energy Conf. (Sorrento, Italy, 2000) THP 1/17, www-pub.iaea.org/MTCD/publications/PDF/csp_008c/html/node343.htm and Coppi 2002 Nucl. Fusion 42 1). In particular, radially localized modes can extract angular momentum from the plasma column from which they grow while the background plasma has to recoil in the direction opposite to that of the mode phase velocity. In the case of the excitation of the plasma modes at the edge, the loss of their angular momentum can be connected to the directed particle ejection to the surrounding medium. The recoil angular momentum is then redistributed inside the plasma column mainly by the combination of an effective viscous diffusion and an inward angular momentum transport velocity that is connected, for instance, to ion temperature gradient (ITG) driven modes. The linear and quasi-linear theories of the collisionless trapped electron modes and of the toroidal ITG driven modes are re-examined in the context of their influence on angular momentum transport. Internal modes that produce magnetic reconnection and are electromagnetic in nature, acquire characteristic phase velocity directions in high temperature regimes and become relevant to the ‘generation’ of angular momentum. The drift-tearing mode, the ‘complex’ reconnecting mode and the m0 = 1 internal mode belong to this category, the last mode acquiring different features depending on the strength of its driving factor. Toroidal velocity profiles that reproduce the experimental observations are obtained considering a global angular momentum balance equation that includes the localized sources associated with the excited internal electrostatic and electromagnetic modes besides the appropriate diffusive and the inward angular momentum transparent terms.

  11. A Universal Angular Momentum Profile for Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Liao, Shihong; Chen, Jianxiong; Chu, M.-C.

    2017-07-01

    The angular momentum distribution in dark matter halos and galaxies is a key ingredient in understanding their formation. Specifically, the internal distribution of angular momenta is closely related to the formation of disk galaxies. In this article, we use halos identified from a high-resolution simulation, the Bolshoi simulation, to study the spatial distribution of specific angular momenta, j(r,θ ). We show that by stacking halos with similar masses to increase the signal-to-noise ratio, the profile can be fitted as a simple function, j{(r,θ )={j}s{\\sin }2{(θ /{θ }s)(r/{r}s)}2/(1+r/{r}s)}4, with three free parameters, {j}s,{r}s, and {θ }s. Specifically, j s correlates with the halo mass M vir as {j}s\\propto {M}{vir}2/3, r s has a weak dependence on the halo mass as {r}s\\propto {M}{vir}0.040, and {θ }s is independent of M vir. This profile agrees with that from a rigid shell model, though its origin is unclear. Our universal specific angular momentum profile j(r,θ ) is useful in modeling the angular momenta of halos. Furthermore, by using an empirical stellar mass-halo mass relation, we can infer the average angular momentum distribution of a dark matter halo. The specific angular momentum-stellar mass relation within a halo computed from our profile is shown to share a similar shape as that from the observed disk galaxies.

  12. On the impact of power corrections in the prediction of B → K *μ+μ- observables

    NASA Astrophysics Data System (ADS)

    Descotes-Genon, Sébastien; Hofer, Lars; Matias, Joaquim; Virto, Javier

    2014-12-01

    The recent LHCb angular analysis of the exclusive decay B → K * μ + μ - has indicated significant deviations from the Standard Model expectations. Accurate predictions can be achieved at large K *-meson recoil for an optimised set of observables designed to have no sensitivity to hadronic input in the heavy-quark limit at leading order in α s . However, hadronic uncertainties reappear through non-perturbative ΛQCD /m b power corrections, which must be assessed precisely. In the framework of QCD factorisation we present a systematic method to include factorisable power corrections and point out that their impact on angular observables depends on the scheme chosen to define the soft form factors. Associated uncertainties are found to be under control, contrary to earlier claims in the literature. We also discuss the impact of possible non-factorisable power corrections, including an estimate of charm-loop effects. We provide results for angular observables at large recoil for two different sets of inputs for the form factors, spelling out the different sources of theoretical uncertainties. Finally, we comment on a recent proposal to explain the anomaly in B → K * μ + μ - observables through charm-resonance effects, and we propose strategies to test this proposal identifying observables and kinematic regions where either the charm-loop model can be disentangled from New Physics effects or the two options leave different imprints.

  13. Angular-domain scattering interferometry.

    PubMed

    Shipp, Dustin W; Qian, Ruobing; Berger, Andrew J

    2013-11-15

    We present an angular-scattering optical method that is capable of measuring the mean size of scatterers in static ensembles within a field of view less than 20 μm in diameter. Using interferometry, the method overcomes the inability of intensity-based models to tolerate the large speckle grains associated with such small illumination areas. By first estimating each scatterer's location, the method can model between-scatterer interference as well as traditional single-particle Mie scattering. Direct angular-domain measurements provide finer angular resolution than digitally transformed image-plane recordings. This increases sensitivity to size-dependent scattering features, enabling more robust size estimates. The sensitivity of these angular-scattering measurements to various sizes of polystyrene beads is demonstrated. Interferometry also allows recovery of the full complex scattered field, including a size-dependent phase profile in the angular-scattering pattern.

  14. Direct Imaging of Transient Fano Resonances in N_{2} Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy.

    PubMed

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J J; Kornilov, Oleg

    2016-04-22

    Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1  fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

  15. Angular Momentum of a Bose-Einstein Condensate in a Synthetic Rotational Field

    NASA Astrophysics Data System (ADS)

    Qu, Chunlei; Stringari, Sandro

    2018-05-01

    By applying a position-dependent detuning to a spin-orbit-coupled Hamiltonian with equal Rashba and Dresselhaus coupling, we exploit the behavior of the angular momentum of a harmonically trapped Bose-Einstein condensed atomic gas and discuss the distinctive role of its canonical and spin components. By developing the formalism of spinor hydrodynamics, we predict the precession of the dipole oscillation caused by the synthetic rotational field, in analogy with the precession of the Foucault pendulum, the excitation of the scissors mode, following the sudden switching off of the detuning, and the occurrence of Hall-like effects. When the detuning exceeds a critical value, we observe a transition from a vortex free, rigidly rotating quantum gas to a gas containing vortices with negative circulation which results in a significant reduction of the total angular momentum.

  16. First Observations of Laser-Driven Acceleration of Relativistic Electrons in a Semi-Infinite Vacuum Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plettner, T.; Byer, R.L.; Smith, T.I.

    2006-02-17

    We have observed acceleration of relativistic electrons in vacuum driven by a linearly polarized visible laser beam incident on a thin gold-coated reflective boundary. The observed energy modulation effect follows all the characteristics expected for linear acceleration caused by a longitudinal electric field. As predicted by the Lawson-Woodward theorem the laser driven modulation only appears in the presence of the boundary. It shows a linear dependence with the strength of the electric field of the laser beam and also it is critically dependent on the laser polarization. Finally, it appears to follow the expected angular dependence of the inverse transitionmore » radiation process. experiment as the Laser Electron Accelerator Project (LEAP).« less

  17. RADIUS-DEPENDENT ANGULAR MOMENTUM EVOLUTION IN LOW-MASS STARS. I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiners, Ansgar; Mohanty, Subhanjoy, E-mail: Ansgar.Reiners@phys.uni-goettingen.de

    2012-02-10

    Angular momentum evolution in low-mass stars is determined by initial conditions during star formation, stellar structure evolution, and the behavior of stellar magnetic fields. Here we show that the empirical picture of angular momentum evolution arises naturally if rotation is related to magnetic field strength instead of to magnetic flux and formulate a corrected braking law based on this. Angular momentum evolution then becomes a strong function of stellar radius, explaining the main trends observed in open clusters and field stars at a few Gyr: the steep transition in rotation at the boundary to full convection arises primarily from themore » large change in radius across this boundary and does not require changes in dynamo mode or field topology. Additionally, the data suggest transient core-envelope decoupling among solar-type stars and field saturation at longer periods in very low mass stars. For solar-type stars, our model is also in good agreement with the empirical Skumanich law. Finally, in further support of the theory, we show that the predicted age at which low-mass stars spin down from the saturated to unsaturated field regimes in our model corresponds remarkably well to the observed lifetime of magnetic activity in these stars.« less

  18. Experimental Observation of Dynamical Localization in Laser-Kicked Molecular Rotors

    NASA Astrophysics Data System (ADS)

    Bitter, M.; Milner, V.

    2016-09-01

    The periodically kicked rotor is a paradigm system for studying quantum effects on classically chaotic dynamics. The wave function of the quantum rotor localizes in angular momentum space, similarly to Anderson localization of the electronic wave function in disordered solids. Here, we observe dynamical localization in a system of true quantum rotors by subjecting nitrogen molecules to periodic sequences of femtosecond pulses. Exponential distribution of the molecular angular momentum—the hallmark of dynamical localization—is measured directly by means of coherent Raman scattering. We demonstrate the suppressed rotational energy growth with the number of laser kicks and study the dependence of the localization length on the kick strength. Because of its quantum coherent nature, both timing and amplitude noise are shown to destroy the localization and revive the diffusive growth of energy.

  19. Experimental Observation of Dynamical Localization in Laser-Kicked Molecular Rotors.

    PubMed

    Bitter, M; Milner, V

    2016-09-30

    The periodically kicked rotor is a paradigm system for studying quantum effects on classically chaotic dynamics. The wave function of the quantum rotor localizes in angular momentum space, similarly to Anderson localization of the electronic wave function in disordered solids. Here, we observe dynamical localization in a system of true quantum rotors by subjecting nitrogen molecules to periodic sequences of femtosecond pulses. Exponential distribution of the molecular angular momentum-the hallmark of dynamical localization-is measured directly by means of coherent Raman scattering. We demonstrate the suppressed rotational energy growth with the number of laser kicks and study the dependence of the localization length on the kick strength. Because of its quantum coherent nature, both timing and amplitude noise are shown to destroy the localization and revive the diffusive growth of energy.

  20. Precise predictions for the angular coefficients in Z-boson production at the LHC

    NASA Astrophysics Data System (ADS)

    Gauld, R.; Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, E. W. N.; Huss, A.

    2017-11-01

    The angular distributions of lepton pairs in the Drell-Yan process can provide rich information on the underlying QCD production mechanisms. These dynamics can be parameterised in terms of a set of frame dependent angular coefficients, A i=0,…,7, which depend on the invariant mass, transverse momentum, and rapidity of the lepton pair. Motivated by recent measurements of these coefficients by ATLAS and CMS, and in particular by the apparent violation of the Lam-Tung relation A 0 - A 2 = 0, we perform a precision study of the angular coefficients at O({α}s^3) in perturbative QCD. We make predic-tions relevant for pp collisions at √{s}=8 TeV, and perform comparisons with the available ATLAS and CMS data as well as providing predictions for a prospective measurement at LHCb. To expose the violation of the Lam-Tung relationship we propose a new observable ΔLT = 1 - A 2 /A 0 that is more sensitive to the dynamics in the region where A 0 and A 2 are both small. We find that the O({α}s^3) corrections have an important impact on the p T,Z distributions for several of the angular coefficients, and are essential to provide an adequate description of the data. The compatibility of the available ATLAS and CMS data is reassessed by performing a partial χ 2 test with respect to the central theoretical prediction which shows that χ 2 /N data is significantly reduced by going from O({α}s^2) to O({α}s^3).

  1. Evidence for Cluster to Cluster Variations in Low-mass Stellar Rotational Evolution

    NASA Astrophysics Data System (ADS)

    Coker, Carl T.; Pinsonneault, Marc; Terndrup, Donald M.

    2016-12-01

    The concordance model for angular momentum evolution postulates that star-forming regions and clusters are an evolutionary sequence that can be modeled with assumptions about protostar-disk coupling, angular momentum loss from magnetized winds that saturates in a mass-dependent fashion at high rotation rates, and core-envelope decoupling for solar analogs. We test this approach by combining established data with the large h Per data set from the MONITOR project and new low-mass Pleiades data. We confirm prior results that young low-mass stars can be used to test star-disk coupling and angular momentum loss independent of the treatment of internal angular momentum transport. For slow rotators, we confirm the need for star-disk interactions to evolve the ONC to older systems, using h Per (age 13 Myr) as our natural post-disk case. There is no evidence for extremely long-lived disks as an alternative to core-envelope decoupling. However, our wind models cannot evolve rapid rotators from h Per to older systems consistently, and we find that this result is robust with respect to the choice of angular momentum loss prescription. We outline two possible solutions: either there is cosmic variance in the distribution of stellar rotation rates in different clusters or there are substantially enhanced torques in low-mass rapid rotators. We favor the former explanation and discuss observational tests that could be used to distinguish them. If the distribution of initial conditions depends on environment, models that test parameters by assuming a universal underlying distribution of initial conditions will need to be re-evaluated.

  2. Dual view Geostationary Earth Radiation Budget from the Meteosat Second Generation satellites.

    NASA Astrophysics Data System (ADS)

    Dewitte, Steven; Clerbaux, Nicolas; Ipe, Alessandro; Baudrez, Edward; Moreels, Johan

    2017-04-01

    The diurnal cycle of the radiation budget is a key component of the tropical climate. The geostationary Meteosat Second Generation (MSG) satellites carrying both the broadband Geostationary Earth Radiation Budget (GERB) instrument with nadir resolution of 50 km and the multispectral Spinning Enhanced VIsible and InfraRed Imager (SEVIRI) with nadir resolution of 3 km offer a unique opportunity to observe this diurnal cycle. The geostationary orbit has the advantage of good temporal sampling but the disadvantage of fixed viewing angles, which makes the measurements of the broadband Top Of Atmosphere (TOA) radiative fluxes more sensitive to angular dependent errors. The Meteosat-10 (MSG-3) satellite observes the earth from the standard position at 0° longitude. From October 2016 onwards the Meteosat-8 (MSG-1) satellite makes observations from a new position at 41.5° East over the Indian Ocean. The dual view from Meteosat-8 and Meteosat-10 allows the assessment and correction of angular dependent systematic errors of the flux estimates. We demonstrate this capability with the validation of a new method for the estimation of the clear-sky TOA albedo from the SEVIRI instruments.

  3. Spin Hall magnetoresistance in the non-collinear ferrimagnet GdIG close to the compensation temperature

    DOE PAGES

    Dong, Bo -Wen; Cramer, Joel; Ganzhorn, Kathrin; ...

    2017-12-14

    We investigate the spin Hall magnetoresistance (SMR) in a gadolinium iron garnet (GdIG)/platinum (Pt) heterostructure by angular dependent magnetoresistance measurements. The magnetic structure of the ferromagnetic insulator GdIG is non-collinear near the compensation temperature, while it is collinear far from the compensation temperature. In the collinear regime, the SMR signal in GdIG is consistent with the usualmore » $${\\rm si}{{{\\rm n}}^{2}}\\theta $$ relation well established in the collinear magnet yttrium iron garnet, with $$\\theta $$ the angle between magnetization and spin Hall spin polarization direction. In the non-collinear regime, both an SMR signal with inverted sign and a more complex angular dependence with four maxima are observed within one sweep cycle. The number of maxima as well as the relative strength of different maxima depend strongly on temperature and field strength. Lastly, our results evidence a complex SMR behavior in the non-collinear magnetic regime that goes beyond the conventional formalism developed for collinear magnetic structures.« less

  4. Spin Hall magnetoresistance in the non-collinear ferrimagnet GdIG close to the compensation temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Bo -Wen; Cramer, Joel; Ganzhorn, Kathrin

    We investigate the spin Hall magnetoresistance (SMR) in a gadolinium iron garnet (GdIG)/platinum (Pt) heterostructure by angular dependent magnetoresistance measurements. The magnetic structure of the ferromagnetic insulator GdIG is non-collinear near the compensation temperature, while it is collinear far from the compensation temperature. In the collinear regime, the SMR signal in GdIG is consistent with the usualmore » $${\\rm si}{{{\\rm n}}^{2}}\\theta $$ relation well established in the collinear magnet yttrium iron garnet, with $$\\theta $$ the angle between magnetization and spin Hall spin polarization direction. In the non-collinear regime, both an SMR signal with inverted sign and a more complex angular dependence with four maxima are observed within one sweep cycle. The number of maxima as well as the relative strength of different maxima depend strongly on temperature and field strength. Lastly, our results evidence a complex SMR behavior in the non-collinear magnetic regime that goes beyond the conventional formalism developed for collinear magnetic structures.« less

  5. Characterization of commercial MOSFET detectors and their feasibility for in-vivo HDR brachytherapy.

    PubMed

    Phurailatpam, Reena; Upreti, Rituraj; Nojin Paul, Siji; Jamema, Swamidas V; Deshpande, Deepak D

    2016-01-01

    The present study was to investigate the use of MOSFET as an vivo dosimeter for the application of Ir-192 HDR brachytherapy treatments. MOSFET was characterized for dose linearity in the range of 50-1000 cGy, depth dose dependence from 2 to 7 cm, angular dependence. Signal fading was checked for two weeks. Dose linearity was found to be within 2% in the dose range (50-1000 cGy). The response varied within 8.07% for detector-source distance of 2-7 cm. The response of MOSFET with the epoxy side facing the source (0 degree) is the highest and the lowest response was observed at 90 and 270 degrees. Signal was stable during the study period. The detector showed high dose linearity and insignificant fading. But due to angular and depth dependence, care should be taken and corrections must be applied for clinical dosimetry. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrache, C. M.; Chen, Q. B.; Guo, S.

    The structure of 133La has been investigated using the 116Cd( 22Ne,4pn) reaction and the Gammasphere array. Three new bands of quadrupole transitions and one band of dipole transitions are identified and the previously reported level scheme is revised and extended to higher spins. The observed structures are discussed using the cranked Nilsson-Strutinsky formalism, covariant density functional theory, and the particle-rotor model. Triaxial configurations are assigned to all observed bands. For the high-spin bands it is found that rotations around different axes can occur, depending on the configuration. The orientation of the angular momenta of the core and of themore » active particles is investigated, suggesting chiral rotation for two nearly degenerate dipole bands and magnetic rotation for one dipole band. As a result, it is shown that the h 11/2 neutron holes present in the configuration of the nearly degenerate dipole bands have significant angular momentum components not only along the long axis but also along the short axis, contributing to the balance of the angular momentum components along the short and long axes and thus giving rise to a chiral geometry.« less

  7. Examination of the low-energy enhancement of the γ -ray strength function of Fe 56

    DOE PAGES

    Jones, M. D.; Macchiavelli, A. O.; Wiedeking, M.; ...

    2018-02-22

    A model-independent technique was used to determine the γ-ray strength function (γSF) of 56Fe down to γ-ray energies less than 1 MeV for the first time with GRETINA using the (p,p') reaction at 16 MeV. No difference was observed in the energy dependence of the γSF built on 2 + and 4 + final states, supporting the Brink hypothesis. In addition, angular distribution and polarization measurements were performed. The angular distributions are consistent with dipole radiation. In conclusion, the polarization results show a small bias towards magnetic character in the region of the enhancement.

  8. Examination of the low-energy enhancement of the γ -ray strength function of 56Fe

    NASA Astrophysics Data System (ADS)

    Jones, M. D.; Macchiavelli, A. O.; Wiedeking, M.; Bernstein, L. A.; Crawford, H. L.; Campbell, C. M.; Clark, R. M.; Cromaz, M.; Fallon, P.; Lee, I. Y.; Salathe, M.; Wiens, A.; Ayangeakaa, A. D.; Bleuel, D. L.; Bottoni, S.; Carpenter, M. P.; Davids, H. M.; Elson, J.; Görgen, A.; Guttormsen, M.; Janssens, R. V. F.; Kinnison, J. E.; Kirsch, L.; Larsen, A. C.; Lauritsen, T.; Reviol, W.; Sarantites, D. G.; Siem, S.; Voinov, A. V.; Zhu, S.

    2018-02-01

    A model-independent technique was used to determine the γ -ray strength function (γ SF ) of 56Fe down to γ -ray energies less than 1 MeV for the first time with GRETINA using the (p ,p') reaction at 16 MeV. No difference was observed in the energy dependence of the γ SF built on 2+ and 4+ final states, supporting the Brink hypothesis. In addition, angular distribution and polarization measurements were performed. The angular distributions are consistent with dipole radiation. The polarization results show a small bias towards magnetic character in the region of the enhancement.

  9. Depth and latitude dependence of the solar internal angular velocity

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Korzennik, Sylvain; Tomczyk, Steven; Ulrich, Roger K.; Woodard, Martin F.

    1990-01-01

    One of the design goals for the dedicated helioseismology observing state located at Mount Wilson Observatory was the measurement of the internal solar rotation using solar p-mode oscillations. In this paper, the first p-mode splittings obtained from Mount Wilson are reported and compared with those from several previously published studies. It is demonstrated that the present splittings agree quite well with composite frequency splittings obtained from the comparisons. The splittings suggest that the angular velocity in the solar equatorial plane is a function of depth below the photosphere. The latitudinal differential rotation pattern visible at the surface appears to persist at least throughout the solar convection zone.

  10. Examination of the low-energy enhancement of the γ -ray strength function of Fe 56

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, M. D.; Macchiavelli, A. O.; Wiedeking, M.

    A model-independent technique was used to determine the γ-ray strength function (γSF) of 56Fe down to γ-ray energies less than 1 MeV for the first time with GRETINA using the (p,p') reaction at 16 MeV. No difference was observed in the energy dependence of the γSF built on 2 + and 4 + final states, supporting the Brink hypothesis. In addition, angular distribution and polarization measurements were performed. The angular distributions are consistent with dipole radiation. In conclusion, the polarization results show a small bias towards magnetic character in the region of the enhancement.

  11. Galaxy clusters, type Ia supernovae and the fine structure constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holanda, R.F.L.; Busti, V.C.; Colaço, L.R.

    2016-08-01

    As is well known, measurements of the Sunyaev-Zeldovich effect can be combined with observations of the X-ray surface brightness of galaxy clusters to estimate the angular diameter distance to these structures. In this paper, we show that this technique depends on the fine structure constant, α. Therefore, if α is a time-dependent quantity, e.g., α = α{sub 0}φ( z ), where φ is a function of redshift, we argue that current data do not provide the real angular diameter distance, D {sub A}( z ), to the cluster, but instead D {sub A}{sup data}( z ) = φ( z ){supmore » 2} D {sub A}( z ). We use this result to derive constraints on a possible variation of α for a class of dilaton runaway models considering a sample of 25 measurements of D {sub A}{sup data}( z ) in redshift range 0.023 < z < 0.784 and estimates of D {sub A}( z ) from current type Ia supernovae observations. We find no significant indication of variation of α with the present data.« less

  12. Achromatic vector vortex beams from a glass cone

    PubMed Central

    Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.

    2016-01-01

    The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams. PMID:26861191

  13. Quantum and classical ripples in graphene

    NASA Astrophysics Data System (ADS)

    Hašík, Juraj; Tosatti, Erio; MartoÅák, Roman

    2018-04-01

    Thermal ripples of graphene are well understood at room temperature, but their quantum counterparts at low temperatures are in need of a realistic quantitative description. Here we present atomistic path-integral Monte Carlo simulations of freestanding graphene, which show upon cooling a striking classical-quantum evolution of height and angular fluctuations. The crossover takes place at ever-decreasing temperatures for ever-increasing wavelengths so that a completely quantum regime is never attained. Zero-temperature quantum graphene is flatter and smoother than classical graphene at large scales yet rougher at short scales. The angular fluctuation distribution of the normals can be quantitatively described by coexistence of two Gaussians, one classical strongly T -dependent and one quantum about 2° wide, of zero-point character. The quantum evolution of ripple-induced height and angular spread should be observable in electron diffraction in graphene and other two-dimensional materials, such as MoS2, bilayer graphene, boron nitride, etc.

  14. Achromatic vector vortex beams from a glass cone

    NASA Astrophysics Data System (ADS)

    Radwell, N.; Hawley, R. D.; Götte, J. B.; Franke-Arnold, S.

    2016-02-01

    The reflection of light is governed by the laws first described by Augustin-Jean Fresnel: on internal reflection, light acquires a phase shift, which depends on its polarization direction with respect to the plane of incidence. For a conical reflector, the cylindrical symmetry is echoed in an angular variation of this phase shift, allowing us to create light modes with phase and polarization singularities. Here we observe the phase and polarization profiles of light that is back reflected from a solid glass cone and, in the case of circular input light, discover that not only does the beam contain orbital angular momentum but can trivially be converted to a radially polarized beam. Importantly, the Fresnel coefficients are reasonably stable across the visible spectrum, which we demonstrate by measuring white light polarization profiles. This discovery provides a highly cost-effective technique for the generation of broadband orbital angular momentum and radially polarized beams.

  15. Electronic structure differences between H(2)-, Fe-, Co-, and Cu-phthalocyanine highly oriented thin films observed using NEXAFS spectroscopy.

    PubMed

    Willey, T M; Bagge-Hansen, M; Lee, J R I; Call, R; Landt, L; van Buuren, T; Colesniuc, C; Monton, C; Valmianski, I; Schuller, Ivan K

    2013-07-21

    Phthalocyanines, a class of macrocyclic, square planar molecules, are extensively studied as semiconductor materials for chemical sensors, dye-sensitized solar cells, and other applications. In this study, we use angular dependent near-edge x-ray absorption fine structure (NEXAFS) spectroscopy as a quantitative probe of the orientation and electronic structure of H2-, Fe-, Co-, and Cu-phthalocyanine molecular thin films. NEXAFS measurements at both the carbon and nitrogen K-edges reveal that phthalocyanine films deposited on sapphire have upright molecular orientations, while films up to 50 nm thick deposited on gold substrates contain prostrate molecules. Although great similarity is observed in the carbon and nitrogen K-edge NEXAFS spectra recorded for the films composed of prostrate molecules, the H2-phthalocyanine exhibits the cleanest angular dependence due to its purely out-of-plane π* resonances at the absorption onset. In contrast, organometallic-phthalocyanine nitrogen K-edges have a small in-plane resonance superimposed on this π* region that is due to a transition into molecular orbitals interacting with the 3dx(2)-y(2) empty state. NEXAFS spectra recorded at the metal L-edges for the prostrate films reveal dramatic variations in the angular dependence of specific resonances for the Cu-phthalocyanines compared with the Fe-, and Co-phthalocyanines. The Cu L3,2 edge exhibits a strong in-plane resonance, attributed to its b1g empty state with dx(2)-y(2) character at the Cu center. Conversely, the Fe- and Co- phthalocyanine L3,2 edges have strong out-of-plane resonances; these are attributed to transitions into not only b1g (dz(2)) but also eg states with dxz and dyz character at the metal center.

  16. Angular multiplexing holograms of four images recorded on photopolymer films with recording-film-thickness-dependent holographic characteristics

    NASA Astrophysics Data System (ADS)

    Osabe, Keiichi; Kawai, Kotaro

    2017-03-01

    In this study, angular multiplexing hologram recording photopolymer films were studied experimentally. The films contained acrylamide as a monomer, eosin Y as a sensitizer, and triethanolamine as a promoter in a polyvinyl alcohol matrix. In order to determine the appropriate thickness of the photopolymer films for angular multiplexing, photopolymer films with thicknesses of 29-503 μm were exposed to two intersecting beams of a YVO laser at a wavelength of 532 nm to form a holographic grating with a spatial frequency of 653 line/mm. The diffraction efficiencies as a function of the incident angle of reconstruction were measured. A narrow angular bandwidth and high diffraction efficiency are required for angular multiplexing; hence, we define the Q value, which is the diffraction efficiency divided by half the bandwidth. The Q value of the films depended on the thickness of the films, and was calculated based on the measured diffraction efficiencies. The Q value of a 297-μm-thick film was the highest of the all films. Therefore, the angular multiplexing experiments were conducted using 300-μm-thick films. In the angular multiplexing experiments, the object beam transmitted by a square aperture was focused by a Fourier transform lens and interfered with a reference beam. The maximum order of angular multiplexing was four. The signal intensity that corresponds to the squared-aperture transmission and the noise intensity that corresponds to transmission without the square aperture were measured. The signal intensities decreased as the order of angular multiplexing increased, and the noise intensities were not dependent on the order of angular multiplexing.

  17. Lensing corrections to features in the angular two-point correlation function and power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LoVerde, Marilena; Department of Physics, Columbia University, New York, New York 10027; Hui, Lam

    2008-01-15

    It is well known that magnification bias, the modulation of galaxy or quasar source counts by gravitational lensing, can change the observed angular correlation function. We investigate magnification-induced changes to the shape of the observed correlation function w({theta}), and the angular power spectrum C{sub l}, paying special attention to the matter-radiation equality peak and the baryon wiggles. Lensing effectively mixes the correlation function of the source galaxies with that of the matter correlation at the lower redshifts of the lenses distorting the observed correlation function. We quantify how the lensing corrections depend on the width of the selection function, themore » galaxy bias b, and the number count slope s. The lensing correction increases with redshift and larger corrections are present for sources with steep number count slopes and/or broad redshift distributions. The most drastic changes to C{sub l} occur for measurements at high redshifts (z > or approx. 1.5) and low multipole moment (l < or approx. 100). For the source distributions we consider, magnification bias can shift the location of the matter-radiation equality scale by 1%-6% at z{approx}1.5 and by z{approx}3.5 the shift can be as large as 30%. The baryon bump in {theta}{sup 2}w({theta}) is shifted by < or approx. 1% and the width is typically increased by {approx}10%. Shifts of > or approx. 0.5% and broadening > or approx. 20% occur only for very broad selection functions and/or galaxies with (5s-2)/b > or approx. 2. However, near the baryon bump the magnification correction is not constant but is a gently varying function which depends on the source population. Depending on how the w({theta}) data is fitted, this correction may need to be accounted for when using the baryon acoustic scale for precision cosmology.« less

  18. Experimental verification of position-dependent angular-momentum selection rules for absorption of twisted light by a bound electron

    NASA Astrophysics Data System (ADS)

    Afanasev, Andrei; Carlson, Carl E.; Schmiegelow, Christian T.; Schulz, Jonas; Schmidt-Kaler, Ferdinand; Solyanik, Maria

    2018-02-01

    We analyze the multipole excitation of atoms with twisted light, i.e, by a vortex light field that carries orbital angular momentum. A single trapped 40Ca+ ion serves as a localized and positioned probe of the exciting field. We drive the {S}1/2\\to {D}5/2 transition and observe the relative strengths of different transitions, depending on the ion's transversal position with respect to the center of the vortex light field. On the other hand, transition amplitudes are calculated for a twisted light field in form of a Bessel beam, a Bessel-Gauss and a Laguerre-Gauss mode. Analyzing experimental obtained transition amplitudes we find agreement with the theoretical predictions at a level of better than 3%. Finally, we propose measurement schemes with two-ion crystals to enhance the sensing accuracy of vortex modes in future experiments.

  19. Singularities in Dromo formulation. Analysis of deep flybys

    NASA Astrophysics Data System (ADS)

    Roa, Javier; Sanjurjo-Rivo, Manuel; Peláez, Jesús

    2015-08-01

    The singularities in Dromo are characterized in this paper, both from an analytical and a numerical perspective. When the angular momentum vanishes, Dromo may encounter a singularity in the evolution equations. The cancellation of the angular momentum occurs in very specific situations and may be caused by the action of strong perturbations. The gravitational attraction of a perturbing planet may lead to rapid changes in the angular momentum of the particle. In practice, this situation may be encountered during deep planetocentric flybys. The performance of Dromo is evaluated in different scenarios. First, Dromo is validated for integrating the orbit of Near Earth Asteroids. Resulting errors are of the order of the diameter of the asteroid. Second, a set of theoretical flybys are designed for analyzing the performance of the formulation in the vicinity of the singularity. New sets of Dromo variables are proposed in order to minimize the dependency of Dromo on the angular momentum. A slower time scale is introduced, leading to a more stable description of the flyby phase. Improvements in the overall performance of the algorithm are observed when integrating orbits close to the singularity.

  20. A spectro-interferometric view of l Carinae's modulated pulsations

    NASA Astrophysics Data System (ADS)

    Anderson, Richard I.; Mérand, Antoine; Kervella, Pierre; Breitfelder, Joanne; Eyer, Laurent; Gallenne, Alexandre

    Classical Cepheids are radially pulsating stars that enable important tests of stellar evolution and play a crucial role in the calibration of the local Hubble constant. l Carinae is a particularly well-known distance calibrator, being the closest long-period (P ~ 35.5 d) Cepheid and subtending the largest angular diameter. We have carried out an unprecedented observing program to investigate whether recently discovered cycle-to-cycle changes (modulations) of l Carinae's radial velocity (RV) variability are mirrored by its variability in angular size. To this end, we have secured a fully contemporaneous dataset of high-precision RVs and high-precision angular diameters. Here we provide a concise summary of our project and report preliminary results. We confirm the modulated nature of the RV variability and find tentative evidence of cycle-to-cycle differences in l Car's maximal angular diameter. Our analysis is exploring the limits of state-of-the-art instrumentation and reveals additional complexity in the pulsations of Cepheids. If confirmed, our result suggests a previously unknown pulsation cycle dependence of projection factors required for determining Cepheid distances via the Baade-Wesselink technique.

  1. Effect of angular momentum alignment and strong magnetic fields on the formation of protostellar discs

    NASA Astrophysics Data System (ADS)

    Gray, William J.; McKee, Christopher F.; Klein, Richard I.

    2018-01-01

    Star-forming molecular clouds are observed to be both highly magnetized and turbulent. Consequently, the formation of protostellar discs is largely dependent on the complex interaction between gravity, magnetic fields, and turbulence. Studies of non-turbulent protostellar disc formation with realistic magnetic fields have shown that these fields are efficient in removing angular momentum from the forming discs, preventing their formation. However, once turbulence is included, discs can form in even highly magnetized clouds, although the precise mechanism remains uncertain. Here, we present several high-resolution simulations of turbulent, realistically magnetized, high-mass molecular clouds with both aligned and random turbulence to study the role that turbulence, misalignment, and magnetic fields have on the formation of protostellar discs. We find that when the turbulence is artificially aligned so that the angular momentum is parallel to the initial uniform field, no rotationally supported discs are formed, regardless of the initial turbulent energy. We conclude that turbulence and the associated misalignment between the angular momentum and the magnetic field are crucial in the formation of protostellar discs in the presence of realistic magnetic fields.

  2. Sub- and super-Maxwellian evaporation of simple gases from liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kann, Z. R.; Skinner, J. L., E-mail: skinner@chem.wisc.edu

    2016-04-21

    Non-Maxwellian evaporation of light atoms and molecules (particles) such as He and H{sub 2} from liquids has been observed experimentally. In this work, we use simulations to study systematically the evaporation of Lennard-Jones particles from liquid water. We find instances of sub- and super-Maxwellian evaporation, depending on the mass of the particle and the particle-water interaction strength. The observed trends are in qualitative agreement with experiment. We interpret these trends in terms of the potential of mean force and the effectiveness and frequency of collisions during the evaporation process. The angular distribution of evaporating particles is also analyzed, and itmore » is shown that trends in the energy from velocity components tangential and normal to the liquid surface must be understood separately in order to interpret properly the angular distributions.« less

  3. A time-dependent neutron transport method of characteristics formulation with time derivative propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Adam J., E-mail: adamhoff@umich.edu; Lee, John C., E-mail: jcl@umich.edu

    2016-02-15

    A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Sourcemore » Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.« less

  4. Angle-Dependent Atomic Force Microscopy Single-Chain Pulling of Adsorbed Macromolecules from Planar Surfaces Unveils the Signature of an Adsorption-Desorption Transition.

    PubMed

    Grebíková, Lucie; Whittington, Stuart G; Vancso, Julius G

    2018-05-23

    The adsorption-desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption-desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption-desorption transitions.

  5. Angle-Dependent Atomic Force Microscopy Single-Chain Pulling of Adsorbed Macromolecules from Planar Surfaces Unveils the Signature of an Adsorption–Desorption Transition

    PubMed Central

    2018-01-01

    The adsorption–desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption–desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption–desorption transitions. PMID:29712430

  6. EVIDENCE FOR CLUSTER TO CLUSTER VARIATIONS IN LOW-MASS STELLAR ROTATIONAL EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coker, Carl T.; Pinsonneault, Marc; Terndrup, Donald M., E-mail: coker@astronomy.ohio-state.edu, E-mail: pinsono@astronomy.ohio-state.edu, E-mail: terndrup@astronomy.ohio-state.edu

    2016-12-10

    The concordance model for angular momentum evolution postulates that star-forming regions and clusters are an evolutionary sequence that can be modeled with assumptions about protostar–disk coupling, angular momentum loss from magnetized winds that saturates in a mass-dependent fashion at high rotation rates, and core-envelope decoupling for solar analogs. We test this approach by combining established data with the large h Per data set from the MONITOR project and new low-mass Pleiades data. We confirm prior results that young low-mass stars can be used to test star–disk coupling and angular momentum loss independent of the treatment of internal angular momentum transport.more » For slow rotators, we confirm the need for star–disk interactions to evolve the ONC to older systems, using h Per (age 13 Myr) as our natural post-disk case. There is no evidence for extremely long-lived disks as an alternative to core-envelope decoupling. However, our wind models cannot evolve rapid rotators from h Per to older systems consistently, and we find that this result is robust with respect to the choice of angular momentum loss prescription. We outline two possible solutions: either there is cosmic variance in the distribution of stellar rotation rates in different clusters or there are substantially enhanced torques in low-mass rapid rotators. We favor the former explanation and discuss observational tests that could be used to distinguish them. If the distribution of initial conditions depends on environment, models that test parameters by assuming a universal underlying distribution of initial conditions will need to be re-evaluated.« less

  7. Determination of the Limiting Magnitude

    NASA Technical Reports Server (NTRS)

    Kingery, Aaron; Blaauw, Rhiannon

    2017-01-01

    The limiting magnitude of an optical camera system is an important property to understand since it is used to find the completeness limit of observations. Limiting magnitude depends on the hardware and software of the system, current weather conditions, and the angular speed of the objects observed. If an object exhibits a substantial angular rate during the exposure, its light spreads out over more pixels than the stationary stars. This spreading causes the limiting magnitude to be brighter when compared to the stellar limiting magnitude. The effect, which begins to become important when the object moves a full width at half max during a single exposure or video frame. For targets with high angular speeds or camera systems with narrow field of view or long exposures, this correction can be significant, up to several magnitudes. The stars in an image are often used to measure the limiting magnitude since they are stationary, have known brightness, and are present in large numbers, making the determination of the limiting magnitude fairly simple. In order to transform stellar limiting magnitude to object limiting magnitude, a correction must be applied accounting for the angular velocity. This technique is adopted in meteor and other fast-moving object observations, as the lack of a statistically significant sample of targets makes it virtually impossible to determine the limiting magnitude before the weather conditions change. While the weather is the dominant factor in observing satellites, the limiting magnitude for meteors also changes throughout the night due to the motion of a meteor shower or sporadic source radiant across the sky. This paper presents methods for determining the limiting stellar magnitude and the conversion to the target limiting magnitude.

  8. Angular dependence of coercivity in isotropically aligned Nd-Fe-B sintered magnets

    NASA Astrophysics Data System (ADS)

    Matsuura, Yutaka; Nakamura, Tetsuya; Sumitani, Kazushi; Kajiwara, Kentaro; Tamura, Ryuji; Osamura, Kozo

    2018-05-01

    In order to understand the coercivity mechanism in Nd-Fe-B sintered magnets, the angular dependence of the coercivity of an isotropically aligned Nd15Co1.0B6Febal. sintered magnet was investigated through magnetization measurements using a vibrating sample magnetometer. These results are compared with the angular dependence calculated under the assumption that the magnetization reversal of each grain follows the Kondorskii law or, in other words, the 1/cos θ law for isotropic alignment distributions. The calculated angular dependence of the coercivity agrees very well with the experiment for magnetic fields applied between angles of 0 and 60°, and it is expected that the magnetization reversal occurs in each grain individually followed the 1/cos θ law. In contrast, this agreement between calculation and experiment is not found for anisotropic Nd-Fe-B samples. This implies that the coercivity of the aligned magnets depends upon the de-pinning of the domain walls from pinning sites. When the de-pinning occurs, it is expected that the domain walls are displaced through several grains at once.

  9. Angular dependence of EWS time delay for photoionization of @Xe

    NASA Astrophysics Data System (ADS)

    Mandal, Ankur; Deshmukh, Pranawa; Kheifets, Anatoli; Dolmatov, Valeriy; Manson, Steven

    2017-04-01

    Interference between photoionization channels leads to angular dependence in photoionization time delay. Angular dependence is found to be a common effect for two-photon absorption experiments very recently. The effect of confinement on the time delay where each partial wave contributions to the ionization are studied. In this work we report angular dependence and confinement effects on Eisenbud-Wigner-Smith (EWS) time delay in atomic photoionization. Using and we computed the EWS time delay for free and confined Xe atom for photoionization from inner 4d3/2 and 4d5/2 and outer 5p1/2 and 5p3/2 subshells at various angles. The calculated EWS time delay is few tens to few hundreds of attoseconds (10-18 second). The photoionization time delay for @Xe follows that in the free Xe atom on which the confinement oscillations are built. The present work reveals the effect of confinement on the photoionization time delay at different angles between photoelectron ejection and the photon polarization.

  10. Asteroid orbit fitting with radar and angular observations

    NASA Astrophysics Data System (ADS)

    Baturin, A. P.

    2013-12-01

    The asteroid orbit fitting problem using their radar and angular observations has been considered. The problem was solved in a standanrd way by means of minimization of weighted sum of squares of residuals. In the orbit fitting both kinds of radar observa-tions have been used: the observations of time delays and of Doppler frequency shifts. The weight for angular observations has been set the same for all of them and has been determined as inverse mean-square residual obtained in the orbit fitting using just angular observations. The weights of radar observations have been set as inverse squared errors of these observations published together with them in the Minor Planet Center electronical circulars (MPECs). For the orbit fitting some five asteroids have been taken from these circulars. The asteroids have been chosen fulfilling the requirement of more than six radar observations of them to be available. The asteroids are 1950 DA, 1999 RQ36, 2002 NY40, 2004 DC and 2005 EU2. Several orbit fittings for these aster-oids have been done: with just angular observations; with just radar observations; with both angular and radar observations. The obtained results are quite acceptable because in the last case the mean-square angular residuals are approximately equal to the same ones obtained in the fitting with just angular observations. As to radar observations mean-square residuals, the time delay residuals for three asteroids do not exceed 1 μs, for two others ˜ 10 μs and the Doppler shift residuals for three asteroids do not exceed 1 Hz, for two others ˜ 10 Hz. The motion equations included perturbations from 9 planets and the Moon using their ephemerides DE422. The numerical integration has been performed with Everhart 27-order method with variable step. All calculations have been exe-cuted to a 34-digit decimal precision (i.e. using 128-bit floating-point numbers). Further, the sizes of confidence ellipsoids of im-proved orbit parameters have been compared. It has been accepted that an indicator of ellipsoid size is a geometric mean of its six semi-axes. A comparison of sizes has shown that confidence ellipsoids obtained in orbit fitting with both angular and radar obser-vations are several times less than ellipsoids obtained with just angular observations.

  11. Effects of ultrashort laser pulses on angular distributions of photoionization spectra.

    PubMed

    Ooi, C H Raymond; Ho, W L; Bandrauk, A D

    2017-07-27

    We study the photoelectron spectra by intense laser pulses with arbitrary time dependence and phase within the Keldysh framework. An efficient semianalytical approach using analytical transition matrix elements for hydrogenic atoms in any initial state enables efficient and accurate computation of the photoionization probability at any observation point without saddle point approximation, providing comprehensive three dimensional photoelectron angular distribution for linear and elliptical polarizations, that reveal the intricate features and provide insights on the photoionization characteristics such as angular dispersions, shift and splitting of photoelectron peaks from the tunneling or above threshold ionization(ATI) regime to non-adiabatic(intermediate) and multiphoton ionization(MPI) regimes. This facilitates the study of the effects of various laser pulse parameters on the photoelectron spectra and their angular distributions. The photoelectron peaks occur at multiples of 2ħω for linear polarization while  odd-ordered peaks are suppressed in the direction perpendicular to the electric field. Short pulses create splitting and angular dispersion where the peaks are strongly correlated to the angles. For MPI and elliptical polarization with shorter pulses the peaks split into doublets and the first peak vanishes. The carrier envelope phase(CEP) significantly affects the ATI spectra while the Stark effect shifts the spectra of intermediate regime to higher energies due to interference.

  12. Mechanism for Angular Deformation of L-shaped Specimens —Influence of Filling Material and Shrinkage Factor—

    NASA Astrophysics Data System (ADS)

    Furuhashi, Hiroshi; Aoki, Takerou; Okabe, Sayaka; Arai, Tsuyoshi; Seto, Masahiro; Yamabe, Masashi

    L-shape is the important and fundamental shape for injection molded parts. Therefore to reveal the corner angular deformation mechanism of this shape is also valuable for understanding the warpage mechanism of injection molded parts. In this study, we investigated the influence of the filling materials (fiber, talc and not filled) and two kinds of anisotropic shrinkage factors, solidification shrinkage and shrinkage caused by thermal expansion coefficient during cooling, to the angular deformation of L-shaped specimens and the following conclusions were obtained 1) The anisotropic solidification shrinkage of MD/TD and the anisotropic thermal expansion coefficient of MD/TD are considered to cause the angular deformation of L-shaped specimens. But the contribution ratios of these two anisotropies depend on the filling material for plastics. 2) The angular deformation of PP and PBT filled with glass fiber is mainly caused by the anisotropic thermal expansion coefficient and on the other hand, that of PP and PBT without filling material is caused by anisotropic solidification shrinkage. However both anisotropies cause the angular deformation of PP filled with talc. 3) The plate thickness dependence of the angular deformation of PP filled with talc is the singular peculiar phenomenon. The plate thickness dependence of anisotropic solidification shrinkage of this material (it is also singular) is considered to have an important influence on this phenomenon.

  13. The temperature dependence of inelastic light scattering from small particles for use in combustion diagnostic instrumentation

    NASA Technical Reports Server (NTRS)

    Cloud, Stanley D.

    1987-01-01

    A computer calculation of the expected angular distribution of coherent anti-Stokes Raman scattering (CARS) from micrometer size polystyrene spheres based on a Mie-type model, and a pilot experiment to test the feasibility of measuring CARS angular distributions from micrometer size polystyrene spheres by simply suspending them in water are discussed. The computer calculations predict a very interesting structure in the angular distributions that depends strongly on the size and relative refractive index of the spheres.

  14. Analysis of angular observables of Λ_b \\to Λ (\\to pπ)μ+μ- decay in the standard and Z^' models

    NASA Astrophysics Data System (ADS)

    Nasrullah, Aqsa; Jamil Aslam, M.; Shafaq, Saba

    2018-04-01

    In 2015, the LHCb collaboration measured the differential branching ratio d{B}/dq^2, the lepton- and hadron-side forward-backward asymmetries, denoted by A^ℓ_FB and A^{Λ}_FB, respectively, in the range 15 < q^2(=s) < 20 GeV^2 with 3 fb^{-1} of data. Motivated by these measurements, we perform an analysis of q^2-dependent Λ_b \\to Λ (\\to p π ) μ^+μ^- angular observables at large- and low- recoil in the standard model (SM) and in a family non-universal Z^' model. The exclusive Λb\\to Λ transition is governed by the form factors, and in the present study we use the recently performed high-precision lattice QCD calculations that have well-controlled uncertainties, especially in the 15 < s < 20 GeV^2 bin. Using the full four-folded angular distribution of Λ_b \\to Λ (\\to p π ) μ^+μ^- decay, first of all we focus on calculations of the experimentally measured d{B}/ds, A^ℓ_FB, and A^{Λ}_FB in the SM and compare their numerical values with the measurements in appropriate bins of s. In case of a possible discrepancy between the SM prediction and the measurements, we try to see if these can be accommodated though the extra neutral Z^' boson. We find that in the dimuon momentum range 15 < s < 20 GeV^2 the value of d{B}/ds and central value of A^ℓ_FB in the Z^' model is compatible with the measured values. In addition, the fraction of longitudinal polarization of the dimuon FL was measured to be 0.61^{+0.11}_{-0.14}± 0.03 in 15 < s < 20 GeV^2 at the LHCb. We find that in this bin the value found in the Z^' model is close to the observed values. After comparing the results of these observables, we have proposed other observables such as {α}i and α^{(')}i with i =θ_{ℓ}, θ_{Λ}, φ,L, U and coefficients of different foldings P_{1, \\ldots, 9} in different bins of s in the SM and Z^' model. We illustrate that the experimental observations of the s-dependent angular observables calculated here in several bins of s can help to test the predictions of the SM and unravel new physics contributions arising due to the Z^' model in Λ_b \\to Λ (\\to p π ) μ^+μ^- decays.

  15. Angular dependence of coercivity derived from alignment dependence of coercivity in Nd-Fe-B sintered magnets

    NASA Astrophysics Data System (ADS)

    Matsuura, Yutaka; Nakamura, Tetsuya; Sumitani, Kazushi; Kajiwara, Kentaro; Tamura, Ryuji; Osamura, Kozo

    2018-01-01

    Experimental results of the alignment dependence of the coercivity in Nd-Fe-B sintered magnets showed that the angle of magnetization reversal for anisotropically aligned magnets was bigger than that obtained from the theoretical results calculated using the postulation that every grain independently reverses its magnetization direction following the 1/cos θ law. The angles of reversed magnetization (θ1) for Nd13.48Co0.55B5.76Febal. with alignment α=0.95 and for Nd12.75Dy0.84B5.81Co0.55Febal. with α=0.96 were 30° and 36°, respectively, which were very similar to that of an ideal magnet with a Gaussian distribution (σ=31° and 44°, respectively) of the grain alignment. In this model, we postulated that every grain independently reversed according to the 1/cos θ law. The calculation results for the angular dependence of the coercivity using the values θ1=ω1(0°)=30°, σ=31° and θ1=ω1(0°)=36°, σ=44° could qualitatively and convincingly explain the observed angular dependence of the coercivity of Nd14.2B6.2Co1.0Febal. and Nd14.2Dy0.3B6.2Co1.0Febal.. It is speculated that the magnetic domain wall is pinned at grains tilted away from the easy magnetization direction, and when the magnetic domain wall de-pins from the tilted grains, the magnetic domain wall jumps through several grains. We suggest that the coercive force of the aligned magnet behaves like a low-aligned magnet owing to the magnetization reversal of the crust of the grains induced by the pinning and subsequent jumping of the magnetic domain wall.

  16. Anisotropic kinetic energy release and gyroscopic behavior of CO2 super rotors from an optical centrifuge.

    PubMed

    Murray, Matthew J; Ogden, Hannah M; Mullin, Amy S

    2017-10-21

    An optical centrifuge is used to generate an ensemble of CO 2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.

  17. Anisotropic kinetic energy release and gyroscopic behavior of CO2 super rotors from an optical centrifuge

    NASA Astrophysics Data System (ADS)

    Murray, Matthew J.; Ogden, Hannah M.; Mullin, Amy S.

    2017-10-01

    An optical centrifuge is used to generate an ensemble of CO2 super rotors with oriented angular momentum. The collision dynamics and energy transfer behavior of the super rotor molecules are investigated using high-resolution transient IR absorption spectroscopy. New multipass IR detection provides improved sensitivity to perform polarization-dependent transient studies for rotational states with 76 ≤ J ≤ 100. Polarization-dependent measurements show that the collision-induced kinetic energy release is spatially anisotropic and results from both near-resonant energy transfer between super rotor molecules and non-resonant energy transfer between super rotors and thermal molecules. J-dependent studies show that the extent and duration of the orientational anisotropy increase with rotational angular momentum. The super rotors exhibit behavior akin to molecular gyroscopes, wherein molecules with larger amounts of angular momentum are less likely to change their angular momentum orientation through collisions.

  18. Rotating Hele-Shaw cell with a time-dependent angular velocity

    NASA Astrophysics Data System (ADS)

    Anjos, Pedro H. A.; Alvarez, Victor M. M.; Dias, Eduardo O.; Miranda, José A.

    2017-12-01

    Despite the large number of existing studies of viscous flows in rotating Hele-Shaw cells, most investigations analyze rotational motion with a constant angular velocity, under vanishing Reynolds number conditions in which inertial effects can be neglected. In this work, we examine the linear and weakly nonlinear dynamics of the interface between two immiscible fluids in a rotating Hele-Shaw cell, considering the action of a time-dependent angular velocity, and taking into account the contribution of inertia. By using a generalized Darcy's law, we derive a second-order mode-coupling equation which describes the time evolution of the interfacial perturbation amplitudes. For arbitrary values of viscosity and density ratios, and for a range of values of a rotational Reynolds number, we investigate how the time-dependent angular velocity and inertia affect the important finger competition events that traditionally arise in rotating Hele-Shaw flows.

  19. Triaxial-band structures, chirality, and magnetic rotation in La 133

    DOE PAGES

    Petrache, C. M.; Chen, Q. B.; Guo, S.; ...

    2016-12-05

    The structure of 133La has been investigated using the 116Cd( 22Ne,4pn) reaction and the Gammasphere array. Three new bands of quadrupole transitions and one band of dipole transitions are identified and the previously reported level scheme is revised and extended to higher spins. The observed structures are discussed using the cranked Nilsson-Strutinsky formalism, covariant density functional theory, and the particle-rotor model. Triaxial configurations are assigned to all observed bands. For the high-spin bands it is found that rotations around different axes can occur, depending on the configuration. The orientation of the angular momenta of the core and of themore » active particles is investigated, suggesting chiral rotation for two nearly degenerate dipole bands and magnetic rotation for one dipole band. As a result, it is shown that the h 11/2 neutron holes present in the configuration of the nearly degenerate dipole bands have significant angular momentum components not only along the long axis but also along the short axis, contributing to the balance of the angular momentum components along the short and long axes and thus giving rise to a chiral geometry.« less

  20. Quantum tomography for collider physics: illustrations with lepton-pair production

    NASA Astrophysics Data System (ADS)

    Martens, John C.; Ralston, John P.; Takaki, J. D. Tapia

    2018-01-01

    Quantum tomography is a method to experimentally extract all that is observable about a quantum mechanical system. We introduce quantum tomography to collider physics with the illustration of the angular distribution of lepton pairs. The tomographic method bypasses much of the field-theoretic formalism to concentrate on what can be observed with experimental data. We provide a practical, experimentally driven guide to model-independent analysis using density matrices at every step. Comparison with traditional methods of analyzing angular correlations of inclusive reactions finds many advantages in the tomographic method, which include manifest Lorentz covariance, direct incorporation of positivity constraints, exhaustively complete polarization information, and new invariants free from frame conventions. For example, experimental data can determine the entanglement entropy of the production process. We give reproducible numerical examples and provide a supplemental standalone computer code that implements the procedure. We also highlight a property of complex positivity that guarantees in a least-squares type fit that a local minimum of a χ 2 statistic will be a global minimum: There are no isolated local minima. This property with an automated implementation of positivity promises to mitigate issues relating to multiple minima and convention dependence that have been problematic in previous work on angular distributions.

  1. Measurement of long-range angular correlations and azimuthal anisotropies in high-multiplicity p + Au collisions at s NN = 200 GeV

    DOE PAGES

    Aidala, C.; Akiba, Y.; Alfred, M.; ...

    2017-03-24

    Inmore » this paper, we present measurements of long-range angular correlations and the transverse momentum dependence of elliptic flow ν 2 in high-multiplicity p + Au collisions at s NN = 200 GeV. A comparison of these results to previous measurements in high-multiplicity d + Au and 3He + Au collisions demonstrates a relation between ν 2 and the initial collision eccentricity ε 2, suggesting that the observed momentum-space azimuthal anisotropies in these small systems have a collective origin and reflect the initial geometry. Good agreement is observed between the measured ν 2 and hydrodynamic calculations for all systems, and an argument disfavoring theoretical explanations based on initial momentum-space domain correlations is presented. Finally, the set of measurements presented here allows us to leverage the distinct intrinsic geometry of each of these systems to distinguish between different theoretical descriptions of the long-range correlations observed in small collision systems.« less

  2. Measurement of long-range angular correlations and azimuthal anisotropies in high-multiplicity p + Au collisions at s NN = 200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aidala, C.; Akiba, Y.; Alfred, M.

    Inmore » this paper, we present measurements of long-range angular correlations and the transverse momentum dependence of elliptic flow ν 2 in high-multiplicity p + Au collisions at s NN = 200 GeV. A comparison of these results to previous measurements in high-multiplicity d + Au and 3He + Au collisions demonstrates a relation between ν 2 and the initial collision eccentricity ε 2, suggesting that the observed momentum-space azimuthal anisotropies in these small systems have a collective origin and reflect the initial geometry. Good agreement is observed between the measured ν 2 and hydrodynamic calculations for all systems, and an argument disfavoring theoretical explanations based on initial momentum-space domain correlations is presented. Finally, the set of measurements presented here allows us to leverage the distinct intrinsic geometry of each of these systems to distinguish between different theoretical descriptions of the long-range correlations observed in small collision systems.« less

  3. Measurement of long-range angular correlations and azimuthal anisotropies in high-multiplicity p +Au collisions at √{sNN}=200 GeV

    NASA Astrophysics Data System (ADS)

    Aidala, C.; Akiba, Y.; Alfred, M.; Andrieux, V.; Aoki, K.; Apadula, N.; Asano, H.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bandara, N. S.; Barish, K. N.; Bathe, S.; Bazilevsky, A.; Beaumier, M.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Blau, D. S.; Boer, M.; Bok, J. S.; Brooks, M. L.; Bryslawskyj, J.; Bumazhnov, V.; Butler, C.; Campbell, S.; Canoa Roman, V.; Cervantes, R.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Citron, Z.; Connors, M.; Cronin, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dion, A.; Dixit, D.; Do, J. H.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Elder, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukuda, Y.; Gal, C.; Gallus, P.; Garg, P.; Ge, H.; Giordano, F.; Goto, Y.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; He, X.; Hemmick, T. K.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Imai, K.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jezghani, M.; Ji, Z.; Jiang, X.; Johnson, B. M.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kang, J. H.; Kapukchyan, D.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Khachatryan, V.; Khanzadeev, A.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, M. H.; Kim, M.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kline, P.; Koblesky, T.; Kotov, D.; Kudo, S.; Kurita, K.; Kwon, Y.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, S.; Leitch, M. J.; Leung, Y. H.; Lewis, N. A.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Loggins, V.-R.; Lovasz, K.; Lynch, D.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Malaev, M.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Mendoza, M.; Mignerey, A. C.; Mihalik, D. E.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Montuenga, P.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Murakami, T.; Murata, J.; Nagai, K.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakano, K.; Nattrass, C.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ottino, G. J.; Ozawa, K.; Pantuev, V.; Papavassiliou, V.; Park, J. S.; Park, S.; Pate, S. F.; Patel, M.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pisani, R. P.; Pun, A.; Purschke, M. L.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richford, D.; Rinn, T.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Runchey, J.; Safonov, A. S.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shioya, T.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Smith, K. L.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Syed, S.; Sziklai, J.; Takeda, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Tarnai, G.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Towell, C. L.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vazquez-Carson, S.; Velkovska, J.; Virius, M.; Vrba, V.; Vukman, N.; Wang, X. R.; Wang, Z.; Watanabe, Y.; Watanabe, Y. S.; Wong, C. P.; Woody, C. L.; Xu, C.; Xu, Q.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamamoto, H.; Yanovich, A.; Yin, P.; Yoo, J. H.; Yoon, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zou, L.; Phenix Collaboration

    2017-03-01

    We present measurements of long-range angular correlations and the transverse momentum dependence of elliptic flow v2 in high-multiplicity p +Au collisions at √{s NN}=200 GeV. A comparison of these results to previous measurements in high-multiplicity d +Au and 3He+Au collisions demonstrates a relation between v2 and the initial collision eccentricity ɛ2, suggesting that the observed momentum-space azimuthal anisotropies in these small systems have a collective origin and reflect the initial geometry. Good agreement is observed between the measured v2 and hydrodynamic calculations for all systems, and an argument disfavoring theoretical explanations based on initial momentum-space domain correlations is presented. The set of measurements presented here allows us to leverage the distinct intrinsic geometry of each of these systems to distinguish between different theoretical descriptions of the long-range correlations observed in small collision systems.

  4. The GALAH Survey: Stellar streams and how stellar velocity distributions vary with Galactic longitude, hemisphere and metallicity

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; De Silva, Gayandhi; Sharma, Sanjib; Hayden, Michael; Freeman, Ken; Bland-Hawthorn, Joss; Žerjal, Maruša; Asplund, Martin; Buder, Sven; D'Orazi, Valentina; Duong, Ly; Kos, Janez; Lin, Jane; Lind, Karin; Martell, Sarah; Schlesinger, Katharine; Simpson, Jeffrey D.; Zucker, Daniel B.; Zwitter, Tomaz; Anguiano, Borja; Carollo, Daniela; Casagrande, Luca; Cotar, Klemen; Cottrell, Peter L.; Ireland, Michael; Kafle, Prajwal R.; Horner, Jonathan; Lewis, Geraint F.; Nataf, David M.; Ting, Yuan-Sen; Watson, Fred; Wittenmyer, Rob; Wyse, Rosemary

    2018-04-01

    Using GALAH survey data of nearby stars, we look at how structure in the planar (u, v) velocity distribution depends on metallicity and on viewing direction within the Galaxy. In nearby stars with distance d ≲ 1 kpc, the Hercules stream is most strongly seen in higher metallicity stars [Fe/H]>0.2. The Hercules stream peak v value depends on viewed galactic longitude, which we interpret as due to the gap between the stellar stream and more circular orbits being associated with a specific angular momentum value of about 1640 km s-1 kpc. The association of the gap with a particular angular momentum value supports a bar resonant model for the Hercules stream. Moving groups previously identified in Hipparcos observations are easiest to see in stars nearer than 250 pc, and their visibility and peak velocities in the velocity distributions depends on both viewing direction (galactic longitude and hemisphere) and metallicity. We infer that there is fine structure in local velocity distributions that varies over distances of a few hundred pc in the Galaxy.

  5. ``Stable'' Quasi-periodic Oscillations and Black Hole Properties from Diskoseismology

    NASA Astrophysics Data System (ADS)

    Wagoner, Robert V.; Silbergleit, Alexander S.; Ortega-Rodríguez, Manuel

    2001-09-01

    We compare our calculations of the frequencies of the fundamental g-, c-, and p-modes of relativistic thin accretion disks with recent observations of high-frequency quasi-periodic oscillations (QPOs) in X-ray binaries with black hole candidates. These classes of modes encompass all adiabatic perturbations of such disks. The frequencies of these modes depend mainly on the mass and angular momentum of the black hole; their weak dependence on disk luminosity is also explicitly indicated. Identifying the recently discovered, relatively stable QPO pairs with the fundamental g- and c-modes provides a determination of the mass and angular momentum of the black hole. For GRO J1655-40, M=5.9+/-1.0 Msolar and J=(0.917+/-0.024)GM2/c, in agreement with spectroscopic mass determinations. For GRS 1915+105, M=42.4+/-7.0 Msolar and J=(0.926+/-0.020)GM2/c or (less favored) M=18.2+/-3.1 Msolar and J=(0.701+/-0.043)GM2/c. We briefly address the issues of the amplitude, frequency width, and energy dependence of these QPOs.

  6. Set of new observables in the process e+e-→Z H H

    NASA Astrophysics Data System (ADS)

    Nakamura, Junya

    2018-01-01

    Consequences of nonstandard Higgs couplings in the final-state distributions of the process e+e-→Z H H are studied. We derive an analytic expression for the differential cross section, which has in the most general case nine nonzero functions. These functions are the coefficients of nine angular terms, depend on the Higgs couplings, and can be experimentally measured as observables. Symmetry properties of these nine functions are carefully discussed, and they are divided into four categories under C P and C P T ˜. The relations between our observables and the observables which exist in the literature are also clarified. We numerically study the dependence of our observables on the parameters in an effective Lagrangian for the Higgs couplings. It is shown that these new observables depend on most of the effective Lagrangian parameters in different ways from the total cross section. A benefit from longitudinally polarized e+e- beams is also discussed.

  7. Quantum theoretical study of electron solvation dynamics in ice layers on a Cu(111) surface.

    PubMed

    Andrianov, I; Klamroth, T; Saalfrank, P; Bovensiepen, U; Gahl, C; Wolf, M

    2005-06-15

    Recent experiments using time- and angle-resolved two-photon photoemission (2PPE) spectroscopy at metal/polar adsorbate interfaces succeeded in time-dependent analysis of the process of electron solvation. A fully quantum mechanical, two-dimensional simulation of this process, which explicitly includes laser excitation, is presented here, confirming the origin of characteristic features, such as the experimental observation of an apparently negative dispersion. The inference of the spatial extent of the localized electron states from the angular dependence of the 2PPE spectra has been found to be non-trivial and system-dependent.

  8. Angular dependence of the MOSFET dosimeter and its impact on in vivo surface dose measurement in breast cancer treatment.

    PubMed

    Qin, S; Chen, T; Wang, L; Tu, Y; Yue, N; Zhou, J

    2014-08-01

    The focus of this study is the angular dependence of two types of Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeters (MOSFET20 and OneDose/OneDosePlus) when used for surface dose measurements. External beam radiationat different gantry angles were delivered to a cubic solid water phantom with a MOSFET placed on the top surface at CAX. The long axis of the MOSFET was oriented along the gantry axis of rotation, with the dosimeter (bubble side) facing the radiation source. MOSFET-measured surface doses were compared against calibrated radiochromic film readings. It was found that both types of MOSFET dosimeters exhibited larger than previously reported angular dependence when measuring surface dose in beams at large oblique angles. For the MOSFET20 dosimeter the measured surface dose deviation against film readings was as high as 17% when the incident angle was 72 degrees to the norm of the phantom surface. It is concluded that some MOSFET dosimeters may have a strong angular dependence when placed on the surface of water-equivalent material, even though they may have an isotropic angular response when surrounded by uniform medium. Extra on-surface calibration maybe necessary before using MOSFET dosimeters for skin dose measurement in tangential fields.

  9. Galaxy spin as a formation probe: the stellar-to-halo specific angular momentum relation

    NASA Astrophysics Data System (ADS)

    Posti, Lorenzo; Pezzulli, Gabriele; Fraternali, Filippo; Di Teodoro, Enrico M.

    2018-03-01

    We derive the stellar-to-halo specific angular momentum relation (SHSAMR) of galaxies at z = 0 by combining (i) the standard Λcold dark matter tidal torque theory, (ii) the observed relation between stellar mass and specific angular momentum (the Fall relation), and (iii) various determinations of the stellar-to-halo mass relation (SHMR). We find that the ratio fj = j*/jh of the specific angular momentum of stars to that of the dark matter (i) varies with mass as a double power law, (ii) always has a peak in the mass range explored and iii) is three to five times larger for spirals than for ellipticals. The results have some dependence on the adopted SHMR and we provide fitting formulae in each case. For any choice of the SHMR, the peak of fj occurs at the same mass where the stellar-to-halo mass ratio f* = M*/Mh has a maximum. This is mostly driven by the straightness and tightness of the Fall relation, which requires fj and f* to be correlated with each other roughly as f_j∝ f_\\ast ^{2/3}, as expected if the outer and more angular momentum rich parts of a halo failed to accrete on to the central galaxy and form stars (biased collapse). We also confirm that the difference in the angular momentum of spirals and ellipticals at a given mass is too large to be ascribed only to different spins of the parent dark-matter haloes (spin bias).

  10. Determination of solar flare accelerated ion angular distributions from SMM gamma ray and neutron measurements and determination of the He-3/H ratio in the solar photosphere from SMM gamma ray measurements

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1989-01-01

    Comparisons of Solar Maximum Mission (SMM) observations of gamma-ray line and neutron emission with theoretical calculation of their expected production by flare accelerated ion interactions in the solar atmosphere have led to significant advances in the understanding of solar flare particle acceleration and interaction, as well as the flare process itself. These comparisons have enabled the determination of, not only the total number and energy spectrum of accelerated ions trapped at the sun, but also the ion angular distribution as they interact in the solar atmosphere. The Monte Carlo program was modified to include in the calculations of ion trajectories the effects of both mirroring in converging magnetic fields and of pitch angle scattering. Comparing the results of these calculations with the SMM observations, not only the angular distribution of the interacting ions can be determined, but also the initial angular distribution of the ions at acceleration. The reliable determination of the solar photospheric He-3 abundance is of great importance for understanding nucleosynthesis in the early universe and its implications for cosmology, as well as for the study of the evolution of the sun. It is also essential for the determinations of the spectrum and total number of flare accelerated ions from the SMM/GRS gamma-ray line measurements. Systematic Monte Carlo calculations of the time dependence were made as a function of the He-3 abundance and other variables. A new series of calculations were compared for the time-dependent flux of 2.223 MeV neutron capture line emission and the ratio of the time-integrated flux in the 2.223 MeV line to that in the 4.1 to 6.4 MeV nuclear deexcitation band.

  11. Stern-Gerlach-like approach to electron orbital angular momentum measurement

    DOE PAGES

    Harvey, Tyler R.; Grillo, Vincenzo; McMorran, Benjamin J.

    2017-02-28

    Many methods now exist to prepare free electrons into orbital-angular-momentum states, and the predicted applications of these electron states as probes of materials and scattering processes are numerous. The development of electron orbital-angular-momentum measurement techniques has lagged behind. We show that coupling between electron orbital angular momentum and a spatially varying magnetic field produces an angular-momentum-dependent focusing effect. We propose a design for an orbital-angular-momentum measurement device built on this principle. As the method of measurement is noninterferometric, the device works equally well for mixed, superposed, and pure final orbital-angular-momentum states. The energy and orbital-angular-momentum distributions of inelastically scattered electronsmore » may be simultaneously measurable with this technique.« less

  12. Stern-Gerlach-like approach to electron orbital angular momentum measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Tyler R.; Grillo, Vincenzo; McMorran, Benjamin J.

    Many methods now exist to prepare free electrons into orbital-angular-momentum states, and the predicted applications of these electron states as probes of materials and scattering processes are numerous. The development of electron orbital-angular-momentum measurement techniques has lagged behind. We show that coupling between electron orbital angular momentum and a spatially varying magnetic field produces an angular-momentum-dependent focusing effect. We propose a design for an orbital-angular-momentum measurement device built on this principle. As the method of measurement is noninterferometric, the device works equally well for mixed, superposed, and pure final orbital-angular-momentum states. The energy and orbital-angular-momentum distributions of inelastically scattered electronsmore » may be simultaneously measurable with this technique.« less

  13. Radially dependent angular acceleration of twisted light.

    PubMed

    Webster, Jason; Rosales-Guzmán, Carmelo; Forbes, Andrew

    2017-02-15

    While photons travel in a straight line at constant velocity in free space, the intensity profile of structured light may be tailored for acceleration in any degree of freedom. Here we propose a simple approach to control the angular acceleration of light. Using Laguerre-Gaussian modes as our twisted beams carrying orbital angular momentum, we show that superpositions of opposite handedness result in a radially dependent angular acceleration as they pass through a focus (waist plane). Due to conservation of orbital angular momentum, we find that propagation dynamics are complex despite the free-space medium: the outer part of the beam (rings) rotates in an opposite direction to the inner part (petals), and while the outer part accelerates, the inner part decelerates. We outline the concepts theoretically and confirm them experimentally. Such exotic structured light beams are topical due to their many applications, for instance in optical trapping and tweezing, metrology, and fundamental studies in optics.

  14. Angular distribution of scission neutrons studied with time-dependent Schrödinger equation

    NASA Astrophysics Data System (ADS)

    Wada, Takahiro; Asano, Tomomasa; Carjan, Nicolae

    2018-03-01

    We investigate the angular distribution of scission neutrons taking account of the effects of fission fragments. The time evolution of the wave function of the scission neutron is obtained by integrating the time-dependent Schrodinger equation numerically. The effects of the fission fragments are taken into account by means of the optical potentials. The angular distribution is strongly modified by the presence of the fragments. In the case of asymmetric fission, it is found that the heavy fragment has stronger effects. Dependence on the initial distribution and on the properties of fission fragments is discussed. We also discuss on the treatment of the boundary to avoid artificial reflections

  15. Braking Index of Isolated Pulsars

    NASA Astrophysics Data System (ADS)

    Hamil, Oliver; Stone, Jirina; Urbanec, Martin; Urbancova, Gabriela

    2015-04-01

    Isolated pulsars are rotating neutron stars with accurately measured angular velocities Ω, and their time derivatives which show unambiguously that the pulsars are slowing down. The exact mechanism of the spin-down is a question of debate in detail, but the commonly accepted view is that it arises through emission of magnetic dipole radiation (MDR). The energy loss by a rotating pulsar is proportional to a model dependent power of Ω. This relation leads to the power law Ω˙ = -K Ωn where n is called the braking index, equal to the ratio (ΩΩ̈)/ Ω˙2 . The simple MDR model predicts the value of n = 3, but observations of isolated pulsars provide rather precise values of n, individually accurate to a few percent or better, in the range 1 < n < 2.8, which is consistently less than the predictions of the MDR model. In this work, we study the dynamical limits of the MDR model as a function of angular velocity. The effects of variation in the rest mass, the moment of inertia, and the dependence on a realistic Equation of State of the rotating star are considered. Furthermore, we introduce a simulated superfluid effect by which the angular momentum of the core is eliminated from the calculation.

  16. High Temperature Deformation of Twin-Roll Cast Al-Mn-Based Alloys after Equal Channel Angular Pressing

    PubMed Central

    Málek, Přemysl; Šlapáková Poková, Michaela; Cieslar, Miroslav

    2015-01-01

    Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-based alloy. High temperature tensile tests reveal that equal channel angular pressing results in a softening of all studied materials at high temperatures. This can be explained by an active role of grain boundaries in the deformation process. The maximum values of ductility and strain rate sensitivity parameter m found in the Al-Mn-Zr-based alloy are below the bottom limit of superplasticity (155%, m = 0.25). However, some features typical for superplastic behavior were observed—the strain rate dependence of the parameter m, the strengthening with increasing grain size, and the fracture by diffuse necking. Grain boundary sliding is believed to contribute partially to the overall strain in specimens where the grain size remained in the microcrystalline range. PMID:28793667

  17. Synchrotron emission diagnostic of full-orbit kinetic simulations of runaway electrons in tokamaks plasmas

    NASA Astrophysics Data System (ADS)

    Carbajal Gomez, Leopoldo; Del-Castillo-Negrete, Diego

    2017-10-01

    Developing avoidance or mitigation strategies of runaway electrons (RE) for the safe operation of ITER is imperative. Synchrotron radiation (SR) of RE is routinely used in current tokamak experiments to diagnose RE. We present the results of a newly developed camera diagnostic of SR for full-orbit kinetic simulations of RE in DIII-D-like plasmas that simultaneously includes: full-orbit effects, information of the spectral and angular distribution of SR of each electron, and basic geometric optics of a camera. We observe a strong dependence of the SR measured by the camera on the pitch angle distribution of RE, namely we find that crescent shapes of the SR on the camera pictures relate to RE distributions with small pitch angles, while ellipse shapes relate to distributions of RE with larger pitch angles. A weak dependence of the SR measured by the camera with the RE energy, value of the q-profile at the edge, and the chosen range of wavelengths is found. Furthermore, we observe that oversimplifying the angular distribution of the SR changes the synchrotron spectra and overestimates its amplitude. Research sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the U. S. DoE.

  18. Observation of quantum interferences via light-induced conical intersections in diatomic molecules

    DOE PAGES

    Natan, Adi; Ware, Matthew R.; Prabhudesai, Vaibhav S.; ...

    2016-04-07

    We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H + 2. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed 2-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state andmore » the cone apex. As a result, these findings are supported by numerical solutions of the time-dependent Schrodinger equation for similar experimental conditions.« less

  19. Observation of quantum interferences via light-induced conical intersections in diatomic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natan, Adi; Ware, Matthew R.; Prabhudesai, Vaibhav S.

    We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H + 2. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed 2-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state andmore » the cone apex. As a result, these findings are supported by numerical solutions of the time-dependent Schrodinger equation for similar experimental conditions.« less

  20. Angular distribution and polarization of atomic radiative emission in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Jacobs, V. L.; Filuk, A. B.

    1999-09-01

    A density-matrix approach has been developed for the angular distribution and polarization of radiative emission during single-photon atomic transitions for a general set of steady-state excitation processes in an arbitrary arrangement of static (or quasistatic) electric and magnetic fields. Particular attention has been directed at spectroscopic observations in the intense fields of the high-power ion diodes on the Particle Beam Fusion Accelerator II (PBFA II) and SABRE devices at Sandia National Laboratories and at magnetic-field measurements in tokamak plasmas. The field-dependent atomic eigenstates are represented as expansions in a complete basis set of field-free bound and continuum eigenstates. Particular emphasis has been given to directed-electron collisional excitations, which may be produced by an anisotropic incident-electron velocity distribution. We have allowed for the possibility of the coherent excitation of the nearly degenerate field-dependent atomic substates, which can give rise to a complex spectral pattern of overlapping Stark-Zeeman components. Coherent excitations may be produced by a beam of electrons that are spin-polarized at an angle with respect to the propagation direction or by nonparallel electric and magnetic fields. Our main result is a general expression for the matrix elements of the photon-polarization density operator representing the total intensity, angular distribution, and polarization of the atomic radiative emission. For the observation of radiative emission in the direction of the magnetic field, the detection of linearly polarized emission, in addition to the usual circularly polarized radiation, can reveal the presence of a perpendicular electric field or a coherent excitation mechanism.

  1. Angular distribution and polarization of atomic radiative emission in electric and magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, V.L.; Filuk, A.B.

    A density-matrix approach has been developed for the angular distribution and polarization of radiative emission during single-photon atomic transitions for a general set of steady-state excitation processes in an arbitrary arrangement of static (or quasistatic) electric and magnetic fields. Particular attention has been directed at spectroscopic observations in the intense fields of the high-power ion diodes on the Particle Beam Fusion Accelerator II (PBFA II) and SABRE devices at Sandia National Laboratories and at magnetic-field measurements in tokamak plasmas. The field-dependent atomic eigenstates are represented as expansions in a complete basis set of field-free bound and continuum eigenstates. Particular emphasismore » has been given to directed-electron collisional excitations, which may be produced by an anisotropic incident-electron velocity distribution. We have allowed for the possibility of the coherent excitation of the nearly degenerate field-dependent atomic substates, which can give rise to a complex spectral pattern of overlapping Stark-Zeeman components. Coherent excitations may be produced by a beam of electrons that are spin-polarized at an angle with respect to the propagation direction or by nonparallel electric and magnetic fields. Our main result is a general expression for the matrix elements of the photon-polarization density operator representing the total intensity, angular distribution, and polarization of the atomic radiative emission. For the observation of radiative emission in the direction of the magnetic field, the detection of linearly polarized emission, in addition to the usual circularly polarized radiation, can reveal the presence of a perpendicular electric field or a coherent excitation mechanism.« less

  2. In-Plane Angular Effect of Magnetoresistance of Quasi-One-Dimensional Organic Metals, (DMET) 2AuBr 2 and (TMTSF) 2ClO 4

    NASA Astrophysics Data System (ADS)

    Yoshino, Harukazu; Saito, Kazuya; Nishikawa, Hiroyuki; Kikuchi, Koichi; Kobayashi, Keiji; Ikemoto, Isao

    1997-08-01

    Comparative study is presented for the in-plane angular effect of magnetoresistance of quasi-one-dimensional organic conductors, (DMET)2AuBr2 and (TMTSF)2ClO4. The magnetoresistance for the magnetic and electrical fields parallel and perpendicular to the most conducting plane, respectively, was measured at 4.2 K and up to 7.0 T. (DMET)2AuBr2 shows an anomalous hump in the field-orientation dependence of the magnetoresistance for the magnetic field nearly parallel to the most conducting axis and this is very similar to what previously reported for (DMET)2I3. Weak anomaly was detected for the magnetoresistance of (TMTSF)2ClO4 in the Relaxed state, while no anomaly was observed in the SDW phase in the Quenched state. By comparing the numerical angular derivatives of the magnetoresistance, it is shown that the anomaly in the in-plane angular effect continuously develops from zero magnetic field and is closely related to the quasi-one-dimensional Fermi surface. A simple method is proposed to estimate the anisotropy of the transfer integral from the width of the hump anomaly.

  3. A contribution to calculation of the mathematical pendulum

    NASA Astrophysics Data System (ADS)

    Anakhaev, K. N.

    2014-11-01

    In this work, as a continuation of rigorous solutions of the mathematical pendulum theory, calculated dependences were obtained in elementary functions (with construction of plots) for a complete description of the oscillatory motion of the pendulum with determination of its parameters, such as the oscillation period, deviation angles, time of motion, angular velocity and acceleration, and strains in the pendulum rod (maximum, minimum, zero, and gravitational). The results of calculations according to the proposed dependences closely (≪1%) coincide with the exact tabulated data for individual points. The conditions of ascending at which the angular velocity, angular acceleration, and strains in the pendulum rod reach their limiting values equal to and 5 m 1 g, respectively, are shown. It was revealed that the angular acceleration does not depend on the pendulum oscillation amplitude; the pendulum rod strain equal to the gravitation force of the pendulum R s = m 1 g at the time instant is also independent on the amplitude. The dependences presented in this work can also be invoked for describing oscillations of a physical pendulum, mass on a spring, electric circuit, etc.

  4. Angular-dependent Raman study of a- and s-plane InN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filintoglou, K.; Katsikini, M., E-mail: katsiki@auth.gr; Arvanitidis, J.

    2015-02-21

    Angular-dependent polarized Raman spectroscopy was utilized to study nonpolar a-plane (11{sup ¯}20) and semipolar s-plane (101{sup ¯}1) InN epilayers. The intensity dependence of the Raman peaks assigned to the vibrational modes A{sub 1}(TO), E{sub 1}(TO), and E{sub 2}{sup h} on the angle ψ that corresponds to rotation around the growth axis, is very well reproduced by using expressions taking into account the corresponding Raman tensors and the experimental geometry, providing thus a reliable technique towards assessing the sample quality. The s- and a-plane InN epilayers grown on nitridated r-plane sapphire (Al{sub 2}O{sub 3}) exhibit good crystalline quality as deduced frommore » the excellent fitting of the experimental angle-dependent peak intensities to the theoretical expressions as well as from the small width of the Raman peaks. On the contrary, in the case of the s-plane epilayer grown on non-nitridated r-plane sapphire, fitting of the angular dependence is much worse and can be modeled only by considering the presence of two structural modifications, rotated so as their c-axes are almost perpendicular to each other. Although the presence of the second variant is verified by transmission electron and atomic force microscopies, angular dependent Raman spectroscopy offers a non-destructive and quick way for its quantification. Rapid thermal annealing of this sample did not affect the angular dependence of the peak intensities. The shift of the E{sub 1}(TO) and E{sub 2}{sup h} Raman peaks was used for the estimation of the strain state of the samples.« less

  5. Collapsing Binary Asteroids With YORP And BYORP

    NASA Astrophysics Data System (ADS)

    Taylor, Patrick A.

    2012-05-01

    A separated binary system may be collapsed to contact via the removal of angular momentum from the system until a viable tidal end state no longer exists. The thermal YORP and BYORP effects are both capable of removing angular momentum from the system, by spin-down of the components and shrinking the mutual orbit, respectively. The YORP effect, with strength of order that measured for (1862) Apollo [1], can collapse a binary system with equal-mass components in as little as tens of thousands of years (depending on the initial angular momentum), while smaller secondaries require two or more orders of magnitude longer to collapse. BYORP, with a BYORP coefficent of 0.001 [2], is less efficient, especially for smaller secondaries. By these methods, only near-Earth binaries with large mass ratios can collapse within a dynamical lifetime, a population of which is observed by radar with a frequency comparable to separated binaries. [1] Kaasalainen et al., 2007, Nature 446, 420-422. [2] McMahon and Scheeres, 2010, Icarus 209, 494-509.

  6. Parabolic polarization splitting of Tamm states in a metal-organic microcavity

    NASA Astrophysics Data System (ADS)

    Brückner, R.; Sudzius, M.; Hintschich, S. I.; Fröb, H.; Lyssenko, V. G.; Kaliteevski, M. A.; Iorsh, I.; Abram, R. A.; Kavokin, A. V.; Leo, K.

    2012-02-01

    We observe hybrid states of cavity photons and Tamm plasmons in an organic microcavity with an incorporated thin silver layer of increasing thickness up to 40 nm. Via μ-photoluminescence spectroscopy, we investigate their angular dependence. At oblique angles, we observe a TE-TM polarization splitting of more than 40 meV for each mode. An analytical model is developed to describe the coupling of Tamm plasmons and cavity photons and to account for the splitting of the orthogonally polarized resonances.

  7. DUAL-FREQUENCY OBSERVATIONS OF 140 COMPACT, FLAT-SPECTRUM ACTIVE GALACTIC NUCLEI FOR SCINTILLATION-INDUCED VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koay, J. Y.; Macquart, J.-P.; Bignall, H. E.

    2011-10-15

    The 4.9 GHz Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey detected a drop in interstellar scintillation (ISS) for sources at redshifts z {approx}> 2, indicating an apparent increase in angular diameter or a decrease in flux density of the most compact components of these sources relative to their extended emission. This can result from intrinsic source size effects or scatter broadening in the intergalactic medium (IGM) in excess of the expected (1 + z){sup 1/2} angular diameter scaling of brightness temperature limited sources resulting from cosmological expansion. We report here 4.9 GHz and 8.4 GHz observations and data analysis for a samplemore » of 140 compact, flat-spectrum sources which may allow us to determine the origin of this angular diameter-redshift relation by exploiting their different wavelength dependences. In addition to using ISS as a cosmological probe, the observations provide additional insight into source morphologies and the characteristics of ISS. As in the MASIV Survey, the variability of the sources is found to be significantly correlated with line-of-sight H{alpha} intensities, confirming its link with ISS. For 25 sources, time delays of about 0.15-3 days are observed between the scintillation patterns at both frequencies, interpreted as being caused by a shift in core positions when probed at different optical depths. Significant correlation is found between ISS amplitudes and source spectral index; in particular, a large drop in ISS amplitudes is observed at {alpha} < -0.4 confirming that steep spectrum sources scintillate less. We detect a weakened redshift dependence of ISS at 8.4 GHz over that at 4.9 GHz, with the mean variance at four-day timescales reduced by a factor of 1.8 in the z > 2 sources relative to the z < 2 sources, as opposed to the factor of three decrease observed at 4.9 GHz. This suggests scatter broadening in the IGM, but the interpretation is complicated by subtle selection effects that will be explored further in a follow-up paper.« less

  8. Dual-Frequency Observations of 140 Compact, Flat-Spectrum Active Galactic Nuclei for Scintillation-Induced Variability

    NASA Technical Reports Server (NTRS)

    Koay, J. Y.; Macquart, J.- P.; Rickett, B. J.; Bignall, H. E.; Lovell, J. E. J.; Reynolds, C.; Jauncey, D. L.; Pursimo, T.; Kedziora-Chudczer, L.; Ojha, R.

    2012-01-01

    The 4.9 GHz Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey detected a drop in Interstellar Scintillation (ISS) for sources at red shifts z > or approx. 2, indicating an apparent increase in angular diameter or a decrease in flux density of the most compact components of these sources, relative to their extended emission. This can result from intrinsic source size effects or scatter broadening in the Intergalactic Medium (IGM) , in excess of the expected (1+z)1/2 angular diameter scaling of brightness temperature limited sources resulting from cosmological expansion. We report here 4.9 GHz and 8.4 GHz observations and data analysis for a sample of 140 compact, fiat-spectrum sources which may allow us to determine the origin of this angular diameter-redshift relation by exploiting their different wavelength dependences. In addition to using ISS as a cosmological probe, the observations provide additional insight into source morphologies and the characteristics of ISS. As in the MASIV Survey, the variability of the sources is found to be significantly correlated with line-of-sight H(alpha) intensities, confirming its link with ISS. For 25 sources, time delays of about 0.15 to 3 days are observed between the scintillation patterns at both frequencies, interpreted as being caused by a shift in core positions when probed at different optical depths. Significant correlation is found between ISS amplitudes and source spectral index; in particular, a large drop in ISS amplitudes is observed at alpha < -0.4 confirming that steep spectrum sources scintillate less. We detect a weakened redshift dependence of ISS at 8.4 GHz over that at 4.9 GHz, with the mean variance at 4-day timescales reduced by a factor of 1.8 in the z > 2 sources relative to the z < 2 sources, as opposed to the factor of 3 decrease observed at 4.9 GHz. This suggests scatter broadening in the IGM, but the interpretation is complicated by subtle selection effects that will be explored further in a follow-up paper.

  9. A Finite-Difference Time-Domain Model of Artificial Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Cannon, Patrick; Honary, Farideh; Borisov, Nikolay

    Experiments in the artificial modification of the ionosphere via a radio frequency pump wave have observed a wide range of non-linear phenomena near the reflection height of an O-mode wave. These effects exhibit a strong aspect-angle dependence thought to be associated with the process by which, for a narrow range of off-vertical launch angles, the O-mode pump wave can propagate beyond the standard reflection height at X=1 as a Z-mode wave and excite additional plasma activity. A numerical model based on Finite-Difference Time-Domain method has been developed to simulate the interaction of the pump wave with an ionospheric plasma and investigate different non-linear processes involved in modification experiments. The effects on wave propagation due to plasma inhomogeneity and anisotropy are introduced through coupling of the Lorentz equation of motion for electrons and ions to Maxwell’s wave equations in the FDTD formulation, leading to a model that is capable of exciting a variety of plasma waves including Langmuir and upper-hybrid waves. Additionally, discretized equations describing the time-dependent evolution of the plasma fluid temperature and density are included in the FDTD update scheme. This model is used to calculate the aspect angle dependence and angular size of the radio window for which Z-mode excitation occurs, and the results compared favourably with both theoretical predictions and experimental observations. The simulation results are found to reproduce the angular dependence on electron density and temperature enhancement observed experimentally. The model is used to investigate the effect of different initial plasma density conditions on the evolution of non-linear effects, and demonstrates that the inclusion of features such as small field-aligned density perturbations can have a significant influence on wave propagation and the magnitude of temperature and density enhancements.

  10. Neutron-neutron angular correlations in spontaneous fission of 252Cf and 240Pu

    NASA Astrophysics Data System (ADS)

    Verbeke, J. M.; Nakae, L. F.; Vogt, R.

    2018-04-01

    Background: Angular anisotropy has been observed between prompt neutrons emitted during the fission process. Such an anisotropy arises because the emitted neutrons are boosted along the direction of the parent fragment. Purpose: To measure the neutron-neutron angular correlations from the spontaneous fission of 252Cf and 240Pu oxide samples using a liquid scintillator array capable of pulse-shape discrimination. To compare these correlations to simulations combining the Monte Carlo radiation transport code MCNPX with the fission event generator FREYA. Method: Two different analysis methods were used to study the neutron-neutron correlations with varying energy thresholds. The first is based on setting a light output threshold while the second imposes a time-of-flight cutoff. The second method has the advantage of being truly detector independent. Results: The neutron-neutron correlation modeled by FREYA depends strongly on the sharing of the excitation energy between the two fragments. The measured asymmetry enabled us to adjust the FREYA parameter x in 240Pu, which controls the energy partition between the fragments and is so far inaccessible in other measurements. The 240Pu data in this analysis was the first available to quantify the energy partition for this isotope. The agreement between data and simulation is overall very good for 252Cf(sf ) and 240Pu(sf ) . Conclusions: The asymmetry in the measured neutron-neutron angular distributions can be predicted by FREYA. The shape of the correlation function depends on how the excitation energy is partitioned between the two fission fragments. Experimental data suggest that the lighter fragment is disproportionately excited.

  11. Effects of intermediate wettability on entry capillary pressure in angular pores.

    PubMed

    Rabbani, Harris Sajjad; Joekar-Niasar, Vahid; Shokri, Nima

    2016-07-01

    Entry capillary pressure is one of the most important factors controlling drainage and remobilization of the capillary-trapped phases as it is the limiting factor against the two-phase displacement. It is known that the entry capillary pressure is rate dependent such that the inertia forces would enhance entry of the non-wetting phase into the pores. More importantly the entry capillary pressure is wettability dependent. However, while the movement of a meniscus into a strongly water-wet pore is well-defined, the invasion of a meniscus into a weak or intermediate water-wet pore especially in the case of angular pores is ambiguous. In this study using OpenFOAM software, high-resolution direct two-phase flow simulations of movement of a meniscus in a single capillary channel are performed. Interface dynamics in angular pores under drainage conditions have been simulated under constant flow rate boundary condition at different wettability conditions. Our results shows that the relation between the half corner angle of pores and contact angle controls the temporal evolution of capillary pressure during the invasion of a pore. By deviating from pure water-wet conditions, a dip in the temporal evolution of capillary pressure can be observed which will be pronounced in irregular angular cross sections. That enhances the pore invasion with a smaller differential pressure. The interplay between the contact angle and pore geometry can have significant implications for enhanced remobilization of ganglia in intermediate contact angles in real porous media morphologies, where pores are very heterogeneous with small shape factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Dangerous angular Kaluza-Klein/glueball relics in string theory cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufaux, J. F.; CITA, University of Toronto, 60 St. George st., Toronto, ON M5S 3H8; Kofman, L.

    2008-07-15

    The presence of Kaluza-Klein (KK) particles in the universe is a potential manifestation of string theory cosmology. In general, they can be present in the high temperature bath of the early universe. In particular examples, string theory inflation often ends with brane-antibrane annihilation followed by the energy cascading through massive closed string loops to KK modes which then decay into lighter standard model particles. However, massive KK modes in the early universe may become dangerous cosmological relics if the inner manifold contains warped throat(s) with approximate isometries. In the complimentary picture, in the AdS/CFT dual gauge theory with extra isometries,more » massive glueballs of various spins become the dangerous cosmological relics. The decay of these angular KK modes/glueballs, located around the tip of the throat, is caused by isometry breaking which results from gluing the throat to the compact Calabi-Yau (CY) manifold. We address the problem of these angular KK particles/glueballs, studying their interactions and decay channels, from the theory side, and the resulting cosmological constraints on the warped compactification parameters, from the phenomenology side. The abundance and decay time of the long-lived nonrelativistic angular KK modes depend strongly on the parameters of the warped geometry, so that observational constraints rule out a significant fraction of the parameter space. In particular, the coupling of the angular KK particles can be weaker than gravitational.« less

  13. Resonant interatomic Coulombic decay in HeNe: Electron angular emission distributions

    NASA Astrophysics Data System (ADS)

    Mhamdi, A.; Trinter, F.; Rauch, C.; Weller, M.; Rist, J.; Waitz, M.; Siebert, J.; Metz, D.; Janke, C.; Kastirke, G.; Wiegandt, F.; Bauer, T.; Tia, M.; Cunha de Miranda, B.; Pitzer, M.; Sann, H.; Schiwietz, G.; Schöffler, M.; Simon, M.; Gokhberg, K.; Dörner, R.; Jahnke, T.; Demekhin, Ph. Â. V.

    2018-05-01

    We present a joint experimental and theoretical study of resonant interatomic Coulombic decay (RICD) in HeNe employing high resolution cold target recoil ion momentum spectroscopy and ab initio electronic structure and nuclear dynamics calculations. In particular, laboratory- and molecular-frame angular emission distributions of RICD electrons are examined in detail. The exciting-photon energy-dependent anisotropy parameter β (ω ) , measured for decay events that populate bound HeNe+ ions, is in agreement with the calculations performed for the ground ionic state X2Σ1/2 + . A contribution from the a2Π3 /2 final ionic state is found to be negligible. For the He +Ne+ fragmentation channel, the observed laboratory-frame angular distribution of RICD electrons is explained by a slow homogeneous dissociation of bound vibrational levels of the final ionic state A2Π1 /2 into vibrational continua of the lower lying states X2Σ1/2 + and a2Π3 /2 . Our calculations predict that the angular distributions of RICD electrons in the body-fixed dipole plane provide direct access to the electronic character (i.e., symmetry) of intermediate vibronic resonances. However, because of the very slow dissociation of the A2Π1 /2 state, the molecular-frame angular distributions of RICD electrons in the He +Ne+ fragmentation channel are inaccessible to our coincidence experiment.

  14. Quadratic Finite Element Method for 1D Deterministic Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolar, Jr., D R; Ferguson, J M

    2004-01-06

    In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.

  15. Extension of the ratio method to low energy

    DOE PAGES

    Colomer, Frederic; Capel, Pierre; Nunes, F. M.; ...

    2016-05-25

    The ratio method has been proposed as a means to remove the reaction model dependence in the study of halo nuclei. Originally, it was developed for higher energies but given the potential interest in applying the method at lower energy, in this work we explore its validity at 20 MeV/nucleon. The ratio method takes the ratio of the breakup angular distribution and the summed angular distribution (which includes elastic, inelastic and breakup) and uses this observable to constrain the features of the original halo wave function. In this work we use the Continuum Discretized Coupled Channel method and the Coulomb-correctedmore » Dynamical Eikonal Approximation for the study. We study the reactions of 11Be on 12C, 40Ca and 208Pb at 20 MeV/nucleon. We compare the various theoretical descriptions and explore the dependence of our result on the core-target interaction. Lastly, our study demonstrates that the ratio method is valid at these lower beam energies.« less

  16. Astrometric observations of visual binaries using 26-inch refractor during 2007-2014 at Pulkovo

    NASA Astrophysics Data System (ADS)

    Izmailov, I. S.; Roshchina, E. A.

    2016-04-01

    We present the results of 15184 astrometric observations of 322 visual binaries carried out in 2007-2014 at Pulkovo observatory. In 2007, the 26-inch refractor ( F = 10413 mm, D = 65 cm) was equipped with the CCD camera FLI ProLine 09000 (FOV 12' × 12', 3056 × 3056 pixels, 0.238 arcsec pixel-1). Telescope automation and weather monitoring system installation allowed us to increase the number of observations significantly. Visual binary and multiple systems with an angular distance in the interval 1."1-78."6 with 7."3 on average were included in the observing program. The results were studied in detail for systematic errors using calibration star pairs. There was no detected dependence of errors on temperature, pressure, and hour angle. The dependence of the 26-inch refractor's scale on temperature was taken into account in calculations. The accuracy of measurement of a single CCD image is in the range of 0."0005 to 0."289, 0."021 on average along both coordinates. Mean errors in annual average values of angular distance and position angle are equal to 0."005 and 0.°04 respectively. The results are available here http://izmccd.puldb.ru/vds.htmand in the Strasbourg Astronomical Data Center (CDS). In the catalog, the separations and position angles per night of observation and annual average as well as errors for all the values and standard deviations of a single observation are presented. We present the results of comparison of 50 pairs of stars with known orbital solutions with ephemerides.

  17. High angular resolution N-band observation of the silicate carbon star IRAS08002-3803 with the VLTI/MIDI instrument . Dusty environment spatially resolved

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.; Driebe, T.; Hofmann, K.-H.; Leinert, Ch.; Morel, S.; Paresce, F.; Preibisch, Th.; Richichi, A.; Schertl, D.; Schöller, M.; Waters, L. B. F. M.; Weigelt, G.; Wittkowski, M.

    2006-01-01

    We present the results of N-band spectro-interferometric observations of the silicate carbon star IRAS08002-3803 with the MID-infrared Interferometric instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO). The observations were carried out using two unit telescopes (UT2 and UT3) with projected baseline lengths ranging from 39 to 47 m. Our observations of IRAS08002-3803 have spatially resolved the dusty environment of a silicate carbon star for the first time and revealed an unexpected wavelength dependence of the angular size in the N band: the uniform-disk diameter is found to be constant and 36 mas (72 Rstar) between 8 and 10 μm, while it steeply increases longward of 10 μm to reach 53 mas (106 Rstar) at 13 μm. Model calculations with our Monte Carlo radiative transfer code show that neither spherical shell models nor axisymmetric disk models consisting of silicate grains alone can simultaneously explain the observed wavelength dependence of the visibility and the spectral energy distribution (SED). We propose that the circumstellar environment of IRAS08002-3803 may consist of two grain species coexisting in the disk: silicate and a second grain species, for which we consider amorphous carbon, large silicate grains, and metallic iron grains. Comparison of the observed visibilities and SED with our models shows that such disk models can fairly - though not entirely satisfactorily - reproduce the observed SED and N-band visibilities. Our MIDI observations and the radiative transfer calculations lend support to the picture where oxygen-rich material around IRAS08002-3803 is stored in a circumbinary disk surrounding the carbon-rich primary star and its putative low-luminosity companion.

  18. Electron capture from circular Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Lundsgaard, M. F. V.; Chen, Z.; Lin, C. D.; Toshima, N.

    1995-02-01

    Electron capture cross sections from circular Rydberg states as a function of the angle cphi between the ion velocity and the angular momentum of the circular orbital have been reported recently by Hansen et al. [Phys. Rev. Lett. 71, 1522 (1993)]. We show that the observed cphi dependence can be explained in terms of the propensity rule that governs the dependence of electron capture cross sections on the magnetic quantum numbers of the initial excited states. We also carried out close-coupling calculations to show that electron capture from the circular H(3d,4f,5g) states by protons at the same scaled velocity has nearly the same cphi dependence.

  19. Coherent π-electron dynamics of (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses: Angular momentum and ring current

    NASA Astrophysics Data System (ADS)

    Mineo, H.; Lin, S. H.; Fujimura, Y.

    2013-02-01

    The results of a theoretical investigation of coherent π-electron dynamics for nonplanar (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses are presented. Expressions for the time-dependent coherent angular momentum and ring current are derived by using the density matrix method. The time dependence of these coherences is determined by the off-diagonal density matrix element, which can be obtained by solving the coupled equations of motion of the electronic-state density matrix. Dephasing effects on coherent angular momentum and ring current are taken into account within the Markov approximation. The magnitudes of the electronic angular momentum and current are expressed as the sum of expectation values of the corresponding operators in the two phenol rings (L and R rings). Here, L (R) denotes the phenol ring in the left (right)-hand side of (P)-2,2'-biphenol. We define the bond current between the nearest neighbor carbon atoms Ci and Cj as an electric current through a half plane perpendicular to the Ci-Cj bond. The bond current can be expressed in terms of the inter-atomic bond current. The inter-atomic bond current (bond current) depends on the position of the half plane on the bond and has the maximum value at the center. The coherent ring current in each ring is defined by averaging over the bond currents. Since (P)-2,2'-biphenol is nonplanar, the resultant angular momentum is not one-dimensional. Simulations of the time-dependent coherent angular momentum and ring current of (P)-2,2'-biphenol excited by ultrashort linearly polarized UV pulses are carried out using the molecular parameters obtained by the time-dependent density functional theory (TD-DFT) method. Oscillatory behaviors in the time-dependent angular momentum (ring current), which can be called angular momentum (ring current) quantum beats, are classified by the symmetry of the coherent state, symmetric or antisymmetric. The bond current of the bridge bond linking the L and R rings is zero for the symmetric coherent state, while it is nonzero for the antisymmetric coherent state. The magnitudes of ring current and ring current-induced magnetic field are also evaluated, and their possibility as a control parameter in ultrafast switching devices is discussed. The present results give a detailed description of the theoretical treatment reported in our previous paper [H. Mineo, M. Yamaki, Y. Teranish, M. Hayashi, S. H. Lin, and Y. Fujimura, J. Am. Chem. Soc. 134, 14279 (2012), 10.1021/ja3047848].

  20. Coherent π-electron dynamics of (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses: angular momentum and ring current.

    PubMed

    Mineo, H; Lin, S H; Fujimura, Y

    2013-02-21

    The results of a theoretical investigation of coherent π-electron dynamics for nonplanar (P)-2,2'-biphenol induced by ultrashort linearly polarized UV pulses are presented. Expressions for the time-dependent coherent angular momentum and ring current are derived by using the density matrix method. The time dependence of these coherences is determined by the off-diagonal density matrix element, which can be obtained by solving the coupled equations of motion of the electronic-state density matrix. Dephasing effects on coherent angular momentum and ring current are taken into account within the Markov approximation. The magnitudes of the electronic angular momentum and current are expressed as the sum of expectation values of the corresponding operators in the two phenol rings (L and R rings). Here, L (R) denotes the phenol ring in the left (right)-hand side of (P)-2,2'-biphenol. We define the bond current between the nearest neighbor carbon atoms Ci and Cj as an electric current through a half plane perpendicular to the Ci-Cj bond. The bond current can be expressed in terms of the inter-atomic bond current. The inter-atomic bond current (bond current) depends on the position of the half plane on the bond and has the maximum value at the center. The coherent ring current in each ring is defined by averaging over the bond currents. Since (P)-2,2'-biphenol is nonplanar, the resultant angular momentum is not one-dimensional. Simulations of the time-dependent coherent angular momentum and ring current of (P)-2,2'-biphenol excited by ultrashort linearly polarized UV pulses are carried out using the molecular parameters obtained by the time-dependent density functional theory (TD-DFT) method. Oscillatory behaviors in the time-dependent angular momentum (ring current), which can be called angular momentum (ring current) quantum beats, are classified by the symmetry of the coherent state, symmetric or antisymmetric. The bond current of the bridge bond linking the L and R rings is zero for the symmetric coherent state, while it is nonzero for the antisymmetric coherent state. The magnitudes of ring current and ring current-induced magnetic field are also evaluated, and their possibility as a control parameter in ultrafast switching devices is discussed. The present results give a detailed description of the theoretical treatment reported in our previous paper [H. Mineo, M. Yamaki, Y. Teranish, M. Hayashi, S. H. Lin, and Y. Fujimura, J. Am. Chem. Soc. 134, 14279 (2012)].

  1. Viscomagnetic effect: j-magnitude weighting for Ar-N2

    NASA Astrophysics Data System (ADS)

    Snider, R. F.

    1984-10-01

    A continuing question in the study of the viscomagnetic effect has been the dependence on j magnitude, of the angular momentum polarization. It has been generally accepted that neither the normalized nor the unrenormalized angular momentum quadrupole correctly interprets the experimental results. IOS calculations of the production and relaxation cross sections are performed keeping the full j-magnitude dependence. Predictions of the field dependence of the viscomagnetic effect are made and it is found that the j dependence of both the production cross sections and of the relaxation matrix influence the detailed field dependence of the viscomagnetic effect.

  2. Angular motion estimation using dynamic models in a gyro-free inertial measurement unit.

    PubMed

    Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar

    2012-01-01

    In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters.

  3. Angular Motion Estimation Using Dynamic Models in a Gyro-Free Inertial Measurement Unit

    PubMed Central

    Edwan, Ezzaldeen; Knedlik, Stefan; Loffeld, Otmar

    2012-01-01

    In this paper, we summarize the results of using dynamic models borrowed from tracking theory in describing the time evolution of the state vector to have an estimate of the angular motion in a gyro-free inertial measurement unit (GF-IMU). The GF-IMU is a special type inertial measurement unit (IMU) that uses only a set of accelerometers in inferring the angular motion. Using distributed accelerometers, we get an angular information vector (AIV) composed of angular acceleration and quadratic angular velocity terms. We use a Kalman filter approach to estimate the angular velocity vector since it is not expressed explicitly within the AIV. The bias parameters inherent in the accelerometers measurements' produce a biased AIV and hence the AIV bias parameters are estimated within an augmented state vector. Using dynamic models, the appended bias parameters of the AIV become observable and hence we can have unbiased angular motion estimate. Moreover, a good model is required to extract the maximum amount of information from the observation. Observability analysis is done to determine the conditions for having an observable state space model. For higher grades of accelerometers and under relatively higher sampling frequency, the error of accelerometer measurements is dominated by the noise error. Consequently, simulations are conducted on two models, one has bias parameters appended in the state space model and the other is a reduced model without bias parameters. PMID:22778586

  4. Characterization and Application of a Grazing Angle Objective for Quantitative Infrared Reflection Microspectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.

    1995-01-01

    A grazing angle objective on an infrared microspectrometer is studied for quantitative spectroscopy by considering the angular dependence of the incident intensity within the objective's angular aperture. The assumption that there is no angular dependence is tested by comparing the experimental reflectance of Si and KBr surfaces with the reflectance calculated by integrating the Fresnel reflection coefficient over the angular aperture under this assumption. Good agreement was found, indicating that the specular reflectance of surfaces can straight-forwardly be quantitatively integrated over the angular aperture without considering non-uniform incident intensity. This quantitative approach is applied to the thickness determination of dipcoated Krytox on gold. The infrared optical constants of both materials are known, allowing the integration to be carried out. The thickness obtained is in fair agreement with the value determined by ellipsometry in the visible. Therefore, this paper illustrates a method for more quantitative use of a grazing angle objective for infrared reflectance microspectroscopy.

  5. Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Jong Ho, E-mail: jhjeon07@ibs.re.kr; Nakajima, Kazuhisa, E-mail: naka115@dia-net.ne.jp; Rhee, Yong Joo

    Measurement of angularly dependent spectra of betatron gamma-rays radiated by GeV electron beams from laser wakefield accelerators (LWFAs) are presented. The angle-resolved spectrum of betatron radiation was deconvolved from the position dependent data measured for a single laser shot with a broadband gamma-ray spectrometer comprising four-quadrant sectored range filters and an unfolding algorithm, based on the Monte Carlo code GEANT4. The unfolded gamma-ray spectra in the photon energy range of 0.1–10 MeV revealed an approximately isotropic angular dependence of the peak photon energy and photon energy-integrated fluence. As expected by the analysis of betatron radiation from LWFAs, the results indicate thatmore » unpolarized gamma-rays are emitted by electrons undergoing betatron motion in isotropically distributed orbit planes.« less

  6. Attitude output feedback control for rigid spacecraft with finite-time convergence.

    PubMed

    Hu, Qinglei; Niu, Guanglin

    2017-09-01

    The main problem addressed is the quaternion-based attitude stabilization control of rigid spacecraft without angular velocity measurements in the presence of external disturbances and reaction wheel friction as well. As a stepping stone, an angular velocity observer is proposed for the attitude control of a rigid body in the absence of angular velocity measurements. The observer design ensures finite-time convergence of angular velocity state estimation errors irrespective of the control torque or the initial attitude state of the spacecraft. Then, a novel finite-time control law is employed as the controller in which the estimate of the angular velocity is used directly. It is then shown that the observer and the controlled system form a cascaded structure, which allows the application of the finite-time stability theory of cascaded systems to prove the finite-time stability of the closed-loop system. A rigorous analysis of the proposed formulation is provided and numerical simulation studies are presented to help illustrate the effectiveness of the angular-velocity observer for rigid spacecraft attitude control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. On the study of angular velocity in mass asymmetry nuclei

    NASA Astrophysics Data System (ADS)

    Kaur, Kamaldeep; Kumar, Suneel

    2018-05-01

    Using isospin-dependent quantum molecular dynamics (IQMD) model, the role of angular velocity (Wy) has been explored by changing the mass asymmetric content of the colliding nuclei at the incident energy of 50 MeV/nucleon for centrality 0.25

  8. The GALAH survey: stellar streams and how stellar velocity distributions vary with Galactic longitude, hemisphere, and metallicity

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; De Silva, Gayandhi; Sharma, Sanjib; Hayden, Michael; Freeman, Ken; Bland-Hawthorn, Joss; Žerjal, Maruša; Asplund, Martin; Buder, Sven; D'Orazi, Valentina; Duong, Ly; Kos, Janez; Lin, Jane; Lind, Karin; Martell, Sarah; Schlesinger, Katharine; Simpson, Jeffrey D.; Zucker, Daniel B.; Zwitter, Tomaz; Anguiano, Borja; Carollo, Daniela; Casagrande, Luca; Cotar, Klemen; Cottrell, Peter L.; Ireland, Michael; Kafle, Prajwal R.; Horner, Jonathan; Lewis, Geraint F.; Nataf, David M.; Ting, Yuan-Sen; Watson, Fred; Wittenmyer, Rob; Wyse, Rosemary

    2018-07-01

    Using GALAH (GALactic Archaeology with HERMES) survey data of nearby stars, we look at how structure in the planar (u, v) velocity distribution depends on metallicity and on viewing direction within the Galaxy. In nearby stars with distance d ≲ 1 kpc, the Hercules stream is most strongly seen in higher metallicity stars [Fe/H] > 0.2. The Hercules stream peak v value depends on viewed galactic longitude, which we interpret as due to the gap between the stellar stream and more circular orbits being associated with a specific angular momentum value of about 1640 km s-1 kpc. The association of the gap with a particular angular momentum value supports a bar resonant model for the Hercules stream. Moving groups previously identified in Hipparcos(HIgh Precision Parallax COllecting Satellite) observations are easiest to see in stars nearer than 250 pc, and their visibility and peak velocities in the velocity distributions depends on both viewing direction (galactic longitude and hemisphere) and metallicity. We infer that there is fine structure in local velocity distributions that varies over distances of a few hundred pc in the Galaxy.

  9. Improving the realism of white matter numerical phantoms: a step towards a better understanding of the influence of structural disorders in diffusion MRI

    NASA Astrophysics Data System (ADS)

    Ginsburger, Kévin; Poupon, Fabrice; Beaujoin, Justine; Estournet, Delphine; Matuschke, Felix; Mangin, Jean-François; Axer, Markus; Poupon, Cyril

    2018-02-01

    White matter is composed of irregularly packed axons leading to a structural disorder in the extra-axonal space. Diffusion MRI experiments using oscillating gradient spin echo sequences have shown that the diffusivity transverse to axons in this extra-axonal space is dependent on the frequency of the employed sequence. In this study, we observe the same frequency-dependence using 3D simulations of the diffusion process in disordered media. We design a novel white matter numerical phantom generation algorithm which constructs biomimicking geometric configurations with few design parameters, and enables to control the level of disorder of the generated phantoms. The influence of various geometrical parameters present in white matter, such as global angular dispersion, tortuosity, presence of Ranvier nodes, beading, on the extra-cellular perpendicular diffusivity frequency dependence was investigated by simulating the diffusion process in numerical phantoms of increasing complexity and fitting the resulting simulated diffusion MR signal attenuation with an adequate analytical model designed for trapezoidal OGSE sequences. This work suggests that angular dispersion and especially beading have non-negligible effects on this extracellular diffusion metrics that may be measured using standard OGSE DW-MRI clinical protocols.

  10. Angular dependence of DRAM upset susceptibility

    NASA Technical Reports Server (NTRS)

    Guertin, S. M.; Swift, G. M.; Edmonds, L. D.

    2000-01-01

    Heavy ion irradiations of two types of commercial DRAMs reveal unexpected angular responses. One device's cross section varied by two orders of magnitude with azimuthal angle. Accurate prediction of space rates requires accommodating this effect.

  11. Nonreciprocal Transverse Photonic Spin and Magnetization-Induced Electromagnetic Spin-Orbit Coupling

    PubMed Central

    Levy, Miguel; Karki, Dolendra

    2017-01-01

    We present a formulation of electromagnetic spin-orbit coupling in magneto-optic media, and propose an alternative source of spin-orbit coupling to non-paraxial optics vortices. Our treatment puts forth a formulation of nonreciprocal transverse-spin angular-momentum-density shifts for evanescent waves in magneto-optic waveguide media. It shows that magnetization-induced electromagnetic spin-orbit coupling is possible, and that it leads to unequal spin to orbital angular momentum conversion in magneto-optic media evanescent waves in opposite propagation-directions. Generation of free-space helicoidal beams based on this conversion is shown to be spin-helicity- and magnetization-dependent. We show that transverse-spin to orbital angular momentum coupling into magneto-optic waveguide media engenders spin-helicity-dependent unidirectional propagation. This unidirectional effect produces different orbital angular momenta in opposite directions upon excitation-spin-helicity reversals. PMID:28059120

  12. Prospect of Continuous VLBI Measurement of Earth Rotation in Monitoring Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Ma, Chopo; Clark, Thomas

    1998-01-01

    Large-scale mass transports in the geophysical fluids of the Earth system excite Earth's rotational variations in both length-of-day and polar motion. The excitation process is via the conservation of angular momentum. Therefore Earth rotation observations contain information about the integrated angular momentum (consisting of both the mass term and the motion term) of the geophysical fluids, which include atmosphere, hydrosphere, mantle, and the outer and inner cores. Such global information is often important and otherwise unattainable depending on the nature of the mass transport, its magnitude and time scale. The last few years have seen great advances in VLBI measurement of Earth rotation in precision and temporal resolution. These advances have opened new. areas in geophysical fluid studies, such as oceanic tidal angular momentum, atmospheric tides, Earth librations, and rapid atmospheric angular momentum fluctuations. Precision of 10 microseconds in UTI and 200 microarcseconds in polar motion can now be achieved on hourly basis. Building upon this heritage, the multi-network geodetic VLBI project, Continuous Observation of the Rotation of the Earth (CORE), promises to further these studies and to make possible studies on elusive but tell-tale geophysical processes such as oscillatory modes in the core and in the atmosphere. Currently the early phase of CORE is underway. Within a few years into the new mellinnium, the upcoming space gravity missions (such as GRACE) will measure the temporal variations in Earth's gravitational field, thus providing complementary information to that from Earth rotation study for a better understanding of global geophysical fluid processes.

  13. Agonist and antagonist muscle activation in elite athletes: influence of age.

    PubMed

    Quinzi, Federico; Camomilla, Valentina; Felici, Francesco; Di Mario, Alberto; Sbriccoli, Paola

    2015-01-01

    Age-related neuromuscular control adaptations have been investigated mainly in untrained populations, where higher antagonist activation in adults was observed with respect to children. In elite athletes age-related differences in neuromuscular control have scarcely been investigated. Therefore, this study aims at investigating differences in co-activation about the knee joint in two groups of karate athletes belonging to the Junior (JK) and Senior (SK) age categories, performing the roundhouse kick (RK). Six SK and six JK performed the RK impacting on a punching bag. Each participant performed three attempts during which kicking limb kinematics and sEMG from the vastus lateralis (VL) and from the biceps femoris (BF) were recorded. Co-activation index during knee flexion and extension (CIF; CIE) and agonist and antagonist activation areas of VL and BF (I AGO-VL; I AGO-BF; I ANT-VL; I ANT-BF) were computed. Hip and knee range of motion, peak angular velocity and minima and maxima of lower limb angular momentum were computed. During knee extension, the SK demonstrated higher CIE, higher IANT-BF and higher total angular momentum with respect to the JK. Significant relationships were observed between I ANT-BF and total angular momentum maxima, and between I ANT-BF and age. IANT-BF is partially related to the age of the group and to joint protection upon impact. Moreover, given the very brief duration of the task, a feed-forward mechanism modulating antagonist activation partly based on the stress imposed on the knee joint could be hypothesized. This mechanism potentially involves skill dependent re-modelling of the peripheral and central nervous system.

  14. Magnetic-field-induced rotation of light with orbital angular momentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Shuai; Ding, Dong-Sheng, E-mail: dds@ustc.edu.cn; Zhou, Zhi-Yuan

    Light carrying orbital angular momentum (OAM) has attractive applications in the fields of precise optical measurements and high capacity optical communications. We study the rotation of a light beam propagating in warm {sup 87}Rb atomic vapor using a method based on magnetic-field-induced circular birefringence. The dependence of the rotation angle on the magnetic field makes it appropriate for weak magnetic field measurements. We quote a detailed theoretical description that agrees well with the experimental observations. The experiment shown here provides a method to measure the magnetic field intensity precisely and expands the application of OAM-carrying light. This technique has advantagemore » in measurement of magnetic field weaker than 0.5 G, and the precision we achieved is 0.8 mG.« less

  15. A spectral filter for ESMR's sidelobe errors

    NASA Technical Reports Server (NTRS)

    Chesters, D.

    1979-01-01

    Fourier analysis was used to remove periodic errors from a series of NIMBUS-5 electronically scanned microwave radiometer brightness temperatures. The observations were all taken from the midnight orbits over fixed sites in the Australian grasslands. The angular dependence of the data indicates calibration errors consisted of broad sidelobes and some miscalibration as a function of beam position. Even though an angular recalibration curve cannot be derived from the available data, the systematic errors can be removed with a spectral filter. The 7 day cycle in the drift of the orbit of NIMBUS-5, coupled to the look-angle biases, produces an error pattern with peaks in its power spectrum at the weekly harmonics. About plus or minus 4 K of error is removed by simply blocking the variations near two- and three-cycles-per-week.

  16. Droplet distributions from melt displacement and ejection mechanism during Al ns-laser ablation and deposition experiments: Influence of laser spot position

    NASA Astrophysics Data System (ADS)

    Cultrera, L.; Lorusso, A.; Maiolo, B.; Cangueiro, L.; Vilar, R.; Perrone, A.

    2014-03-01

    Experimental observations of the angular distribution of droplets during laser ablation and deposition of Al thin films are presented and discussed. The experimental results, obtained by simply moving the laser spot position with respect to the rotation axis of the target, allow clarification of the unexpected symmetric double peaked angular droplet distribution on the films. These results provide direct evidence that a laser fluence threshold exists, beyond which droplets are generated from a melt displacement and ejection mechanism rather than from a phase explosion. The main directions of particulate ejection are related to the particular geometry of the laser generated tracks, whose profiles depend on the relative position of the incident beam with respect to the rotation axis of the target.

  17. The role of spatial memory and frames of reference in the precision of angular path integration.

    PubMed

    Arthur, Joeanna C; Philbeck, John W; Kleene, Nicholas J; Chichka, David

    2012-09-01

    Angular path integration refers to the ability to maintain an estimate of self-location after a rotational displacement by integrating internally-generated (idiothetic) self-motion signals over time. Previous work has found that non-sensory inputs, namely spatial memory, can play a powerful role in angular path integration (Arthur et al., 2007, 2009). Here we investigated the conditions under which spatial memory facilitates angular path integration. We hypothesized that the benefit of spatial memory is particularly likely in spatial updating tasks in which one's self-location estimate is referenced to external space. To test this idea, we administered passive, non-visual body rotations (ranging 40°-140°) about the yaw axis and asked participants to use verbal reports or open-loop manual pointing to indicate the magnitude of the rotation. Prior to some trials, previews of the surrounding environment were given. We found that when participants adopted an egocentric frame of reference, the previously-observed benefit of previews on within-subject response precision was not manifested, regardless of whether remembered spatial frameworks were derived from vision or spatial language. We conclude that the powerful effect of spatial memory is dependent on one's frame of reference during self-motion updating. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Constraints on radial migration in spiral galaxies - II. Angular momentum distribution and preferential migration

    NASA Astrophysics Data System (ADS)

    Daniel, Kathryne J.; Wyse, Rosemary F. G.

    2018-05-01

    The orbital angular momentum of individual stars in galactic discs can be permanently changed through torques from transient spiral patterns. Interactions at the corotation resonance dominate these changes and have the further property of conserving orbital circularity. We derived in an earlier paper an analytic criterion that an unperturbed stellar orbit must satisfy in order for such an interaction to occur, i.e. for it to be in a trapped orbit around corotation. We here use this criterion in an investigation of how the efficiency of induced radial migration for a population of disc stars varies with the angular momentum distribution of that population. We frame our results in terms of the velocity dispersion of the population, this being an easier observable than is the angular momentum distribution. Specifically, we investigate how the fraction of stars in trapped orbits at corotation varies with the velocity dispersion of the population, for a system with an assumed flat rotation curve. Our analytic results agree with the finding from simulations that radial migration is less effective in populations with `hotter' kinematics. We further quantify the dependence of this trapped fraction on the strength of the spiral pattern, finding a higher trapped fraction for higher amplitude perturbations.

  19. Intense Vibronic Modulation of the Chiral Photoelectron Angular Distribution Generated by Photoionization of Limonene Enantiomers with Circularly Polarized Synchrotron Radiation.

    PubMed

    Rafiee Fanood, Mohammad M; Ganjitabar, Hassan; Garcia, Gustavo A; Nahon, Laurent; Turchini, Stefano; Powis, Ivan

    2018-04-17

    Photoionization of the chiral monoterpene limonene has been investigated using polarized synchrotron radiation between the adiabatic ionization threshold, 8.505 and 23.5 eV. A rich vibrational structure is seen in the threshold photoelectron spectrum and is interpreted using a variety of computational methods. The corresponding photoelectron circular dichroism-measured in the photoelectron angular distribution as a forward-backward asymmetry with respect to the photon direction-was found to be strongly dependent on the vibronic structure appearing in the photoelectron spectra, with the observed asymmetry even switching direction in between the major vibrational peaks. This effect can be ultimately attributed to the sensitivity of this dichroism to small phase shifts between adjacent partial waves of the outgoing photoelectron. These observations have implications for potential applications of this chiroptical technique, where the enantioselective analysis of monoterpene components is of particular interest. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Litmus Test for Cosmic Hemispherical Asymmetry in the Cosmic Microwave Background B -Mode Polarization

    NASA Astrophysics Data System (ADS)

    Mukherjee, Suvodip; Souradeep, Tarun

    2016-06-01

    Recent measurements of the temperature field of the cosmic microwave background (CMB) provide tantalizing evidence for violation of statistical isotropy (SI) that constitutes a fundamental tenet of contemporary cosmology. CMB space based missions, WMAP, and Planck have observed a 7% departure in the SI temperature field at large angular scales. However, due to higher cosmic variance at low multipoles, the significance of this measurement is not expected to improve from any future CMB temperature measurements. We demonstrate that weak lensing of the CMB due to scalar perturbations produces a corresponding SI violation in B modes of CMB polarization at smaller angular scales. The measurability of this phenomenon depends upon the scales (l range) over which power asymmetry is present. Power asymmetry, which is restricted only to l <64 in the temperature field, cannot lead to any significant observable effect from this new window. However, this effect can put an independent bound on the spatial range of scales of hemispherical asymmetry present in the scalar sector.

  1. The MAP Spacecraft Angular State Estimation After Sensor Failure

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    2003-01-01

    This work describes two algorithms for computing the angular rate and attitude in case of a gyro and a Star Tracker failure in the Microwave Anisotropy Probe (MAP) satellite, which was placed in the L2 parking point from where it collects data to determine the origin of the universe. The nature of the problem is described, two algorithms are suggested, an observability study is carried out and real MAP data are used to determine the merit of the algorithms. It is shown that one of the algorithms yields a good estimate of the rates but not of the attitude whereas the other algorithm yields a good estimate of the rate as well as two of the three attitude angles. The estimation of the third angle depends on the initial state estimate. There is a contradiction between this result and the outcome of the observability analysis. An explanation of this contradiction is given in the paper. Although this work treats a particular spacecraft, the conclusions have a far reaching consequence.

  2. Litmus Test for Cosmic Hemispherical Asymmetry in the Cosmic Microwave Background B-Mode Polarization.

    PubMed

    Mukherjee, Suvodip; Souradeep, Tarun

    2016-06-03

    Recent measurements of the temperature field of the cosmic microwave background (CMB) provide tantalizing evidence for violation of statistical isotropy (SI) that constitutes a fundamental tenet of contemporary cosmology. CMB space based missions, WMAP, and Planck have observed a 7% departure in the SI temperature field at large angular scales. However, due to higher cosmic variance at low multipoles, the significance of this measurement is not expected to improve from any future CMB temperature measurements. We demonstrate that weak lensing of the CMB due to scalar perturbations produces a corresponding SI violation in B modes of CMB polarization at smaller angular scales. The measurability of this phenomenon depends upon the scales (l range) over which power asymmetry is present. Power asymmetry, which is restricted only to l<64 in the temperature field, cannot lead to any significant observable effect from this new window. However, this effect can put an independent bound on the spatial range of scales of hemispherical asymmetry present in the scalar sector.

  3. Index-of-refraction-dependent subcellular light scattering observed with organelle-specific dyes.

    PubMed

    Wilson, Jeremy D; Cottrell, William J; Foster, Thomas H

    2007-01-01

    Angularly resolved light scattering and wavelength-resolved darkfield scattering spectroscopy measurements were performed on intact, control EMT6 cells and cells stained with high-extinction lysosomal- or mitochondrial-localizing dyes. In the presence of the lysosomal-localizing dye NPe6, we observe changes in the details of light scattering from stained and unstained cells, which have both wavelength- and angular-dependent features. Analysis of measurements performed at several wavelengths reveals a reduced scattering cross section near the absorption maximum of the lysosomal-localizing dye. When identical measurements are made with cells loaded with a similar mitochondrial-localizing dye, HPPH, we find no evidence that staining mitochondria had any effect on the light scattering. Changes in the scattering properties of candidate populations of organelles induced by the addition of an absorber are modeled with Mie theory, and we find that any absorber-induced scattering response is very sensitive to the inherent refractive index of the organelle population. Our measurements and modeling are consistent with EMT6-cell-mitochondria having refractive indices close to those reported in the literature for organelles, approximately 1.4. The reduction in scattering cross section induced by NPe6 constrains the refractive index of lysosomes to be significantly higher. We estimate the refractive index of lysosomes in EMT6 cells to be approximately 1.6.

  4. Frequency dependent steering with backward leaky waves via photonic crystal interface layer.

    PubMed

    Colak, Evrim; Caglayan, Humeyra; Cakmak, Atilla O; Villa, Alessandro D; Capolino, Filippo; Ozbay, Ekmel

    2009-06-08

    A Photonic Crystal (PC) with a surface defect layer (made of dimers) is studied in the microwave regime. The dispersion diagram is obtained with the Plane Wave Expansion Method. The dispersion diagram reveals that the dimer-layer supports a surface mode with negative slope. Two facts are noted: First, a guided (bounded) wave is present, propagating along the surface of the dimer-layer. Second, above the light line, the fast traveling mode couple to the propagating spectra and as a result a directive (narrow beam) radiation with backward characteristics is observed and measured. In this leaky mode regime, symmetrical radiation patterns with respect to the normal to the PC surface are attained. Beam steering is observed and measured in a 70 degrees angular range when frequency ranges in the 11.88-13.69 GHz interval. Thus, a PC based surface wave structure that acts as a frequency dependent leaky wave antenna is presented. Angular radiation pattern measurements are in agreement with those obtained via numerical simulations that employ the Finite Difference Time Domain Method (FDTD). Finally, the backward radiation characteristics that in turn suggest the existence of a backward leaky mode in the dimer-layer are experimentally verified using a halved dimer-layer structure.

  5. Reynolds number scaling of the influence of boundary layers on the global behavior of laboratory quasi-Keplerian flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edlund, E. M.; Ji, H.

    2015-10-06

    Here, we present fluid velocity measurements in a modified Taylor-Couette device operated in the quasi-Keplerian regime, where it is observed that nearly ideal flows exhibit self-similarity under scaling of the Reynolds number. In contrast, nonideal flows show progressive departure from ideal Couette as the Reynolds number is increased. We present a model that describes the observed departures from ideal Couette rotation as a function of the fluxes of angular momentum across the boundaries, capturing the dependence on Reynolds number and boundary conditions.

  6. Reynolds number scaling of the influence of boundary layers on the global behavior of laboratory quasi-Keplerian flows.

    PubMed

    Edlund, E M; Ji, H

    2015-10-01

    We present fluid velocity measurements in a modified Taylor-Couette device operated in the quasi-Keplerian regime, where it is observed that nearly ideal flows exhibit self-similarity under scaling of the Reynolds number. In contrast, nonideal flows show progressive departure from ideal Couette as the Reynolds number is increased. We present a model that describes the observed departures from ideal Couette rotation as a function of the fluxes of angular momentum across the boundaries, capturing the dependence on Reynolds number and boundary conditions.

  7. ANISOTROPY IN COSMIC-RAY ARRIVAL DIRECTIONS IN THE SOUTHERN HEMISPHERE BASED ON SIX YEARS OF DATA FROM THE ICECUBE DETECTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.

    The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10{sup 3} up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole ( ℓ ≤ 4) moments. However, highermore » multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large- and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.« less

  8. Anisotropy in Cosmic-Ray Arrival Directions in the Southern Hemisphere Based on Six Years of Data from the IceCube Detector

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-08-01

    The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10-3 up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments. However, higher multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large- and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.

  9. Magnetotransport properties of MoP 2

    DOE PAGES

    Wang, Aifeng; Graf, D.; Stein, Aaron; ...

    2017-11-02

    We report magnetotransport and de Haas–van Alphen (dHvA) effect studies on MoP 2 single crystals, predicted to be a type- II Weyl semimetal with four pairs of robust Weyl points located below the Fermi level and long Fermi arcs. The temperature dependence of resistivity shows a peak before saturation, which does not move with magnetic field. Large nonsaturating magnetoresistance (MR) was observed, and the field dependence of MR exhibits a crossover from semiclassical weak-field B 2 dependence to the high-field linear-field dependence, indicating the presence of Dirac linear energy dispersion. In addition, a systematic violation of Kohler's rule was observed,more » consistent with multiband electronic transport. Strong spin-orbit coupling splitting has an effect on dHvA measurements whereas the angular-dependent dHvA orbit frequencies agree well with the calculated Fermi surface. The cyclotron effective mass ~1.6m e indicates the bands might be trivial, possibly since the Weyl points are located below the Fermi level.« less

  10. Radiation Channels Close to a Plasmonic Nanowire Visualized by Back Focal Plane Imaging

    PubMed Central

    Hartmann, Nicolai; Piatkowski, Dawid; Ciesielski, Richard; Mackowski, Sebastian; Hartschuh, Achim

    2014-01-01

    We investigated the angular radiation patterns, a key characteristic of an emitting system, from individual silver nanowires decorated with rare earth ion-doped nanocrystals. Back focal plane radiation patterns of the nanocrystal photoluminescence after local two-photon excitation can be described by two emission channels: Excitation of propagating surface plasmons in the nanowire followed by leakage radiation and direct dipolar emission observed also in the absence of the nanowire. Theoretical modeling reproduces the observed radiation patterns which strongly depend on the position of excitation along the nanowire. Our analysis allows to estimate the branching ratio into both emission channels and to determine the diameter dependent surface plasmon quasi-momentum, important parameters of emitter-plasmon structures. PMID:24131299

  11. Ion irradiation induced effects and magnetization reversal mechanism in (Ni80Fe20)1-xCox nanowires and nanotubes

    NASA Astrophysics Data System (ADS)

    Ahmad, Naeem; Iqbal, Javed; Chen, J. Y.; Hussain, Asim; Shi, D. W.; Han, X. F.

    2015-03-01

    The effect of Co on the ferromagnetic characteristics of the Ni80Fe20 nanocylinders having zero magnetostriction and soft magnetic nature is an interesting field of research. The (Ni80Fe20)1-xCox nanocylinders have been prepared by electrodeposition into commercially available anodized aluminum oxide (AAO) nanoporous templates. The analysis of magnetization reversal from the angular dependence of coercivity has been studied in detail. This angular dependence of coercivity has shown a transition from curling to nucleation mode as a function of field angle for all (Ni80Fe20)1-xCox nanocylinders depending upon the critical angle. The shape anisotropy, dipole-dipole interactions, surface effects and magnetocrystalline anisotropy have been found to play an effective role for the spontaneous magnetization in nanowires and nanotubes. It has been interestingly observed that the magnetostatic interactions or dipole-dipole interactions are dominant in nanocylinders regardless of its geometry. Furthermore, the prepared samples have been irradiated with He2+ ions (energy E=2 MeV, fluence=1014 ions/cm2 and ion current=16 nA) at room temperature using a 5-UDH-2pelletron tandem accelerator. The irradiations have created defects and these defects have induced changes in magnetization as a result an increase in coercivity as function of the ion fluences is observed. Such kind of behavior in coercivity enhancement and magnetization reduction can also be attributed to the stress relaxation and percolation in nonuniform states of ferromagnetic alloys, respectively.

  12. Effect of gravity orientation on the thermal performance of Stirling-type pulse tube cryocoolers

    NASA Astrophysics Data System (ADS)

    Ross, Ronald G.; Johnson, Dean L.

    2004-06-01

    The effect of angular orientation on the off-state conduction of pulse tube cryocoolers has been previously explored, as has the effect of orientation on the thermal performance of low-frequency (˜2 Hz) GM-style pulse tube refrigerators. The significant effects that have been found are well explained by the presence of free convection that builds up in the hollow pulse tube when the hot end of the pulse tube is not higher than the cold end. This paper extends the investigation of angular orientation effects to the refrigeration performance of high frequency (˜40 Hz) Stirling-type pulse tube cryocoolers typical of those used in long-life space applications. Strong orientation effects on the performance of such cryocoolers have recently been observed during system-level testing of both linear and U-tube type pulse tubes. To quantify the angular dependency effects, data have been gathered on both U-tube and linear type pulse tubes of two different manufacturers as a function of orientation angle, cold-tip temperature, and compressor stroke.

  13. Creation and Validation of Sintered PTFE BRDF Targets & Standards

    PubMed Central

    Durell, Christopher; Scharpf, Dan; McKee, Greg; L’Heureux, Michelle; Georgiev, Georgi; Obein, Gael; Cooksey, Catherine

    2016-01-01

    Sintered polytetrafluoroethylene (PTFE) is an extremely stable, near-perfect Lambertian reflecting diffuser and calibration standard material that has been used by national labs, space, aerospace and commercial sectors for over two decades. New uncertainty targets of 2 % on-orbit absolute validation in the Earth Observing Systems community have challenged the industry to improve is characterization and knowledge of almost every aspect of radiometric performance (space and ground). Assuming “near perfect” reflectance for angular dependent measurements is no longer going to suffice for many program needs. The total hemispherical spectral reflectance provides a good mark of general performance; but, without the angular characterization of bidirectional reflectance distribution function (BRDF) measurements, critical data is missing from many applications and uncertainty budgets. Therefore, traceable BRDF measurement capability is needed to characterize sintered PTFE’s angular response and provide a full uncertainty profile to users. This paper presents preliminary comparison measurements of the BRDF of sintered PTFE from several laboratories to better quantify the BRDF of sintered PTFE, assess the BRDF measurement comparability between laboratories, and improve estimates of measurement uncertainties under laboratory conditions. PMID:26900206

  14. Creation and Validation of Sintered PTFE BRDF Targets & Standards.

    PubMed

    Durell, Christopher; Scharpf, Dan; McKee, Greg; L'Heureux, Michelle; Georgiev, Georgi; Obein, Gael; Cooksey, Catherine

    2015-09-21

    Sintered polytetrafluoroethylene (PTFE) is an extremely stable, near-perfect Lambertian reflecting diffuser and calibration standard material that has been used by national labs, space, aerospace and commercial sectors for over two decades. New uncertainty targets of 2 % on-orbit absolute validation in the Earth Observing Systems community have challenged the industry to improve is characterization and knowledge of almost every aspect of radiometric performance (space and ground). Assuming "near perfect" reflectance for angular dependent measurements is no longer going to suffice for many program needs. The total hemispherical spectral reflectance provides a good mark of general performance; but, without the angular characterization of bidirectional reflectance distribution function (BRDF) measurements, critical data is missing from many applications and uncertainty budgets. Therefore, traceable BRDF measurement capability is needed to characterize sintered PTFE's angular response and provide a full uncertainty profile to users. This paper presents preliminary comparison measurements of the BRDF of sintered PTFE from several laboratories to better quantify the BRDF of sintered PTFE, assess the BRDF measurement comparability between laboratories, and improve estimates of measurement uncertainties under laboratory conditions.

  15. Evidence for phonon skew scattering in the spin Hall effect of platinum

    NASA Astrophysics Data System (ADS)

    Karnad, G. V.; Gorini, C.; Lee, K.; Schulz, T.; Lo Conte, R.; Wells, A. W. J.; Han, D.-S.; Shahbazi, K.; Kim, J.-S.; Moore, T. A.; Swagten, H. J. M.; Eckern, U.; Raimondi, R.; Kläui, M.

    2018-03-01

    We measure and analyze the effective spin Hall angle of platinum in the low-residual resistivity regime by second-harmonic measurements of the spin-orbit torques for a multilayer of Pt |Co | AlOx . An angular-dependent study of the torques allows us to extract the effective spin Hall angle responsible for the damping-like torque in the system. We observe a strikingly nonmonotonic and reproducible temperature dependence of the torques. This behavior is compatible with recent theoretical predictions which include both intrinsic and extrinsic (impurities and phonons) contributions to the spin Hall effect at finite temperatures.

  16. Superconducting fluctuation effect in CaFe0.88Co0.12AsF

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Gao, B.; Ma, Y. H.; Li, X. J.; Mu, G.; Hu, T.

    2016-11-01

    Out-of-plane angular dependent torque measurements were performed on CaFe0.88Co0.12AsF single crystals. Superconducting fluctuations, featured by magnetic field enhanced and exponential temperature dependent diamagnetism, are observed above the superconducting transition temperature T c, which is similar to that of cuprate superconductors, but less pronounced. In addition, the ratio of T c versus superfluid density follows well the Uemura line of high-T c cuprates, which suggests the exotic nature of the superconductivity in CaFe0.88Co0.12AsF.

  17. Perturbation-theory analysis of ionization by a chirped few-cycle attosecond pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pronin, E. A.; Starace, Anthony F.; Peng Liangyou

    2011-07-15

    The angular distribution of electrons ionized from an atom by a chirped few-cycle attosecond pulse is analyzed using perturbation theory (PT), keeping terms in the transition amplitude up to second order in the pulse electric field. The dependence of the asymmetry in the ionized electron distributions on both the chirp and the carrier-envelope phase (CEP) of the pulse are explained using a simple analytical formula that approximates the exact PT result. This approximate formula (in which the chirp dependence is explicit) reproduces reasonably well the chirp-dependent oscillations of the electron angular distribution asymmetries found numerically by Peng et al. [Phys.more » Rev. A 80, 013407 (2009)]. It can also be used to determine the chirp rate of the attosecond pulse from the measured electron angular distribution asymmetry.« less

  18. Angular velocity discrimination

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  19. Angular trapping of anisometric nano-objects in a fluid.

    PubMed

    Celebrano, Michele; Rosman, Christina; Sönnichsen, Carsten; Krishnan, Madhavi

    2012-11-14

    We demonstrate the ability to trap, levitate, and orient single anisometric nanoscale objects with high angular precision in a fluid. An electrostatic fluidic trap confines a spherical object at a spatial location defined by the minimum of the electrostatic system free energy. For an anisometric object and a potential well lacking angular symmetry, the system free energy can further strongly depend on the object's orientation in the trap. Engineering the morphology of the trap thus enables precise spatial and angular confinement of a single levitating nano-object, and the process can be massively parallelized. Since the physics of the trap depends strongly on the surface charge of the object, the method is insensitive to the object's dielectric function. Furthermore, levitation of the assembled objects renders them amenable to individual manipulation using externally applied optical, electrical, or hydrodynamic fields, raising prospects for reconfigurable chip-based nano-object assemblies.

  20. Observation of circular dichroism in photoelectron angular distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appling, J.R.; White, M.G.; Orlando, T.M.

    1986-12-01

    The first observations of dichroic effects in photoelectron angular distributions are reported for photoionization of aligned molecular excited states with circularly polarized light. Photoelectron angular distributions resulting from the two-color, (2+1) REMPI of NO via the A /sup 2/summation/sup +/, v = 0, J = 3/2,5/2 excited states exhibit significant left--right asymmetry. The experimental CD angular distributions are found to be well described by the general theoretical framework recently developed by Dubs, Dixit, and McKoy and are in good qualitative agreement with their calculated REMPI--CD distributions.

  1. Observation of circular dichroism in photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Appling, Jeffrey R.; White, Michael G.; Orlando, Thomas M.; Anderson, Scott L.

    1986-12-01

    The first observations of dichroic effects in photoelectron angular distributions are reported for photoionization of aligned molecular excited states with circularly polarized light. Photoelectron angular distributions resulting from the two-color, (2+1) REMPI of NO via the A 2∑+, v=0, J=3/2,5/2 excited states exhibit significant left-right asymmetry. The experimental CD angular distributions are found to be well described by the general theoretical framework recently developed by Dubs, Dixit, and McKoy and are in good qualitative agreement with their calculated REMPI-CD distributions.

  2. Demonstrating the Direction of Angular Velocity in Circular Motion

    NASA Astrophysics Data System (ADS)

    Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan

    2015-09-01

    Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics classrooms, the direction of an angular velocity vector is taught by the right-hand rule, a mnemonic tool intended to aid memory. A setup constructed for instructional purposes may provide students with a more easily understood and concrete method to observe the direction of the angular velocity. This article attempts to demonstrate the angular velocity vector using the observable motion of a screw mounted to a remotely operated toy car.

  3. Orbital-angular-momentum transfer to optically levitated microparticles in vacuum

    NASA Astrophysics Data System (ADS)

    Mazilu, Michael; Arita, Yoshihiko; Vettenburg, Tom; Auñón, Juan M.; Wright, Ewan M.; Dholakia, Kishan

    2016-11-01

    We demonstrate the transfer of orbital angular momentum to an optically levitated microparticle in vacuum. The microparticle is placed within a Laguerre-Gaussian beam and orbits the annular beam profile with increasing angular velocity as the air drag coefficient is reduced. We explore the particle dynamics as a function of the topological charge of the levitating beam. Our results reveal that there is a fundamental limit to the orbital angular momentum that may be transferred to a trapped particle, dependent upon the beam parameters and inertial forces present.

  4. Optical elements with extended depth of focus and arbitrary distribution of intensity along the focal segment obtained by angular modulation of the optical power

    NASA Astrophysics Data System (ADS)

    Kakarenko, K.; Ducin, I.; Jaroszewicz, Z.; Kołodziejczyk, A.; Petelczyc, K.; Stompor, A.; Sypek, M.

    2015-04-01

    Light Sword Lens (LSL), i.e., an optical element with extended depth of focus (EDOF) characterized by angular modulation of the optical power in its conventional form is characterized by a linear relationship between the optical power and the angular coordinate of the corresponding angular lens sector. This dependence may be manipulated in function of the required design needs. In the present communicate this additional degree of freedom of design is used for elimination of the LSL shape discontinuity.

  5. Angular intensity and polarization dependence of diffuse transmission through random media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliyahu, D.; Rosenbluh, M.; Feund, I.

    1993-03-01

    A simple theoretical model involving only a single sample parameter, the depolarization ratio [rho] for linearly polarized normally incident and normally scattered light, is developed to describe the angular intensity and all other polarization-dependent properties of diffuse transmission through multiple-scattering media. Initial experimental results that tend to support the theory are presented. Results for diffuse reflection are also described. 63 refs., 15 figs.

  6. Angular dependence of multiangle dynamic light scattering for particle size distribution inversion using a self-adapting regularization algorithm

    NASA Astrophysics Data System (ADS)

    Li, Lei; Yu, Long; Yang, Kecheng; Li, Wei; Li, Kai; Xia, Min

    2018-04-01

    The multiangle dynamic light scattering (MDLS) technique can better estimate particle size distributions (PSDs) than single-angle dynamic light scattering. However, determining the inversion range, angular weighting coefficients, and scattering angle combination is difficult but fundamental to the reconstruction for both unimodal and multimodal distributions. In this paper, we propose a self-adapting regularization method called the wavelet iterative recursion nonnegative Tikhonov-Phillips-Twomey (WIRNNT-PT) algorithm. This algorithm combines a wavelet multiscale strategy with an appropriate inversion method and could self-adaptively optimize several noteworthy issues containing the choices of the weighting coefficients, the inversion range and the optimal inversion method from two regularization algorithms for estimating the PSD from MDLS measurements. In addition, the angular dependence of the MDLS for estimating the PSDs of polymeric latexes is thoroughly analyzed. The dependence of the results on the number and range of measurement angles was analyzed in depth to identify the optimal scattering angle combination. Numerical simulations and experimental results for unimodal and multimodal distributions are presented to demonstrate both the validity of the WIRNNT-PT algorithm and the angular dependence of MDLS and show that the proposed algorithm with a six-angle analysis in the 30-130° range can be satisfactorily applied to retrieve PSDs from MDLS measurements.

  7. Visual processing of rotary motion.

    PubMed

    Werkhoven, P; Koenderink, J J

    1991-01-01

    Local descriptions of velocity fields (e.g., rotation, divergence, and deformation) contain a wealth of information for form perception and ego motion. In spite of this, human psychophysical performance in estimating these entities has not yet been thoroughly examined. In this paper, we report on the visual discrimination of rotary motion. A sequence of image frames is used to elicit an apparent rotation of an annulus, composed of dots in the frontoparallel plane, around a fixation spot at the center of the annulus. Differential angular velocity thresholds are measured as a function of the angular velocity, the diameter of the annulus, the number of dots, the display time per frame, and the number of frames. The results show a U-shaped dependence of angular velocity discrimination on spatial scale, with minimal Weber fractions of 7%. Experiments with a scatter in the distance of the individual dots to the center of rotation demonstrate that angular velocity cannot be assessed directly; perceived angular velocity depends strongly on the distance of the dots relative to the center of rotation. We suggest that the estimation of rotary motion is mediated by local estimations of linear velocity.

  8. Magnetometer-only attitude and angular velocity filtering estimation for attitude changing spacecraft

    NASA Astrophysics Data System (ADS)

    Ma, Hongliang; Xu, Shijie

    2014-09-01

    This paper presents an improved real-time sequential filter (IRTSF) for magnetometer-only attitude and angular velocity estimation of spacecraft during its attitude changing (including fast and large angular attitude maneuver, rapidly spinning or uncontrolled tumble). In this new magnetometer-only attitude determination technique, both attitude dynamics equation and first time derivative of measured magnetic field vector are directly leaded into filtering equations based on the traditional single vector attitude determination method of gyroless and real-time sequential filter (RTSF) of magnetometer-only attitude estimation. The process noise model of IRTSF includes attitude kinematics and dynamics equations, and its measurement model consists of magnetic field vector and its first time derivative. The observability of IRTSF for small or large angular velocity changing spacecraft is evaluated by an improved Lie-Differentiation, and the degrees of observability of IRTSF for different initial estimation errors are analyzed by the condition number and a solved covariance matrix. Numerical simulation results indicate that: (1) the attitude and angular velocity of spacecraft can be estimated with sufficient accuracy using IRTSF from magnetometer-only data; (2) compared with that of RTSF, the estimation accuracies and observability degrees of attitude and angular velocity using IRTSF from magnetometer-only data are both improved; and (3) universality: the IRTSF of magnetometer-only attitude and angular velocity estimation is observable for any different initial state estimation error vector.

  9. Beyond Higgs couplings: Probing the Higgs with angular observables at future e$$^{+}$$e$$^{-}$$ colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, Nathaniel; Gu, Jiayin; Liu, Zhen

    Here, we study angular observables in themore » $$ {e}^{+}{e}^{-}\\to ZH\\to {\\ell}^{+}{\\ell}^{-}b\\overline{b} $$ channel at future circular e$$^{+}$$ e$$^{-}$$ colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy $$ \\sqrt{s}=240 $$ GeV and 5 (30) ab$$^{-1}$$ integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for he Higgs-strahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of both probing BSM corrections to the HZγ coupling and constraining the “blind spot” in indirect limits on supersymmetric scalar top partners.« less

  10. Beyond Higgs couplings: Probing the Higgs with angular observables at future e$$^{+}$$e$$^{-}$$ colliders

    DOE PAGES

    Craig, Nathaniel; Gu, Jiayin; Liu, Zhen; ...

    2016-03-09

    Here, we study angular observables in themore » $$ {e}^{+}{e}^{-}\\to ZH\\to {\\ell}^{+}{\\ell}^{-}b\\overline{b} $$ channel at future circular e$$^{+}$$ e$$^{-}$$ colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy $$ \\sqrt{s}=240 $$ GeV and 5 (30) ab$$^{-1}$$ integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for he Higgs-strahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of both probing BSM corrections to the HZγ coupling and constraining the “blind spot” in indirect limits on supersymmetric scalar top partners.« less

  11. Petrographic Analysis of Portland Cement Concrete Cores from Pease Air National Guard Base, New Hampshire

    DTIC Science & Technology

    2016-11-01

    by a white deposit. Carbon- ation staining was observed within the top 2 mm of the sample. The aggre- gates were angular to sub-round ( granitic to...was observed within the top 2 mm of the sample and down surface cracks. The aggre- gates were angular to sub-round ( granitic to gneissic in...Carbona- tion staining was observed within the top 2 mm of the sample. The aggregates were angular to sub-round ( granitic to gneissic in

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, J.

    Relative and absolute populations of 19 levels in beam-foil--excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n$sup -3$, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. Themore » overpopulation decreases with increasing principal quantum number.« less

  13. Nonperturbative contributions to a resummed leptonic angular distribution in inclusive neutral vector boson production

    NASA Astrophysics Data System (ADS)

    Guzzi, Marco; Nadolsky, Pavel M.; Wang, Bowen

    2014-07-01

    We present an analysis of nonperturbative contributions to the transverse momentum distribution of Z/γ* bosons produced at hadron colliders. The new data on the angular distribution ϕη* of Drell-Yan pairs measured at the Tevatron are shown to be in excellent agreement with a perturbative QCD prediction based on the Collins-Soper-Sterman (CSS) resummation formalism at next-to-next-to-leading logarithmic (NNLL) accuracy. Using these data, we determine the nonperturbative component of the CSS resummed cross section and estimate its dependence on arbitrary resummation scales and other factors. With the scale dependence included at the NNLL level, a significant nonperturbative component is needed to describe the angular data.

  14. Surface characterization in composite and titanium bonding: Carbon fiber surface treatments for improved adhesion to thermoplastic polymers

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Wightman, J. P.

    1987-01-01

    The effect of anodization in NaOH, H2SO4, and amine salts on the surface chemistry of carbon fibers was examined by X-ray photoelectron spectroscopy (XPS). The surfaces of carbon fibers after anodization in NaOH and H2SO4 were examined by scanning transmission electron microscopy (STEM), angular dependent XPS, UV absorption spectroscopy of the anodization bath, secondary ion mass spectrometry, and polar/dispersive surface energy analysis. Hercules AS-4, Dexter Hysol XAS, and Union Carbide T-300 fibers were examined by STEM, angular dependent XPS, and breaking strength measurement before and after commercial surface treatment. Oxygen and nitrogen were added to the fiber surfaces by anodization in amine salts. Analysis of the plasmon peak in the carbon 1s signal indicated that H2SO4 anodization affected the morphological structure of the carbon fiber surface. The work of adhesion of carbon fibers to thermoplastic resins was calculated using the geometric mean relationship. A correlation was observed between the dispersive component of the work of adhesion and the interfacial adhesion.

  15. Quantum oscillations and coherent interlayer transport in a new topological Dirac semimetal candidate YbMnSb2

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Yan; Xu, Sheng; Sun, Lin-Lin; Xia, Tian-Long

    2018-02-01

    Dirac semimetals, which host Dirac fermions and represent a new state of quantum matter, have been studied intensively in condensed-matter physics. The exploration of new materials with topological states is important in both physics and materials science. We report the synthesis and the transport properties of high-quality single crystals of YbMnSb2. YbMnSb2 is a new compound with metallic behavior. Quantum oscillations, including Shubnikov-de Haas (SdH) oscillation and de Haas-van Alphen-type oscillation, have been observed at low temperature and high magnetic field. Small effective masses and nontrivial Berry phase are extracted from the analyses of quantum oscillations, which provide the transport evidence for the possible existence of Dirac fermions in YbMnSb2. The measurements of angular-dependent interlayer magnetoresistance indicate that the interlayer transport is coherent. The Fermi surface of YbMnSb2 possesses a quasi-two-dimensional characteristic as determined by the angular dependence of SdH oscillation frequency. These findings suggest that YbMnSb2 is a new candidate of topological Dirac semimetals.

  16. Model atmospheres and radiation of magnetic neutron stars: Anisotropic thermal emission

    NASA Technical Reports Server (NTRS)

    Pavlov, G. G.; Shibanov, Yu. A.; Ventura, J.; Zavlin, V. E.

    1994-01-01

    We investigate the anisotropy of the thermal radiation emitted by a surface element of a neutron star atmosphere (e.g., by a polar cap of a radio pulsar). Angular dependences of the partial fluxes at various photon energies, and spectra at various angles are obtained for different values of the effective temperature T(sub eff) and magnetic field strength B, and for different directions of the magnetic field. It is shown that the local radiation of the magnetized neutron star atmospheres is highly anisotropic, with the maximum flux emitted in the magnetic field direction. At high B the angular dependences in the soft X-ray range have two maxima, a high narrow peak along B and a lower and broader maximum at intermediate angles. The radiation is strongly polarized, the modulation of the degree of polarization due to the rotation of the neurtron star may be much higher than that for the radiative flux. The results obtained are compared with recent ROSAT observations of the thermal-like radiation from the radio pulsars PSR 1929+10 and PSR J0437-4715.

  17. Electron beam cooling in intense focussed laser pulses

    NASA Astrophysics Data System (ADS)

    Yoffe, Samuel R.; Noble, Adam; Macleod, Alexander J.; Jaroszynski, Dino A.

    2017-05-01

    In the coming years, a new generation of high-power laser facilities (such as the Extreme Light Infrastructure) will become operational, for which it is important to understand how the interaction with intense laser pulses affects the bulk properties of relativistic electron bunches. At such high field intensities, we expect both radiation reaction and quantum effects to have a dominant role to play in determining the dynamics. The reduction in relative energy spread (beam cooling) at the expense of mean beam energy predicted by classical theories of radiation reaction has been shown to occur equally in the longitudinal and transverse directions, whereas this symmetry is broken when the theory is extended to approximate certain quantum effects. The reduction in longitudinal cooling suggests that the effects of radiation reaction could be better observed in measurements of the transverse distribution, which for real-world laser pulses motivates the investigation of the angular dependence of the interaction. Using a stochastic single-photon emission model with a (Gaussian beam) focussed pulse, we find strong angular dependence of the stochastic heating.

  18. Angular dependence of critical current density and magnetoresistance of sputtered high-T{sub c}-films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geerkens, A.; Frenck, H.J.; Ewert, S.

    1994-12-31

    The angular dependence of the critical current density and the magnetoresistance of high-T{sub c}-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle {Theta} between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the {Theta}-rotation plane is discussed.

  19. Angular dependence of critical current density and magnetoresistance of sputtered high-T(sub c)-films

    NASA Technical Reports Server (NTRS)

    Geerkens, A.; Meven, M.; Frenck, H.-J.; Ewert, S.

    1995-01-01

    The angular dependence of the critical current density and the magnetoresistance of high-T(sub c)-films in high and low magnetic fields and for different temperatures were measured to investigate the flux pinning and the superconducting properties. A comparison of the results for the different superconductors shows their increasing dependence on the angle Theta between the magnetic field and the c-axis of the film due to the anisotropy of the chosen superconductor. Furthermore the influence of the current direction to the Theta-rotation plane is discussed.

  20. Observational properties of SNe Ia progenitors close to the explosion

    NASA Astrophysics Data System (ADS)

    Tornambé, A.; Piersanti, L.; Raimondo, G.; Delgrande, R.

    2018-04-01

    We determine the expected signal in various observational bands of supernovae Ia progenitors just before the explosion by assuming the rotating double-degenerate scenario. Our results are valid also for all the evolutionary scenarios invoking rotation as the driving mechanism of the accretion process as well as the evolution up to the explosion. We find that the observational properties depend mainly on the mass of the exploding object, even if the angular momentum evolution after the end of the mass accretion phase and before the onset of C-burning plays a non-negligible role. Just before the explosion, the magnitude MV ranges between 9 and 11 mag, while the colour (F225W - F555W) is about -1.64 mag. The photometric properties remain constant for a few decades before the explosion. During the last few months, the luminosity decreases very rapidly. The corresponding decline in the optical bands varies from a few hundredths up to one magnitude, the exact value depending on both the white dwarf total mass and the braking efficiency at the end of the mass transfer. This feature is related to the exponentially increasing energy production, which drives the formation of a convective core rapidly extending over a large part of the exploding object. Also, a drop in the angular velocity occurs. We find that observations in the soft X band (0.5-2 keV) may be used to check if the evolution of the SNe Ia progenitors up to the explosion is driven by rotation and, hence, to discriminate among different progenitor scenarios.

  1. Variation in Angular Velocity and Angular Acceleration of a Particle in Rectilinear Motion

    ERIC Educational Resources Information Center

    Mashood, K. K.; Singh, V. A.

    2012-01-01

    We discuss the angular velocity ([image omitted]) and angular acceleration ([image omitted]) associated with a particle in rectilinear motion with constant acceleration. The discussion was motivated by an observation that students and even teachers have difficulty in ascribing rotational motion concepts to a particle when the trajectory is a…

  2. The clinical features of angular cheilitis occurring during orthodontic treatment: a multi-centre observational study.

    PubMed

    Cross, David; Eide, May L; Kotinas, Anastasios

    2010-06-01

    To report the prevalence and clinical features of angular cheilitis occurring in patients undergoing orthodontic treatment. Cross-sectional, observational study. Three centres were involved; Glasgow Dental Hospital and two specialist orthodontic practices, one in Scotland and one in Greece. Six hundred and sixty consecutive patients undergoing orthodontic treatment were examined over a 9 month period. The presence and absence of angular cheilitis was recorded. A six-point clinical scale was used to describe the clinical features of angular cheilitis when present. Chi-squared tests were used to investigate the association between the presence of angular cheilitis and oral hygiene level/appliance type. Eleven per cent of orthodontic patients in this Western European population, showed signs of angular cheilitis. No correlation was found between the presence of angular cheilitis and gender. Good oral hygiene was associated with a reduced prevalence (P<0.01). Angular cheilitis is a multifactorial condition that can occur in a small percentage of patients during orthodontic treatment. Good oral hygiene may be associated with a reduced risk. A new clinical grade of angular cheilitis is suggested that may help future research. Further studies are required to investigate the microbiological features associated with angular cheilitis occurring in orthodontic patients, as well as associations with medical conditions, such as asthma.

  3. Twisted molecular excitons as mediators for changing the angular momentum of light

    NASA Astrophysics Data System (ADS)

    Zang, Xiaoning; Lusk, Mark T.

    2017-07-01

    Molecules with CN or CN h symmetry can absorb quanta of optical angular momentum to generate twisted excitons with well-defined quasiangular momenta of their own. Angular momentum is conserved in such interactions at the level of a paraxial approximation for the light beam. A sequence of absorption events can thus be used to create a range of excitonic angular momenta. Subsequent decay can produce radiation with a single angular momentum equal to that accumulated. Such molecules can thus be viewed as mediators for changing the angular momentum of light. This sidesteps the need to exploit nonlinear light-matter interactions based on higher-order susceptibilities. A tight-binding paradigm is used to verify angular momentum conservation and demonstrate how it can be exploited to change the angular momentum of light. The approach is then extended to a time-dependent density functional theory setting where the key results are shown to hold in a many-body, multilevel setting.

  4. Tilt-effect of holograms and images displayed on a spatial light modulator.

    PubMed

    Harm, Walter; Roider, Clemens; Bernet, Stefan; Ritsch-Marte, Monika

    2015-11-16

    We show that a liquid crystal spatial light modulator (LCOS-SLM) can be used to display amplitude images, or phase holograms, which change in a pre-determined way when the display is tilted, i.e. observed under different angles. This is similar to the tilt-effect (also called "latent image effect") known from various security elements ("kinegrams") on credit cards or bank notes. The effect is achieved without any specialized optical components, simply by using the large phase shifting capability of a "thick" SLM, which extends over several multiples of 2π, in combination with the angular dependence of the phase shift. For hologram projection one can use the fact that the phase of a monochromatic wave is only defined modulo 2π. Thus one can design a phase pattern extending over several multiples of 2π, which transforms at different readout angles into different 2π-wrapped phase structures, due to the angular dependence of the modulo 2π operation. These different beams then project different holograms at the respective readout angles. In amplitude modulation mode (with inserted polarizer) the intensity of each SLM pixel oscillates over several periods when tuning its control voltage. Since the oscillation period depends on the readout angle, it is possible to find a certain control voltage which produces two (or more) selectable gray levels at a corresponding number of pre-determined readout angles. This is done with all SLM pixels individually, thus constructing different images for the selected angles. We experimentally demonstrate the reconstruction of multiple (Fourier- and Fresnel-) holograms, and of different amplitude images, by readout of static diffractive patterns in a variable angular range between 0° and 60°.

  5. Vibrationally resolved photoelectron angular distributions for H/sub 2/ in the range 17 eVless than or equal toh. nu. less than or equal to39 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parr, A.C.; Hardis, J.E.; Southworth, S.H.

    1988-01-15

    Vibrationally resolved photoelectron angular distributions have been measured for photoionization of H/sub 2/ over the range 17 eVless than or equal toh..nu..less than or equal to39 eV using independent instrumentation at two synchro- tron radiation facilities. The present data greatly extend and add vibrational resolution to earlier variable-wavelength measurements. The average magnitude of the asymmetry parameter continues to lie lower than the best independent-electron calculations. Broad structure is observed for the first time, possibly indicating the effects of channel interaction with dissociative, doubly excited states of H/sub 2/. Neither the average magnitude nor the gross wavelength-dependent structure vary strongly withmore » the final vibrational channel.« less

  6. Gravitational waves from plunges into Gargantua

    NASA Astrophysics Data System (ADS)

    Compère, Geoffrey; Fransen, Kwinten; Hertog, Thomas; Long, Jiang

    2018-05-01

    We analytically compute time domain gravitational waveforms produced in the final stages of extreme mass ratio inspirals of non-spinning compact objects into supermassive nearly extremal Kerr black holes. Conformal symmetry relates all corotating equatorial orbits in the geodesic approximation to circular orbits through complex conformal transformations. We use this to obtain the time domain Teukolsky perturbations for generic equatorial corotating plunges in closed form. The resulting gravitational waveforms consist of an intermediate polynomial ringdown phase in which the decay rate depends on the impact parameters, followed by an exponential quasi-normal mode decay. The waveform amplitude exhibits critical behavior when the orbital angular momentum tends to a minimal value determined by the innermost stable circular orbit. We show that either near-critical or large angular momentum leads to a significant extension of the LISA observable volume of gravitational wave sources of this kind.

  7. Quantum localisation on the circle

    NASA Astrophysics Data System (ADS)

    Fresneda, Rodrigo; Gazeau, Jean Pierre; Noguera, Diego

    2018-05-01

    Covariant integral quantisation using coherent states for semi-direct product groups is implemented for the motion of a particle on the circle. In this case, the phase space is the cylinder, which is viewed as a left coset of the Euclidean group E(2). Coherent states issued from fiducial vectors are labeled by points in the cylinder and depend also on extra parameters. We carry out the corresponding quantisations of the basic classical observables, particularly the angular momentum and the 2π-periodic discontinuous angle function. We compute their corresponding lower symbols. The quantum localisation on the circle is examined through the properties of the angle operator yielded by our procedure, its spectrum and lower symbol, its commutator with the quantum angular momentum, and the resulting Heisenberg inequality. Comparison with other approaches to the long-standing question of the quantum angle is discussed.

  8. A method of evaluating quantitative magnetospheric field models by an angular parameter alpha

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Poros, D. J.

    1979-01-01

    The paper introduces an angular parameter, termed alpha, which represents the angular difference between the observed, or model, field and the internal model field. The study discusses why this parameter is chosen and demonstrates its usefulness by applying it to both observations and models. In certain areas alpha is more sensitive than delta-B (the difference between the magnitude of the observed magnetic field and that of the earth's internal field calculated from a spherical harmonic expansion) in expressing magnetospheric field distortions. It is recommended to use both alpha and delta-B in comparing models with observations.

  9. Physical properties of single crystalline R Mg 2 Cu 9 ( R = Y , Ce - Nd , Gd - Dy , Yb ) and the search for in-plane magnetic anisotropy in hexagonal systems

    DOE PAGES

    Kong, Tai; Meier, William R.; Lin, Qisheng; ...

    2016-10-24

    Single crystals of RMg 2Cu 9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg 2Cu 9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ ~ 15 mJ/mol K 2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg 2Cu 9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg 2Cu 9 does not exhibit any magnetic phase transition down to 0.5 K. The othermore » members being studied ( R = Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg 2Cu 9 to 11.9 K for TbMg 2Cu 9. Whereas GdMg 2Cu 9 is isotropic in its paramagnetic state due to zero angular momentum ( L = 0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y 0.99Tb 0.01)Mg 2Cu 9 and (Y 0.99Dy 0.01)Mg 2Cu 9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. Finally, a set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.« less

  10. Physical properties of single crystalline R Mg 2 Cu 9 ( R = Y , Ce - Nd , Gd - Dy , Yb ) and the search for in-plane magnetic anisotropy in hexagonal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Tai; Meier, William R.; Lin, Qisheng

    Single crystals of RMg 2Cu 9 (R=Y, Ce-Nd, Gd-Dy, Yb) were grown using a high-temperature solution growth technique and were characterized by measurements of room-temperature x-ray diffraction, temperature-dependent specific heat, and temperature- and field-dependent resistivity and anisotropic magnetization. YMg 2Cu 9 is a non-local-moment-bearing metal with an electronic specific heat coefficient, γ ~ 15 mJ/mol K 2. Yb is divalent and basically non-moment-bearing in YbMg2Cu9. Ce is trivalent in CeMg 2Cu 9 with two magnetic transitions being observed at 2.1 K and 1.5 K. PrMg 2Cu 9 does not exhibit any magnetic phase transition down to 0.5 K. The othermore » members being studied ( R = Nd, Gd-Dy) all exhibit antiferromagnetic transitions at low temperatures ranging from 3.2 K for NdMg 2Cu 9 to 11.9 K for TbMg 2Cu 9. Whereas GdMg 2Cu 9 is isotropic in its paramagnetic state due to zero angular momentum ( L = 0), all the other local-moment-bearing members manifest an anisotropic, planar magnetization in their paramagnetic states. To further study this planar anisotropy, detailed angular-dependent magnetization was carried out on magnetically diluted (Y 0.99Tb 0.01)Mg 2Cu 9 and (Y 0.99Dy 0.01)Mg 2Cu 9. Despite the strong, planar magnetization anisotropy, the in-plane magnetic anisotropy is weak and field-dependent. Finally, a set of crystal electric field parameters are proposed to explain the observed magnetic anisotropy.« less

  11. A versatile variable field module for Asylum Cypher scanning probe system

    NASA Astrophysics Data System (ADS)

    Liu, Hongxue; Comes, Ryan; Lu, Jiwei; Wolf, Stuart; Hodgson, Jim; Rutgers, Maarten

    2013-03-01

    Atomic force microscopy (AFM) has become one of the most widely used techniques for measuring and manipulating various characteristics of materials at the nanoscale. However, there are very limited option for the characterization of field dependence properties. In this work, we demonstrate a versatile variable field module (VFM) with magnetic field up to 1800 Oe for the Asylum Research Cypher system. The magnetic field is changed by adjusting the distance between a rare earth magnet and the AFM probe. A built-in Hall sensor makes it possible to perform in-situ measurements of the field. Rotating the magnet makes it possible to do angular field dependent measurements. The capability of the VFM system is demonstrated by degaussing a floppy disk media with increasing magnetic field. The written bits are erased at about 800 Oe. Angular dependence measurements clearly show the evolution of magnetic domain structures. A completely reversible magnetic force microscopy (MFM) phase contrast is observed when the magnetic field is rotated by 180°. Further demonstration of successful magnetic switching of CoFe2O4 pillars in CoFe2O4-BiFeO3 nanocomposites will be presented and field dependent MFM and piezoresponse force microscopy (PFM) will be discussed. The work at University of Virginia was supported by DARPA under contract no. HR-0011-10-1-0072.

  12. Angle-dependent rotation of calcite in elliptically polarized light

    NASA Astrophysics Data System (ADS)

    Herne, Catherine M.; Cartwright, Natalie A.; Cattani, Matthew T.; Tracy, Lucas A.

    2017-08-01

    Calcite crystals trapped in an elliptically polarized laser field exhibit intriguing rotational motion. In this paper, we show measurements of the angle-dependent motion, and discuss how the motion of birefringent calcite can be used to develop a reliable and efficient process for determining the polarization ellipticity and orientation of a laser mode. The crystals experience torque in two ways: from the transfer of spin angular momentum (SAM) from the circular polarization component of the light, and from a torque due to the linear polarization component of the light that acts to align the optic axis of the crystal with the polarization axis of the light. These torques alternatingly compete with and amplify each other, creating an oscillating rotational crystal velocity. We model the behavior as a rigid body in an angle-dependent torque. We experimentally demonstrate the dependence of the rotational velocity on the angular orientation of the crystal by placing the crystals in a sample solution in our trapping region, and observing their behavior under different polarization modes. Measurements are made by acquiring information simultaneously from a quadrant photodiode collecting the driving light after it passes through the sample region, and by imaging the crystal motion onto a camera. We finish by illustrating how to use this model to predict the ellipticity of a laser mode from rotational motion of birefringent crystals.

  13. Total angular momenta of high-lying odd levels of U I at ∼ 4 eV using resonance ionization laser polarization spectroscopy

    NASA Astrophysics Data System (ADS)

    Rath, Asawari D.; Kundu, S.; Ray, A. K.

    2018-02-01

    Laser induced photoionization of atoms shows significant dependence on the choice of polarizations of lasers. In multi-step, multi-photon excitation and subsequent ionization of atoms different polarization combinations of the exciting lasers lead to distinctly different ion yields. This fact is exploited in this work to determine total angular momenta of odd-parity energy levels of U I lying at ∼ 4 eV from its ground level using resonance ionization laser polarization spectroscopy in time of flight mass spectrometer. These levels are populated by two-step resonant excitation using two pulsed dye lasers with preset polarizations of choice followed by nonresonant ionization by third laser. The dependence of ionization yield on specific polarizations of the first two lasers is studied experimentally for each level under consideration. This dependence when compared to simulations makes possible unambiguous assignment of J angular momenta to these levels.

  14. Angular dependence of Raman scattering selection rules for long-wavelength optical phonons in short-period GaAs/AlAs superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volodin, V. A., E-mail: volodin@isp.nsc.ru; Sachkov, V. A.; Sinyukov, M. P.

    2016-07-15

    The angular dependence of Raman scattering selection rules for optical phonons in short-period (001) GaAs/AlAs superlattices is calculated and experimentally studied. Experiments are performed using a micro-Raman setup, in the scattering geometry with the wavevectors of the incident and scattered light lying in the plane of superlattices (so-called in-plane geometry). Phonon frequencies are calculated using the Born model taking the Coulomb interaction into account in the rigid-ion approximation. Raman scattering spectra are calculated in the framework of the deformation potential and electro-optical mechanisms. Calculations show an angular dependence of the selection rules for optical phonons with different directions of themore » wavevectors. Drastic differences in the selection rules are found for experimental and calculated spectra. Presumably, these differences are due to the Fröhlich mechanism in Raman scattering for short-period superlattices.« less

  15. Constraints on the Energy Content of the Universe from a Combination of Galaxy Cluster Observables

    NASA Technical Reports Server (NTRS)

    Molnar, Sandor M.; Haiman, Zoltan; Birkinshaw, Mark; Mushotzky, Richard F.

    2003-01-01

    We demonstrate that constraints on cosmological parameters from the distribution of clusters as a function of redshift (dN/dz) are complementary to accurate angular diameter distance (D(sub A)) measurements to clusters, and their combination significantly tightens constraints on the energy density content of the Universe. The number counts can be obtained from X-ray and/or SZ (Sunyaev-Ze'dovich effect) surveys, and the angular diameter distances can be determined from deep observations of the intra-cluster gas using their thermal bremsstrahlung X-ray emission and the SZ effect. We combine constraints from simulated cluster number counts expected from a 12 deg(sup 2) SZ cluster survey and constraints from simulated angular diameter distance measurements based on the X-ray/SZ method assuming a statistical accuracy of 10% in the angular diameter distance determination of 100 clusters with redshifts less than 1.5. We find that Omega(sub m), can be determined within about 25%, Omega(sub lambda) within 20% and w within 16%. We show that combined dN/dz+(sub lambda) constraints can be used to constrain the different energy densities in the Universe even in the presence of a few percent redshift dependent systematic error in D(sub lambda). We also address the question of how best to select clusters of galaxies for accurate diameter distance determinations. We show that the joint dN/dz+ D(lambda) constraints on cosmological parameters for a fixed target accuracy in the energy density parameters are optimized by selecting clusters with redshift upper cut-offs in the range 0.55 approx. less than 1. Subject headings: cosmological parameters - cosmology: theory - galaxies:clusters: general

  16. The Dependence of Characteristic Times of Gradual SEP Events on Their Associated CME Properties

    NASA Astrophysics Data System (ADS)

    Pan, Z. H.; Wang, C. B.; Xue, X. H.; Wang, Y. M.

    It is generally believed that coronal mass ejections CMEs are the drivers of shocks that accelerate gradual solar energetic particles SEPs One might expect that the characteristics of the SEP intensity time profiles observed at 1 AU are determined by properties of the associated CMEs such as the radial speed and the angular width Recently Kahler statistically investigated the characteristic times of gradual SEP events observed from 1998-2002 and their associated coronal mass ejection properties Astrophys J 628 1014--1022 2005 Three characteristic times of gradual SEP events are determined as functions of solar source longitude 1 T 0 the time from associated CME launch to SEP onset at 1 AU 2 T R the rise time from SEP onset to the time when the SEP intensity is a factor of 2 below peak intensity and 3 T D the duration over which the SEP intensity is within a factor of 2 of the peak intensity However in his study the CME speeds and angular widths are directly taken from the LASCO CME catalog In this study we analyze the radial speeds and the angular widths of CMEs by an ice-cream cone model and re-investigate their correlationships with the characteristic times of the corresponding SEP events We find T R and T D are significantly correlated with radial speed for SEP events in the best-connected longitude range and there is no correlation between T 0 and CME radial speed and angular width which is consistent with Kahler s results On the other hand it s found that T R and T D are also have

  17. High-space resolution imaging plate analysis of extreme ultraviolet (EUV) light from tin laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Musgrave, Christopher S. A.; Murakami, Takehiro; Ugomori, Teruyuki; Yoshida, Kensuke; Fujioka, Shinsuke; Nishimura, Hiroaki; Atarashi, Hironori; Iyoda, Tomokazu; Nagai, Keiji

    2017-03-01

    With the advent of high volume manufacturing capabilities by extreme ultraviolet lithography, constant improvements in light source design and cost-efficiency are required. Currently, light intensity and conversion efficiency (CE) measurments are obtained by charged couple devices, faraday cups etc, but also phoshpor imaging plates (IPs) (BaFBr:Eu). IPs are sensitive to light and high-energy species, which is ideal for studying extreme ultraviolet (EUV) light from laser produced plasmas (LPPs). In this work, we used IPs to observe a large angular distribution (10°-90°). We ablated a tin target by high-energy lasers (1064 nm Nd:YAG, 1010 and 1011 W/cm2) to generate the EUV light. The europium ions in the IP were trapped in a higher energy state from exposure to EUV light and high-energy species. The light intensity was angular dependent; therefore excitation of the IP depends on the angle, and so highly informative about the LPP. We obtained high-space resolution (345 μm, 0.2°) angular distribution and grazing spectrometer (5-20 nm grate) data simultaneously at different target to IP distances (103 mm and 200 mm). Two laser systems and IP types (BAS-TR and BAS-SR) were also compared. The cosine fitting values from the IP data were used to calculate the CE to be 1.6% (SD ± 0.2) at 13.5 nm 2% bandwidth. Finally, a practical assessment of IPs and a damage issue are disclosed.

  18. Intermode light diffusion in multimode optical waveguides with rough surfaces.

    PubMed

    Stepanov, S; Chaikina, E I; Leskova, T A; Méndez, E R

    2005-06-01

    A theoretical analysis of incoherent intermode light power diffusion in multimode dielectric waveguides with rough (corrugated) surfaces is presented. The correlation length a of the surface-profile variations is assumed to be sufficiently large (a less less than lambda/2pi) to permit light scattering into the outer space only from the modes close to the critical angles of propagation and yet sufficiently small (a less less than d, where d is the average width of the waveguide) to permit direct interaction between a given mode and a large number of neighboring ones. The cases of a one-dimensional (1D) slab waveguide and a two-dimensional cylindrical waveguide (optical fiber) are analyzed, and we find that in both cases the partial differential equations that govern the evolution of the angular light power profile propagating along the waveguide are 1D and of the diffusion type. However, whereas in the former case the effective conductivity coefficient proves to be linearly dependent on the transverse-mode wave number, in the latter one the linear dependence is for the effective diffusion coefficient. The theoretical predictions are in reasonable agreement with experimental results for the intermode power diffusion in multimode (700 x 700) optical fibers with etched surfaces. The characteristic length of dispersion of a narrow angular power profile evaluated from the correlation length and standard deviation of heights of the surface profile proved to be in good agreement with the experimentally observed changes in the output angular power profiles.

  19. Control of Angular Intervals for Angle-Multiplexed Holographic Memory

    NASA Astrophysics Data System (ADS)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki

    2009-03-01

    In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.

  20. Angular distribution of species in pulsed laser deposition of LaxCa1-xMnO3

    NASA Astrophysics Data System (ADS)

    Ojeda-G-P, Alejandro; Schneider, Christof W.; Döbeli, Max; Lippert, Thomas; Wokaun, Alexander

    2015-05-01

    The angular distribution of species from a La0.4Ca0.6MnO3 target irradiated with a 248 nm nanosecond pulsed laser was investigated by Rutherford backscattering spectrometry for four different Ar pressures. The film thickness angular distribution was also analyzed using profilometry. Depending on the background gas pressure, the target to substrate distance, and the angular location the film thickness and composition varies considerably. In particular the film composition could vary by up to 17% with respect to the composition of the target material.

  1. Angular response calibration of the burst and transient source experiment

    NASA Technical Reports Server (NTRS)

    Lestrade, John Patrick

    1988-01-01

    The Gamma Ray Observatory includes four experiments designed to observe the gamma-ray universe. Laboratory measurements to test the response the Burst and Transient Source Experiment (BATSE) modules to gamma-ray sources that are non-axial were recently completed. The results of these observations are necessary for the correct interpretation of BATSE data obtained after it is put in Earth orbit. The launch is planned for March, 1900. Preliminary analyses of these test data show the presence of a radial dependence to the detector's light collection efficiency. It is proposed to evaluate the importance of this radial response, analyze future experimental data to derive the actual functional dependence on radius, and calculate the net effect on the output spectrum as a function of the angle of incidence.

  2. IMPLICATIONS OF RAPID CORE ROTATION IN RED GIANTS FOR INTERNAL ANGULAR MOMENTUM TRANSPORT IN STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tayar, Jamie; Pinsonneault, Marc H., E-mail: tayar.1@osu.edu

    2013-09-20

    Core rotation rates have been measured for red giant stars using asteroseismology. These data, along with helioseismic measurements and open cluster spin-down studies, provide powerful clues about the nature and timescale for internal angular momentum transport in stars. We focus on two cases: the metal-poor red giant KIC 7341231 ({sup O}tto{sup )} and intermediate-mass core helium burning stars. For both, we examine limiting case studies for angular momentum coupling between cores and envelopes under the assumption of rigid rotation on the main sequence. We discuss the expected pattern of core rotation as a function of mass and radius. In themore » case of Otto, strong post-main-sequence coupling is ruled out and the measured core rotation rate is in the range of 23-33 times the surface value expected from standard spin-down models. The minimum coupling timescale (0.17-0.45 Gyr) is significantly longer than that inferred for young open cluster stars. This implies ineffective internal angular momentum transport in early first ascent giants. By contrast, the core rotation rates of evolved secondary clump stars are found to be consistent with strong coupling given their rapid main-sequence rotation. An extrapolation to the white dwarf regime predicts rotation periods between 330 and 0.0052 days, depending on mass and decoupling time. We identify two key ingredients that explain these features: the presence of a convective core and inefficient angular momentum transport in the presence of larger mean molecular weight gradients. Observational tests that can disentangle these effects are discussed.« less

  3. Chirality and angular momentum in optical radiation

    NASA Astrophysics Data System (ADS)

    Coles, Matt M.; Andrews, David L.

    2012-06-01

    This paper develops, in precise quantum electrodynamic terms, photonic attributes of the “optical chirality density,” one of several measures long known to be conserved quantities for a vacuum electromagnetic field. The analysis lends insights into some recent interpretations of chiroptical experiments, in which this measure, and an associated chirality flux, have been treated as representing physically distinctive “superchiral” phenomena. In the fully quantized formalism the chirality density is promoted to operator status, whose exploration with reference to an arbitrary polarization basis reveals relationships to optical angular momentum and helicity operators. Analyzing multimode beams with complex wave-front structures, notably Laguerre-Gaussian modes, affords a deeper understanding of the interplay between optical chirality and optical angular momentum. By developing theory with due cognizance of the photonic character of light, it emerges that only the spin-angular momentum of light is engaged in such observations. Furthermore, it is shown that these prominent measures of the helicity of chiral electromagnetic radiation have a common basis in differences between the populations of optical modes associated with angular momenta of opposite sign. Using a calculation of the rate of circular dichroism as an example, with coherent states to model the electromagnetic field, it is discovered that two terms contribute to the differential effect. The primary contribution relates to the difference in left- and right-handed photon populations; the only other contribution, which displays a sinusoidal distance dependence corresponding to the claim of nodal enhancements, is connected with the quantum photon number-phase uncertainty relation. From the full analysis, it appears that the term “superchiral” can be considered redundant.

  4. Laser Pulse Shaping for Low Emittance Photo-Injector

    DTIC Science & Technology

    2012-06-01

    It depends on the product of the beam’s transverse size and angular divergence, , (I.2) where is the standard deviation of the electron...shows the pendulum’s phase velocity as a function of the position θp. As the pendulum oscillates back and forth, its phase, or angular , velocity and...the angular divergence and size of the optical beam. The radius of the optical beam follows the equation 24 To guarantee proper transfer

  5. Generation of “perfect” vortex of variable size and its effect in angular spectrum of the down-converted photons

    NASA Astrophysics Data System (ADS)

    Jabir, M. V.; Apurv Chaitanya, N.; Aadhi, A.; Samanta, G. K.

    2016-02-01

    The “perfect” vortex is a new class of optical vortex beam having ring radius independent of its topological charge (order). One of the simplest techniques to generate such beams is the Fourier transformation of the Bessel-Gauss beams. The variation in ring radius of such vortices require Fourier lenses of different focal lengths and or complicated imaging setup. Here we report a novel experimental scheme to generate perfect vortex of any ring radius using a convex lens and an axicon. As a proof of principle, using a lens of focal length f = 200 mm, we have varied the radius of the vortex beam across 0.3-1.18 mm simply by adjusting the separation between the lens and axicon. This is also a simple scheme to measure the apex angle of an axicon with ease. Using such vortices we have studied non-collinear interaction of photons having orbital angular momentum (OAM) in spontaneous parametric down-conversion (SPDC) process and observed that the angular spectrum of the SPDC photons are independent of OAM of the pump photons rather depends on spatial profile of the pump beam. In the presence of spatial walk-off effect in nonlinear crystals, the SPDC photons have asymmetric angular spectrum with reducing asymmetry at increasing vortex radius.

  6. In-flight neutron spectra as an ICF diagnostic for implosion asymmetries

    NASA Astrophysics Data System (ADS)

    Cerjan, C.; Sayre, D. B.; Sepke, S. M.

    2018-02-01

    The yield and spectral shape of the neutrons produced during in-flight reactions provide stringent constraints upon the symmetry of the fully compressed fuel conditions in Inertial Confinement Fusion implosions. Neutron production from a specific deuterium gas-filled implosion is simulated in detail and compared with the experimental neutron spectra along two lines-of-sight. An approximate reactivity formulation is applied to obtain further insight into the underlying fuel configuration. This analysis suggests that the differences observed in the observed spectra correspond to angularly dependent triton velocity distributions created by an asymmetric plasma configuration.

  7. Solar diameter measurements from eclipses as a solar variability proxy

    NASA Astrophysics Data System (ADS)

    Dunham, David W.; Sofia, Sabatino; Guhl, Konrad; Herald, David

    The widths of total solar eclipse paths depends on the diameter of the Sun, so if observations are obtained near both the northern and southern limits of the eclipse path, in principle, the angular diameter of the Sun can be measured. Concerted efforts have been made to obtain contact timings from locations near total solar eclipse path edges since the mid 19th century, and Edmund Halley organized a rather successful first effort in 1715. Members of IOTA have been making increasingly sophisticated observations of the Baily's bead phenomena near central solar eclipse path edges since 1970.

  8. Simulations of Jetted Relativistic Blastwaves in Astrophysics

    NASA Astrophysics Data System (ADS)

    Salmonson, Jay; Fragile, Chris; Anninos, Peter

    2005-10-01

    We present new 2D relativistic hydrodynamic simulations of jetted blastwaves using the Cosmos++ astrophysics code. In particular, we simulate the asymmetric outflow resulting from the giant flare of December 27, 2004 from SGR 1806-20. We find that the asymmetric radio nebula observed to expand over the months following the flare cannot be explained by a simple ballistic ejection of material during the flare, but requires angular dependence of the energy injection with respect to the jet axis. In addition, we present simulations of jetted blastwaves of the relativistic afterglows resulting from gamma-ray bursts. Evolving these jetted blastwaves from Lorentz factors of order 10, we explore the dependence of observed lightcurves on initial jet opening angle, energy distribution, and observer angle with respect to the jet axis. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  9. SU-E-T-391: Assessment and Elimination of the Angular Dependence of the Response of the NanoDot OSLD System in MV Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, J; University of Sydney, Sydney; RMIT University, Melbourne

    2014-06-01

    Purpose: Assess the angular dependence of the nanoDot OSLD system in MV X-ray beams at depths and mitigate this dependence for measurements in phantoms. Methods: Measurements for 6 MV photons at 3 cm and 10 cm depth and Monte Carlo simulations were performed. Two special holders were designed which allow a nanoDot dosimeter to be rotated around the center of its sensitive volume (5 mm diameter disk). The first holder positions the dosimeter disk perpendicular to the beam (en-face). It then rotates until the disk is parallel with the beam (edge on). This is referred to as Setup 1. Themore » second holder positions the disk parallel to the beam (edge on) for all angles (Setup 2). Monte Carlo simulations using GEANT4 considered detector and housing in detail based on microCT data. Results: An average drop in response by 1.4±0.7% (measurement) and 2.1±0.3% (Monte Carlo) for the 90° orientation compared to 0° was found for Setup 1. Monte Carlo simulations also showed a strong dependence of the effect on the composition of the sensitive layer. Assuming 100% active material (Al??O??) results in a 7% drop in response for 90° compared to 0°. Assuming the layer to be completely water, results in a flat response (within simulation uncertainty of about 1%). For Setup 2, measurements and Monte Carlo simulations found the angular dependence of the dosimeter to be below 1% and within the measurement uncertainty. Conclusion: The nanoDot dosimeter system exhibits a small angular dependence off approximately 2%. Changing the orientation of the dosimeter so that a coplanar beam arrangement always hits the detector material edge on reduces the angular dependence to within the measurement uncertainty of about 1%. This makes the dosimeter more attractive for phantom based clinical measurements and audits with multiple coplanar beams. The Australian Clinical Dosimetry Service is a joint initiative between the Australian Department of Health and the Australian Radiation Protection and Nuclear Safety Agency.« less

  10. Relative and absolute level populations in beam-foil-excited neutral helium

    NASA Technical Reports Server (NTRS)

    Davidson, J.

    1975-01-01

    Relative and absolute populations of 19 levels in beam-foil-excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n to the -3rd power, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range from 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number.

  11. Angular dependence of primordial trispectra and CMB spectral distortions

    NASA Astrophysics Data System (ADS)

    Shiraishi, Maresuke; Bartolo, Nicola; Liguori, Michele

    2016-10-01

    Under the presence of anisotropic sources in the inflationary era, the trispectrum of the primordial curvature perturbation has a very specific angular dependence between each wavevector that is distinguishable from the one encountered when only scalar fields are present, characterized by an angular dependence described by Legendre polynomials. We examine the imprints left by curvature trispectra on the TTμ bispectrum, generated by the correlation between temperature anisotropies (T) and chemical potential spectral distortions (μ) of the Cosmic Microwave Background (CMB). Due to the angular dependence of the primordial signal, the corresponding TTμ bispectrum strongly differs in shape from TTμ sourced by the usual gNL or τNL local trispectra, enabling us to obtain an unbiased estimation. From a Fisher matrix analysis, we find that, in a cosmic-variance-limited (CVL) survey of TTμ, a minimum detectable value of the quadrupolar Legendre coefficient is d2 ~ 0.01, which is 4 orders of magnitude better than the best value attainable from the TTTT CMB trispectrum. In the case of an anisotropic inflationary model with a f(phi)F2 interaction (coupling the inflaton field phi with a vector kinetic term F2), the size of the curvature trispectrum is related to that of quadrupolar power spectrum asymmetry, g*. In this case, a CVL measurement of TTμ makes it possible to measure g* down to 10-3.

  12. Visual ergonomic aspects of glare on computer displays: glossy screens and angular dependence

    NASA Astrophysics Data System (ADS)

    Brunnström, Kjell; Andrén, Börje; Konstantinides, Zacharias; Nordström, Lukas

    2007-02-01

    Recently flat panel computer displays and notebook computer are designed with a so called glare panel i.e. highly glossy screens, have emerged on the market. The shiny look of the display appeals to the costumers, also there are arguments that the contrast, colour saturation etc improves by using a glare panel. LCD displays suffer often from angular dependent picture quality. This has been even more pronounced by the introduction of Prism Light Guide plates into displays for notebook computers. The TCO label is the leading labelling system for computer displays. Currently about 50% of all computer displays on the market are certified according to the TCO requirements. The requirements are periodically updated to keep up with the technical development and the latest research in e.g. visual ergonomics. The gloss level of the screen and the angular dependence has recently been investigated by conducting user studies. A study of the effect of highly glossy screens compared to matt screens has been performed. The results show a slight advantage for the glossy screen when no disturbing reflexes are present, however the difference was not statistically significant. When disturbing reflexes are present the advantage is changed into a larger disadvantage and this difference is statistically significant. Another study of angular dependence has also been performed. The results indicates a linear relationship between the picture quality and the centre luminance of the screen.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiogai, J.; Institute of Materials Research, Tohoku University, Sendai 980-8577, Miyagi; Ciorga, M., E-mail: mariusz.ciorga@ur.de

    We investigate the angular dependence of the tunneling anisotropic magnetoresistance in (Ga,Mn)As/n-GaAs spin Esaki diodes in the regime where the tunneling process is dominated by the excess current through midgap states in (Ga,Mn)As. We compare it to similar measurements performed in the regime of band-to-band tunneling. Whereas the latter show biaxial symmetry typical for magnetic anisotropy observed in (Ga,Mn)As samples, the former is dominated by uniaxial anisotropy along the 〈110〉 axes.

  14. Spatial Orientation from High-Velocity Blur Patterns: Perception of Divergence.

    DTIC Science & Technology

    1977-01-01

    presentations ( Sperling , 1960 ; Averbach & Sperling , 1961; and others), at low observer velocities an image on the retina can provide good visual...depending on the target’ s angular velocity , on state of adaptation and on relative intens i ty of the target ( von den Brink , 1957 ; Pollock , 1953). • The...analysers .” A theoretical explication of the temporal and spatial summative properties of the visua l system in a similar context is available in von

  15. A flickering study of nova-like systems KR Aur and UU Aqr

    NASA Astrophysics Data System (ADS)

    Dobrotka, A.; Mineshige, S.; Casares, J.

    2012-03-01

    We present a study of the flickering activity in two nova-like systems, KR Aur and UU Aqr. We applied a statistical model of flickering simulations in accretion discs based on turbulent angular momentum transport between two adjacent rings with an exponential distribution of the turbulence dimension scale. The model is based on a steady-state disc model, which is satisfied in the case of hot ionized discs of nova-like cataclysmic variables. Our model successfully fits the observed power-density spectrum of KR Aur with the disc parameter α= 0.10-0.40 and an inner-disc truncation radius in the range Rin= 0.88-1.67 × 109 cm. The exact values depend on the mass-transfer rate in the sense that α decreases and Rin increases with mass-transfer rate. In any case, the inner-disc radius found for KR Aur is considerably smaller than those for quiescent dwarf novae, as predicted by the disc instability model. On the other hand, our simulations fail to reproduce the power-density spectrum of UU Aqr. A tantalizing explanation involves the possible presence of spiral waves, which are expected in UU Aqr because of its low mass ratio but not in KR Aur. In general our model predicts the observed concentration of flickering in the central disc. We explain this by the radial dependence of the angular-momentum gradient.

  16. Multiscale Experimental and Numerical Approach to the Powder Particle Shape Effect on Al-Al2O3 Coating Build-Up

    NASA Astrophysics Data System (ADS)

    Leger, P. E.; Sennour, M.; Delloro, F.; Borit, F.; Debray, A.; Gaslain, F.; Jeandin, M.; Ducos, M.

    2017-10-01

    Aluminum (Al) powders with spherical and irregular particle shapes were mixed with two alumina (Al2O3) powders with either a spherical or an angular particle shape to achieve high-performance cold-sprayed coatings onto steel. Two effects of the aluminum particle shape were observed. First, coating microstructure observation showed impinging heterogeneity depending on particle shape. Second, particle jet differences depending on particle morphology were shown by velocity maps. From the latter, SEM and XRD, three effects of the alumina particle shape were also shown, i.e., higher in-flight velocity of angular particles, fragmentation of spherical hollow particles and embedding of alumina particles with aluminum. Numerical simulation of particle impacts was developed to study the densification of Al coating due to Al2O3 addition through elucidation of Al-Al2O3 interaction behavior at the scale of the coating. Al/Al and Al/Al2O3 interfaces were investigated using TEM to understand coating strengthening effects due to alumina addition at the scale of the particle. As a whole, Al and Al2O3 particle shape effects were claimed to explain coating mechanical properties, e.g., microhardness and coating-substrate bond strength. This study resulted in specifying criteria to help cold spray users in selecting powders for their applications, to meet economic and technical requirements.

  17. Irreversible evolution of angular-dependent coercivity in Fe80Ni20 nanowire arrays: Detection of a single vortex state

    NASA Astrophysics Data System (ADS)

    Alikhani, M.; Ramazani, A.; Almasi Kashi, M.; Samanifar, S.; Montazer, A. H.

    2016-09-01

    The irreversible evolution of magnetic coercivity in arrays of 75 nm diameter Fe80Ni20 nanowires (NWs) has been explored by means of first-order reversal curve (FORC) analysis as a function of the angle between the magnetic field and the NW axis (0°≤θ≤90°). The Fe80Ni20 NWs with lengths up to 60 μm were fabricated using a pulsed electrodeposition method into hard-anodic aluminum oxide templates with an interpore distance of 275 nm. Investigating the interwire and intrawire magnetostatic interactions, the angular FORC (AFORC) diagrams indicated enhanced intrawire interactions with increasing length and θ (<90°), induced by a magnetization reversal through vortex domain wall (VDW) propagation. Intriguingly, in addition to the VDW mode, a single vortex state with broad irreversible switching of nucleation and annihilation fields was detected at θ=83° for 60 μm long NWs. At θ=90°, the NWs reversed magnetization through transverse domain wall, involving a reversible component by a fraction of 95%. Furthermore, the transition angle between the reversal modes was found to decrease with increasing aspect ratio from 200 to 800. The irreversible angular-dependent coercivity (HcIrrev(θ)) of Fe80Ni20 NWs was extracted from the AFORC measurements and compared with the major angular dependence of coercivity (HcMajor(θ)) obtained from the conventional hysteresis loop measurements. While HcMajor(θ) showed a non-monotonic behavior, HcIrrev(θ) constantly increased with increasing θ (<90°). On the other hand, using analytical models, a 93% agreement was obtained between the theoretical angular-dependent nucleation field and experimental HcIrrev(θ) for irreversible switching of VDW when 0°≤θ≤86°.

  18. Measurement of 240Pu Angular Momentum Dependent Fission Probabilities Using the (α ,α') Reaction

    NASA Astrophysics Data System (ADS)

    Koglin, Johnathon; Burke, Jason; Fisher, Scott; Jovanovic, Igor

    2017-09-01

    The surrogate reaction method often lacks the theoretical framework and necessary experimental data to constrain models especially when rectifying differences between angular momentum state differences between the desired and surrogate reaction. In this work, dual arrays of silicon telescope particle identification detectors and photovoltaic (solar) cell fission fragment detectors have been used to measure the fission probability of the 240Pu(α ,α' f) reaction - a surrogate for the 239Pu(n , f) - and fission fragment angular distributions. Fission probability measurements were performed at a beam energy of 35.9(2) MeV at eleven scattering angles from 40° to 140°e in 10° intervals and at nuclear excitation energies up to 16 MeV. Fission fragment angular distributions were measured in six bins from 4.5 MeV to 8.0 MeV and fit to expected distributions dependent on the vibrational and rotational excitations at the saddle point. In this way, the contributions to the total fission probability from specific states of K angular momentum projection on the symmetry axis are extracted. A sizable data collection is presented to be considered when constraining microscopic cross section calculations.

  19. Interdependence of torque, joint angle, angular velocity and muscle action during human multi-joint leg extension.

    PubMed

    Hahn, Daniel; Herzog, Walter; Schwirtz, Ansgar

    2014-08-01

    Force and torque production of human muscles depends upon their lengths and contraction velocity. However, these factors are widely assumed to be independent of each other and the few studies that dealt with interactions of torque, angle and angular velocity are based on isolated single-joint movements. Thus, the purpose of this study was to determine force/torque-angle and force/torque-angular velocity properties for multi-joint leg extensions. Human leg extension was investigated (n = 18) on a motor-driven leg press dynamometer while measuring external reaction forces at the feet. Extensor torque in the knee joint was calculated using inverse dynamics. Isometric contractions were performed at eight joint angle configurations of the lower limb corresponding to increments of 10° at the knee from 30 to 100° of knee flexion. Concentric and eccentric contractions were performed over the same range of motion at mean angular velocities of the knee from 30 to 240° s(-1). For contractions of increasing velocity, optimum knee angle shifted from 52 ± 7 to 64 ± 4° knee flexion. Furthermore, the curvature of the concentric force/torque-angular velocity relations varied with joint angles and maximum angular velocities increased from 866 ± 79 to 1,238 ± 132° s(-1) for 90-50° knee flexion. Normalised eccentric forces/torques ranged from 0.85 ± 0.12 to 1.32 ± 0.16 of their isometric reference, only showing significant increases above isometric and an effect of angular velocity for joint angles greater than optimum knee angle. The findings reveal that force/torque production during multi-joint leg extension depends on the combined effects of angle and angular velocity. This finding should be accounted for in modelling and optimisation of human movement.

  20. Electronic quenching of O({sup 1}D) by Xe: Oscillations in the product angular distribution and their dependence on collision energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garofalo, Lauren A.; Smith, Mica C.; Dagdigian, Paul J., E-mail: pjdagdigian@jhu.edu

    2015-08-07

    The dynamics of the O({sup 1}D) + Xe electronic quenching reaction was investigated in a crossed beam experiment at four collision energies. Marked large-scale oscillations in the differential cross sections were observed for the inelastic scattering products, O({sup 3}P) and Xe. The shape and relative phases of the oscillatory structure depend strongly on collision energy. Comparison of the experimental results with time-independent scattering calculations shows qualitatively that this behavior is caused by Stueckelberg interferences, for which the quantum phases of the multiple reaction pathways accessible during electronic quenching constructively and destructively interfere.

  1. Problems of sampling and radiation balances: Their problematics

    NASA Technical Reports Server (NTRS)

    Crommelynck, D.

    1980-01-01

    Problems associated with the measurement of the Earth radiation balances are addressed. It is demonstrated that the knowledge of the different radiation budgets with their components is largely dependent on the space time sampling of the radiation field of the Earth atmosphere system. Whichever instrumental approach is adopted (wide angle view of high resolution) it affects the space time integration of the fluxes measured directly or calculated. In this case the necessary knowledge of the reflection pattern depends in addition on the angular sampling of the radiances. A series of questions is considered, the answers of which are a prerequisite to the the organization of a global observation system.

  2. Effects of anisotropic electron-ion interactions in atomic photoelectron angular distributions

    NASA Technical Reports Server (NTRS)

    Dill, D.; Starace, A. F.; Manson, S. T.

    1974-01-01

    The photoelectron asymmetry parameter beta in LS-coupling is obtained as an expansion into contributions from alternative angular momentum transfers j sub t. The physical significance of this expansion of beta is shown to be that: (1) the electric dipole interaction transfers to the atom a charcteristic single angular momentum j sub t = sub o, where sub o is the photoelectron's initial orbital momentum; and (2) angular momentum transfers indicate the presence of anisotropic interaction of the outgoing photoelectron with the residual ion. For open shell atoms the photoelectron-ion interaction is generally anisotropic; photoelectron phase shifts and electric dipole matrix elements depend on both the multiplet term of the residual ion and the total orbital momentum of the ion-photoelectron final state channel. Consequently beta depends on the term levels of the residual ion and contains contributions from all allowed values of j sub t. Numerical calculations of the asymmetry parameters and partial cross sections for photoionization of atomic sulfur are presented.

  3. Direct observation of forward-scattering oscillations in the H+HD→H2+D reaction

    NASA Astrophysics Data System (ADS)

    Yuan, Daofu; Yu, Shengrui; Chen, Wentao; Sang, Jiwei; Luo, Chang; Wang, Tao; Xu, Xin; Casavecchia, Piergiorgio; Wang, Xingan; Sun, Zhigang; Zhang, Dong H.; Yang, Xueming

    2018-06-01

    Accurate measurements of product state-resolved angular distributions are central to fundamental studies of chemical reaction dynamics. Yet, fine quantum-mechanical structures in product angular distributions of a reactive scattering process, such as the fast oscillations in the forward-scattering direction, have never been observed experimentally and the nature of these oscillations has not been fully explored. Here we report the crossed-molecular-beam experimental observation of these fast forward-scattering oscillations in the product angular distribution of the benchmark chemical reaction, H + HD → H2 + D. Clear oscillatory structures are observed for the H2(v' = 0, j' = 1, 3) product states at a collision energy of 1.35 eV, in excellent agreement with the quantum-mechanical dynamics calculations. Our analysis reveals that the oscillatory forward-scattering components are mainly contributed by the total angular momentum J around 28. The partial waves and impact parameters responsible for the forward scatterings are also determined from these observed oscillations, providing crucial dynamics information on the transient reaction process.

  4. Degradation nonuniformity in the solar diffuser bidirectional reflectance distribution function.

    PubMed

    Sun, Junqiang; Chu, Mike; Wang, Menghua

    2016-08-01

    The assumption of angular dependence stability of the solar diffuser (SD) throughout degradation is critical to the on-orbit calibration of the reflective solar bands (RSBs) in many satellite sensors. Recent evidence has pointed to the contrary, and in this work, we present a thorough investigative effort into the angular dependence of the SD degradation for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite and for the twin Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua spacecrafts. One common key step in the RSB calibration is the use of the SD degradation performance measured by an accompanying solar diffuser stability monitor (SDSM) as a valid substitute for the SD degradation factor in the direction of the RSB view. If SD degradations between these two respective directions do not maintain the same relative relationship over time, then the unmitigated use of the SDSM-measured SD degradation factor in the RSB calibration calculation will generate bias, and consequently, long-term drift in derived science products. We exploit the available history of the on-orbit calibration events to examine the response of the SDSM and the RSB detectors to the incident illumination reflecting off SD versus solar declination angle and show that the angular dependency, particularly at short wavelengths, evolves with respect to time. The generalized and the decisive conclusion is that the bidirectional reflectance distribution function (BRDF) of the SD degrades nonuniformly with respect to both incident and outgoing directions. Thus, the SDSM-based measurements provide SD degradation factors that are biased relative to the RSB view direction with respect to the SD. The analysis also reveals additional interesting phenomena, for example, the sharp behavioral change in the evolving angular dependence observed in Terra MODIS and SNPP VIIRS. For SNPP VIIRS the mitigation for this "SD degradation nonuniformity effect" with respect to angles relies on a "hybrid methodology" using lunar-based calibration to set the reliable long-term baseline. For MODIS, the use of earth targets in the major release Collection 6 to improve calibration coefficients and time-dependent response-versus-scan-angle characterization inherently averts the use of SD and its associated issues. The work further supports that having an open-close operational capability for the space view door can minimize SD degradation and its associated effects due to solar exposure, and thus provide long-term benefits for maintaining calibration and science data accuracy.

  5. Project to Study Soil Electromagnetic Properties

    DTIC Science & Technology

    2007-09-30

    transmitter loops (these may be one and the same physical loop or any combinations of loops) and w is angular frequency. M is the magnetic flux that...space, and w is angular frequency used by the sensor. In this case sensor response is frequency-dependent, even if the layer variables are real and...Consider a transmitter current in a single turn coil with angular frequency wand amplitude I. This produces a receiver voltage V (a complex phasor) in the

  6. Photoproduction of η mesons from the neutron: Cross sections and double polarization observable E

    NASA Astrophysics Data System (ADS)

    Witthauer, L.; Dieterle, M.; Afzal, F.; Anisovich, A. V.; Bantes, B.; Bayadilov, D.; Beck, R.; Bichow, M.; Brinkmann, K.-T.; Böse, S.; Challand, Th.; Crede, V.; Dutz, H.; Eberhardt, H.; Elsner, D.; Ewald, R.; Fornet-Ponse, K.; Friedrich, St.; Frommberger, F.; Funke, Ch.; Goertz, St.; Gottschall, M.; Gridnev, A.; Grüner, M.; Gutz, E.; Hammann, D.; Hammann, Ch.; Hannappel, J.; Hartmann, J.; Hillert, W.; Hoffmeister, Ph.; Honisch, Ch.; Jude, T.; Kaiser, D.; Kalinowsky, H.; Kalischewski, F.; Kammer, S.; Käser, A.; Keshelashvili, I.; Klassen, P.; Kleber, V.; Klein, F.; Koop, K.; Krusche, B.; Lang, M.; Lopatin, I.; Mahlberg, Ph.; Makonyi, K.; Metag, V.; Meyer, W.; Müller, J.; Müllers, J.; Nanova, M.; Nikonov, V.; Piontek, D.; Reicherz, G.; Rostomyan, T.; Sarantsev, A.; Schmidt, Ch.; Schmieden, H.; Seifen, T.; Sokhoyan, V.; Spieker, K.; Thiel, A.; Thoma, U.; Urban, M.; van Pee, H.; Walford, N. K.; Walther, D.; Wendel, Ch.; Werthmüller, D.; Wilson, A.; Winnebeck, A.

    2017-03-01

    Results from measurements of the photoproduction of η mesons from quasifree protons and neutrons are summarized. The experiments were performed with the CBELSA/TAPS detector at the electron accelerator ELSA in Bonn using the η→ 3π0→ 6γ decay. A liquid deuterium target was used for the measurement of total cross sections and angular distributions. The results confirm earlier measurements from Bonn and the MAMI facility in Mainz about the existence of a narrow structure in the excitation function of γ n→ nη. The current angular distributions show a forward-backward asymmetry, which was previously not seen, but was predicted by model calculations including an additional narrow P_{11} state. Furthermore, data obtained with a longitudinally polarized, deuterated butanol target and a circularly polarized photon beam were analyzed to determine the double polarization observable E. Both data sets together were also used to extract the helicity-dependent cross sections σ_{1/2} and σ_{3/2}. The narrow structure in the excitation function of γ n→ nη appears associated with the helicity-1/2 component of the reaction.

  7. Angular Spacing Control for Segmented Data Pages in Angle-Multiplexed Holographic Memory

    NASA Astrophysics Data System (ADS)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Kikuchi, Hiroshi; Shimidzu, Naoki; Ando, Toshio; Masaki, Kazuyoshi; Shimizu, Takehiro

    2011-09-01

    To improve the recording density of angle-multiplexed holographic memory, it is effective to increase the numerical aperture of the lens and to shorten the wavelength of the laser source as well as to increase the multiplexing number. The angular selectivity of a hologram, which determines the multiplexing number, is dependent on the incident angle of not only the reference beam but also the signal beam to the holographic recording medium. The actual signal beam, which is a convergent or divergent beam, is regarded as the sum of plane waves that have different propagation directions, angular selectivities, and optimal angular spacings. In this paper, focusing on the differences in the optimal angular spacing, we proposed a method to control the angular spacing for each segmented data page. We investigated the angular selectivity of a hologram and crosstalk for segmented data pages using numerical simulation. The experimental results showed a practical bit-error rate on the order of 10-3.

  8. Evidence for the distribution of angular velocity inside the sun and stars

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A round table discussion of problems of solar and stellar spindown and theory is presented. Observational evidence of the angular momentum of the solar wind is included, emphasizing the distribution of angular velocity inside the sun and stars.

  9. Angular dependent torque measurements on CaFe0.88Co0.12AsF

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Gao, B.; Ma, Y. H.; Li, X. J.; Mu, G.; Hu, T.

    2016-08-01

    Out-of-plane angular dependent torque measurements were performed on CaFe0.88Co0.12AsF (Ca1 1 1 1) single crystals. In the normal state, the torque data shows \\sin 2θ angular dependence and H 2 magnetic field dependence, as a result of paramagnetism. In the mixed state, the torque signal is a combination of the vortex torque and paramagnetic torque, and the former allows the determination of the anisotropy parameter γ. At T   =  11.5 K, γ (11.5 K ≃ 0.5 T c)  =  19.1, which is similar to the result of SmFeAsO0.8F0.2, γ ≃ 23 at T≃ 0.4{{T}\\text{c}} . So the 11 1 1 is more anisotropic compared to 11 and 122 families of iron-based superconductors. This may suggest that the electronic coupling between layers in 1 1 1 1 is less effective than in 11 and 122 families.

  10. Aliasing Detection and Reduction Scheme on Angularly Undersampled Light Fields.

    PubMed

    Xiao, Zhaolin; Wang, Qing; Zhou, Guoqing; Yu, Jingyi

    2017-05-01

    When using plenoptic camera for digital refocusing, angular undersampling can cause severe (angular) aliasing artifacts. Previous approaches have focused on avoiding aliasing by pre-processing the acquired light field via prefiltering, demosaicing, reparameterization, and so on. In this paper, we present a different solution that first detects and then removes angular aliasing at the light field refocusing stage. Different from previous frequency domain aliasing analysis, we carry out a spatial domain analysis to reveal whether the angular aliasing would occur and uncover where in the image it would occur. The spatial analysis also facilitates easy separation of the aliasing versus non-aliasing regions and angular aliasing removal. Experiments on both synthetic scene and real light field data sets (camera array and Lytro camera) demonstrate that our approach has a number of advantages over the classical prefiltering and depth-dependent light field rendering techniques.

  11. Break-technique handheld dynamometry: relation between angular velocity and strength measurements.

    PubMed

    Burns, Stephen P; Spanier, David E

    2005-07-01

    To determine whether the muscle strength, as measured with break-technique handheld dynamometry (HHD), is dependent on the angular velocity achieved during testing and to compare reliability at different angular velocities. Repeated-measures study. Participants underwent HHD by using make-technique (isometric) and break-technique (eccentric) dynamometry at 3 prespecified angular velocities. Elbow movement was recorded with an electrogoniometer. Inpatient spinal cord injury unit. Convenience sample of 20 persons with tetraplegia with weakness of elbow flexors or extensors. Not applicable. Elbow angular velocity and muscle strength recorded during HHD. With the break technique, angular velocities averaging 15 degrees , 33 degrees , and 55 degrees /s produced 16%, 30%, and 51% greater strength measurements, respectively, than velocities recorded by using the make technique (all P < .006 for comparisons between successive techniques). The intraclass correlation coefficient for intrarater reliability was .89 or greater for all testing techniques. Greater strength is recorded with faster angular velocities during HHD. Differences in angular velocity may explain the wide range previously reported for break- versus make-technique strength measurements. Variation in angular velocity is a potential source of variability in serial HHD strength measurements, and for this reason the make technique may be preferable.

  12. A swing driven by liquid crystals

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng

    Angular momentum in liquid crystals exists as flow, director reorientation, etc. However, it is hard to observe and measure angular momentum in liquid crystals by a direct mechanical approach. Torsion pendulum is a general tool to measure angular momentum by torque balance. Our torsion pendulum can harvest the angular momentum in liquid crystals to make it observable. The oscillation of the pendulum keeps increasing by constructively adding a small angular momentum of liquid crystals each period at the resonant frequency of the pendulum. Its similar to a swing driven by a force at its resonant frequency. For the torsion pendulum, a cage made of two aluminum discs, in which a liquid crystal cell is placed, is suspended between two thin tungsten wires. A gold mirror, which is a part of the optical lever system, is attached on one tungsten wire. As first demonstration, we fabricate a circular hybrid liquid crystal cell, which can induce concentric backflows to generate angular momentum. The alignment on the planar substrate is concentric and tangential. Due to the coupling between director rotation and flow, the induced backflow goes around the cell when we add electrical pulses between top and bottom substrates. The oscillation is observed by a position sensitive detector and analyzed on the basis of Eriksen-Leslie theory. With vacuum condition and synchronous driving system, the oscillation signal is improved. We demonstrate that this torsion pendulum can sensitively detect the angular momentum in liquid crystals.

  13. Shear flow of angular grains: acoustic effects and nonmonotonic rate dependence of volume.

    PubMed

    Lieou, Charles K C; Elbanna, Ahmed E; Langer, J S; Carlson, J M

    2014-09-01

    Naturally occurring granular materials often consist of angular particles whose shape and frictional characteristics may have important implications on macroscopic flow rheology. In this paper, we provide a theoretical account for the peculiar phenomenon of autoacoustic compaction-nonmonotonic variation of shear band volume with shear rate in angular particles-recently observed in experiments. Our approach is based on the notion that the volume of a granular material is determined by an effective-disorder temperature known as the compactivity. Noise sources in a driven granular material couple its various degrees of freedom and the environment, causing the flow of entropy between them. The grain-scale dynamics is described by the shear-transformation-zone theory of granular flow, which accounts for irreversible plastic deformation in terms of localized flow defects whose density is governed by the state of configurational disorder. To model the effects of grain shape and frictional characteristics, we propose an Ising-like internal variable to account for nearest-neighbor grain interlocking and geometric frustration and interpret the effect of friction as an acoustic noise strength. We show quantitative agreement between experimental measurements and theoretical predictions and propose additional experiments that provide stringent tests on the new theoretical elements.

  14. Geodynamo Modeling of Core-Mantle Interactions

    NASA Technical Reports Server (NTRS)

    Kuang, Wei-Jia; Chao, Benjamin F.; Smith, David E. (Technical Monitor)

    2001-01-01

    Angular momentum exchange between the Earth's mantle and core influences the Earth's rotation on time scales of decades and longer, in particular in the length of day (LOD) which have been measured with progressively increasing accuracy for the last two centuries. There are four possible coupling mechanisms for transferring the axial angular momentum across the core-mantle boundary (CMB): viscous, magnetic, topography, and gravitational torques. Here we use our scalable, modularized, fully dynamic geodynamo model for the core to assess the importance of these torques. This numerical model, as an extension of the Kuang-Bloxham model that has successfully simulated the generation of the Earth's magnetic field, is used to obtain numerical results in various physical conditions in terms of specific parameterization consistent with the dynamical processes in the fluid outer core. The results show that depending on the electrical conductivity of the lower mantle and the amplitude of the boundary topography at CMB, both magnetic and topographic couplings can contribute significantly to the angular momentum exchange. This implies that the core-mantle interactions are far more complex than has been assumed and that there is unlikely a single dominant coupling mechanism for the observed decadal LOD variation.

  15. Scalar and tensor spherical harmonics expansion of the velocity correlation in homogeneous anisotropic turbulence

    DOE PAGES

    Rubinstein, Robert; Kurien, Susan; Cambon, Claude

    2015-06-22

    The representation theory of the rotation group is applied to construct a series expansion of the correlation tensor in homogeneous anisotropic turbulence. The resolution of angular dependence is the main analytical difficulty posed by anisotropic turbulence; representation theory parametrises this dependence by a tensor analogue of the standard spherical harmonics expansion of a scalar. As a result, the series expansion is formulated in terms of explicitly constructed tensor bases with scalar coefficients determined by angular moments of the correlation tensor.

  16. Optical diffraction by ordered 2D arrays of silica microspheres

    NASA Astrophysics Data System (ADS)

    Shcherbakov, A. A.; Shavdina, O.; Tishchenko, A. V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.

    2017-03-01

    The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality.

  17. Inclusion of angular momentum in FREYA

    DOE PAGES

    Randrup, Jørgen; Vogt, Ramona

    2015-05-18

    The event-by-event fission model FREYA generates large samples of complete fission events from which any observable can extracted, including fluctuations of the observables and the correlations between them. We describe here how FREYA was recently refined to include angular momentum throughout. Subsequently we present some recent results for both neutron and photon observables.

  18. Kelvin-Helmholtz instability of counter-rotating discs

    NASA Astrophysics Data System (ADS)

    Quach, Dan; Dyda, Sergei; Lovelace, Richard V. E.

    2015-01-01

    Observations of galaxies and models of accreting systems point to the occurrence of counter-rotating discs where the inner part of the disc (r < r0) is corotating and the outer part is counter-rotating. This work analyses the linear stability of radially separated co- and counter-rotating thin discs. The strong instability found is the supersonic Kelvin-Helmholtz instability. The growth rates are of the order of or larger than the angular rotation rate at the interface. The instability is absent if there is no vertical dependence of the perturbation. That is, the instability is essentially three dimensional. The non-linear evolution of the instability is predicted to lead to a mixing of the two components, strong heating of the mixed gas, and vertical expansion of the gas, and annihilation of the angular momenta of the two components. As a result, the heated gas will free-fall towards the disc's centre over the surface of the inner disc.

  19. Cosmic microwave background bispectrum from primordial magnetic fields on large angular scales.

    PubMed

    Seshadri, T R; Subramanian, Kandaswamy

    2009-08-21

    Primordial magnetic fields lead to non-Gaussian signals in the cosmic microwave background (CMB) even at the lowest order, as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. In contrast, CMB non-Gaussianity due to inflationary scalar perturbations arises only as a higher-order effect. We propose a novel probe of stochastic primordial magnetic fields that exploits the characteristic CMB non-Gaussianity that they induce. We compute the CMB bispectrum (b(l1l2l3)) induced by such fields on large angular scales. We find a typical value of l1(l1 + 1)l3(l3 + 1)b(l1l2l3) approximately 10(-22), for magnetic fields of strength B0 approximately 3 nG and with a nearly scale invariant magnetic spectrum. Observational limits on the bispectrum allow us to set upper limits on B0 approximately 35 nG.

  20. A simulation of orientation dependent, global changes in camera sensitivity in ECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bieszk, J.A.; Hawman, E.G.; Malmin, R.E.

    1984-01-01

    ECT promises the abilities to: 1) observe radioisotope distributions in a patient without the summation of overlying activity to reduce contrast, and 2) measure quantitatively these distributions to further and more accurately assess organ function. Ideally, camera-based ECT systems should have a performance that is independent of camera orientation or gantry angle. This study is concerned with ECT quantitation errors that can arise from angle-dependent variations of camera sensitivity. Using simulated phantoms representative of heart and liver sections, the effects of sensitivity changes on reconstructed images were assessed both visually and quantitatively based on ROI sums. The sinogram for eachmore » test image was simulated with 128 linear digitization and 180 angular views. The global orientation-dependent sensitivity was modelled by applying an angular sensitivity dependence to the sinograms of the test images. Four sensitivity variations were studied. Amplitudes of 0% (as a reference), 5%, 10%, and 25% with a costheta dependence were studied as well as a cos2theta dependence with a 5% amplitude. Simulations were done with and without Poisson noise to: 1) determine trends in the quantitative effects as a function of the magnitude of the variation, and 2) to see how these effects are manifested in studies having statistics comparable to clinical cases. For the most realistic sensitivity variation (costheta, 5% ampl.), the ROIs chosen in the present work indicated changes of <0.5% in the noiseless case and <5% for the case with Poisson noise. The effects of statistics appear to dominate any effects due to global, sinusoidal, orientation-dependent sensitivity changes in the cases studied.« less

  1. What can be Learned from X-ray Spectroscopy Concerning Hot Gas in Local Bubble and Charge Exchange Processes?

    NASA Technical Reports Server (NTRS)

    Snowden, Steve

    2007-01-01

    What can be learned from x-ray spectroscopy in observing hot gas in local bubble and charge exchange processes depends on spectral resolution, instrumental grasp, instrumental energy band, signal-to-nose, field of view, angular resolution and observatory location. Early attempts at x-ray spectroscopy include ROSAT; more recently, astronomers have used diffuse x-ray spectrometers, XMM Newton, sounding rocket calorimeters, and Suzaku. Future observations are expected with calorimeters on the Spectrum Roentgen Gamma mission, and the Solar Wind Charge Exchange (SWCX). The Geospheric SWCX may provide remote sensing of the solar wind and magnetosheath and remote observations of solar CMEs moving outward from the sun.

  2. Experimental evaluation of a MOSFET dosimeter for proton dose measurements.

    PubMed

    Kohno, Ryosuke; Nishio, Teiji; Miyagishi, Tomoko; Hirano, Eriko; Hotta, Kenji; Kawashima, Mitsuhiko; Ogino, Takashi

    2006-12-07

    The metal oxide semiconductor field-effect transistor (MOSFET) dosimeter has been widely studied for use as a dosimeter for patient dose verification. The major advantage of this detector is its size, which acts as a point dosimeter, and also its ease of use. The commercially available TN502RD MOSFET dosimeter manufactured by Thomson and Nielsen has never been used for proton dosimetry. Therefore we used the MOSFET dosimeter for the first time in proton dose measurements. In this study, the MOSFET dosimeter was irradiated with 190 MeV therapeutic proton beams. We experimentally evaluated dose reproducibility, linearity, fading effect, beam intensity dependence and angular dependence for the proton beam. Furthermore, the Bragg curve and spread-out Bragg peak were also measured and the linear-energy transfer (LET) dependence of the MOSFET response was investigated. Many characteristics of the MOSFET response for proton beams were the same as those for photon beams reported in previous papers. However, the angular MOSFET responses at 45, 90, 135, 225, 270 and 315 degrees for proton beams were over-responses of about 15%, and moreover the MOSFET response depended strongly on the LET of the proton beam. This study showed that the angular dependence and LET dependence of the MOSFET response must be considered very carefully for quantitative proton dose evaluations.

  3. Multiframe super resolution reconstruction method based on light field angular images

    NASA Astrophysics Data System (ADS)

    Zhou, Shubo; Yuan, Yan; Su, Lijuan; Ding, Xiaomin; Wang, Jichao

    2017-12-01

    The plenoptic camera can directly obtain 4-dimensional light field information from a 2-dimensional sensor. However, based on the sampling theorem, the spatial resolution is greatly limited by the microlenses. In this paper, we present a method of reconstructing high-resolution images from the angular images. First, the ray tracing method is used to model the telecentric-based light field imaging process. Then, we analyze the subpixel shifts between the angular images extracted from the defocused light field data and the blur in the angular images. According to the analysis above, we construct the observation model from the ideal high-resolution image to the angular images. Applying the regularized super resolution method, we can obtain the super resolution result with a magnification ratio of 8. The results demonstrate the effectiveness of the proposed observation model.

  4. INTERNAL GRAVITY WAVES IN MASSIVE STARS: ANGULAR MOMENTUM TRANSPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T. M.; Lin, D. N. C.; McElwaine, J. N.

    2013-07-20

    We present numerical simulations of internal gravity waves (IGW) in a star with a convective core and extended radiative envelope. We report on amplitudes, spectra, dissipation, and consequent angular momentum transport by such waves. We find that these waves are generated efficiently and transport angular momentum on short timescales over large distances. We show that, as in Earth's atmosphere, IGW drive equatorial flows which change magnitude and direction on short timescales. These results have profound consequences for the observational inferences of massive stars, as well as their long term angular momentum evolution. We suggest IGW angular momentum transport may explainmore » many observational mysteries, such as: the misalignment of hot Jupiters around hot stars, the Be class of stars, Ni enrichment anomalies in massive stars, and the non-synchronous orbits of interacting binaries.« less

  5. Collision-energy-resolved angular distribution of Penning electrons for N 2-He ∗(2 3S)

    NASA Astrophysics Data System (ADS)

    Hanzawa, Yoshinori; Kishimoto, Naoki; Yamazaki, Masakazu; Ohno, Koichi

    2006-07-01

    The collision-energy-resolved angular distributions of Penning electrons for individual ionic state of N 2-He ∗(2 3S) were measured. The angular distributions showed increasing intensity in the backward (rebounding) directions with respect to initial He ∗(2 3S) beam vector because Penning ionization occurs with a collision against repulsive interaction wall followed by the electron emission from 2s orbital of He ∗. We also analyzed internal angular distribution by means of fitting parameters using classical trajectory calculations for N 2-He ∗(2 3S) on the modified interaction potential. These internal angular distributions suggested the electron emission from 2s orbital of He ∗ and they depended on collision energy and electron kinetic energy.

  6. Theories of time-dependent and time-independent nearside-farside reactive scattering dynamics

    NASA Astrophysics Data System (ADS)

    Monks, Phillip David Durrant

    The first application of nearside-farside (NF) theory is made to the time-dependent partial wave series (PWS) representation of the scattering amplitude for the reaction H + D[2](v = 0,j = 0, m = 0) → HD(v' = 3,j' = 0, m'= 0) + D. Time-dependent NF angular distributions and time-dependent NF local angular momenta (LAMs) are defined and used to analyse the dynamics in terms of time- direct and time-delayed reaction mechanisms. The concept of a cumulative time-evolving differential cross section (DCS) is introduced and used to provide a new method for visualising the time evolution of a chemical reaction. Time-independent NF DCS and LAM analyses of the H + D[2] reaction are presented, highlighting a distinctive "trench-ridge" feature present in the full and N LAMs. It is used to define a cut line which separates the energy-analogs of the two time- distinct reaction mechanisms. This trench-ridge feature is shown to be an interference between the time-direct (backward-scattered) and time-delayed (forward-scattered) reaction mechanisms. Resummation PWS theory is used to "clean" plots of the NF DCSs and LAMs of unphysical effects. A limitation of the resummation theory is described, whereby unphysical behaviour is sometimes introduced into the N and F subamplitudes. A technique for predicting and avoiding these undesired effects is used to further improve the usefulness of the resummation technique. The fundamental identity for NF local angular momenta is stated and derived by two methods. This identity gives rise to a CLAM plot (where CLAM denotes Cross section x LAM), which provides insight into the empirical obsei'vation that DCS and LAM analyses give consistent, yet complementary, information on the reaction dynamics. Applications are reported for the H + D[2] reaction, as well as for F + H[2](v = 0,j=0, m = 0)→ FH(v' = 3,j' = 3, m' = 0) + H. The angular time-delay for a state-to-state reactive collision often displays complicated behaviour. It is shown for the H + D[2] and F + H[2] reactions that this behaviour is caused by NF interference. The fundamental identity for NF angular time-delays is stated, and CATD (Cross section x Angular Time-Delay) results are reported, which provide further insight into the properties of the angular time-delay.

  7. Emissivity Measurements of Additively Manufactured Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Robert Vaughn; Reid, Robert Stowers; Baker, Andrew M.

    The emissivity of common 3D printing materials such as ABS and PLA were measured using a reflectivity meter and have the measured value of approximately 0.92. Adding a conductive material to the filament appears to cause a decrease in the emissivity of the surface. The angular dependence of the emissivity and the apparent temperature was measured using a FLIR infrared camera showing that the emissivity does not change much for shallow angles less than 40 angular degrees, and drops off dramatically after 70 angular degrees.

  8. On the angular and energy distribution of solar neutrons generated in P-P reactions

    NASA Technical Reports Server (NTRS)

    Efimov, Y. E.; Kocharov, G. E.

    1985-01-01

    The problem of high energy neutron generation in P-P reactions in the solar atmosphere is reconsidered. It is shown that the angular distribution of emitted neutrons is anisotropic and the energy spectrum of neutrons depends on the angle of neutron emission.

  9. Determination of Geometric and Kinematical Parameters of Coronal Mass Ejections Using STEREO Data

    NASA Astrophysics Data System (ADS)

    Fainshtein, V. G.; Tsivileva, D. M.; Kashapova, L. K.

    2010-03-01

    We present a new, relatively simple and fast method to determine true geometric and kinematical CME parameters from simultaneous STEREO A, B observations of CMEs. These parameters are the three-dimensional direction of CME propagation, velocity and acceleration of CME front, CME angular sizes and front position depending on time. The method is based on the assumption that CME shape may be described by a modification of so-called ice-cream cone models. The method has been tested for several CMEs.

  10. Angular Dependence of Liquid Crystal Based Nematic Acoustic Field Imaging Devices

    DTIC Science & Technology

    1980-04-01

    wave arid a linearl t Polarized light wave# The nematic cell is constructed bv insertinsI the liouid crvstal between two sheets of glass cheicallA...perpendicular to the glass sheets. Noratall no li:. ht is transmitted if the cell is observed between crossed- Folarizers. However, if an ultrasonic...reported the rarrow’ar,:ialar r;n.rte for the effect becomes broadened when thin glass is used for the cell, -el • _____ __ Xi this repcrt we rjescribe

  11. Studies of radiative transfer in the earth's atmosphere with emphasis on the influence of the radiation budget in the joint institute for advancement of flight sciences at the NASA-Langley Research Center

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Earth and solar radiation budget measurements were examined. Sensor calibration and measurement accuracy were emphasized. Past works on the earth's radiation field that must be used in reducing observations of the radiation field were reviewed. Using a finite difference radiative transfer algorithm, models of the angular and spectral dependence of the earth's radiation field were developed.

  12. Small Fermi surfaces of PtSn4 and Pt3In7

    NASA Astrophysics Data System (ADS)

    Yara, T.; Kakihana, M.; Nishimura, K.; Hedo, M.; Nakama, T.; Ōnuki, Y.; Harima, H.

    2018-05-01

    An extremely large magnetoresistance of PtSn4 has been recently observed and discussed from a viewpoint of de Haas-van Alphen (dHvA) oscillations and theoretical small Fermi surfaces. We have studied precisely the Fermi surfaces by measuring angular dependences of dHvA frequencies and have also carried out the full potential LAPW band calculation. Furthermore, small Fermi surfaces have been detected in another Pt-based compound of Pt3In7 with the cubic structure.

  13. Resonance and Chaotic Trajectories in Magnetic Field Reversed Configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.S. Landsman; S.A. Cohen; M. Edelman

    The nonlinear dynamics of a single ion in a field-reversed configuration (FRC) were investigated. FRC is a toroidal fusion device which uses a specific type of magnetic field to confine ions. As a result of angular invariance, the full three-dimensional Hamiltonian system can be expressed as two coupled, highly nonlinear oscillators. Due to the high nonlinearity in the equations of motion, the behavior of the system is extremely complex, showing different regimes, depending on the values of the conserved canonical angular momentum and the geometry of the fusion vessel. Perturbation theory and averaging were used to derive the unperturbed Hamiltonianmore » and frequencies of the two degrees of freedom. The derived equations were then used to find resonances and compare to Poincar{copyright} surface-of-section plots. A regime was found where the nonlinear resonances were clearly separated by KAM [Kolmogorov-Arnold-Mosher] curves. The structure of the observed island chains was explained. The condition for the destruction of KAM curves and the onset of strong chaos was derived, using Chirikov island overlap criterion, and shown qualitatively to depend both on the canonical angular momentum and geometry of the device. After a brief discussion of the adiabatic regime the paper goes on to explore the degenerate regime that sets in at higher values of angular momenta. In this regime, the unperturbed Hamiltonian can be approximated as two uncoupled linear oscillators. In this case, the system is near-integrable, except in cases of a universal resonance, which results in large island structures, due to the smallness of nonlinear terms, which bound the resonance. The linear force constants, dominant in this regime, were derived and the geometry for a large one-to-one resonance identified. The above analysis showed good agreement with numerical simulations and was able to explain characteristic features of the dynamics.« less

  14. Reflection spectra and their angular dependences of one-dimensional photonic crystals based on aluminium oxide

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Yashin, M. M.; Pudovkin, A. V.; Vodchits, A. I.

    2017-11-01

    The article considers optical properties (transmission and reflection) of one-dimensional photonic crystals based on mesoporous anodic aluminum oxide, with periods of crystal lattices 188 and 194 nm. A comparison of the experimentally measured reflection spectrum in the spectral region of the first stop-zone with the theoretical dependence obtained from the dispersion relation for one-dimensional photonic crystal is carried out. The angular dependence of the first stop-zone spectral positions of one-dimensional photonic crystal is established. The authors analyze the possibility of applications of mesoporous one-dimensional photonic crystals based on aluminum oxide as the selective narrowband filters and mirrors.

  15. Mitigation of radiation-pressure-induced angular instability of a Fabry-Perot cavity consisting of suspended mirrors

    NASA Astrophysics Data System (ADS)

    Nagano, Koji; Enomoto, Yutaro; Nakano, Masayuki; Furusawa, Akira; Kawamura, Seiji

    2016-12-01

    To observe radiation pressure noise in optical cavities consisting of suspended mirrors, high laser power is necessary. However, because the radiation pressure on the mirrors could cause an angular anti-spring effect, the high laser power could induce angular instability to the cavity. An angular control system using radiation pressure as an actuator, which was previously invented to reduce the anti-spring effect for the low power case, was applied to the higher power case where the angular instability would occur. As a result the angular instability was mitigated. It was also demonstrated that the cavity was unstable without this control system.

  16. The impact of surface-polish on the angular and wavelength dependence of fiber focal ratio degradation

    NASA Astrophysics Data System (ADS)

    Eigenbrot, Arthur D.; Bershady, Matthew A.; Wood, Corey M.

    2012-09-01

    We present measurements of how multimode fiber focal-ratio degradation (FRD) and throughput vary with levels of fiber surface polish from 60 to 0.5 micron grit. Measurements used full-beam and laser injection methods at wavelengths between 0.4 and 0.8 microns on 17 meter lengths of Polymicro FBP 300 and 400 μm core fiber. Full-beam injection probed input focal-ratios between f/3 and f/13.5, while laser injection allowed us to isolate FRD at discrete injection angles up to 17 degrees (f/1.6 marginal ray). We find (1) FRD effects decrease as grit size decreases, with the largest gains in beam quality occurring at grit sizes above 5 μm (2) total throughput increases as grit size decreases, reaching 90% at 790 nm with the finest polishing levels; (3) total throughput is higher at redder wavelengths for coarser polishing grit, indicating surface-scattering as the primary source of loss. We also quantify the angular dependence of FRD as a function of polishing level. Our results indicate that a commonly adopted micro-bending model for FRD is a poor descriptor of the observed phenomenon.

  17. Angular dependence of primordial trispectra and CMB spectral distortions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiraishi, Maresuke; Bartolo, Nicola; Liguori, Michele, E-mail: maresuke.shiraishi@ipmu.jp, E-mail: nicola.bartolo@pd.infn.it, E-mail: michele.liguori@pd.infn.it

    2016-10-01

    Under the presence of anisotropic sources in the inflationary era, the trispectrum of the primordial curvature perturbation has a very specific angular dependence between each wavevector that is distinguishable from the one encountered when only scalar fields are present, characterized by an angular dependence described by Legendre polynomials. We examine the imprints left by curvature trispectra on the TT μ bispectrum, generated by the correlation between temperature anisotropies (T) and chemical potential spectral distortions (μ) of the Cosmic Microwave Background (CMB). Due to the angular dependence of the primordial signal, the corresponding TT μ bispectrum strongly differs in shape frommore » TT μ sourced by the usual g {sub NL} or τ{sub NL} local trispectra, enabling us to obtain an unbiased estimation. From a Fisher matrix analysis, we find that, in a cosmic-variance-limited (CVL) survey of TT μ, a minimum detectable value of the quadrupolar Legendre coefficient is d {sub 2} ∼ 0.01, which is 4 orders of magnitude better than the best value attainable from the TTTT CMB trispectrum. In the case of an anisotropic inflationary model with a f (φ) F {sup 2} interaction (coupling the inflaton field φ with a vector kinetic term F {sup 2}), the size of the curvature trispectrum is related to that of quadrupolar power spectrum asymmetry, g {sub *}. In this case, a CVL measurement of TT μ makes it possible to measure g {sub *} down to 10{sup −3}.« less

  18. Evidence for changes in the angular velocity of the surface regions of the sun and stars

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A round table discussion of problems of solar and stellar spindown and theory is presented. Observational evidence of the angular momentum of the solar wind is included, emphasizing changes in the angular velocity of the surface regions of the sun and stars.

  19. Investigation of discrete states and quasidiscrete structures observed in 150Sm and 152Sm using the ( p,tγ) reaction

    DOE PAGES

    Peter, Humby; Simon, Anna; Beausang, C. W.; ...

    2016-01-01

    New levels and γ-ray transitions were identified in 150,152Sm utilizing the (p,t) reaction and particle-γ coincidence data. A large, peak-like structure observed between 2.3–3.0 MeV in excitation energy in the triton energy spectra was also investigated. The orbital angular-momentum transfer was probed by comparing the experimental angular distributions of the outgoing tritons to calculated distorted wave Born approximation curves. The angular distributions of the outgoing tritons populating the peak-like structure are remarkably similar in the two reactions and are significantly different from the angular distributions associated with the nearby continuum region. Relative partial cross sections for the observed levels, anglemore » averaged between 34 and 58 degrees, were measured. In 150Sm, 39(4)% of the strength of the peak-like structure could be accounted for by the observed discrete states. This compares with a value of 93(15)% for 152Sm« less

  20. Investigation of discrete states and quasidiscrete structures observed in 150Sm and 152Sm using the ( p,tγ) reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter, Humby; Simon, Anna; Beausang, C. W.

    New levels and γ-ray transitions were identified in 150,152Sm utilizing the (p,t) reaction and particle-γ coincidence data. A large, peak-like structure observed between 2.3–3.0 MeV in excitation energy in the triton energy spectra was also investigated. The orbital angular-momentum transfer was probed by comparing the experimental angular distributions of the outgoing tritons to calculated distorted wave Born approximation curves. The angular distributions of the outgoing tritons populating the peak-like structure are remarkably similar in the two reactions and are significantly different from the angular distributions associated with the nearby continuum region. Relative partial cross sections for the observed levels, anglemore » averaged between 34 and 58 degrees, were measured. In 150Sm, 39(4)% of the strength of the peak-like structure could be accounted for by the observed discrete states. This compares with a value of 93(15)% for 152Sm« less

  1. Direct observation of forward-scattering oscillations in the H+HD→H2+D reaction.

    PubMed

    Yuan, Daofu; Yu, Shengrui; Chen, Wentao; Sang, Jiwei; Luo, Chang; Wang, Tao; Xu, Xin; Casavecchia, Piergiorgio; Wang, Xingan; Sun, Zhigang; Zhang, Dong H; Yang, Xueming

    2018-06-01

    Accurate measurements of product state-resolved angular distributions are central to fundamental studies of chemical reaction dynamics. Yet, fine quantum-mechanical structures in product angular distributions of a reactive scattering process, such as the fast oscillations in the forward-scattering direction, have never been observed experimentally and the nature of these oscillations has not been fully explored. Here we report the crossed-molecular-beam experimental observation of these fast forward-scattering oscillations in the product angular distribution of the benchmark chemical reaction, H + HD → H 2  + D. Clear oscillatory structures are observed for the H 2 (v' = 0, j' = 1, 3) product states at a collision energy of 1.35 eV, in excellent agreement with the quantum-mechanical dynamics calculations. Our analysis reveals that the oscillatory forward-scattering components are mainly contributed by the total angular momentum J around 28. The partial waves and impact parameters responsible for the forward scatterings are also determined from these observed oscillations, providing crucial dynamics information on the transient reaction process.

  2. Testing the cosmological principle of isotropy: local power-spectrum estimates of the WMAP data

    NASA Astrophysics Data System (ADS)

    Hansen, F. K.; Banday, A. J.; Górski, K. M.

    2004-11-01

    We apply the Gabor transform methodology proposed by Hansen et al. to the WMAP data in order to test the statistical properties of the cosmic microwave background (CMB) fluctuation field and specifically to evaluate the fundamental assumption of cosmological isotropy. In particular, we apply the transform with several apodization scales, thus allowing the determination of the positional dependence of the angular power spectrum with either high spatial localization or high angular resolution (i.e. narrow bins in multipole space). Practically, this implies that we estimate the angular power spectrum locally in discs of various sizes positioned in different directions: small discs allow the greatest sensitivity to positional dependence, whereas larger discs allow greater sensitivity to variations over different angular scales. In addition, we determine whether the spatial position of a few outliers in the angular power spectrum could suggest the presence of residual foregrounds or systematic effects. For multipoles close to the first peak, the most deviant local estimates from the best-fitting WMAP model are associated with a few particular areas close to the Galactic plane. Such deviations also include the `dent' in the spectrum just shortward of the first peak which was remarked upon by the WMAP team. Estimating the angular power spectrum excluding these areas gives a slightly higher first Doppler peak amplitude. Finally, we probe the isotropy of the largest angular scales by estimating the power spectrum on hemispheres and reconfirm strong indications of a north-south asymmetry previously reported by other authors. Indeed, there is a remarkable lack of power in a region associated with the North ecliptic Pole. With the greater fidelity in l-space allowed by this larger sky coverage, we find tentative evidence for residual foregrounds in the range l= 2-4, which could be associated with the low measured quadrupole amplitudes and other anomalies on these angular scales (e.g. planarity and alignment). However, over the range l= 5-40 the observed asymmetry is much harder to explain in terms of residual foregrounds and known systematic effects. By reorienting the coordinate axes, we partition the sky into different hemispheres and search for the reference frame which maximizes the asymmetric distribution of power. The North Pole for this coordinate frame is found to intersect the sphere at (80°, 57°) in Galactic colatitude and longitude over almost the entire multipole range l= 5-40. Furthermore, the strong negative outlier at l= 21 and the strong positive outlier at l= 39, as determined from the global power spectrum by the WMAP team, are found to be associated with the Northern and Southern hemispheres, respectively (in this frame of maximum asymmetry). Thus, these two outliers follow the general tendency of the multipoles l= 5-40 to be of systematically lower amplitude in the north and higher in the south. Such asymmetric distributions of power on the sky provide a serious test for the cosmological principle of isotropy.

  3. On the measurement of airborne, angular-dependent sound transmission through supercritical bars.

    PubMed

    Shaw, Matthew D; Anderson, Brian E

    2012-10-01

    The coincidence effect is manifested by maximal sound transmission at angles at which trace wave number matching occurs. Coincidence effect theory is well-defined for unbounded thin plates using plane-wave excitation. However, experimental results for finite bars are known to diverge from theory near grazing angles. Prior experimental work has focused on pulse excitation. An experimental setup has been developed to observe coincidence using continuous- wave excitation and phased-array methods. Experimental results with an aluminum bar exhibit maxima at the predicted angles, showing that coincidence is observable using continuous waves. Transmission near grazing angles is seen to diverge from infinite plate theory.

  4. Rotation of low-mass stars - A new probe of stellar evolution

    NASA Technical Reports Server (NTRS)

    Pinsonneault, M. H.; Kawaler, Steven D.; Demarque, P.

    1990-01-01

    Models of stars of various masses and rotational parameters were developed and compared with observations of stars in open clusters of various ages in order to analyze the evolution of rotating stars from the early premain sequence to an age of 1.7 x 10 to the 9th yrs. It is shown that, for stars older than 10 to the 8th yrs and less massive than 1.1 solar mass, the surface rotation rates depend most strongly on the properties of the angular momentum loss. The trends of the currently available observations suggest that the rotation periods are a good indicator of the field-star ages.

  5. Radiometric Spacecraft Tracking for Deep Space Navigation

    NASA Technical Reports Server (NTRS)

    Lanyi, Gabor E.; Border, James S.; Shin, Dong K.

    2008-01-01

    Interplanetary spacecraft navigation relies on three types of terrestrial tracking observables.1) Ranging measures the distance between the observing site and the probe. 2) The line-of-sight velocity of the probe is inferred from Doppler-shift by measuring the frequency shift of the received signal with respect to the unshifted frequency. 3) Differential angular coordinates of the probe with respect to natural radio sources are nominally obtained via a differential delay technique of (Delta) DOR (Delta Differential One-way Ranging). The accuracy of spacecraft coordinate determination depends on the measurement uncertainties associated with each of these three techniques. We evaluate the corresponding sources of error and present a detailed error budget.

  6. Inelastic scattering in planetary atmospheres. I - The Ring effect, without aerosols

    NASA Technical Reports Server (NTRS)

    Kattawar, G. W.; Young, A. T.; Humphreys, T. J.

    1981-01-01

    The contribution of inelastic molecular scattering (Rayleigh-Brillouin and rotational Raman scattering) to the filling-in of Fraunhofer lines in the light of the blue sky is studied. Aerosol fluorescence is shown to be negligible, and aerosol scattering is ignored. The angular and polarization dependences of the filling-in detail for single scattering are discussed. An approximate treatment of multiple scattering, using a backward Monte Carlo technique, makes it possible to investigate the effects of the ground albedo. As the molecular scatterings alone produce more line-filling than is observed, it seems likely that aerosols dilute the effect by contributing unaltered sunlight to the observed spectra.

  7. Dual-polarity plasmonic metalens for visible light

    NASA Astrophysics Data System (ADS)

    Chen, Xianzhong; Huang, Lingling; Mühlenbernd, Holger; Li, Guixin; Bai, Benfeng; Tan, Qiaofeng; Jin, Guofan; Qiu, Cheng-Wei; Zhang, Shuang; Zentgraf, Thomas

    2012-11-01

    Surface topography and refractive index profile dictate the deterministic functionality of a lens. The polarity of most lenses reported so far, that is, either positive (convex) or negative (concave), depends on the curvatures of the interfaces. Here we experimentally demonstrate a counter-intuitive dual-polarity flat lens based on helicity-dependent phase discontinuities for circularly polarized light. Specifically, by controlling the helicity of the input light, the positive and negative polarity are interchangeable in one identical flat lens. Helicity-controllable real and virtual focal planes, as well as magnified and demagnified imaging, are observed on the same plasmonic lens at visible and near-infrared wavelengths. The plasmonic metalens with dual polarity may empower advanced research and applications in helicity-dependent focusing and imaging devices, angular-momentum-based quantum information processing and integrated nano-optoelectronics.

  8. Varying electronegativity of OH/O- groups depending on the nature and strength of H-bonding in phenol/phenolate involved in H-bond complexation.

    PubMed

    Krygowski, Tadeusz M; Szatyłowicz, Halina

    2006-06-08

    Application of the Domenicano et al. method of estimating group electronegativity from angular geometry of the ring in monosubstituted benzene derivatives allowed us to find how the electronegativity of OH/O(-) groups in H-bonded complexes of phenol and phenolate depends on the nature and strength of H-bond. For complexes in which the OH group is only proton donating in the H-bond, a linear dependence of the estimated electronegativity on O...O(N) interatomic distance was found for experimental (CSD base retrieved) data. The following rule is observed: the weaker the H-bond is, the more electronegative the OH group is. If apart from this kind of interaction the oxygen is proton accepting, then an increase of electronegativity is observed. Modeling (B3LYP/6-311+G) the variation of the strength of the H-bond by the fluoride anion approaching the OH leads to qualitatively the same picture as the scatter plots for experimental data.

  9. The effects of obesity on balance recovery using an ankle strategy.

    PubMed

    Matrangola, Sara L; Madigan, Michael L

    2011-06-01

    Obesity is associated with an increased risk of falls. The purpose of this study was to investigate the effects of obesity on balance recovery using an ankle strategy. In addition, computer simulations to understand how increased inertia and weight associated with obesity independently influence balance recovery. Ten normal weight (BMI: 22.7±0.6 kg/m(2)) and ten obese (BMI: 32.2±2.2 kg/m(2)) adult male subjects participated in the study. Subjects recovered balance using an ankle strategy after three types of postural perturbations: an initial angular displacement, an initial angular velocity from the natural stance, and an initial angular velocity from a prescribed position. Balance recovery was quantified by the largest initial angular displacement or angular velocity from which balance could be recovered. Obesity impaired balance recovery from perturbations involving an initial angular velocity, but not from an initial angular displacement. Similarly, computer simulations determined that increased inertia is beneficial to balance recovery when there is little to no initial angular velocity. These findings indicate that the effects of obesity on balance recovery are dependent on the type of perturbation, and that increased inertia associated with obesity can be beneficial for perturbations that involve little to no initial angular velocity. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Study on optical 3D angular deformations measurement

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Wang, Xingshu; Huang, Zongsheng; Yang, Jinliang

    2013-12-01

    3D angular deformations will be inevitable when ships are sailing, due to the changes of the environmental temperature and external stresses. The measurement of 3D angular deformations is one of the most critical and difficult issues in navy and shipbuilding industry around the world. In this paper, we propose an optical method to measure 3D ship angular deformations and discuss the measurement errors in detail. Theoretical analysis shows that the measured errors of the pitching and yawing deformations are induced by the installation errors of the image aperture, and the measured error of the rolling deformation depends on the subpixel location algorithm in image processing. It indicates that the measured errors of the optical measurement proposed in this paper are at the magnitude of angular seconds, when the elaborated installation and precise image processing technology are both performed.

  11. Microscopic analysis of homogeneous electron gas by considering dipole-dipole interaction

    NASA Astrophysics Data System (ADS)

    Bordbar, G. H.; Pouresmaeeli, F.

    2017-12-01

    Implying perturbation theory, the impact of the dipole-dipole interaction (DDI) on the thermodynamic properties of a homogeneous electron gas at zero temperature is investigated. Through the second quantization formalism, the analytic expressions for the ground state energy and the DDI energy are obtained. In this paper, the DDI energy has similarities with the previous works done by others. We show that its general behavior depends on density and the total angular momentum. Especially, it is found that the DDI energy has a highly state-dependent behavior. With the growth of density, the magnitude of DDI energy, which is found to be the summation of all energy contributions of the states with even and odd total angular momenta, grows linearly. It is also found that for the states with even and odd total angular momenta, the DDI energy contributions are corresponding to the positive and negative values, respectively. In particular, an increase of total angular momentum leads to decline in the magnitude of energy contribution. Therefore, the dipole-dipole interaction reveals distinct characteristics in comparison with central-like interactions.

  12. Altered machinery of protein synthesis is region- and stage-dependent and is associated with α-synuclein oligomers in Parkinson's disease.

    PubMed

    Garcia-Esparcia, Paula; Hernández-Ortega, Karina; Koneti, Anusha; Gil, Laura; Delgado-Morales, Raul; Castaño, Ester; Carmona, Margarita; Ferrer, Isidre

    2015-12-01

    Parkinson's disease (PD) is characterized by the accumulation of abnormal α-synuclein in selected regions of the brain following a gradient of severity with disease progression. Whether this is accompanied by globally altered protein synthesis is poorly documented. The present study was carried out in PD stages 1-6 of Braak and middle-aged (MA) individuals without alterations in brain in the substantia nigra, frontal cortex area 8, angular gyrus, precuneus and putamen. Reduced mRNA expression of nucleolar proteins nucleolin (NCL), nucleophosmin (NPM1), nucleoplasmin 3 (NPM3) and upstream binding transcription factor (UBF), decreased NPM1 but not NPM3 nucleolar protein immunostaining in remaining neurons; diminished 18S rRNA, 28S rRNA; reduced expression of several mRNAs encoding ribosomal protein (RP) subunits; and altered protein levels of initiation factor eIF3 and elongation factor eEF2 of protein synthesis was found in the substantia nigra in PD along with disease progression. Although many of these changes can be related to neuron loss in the substantia nigra, selective alteration of certain factors indicates variable degree of vulnerability of mRNAs, rRNAs and proteins in degenerating sustantia nigra. NPM1 mRNA and 18S rRNA was increased in the frontal cortex area 8 at stage 5-6; modifications were less marked and region-dependent in the angular gyrus and precuneus. Several RPs were abnormally regulated in the frontal cortex area 8 and precuneus, but only one RP in the angular gyrus, in PD. Altered levels of eIF3 and eIF1, and decrease eEF1A and eEF2 protein levels were observed in the frontal cortex in PD. No modifications were found in the putamen at any time of the study except transient modifications in 28S rRNA and only one RP mRNA at stages 5-6. These observations further indicate marked region-dependent and stage-dependent alterations in the cerebral cortex in PD. Altered solubility and α-synuclein oligomer formation, assessed in total homogenate fractions blotted with anti-α-synuclein oligomer-specific antibody, was demonstrated in the substantia nigra and frontal cortex, but not in the putamen, in PD. Dramatic increase in α-synuclein oligomers was also seen in fluorescent-activated cell sorter (FACS)-isolated nuclei in the frontal cortex in PD. Altered machinery of protein synthesis is altered in the substantia nigra and cerebral cortex in PD being the frontal cortex area 8 more affected than the angular gyrus and precuneus; in contrast, pathways of protein synthesis are apparently preserved in the putamen. This is associated with the presence of α-synuclein oligomeric species in total homogenates; substantia nigra and frontal cortex are enriched, albeit with different band patterns, in α-synuclein oligomeric species, whereas α-synuclein oligomers are not detected in the putamen.

  13. Antiferromagnetic exchange coupling measurements on single Co clusters

    NASA Astrophysics Data System (ADS)

    Wernsdorfer, W.; Leroy, D.; Portemont, C.; Brenac, A.; Morel, R.; Notin, L.; Mailly, D.

    2009-03-01

    We report on single-cluster measurements of the angular dependence of the low-temperature ferromagnetic core magnetization switching field in exchange-coupled Co/CoO core-shell clusters (4 nm) using a micro-bridge DC superconducting quantum interference device (μ-SQUID). It is observed that the coupling with the antiferromagnetic shell induces modification in the switching field for clusters with intrinsic uniaxial anisotropy depending on the direction of the magnetic field applied during the cooling. Using a modified Stoner-Wohlfarth model, it is shown that the core interacts with two weakly coupled and asymmetrical antiferromagnetic sublattices. Ref.: C. Portemont, R. Morel, W. Wernsdorfer, D. Mailly, A. Brenac, and L. Notin, Phys. Rev. B 78, 144415 (2008)

  14. Pseudorapidity and transverse momentum dependence of flow harmonics in pPb and PbPb collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    2017-10-21

    Measurements of azimuthal angular correlations are presented for high-multiplicity pPb collisions atmore » $$\\sqrt{s_\\mathrm{NN}}=$$ 5.02 TeV and peripheral PbPb collisions at $$\\sqrt{s_\\mathrm{NN}}=$$ 2.76 TeV. The data used in this work were collected with the CMS detector at the CERN LHC. Fourier coefficients as functions of transverse momentum and pseudorapidity are studied using the scalar product method, 4-, 6-, and 8-particle cumulants, and the Lee-Yang zeros technique. The influence of event plane decorrelation is evaluated using the scalar product method and found to account for most of the observed pseudorapidity dependence.« less

  15. (2 + 1) resonant enhanced multiphoton ionization of H2 via the E,F 1Sigma(+)g state

    NASA Technical Reports Server (NTRS)

    Rudolph, H.; Lynch, D. L.; Dixit, S. N.; Mckoy, V.; Huo, Winifred M.

    1987-01-01

    In this paper, the results of ab initio calculations of photoelectron angular distributions and vibrational branching ratios for the (2 + 1) resonant enhanced multiphoton ionization (REMPI) of H2 via the E,F 1Sigma(+)g state are reported, and these are compared with the experimental data of Anderson et al. (1984). These results show that the observed non-Franck-Condon behavior is predominantly due to the R dependence of the transition matrix elements, and to a lesser degree to the energy dependence. This work presents the first molecular REMPI study employing a correlated wave function to describe the Rydberg-valence mixing in the resonant intermediate state.

  16. Angular Dispersions in Terahertz Metasurfaces: Physics and Applications

    NASA Astrophysics Data System (ADS)

    Qiu, Meng; Jia, Min; Ma, Shaojie; Sun, Shulin; He, Qiong; Zhou, Lei

    2018-05-01

    Angular dispersion—the response of a metasurface strongly depending on the impinging angle—is an intrinsic property of metasurfaces, but its physical origin remains obscure, which hinders its applications in metasurface design. We establish a theory to quantitatively describe such intriguing effects in metasurfaces, and we verify it by both experiments and numerical simulations on a typical terahertz metasurface. The physical understanding gained motivates us to propose an alternative strategy to design metadevices exhibiting impinging-angle-dependent multifunctionalities. As an illustration, we design a polarization-control metadevice that can behave as a half- or quarter-wave plate under different excitation angles. Our results not only reveal the physical origin of the angular dispersion but also point out an additional degree of freedom to manipulate light, both of which are important for designing metadevices facing versatile application requests.

  17. Angular-dependent polarization-insensitive filter fashioned with zero-contrast grating.

    PubMed

    Gao, Xumin; Wu, Tong; Xu, Yin; Li, Xin; Bai, Dan; Zhu, Gangyi; Zhu, Hongbo; Wang, Yongjin

    2015-06-15

    We report here an angular-dependent polarization-insensitive filter fashioned with a free-standing zero-contrast grating (ZCG), which is implemented on an HfO(2)/Silicon platform. The spectral characteristics are investigated by rigorous coupled-wave analysis method and measured on angular-resolved micro-reflectance system. The proposed ZCG structure experimentally shows that the polarization-insensitive resonances occur at 595nm for the incidence angle θ of 12.8° and 500nm for the incidence angle θ of 14.2°. When the incident light is normal to the grating surface, the ZCG device generates yellow and red colors for p- and s-polarization, respectively. The experimental results are in good agreement with the simulations, which indicate that the free-standing ZCG device is promising for polarization-insensitive filter and polarization-controlled tunable color filter.

  18. Angle-resolved Wigner time delay in atomic photoionization: The 4 d subshell of free and confined Xe

    NASA Astrophysics Data System (ADS)

    Mandal, A.; Deshmukh, P. C.; Kheifets, A. S.; Dolmatov, V. K.; Manson, S. T.

    2017-11-01

    The angular dependence of photoemission time delay for the inner n d3 /2 and n d5 /2 subshells of free and confined Xe is studied in the dipole relativistic random phase approximation. A finite spherical annular well potential is used to model the confinement due to fullerene C60 cage. Near cancellations in a variety of the dipole amplitudes, Cooper-like minima, are found. The effects of confinement on the angular dependence, primarily confinement resonances, are demonstrated and detailed.

  19. Investigation of angular dependence on photonic bandgap for 1-D photonic crystal

    NASA Astrophysics Data System (ADS)

    Nigam, Anjali; Suthar, B.; Bhargava, A.; Vijay, Y. K.

    2018-05-01

    In the present communication, we study the one-dimensional photonic crystal structure. The photonic band structure has been obtained using Plane Wave Expansion Method (PWEM). The studied has been extended to investigate the angular dependence on photonic bandgap for 1-D photonic crystal. The photonic bandgap is same both for TE and TM mode for normal incidence, while both mode move separate with an incidence angle. The photonic bandgap is almost unaffected with angle for TE mode while the bandgap decreases with an incidence angle for TM mode.

  20. cos ( 4 φ ) azimuthal anisotropy in small- x DIS dijet production beyond the leading power TMD limit

    DOE PAGES

    Dumitru, Adrian; Skokov, Vladimir

    2016-07-25

    Here we determine the first correction to the quadrupole operator in high-energy QCD beyond the transverse momentum dependent (TMD) limit of Weizsäcker-Williams and linearly polarized gluon distributions. These functions give rise to isotropic, respectively, ~cos2more » $$\\phi$$ angular distributions in deep inelastic scattering (DIS) dijet production. On the other hand, the correction produces a ~cos4$$\\phi$$ angular dependence which is suppressed by one additional power of the dijet transverse momentum scale (squared) P 2.« less

  1. Polarization resolved angular optical scattering of aerosol particles

    NASA Astrophysics Data System (ADS)

    Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui

    2014-05-01

    Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.

  2. RadioAstron Maser Observations: a Record in Angular Resolution

    NASA Astrophysics Data System (ADS)

    Sobolev, A. M.; Shakhvorostova, N. N.; Alakoz, A. V.; Baan, W. A.; RadioAstron Maser Team

    2017-06-01

    Extremely long baselines of the space-ground interferometer RadioAstron allow to achieve ultra-high angular resolutions. The possibility of detection of a maser emission with resolutions about tens of micro-arcseconds was arguable before successful experiments reported in this paper. We present the results of the maser survey obtained by RadioAstron during first 5 years of operation. Extremely high angular resolution of 11 microarcseconds have been achieved in observations of the megamaser galaxy NGC 4258. For the galaxy at the distance about 7 Mpc this corresponds to linear resolution around 80 AU. Very compact features with angular sizes about 20 micro-arcseconds have been detected in star-forming regions of our Galaxy. Corresponding linear sizes are about 5-10 millions of kilometers.

  3. Probing the Higgs with angular observables at future e +e – colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhen

    In this paper, I summarize our recent works on using differential observables to explore the physics potential of future e +e – colliders in the framework of Higgs effective field theory. This proceeding is based upon Refs. 1 and 2. We study angular observables in the e +e – → ZHℓ +ℓ –bmore » $$\\bar{b}$$ channel at future circular e +e – colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy √s = 240 GeV and 5 (30) ab –1 integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for the Higgsstrahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of constraining the “blind spot” in indirect limits on supersymmetric scalar top partners. Finally, we also discuss the possibility of using ZZ-fusion at e +e – machines at different energies to probe new operators.« less

  4. Probing the Higgs with angular observables at future e +e – colliders

    DOE PAGES

    Liu, Zhen

    2016-10-24

    In this paper, I summarize our recent works on using differential observables to explore the physics potential of future e +e – colliders in the framework of Higgs effective field theory. This proceeding is based upon Refs. 1 and 2. We study angular observables in the e +e – → ZHℓ +ℓ –bmore » $$\\bar{b}$$ channel at future circular e +e – colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy √s = 240 GeV and 5 (30) ab –1 integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for the Higgsstrahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of constraining the “blind spot” in indirect limits on supersymmetric scalar top partners. Finally, we also discuss the possibility of using ZZ-fusion at e +e – machines at different energies to probe new operators.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    García-Cervantes, H.; Sotolongo-Costa, O.; Gaggero-Sager, L. M.

    Graphene Superlattices (GSs) have attracted a lot of attention due to its peculiar properties as well as its possible technological implications. Among these characteristics we can mention: the extra Dirac points in the dispersion relation and the highly anisotropic propagation of the charge carriers. However, despite the intense research that is carried out in GSs, so far there is no report about the angular dependence of the Transmission Gap (TG) in GSs. Here, we report the dependence of TG as a function of the angle of the incident Dirac electrons in a rather simple Electrostatic GS (EGS). Our results showmore » that the angular dependence of the TG is intricate, since for moderated angles the dependence is parabolic, while for large angles an exponential dependence is registered. We also find that the TG can be modulated from meV to eV, by changing the structural parameters of the GS. These characteristics open the possibility for an angle-dependent bandgap engineering in graphene.« less

  6. Angular distribution of diffuse reflectance from incoherent multiple scattering in turbid media.

    PubMed

    Gao, M; Huang, X; Yang, P; Kattawar, G W

    2013-08-20

    The angular distribution of diffuse reflection is elucidated with greater understanding by studying a homogeneous turbid medium. We modeled the medium as an infinite slab and studied the reflection dependence on the following three parameters: the incident direction, optical depth, and asymmetry factor. The diffuse reflection is produced by incoherent multiple scattering and is solved through radiative transfer theory. At large optical depths, the angular distribution of the diffuse reflection with small incident angles is similar to that of a Lambertian surface, but, with incident angles larger than 60°, the angular distributions have a prominent reflection peak around the specular reflection angle. These reflection peaks are found originating from the scattering within one transport mean free path in the top layer of the medium. The maximum reflection angles for different incident angles are analyzed and can characterize the structure of angular distributions for different asymmetry factors and optical depths. The properties of the angular distribution can be applied to more complex systems for a better understanding of diffuse reflection.

  7. State observer for synchronous motors

    DOEpatents

    Lang, Jeffrey H.

    1994-03-22

    A state observer driven by measurements of phase voltages and currents for estimating the angular orientation of a rotor of a synchronous motor such as a variable reluctance motor (VRM). Phase voltages and currents are detected and serve as inputs to a state observer. The state observer includes a mathematical model of the electromechanical operation of the synchronous motor. The characteristics of the state observer are selected so that the observer estimates converge to the actual rotor angular orientation and velocity, winding phase flux linkages or currents.

  8. Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk

    PubMed Central

    Lippert, Lisa G.; Dadosh, Tali; Hadden, Jodi A.; Karnawat, Vishakha; Diroll, Benjamin T.; Murray, Christopher B.; Holzbaur, Erika L. F.; Schulten, Klaus; Reck-Peterson, Samara L.; Goldman, Yale E.

    2017-01-01

    The force-generating mechanism of dynein differs from the force-generating mechanisms of other cytoskeletal motors. To examine the structural dynamics of dynein’s stepping mechanism in real time, we used polarized total internal reflection fluorescence microscopy with nanometer accuracy localization to track the orientation and position of single motors. By measuring the polarized emission of individual quantum nanorods coupled to the dynein ring, we determined the angular position of the ring and found that it rotates relative to the microtubule (MT) while walking. Surprisingly, the observed rotations were small, averaging only 8.3°, and were only weakly correlated with steps. Measurements at two independent labeling positions on opposite sides of the ring showed similar small rotations. Our results are inconsistent with a classic power-stroke mechanism, and instead support a flexible stalk model in which interhead strain rotates the rings through bending and hinging of the stalk. Mechanical compliances of the stalk and hinge determined based on a 3.3-μs molecular dynamics simulation account for the degree of ring rotation observed experimentally. Together, these observations demonstrate that the stepping mechanism of dynein is fundamentally different from the stepping mechanisms of other well-studied MT motors, because it is characterized by constant small-scale fluctuations of a large but flexible structure fully consistent with the variable stepping pattern observed as dynein moves along the MT. PMID:28533393

  9. Revolution evolution: tracing angular momentum during star and planetary system formation

    NASA Astrophysics Data System (ADS)

    Davies, Claire Louise

    2015-04-01

    Stars form via the gravitational collapse of molecular clouds during which time the protostellar object contracts by over seven orders of magnitude. If all the angular momentum present in the natal cloud was conserved during collapse, stars would approach rotational velocities rapid enough to tear themselves apart within just a few Myr. In contrast to this, observations of pre-main sequence rotation rates are relatively slow (∼ 1 - 15 days) indicating that significant quantities of angular momentum must be removed from the star. I use observations of fully convective pre-main sequence stars in two well-studied, nearby regions of star formation (namely the Orion Nebula Cluster and Taurus-Auriga) to determine the removal rate of stellar angular momentum. I find the accretion disc-hosting stars to be rotating at a slower rate and contain less specific angular momentum than the disc-less stars. I interpret this as indicating a period of accretion disc-regulated angular momentum evolution followed by near-constant rotational evolution following disc dispersal. Furthermore, assuming that the age spread inferred from the Hertzsprung-Russell diagram constructed for the star forming region is real, I find that the removal rate of angular momentum during the accretion-disc hosting phase to be more rapid than that expected from simple disc-locking theory whereby contraction occurs at a fixed rotation period. This indicates a more efficient process of angular momentum removal must operate, most likely in the form of an accretion-driven stellar wind or outflow emanating from the star-disc interaction. The initial circumstellar envelope that surrounds a protostellar object during the earliest stages of star formation is rotationally flattened into a disc as the star contracts. An effective viscosity, present within the disc, enables the disc to evolve: mass accretes inwards through the disc and onto the star while momentum migrates outwards, forcing the outer regions of the disc to expand. I used spatially resolved submillimetre detections of the dust and gas components of protoplanetary discs, gathered from the literature, to measure the radial extent of discs around low-mass pre-main sequence stars of ∼ 1-10 Myr and probe their viscous evolution. I find no clear observational evidence for the radial expansion of the dust component. However, I find tentative evidence for the expansion ofthe gas component. This suggests that the evolution of the gas and dust components of protoplanetary discs are likely governed by different astrophysical processes. Observations of jets and outflows emanating from protostars and pre-main sequence stars highlight that it may also be possible to remove angular momentum from the circumstellar material. Using the sample of spatially resolved protoplanetary discs, I find no evidence for angular momentum removal during disc evolution. I also use the spatially resolved debris discs from the Submillimetre Common-User Bolometer Array-2 Observations of Nearby Stars survey to constrain the amount of angular momentum retained within planetary systems. This sample is compared to the protoplanetary disc angular momenta and to the angular momentum contained within pre-stellar cores. I find that significant quantities of angular momentum must be removed during disc formation and disc dispersal. This likely occurs via magnetic braking during the formation of the disc, via the launching of a disc or photo-evaporative wind, and/or via ejection of planetary material following dynamical interactions.

  10. A Deep X-ray Survey of Low-Mass PMS Stars in NGC 2264

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    2005-01-01

    Two X-ray images were obtained with the XMM-Newton spacecraft of more than 300 members of the NGC 2264 Open Cluster and its associated molecular cloud in order to investigate their magnetic activity. The X-ray fluxes extracted from those observations were used to study the dependence of stellar dynamo activity upon age and rotation for the optically revealed T Tauri stars and to place empirical constraints on theoretical models of angular momentum/dynamo evolution. The observations were also used to study the role of magnetic fields in the formation of low mass stars through the observation of very young protostars that are deeply embedded in the molecular cloud located behind the visible open cluster.

  11. Angular-Rate Estimation Using Star Tracker Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, I.; Deutschmann, Julie K.; Harman, Richard R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quatemion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quatemion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quatemion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.

  12. Angular-Rate Estimation using Star Tracker Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, Itzhack Y.; Deutschmann, Julie K.; Harman, Richard R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared, one that uses differentiated quaternion measurements to yield coarse rate measurements which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear rate dependent part of the rotational dynamics equation of a rigid body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This decomposition, which is not unique, enables the treatment of the nonlinear spacecraft dynamics model as a linear one and, consequently, the application of a Pseudo-Linear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the Kalman gain matrix and thus eliminates the need to propagate and update the filter covariance matrix. The replacement of the elaborate rotational dynamics by a simple first order Markov model is also examined. In this paper a special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results of these tests are presented.

  13. Ultra-compact structure in intermediate-luminosity radio quasars: building a sample of standard cosmological rulers and improving the dark energy constraints up to z 3

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Zheng, Xiaogang; Biesiada, Marek; Qi, Jingzhao; Chen, Yun; Zhu, Zong-Hong

    2017-09-01

    Context. Ultra-compact structure in radio sources (especially in quasars that can be observed up to very high redshifts), with milliarcsecond angular sizes measured by very-long-baseline interferometry (VLBI), is becoming an important astrophysical tool for probing both cosmology and the physical properties of AGN. Aims: We present a newly compiled data set of 120 milliarcsec. compact radio sources representing intermediate-luminosity quasars covering the redshift range 0.46 < z < 2.76 and check the possibility of using these sources as independent cosmological probes. These quasars observed at 2.29 GHz show negligible dependence on redshifts and intrinsic luminosity, and thus represent a fixed comoving-length of standard ruler. Methods: For a cosmological ruler with intrinsic length lm, the angular size-redshift relation can be written as θ(z) = lm/DA(z, where θ(z) is the angular size at redshift z, and DA(z) is the corresponding angular diameter distance. We use a compilation of angular size and redshift data for ultra-compact radio sources from a well-known VLBI survey, and implement a new cosmology-independent technique to calibrate the linear size of this standard ruler, which is also used to test different cosmological models with and without the flat universe assumption. Results: We determine the linear size of this standard ruler as lm = 11.03 ± 0.25 pc, which is the typical radius at which AGN jets become opaque at the observed frequency ν 2 GHz. Our measurement of this linear size is also consistent with the previous and recent radio observations at other different frequencies. In the framework of flat ΛCDM model, we find a high value of the matter density parameter, Ωm = 0.322+0.244-0.141, and a low value of the Hubble constant, H0 = 67.6+7.8-7.4 km s-1 Mpc-1, which is in excellent agreement with the cosmic microwave background (CMB) anisotropy measurements by Planck. We obtain Ωm = 0.309+0.215-0.151, w = -0.970+0.500-1.730 at 68.3% CL for the constant w of a dynamical dark-energy model, which demonstrates no significant deviation from the concordance ΛCDM model. Consistent fitting results are also obtained for other cosmological models explaining the cosmic acceleration, like Ricci dark energy (RDE) or the Dvali-Gabadadze-Porrati (DGP) brane-world scenario. While no significant change in w with redshift is detected, there is still considerable room for evolution in w and the transition redshift at which w departing from -1 is located at z 2.0. Our results demonstrate that the method extensively investigated in our work on observational radio quasar data can be used to effectively derive cosmological information. Finally, we find the combination of high-redshift quasars and low-redshift clusters may provide an important source of angular diameter distances, considering the redshift coverage of these two astrophysical probes.

  14. Stress dependence of the Raman spectrum of polycrystalline barium titanate in presence of localized domain texture

    NASA Astrophysics Data System (ADS)

    Sakashita, Tatsuo; Deluca, Marco; Yamamoto, Shinsuke; Chazono, Hirokazu; Pezzotti, Giuseppe

    2007-06-01

    The stress dependence of the Raman spectrum of polycrystalline barium titanate (BaTiO3, BT) ceramics has been examined with microprobe polarized Raman spectroscopy. The angular dependence of the Raman spectrum of the tetragonal BT crystal has been theoretically established, enabling us to assess the stress dependence of selected spectral modes without the influence of crystallographic domain orientation. Upon considering the frequency shift of selected Raman modes as a function of orientation between the crystallographic axis and the polarization vector of incident and scattered light, a suitable instrumental configuration has been selected, which allowed a direct residual stress measurement according to a modified piezospectroscopic procedure. The analysis is based on the selection of mixed photostimulated spectral modes in two perpendicular angular orientations.

  15. Brownian motion of tethered nanowires.

    PubMed

    Ota, Sadao; Li, Tongcang; Li, Yimin; Ye, Ziliang; Labno, Anna; Yin, Xiaobo; Alam, Mohammad-Reza; Zhang, Xiang

    2014-05-01

    Brownian motion of slender particles near a boundary is ubiquitous in biological systems and in nanomaterial assembly, but the complex hydrodynamic interaction in those systems is still poorly understood. Here, we report experimental and computational studies of the Brownian motion of silicon nanowires tethered on a substrate. An optical interference method enabled direct observation of microscopic rotations of the slender bodies in three dimensions with high angular and temporal resolutions. This quantitative observation revealed anisotropic and angle-dependent hydrodynamic wall effects: rotational diffusivity in inclined and azimuth directions follows different power laws as a function of the length, ∼ L(-2.5) and ∼ L(-3), respectively, and is more hindered for smaller inclined angles. In parallel, we developed an implicit simulation technique that takes the complex wire-wall hydrodynamic interactions into account efficiently, the result of which agreed well with the experimentally observed angle-dependent diffusion. The demonstrated techniques provide a platform for studying the microrheology of soft condensed matters, such as colloidal and biological systems near interfaces, and exploring the optimal self-assembly conditions of nanostructures.

  16. The three-dimensional angular widths of CMEs and their relations to the source regions

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Feng, X. S.

    2017-12-01

    The angular width of a coronal mass ejection (CME) is an important factor to determine whether the corresponding interplanetary CME (ICME) and its preceding shock will reach our Earth. However, very few studies are involved to study the decisive factors of the CME's angular width. In this study, we use the three-dimensional (3D) angular width of CMEs obtained from the Graduated Cylindrical Shell (GCS) model based on observations of Solar Terrestrial Relations Observatory (STEREO) to study the relations between the CME's 3D width and characteristics of the CME's source region. We find that for the CMEs produced by active regions (ARs), the CME width has some correlations with the AR's area and flux, but these correlations are not strong. The magnetic flux contained in the CME seems to come from only part of the AR's total flux. For the CMEs produced by flare regions, the correlations between the CME angular width and the flare region's area and flux are strong. The magnetic flux within those CMEs seems to totally (even not enough) come from the flare region. Our findings prefer to support that the CME's 3D angular width can be generally estimated based on observations of Solar Dynamics Observatory (SDO) for its source region instead of the observations from coronagraphs onboard Solar and Heliospheric Observatory (SOHO) and STEREO.

  17. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-06-01

    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80o and energies in excess of 4 EeV (4 × 1018 eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p-values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10-5 in the case of the angular power spectrum, and 2.5 × 10-3 in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.

  18. Spin angular momentum induced by optical quasi-phonons activated in birefringent uniaxial crystals

    NASA Astrophysics Data System (ADS)

    Mohamadou, B.; Maïmounatou, B.; Erasmus, R. M.

    2017-09-01

    The present report formally establishes the expression of the angular momentum of the quasi-phonons induced by linearly polarized light. The transferred mechanical torque due to phonons is then determined from the spin angular momentum and is shown to be measurable from Raman scattering experiments. To investigate this, the electric field due the excited dipoles and the associated macroscopic dielectric polarization vectors were first calculated using a lattice dynamical model in order to derive in a second step the analytical expression of the angular momentum density arising from the inelastic light scattering by quasi-phonons. The numerical results of the calculated angle dependent mode electric fields and the induced spin angular moments as well as the transferred torques were analyzed with regard to some typical behaviors of the interacting modes and it is shown that the fluctuations of the effective charges is their main origin.

  19. All joint moments significantly contribute to trunk angular acceleration

    PubMed Central

    Nott, Cameron R.; Zajac, Felix E.; Neptune, Richard R.; Kautz, Steven A.

    2010-01-01

    Computationally advanced biomechanical analyses of gait demonstrate the often counter intuitive roles of joint moments on various aspects of gait such as propulsion, swing initiation, and balance. Each joint moment can produce linear and angular acceleration of all body segments (including those on which the moment does not directly act) due to the dynamic coupling inherent in the interconnected musculoskeletal system. This study presents the quantitative relationships between individual joint moments and trunk control with respect to balance during gait to show that the ankle, knee, and hip joint moments all affect the angular acceleration of the trunk. We show that trunk angular acceleration is affected by all the joints in the leg with varying degrees of dependence during the gait cycle. Furthermore, it is shown that inter-planar coupling exists and a two dimensional analysis of trunk balance neglects important out-of-plane joint moments that affect trunk angular acceleration. PMID:20646711

  20. Kinetic energy and angular momentum of free particles in the gyratonic pp-waves space-times

    NASA Astrophysics Data System (ADS)

    Maluf, J. W.; da Rocha-Neto, J. F.; Ulhoa, S. C.; Carneiro, F. L.

    2018-06-01

    Gyratonic pp-waves are exact solutions of Einstein’s equations that represent non-linear gravitational waves endowed with angular momentum. We consider gyratonic pp-waves that travel in the z direction and whose time dependence on the variable is given by Gaussians, so that the waves represent short bursts of gravitational radiation propagating in the z direction. We evaluate numerically the geodesics and velocities of free particles in the space-time of these waves, and find that after the passage of the waves both the kinetic energy and the angular momentum per unit mass of the particles are changed. Therefore there is a transfer of energy and angular momentum between the gravitational field and the free particles, so that the final values of the energy and angular momentum of the free particles may be smaller or larger in magnitude than the initial values.

  1. Characterization of x- and gamma- radiation in relativistically intense laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Hou, Bixue; Zulick, Calvin; Zhao, Zhen; Nees, John; Batson, Thomas; Maksimchuk, Anatoly; Thomas, Alexander G. R.; Krushelnick, Karl; CenterUltrafast Optical Science Team

    2013-10-01

    Using a high resolution (λ/ Δλ > 100) high purity germanium detector, the angular and material dependence, and the intensity scaling, of bremsstrahlung gamma radiation from relativistically intense (I > 1018 W/cm2) laser-solid interactions have been characterized at energies between 0.1 and 1 MeV with the high-repetition rate (500 Hz) Lambda-Cubed laser facility. The bremsstrahlung spectra of SiO2, Mo, and Eu2O3 were observed to have two-temperature energy distributions, corresponding to two different groups of electrons and depending on both laser intensity and observation angle. The spectra and source sizes of hard x-radiation under 0.1 MeV are also studied. These x-ray sources are being developed for phase-contrast imaging. Support provided by DHS (EECS-0833499), AFOSR (FA99550-12-1-0310), ARO (W911NF-11-1-0116).

  2. Radiation physics and modelling for off-nadir satellite-sensing of non-Lambertian surfaces

    NASA Technical Reports Server (NTRS)

    Gerstl, S. A.; Simmer, C.

    1986-01-01

    The primary objective of this paper is to provide a deeper understanding of the physics of satellite remote-sensing when off-nadir observations are considered. Emphasis is placed on the analysis and modeling of atmospheric effects and the radiative transfer of non-Lambertian surface reflectance characteristics from ground-level to satellite locations. The relative importance of spectral, spatial, angular, and temporal reflectance characteristics for satellite-sensed identification of vegetation types in the visible and near-infrared wavelength regions is evaluated. The highest identification value is attributed to angular reflectance signatures. Using radiative transfer calculations to evaluate the atmospheric effects on angular reflectance distributions of vegetation surfaces, atmosphere-invariant angular reflectance features such as the 'hot spot' and the 'persistent valley' are identified. A new atmospheric correction formalism for complete angular reflectance distributions is described. A sample calculation demonstrates that a highly non-Lambertian measured surface reflectance distribution can be retrieved from simulated satellite data in the visible and near infrared to within about 20 percent accuracy for almost all view directions up to 60 deg off-nadir. Thus the high value of angular surface reflectance characteristics (the 'angular signature') for satellite-sensed feature identification is confirmed, which provides a scientific basis for future off-nadir satellite observations.

  3. On the origin of the angular momentum of galaxies: cosmological tidal torques supplemented by the Coriolis force

    NASA Astrophysics Data System (ADS)

    Casuso, E.; Beckman, J. E.

    2015-05-01

    We present here a theoretical model which can at least contribute to the observed relation between the specific angular momenta of galaxies and their masses. This study offers prima facie evidence that the origin of an angular momentum of galaxies could be somewhat more complex than previously proposed. The most recent observations point to a scenario in which, after recombination, matter was organized around bubbles (commonly termed voids), which acquired rotation by tidal torque interaction. Subsequently, a combination of the effects of the gravitational collapse of gas in protogalaxies and the Coriolis force due to the rotation of the voids could produce the rotation of spiral galaxies. Thereafter, the tidal interaction between the objects populating the quasi-spherical voids, in which the galaxies far away from the rotation axes (populating the sheet forming the surface of a void) interact with higher probability with others similarly situated in a neighbouring void, offers a mechanism for transforming some of the galaxies into ellipticals, breaking their spin and yielding galaxies with low net angular momentum, as observed. This model gives an explanation for those observations which suggest a tendency of galactic spins to align along the radius vectors pointing towards the centres of the voids for ellipticals/SO and parallel to filaments and sheets for the spirals. Furthermore, while in simple tidal torque theory the angular momentum supplied to galaxies diminishes drastically with the cosmic expansion, in our approximation for which the Coriolis force acts in addition to tidal torques, the Coriolis force due to void rotation ensures almost continuous angular momentum supply.

  4. The Angular Three-Point Correlation Function in the Quasi-linear Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchalter, Ari; Kamionkowski, Marc; Jaffe, Andrew H.

    2000-02-10

    We calculate the normalized angular three-point correlation function (3PCF), q, as well as the normalized angular skewness, s{sub 3}, assuming the small-angle approximation, for a biased mass distribution in flat and open cold dark matter (CDM) models with Gaussian initial conditions. The leading-order perturbative results incorporate the explicit dependence on the cosmological parameters, the shape of the CDM transfer function, the linear evolution of the power spectrum, the form of the assumed redshift distribution function, and linear and nonlinear biasing, which may be evolving. Results are presented for different redshift distributions, including that appropriate for the APM Galaxy Survey, asmore » well as for a survey with a mean redshift of z{approx_equal}1 (such as the VLA FIRST Survey). Qualitatively, many of the results found for s{sub 3} and q are similar to those obtained in a related treatment of the spatial skewness and 3PCF, such as a leading-order correction to the standard result for s{sub 3} in the case of nonlinear bias (as defined for unsmoothed density fields), and the sensitivity of the configuration dependence of q to both cosmological and biasing models. We show that since angular correlation functions (CFs) are sensitive to clustering over a range of redshifts, the various evolutionary dependences included in our predictions imply that measurements of q in a deep survey might better discriminate between models with different histories, such as evolving versus nonevolving bias, that can have similar spatial CFs at low redshift. Our calculations employ a derived equation, valid for open, closed, and flat models, to obtain the angular bispectrum from the spatial bispectrum in the small-angle approximation. (c) (c) 2000. The American Astronomical Society.« less

  5. ECG denoising using angular velocity as a state and an observation in an Extended Kalman Filter framework.

    PubMed

    Akhbari, Mahsa; Shamsollahi, Mohammad B; Jutten, Christian; Coppa, Bertrand

    2012-01-01

    In this paper an efficient filtering procedure based on Extended Kalman Filter (EKF) has been proposed. The method is based on a modified nonlinear dynamic model, previously introduced for the generation of synthetic ECG signals. The proposed method considers the angular velocity of ECG signal, as one of the states of an EKF. We have considered two cases for observation equations, in one case we have assumed a corresponding observation to angular velocity state and in the other case, we have not assumed any observations for it. Quantitative evaluation of the proposed algorithm on the MIT-BIH Normal Sinus Rhythm Database (NSRDB) shows that an average SNR improvement of 8 dB is achieved for an input signal of -4 dB.

  6. Angular-dependent magnetoresistance study in Ca0.73La0.27FeAs2: a ‘parent’ compound of 112-type iron pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Xing, Xiangzhuo; Xu, Chunqiang; Li, Zhanfeng; Feng, Jiajia; Zhou, Nan; Zhang, Yufeng; Sun, Yue; Zhou, Wei; Xu, Xiaofeng; Shi, Zhixiang

    2018-01-01

    We report a study of angular-dependent magnetoresistance (AMR) with the magnetic field rotated in the plane perpendicular to the current on a Ca0.73La0.27FeAs2 single crystal, which is regarded as a ‘parent’ compound of 112-type iron pnictide superconductors. A pronounced AMR with twofold symmetry is observed, signifying the highly anisotropic Fermi surface. By further analyzing the AMR data, we find that the Fermi surface above the structural/antiferromagnetic (AFM) transition (T s/T N) is quasi-two-dimensional (quasi-2D), as revealed by the 2D scaling behavior of the AMR, Δρ/ρ(0) (H, θ)  =  Δρ/ρ(0) (µ 0 Hcosθ), θ being the magnetic field angle with respect to the c axis. While such 2D scaling becomes invalid at temperatures below T s/T N, the three-dimensional (3D) scaling approach by inclusion of the anisotropy of the Fermi surface is efficient, indicating that the appearance of the 3D Fermi surface contributes to anisotropic electronic transport. Compared with other experimental observations, we suspect that the additional 3D hole pocket (generated by the Ca d orbital and As1 p z orbital) around the Γ point in CaFeAs2 will disappear in the heavily electron doped regime, and moreover, the Fermi surface should be reconstructed across the structural/AFM transition. Besides, a quasi-linear in-plane magnetoresistance with H//ab is observed at low temperatures and its possible origins are also discussed. Our results provide more information to further understand the electronic structure of 112-type IBSs.

  7. Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Trihalide Perovskite Interface - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Przepioski, Joshua

    2015-08-25

    This work correlates resonant peaks from first principles calculation on ammonia (NH 3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH 3NH 3PbI 3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI2 and the poly(9,9-dioctylfluorene-2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to better identify themore » dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.« less

  8. Dipole Alignment at the Carbon Nanotube and Methyl Ammonium Lead Iodide Perovskite Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Przepioski, Joshua

    2015-08-28

    This work correlates resonant peaks from first principles calculation on ammonia (NH 3) Nitrogen 1s x-ray absorption spectroscopy (XAS) within the methyl ammonium lead iodide perovskite (CH 3NH 3PbI 3), and proposes a curve to determine the alignment of the methyl ammonium dipole if there exists angular dependence. The Nitrogen 1s XAS was performed at varying incident angles on the perovskite with and without a carbon nanotube (CNT) interface produced from an ultrasonic spray deposition. We investigated the peak contribution from PbI 2 and the poly(9,9-dioctylfluorene- 2,7-diyl) with bipyridine (PFO-BPy) wrapped around the CNT, and used normalization techniques to bettermore » identify the dipole alignment. There was angular dependence on samples containing the CNT interface suggesting an existing dipole alignment, but there was no angular dependence on the perovskite samples alone; however, more normalization techniques and experimental work must be performed in order to ensure its validity and to better describe its alignment, and possible controlling factors.« less

  9. Inference of stress and texture from angular dependence of ultrasonic plate mode velocities

    NASA Technical Reports Server (NTRS)

    Thompson, R. B.; Smith, J. F.; Lee, S. S.

    1986-01-01

    The theory for the angular dependence of the ultrasonic wave velocity in a symmetry plane of an orthorhombic, stressed material is presented. The two waves having polarizations in this plane are shown to have velocities which can be estimated from measurements of the SH sub 0 and S sub 0 guided modes of a thin plate: the relationship being exact for the SH sub 0 mode and requiring a 10% correction for the S sub 0 mode at long wavelength. It is then shown how stress and texture can be independently inferred from various features of the angular dependence of these two velocities. From the SH sub 0 data, the ability to determine the directions and differences in magnitudes of principal stresses is described and supported by experimental data on several materials. From a combination of the SH sub 0 and S sub 0 data, a procedure is proposed for determining the coefficients W sub 400, W sub 420 and W sub 440 of an expansion of the crystallite orientation distribution function in terms of generalized Legendre functions. Possible applications in process control are indicated.

  10. Simplifying Electron Beam Channeling in Scanning Transmission Electron Microscopy (STEM).

    PubMed

    Wu, Ryan J; Mittal, Anudha; Odlyzko, Michael L; Mkhoyan, K Andre

    2017-08-01

    Sub-angstrom scanning transmission electron microscopy (STEM) allows quantitative column-by-column analysis of crystalline specimens via annular dark-field images. The intensity of electrons scattered from a particular location in an atomic column depends on the intensity of the electron probe at that location. Electron beam channeling causes oscillations in the STEM probe intensity during specimen propagation, which leads to differences in the beam intensity incident at different depths. Understanding the parameters that control this complex behavior is critical for interpreting experimental STEM results. In this work, theoretical analysis of the STEM probe intensity reveals that intensity oscillations during specimen propagation are regulated by changes in the beam's angular distribution. Three distinct regimes of channeling behavior are observed: the high-atomic-number (Z) regime, in which atomic scattering leads to significant angular redistribution of the beam; the low-Z regime, in which the probe's initial angular distribution controls intensity oscillations; and the intermediate-Z regime, in which the behavior is mixed. These contrasting regimes are shown to exist for a wide range of probe parameters. These results provide a new understanding of the occurrence and consequences of channeling phenomena and conditions under which their influence is strengthened or weakened by characteristics of the electron probe and sample.

  11. Determination of the axial rotation rate using apsidal motion for early-type eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Khaliullin, Kh. F.; Khaliullina, A. I.

    2007-11-01

    Because the modern theory of stellar structure and evolution has a sound observational basis, we can consider that the apsidal parameters k2 computed in terms of this theory correctly reflect the radial density distribution in stars of different masses and spectral types. This allows us to address the problem of apsidal motion in close binary systems in a new way. Unlike the traditional approach, in this paper we use the observed apsidal periods Uobs to estimate the angular axial velocities of components, ωr, at fixed model values of k2. We use this approach to analyse the observational data for 28 eclipsing systems with known Uobs and early-type primaries (M >= 1.6 Msolar or Te >= 6000 K). We measure the age of the system in units of the synchronization time, t/tsyn. Our analysis yielded the following results. (i) There is a clear correlation between ωr/ωsyn and t/tsyn: the younger a star, the higher the angular velocity of its axial rotation in units of ωsyn, the angular velocity at pseudo-synchronization. This correlation is more significant and obvious if the synchronization time, tsyn, is computed in terms of the Zahn theory. (ii) This observational fact implies that the synchronization of early-type components in close binary systems continues on the main sequence. The synchronization times for the inner layers of the components (i.e. those that are responsible for apsidal motion) are about 1.6 and 3.1 dex longer than those predicted by the theories of Zahn and Tassoul, respectively. The average initial angular velocities (for the zero-age main sequence) are equal to ω0/ωsyn ~ 2.0. The dependence of the parameter E2 on stellar mass probably needs to be refined in the Zahn theory. (iii) Some components of the eclipsing systems of the sample studied show radially differential axial rotation. This is consistent with the Zahn theory, which predicts that the synchronization starts at the surface, where radiative damping of dynamical tides occurs, and develops toward the interior. Therefore, one would expect the inner parts of young double early-type stars to rotate faster than the outer parts.

  12. Determination of the wind power systems load to achieve operation in the maximum energy area

    NASA Astrophysics Data System (ADS)

    Chioncel, C. P.; Tirian, G. O.; Spunei, E.; Gillich, N.

    2018-01-01

    This paper analyses the operation of the wind turbine, WT, in the maximum power point, MPP, by linking the load of the Permanent Magnet Synchronous Generator, PMSG, with the wind speed value. The load control methods at wind power systems aiming an optimum performance in terms of energy are based on the fact that the energy captured by the wind turbine significantly depends on the mechanical angular speed of the wind turbine. The presented control method consists in determining the optimal mechanical angular speed, ωOPTIM, using an auxiliary low power wind turbine, WTAUX, operating without load, at maximum angular velocity, ωMAX. The method relies on the fact that the ratio ωOPTIM/ωMAX has a constant value for a given wind turbine and does not depend on the time variation of the wind speed values.

  13. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouchard, Frédéric; De Leon, Israel; Schulz, Sebastian A.

    Orbital angular momentum associated with the helical phase-front of optical beams provides an unbounded “space” for both classical and quantum communications. Among the different approaches to generate and manipulate orbital angular momentum states of light, coupling between spin and orbital angular momentum allows a faster manipulation of orbital angular momentum states because it depends on manipulating the polarisation state of light, which is simpler and generally faster than manipulating conventional orbital angular momentum generators. In this work, we design and fabricate an ultra-thin spin-to-orbital angular momentum converter, based on plasmonic nano-antennas and operating in the visible wavelength range that ismore » capable of converting spin to an arbitrary value of orbital angular momentum ℓ. The nano-antennas are arranged in an array with a well-defined geometry in the transverse plane of the beam, possessing a specific integer or half-integer topological charge q. When a circularly polarised light beam traverses this metasurface, the output beam polarisation switches handedness and the orbital angular momentum changes in value by ℓ=±2qℏ per photon. We experimentally demonstrate ℓ values ranging from ±1 to ±25 with conversion efficiencies of 8.6% ± 0.4%. Our ultra-thin devices are integratable and thus suitable for applications in quantum communications, quantum computations, and nano-scale sensing.« less

  14. General approach for the determination of the magneto-angular dependence of the critical current of YBCO coated conductors

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhong, Z.; Ruiz, H. S.; Geng, J.; Coombs, T. A.

    2017-02-01

    The physical understanding and numerical modelling of superconducting devices which exploit the high performance of second generation high temperature superconducting tapes (2G-HTS), is commonly hindered by the lack of accurate functions which allow the consideration of the in-field dependence of the critical current. This is true regardless of the manufacturer of the superconducting tape. In this paper, we present a general approach for determining a unified function I c(B, θ), ultimately capable of describing the magneto-angular dependence of the in-field critical current of commercial 2G-HTS tapes in the Lorentz configuration. Five widely different superconducting tapes, provided by three different manufacturers, have been tested in a liquid nitrogen bath and external magnetic fields of up to 400 mT. The critical current was recorded at 90 different orientations of the magnetic field ranging from θ = 0°, i.e., with B aligned with the crystallographic ab-planes of the YBCO layer, towards ±90°, i.e., with B perpendicular to the wider surfaces of the 2G-HTS tape. The whole set of experimental data has been analysed using a novel multi-objective model capable of predicting a sole function I c(B, θ). This allows an accurate validation of the experimental data regardless of the fabrication differences and widths of the superconducting tapes. It is shown that, in spite of the wide set of differences between the fabrication and composition of the considered tapes, at liquid nitrogen temperature the magneto-angular dependence of the in-field critical current of YBCO-based 2G-HTS tapes, can be described by a universal function I c(f(B), θ), with a power law field dependence dominated by the Kim’s factor B/B 0, and an angular dependence moderated by the electron mass anisotropy ratio of the YBCO layer.

  15. Alignment of gold nanorods by angular photothermal depletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Adam B.; Chow, Timothy T. Y.; Chon, James W. M., E-mail: jchon@swin.edu.au

    2014-02-24

    In this paper, we demonstrate that a high degree of alignment can be imposed upon randomly oriented gold nanorod films by angular photothermal depletion with linearly polarized laser irradiation. The photothermal reshaping of gold nanorods is observed to follow quadratic melting model rather than the threshold melting model, which distorts the angular and spectral hole created on 2D distribution map of nanorods to be an open crater shape. We have accounted these observations to the alignment procedures and demonstrated good agreement between experiment and simulations. The use of multiple laser depletion wavelengths allowed alignment criteria over a large range ofmore » aspect ratios, achieving 80% of the rods in the target angular range. We extend the technique to demonstrate post-alignment in a multilayer of randomly oriented gold nanorod films, with arbitrary control of alignment shown across the layers. Photothermal angular depletion alignment of gold nanorods is a simple, promising post-alignment method for creating future 3D or multilayer plasmonic nanorod based devices and structures.« less

  16. Rotational diffusion of a molecular cat

    NASA Astrophysics Data System (ADS)

    Katz-Saporta, Ori; Efrati, Efi

    We show that a simple isolated system can perform rotational random walk on account of internal excitations alone. We consider the classical dynamics of a ''molecular cat'': a triatomic molecule connected by three harmonic springs with non-zero rest lengths, suspended in free space. In this system, much like for falling cats, the angular momentum constraint is non-holonomic allowing for rotations with zero overall angular momentum. The geometric nonlinearities arising from the non-zero rest lengths of the springs suffice to break integrability and lead to chaotic dynamics. The coupling of the non-integrability of the system and its non-holonomic nature results in an angular random walk of the molecule. We study the properties and dynamics of this angular motion analytically and numerically. For low energy excitations the system displays normal-mode-like motion, while for high enough excitation energy we observe regular random-walk. In between, at intermediate energies we observe an angular Lévy-walk type motion associated with a fractional diffusion coefficient interpolating between the two regimes.

  17. The evolution of rotating stars. III - Predicted surface rotation velocities for stars which conserve total angular momentum

    NASA Technical Reports Server (NTRS)

    Endal, A. S.; Sofia, S.

    1979-01-01

    Predicted surface rotation velocities for Population I stars at 10, 7, 5, 3, and 1.5 solar masses are presented. The surface velocities were computed for angular momentum with no radial redistribution, complete redistribution, and partial redistribution as predicted by consideration of circulation currents in rotating stars. Near the main sequence, rotational effects can reduce the moment of inertia of a star, so nonrotating models underestimate the expected velocities for evolving stars. On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Calculations indicate that improved observations of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection

  18. Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer

    NASA Technical Reports Server (NTRS)

    Defrere, D.; Hinz, P.; Downey, E.; Boehm, M.; Danchi, W. C.; Durney, O.; Ertel, S.; Hill, J. M.; Hoffmann, W. F.; Mennesson, B.; hide

    2016-01-01

    The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feed forward approach to stabilize the path length fluctuations seen by the LBTI nuller uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feed forward approach to stabilize the path length fluctuations seen by the LBTI nuller.

  19. Matter effects in upward-going muons and sterile neutrino oscillations

    NASA Astrophysics Data System (ADS)

    MACRO Collaboration; Ambrosio, M.; Antolini, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; De Cataldo, G.; Dekhissi, H.; De Marzo, C.; De Mitri, I.; Derkaoui, J.; De Vincenzi, M.; Di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Gray, L.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Mikheyev, S.; Miller, L.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Pistilli, P.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.

    2001-09-01

    The angular distribution of upward-going muons produced by atmospheric neutrinos in the rock below the MACRO detector shows anomalies in good agreement with two flavor νμ-->ντ oscillations with maximum mixing and Δm2 around 0.0024 eV2. Exploiting the dependence of magnitude of the matter effect on oscillation channel, and using a set of 809 upward-going muons observed in MACRO, we show that the two flavor νμ-->νs oscillation is disfavored with 99% C.L. with respect to νμ-->ντ.

  20. Non-destructive method for determining neutron exposure

    DOEpatents

    Gold, R.; McElroy, W.N.

    1983-11-01

    A non-destructive method for determination of neutron exposure in an object, such as a reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure at regions of interest within the object.

  1. On the neutralization in low energy ion scattering spectroscopy (leiss): He + ions on clean and oxygen covered Ni(001) surfaces

    NASA Astrophysics Data System (ADS)

    Preuss, E.

    1981-10-01

    A formula for the He + ion survival probability against neutralization is presented, which was derived from the fit of the azimuthal angular dependence of the Ni peak heights on clean and O covered Ni(001) surfaces observed in LEISS experiments and computer simulations. The formula contains a collision- and two Auger-type neutralization terms for the ion trajectories prolonged by multiple collisions above the "neutralization surface plane", which was assumed to be corrugated and shaped like muffin-tins.

  2. Attosecond control of dissociative ionization of O{sub 2} molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siu, W.; Kelkensberg, F.; Gademann, G.

    We demonstrate that dissociative ionization of O{sub 2} can be controlled by the relative delay between an attosecond pulse train (APT) and a copropagating infrared (IR) field. Our experiments reveal a dependence of both the branching ratios between a range of electronic states and the fragment angular distributions on the extreme ultraviolet (XUV) to IR time delay. The observations go beyond adiabatic propagation of dissociative wave packets on IR-induced quasistatic potential energy curves and are understood in terms of an IR-induced coupling between electronic states in the molecular ion.

  3. YORP: Influence on Rotation Rate

    NASA Astrophysics Data System (ADS)

    Golubov, A. A.; Krugly, Yu. N.

    2010-06-01

    We have developed a semi-analytical model for calculating angular acceleration of asteroids due to Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The calculation of the YORP effect has been generalized for the case of elliptic orbits. It has been shown that the acceleration does not depend on thermal inertia of the asteroid's surface. The model was applied to the asteroid 1620 Geographos and led to acceleration 2×10^{-18}s^{-2}. This value is close to the acceleration obtained from photometric observations of Geographos by Durech et al. [1].

  4. An Acousto-Optical Sensor with High Angular Resolution

    PubMed Central

    Kaloshin, Gennady; Lukin, Igor

    2012-01-01

    The paper introduces a new laser interferometry-based sensor for diagnosis of random media by means of high accuracy angle measurements and describes the results of its development and testing. Theoretical calculations of the dependence of the range of the laser interferometer on laser beam parameters, device geometry, and atmospheric turbulence characteristics are reported. It is demonstrated that at moderate turbulence intensities corresponding to those observed most frequently in turbulent atmosphere at moderate latitudes and with low interference contrast values, the performance range of the laser interferometer-based device exceeds 5 km. PMID:22737034

  5. Hyperfine-Structure-Induced Depolarization of Impulsively Aligned I2 Molecules

    NASA Astrophysics Data System (ADS)

    Thomas, Esben F.; Søndergaard, Anders A.; Shepperson, Benjamin; Henriksen, Niels E.; Stapelfeldt, Henrik

    2018-04-01

    A moderately intense 450 fs laser pulse is used to create rotational wave packets in gas phase I2 molecules. The ensuing time-dependent alignment, measured by Coulomb explosion imaging with a delayed probe pulse, exhibits the characteristic revival structures expected for rotational wave packets but also a complex nonperiodic substructure and decreasing mean alignment not observed before. A quantum mechanical model attributes the phenomena to coupling between the rotational angular momenta and the nuclear spins through the electric quadrupole interaction. The calculated alignment trace agrees very well with the experimental results.

  6. Radial and latitudinal gradients in the solar internal angular velocity

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Korzennik, Sylvain G.; Tomczyk, Steven; Ulrich, Roger K.; Woodard, Martin F.

    1988-01-01

    The frequency splittings of intermediate-degree (3 to 170 deg) p-mode oscillations obtained from a 16-day subset of observations were analyzed. Results show evidence for both radial and latitudinal gradients in the solar internal angular velocity. From 0.6 to 0.95 solar radii, the solar internal angular velocity increases systematically from 440 to 463 nHz, corresponding to a positive radial gradient of 66 nHz/solar radius for that portion of the solar interior. Analysis also indicates that the latitudinal differential rotation gradient which is seen at the solar surface persists throughout the convection zone, although there are indications that the differential rotation might disappear entirely below the base of the convection zone. The analysis was extended to include comparisons with additional observational studies and between earlier results and the results of additional inversions of several of the observational datasets. All the comparisons reinforce conclusions regarding the existence of radial and latitudinal gradients in the internal angular velocity.

  7. Assessing the Impact of Observations on the Prediction of Effective Atmospheric Angular Momentum from NAVGEM

    NASA Astrophysics Data System (ADS)

    Baker, N. L.; Langland, R.

    2016-12-01

    Variations in Earth rotation are measured by comparing a time based on Earth's variable rotation rate about its axis to a time standard based on an internationally coordinated ensemble of atomic clocks that provide a uniform time scale. The variability of Earth's rotation is partly due to the changes in angular momentum that occur in the atmosphere and ocean as weather patterns and ocean features develop, propagate, and dissipate. The NAVGEM Effective Atmospheric Angular Momentum Functions (EAAMF) and their predictions are computed following Barnes et al. (1983), and provided to the U.S. Naval Observatory daily. These along with similar data from the NOAA GFS model are used to calculate and predict the Earth orientation parameters (Stamatakos et al., 2016). The Navy's high-resolution global weather prediction system consists of the Navy Global Environmental Model (NAVGEM; Hogan et al., 2014) and a hybrid four-dimensional variational data assimilation system (4DVar) (Kuhl et al., 2013). An important component of NAVGEM is the Forecast Sensitivity Observation Impact (FSOI). FSOI is a mathematical method to quantify the contribution of individual observations or sets of observations to the reduction in the 24-hr forecast error (Langland and Baker, 2004). The FSOI allows for dynamic monitoring of the relative quality and value of the observations assimilated by NAVGEM, and the relative ability of the data assimilation system to effectively use the observation information to generate an improved forecast. For this study, along with the FSOI based on the global moist energy error norm, we computed the FSOI using an error norm based on the Effective Angular Momentum Functions. This modification allowed us to assess which observations were most beneficial in reducing the 24-hr forecast error for the atmospheric angular momentum.

  8. Helioseismic Constraints on the Depth Dependence of Large-Scale Solar Convection

    NASA Astrophysics Data System (ADS)

    Woodard, Martin F.

    2017-08-01

    A recent helioseismic statistical waveform analysis of subsurface flow based on a 720-day time series of SOHO/MDI Medium-l spherical-harmonic coefficients has been extended to cover a greater range of subphotospheric depths. The latest analysis provides estimates of flow-dependent oscillation-mode coupling-strength coefficients b(s,t;n,l) over the range l = 30 to 150 of mode degree (angular wavenumber) for solar p-modes in the approximate frequency range 2 to 4 mHz. The range of penetration depths of this mode set covers most of the solar convection zone. The most recent analysis measures spherical harmonic (s,t) components of the flow velocity for odd s in the angular wavenumber range 1 to 19 for t not much smaller than s at a given s. The odd-s b(s,t;n,l) coefficients are interpreted as averages over depth of the depth-dependent amplitude of one spherical-harmonic (s,t) component of the toroidal part of the flow velocity field. The depth-dependent weighting function defining the average velocity is the fractional kinetic energy density in radius of modes of the (n,l) multiplet. The b coefficients have been converted to estimates of root velocity power as a function of l0 = nu0*l/nu(n,l), which is a measure of mode penetration depth. (nu(n,l) is mode frequency and nu0 is a reference frequency equal to 3 mHz.) A comparison of the observational results with simple convection models will be presented.

  9. A search for anisotrophy in the cosmic microwave background on intermediate angular scales

    NASA Technical Reports Server (NTRS)

    Alsop, D. C.; Cheng, E. S.; Clapp, A. C.; Cottingham, D. A.; Fischer, M. L.; Gundersen, J. O.; Kreysa, E.; Lange, A. E.; Lubin, P. M.; Meinhold, P. R.

    1992-01-01

    The results of a search for anisotropy in the cosmic microwave background on angular scales near 1 deg are presented. Observations were simultaneously performed in bands centered at frequencies of 6, 9, and 12 per cm with a multifrequency bolometric receiver mounted on a balloon-borne telescope. The statistical sensitivity of the data is the highest reported to date at this angular scale, which is of critical importance for understanding the formation of structure in the universe. Signals in excess of random were observed in the data. The experiment, data analysis, and interpretation are described.

  10. Field-orientation dependence of low-energy quasiparticle excitations in the heavy-electron superconductor UBe(13).

    PubMed

    Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Haga, Yoshinori; Yamamoto, Etsuji; Amitsuka, Hiroshi; Tsutsumi, Yasumasa; Machida, Kazushige

    2015-04-10

    Low-energy quasiparticle excitations in the superconducting (SC) state of UBe_{13} were studied by means of specific-heat (C) measurements in a rotating field. Quite unexpectedly, the magnetic-field dependence of C(H) is linear in H with no angular dependence at low fields in the SC state, implying that the gap is fully open over the Fermi surfaces, in stark contrast to previous expectations. In addition, a characteristic cubic anisotropy of C(H) was observed above 2 T with a maximum (minimum) for H∥[001] ([111]) within the (11[over ¯]0) plane, in the normal as well as in the SC states. This oscillation possibly originates from the anisotropic response of the heavy quasiparticle bands, and might be a key to understand the unusual properties of UBe_{13}.

  11. Hybrid Skyshine Calculations for Complex Neutron and Gamma-Ray Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultis, J. Kenneth

    2000-10-15

    A two-step hybrid method is described for computationally efficient estimation of neutron and gamma-ray skyshine doses far from a shielded source. First, the energy and angular dependence of radiation escaping into the atmosphere from a source containment is determined by a detailed transport model such as MCNP. Then, an effective point source with this energy and angular dependence is used in the integral line-beam method to transport the radiation through the atmosphere up to 2500 m from the source. An example spent-fuel storage cask is analyzed with this hybrid method and compared to detailed MCNP skyshine calculations.

  12. Influence of fusion dynamics on fission observables: A multidimensional analysis

    NASA Astrophysics Data System (ADS)

    Schmitt, C.; Mazurek, K.; Nadtochy, P. N.

    2018-01-01

    An attempt to unfold the respective influence of the fusion and fission stages on typical fission observables, and namely the neutron prescission multiplicity, is proposed. A four-dimensional dynamical stochastic Langevin model is used to calculate the decay by fission of excited compound nuclei produced in a wide set of heavy-ion collisions. The comparison of the results from such a calculation and experimental data is discussed, guided by predictions of the dynamical deterministic HICOL code for the compound-nucleus formation time. While the dependence of the latter on the entrance-channel properties can straigthforwardly explain some observations, a complex interplay between the various parameters of the reaction is found to occur in other cases. A multidimensional analysis of the respective role of these parameters, including entrance-channel asymmetry, bombarding energy, compound-nucleus fissility, angular momentum, and excitation energy, is proposed. It is shown that, depending on the size of the system, apparent inconsistencies may be deduced when projecting onto specific ordering parameters. The work suggests the possibility of delicate compensation effects in governing the measured fission observables, thereby highlighting the necessity of a multidimensional discussion.

  13. Analytical study of body waves in orthorhombic media and comparison with SKS-phase observations from selected stations

    NASA Astrophysics Data System (ADS)

    Löberich, Eric; Bokelmann, Götz

    2016-04-01

    Anisotropic effects of wave propagation, observed in the Earth, provide interesting applications in basic research and practice, e.g., in reservoir geophysics and other fields. Teleseismic waves often evidence upper mantle anisotropy, as created by aligned olivine grains. While each grain is associated with orthorhombic symmetry, the preferred alignment may lead to a transversely isotropic characteristic. Considering body waves passing through an anisotropic medium, a splitting of shear waves can usually be observed, since their transverse polarization leads to a separation of the two quasi-shear waves. The associated splitting-delay is generated if the related fast and slow seismic velocities differ. Most of the previous shear-wave splitting investigations were based on the common assumption of near-vertical incidence. However, the influence of increasing incidence angles, which may lead to angular dependent splitting-delay and fast polarization orientation, has been pointed out by Davis (2003). Our study investigates the occurrence of these postulated dependences on azimuth and incidence angle (distance), examining splitting observations in SKS-recordings at selected broadband stations (e.g., Djibouti and Red Lake, Ontario).

  14. Line-of-sight magnetic flux imbalances caused by electric currents

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Rabin, Douglas

    1995-01-01

    Several physical and observational effects contribute to the significant imbalances of magnetic flux that are often observed in active regions. We consider an effect not previously treated: the influence of electric currents in the photosphere. Electric currents can cause a line-of-sight flux imbalance because of the directionality of the magnetic field they produce. Currents associated with magnetic flux tubes produce larger imbalances than do smoothly-varying distributions of flux and current. We estimate the magnitude of this effect for current densities, total currents, and magnetic geometry consistent with observations. The expected imbalances lie approximately in the range 0-15%, depending on the character of the current-carying fields and the angle from which they are viewed. Observationally, current-induced flux imbalances could be indicated by a statistical dependence of the imbalance on angular distance from disk center. A general study of magnetic flux balance in active regions is needed to determine the relative importance of other- probably larger- effects such as dilute flux (too weak to measure or rendered invisible by radiative transfer effects), merging with weak background fields, and long-range connections between active regions.

  15. Impact of the ozone monitoring instrument row anomaly on the long-term record of aerosol products

    NASA Astrophysics Data System (ADS)

    Torres, Omar; Bhartia, Pawan K.; Jethva, Hiren; Ahn, Changwoo

    2018-05-01

    Since about three years after the launch the Ozone Monitoring Instrument (OMI) on the EOS-Aura satellite, the sensor's viewing capability has been affected by what is believed to be an internal obstruction that has reduced OMI's spatial coverage. It currently affects about half of the instrument's 60 viewing positions. In this work we carry out an analysis to assess the effect of the reduced spatial coverage on the monthly average values of retrieved aerosol optical depth (AOD), single scattering albedo (SSA) and the UV Aerosol Index (UVAI) using the 2005-2007 three-year period prior to the onset of the row anomaly. Regional monthly average values calculated using viewing positions 1 through 30 were compared to similarly obtained values using positions 31 through 60, with the expectation of finding close agreement between the two calculations. As expected, mean monthly values of AOD and SSA obtained with these two scattering-angle dependent subsets of OMI observations agreed over regions where carbonaceous or sulphate aerosol particles are the predominant aerosol type. However, over arid regions, where desert dust is the main aerosol type, significant differences between the two sets of calculated regional mean values of AOD were observed. As it turned out, the difference in retrieved desert dust AOD between the scattering-angle dependent observation subsets was due to the incorrect representation of desert dust scattering phase function. A sensitivity analysis using radiative transfer calculations demonstrated that the source of the observed AOD bias was the spherical shape assumption of desert dust particles. A similar analysis in terms of UVAI yielded large differences in the monthly mean values for the two sets of calculations over cloudy regions. On the contrary, in arid regions with minimum cloud presence, the resulting UVAI monthly average values for the two sets of observations were in very close agreement. The discrepancy under cloudy conditions was found to be caused by the parameterization of clouds as opaque Lambertian reflectors. When properly accounting for cloud scattering effects using Mie theory, the observed UVAI angular bias was significantly reduced. The analysis discussed here has uncovered important algorithmic deficiencies associated with the model representation of the angular dependence of scattering effects of desert dust aerosols and cloud droplets. The resulting improvements in the handling of desert dust and cloud scattering have been incorporated in an improved version of the OMAERUV algorithm.

  16. Effect of the corrected ionization potential and spatial distribution on the angular and energy distribution in tunnel ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrović, V. M.; Miladinović, T. B., E-mail: tanja.miladinovic@gmail.com

    2016-05-15

    Within the framework of the Ammosov–Delone–Krainov theory, we consider the angular and energy distribution of outgoing electrons due to ionization by a circularly polarized electromagnetic field. A correction of the ground ionization potential by the ponderomotive and Stark shift is incorporated in both distributions. Spatial dependence is analyzed.

  17. Simulation of angular-resolved RABBITT measurements in noble-gas atoms

    NASA Astrophysics Data System (ADS)

    Bray, Alexander W.; Naseem, Faiza; Kheifets, Anatoli S.

    2018-06-01

    We simulate angular-resolved RABBITT (reconstruction of attosecond beating by interference of two-photon transitions) measurements on valence shells of noble-gas atoms (Ne, Ar, Kr, and Xe). Our nonperturbative numerical simulation is based on solution of the time-dependent Schrödinger equation (TDSE) for a target atom driven by an ionizing XUV and dressing IR fields. From these simulations we extract the angular-dependent magnitude and phase of the RABBITT oscillations and deduce the corresponding angular anisotropy β parameter and Wigner time delay τW for the single XUV photon absorption that initiates the RABBITT process. Said β and τW parameters are compared with calculations in the random-phase approximation with exchange (RPAE), which includes intershell correlation. This comparison is used to test various effective potentials employed in the one-electron TDSE. In lighter atoms (Ne and Ar), several effective potentials are found to provide accurate simulations of RABBITT measurements for a wide range of photon energies up to 100 eV above the valence-shell threshold. In heavier atoms (Kr and Xe), the onset of strong correlation with the d shell restricts the validity of the single active electron approximation to several tens of eV above the valence-shell threshold.

  18. Characterizing the solar reflection from wildfire smoke plumes using airborne multiangle measurements

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Varnai, T.; Gautam, R.; Poudyal, R.; Singh, M. K.

    2016-12-01

    To help better understand forest fire smoke plumes, this study examines sunlight reflected from plumes that were observed over Canada during the ARCTAS campaign in summer 2008. In particular, the study analyzes multiangle and multispectral measurements of smoke scattering by the airborne Cloud Absorption Radiometer (CAR). In combination with other in-situ and remote sensing information and radiation modeling, CAR data is used for characterizing the radiative properties and radiative impact of smoke particles—which inherently depend on smoke particle properties that influence air quality. In addition to estimating the amount of reflected and absorbed sunlight, the work includes using CAR data to create spectral and broadband top-of-atmosphere angular distribution models (ADMs) of solar radiation reflected by smoke plumes, and examining the sensitivity of such angular models to scene parameters. Overall, the results help better understand the radiative properties and radiative effects of smoke particles, and are anticipated to help better interpret satellite data on smoke plumes.

  19. Natural guide-star processing for wide-field laser-assisted AO systems

    NASA Astrophysics Data System (ADS)

    Correia, Carlos M.; Neichel, Benoit; Conan, Jean-Marc; Petit, Cyril; Sauvage, Jean-Francois; Fusco, Thierry; Vernet, Joel D. R.; Thatte, Niranjan

    2016-07-01

    Sky-coverage in laser-assisted AO observations largely depends on the system's capability to guide on the faintest natural guide-stars possible. Here we give an up-to-date status of our natural guide-star processing tailored to the European-ELT's visible and near-infrared (0.47 to 2.45 μm) integral field spectrograph - Harmoni. We tour the processing of both the isoplanatic and anisoplanatic tilt modes using the spatio-angular approach whereby the wavefront is estimated directly in the pupil plane avoiding a cumbersome explicit layered estimation on the 35-layer profiles we're currently using. Taking the case of Harmoni, we cover the choice of wave-front sensors, the number and field location of guide-stars, the optimised algorithms to beat down angular anisoplanatism and the performance obtained with different temporal controllers under split high-order/low-order tomography or joint tomography. We consider both atmospheric and far greater telescope wind buffeting disturbances. In addition we provide the sky-coverage estimates thus obtained.

  20. Preliminary results on the apparent size of the sources of type III bursts observed at low frequencies

    NASA Technical Reports Server (NTRS)

    Alvarez, H.

    1976-01-01

    We present preliminary results on the apparent angular size of the sources of four type III bursts observed between 3500 and 50 kHz from the IMP-6 spacecraft. The observations were made with a dipole rotating in the plane of the ecliptic where the sources are assumed to be. The apparent angular sizes obtained are unexpectedly large. We discuss different explanations for the results. It seems that the scattering of radio waves by electron density inhomogeneities is the most likely cause. We report a temporal increase of the apparent angular size of the source during the burst lifetime for some bursts. From its characteristics it appears to be a real effect.

  1. The tunneling magnetoresistance current dependence on cross sectional area, angle and temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z. H., E-mail: zhaohui@physics.umanitoba.ca; Bai, Lihui; Hu, C.-M.

    2015-03-15

    The magnetoresistance of a MgO-based magnetic tunnel junction (MTJ) was studied experimentally. The magnetoresistance as a function of current was measured systematically on MTJs for various MgO cross sectional areas and at various temperatures from 7.5 to 290.1 K. The resistance current dependence of the MTJ was also measured for different angles between the two ferromagnetic layers. By considering particle and angular momentum conservation of transport electrons, the current dependence of magnetoresistance can be explained by the changing of spin polarization in the free magnetic layer of the MTJ. The changing of spin polarization is related to the magnetoresistance, itsmore » angular dependence and the threshold current where TMR ratio equals zero. A phenomenological model is used which avoid the complicated barrier details and also describes the data.« less

  2. Angular rate optimal design for the rotary strapdown inertial navigation system.

    PubMed

    Yu, Fei; Sun, Qian

    2014-04-22

    Due to the characteristics of high precision for a long duration, the rotary strapdown inertial navigation system (RSINS) has been widely used in submarines and surface ships. Nowadays, the core technology, the rotating scheme, has been studied by numerous researchers. It is well known that as one of the key technologies, the rotating angular rate seriously influences the effectiveness of the error modulating. In order to design the optimal rotating angular rate of the RSINS, the relationship between the rotating angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace transform and the inverse Laplace transform in this paper. The analysis results showed that the velocity error of the RSINS depends on not only the sensor error, but also the rotating angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS should match the sensor error. One optimal design method for the rotating rate of the RSINS was also proposed in this paper. Simulation and experimental results verified the validity and superiority of this optimal design method for the rotating rate of the RSINS.

  3. Measurement of Deeply Virtual Compton Scattering with a Polarized-Proton Target

    NASA Astrophysics Data System (ADS)

    Chen, S.; Avakian, H.; Burkert, V. D.; Eugenio, P.; Adams, G.; Amarian, M.; Ambrozewicz, P.; Anghinolfi, M.; Asryan, G.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Beard, K.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Biselli, A. S.; Bonner, B. E.; Bouchigny, S.; Boiarinov, S.; Bosted, P.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Cazes, A.; Cole, P. L.; Collins, P.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Crede, V.; Cummings, J. P.; Masi, R. De; Devita, R.; Sanctis, E. De; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Fassi, L. El; Elouadrhiri, L.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Forest, T. A.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gonenc, A.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hafidi, K.; Hakobyan, H.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Keith, C.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Li, Ji; Lima, A. C. S.; Livingston, K.; Lu, H.; Lukashin, K.; MacCormick, M.; Markov, N.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Moteabbed, M.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Natasha, N.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M. R.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Popa, I.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Shvedunov, N. V.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Suleiman, R.; Taiuti, M.; Tedeschi, D. J.; Thoma, U.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vanderhaeghen, M.; Vineyard, M. F.; Vlassov, A. V.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z.

    2006-08-01

    The longitudinal target-spin asymmetry AUL for the exclusive electroproduction of high-energy photons was measured for the first time in ep→→e'pγ. The data have been accumulated at JLab with the CLAS spectrometer using 5.7 GeV electrons and a longitudinally polarized NH3 target. A significant azimuthal angular dependence was observed, resulting from the interference of the deeply virtual Compton scattering and Bethe-Heitler processes. The amplitude of the sin⁡ϕ moment is 0.252±0.042stat±0.020sys. Theoretical calculations are in good agreement with the magnitude and the kinematic dependence of the target-spin asymmetry, which is sensitive to the generalized parton distributions H˜ and H.

  4. Possible cage motion of interstitial Fe in α-Al 2 O 3

    NASA Astrophysics Data System (ADS)

    Gunnlaugsson, H. P.; Johnston, K.; Masenda, H.; Mantovan, R.; Mølholt, T. E.; Bharuth-Ram, K.; Gislason, H. P.; Langouche, G.; Madsen, M. B.; Naidoo, D.; Ólafsson, S.; Weyer, G.

    2013-04-01

    In addition to spectral components due to Fe2 + and Fe3 + , a single line is observed in emission Mössbauer spectra following low fluence (<1015 cm - 2) implantation of 57Fe*, 57Mn and 57Co in α-Al2O3. For the 57Co and 57Mn implantations, the intensity of the single line is found to depend on the emission angle relative to the crystal symmetry axis. This angular dependence can be explained by a non-isotropic f-factor and/or motion of the Fe ion between sites in an interstitial cage. It is argued that interstitial cage motion is a more likely explanation, as this can account for the lack of quadrupole splitting of the line.

  5. Polarized Raman scattering of epitaxial vanadium dioxide films with low-temperature monoclinic phase

    NASA Astrophysics Data System (ADS)

    Shibuya, Keisuke; Sawa, Akihito

    2017-07-01

    A polarized Raman scattering study was carried out on epitaxial VO2 thin films on MgF2(001) and (110) substrates to investigate the Raman symmetry and tensor elements of the phonon modes of the films in a low-temperature monoclinic phase. From the polarization angular dependence of the Raman intensity, we assigned the phonon modes at 137, 194, 310, 340, 499, 612, and 663 cm-1 to Ag symmetry and the phonon modes at 143, 262, 442, 480, 582, and 820 cm-1 to Bg symmetry. The angular-dependence measurements also revealed that two phonon modes with Ag and Bg symmetries are present at about 224 and 393 cm-1, although only a single peak was observed in the Raman spectra at around these wavenumbers. On the basis of the experimental results, we evaluated the Raman tensors of the identified phonon modes. From the Raman tensors, we found that the atomic displacements of the 194 and 340 cm-1 phonon modes are approximately perpendicular and parallel, respectively, to the V-V dimer direction. This is consistent with a previous theoretical prediction, i.e., these modes are attributable to the tilting motion and the stretching vibration of the V-V dimers, respectively.

  6. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, A.; Abreu, P.; Andringa, S.

    2017-06-01

    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80{sup o} and energies in excess of 4 EeV (4 × 10{sup 18} eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providingmore » directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p -values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10{sup −5} in the case of the angular power spectrum, and 2.5 × 10{sup −3} in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.« less

  7. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, A.; Abreu, P.; Aglietta, M.

    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80(o) and energies in excess of 4 EeV (4 × 10 18 eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information onmore » any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured, while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p-values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10 -5 in the case of the angular power spectrum, and 2.5 × 10 -3 in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.« less

  8. Angular Momentum and Galaxy Formation Revisited

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-01

    Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j sstarf and mass M sstarf (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii are generally sufficient to estimate total j sstarf reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j sstarf in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of ~100 nearby bright galaxies of all types, placing them on a diagram of j sstarf versus M sstarf. The ellipticals and spirals form two parallel j sstarf-M sstarf tracks, with log-slopes of ~0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of ~3-4 if mass-to-light ratio variations are neglected for simplicity, and ~7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j sstarf-M sstarf trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow separate, fundamental j sstarf-M sstarf scaling relations. This provides a physical motivation for characterizing galaxies most basically with two parameters: mass and bulge-to-disk ratio. Next, in an approach complementary to numerical simulations, we construct idealized models of angular momentum content in a cosmological context, using estimates of dark matter halo spin and mass from theoretical and empirical studies. We find that the width of the halo spin distribution cannot account for the differences between spiral and elliptical j sstarf, but that the observations are reproduced well if these galaxies simply retained different fractions of their initial j complement (~60% and ~10%, respectively). We consider various physical mechanisms for the simultaneous evolution of j sstarf and M sstarf (including outflows, stripping, collapse bias, and merging), emphasizing that the vector sum of all such processes must produce the observed j sstarf-M sstarf relations. We suggest that a combination of early collapse and multiple mergers (major or minor) may account naturally for the trend for ellipticals. More generally, the observed variations in angular momentum represent simple but fundamental constraints for any model of galaxy formation.

  9. ANGULAR MOMENTUM AND GALAXY FORMATION REVISITED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanowsky, Aaron J.; Fall, S. Michael

    2012-12-15

    Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j{sub *} and mass M{sub *} (thus extending earlier work by Fall). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as 10 effective radii, and find that data at two effective radii aremore » generally sufficient to estimate total j{sub *} reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j{sub *} in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of {approx}100 nearby bright galaxies of all types, placing them on a diagram of j{sub *} versus M{sub *}. The ellipticals and spirals form two parallel j{sub *}-M{sub *} tracks, with log-slopes of {approx}0.6, which for the spirals are closely related to the Tully-Fisher relation, but for the ellipticals derives from a remarkable conspiracy between masses, sizes, and rotation velocities. The ellipticals contain less angular momentum on average than spirals of equal mass, with the quantitative disparity depending on the adopted K-band stellar mass-to-light ratios of the galaxies: it is a factor of {approx}3-4 if mass-to-light ratio variations are neglected for simplicity, and {approx}7 if they are included. We decompose the spirals into disks and bulges and find that these subcomponents follow j{sub *}-M{sub *} trends similar to the overall ones for spirals and ellipticals. The lenticulars have an intermediate trend, and we propose that the morphological types of galaxies reflect disk and bulge subcomponents that follow separate, fundamental j{sub *}-M{sub *} scaling relations. This provides a physical motivation for characterizing galaxies most basically with two parameters: mass and bulge-to-disk ratio. Next, in an approach complementary to numerical simulations, we construct idealized models of angular momentum content in a cosmological context, using estimates of dark matter halo spin and mass from theoretical and empirical studies. We find that the width of the halo spin distribution cannot account for the differences between spiral and elliptical j{sub *}, but that the observations are reproduced well if these galaxies simply retained different fractions of their initial j complement ({approx}60% and {approx}10%, respectively). We consider various physical mechanisms for the simultaneous evolution of j{sub *} and M{sub *} (including outflows, stripping, collapse bias, and merging), emphasizing that the vector sum of all such processes must produce the observed j{sub *}-M{sub *} relations. We suggest that a combination of early collapse and multiple mergers (major or minor) may account naturally for the trend for ellipticals. More generally, the observed variations in angular momentum represent simple but fundamental constraints for any model of galaxy formation.« less

  10. Two-dimensional numerical simulation of O-mode to Z-mode conversion in the ionosphere

    NASA Astrophysics Data System (ADS)

    Cannon, P. D.; Honary, F.; Borisov, N.

    2016-03-01

    Experiments in the illumination of the F region of the ionosphere via radio frequency waves polarized in the ordinary mode (O-mode) have revealed that the magnitude of artificial heating-induced effects depends strongly on the inclination angle of the pump beam, with a greater modification to the plasma observed when the heating beam is directed close to or along the magnetic zenith direction. Numerical simulations performed using a recently developed finite-difference time-domain (FDTD) code are used to investigate the contribution of the O-mode to Z-mode conversion process to this effect. The aspect angle dependence and angular size of the radio window for which conversion of an O-mode pump wave to the Z-mode occurs is simulated for a variety of plasma density profiles including 2-D linear gradients representative of large-scale plasma depletions, density-depleted plasma ducts, and periodic field-aligned irregularities. The angular shape of the conversion window is found to be strongly influenced by the background plasma profile. If the Z-mode wave is reflected, it can propagate back toward the O-mode reflection region leading to resonant enhancement of the electric field in this region. Simulation results presented in this paper demonstrate that this process can make a significant contribution to the magnitude of electron density depletion and temperature enhancement around the resonance height and contributes to a strong dependence of the magnitude of plasma perturbation with the direction of the pump wave.

  11. Elastic and hydrodynamic torques on a colloidal disk within a nematic liquid crystal.

    PubMed

    Rovner, Joel B; Borgnia, Dan S; Reich, Daniel H; Leheny, Robert L

    2012-10-01

    The orientationally dependent elastic energy and hydrodynamic behavior of colloidal disks with homeotropic surface anchoring suspended in the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) have been investigated. In the absence of external torques, the disks align with the normal of the disk face â parallel to the nematic director n[over ^]. When a magnetic field is applied, the disks rotate â by an angle θ so that the magnetic torque and the elastic torque caused by distortion of the nematic director field are balanced. Over a broad range of angles, the elastic torque increases linearly with θ in quantitative agreement with a theoretical prediction based on an electrostatic analogy. When the disks are rotated to angles θ>π/2, the resulting large elastic distortion makes the disk orientation unstable, and the director undergoes a topological transition in which θ→π-θ. In the transition, a defect loop is shed from the disk surface, and the disks spin so that â sweeps through π radians as the loop collapses back onto the disk. Additional measurements of the angular relaxation of disks to θ=0 following removal of the external torque show a quasi-exponential time dependence from which an effective drag viscosity for the nematic can be extracted. The scaling of the angular time dependence with disk radius and observations of disks rotating about â indicate that the disk motion affects the director field at surprisingly modest Ericksen numbers.

  12. MAGNETOROTATIONAL TURBULENCE TRANSPORTS ANGULAR MOMENTUM IN STRATIFIED DISKS WITH LOW MAGNETIC PRANDTL NUMBER BUT MAGNETIC REYNOLDS NUMBER ABOVE A CRITICAL VALUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oishi, Jeffrey S.; Mac Low, Mordecai-Mark, E-mail: jsoishi@stanford.edu, E-mail: mordecai@amnh.org

    2011-10-10

    The magnetorotational instability (MRI) may dominate outward transport of angular momentum in accretion disks, allowing material to fall onto the central object. Previous work has established that the MRI can drive a mean-field dynamo, possibly leading to a self-sustaining accretion system. Recently, however, simulations of the scaling of the angular momentum transport parameter {alpha}{sub SS} with the magnetic Prandtl number Pm have cast doubt on the ability of the MRI to transport astrophysically relevant amounts of angular momentum in real disk systems. Here, we use simulations including explicit physical viscosity and resistivity to show that when vertical stratification is included,more » mean-field dynamo action operates, driving the system to a configuration in which the magnetic field is not fully helical. This relaxes the constraints on the generated field provided by magnetic helicity conservation, allowing the generation of a mean field on timescales independent of the resistivity. Our models demonstrate the existence of a critical magnetic Reynolds number Rm{sub crit}, below which transport becomes strongly Pm-dependent and chaotic, but above which the transport is steady and Pm-independent. Prior simulations showing Pm dependence had Rm < Rm{sub crit}. We conjecture that this steady regime is possible because the mean-field dynamo is not helicity-limited and thus does not depend on the details of the helicity ejection process. Scaling to realistic astrophysical parameters suggests that disks around both protostars and stellar mass black holes have Rm >> Rm{sub crit}. Thus, we suggest that the strong Pm dependence seen in recent simulations does not occur in real systems.« less

  13. Magnetorotational Turbulence Transports Angular Momentum in Stratified Disks with Low Magnetic Prandtl Number but Magnetic Reynolds Number above a Critical Value

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oishi, Jeffrey S.; /KIPAC, Menlo Park; Low, Mordecai-Mark Mac

    2012-02-14

    The magnetorotational instability (MRI) may dominate outward transport of angular momentum in accretion disks, allowing material to fall onto the central object. Previous work has established that the MRI can drive a mean-field dynamo, possibly leading to a self-sustaining accretion system. Recently, however, simulations of the scaling of the angular momentum transport parameter {alpha}{sub SS} with the magnetic Prandtl number Pm have cast doubt on the ability of the MRI to transport astrophysically relevant amounts of angular momentum in real disk systems. Here, we use simulations including explicit physical viscosity and resistivity to show that when vertical stratification is included,more » mean field dynamo action operates, driving the system to a configuration in which the magnetic field is not fully helical. This relaxes the constraints on the generated field provided by magnetic helicity conservation, allowing the generation of a mean field on timescales independent of the resistivity. Our models demonstrate the existence of a critical magnetic Reynolds number Rm{sub crit}, below which transport becomes strongly Pm-dependent and chaotic, but above which the transport is steady and Pm-independent. Prior simulations showing Pm-dependence had Rm < Rm{sub crit}. We conjecture that this steady regime is possible because the mean field dynamo is not helicity-limited and thus does not depend on the details of the helicity ejection process. Scaling to realistic astrophysical parameters suggests that disks around both protostars and stellar mass black holes have Rm >> Rm{sub crit}. Thus, we suggest that the strong Pm dependence seen in recent simulations does not occur in real systems.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, H; Ding, H; Ziemer, B

    Purpose: To investigate the feasibility of energy calibration and energy response characterization of a photon counting detector using x-ray fluorescence. Methods: A comprehensive Monte Carlo simulation study was done to investigate the influence of various geometric components on the x-ray fluorescence measurement. Different materials, sizes, and detection angles were simulated using Geant4 Application for Tomographic Emission (GATE) Monte Carlo package. Simulations were conducted using 100 kVp tungsten-anode spectra with 2 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The fluorescence material was placed 300 mm away from both themore » x-ray source and the detector. For angular dependence measurement, the distance was decreased to 30 mm to reduce the simulation time. Compound materials, containing silver, barium, gadolinium, hafnium, and gold in cylindrical shape, were simulated. The object size varied from 5 to 100 mm in diameter. The angular dependence of fluorescence and scatter were simulated from 20° to 170° with an incremental step of 10° to optimize the fluorescence to scatter ratio. Furthermore, the angular dependence was also experimentally measured using a spectrometer (X-123CdTe, Amptek Inc., MA) to validate the simulation results. Results: The detection angle between 120° to 160° resulted in more optimal x-ray fluorescence to scatter ratio. At a detection angle of 120°, the object size did not have a significant effect on the fluorescence to scatter ratio. The experimental results of fluorescence angular dependence are in good agreement with the simulation results. The Kα and Kβ peaks of five materials could be identified. Conclusion: The simulation results show that the x-ray fluorescence procedure has the potential to be used for detector energy calibration and detector response characteristics by using the optimal system geometry.« less

  15. Multi-Observation Continuous Density Hidden Markov Models for Anomaly Detection in Full Motion Video

    DTIC Science & Technology

    2012-06-01

    response profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.5 Method for measuring angular movement versus average direction...of movement 49 3.6 Method for calculating Angular Deviation, Θ . . . . . . . . . . . . . . . . . . 50 4.1 HMM produced by K Means Learning for agent H... Angular Deviation. A random variable, the difference in heading (in degrees) from the overall direction of movement over the sequence • S : Speed. A

  16. Seismic constraints on the radial dependence of the internal rotation profiles of six Kepler subgiants and young red giants

    NASA Astrophysics Data System (ADS)

    Deheuvels, S.; Doğan, G.; Goupil, M. J.; Appourchaux, T.; Benomar, O.; Bruntt, H.; Campante, T. L.; Casagrande, L.; Ceillier, T.; Davies, G. R.; De Cat, P.; Fu, J. N.; García, R. A.; Lobel, A.; Mosser, B.; Reese, D. R.; Regulo, C.; Schou, J.; Stahn, T.; Thygesen, A. O.; Yang, X. H.; Chaplin, W. J.; Christensen-Dalsgaard, J.; Eggenberger, P.; Gizon, L.; Mathis, S.; Molenda-Żakowicz, J.; Pinsonneault, M.

    2014-04-01

    Context. We still do not understand which physical mechanisms are responsible for the transport of angular momentum inside stars. The recent detection of mixed modes that contain the clear signature of rotation in the spectra of Kepler subgiants and red giants gives us the opportunity to make progress on this question. Aims: Our aim is to probe the radial dependence of the rotation profiles for a sample of Kepler targets. For this purpose, subgiants and early red giants are particularly interesting targets because their rotational splittings are more sensitive to the rotation outside the deeper core than is the case for their more evolved counterparts. Methods: We first extracted the rotational splittings and frequencies of the modes for six young Kepler red giants. We then performed a seismic modeling of these stars using the evolutionary codes Cesam2k and astec. By using the observed splittings and the rotational kernels of the optimal models, we inverted the internal rotation profiles of the six stars. Results: We obtain estimates of the core rotation rates for these stars, and upper limits to the rotation in their convective envelope. We show that the rotation contrast between the core and the envelope increases during the subgiant branch. Our results also suggest that the core of subgiants spins up with time, while their envelope spins down. For two of the stars, we show that a discontinuous rotation profile with a deep discontinuity reproduces the observed splittings significantly better than a smooth rotation profile. Interestingly, the depths that are found to be most probable for the discontinuities roughly coincide with the location of the H-burning shell, which separates the layers that contract from those that expand. Conclusions: We characterized the differential rotation pattern of six young giants with a range of metallicities, and with both radiative and convective cores on the main sequence. This will bring observational constraints to the scenarios of angular momentum transport in stars. Moreover, if the existence of sharp gradients in the rotation profiles of young red giants is confirmed, it is expected to help in distinguishing between the physical processes that could transport angular momentum in the subgiant and red giant branches. Appendices and Tables 3-9 are available in electronic form at http://www.aanda.org

  17. The angular momentum of disc galaxies: implications for gas accretion, outflows, and dynamical friction

    NASA Astrophysics Data System (ADS)

    Dutton, Aaron A.; van den Bosch, Frank C.

    2012-03-01

    We combine constraints on the galaxy-dark matter connection with structural and dynamical scaling relations to investigate the angular momentum content of disc galaxies. For haloes with masses in the interval 1011.3 M⊙≲Mvir≲ 1012.7 M⊙ we find that the galaxy spin parameters are basically independent of halo mass with ?. This is significantly lower than for relaxed Λcold dark matter (ΛCDM) haloes, which have an average spin parameter ?. The average ratio between the specific angular momentum of disc galaxies and their host dark matter haloes is therefore ?. This calls into question a standard assumption made in the majority of all (semi-analytical) models for (disc) galaxy formation, namely that ?. Using simple disc formation models we show that it is particularly challenging to understand why ? is independent of halo mass, while the galaxy formation efficiency (ɛGF; proportional to the ratio of galaxy mass to halo mass) reveals a strong halo mass dependence. We argue that the empirical scaling relations between ɛGF, ? and halo mass require both feedback (i.e. galactic outflows) and angular momentum transfer from the baryons to the dark matter (i.e. dynamical friction). Most importantly, the efficiency of angular momentum loss needs to decrease with increasing halo mass. Such a mass dependence may reflect a bias against forming stable discs in high-mass, low-spin haloes or a transition from cold-mode accretion in low-mass haloes to hot-mode accretion at the massive end. However, current hydrodynamical simulations of galaxy formation, which should include these processes, seem unable to reproduce the empirical relation between ɛGF and ?. We conclude that the angular momentum build-up of galactic discs remains poorly understood.

  18. Angular distribution of binary encounter electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, C.; Richard, P.; Grabbe, S.

    The double differential cross section, DDCS, of the binary encounter electrons (BEe) in 1 MeV/u F{sup q+} + H{sub 2} (q = 4, 6, 8, 9) is measured from 0 to 70 degrees with respect to the beam direction. At 0{degrees} the data confirm the decrease of the cross section with increasing projectile charge state. At larger observation angles, the data are in fair agreement with the prediction proposed by Shingal et al. where the ratio of the DDCS for 6+ ions to bare ions is less than 1 for {theta}{sub lab} > 30{degrees} and greater than 1 for {theta}{submore » lab} < 30{degrees} as recently observed for C{sup q+}. We also observed that the energies of the BEe peak are charge state, q, independent at 0{degrees} observation angle, but q dependent at larger observation angles.« less

  19. Angular distributions and mechanisms of fragmentation by relativistic heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoenner, R.W.; Haustein, P.E.; Cumming, J.B.

    1984-07-23

    Angular distributions of massive fragments from relativistic heavy-ion interactions are reported. Sideward peaking is observed for the light fragment /sup 37/Ar, from 25-GeV /sup 12/C+Au, while the distribution for /sup 127/Xe is strongly forward peaked. Conflicts of these observations and other existing data with predictions of models for the fragmentation process are discussed.

  20. Stellar models simulating the disk-locking mechanism and the evolutionary history of the Orion Nebula cluster and NGC 2264

    NASA Astrophysics Data System (ADS)

    Landin, N. R.; Mendes, L. T. S.; Vaz, L. P. R.; Alencar, S. H. P.

    2016-02-01

    Context. Rotational evolution in young stars is described by pre-main sequence evolutionary tracks including non-gray boundary conditions, rotation, conservation of angular momentum, and simulations of disk-locking. Aims: By assuming that disk-locking is the regulation mechanism for the stellar angular velocity during the early stages of pre-main sequence evolution, we use our rotating models and observational data to constrain disk lifetimes (Tdisk) of a representative sample of low-mass stars in two young clusters, the Orion Nebula cluster (ONC) and NGC 2264, and to better understand their rotational evolution. Methods: The period distributions of the ONC and NGC 2264 are known to be bimodal and to depend on the stellar mass. To follow the rotational evolution of these two clusters' stars, we generated sets of evolutionary tracks from a fully convective configuration with low central temperatures (before D- and Li-burning). We assumed that the evolution of fast rotators can be represented by models considering conservation of angular momentum during all stages and of moderate rotators by models considering conservation of angular velocity during the first stages of evolution. With these models we estimate a mass and an age for all stars. Results: The resulting mass distribution for the bulk of the cluster population is in the ranges of 0.2-0.4 M⊙ and 0.1-0.6 M⊙ for the ONC and NGC 2264, respectively. For the ONC, we assume that the secondary peak in the period distribution is due to high-mass objects still locked in their disks, with a locking period (Plock) of ~8 days. For NGC 2264 we make two hypotheses: (1) the stars in the secondary peak are still locked with Plock = 5 days, and (2) NGC 2264 is in a later stage in the rotational evolution. Hypothesis 2 implies in a disk-locking scenario with Plock = 8 days, a disk lifetime of 1 Myr and, after that, constant angular momentum evolution. We then simulated the period distribution of NGC 2264 when the mean age of the cluster was 1 Myr. Dichotomy and bimodality appear in the simulated distribution, presenting one peak at 2 days and another one at 5-7 days, indicating that the assumption of Plock = 8 days is plausible. Our hypotheses are compared with observational disk diagnoses available in the literature for the ONC and NGC 2264, such as near-infrared excess, Hα emission, and spectral energy distribution slope in the mid-infrared. Conclusions: Disk-locking models with Plock = 8 days and 0.2 Myr ≤ Tdisk ≤ 3 Myr are consistent with observed periods of moderate rotators of the ONC. For NGC 2264, the more promising explanation for the observed period distribution is an evolution with disk-locking (with Plock near 8 days) during the first 1 Myr, approximately, but after this, the evolution continued with constant angular momentum. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A96

  1. Bayesian Deconvolution for Angular Super-Resolution in Forward-Looking Scanning Radar

    PubMed Central

    Zha, Yuebo; Huang, Yulin; Sun, Zhichao; Wang, Yue; Yang, Jianyu

    2015-01-01

    Scanning radar is of notable importance for ground surveillance, terrain mapping and disaster rescue. However, the angular resolution of a scanning radar image is poor compared to the achievable range resolution. This paper presents a deconvolution algorithm for angular super-resolution in scanning radar based on Bayesian theory, which states that the angular super-resolution can be realized by solving the corresponding deconvolution problem with the maximum a posteriori (MAP) criterion. The algorithm considers that the noise is composed of two mutually independent parts, i.e., a Gaussian signal-independent component and a Poisson signal-dependent component. In addition, the Laplace distribution is used to represent the prior information about the targets under the assumption that the radar image of interest can be represented by the dominant scatters in the scene. Experimental results demonstrate that the proposed deconvolution algorithm has higher precision for angular super-resolution compared with the conventional algorithms, such as the Tikhonov regularization algorithm, the Wiener filter and the Richardson–Lucy algorithm. PMID:25806871

  2. Observing the Sun with micro-interferometric devices: a didactic experiment

    NASA Astrophysics Data System (ADS)

    Defrère, D.; Absil, O.; Hanot, C.; Riaud, P.; Magette, A.; Marion, L.; Wertz, O.; Finet, F.; Steenackers, M.; Habraken, S.; Surdej, A.; Surdej, J.

    2014-04-01

    Measuring the angular diameter of celestial bodies has long been the main purpose of stellar interferometry and was its historical motivation. Nowadays, stellar interferometry is widely used for various other scientific purposes that require very high angular resolution measurements. In terms of angular spatial scales probed, observing distant stars located 10 to 100~pc away with a large hectometric interferometer is equivalent to observing our Sun with a micrometric baseline. Based on this idea, we have manufactured a set of micro-interferometric devices and tested them on the sky. The micro-interferometers consist of a chrome layer deposited on a glass plate that has been drilled by laser lithography to produce micron-sized holes with configurations corresponding to proposed interferometer projects such as CARLINA, ELSA, KEOPS, and OVLA. In this paper, we describe these interferometric devices and present interferometric observations of the Sun made in the framework of Astrophysics lectures being taught at the Liège University. By means of a simple photographic camera placed behind a micro-interferometric device, we observed the Sun and derived its angular size. This experiment provides a very didactic way to easily obtain fringe patterns similar to those that will be obtained with future large imaging arrays. A program written in C also allows to reproduce the various point spread functions and fringe patterns observed with the micro-interferometric devices for different types of sources, including the Sun.

  3. ϕ Meson Spin Alignment and the Azimuthal Angle Dependence of Λ (Λ) Polarization in Au+Au collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Tu, Biao

    2018-02-01

    Initial large global angular momentum in non-central relativistic heavy-ion collisions can produce strong vorticity, and through the spin-orbit coupling, causes the spin of particles to align with the system's global angular momentum. We present the azimuthal angle dependent (relative to the reaction plane) polarization for Λ and Λ in mid-central Au+Au collisions at = 200 GeV. We also present the ϕ meson spin alignment parameter, ρ00 in Au+Au collisions at = 19.6, 27, 39, 62.4 and 200 GeV. The implications of the results are discussed.

  4. Effect of angular velocity on sensors based on morphology dependent resonances.

    PubMed

    Ali, Amir R; Ioppolo, Tindaro

    2014-04-22

    We carried out an analysis to investigate the morphology dependent optical resonances shift (MDR) of a rotating spherical resonator. The spinning resonator experiences an elastic deformation due to the centrifugal force acting on it, leading to a shift in its MDR. Experiments are also carried out to demonstrate the MDR shifts of a spinning polydimethylsiloxane (PDMS) microsphere. The experimental results agree well with the analytical prediction. These studies demonstrated that spinning sensor based on MDR may experience sufficient shift in the optical resonances, therefore interfering with its desirable operational sensor design. Also the results show that angular velocity sensors could be designed using this principle.

  5. Transport in a magnetic field modulated graphene superlattice.

    PubMed

    Li, Yu-Xian

    2010-01-13

    Using the transfer matrix method, we study the transport properties through a magnetic field modulated graphene superlattice. It is found that the electrostatic barrier, the magnetic vector potential, and the number of wells in a superlattice modify the transmission remarkably. The angular dependent transmission is blocked by the magnetic vector potential because of the appearance of the evanescent states at certain incident angles, and the region of Klein tunneling shifts to the left. The angularly averaged conductivities exhibit oscillatory behavior. The magnitude and period of oscillation depend sensitively on the height of the electrostatic barrier, the number of wells, and the strength of the modulated magnetic field.

  6. A novel sliding mode guidance law without line-of-sight angular rate information accounting for autopilot lag

    NASA Astrophysics Data System (ADS)

    He, Shaoming; Wang, Jiang; Wang, Wei

    2017-12-01

    This paper proposes a new composite guidance law to intercept manoeuvring targets without line-of-sight (LOS) angular rate information in the presence of autopilot lag. The presented formulation is obtained via a combination of homogeneous theory and sliding mode control approach. Different from some existing observers, the proposed homogeneous observer can estimate the lumped uncertainty and the LOS angular rate in an integrated manner. To reject the mismatched lumped uncertainty in the integrated guidance and autopilot system, a sliding surface, which consists of the system states and the estimated states, is proposed and a robust guidance law is then synthesised. Stability analysis shows that the LOS angular rate can be stabilised in a small region around zero asymptotically and the upper bound can be lowered by appropriate parameter choice. Numerical simulations with some comparisons are carried out to demonstrate the superiority of the proposed method.

  7. Corrugated grating on organic multilayer Bragg reflector

    NASA Astrophysics Data System (ADS)

    Jaquet, Sylvain; Scharf, Toralf; Herzig, Hans Peter

    2007-08-01

    Polymeric multilayer Bragg structures are combined with diffractive gratings to produce artificial visual color effects. A particular effect is expected due to the angular reflection dependence of the multilayer Bragg structure and the dispersion caused by the grating. The combined effects can also be used to design particular filter functions and various resonant structures. The multilayer Bragg structure is fabricated by spin-coating of two different low-cost polymer materials in solution on a cleaned glass substrate. These polymers have a refractive index difference of about 0.15 and permit multilayer coatings without interlayer problems. Master gratings of different periods are realized by laser beam interference and replicated gratings are superimposed on the multilayer structure by soft embossing in a UV curing glue. The fabrication process requires only polymer materials. The obtained devices are stable and robust. Angular dependent reflection spectrums for the visible are measured. These results show that it is possible to obtain unexpected reflection effects. A rich variety of color spectra can be generated, which is not possible with a single grating. This can be explained by the coupling of transmission of grating orders and the Bragg reflection band. A simple model permits to explain some of the spectral vs angular dependence of reflected light.

  8. Newly Designed Apparatus for Measuring the Angular Dependent Surface Emittance in a Wide Wavelength Range and at Elevated Temperatures up to 1400°C

    NASA Astrophysics Data System (ADS)

    Rydzek, M.; Stark, T.; Arduini-Schuster, M.; Manara, J.

    2012-11-01

    An optimized apparatus for measuring the angular dependent surface emittance up to elevated temperatures has been designed. This emittance measurement apparatus (EMMA) is coupled to a Bruker Vertex 70v FTIR-spectrometer, so that a wavelength range from about 2 μm up to 25 μm is accessible. The central part of the new apparatus is a double walled, stainless steel vessel which can be evacuated or filled with various gases or with air. Inside the vessel a cylindrical tube furnace is pivot-mounted on a system of discs, for automatically rotating up to an angle of 180°. This allows both, the measurement at different detection angles (0° to 85°) and a consecutive measurement of sample and black-body reference without ventilating and opening the pot. The aim of this work is to present the newly designed emittance measurement apparatus which enables the determination of the angular dependent spectral emittance of opaque samples at temperatures up to 1400 °C. Next to the setup of the apparatus, the measurement results of various materials are presented at different detection angles.

  9. Thickness and angular dependent magnetic anisotropy of La0.67Sr0.33MnO3 thin films by Vectorial Magneto Optical Kerr Magnetometry

    NASA Astrophysics Data System (ADS)

    Chaluvadi, S. K.; Perna, P.; Ajejas, F.; Camarero, J.; Pautrat, A.; Flament, S.; Méchin, L.

    2017-10-01

    We investigate the in-plane magnetic anisotropy in La0.67Sr0.33MnO3 thin films grown on SrTiO3 (001) substrate using angular dependent room temperature Vectorial Magneto-Optical Kerr Magnetometry. The experimental data reveals that the magnetic anisotropy symmetry landscape significantly changes depending upon the strain and thickness. At low film thickness (12 and 25 nm) the dominant uniaxial anisotropy is due to interface effects, step edges due to mis-cut angle of SrTiO3 substrate. At intermediate thickness, the magnetic anisotropy presents a competition between magnetocrystalline (biaxial) and substrate step induced (uniaxial) anisotropy. Depending upon their relative strengths, a profound biaxial or uniaxial or mixed anisotropy is favoured. Above the critical thickness, magnetocrystalline anisotropy dominates all other effects and shows a biaxial anisotropy.

  10. Quantitative analysis of domain texture in polycrystalline barium titanate by polarized Raman microprobe spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakashita, Tatsuo; Chazono, Hirokazu; Pezzotti, Giuseppe

    2007-12-01

    A quantitative determination of domain distribution in polycrystalline barium titanate (BaTiO3, henceforth BT) ceramics has been pursued with the aid of a microprobe polarized Raman spectrometer. The crystallographic texture and domain orientation distribution of BT ceramics, which switched upon applying stress according to ferroelasticity principles, were determined from the relative intensity of selected phonon modes, taking into consideration a theoretical analysis of the angular dependence of phonon mode intensity for the tetragonal BT phase. Furthermore, the angular dependence of Raman intensity measured in polycrystalline BT depended on the statistical distribution of domain angles in the laser microprobe, which was explicitly taken into account in this work for obtaining a quantitative analysis of domain orientation for in-plane textured BT polycrystalline materials.

  11. Creating optical near-field orbital angular momentum in a gold metasurface.

    PubMed

    Chen, Ching-Fu; Ku, Chen-Ta; Tai, Yi-Hsin; Wei, Pei-Kuen; Lin, Heh-Nan; Huang, Chen-Bin

    2015-04-08

    Nanocavities inscribed in a gold thin film are optimized and designed to form a metasurface. We demonstrate both numerically and experimentally the creation of surface plasmon (SP) vortex carrying orbital angular momentum in the metasurface under linearly polarized optical excitation that carries no optical angular momentum. Moreover, depending on the orientation of the exciting linearly polarized light, we show that the metasurface is capable of providing dynamic switching between SP vortex formation or SP subwavelength focusing. The resulting SP intensities are experimentally measured using a near-field scanning optical microscope and are found in excellent quantitative agreements as compared to the numerical results.

  12. Double pendulum model for a tennis stroke including a collision process

    NASA Astrophysics Data System (ADS)

    Youn, Sun-Hyun

    2015-10-01

    By means of adding a collision process between the ball and racket in the double pendulum model, we analyzed the tennis stroke. The ball and the racket system may be accelerated during the collision time; thus, the speed of the rebound ball does not simply depend on the angular velocity of the racket. A higher angular velocity sometimes gives a lower rebound ball speed. We numerically showed that the proper time-lagged racket rotation increased the speed of the rebound ball by 20%. We also showed that the elbow should move in the proper direction in order to add the angular velocity of the racket.

  13. Determining the dominant partial wave contributions from angular distributions of single- and double-polarization observables in pseudoscalar meson photoproduction

    NASA Astrophysics Data System (ADS)

    Wunderlich, Y.; Afzal, F.; Thiel, A.; Beck, R.

    2017-05-01

    This work presents a simple method to determine the significant partial wave contributions to experimentally determined observables in pseudoscalar meson photoproduction. First, fits to angular distributions are presented and the maximum orbital angular momentum Lmax needed to achieve a good fit is determined. Then, recent polarization measurements for γ p → π0 p from ELSA, GRAAL, JLab and MAMI are investigated according to the proposed method. This method allows us to project high-spin partial wave contributions to any observable as long as the measurement has the necessary statistical accuracy. We show, that high precision and large angular coverage in the polarization data are needed in order to be sensitive to high-spin resonance states and thereby also for the finding of small resonance contributions. This task can be achieved via interference of these resonances with the well-known states. For the channel γ p → π0 p, those are the N(1680)5/2+ and Δ(1950)7/2+, contributing to the F-waves.

  14. Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber.

    PubMed

    Dashti, Pedram Z; Alhassen, Fares; Lee, Henry P

    2006-02-03

    Acousto-optic interaction in optical fiber is examined from the perspective of copropagating optical and acoustic vortex modes. Calculation of the acousto-optic coupling coefficient between different optical modes leads to independent conservation of spin and orbital angular momentum of the interacting photons and phonons. We show that the orbital angular momentum of the acoustic vortex can be transferred to a circularly polarized fundamental optical mode to form a stable optical vortex in the fiber carrying orbital angular momentum. The technique provides a useful way of generating stable optical vortices in the fiber medium.

  15. Observational calibration of the projection factor of Cepheids. I. The type II Cepheid κ Pavonis

    NASA Astrophysics Data System (ADS)

    Breitfelder, J.; Kervella, P.; Mérand, A.; Gallenne, A.; Szabados, L.; Anderson, R. I.; Willson, M.; Le Bouquin, J.-B.

    2015-04-01

    Context. The distance of pulsating stars, in particular Cepheids, are commonly measured using the parallax of pulsation technique. The different versions of this technique combine measurements of the linear diameter variation (from spectroscopy) and the angular diameter variation (from photometry or interferometry) amplitudes, to retrieve the distance in a quasi-geometrical way. However, the linear diameter amplitude is directly proportional to the projection factor (hereafter p-factor), which is used to convert spectroscopic radial velocities (i.e., disk integrated) into pulsating (i.e., photospheric) velocities. The value of the p-factor and its possible dependence on the pulsation period are still widely debated. Aims: Our goal is to measure an observational value of the p-factor of the type-II Cepheid κ Pavonis. Methods: The parallax of the type-II Cepheid κ Pav was measured with an accuracy of 5% using HST/FGS. We used this parallax as a starting point to derive the p-factor of κ Pav, using the SPIPS technique (Spectro-Photo-Interferometry of Pulsating Stars), which is a robust version of the parallax-of-pulsation method that employs radial velocity, interferometric and photometric data. We applied this technique to a combination of new VLTI/PIONIER optical interferometric angular diameters, new CORALIE and HARPS radial velocities, as well as multi-colour photometry and radial velocities from the literature. Results: We obtain a value of p = 1.26 ± 0.07 for the p-factor of κ Pav. This result agrees with several of the recently derived Period-p-factor relationships from the literature, as well as previous observational determinations for Cepheids. Conclusions: Individual estimates of the p-factor are fundamental to calibrating the parallax of pulsation distances of Cepheids. Together with previous observational estimates, the projection factor we obtain points to a weak dependence of the p-factor on period. Based on observations realized with ESO facilities at Paranal Observatory under program IDs 091.D-0020 and 093.D-0316.Based on observations collected at ESO La Silla Observatory using the Coralie spectrograph mounted to the Swiss 1.2 m Euler telescope, under program CNTAC2014A-5.

  16. Antiferromagnetic layer thickness dependence of noncollinear uniaxial and unidirectional anisotropies in NiFe/FeMn/CoFe trilayers

    NASA Astrophysics Data System (ADS)

    Choi, Hyeok-Cheol; You, Chun-Yeol; Kim, Ki-Yeon; Lee, Jeong-Soo; Shim, Je-Ho; Kim, Dong-Hyun

    2010-06-01

    We have investigated the dependence of magnetic anisotropies of the exchange-biased NiFe/FeMn/CoFe trilayers on the antiferromagnetic (AF) layer thickness (tAF) by measuring in-plane angular-dependent ferromagnetic resonance fields. The resonance fields of NiFe and CoFe sublayers are shifted to lower and higher values compared to those of single unbiased ferromagnetic (F) layers, respectively, due to the interfacial exchange coupling when tAF≥2nm . In-plane angular dependence of resonance field reveals that uniaxial and unidirectional anisotropies coexist in the film plane, however, they are not collinear with each other. It is found that these peculiar noncollinear anisotropies significantly depend on tAF . The angle of misalignment displays a maximum around tAF=5nm and converges to zero when tAF is thicker than 10 nm. Contributions from thickness-dependent AF anisotropy and spin frustrations at both F/AF interfaces due to the structural imperfections should be accounted in order to understand the AF-layer thickness dependence of noncollinear magnetic anisotropies.

  17. Correlation between Angular Widths of CMEs and Characteristics of Their Source Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, X. H.; Feng, X. S.; Feng, H. Q.

    The angular width of a coronal mass ejection (CME) is an important factor in determining whether the corresponding interplanetary CME (ICME) and its preceding shock will reach Earth. However, there have been very few studies of the decisive factors of the CME’s angular width. In this study, we use the three-dimensional (3D) angular width of CMEs obtained from the Graduated Cylindrical Shell model based on observations of Solar Terrestrial Relations Observatory ( STEREO ) to study the relations between the CME’s 3D width and characteristics of the CME’s source region. We find that for the CMEs produced by active regionsmore » (ARs), the CME width has some correlations with the AR’s area and flux, but these correlations are not strong. The magnetic flux contained in the CME seems to come from only part of the AR’s total flux. For the CMEs produced by flare regions, the correlations between the CME angular width and the flare region’s area and flux are strong. The magnetic flux within those CMEs seems to come from the whole flare region or even from a larger region than the flare. Our findings show that the CME’s 3D angular width can be generally estimated based on observations of Solar Dynamics Observatory for the CME’s source region instead of the observations from coronagraphs on board the Solar and Heliospheric Observatory and STEREO if the two foot points of the CME stay in the same places with no expansion of the CME in the transverse direction until reaching Earth.« less

  18. Optically Stimulated Luminescent Dosimetry for High Dose Rate Brachytherapy

    PubMed Central

    Tien, Christopher Jason; Ebeling, Robert; Hiatt, Jessica R.; Curran, Bruce; Sternick, Edward

    2012-01-01

    Purpose: The objective was to determine whether optically stimulated luminescent dosimeters (OSLDs) were appropriate for in vivo measurements in high dose rate brachytherapy. In order to make this distinction, three dosimetric characteristics were tested: dose linearity, dose rate dependence, and angular dependence. The Landauer nanoDot™ OSLDs were chosen due to their popularity and their availability commercially. Methods: To test the dose linearity, each OSLD was placed at a constant location and the dwell time was varied. Next, in order to test the dose rate dependence, each OSLD was placed at different OLSD-to-source distances and the dwell time was held constant. A curved geometry was created using a circular Accuboost® applicator in order to test angular dependence. Results: The OSLD response remained linear for high doses and was independent of dose rate. For doses up to 600 cGy, the linear coefficient of determination was 0.9988 with a response of 725 counts per cGy. The angular dependence was significant only in “edge-on” scenarios. Conclusion: OSLDs are conveniently read out using commercially available readers. OSLDs can be re-read and serve as a permanent record for clinical records or be annealed using conventional fluorescent light. Lastly, OSLDs are produced commercially for $5 each. Due to these convenient features, in conjunction with the dosimetric performance, OSLDs should be considered a clinically feasible and attractive tool for in vivo HDR brachytherapy measurements. PMID:22888476

  19. Influence of dipolar interactions on the angular-dependent coercivity of nickel nanocylinders

    NASA Astrophysics Data System (ADS)

    Bender, P.; Krämer, F.; Tschöpe, A.; Birringer, R.

    2015-04-01

    In this study the influence of dipolar interactions on the orientation-dependent magnetization behavior of an ensemble of single-domain nickel nanorods was investigated. The rods were synthesized by electrodeposition of nickel into porous alumina templates. Some of the rods were released from the oxide and embedded in gelatine hydrogels (ferrogel) at a sufficiently large average interparticle distance to suppress dipolar interactions. By comparing the orientation-dependent hystereses of the two ensembles in the template and the gel-matrix it could be shown that the dipolar interactions in the template considerably alter the functional form of the angular-dependent coercivity. Analysis of the magnetization curves for an angle of 60° between the rod-axes and the field revealed a significantly reduced coercivity of the template compared to the ferrogel, which could be directly attributed to a stray field induced magnetization reversal of a steadily increasing number of rods with increasing field strength. The magnetization curve of the template could be approximated by a weighted linear superposition of the hysteresis branches of the ferrogel. The magnetization reversal process of the rods was investigated by analyzing the angular-dependent coercivity of the non-interacting nanorods. Comparison of the functional form with analytical models and micromagnetic simulations emphasized the assumption of a localized magnetization reversal. Additionally, it could be shown that the nucleation field of rods with diameters in the range 18-29 nm tends to increase with increasing diameter.

  20. Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Ke; Miller, M. Coleman; Kotera, Kumiko

    2016-12-01

    The detection of ultrahigh-energy (UHE) neutrino sources would contribute significantly to solving the decades-old mystery of the origin of the highest-energy cosmic rays. We investigate the ability of a future UHE neutrino detector to identify the brightest neutrino point sources, by exploring the parameter space of the total number of observed events and the angular resolution of the detector. The favored parameter region can be translated to requirements for the effective area, sky coverage and angular resolution of future detectors, for a given source number density and evolution history. Moreover, by studying the typical distance to sources that are expectedmore » to emit more than one event for a given diffuse neutrino flux, we find that a significant fraction of the identifiable UHE neutrino sources may be located in the nearby Universe if the source number density is above ∼10{sup −6} Mpc{sup −3}. If sources are powerful and rare enough, as predicted in blazar scenarios, they can first be detected at distant locations. Our result also suggests that if UHE cosmic-ray accelerators are neither beamed nor transients, it will be possible to associate the detected UHE neutrino sources with nearby UHE cosmic-ray and gamma-ray sources, and that they may also be observed using other messengers, including ones with limited horizons such as TeV gamma rays, UHE gamma rays and cosmic rays. We find that for a ∼>5σ detection of UHE neutrino sources with a uniform density, n {sub s} {sub ∼}10{sup −7}−10{sup −5} Mpc{sup −3}, at least ∼100−1000 events and sub-degree angular resolution are needed, and the results depend on the source evolution model.« less

  1. Identifying ultrahigh-energy cosmic-ray accelerators with future ultrahigh-energy neutrino detectors

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Kotera, Kumiko; Miller, M. Coleman; Murase, Kohta; Oikonomou, Foteini

    2016-12-01

    The detection of ultrahigh-energy (UHE) neutrino sources would contribute significantly to solving the decades-old mystery of the origin of the highest-energy cosmic rays. We investigate the ability of a future UHE neutrino detector to identify the brightest neutrino point sources, by exploring the parameter space of the total number of observed events and the angular resolution of the detector. The favored parameter region can be translated to requirements for the effective area, sky coverage and angular resolution of future detectors, for a given source number density and evolution history. Moreover, by studying the typical distance to sources that are expected to emit more than one event for a given diffuse neutrino flux, we find that a significant fraction of the identifiable UHE neutrino sources may be located in the nearby Universe if the source number density is above ~10-6 Mpc-3. If sources are powerful and rare enough, as predicted in blazar scenarios, they can first be detected at distant locations. Our result also suggests that if UHE cosmic-ray accelerators are neither beamed nor transients, it will be possible to associate the detected UHE neutrino sources with nearby UHE cosmic-ray and gamma-ray sources, and that they may also be observed using other messengers, including ones with limited horizons such as TeV gamma rays, UHE gamma rays and cosmic rays. We find that for a gtrsim5σ detection of UHE neutrino sources with a uniform density, ns~10-7-10-5 Mpc-3, at least ~100-1000 events and sub-degree angular resolution are needed, and the results depend on the source evolution model.

  2. Photoelectron angular distributions for states of any mixed character: An experiment-friendly model for atomic, molecular, and cluster anions

    NASA Astrophysics Data System (ADS)

    Khuseynov, Dmitry; Blackstone, Christopher C.; Culberson, Lori M.; Sanov, Andrei

    2014-09-01

    We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO- photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.

  3. Photoelectron angular distributions for states of any mixed character: an experiment-friendly model for atomic, molecular, and cluster anions.

    PubMed

    Khuseynov, Dmitry; Blackstone, Christopher C; Culberson, Lori M; Sanov, Andrei

    2014-09-28

    We present a model for laboratory-frame photoelectron angular distributions in direct photodetachment from (in principle) any molecular orbital using linearly polarized light. A transparent mathematical approach is used to generalize the Cooper-Zare central-potential model to anionic states of any mixed character. In the limit of atomic-anion photodetachment, the model reproduces the Cooper-Zare formula. In the case of an initial orbital described as a superposition of s and p-type functions, the model yields the previously obtained s-p mixing formula. The formalism is further advanced using the Hanstorp approximation, whereas the relative scaling of the partial-wave cross-sections is assumed to follow the Wigner threshold law. The resulting model describes the energy dependence of photoelectron anisotropy for any atomic, molecular, or cluster anions, usually without requiring a direct calculation of the transition dipole matrix elements. As a benchmark case, we apply the p-d variant of the model to the experimental results for NO(-) photodetachment and show that the observed anisotropy trend is described well using physically meaningful values of the model parameters. Overall, the presented formalism delivers insight into the photodetachment process and affords a new quantitative strategy for analyzing the photoelectron angular distributions and characterizing mixed-character molecular orbitals using photoelectron imaging spectroscopy of negative ions.

  4. Planet Formation in Disks with Inclined Binary Companions: Can Primordial Spin-Orbit Misalignment be Produced?

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-04-01

    Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planet's orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary disks, and inclined binary companions may tilt the stellar spin axis with respect to the disk's angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disk evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disk photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disk-binary systems. We take into account planet-disk interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disk via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with "cold" Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.

  5. Planet formation in discs with inclined binary companions: can primordial spin-orbit misalignment be produced?

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-07-01

    Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planet's orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary discs, and inclined binary companions may tilt the stellar spin axis with respect to the disc's angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disc evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disc photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disc-binary systems. We take into account planet-disc interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disc via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with `cold' Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.

  6. Comparing mode-crosstalk and mode-dependent loss of laterally displaced orbital angular momentum and Hermite-Gaussian modes for free-space optical communication.

    PubMed

    Ndagano, Bienvenu; Mphuthi, Nokwazi; Milione, Giovanni; Forbes, Andrew

    2017-10-15

    There is interest in using orbital angular momentum (OAM) modes to increase the data speed of free-space optical communication. A prevalent challenge is the mitigation of mode-crosstalk and mode-dependent loss that is caused by the modes' lateral displacement at the data receiver. Here, the mode-crosstalk and mode-dependent loss of laterally displaced OAM modes (LG 0,+1 , LG 0,-1 ) are experimentally compared to that of a Hermite-Gaussian (HG) mode subset (HG 0,1 , HG 1,0 ). It is shown, for an aperture larger than the modes' waist sizes, some of the HG modes can experience less mode-crosstalk and mode-dependent loss when laterally displaced along a symmetry axis. It is also shown, over a normal distribution of lateral displacements whose standard deviation is 2× the modes' waist sizes, on average, the HG modes experience 66% less mode-crosstalk and 17% less mode-dependent loss.

  7. Angular-Rate Estimation Using Delayed Quaternion Measurements

    NASA Technical Reports Server (NTRS)

    Azor, R.; Bar-Itzhack, I. Y.; Harman, R. R.

    1999-01-01

    This paper presents algorithms for estimating the angular-rate vector of satellites using quaternion measurements. Two approaches are compared one that uses differentiated quaternion measurements to yield coarse rate measurements, which are then fed into two different estimators. In the other approach the raw quaternion measurements themselves are fed directly into the two estimators. The two estimators rely on the ability to decompose the non-linear part of the rotas rotational dynamics equation of a body into a product of an angular-rate dependent matrix and the angular-rate vector itself. This non unique decomposition, enables the treatment of the nonlinear spacecraft (SC) dynamics model as a linear one and, thus, the application of a PseudoLinear Kalman Filter (PSELIKA). It also enables the application of a special Kalman filter which is based on the use of the solution of the State Dependent Algebraic Riccati Equation (SDARE) in order to compute the gain matrix and thus eliminates the need to compute recursively the filter covariance matrix. The replacement of the rotational dynamics by a simple Markov model is also examined. In this paper special consideration is given to the problem of delayed quaternion measurements. Two solutions to this problem are suggested and tested. Real Rossi X-Ray Timing Explorer (RXTE) data is used to test these algorithms, and results are presented.

  8. Angular distribution of Cherenkov radiation from relativistic heavy ions taking into account deceleration in the radiator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanov, O. V., E-mail: bov@tpu.ru; Fiks, E. I.; Pivovarov, Yu. L.

    2012-09-15

    Numerical methods are used to study the dependence of the structure and the width of the angular distribution of Vavilov-Cherenkov radiation with a fixed wavelength in the vicinity of the Cherenkov cone on the radiator parameters (thickness and refractive index), as well as on the parameters of the relativistic heavy ion beam (charge and initial energy). The deceleration of relativistic heavy ions in the radiator, which decreases the velocity of ions, modifies the condition of structural interference of the waves emitted from various segments of the trajectory; as a result, a complex distribution of Vavilov-Cherenkov radiation appears. The main quantitymore » is the stopping power of a thin layer of the radiator (average loss of the ion energy), which is calculated by the Bethe-Bloch formula and using the SRIM code package. A simple formula is obtained to estimate the angular distribution width of Cherenkov radiation (with a fixed wavelength) from relativistic heavy ions taking into account the deceleration in the radiator. The measurement of this width can provide direct information on the charge of the ion that passes through the radiator, which extends the potentialities of Cherenkov detectors. The isotopic effect (dependence of the angular distribution of Vavilov-Cherenkov radiation on the ion mass) is also considered.« less

  9. Angular Rate Optimal Design for the Rotary Strapdown Inertial Navigation System

    PubMed Central

    Yu, Fei; Sun, Qian

    2014-01-01

    Due to the characteristics of high precision for a long duration, the rotary strapdown inertial navigation system (RSINS) has been widely used in submarines and surface ships. Nowadays, the core technology, the rotating scheme, has been studied by numerous researchers. It is well known that as one of the key technologies, the rotating angular rate seriously influences the effectiveness of the error modulating. In order to design the optimal rotating angular rate of the RSINS, the relationship between the rotating angular rate and the velocity error of the RSINS was analyzed in detail based on the Laplace transform and the inverse Laplace transform in this paper. The analysis results showed that the velocity error of the RSINS depends on not only the sensor error, but also the rotating angular rate. In order to minimize the velocity error, the rotating angular rate of the RSINS should match the sensor error. One optimal design method for the rotating rate of the RSINS was also proposed in this paper. Simulation and experimental results verified the validity and superiority of this optimal design method for the rotating rate of the RSINS. PMID:24759115

  10. Full-orbit and backward Monte Carlo simulation of runaway electrons

    NASA Astrophysics Data System (ADS)

    Del-Castillo-Negrete, Diego

    2017-10-01

    High-energy relativistic runaway electrons (RE) can be produced during magnetic disruptions due to electric fields generated during the thermal and current quench of the plasma. Understanding this problem is key for the safe operation of ITER because, if not avoided or mitigated, RE can severely damage the plasma facing components. In this presentation we report on RE simulation efforts centered in two complementary approaches: (i) Full orbit (6-D phase space) relativistic numerical simulations in general (integrable or chaotic) 3-D magnetic and electric fields, including radiation damping and collisions, using the recently developed particle-based Kinetic Orbit Runaway electron Code (KORC) and (ii) Backward Monte-Carlo (MC) simulations based on a recently developed efficient backward stochastic differential equations (BSDE) solver. Following a description of the corresponding numerical methods, we present applications to: (i) RE synchrotron radiation (SR) emission using KORC and (ii) Computation of time-dependent runaway probability distributions, RE production rates, and expected slowing-down and runaway times using BSDE. We study the dependence of these statistical observables on the electric and magnetic field, and the ion effective charge. SR is a key energy dissipation mechanism in the high-energy regime, and it is also extensively used as an experimental diagnostic of RE. Using KORC we study full orbit effects on SR and discuss a recently developed SR synthetic diagnostic that incorporates the full angular dependence of SR, and the location and basic optics of the camera. It is shown that oversimplifying the angular dependence of SR and/or ignoring orbit effects can significantly modify the shape and overestimate the amplitude of the spectra. Applications to DIII-D RE experiments are discussed.

  11. Light's Darkness

    ScienceCinema

    Padgett, Miles [University of Glasgow, Glasgow, Scotland

    2017-12-09

    Optical vortices and orbital angular momentum are currently topical subjects in the optics literature. Although seemingly esoteric, they are, in fact, the generic state of light and arise whenever three or more plane waves interfere. To be observed by eye the light must be monochromatic. Laser speckle is one such example, where the optical energy circulates around each black spot, giving a local orbital angular momentum. This talk with report three on-going studies. First, when considering a volume of interfering waves, the laser specs map out threads of complete darkness embedded in the light. Do these threads form loops? Links? Or even knots? Second, when looking through a rapidly spinning window, the image of the world on the other side is rotated: true or false? Finally, the entanglement of orbital angular momentum states means measuring how the angular position of one photons sets the angular momentum of another: is this an angular version of the EPR (Einstein, Podolsky, and Rosen) paradox?

  12. Visualization of natural convection heat transfer on a sphere

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Young; Chung, Bum-Jin

    2017-12-01

    Natural convection heat transfer phenomena on spheres were investigated by adopting mass transfer experiments based on analogy concept. The diameters of spheres were varied from 0.01 m to 0.12 m, which correspond to the Rayleigh numbers of 1.69×108-2.91×1011. The measured mass transfer coefficients agreed well with the existing correlations. The copper electroplating patterns on the spheres visualized the local heat transfer depending on angular distance. The streak plating patterns were observed on the upper part of the sphere, resulting from the wavy flow patterns caused by the instability.

  13. Analog Landau-He-McKellar-Wilkens quantization due to noninertial effects of the Fermi-Walker reference frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakke, Knut

    2010-05-15

    We will show that when a neutral particle with permanent electric dipole moment interacts with a specific field configuration when the local reference frames of the observers are Fermi-Walker transported, the Landau quantization analog to the He-McKellar-Wilkens setup arises in the nonrelativistic quantum dynamics of the neutral particle due the noninertial effects of the Fermi-Walker reference frame. We show that the noninertial effects do not break the infinity degeneracy of the energy levels, but in this case, the cyclotron frequency depends on the angular velocity.

  14. Time behavior of solar flare particles to 5 AU

    NASA Technical Reports Server (NTRS)

    Haffner, J. W.

    1972-01-01

    A simple model of solar flare radiation event particle transport is developed to permit the calculation of fluxes and related quantities as a function of distance from the sun (R). This model assumes the particles spiral around the solar magnetic field lines with a constant pitch angle. The particle angular distributions and onset plus arrival times as functions of energy at 1 AU agree with observations if the pitch angle distribution peaks near 90 deg. As a consequence the time dependence factor is essentially proportional to R/1.7, (R in AU), and the event flux is proportional to R/2.

  15. The Large Local Hole in the Galaxy Distribution: The 2MASS Galaxy Angular Power Spectrum

    NASA Astrophysics Data System (ADS)

    Frith, W. J.; Outram, P. J.; Shanks, T.

    2005-06-01

    We present new evidence for a large deficiency in the local galaxy distribution situated in the ˜4000 deg2 APM survey area. We use models guided by the 2dF Galaxy Redshift Survey (2dFGRS) n(z) as a probe of the underlying large-scale structure. We first check the usefulness of this technique by comparing the 2dFGRS n(z) model prediction with the K-band and B-band number counts extracted from the 2MASS and 2dFGRS parent catalogues over the 2dFGRS Northern and Southern declination strips, before turning to a comparison with the APM counts. We find that the APM counts in both the B and K-bands indicate a deficiency in the local galaxy distribution of ˜30% to z ≈ 0.1 over the entire APM survey area. We examine the implied significance of such a large local hole, considering several possible forms for the real-space correlation function. We find that such a deficiency in the APM survey area indicates an excess of power at large scales over what is expected from the correlation function observed in 2dFGRS correlation function or predicted from ΛCDM Hubble Volume mock catalogues. In order to check further the clustering at large scales in the 2MASS data, we have calculated the angular power spectrum for 2MASS galaxies. Although in the linear regime (l<30), ΛCDM models can give a good fit to the 2MASS angular power spectrum, over a wider range (l<100) the power spectrum from Hubble Volume mock catalogues suggests that scale-dependent bias may be needed for ΛCDM to fit. However, the modest increase in large-scale power observed in the 2MASS angular power spectrum is still not enough to explain the local hole. If the APM survey area really is 25% deficient in galaxies out to z≈0.1, explanations for the disagreement with observed galaxy clustering statistics include the possibilities that the galaxy clustering is non-Gaussian on large scales or that the 2MASS volume is still too small to represent a `fair sample' of the Universe. Extending the 2dFGRS redshift survey over the whole APM area would resolve many of the remaining questions about the existence and interpretation of this local hole.

  16. Star clusters and K2

    NASA Astrophysics Data System (ADS)

    Dotson, Jessie; Barentsen, Geert; Cody, Ann Marie

    2018-01-01

    The K2 survey has expanded the Kepler legacy by using the repurposed spacecraft to observe over 20 star clusters. The sample includes open and globular clusters at all ages, including very young (1-10 Myr, e.g. Taurus, Upper Sco, NGC 6530), moderately young (0.1-1 Gyr, e.g. M35, M44, Pleiades, Hyades), middle-aged (e.g. M67, Ruprecht 147, NGC 2158), and old globular clusters (e.g. M9, M19, Terzan 5). K2 observations of stellar clusters are exploring the rotation period-mass relationship to significantly lower masses than was previously possible, shedding light on the angular momentum budget and its dependence on mass and circumstellar disk properties, and illuminating the role of multiplicity in stellar angular momentum. Exoplanets discovered by K2 in stellar clusters provides planetary systems ripe for modeling given the extensive information available about their ages and environment. I will review the star clusters sampled by K2 across 16 fields so far, highlighting several characteristics, caveats, and unexplored uses of the public data set along the way. With fuel expected to run out in 2018, I will discuss the closing Campaigns, highlight the final target selection opportunities, and explain the data archive and TESS-compatible software tools the K2 mission intends to leave behind for posterity.

  17. Jet transverse fragmentation momentum from h-h correlations in pp and p-Pb collisions

    NASA Astrophysics Data System (ADS)

    Viinikainen, J.; Alice Collaboration

    2017-08-01

    QCD color coherence phenomena, like angular ordering, can be studied by looking at jet fragmentation. As the jet is fragmenting, it is expected to go through two different phases. First, there is QCD branching that is calculable in perturbative QCD. Next, the produced partons hadronize in a non-perturbative way later in a hadronization process. The jet fragmentation can be studied using the method of two particle correlations. A useful observable is the jet transverse fragmentation momentum jT, which describes the angular width of the jet. In this contribution, a differential study will be presented in which separate jT components for branching and hadronization will be distinguished from the data measured by the ALICE experiment. The pTt dependence of the hadronization component √{ 〈jT2 〉 } is found to be rather flat, which is consistent with universal hadronization assumption. However, the branching component shows slightly rising trend in pTt. The √{ s } = 7 TeV pp and √{sNN } = 5.02 TeV p-Pb data give the same results within error bars, suggesting that this observable is not affected by cold nuclear matter effects in p-Pb collisions. The measured data will also be compared to the results obtained from PYTHIA8 simulations.

  18. Isotropic enhancement in the critical current density of YBCO thin films incorporating nanoscale Y2BaCuO5 inclusions

    NASA Astrophysics Data System (ADS)

    Jha, Alok K.; Matsumoto, Kaname; Horide, Tomoya; Saini, Shrikant; Mele, Paolo; Ichinose, Ataru; Yoshida, Yutaka; Awaji, Satoshi

    2017-09-01

    The effect of incorporation of nanoscale Y2BaCuO5 (Y211) inclusions on the vortex pinning properties of YBa2Cu3O7-δ (YBCO or Y123) superconducting thin films is investigated in detail on the basis of variation of critical current density (JC) with applied magnetic field and also with the orientation of the applied magnetic field at two different temperatures: 77 K and 65 K. Surface modified target approach is employed to incorporate nanoscale Y211 inclusions into the superconducting YBCO matrix. The efficiency of Y211 nanoinclusions in reducing the angular anisotropy of critical current density is found to be significant. The observed angular dependence of the critical current density is discussed on the basis of mutually occupied volume by a vortex and spherical and/or planar defect. A dip in JC near the ab-plane is also observed which has been analyzed on the basis of variation of pinning potential corresponding to a spherical (3-D) or planar (2-D) pinning center and has been attributed to a reduced interaction volume of the vortices with a pinning center and competing nature of the potentials due to spherical and planar defects.

  19. Angle-Dependent Microresonator ESR Characterization of Locally Doped Gd3 + :Al2O3

    NASA Astrophysics Data System (ADS)

    Wisby, I. S.; de Graaf, S. E.; Gwilliam, R.; Adamyan, A.; Kubatkin, S. E.; Meeson, P. J.; Tzalenchuk, A. Ya.; Lindström, T.

    2016-08-01

    Interfacing rare-earth-doped crystals with superconducting circuit architectures provides an attractive platform for quantum memory and transducer devices. Here, we present the detailed characterization of such a hybrid system: a locally implanted rare-earth Gd3 + in Al2O3 spin system coupled to a superconducting microresonator. We investigate the properties of the implanted spin system through angular-dependent microresonator electron spin resonance (micro-ESR) spectroscopy. We find, despite the high-energy near-surface implantation, the resulting micro-ESR spectra to be in excellent agreement with the modeled Hamiltonian, supporting the integration of dopant ions into their relevant lattice sites while maintaining crystalline symmetries. Furthermore, we observe clear contributions from individual microwave field components of our microresonator, emphasizing the need for controllable local implantation.

  20. PHENIX results on centrality dependence of yields and correlations in d plus Au collisions at root s(NN)=200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaguchi, T.

    PHENIX has measured the transverse momentum (pT) spectra and two particle angular correlations for high pT particles in d+Au collisions at psNN=200 GeV using the RHIC Year-2008 run data. The azimuthal angle correlations for two particles with a large rapidity gap exhibit a ridge-like structure. Using the pi-0s reconstructed in the EMCal, we have successfully extended the pT reach of the correlation up to 8 GeV/c. We find that the azimuthal anisotropy of hadrons found at low pT persists up to 6 GeV/c with a significant centrality and pT dependence, similar to what was observed in A+A collisions.

  1. Motor function in microgravity: movement in weightlessness

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    1996-01-01

    Microgravity provides unique, though experimentally challenging, opportunities to study motor control. A traditional research focus has been the effects of linear acceleration on vestibular responses to angular acceleration. Evidence is accumulating that the high-frequency vestibulo-ocular reflex (VOR) is not affected by transitions from a 1 g linear force field to microgravity (<1 g); however, it appears that the three-dimensional organization of the VOR is dependent on gravitoinertial force levels. Some of the observed effects of microgravity on head and arm movement control appear to depend on the previously undetected inputs of cervical and brachial proprioception, which change almost immediately in response to alterations in background force levels. Recent studies of post-flight disturbances of posture and locomotion are revealing sensorimotor mechanisms that adjust over periods ranging from hours to weeks.

  2. The impact of the carrier envelope phase-dependence on system and laser parameters

    NASA Astrophysics Data System (ADS)

    Reinhard, P.-G.; Suraud, E.; Meier, C.

    2018-01-01

    We investigate, from a theoretical perspective, photoemission of electrons induced by ultra-short infrared pulses covering only a few photon cycles. In particular, we investigate the impact of the carrier envelope phase of the laser pulse which plays an increasingly large role for decreasing pulse length. As key observable we look at the asymmetry of the angular distribution as function of kinetic energy of the emitted electrons. The focus of the present study lies on the system dependence of the reaction. To this end, we study two very different systems in comparison, an Ar atom and the Na{}9+ cluster. The study employs a fully quantum-mechanical description of electron dynamics at the level of time-dependent density functional theory. We find a sensitive dependence on the system which can be related to the different spectral response properties. Results can be understood from an interplay of the ponderomotive motion driven by the external photon field and dynamical polarization of the system.

  3. The comptonization parameter from simulations of single-frequency, single-dish, dual-beam, cm-wave observations of galaxy clusters and mitigating CMB confusion using the Planck sky survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lew, Bartosz; Roukema, Boudewijn F., E-mail: blew@astro.uni.torun.pl, E-mail: boud@astro.uni.torun.pl

    2016-11-01

    Systematic effects in dual-beam, differential, radio observations of extended objects are discussed in the context of the One Centimeter Receiver Array (OCRA). We use simulated samples of Sunyaev-Zel'dovich (SZ) galaxy clusters at low ( z < 0.4) and intermediate (0.4 < z < 1.0) redshifts to study the implications of operating at a single frequency (30 GHz) on the accuracy of extracting SZ flux densities and of reconstructing comptonization parameters with OCRA. We analyze dependences on cluster mass, redshift, observation strategy, and telescope pointing accuracy. Using Planck data to make primary cosmic microwave background (CMB) templates, we test the feasibilitymore » of mitigating CMB confusion effects in observations of SZ profiles at angular scales larger than the separation of the receiver beams.« less

  4. Generalized Doppler and aberration kernel for frequency-dependent cosmological observables

    NASA Astrophysics Data System (ADS)

    Yasini, Siavash; Pierpaoli, Elena

    2017-11-01

    We introduce a frequency-dependent Doppler and aberration transformation kernel for the harmonic multipoles of a general cosmological observable with spin weight s , Doppler weight d and arbitrary frequency spectrum. In the context of cosmic microwave background (CMB) studies, the frequency-dependent formalism allows to correct for the motion-induced aberration and Doppler effects on individual frequency maps with different masks. It also permits to deboost background radiations with non-blackbody frequency spectra, like extragalactic foregrounds and CMB spectra with primordial spectral distortions. The formalism can also be used to correct individual E and B polarization modes and account for motion-induced E/B mixing of polarized observables with d ≠1 at different frequencies. We apply the generalized aberration kernel on polarized and unpolarized specific intensity at 100 and 217 GHz and show that the motion-induced effects typically increase with the frequency of observation. In all-sky CMB experiments, the frequency-dependence of the motion-induced effects for a blackbody spectrum are overall negligible. However in a cut-sky analysis, ignoring the frequency dependence can lead to percent level error in the polarized and unpolarized power spectra over all angular scales. In the specific cut-sky used in our analysis (b >4 5 ° ,fsky≃14 % ), and for the dipole-inferred velocity β =0.00123 typically attributed to our peculiar motion, the Doppler and aberration effects can change polarized and unpolarized power spectra of specific intensity in the CMB rest frame by 1 - 2 % , but we find the polarization cross-leakage between E and B modes to be negligible.

  5. Dependence of Interfacial Dzyaloshinskii-Moriya Interaction on Layer Thicknesses in Ta /Co -Fe -B /TaOx Heterostructures from Brillouin Light Scattering

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Avinash Kumar; Choudhury, Samiran; Sinha, Jaivardhan; Barman, Anjan

    2018-01-01

    The interfacial Dzyaloshinskii-Moriya interaction (IDMI) has recently drawn extensive research interest due to its fundamental role in stabilizing chiral spin textures in ultrathin ferromagnets, which are suitable candidates for future magnetic-memory devices. Here, we explore the ferromagnetic and heavy-metal layer-thickness dependence of IDMI in technologically important Ta /Co20Fe60B20/TaOx heterostructures by measuring nonreciprocity in spin-wave frequency using the Brillouin light-scattering technique. The observed value of the IDMI constant agrees with that obtained from a separate measurement of in-plane angular dependence of frequency nonreciprocity, which is also in good agreement with the theory predicted by Cortes-Ortuno and Landeros. Linear scaling behavior of IDMI with the inverse of Co-Fe-B thicknesses suggests that IDMI originates primarily from the interface in these heterostructures, whereas we observe a weak dependence of Ta thickness on the strength of IDMI. Importantly, the observed value of the IDMI constant is reasonably large by a factor of 3 compared to annealed Ta /Co -Fe -B /MgO heterostructures. We propose that the observation of large IDMI is likely due to the absence of boron diffusion towards the Ta /Co -Fe -B interface as the heterostructures are as deposited. Our detailed investigation opens up a route to designing thin-film heterostructures with the tailored IDMI constant for controlling Skyrmion-based magnetic-memory devices.

  6. The VLBI time delay function for synchronous orbits

    NASA Technical Reports Server (NTRS)

    Rosenbaum, B.

    1972-01-01

    The VLBI is a satellite tracking technique that to date was applied largely to the tracking of synchronous orbits. These orbits are favorable for VLBI in that the remote satellite range allows continuous viewing from widely separated stations. The primary observable, geometric time delay is the time difference for signal propagation between satellite and baseline terminals. Extraordinary accuracy in angular position data on the satellite can be obtained by observation from baselines of continental dimensions. In satellite tracking though the common objective is to derive orbital elements. A question arises as to how the baseline vector bears on the accuracy of determining the elements. Our approach to this question is to derive an analytic expression for the time delay function in terms of Kepler elements and station coordinates. The analysis, which is for simplicity based on elliptic motion, shows that the resolution for the inclination of the orbital plane depends on the magnitude of the baseline polar component and the resolution for in-plane elements depends on the magnitude of a projected equatorial baseline component.

  7. Is Linear Displacement Information Or Angular Displacement Information Used During The Adaptation of Pointing Responses To An Optically Shifted Image?

    NASA Technical Reports Server (NTRS)

    Bautista, Abigail B.

    1994-01-01

    Twenty-four observers looked through a pair of 20 diopter wedge prisms and pointed to an image of a target which was displaced vertically from eye level by 6 cm at a distance of 30 cm. Observers pointed 40 times, using only their right hand, and received error-corrective feedback upon termination of each pointing response (terminal visual feedback). At three testing distances, 20, 30, and 40 cm, ten pre-exposure and ten post-exposure pointing responses were recorded for each hand as observers reached to a mirror-viewed target located at eye level. The difference between pre- and post-exposure pointing response (adaptive shift) was compared for both Exposed and Unexposed hands across all three testing distances. The data were assessed according to the results predicted by two alternative models for processing spatial-information: one using angular displacement information and another using linear displacement information. The angular model of spatial mapping best predicted the observer's pointing response for the Exposed hand. Although the angular adaptive shift did not change significantly as a function of distance (F(2,44) = 1.12, n.s.), the linear adaptive shift increased significantly over the three testing distances 02 44) = 4.90 p less than 0.01).

  8. On the synchrotron emission in kinetic simulations of runaway electrons in magnetic confinement fusion plasmas

    NASA Astrophysics Data System (ADS)

    Carbajal, L.; del-Castillo-Negrete, D.

    2017-12-01

    Developing avoidance or mitigation strategies of runaway electrons (REs) in magnetic confinement fusion (MCF) plasmas is of crucial importance for the safe operation of ITER. In order to develop these strategies, an accurate diagnostic capability that allows good estimates of the RE distribution function in these plasmas is needed. Synchrotron radiation (SR) of RE in MCF, besides of being one of the main damping mechanisms for RE in the high energy relativistic regime, is routinely used in current MCF experiments to infer the parameters of RE energy and pitch angle distribution functions. In the present paper we address the long standing question about what are the relationships between different REs distribution functions and their corresponding synchrotron emission simultaneously including: full-orbit effects, information of the spectral and angular distribution of SR of each electron, and basic geometric optics of a camera. We study the spatial distribution of the SR on the poloidal plane, and the statistical properties of the expected value of the synchrotron spectra of REs. We observe a strong dependence of the synchrotron emission measured by the camera on the pitch angle distribution of runaways, namely we find that crescent shapes of the spatial distribution of the SR as measured by the camera relate to RE distributions with small pitch angles, while ellipse shapes relate to distributions of runaways with larger the pitch angles. A weak dependence of the synchrotron emission measured by the camera with the RE energy, value of the q-profile at the edge, and the chosen range of wavelengths is observed. Furthermore, we find that oversimplifying the angular dependence of the SR changes the shape of the synchrotron spectra, and overestimates its amplitude by approximately 20 times for avalanching runaways and by approximately 60 times for mono-energetic distributions of runaways1.

  9. Anelasticity of olivine single crystals investigated by stress-reduction tests and high-angular resolution electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Wallis, D.; Hansen, L. N.; Kempton, I.; Wilkinson, A. J.

    2017-12-01

    Geodynamic phenomena, including glacial isostatic adjustment and postseismic deformation, can involve transient deformation in response to changes in differential stress acting on mantle rocks. As such, rheological models of transient deformation are incorporated in predictions of associated processes, including sea-level rise and stress redistribution after earthquakes. However, experimental constraints on rheological models for transient deformation of mantle materials are sparse. In particular, experiments involving stress reductions have been lacking. Moreover, a material's response to a reduction in stress can provide clues to the microphysical processes controlling deformation. To constrain models of transient deformation of mantle rocks we performed stress-reduction tests on single crystals of olivine at 1250-1300°C. Mechanical and piezoelectric actuators controlled constant initial stress during creep. At various strain intervals stress was reduced near-instantaneously using the piezoelectric actuator, inducing both elastic and anelastic (time-dependent) lengthening of the samples. A range of magnitudes of stress reduction were applied, typically unloading 10-90% of the initial stress. High-angular resolution electron backscatter diffraction (HR-EBSD), based on cross-correlation of diffraction patterns, was used to map dislocation density and elastic strain distributions in the recovered samples. Magnitudes of anelastic back-strain increase with increasing magnitudes of stress reduction and show a marked increase when stress reductions exceed 50% of the initial stress, consistent with previous observations in metals and alloys. This observation is inconsistent with the Burgers rheological model commonly used to describe transient behaviour and suggests that the style of rheological behaviour depends on the magnitude of stress change. HR-EBSD maps reveal that the crystal lattices are smoothly curved and generally lack subgrain boundaries and elastic strain heterogeneities. The dependence of the anelastic behaviour on the initial stress, combined with the lack of subgrain boundaries, suggest that the anelastic behaviour is controlled by local interactions between dislocations, rather than resistance imposed by the lattice or subgrain boundaries.

  10. Self-organization and symmetry-breaking in two-dimensional plasma turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bos, Wouter J. T.; Neffaa, Salah; Schneider, Kai

    The spontaneous self-organization of two-dimensional magnetized plasma is investigated within the framework of magnetohydrodynamics with a particular emphasis on the symmetry-breaking induced by the shape of the confining boundaries. This symmetry-breaking is quantified by the angular momentum, which is shown to be generated rapidly and spontaneously from initial conditions free from angular momentum as soon as the geometry lacks axisymmetry. This effect is illustrated by considering circular, square, and elliptical boundaries. It is shown that the generation of angular momentum in nonaxisymmetric geometries can be enhanced by increasing the magnetic pressure. The effect becomes stronger at higher Reynolds numbers. Themore » generation of magnetic angular momentum (or angular field), previously observed at low Reynolds numbers, becomes weaker at larger Reynolds numbers.« less

  11. Gas kinematics, morphology and angular momentum in the FIRE simulations

    NASA Astrophysics Data System (ADS)

    El-Badry, Kareem; Quataert, Eliot; Wetzel, Andrew; Hopkins, Philip F.; Weisz, Daniel R.; Chan, T. K.; Fitts, Alex; Boylan-Kolchin, Michael; Kereš, Dušan; Faucher-Giguère, Claude-André; Garrison-Kimmel, Shea

    2018-01-01

    We study the z = 0 gas kinematics, morphology and angular momentum content of isolated galaxies in a suite of cosmological zoom-in simulations from the FIRE project spanning Mstar = 106-11 M⊙. Gas becomes increasingly rotationally supported with increasing galaxy mass. In the lowest mass galaxies (Mstar < 108 M⊙), gas fails to form a morphological disc and is primarily dispersion and pressure supported. At intermediate masses (Mstar = 108-10 M⊙), galaxies display a wide range of gas kinematics and morphologies, from thin, rotating discs to irregular spheroids with negligible net rotation. All the high-mass (Mstar = 1010-11 M⊙) galaxies form rotationally supported gas discs. Many of the haloes whose galaxies fail to form discs harbour high angular momentum gas in their circumgalactic medium. The ratio of the specific angular momentum of gas in the central galaxy to that of the dark matter halo increases significantly with galaxy mass, from 〈jgas〉/〈jDM〉 ∼ 0.1 at M_star=10^{6-7} M_{⊙} to 〈jgas〉/〈jDM〉 ∼ 2 at Mstar = 1010-11 M⊙. The reduced rotational support in the lowest mass galaxies owes to (a) stellar feedback and the UV background suppressing the accretion of high angular momentum gas at late times, and (b) stellar feedback driving large non-circular gas motions. We broadly reproduce the observed scaling relations between galaxy mass, gas rotation velocity, size and angular momentum, but may somewhat underpredict the incidence of disky, high angular momentum galaxies at the lowest observed masses (Mstar = (106-2 × 107) M⊙). Stars form preferentially from low angular momentum gas near the galactic centre and are less rotationally supported than gas. The common assumption that stars follow the same rotation curve as gas thus substantially overestimates the simulated galaxies' stellar angular momentum, particularly at low masses.

  12. Fractional Fourier transform of Lorentz-Gauss vortex beams

    NASA Astrophysics Data System (ADS)

    Zhou, GuoQuan; Wang, XiaoGang; Chu, XiuXiang

    2013-08-01

    An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge.

  13. Tilted-axis wobbling in odd-mass nuclei

    NASA Astrophysics Data System (ADS)

    Budaca, R.

    2018-02-01

    A triaxial rotor Hamiltonian with a rigidly aligned high-j quasiparticle is treated by a time-dependent variational principle, using angular momentum coherent states. The resulting classical energy function has three unique critical points in a space of generalized conjugate coordinates, which can minimize the energy for specific ordering of the inertial parameters and a fixed angular momentum state. Because of the symmetry of the problem, there are only two unique solutions, corresponding to wobbling motion around a principal axis and, respectively, a tilted axis. The wobbling frequencies are obtained after a quantization procedure and then used to calculate E 2 and M 1 transition probabilities. The analytical results are employed in the study of the wobbling excitations of 135Pr nucleus, which is found to undergo a transition from low angular momentum transverse wobbling around a principal axis toward a tilted-axis wobbling at higher angular momentum.

  14. Collapse and Nonlinear Instability of AdS Space with Angular Momentum

    NASA Astrophysics Data System (ADS)

    Choptuik, Matthew W.; Dias, Óscar J. C.; Santos, Jorge E.; Way, Benson

    2017-11-01

    We present a numerical study of rotational dynamics in AdS5 with equal angular momenta in the presence of a complex doublet scalar field. We determine that the endpoint of gravitational collapse is a Myers-Perry black hole for high energies and a hairy black hole for low energies. We investigate the time scale for collapse at low energies E , keeping the angular momenta J ∝E in anti-de Sitter (AdS) length units. We find that the inclusion of angular momenta delays the collapse time, but retains a t ˜1 /E scaling. We perturb and evolve rotating boson stars, and find that boson stars near AdS space appear stable, but those sufficiently far from AdS space are unstable. We find that the dynamics of the boson star instability depend on the perturbation, resulting either in collapse to a Myers-Perry black hole, or development towards a stable oscillating solution.

  15. Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Dong; Zhao, Fu-Li; Chen, Min; Dong, Jian-Wen

    2017-07-01

    The valley has been exploited as a binary degree of freedom to realize valley-selective Hall transport and circular dichroism in two-dimensional layered materials, in which valley-contrasting physics is indispensable in making the valley index an information carrier. In this Rapid Communication, we reveal valley-contrasting physics in all-dielectric valley photonic crystals. The link between the angular momentum of light and the valley state is discussed, and unidirectional excitation of the valley chiral bulk state is realized by sources carrying orbital angular momentum with proper chirality. Characterized by the nonzero valley Chern number, valley-dependent edge states and the resultant broadband robust transport is found in such an all-dielectric system. Our work has potential in the orbital angular momentum assisted light manipulation and the discovery of valley-protected topological states in nanophotonics and on-chip integration.

  16. Development of a High Accuracy Angular Measurement System for Langley Research Center Hypersonic Wind Tunnel Facilities

    NASA Technical Reports Server (NTRS)

    Newman, Brett; Yu, Si-bok; Rhew, Ray D. (Technical Monitor)

    2003-01-01

    Modern experimental and test activities demand innovative and adaptable procedures to maximize data content and quality while working within severely constrained budgetary and facility resource environments. This report describes development of a high accuracy angular measurement capability for NASA Langley Research Center hypersonic wind tunnel facilities to overcome these deficiencies. Specifically, utilization of micro-electro-mechanical sensors including accelerometers and gyros, coupled with software driven data acquisition hardware, integrated within a prototype measurement system, is considered. Development methodology addresses basic design requirements formulated from wind tunnel facility constraints and current operating procedures, as well as engineering and scientific test objectives. Description of the analytical framework governing relationships between time dependent multi-axis acceleration and angular rate sensor data and the desired three dimensional Eulerian angular state of the test model is given. Calibration procedures for identifying and estimating critical parameters in the sensor hardware is also addressed.

  17. Off-Axis and Angular Impulse Measurements on a Lightcraft Engine

    NASA Astrophysics Data System (ADS)

    Libeau, Michael; Myrabo, Leik

    2005-04-01

    A laser pulse into a Lightcraft engine applies three linear impulses and three angular impulses to the vehicle that depend on the engine's position and orientation with respect to the laser beam. The magnitudes on this impulsive reaction determine the vehicle's autonomous beam-riding characteristics. The impulsive reaction applied to the laser Lightcraft is examined and a device capable of measuring the reaction is designed and tested. Previous work has examined only the linear impulse acting in the thrust direction but the new apparatus, termed the Angular Impulse Measuring Device (AIMD), experimentally measures the dominant side impulse and dominant pitching angular impulse generated by the engine after a laser-strike. Recent tests of an 11/10 scale Model 200 Lightcraft were conducted using a 10KW Army laser at White Sands Missile Range. The resulting measurements are presented as a function of laser beam position.

  18. New theoretical results in synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bagrov, V. G.; Gitman, D. M.; Tlyachev, V. B.; Jarovoi, A. T.

    2005-11-01

    One of the remarkable features of the relativistic electron synchrotron radiation is its concentration in small angle Δ ≈ 1/γ (here γ-relativistic factor: γ = E/mc2, E energy, m electron rest mass, c light velocity) near rotation orbit plane [V.G. Bagrov, V.A. Bordovitsyn, V.G. Bulenok, V. Ya. Epp, Kinematical projection of pulsar synchrotron radiation profiles, in: Proceedings of IV ISTC Scientific Advisory Commitee Seminar on Basic Science in ISTC Aktivities, Akademgorodok, Novosibirsk, April 23 27, 2001, p. 293 300]. This theoretically predicted and experimentally confirmed feature is peculiar to total (spectrum summarized) radiating intensity. This angular distribution property has been supposed to be (at least qualitatively) conserved and for separate spectrum synchrotron radiation components. In the work of V.G. Bagrov, V.A. Bordovitsyn, V. Ch. Zhukovskii, Development of the theory of synchrotron radiation and related processes. Synchrotron source of JINR: the perspective of research, in: The Materials of the Second International Work Conference, Dubna, April 2 6, 2001, pp. 15 30 and in Angular dependence of synchrotron radiation intensity. http://lanl.arXiv.org/abs/physics/0209097, it is shown that the angular distribution of separate synchrotron radiation spectrum components demonstrates directly inverse tendency the angular distribution deconcentration relatively the orbit plane takes place with electron energy growth. The present work is devoted to detailed investigation of this situation. For exact quantitative estimation of angular concentration degree of synchrotron radiation the definition of radiation effective angle and deviation angle is proposed. For different polarization components of radiation the dependence of introduced characteristics was investigated as a functions of electron energy and number of spectrum component.

  19. Out-of-plane coercive field of Ni 80Fe 20 antidot arrays

    NASA Astrophysics Data System (ADS)

    Gao, Chunhong; Chen, Ke; Lü, Ling; Zhao, Jianwei; Chen, Peng

    2010-11-01

    The out-of-plane magnetic anisotropy and out-of-plane magnetization reversal process of nanoscale Ni 80Fe 20 antidot arrays deposited by magnetron sputtering technique on an anodic aluminum oxide (AAO) membrane are investigated. The angular dependence of out-of-plane remanent magnetization of Ni 80Fe 20 antidot arrays shows that the maximum remanence is in-plane and the squareness of the out-of-plane hysteresis loop follow a |cos θ| dependence. The angular dependence of out-of-plane coercivity of Ni 80Fe 20 antidot arrays shows that the maximum coercivity lies on the surface of a cone with its symmetric axis normal to the sample plane, which indicates a transition of magnetic reversal from curling to coherent rotation when changing the angle between the applied magnetic field and the sample plane.

  20. Effect of transverse vibrations of fissile nuclei on the angular and spin distributions of low-energy fission fragments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunakov, V. E.; Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Lyubashevsky, D. E.

    2016-05-15

    It is shown that A. Bohr’s classic theory of angular distributions of fragments originating from low-energy fission should be supplemented with quantum corrections based on the involvement of a superposition of a very large number of angular momenta L{sub m} in the description of the relative motion of fragments flying apart along the straight line coincidentwith the symmetry axis. It is revealed that quantum zero-point wriggling-type vibrations of the fissile system in the vicinity of its scission point are a source of these angular momenta and of high fragment spins observed experimentally.

  1. Angular focusing, squeezing, and rainbow formation in a strongly driven quantum rotor.

    PubMed

    Averbukh, I S; Arvieu, R

    2001-10-15

    Semiclassical catastrophes in the dynamics of a quantum rotor (molecule) driven by a strong time-varying field are considered. We show that for strong enough fields, a sharp peak in the rotor angular distribution can be achieved via a time-domain focusing phenomenon, followed by the formation of rainbowlike angular structures. A strategy leading to the enhanced angular squeezing is proposed that uses a specially designed sequence of pulses. The predicted effects can be observed in many processes, ranging from molecular alignment (orientation) by laser fields to heavy-ion collisions, and the trapping of cold atoms by a standing light wave.

  2. A simulation study on few parameters of Cherenkov photons in extensive air showers of different primaries incident at various zenith angles over a high altitude observation level

    NASA Astrophysics Data System (ADS)

    Das, G. S.; Hazarika, P.; Goswami, U. D.

    2018-07-01

    We have studied the distribution patterns of lateral density, arrival time and angular position of Cherenkov photons generated in Extensive Air Showers (EASs) initiated by γ-ray, proton and iron primaries incident with various energies and at various zenith angles. This study is the extension of our earlier work [1] to cover a wide energy range of ground based γ-ray astronomy with a wide range of zenith angles (≤40°) of primary particles, as well as the extension to study the angular distribution patterns of Cherenkov photons in EASs. This type of study is important for distinguishing the γ-ray initiated showers from the hadronic showers in the ground based γ-ray astronomy, where Atmospheric Cherenkov Technique (ACT) is being used. Importantly, such study gives an insight on the nature of γ-ray and hadronic showers in general. In this work, the CORSIKA 6.990 simulation code is used for generation of EASs. Similarly to the case of Ref. [1], this study also revealed that, the lateral density and arrival time distributions of Cherenkov photons vary almost in accordance with the functions: ρch(r) =ρ0e-βr and tch(r) =t0eΓ/rλ respectively by taking different values of the parameters of functions for the type, energy and zenith angle of the primary particle. The distribution of Cherenkov photon's angular positions with respect to shower axis shows distinctive features depending on the primary type, its energy and the zenith angle. As a whole this distribution pattern for the iron primary is noticeably different from those for γ-ray and proton primaries. The value of the angular position at which the maximum number of Cherenkov photons are concentrated, increases with increase in energy of vertically incident primary, but for inclined primary it lies within a small value (≤1°) for almost all energies and primary types. No significant difference in the results obtained by using the high energy hadronic interaction models, viz., QGSJETII and EPOS has been observed.

  3. SU-E-T-169: Initial Investigation into the Use of Optically Stimulated Luminescent Dosimeters (OSLDs) for In-Vivo Dosimetry of TBI Patients.

    PubMed

    Paloor, S; Aland, T; Mathew, J; Al-Hammadi, N; Hammoud, R

    2012-06-01

    To report on an initial investigation into the use of optically stimulated luminescent dosimeters (OSLDs) for in-vivo dosimetry for total body irradiation (TBI) treatments. Specifically, we report on the determination of angular dependence, sensitivity correction factors and the dose calibration factors. The OSLD investigated in our work was InLight/OSL nanoDot dosimeters (Landauer Inc.). Nanodots are 5 mm diameter, 0.2 mm thick disk-shaped Carbon-doped Al2O3, and were read using a Landauer InLight microstar reader and associated software.OSLDs were irradiated under two setup conditions: a) typical clinical reference conditions (95cm SSD, 5cm depth in solid water, 10×10 cm field size), and b) TBI conditions (520cm SSD, 5cm depth in solid water, 40×40 cm field size,). The angular dependence was checked for angles ranging ±60 degree from normal incidence. In order to directly compare the sensitivity correction factors, a common dose was delivered to the OSLDs for the two setups. Pre- and post-irradiation readings were acquired. OSLDs were optically annealed under various techniques (1) by keeping over a film view box, (2) Using multiple scan on a flat bed optical scanner and (3) Using natural room light. Under reference conditions, the calculated sensitivity correction factors of the OSLDs had a SD of 2.2% and a range of 5%. Under TBI conditions, the SD increased to 3.4% and the range to 6.0%. The variation in sensitivity correction factors between individual OSLDs across the two measurement conditions was up to 10.3%. Angular dependence of less than 1% is observed. The best bleaching method we found is to keep OSLDs for more than 3 hours on a film viewer which will reduce normalized response to less than 1%. In order to obtain the most accurate results when using OSLDs for in-vivo dosimetry for TBI treatments, sensitivity correction factors and dose calibration factors should all be determined under clinical TBI conditions. © 2012 American Association of Physicists in Medicine.

  4. Generation of vertical angular momentum in single, double, and triple-turn pirouette en dehors in ballet.

    PubMed

    Kim, Jemin; Wilson, Margaret A; Singhal, Kunal; Gamblin, Sarah; Suh, Cha-Young; Kwon, Young-Hoo

    2014-09-01

    The purpose of this study was to investigate the vertical angular momentum generation strategies used by skilled ballet dancers in pirouette en dehors. Select kinematic parameters of the pirouette preparation (stance depth, vertical center-of-mass motion range, initial shoulder line position, shoulder line angular displacement, and maximum trunk twist angle) along with vertical angular momentum parameters during the turn (maximum momentums of the whole body and body parts, and duration and rate of generation) were obtained from nine skilled collegiate ballet dancers through a three-dimensional motion analysis and compared among three turn conditions (single, double, and triple). A one-way ('turn') multivariate analysis of variance of the kinematic parameters and angular momentum parameters of the whole body and a two-way analysis of variance ('turn' × 'body') of the maximum angular momentums of the body parts were conducted. Significant 'turn' effects were observed in the kinematic/angular momentum parameters (both the preparation and the turn) (p <  0.05). As the number of turns increased, skilled dancers generated larger vertical angular momentums by predominantly increasing the rate of momentum generation using rotation of the upper trunk and arms. The trail (closing) arm showed the largest contribution to whole-body angular momentum followed by the lead arm.

  5. Fourier transform of the multicenter product of 1s hydrogenic orbitals and Coulomb or Yukawa potentials and the analytically reduced form for subsequent integrals that include plane waves

    NASA Technical Reports Server (NTRS)

    Straton, Jack C.

    1989-01-01

    The Fourier transform of the multicenter product of N 1s hydrogenic orbitals and M Coulomb or Yukawa potentials is given as an (M+N-1)-dimensional Feynman integral with external momenta and shifted coordinates. This is accomplished through the introduction of an integral transformation, in addition to the standard Feynman transformation for the denominators of the momentum representation of the terms in the product, which moves the resulting denominator into an exponential. This allows the angular dependence of the denominator to be combined with the angular dependence in the plane waves.

  6. Measurements of Hk and Ms in thin magnetic films by the angular dependence of the planar Hall effect

    NASA Astrophysics Data System (ADS)

    Vatskicheva, M.; Vatskichev, L.

    1987-11-01

    It is shown that the angular dependences of the planar Hall effect measured with infinite magnetic field and with magnetic field H⩾ Hk have an intersection point and this fact is enough for measuring the anisotropy field Hk applying the method presented by Pastor, Ferreiro and Torres in J. Magn. Magn. Mat. 53 (1986) 349, 62 (1986) 101. The scaling of the Hall tension U proportional to M2s in mV/Am -1 gives a possibility for calculating the Ms-values of the films. These assumptions are verified for NiFe- and NiFeGe films with a uniaxial magnetic anisotropy.

  7. Polar motion interpretation using gravimetric observations

    NASA Astrophysics Data System (ADS)

    Seoane, L.; Bizouard, C.; Gambis, D.

    2008-04-01

    Polar motion is interpreted as the effect of i) the Earth’s inertia moment changes asso- ciated with the so-called mass term of the Earth’s angular momentum ii) the Earth’s relative angular momentum in the terrestrial frame. Thanks to the GRACE mission and in a lesser extent to LAGEOS missions, the mass term is determined since 2002, independently from any geophysical model. Besides the modeled excitations of the polar motion, i.e the atmospheric angular momentum (AAM), the Oceanic Angular Momentum (OAM), the Hydrological Angular Momentum (HAM), this gravimetric mass term is a new kind of information which can be matched to the observed excitation of the polar motion after removal of the effect of the relative angular momentum, mostly caused by the wind and the oceanic cur- rents. Such comparison, already performed by various authors, is updated for the last releases (RL04) of the gravity field changes i.e. those of the GFZ, CSR, JPL and explored for the mixed LAGEOS-GRACE solution of the GRGS. We confirm that a fair general agreement, especially for the y-component of the equatorial excitation. After removing the modeled oceanic and atmospheric excitations from the signals, we obtain the non-modeled excitation, mostly of hydrological nature; this allows us to compare them to the existing hydrological models, differences might comes from others Earth’s phenomena, for example, earthquakes.

  8. Determination of optimum viewing angles for the angular normalization of land surface temperature over vegetated surface.

    PubMed

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-03-27

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors.

  9. Determination of Optimum Viewing Angles for the Angular Normalization of Land Surface Temperature over Vegetated Surface

    PubMed Central

    Ren, Huazhong; Yan, Guangjian; Liu, Rongyuan; Li, Zhao-Liang; Qin, Qiming; Nerry, Françoise; Liu, Qiang

    2015-01-01

    Multi-angular observation of land surface thermal radiation is considered to be a promising method of performing the angular normalization of land surface temperature (LST) retrieved from remote sensing data. This paper focuses on an investigation of the minimum requirements of viewing angles to perform such normalizations on LST. The normally kernel-driven bi-directional reflectance distribution function (BRDF) is first extended to the thermal infrared (TIR) domain as TIR-BRDF model, and its uncertainty is shown to be less than 0.3 K when used to fit the hemispheric directional thermal radiation. A local optimum three-angle combination is found and verified using the TIR-BRDF model based on two patterns: the single-point pattern and the linear-array pattern. The TIR-BRDF is applied to an airborne multi-angular dataset to retrieve LST at nadir (Te-nadir) from different viewing directions, and the results show that this model can obtain reliable Te-nadir from 3 to 4 directional observations with large angle intervals, thus corresponding to large temperature angular variations. The Te-nadir is generally larger than temperature of the slant direction, with a difference of approximately 0.5~2.0 K for vegetated pixels and up to several Kelvins for non-vegetated pixels. The findings of this paper will facilitate the future development of multi-angular thermal infrared sensors. PMID:25825975

  10. Light emission from compound eye with conformal fluorescent coating

    NASA Astrophysics Data System (ADS)

    Martín-Palma, Raúl J.; Miller, Amy E.; Pulsifer, Drew P.; Lakhtakia, Akhlesh

    2015-03-01

    Compound eyes of insects are attractive biological systems for engineered biomimicry as artificial sources of light, given their characteristic wide angular field of view. A blowfly eye was coated with a thin conformal fluorescent film, with the aim of achieving wide field-of-view emission. Experimental results showed that the coated eye emitted visible light and that the intensity showed a weaker angular dependence than a fluorescent thin film deposited on a flat surface.

  11. Angular correlations in pair production at the LHC in the parton Reggeization approach

    NASA Astrophysics Data System (ADS)

    Karpishkov, Anton; Nefedov, Maxim; Saleev, Vladimir

    2017-10-01

    We calculate angular correlation spectra between beauty (B) and anti-beauty mesons in proton-proton collisions in the leading order approximation of the parton Reggeization approach consistently merged with the next-to-leading order corrections from the emission of additional hard gluon (NLO* approximation). To describe b-quark hadronization we use the universal scale-depended parton-to-meson fragmentation functions extracted from the combined e+e- annihilation data. The Kimber-Martin-Ryskin model for the unintegrated parton distribution functions in a proton is implied. We have obtained good agreement between our predictions and data from the CMS Collaboration at the energy TeV for angular correlations within uncertainties and without free parameters.

  12. Forward-central two-particle correlations in p-Pb collisions at √{sNN} = 5.02 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Chunhui, Z.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadlovska, S.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Luz, P. H. F. N. D.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Masui, H.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira de Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration

    2016-02-01

    Two-particle angular correlations between trigger particles in the forward pseudorapidity range (2.5 < | η | < 4.0) and associated particles in the central range (| η | < 1.0) are measured with the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The trigger particles are reconstructed using the muon spectrometer, and the associated particles by the central barrel tracking detectors. In high-multiplicity events, the double-ridge structure, previously discovered in two-particle angular correlations at midrapidity, is found to persist to the pseudorapidity ranges studied in this Letter. The second-order Fourier coefficients for muons in high-multiplicity events are extracted after jet-like correlations from low-multiplicity events have been subtracted. The coefficients are found to have a similar transverse momentum (pT) dependence in p-going (p-Pb) and Pb-going (Pb-p) configurations, with the Pb-going coefficients larger by about 16 ± 6%, rather independent of pT within the uncertainties of the measurement. The data are compared with calculations using the AMPT model, which predicts a different pT and η dependence than observed in the data. The results are sensitive to the parent particle v2 and composition of reconstructed muon tracks, where the contribution from heavy flavour decays is expected to dominate at pT > 2 GeV / c.

  13. Estimation of Untracked Geosynchronous Population from Short-Arc Angles-Only Observations

    NASA Technical Reports Server (NTRS)

    Healy, Liam; Matney, Mark

    2017-01-01

    Telescope observations of the geosynchronous regime will observe two basic types of objects --- objects related to geosynchronous earth orbit (GEO) satellites, and objects in highly elliptical geosynchronous transfer orbits (GTO). Because telescopes only measure angular rates, the GTO can occasionally mimic the motion of GEO objects over short arcs. A GEO census based solely on short arc telescope observations may be affected by these ``interlopers''. A census that includes multiple angular rates can get an accurate statistical estimate of the GTO population, and that then can be used to correct the estimate of the geosynchronous earth orbit population.

  14. The evolution of angular momentum among zero-age main-sequence solar-type stars

    NASA Technical Reports Server (NTRS)

    Soderblom, David R.; Stauffer, John R.; Macgregor, Keith B.; Jones, Burton F.

    1993-01-01

    We consider a survey of rotation among F, G, and K dwarfs of the Pleiades in the context of other young clusters (Alpha Persei and the Hyades) and pre-main-sequence (PMS) stars (in Taurus-Auriga and Orion) in order to examine how the angular momentum of a star like the sun evolves during its early life on the main sequence. The rotation of PMS stars can be evolved into distributions like those seen in the young clusters if there is only modest, rotation-independent angular momentum loss prior to the ZAMS. Even then, the ultrafast rotators (UFRs, or ZAMS G and K dwarfs with v sin i equal to or greater than 30 km/s) must owe their extra angular momentum to their conditions of formation and to different angular momentum loss rates above a threshold velocity, for it is unlikely that these stars had angular momentum added as they neared the ZAMS, nor can a spread in ages within a cluster account for the range of rotation seen. Only a fraction of solar-type stars are thus capable of becoming UFRs, and it is not a phase that all stars experience. Simple scaling relations (like the Skumanich relation) applied to the observed surface rotation rates of young solar-type stars cannot reproduce the way in which the Pleiades evolve into the Hyades. We argue that invoking internal differential rotation in these ZAMS stars can explain several aspects of the observations and thus can provide a consistent picture of ZAMS angular momentum evolution.

  15. Measurements and calculations of high-angular-momentum satellite transitions in Li 1s photoionization

    NASA Astrophysics Data System (ADS)

    Cheng, W. T.; Kukk, E.; Cubaynes, D.; Chang, J.-C.; Snell, G.; Bozek, J. D.; Wuilleumier, F. J.; Berrah, N.

    2000-12-01

    Lithium 1s photoelectron spectra are reported in high electron and photon energy resolution, with resolved LS term structure of the Li+ 1snl satellite transitions up to n=6. Branching ratios and anisotropy parameters of individual lines, determined over the 85-130 eV photon energy range, are compared with R-matrix calculations and with previous works. The high-angular-momentum satellite lines (L>=2) are found to contribute significantly to the 1snl satellite cross sections for n=3 and 4, and to become the dominant terms for n>=5. The high-angular-momentum lines exhibit the same photon-energy-dependence as the P-lines, providing experimental evidence that the continuum-continuum state coupling (equivalent to virtual electron collision processes) is responsible for the L>=1 terms in the satellite spectrum, in contrast to the electron relaxation (shake-up) mechanism responsible for the S-terms. The angular distribution of the lines in the Li+ 1snl, n=2-6 groups, determined at 110 eV photon energy, is in good agreement with calculations, showing more isotropic distributions for high-angular-momentum lines.

  16. Quark orbital dynamics in the proton from lattice QCD: From Ji to Jaffe-Manohar orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Engelhardt, M.

    2017-05-01

    Given a Wigner distribution simultaneously characterizing quark transverse positions and momenta in a proton, one can directly evaluate their cross product, i.e., quark orbital angular momentum. The aforementioned distribution can be obtained by generalizing the proton matrix elements of quark bilocal operators which define transverse momentum-dependent parton distributions (TMDs); the transverse momentum information is supplemented with transverse position information by introducing an additional nonzero momentum transfer. A gauge connection between the quarks must be specified in the quark bilocal operators; the staple-shaped gauge link path used in TMD calculations yields the Jaffe-Manohar definition of orbital angular momentum, whereas a straight path yields the Ji definition. An exploratory lattice calculation, performed at the pion mass mπ=518 MeV , is presented which quasicontinuously interpolates between the two definitions and demonstrates that their difference can be clearly resolved. The resulting Ji orbital angular momentum is confronted with traditional evaluations based on Ji's sum rule. Jaffe-Manohar orbital angular momentum is enhanced in magnitude compared to its Ji counterpart.

  17. Dosimetric properties of radiophotoluminescent glass detector in low-energy photon beams.

    PubMed

    Kadoya, Noriyuki; Shimomura, Kouhei; Kitou, Satoshi; Shiota, Yasuo; Fujita, Yukio; Dobashi, Suguru; Takeda, Ken; Jingu, Keiichi; Matsushita, Haruo; Namito, Yoshihito; Ban, Syuichi; Koyama, Syuji; Tabushi, Katsuyoshi

    2012-10-01

    A radiophotoluminescent glass rod dosimeter (RGD) has recently become commercially available. It is being increasingly used for dosimetry in radiotherapy to measure the absorbed dose including scattered low-energy photons on the body surface of a patient and for postal dosimetry audit. In this article, the dosimetric properties of the RGD, including energy dependence of the dose response, reproducibly, variation in data obtained by the RGD for each energy, and angular dependence in low-energy photons, are discussed. An RGD (GD-301, Asahi Techno Glass Corporation, Shizuoka, Japan) was irradiated with monochromatic low-energy photon beams generated by synchrotron radiation at Photon Factory, High Energy Accelerator Research Organization (KEK). The size of GD-301 was 1.5 mm in diameter and 8.5 mm in length and the active dose readout volume being 1 mm diameter and 0.6 mm depth located 0.7 mm from the end of the detector. The energy dependence of the dose response and reproducibility and variation were investigated for RGDs irradiated with a plastic holder and those irradiated without the plastic holder. Response of the RGD was obtained by not only conventional single field irradiation but also bilateral irradiation. Angular dependence of the RGD was measured in the range of 0°-90° for 13, 17, 40, and 80 keV photon beams by conventional single field irradiation. The dose responses had a peak at around 40 keV. For the energy range of less than 25 keV, all dose response curves steeply decreased in comparison with the ratio of mass energy absorption coefficient of the RGD to that of air. As for the reproducibility and variation in data obtained by the RGD, the coefficient of variance increased with decrease in photon energy. Furthermore, the variation for bilateral irradiation was less than that for single field irradiation. Regarding angular dependence of the RGD, for energies of 13 and 17 keV, the response decreased with increase in the irradiation angle, and the minimum values were 93.5% and 86%, respectively. Our results showed the dosimetric properties of the RGD, including the energy dependence of the dose response, reproducibly, variation, and angular dependence in low-energy photons and suggest that the accuracy of the absorbed dose in low-energy photons is affected by the readout method and the distribution of radiophotoluminescence centers in the RGD.

  18. Photoionization of rare gas clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Huaizhen

    This thesis concentrates on the study of photoionization of van der Waals clusters with different cluster sizes. The goal of the experimental investigation is to understand the electronic structure of van der Waals clusters and the electronic dynamics. These studies are fundamental to understand the interaction between UV-X rays and clusters. The experiments were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory. The experimental method employs angle-resolved time-of-flight photoelectron spectrometry, one of the most powerful methods for probing the electronic structure of atoms, molecules, clusters and solids. The van der Waals cluster photoionization studies are focused on probing the evolution of the photoelectron angular distribution parameter as a function of photon energy and cluster size. The angular distribution has been known to be a sensitive probe of the electronic structure in atoms and molecules. However, it has not been used in the case of van der Waals clusters. We carried out outer-valence levels, inner-valence levels and core-levels cluster photoionization experiments. Specifically, this work reports on the first quantitative measurements of the angular distribution parameters of rare gas clusters as a function of average cluster sizes. Our findings for xenon clusters is that the overall photon-energy-dependent behavior of the photoelectrons from the clusters is very similar to that of the corresponding free atoms. However, distinct differences in the angular distribution point at cluster-size-dependent effects were found. For krypton clusters, in the photon energy range where atomic photoelectrons have a high angular anisotropy, our measurements show considerably more isotropic angular distributions for the cluster photoelectrons, especially right above the 3d and 4p thresholds. For the valence electrons, a surprising difference between the two spin-orbit components was found. For argon clusters, we found that the angular distribution parameter values of the two-spin-orbit components from Ar 2p clusters are slightly different. When comparing the beta values for Ar between atoms and clusters, we found different results between Ar 3s atoms and clusters, and between Ar 3p atoms and clusters. Argon cluster resonance from surface and bulk were also measured. Furthermore, the angular distribution parameters of Ar cluster photoelectrons and Ar atom photoelectrons in the 3s → np ionization region were obtained.

  19. Forces and moments generated by the human arm: Variability and control

    PubMed Central

    Xu, Y; Terekhov, AV; Latash, ML; Zatsiorsky, VM

    2012-01-01

    This is an exploratory study of the accurate endpoint force vector production by the human arm in isometric conditions. We formulated three common-sense hypotheses and falsified them in the experiment. The subjects (n=10) exerted static forces on the handle in eight directions in a horizontal plane for 25 seconds. The forces were of 4 magnitude levels (10 %, 20%, 30% and 40% of individual MVC). The torsion moment on the handle (grasp moment) was not specified in the instruction. The two force components and the grasp moment were recorded, and the shoulder, elbow, and wrist joint torques were computed. The following main facts were observed: (a) While the grasp moment was not prescribed by the instruction, it was always produced. The moment magnitude and direction depended on the instructed force magnitude and direction. (b) The within-trial angular variability of the exerted force vector (angular precision) did not depend on the target force magnitude (a small negative correlation was observed). (c) Across the target force directions, the variability of the exerted force magnitude and directional variability exhibited opposite trends: In the directions where the variability of force magnitude was maximal, the directional variability was minimal and vice versa. (d) The time profiles of joint torques in the trials were always positively correlated, even for the force directions where flexion torque was produced at one joint and extension torque was produced at the other joint. (e) The correlations between the grasp moment and the wrist torque were negative across the tasks and positive within the individual trials. (f) In static serial kinematic chains, the pattern of the joint torques distribution could not be explained by an optimization cost function additive with respect to the torques. Plans for several future experiments have been suggested. PMID:23080084

  20. Tapering the sky response for angular power spectrum estimation from low-frequency radio-interferometric data.

    PubMed

    Choudhuri, Samir; Bharadwaj, Somnath; Roy, Nirupam; Ghosh, Abhik; Ali, Sk Saiyad

    2016-06-11

    It is important to correctly subtract point sources from radio-interferometric data in order to measure the power spectrum of diffuse radiation like the Galactic synchrotron or the Epoch of Reionization 21-cm signal. It is computationally very expensive and challenging to image a very large area and accurately subtract all the point sources from the image. The problem is particularly severe at the sidelobes and the outer parts of the main lobe where the antenna response is highly frequency dependent and the calibration also differs from that of the phase centre. Here, we show that it is possible to overcome this problem by tapering the sky response. Using simulated 150 MHz observations, we demonstrate that it is possible to suppress the contribution due to point sources from the outer parts by using the Tapered Gridded Estimator to measure the angular power spectrum C ℓ of the sky signal. We also show from the simulation that this method can self-consistently compute the noise bias and accurately subtract it to provide an unbiased estimation of C ℓ .

Top