Sample records for observed biological activity

  1. Controllability and observability of Boolean networks arising from biology

    NASA Astrophysics Data System (ADS)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  2. The erosion behaviour of biologically active sewer sediment deposits: observations from a laboratory study.

    PubMed

    Banasiak, Robert; Verhoeven, Ronny; De Sutter, Renaat; Tait, Simon

    2005-12-01

    The erosion behaviour of various fine-grained sediment deposits has been investigated in laboratory experiments. This work mainly focused on tests using sewer sediment in which strong biochemical reactions were observed during the deposit formation period. A small number of initial tests were conducted in which the deposits were made from mixtures of "clean" mineral and organic sediments. The erosion behaviour observed in these tests was compared with the erosion characteristics for sediments taken from deposits in a sewer. The impact of the biological processes on physical properties such as bulk density, water content, deposit structure and the erosive behaviour as a function of bed shear stress are quantified and discussed. Based on these observations it is believed that bio-processes weaken the strength of the in-pipe sediment deposits. A significantly weaker sediment surface layer was observed during deposition under quiescent oxygen-rich conditions. This resulted in a deposit with low shear strength which may be a cause of a first foul flush of suspended sediment when flow rates were increased. Comparison between tests with sewer sediments and the artificial representative surrogates suggested that the deposits of the later did not correctly simulate the depositional development and the resultant erosion patterns observed with the more bio-active sewer sediment.

  3. Biologic relativity: Who is the observer and what is observed?

    PubMed

    Torday, John S; Miller, William B

    2016-05-01

    When quantum physics and biological phenomena are analogously explored, it emerges that biologic causation must also be understood independently of its overt appearance. This is similar to the manner in which Bohm characterized the explicate versus the implicate order as overlapping frames of ambiguity. Placed in this context, the variables affecting epigenetic inheritance can be properly assessed as a key mechanistic principle of evolution that significantly alters our understanding of homeostasis, pleiotropy, and heterochrony, and the purposes of sexual reproduction. Each of these become differing manifestations of a new biological relativity in which biologic space-time becomes its own frame. In such relativistic cellular contexts, it is proper to question exactly who has observer status, and who and what are being observed. Consideration within this frame reduces biology to cellular information sharing through cell-cell communication to resolve ambiguities at every scope and scale. In consequence, it becomes implicit that eukaryotic evolution derives from the unicellular state, remaining consistently adherent to it in a continuous evolutionary arc based upon elemental, non-stochastic physiologic first principles. Furthermore, the entire cell including its cytoskeletal apparatus and membranes that participate in the resolution of biological uncertainties must be considered as having equivalent primacy with genomes in evolutionary terms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Multi-scale Observation of Biological Interactions of Nanocarriers: from Nano to Macro

    PubMed Central

    Jin, Su-Eon; Bae, Jin Woo; Hong, Seungpyo

    2010-01-01

    Microscopic observations have played a key role in recent advancements in nanotechnology-based biomedical sciences. In particular, multi-scale observation is necessary to fully understand the nano-bio interfaces where a large amount of unprecedented phenomena have been reported. This review describes how to address the physicochemical and biological interactions of nanocarriers within the biological environments using microscopic tools. The imaging techniques are categorized based on the size scale of detection. For observation of the nano-scale biological interactions of nanocarriers, we discuss atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). For the micro to macro-scale (in vitro and in vivo) observation, we focus on confocal laser scanning microscopy (CLSM) as well as in vivo imaging systems such as magnetic resonance imaging (MRI), superconducting quantum interference devices (SQUIDs), and IVIS®. Additionally, recently developed combined techniques such as AFM-CLSM, correlative Light and Electron Microscopy (CLEM), and SEM-spectroscopy are also discussed. In this review, we describe how each technique helps elucidate certain physicochemical and biological activities of nanocarriers such as dendrimers, polymers, liposomes, and polymeric/inorganic nanoparticles, thus providing a toolbox for bioengineers, pharmaceutical scientists, biologists, and research clinicians. PMID:20232368

  5. Nonequilibrium phase transition in a self-activated biological network.

    PubMed

    Berry, Hugues

    2003-03-01

    We present a lattice model for a two-dimensional network of self-activated biological structures with a diffusive activating agent. The model retains basic and simple properties shared by biological systems at various observation scales, so that the structures can consist of individuals, tissues, cells, or enzymes. Upon activation, a structure emits a new mobile activator and remains in a transient refractory state before it can be activated again. Varying the activation probability, the system undergoes a nonequilibrium second-order phase transition from an active state, where activators are present, to an absorbing, activator-free state, where each structure remains in the deactivated state. We study the phase transition using Monte Carlo simulations and evaluate the critical exponents. As they do not seem to correspond to known values, the results suggest the possibility of a separate universality class.

  6. Biological activities of xanthatin from Xanthium strumarium leaves.

    PubMed

    Nibret, Endalkachew; Youns, Mahamoud; Krauth-Siegel, R Luise; Wink, Michael

    2011-12-01

    The objective of the present work was to evaluate the biological activities of the major bioactive compound, xanthatin, and other compounds from Xanthium strumarium (Asteraceae) leaves. Inhibition of bloodstream forms of Trypanosoma brucei brucei and leukaemia HL-60 cell proliferation was assessed using resazurin as a vital stain. Xanthatin was found to be the major and most active compound against T. b. brucei with an IC(50) value of 2.63 µg/mL and a selectivity index of 20. The possible mode of action of xanthatin was further evaluated. Xanthatin showed antiinflammatory activity by inhibiting both PGE(2) synthesis (24% inhibition) and 5-lipoxygenase activity (92% inhibition) at concentrations of 100 µg/mL and 97 µg/mL, respectively. Xanthatin exhibited weak irreversible inhibition of parasite specific trypanothione reductase. Unlike xanthatin, diminazene aceturate and ethidium bromide showed strong DNA intercalation with IC(50) values of 26.04 µg/mL and 44.70 µg/mL, respectively. Substantial induction of caspase 3/7 activity in MIA PaCa-2 cells was observed after 6 h of treatment with 100 µg/mL of xanthatin. All these data taken together suggest that xanthatin exerts its biological activity by inducing apoptosis and inhibiting both PGE(2) synthesis and 5-lipoxygenase activity thereby avoiding unwanted inflammation commonly observed in diseases such as trypanosomiasis. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Publishing activities improves undergraduate biology education

    PubMed Central

    Smith, Michelle K

    2018-01-01

    Abstract To improve undergraduate biology education, there is an urgent need for biology instructors to publish their innovative active-learning instructional materials in peer-reviewed journals. To do this, instructors can measure student knowledge about a variety of biology concepts, iteratively design activities, explore student learning outcomes and publish the results. Creating a set of well-vetted activities, searchable through a journal interface, saves other instructors time and encourages the use of active-learning instructional practices. For authors, these publications offer new opportunities to collaborate and can provide evidence of a commitment to using active-learning instructional techniques in the classroom. PMID:29672697

  8. Publishing activities improves undergraduate biology education.

    PubMed

    Smith, Michelle K

    2018-06-01

    To improve undergraduate biology education, there is an urgent need for biology instructors to publish their innovative active-learning instructional materials in peer-reviewed journals. To do this, instructors can measure student knowledge about a variety of biology concepts, iteratively design activities, explore student learning outcomes and publish the results. Creating a set of well-vetted activities, searchable through a journal interface, saves other instructors time and encourages the use of active-learning instructional practices. For authors, these publications offer new opportunities to collaborate and can provide evidence of a commitment to using active-learning instructional techniques in the classroom.

  9. Observed impact of upwelling events on water properties and biological activity off the southwest coast of New Caledonia.

    PubMed

    Ganachaud, Alexandre; Vega, Andrés; Rodier, Martine; Dupouy, Cécile; Maes, Christophe; Marchesiello, Patrick; Eldin, Gerard; Ridgway, Ken; Le Borgne, Robert

    2010-01-01

    The upwelling events that follow strong trade wind episodes have been described in terms of their remarkable signature in the sea surface temperature southwest off New Caledonia. Upwelling brings deeper, and colder waters to the surface, causing 2-4 degrees C drops in temperature in a few hours, followed by a slower relaxation over several days. Upwelling may sporadically bring nutrients to the surface under certain conditions, and increase the biological productivity. Two multidisciplinary hydrographic cruises allow the impact of upwelling on the chemical and biological properties of the water to be documented. Both cruises took place in austral summer (December 2004 and December 2005), but the first cruise occurred during a strong upwelling event, while the second cruise occurred in calm conditions. The water properties and planktonic composition show important contrasts, with a strong southeastward current (the "ALIS current of New Caledonia") competing with the upwelling system. Our analysis suggests that, while observed productivities are far less than those of typical upwelling systems, some wind events in New Caledonia may contribute to biological activity. A currentmeter mooring, deployed during the second cruise, documents the ocean response to a changing wind field and the local impact of upwelling on currents and temperatures on the water column. The results are discussed, with the help of climatology, Argo float profiler data, satellite data and of a high-resolution numerical simulation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. BIOLOGICALLY ENHANCED OXYGEN TRANSFER IN THE ACTIVATED SLUDGE PROCESS (JOURNAL)

    EPA Science Inventory

    Biologically enhanced oxgyen transfer has been a hypothesis to explain observed oxygen transfer rates in activated sludge systems that were well above that predicted from aerator clean-water testing. The enhanced oxygen transfer rates were based on tests using BOD bottle oxygen ...

  11. Biological activity of common mullein, a medicinal plant.

    PubMed

    Turker, Arzu Ucar; Camper, N D

    2002-10-01

    Common Mullein (Verbascum thapsus L., Scrophulariaceae) is a medicinal plant that has been used for the treatment of inflammatory diseases, asthma, spasmodic coughs, diarrhea and other pulmonary problems. The objective of this study was to assess the biological activity of Common Mullein extracts and commercial Mullein products using selected bench top bioassays, including antibacterial, antitumor, and two toxicity assays--brine shrimp and radish seed. Extracts were prepared in water, ethanol and methanol. Antibacterial activity (especially the water extract) was observed with Klebsiella pneumonia, Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli. Agrobacterium tumefaciens-induced tumors in potato disc tissue were inhibited by all extracts. Toxicity to Brine Shrimp and to radish seed germination and growth was observed at higher concentrations of the extracts.

  12. Advanced biological activated carbon filter for removing pharmaceutically active compounds from treated wastewater.

    PubMed

    Sbardella, Luca; Comas, Joaquim; Fenu, Alessio; Rodriguez-Roda, Ignasi; Weemaes, Marjoleine

    2018-04-28

    Through their release of effluents, conventional wastewater treatment plants (WWTPs) represent a major pollution point sources for pharmaceutically active compounds (PhACs) in water bodies. The combination of a biological activated carbon (BAC) filter coupled with an ultrafiltration (UF) unit was evaluated as an advanced treatment for PhACs removal at pilot scale. The BAC-UF pilot plant was monitored for one year. The biological activity of the biofilm that developed on the granular activated carbon (GAC) particles and the contribution of this biofilm to the overall removal of PhACs were evaluated. Two different phases were observed during the long-term monitoring of PhACs removal. During the first 9200 bed volumes (BV; i.e., before GAC saturation), 89, 78, 83 and 79% of beta-blockers, psychiatric drugs, antibiotics and a mix of other therapeutic groups were removed, respectively. The second phase was characterized by deterioration of the overall performances during the period between 9200 and 13,800 BV. To quantify the respective contribution of adsorption and biodegradation, a lab-scale setup was operated for four months and highlighted the essential role played by GAC in biofiltration units. Physical adsorption was indeed the main removal mechanism. Nevertheless, a significant contribution due to biological activity was detected for some PhACs. The biofilm contributed to the removal of 22, 25, 30, 32 and 35% of ciprofloxacin, bezafibrate, ofloxacin, azithromycin and sulfamethoxazole, respectively. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Generation of structurally novel short carotenoids and study of their biological activity

    PubMed Central

    Kim, Se H.; Kim, Moon S.; Lee, Bun Y.; Lee, Pyung C.

    2016-01-01

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-α-tocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid 4,4′-diapotorulene on rat bone marrow mesenchymal stem cells. Our results demonstrate that a series of structurally novel carotenoids possessing biologically beneficial properties can be synthesized in E. coli. PMID:26902326

  14. Generation of structurally novel short carotenoids and study of their biological activity.

    PubMed

    Kim, Se H; Kim, Moon S; Lee, Bun Y; Lee, Pyung C

    2016-02-23

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-α-tocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid 4,4'-diapotorulene on rat bone marrow mesenchymal stem cells. Our results demonstrate that a series of structurally novel carotenoids possessing biologically beneficial properties can be synthesized in E. coli.

  15. [Cycloferon biological activity characteristics].

    PubMed

    Utkina, T M; Potekhina, L P; Kartashova, O L; Vasilchenko, A S

    2014-01-01

    Study the effect of cycloferon in experimental and clinical conditions on persistence properties of aurococci as well as features of their morpho-functional reaction by atomic force microscopy. The study was carried out in 12 Staphylococcus aureus clones isolated from mucous membrane of nose anterior part of a resident carrier. The effect of cycloferon in vivo was evaluated in 26 resident staphylococci carriers under the control of anti-carnosine activity of staphylococci. Anti-carnosine activity was determined by O.V. Bukharin et al. (1999), biofilm formation -by G.A. O'Toole et al. (2000). Staphylococci treated with cycloferon were studied by atomic force microscopy in contact mode using scanning probe SMM-2000 microscope. The decrease of persistence properties of staphylococci under the effect of cycloferon in vitro and in vivo may be examined as one of the mechanisms of biological activity of the preparation. A significant increase of S. aureus surface roughness and changes in their morphology under the effect of cycloferon allow stating the disorder of barrier functions in the aurococci cell wall. The data obtained expand the understanding of cycloferon biological activity mechanisms.

  16. Cyclobutane-Containing Alkaloids: Origin, Synthesis, and Biological Activities

    PubMed Central

    Sergeiko, Anastasia; Poroikov, Vladimir V; Hanuš, Lumir O; Dembitsky, Valery M

    2008-01-01

    Present review describes research on novel natural cyclobutane-containing alkaloids isolated from terrestrial and marine species. More than 60 biological active compounds have been confirmed to have antimicrobial, antibacterial, antitumor, and other activities. The structures, synthesis, origins, and biological activities of a selection of cyclobutane-containing alkaloids are reviewed. With the computer program PASS some additional biological activities are also predicted, which point toward new possible applications of these compounds. This review emphasizes the role of cyclobutane-containing alkaloids as an important source of leads for drug discovery. PMID:19696873

  17. SORPTION ON WASTEWATER SOLIDS: ELIMINATION OF BIOLOGICAL ACTIVITY

    EPA Science Inventory

    Sorption was found to be greatly affected by the biological activity in wastewater solids. wo experimental techniques, cyanide treatment and pasteurization, were developed for eliminating the biological activity during isotherm measurements. oth methods are effective; however, pa...

  18. Exploring Visuomotor Priming Following Biological and Non-Biological Stimuli

    ERIC Educational Resources Information Center

    Gowen, E.; Bradshaw, C.; Galpin, A.; Lawrence, A.; Poliakoff, E.

    2010-01-01

    Observation of human actions influences the observer's own motor system, termed visuomotor priming, and is believed to be caused by automatic activation of mirror neurons. Evidence suggests that priming effects are larger for biological (human) as opposed to non-biological (object) stimuli and enhanced when viewing stimuli in mirror compared to…

  19. Ferromagnetic nanoparticles containing biologically active alkanolamines: preparation and properties

    NASA Astrophysics Data System (ADS)

    Segal, I.; Zablotskaya, A.; Lukevics, E.; Maiorov, M.; Zablotsky, D.

    2005-12-01

    The objective of the present study is to investigate the possibility of sorption on ultrafine magnetic particles of some model biologically active organosilicon alkanolamines, structural analogs of natural biologically active substances, choline and colamine, with increased lipophilicity. Double-coated ferromagnetic samples containing oleic acid, as a first layer, and organosilicon alcanolamines, as a second layer, were obtained and characterized by their physical/chemical (sorption and magnetisation) and biological (toxicity and cytotoxicity) properties. The present results clearly reveal the sorption of the biologically active alkanolamines on the surface of magnetic particles and a principal possibility to coat magnetite directly with biologically active alkanolamines, creating a mono-layer cover. The data presented in the study of cytotoxic properties of the newly obtained ferromagnetic nanoparticles show that it is reasonable to investigate such systems as potential cytotoxic agents. Tables 3, Figs 3, Refs 16.

  20. Milk Inhibits the Biological Activity of Ricin

    PubMed Central

    Rasooly, Reuven; He, Xiaohua; Friedman, Mendel

    2012-01-01

    Ricin is a highly toxic protein produced by the castor plant Ricinus communis. The toxin is relatively easy to isolate and can be used as a biological weapon. There is great interest in identifying effective inhibitors for ricin. In this study, we demonstrated by three independent assays that a component of reconstituted powdered milk has a high binding affinity to ricin. We discovered that milk can competitively bind to and reduce the amount of toxin available to asialofetuin type II, which is used as a model to study the binding of ricin to galactose cell-surface receptors. Milk also removes ricin bound to the microtiter plate. In parallel experiments, we demonstrated by activity assay and by immuno-PCR that milk can bind competitively to 1 ng/ml ricin, reducing the amount of toxin uptake by the cells, and thus inhibit the biological activity of ricin. The inhibitory effect of milk on ricin activity in Vero cells was at the same level as by anti-ricin antibodies. We also found that (a) milk did not inhibit ricin at concentrations of 10 or 100 ng/ml; (b) autoclaving 10 and 100 ng/ml ricin in DMEM at 121 °C for 30 min completely abolished activity; and (c) milk did not affect the activity of another ribosome inactivating protein, Shiga toxin type 2 (Stx2), produced by pathogenic Escherichia coli O157:H7. Unlike ricin, which is internalized into the cells via a galactose-binding site, Stx2 is internalized through the cell surface receptor glycolipid globotriasylceramides Gb3 and Gb4. These observations suggest that ricin toxicity may possibly be reduced at room temperature by a widely consumed natural liquid food. PMID:22733821

  1. The Biological Activities of Sesterterpenoid-Type Ophiobolins.

    PubMed

    Tian, Wei; Deng, Zixin; Hong, Kui

    2017-07-18

    Ophiobolins (Ophs) are a group of tricarbocyclic sesterterpenoids whose structures contain a tricyclic 5-8-5 carbotricyclic skeleton. Thus far, 49 natural Ophs have been reported and assigned into A-W subgroups in order of discovery. While these sesterterpenoids were first characterized as highly effective phytotoxins, later investigations demonstrated that they display a broad spectrum of biological and pharmacological characteristics such as phytotoxic, antimicrobial, nematocidal, cytotoxic, anti-influenza and inflammation-promoting activities. These bioactive molecules are promising drug candidates due to the developments of their anti-proliferative activities against a vast number of cancer cell lines, multidrug resistance (MDR) cells and cancer stem cells (CSCs). Despite numerous studies on the biological functions of Ophs, their pharmacological mechanism still requires further research. This review summarizes the chemical structures, sources, and biological activities of the oph family and discusses its mechanisms and structure-activity relationship to lay the foundation for the future developments and applications of these promising molecules.

  2. Effect of gamma irradiation on phenol content, antioxidant activity and biological activity of black maca and red maca extracts (Lepidium meyenii walp).

    PubMed

    Zevallos-Concha, A; Nuñez, D; Gasco, M; Vasquez, C; Quispe, M; Gonzales, G F

    2016-01-01

    This study was performed to determine the effects of gamma irradiation on UV spectrum on maca, total content of polyphenols, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activities and in vivo biological activities of red and black maca extracts (Lepidium meyenii). Adult mice of the strain Swiss aged 3 months and weighing 30-35 g in average were used to determine biological activities. Daily sperm production, effect on testosterone-induced prostate hyperplasia and forced swimming test were used to determine the effect of irradiation on biological activities of maca extracts. Irradiation did not show differences in UV spectrum but improves the amount of total polyphenols in red maca as well as in black maca extracts. In both cases, black maca extract has more content of polyphenols than red maca extract (p < 0.01). Gamma irradiation significantly increased the antioxidant capacity (p < 0.05). No difference was observed in daily sperm production when irradiated and nonirradiated maca extract were administered to mice (p > 0.05). Black maca extract but not red maca extract has more swimming endurance capacity in the forced swimming test. Irradiation of black maca extract increased the swimming time to exhaustion (p < 0.05). This is not observed with red maca extract (p > 0.05). Testosterone enanthate (TE) increased significantly the ventral prostate weight. Administration of red maca extract in animals treated with TE prevented the increase in prostate weight. Irradiation did not modify effect of red maca extract on prostate weight (p > 0.05). In conclusion, irradiation does not alter the biological activities of both black maca and red maca extracts. It prevents the presence of microorganisms in the extracts of black or red maca, but the biological activities were maintained.

  3. Glycosides from Marine Sponges (Porifera, Demospongiae): Structures, Taxonomical Distribution, Biological Activities and Biological Roles

    PubMed Central

    Kalinin, Vladimir I.; Ivanchina, Natalia V.; Krasokhin, Vladimir B.; Makarieva, Tatyana N.; Stonik, Valentin A.

    2012-01-01

    Literature data about glycosides from sponges (Porifera, Demospongiae) are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed. PMID:23015769

  4. Cysteine cathepsin S processes leptin, inactivating its biological activity.

    PubMed

    Oliveira, Marcela; Assis, Diego M; Paschoalin, Thaysa; Miranda, Antonio; Ribeiro, Eliane B; Juliano, Maria A; Brömme, Dieter; Christoffolete, Marcelo Augusto; Barros, Nilana M T; Carmona, Adriana K

    2012-08-01

    Leptin is a 16  kDa hormone mainly produced by adipocytes that plays an important role in many biological events including the regulation of appetite and energy balance, atherosclerosis, osteogenesis, angiogenesis, the immune response, and inflammation. The search for proteolytic enzymes capable of processing leptin prompted us to investigate the action of cysteine cathepsins on human leptin degradation. In this study, we observed high cysteine peptidase expression and hydrolytic activity in white adipose tissue (WAT), which was capable of degrading leptin. Considering these results, we investigated whether recombinant human cysteine cathepsins B, K, L, and S were able to degrade human leptin. Mass spectrometry analysis revealed that among the tested enzymes, cathepsin S exhibited the highest catalytic activity on leptin. Furthermore, using a Matrigel assay, we observed that the leptin fragments generated by cathepsin S digestion did not exhibit angiogenic action on endothelial cells and were unable to inhibit food intake in Wistar rats after intracerebroventricular administration. Taken together, these results suggest that cysteine cathepsins may be putative leptin activity regulators in WAT.

  5. Multifunctional and biologically active matrices from multicomponent polymeric solutions

    NASA Technical Reports Server (NTRS)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2010-01-01

    The present invention relates to a biologically active functionalized electrospun matrix to permit immobilization and long-term delivery of biologically active agents. In particular the invention relates to a functionalized polymer matrix comprising a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin. Examples of active molecules that may be used with the multicomponent polymer of the invention include, for example, a drug, a biopolymer, for example a growth factor, a protein, a peptide, a nucleotide, a polysaccharide, a biological macromolecule or the like. The invention is further directed to the formation of functionalized crosslinked matrices, such as hydrogels, that include at least one functionalized compatibilizing polymer capable of assembly.

  6. Making United States Integrated Ocean Observing System (U.S. IOOS) inclusive of marine biological resources

    USGS Publications Warehouse

    Moustahfid, H.; Potemra, J.; Goldstein, P.; Mendelssohn, R.; Desrochers, A.

    2011-01-01

    An important Data Management and Communication (DMAC) goal is to enable a multi-disciplinary view of the ocean environment by facilitating discovery and integration of data from various sources, projects and scientific domains. United States Integrated Ocean Observing System (U.S. IOOS) DMAC functional requirements are based upon guidelines for standardized data access services, data formats, metadata, controlled vocabularies, and other conventions. So far, the data integration effort has focused on geophysical U.S. IOOS core variables such as temperature, salinity, ocean currents, etc. The IOOS Biological Observations Project is addressing the DMAC requirements that pertain to biological observations standards and interoperability applicable to U.S. IOOS and to various observing systems. Biological observations are highly heterogeneous and the variety of formats, logical structures, and sampling methods create significant challenges. Here we describe an informatics framework for biological observing data (e.g. species presence/absence and abundance data) that will expand information content and reconcile standards for the representation and integration of these biological observations for users to maximize the value of these observing data. We further propose that the approach described can be applied to other datasets generated in scientific observing surveys and will provide a vehicle for wider dissemination of biological observing data. We propose to employ data definition conventions that are well understood in U.S. IOOS and to combine these with ratified terminologies, policies and guidelines. ?? 2011 MTS.

  7. Gemini ester quat surfactants and their biological activity.

    PubMed

    Łuczyński, Jacek; Frąckowiak, Renata; Włoch, Aleksandra; Kleszczyńska, Halina; Witek, Stanisław

    2013-03-01

    Cationic gemini surfactants are an important class of surface-active compounds that exhibit much higher surface activity than their monomeric counterparts. This type of compound architecture lends itself to the compound being easily adsorbed at interfaces and interacting with the cellular membranes of microorganisms. Conventional cationic surfactants have high chemical stability but poor chemical and biological degradability. One of the main approaches to the design of readily biodegradable and environmentally friendly surfactants involves inserting a bond with limited stability into the surfactant molecule to give a cleavable surfactant. The best-known example of such a compound is the family of ester quats, which are cationic surfactants with a labile ester bond inserted into the molecule. As part of this study, a series of gemini ester quat surfactants were synthesized and assayed for their biological activity. Their hemolytic activity and changes in the fluidity and packing order of the lipid polar heads were used as the measures of their biological activity. A clear correlation between the hemolytic activity of the tested compounds and their alkyl chain length was established. It was found that the compounds with a long hydrocarbon chain showed higher activity. Moreover, the compounds with greater spacing between their alkyl chains were more active. This proves that they incorporate more easily into the lipid bilayer of the erythrocyte membrane and affect its properties to a greater extent. A better understanding of the process of cell lysis by surfactants and of their biological activity may assist in developing surfactants with enhanced selectivity and in widening their range of application.

  8. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2014-05-27

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  9. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2014-10-28

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  10. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2015-04-14

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  11. Methods of increasing secretion of polypeptides having biological activity

    DOEpatents

    Merino, Sandra

    2013-10-01

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  12. Loranthus micranthus Linn.: Biological Activities and Phytochemistry

    PubMed Central

    Zorofchian Moghadamtousi, Soheil; Hajrezaei, Maryam; Abdul Kadir, Habsah

    2013-01-01

    Loranthus micranthus Linn. is a medicinal plant from the Loranthaceae family commonly known as an eastern Nigeria species of the African mistletoe and is widely used in folkloric medicine to cure various ailments and diseases. It is semiparasitic plant because of growing on various host trees and shrubs and absorbing mineral nutrition and water from respective host. Hence, the phytochemicals and biological activities of L. micranthus demonstrated strong host and harvesting period dependency. The leaves have been proved to possess immunomodulatory, antidiabetic, antimicrobial, antihypertensive, antioxidant, antidiarrhoeal, and hypolipidemic activities. This review summarizes the information and findings concerning the current knowledge on the biological activities, pharmacological properties, toxicity, and chemical constituents of Loranthus micranthus. PMID:24109490

  13. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity.

    PubMed

    Chen, Yun; Yao, Fangke; Ming, Ke; Wang, Deyun; Hu, Yuanliang; Liu, Jiaguo

    2016-12-13

    Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  14. Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts

    PubMed Central

    Wang, Jianghua; Cai, Yi; Yu, Wendong; Ren, Chengxi; Spencer, David M.; Ittmann, Michael

    2008-01-01

    TMPRSS2/ERG gene fusions are found in the majority of prostate cancers; however, there is significant heterogeneity in the 5′ region of the alternatively spliced fusion gene transcripts. We have found that there is also significant heterogeneity within the coding exons as well. There is variable inclusion of a 72-bp exon and other novel alternatively spliced isoforms. To assess the biological significance of these alternatively spliced transcripts, we expressed various transcripts in primary prostatic epithelial cells and in an immortalized prostatic epithelial cell line, PNT1a. The fusion gene transcripts promoted proliferation, invasion and motility with variable activities that depended on the structure of the 5′ region encoding the TMPRSS2/ERG fusion and the presence of the 72-bp exon. Cotransfection of different isoforms further enhanced biological activity, mimicking the situation in vivo, in which multiple isoforms are expressed. Finally, knockdown of the fusion gene in VCaP cells resulted in inhibition of proliferation in vitro and tumor progression in an in vivo orthotopic mice model. Our results indicate that TMPRSS2/ERG fusion isoforms have variable biological activities promoting tumor initiation and progression and are consistent with our previous clinical observations indicating that certain TMPRSS2/ERG fusion isoforms are significantly correlated with more aggressive disease. PMID:18922926

  15. Priorities and developments of sensors, samplers and methods for key marine biological observations.

    NASA Astrophysics Data System (ADS)

    Simmons, Samantha; Chavez, Francisco; Pearlman, Jay

    2016-04-01

    Over the last two decades or more, physical oceanography has seen a significant growth in in-situ sensors and platforms including fixed point and cable observatories, Argo floats, gliders and AUVs to supplement satellites for creating a 3-D view of the time-varying global ocean temperature and salinity structures. There are important developments recently for biogeochemists for monitoring nitrate, chemical contaminants, oxygen and pH that can now be added to these autonomous systems. Biologists are still lagging. Given the importance of biology to ocean health and the future earth, and the present reliance on humans and ships for observing species and abundance, it is paramount that new biological sensor systems be developed. Some promising sensor systems based on, but not limited to acoustic, chemical, genomic or imaging techniques, can sense from microbes to whales, are on the horizon. These techniques can be applied in situ with either real time or recorded data and can be captured and returned to the laboratory using the autonomous systems. The number of samples is limiting, requiring adaptive and smart systems. Two steps are envisioned to meeting the challenges. The first is to identify the priority biological variables to focus observation requirements and planning. The second is to address new sensors that can fill the gaps in current capabilities for biological observations. This abstract will review recent efforts to identify core biological variables for the US Integrated Ocean Observing System and address new sensors and innovations for observing these variables, particularly focused on availability and maturity of sensors.

  16. Investigating biological activity spectrum for novel quinoline analogues.

    PubMed

    Musiol, Robert; Jampilek, Josef; Kralova, Katarina; Richardson, Des R; Kalinowski, Danuta; Podeszwa, Barbara; Finster, Jacek; Niedbala, Halina; Palka, Anna; Polanski, Jaroslaw

    2007-02-01

    The lack of the wide spectrum of biological data is an important obstacle preventing the efficient molecular design. Quinoline derivatives are known to exhibit a variety of biological effects. In the current publication, we tested a series of novel quinoline analogues for their photosynthesis-inhibiting activity (the inhibition of photosynthetic electron transport in spinach chloroplasts (Spinacia oleracea L.) and the reduction of chlorophyll content in Chlorella vulgaris Beij.). Moreover, antiproliferative activity was measured using SK-N-MC neuroepithelioma cell line. We described the structure-activity relationships (SAR) between the chemical structure and biological effects of the synthesized compounds. We also measured the lipophilicity of the novel compounds by means of the RP-HPLC and illustrate the relationships between the RP-HPLC retention parameter logK (the logarithm of capacity factor K) and logP data calculated by available programs.

  17. Office of Biological Informatics and Outreach geospatial technology activities

    USGS Publications Warehouse

    ,

    1998-01-01

    The U.S. Geological Survey (USGS) Office of Biological Informatics and Outreach (OBIO) in Reston, Virginia, and its Center for Biological Informatics (CBI) in Denver, Colorado, provide leadership in the development and use of geospatial technologies to advance the Nation's biological science activities.

  18. A method for three-dimensional quantitative observation of the microstructure of biological samples

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Chen, Dieyan; Ma, Wanyun; Wu, Hongxin; Ji, Liang; Sun, Jialin; Lv, Danyu; Zhang, Lu; Li, Ying; Tian, Ning; Zheng, Jinggao; Zhao, Fengying

    2009-07-01

    Contemporary biology has developed into the era of cell biology and molecular biology, and people try to study the mechanism of all kinds of biological phenomena at the microcosmic level now. Accurate description of the microstructure of biological samples is exigent need from many biomedical experiments. This paper introduces a method for 3-dimensional quantitative observation on the microstructure of vital biological samples based on two photon laser scanning microscopy (TPLSM). TPLSM is a novel kind of fluorescence microscopy, which has excellence in its low optical damage, high resolution, deep penetration depth and suitability for 3-dimensional (3D) imaging. Fluorescent stained samples were observed by TPLSM, and afterward the original shapes of them were obtained through 3D image reconstruction. The spatial distribution of all objects in samples as well as their volumes could be derived by image segmentation and mathematic calculation. Thus the 3-dimensionally and quantitatively depicted microstructure of the samples was finally derived. We applied this method to quantitative analysis of the spatial distribution of chromosomes in meiotic mouse oocytes at metaphase, and wonderful results came out last.

  19. Purification, characterization, and biological activities of broccolini lectin.

    PubMed

    Xu, Pingping; Zhang, Ting; Guo, Xiaolei; Ma, Chungwah; Zhang, Xuewu

    2015-01-01

    Plant lectins have displayed a variety of biological activities. In this study, for the first time, a 27 kDa arabinose- and mannose-specific lectin from Broccolini (Brassica oleracea Italica × Alboglabra), named as BL (Broccolini lectin), was purified by an activity-driven protocol. Mass spectrometry analysis and database search indicated that no matches with any plant lectin were found, but BL contained some peptide fragments (QQQGQQGQQLQQVISR, QQGQQQGQQGQQLQQVISR and VCNIPQVSVCPF QK). BL exhibited hemagglutinating activity against chicken erythrocytes at 4 µg/mL. BL retained full hemagglutinating activity at pH 7-8 and temperature 30-40°C, and had an optimal activity in Ca(2+) solution. Bioactivity assay revealed that BL exhibited dose-dependent inhibition activity on 5 bacterial species with IC50 values of 143.95-486.33 μg/mL, and on 3 cancer cells with IC50 values of 178.82-350.93 μg/mL. Notably, 5-fold reduction in IC50 values was observed on normal L-O2 vs cancerous HepG-2 cells (924.35 vs. 178.82 μg/mL). This suggests that BL should be promising in food and medicine. © 2015 American Institute of Chemical Engineers.

  20. Transport of biologically active material in laser cutting.

    PubMed

    Frenz, M; Mathezloic, F; Stoffel, M H; Zweig, A D; Romano, V; Weber, H P

    1988-01-01

    The transport of biologically active material during laser cutting with CO2 and Er lasers is demonstrated. This transport mechanism removes particles from the surface of gelatin, agar, and liver samples into the depth of the laser-formed craters. The transport phenomenon is explained by a contraction and condensation of enclosed hot water vapor. We show by cultivating transported bacteria in agar that biological particles can survive the shock of the transport. Determination of the numbers of active cells evidences a more pronounced activity of the cultivated bacteria after impact with an Er laser than with a CO2 laser.

  1. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2.

    PubMed

    Mi, Huaiyu; Schreiber, Falk; Moodie, Stuart; Czauderna, Tobias; Demir, Emek; Haw, Robin; Luna, Augustin; Le Novère, Nicolas; Sorokin, Anatoly; Villéger, Alice

    2015-09-04

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Activity Flow language represents the influences of activities among various entities within a network. Unlike SBGN PD and ER that focus on the entities and their relationships with others, SBGN AF puts the emphasis on the functions (or activities) performed by the entities, and their effects to the functions of the same or other entities. The nodes (elements) describe the biological activities of the entities, such as protein kinase activity, binding activity or receptor activity, which can be easily mapped to Gene Ontology molecular function terms. The edges (connections) provide descriptions of relationships (or influences) between the activities, e.g., positive influence and negative influence. Among all three languages of SBGN, AF is the closest to signaling pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge.

  2. Dynamic properties of biologically active synthetic heparin-like hexasaccharides.

    PubMed

    Angulo, Jesús; Hricovíni, Milos; Gairi, Margarida; Guerrini, Marco; de Paz, José Luis; Ojeda, Rafael; Martín-Lomas, Manuel; Nieto, Pedro M

    2005-10-01

    A complete study of the dynamics of two synthetic heparin-like hexasaccharides, D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (1) and -->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHAc-6-SO4-alpha-(1-->4)-L-IdoA-alpha-(1-->4)-D-GlcNHSO3-alpha-(1-->4)-L-IdoA-2-SO4-alpha-1-->iPr (2), has been performed using 13C-nuclear magnetic resonance (NMR) relaxation parameters, T1, T2, and heteronuclear nuclear Overhauser effect (NOEs). Compound 1 is constituted from sequences corresponding to the major polysaccharide heparin region, while compound 2 contains a sequence never found in natural heparin. They differ from each other only in sulphation patterns, and are capable of stimulating fibroblast growth factors (FGFs)-1 induced mitogenesis. Both oligosaccharides exhibit a remarkable anisotropic overall motion in solution as revealed by their anisotropic ratios (tau /tau||), 4.0 and 3.0 respectively. This is a characteristic behaviour of natural glycosaminoglycans (GAG) which has also been observed for the antithrombin (AT) binding pentasaccharide D-GlcNHSO3-6-SO4-alpha-(1-->4)-D-GlcA-beta-(1-->4)-D-GlcNHSO3-(3,6-SO4)-alpha-(1-->4)-L-IdoA-2-SO4-alpha-(1-->4)-D-GlcNHSO3-6-SO4-alpha-1-->Me (3) (Hricovíni, M., Guerrini, M., Torri, G., Piani, S., and Ungarelli, F. (1995) Conformational analysis of heparin epoxide in aqueous solution. An NMR relaxation study. Carbohydr. Res., 277, 11-23). The motional properties observed for 1 and 2 provide additional support to the suitability of these compounds as heparin models in agreement with previous structural (de Paz, J.L., Angulo, J., Lassaletta, J.M., Nieto, P.M., Redondo-Horcajo, M., Lozano, R.M., Jiménez-Gallego, G., and Martín-Lomas, M. (2001) The activation of fibroblast growth factors by heparin: synthesis, structure and biological activity of heparin-like oligosaccharides. Chembiochem, 2, 673-685; Ojeda, R

  3. Multifunctional and biologically active matrices from multicomponent polymeric solutions

    NASA Technical Reports Server (NTRS)

    Kiick, Kristi L. (Inventor); Yamaguchi, Nori (Inventor); Rabolt, John (Inventor); Casper, Cheryl (Inventor)

    2012-01-01

    A functionalized electrospun matrix for the controlled-release of biologically active agents, such as growth factors, is presented. The functionalized matrix comprises a matrix polymer, a compatibilizing polymer and a biomolecule or other small functioning molecule. In certain aspects the electrospun polymer fibers comprise at least one biologically active molecule functionalized with low molecular weight heparin.

  4. Using Active Learning to Teach Concepts and Methods in Quantitative Biology.

    PubMed

    Waldrop, Lindsay D; Adolph, Stephen C; Diniz Behn, Cecilia G; Braley, Emily; Drew, Joshua A; Full, Robert J; Gross, Louis J; Jungck, John A; Kohler, Brynja; Prairie, Jennifer C; Shtylla, Blerta; Miller, Laura A

    2015-11-01

    This article provides a summary of the ideas discussed at the 2015 Annual Meeting of the Society for Integrative and Comparative Biology society-wide symposium on Leading Students and Faculty to Quantitative Biology through Active Learning. It also includes a brief review of the recent advancements in incorporating active learning approaches into quantitative biology classrooms. We begin with an overview of recent literature that shows that active learning can improve students' outcomes in Science, Technology, Engineering and Math Education disciplines. We then discuss how this approach can be particularly useful when teaching topics in quantitative biology. Next, we describe some of the recent initiatives to develop hands-on activities in quantitative biology at both the graduate and the undergraduate levels. Throughout the article we provide resources for educators who wish to integrate active learning and technology into their classrooms. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  5. Ficus carica L. (Moraceae): Phytochemistry, Traditional Uses and Biological Activities.

    PubMed

    Mawa, Shukranul; Husain, Khairana; Jantan, Ibrahim

    2013-01-01

    This paper describes the botanical features of Ficus carica L. (Moraceae), its wide variety of chemical constituents, its use in traditional medicine as remedies for many health problems, and its biological activities. The plant has been used traditionally to treat various ailments such as gastric problems, inflammation, and cancer. Phytochemical studies on the leaves and fruits of the plant have shown that they are rich in phenolics, organic acids, and volatile compounds. However, there is little information on the phytochemicals present in the stem and root. Reports on the biological activities of the plant are mainly on its crude extracts which have been proven to possess many biological activities. Some of the most interesting therapeutic effects include anticancer, hepatoprotective, hypoglycemic, hypolipidemic, and antimicrobial activities. Thus, studies related to identification of the bioactive compounds and correlating them to their biological activities are very useful for further research to explore the potential of F. carica as a source of therapeutic agents.

  6. Effects of walker gender and observer gender on biological motion walking direction discrimination.

    PubMed

    Yang, Xiaoying; Cai, Peng; Jiang, Yi

    2014-09-01

    The ability to recognize the movements of other biological entities, such as whether a person is walking toward you, is essential for survival and social interaction. Previous studies have shown that the visual system is particularly sensitive to approaching biological motion. In this study, we examined whether the gender of walkers and observers influenced the walking direction discrimination of approaching point-light walkers in fine granularity. The observers were presented a walker who walked in different directions and were asked to quickly judge the walking direction (left or right). The results showed that the observers demonstrated worse direction discrimination when the walker was depicted as male than when the walker was depicted as female, probably because the observers tended to perceive the male walkers as walking straight ahead. Intriguingly, male observers performed better than female observers at judging the walking directions of female walkers but not those of male walkers, a result indicating perceptual advantage with evolutionary significance. These findings provide strong evidence that the gender of walkers and observers modulates biological motion perception and that an adaptive perceptual mechanism exists in the visual system to facilitate the survival of social organisms. © 2014 The Institute of Psychology, Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  7. The Default Mode Network Differentiates Biological From Non-Biological Motion

    PubMed Central

    Dayan, Eran; Sella, Irit; Mukovskiy, Albert; Douek, Yehonatan; Giese, Martin A.; Malach, Rafael; Flash, Tamar

    2016-01-01

    The default mode network (DMN) has been implicated in an array of social-cognitive functions, including self-referential processing, theory of mind, and mentalizing. Yet, the properties of the external stimuli that elicit DMN activity in relation to these domains remain unknown. Previous studies suggested that motion kinematics is utilized by the brain for social-cognitive processing. Here, we used functional MRI to examine whether the DMN is sensitive to parametric manipulations of observed motion kinematics. Preferential responses within core DMN structures differentiating non-biological from biological kinematics were observed for the motion of a realistically looking, human-like avatar, but not for an abstract object devoid of human form. Differences in connectivity patterns during the observation of biological versus non-biological kinematics were additionally observed. Finally, the results additionally suggest that the DMN is coupled more strongly with key nodes in the action observation network, namely the STS and the SMA, when the observed motion depicts human rather than abstract form. These findings are the first to implicate the DMN in the perception of biological motion. They may reflect the type of information used by the DMN in social-cognitive processing. PMID:25217472

  8. Generation and Biological Activities of Oxidized Phospholipids

    PubMed Central

    Oskolkova, Olga V.; Birukov, Konstantin G.; Levonen, Anna-Liisa; Binder, Christoph J.; Stöckl, Johannes

    2010-01-01

    Abstract Glycerophospholipids represent a common class of lipids critically important for integrity of cellular membranes. Oxidation of esterified unsaturated fatty acids dramatically changes biological activities of phospholipids. Apart from impairment of their structural function, oxidation makes oxidized phospholipids (OxPLs) markers of “modified-self” type that are recognized by soluble and cell-associated receptors of innate immunity, including scavenger receptors, natural (germ line-encoded) antibodies, and C-reactive protein, thus directing removal of senescent and apoptotic cells or oxidized lipoproteins. In addition, OxPLs acquire novel biological activities not characteristic of their unoxidized precursors, including the ability to regulate innate and adaptive immune responses. Effects of OxPLs described in vitro and in vivo suggest their potential relevance in different pathologies, including atherosclerosis, acute inflammation, lung injury, and many other conditions. This review summarizes current knowledge on the mechanisms of formation, structures, and biological activities of OxPLs. Furthermore, potential applications of OxPLs as disease biomarkers, as well as experimental therapies targeting OxPLs, are described, providing a broad overview of an emerging class of lipid mediators. Antioxid. Redox Signal. 12, 1009–1059. PMID:19686040

  9. A review of sensors, samplers and methods for marine biological observations.

    NASA Astrophysics Data System (ADS)

    Simmons, S. E.; Chavez, F.; Pearlman, J.; Working Group, T B S

    2016-02-01

    Physical scientists now have Argo floats, gliders and AUVs to supplement satellites to provide a 3-D view of the time-varying global ocean temperature and salinity structure. Biogeochemists are catching up with evolving sensors for nitrate, optical properties, oxygen and pH that can now be added to these autonomous systems. Biologists are still lagging, although some promising sensor systems based on but not limited to acoustic, chemical, genomic or imaging techniques, that can sense from microbes to whales, are on the horizon. These techniques can not only be applied in situ but also on samples returned to the laboratory using the autonomous systems. The number of samples is limiting, requiring adaptive and smart systems. Given the importance of biology to ocean health and the future earth, and the present reliance on humans and ships for observing species and abundance it is paramount that new biological sensor systems be developed. This abstract will review recent efforts to identify core biological variables for the US Integrated Ocean Observing System and address new sensors and innovations for observing these variables, particularly focused on availability and maturity of sensors. The relevance of this work in a global context will also be touched on.

  10. A Conceptual Framework for Organizing Active Learning Experiences in Biology Instruction

    ERIC Educational Resources Information Center

    Gardner, Joel; Belland, Brian R.

    2012-01-01

    Introductory biology courses form a cornerstone of undergraduate instruction. However, the predominantly used lecture approach fails to produce higher-order biology learning. Research shows that active learning strategies can increase student learning, yet few biology instructors use all identified active learning strategies. In this paper, we…

  11. Expression of novel rice gibberellin 2-oxidase gene is under homeostatic regulation by biologically active gibberellins.

    PubMed

    Sakai, Miho; Sakamoto, Tomoaki; Saito, Tamio; Matsuoka, Makoto; Tanaka, Hiroshi; Kobayashi, Masatomo

    2003-04-01

    We have cloned two genes for gibberellin (GA) 2-oxidase from rice ( Oryza sativa L.). Expression of OsGA2ox2 was not observed. The other gene, OsGA2ox3, was expressed in every tissue examined and was enhanced by the application of biologically active GA. Recombinant OsGA2ox3 protein catalyzed the metabolism of GA(1) to GA(8) and GA(20) to GA(29)-catabolite. These results indicate that OsGA2ox3 is involved in the homeostatic regulation of the endogenous level of biologically active GA in rice.

  12. Biological Activities of Stilbenoids.

    PubMed

    Akinwumi, Bolanle C; Bordun, Kimberly-Ann M; Anderson, Hope D

    2018-03-09

    Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene, but differ in the nature and position of substituents. Stilbenoids are classified as phytoalexins, which are antimicrobial compounds produced de novo in plants to protect against fungal infection and toxins. In this review, the biological effects of stilbenoids such as resveratrol, pterostilbene, gnetol and piceatannol are discussed. Stilbenoids exert various biological activities ranging from cardioprotection, neuroprotection, anti-diabetic properties, depigmentation, anti-inflammation, cancer prevention and treatment. The results presented cover a myriad of models, from cell culture to animal studies as well as clinical human trials. Although positive results were obtained in most cell culture and animal studies, further human studies are needed to substantiate beneficial effects of stilbenoids. Resveratrol remains the most widely studied stilbenoid. However, there is limited information regarding the potential of less common stilbenoids. Therefore, further research is warranted to evaluate the salutary effects of various stilbenoids.

  13. Biological Activities of Stilbenoids

    PubMed Central

    Bordun, Kimberly-Ann M.

    2018-01-01

    Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene, but differ in the nature and position of substituents. Stilbenoids are classified as phytoalexins, which are antimicrobial compounds produced de novo in plants to protect against fungal infection and toxins. In this review, the biological effects of stilbenoids such as resveratrol, pterostilbene, gnetol and piceatannol are discussed. Stilbenoids exert various biological activities ranging from cardioprotection, neuroprotection, anti-diabetic properties, depigmentation, anti-inflammation, cancer prevention and treatment. The results presented cover a myriad of models, from cell culture to animal studies as well as clinical human trials. Although positive results were obtained in most cell culture and animal studies, further human studies are needed to substantiate beneficial effects of stilbenoids. Resveratrol remains the most widely studied stilbenoid. However, there is limited information regarding the potential of less common stilbenoids. Therefore, further research is warranted to evaluate the salutary effects of various stilbenoids. PMID:29522491

  14. Biological uptake of polychlorinated biphenyls by Macoma balthica from sediment amended with activated carbon

    USGS Publications Warehouse

    McLeod, Pamela B.; van den Heuvel-Greve, Martine J.; Luoma, S.N.; Luthy, R.G.

    2007-01-01

    This work characterizes the efficacy of activated carbon amendment in reducing polychlorinated biphenyl (PCB) bioavailability to clams (Macoma balthica) from field-contaminated sediment (Hunters Point Naval Shipyard, San Francisco Bay, CA, USA) Test methods were developed for the use of clams to investigate the effects of sediment amendment on biological uptake. Sediment was mixed with activated carbon for one month. Bioaccumulation tests (28 d) were employed to assess the relationships between carbon dose and carbon particle size on observed reductions in clam biological uptake of PCBs. Extraction and cleanup protocols were developed for the clam tissue. Efficacy of activated carbon treatment was found to increase with both increasing carbon dose and decreasing carbon particle size. Average reductions in bioaccumulation of 22, 64, and 84% relative to untreated Hunters Point sediment were observed for carbon amendments of 0.34, 1.7, and 3.4%, respectively. Average bioaccumulation reductions of 41, 73, and 89% were observed for amendments (dose = 1.7% dry wt) with carbon particles of 180 to 250, 75 to 180, and 25 to 75 ??m, respectively, in diameter, indicating kinetic phenomena in these tests. Additionally, a biodynamic model quantifying clam PCB uptake from water and sediment as well as loss through elimination provided a good fit of experimental data. Model predictions suggest that the sediment ingestion route contributed 80 to 95% of the PCB burdens in the clams. ?? 2007 SETAC.

  15. Severe impingement of lumbar disc replacements increases the functional biological activity of polyethylene wear debris.

    PubMed

    Baxter, Ryan M; Macdonald, Daniel W; Kurtz, Steven M; Steinbeck, Marla J

    2013-06-05

    Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume of particles in all

  16. Severe Impingement of Lumbar Disc Replacements Increases the Functional Biological Activity of Polyethylene Wear Debris

    PubMed Central

    Baxter, Ryan M.; MacDonald, Daniel W.; Kurtz, Steven M.; Steinbeck, Marla J.

    2013-01-01

    Background: Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. Methods: The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Results: Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume

  17. Biological Activity of Bacillus thuringiensis (Bacillales: Bacillaceae) in Anastrepha fraterculus (Diptera: Tephritidae).

    PubMed

    Martins, Liliane Nachtigall; Lara, Ana Paula de Souza Stori de; Ferreira, Márcio Soares; Nunes, Adrise Medeiros; Bernardi, Daniel; Leite, Fábio Pereira Leivas; Garcia, Flávio Roberto Mello

    2018-05-28

    Anastrepha fraterculus (Wiedemann) (Diptera: Tephritidae) is considered to be one of the major pest insects in fruit orchards worldwide. Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) strains are widely used as biological control agents and show high biological activity against different insect species. The objective of this study was to evaluate the biological activity of different strains of B. thuringiensis against A. fraterculus larvae and adults. Bioassays were performed using suspensions of bacterial spores/crystals of B. thuringiensis var. israelensis (Bti), kurstaki (Btk), and oswaldocruzi (Bto) strains at three concentrations [2 × 107, 2 × 108, and 2 × 109 colony-forming units per ml (CFU ml-1)]. At a concentration of 2 × 109 CFU ml-1, a significant larval effect (mortality 60%) was observed when compared with the control treatment. Larvae that ingested spore/crystal suspensions of Bti, Btk, or Bto bacterial strains exhibited significant larval and pupal deformations, leading to a significant decrease (~50%) in the completion of the insects' biological cycle (egg to adult). The B. thuringiensis strains (Bti, Btk, or Bto) at a concentration of 2 × 109 CFU ml-1 in combination with one food attractant (BioAnastrepha 3% or CeraTrap 1.5%) in formulations of toxic baits provided high mortality (mortality > 85%) of A. fraterculus adults 7 d after treatment. However, the Btk strain in combination with CeraTrap 1.5% caused mortality of 40%. On the basis of these results, the native bacterial strains Bti, Btk, and Bto were considered to be promising candidates as biological control agents against A. fraterculus.

  18. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks

    PubMed Central

    Miconi, Thomas

    2017-01-01

    Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior. DOI: http://dx.doi.org/10.7554/eLife.20899.001 PMID:28230528

  19. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.

    PubMed

    Miconi, Thomas

    2017-02-23

    Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior.

  20. The Default Mode Network Differentiates Biological From Non-Biological Motion.

    PubMed

    Dayan, Eran; Sella, Irit; Mukovskiy, Albert; Douek, Yehonatan; Giese, Martin A; Malach, Rafael; Flash, Tamar

    2016-01-01

    The default mode network (DMN) has been implicated in an array of social-cognitive functions, including self-referential processing, theory of mind, and mentalizing. Yet, the properties of the external stimuli that elicit DMN activity in relation to these domains remain unknown. Previous studies suggested that motion kinematics is utilized by the brain for social-cognitive processing. Here, we used functional MRI to examine whether the DMN is sensitive to parametric manipulations of observed motion kinematics. Preferential responses within core DMN structures differentiating non-biological from biological kinematics were observed for the motion of a realistically looking, human-like avatar, but not for an abstract object devoid of human form. Differences in connectivity patterns during the observation of biological versus non-biological kinematics were additionally observed. Finally, the results additionally suggest that the DMN is coupled more strongly with key nodes in the action observation network, namely the STS and the SMA, when the observed motion depicts human rather than abstract form. These findings are the first to implicate the DMN in the perception of biological motion. They may reflect the type of information used by the DMN in social-cognitive processing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. The effect of parents' conversational style and disciplinary knowledge on children's observation of biological phenomena

    NASA Astrophysics Data System (ADS)

    Eberbach, Catherine

    This study was designed to better understand how children begin to make the transition from seeing the natural world to scientifically observing the natural world during shared family activity in an informal learning environment. Specifically, this study addressed research questions: (1) What is the effect of differences in parent conversational style and disciplinary knowledge on children's observations of biological phenomena? (2) What is the relationship between parent disciplinary knowledge and conversational style to children's observations of biological phenomena? and (3) Can parents, regardless of knowledge, be trained to use a teaching strategy with their children that can be implemented in informal learning contexts? To address these questions, 79 parent-child dyads with children 6-10 years old participated in a controlled study in which half of the parents used their natural conversational style and the other half were trained to use particular conversational strategies during family observations of pollination in a botanical garden. Parents were also assigned to high and low knowledge groups according to their disciplinary knowledge of pollination. Data sources included video recordings of parent-child observations in a garden, pre-post child tasks, and parent surveys. Findings revealed that parents who received training used the conversational strategies more than parents who used their natural conversational style. Parents and children who knew more about pollination at the start of the study exhibited higher levels of disciplinary talk in the garden, which is to be expected. However, the use of the conversational strategies also increased the amount of disciplinary talk in the garden, independent of what families knew about pollination. The extent to which families engaged in disciplinary talk in the garden predicted significant variance in children's post-test scores. In addition to these findings, an Observation Framework (Eberbach & Crowley, 2009

  2. Biological age and sex-related declines in physical activity during adolescence.

    PubMed

    Cairney, John; Veldhuizen, Scott; Kwan, Matthew; Hay, John; Faught, Brent E

    2014-04-01

    Sex differences in the rate of decline in physical activity (PA) are most pronounced during adolescence. However, once boys and girls are aligned on biological age, sex differences in the patterns of PA become attenuated. The aim of this study was to test whether biological maturation can account for sex differences in participation in PA over time from late childhood to early adolescence. A prospective cohort of children (N = 2100; 1064 boys) was followed from ages 11 to 14 yr, with repeated assessments of PA and anthropometry. Self-reported participation in organized and free play activities was used to track participation in PA. Biological age was measured using an estimate of years to attainment of peak height velocity. Mixed-effects models were used to test whether controlling for biological age attenuates the effect of chronological age and sex on PA. As expected, the rate of decline in participation in PA was greater for girls than for boys (B = -1.18, P < 0.01). In multivariable analyses, adjusting for biological age completely attenuated the effect of sex and chronological age for participation in free play activities, but not for participation in organized play. Overall, biological age was a stronger predictor of participation than chronological age. The effect of biological age on sex by chronological age differences may be specific to certain types of PA participation. Given the importance of maturation to participation in activity, it is suggested that public health strategies target biological not chronological age to prevent declines in PA during adolescence particularly when promoting habitual or lifestyle activity.

  3. Activated Sludge. Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Boe, Owen K.; Klopping, Paul H.

    This student manual contains the textual material for a seven-lesson unit on activated sludge. Topic areas addressed in the lessons include: (1) activated sludge concepts and components (including aeration tanks, aeration systems, clarifiers, and sludge pumping systems); (2) activated sludge variations and modes; (3) biological nature of activated…

  4. A Review on Phytoconstituents and Biological activities of Cuscuta species.

    PubMed

    Ahmad, Ateeque; Tandon, Sudeep; Xuan, Tran Dang; Nooreen, Zulfa

    2017-08-01

    The genus Cuscuta belonging to the Cuscutaceae family comprises of about 100-170 species spread around the world. Although several species have been studied for their phytochemical characterization and biological activities but still many species are yet unexplored till date. Cuscuta are parasitic plants generally of yellow, orange, red or rarely green color. The Cuscuta species were reported rich in flavonoid and glycosidic constituents along with alkaloids, fatty acids, fixed oil, minerals, essential oil and others phytomolecules also etc. Flavonoids and other molecules of Cuscuta species were reported for different types of biological activities such as antiproliferative activity, antioxidant activity, anti-inflammatory, hepatoprotective, antimicrobial and anxiolytic activity, while some other flavonoids have exhibited potential antiviral and anticancer especially in ovarian and breast cancer activities. This review is an attempt to compile all the available data for the 24 different of Cuscuta species on the basis of different types of phytochemical constituents and biological studies as above. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Biological Activity of Recently Discovered Halogenated Marine Natural Products

    PubMed Central

    Gribble, Gordon W.

    2015-01-01

    This review presents the biological activity—antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity—of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included. PMID:26133553

  6. Stabilities and Biological Activities of Vanadium Drugs: What is the Nature of the Active Species?

    PubMed

    Levina, Aviva; Lay, Peter A

    2017-07-18

    Diverse biological activities of vanadium(V) drugs mainly arise from their abilities to inhibit phosphatase enzymes and to alter cell signaling. Initial interest focused on anti-diabetic activities but has shifted to anti-cancer and anti-parasitic drugs. V-based anti-diabetics are pro-drugs that release active components (e.g., H 2 VO 4 - ) in biological media. By contrast, V anti-cancer drugs are generally assumed to enter cells intact; however, speciation studies indicate that nearly all drugs are likely to react in cell culture media during in vitro assays and the same would apply in vivo. The biological activities are due to V V and/or V IV reaction products with cell culture media, or the release of ligands (e.g., aromatic diimines, 8-hydroxyquinolines or thiosemicarbazones) that bind to essential metal ions in the media. Careful consideration of the stability and speciation of V complexes in cell culture media and in biological fluids is essential to design targeted V-based anti-cancer therapies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ferrocenyl and organic novobiocin derivatives: Synthesis and their in vitro biological activity.

    PubMed

    Mbaba, Mziyanda; Mabhula, Amanda N; Boel, Natasha; Edkins, Adrienne L; Isaacs, Michelle; Hoppe, Heinrich C; Khanye, Setshaba D

    2017-07-01

    A focused series of novobiocin derivatives containing a ferrocene unit together with their corresponding organic novobiocin analogues have been synthesized in modest to good yields. These compounds were screened for biological activity against a chloroquine-sensitive strain of Plasmodium falciparum (3D7) and human breast cancer cell line (HCC38). With the exception of compounds 5c and 5d, the general trend observed is that incorporation of the ferrocene moiety into novobiocin scaffold resulted in compounds 6a-d/6f showing enhanced activity compared to organic analogues 5a-b and 5e-f. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Should soil testing services measure soil biological activity

    USDA-ARS?s Scientific Manuscript database

    Health of agricultural soils depends largely on conservation management to promote soil organic C accumulation. Total soil organic C changes slowly, but active fractions are more dynamic. A key indicator of healthy soil is potential biological activity, which could be measured rapidly with soil te...

  9. Investigating the Relationship between Instructors’ Use of Active-Learning Strategies and Students’ Conceptual Understanding and Affective Changes in Introductory Biology: A Comparison of Two Active-Learning Environments

    PubMed Central

    Cleveland, Lacy M.; Olimpo, Jeffrey T.; DeChenne-Peters, Sue Ellen

    2017-01-01

    In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students’ conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected quantitative data to compare participants’ conceptual understanding, attitudes, and motivation in the biological sciences across two contexts that employed different active-learning strategies and that were facilitated by unique instructors. Students participated in either graphic organizer/worksheet activities or clicker-based case studies. After controlling for demographic and presemester affective differences, we found that students in both active-learning environments displayed similar and significant learning gains. In terms of attitudinal and motivational data, significant differences were observed for two attitudinal measures. Specifically, those students who had participated in graphic organizer/worksheet activities demonstrated more expert-like attitudes related to their enjoyment of biology and ability to make real-world connections. However, all motivational and most attitudinal data were not significantly different between the students in the two learning environments. These data reinforce the notion that active learning is associated with conceptual change and suggests that more research is needed to examine the differential effects of varying active-learning strategies on students’ attitudes and motivation in the domain. PMID:28389428

  10. The Biological and Toxicological Activity of Gases and Vapors

    PubMed Central

    Sánchez-Moreno, Ricardo; Gil-Lostes, Javier; Acree, William E.; Cometto-Muñiz, J. Enrique; Cain, William S.

    2010-01-01

    A large amount of data on the biological and toxicological activity of gases and vapors has been collected from the literature. Processes include sensory irritation thresholds, the Alarie mouse test, inhalation anesthesia, etc. It is shown that a single equation using only five descriptors (properties of the gases and vapors) plus a set of indicator variables for the given processes can correlate 643 biological and non-lethal toxicological activities of ‘non-reactive’ compounds with a standard deviation of 0.36 log unit. The equation is scaled to sensory irritation thresholds obtained by the procedure of Cometto-Muñiz, and Cain, and provides a general equation for the prediction of sensory irritation thresholds in man. It is suggested that differences in biological/toxicological activity arise primarily from transport from the gas phase to a receptor phase or area, except for odor detection thresholds where interaction with a receptor(s) is important. PMID:19913608

  11. OBIS-USA and Ocean Acidification: Chemical and Biological Observation Data, Integrated for Discovery and Applications

    NASA Astrophysics Data System (ADS)

    Fornwall, M.; Jewett, L.; Yates, K.; Goldstein, P.

    2012-12-01

    OBIS-USA (usgs.gov/obis-usa), a program of USGS Core Science, Analytics and Synthesis, is the US Regional node of the International Ocean Biogeographic Information System (iobis.org). OBIS data records observations of biological occurrences - identifiable species - at known time and coordinates. Within US research and operational communities, OBIS-USA serves an expanding range of applications by capturing details to accompany each observation: information to understand record quality and suitability for applications, details about observation circumstances such as sampling method and sampling conditions, and biological details such as sex, life stage, behavior and other characteristics. The NOAA Ocean Acidification Program and its associated data management effort (led by National Oceanographic Data Center) aim to enable users to locate, understand and use marine data from multiple sources and of multiple types to address questions related to ocean acidification and it impacts on marine ecosystems. By the nature of researching ocean acidification, data-driven applications require users to find and apply datasets that represent different disciplines as well as different researchers, organizations, agencies, funding models, data management practices and formats, and survey and observation methods. We refer to any collection(s) of data having diverse characteristics on these and other dimensions as "heterogeneous data". However, data management and Internet technologies enable the data itself and many of its diverse characteristics to be discoverable and understandable enough for users to build effective models, applications, and solutions. While it may not be simple to make heterogeneous data uniform or "seamless", current technologies enable at least the data characteristics to be sufficiently well-understood that users can consume data and accommodate its diverse characteristics in their process of generating outputs. Via this abstract and accompanying poster

  12. Evolution of activities in international biological standardization since the early days of the Health Organisation of the League of Nations.

    PubMed

    Sizaret, P

    1988-01-01

    The main activities in international biological standardization during the 18 years that followed the first international biological standardization meeting in London in 1921 were concerned with expressing the potencies of test preparations in comparison with reference materials. After the Second World War, however, it became clear that the testing of biological substances against international reference materials was only one among several measures for obtaining safe and potent products. The activities in international biological standardization were therefore widened so that, by the strict observance of specific manufacturing and control requirements, it was possible to gain further in safety and efficacy. At the end of 1987, 42 international requirements for biological substances were available and were being used as national requirements, sometimes after minor modification, by the majority of WHO's Member States. This is of utmost importance for the worldwide use of safe and potent biological products, including vaccines.

  13. Characterization of the corrosion resistance of several alloys to dilute biologically active solutions

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1990-01-01

    Sulfate reducing bacteria and acid producing bacteria/fungi detected in hygiene waters increased the corrosion rate in aluminum alloy. Biologically active media enhanced the formation of pits on metal coupons. Direct observation of gas evolved at the corrosion sample, coupled with scanning electron microscopy (SEM) and energy dispersive x-ray analysis of the corrosion products indicates that the corrosion rate is increased because the presence of bacteria favor the reduction of hydrogen as the cathodic reaction through the reaction of oxygen and water. SEM verifies the presence of microbes in a biofilm on the surface of corroding samples. The bacterial consortia are associated with anodic sites on the metal surface, aggressive pitting occurs adjacent to biofilms. Many pits are associated with triple points and inclusions in the aluminum alloy microstructure. Similar bacterial colonization was found on the stainless steel samples. Fourier transform Infrared Spectroscopy confirmed the presence of carbonyl groups in pitted areas of samples exposed to biologically active waters.

  14. Biological activity and photostability of biflorin micellar nanostructures.

    PubMed

    Santana, Edson R B; Ferreira-Neto, João P; Yara, Ricardo; Sena, Kêsia X F R; Fontes, Adriana; Lima, Cláudia S A

    2015-05-13

    Capraria biflora L. is a shrub from the Scrophulariaceae family which produces in its roots a compound named biflorin, an o-naphthoquinone that shows activity against Gram-positive bacteria and fungi and also presents antitumor and antimetastatic activities. However, biflorin is hydrophobic and photosensitive. These properties make its application difficult. In this work we prepared biflorin micellar nanostructures looking for a more effective vehiculation and better preservation of the biological activity. Biflorin was obtained, purified and characterized by UV-Vis, infrared (IR) and 1H- and 13C-NMR. Micellar nanostructures of biflorin were then assembled with Tween 80®, Tween 20® and saline (0.9%) and characterized by UV-Vis spectroscopy and dynamic light scattering (DLS). The results showed that the micellar nanostructures were stable and presented an average size of 8.3 nm. Biflorin micellar nanostructures' photodegradation was evaluated in comparison with biflorin in ethanol. Results showed that the biflorin in micellar nanostructures was better protected from light than biflorin dissolved in ethanol, and also indicated that biflorin in micelles were efficient against Gram-positive bacteria and yeast species. In conclusion, the results showed that the micellar nanostructures could ensure the maintenance of the biological activity of biflorin, conferring photoprotection. Moreover, biflorin vehiculation in aqueous media was improved, favoring its applicability in biological systems.

  15. Biological activation of carbon filters.

    PubMed

    Seredyńska-Sobecka, Bozena; Tomaszewska, Maria; Janus, Magdalena; Morawski, Antoni W

    2006-01-01

    To prepare biological activated carbon (BAC), raw surface water was circulated through granular activated carbon (GAC) beds. Biological activity of carbon filters was initiated after about 6 months of filter operation and was confirmed by two methods: measurement of the amount of biomass attached to the carbon and by the fluorescein diacetate (FDA) test. The effect of carbon pre-washing on WG-12 carbon properties was also studied. For this purpose, the nitrogen adsorption isotherms at 77K and Fourier transform-infrared (FT-IR) spectra analyses were performed. Moreover, iodine number, decolorizing power and adsorption properties of carbon in relation to phenol were studied. Analysis of the results revealed that after WG-12 carbon pre-washing its BET surface increased a little, the pH value of the carbon water extract decreased from 11.0 to 9.4, decolorizing power remained at the same level, and the iodine number and phenol adsorption rate increased. In preliminary studies of the ozonation-biofiltration process, a model phenol solution with concentration of approximately 10mg/l was applied. During the ozonation process a dose of 1.64 mg O(3)/mg TOC (total organic carbon) was employed and the contact time was 5 min. Four empty bed contact times (EBCTs) in the range of 2.4-24.0 min were used in the biofiltration experiment. The effectiveness of purification was measured by the following parameters: chemical oxygen demand (COD(Mn)), TOC, phenol concentration and UV(254)-absorbance. The parameters were found to decrease with EBCT.

  16. Liposomal Packaging Generates Wnt Protein with In Vivo Biological Activity

    PubMed Central

    Zhao, Ludan; Kim, Jae-Beom; ten Berge, Derk; Ponnusamy, Karthik; Carre, A. Lyonel; Dudek, Henryk; Zachlederova, Marie; McElhaney, Michael; Brunton, Shirley; Gunzner, Janet; Callow, Marinella; Polakis, Paul; Costa, Mike; Zhang, Xiaoyan M.; Helms, Jill A.; Nusse, Roel

    2008-01-01

    Wnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however, no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles. Rather than being encapsulated, Wnts are tethered to the liposomal surface, where they enhance and sustain Wnt signaling in vitro. Molecules that effectively antagonize soluble Wnt3a protein but are ineffective against the Wnt3a signal presented by a cell in a paracrine or autocrine manner are also unable to block liposomal Wnt3a activity, suggesting that liposomal packaging mimics the biological state of active Wnts. When delivered subcutaneously, Wnt3a liposomes induce hair follicle neogenesis, demonstrating their robust biological activity in a regenerative context. PMID:18698373

  17. Liposomal packaging generates Wnt protein with in vivo biological activity.

    PubMed

    Morrell, Nathan T; Leucht, Philipp; Zhao, Ludan; Kim, Jae-Beom; ten Berge, Derk; Ponnusamy, Karthik; Carre, A Lyonel; Dudek, Henryk; Zachlederova, Marie; McElhaney, Michael; Brunton, Shirley; Gunzner, Janet; Callow, Marinella; Polakis, Paul; Costa, Mike; Zhang, Xiaoyan M; Helms, Jill A; Nusse, Roel

    2008-08-13

    Wnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however, no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles. Rather than being encapsulated, Wnts are tethered to the liposomal surface, where they enhance and sustain Wnt signaling in vitro. Molecules that effectively antagonize soluble Wnt3a protein but are ineffective against the Wnt3a signal presented by a cell in a paracrine or autocrine manner are also unable to block liposomal Wnt3a activity, suggesting that liposomal packaging mimics the biological state of active Wnts. When delivered subcutaneously, Wnt3a liposomes induce hair follicle neogenesis, demonstrating their robust biological activity in a regenerative context.

  18. [BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES FROM CHICKENS THROMBOCYTES].

    PubMed

    Sycheva, M V; Vasilchenko, A S; Rogozhin, E A; Pashkova, T M; Popova, L P; Kartashova, O L

    2016-01-01

    Isolation and study of biological activity of antimicrobial peptides from chickens thrombocytes. Peptides from chickens thrombocytes, obtained by reverse-phase high-performance liquid chromatography method with stepped and linear gradients of concentration increase of the organic solvent were used in the study. Their antimicrobial activity was determined by microtitration method in broth; mechanism of biological effect--by using fluorescent spectroscopy method with DNA-tropic dyes. Individual fractions of peptides were isolated from chickens thrombocytes, that possess antimicrobial activity against Staphylococcus aureus P209 and Escherichia coli K12. A disruption of integrity of barrier structures of microorganisms under the effect of thrombocyte antimicrobial peptides and predominance of cells with damaged membrane in the population of E. coli was established. The data obtained on antimicrobial activity and mechanism of bactericidal effect of the peptide fractions from chickens thrombocytes isolated for the first time expand the understanding of functional properties of chickens thrombocytes and open a perspective for their further study with the aim of use as antimicrobial means.

  19. Marine natural flavonoids: chemistry and biological activities.

    PubMed

    Martins, Beatriz T; Correia da Silva, Marta; Pinto, Madalena; Cidade, Honorina; Kijjoa, Anake

    2018-05-04

    As more than 70% of the world's surface is covered by oceans, marine organisms offer a rich and unlimited resource of structurally diverse bioactive compounds. These organisms have developed unique properties and bioactive compounds that are, in majority of them, unparalleled by their terrestrial counterparts due to the different surrounding ecological systems. Marine flavonoids have been extensively studied in the last decades due to a growing interest concerning their promising biological/pharmacological activities. The most common classes of marine flavonoids are flavones and flavonols, which are mostly isolated from marine plants. Although most of flavonoids are hydroxylated and methoxylated, some marine flavonoids possess an unusual substitution pattern, not commonly found in terrestrial organisms, namely the presence of sulphate, chlorine, and amino groups. This review presents, for the first time in a systematic way, the structure, natural occurrence, and biological activities of marine flavonoids.

  20. Human Metabolites of Cannabidiol: A Review on Their Formation, Biological Activity, and Relevance in Therapy

    PubMed Central

    Ujváry, István; Hanuš, Lumír

    2016-01-01

    Abstract Cannabidiol (CBD), the main nonpsychoactive constituent of Cannabis sativa, has shown a wide range of therapeutically promising pharmacological effects either as a sole drug or in combination with other drugs in adjunctive therapy. However, the targets involved in the therapeutic effects of CBD appear to be elusive. Furthermore, scarce information is available on the biological activity of its human metabolites which, when formed in pharmacologically relevant concentration, might contribute to or even account for the observed therapeutic effects. The present overview summarizes our current knowledge on the pharmacokinetics and metabolic fate of CBD in humans, reviews studies on the biological activity of CBD metabolites either in vitro or in vivo, and discusses relevant drug–drug interactions. To facilitate further research in the area, the reported syntheses of CBD metabolites are also catalogued. PMID:28861484

  1. Human Metabolites of Cannabidiol: A Review on Their Formation, Biological Activity, and Relevance in Therapy.

    PubMed

    Ujváry, István; Hanuš, Lumír

    2016-01-01

    Cannabidiol (CBD), the main nonpsychoactive constituent of Cannabis sativa , has shown a wide range of therapeutically promising pharmacological effects either as a sole drug or in combination with other drugs in adjunctive therapy. However, the targets involved in the therapeutic effects of CBD appear to be elusive. Furthermore, scarce information is available on the biological activity of its human metabolites which, when formed in pharmacologically relevant concentration, might contribute to or even account for the observed therapeutic effects. The present overview summarizes our current knowledge on the pharmacokinetics and metabolic fate of CBD in humans, reviews studies on the biological activity of CBD metabolites either in vitro or in vivo , and discusses relevant drug-drug interactions. To facilitate further research in the area, the reported syntheses of CBD metabolites are also catalogued.

  2. Polysulfides as biologically active ingredients of garlic.

    PubMed

    Münchberg, Ute; Anwar, Awais; Mecklenburg, Susanne; Jacob, Claus

    2007-05-21

    Garlic has long been considered as a natural remedy against a range of human illnesses, including various bacterial, viral and fungal infections. This kind of antibiotic activity of garlic has mostly been associated with the thiosulfinate allicin. Even so, recent studies have pointed towards a significant biological activity of trisulfides and tetrasulfides found in various Allium species, including a wide range of antibiotic properties and the ability of polysulfides to cause the death of certain cancer cells. The chemistry underlying the biological activity of these polysulfides is currently emerging. It seems to include a combination of several distinct transformations, such as oxidation reactions, superoxide radical and peroxide generation, decomposition with release of highly electrophilic S(x) species, inhibition of metalloenzymes, disturbance of metal homeostasis and membrane integrity and interference with different cellular signalling pathways. Further research in this area is required to provide a better understanding of polysulfide reactions within a biochemical context. This knowledge may ultimately form the basis for the development of 'green' antibiotics, fungicides and possibly anticancer agents with dramatically reduced side effects in humans.

  3. Assessing Student Behaviors and Motivation for Actively Learning Biology

    NASA Astrophysics Data System (ADS)

    Moore, Michael Edward

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is why active learning is such an effective instructional tool and the limits of this instructional method’s ability to influence performance. This dissertation builds a case in three steps for why active learning is an effective instructional tool. In step one, I assessed the influence of different types of active learning (clickers, group activities, and whole class discussions) on student engagement behavior in one semester of two different introductory biology courses and found that active learning positively influenced student engagement behavior significantly more than lecture. For step two, I examined over four semesters whether student engagement behavior was a predictor of performance and found participation (engagement behavior) in the online (video watching) and in-class course activities (clicker participation) that I measure were significant predictors of performance. In the third, I assessed whether certain active learning satisfied the psychological needs that lead to students’ intrinsic motivation to participate in those activities when compared over two semesters and across two different institutions of higher learning. Findings from this last step show us that student’s perceptions of autonomy, competency, and relatedness in doing various types of active learning are significantly higher than lecture and consistent across two institutions of higher learning. Lastly, I tie everything together, discuss implications of the research, and address future directions for research on biology student motivation and behavior.

  4. Assessment of pollution impact on biological activity and structure of seabed bacterial communities in the Port of Livorno (Italy).

    PubMed

    Iannelli, Renato; Bianchi, Veronica; Macci, Cristina; Peruzzi, Eleonora; Chiellini, Carolina; Petroni, Giulio; Masciandaro, Grazia

    2012-06-01

    The main objective of this study was to assess the impact of pollution on seabed bacterial diversity, structure and activity in the Port of Livorno. Samples of seabed sediments taken from five selected sites within the port were subjected to chemical analyses, enzymatic activity detection, bacterial count and biomolecular analysis. Five different statistics were used to correlate the level of contamination with the detected biological indicators. The results showed that the port is mainly contaminated by variable levels of petroleum hydrocarbons and heavy metals, which affect the structure and activity of the bacterial population. Irrespective of pollution levels, the bacterial diversity did not diverge significantly among the assessed sites and samples, and no dominance was observed. The type of impact of hydrocarbons and heavy metals was controversial, thus enforcing the supposition that the structure of the bacterial community is mainly driven by the levels of nutrients. The combined use of chemical and biological essays resulted in an in-depth observation and analysis of the existing links between pollution macro-indicators and biological response of seabed bacterial communities. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Marine Omega-3 Phospholipids: Metabolism and Biological Activities

    PubMed Central

    Burri, Lena; Hoem, Nils; Banni, Sebastiano; Berge, Kjetil

    2012-01-01

    The biological activities of omega-3 fatty acids (n-3 FAs) have been under extensive study for several decades. However, not much attention has been paid to differences of dietary forms, such as triglycerides (TGs) versus ethyl esters or phospholipids (PLs). New innovative marine raw materials, like krill and fish by-products, present n-3 FAs mainly in the PL form. With their increasing availability, new evidence has emerged on n-3 PL biological activities and differences to n-3 TGs. In this review, we describe the recently discovered nutritional properties of n-3 PLs on different parameters of metabolic syndrome and highlight their different metabolic bioavailability in comparison to other dietary forms of n-3 FAs. PMID:23203133

  6. Biological availability and nuclease resistance extend the in vitro activity of a phosphorothioate-3'hydroxypropylamine oligonucleotide.

    PubMed Central

    Tam, R C; Li, Y; Noonberg, S; Hwang, D G; Lui, G; Hunt, C A; Garovoy, M R

    1994-01-01

    Augmented biological activity in vitro has been demonstrated in oligonucleotides (oligos) modified to provide nuclease resistance, to enhance cellular uptake or to increase target affinity. How chemical modification affects the duration of effect of an oligo with potent activity has not been investigated directly. We postulated that modification with internucleotide phosphorothioates and 3' alkylamine provided additional nuclease protection which could significantly extend the biological activity of a 26 mer, (T2). We showed this analog, sT2a, could maximally inhibit interferon gamma-induced HLA-DR mRNA synthesis and surface expression in both HeLa and retinal pigmented epithelial cells and could continue to be effective, in the absence of oligo, 15 days following initial oligo treatment; an effect not observed with its 3'amine counterpart, T2a. In vitro stability studies confirmed that sT2a conferred the greatest stability to nucleases and that cellular accumulation of 32P-sT2a in both cell types was also greater than other T2 oligos. Using confocal microscopy, we revealed that the intracellular distribution of sT2a favored greater nuclear accumulation and release of oligo from cytoplasmic vesicles; a pattern not observed with T2a. These results suggest that phosphorothioate-3'amine modification could increase the duration of effect of T2 oligo by altering nuclease resistance as well as intracellular accumulation and distribution; factors known to affect biological availability. Images PMID:8152930

  7. Validation of biological activity testing procedure of recombinant human interleukin-7.

    PubMed

    Lutsenko, T N; Kovalenko, M V; Galkin, O Yu

    2017-01-01

    Validation procedure for method of monitoring the biological activity of reсombinant human interleukin-7 has been developed and conducted according to the requirements of national and international recommendations. This method is based on the ability of recombinant human interleukin-7 to induce proliferation of T lymphocytes. It has been shown that to control the biological activity of recombinant human interleukin-7 peripheral blood mononuclear cells (PBMCs) derived from blood or cell lines can be used. Validation charac­teristics that should be determined depend on the method, type of product or object test/measurement and biological test systems used in research. The validation procedure for the method of control of biological activity of recombinant human interleukin-7 in peripheral blood mononuclear cells showed satisfactory results on all parameters tested such as specificity, accuracy, precision and linearity.

  8. Could LogP be a principal determinant of biological activity in 18-crown-6 ethers? Synthesis of biologically active adamantane-substituted diaza-crowns.

    PubMed

    Supek, Fran; Ramljak, Tatjana Šumanovac; Marjanović, Marko; Buljubašić, Maja; Kragol, Goran; Ilić, Nataša; Smuc, Tomislav; Zahradka, Davor; Mlinarić-Majerski, Kata; Kralj, Marijeta

    2011-08-01

    18-crown-6 ethers are known to exert their biological activity by transporting K(+) ions across cell membranes. Using non-linear Support Vector Machines regression, we searched for structural features that influence antiproliferative activity in a diverse set of 19 known oxa-, monoaza- and diaza-18-crown-6 ethers. Here, we show that the logP of the molecule is the most important molecular descriptor, among ∼1300 tested descriptors, in determining biological potency (R(2)(cv) = 0.704). The optimal logP was at 5.5 (Ghose-Crippen ALOGP estimate) while both higher and lower values were detrimental to biological potency. After controlling for logP, we found that the antiproliferative activity of the molecule was generally not affected by side chain length, molecular symmetry, or presence of side chain amide links. To validate this QSAR model, we synthesized six novel, highly lipophilic diaza-18-crown-6 derivatives with adamantane moieties attached to the side arms. These compounds have near-optimal logP values and consequently exhibit strong growth inhibition in various human cancer cell lines and a bacterial system. The bioactivities of different diaza-18-crown-6 analogs in Bacillus subtilis and cancer cells were correlated, suggesting conserved molecular features may be mediating the cytotoxic response. We conclude that relying primarily on the logP is a sensible strategy in preparing future 18-crown-6 analogs with optimized biological activity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  9. Biological activity of antitumoural MGBG: the structural variable.

    PubMed

    Marques, M P M; Gil, F P S C; Calheiros, R; Battaglia, V; Brunati, A M; Agostinelli, E; Toninello, A

    2008-05-01

    The present study aims at determining the structure-activity relationships (SAR's) ruling the biological function of MGBG (methylglyoxal bis(guanylhydrazone)), a competitive inhibitor of S-adenosyl-L-methionine decarboxylase displaying anticancer activity, involved in the biosynthesis of the naturally occurring polyamines spermidine and spermine. In order to properly understand its biochemical activity, MGBG's structural preferences at physiological conditions were ascertained, by quantum mechanical (DFT) calculations.

  10. Investigating the Relationship between Instructors' Use of Active-Learning Strategies and Students' Conceptual Understanding and Affective Changes in Introductory Biology: A Comparison of Two Active-Learning Environments.

    PubMed

    Cleveland, Lacy M; Olimpo, Jeffrey T; DeChenne-Peters, Sue Ellen

    2017-01-01

    In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students' conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected quantitative data to compare participants' conceptual understanding, attitudes, and motivation in the biological sciences across two contexts that employed different active-learning strategies and that were facilitated by unique instructors. Students participated in either graphic organizer/worksheet activities or clicker-based case studies. After controlling for demographic and presemester affective differences, we found that students in both active-learning environments displayed similar and significant learning gains. In terms of attitudinal and motivational data, significant differences were observed for two attitudinal measures. Specifically, those students who had participated in graphic organizer/worksheet activities demonstrated more expert-like attitudes related to their enjoyment of biology and ability to make real-world connections. However, all motivational and most attitudinal data were not significantly different between the students in the two learning environments. These data reinforce the notion that active learning is associated with conceptual change and suggests that more research is needed to examine the differential effects of varying active-learning strategies on students' attitudes and motivation in the domain. © 2017 L. M. Cleveland et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Biologic Activity of Porphyromonas endodontalis complex lipids

    PubMed Central

    Mirucki, Christopher S.; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E.; Clark, Robert B.; Nichols, Frank C.

    2014-01-01

    Introduction Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a Gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis, and evaluate their capacity to promote pro-inflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Methods Constituent lipids of both organisms were fractionated by HPLC and were structurally characterized using electrospray-mass spectrometry (ESI-MS) or ESI-MS/MS. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. Results P. endodontalis total lipids were shown to promote TNF-α secretion from RAW 264.7 cells and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells but osteoblast differentiation in culture was inhibited and appeared to be dependent on TLR2 expression. Conclusions These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. PMID:25146013

  12. Monitoring Biological Activity at Geothermal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has beenmore » evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.« less

  13. Efficiently Photocontrollable or not? Biological Activity of Photoisomerizable Diarylethenes.

    PubMed

    Komarov, Igor V; Afonin, Sergii; Babii, Oleg; Schober, Tim; Ulrich, Anne S

    2018-04-06

    Diarylethene derivatives, whose biological activity can be reversibly changed by irradiation with light of different wavelengths, have shown promise as scientific tools and as candidates for photocontrollable drugs. However, examples demonstrating efficient photocontrol of their biological activity are still relatively rare. This concept article discusses the possible reasons for this situation and presents a critical analysis of existing data and hypotheses in this field, in order to extract the design principles enabling the construction of efficient photocontrollable diarylethene-based molecules. Papers addressing biologically relevant interactions between diarylethenes and biomolecules are analyzed; however, in most published cases, the efficiency of photocontrol in living systems remains to be demonstrated. We hope that this article will encourage further discussion of design principles, primarily among pharmacologists and synthetic and medicinal chemists. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The in vitro biological activity of Lepidium meyenii extracts.

    PubMed

    Valentová, K; Buckiová, D; Kren, V; Peknicová, J; Ulrichová, J; Simánek, V

    2006-03-01

    The biological activity of methanolic and aqueous extracts from dehydrated hypocotyls of Lepidium meyenii (Brassicaceae, vernacular name "maca"), was studied on rat hepatocytes and human breast cancer MCF-7 cells. The extracts did not exhibit cytotoxicity in hepatocyte primary cultures up to 10 mg/ml as measured by the MTT viability test, and lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) leakage. Moreover, after 72 h, extracts inhibited LDH and AST leakage from the hepatocytes. When hepatocytes were intoxicated by t-butyl hydroperoxide, neither extract prevented oxidative damage. Both extracts showed weak antioxidant activity in the DPPH radical scavenging test with IC(50) values of 3.46 +/- 0.16 and 0.71 +/- 0.10 mg/ml, for aqueous and methanolic extracts, respectively. Thus, the observed effect on spontaneous enzyme leakage is probably mediated through mechanisms other than antioxidant activity. Both methanolic and aqueous extracts have shown estrogenic activity comparable with that of silymarin in MCF-7 cell line. Maca estrogenicity was exhibited in the range from 100 to 200 mug of extract per ml. The findings in the present study show that maca does not display in vitro hepatotoxicity. In contrast, a slight cytoprotective effect, probably not mediated by antioxidant capacity, was noted. Maca extracts exhibited estrogenic activity comparably to the effect of silymarin in MCF-7 cells.

  15. CADDIS Volume 4. Data Analysis: Predicting Environmental Conditions from Biological Observations (PECBO Appendix)

    EPA Pesticide Factsheets

    Overview of PECBO Module, using scripts to infer environmental conditions from biological observations, statistically estimating species-environment relationships, methods for inferring environmental conditions, statistical scripts in module.

  16. Inhibition of Survivin Influences the Biological Activities of Canine Histiocytic Sarcoma Cell Lines

    PubMed Central

    Hoshino, Yuki; Hosoya, Kenji; Okumura, Masahiro

    2013-01-01

    Canine histiocytic sarcoma (CHS) is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS. PMID:24260303

  17. Temporal and spatial variability of soil biological activity at European scale

    NASA Astrophysics Data System (ADS)

    Mallast, Janine; Rühlmann, Jörg

    2015-04-01

    The CATCH-C project aims to identify and improve the farm-compatibility of Soil Management Practices including to promote productivity, climate change mitigation and soil quality. The focus of this work concentrates on turnover conditions for soil organic matter (SOM). SOM is fundamental for the maintenance of quality and functions of soils while SOM storage is attributed a great importance in terms of climate change mitigation. The turnover conditions depend on soil biological activity characterized by climate and soil properties. Soil biological activity was investigated using two model concepts: a) Re_clim parameter within the ICBM (Introductory Carbon Balance Model) (Andrén & Kätterer 1997) states a climatic factor summarizing soil water storage and soil temperature and its influence on soil biological activity. b) BAT (biological active time) approach derived from model CANDY (CArbon and Nitrogen Dynamic) (Franko & Oelschlägel 1995) expresses the variation of soil moisture, soil temperature and soil aeration as a time scale and an indicator of biological activity for soil organic matter (SOM) turnover. During an earlier stage both model concepts, Re_clim and BAT, were applied based on a monthly data to assess spatial variability of turnover conditions across Europe. This hampers the investigation of temporal variability (e.g. intra-annual). The improved stage integrates daily data of more than 350 weather stations across Europe presented by Klein Tank et al. (2002). All time series data (temperature, precipitation and potential evapotranspiration and soil texture derived from the European Soil Database (JRC 2006)), are used to calculate soil biological activity in the arable layer. The resulting BAT and Re_clim values were spatio-temporal investigated. While "temporal" refers to a long-term trend analysis, "spatial" includes the investigation of soil biological activity variability per environmental zone (ENZ, Metzger et al. 2005 representing similar

  18. Biologic activity of porphyromonas endodontalis complex lipids.

    PubMed

    Mirucki, Christopher S; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E; Clark, Robert B; Nichols, Frank C

    2014-09-01

    Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis and evaluate their capacity to promote proinflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Constituent lipids of both organisms were fractionated by high-performance liquid chromatography and were structurally characterized using electrospray mass spectrometry or electrospray-mass spectrometry/mass spectrometry. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. P. endodontalis total lipids were shown to promote tumor necrosis factor alpha secretion from RAW 264.7 cells, and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells, but osteoblast differentiation in culture was inhibited and appeared to be dependent on Toll-like receptor 2 expression. These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Does controlling for biological maturity improve physical activity tracking?

    PubMed

    Erlandson, Marta C; Sherar, Lauren B; Mosewich, Amber D; Kowalski, Kent C; Bailey, Donald A; Baxter-Jones, Adam D G

    2011-05-01

    Tracking of physical activity through childhood and adolescence tends to be low. Variation in the timing of biological maturation within youth of the same chronological age (CA) might affect participation in physical activity and may partially explain the low tracking. To examine the stability of physical activity over time from childhood to late adolescence when aligned on CA and biological age (BA). A total of 91 males and 96 females aged 8-15 yr from the Saskatchewan Pediatric Bone Mineral Accrual Study (PBMAS) were assessed annually for 8 yr. BA was calculated as years from age at peak height velocity. Physical activity was assessed using the Physical Activity Questionnaire for Children/Adolescents. Tracking was analyzed using intraclass correlations for both CA and BA (2-yr groupings). To be included in the analysis, an individual required a measure at both time points within an interval; however, not all individuals were present at all tracking intervals. Physical activity tracking by CA 2-yr intervals were, in general, moderate in males (r=0.42-0.59) and females (r=0.43-0.44). However, the 9- to 11-yr CA interval was low and nonsignificant (r=0.23-0.30). Likewise, tracking of physical activity by BA 2-yr intervals was moderate to high in males (r=0.44-0.60) and females (r=0.39-0.62). Accounting for differences in the timing of biological maturity had little effect on tracking physical activity. However, point estimates for tracking are higher in early adolescence in males and to a greater extent in females when aligned by BA versus CA. This suggests that maturity may be more important in physical activity participation in females than males. © 2011 by the American College of Sports Medicine

  20. Recent meteor observing activities in Japan

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.

    2005-02-01

    The meteor train observation (METRO) campaign is described as an example of recent meteor observing activity in Japan. Other topics of meteor observing activities in Japan, including Ham-band radio meteor observation, the ``Japan Fireball Network'', the automatic video-capture software ``UFOCapture'', and the Astro-classroom programme are also briefly introduced.

  1. Bioactive components and functional properties of biologically activated cereal grains: A bibliographic review.

    PubMed

    Singh, Arashdeep; Sharma, Savita

    2017-09-22

    Whole grains provide energy, nutrients, fibers, and bioactive compounds that may synergistically contribute to their protective effects. A wide range of these compounds is affected by germination. While some compounds, such as β-glucans are degraded, others, like antioxidants and total phenolics are increased by means of biological activation of grains. The water and oil absorption capacity as well as emulsion and foaming capacity of biologically activated grains are also improved. Application of biological activation of grains is of emerging interest, which may significantly enhance the nutritional, functional, and bioactive content of grains, as well as improve palatability of grain foods in a natural way. Therefore, biological activation of cereals can be a way to produce food grains enriched with health-promoting compounds and enhanced functional attributes.

  2. Investigation of the effect of biologically active threo-Ds-isocitric acid on oxidative stress in Paramecium caudatum.

    PubMed

    Morgunov, Igor G; Karpukhina, Olga V; Kamzolova, Svetlana V; Samoilenko, Vladimir A; Inozemtsev, Anatoly N

    2018-01-02

    The effect of biologically active form (threo-Ds-) of isocitric acid (ICA) on oxidative stress was studied using the infusorian Paramecium caudatum stressed by hydrogen peroxide and salts of some heavy metals (Cu, Pb, Zn, and Cd). ICA at concentrations between 0.5 and 10 mM favorably influenced the infusorian cells with oxidative stress induced by the toxicants studied. The maximal antioxidant effect of ICA was observed at its concentration 10 mM irrespective of the toxicant used (either H 2 O 2 or heavy metal ions). ICA was found to be a more active antioxidant than ascorbic acid. Biologically active pharmaceutically pure threo-Ds-ICA was produced through cultivation of the yeast Yarrowia lipolytica and isolated from the culture liquid in the form of crystalline monopotassium salt with a purity of 99.9%.

  3. Molybdenum isotope fractionation in scleractinian corals and its implications on biological activities

    NASA Astrophysics Data System (ADS)

    Wei, G.; Wang, Z.; Li, J.; Deng, W.; Chen, X.; Ma, J.; Zeng, T.

    2017-12-01

    Molybdenum can actively involve in many biological processes on coral reefs, and its isotope fractionation in coral skeleton is possibly linked to some biological activities. We have performed a 3-days' time-series observation in a time interval of 4 hours on both Mo concentrations and δ98/85Mo of the seawater of the Luhuitou Reef in Sanya of Southern Hainan Islands in the northern South China Sea. Both Mo concentrations and δ98/85Mo show in pace diurnal variations with temperature, pH, dissolved oxygen (DO) contents, dissolved inorganic carbon (DIC) contents and its δ13C. High Mo concentrations and low δ98/85Mo generally occur during day time, and low Mo concentrations and high δ98/85Mo occur at night, suggesting that respiration of coral dominated at night tends to uptake more Mo from seawater. A further analysis on the Mo isotopic compositions of 6 different coral species on the Luhuitou Reef indicates that different coral species has different δ98/85Mo values in their skeleton. The lowest δ98/85Mo value occurs in Fungia of 0.34 ‰, and the highest occurs in Acropora sp of 1.91 ‰. These are all lower than that of the seawater, 2.04 ‰, suggesting a specie-depended Mo fractionation on coral skeleton. Meanwhile, we measured a 32-year time series of both Mo concentrations and δ98/85Mo of a Porites coral from the Great Barrier Reefs of Australia in annual resolution. The Mo concentrations vary from 12.5 to 78.0 ng/g, with an average of 21.4 ± 0.02 ng/g, and the δ98/95Mo values change from 0.46 to 1.83‰, with an average of 1.34 ± 0.09‰. A significant negative correlation occurs between the δ98/95Mo and the Mo concentration, and a positive correlation occurs between the δ98/95Mo and the seawater surface temperature. All these suggest that Mo isotope fractionation in coral skeleton is associated with biological activities of coral, such as respiration, and the δ98/95Mo values may be used to indicate changes in the related biological activities.

  4. Biological activity of Stevia rebaudiana Bertoni and their relationship to health.

    PubMed

    Ruiz-Ruiz, Jorge Carlos; Moguel-Ordoñez, Yolanda Beatriz; Segura-Campos, Maira Rubi

    2017-08-13

    The leaves of Stevia rebaudiana Bertoni has nutrients and phytochemicals, which make it an adequate source for the extraction and production of functional food ingredients. Preclinical and clinical studies suggest therapeutic and pharmacological applications for stevia and their extracts because they are not toxic and exhibit several biological activities. This review presents the biological activity of Stevia rebaudiana Bertoni and their relationship to antidiabetic, anticariogenic, antioxidant, hypotensive, antihypertensive, antimicrobial, anti-inflammatory and antitumor activities. Consumption and adverse effects were also reviewed.

  5. Chemistry and biological activity of platinum amidine complexes.

    PubMed

    Michelin, Rino A; Sgarbossa, Paolo; Sbovata, Silvia Mazzega; Gandin, Valentina; Marzano, Cristina; Bertani, Roberta

    2011-07-04

    Platinum amidine complexes represent a new class of potential antitumor drugs that contain the imino moiety HN=C(sp(2)) bonded to the platinum center. They can be related to the iminoether derivatives, which were recently shown to be the first Pt(II) compounds with a trans configuration endowed with anticancer activity. The chemical and biological properties of platinum amidine complexes, and more generally of platinum imino derivatives, can be rationally modified through suitable synthetic procedures with the aim of improving their cytotoxicity and antitumor activity. The addition of protic nucleophiles to nitriles coordinated to platinum in various oxidation states can offer a wide variety of complexes with chemical, structural, and physical properties specifically tuned for a more efficacious biological response. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. New approaches to estimation of peat deposits for production of biologically active compounds

    NASA Astrophysics Data System (ADS)

    Stepchenko, L. M.; Yurchenko, V. I.; Krasnik, V. G.; Syedykh, N. J.

    2009-04-01

    It is known, that biologically active preparations from peat increase animals productivity as well as resistance against stress-factors and have adaptogeneous, antioxidant, immunomodulative properties. Optymal choice of peat deposits for the production of biologically active preparations supposes the detailed comparative analysis of peat properties from different deposits. For this the cadastre of peat of Ukraine is developed in the humic substances laboratory named after prof. Khristeva L.A. (Dnipropetrovsk Agrarian University, Ukraine). It based on the research of its physical and chemical properties, toxicity and biological activity, and called Biocadastre. The Biocadastre is based on the set of parameters, including the descriptions of physical and chemical properties (active acidity, degree of decomposition, botanical composition etc.), toxicity estimation (by parabyotyc, infusorial, inhibitor and other tests), biological activity indexes (growth-promoting, antioxidative, adaptogeneous, immunomodulative antistress and other actions). The blocks of Biocadastre indexes are differentiated, taking into account their use for creation the preparations for vegetable, animals and microorganisms. The Biocadastre will allow to choose the peat deposits, most suitable for the production of different biologically active preparations, both wide directed and narrow spectrum of action, depending on application fields (medicine, agriculture, veterinary medicine, microbiological industry, balneology, cosmetology).

  7. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine.

    PubMed

    Egorova, Ksenia S; Gordeev, Evgeniy G; Ananikov, Valentine P

    2017-05-24

    Ionic liquids are remarkable chemical compounds, which find applications in many areas of modern science. Because of their highly tunable nature and exceptional properties, ionic liquids have become essential players in the fields of synthesis and catalysis, extraction, electrochemistry, analytics, biotechnology, etc. Apart from physical and chemical features of ionic liquids, their high biological activity has been attracting significant attention from biochemists, ecologists, and medical scientists. This Review is dedicated to biological activities of ionic liquids, with a special emphasis on their potential employment in pharmaceutics and medicine. The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems. Dedicated attention is given to a novel active pharmaceutical ingredient-ionic liquid (API-IL) concept, which suggests using traditional drugs in the form of ionic liquid species. The main aim of this Review is to attract a broad audience of chemical, biological, and medical scientists to study advantages of ionic liquid pharmaceutics. Overall, the discussed data highlight the importance of the research direction defined as "Ioliomics", studies of ions in liquids in modern chemistry, biology, and medicine.

  8. Chemical synthesis of biologically active tat trans-activating protein of human immunodeficiency virus type 1.

    PubMed Central

    Chun, R; Glabe, C G; Fan, H

    1990-01-01

    Full-length (86-residue) polypeptide corresponding to the human immunodeficiency virus type 1 tat trans-activating protein was chemically synthesized on a semiautomated apparatus, using an Fmoc amino acid continuous-flow strategy. The bulk material was relatively homogeneous, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing, and it showed trans-activating activity when scrape loaded into cells containing a human immunodeficiency virus long terminal repeat-chloramphenicol acetyl-transferase reporter plasmid. Reverse-phase high-pressure liquid chromatography yielded a rather broad elution profile, and assays across the column for biological activity indicated a sharper peak. Thus, high-pressure liquid chromatography provided for enrichment of biological activity. Fast atom bombardment-mass spectrometry of tryptic digests of synthetic tat identified several of the predicted tryptic peptides, consistent with accurate chemical synthesis. Images PMID:2186178

  9. Actions, Observations, and Decision-Making: Biologically Inspired Strategies for Autonomous Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Ippolito, Corey; Plice, Laura; Young, Larry A.; Lau, Benton

    2003-01-01

    This paper details the development and demonstration of an autonomous aerial vehicle embodying search and find mission planning and execution srrategies inspired by foraging behaviors found in biology. It begins by describing key characteristics required by an aeria! explorer to support science and planetary exploration goals, and illustrates these through a hypothetical mission profile. It next outlines a conceptual bio- inspired search and find autonomy architecture that implements observations, decisions, and actions through an "ecology" of producer, consumer, and decomposer agents. Moving from concepts to development activities, it then presents the results of mission representative UAV aerial surveys at a Mars analog site. It next describes hardware and software enhancements made to a commercial small fixed-wing UAV system, which inc!nde a ncw dpvelopnent architecture that also provides hardware in the loop simulation capability. After presenting the results of simulated and actual flights of bioinspired flight algorithms, it concludes with a discussion of future development to include an expansion of system capabilities and field science support.

  10. Exploring the biological activities of Echeveria leucotricha.

    PubMed

    Martínez Ruiz, María G; Gómez-Velasco, Anaximandro; Juárez, Zaida N; Hernández, Luis R; Bach, Horacio

    2013-01-01

    Echeveria leucotricha J. A. Purpus (Crassulaceae) was evaluated for its potential antibacterial, antifungal, antiparasitic, cytotoxic and anti-inflammatory bioactivities. Aerial parts were extracted with hexane, methanol and chloroform, and fractionated accordingly. Biological activity was assessed in vitro against five Gram-positive and four Gram-negative bacteria, four human pathogenic fungi and the protozoan Leishmania donovani. Extracts and fractions showing bioactivities were further investigated for their cytotoxic activities on macrophages. Results show that several extracts and fractions exhibited significant antibacterial, antifungal, and antiparasitic activities, but no anti-inflammatory activity was recorded. Here, we report for the first time, and to the best of our knowledge, these bioactivities, which suggest that this plant can be used in the traditional Mexican medicine.

  11. Perceptions of Prospective Biology Teachers on Scientific Argumentation in Microbiology Inquiry Lab Activities

    NASA Astrophysics Data System (ADS)

    Roviati, E.; Widodo, A.; Purwianingsih, W.; Riandi, R.

    2017-09-01

    Inquiry laboratory activity and scientific argumentation in science education should be promoted and explicitly experienced by prospective biology teacher students in classes, including in microbiology courses. The goal of this study is to get information about perceptions of prospective biology teachers on scientific argumentation in microbiology inquiry lab activities. This study reported the result of a survey research to prospective biology teachers about how their perception about microbiology lab classes and their perception about inquiry and argumentation in microbiology lab activities should be. The participants of this study were 100 students of biology education department from an institute in Cirebon, West Java taking microbiology lecture during the fifth semester. The data were collected using questionnaire to explore the perceptions and knowledge of prospective biology teachers about microbiology, inquiry lab activities and argumentation. The result showed that students thought that the difficulties of microbiology as a subject were the lack of references and the way lecturer teaching. The students’ perception was that argumentation and inquiry should be implemented in microbiology courses and lab activities. Based on the data from questionnaire, It showed that prospective biology teacher students had very little knowledge about scientific argumentation and its implementation in science education. When the participants made arguments based on the problems given, they showed low quality of arguments.

  12. Biological/Genetic Regulation of Physical Activity Level: Consensus from GenBioPAC.

    PubMed

    Lightfoot, J Timothy; DE Geus, Eco J C; Booth, Frank W; Bray, Molly S; DEN Hoed, Marcel; Kaprio, Jaakko; Kelly, Scott A; Pomp, Daniel; Saul, Michael C; Thomis, Martine A; Garland, Theodore; Bouchard, Claude

    2018-04-01

    Physical activity unquestionably maintains and improves health; however, physical activity levels globally are low and not rising despite all the resources devoted to this goal. Attention in both the research literature and the public policy domain has focused on social-behavioral factors; however, a growing body of literature suggests that biological determinants play a significant role in regulating physical activity levels. For instance, physical activity level, measured in various manners, has a genetic component in both humans and nonhuman animal models. This consensus article, developed as a result of an American College of Sports Medicine-sponsored round table, provides a brief review of the theoretical concepts and existing literature that supports a significant role of genetic and other biological factors in the regulation of physical activity. Future research on physical activity regulation should incorporate genetics and other biological determinants of physical activity instead of a sole reliance on social and other environmental determinants.

  13. Synthesis and biological activity of chloroethyl pyrimidine nucleosides.

    PubMed

    Colombeau, Ludovic; Teste, Karine; Hadj-Bouazza, Amel; Chaleix, Vincent; Zerrouki, Rachida; Kraemer, Michel; Catherine, Odile Sainte

    2008-02-01

    The synthesis and biological activity of chloroethyl pyrimidine nucleosides is presented. One of these new nucleosides analogues significantly inhibited cell proliferation, migration and invasion as tested in vitro on the A431 vulvar epidermal carcinoma cell line.

  14. Predicted Biological Activity of Purchasable Chemical Space

    PubMed Central

    2017-01-01

    Whereas 400 million distinct compounds are now purchasable within the span of a few weeks, the biological activities of most are unknown. To facilitate access to new chemistry for biology, we have combined the Similarity Ensemble Approach (SEA) with the maximum Tanimoto similarity to the nearest bioactive to predict activity for every commercially available molecule in ZINC. This method, which we label SEA+TC, outperforms both SEA and a naïve-Bayesian classifier via predictive performance on a 5-fold cross-validation of ChEMBL’s bioactivity data set (version 21). Using this method, predictions for over 40% of compounds (>160 million) have either high significance (pSEA ≥ 40), high similarity (ECFP4MaxTc ≥ 0.4), or both, for one or more of 1382 targets well described by ligands in the literature. Using a further 1347 less-well-described targets, we predict activities for an additional 11 million compounds. To gauge whether these predictions are sensible, we investigate 75 predictions for 50 drugs lacking a binding affinity annotation in ChEMBL. The 535 million predictions for over 171 million compounds at 2629 targets are linked to purchasing information and evidence to support each prediction and are freely available via https://zinc15.docking.org and https://files.docking.org. PMID:29193970

  15. Investigating the Use of Inquiry & Web-Based Activities with Inclusive Biology Learners

    ERIC Educational Resources Information Center

    Bodzin, Alec M.; Waller, Patricia L.; Edwards, Lana; Darlene Kale, Santoro

    2007-01-01

    A Web-integrated biology program is used to explore how to best assist inclusive high school students to learn biology with inquiry-based activities. Classroom adaptations and instructional strategies teachers may use to assist in promoting biology learning with inclusive learners are discussed.

  16. Biologically active LIL proteins built with minimal chemical diversity

    PubMed Central

    Heim, Erin N.; Marston, Jez L.; Federman, Ross S.; Edwards, Anne P. B.; Karabadzhak, Alexander G.; Petti, Lisa M.; Engelman, Donald M.; DiMaio, Daniel

    2015-01-01

    We have constructed 26-amino acid transmembrane proteins that specifically transform cells but consist of only two different amino acids. Most proteins are long polymers of amino acids with 20 or more chemically distinct side-chains. The artificial transmembrane proteins reported here are the simplest known proteins with specific biological activity, consisting solely of an initiating methionine followed by specific sequences of leucines and isoleucines, two hydrophobic amino acids that differ only by the position of a methyl group. We designate these proteins containing leucine (L) and isoleucine (I) as LIL proteins. These proteins functionally interact with the transmembrane domain of the platelet-derived growth factor β-receptor and specifically activate the receptor to transform cells. Complete mutagenesis of these proteins identified individual amino acids required for activity, and a protein consisting solely of leucines, except for a single isoleucine at a particular position, transformed cells. These surprisingly simple proteins define the minimal chemical diversity sufficient to construct proteins with specific biological activity and change our view of what can constitute an active protein in a cellular context. PMID:26261320

  17. Biologically active chitosan systems for tissue engineering and regenerative medicine.

    PubMed

    Jiang, Tao; Kumbar, Sangamesh G; Nair, Lakshmi S; Laurencin, Cato T

    2008-01-01

    Biodegradable polymeric scaffolds are widely used as a temporary extracellular matrix in tissue engineering and regenerative medicine. By physical adsorption of biomolecules on scaffold surface, physical entrapment of biomolecules in polymer microspheres or hydrogels, and chemical immobilization of oligopeptides or proteins on biomaterials, biologically active biomaterials and scaffolds can be derived. These bioactive systems show great potential in tissue engineering in rendering bioactivity and/or specificity to scaffolds. This review highlights some of the biologically active chitosan systems for tissue engineering application and the associated strategies to develop such bioactive chitosan systems.

  18. Phytochemical Analysis and Biological Activities of Cola nitida Bark

    PubMed Central

    Dah-Nouvlessounon, Durand; Adoukonou-Sagbadja, Hubert; Diarrassouba, Nafan; Sina, Haziz; Adjanohoun, Adolphe; Inoussa, Mariam; Akakpo, Donald; Gbenou, Joachim D.; Kotchoni, Simeon O.; Dicko, Mamoudou H.; Baba-Moussa, Lamine

    2015-01-01

    Kola nut is chewed in many West African cultures and is used ceremonially. The aim of this study is to investigate some biological effects of Cola nitida's bark after phytochemical screening. The bark was collected, dried, and then powdered for the phytochemical screening and extractions. Ethanol and ethyl acetate extracts of C. nitida were used in this study. The antibacterial activity was tested on ten reference strains and 28 meat isolated Staphylococcus strains by disc diffusion method. The antifungal activity of three fungal strains was determined on the Potato-Dextrose Agar medium mixed with the appropriate extract. The antioxidant activity was determined by DPPH and ABTS methods. Our data revealed the presence of various potent phytochemicals. For the reference and meat isolated strains, the inhibitory diameter zone was from 17.5 ± 0.7 mm (C. albicans) to 9.5 ± 0.7 mm (P. vulgaris). The MIC ranged from 0.312 mg/mL to 5.000 mg/mL and the MBC from 0.625 mg/mL to >20 mg/mL. The highest antifungal activity was observed with F. verticillioides and the lowest one with P. citrinum. The two extracts have an excellent reducing free radical activity. The killing effect of A. salina larvae was perceptible at 1.04 mg/mL. The purified extracts of Cola nitida's bark can be used to hold meat products and also like phytomedicine. PMID:25767723

  19. Extraction, Characterization, Stability and Biological Activity of Flavonoids Isolated from Chamomile Flowers

    PubMed Central

    Srivastava, Janmejai K; Gupta, Sanjay

    2009-01-01

    Dried flowers of Chamomile (Matricaria chamomilla) are largely used for their medicinal properties. In the present study, we examined the pharmacological properties of aqueous and methanolic fraction isolated from two varieties of German chamomile. HPLC-MS analysis of chamomile extract confirmed apigenin-7-O-glucoside as the major constituent of chamomile; some minor glycoside components were observed along with essential oils. These glucosides are highly stable in solution at different temperature range and their degradation occurs after long-term storage and extraction conditions at different pH and solvent. Methanolic fraction isolated from chamomile flowers demonstrated higher biologic response in inhibiting cell growth and causing induction of apoptosis in various human cancer cell lines compared to aqueous chamomile fraction. Apigenin glucosides inhibited cancer cell growth through deconjugation of glycosides that occurs in the cellular compartment to produce aglycone, apigenin. Taken together, the pharmacological profile of chamomile extract was dependent upon extraction process, storage conditions which affected the biological activity. PMID:20098626

  20. Biological activity of aldose reductase and lipophilicity of pyrrolyl-acetic acid derivatives

    NASA Astrophysics Data System (ADS)

    Kumari, A.; Kumari, R.; Kumar, R.; Gupta, M.

    2011-12-01

    Quantitative Structure-Activity Relationship modeling is a powerful approach for correlating an organic compound to its lipophilicity. In this paper QSAR models are established for estimation of correlation of the lipophilicity of a series of pyrrolyl-acetic acid derivatives, inhibitors of the aldose reductase enzyme, in the n-octanol-water system with biological activity of aldose reductase. Lipophilicity, expressed by the logarithm of n-octnol-water partition coefficient log P and biological activity of aldose reductase inhibitory activity by log it. Result obtained by QSAR modeling of compound series reveal a definite trend in biological activity and a further improvement in quantitative relationships are established if, beside log P, Hammett electronic constant σ and connectivity index chi-3 (3 χ) term included in the regression equation. The tri-parametric model with log P, 3 χ and σ as correlating parameters have been found to be the best which gives a variance of 87% ( R 2 = 0.8743). A compound has been found to be serious outlier and when the same has been excluded the model explains about 94% variance of the data set ( R 2 = 0.9447). The topological index (3 χ) has been found to be a good parameter for modeling the biological activity.

  1. Isolation, Separation, and Preconcentration of Biologically Active Compounds from Plant Matrices by Extraction Techniques.

    PubMed

    Raks, Victoria; Al-Suod, Hossam; Buszewski, Bogusław

    2018-01-01

    Development of efficient methods for isolation and separation of biologically active compounds remains an important challenge for researchers. Designing systems such as organomineral composite materials that allow extraction of a wide range of biologically active compounds, acting as broad-utility solid-phase extraction agents, remains an important and necessary task. Selective sorbents can be easily used for highly selective and reliable extraction of specific components present in complex matrices. Herein, state-of-the-art approaches for selective isolation, preconcentration, and separation of biologically active compounds from a range of matrices are discussed. Primary focus is given to novel extraction methods for some biologically active compounds including cyclic polyols, flavonoids, and oligosaccharides from plants. In addition, application of silica-, carbon-, and polymer-based solid-phase extraction adsorbents and membrane extraction for selective separation of these compounds is discussed. Potential separation process interactions are recommended; their understanding is of utmost importance for the creation of optimal conditions to extract biologically active compounds including those with estrogenic properties.

  2. Integrity and Biological Activity of DNA after UV Exposure

    NASA Astrophysics Data System (ADS)

    Lyon, Delina Y.; Monier, Jean-Michel; Dupraz, Sébastien; Freissinet, Caroline; Simonet, Pascal; Vogel, Timothy M.

    2010-04-01

    The field of astrobiology lacks a universal marker with which to indicate the presence of life. This study supports the proposal to use nucleic acids, specifically DNA, as a signature of life (biosignature). In addition to its specificity to living organisms, DNA is a functional molecule that can confer new activities and characteristics to other organisms, following the molecular biology dogma, that is, DNA is transcribed to RNA, which is translated into proteins. Previous criticisms of the use of DNA as a biosignature have asserted that DNA molecules would be destroyed by UV radiation in space. To address this concern, DNA in plasmid form was deposited onto different surfaces and exposed to UVC radiation. The surviving DNA was quantified via the quantitative polymerase chain reaction (qPCR). Results demonstrate increased survivability of DNA attached to surfaces versus non-adsorbed DNA. The DNA was also tested for biological activity via transformation into the bacterium Acinetobacter sp. and assaying for antibiotic resistance conferred by genes encoded by the plasmid. The success of these methods to detect DNA and its gene products after UV exposure (254 nm, 3.5 J/m2s) not only supports the use of the DNA molecule as a biosignature on mineral surfaces but also demonstrates that the DNA retained biological activity.

  3. Automated Inference of Chemical Discriminants of Biological Activity.

    PubMed

    Raschka, Sebastian; Scott, Anne M; Huertas, Mar; Li, Weiming; Kuhn, Leslie A

    2018-01-01

    Ligand-based virtual screening has become a standard technique for the efficient discovery of bioactive small molecules. Following assays to determine the activity of compounds selected by virtual screening, or other approaches in which dozens to thousands of molecules have been tested, machine learning techniques make it straightforward to discover the patterns of chemical groups that correlate with the desired biological activity. Defining the chemical features that generate activity can be used to guide the selection of molecules for subsequent rounds of screening and assaying, as well as help design new, more active molecules for organic synthesis.The quantitative structure-activity relationship machine learning protocols we describe here, using decision trees, random forests, and sequential feature selection, take as input the chemical structure of a single, known active small molecule (e.g., an inhibitor, agonist, or substrate) for comparison with the structure of each tested molecule. Knowledge of the atomic structure of the protein target and its interactions with the active compound are not required. These protocols can be modified and applied to any data set that consists of a series of measured structural, chemical, or other features for each tested molecule, along with the experimentally measured value of the response variable you would like to predict or optimize for your project, for instance, inhibitory activity in a biological assay or ΔG binding . To illustrate the use of different machine learning algorithms, we step through the analysis of a dataset of inhibitor candidates from virtual screening that were tested recently for their ability to inhibit GPCR-mediated signaling in a vertebrate.

  4. [Microbial community structure in bio-ceramics and biological activated carbon analyzed by PCR-SSCP technique].

    PubMed

    Liu, Xiao-Lin; Liu, Wen-Jun

    2007-04-01

    Analyses of microbial community structure in bio-ceramics (BC) and biological activated carbon (BAC), which widely used in drinking water treatment were performed by polymerase-chain-reaction-single-strand-conformation-polymorphism (PCR-SSCP) targeted eubacterial 16S ribosomal RNA gene. Microorganisms on bio-ceramics and biological activated carbon were detached by ultrasonic, culturing on R2A and LB agar, respectively, followed by genome DNA extracting. Results show that larger than 10 kb genome DNA could be extracted from all the samples except the BAC samples processed by ultrasonic. However, quantities of the extracted DNA were different. 408 bp gene fragments were observed after PCR using the extracted genome DNA as templates. These gene fragments were digested with lambda exonuclease followed by SSCP electrophoresis. Same SSCP profiles were observed between ultrasonic eluting, R2A and LB agar culturing. The identity of the segment from bio-ceramics with uncultured Pseudomonas sp. Clone FTL201 16S rDNA (GenBank, AF509293.1) fragment was 92%, and identities of the two segments from BAC with Bacillus sp. JH19 16S rDNA (GenBank , DQ232748.1) fragment and Bacterium VA-S-11 16S rDNA (GenBank, AY395279.1) fragment were 100% and 99%, respectively.

  5. Effects of biology teachers' professional knowledge and cognitive activation on students' achievement

    NASA Astrophysics Data System (ADS)

    Förtsch, Christian; Werner, Sonja; von Kotzebue, Lena; Neuhaus, Birgit J.

    2016-11-01

    This study examined the effects of teachers' biology-specific dimensions of professional knowledge - pedagogical content knowledge (PCK) and content knowledge (CK) - and cognitively activating biology instruction, as a feature of instructional quality, on students' learning. The sample comprised 39 German secondary school teachers whose lessons on the topic neurobiology were videotaped twice. Teachers' instruction was coded with regard to cognitive activation using a rating manual. Multilevel path analysis results showed a positive significant effect of cognitive activation on students' learning and an indirect effect of teachers' PCK on students' learning mediated through cognitive activation. These findings highlight the importance of PCK in preservice biology teachers' education. Items of the rating manual may be used to provide exemplars of concrete teaching situations during university seminars for preservice teacher education or professional development initiatives for in-service teachers.

  6. Activities for Students: Biology as a Source for Algebra Equations--The Heart

    ERIC Educational Resources Information Center

    Horak, Virginia M.

    2005-01-01

    The high school course that integrated first year algebra with an introductory environmental biology/anatomy and physiology course, in order to solve algebra problems is discussed. Lessons and activities for the course were taken by identifying the areas where mathematics and biology content intervenes may help students understand biology concepts…

  7. Ocean glider observations of iceberg-enhanced biological production in the northwestern Weddell Sea

    NASA Astrophysics Data System (ADS)

    Biddle, Louise C.; Kaiser, Jan; Heywood, Karen J.; Thompson, Andrew F.; Jenkins, Adrian

    2015-01-01

    Icebergs affect local biological production around Antarctica. We used an ocean glider to observe the effects of a large iceberg that was advected by the Antarctic Slope Current along the continental slope in the northwestern Weddell Sea in early 2012. The high-resolution glider data reveal a pronounced effect of the iceberg on ocean properties, with oxygen concentrations of (13 ± 4) μmol kg-1 higher than levels in surrounding waters, which are most likely due to positive net community production. This response was confined to three areas of water in the direct vicinity of the iceberg track, each no larger than 2 km2. Our findings suggest that icebergs have an impact on Antarctic production presumably through local micronutrient injections, on a scale smaller than typical satellite observations of biological production in the Southern Ocean.

  8. Assessing Student Behaviors and Motivation for Actively Learning Biology

    ERIC Educational Resources Information Center

    Moore, Michael Edward

    2017-01-01

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is…

  9. Fluid dynamics in biological active nematics

    NASA Astrophysics Data System (ADS)

    Tan, Amanda; Hirst, Linda

    We use biological materials to form a self-mixing active system that consists of microtubules driven by kinesin clusters. Microtubules are rigid biopolymers that are a part of the cytoskeleton. Kinesin motors are molecular motors that walk along microtubules to transport cellular cargo. In this system, microtubules are bundled together, and as the kinesin clusters walk along the filaments, the microtubule bundles move relative to each other. As microtubules shear against each other, they extend, bend, buckle and fracture. When confined in a 2D water-oil interface, the system becomes an active nematic that self-mixes due to the buckling and fracturing. To quantify this self-mixing, we attached beads to the microtubules, and tracked their motion. We quantify the quality of mixing using the bead trajectories. This new active material has potential applications as a self-mixing solvent. CCBM NSF-CREST, UC Merced Health Science Research Institute.

  10. Preparation and Observation of Thick Biological Samples by Scanning Transmission Electron Tomography.

    PubMed

    Trépout, Sylvain; Bastin, Philippe; Marco, Sergio

    2017-03-12

    This report describes a protocol for preparing thick biological specimens for further observation using a scanning transmission electron microscope. It also describes an imaging method for studying the 3D structure of thick biological specimens by scanning transmission electron tomography. The sample preparation protocol is based on conventional methods in which the sample is fixed using chemical agents, treated with a heavy atom salt contrasting agent, dehydrated in a series of ethanol baths, and embedded in resin. The specific imaging conditions for observing thick samples by scanning transmission electron microscopy are then described. Sections of the sample are observed using a through-focus method involving the collection of several images at various focal planes. This enables the recovery of in-focus information at various heights throughout the sample. This particular collection pattern is performed at each tilt angle during tomography data collection. A single image is then generated, merging the in-focus information from all the different focal planes. A classic tilt-series dataset is then generated. The advantage of the method is that the tilt-series alignment and reconstruction can be performed using standard tools. The collection of through-focal images allows the reconstruction of a 3D volume that contains all of the structural details of the sample in focus.

  11. Epidemiology and biology of physical activity and cancer recurrence.

    PubMed

    Friedenreich, Christine M; Shaw, Eileen; Neilson, Heather K; Brenner, Darren R

    2017-10-01

    Physical activity is emerging from epidemiologic research as a lifestyle factor that may improve survival from colorectal, breast, and prostate cancers. However, there is considerably less evidence relating physical activity to cancer recurrence and the biologic mechanisms underlying this association remain unclear. Cancer patients are surviving longer than ever before, and fear of cancer recurrence is an important concern. Herein, we provide an overview of the current epidemiologic evidence relating physical activity to cancer recurrence. We review the biologic mechanisms most commonly researched in the context of physical activity and cancer outcomes, and, using the example of colorectal cancer, we explore hypothesized mechanisms through which physical activity might intervene in the colorectal recurrence pathway. Our review highlights the importance of considering pre-diagnosis and post-diagnosis activity, as well as cancer stage and timing of recurrence, in epidemiologic studies. In addition, more epidemiologic research is needed with cancer recurrence as a consistently defined outcome studied separately from survival. Future mechanistic research using randomized controlled trials, specifically those demonstrating the exercise responsiveness of hypothesized mechanisms in early stages of carcinogenesis, are needed to inform recommendations about when to exercise and to anticipate additive or synergistic effects with other preventive behaviors or treatments.

  12. Body temperature, activity patterns, and hunting in free-living cheetah: biologging reveals new insights.

    PubMed

    Hetem, Robyn S; Mitchell, Duncan; de Witt, Brenda A; Fick, Linda G; Maloney, Shane K; Meyer, Leith C R; Fuller, Andrea

    2018-05-31

    As one of the few felids that is predominantly diurnal, cheetahs (Acinonyx jubatus Von Schreber, 1775) can be exposed to high heat loads in their natural habitat. Little is known about long-term patterns of body temperature and activity (including hunting) in cheetahs because long-term concurrent measurements of body temperature and activity never have been reported for cheetahs, or indeed for any free-living felid. We report here body temperature and locomotor activity measured with implanted data loggers over seven months in five free-living cheetahs in Namibia. Air temperature ranged from a maximum of 39ºC in summer to -2ºC in winter. Cheetahs had higher (∼0.4 ºC) maximum 24h body temperatures, later acrophase (∼1 h), with larger fluctuations in the range of the 24h body temperature rhythm (∼0.4 ºC) during a hot-dry period than during a cool-dry period, but maintained homeothermy irrespective of the climatic conditions. As ambient temperatures increased, the cheetahs shifted from a diurnal to a crepuscular activity pattern, with reduced activity between 9:00 and 15:00 and increased nocturnal activity. The timing of hunts followed the general pattern of activity; the cheetahs hunted when they were on the move. Cheetahs hunted if an opportunity presented itself, on occasion they hunted in the midday heat or in total darkness (new moon). Biologging revealed insights into cheetah biology that are not accessible by traditional observer-based techniques. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Investigating biological activity spectrum for novel quinoline analogues 2: hydroxyquinolinecarboxamides with photosynthesis-inhibiting activity.

    PubMed

    Musiol, Robert; Tabak, Dominik; Niedbala, Halina; Podeszwa, Barbara; Jampilek, Josef; Kralova, Katarina; Dohnal, Jiri; Finster, Jacek; Mencel, Agnieszka; Polanski, Jaroslaw

    2008-04-15

    Two series of amides based on quinoline scaffold were designed and synthesized in search of photosynthesis inhibitors. The compounds were tested for their photosynthesis-inhibiting activity against Spinacia oleracea L. and Chlorella vulgaris Beij. The compounds lipophilicity was determined by the RP-HPLC method. Several compounds showed biological activity similar or even higher than that of the standard (DCMU). The structure-activity relationships are discussed.

  14. Biased and unbiased strategies to identify biologically active small molecules.

    PubMed

    Abet, Valentina; Mariani, Angelica; Truscott, Fiona R; Britton, Sébastien; Rodriguez, Raphaël

    2014-08-15

    Small molecules are central players in chemical biology studies. They promote the perturbation of cellular processes underlying diseases and enable the identification of biological targets that can be validated for therapeutic intervention. Small molecules have been shown to accurately tune a single function of pluripotent proteins in a reversible manner with exceptional temporal resolution. The identification of molecular probes and drugs remains a worthy challenge that can be addressed by the use of biased and unbiased strategies. Hypothesis-driven methodologies employs a known biological target to synthesize complementary hits while discovery-driven strategies offer the additional means of identifying previously unanticipated biological targets. This review article provides a general overview of recent synthetic frameworks that gave rise to an impressive arsenal of biologically active small molecules with unprecedented cellular mechanisms. Copyright © 2014. Published by Elsevier Ltd.

  15. Chemical composition and biological activities of extracts and essential oil of Boswellia dalzielii leaves.

    PubMed

    Kohoude, Midéko Justin; Gbaguidi, Fernand; Agbani, Pierre; Ayedoun, Marc-Abel; Cazaux, Sylvie; Bouajila, Jalloul

    2017-12-01

    Boswellia dalzielii Hutch. (Burseraceae) is an aromatic plant. The leaves are used for beverage flavouring. This study investigates the chemical composition and biological activities of various extracts. The essential oil was prepared via hydrodistillation. Identification and quantification were realized via GC-MS and GC-FID. Consecutive extractions (cyclohexane, dichloromethane, ethyl acetate and methanol) were carried out and various chemical groups (phenolics, flavonoids, tannins, antocyanins and sugar) were quantified. The volatile compounds of organic extracts were identified before and after derivatization. Antioxidant, antihyperuricemia, anti-Alzheimer, anti-inflammatory and anticancer activities were evaluated. In the essential oil, 50 compounds were identified, including 3-carene (27.72%) and α-pinene (15.18%). 2,5-Dihydroxy acetophenone and β-d-xylopyranose were identified in the methanol extract. Higher phenolic (315.97 g GAE/kg dry mass) and flavonoid (37.19 g QE/kg dry mass) contents were observed in the methanol extract. The methanol extract has presented remarkable IC 50  =   6.10 mg/L for antiDPPH, 35.10 mg/L for antixanthine oxidase and 28.01 mg/L for anti-5-lipoxygenase. For acetylcholinesterase inhibition, the best IC 50 (76.20 and 67.10 mg/L) were observed, respectively, with an ethyl acetate extract and the essential oil. At 50 mg/L, the dichloromethane extract inhibited OVCAR-3 cell lines by 65.10%, while cyclohexane extract inhibited IGROV-1 cell lines by 92.60%. Biological activities were fully correlated with the chemical groups of the extracts. The ethyl acetate and methanol extracts could be considered as potential alternatives for use in dietary supplements for the prevention or treatment of diseases because of these extracts natural antioxidant, antihyperuricemic and anti-inflammatory activities.

  16. Biological activity and chemical profile of Lavatera thuringiaca L. extracts obtained by different extraction approaches.

    PubMed

    Mašković, Pavle Z; Veličković, Vesna; Đurović, Saša; Zeković, Zoran; Radojković, Marija; Cvetanović, Aleksandra; Švarc-Gajić, Jaroslava; Mitić, Milan; Vujić, Jelena

    2018-01-01

    Lavatera thuringiaca L. is herbaceous perennial plant from Malvaceae family, which is known for its biological activity and richness in polyphenolic compounds. Despite this, the information regarding the biological activity and chemical profile is still insufficient. Aim of this study was to investigate biological potential and chemical profile of Lavatera thuringiaca L., as well as influence of applied extraction technique on them. Two conventional and four non-conventional extraction techniques were applied in order to obtain extracts rich in bioactive compound. Extracts were further tested for total phenolics, flavonoids, condensed tannins, gallotannins and anthocyanins contents using spectrophotometric assays. Polyphenolic profile was established using HPLC-DAD analysis. Biological activity was investigated regarding antioxidant, cytotoxic and antibacterial activities. Four antioxidant assays were applied as well as three different cell lines for cytotoxic and fifteen bacterial strain for antibacterial activity. Results showed that subcritical water extraction (SCW) dominated over the other extraction techniques, where SCW extract exhibited the highest biological activity. Study indicates that plant Lavatera thuringiaca L. may be used as a potential source of biologically compounds. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Toxicity of Biologically Active Peptides and Future Safety Aspects: An Update.

    PubMed

    Khan, Fazlullah; Niaz, Kamal; Abdollahi, Mohammad

    2018-02-18

    Peptides are fragments of proteins with significant biological activities. These peptides are encoded in the protein sequence. Initially, such peptides are inactive in their parental form, unless proteolytic enzymes are released. These peptides then exhibit various functions and play a therapeutic role in the body. Besides the therapeutic and physiological activities of peptides, the main purpose of this study was to highlight the safety aspects of peptides. We performed an organized search of available literature using PubMed, Google Scholar, Medline, EMBASE, Reaxys and Scopus databases. All the relevant citations including research and review articles about the toxicity of biologically active peptides were evaluated and gathered in this study. Biological peptides are widely used in the daily routine ranging from food production to the cosmetics industry and also they have a beneficial role in the treatment and prevention of different diseases. These peptides are manufactured by both chemical and biotechnological techniques, which show negligible toxicity, however, some naturally occurring peptides and enzymes may induce high toxicity. Depending upon the demand and expected use in the food or pharmaceutical industry, we need different approaches to acertain the safety of these peptides preferentially through in silico methods. Intestinal wall disruption, erythrocytes and lymphocytes toxicity, free radical production, enzymopathic and immunopathic tissue damage and cytotoxicity due to the consumption of peptides are the main problems in the biological system that lead to various complicated disorders. Therefore, before considering biologically active peptides for food production and for therapeutic purpose, it is first necessary to evaluate the immunogenicity and toxicities of peptides. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Students' Learning Activities While Studying Biological Process Diagrams

    ERIC Educational Resources Information Center

    Kragten, Marco; Admiraal, Wilfried; Rijlaarsdam, Gert

    2015-01-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students' learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each student completed three learning tasks. Verbal…

  19. Potential amoebicidal activity of hydrazone derivatives: synthesis, characterization, electrochemical behavior, theoretical study and evaluation of the biological activity.

    PubMed

    Toledano-Magaña, Yanis; García-Ramos, Juan Carlos; Navarro-Olivarria, Marisol; Flores-Alamo, Marcos; Manzanera-Estrada, Mayra; Ortiz-Frade, Luis; Galindo-Murillo, Rodrigo; Ruiz-Azuara, Lena; Meléndrez-Luevano, Ruth Ma; Cabrera-Vivas, Blanca M

    2015-05-29

    Four new hydrazones were synthesized by the condensation of the selected hydrazine and the appropriate nitrobenzaldehyde. A complete characterization was done employing 1H- and 13C-NMR, electrochemical techniques and theoretical studies. After the characterization and electrochemical analysis of each compound, amoebicidal activity was tested in vitro against the HM1:IMSS strain of Entamoeba histolytica. The results showed the influence of the nitrobenzene group and the hydrazone linkage on the amoebicidal activity. meta-Nitro substituted compound 2 presents a promising amoebicidal activity with an IC50 = 0.84 μM, which represents a 7-fold increase in cell growth inhibition potency with respect to metronidazole (IC50 = 6.3 μM). Compounds 1, 3, and 4 show decreased amoebicidal activity, with IC50 values of 7, 75 and 23 µM, respectively, as a function of the nitro group position on the aromatic ring. The observed differences in the biological activity could be explained not only by the redox potential of the molecules, but also by their capacity to participate in the formation of intra- and intermolecular hydrogen bonds. Redox potentials as well as the amoebicidal activity can be described with parameters obtained from the DFT analysis.

  20. Isolation of biologically-active exosomes from human plasma.

    PubMed

    Muller, Laurent; Hong, Chang-Sook; Stolz, Donna B; Watkins, Simon C; Whiteside, Theresa L

    2014-09-01

    Effects of exosomes present in human plasma on immune cells have not been examined in detail. Immunological studies with plasma-derived exosomes require their isolation by procedures involving ultracentrifugation. These procedures were largely developed using supernatants of cultured cells. To test biologic activities of plasma-derived exosomes, methods are necessary that ensure adequate recovery of exosome fractions free of contaminating larger vesicles, cell fragments and protein/nucleic acid aggregates. Here, an optimized method for exosome isolation from human plasma/serum specimens of normal controls (NC) or cancer patients and its advantages and pitfalls are described. To remove undesirable plasma-contaminating components, ultrafiltration of differentially-centrifuged plasma/serum followed by size-exclusion chromatography prior to ultracentrifugation facilitated the removal of contaminants. Plasma or serum was equally acceptable as a source of exosomes based on the recovered protein levels (in μg protein/mL plasma) and TEM image quality. Centrifugation on sucrose density gradients led to large exosome losses. Fresh plasma was the best source of morphologically-intact exosomes, while the use of frozen/thawed plasma decreased exosome purity but not their biologic activity. Treatments of frozen plasma with DNAse, RNAse or hyaluronidase did not improve exosome purity and are not recommended. Cancer patients' plasma consistently yielded more isolated exosomes than did NCs' plasma. Cancer patients' exosomes also mediated higher immune suppression as evidenced by decreased CD69 expression on responder CD4+ T effector cells. Thus, the described procedure yields biologically-active, morphologically-intact exosomes that have reasonably good purity without large protein losses and can be used for immunological, biomarker and other studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Phytotoxicity of vulpia residues: III. Biological activity of identified allelochemicals from Vulpia myuros.

    PubMed

    An, M; Pratley, J E; Haig, T

    2001-02-01

    Twenty compounds identified in vulpia (Vulpia myuros) residues as allelochemicals were individually and collectively tested for biological activity. Each exhibited characteristic allelochemical behavior toward the test plant, i.e., inhibition at high concentrations and stimulation or no effect at low concentrations, but individual activities varied. Allelopathins present in large quantities, such as syringic, vanillic, and succinic acids, possessed low activity, while those present in small quantities, such as catechol and hydrocinnamic acid, possessed strong inhibitory activity. The concept of a phytotoxic strength index was developed for quantifying the biological properties of each individual allelopathin in a concise, comprehensive, and meaningful format. The individual contribution of each allelopathin, assessed by comparing the phytotoxic strength index to the overall toxicity of vulpia residues, was variable according to structure and was influenced by its relative proportion in the residue. The majority of compounds possessed low or medium biological activity and contributed most of the vulpia phytotoxicity, while compounds with high biological activity were in the minority and only present at low concentration. Artificial mixtures of these pure allelochemicals also produced phytotoxicity. There were additive/synergistic effects evident in the properties of these mixtures. One such mixture, formulated from allelochemicals found in the same proportions as occur in vulpia extract, produced stronger activity than another formulated from the same set of compounds but in equal proportions. These results suggest that the exploration of the relative composition of a cluster of allelopathins may be more important than simply focusing on the identification of one or two compounds with strong biological activity and that synergism is fundamental to the understanding of allelopathy.

  2. [Evaluation of the total biological activity and allergenic composition of allergenic extracts].

    PubMed

    Lombardero, M; González, R; Duffort, O; Juan, F; Ayuso, R; Ventas, P; Cortés, C; Carreira, J

    1986-01-01

    In the present study, a complete procedure is presented in order to standardize allergenic extracts, the meaning of which is the measurement of the total allergenic activity and the determination of the allergenic composition. The measurement of the biological activity comprises 2 steps: Preparation of Reference Extracts and determination of their "in vivo" activity. Evaluation of the total allergenic activity of extracts for clinical use. Reference extracts were prepared from the main allergens and their "in vivo" biological activity was determined by a quantitative skin prick test in a sample of at least 30 allergic patients. By definition, the protein concentration of Reference Extract that produces, in the allergic population, a geometric mean wheal of 75 mm.2 has an activity of 100 biological units (BUs). The determination of the biological activity of a problem extract is made by RAST inhibition. The sample is compared with the corresponding Reference Extract by this technique and, from this comparison, it is possible to quantify the activity of the problem extract in biologic units (BUs) with clinical significance. Likewise, different techniques have been used to determine the allergenic composition of extracts. These techniques comprise 2 steps: Separation of the components of the extract. Identification of the components that bind specific human IgE. The separation of the components of the extract has been carried out by isoelectric focusing (IEF) and electrophoresis in the presence of sodium dodecyl sulphate (SDS-PAGE). In order to identify the allergenic components, an immunoblotting technique has been employed. The separated components in the IEF gel or SDS-PAGE gel are transferred to a nitrocellulose sheet and later on, this membrane is overlaid with a serum pool from allergic patients and a mouse monoclonal anti-human IgE, labelled with 125I. Finally, the autoradiography of the nitrocellulose membrane is obtained. In this way it is possible to compare

  3. Spectral Response and Diagnostics of Biological Activity of Hydroxyl-Containing Aromatic Compounds

    NASA Astrophysics Data System (ADS)

    Tolstorozhev, G. B.; Mayer, G. V.; Bel'kov, M. V.; Shadyro, O. I.

    2016-08-01

    Using IR Fourier spectra and employing quantum-chemical calculations of electronic structure, spectra, and proton-acceptor properties, synthetic derivatives of aminophenol exhibiting biological activity in the suppression of herpes, influenza, and HIV viruses have been investigated from a new perspective, with the aim of establishing the spectral response of biological activity of the molecules. It has been experimentally established that the participation of the aminophenol hydroxyl group in intramolecular hydrogen bonds is characteristic of structures with antiviral properties. A quantum-chemical calculation of the proton-acceptor ability of the investigated aminophenol derivatives has shown that biologically active structures are characterized by a high proton-acceptor ability of oxygen of the hydroxyl group. A correlation that has been obtained among the formation of an intramolecular hydrogen bond, high proton-acceptor ability, and antiviral activity of substituted aminophenols enables us to predict the pharmacological properties of new medical preparations of the given class of compounds.

  4. Interferometric observations of large biologically interesting interstellar and cometary molecules

    PubMed Central

    Snyder, Lewis E.

    2006-01-01

    Interferometric observations of high-mass regions in interstellar molecular clouds have revealed hot molecular cores that have substantial column densities of large, partly hydrogen-saturated molecules. Many of these molecules are of interest to biology and thus are labeled “biomolecules.” Because the clouds containing these molecules provide the material for star formation, they may provide insight into presolar nebular chemistry, and the biomolecules may provide information about the potential of the associated interstellar chemistry for seeding newly formed planets with prebiotic organic chemistry. In this overview, events are outlined that led to the current interferometric array observations. Clues that connect this interstellar hot core chemistry to the solar system can be found in the cometary detection of methyl formate and the interferometric maps of cometary methanol. Major obstacles to understanding hot core chemistry remain because chemical models are not well developed and interferometric observations have not been very sensitive. Differentiation in the molecular isomers glycolaldehdye, methyl formate, and acetic acid has been observed, but not explained. The extended source structure for certain sugars, aldehydes, and alcohols may require nonthermal formation mechanisms such as shock heating of grains. Major advances in understanding the formation chemistry of hot core species can come from observations with the next generation of sensitive, high-resolution arrays. PMID:16894168

  5. Time-resolved observation of thermally activated rupture of a capillary-condensed water nanobridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bak, Wan; Sung, Baekman; Kim, Jongwoo

    2015-01-05

    The capillary-condensed liquid bridge is one of the most ubiquitous forms of liquid in nature and contributes significantly to adhesion and friction of biological molecules as well as microscopic objects. Despite its important role in nanoscience and technology, the rupture process of the bridge is not well understood and needs more experimental works. Here, we report real-time observation of rupture of a capillary-condensed water nanobridge in ambient condition. During slow and stepwise stretch of the nanobridge, we measured the activation time for rupture, or the latency time required for the bridge breakup. By statistical analysis of the time-resolved distribution ofmore » activation time, we show that rupture is a thermally activated stochastic process and follows the Poisson statistics. In particular, from the Arrhenius law that the rupture rate satisfies, we estimate the position-dependent activation energies for the capillary-bridge rupture.« less

  6. Spectroscopic study of biologically active glasses

    NASA Astrophysics Data System (ADS)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  7. In Vitro Biologic Activities of the Antimicrobials Triclocarban, Its Analogs, and Triclosan in Bioassay Screens: Receptor-Based Bioassay Screens

    PubMed Central

    Ahn, Ki Chang; Zhao, Bin; Chen, Jiangang; Cherednichenko, Gennady; Sanmarti, Enio; Denison, Michael S.; Lasley, Bill; Pessah, Isaac N.; Kültz, Dietmar; Chang, Daniel P.Y.; Gee, Shirley J.; Hammock, Bruce D.

    2008-01-01

    Background Concerns have been raised about the biological and toxicologic effects of the antimicrobials triclocarban (TCC) and triclosan (TCS) in personal care products. Few studies have evaluated their biological activities in mammalian cells to assess their potential for adverse effects. Objectives In this study, we assessed the activity of TCC, its analogs, and TCS in in vitro nuclear-receptor–responsive and calcium signaling bioassays. Materials and methods We determined the biological activities of the compounds in in vitro, cell-based, and nuclear-receptor–responsive bioassays for receptors for aryl hydrocarbon (AhR), estrogen (ER), androgen (AR), and ryanodine (RyR1). Results Some carbanilide compounds, including TCC (1–10 μM), enhanced estradiol (E2)-dependent or testosterone-dependent activation of ER- and AR-responsive gene expression up to 2.5-fold but exhibited little or no agonistic activity alone. Some carbanilides and TCS exhibited weak agonistic and/or antagonistic activity in the AhR-responsive bioassay. TCS exhibited antagonistic activity in both ER- and AR-responsive bioassays. TCS (0.1–10 μM) significantly enhanced the binding of [3H]ryanodine to RyR1 and caused elevation of resting cytosolic [Ca2+] in primary skeletal myotubes, but carbanilides had no effect. Conclusions Carbanilides, including TCC, enhanced hormone-dependent induction of ER- and AR-dependent gene expression but had little agonist activity, suggesting a new mechanism of action of endocrine-disrupting compounds. TCS, structurally similar to noncoplanar ortho-substituted poly-chlorinated biphenyls, exhibited weak AhR activity but interacted with RyR1 and stimulated Ca2+ mobilization. These observations have potential implications for human and animal health. Further investigations are needed into the biological and toxicologic effects of TCC, its analogs, and TCS. PMID:18795164

  8. Recent Advances in Momordica charantia: Functional Components and Biological Activities.

    PubMed

    Jia, Shuo; Shen, Mingyue; Zhang, Fan; Xie, Jianhua

    2017-11-28

    Momordica charantia L. ( M. charantia ), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia .

  9. Recent Advances in Momordica charantia: Functional Components and Biological Activities

    PubMed Central

    Jia, Shuo; Shen, Mingyue; Zhang, Fan; Xie, Jianhua

    2017-01-01

    Momordica charantia L. (M. charantia), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia. PMID:29182587

  10. Biologically Active Metabolites Synthesized by Microalgae

    PubMed Central

    Costa, Jorge Alberto Vieira

    2015-01-01

    Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences. PMID:26339647

  11. Designing and testing a classroom curriculum to teach preschoolers about the biology of physical activity: The respiration system as an underlying biological causal mechanism

    NASA Astrophysics Data System (ADS)

    Ewing, Tracy S.

    The present study examined young children's understanding of respiration and oxygen as a source of vital energy underlying physical activity. Specifically, the purpose of the study was to explore whether a coherent biological theory, characterized by an understanding that bodily parts (heart and lungs) and processes (oxygen in respiration) as part of a biological system, can be taught as a foundational concept to reason about physical activity. The effects of a biology-based intervention curriculum designed to teach preschool children about bodily functions as a part of the respiratory system, the role of oxygen as a vital substance and how physical activity acts an energy source were examined. Participants were recruited from three private preschool classrooms (two treatment; 1 control) in Southern California and included a total of 48 four-year-old children (30 treatment; 18 control). Findings from this study suggested that young children could be taught relevant biological concepts about the role of oxygen in respiratory processes. Children who received biology-based intervention curriculum made significant gains in their understanding of the biology of respiration, identification of physical and sedentary activities. In addition these children demonstrated that coherence of conceptual knowledge was correlated with improved accuracy at activity identification and reasoning about the inner workings of the body contributing to endurance. Findings from this study provided evidence to support the benefits of providing age appropriate but complex coherent biological instruction to children in early childhood settings.

  12. Observations on root disease of container whitebark pine seedlings treated with biological controls

    Treesearch

    R. Kasten Dumroese

    2008-01-01

    I observed that whitebark pine (Pinus albicaulis Engelm. [Pinaceae]) germinants treated with biological controls, one commercially available (Trichoderma harzianum strain T-22), and the other being studied for potential efficacy (Fusarium oxysporum isolate Q12), experienced less seedling mortality caused by root disease than did a...

  13. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation

    PubMed Central

    2016-01-01

    Over the past decade, numerous advances have been made in the role and regulation of inflammasomes during pathogenic and sterile insults. An inflammasome complex comprises a sensor, an adaptor, and a zymogen procaspase-1. The functional output of inflammasome activation includes secretion of cytokines, IL-1β and IL-18, and induction of an inflammatory form of cell death called pyroptosis. Recent studies have highlighted the intersection of this inflammatory response with fundamental cellular processes. Novel modulators and functions of inflammasome activation conventionally associated with the maintenance of homeostatic biological functions have been uncovered. In this review, we discuss the biological processes involved in the activation and regulation of the inflammasome. PMID:27325789

  14. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells.

    PubMed

    Peternel, Spela; Komel, Radovan

    2010-09-10

    In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry.To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process.To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared.During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation.During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity.High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells.

  15. Biological activities and medicinal properties of Cajanus cajan (L) Millsp.

    PubMed Central

    Pal, Dilipkumar; Mishra, Pragya; Sachan, Neetu; Ghosh, Ashoke K.

    2011-01-01

    Cajanus cajan (L) Millsp. (Sanskrit: Adhaki, Hindi: Arhar, English: Pigeon pea, Bengali: Tur) (family: Fabaceae) is the most important grain legume crop of rain-fed agriculture in semi-arid tropics. It is both a food crop and a cover/forage crop with high levels of proteins and important amino acids like methionine, lysine and tryptophan. During the last few decades extensive studies have been carried out regarding the chemistry of C. cajan and considerable progress has been achieved regarding its biological activities and medicinal applications. This review article gives an overview on the biological activities of the compounds isolated, pharmacological actions and clinical studies of C. cajan extracts apart from its general details. PMID:22247887

  16. Gynura procumbens: An Overview of the Biological Activities

    PubMed Central

    Tan, Hui-Li; Chan, Kok-Gan; Pusparajah, Priyia; Lee, Learn-Han; Goh, Bey-Hing

    2016-01-01

    Gynura procumbens (Lour.) Merr. (Family Asteraceae) is a medicinal plant commonly found in tropical Asia countries such as China, Thailand, Indonesia, Malaysia, and Vietnam. Traditionally, it is widely used in many different countries for the treatment of a wide variety of health ailments such as kidney discomfort, rheumatism, diabetes mellitus, constipation, and hypertension. Based on the traditional uses of G. procumbens, it seems to possess high therapeutic potential for treatment of various diseases making it a target for pharmacological studies aiming to validate and provide scientific evidence for the traditional claims of its efficacy. Although there has been considerable progress in the research on G. procumbens, to date there is no review paper gathering the reported biological activities of G. procumbens. Hence, this review aims to provide an overview of the biological activities of G. procumbens based on reported in vitro and in vivo studies. In brief, G. procumbens has been reported to exhibit antihypertensive, cardioprotective, antihyperglycemic, fertility enhancement, anticancer, antimicrobial, antioxidant, organ protective, and antiinflammatory activity. The commercial applications of G. procumbens have also been summarized in this paper based on existing patents. The data compiled illustrate that G. procumbens is a potential natural source of compounds with various pharmacological actions which can be utilized for the development of novel therapeutic agents. PMID:27014066

  17. Synthesis and biological activity of mustard derivatives of thymine.

    PubMed

    Hadj-Bouazza, Amel; Teste, Karine; Colombeau, Ludovic; Chaleix, Vincent; Zerrouki, Rachida; Kraemer, Michel; Sainte Catherine, Odile

    2008-05-01

    The synthesis and biological activity of a novel DNA cross-linking antitumor agent is presented. The new alkylating agent significantly inhibited cell proliferation, migration and invasion as tested in vitro on the A431 vulvar epidermal carcinoma cell line.

  18. Adjudin--A Male Contraceptive with Other Biological Activities.

    PubMed

    Cheng, Yan-Ho; Xia, Weiliang; Wong, Elissa W P; Xie, Qian R; Shao, Jiaxiang; Liu, Tengyuan; Quan, Yizhou; Zhang, Tingting; Yang, Xiao; Geng, Keyi; Silvestrini, Bruno; Cheng, Chuen-Yan

    2015-01-01

    Adjudin has been explored as a male contraceptive for the last 15 years since its initial synthesis in the late 1990s. More than 50 papers have been published and listed in PubMed in which its mechanism that induces exfoliation of germ cells from the seminiferous epithelium, such as its effects on actin microfilaments at the apical ES (ectoplasmic specialization, a testis-specific actin-rich anchoring junction) has been delineated. Recent studies have demonstrated that, besides its activity to induce germ cell exfoliation from the seminiferous epithelium to cause reversible infertility in male rodents, adjudin possesses other biological activities, which include anti-cancer, anti-inflammation in the brain, and anti-ototoxicity induced by gentamicin in rodents. Results of these findings likely spark the interest of investigators to explore other medical use of this and other indazole-based compounds, possibly mediated by the signaling pathway(s) in the mitochondria of mammalian cells following treatment with adjudin. In this review, we carefully evaluate these recent findings. Papers published and listed at www.pubmed.org and patents pertinent to adjudin and its related compounds were searched. Findings were reviewed and critically evaluated, and summarized herein. Adjudin is a novel compound that possesses anti-spermatogenetic activity. Furthermore, it possesses anti-cancer, anti-inflammation, anti-neurodegeneration, and anti-ototoxicity activities based on studies using different in vitro and in vivo models. Studies on adjudin should be expanded to better understand its biological activities so that it can become a useful drug for treatment of other ailments besides serving as a male contraceptive.

  19. Low Budget Biology. A Collection of Low Cost Labs and Activities.

    ERIC Educational Resources Information Center

    Wartski, Bert; Wartski, Lynn Marie

    This document contains a collection of low cost labs and activities. The activities are organized into the following units: Chemistry; Microbiology; DNA to Chromosomes; Genetics; Evolution; Classification, Protist, and Fungus; Plant; Invertebrate; Human Biology; and Ecology and Miscellaneous. Some of the activities within these units include: (1)…

  20. Synthesis and biological activities of fluorinated chalcone derivatives.

    PubMed

    Nakamura, Chika; Kawasaki, Nobuhide; Miyataka, Hideki; Jayachandran, Ezhuthachan; Kim, In Ho; Kirk, Kenneth L; Taguchi, Takeo; Takeuchi, Yoshio; Hori, Hitoshi; Satoh, Toshio

    2002-03-01

    We have designed and synthesized new 5-lipoxygenase inhibitors, fluorinated 3,4-dihydroxychalcones, and evaluated their biological activities with respect to antiperoxidation activity and in vitro antitumor activities. All fluorinated chalcones tested showed 5-lipoxygenase inhibition on rat basophilic leukemia-1 (RBL-1) cells and inhibitory action on Fe(3+)-ADP induced NADPH-dependent lipid peroxidation in rat liver microsomes. The potencies were comparable or better to that of the lead 3,4-dihydroxychalcone. 6-Fluoro-3,4-dihydroxy-2',4'-dimethoxy chalcone (7) was the most effective compound in the in vitro assay using a human cancer cell line panel (HCC panel) consisting of 39 systems.

  1. Three Activities To Assist Biology Teachers in Presenting Conceptually Difficult Topics.

    ERIC Educational Resources Information Center

    Taylor, Neil; Tulip, David

    1997-01-01

    Outlines three activities for different areas of biology that can serve as motivators for students or as demonstrations. Each activity is easy to organize and uses available materials. Topics include evolution, anaerobic respiration, and heat loss. (DDR)

  2. Effects of biologically-active chemical mixtures on fish in a wastewater-impacted urban stream

    USGS Publications Warehouse

    Barber, L.B.; Brown, G.K.; Nettesheim, T.G.; Murphy, E.W.; Bartell, S.E.; Schoenfuss, H.L.

    2011-01-01

    Stream flow in urban aquatic ecosystems often is maintained by water-reclamation plant (WRP) effluents that contain mixtures of natural and anthropogenic chemicals that persist through the treatment processes. In effluent-impacted streams, aquatic organisms such as fish are continuously exposed to biologically-active chemicals throughout their life cycles. The North Shore Channel of the Chicago River (Chicago, Illinois) is part of an urban ecosystem in which > 80% of the annual flow consists of effluent from the North Side WRP. In this study, multiple samplings of the effluent and stream water were conducted and fish (largemouth bass and carp) were collected on 2 occasions from the North Shore Channel. Fish also were collected once from the Outer Chicago Harbor in Lake Michigan, a reference site not impacted by WRP discharges. Over 100 organic chemicals with differing behaviors and biological effects were measured, and 23 compounds were detected in all of the water samples analyzed. The most frequently detected and highest concentration (> 100 ??g/L) compounds were ethylenediaminetetraacetic acid and 4-nonylphenolmono-to-tetraethoxycarboxylic acids. Other biologically-active chemicals including bisphenol A, 4-nonylphenol, 4-nonylphenolmono-to-tetraethoxylates, 4- tert-octylphenol, and 4- tert-octylphenolmono-to-tetraethoxylates were detected at lower concentrations (< 5 ??g/L). The biogenic steroidal hormones 17??-estradiol, estrone, testosterone, 4-androstene-3,17-dione, and cis-androsterone were detected at even lower concentrations (< 0.005 ??g/L). There were slight differences in concentrations between the North Side WRP effluent and the North Shore Channel, indicating minimal in-stream attenuation. Fish populations are continuously exposed to mixtures of biologically-active chemicals because of the relative persistency of the chemicals with respect to stream hydraulic residence time, and the lack of a fresh water source for dilution. The majority of male fish

  3. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    PubMed Central

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  4. Use of Brevibacillus choshinensis for the production of biologically active brain-derived neurotrophic factor (BDNF).

    PubMed

    Angart, Phillip A; Carlson, Rebecca J; Thorwall, Sarah; Patrick Walton, S

    2017-07-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family critical for neuronal cell survival and differentiation, with therapeutic potential for the treatment of neurological disorders and spinal cord injuries. The production of recombinant, bioactive BDNF is not practical in most traditional microbial expression systems because of the inability of the host to correctly form the characteristic cystine-knot fold of BDNF. Here, we investigated Brevibacillus choshinensis as a suitable expression host for bioactive BDNF expression, evaluating the effects of medium type (2SY and TM), temperature (25 and 30 °C), and culture time (48-120 h). Maximal BDNF bioactivity (per unit mass) was observed in cultures grown in 2SY medium at extended times (96 h at 30 °C or >72 h at 25 °C), with resulting bioactivity comparable to that of a commercially available BDNF. For cultures grown in 2SY medium at 25 °C for 72 h, the condition that led to the greatest quantity of biologically active protein in the shortest culture time, we recovered 264 μg/L of BDNF. As with other microbial expression systems, BDNF aggregates did form in all culture conditions, indicating that while we were able to recover biologically active BDNF, further optimization of the expression system could yield still greater quantities of bioactive protein. This study provides confirmation that B. choshinensis is capable of producing biologically active BDNF and that further optimization of culture conditions could prove valuable in increasing BDNF yields.

  5. Clustering of 3D-Structure Similarity Based Network of Secondary Metabolites Reveals Their Relationships with Biological Activities.

    PubMed

    Ohtana, Yuki; Abdullah, Azian Azamimi; Altaf-Ul-Amin, Md; Huang, Ming; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Horai, Hisayuki; Nakamura, Yukiko; Morita Hirai, Aki; Lange, Klaus W; Kibinge, Nelson K; Katsuragi, Tetsuo; Shirai, Tsuyoshi; Kanaya, Shigehiko

    2014-12-01

    Developing database systems connecting diverse species based on omics is the most important theme in big data biology. To attain this purpose, we have developed KNApSAcK Family Databases, which are utilized in a number of researches in metabolomics. In the present study, we have developed a network-based approach to analyze relationships between 3D structure and biological activity of metabolites consisting of four steps as follows: construction of a network of metabolites based on structural similarity (Step 1), classification of metabolites into structure groups (Step 2), assessment of statistically significant relations between structure groups and biological activities (Step 3), and 2-dimensional clustering of the constructed data matrix based on statistically significant relations between structure groups and biological activities (Step 4). Applying this method to a data set consisting of 2072 secondary metabolites and 140 biological activities reported in KNApSAcK Metabolite Activity DB, we obtained 983 statistically significant structure group-biological activity pairs. As a whole, we systematically analyzed the relationship between 3D-chemical structures of metabolites and biological activities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Occurrence and biological activity of palmitoleic acid isomers in phagocytic cells.

    PubMed

    Astudillo, Alma M; Meana, Clara; Guijas, Carlos; Pereira, Laura; Lebrero, Patricia; Balboa, María A; Balsinde, Jesús

    2018-02-01

    Recent studies have highlighted the role of palmitoleic acid [16:1 n-7 ( cis -9-hexadecenoic acid)] as a lipid hormone that coordinates cross-talk between liver and adipose tissue and exerts anti-inflammatory protective effects on hepatic steatosis and insulin signaling in murine models of metabolic disease. More recently, a 16:1 n-7 isomer, cis -7-hexadecenoic acid (16:1 n-9 ), that also possesses marked anti-inflammatory effects, has been described in human circulating monocytes and monocyte-derived macrophages. By using gas chromatographic/mass spectrometric analyses of dimethyl disulfide derivatives of fatty acyl methyl esters, we describe in this study the presence of a third 16:1 isomer, sapienic acid [16:1 n-10 (6- cis -hexadecenoic acid)], in phagocytic cells. Cellular levels of 16:1 n-10 appear to depend not only on the cellular content of linoleic acid, but also on the expression level of fatty acid desaturase 2, thus revealing a complex regulation both at the enzyme level, via fatty acid substrate competition, and directly at the gene level. However, unlike 16:1 n-7 and 16:1 n-9 , 16:1 n-10 levels are not regulated by the activation state of the cell. Moreover, while 16:1 n-7 and 16:1 n-9 manifest strong anti-inflammatory activity when added to the cells at low concentrations (10 μM), notably higher concentrations of 16:1 n-10 are required to observe a comparable effect. Collectively, these results suggest the presence in phagocytic cells of an unexpected variety of 16:1 isomers, which can be distinguished on the basis of their biological activity and cellular regulation. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. Biologically Active Secondary Metabolites from the Fungi.

    PubMed

    Bills, Gerald F; Gloer, James B

    2016-11-01

    Many Fungi have a well-developed secondary metabolism. The diversity of fungal species and the diversification of biosynthetic gene clusters underscores a nearly limitless potential for metabolic variation and an untapped resource for drug discovery and synthetic biology. Much of the ecological success of the filamentous fungi in colonizing the planet is owed to their ability to deploy their secondary metabolites in concert with their penetrative and absorptive mode of life. Fungal secondary metabolites exhibit biological activities that have been developed into life-saving medicines and agrochemicals. Toxic metabolites, known as mycotoxins, contaminate human and livestock food and indoor environments. Secondary metabolites are determinants of fungal diseases of humans, animals, and plants. Secondary metabolites exhibit a staggering variation in chemical structures and biological activities, yet their biosynthetic pathways share a number of key characteristics. The genes encoding cooperative steps of a biosynthetic pathway tend to be located contiguously on the chromosome in coregulated gene clusters. Advances in genome sequencing, computational tools, and analytical chemistry are enabling the rapid connection of gene clusters with their metabolic products. At least three fungal drug precursors, penicillin K and V, mycophenolic acid, and pleuromutilin, have been produced by synthetic reconstruction and expression of respective gene clusters in heterologous hosts. This review summarizes general aspects of fungal secondary metabolism and recent developments in our understanding of how and why fungi make secondary metabolites, how these molecules are produced, and how their biosynthetic genes are distributed across the Fungi. The breadth of fungal secondary metabolite diversity is highlighted by recent information on the biosynthesis of important fungus-derived metabolites that have contributed to human health and agriculture and that have negatively impacted crops

  8. Raman spectroscopy for the evaluation of the effects of different concentrations of Copper on the chemical composition and biological activity of basil essential oil

    NASA Astrophysics Data System (ADS)

    Nawaz, Haq; Hanif, Muhammad Asif; Ayub, Muhammad Adnan; Ishtiaq, Faiqa; Kanwal, Nazish; Rashid, Nosheen; Saleem, Muhammad; Ahmad, Mushtaq

    2017-10-01

    The present study is performed to evaluate the effect of different concentrations of Cu as fertilizer on the chemical composition of basil essential oil and its biological activity including antioxidant and antifungal activities by employing Raman spectroscopy. Moreover, the effect of Cu is also determined on the vegetative growth and essential oil yield. Both, antifungal and antioxidant activities were found to be maximum with essential oils obtained at 0.04 mg/l concentration of Cu fertilizer. The results of the GC-MS and Raman spectroscopy have revealed that the linalool and estragole are found to be as a major chemical compound in basil essential oil. The Raman spectral changes associated with these biological components lead to the conclusion that estragole seems to have dominating effect in the biological activities of the basil essential oil as compared to linalool although the latter is observed in greater concentration.

  9. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review

    PubMed Central

    Ambati, Ranga Rao; Siew Moi, Phang; Ravi, Sarada; Aswathanarayana, Ravishankar Gokare

    2014-01-01

    There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3′-dihydroxy-β, β′-carotene-4,4′-dione) is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications. PMID:24402174

  10. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies.

    PubMed

    Yamaguchi, Hiroshi; Miyazaki, Masaya

    2014-02-20

    Biologically active proteins are useful for studying the biological functions of genes and for the development of therapeutic drugs and biomaterials in a biotechnology industry. Overexpression of recombinant proteins in bacteria, such as Escherichia coli, often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. As inclusion bodies contain relatively pure and intact proteins, protein refolding is an important process to obtain active recombinant proteins from inclusion bodies. However, conventional refolding methods, such as dialysis and dilution, are time consuming and, often, recovered yields of active proteins are low, and a trial-and-error process is required to achieve success. Recently, several approaches have been reported to refold these aggregated proteins into an active form. The strategies largely aim at reducing protein aggregation during the refolding procedure. This review focuses on protein refolding techniques using chemical additives and laminar flow in microfluidic chips for the efficient recovery of active proteins from inclusion bodies.

  11. Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells

    PubMed Central

    2010-01-01

    Background In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells. PMID:20831775

  12. Models Role within Active Learning in Biology. A Case Study

    ERIC Educational Resources Information Center

    Pop-Pacurar, Irina; Tirla, Felicia-Doina

    2009-01-01

    In order to integrate ideas and information creatively, to motivate students and activate their thinking, we have used in Biology classes a series of active methods, among which the methods of critical thinking, which had very good results. Still, in the case of some intuitive, abstract, more difficult topics, such as the cell structure,…

  13. Using Active Learning in a Studio Classroom to Teach Molecular Biology

    ERIC Educational Resources Information Center

    Nogaj, Luiza A.

    2013-01-01

    This article describes the conversion of a lecture-based molecular biology course into an active learning environment in a studio classroom. Specific assignments and activities are provided as examples. The goal of these activities is to involve students in collaborative learning, teach them how to participate in the learning process, and give…

  14. Biological activities and medicinal properties of Gokhru (Pedalium murex L.)

    PubMed Central

    Rajashekar, V; Rao, E Upender; P, Srinivas

    2012-01-01

    Bada Gokhru (Pedalium murex L.) is perhaps the most useful traditional medicinal plant in India. Each part of the neem tree has some medicinal property and is thus commercially exploitable. During the last five decades, apart from the chemistry of the Pedalium murex compounds, considerable progress has been achieved regarding the biological activity and medicinal applications of this plant. It is now considered as a valuable source of unique natural products for development of medicines against various diseases and also for the development of industrial products. This review gives a bird's eye view mainly on the biological activities of some of this compounds isolated, pharmacological actions of the extracts, clinical studies and plausible medicinal applications of gokharu along with their safety evaluation. PMID:23569975

  15. Biological Activities of Polyphenols from Grapes

    PubMed Central

    Xia, En-Qin; Deng, Gui-Fang; Guo, Ya-Jun; Li, Hua-Bin

    2010-01-01

    The dietary consumption of grape and its products is associated with a lower incidence of degenerative diseases such as cardiovascular disease and certain types of cancers. Most recent interest has focused on the bioactive phenolic compounds in grape. Anthocyanins, flavanols, flavonols and resveratrol are the most important grape polyphenols because they possess many biological activities, such as antioxidant, cardioprotective, anticancer, anti-inflammation, antiaging and antimicrobial properties. This review summarizes current knowledge on the bioactivities of grape phenolics. The extraction, isolation and identification methods of polyphenols from grape as well as their bioavailability and potential toxicity also are included. PMID:20386657

  16. Participation in introductory biology laboratories: An integrated assessment based on surveys, behavioral observations, and qualitative interviews

    NASA Astrophysics Data System (ADS)

    Russell, Connie Adelle

    Scope and method of study. The purpose of this study was to evaluate the effect of gender, major, and prior knowledge of and attitude toward biology on participation in introductory biology laboratories. Subjects for this study were 3,527 students enrolled in college-level introductory biology courses. During the study, three introductory courses were replaced with one mixed-majors course. The new course adopted a different pedagological approach from the previous courses in that an inquiry-based approach was used in lectures and laboratories. All subjects completed a survey that measured content knowledge using the NABT/NSTA High School Biology Examination Version 1990 and attitude using Russell and Hollander's Biology Attitude Scale. I used and discuss the merits of using ethological methods and data collection software, EthoScribeTM (Tima Scientific) to collect behavioral data from 145 students. I also evaluated participation using qualitative interviews of 30 students. I analyzed content knowledge and attitude data using ANOVA and Pearson correlation, and behavioral data using Contingency Table Analysis. I analyzed interviews following methods outlined by Rubin and Rubin. Findings. Course style and gender were the most useful variables in distinguishing differences among groups of students with regard to attitude, content knowledge, and participation in laboratories. Attitude toward biology and achievement measured by the surveys were found to be positively correlated; however, gender, major, class standing, course style and interactions between these variables also had effects on these variables. I found a positive association among attitude, achievement and participation in hands-on activities in laboratories. Differences in participation also were associated group type. In a traditional introductory biology course, females in single-gender groups, gender-equal, or groups in which females were the majority spent more time performing hands-on science

  17. Effects of Biology Teachers' Professional Knowledge and Cognitive Activation on Students' Achievement

    ERIC Educational Resources Information Center

    Förtsch, Christian; Werner, Sonja; von Kotzebue, Lena; Neuhaus, Birgit J.

    2016-01-01

    This study examined the effects of teachers' biology-specific dimensions of professional knowledge--pedagogical content knowledge (PCK) and content knowledge (CK)--and cognitively activating biology instruction, as a feature of instructional quality, on students' learning. The sample comprised 39 German secondary school teachers whose lessons on…

  18. Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery.

    PubMed

    Simm, Jaak; Klambauer, Günter; Arany, Adam; Steijaert, Marvin; Wegner, Jörg Kurt; Gustin, Emmanuel; Chupakhin, Vladimir; Chong, Yolanda T; Vialard, Jorge; Buijnsters, Peter; Velter, Ingrid; Vapirev, Alexander; Singh, Shantanu; Carpenter, Anne E; Wuyts, Roel; Hochreiter, Sepp; Moreau, Yves; Ceulemans, Hugo

    2018-05-17

    In both academia and the pharmaceutical industry, large-scale assays for drug discovery are expensive and often impractical, particularly for the increasingly important physiologically relevant model systems that require primary cells, organoids, whole organisms, or expensive or rare reagents. We hypothesized that data from a single high-throughput imaging assay can be repurposed to predict the biological activity of compounds in other assays, even those targeting alternate pathways or biological processes. Indeed, quantitative information extracted from a three-channel microscopy-based screen for glucocorticoid receptor translocation was able to predict assay-specific biological activity in two ongoing drug discovery projects. In these projects, repurposing increased hit rates by 50- to 250-fold over that of the initial project assays while increasing the chemical structure diversity of the hits. Our results suggest that data from high-content screens are a rich source of information that can be used to predict and replace customized biological assays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Adjudin - A Male Contraceptive with Other Biological Activities

    PubMed Central

    Cheng, Yan-Ho; Xia, Weiliang; Wong, Elissa W.P.; Xie, Qian R.; Shao, Jiaxiang; Liu, Tengyuan; Quan, Yizhou; Zhang, Tingting; Yang, Xiao; Geng, Keyi; Silvestrini, Bruno; Cheng, Chuen-Yan

    2018-01-01

    Background Adjudin has been explored as a male contraceptive for the last 15 years since its initial synthesis in the late 1990s. More than 50 papers have been published and listed in PubMed in which its mechanism that induces exfoliation of germ cells from the seminiferous epithelium, such as its effects on actin microfilaments at the apical ES (ectoplasmic specialization, a testis-specific actin-rich anchoring junction) has been delineated. Objective Recent studies have demonstrated that, besides its activity to induce germ cell exfoliation from the seminiferous epithelium to cause reversible infertility in male rodents, adjudin possesses other biological activities, which include anti-cancer, anti-inflammation in the brain, and anti-ototoxicity induced by gentamicin in rodents. Results of these findings likely spark the interest of investigators to explore other medical use of this and other indazole-based compounds, possibly mediated by the signaling pathway(s) in the mitochondria of mammalian cells following treatment with adjudin. In this review, we carefully evaluate these recent findings. Methods Papers published and listed at www.pubmed.org and patents pertinent to adjudin and its related compounds were searched. Findings were reviewed and critically evaluated, and summarized herein. Results Adjudin is a novel compound that possesses anti-spermatogenetic activity. Furthermore, it possesses anti-cancer, anti-inflammation, anti-neurodegeneration, and anti-ototoxicity activities based on studies using different in vitro and in vivo models. Conclusion: Studies on adjudin should be expanded to better understand its biological activities so that it can become a useful drug for treatment of other ailments besides serving as a male contraceptive. PMID:26510796

  20. Expanding biological data standards development processes for US IOOS: visual line transect observing community for mammal, bird, and turtle data

    USGS Publications Warehouse

    Fornwall, M.; Gisiner, R.; Simmons, S. E.; Moustahfid, Hassan; Canonico, G.; Halpin, P.; Goldstein, P.; Fitch, R.; Weise, M.; Cyr, N.; Palka, D.; Price, J.; Collins, D.

    2012-01-01

    The US Integrated Ocean Observing System (IOOS) has recently adopted standards for biological core variables in collaboration with the US Geological Survey/Ocean Biogeographic Information System (USGS/OBIS-USA) and other federal and non-federal partners. In this Community White Paper (CWP) we provide a process to bring into IOOS a rich new source of biological observing data, visual line transect surveys, and to establish quality data standards for visual line transect observations, an important source of at-sea bird, turtle and marine mammal observation data. The processes developed through this exercise will be useful for other similar biogeographic observing efforts, such as passive acoustic point and line transect observations, tagged animal data, and mark-recapture (photo-identification) methods. Furthermore, we suggest that the processes developed through this exercise will serve as a catalyst for broadening involvement by the larger marine biological data community within the goals and processes of IOOS.

  1. Chemometric analysis of Hymenoptera toxins and defensins: A model for predicting the biological activity of novel peptides from venoms and hemolymph.

    PubMed

    Saidemberg, Daniel M; Baptista-Saidemberg, Nicoli B; Palma, Mario S

    2011-09-01

    When searching for prospective novel peptides, it is difficult to determine the biological activity of a peptide based only on its sequence. The "trial and error" approach is generally laborious, expensive and time consuming due to the large number of different experimental setups required to cover a reasonable number of biological assays. To simulate a virtual model for Hymenoptera insects, 166 peptides were selected from the venoms and hemolymphs of wasps, bees and ants and applied to a mathematical model of multivariate analysis, with nine different chemometric components: GRAVY, aliphaticity index, number of disulfide bonds, total residues, net charge, pI value, Boman index, percentage of alpha helix, and flexibility prediction. Principal component analysis (PCA) with non-linear iterative projections by alternating least-squares (NIPALS) algorithm was performed, without including any information about the biological activity of the peptides. This analysis permitted the grouping of peptides in a way that strongly correlated to the biological function of the peptides. Six different groupings were observed, which seemed to correspond to the following groups: chemotactic peptides, mastoparans, tachykinins, kinins, antibiotic peptides, and a group of long peptides with one or two disulfide bonds and with biological activities that are not yet clearly defined. The partial overlap between the mastoparans group and the chemotactic peptides, tachykinins, kinins and antibiotic peptides in the PCA score plot may be used to explain the frequent reports in the literature about the multifunctionality of some of these peptides. The mathematical model used in the present investigation can be used to predict the biological activities of novel peptides in this system, and it may also be easily applied to other biological systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Propolis volatile compounds: chemical diversity and biological activity: a review

    PubMed Central

    2014-01-01

    Propolis is a sticky material collected by bees from plants, and used in the hive as building material and defensive substance. It has been popular as a remedy in Europe since ancient times. Nowadays, propolis use in over-the-counter preparations, “bio”-cosmetics and functional foods, etc., increases. Volatile compounds are found in low concentrations in propolis, but their aroma and significant biological activity make them important for propolis characterisation. Propolis is a plant-derived product: its chemical composition depends on the local flora at the site of collection, thus it offers a significant chemical diversity. The role of propolis volatiles in identification of its plant origin is discussed. The available data about chemical composition of propolis volatiles from different geographic regions are reviewed, demonstrating significant chemical variability. The contribution of volatiles and their constituents to the biological activities of propolis is considered. Future perspectives in research on propolis volatiles are outlined, especially in studying activities other than antimicrobial. PMID:24812573

  3. PORTAAL: A Classroom Observation Tool Assessing Evidence-Based Teaching Practices for Active Learning in Large Science, Technology, Engineering, and Mathematics Classes.

    PubMed

    Eddy, Sarah L; Converse, Mercedes; Wenderoth, Mary Pat

    2015-01-01

    There is extensive evidence that active learning works better than a completely passive lecture. Despite this evidence, adoption of these evidence-based teaching practices remains low. In this paper, we offer one tool to help faculty members implement active learning. This tool identifies 21 readily implemented elements that have been shown to increase student outcomes related to achievement, logic development, or other relevant learning goals with college-age students. Thus, this tool both clarifies the research-supported elements of best practices for instructor implementation of active learning in the classroom setting and measures instructors' alignment with these practices. We describe how we reviewed the discipline-based education research literature to identify best practices in active learning for adult learners in the classroom and used these results to develop an observation tool (Practical Observation Rubric To Assess Active Learning, or PORTAAL) that documents the extent to which instructors incorporate these practices into their classrooms. We then use PORTAAL to explore the classroom practices of 25 introductory biology instructors who employ some form of active learning. Overall, PORTAAL documents how well aligned classrooms are with research-supported best practices for active learning and provides specific feedback and guidance to instructors to allow them to identify what they do well and what could be improved. © 2015 S. L. Eddy et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Biologically active and biomimetic dual gelatin scaffolds for tissue engineering.

    PubMed

    Sánchez, P; Pedraz, J L; Orive, G

    2017-05-01

    We have designed, developed and optimized Genipin cross-linked 3D gelatin scaffolds that were biologically active and biomimetic, show a dual activity both for growth factor and cell delivery. Type B gelatin powder was dissolved in DI water. 100mg of genipin was dissolved in 10ml of DI water. Three genipin concentrations were prepared: 0.1%, 0.2% and 0.3% (w/v). Solutions were mixed at 40°C and under stirring and then left crosslinking for 72h. Scaffolds were obtained by punching 8 mm-cylinders into ethanol 70% solution for 10min and then freeze-drying. Scaffolds were biologically, biomechanically and morphologically evaluated. Cell adhesion and morphology of D1-Mesenchymal stem cells (MSCs) and L-929 fibroblast was studied. Vascular endothelial grwoth factor (VEGF) and Sonic hedgehog (SHH) were used as model proteins. Swelling ratio increased and younǵs module decreased along with the concentration of genipin. All scaffolds were biocompatible according to the toxicity test. MSC and L-929 cell adhesion improved in 0.2% of genipin, obtaining better results with MSCs. VEGF and SHH were released from the gels. This preliminary study suggest that the biologically active and dual gelatin scaffolds may be used for tissue engineering approaches like bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Structure-property relationship of quinuclidinium surfactants--Towards multifunctional biologically active molecules.

    PubMed

    Skočibušić, Mirjana; Odžak, Renata; Štefanić, Zoran; Križić, Ivana; Krišto, Lucija; Jović, Ozren; Hrenar, Tomica; Primožič, Ines; Jurašin, Darija

    2016-04-01

    Motivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests. Comprehensive investigation of CnQNOH surfactants enabled insight into structure-property relationship i.e., way in which the arrangement of surfactant molecules in the crystal phase correlates with their solution behavior and biologically activity. The synthesized CnQNOH surfactants exhibited high adsorption efficiency and relatively low critical micelle concentrations. In addition, all investigated compounds showed very potent and promising activity against Gram-positive and clinically relevant Gram-negative bacterial strains compared to conventional antimicrobial agents: tetracycline and gentamicin. The overall results indicate that bicyclic headgroup with oxime moiety, which affects both hydrophilicity and hydrophobicity of CnQNOH molecule in addition to enabling hydrogen bonding, has dominant effect on crystal packing and physicochemical properties. The unique structural features of cationic surfactants with hydroxyimino quinuclidine headgroup along with diverse biological activity have made them promising structures in novel drug discovery. Obtained fundamental understanding how combination of different functionalities in a single surfactant molecule affects its physicochemical

  6. Biologically active traditional medicinal herbs from Balochistan, Pakistan.

    PubMed

    Zaidi, Mudassir A; Crow, Sidney A

    2005-01-04

    The biological activities of the following four important medicinal plants of Balochistan, Pakistan were checked; Grewia erythraea Schwein f. (Tiliaceae), Hymenocrater sessilifolius Fisch. and C.A. Mey (Lamiaceae), Vincetoxicum stocksii Ali and Khatoon (Asclepiadaceae) and Zygophyllum fabago L. (Zygophyllaceae). The methanolic extracts were fractionated into hexane, ethyl acetate, chloroform, butanol and water. The antifungal and antibacterial activities of these plants were determined against 12 fungal and 12 bacterial strains by agar well diffusion and disk diffusion assays. The extract of Zygophyllum fabago was found to be highly effective against Candida albicans and Escherichia coli. The extract of Vincetoxicum stocksii was also found to be significantly active against Candida albicans, Bacillus subtilis and Bacillus cereus. Extracts of Hymenocrater sessilifolius and Grewia erythraea showed good activity only against Pseudomonas aeruginosa.

  7. p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities.

    PubMed

    Pei, Kehan; Ou, Juanying; Huang, Junqing; Ou, Shiyi

    2016-07-01

    p-Coumaric acid (4-hydroxycinnamic acid) is a phenolic acid that has low toxicity in mice (LD50 = 2850 mg kg(-1) body weight), serves as a precursor of other phenolic compounds, and exists either in free or conjugated form in plants. Conjugates of p-coumaric acid have been extensively studied in recent years due to their bioactivities. In this review, the occurrence, bioavailability and bioaccessibility of p-coumaric acid and its conjugates with mono-, oligo- and polysaccharides, alkyl alcohols, organic acids, amine and lignin are discussed. Their biological activities, including antioxidant, anti-cancer, antimicrobial, antivirus, anti-inflammatory, antiplatelet aggregation, anxiolytic, antipyretic, analgesic, and anti-arthritis activities, and their mitigatory effects against diabetes, obesity, hyperlipaemia and gout are compared. Cumulative evidence from multiple studies indicates that conjugation of p-coumaric acid greatly strengthens its biological activities; however, the high biological activity but low absorption of its conjugates remains a puzzle. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. Effect of cooking and cold storage on biologically active antibiotic residues in meat.

    PubMed Central

    O'Brien, J. J.; Campbell, N.; Conaghan, T.

    1981-01-01

    An investigation was undertaken to see if cooking or cold storage would destroy or decrease the level of biologically active antibiotic in tissues from animals given therapeutic doses of antibiotic on three occasions prior to slaughter. The effects of cooking and cold storage on the biological activity of the residues of ampicillin, chloramphenicol, oxytetracycline, streptomycin and sulphadimidine were varied; in some instances the effects were minimal, in others nil. PMID:7310129

  9. Removal of Biologically Active Organic Contaminants using Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Banks, Michael A. (Inventor); Banks, Eric B. (Inventor)

    2003-01-01

    Biomedical devices that are to come into contact with living tissue, such as prosthetic and other implants for the human body and the containers used to store and transport them, are together cleaned of non-living, but biologically active organic materials, including endotoxins such as lipopolysaccharides, and assembled into a hermetically sealed package without recontamination. This is achieved by cleaning both the device and package components together in an apparatus, which includes a hermetically sealed chamber, in which they are contacted with atomic oxygen which biocleans them, by oxidizing the biologically active organic materials. The apparatus also includes means for manipulating the device and container and hermetically sealing the cleaned device into the cleaned container to form the package. A calibrated witness coupon visually indicates whether or not the device and container have received enough exposure to the atomic oxygen to have removed the organic materials from their surfaces. Gamma radiation is then used to sterilize the device in the sealed container.

  10. Combining activated carbon adsorption with heterogeneous photocatalytic oxidation: Lack of synergy for biologically treated greywater and tetraethylene glycol dimethyl ether

    PubMed Central

    Gulyas, Holger; Argáez, Ángel Santiago Oria; Kong, Fanzhuo; Jorge, Carlos Liriano; Eggers, Susanne; Otterpohl, Ralf

    2013-01-01

    The aim of the study was to evaluate whether the addition of activated carbon in the photocatalytic oxidation of biologically pretreated greywater and of a polar aliphatic compound gives synergy, as previously demonstrated with phenol. Photocatalytic oxidation kinetics were recorded with fivefold concentrated biologically pretreated greywater and with aqueous tetraethylene glycol dimethyl ether solutions using a UV lamp and the photocatalyst TiO2 P25 in the presence and the absence of powdered activated carbon. The synergy factor, SF, was quantified as the ratio of photocatalytic oxidation rate constant in the presence of powdered activated carbon to the rate constant without activated carbon. No synergy was observed for the greywater concentrate (SF ≈ 1). For the aliphatic compound, tetraethylene glycol dimethyl ether, addition of activated carbon actually had an inhibiting effect on photocatalysis (SF < 1), while synergy was confirmed in reference experiments using aqueous phenol solutions. The absence of synergy for the greywater concentrate can be explained by low adsorbability of its organic constituents by activated carbon. Inhibition of the photocatalytic oxidation of tetraethylene glycol dimethyl ether by addition of powdered activated carbon was attributed to shading of the photocatalyst by the activated carbon particles. It was assumed that synergy in the hybrid process was limited to aromatic organics. Regardless of the lack of synergy in the case of biologically pretreated greywater, the addition of powdered activated carbon is advantageous since, due to additional adsorptive removal of organics, photocatalytic oxidation resulted in a 60% lower organic concentration when activated carbon was present after the same UV irradiation time. PMID:24191472

  11. Yellow-Cedar, Callitropsis (Chamaecyparis) nootkatensis, Secondary Metabolites, Biological Activities, and Chemical Ecology.

    PubMed

    Karchesy, Joseph J; Kelsey, Rick G; González-Hernández, M P

    2018-05-01

    Yellow-cedar, Callitropsis nootkatensis, is prevalent in coastal forests of southeast Alaska, western Canada, and inland forests along the Cascades to northern California, USA. These trees have few microbial or animal pests, attributable in part to the distinct groups of biologically active secondary metabolites their tissues store for chemical defense. Here we summarize the new yellow-cedar compounds identified and their biological activities, plus new or expanded activities for tissues, extracts, essential oils and previously known compounds since the last review more than 40 years ago. Monoterpene hydrocarbons are the most abundant compounds in foliage, while heartwood contains substantial quantities of oxygenated monoterpenes and oxygenated sesquiterpenes, with one or more tropolones. Diterpenes occur in foliage and bark, whereas condensed tannins have been isolated from inner bark. Biological activities expressed by one or more compounds in these groups include fungicide, bactericide, sporicide, acaricide, insecticide, general cytotoxicity, antioxidant and human anticancer. The diversity of organisms impacted by whole tissues, essential oils, extracts, or individual compounds now encompasses ticks, fleas, termites, ants, mosquitoes, bacteria, a water mold, fungi and browsing animals. Nootkatone, is a heartwood component with sufficient activity against arthropods to warrant research focused toward potential development as a commercial repellent and biopesticide for ticks, mosquitoes and possibly other arthropods that vector human and animal pathogens.

  12. An Update on the Biological Activities of Euterpe edulis (Juçara).

    PubMed

    Cardoso, Alyne Lizane; de Liz, Sheyla; Rieger, Débora Kurrle; Farah, Ana Carolina Aguiar; Kunradi Vieira, Francilene Gracieli; Altenburg de Assis, Maria Alice; Di Pietro, Patricia Faria

    2018-05-01

    The palm tree Euterpe edulis , known as juçara, produces spherical and purple fruits, similar to those of the Euterpe oleracea and Euterpe precatoria palm trees, from which the common name açaí originates. Juçara fruit has been gaining prominence in the scientific world for its interesting nutritional composition, which is rich in antioxidants, and for its sustainable production model. Recently, relevant biological activities have been associated with the juçara fruit, and its use in alimentation has become an important nutritional, environmental, and economic alternative. The aim of this review is to compile recent scientific data about the phytochemical characterization and biological activities of E. edulis. A review of the literature was conducted in two electronic databases, Medline and Science Direct. The eligibility criteria were as follows: phytochemicals characterize of the E. edulis fruits and evaluate biological effects in vitro or in vivo with pulp, extract, juice, or product of juçara fruits. Investigations were excluded if they used other parts of the plant (seeds), did not assess biological activities, or have tested methodologies for compound extraction. From the identified reports, 25 articles were eligible for this study. The promotion of health benefits related to juçara fruits seems to have improved antioxidant activity in vivo, benefits to lipid and glycemic profiles, and modulation of inflammatory status in experimental studies in animals. Georg Thieme Verlag KG Stuttgart · New York.

  13. Biological activities of crystalline pertussigen from Bordetella pertussis.

    PubMed Central

    Munoz, J J; Arai, H; Bergman, R K; Sadowski, P L

    1981-01-01

    We studied various biological activities of crystalline pertussigen and found that in mice as little as 0.5 ng of pertussigen induced hypersensitivity to histamine, 8 to 40 ng induced leukocytosis, 2 ng increased production of insulin, 0.1 ng increased production of immunoglobulin E and immunoglobulin G1 antibodies to hen egg albumin, 9.5 ng increased susceptibility to anaphylactic shock, and 0.5 ng increased the vascular permeability of striated muscle. We also found that in Lewis rats 20 ng of pertussigen promoted the induction of hyperacute experimental allergic encephalomyelitis. Pertussigen given intraperitoneally was toxic to mice at a dose of 546 ng. Treatment of pertussigen with glutaraldehyde eliminated this toxicity. Mice immunized with 1,700 ng of detoxified pertussigen were protected against intracerebral challenge with 3 x 10(4) viable Bordetella pertussis cells. When as little as 0.5 ng of pertussigen was given intravenously to mice, the increased susceptibility of the animals to histamine could still be detected 84 days later. The biological properties of crystalline pertussigen indicate its similarity to leukocytosis-promoting factor, Islet-activating protein, late-appearing toxic factor, and mouse-protective antigen of B. pertussis. PMID:6269999

  14. Occurrence, biological activity and metabolism of 6-shogaol.

    PubMed

    Kou, Xingran; Wang, Xiaoqi; Ji, Ruya; Liu, Lang; Qiao, Yening; Lou, Zaixiang; Ma, Chaoyang; Li, Shiming; Wang, Hongxin; Ho, Chi-Tang

    2018-03-01

    As one of the main bioactive compounds of dried ginger, 6-shogaol has been widely used to alleviate many ailments. It is also a major pungent flavor component, and its precursor prior to dehydration is 6-gingerol, which is reported to be responsible for the pungent flavor and biological activity of fresh ginger. Structurally, gingerols including 6-gingerol have a β-hydroxyl ketone moiety and is liable to dehydrate to generate an α,β-unsaturated ketone under heat and/or acidic conditions. The conjugation of the α,β-unsaturated ketone skeleton in the chemical structure of 6-shogaol explicates its higher potency and efficacy than 6-gingerol in terms of antioxidant, anti-inflammatory, anticancer, antiemetic and other bioactivities. Research on the health benefits of 6-shogaol has been conducted and results have been reported recently; however, scientific data are scattered due to a lack of systematic collection. In addition, action mechanisms of the preventive and/or therapeutic actions of 6-shogaol remain obscurely non-collective. Herein, we review the preparations, biological activity and mechanisms, and metabolism of 6-shogaol as well as the properties of 6-shogaol metabolites.

  15. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    NASA Astrophysics Data System (ADS)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  16. Tocotrienols: A Family of Molecules with Specific Biological Activities

    PubMed Central

    Comitato, Raffaella; Ambra, Roberto

    2017-01-01

    Vitamin E is a generic term frequently used to group together eight different molecules, namely: α-, β-, γ- and δ-tocopherol and the corresponding tocotrienols. The term tocopherol and eventually Vitamin E and its related activity was originally based on the capacity of countering foetal re-absorption in deficient rodents or the development of encephalomalacia in chickens. In humans, Vitamin E activity is generally considered to be solely related to the antioxidant properties of the tocolic chemical structure. In recent years, several reports have shown that specific activities exist for each different tocotrienol form. In this short review, tocotrienol ability to inhibit cancer cell growth and induce apoptosis thanks to specific mechanisms, not shared by tocopherols, such as the binding to Estrogen Receptor-β (ERβ) and the triggering of endoplasmic reticulum (EndoR) stress will be described. The neuroprotective activity will also be presented and discussed. We propose that available studies strongly indicate that specific forms of tocotrienols have a distinct mechanism and biological activity, significantly different from tocopherol and more specifically from α-tocopherol. We therefore suggest not pooling them together within the broad term “Vitamin E” on solely the basis of their putative antioxidant properties. This option implies obvious consequences in the assessment of dietary Vitamin E adequacy and, probably more importantly, on the possibility of evaluating a separate biological variable, determinant in the relationship between diet and health. PMID:29156559

  17. Mango ginger (Curcuma amada Roxb.)--a promising spice for phytochemicals and biological activities.

    PubMed

    Policegoudra, R S; Aradhya, S M; Singh, L

    2011-09-01

    Mango ginger (Curcuma amada Roxb.) is a unique spice having morphological resemblance with ginger but imparts a raw mango flavour. The main use of mango ginger rhizome is in the manufacture of pickles and culinary preparations. Ayurveda and Unani medicinal systems have given much importance to mango ginger as an appetizer, alexteric, antipyretic, aphrodisiac, diuretic, emollient, expectorant and laxative and to cure biliousness, itching, skin diseases, bronchitis, asthma, hiccough and inflammation due to injuries. The biological activities of mango ginger include antioxidant activity, antibacterial activity, antifungal activity, anti-inflammatory activity, platelet aggregation inhibitory activity, cytotoxicity, antiallergic activity, hypotriglyceridemic activity, brine-shrimp lethal activity, enterokinase inhibitory activity, CNS depressant and analgesic activity. The major chemical components include starch, phenolic acids, volatile oils, curcuminoids and terpenoids like difurocumenonol, amadannulen and amadaldehyde. This article brings to light the major active components present in C. amada along with their biological activities that may be important from the pharmacological point of view.

  18. Analysis of the biological activity of antilymphocyte serum

    PubMed Central

    Perper, R. J.; Monovich, R. E.; Van Gorder, T. J.

    1971-01-01

    Two IgG subfractions of horse antilymphocyte serum (ALS) were obtained by DEAE Sephadex chromatography. Although the fractions did not differ antigenically, they differed on amino acid and carbohydrate analysis, and in electrophoretic mobility. As demonstrated by binding studies, only the most positively charged population of IgG molecules (fraction 1) obtained from anti-lymphocyte serum had specificity for the small lymphocyte; 50 per cent of the molecules in this population bound specifically to lymphocytes in vitro. As determined by an in vitro correlate of immunosuppressive potency (rosette inhibition), fraction 1 (F1) IgG from ALS contained approximately 4 times the specific activity of fraction 2 (F2). F1 was significantly more effective in prolonging skin graft survival than F2, whereas F2 contained the major component of the non-specific anti-inflammatory activity of serum. The anti-inflammatory effect was mediated by anticomplement activity. F2 was found to be an effective inhibitor of the immunosuppressive activity of F1 both in vivo and in vitro. Quantitative studies indicated that 1 part of F2 could maximally inhibit 4 parts of F1. The percentage of F2 present in serum IgG was inversely related to the skin graft survival elicited by the serum, which indicated that F2 was active as an inhibitor when tested as purified fraction as well as in unfractionated serum. Following immunization when F1 gained immunosuppressive potency, it lost non-specific anti-inflammatory activity. These observations indicated that not only was there a quantitative, as well as a qualitative concentration of immunosuppressive antibodies in F1, but also that this activity was controlled by the concentration of F2. This report, therefore, describes an IgG control mechanism which can limit the expression of antibody induced biological activity. It is suggested that in ALS the immunosuppressive antibody molecules possess a greater net positive charge than the remaining population

  19. Soil biological activity at European scale - two calculation concepts

    NASA Astrophysics Data System (ADS)

    Krüger, Janine; Rühlmann, Jörg

    2014-05-01

    The CATCH-C project aims to identify and improve the farm-compatibility of Soil Management Practices including to promote productivity, climate change mitigation and soil quality. The focus of this work concentrates on turnover conditions for soil organic matter (SOM). SOM is fundamental for the maintenance of quality and functions of soils while SOM storage is attributed a great importance in terms of climate change mitigation. The turnover conditions depend on soil biological activity characterized by climate and soil properties. To assess the turnover conditions two model concepts are applied: (I) Biological active time (BAT) regression approach derived from CANDY model (Franko & Oelschlägel 1995) expresses the variation of air temperature, precipitation and soil texture as a timescale and an indicator of biological activity for soil organic matter (SOM) turnover. (II) Re_clim parameter within the Introductory Carbon Balance Model (Andrén & Kätterer 1997) states the soil temperature and soil water to estimate soil biological activity. The modelling includes two strategies to cover the European scale and conditions. BAT was calculated on a 20x20 km grid basis. The European data sets of precipitation and air temperature (time period 1901-2000, monthly resolution), (Mitchell et al. 2004) were used to derive long-term averages. As we focus on agricultural areas we included CORINE data (2006) to extract arable land. The resulting BATs under co-consideration of the main soil textures (clay, silt, sand and loam) were investigated per environmental zone (ENZs, Metzger et al. 2005) that represents similar conditions for precipitation, temperature and relief to identify BAT ranges and hence turnover conditions for each ENZ. Re_clim was quantified by climatic time series of more than 250 weather stations across Europe presented by Klein Tank et al. (2002). Daily temperature, precipitation and potential evapotranspiration (maximal thermal extent) were used to calculate

  20. Beller Lectureship Talk: Active response of biological cells to mechanical stress

    NASA Astrophysics Data System (ADS)

    Safran, Samuel

    2009-03-01

    Forces exerted by and on adherent cells are important for many physiological processes such as wound healing and tissue formation. In addition, recent experiments have shown that stem cell differentiation is controlled, at least in part, by the elasticity of the surrounding matrix. We present a simple and generic theoretical model for the active response of biological cells to mechanical stress. The theory includes cell activity and mechanical forces as well as random forces as factors that determine the polarizability that relates cell orientation to stress. This allows us to explain the puzzling observation of parallel (or sometimes random) alignment of cells for static and quasi-static stresses and of nearly perpendicular alignment for dynamically varying stresses. In addition, we predict the response of the cellular orientation to a sinusoidally varying applied stress as a function of frequency and compare the theory with recent experiments. The dependence of the cell orientation angle on the Poisson ratio of the surrounding material distinguishes cells whose activity is controlled by stress from those controlled by strain. We have extended the theory to generalize the treatment of elastic inclusions in solids to ''living'' inclusions (cells) whose active polarizability, analogous to the polarizability of non-living matter, results in the feedback of cellular forces that develop in response to matrix stresses. We use this to explain recent observations of the non-monotonic dependence of stress-fiber polarization in stem cells on matrix rigidity. These findings provide a mechanical correlate for the existence of an optimal substrate elasticity for cell differentiation and function. [3pt] *In collaboration with R. De (Brown University), Y. Biton (Weizmann Institute), and A. Zemel (Hebrew University) and the experimental groups: Max Planck Institute, Stuttgart: S. Jungbauer, R. Kemkemer, J. Spatz; University of Pennsylvania: A. Brown, D. Discher, F. Rehfeldt.

  1. Indonesian propolis: chemical composition, biological activity and botanical origin.

    PubMed

    Trusheva, Boryana; Popova, Milena; Koendhori, Eko Budi; Tsvetkova, Iva; Naydenski, Christo; Bankova, Vassya

    2011-03-01

    From a biologically active extract of Indonesian propolis from East Java, 11 compounds were isolated and identified: four alk(en)ylresorcinols (obtained as an inseparable mixture) (1-4) were isolated for the first time from propolis, along with four prenylflavanones (6-9) and three cycloartane-type triterpenes (5, 10 and 11). The structures of the components were elucidated based on their spectral properties. All prenylflavanones demonstrated significant radical scavenging activity against diphenylpicrylhydrazyl radicals, and compound 6 showed significant antibacterial activity against Staphylococcus aureus. For the first time Macaranga tanarius L. and Mangifera indica L. are shown as plant sources of Indonesian propolis.

  2. Humic substances biological activity at the plant-soil interface

    PubMed Central

    Trevisan, Sara; Francioso, Ornella; Nardi, Serenella

    2010-01-01

    Humic substances (HS) represent the organic material mainly widespread in nature. HS have positive effects on plant physiology by improving soil structure and fertility and by influencing nutrient uptake and root architecture. The biochemical and molecular mechanisms underlying these events are only partially known. HS have been shown to contain auxin and an “auxin-like” activity of humic substances has been proposed, but support to this hypothesis is fragmentary. In this review article, we are giving an overview of available data concerning molecular structures and biological activities of humic substances, with special emphasis on their hormone-like activities. PMID:20495384

  3. Preparation of Gc protein-derived macrophage activating factor (GcMAF) and its structural characterization and biological activities.

    PubMed

    Mohamad, Saharuddin Bin; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi

    2002-01-01

    Gc protein has been reported to be a precursor of Gc protein-derived macrophage activation factor (GcMAF) in the inflammation-primed macrophage activation cascade. An inducible beta-galactosidase of B cells and neuraminidase of T cells convert Gc protein to GcMAF. Gc protein from human serum was purified using 25(OH)D3 affinity column chromatography and modified to GcMAF using immobilized glycosidases (beta-galactosidase and neuraminidase) The sugar moiety structure of GcMAF was characterized by lectin blotting by Helix pomatia agglutinin. The biological activities of GcMAF were evaluated by a superoxide generation assay and a phagocytosis assay. We successfully purified Gc protein from human serum. GcMAF was detected by lectin blotting and showed a high biological activity. Our results support the importance of the terminal N-acetylgalactosamine moiety in the GcMAF-mediated macrophage activation cascade, and the existence of constitutive GcMAF in human serum. These preliminary data are important for designing small molecular GcMAF mimics.

  4. Investigating biological activity spectrum for novel styrylquinazoline analogues.

    PubMed

    Jampilek, Josef; Musiol, Robert; Finster, Jacek; Pesko, Matus; Carroll, James; Kralova, Katarina; Vejsova, Marcela; O'Mahony, Jim; Coffey, Aidan; Dohnal, Jiri; Polanski, Jaroslaw

    2009-10-23

    In this study, series of ring-substituted 2-styrylquinazolin-4(3H)-one and 4-chloro-2-styrylquinazoline derivatives were prepared. The syntheses of the discussed compounds are presented. The compounds were analyzed by RP-HPLC to determine lipophilicity. They were tested for their inhibitory activity on photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four mycobacterial strains and against eight fungal strains. Several compounds showed biological activity comparable with or higher than that of the standard isoniazid. It was found that the electronic properties of the R substituent, and not the total lipophilicity of the compound, were decisive for the photosynthesis-inhibiting activity of tested compounds.

  5. Biological activities of aqueous extract from Cinnamomum porrectum

    NASA Astrophysics Data System (ADS)

    Farah, H. Siti; Nazlina, I.; Yaacob, W. A.

    2013-11-01

    A study was carried out to evaluate biological activities of an extract obtained from Cinnamomum porrectum under reflux using water. Aqueous extract of Cinnamomum porrectum was tested for antibacterial activity against six Gram-positive and eight Gram-negative bacteria as well as MRSA. The results confirmed that the aqueous extract of Cinnamomum porrectum was bactericidal. Cytotoxic tests on Vero cell culture revealed that Cinnamomum porrectum was non-toxic which IC50 value higher than 0.02 mg/mL. Antiviral activity was tested based on the above IC50 values together with the measured EC50 values to obtain Therapeutic Index. The result showed that Cinnamomum porrectum has the ability to inhibit viral replication of HSV-1 in Vero cells.

  6. Active matter at the interface between materials science and cell biology

    NASA Astrophysics Data System (ADS)

    Needleman, Daniel; Dogic, Zvonimir

    2017-09-01

    The remarkable processes that characterize living organisms, such as motility, self-healing and reproduction, are fuelled by a continuous injection of energy at the microscale. The field of active matter focuses on understanding how the collective behaviours of internally driven components can give rise to these biological phenomena, while also striving to produce synthetic materials composed of active energy-consuming components. The synergistic approach of studying active matter in both living cells and reconstituted systems assembled from biochemical building blocks has the potential to transform our understanding of both cell biology and materials science. This methodology can provide insight into the fundamental principles that govern the dynamical behaviours of self-organizing subcellular structures, and can lead to the design of artificial materials and machines that operate away from equilibrium and can thus attain life-like properties. In this Review, we focus on active materials made of cytoskeletal components, highlighting the role of active stresses and how they drive self-organization of both cellular structures and macroscale materials, which are machines powered by nanomachines.

  7. Saponins from sea cucumber and their biological activities.

    PubMed

    Zhao, Yingcai; Xue, Changhu; Zhang, Tiantian; Wang, YuMing

    2018-06-22

    Sea cucumbers, belonging to the phylum Echinodermata, have been valued for centuries as a nutritious and functional food with various bioactivities. Sea cucumbers can produce highly active substances, notably saponins, the main secondary metabolites, which are the basis of their chemical defense. The saponins are mostly triterpene glycosides with triterpenes or steroid in aglycone, which possess multiple biological properties including anti-tumor, hypolipidemic activity, improvement of nonalcoholic fatty liver, inhibition of fat accumulation, anti-hyperuricemia, promotion of bone marrow hematopoiesis, anti-hypertension, etc. Sea cucumber saponins have received attention due to their rich sources, low toxicity, high efficiency, and few side effects. This review summarizes current research on the structure and activities of sea cucumber saponins based on the physiological and pharmacological activities from source, experimental models, efficacy and mechanisms, which may provide a valuable reference for the development of sea cucumber saponins.

  8. Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins.

    PubMed

    Sunde, Margaret; Pham, Chi L L; Kwan, Ann H

    2017-06-20

    Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid-associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.

  9. TOPICAL REVIEW: Protein stability and enzyme activity at extreme biological temperatures

    NASA Astrophysics Data System (ADS)

    Feller, Georges

    2010-08-01

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 °C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins.

  10. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    PubMed Central

    Putz, Mihai V.; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners’ (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  11. Biological activities of extracts from Chenopodium ambrosioides Lineu and Kielmeyera neglecta Saddi

    PubMed Central

    2012-01-01

    Background Chenopodium ambrosioides and Kielmeyera neglecta are plants traditionally used in Brazil to treat various infectious diseases. The study of the biological activities of these plants is of great importance for the detection of biologically active compounds. Methods Extracts from these plants were extracted with hexane (Hex), dichloromethane (DCM), ethyl acetate (EtOAc) and ethanol (EtOH) and assessed for their antimicrobial properties, bioactivity against Artemia salina Leach and antifungal action on the cell wall of Neurospora crassa. Results Extracts from C. ambrosioides (Hex, DCM and EtOH) and K. neglecta (EtOAc and EtOH) showed high bioactivity against A. salina (LD50 < 1000 μg/mL), which might be associated with cytotoxic activity against cancer cells. C. ambrosioides Hex and DCM showed specific activity against yeasts, highlighting the activity of hexanic extract against Candida krusei (MIC = 100 μg/mL). By comparing the inhibitory concentration of 50% growth (IC 50%) with the growth control, extracts from K. neglecta EtOAc and EtOH have shown activities against multidrug-resistant bacteria (Enterococcus faecalis ATCC 51299 and Staphylococcus aureus ATCC 43300), with IC 50% of 12.5 μg/mL The assay carried out on N. crassa allowed defining that extracts with antifungal activity do not have action through inhibition of cell wall synthesis. Conclusions Generally speaking, extracts from C. ambrosioides and K. neglecta showed biological activities that have made the search for bioactive substances in these plants more attractive, illustrating the success of their use in the Brazilian folk medicine. PMID:22839690

  12. Dynamic Modulation of Human Motor Activity When Observing Actions

    PubMed Central

    Press, Clare; Cook, Jennifer; Blakemore, Sarah-Jayne; Kilner, James

    2012-01-01

    Previous studies have demonstrated that when we observe somebody else executing an action many areas of our own motor systems are active. It has been argued that these motor activations are evidence that we motorically simulate observed actions; this motoric simulation may support various functions such as imitation and action understanding. However, whether motoric simulation is indeed the function of motor activations during action observation is controversial, due to inconsistency in findings. Previous studies have demonstrated dynamic modulations in motor activity when we execute actions. Therefore, if we do motorically simulate observed actions, our motor systems should also be modulated dynamically, and in a corresponding fashion, during action observation. Using magnetoencephalography, we recorded the cortical activity of human participants while they observed actions performed by another person. Here, we show that activity in the human motor system is indeed modulated dynamically during action observation. The finding that activity in the motor system is modulated dynamically when observing actions can explain why studies of action observation using functional magnetic resonance imaging have reported conflicting results, and is consistent with the hypothesis that we motorically simulate observed actions. PMID:21414901

  13. Low Budget Biology 3: A Collection of Low Cost Labs and Activities.

    ERIC Educational Resources Information Center

    Wartski, Bert; Wartski, Lynn Marie

    This document contains biology labs, demonstrations, and activities that use low budget materials. The goal is to get students involved in the learning process by experiencing biology. Each lab has a teacher preparation section which outlines the purpose of the lab, some basic information, a list of materials , and how to prepare the different…

  14. Myricetin: A Dietary Molecule with Diverse Biological Activities

    PubMed Central

    Semwal, Deepak Kumar; Semwal, Ruchi Badoni; Combrinck, Sandra; Viljoen, Alvaro

    2016-01-01

    Myricetin is a common plant-derived flavonoid and is well recognised for its nutraceuticals value. It is one of the key ingredients of various foods and beverages. The compound exhibits a wide range of activities that include strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. It displays several activities that are related to the central nervous system and numerous studies have suggested that the compound may be beneficial to protect against diseases such as Parkinson’s and Alzheimer’s. The use of myricetin as a preserving agent to extend the shelf life of foods containing oils and fats is attributed to the compound’s ability to protect lipids against oxidation. A detailed search of existing literature revealed that there is currently no comprehensive review available on this important molecule. Hence, the present work includes the history, synthesis, pharmaceutical applications and toxicity studies of myricetin. This report also highlights structure-activity relationships and mechanisms of action for various biological activities. PMID:26891321

  15. Milk kefir: composition, microbial cultures, biological activities, and related products.

    PubMed

    Prado, Maria R; Blandón, Lina Marcela; Vandenberghe, Luciana P S; Rodrigues, Cristine; Castro, Guillermo R; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2015-01-01

    In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir's exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir's microflora and the importance of kefiran as a beneficial health substance.

  16. Respiratory Tract Infections and the Role of Biologically Active Polysaccharides in Their Management and Prevention.

    PubMed

    Jesenak, Milos; Urbancikova, Ingrid; Banovcin, Peter

    2017-07-20

    Respiratory tract infections (RTIs) are the most common form of infections in every age category. Recurrent respiratory tract infections (RRTIs), a specific form of RTIs, represent a typical and common problem associated with early childhood, causing high indirect and direct costs on the healthcare system. They are usually the consequence of immature immunity in children and high exposure to various respiratory pathogens. Their rational management should aim at excluding other severe chronic diseases associated with increased morbidity (e.g., primary immunodeficiency syndromes, cystic fibrosis, and ciliary dyskinesia) and at supporting maturity of the mucosal immune system. However, RRTIs can also be observed in adults (e.g., during exhausting and stressful periods, chronic inflammatory diseases, secondary immunodeficiencies, or in elite athletes) and require greater attention. Biologically active polysaccharides (e.g., β-glucans) are one of the most studied natural immunomodulators with a pluripotent mode of action and biological activity. According to many studies, they possess immunomodulatory, anti-inflammatory, and anti-infectious activities and therefore could be suggested as an effective part of treating and preventing RTIs. Based on published studies, the application of β-glucans was proven as a possible therapeutic and preventive approach in managing and preventing recurrent respiratory tract infections in children (especially β-glucans from Pleurotus ostreatus ), adults (mostly the studies with yeast-derived β-glucans), and in elite athletes (studies with β-glucans from Pleurotus ostreatus or yeast).

  17. Microbial survey of a full-scale, biologically active filter for treatment of drinking water.

    PubMed

    White, Colin P; Debry, Ronald W; Lytle, Darren A

    2012-09-01

    The microbial community of a full-scale, biologically active drinking water filter was surveyed using molecular techniques. Nitrosomonas, Nitrospira, Sphingomonadales, and Rhizobiales dominated the clone libraries. The results elucidate the microbial ecology of biological filters and demonstrate that biological treatment of drinking water should be considered a viable alternative to physicochemical methods.

  18. Biological conversion system

    DOEpatents

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  19. Effect of atmospheric pressure dielectric barrier discharge plasma on the biological activity of naringin.

    PubMed

    Kim, Hyun-Joo; Yong, Hae In; Park, Sanghoo; Kim, Kijung; Kim, Tae Hoon; Choe, Wonho; Jo, Cheorun

    2014-10-01

    The biological activity of naringin treated with atmospheric pressure plasma was evaluated to investigate whether exposure to plasma can be used as a method to improve the biological activity of natural materials. Naringin was dissolved in methanol (at 500 ppm) and transferred to a container. A dielectric barrier discharge (DBD) (250 W, 15 kHz, ambient air) was then generated. Treatment with the plasma for 20 min increased the radical-scavenging activity, FRAP value, and the total phenolic compound content of naringin from 1.45% to 38.20%, from 27.78 to 207.78 μM/g, and from 172.50 to 225.83 ppm, respectively. Moreover, the tyrosinase-inhibition effect of naringin increased from 6.12% to 83.30% upon plasma treatment. Naringin treated with plasma exhibited antimicrobial activity against foodborne pathogens, especially Salmonella Typhimurium; an activity that was absent before plasma treatment. Structural modifications induced in the naringin molecule by plasma might be responsible for improving the biological activity of naringin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Preparation and characterization of new biologically active polyurethane foams.

    PubMed

    Savelyev, Yuri; Veselov, Vitali; Markovskaya, Ludmila; Savelyeva, Olga; Akhranovich, Elena; Galatenko, Natalya; Robota, Ludmila; Travinskaya, Tamara

    2014-12-01

    Biologically active polyurethane foams are the fast-developed alternative to many applications of biomedical materials. Due to the polyurethane structure features and foam technology it is possible to incorporate into their structure the biologically active compounds of target purpose via structural-chemical modification of macromolecule. A series of new biologically active polyurethane foams (PUFs) was synthesized with polyethers (MM 2500-5000), polyesters MM (500-2200), 2,4(2,6) toluene diisocyanate, water as a foaming agent, catalysts, foam stabilizers and functional compounds. Different functional compounds: 1,4-di-N-oxy-2,3-bis-(oxymethyl)-quinoxaline (DOMQ), partial sodium salt of poly(acrylic acid) and 2,6-dimethyl-N,N-diethyl aminoacetatanilide hydrochloride were incorporated into the polymer structure/composition due to the chemical and/or physical bonding. Structural peculiarities of PUFs were studied by FTIR spectroscopy and X-ray scattering. Self-adhesion properties of PUFs were estimated by measuring of tensile strength at break of adhesive junction. The optical microscopy method was performed for the PUF morphology studies. Toxicological estimation of the PUFs was carried out in vitro and in vivo. The antibacterial action towards the Gram-positive and Gram-negative bacteria (Escherichia coli ATC 25922, E. coli ATC 2150, Klebsiella pneumoniae 6447, Staphylococcus aureus 180, Pseudomonas aeruginosa 8180, Proteus mirabilis F 403, P. mirabilis 6054, and Proteus vulgaris 8718) was studied by the disc method on the solid nutrient. Physic-chemical properties of the PUFs (density, tensile strength and elongation at break, water absorption and vapor permeability) showed that all studied PUFs are within the operational requirements for such materials and represent fine-cellular foams. Spectral studies confirmed the incorporation of DOMQ into the PUF's macrochain. PUFs are characterized by microheterogeneous structure. They are antibacterially active, non

  1. A study on biological activity of marine fungi from different habitats in coastal regions.

    PubMed

    Zhou, Songlin; Wang, Min; Feng, Qi; Lin, Yingying; Zhao, Huange

    2016-01-01

    In recent years, marine fungi have become an important source of active marine natural products. Former researches are limited in habitats selection of fungi with bioactive compounds. In this paper were to measure antibacterial and antitumor cell activity for secondary metabolites of marine fungi, which were isolated from different habitats in coastal regions. 195 strains of marine fungi were isolated and purified from three different habitats. They biologically active experiment results showed that fungi isolation from the mangrove habitats had stronger antibacterial activity than others, and the stains isolated from the estuarial habitats had the least antibacterial activity. However, the strains separated from beach habitats strongly inhibited tumor cell proliferation in vitro, and fungi of mangrove forest habitats had the weakest activity of inhibiting tumor. Meanwhile, 195 fungal strains belonged to 46 families, 84 genera, 142 species and also showed 137 different types of activity combinations by analyzing the inhibitory activity of the metabolites fungi for 4 strains of pathogenic bacteria and B-16 cells. The study investigated the biological activity of marine fungi isolated from different habitats in Haikou coastal regions. The results help us to understand bioactive metabolites of marine fungi from different habitats, and how to selected biological activity fungi from various marine habitats effectively.

  2. Zoanthid mucus as new source of useful biologically active proteins.

    PubMed

    Guarnieri, Míriam Camargo; de Albuquerque Modesto, Jeanne Claíne; Pérez, Carlos Daniel; Ottaiano, Tatiana Fontes; Ferreira, Rodrigo da Silva; Batista, Fabrício Pereira; de Brito, Marlon Vilela; Campos, Ikaro Henrique Mendes Pinto; Oliva, Maria Luiza Vilela

    2018-03-01

    Palythoa caribaeorum is a very common colonial zoanthid in the coastal reefs of Brazil. It is known for its massive production of mucus, which is traditionally used in folk medicine by fishermen in northeastern Brazil. This study identified biologically active compounds in P. caribaerum mucus. Crude mucus was collected during low tides by the manual scraping of colonies; samples were maintained in an ice bath, homogenized, and centrifuged at 16,000 g for 1 h at 4 °C; the supernatant (mucus) was kept at -80 °C until use. The enzymatic (proteolytic and phospholipase A 2 ), inhibitory (metallo, cysteine and serine proteases), and hemagglutinating (human erythrocyte) activities were determined. The results showed high levels of cysteine and metallo proteases, intermediate levels of phosholipase A 2 , low levels of trypsin, and no elastase and chymotrypsin like activities. The mucus showed potent inhibitory activity on snake venom metalloproteases and cysteine proteinase papain. In addition, it showed agglutinating activity towards O + , B + , and A + erythrocyte types. The hemostatic results showed that the mucus prolongs the aPTT and PT, and strongly inhibited platelet aggregation induced by arachidonic acid, collagen, epinephrine, ADP, and thrombin. The antimicrobial activity was tested on 15 strains of bacteria and fungi through the radial diffusion assay in agar, and no activity was observed. Compounds in P. caribaeorum mucus were analyzed for the first time in this study, and our results show potential pharmacological activities in these compounds, which are relevant for use in physiopathological investigations. However, the demonstration of these activities indicates caution in the use of crude mucus in folk medicine. Furthermore, the present or absent activities identified in this mucus suggest that the studied P. caribaeorum colonies were in thermal stress conditions at the time of sample collection; these conditions may precede the bleaching

  3. The impact of loading approach and biological activity on NOM removal by ion exchange resins.

    PubMed

    Winter, Joerg; Wray, Heather E; Schulz, Martin; Vortisch, Roman; Barbeau, Benoit; Bérubé, Pierre R

    2018-05-01

    The present study investigated the impact of different loading approaches and microbial activity on the Natural Organic Matter (NOM) removal efficiency and capacity of ion exchange resins. Gaining further knowledge on the impact of loading approaches is of relevance because laboratory-scale multiple loading tests (MLTs) have been introduced as a simpler and faster alternative to column tests for predicting the performance of IEX, but only anecdotal evidence exists to support their ability to forecast contaminant removal and runtime until breakthrough of IEX systems. The overall trends observed for the removal and the time to breakthrough of organic material estimated using MLTs differed from those estimated using column tests. The results nonetheless suggest that MLTs could best be used as an effective tool to screen different ion exchange resins in terms of their ability to remove various contaminants of interest from different raw waters. The microbial activity was also observed to impact the removal and time to breakthrough. In the absence of regeneration, a microbial community rapidly established itself in ion exchange columns and contributed to the removal of organic material. Biological ion exchange (BIEX) removed more organic material and enabled operation beyond the point when the resin capacity would have otherwise been exhausted using conventional (i.e. in the absence of a microbial community) ion exchange. Furthermore, significantly greater removal of organic matter could be achieved with BIEX than biological activated carbon (BAC) (i.e. 56 ± 7% vs. 15 ± 5%, respectively) when operated at similar loading rates. The results suggest that for some raw waters, BIEX could replace BAC as the technology of choice for the removal of organic material. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Structure Diversity, Synthesis, and Biological Activity of Cyathane Diterpenoids in Higher Fungi.

    PubMed

    Tang, Hao-Yu; Yin, Xia; Zhang, Cheng-Chen; Jia, Qian; Gao, Jin-Ming

    2015-01-01

    Cyathane diterpenoids, occurring exclusively in higher basidiomycete (mushrooms), represent a structurally diverse class of natural products based on a characteristic 5-6-7 tricyclic carbon scaffold, including 105 members reported to date. These compounds show a diverse range of biological activities, such as antimicrobial, anti-MRSA, agonistic toward the kappa-opioid receptor, antiinflammatory, anti-proliferative and nerve growth factor (NGF)-like properties. The present review focuses on the structure diversity, structure elucidation and biological studies of these compounds, including mechanisms of actions and structure-activity relationships (SARs). In addition, new progress in chemical synthesis of cyathane diterpenoids is discussed.

  5. Modeling Radial Holoblastic Cleavage: A Laboratory Activity for Developmental Biology.

    ERIC Educational Resources Information Center

    Ellis, Linda K.

    2000-01-01

    Introduces a laboratory activity designed for an undergraduate developmental biology course. Uses Play-Doh (plastic modeling clay) to build a multicellular embryo in order to provide a 3-D demonstration of cleavage. Includes notes for the instructor and student directions. (YDS)

  6. Microbial Survey of a Full-Scale, Biologically Active Filter for Treatment of Drinking Water

    PubMed Central

    DeBry, Ronald W.; Lytle, Darren A.

    2012-01-01

    The microbial community of a full-scale, biologically active drinking water filter was surveyed using molecular techniques. Nitrosomonas, Nitrospira, Sphingomonadales, and Rhizobiales dominated the clone libraries. The results elucidate the microbial ecology of biological filters and demonstrate that biological treatment of drinking water should be considered a viable alternative to physicochemical methods. PMID:22752177

  7. Plasma-Induced Degradation of Quercetin Associated with the Enhancement of Biological Activities.

    PubMed

    Kim, Tae Hoon; Lee, Jaemin; Kim, Hyun-Joo; Jo, Cheorun

    2017-08-16

    Nonthermal plasma is a promising technology to improve the safety and to extend the shelf-life of various minimally processed foods. However, research on plasma-induced systemic degradation related to changes in chemical structure and biological activity is still very limited. In this study, the enhancement of biological activity and the mechanism of degradation of the most common type of flavonol, quercetin, induced by a dielectric barrier discharge (DBD) plasma were investigated. Quercetin is dissolved in methanol and exposed to nonthermal DBD plasma for 5, 10, 20, and 30 min. The quercetin treated with the plasma for 20 min showed rapidly increased α-glucosidase inhibitory and radical scavenging activities compared to those of parent quercetin. The structures of the degradation products 1-3 from the quercetin treated with the plasma for 20 min were isolated and characterized by interpretation of their spectroscopic data. Among the generated products, (±)-alphitonin (1) exhibited significantly improved antidiabetic and antioxidant properties compared to those of the parent quercetin. The antidiabetic and antioxidant properties were measured by α-glucosidase inhibition and 1,1-diphenyl-2-picrylhydrazyl radical scavenging assays. These results suggested that structural changes in quercetin induced by DBD plasma might be attributable to improving the biological activity.

  8. A Vision and Change Reform of Introductory Biology Shifts Faculty Perceptions and Use of Active Learning

    PubMed Central

    Auerbach, Anna Jo; Schussler, Elisabeth

    2017-01-01

    Increasing faculty use of active-learning (AL) pedagogies in college classrooms is a persistent challenge in biology education. A large research-intensive university implemented changes to its biology majors’ two-course introductory sequence as outlined by the Vision and Change in Undergraduate Biology Education final report. One goal of the curricular reform was to integrate core biological concepts and competencies into the courses using AL pedagogical approaches. The purpose of this study was to observe the instructional practices used by faculty (N = 10) throughout the 3-year process of reform to determine whether the use of AL strategies (including student collaboration) increased, given that it can maximize student learning gains. Instructors participated in yearly interviews to track any change in their perceptions of AL instruction. Instructors increased their average use of AL by 12% (group AL by 8%) of total class time throughout the 3-year study. Interviews revealed that instructors shifted their definitions of AL and talked more about how to assess student learning over the 3 years of the project. Collaboration, feedback, and time may have been important factors in the reform, suggesting that small shifts over time can accumulate into real change in the classroom. PMID:29146663

  9. The Biological Activities of Oleocanthal from a Molecular Perspective

    PubMed Central

    Pang, Kok-Lun; Chin, Kok-Yong

    2018-01-01

    Oleocanthal is a minor constituent of olive oil with strong anti-inflammatory activities. Since the pathogenesis of many chronic diseases involves inflammatory and oxidative components, oleocanthal is a promising agent to prevent these conditions. This review aimed to summarise the current beneficial health effects of oleocanthal and the molecular basis of its biological actions. The anti-inflammatory, antioxidative, antimicrobial, anticancer and neuroprotective activities of oleocanthal have been examined by previous studies. Of these, studies on the anticancer effects have been the most extensive. Oleocanthal was reported to suppress melanoma, breast, liver, and colon cancer cells. Neurological studies focused on the effects of oleocanthal against Alzheimer’s disease. Oleocanthal improved clearance of the amyloid beta protein from neurons and reduced the inflammation of astrocytes. Despite the positive results, validation of the biological effects of oleocanthal in animal disease models is limited and should be emphasized in the future. As a conclusion, oleocanthal may act together with other bioactive compounds in olive oil to achieve its therapeutic potential. The use of oleocanthal alone as a single therapeutic measure awaits validation from future studies. PMID:29734791

  10. The Biological Activities of Oleocanthal from a Molecular Perspective.

    PubMed

    Pang, Kok-Lun; Chin, Kok-Yong

    2018-05-06

    Oleocanthal is a minor constituent of olive oil with strong anti-inflammatory activities. Since the pathogenesis of many chronic diseases involves inflammatory and oxidative components, oleocanthal is a promising agent to prevent these conditions. This review aimed to summarise the current beneficial health effects of oleocanthal and the molecular basis of its biological actions. The anti-inflammatory, antioxidative, antimicrobial, anticancer and neuroprotective activities of oleocanthal have been examined by previous studies. Of these, studies on the anticancer effects have been the most extensive. Oleocanthal was reported to suppress melanoma, breast, liver, and colon cancer cells. Neurological studies focused on the effects of oleocanthal against Alzheimer’s disease. Oleocanthal improved clearance of the amyloid beta protein from neurons and reduced the inflammation of astrocytes. Despite the positive results, validation of the biological effects of oleocanthal in animal disease models is limited and should be emphasized in the future. As a conclusion, oleocanthal may act together with other bioactive compounds in olive oil to achieve its therapeutic potential. The use of oleocanthal alone as a single therapeutic measure awaits validation from future studies.

  11. Urine: Waste product or biologically active tissue?

    PubMed

    2018-03-01

    Historically, urine has been viewed primarily as a waste product with little biological role in the overall health of an individual. Increasingly, data suggest that urine plays a role in human health beyond waste excretion. For example, urine might act as an irritant and contribute to symptoms through interaction with-and potential compromise of-the urothelium. To explore the concept that urine may be a vehicle for agents with potential or occult bioactivity and to discuss existing evidence and novel research questions that may yield insight into such a role, the National Institute of Diabetes and Digestive and Kidney Disease invited experts in the fields of comparative evolutionary physiology, basic science, nephrology, urology, pediatrics, metabolomics, and proteomics (among others) to a Urinology Think Tank meeting on February 9, 2015. This report reflects ideas that evolved from this meeting and current literature, including the concept of urine quality, the biological, chemical, and physical characteristics of urine, including the microbiota, cells, exosomes, pH, metabolites, proteins, and specific gravity (among others). Additionally, the manuscript presents speculative, and hopefully testable, ideas about the functional roles of urine constituents in health and disease. Moving forward, there are several questions that need further understanding and pursuit. There were suggestions to consider actively using various animal models and their biological specimens to elaborate on basic mechanistic information regarding human bladder dysfunction. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  12. Studies on the toxic effects of pentachlorophenol on the biological activity of anaerobic granular sludge.

    PubMed

    Liu, Xin-Wen; He, Ruo; Shen, Dong-Sheng

    2008-09-01

    In order to explore the pathway of the anaerobic biotreatment of the wastewater containing pentachlorophenol (PCP) and ensure the normal operation of Upflow Anaerobic Sludge Blanket (UASB) reactor, the anaerobic sludge under different acclimation conditions were selected to seed and start up UASB reactors. Anaerobic toxicity assays were employed to study the biological activity, the tolerance and the capacity to degrade PCP of different anaerobic granular sludge from UASB reactors. Results showed that the anaerobic granular sludge acclimated to chlorophenols (CPs) could degrade PCP more quickly (up to 9.50mg-PCP g(-1)TVS d(-1)). And the anaerobic granular sludge without acclimation to CPs had only a little activity of degrading PCP (less than 0.07 mg-PCP g(-1)TVS d(-1)). Different PCP concentrations (2, 4, 6, 8 mg L(-1)) had different inhibition effects on glucose utilization, volatile fatted acidity (VFA)-degrading and methanogens activity of PCP degradation anaerobic granular sludge, and the biological activity declined with the increase in PCP concentration. The methanogens activity suffered inhibition from PCP more easily. The different acclimation patterns of seeded sludge had distinctly different effects on biological activity of the degradation of PCP of anaerobic granular sludge from UASB reactors. The biological activity of the anaerobic granular sludge acclimated to PCP only was also inhibited. This inhibition was weak compared to that of anaerobic granular sludge acclimated to CPs, further, the activity could recover more quickly in this case. In the same reactor, the anaerobic granular sludge from the mid and base layers showed higher tolerance to PCP than that from super layer or if the sludge is unacclimated to CPs, and the corresponding recovery time of the biological activity in the mid and base layers were short. Acetate-utilizing methanogens and syntrophic propinate degraders were sensitive to PCP, compared to syntrophic butyrate degraders.

  13. Milk kefir: composition, microbial cultures, biological activities, and related products

    PubMed Central

    Prado, Maria R.; Blandón, Lina Marcela; Vandenberghe, Luciana P. S.; Rodrigues, Cristine; Castro, Guillermo R.; Thomaz-Soccol, Vanete; Soccol, Carlos R.

    2015-01-01

    In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir’s exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir’s microflora and the importance of kefiran as a beneficial health substance. PMID:26579086

  14. [Correction of schoolchildren's diets with biologically active additives].

    PubMed

    Diudiakov, A A; Rakhmanov, R S; Korotunov, Iu V; Gruzdeva, A E

    2002-01-01

    The actual nutrition of schoolchildren in the Nizni-Novgorod district is imbalanced due to the deficiency of protein and vitamins and to the high contents of fats and carbohydrates. The authors provide evidence for a combined preparation to correct the children's diets, which incorporates animal protein, biologically active plant additives, and egg-shell calcium. The use of the preparation in combination with liquid bifidumbacterin contributes to increases in morphofunctional parameters in adolescents.

  15. Synthesis, characterization and deepening in the comprehension of the biological action mechanisms of a new nickel complex with antiproliferative activity.

    PubMed

    Buschini, Annamaria; Pinelli, Silvana; Pellacani, Claudia; Giordani, Federica; Ferrari, Marisa Belicchi; Bisceglie, Franco; Giannetto, Marco; Pelosi, Giorgio; Tarasconi, Pieralberto

    2009-05-01

    Thiosemicarbazones are versatile organic compounds that present considerable pharmaceutical interest because of a wide range of properties. In our laboratory we synthesised some new metal-complexes with thiosemicarbazones derived from natural aldehydes which showed peculiar biological activities. In particular, a nickel complex [Ni(S-tcitr)(2)] (S-tcitr=S-citronellalthiosemicarbazonate) was observed to induce an antiproliferative effect on U937, a human histiocytic lymphoma cell line, at low concentrations (IC(50)=14.4microM). Therefore, we decided to study the interactions of this molecule with various cellular components and to characterise the induced apoptotic pathway. Results showed that [Ni(S-tcitr)(2)] causes programmed cell death via down-regulation of Bcl-2, alteration of mitochondrial membrane potential and caspase-3 activity, regardless of p53 function. The metal complex is not active on G(0) cells (i.e. fresh leukocytes) but is able to induce perturbation of the cell cycle on stimulated lymphocytes and U937 cells, in which a G(2)/M block was detected. It reaches the nucleus where it induces, at low concentrations (2.5-5.0microM), DNA damage, which could be partially ascribed to oxidative stress. [Ni(S-tcitr)(2)] is moreover able to strongly reduce the telomerase activity. Although the biological target of this metal complex is still unknown, the reported data suggest that [Ni(S-tcitr)(2)] could be a good model for the synthesis of new metal thiosemicarbazones with specific biological activity.

  16. Chemical Composition and Biological Activities of Mono- and Heterofloral Bee Pollen of Different Geographical Origins

    PubMed Central

    Araújo, Jucilene Silva; Chambó, Emerson Dechechi; Costa, Maria Angélica Pereira de Carvalho; Cavalcante da Silva, Samira Maria Peixoto; Lopes de Carvalho, Carlos Alfredo; M. Estevinho, Leticia

    2017-01-01

    Recent research shows variations in pollen chemical constituents and, consequently, in their therapeutic properties. Mono and multifloral bee pollen extracts were investigated for antioxidant and enzyme inhibitory activity properties, phenolic compounds and fatty acid composition. Generally, Eucalyptus spp. and multifloral extracts exhibited potent inhibitory activity against α-amylase, acetylcholinesterase, tyrosinase, lipoxygenase, lipase and hyaluronidase. On the other hand, Miconia spp. demonstrated higher antihemolytic activity. Cocos nucifera and Miconia spp. extracts exhibited important antioxidant properties in the different assays (ABTS, DPPH, β-carotene/linoleic acid and reducing power). Moreover, these extracts had greater amounts of total phenols and flavonoids in comparison to others. The increase in antioxidant activity (decrease in EC50 values) was accompanied by an increase in the amount of total phenols in the extracts. The pollen extracts contained linoleic acid and α-linolenic acid as major fatty acids, followed by palmitic acid, and oleic acid. In this study, differences were observed in both chemical constituents and biological activities of the samples related to the geographical and botanical origin of bee pollen. PMID:28448467

  17. Investigation of innovative synthesis of biologically active compounds on the basis of newly developed reactions.

    PubMed

    Honda, Toshio

    2012-01-01

    Synthesis of biologically active compounds, including natural products and pharmaceutical agents, is an important and interesting research area since the large structural diversity and complexity of bioactive compounds make them an important source of leads and scaffolds in drug discovery and development. Many structurally and also biologically interesting compounds, including marine natural products, have been isolated from nature and have also been prepared on the basis of a computational design for the purpose of developing medicinal chemistry. In order to obtain a wide variety of derivatives of biologically active compounds from the viewpoint of medicinal chemistry, it is essential to establish efficient synthetic procedures for desired targets. Newly developed reactions should also be used for efficient synthesis of desired compounds. Thus, recent progress in the synthesis of biologically active compounds by focusing on the development of new reactions is summarized in this review article.

  18. Important biological activities induced by Thalassophryne maculosa fish venom.

    PubMed

    Sosa-Rosales, Josefina Ines; Piran-Soares, Ana Amélia; Farsky, Sandra H P; Takehara, Harumi Ando; Lima, Carla; Lopes-Ferreira, Mônica

    2005-02-01

    The accidents caused by Thalassophryne maculosa fish venoms are frequent and represent a public health problem in some regions of Venezuela. Most accidents occur in the fishing communities and tourists. The clinical picture is characterized by severe pain, dizziness, fever, edema, and necrosis. Due to the lack of efficient therapy it may take weeks, or even months for complete recovery of the victims. The investigations presented here were undertaken to assess the eletrophoretical profile and principal biological properties of the T. maculosa venom. Venom obtained from fresh captured specimens of this fish was tested in vitro or in animal models for a better characterization of its toxic activities. In contrast to other fish venoms, T. maculosa venom showed relative low LD50. The injection of venom in the footpad of mice reproduced a local inflammatory lesion similar to that described in humans. Significant increase of the nociceptive and edematogenic responses was observed followed within 48 h by necrosis. Pronounced alterations on microvascular hemodynamics were visualized after venom application. These alterations were represented by fibrin depots and thrombus formation followed by complete venular stasis and transient arteriolar contraction. T. maculosa venom is devoid of phospholipase A2 activity, but the venom showed proteolytic and myotoxic activities. SDS-Page analysis of the crude venom showed important bands: one band located above 97 M(w), one band between 68 and 97 M(w), one major band between 29 and 43 M(w) and the last one located below 18.4 M(w) Then, the results presented here support that T. maculosa venom present a mixture of bioactive toxins involved in a local inflammatory lesion.

  19. Synthesis, structural characterization and biological activity of two diastereomeric JA-Ile macrolactones.

    PubMed

    Jimenez-Aleman, Guillermo H; Machado, Ricardo A R; Görls, Helmar; Baldwin, Ian T; Boland, Wilhelm

    2015-06-07

    Jasmonates are phytohormones involved in a wide range of plant processes, including growth, development, senescence, and defense. Jasmonoyl-L-isoleucine (JA-Ile, 2), an amino acid conjugate of jasmonic acid (JA, 1), has been identified as a bioactive endogenous jasmonate. However, JA-Ile (2) analogues trigger different responses in the plant. ω-Hydroxylation of the pentenyl side chain leads to the inactive 12-OH-JA-Ile (3) acting as a “stop” signal. On the other hand, a lactone derivative of 12-OH-JA (5) (jasmine ketolactone, JKL) occurs in nature, although with no known biological function. Inspired by the chemical structure of JKL (6) and in order to further explore the potential biological activities of 12-modified JA-Ile derivatives, we synthesized two macrolactones (JA-Ile-lactones (4a) and (4b)) derived from 12-OH-JA-Ile (3). The biological activity of (4a) and (4b) was tested for their ability to elicit nicotine production, a well-known jasmonate dependent secondary metabolite. Both macrolactones showed strong biological activity, inducing nicotine accumulation to a similar extent as methyl jasmonate does in Nicotiana attenuata leaves. Surprisingly, the highest nicotine contents were found in plants treated with the JA-Ile-lactone (4b), which has (3S,7S) configuration at the cyclopentanone not known from natural jasmonates. Macrolactone (4a) is a valuable standard to explore for its occurrence in nature.

  20. Simultaneous biological nutrient removal: evaluation of autotrophic denitrification, heterotrophic nitrification, and biological phosphorus removal in full-scale systems.

    PubMed

    Littleton, Helen X; Daigger, Glen T; Strom, Peter F; Cowan, Robert A

    2003-01-01

    Simultaneous biological nutrient removal (SBNR) is the biological removal of nitrogen and phosphorus in excess of that required for biomass synthesis in a biological wastewater treatment system without defined anaerobic or anoxic zones. Evidence is growing that significant SBNR can occur in many systems, including the aerobic zone of systems already configured for biological nutrient removal. Although SBNR systems offer several potential advantages, they cannot be fully realized until the mechanisms responsible for SBNR are better understood. Consequently, a research program was initiated with the basic hypothesis that three mechanisms might be responsible for SBNR: the reactor macroenvironment, the floc microenvironment, and novel microorganisms. Previously, the nutrient removal capabilities of seven full-scale, staged, closed-loop bioreactors known as Orbal oxidation ditches were evaluated. Chemical analysis and microbiological observations suggested that SBNR occurred in these systems. Three of these plants were further examined in this research to evaluate the importance of novel microorganisms, especially for nitrogen removal. A screening tool was developed to determine the relative significance of the activities of microorganisms capable of autotrophic denitrification and heterotrophic nitrification-aerobic denitrification in biological nutrient removal systems. The results indicated that novel microorganisms were not substantial contributors to SBNR in the plants studied. Phosphorus metabolism (anaerobic release, aerobic uptake) was also tested in one of the plants. Activity within the mixed liquor that was consistent with current theories for phosphorus-accumulating organisms (PAOs) was observed. Along with other observations, this suggests the presence of PAOs in the facilities studied.

  1. Simulating Biological and Non-Biological Motion

    ERIC Educational Resources Information Center

    Bruzzo, Angela; Gesierich, Benno; Wohlschlager, Andreas

    2008-01-01

    It is widely accepted that the brain processes biological and non-biological movements in distinct neural circuits. Biological motion, in contrast to non-biological motion, refers to active movements of living beings. Aim of our experiment was to investigate the mechanisms underlying mental simulation of these two movement types. Subjects had to…

  2. Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals

    PubMed Central

    Nocerino, Nunzia; Fulgione, Andrea; Iannaccone, Marco; Tomasetta, Laura; Ianniello, Flora; Martora, Francesca; Lelli, Marco; Roveri, Norberto; Capuano, Federico; Capparelli, Rosanna

    2014-01-01

    The emergence of bacterial strains resistant to antibiotics is a general public health problem. Progress in developing new molecules with antimicrobial properties has been made. In this study, we evaluated the biological activity of a hybrid nanocomposite composed of synthetic biomimetic hydroxyapatite surface-functionalized by lactoferrin (LF-HA). We evaluated the antimicrobial, anti-inflammatory, and antioxidant properties of LF-HA and found that the composite was active against both Gram-positive and Gram-negative bacteria, and that it modulated proinflammatory and anti-inflammatory responses and enhanced antioxidant properties as compared with LF alone. These results indicate the possibility of using LF-HA as an antimicrobial system and biomimetic hydroxyapatite as a candidate for innovative biomedical applications. PMID:24623976

  3. Gifted and Talented Students' Views about Biology Activities in a Science and Art Center

    ERIC Educational Resources Information Center

    Özarslan, Murat; Çetin, Gülcan

    2018-01-01

    The aim of the study was to determine gifted and talented students' views about biology activities in a science and art center. The study was conducted with 26 gifted and talented students who studied at a science and art center in southwestern Turkey. Students studied animal and plant genus and species in biology activities. Data were collected…

  4. Active Learning Not Associated with Student Learning in a Random Sample of College Biology Courses

    PubMed Central

    Andrews, T. M.; Leonard, M. J.; Colgrove, C. A.; Kalinowski, S. T.

    2011-01-01

    Previous research has suggested that adding active learning to traditional college science lectures substantially improves student learning. However, this research predominantly studied courses taught by science education researchers, who are likely to have exceptional teaching expertise. The present study investigated introductory biology courses randomly selected from a list of prominent colleges and universities to include instructors representing a broader population. We examined the relationship between active learning and student learning in the subject area of natural selection. We found no association between student learning gains and the use of active-learning instruction. Although active learning has the potential to substantially improve student learning, this research suggests that active learning, as used by typical college biology instructors, is not associated with greater learning gains. We contend that most instructors lack the rich and nuanced understanding of teaching and learning that science education researchers have developed. Therefore, active learning as designed and implemented by typical college biology instructors may superficially resemble active learning used by education researchers, but lacks the constructivist elements necessary for improving learning. PMID:22135373

  5. Biological Activity of Peanut (Arachis hypogaea) Phytoalexins and Selected Natural and Synthetic Stilbenoids

    PubMed Central

    SOBOLEV, VICTOR S.; KHAN, SHABANA I.; TABANCA, NURHAYAT; WEDGE, DAVID E.; MANLY, SUSAN P.; CUTLER, STEPHEN J.; COY, MONIQUE R.; BECNEL, JAMES J.; NEFF, SCOTT A.; GLOER, JAMES B.

    2011-01-01

    The peanut plant (Arachis hypogaea L.), when infected by a microbial pathogen, is capable of producing stilbene-derived compounds that are considered antifungal phytoalexins. In addition, the potential health benefits of other stilbenoids from peanuts, including resveratrol and pterostilbene, have been acknowledged by several investigators. Despite considerable progress in peanut research, relatively little is known about the biological activity of the stilbenoid phytoalexins. This study investigated the activities of some of these compounds in a broad spectrum of biological assays. Since peanut stilbenoids appear to play roles in plant defense mechanisms, they were evaluated for their effects on economically important plant pathogenic fungi of the genera Colletotrichum, Botrytis, Fusarium, and Phomopsis. We further investigated these peanut phytoalexins, together with some related natural and synthetic stilbenoids (a total of 24 compounds) in a panel of bioassays to determine their anti-inflammatory, cytotoxic, and antioxidant activities in mammalian cells. Several of these compounds were also evaluated as mammalian opioid receptor competitive antagonists. Assays for adult mosquito and larvae toxicity were also performed. The results of these studies reveal that peanut stilbenoids, as well as related natural and synthetic stilbene derivatives, display a diverse range of biological activities. PMID:21314127

  6. A Review on the Medicinal Plant Dalbergia odorifera Species: Phytochemistry and Biological Activity

    PubMed Central

    2017-01-01

    The crucial medicinal plant Dalbergia odorifera T. Chen species belongs to genus Dalbergia, with interesting secondary metabolites, consisting of main classes of flavonoid, phenol, and sesquiterpene derivatives, as well as several arylbenzofurans, quinones, and fatty acids. Biological studies were carried out on extracts, fractions, and compounds from this species involved in cytotoxic assays; antibacterial, antioxidative, anti-inflammatory, antithrombotic, antiplatelet, antiosteosarcoma, antiosteoporosis, antiangiogenesis, and prostaglandin biosynthetic enzyme inhibition activities; vasorelaxant activities; alpha-glucosidase inhibitory activities; and many other effects. In terms of the valuable resources for natural new drugs development, D. odorifera species are widely used as medicinal drugs in many countries for treatment of cardiovascular diseases, cancer, diabetes, blood disorders, ischemia, swelling, necrosis, or rheumatic pain. Although natural products from this plant have been increasingly playing an important role in drug discovery programs, there is no supportive evidence to provide a general insight into phytochemical studies on D. odorifera species and biological activities of extracts, fractions, and isolated compounds. To a certain extent, this review deals with an overview of almost naturally occurring compounds from this species, along with extensive coverage of their biological evaluations. PMID:29348771

  7. Comparison of Biological Activity of Human Anti-Apical Membrane Antigen-1 Antibodies Induced by Natural Infection and Vaccination

    PubMed Central

    Miura, Kazutoyo; Zhou, Hong; Moretz, Samuel E.; Diouf, Ababacar; Thera, Mahamadou A; Dolo, Amagana; Doumbo, Ogobara; Malkin, Elissa; Diemert, David; Miller, Louis H.; Mullen, Gregory E.D.; Long, Carole A.

    2009-01-01

    Vaccines represent a significant potential means of decreasing global morbidity and mortality due to malaria. Clinical trials in the U.S. with Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) showed that the vaccine induced biologically active antibodies judged by an in vitro parasite Growth Inhibition Assay (GIA). However, the same vaccine in Malian adults did not increase biological activity although it elevated ELISA titers. As GIA has been used to evaluate the biological activity of antibodies induced by blood-stage malarial vaccine candidates, we explored this discrepancy in this study. We affinity purified AMA1-specific antibodies from both US vaccinees and from non-vaccinated individuals living in a malaria-endemic area of Mali, and performed ELISA and GIA. Both AMA1-specifc antibodies induced by vaccination (US) and by natural infection (Mali) have comparable biological activity in GIA when the ELISA titer is normalized. However, a fraction of Malians’ IgG which did not bind to AMA1 protein (Mali-non-AMA1 IgG) reduced the biological activity of the AMA1 antibodies from US vaccinees; in contrast, US-non-AMA1 IgGs did not show a reduction of the biological activity. Further investigation revealed that the reduction was due to malaria-specific IgGs in the Mali-non-AMA1 IgGs. The fact that both US- and Mali-AMA1-specific antibodies showed comparable biological activity supports further development of AMA1-based vaccines. However, the reduction of biological activity of AMA1-specific antibody by other malaria-specific IgGs likely explains the limited effect on growth-inhibitory activity of antibodies induced by AMA1 vaccination in Malian adults and may complicate efforts to develop a blood-stage malaria vaccine. PMID:19050299

  8. Visualizing preparation using asymmetrical choline-like ionic liquids for scanning electron microscope observation of non-conductive biological samples.

    PubMed

    Abe, Shigeaki; Hyono, Atsushi; Kawai, Koji; Yonezawa, Tetsu

    2014-03-01

    In this study, we investigated conductivity preparation for scanning electron microscope (SEM) observation that used novel asymmetrical choline-type room temperature ionic liquids (RTIL). By immersion in only an RTIL solution, clear SEM images of several types of biological samples were successfully observed. In addition, we could visualize protozoans using RTILs without any dilution. These results suggested that the asymmetrical choline-type RTILs used in this study are suitable for visualizing of biological samples by SEM. Treatment without the need for dilution can obviate the need for adjusting the RTIL concentration and provide for a rapid and easy conductivity treatment for insulating samples.

  9. The facing bias in biological motion perception: Effects of stimulus gender and observer sex.

    PubMed

    Schouten, Ben; Troje, Nikolaus F; Brooks, Anna; van der Zwan, Rick; Verfaillie, Karl

    2010-07-01

    Under orthographic projection, biological motion point-light walkers offer no cues to the order of the dots in depth: Views from the front and from the back result in the very same stimulus. Yet observers show a bias toward seeing a walker facing the viewer (Vanrie, Dekeyser, & Verfaillie, 2004). Recently, we reported that this facing bias strongly depends on the gender of the walker (Brooks et al., 2008). The goal of the present study was, first, to examine the robustness of the effect by testing a much larger subject sample and, second, to investigate whether the effect depends on observer sex. Despite the fact that we found a significant effect of figure gender, we clearly failed to replicate the strong effect observed in the original study. We did, however, observe a significant interaction between figure gender and observer sex.

  10. Method for photo-altering a biological system to improve biological effect

    DOEpatents

    Hill, Richard A.; Doiron, Daniel R.; Crean, David H.

    2000-08-01

    Photodynamic therapy is a new adjunctive therapy for filtration surgery that does not use chemotherapy agents or radiation, but uses pharmacologically-active sensitizing compounds to produce a titratable, localized, transient, post operative avascular conjunctiva. A photosensitizing agent in a biological system is selectively activated by delivering the photosensitive agent to the biological system and laser activating only a spatially selected portion of the delivered photosensitive agent. The activated portion of the photosensitive agent reacts with the biological system to obtain a predetermined biological effect. As a result, an improved spatial disposition and effectuation of the biological effect by the photosensitive agent in the biological system is achieved.

  11. The development of synthetic biology: a patent analysis.

    PubMed

    van Doren, Davy; Koenigstein, Stefan; Reiss, Thomas

    2013-12-01

    In the past decades, synthetic biology has gained interest regarding research and development efforts within the biotechnology domain. However, it is unclear to what extent synthetic biology has matured already into being commercially exploitable. By means of a patent analysis, this study shows that there is an increasing trend regarding synthetic biology related patent applications. The majority of retrieved patents relates to innovations facilitating the realisation of synthetic biology through improved understanding of biological systems. In addition, there is increased activity concerning the development of synthetic biology based applications. When looking at potential application areas, the majority of synthetic biology patents seems most relevant for the medical, energy and industrial sector. Furthermore, the analysis shows that most activity has been carried out by the USA, with Japan and a number of European countries considerably trailing behind. In addition, both universities and companies are major patent applicant actor types. The results presented here form a starting point for follow-up studies concerning the identification of drivers explaining the observed patent application trends in synthetic biology.

  12. Respiratory Tract Infections and the Role of Biologically Active Polysaccharides in Their Management and Prevention

    PubMed Central

    Jesenak, Milos; Urbancikova, Ingrid; Banovcin, Peter

    2017-01-01

    Respiratory tract infections (RTIs) are the most common form of infections in every age category. Recurrent respiratory tract infections (RRTIs), a specific form of RTIs, represent a typical and common problem associated with early childhood, causing high indirect and direct costs on the healthcare system. They are usually the consequence of immature immunity in children and high exposure to various respiratory pathogens. Their rational management should aim at excluding other severe chronic diseases associated with increased morbidity (e.g., primary immunodeficiency syndromes, cystic fibrosis, and ciliary dyskinesia) and at supporting maturity of the mucosal immune system. However, RRTIs can also be observed in adults (e.g., during exhausting and stressful periods, chronic inflammatory diseases, secondary immunodeficiencies, or in elite athletes) and require greater attention. Biologically active polysaccharides (e.g., β-glucans) are one of the most studied natural immunomodulators with a pluripotent mode of action and biological activity. According to many studies, they possess immunomodulatory, anti-inflammatory, and anti-infectious activities and therefore could be suggested as an effective part of treating and preventing RTIs. Based on published studies, the application of β-glucans was proven as a possible therapeutic and preventive approach in managing and preventing recurrent respiratory tract infections in children (especially β-glucans from Pleurotus ostreatus), adults (mostly the studies with yeast-derived β-glucans), and in elite athletes (studies with β-glucans from Pleurotus ostreatus or yeast). PMID:28726737

  13. Synthesis of Mono-PEGylated Growth Hormone Releasing Peptide-2 and Investigation of its Biological Activity.

    PubMed

    Hu, Xiaoyu; Xu, Beihua; Zhou, Ziniu

    2015-10-01

    The purpose of this study was to investigate an efficient synthetic route to the mono-PEGylated growth hormone releasing peptide-2 (GHRP-2) and its biological activity in vivo. The commercially available key PEGylating reagent, mPEG-NHS ester, was successfully utilized to the synthesis of mono-PEGylated GHRP-2, during which the PEGylation profiles of GHRP-2 were monitored by high-performance liquid chromatography (HPLC). The product was purified by cation exchange chromatography, and its biological activity was conducted in rats. The desired mono-PEGylated GHRP-2 as the major product was readily obtained in anhydrous aprotic solvent, such as dimethyl formamide (DMF) and dimethylsulfoxide (DMSO), when the molar ratio of mPEG-NHS ester to GHRP-2 was fixed to be 0.8:1. The products were characterized by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. The evaluation of the biological activity for the products showed that the mono-PEGylated GHRP-2 gave a more stable activity than GHRP-2, suggesting that PEGylation led to the increase in the half-life of GHRP-2 in plasma without greatly impairing the biological activity. PEGylation of the GHRP-2 is a good choice for the development of the GHRP-2 applications.

  14. Evaluating the biological activity of oil-polluted soils using a complex index

    NASA Astrophysics Data System (ADS)

    Kabirov, R. R.; Kireeva, N. A.; Kabirov, T. R.; Dubovik, I. Ye.; Yakupova, A. B.; Safiullina, L. M.

    2012-02-01

    A complex index characterizing the biological activity of soils (BAS) is suggested. It is based on an estimate of the level of activity of catalase; the number of heterotrophic and hydrocarbon oxidizing microorganisms, microscopic fungi, algae, and cyanobacteria; and the degree of development of higher plants and insects in the studied soil. The data on using the BAS coefficient for evaluating the efficiency of rehabilitation measures for oil-polluted soils are given. Such measures included introducing the following biological preparations: Lenoil based on a natural consortium of microorganisms Bacillus brevis and Arthrobacter sp.; the Azolen biofertilizer with complex action based on Azotobacter vinelandii; the Belvitamil biopreparation, which is the active silt of pulp and paper production; and a ready-mixed industrial association of aerobic and anaerobic microorganisms that contains hydrocarbon oxidizing microorganisms of the Arthrobacter, Bacillus, Candida, Desulfovibrio, and Pseudomonas genera.

  15. Biological Activity of Polynesian Calophyllum inophyllum Oil Extract on Human Skin Cells.

    PubMed

    Ansel, Jean-Luc; Lupo, Elise; Mijouin, Lily; Guillot, Samuel; Butaud, Jean-François; Ho, Raimana; Lecellier, Gaël; Raharivelomanana, Phila; Pichon, Chantal

    2016-07-01

    Oil from the nuts of Calophyllum inophyllum, locally called "Tamanu oil" in French Polynesia, was traditionally used for wound healing and to cure various skin problems and ailments. The skin-active effect of "Tamanu oil emulsion" was investigated on human skin cells (keratinocytes and dermal fibroblasts) and showed cell proliferation, glycosaminoglycan and collagen production, and wound healing activity. Transcriptomic analysis of the treated cells revealed gene expression modulation including genes involved in the metabolic process implied in O-glycan biosynthesis, cell adhesion, and cell proliferation. The presence of neoflavonoids as bioactive constituents in Tamanu oil emulsion may contribute to these biological activities. Altogether, consistent data related to targeted histological and cellular functions brought new highlights on the mechanisms involved in these biological processes induced by Tamanu oil effects in skin cells. Georg Thieme Verlag KG Stuttgart · New York.

  16. Biological Activities and Potential Oral Applications of N-Acetylcysteine: Progress and Prospects

    PubMed Central

    Pei, Yanping; Liu, Huan; Yang, Yi; Yang, Yanwei

    2018-01-01

    N-Acetylcysteine (NAC), a cysteine prodrug and glutathione (GSH) precursor, has been used for several decades in clinical therapeutic practices as a mucolytic agent and for the treatment of disorders associated with GSH deficiency. Other therapeutic activities of NAC include inhibition of inflammation/NF-κB signaling and expression of proinflammatory cytokines. N-Acetylcysteine is also a nonantibiotic compound possessing antimicrobial property and exerts anticarcinogenic and antimutagenic effects against certain types of cancer. Recently, studies describing potentially important biological and pharmacological activities of NAC have stimulated interests in using NAC-based therapeutics for oral health care. The present review focused on the biological activities of NAC and its potential oral applications. The potential side effects of NAC and formulations for drug delivery were also discussed, with the intent of advancing NAC-associated treatment modalities in oral medicine. PMID:29849877

  17. Physical Activity: A Tool for Improving Health (Part 1--Biological Health Benefits)

    ERIC Educational Resources Information Center

    Gallaway, Patrick J.; Hongu, Nobuko

    2015-01-01

    Extension educators have been promoting and incorporating physical activities into their community-based programs and improving the health of individuals, particularly those with limited resources. This article is the first of a three-part series describing the benefits of physical activity for human health: 1) biological health benefits of…

  18. Phage Display of a Biologically Active Bacillus thuringiensis Toxin

    PubMed Central

    Kasman, Laura M.; Lukowiak, Andrew A.; Garczynski, Stephen F.; McNall, Rebecca J.; Youngman, Phil; Adang, Michael J.

    1998-01-01

    Activated forms of Bacillus thuringiensis insecticidal toxins have consistently been found to form insoluble and inactive precipitates when they are expressed in Escherichia coli. Genetic engineering of these proteins to improve their effectiveness as biological pesticides would be greatly facilitated by the ability to express them in E. coli, since the molecular biology tools available for Bacillus are limited. To this end, we show that activated B. thuringiensis toxin (Cry1Ac) can be expressed in E. coli as a translational fusion with the minor phage coat protein of filamentous phage. Phage particles displaying this fusion protein were viable, infectious, and as lethal as pure toxin on a molar basis when the phage particles were fed to insects susceptible to native Cry1Ac. Enzyme-linked immunosorbent assay and Western blot analysis showed the fusion protein to be antigenically equivalent to native toxin, and micropanning with anti-Cry1Ac antibody was positive for the toxin-expressing phage. Phage display of B. thuringiensis toxins has many advantages over previous expression systems for these proteins and should make it possible to construct large libraries of toxin variants for screening or biopanning. PMID:9687463

  19. Cell-Selective Biological Activity of Rhodium Metalloinsertors Correlates with Subcellular Localization

    PubMed Central

    Komor, Alexis C.; Schneider, Curtis J.; Weidmann, Alyson G.; Barton, Jacqueline K.

    2013-01-01

    Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells. Ten distinct metalloinsertors with varying lipophilicities have been synthesized and their mismatch binding affinities and biological activities determined. Although DNA photocleavage experiments demonstrate that their binding affinities are quite similar, their cell-selective antiproliferative and cytotoxic activities vary significantly. Inductively coupled plasma mass spectrometry (ICP-MS) experiments have uncovered a relationship between the subcellular distribution of these metalloinsertors and their biological activities. Specifically, we find that all of our metalloinsertors localize in the nucleus at sufficient concentrations for binding to DNA mismatches. However, the metalloinsertors with high rhodium localization in the mitochondria show toxicity that is not selective for MMR-deficient cells, whereas metalloinsertors with less mitochondrial rhodium show activity that is highly selective for MMR-deficient versus proficient cells. This work supports the notion that specific targeting of the metalloinsertors to nuclear DNA gives rise to their cell-selective cytotoxic and antiproliferative activities. The selectivity in cellular targeting depends upon binding to mismatches in genomic DNA. PMID:23137296

  20. Biological activity of neosergeolide and isobrucein B (and two semi-synthetic derivatives) isolated from the Amazonian medicinal plant Picrolemma sprucei (Simaroubaceae).

    PubMed

    Silva, Ellen C C; Cavalcanti, Bruno C; Amorim, Rodrigo C N; Lucena, Jorcilene F; Quadros, Dulcimar S; Tadei, Wanderli P; Montenegro, Raquel C; Costa-Lotufo, Letícia V; Pessoa, Cláudia; Moraes, Manoel O; Nunomura, Rita C S; Nunomura, Sergio M; Melo, Marcia R S; Andrade-Neto, Valter F de; Silva, Luiz Francisco R; Vieira, Pedro Paulo R; Pohlit, Adrian M

    2009-02-01

    In the present study, in vitro techniques were used to investigate a range of biological activities of known natural quassinoids isobrucein B (1) and neosergeolide (2), known semi-synthetic derivative 1,12-diacetylisobrucein B (3), and a new semi-synthetic derivative, 12-acetylneosergeolide (4). These compounds were evaluated for general toxicity toward the brine shrimp species Artemia franciscana, cytotoxicity toward human tumour cells, larvicidal activity toward the dengue fever mosquito vector Aedes aegypti, haemolytic activity in mouse erythrocytes and antimalarial activity against the human malaria parasite Plasmodium falciparum. Compounds 1 and 2 exhibited the greatest cytotoxicity against all the tumor cells tested (IC50 = 5-27 microg/L) and against multidrug-resistant P. falciparum K1 strain (IC50 = 1.0-4.0 g/L) and 3 was only cytotoxic toward the leukaemia HL-60 strain (IC50 = 11.8 microg/L). Quassinoids 1 and 2 (LC50 = 3.2-4.4 mg/L) displayed greater lethality than derivative 4 (LC50 = 75.0 mg/L) toward A. aegypti larvae, while derivative 3 was inactive. These results suggest a novel application for these natural quassinoids as larvicides. The toxicity toward A. franciscana could be correlated with the activity in several biological models, a finding that is in agreement with the literature. Importantly, none of the studied compounds exhibited in vitro haemolytic activity, suggesting specificity of the observed cytotoxic effects. This study reveals the biological potential of quassinoids 1 and 2 and to a lesser extent their semi-synthetic derivatives for their in vitro antimalarial and cytotoxic activities.

  1. Evidence for a reduced heparin cofactor II biological activity in diabetes.

    PubMed

    Ceriello, A; Quatraro, A; Dello Russo, P; Marchi, E; Milani, M R; Giugliano, D

    1990-01-01

    A reduction of heparin cofactor II (HCII) biological activity, despite its normal plasma concentration, is reported in insulin-dependent diabetic patients. A good linear correlation between HCII activity and concentration is present in normal controls but not in diabetics. In these subjects HCII activity correlates inversely with fasting blood glucose and glycated proteins but not with Hb A1. These data demonstrate the presence of a depressed HCII activity in the presence of its normal plasma concentration in insulin-dependent diabetics and suggest a role for short-term metabolic control in conditioning this phenomenon.

  2. PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance.

    PubMed

    van Oers, Johanna M M; Roa, Sergio; Werling, Uwe; Liu, Yiyong; Genschel, Jochen; Hou, Harry; Sellers, Rani S; Modrich, Paul; Scharff, Matthew D; Edelmann, Winfried

    2010-07-27

    The DNA mismatch repair protein PMS2 was recently found to encode a novel endonuclease activity. To determine the biological functions of this activity in mammals, we generated endonuclease-deficient Pms2E702K knock-in mice. Pms2EK/EK mice displayed increased genomic mutation rates and a strong cancer predisposition. In addition, class switch recombination, but not somatic hypermutation, was impaired in Pms2EK/EK B cells, indicating a specific role in Ig diversity. In contrast to Pms2-/- mice, Pms2EK/EK male mice were fertile, indicating that this activity is dispensable in spermatogenesis. Therefore, the PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance and tumor suppression.

  3. Auto-induction for high level production of biologically active reteplase in Escherichia coli.

    PubMed

    Fathi-Roudsari, Mehrnoosh; Maghsoudi, Nader; Maghsoudi, Amirhossein; Niazi, Sepideh; Soleiman, Morvarid

    2018-06-07

    Reteplase is a third generation tissue plasminogen activator (tPA) with a modified structure and prolonged half-life in comparison to native tPA. As a non-glycosylated protein, reteplase is expressed in Escherichia coli. Due to presence of several disulfide bonds, high level production of reteplase is complicated and needs extra steps for conversion to biologically active form. Auto-induction represents a method for high-yield growth of bacterial cells and higher expression of recombinant proteins. Here we have tried to optimize the auto-induction procedure for soluble and active expression of reteplase in E. coli. Results showed that using auto-induction strategy at 37 °C, Rosetta-gami (DE3) had the highest level of active and soluble reteplase production in comparison to E. coli strains BL21 (DE3), and Shuffel T7. Temperature dominantly affected the level of active reteplase production. Decreasing the temperature to 25 and 18 °C increased the level of active reteplase by 20 and 60%, respectively. The composition of auto-induction medium also dramatically changed the active production of reteplase in cytoplasm. Using higher enriched auto-induction medium, super broth base including trace elements, significantly increased biologically active reteplase by 30%. It is demonstrated here that auto-induction is a powerful method for expression of biologically active reteplase in oxidative cytoplasm of Rosetta-gami. Optimizing expression condition by decreasing temperature and using an enriched auto-induction medium resulted in at least three times higher level of active reteplase production. Production of correctly folded and active reteplase in spite of its complex structure helps for removal of inefficient and cumbersome step of refolding. Copyright © 2018. Published by Elsevier Inc.

  4. A Review of the Composition of the Essential Oils and Biological Activities of Angelica Species.

    PubMed

    Sowndhararajan, Kandasamy; Deepa, Ponnuvel; Kim, Minju; Park, Se Jin; Kim, Songmun

    2017-09-20

    A number of Angelica species have been used in traditional systems of medicine to treat many ailments. Especially, essential oils (EOs) from the Angelica species have been used for the treatment of various health problems, including malaria, gynecological diseases, fever, anemia, and arthritis. EOs are complex mixtures of low molecular weight compounds, especially terpenoids and their oxygenated compounds. These components deliver specific fragrance and biological properties to essential oils. In this review, we summarized the chemical composition and biological activities of EOs from different species of Angelica . For this purpose, a literature search was carried out to obtain information about the EOs of Angelica species and their bioactivities from electronic databases such as PubMed, Science Direct, Wiley, Springer, ACS, Google, and other journal publications. There has been a lot of variation in the EO composition among different Angelica species. EOs from Angelica species were reported for different kinds of biological activities, such as antioxidant, anti-inflammatory, antimicrobial, immunotoxic, and insecticidal activities. The present review is an attempt to consolidate the available data for different Angelica species on the basis of major constituents in the EOs and their biological activities.

  5. Laser Plasma Soft X-ray Microscope with Wolter Mirrors for Observation of Biological Specimens in Air

    NASA Astrophysics Data System (ADS)

    Hoshino, Masato; Aoki, Sadao

    2006-02-01

    A laser plasma soft X-ray microscope with Wolter mirrors was developed so that specimens could be set in the atmosphere. Silicon nitride membranes 100 nm thick were used as vacuum-tight windows. Using relatively large windows (0.46× 0.46 mm2), an adequate working distance for samples, which was approximately 1.2 mm, was assured. The endurance of the vacuum-tight window was measured briefly. Dry biological cells could be observed with resolution better than 100 nm. A preliminary observation of wet biological cells was carried out using a wet environmental sample holder which was composed of only two sheets of silicon nitride membrane. An X-ray micrograph of wet red blood cells from a chicken was obtained without apparent effects of radiation damage. The properties of a vacuum-tight window and a wet sample holder are discussed.

  6. Synthesis and biological activity of imidazopyridine anticoccidial agents: part I.

    PubMed

    Scribner, Andrew; Dennis, Richard; Hong, Jean; Lee, Shuliang; McIntyre, Donald; Perrey, David; Feng, Dennis; Fisher, Michael; Wyvratt, Matthew; Leavitt, Penny; Liberator, Paul; Gurnett, Anne; Brown, Chris; Mathew, John; Thompson, Donald; Schmatz, Dennis; Biftu, Tesfaye

    2007-01-01

    Coccidiosis is the major cause of morbidity and mortality in the poultry industry. Protozoan parasites of the genus Eimeria invade the intestinal lining of the avian host causing tissue pathology, poor weight gain, and in some cases mortality. Resistance to current anticoccidials has prompted the search for new therapeutic agents with potent in vitro and in vivo activity against Eimeria. Antiparasitic activity is due to inhibition of a parasite specific cGMP-dependent protein kinase (PKG). In this study, we present the synthesis and biological activity of imidazo[1,2-a]pyridine anticoccidial agents. From this series, several compounds showed subnanomolar in vitro activity and commercial levels of in vivo activity. However, the potential genotoxicity of these compounds precludes them from further development.

  7. Biological Activity Predictions and Hydrogen Bonding Analysis in Quinolines

    NASA Astrophysics Data System (ADS)

    Gupta, Palvi; Kamni

    The paper has been designed to make a comprehensive review of a particular series of organic molecular assembly in the form of compendium. An overview of general description of fifteen quinoline derivatives has been given. The biological activity spectra of quinoline derivatives have been correlated on structure activity relationships base which provides the different Pa (possibility of activity) and Pi (possibility of inactivity) values. Expositions of the role of intermolecular interactions in the identified derivatives have been discussed with the standard distance and angle cut-off criteria criteria as proposed by Desiraju and Steiner (1999) in an International monogram on crystallography. Distance-angle scatter plots for intermolecular interactions are presented for a better understanding of the packing interactions which exist in quinoline derivatives.

  8. Neural correlates of coherent and biological motion perception in autism.

    PubMed

    Koldewyn, Kami; Whitney, David; Rivera, Susan M

    2011-09-01

    Recent evidence suggests those with autism may be generally impaired in visual motion perception. To examine this, we investigated both coherent and biological motion processing in adolescents with autism employing both psychophysical and fMRI methods. Those with autism performed as well as matched controls during coherent motion perception but had significantly higher thresholds for biological motion perception. The autism group showed reduced posterior Superior Temporal Sulcus (pSTS), parietal and frontal activity during a biological motion task while showing similar levels of activity in MT+/V5 during both coherent and biological motion trials. Activity in MT+/V5 was predictive of individual coherent motion thresholds in both groups. Activity in dorsolateral prefrontal cortex (DLPFC) and pSTS was predictive of biological motion thresholds in control participants but not in those with autism. Notably, however, activity in DLPFC was negatively related to autism symptom severity. These results suggest that impairments in higher-order social or attentional networks may underlie visual motion deficits observed in autism. © 2011 Blackwell Publishing Ltd.

  9. Neural correlates of coherent and biological motion perception in autism

    PubMed Central

    Koldewyn, Kami; Whitney, David; Rivera, Susan M.

    2011-01-01

    Recent evidence suggests those with autism may be generally impaired in visual motion perception. To examine this, we investigated both coherent and biological motion processing in adolescents with autism employing both psychophysical and fMRI methods. Those with autism performed as well as matched controls during coherent motion perception but had significantly higher thresholds for biological motion perception. The autism group showed reduced posterior Superior Temporal Sulcus (pSTS), parietal and frontal activity during a biological motion task while showing similar levels of activity in MT+/V5 during both coherent and biological motion trials. Activity in MT+/V5 was predictive of individual coherent motion thresholds in both groups. Activity in dorsolateral prefrontal cortex (DLPFC) and pSTS was predictive of biological motion thresholds in control participants but not in those with autism. Notably, however, activity in DLPFC was negatively related to autism symptom severity. These results suggest that impairments in higher-order social or attentional networks may underlie visual motion deficits observed in autism. PMID:21884323

  10. Biological activities of red propolis: a rewiew

    PubMed

    de Figueiredo, Sonia M; de Freitas, Marcia Christina Dornelas; de Oliveira, Daiana Teixeira; de Miranda, Marina Barcelos; Vieira-Filho, Sidney Augusto; Caligiorne, Rachel Basques

    2018-02-23

    • Background: The red propolis (RdProp) is a resin produced by Apis mellifera bees, which collect the reddish exudate on the surface of its botanic source, the species Dalbergiae castophyllum, popularly known in Brazil as "rabo de bugio". Considered as the 13th type of Brazilian propolis, this resin has been gaining prominence due to its natural composition, rich in bioactive substances not found in other types of propolis. • Objective: This review aims to address the most important characteristics of PV, its botanical origin, the main constituents, its biological properties and the patents related to this natural product. • Method: By means of the SciFinder, Google Patents, Patus® and Spacenet, scientific articles and patents involving the term "red propolis" were searched until August 2017 • Results: A number of biological properties, including antimicrobial, anti-inflammatory, antiparasitic, antitumor, antioxidant, metabolic and nutraceutical activities are attributed to RdProp, demonstrating the great potential of its use in the food, pharmaceutical and cosmetics industries. • Conclusion: The available papers are associated to pharmacological potential of RdProp, but the molecular mechanisms or bioactive compounds responsible for each activity have not yet been fully elucidated. The RdProp patents currently found are directed to components for the pharmaceutical industry (EP2070543A1; WO2014186851A1; FR3006589A1; CN1775277A; CN105797149A; CN1879859A), cosmetic (JP6012138B2; JP2008247830A; JP6012138B2) and food (JP5478392B2; CN101380052A; WO2006038690A1). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. A prospective observational study of pigmented naevi changes in psoriasis patients on biologic therapy.

    PubMed

    Choi, Seohee Deanne; D'Souza, Mario I; Menzies, Scott W; Weninger, Wolfgang

    2018-05-23

    Patients on biologic therapy are thought to be at increased risk of developing non-melanoma skin cancers and melanomas. It is unknown whether biologic therapy alters the natural history of melanocytic naevi. Therefore, a prospective observational study was conducted to determine whether psoriasis patients on biologic therapy develop changes in naevi. Clinical and dermoscopic assessment of all melanocytic naevi was performed in 45 psoriasis patients on biologic therapy versus a control cohort of 43 subjects, using sequential digital dermoscopic imaging and total body photography. The mean follow-up period was 1.5 years. The study and control patients had comparable age, gender, previous and family history of non-melanoma skin cancers and melanomas, as well as previous sun exposure and total number of naevi. The number of naevi with major dermoscopic changes was 3% in the study and 1.9% in the control group, with an adjusted incidence rate ratio of 1.45 (95% confidence interval 0.90-2.33; P = 0.125). The rate of minor changes was 15.9% in the study group versus 19.4% in the control (adjusted incidence rate ratio 0.77, 95% confidence interval 0.57-1.08; P = 0.14). There were six new dysplastic naevi in 4/45 biologic patients and four in 4/43 controls; however, the difference was not significant (relative risk 0.96, 95% confidence interval -0.12 to 0.12; P = 0.95). There were no melanomas in either group. Over a mean follow-up period of 1.5 years there was no evidence of significantly different changes in naevi or development of new dysplastic naevi in psoriasis patients on biologic treatment compared to controls. © 2018 The Australasian College of Dermatologists.

  12. Serotonin (5-HT) released by activated white blood cells in a biological fuel cell provide a potential energy source for electricity generation.

    PubMed

    Justin, Gusphyl A; Sun, Mingui; Zhang, Yingze; Cui, X Tracy; Sclabassi, Robert

    2006-01-01

    Previous studies by our group have demonstrated the ability of white blood cells to generate small electrical currents, on the order of 1-3 microA/cm(2), when placed at the anode compartment of a proton exchange membrane (PEM) biological fuel cell. In this research study, an electrochemical technique is used to further investigate the electron transfer ability of activated white blood cells at interfacing electrodes in an attempt to elucidate the mechanism of electron transfer in the original biological fuel cell experiments. Cyclic voltammograms were obtained for human white blood cells using a three-electrode system. The working and counter electrodes were made from carbon felt and platinum, respectively, while the reference was a saturated calomel electrode (SCE). Oxidation peaks were observed at an average potential of 363 mV vs. SCE for the PMA/ionomycin activated white blood cells in glucose solution. However a corresponding reduction peak was not observed, suggesting irreversibility of the redox reaction. The cyclic voltammograms recorded for the white blood cells bear very close similarities to those of the neurotransmitter serotonin (5-HT). Serotonin released by white blood cells into the extracellular environment may be irreversibly oxidized at the working electrode in the cyclic voltammetry experiments and at the PEM biological fuel cell anode in our earlier electrochemical cell studies.

  13. Millimeter wavelength observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.

    1973-01-01

    Polarization properties of active regions at 9 mm are discussed, and the observed degree of polarization is used to obtain an estimate of chromospheric magnetic fields. Also discussed is the polarization structure at 9 mm of an active region that produced a minor flare around 1900 UT on September 28, 1971. Total power observations indicate that new regions develop, or weak regions intensify at millimeter wavelengths as a result of bursts at distant sites. The spectra of the peak flux density of moderately strong bursts observed at 9 mm show a sharp drop toward the shorter millimeter wavelengths. The weak bursts at 3.5 mm are manifest mainly as heating phenomena.

  14. Exploiting biological activities of brown seaweed Ecklonia cava for potential industrial applications: a review.

    PubMed

    Wijesinghe, W A J P; Jeon, You-Jin

    2012-03-01

    Seaweeds are rich in vitamins, minerals, dietary fibres, proteins, polysaccharides and various functional polyphenols. Many researchers have focused on brown algae as a potential source of bioactive materials in the past few decades. Ecklonia cava is a brown seaweed that is abundant in the subtidal regions of Jeju Island in the Republic of Korea. This seaweed attracted extensive interest due to its multiple biological activities. E. cava has been identified as a potential producer of wide spectrum of natural substances such as carotenoids, fucoidans and phlorotannins showing different biological activities in vital industrial applications including pharmaceutical, nutraceutical, cosmeceutical and functional food. This review focuses on biological activities of the brown seaweed E. cava based on latest research results, including antioxidant, anticoagulative, antimicrobial, antihuman immunodeficiency virus, anti-inflammatory, immunomodulatory, antimutagenic, antitumour and anticancer effects. The facts summarized here may provide novel insights into the functions of E. cava and its derivatives and potentially enable their use as functional ingredients in potential industrial applications.

  15. Eurotium (Aspergillus) repens metabolites and their biological activity.

    PubMed

    Podojil, M; Sedmera, P; Vokoun, J; Betina, V; Baráthová, H; Duracková, Z; Horáková, K; Nemec, P

    1978-01-01

    Eurotium repens mycelium cultivated under static conditions was used to isolate and identify metabolities--echinulin, physcion, erythroglaucin, flavoglaucin and asperentin; the filtrate of the culture yielded asperentin 8-methylether. The broadest biological activity spectrum was displayed by asperentin which had antibacterial and antifungal effects and, at a concentration of 86 microgram/ml, caused 50% mor7 tality in Artemia saline larvae. The highest cytotoxicity towards HeLa cells was found in physcion which caused 50% growth inhibition at a concentration of 0.1 microgram/ml.

  16. The Dominance Behavioral System and Psychopathology: Evidence from Self-Report, Observational, and Biological Studies

    PubMed Central

    Johnson, Sheri L.; Leedom, Liane J.; Muhtadie, Luma

    2012-01-01

    The dominance behavioral system (DBS) can be conceptualized as a biologically-based system which guides dominance motivation, dominant and subordinate behavior, and responsivity to perceptions of power and subordination. A growing body of research suggests that problems with the DBS are evident across a broad range of psychopathologies. We begin by describing psychological, social, and biological correlates of the dominance behavioral system (DBS). Extensive research suggests that externalizing disorders, mania-proneness, and narcissistic traits are related to heightened dominance motivation and behaviors. Mania and narcissistic traits also appear related to inflated self-perceptions of power. Anxiety and depression are related to subordination and submissiveness, as well as a desire to avoid subordination. Models of the DBS have received support from research with humans and animals; from self-report, observational, and biological methods; and using naturalistic and experimental paradigms. Limitations of available research include the relative lack of longitudinal studies using multiple measures of the DBS and the absence of relevant studies using diagnosed samples to study narcissistic personality disorder and bipolar disorder. We provide suggestions for future research on the DBS and psychopathology, including investigations of whether the DBS can be used to differentiate specific disorder outcomes; the need for more sophisticated biological research; and the value of longitudinal dynamical research. Implications of using the DBS as a tool in clinical assessment and treatment are discussed. PMID:22506751

  17. An investigation of in vivo wound healing activity of biologically synthesized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaler, Abhishek; Mittal, Amit Kumar; Katariya, Mahesh; Harde, Harshad; Agrawal, Ashish Kumar; Jain, Sanyog; Banerjee, Uttam Chand

    2014-09-01

    Therapeutic use of nano-silver is claimed to have reduced side effects and enhanced curative activity as compared to its ionic counterpart (silver ions). The present work aims to screen microbes for the synthesis of silver nanoparticles (AgNPs), to formulate the nano-silver-based Carbopol gel and evaluating its wound healing efficacy on rat model. The goal was to develop the topical formulation based on bio-nano-silver to control the infection and healing the wounds with higher efficacy. Procedure involved the use of Saccharomyces boulardii for the synthesis of silver nanoparticles in the size range of 3-10 nm and these nanoparticles were used for the preparation of Carbopol-based nano-silver gel. Highly stable Carbopol nanogel was developed with good rheological properties. The burn wound healing potential of this nano-silver gel was evaluated on SD rats via visual observation, transepidermal water loss and histology of skin. Excellent wound healing was observed with AgNPs. Biologically synthesized AgNPs-based nano-silver gel showed superior wound healing efficacy as compared to marketed formulations and silver ions.

  18. Inclusion bodies and purification of proteins in biologically active forms.

    PubMed

    Mukhopadhyay, A

    1997-01-01

    Even though recombinant DNA technology has made possible the production of valuable therapeutic proteins, its accumulation in the host cell as inclusion body poses serious problems in the recovery of functionally active proteins. In the last twenty years, alternative techniques have been evolved to purify biologically active proteins from inclusion bodies. Most of these remain only as inventions and very few are commercially exploited. This review summarizes the developments in isolation, refolding and purification of proteins from inclusion bodies that could be used for vaccine and non-vaccine applications. The second section involves a discussion on inclusion bodies, how they are formed, and their physicochemical properties. In vivo protein folding in Escherichia coli and kinetics of in vitro protein folding are the subjects of the third and fourth sections respectively. The next section covers the recovery of bioactive protein from inclusion bodies: it includes isolation of inclusion body from host cell debris, purification in denatured state alternate refolding techniques, and final purification of active molecules. Since purity and safety are two important issues in therapeutic grade proteins, the following three sections are devoted to immunological and biological characterization of biomolecules, nature, and type of impurities normally encountered, and their detection. Lastly, two case studies are discussed to demonstrate the sequence of process steps involved.

  19. Polycyclic aromatic hydrocarbons pollution effect on soil biological activity in the anthropogenic contaminated area

    NASA Astrophysics Data System (ADS)

    Batukaev, Abdulmalik; Sushkova, Svetlana; Minkina, Tatiana; Antonenko, Elena; Salamova, Anzhelika; Gimp, Alina; Deryabkina, Irina

    2017-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are one of the most significant environmental contaminants with mutagenic and carcinogenic properties to all living organisms. The changes in microbial community structure in technogenic polluted soil may be used as tools for predicting and monitoring natural degradation and for search the most effective and appropriate pathways of bioremediation. The present study is aimed to research the biological activity of the soil in the emission zone of Novocherkassk Power station (NPs) (Russia) polluted by PAHs in 2015. The NPs is one of the largest thermal power stations in the south of Russia burning low-quality coal appurtenant the enterprises of I hazardous class. Monitoring plots were located on virgin or no-till fallow areas and not subject to the sanitary-protection zone of the NPs. Soil samples were taken from a depth of 0- to 20-cm, because the major part of PAHs are accumulated in the surface soil layer. The soils of the plots mainly include Chernozems Calcic (plots 1, 4, 5, 7, 9 and 10), Phaeozems Haplic (plots 3, 6, 8 and 11) Fluvisols Umbric (plots 2 and 12). In the soil of 12 monitoring plots located around NPs there were determined the main enzymes, abundance of soil bacteria and 17 priority PAHs. PAHs extraction from soil was performed by new developed ecologically clean method of subcritical water extraction without organic solvents (Sushkova et al., 2015). The level of PAHs around NPs is high at the nearest to factory monitoring plots situated at distance 1,0-1,2 km and reaches from 1600,1±14,7 up to 373,6±7,1 mkg/kg in the 20-cm soil layer. Gradually decrease of PAHs contamination is observed while increasing the distance from the NPs. The level of highmolecular PAHs (4-6 aromatic rings) exceeds the level of lowmolecular (2-3 aromatic rings) PAHs in all monitoring plots situated though the prevailing wind direction from NPs. The close correlations were found between PAHs content and biological activity parameters

  20. Golden Needle Mushroom: A Culinary Medicine with Evidenced-Based Biological Activities and Health Promoting Properties

    PubMed Central

    Tang, Calyn; Hoo, Pearl Ching-Xin; Tan, Loh Teng-Hern; Pusparajah, Priyia; Khan, Tahir Mehmood; Lee, Learn-Han; Goh, Bey-Hing; Chan, Kok-Gan

    2016-01-01

    Flammulina velutipes (enoki, velvet shank, golden needle mushroom or winter mushroom), one of the main edible mushrooms on the market, has long been recognized for its nutritional value and delicious taste. In recent decades, research has expanded beyond detailing its nutritional composition and delved into the biological activities and potential health benefits of its constituents. Many bioactive constituents from a range of families have been isolated from different parts of the mushroom, including carbohydrates, protein, lipids, glycoproteins, phenols, and sesquiterpenes. These compounds have been demonstrated to exhibit various biological activities, such as antitumour and anticancer activities, anti-atherosclerotic and thrombosis inhibition activity, antihypertensive and cholesterol lowering effects, anti-aging and antioxidant properties, ability to aid with restoring memory and overcoming learning deficits, anti-inflammatory, immunomodulatory, anti-bacterial, ribosome inactivation and melanosis inhibition. This review aims to consolidate the information concerning the phytochemistry and biological activities of various compounds isolated from F. velutipes to demonstrate that this mushroom is not only a great source of nutrients but also possesses tremendous potential in pharmaceutical drug development. PMID:28003804

  1. PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance

    PubMed Central

    van Oers, Johanna M. M.; Roa, Sergio; Werling, Uwe; Liu, Yiyong; Genschel, Jochen; Sellers, Rani S.; Modrich, Paul; Scharff, Matthew D.; Edelmann, Winfried

    2010-01-01

    The DNA mismatch repair protein PMS2 was recently found to encode a novel endonuclease activity. To determine the biological functions of this activity in mammals, we generated endonuclease-deficient Pms2E702K knock-in mice. Pms2EK/EK mice displayed increased genomic mutation rates and a strong cancer predisposition. In addition, class switch recombination, but not somatic hypermutation, was impaired in Pms2EK/EK B cells, indicating a specific role in Ig diversity. In contrast to Pms2−/− mice, Pms2EK/EK male mice were fertile, indicating that this activity is dispensable in spermatogenesis. Therefore, the PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance and tumor suppression. PMID:20624957

  2. Differential loss of biological activity of the enkephalins induced by current.

    PubMed

    Kitchen, I; Hart, S L

    1981-01-29

    Passage of current across solutions of enkephalins caused loss of biological activity of the peptides, this loss increasing as current strength was increased. The presence of a vas deferens tissue prevented the current-induced loss of activity of Leu-enkephalin but had no effect on the loss of activity of Met-enkephalin. These results provide a possible explanation for the differential potency of the enkephalins on the vas and provide a reason for the inability of several laboratories to show electrically induced enkephalin release.

  3. Empathy and feedback processing in active and observational learning.

    PubMed

    Rak, Natalia; Bellebaum, Christian; Thoma, Patrizia

    2013-12-01

    The feedback-related negativity (FRN) and the P300 have been related to the processing of one's own and other individuals' feedback during both active and observational learning. The aim of the present study was to elucidate the role of trait-empathic responding with regard to the modulation of the neural correlates of observational learning in particular. Thirty-four healthy participants completed an active and an observational learning task. On both tasks, the participants' aim was to maximize their monetary gain by choosing from two stimuli the one that showed the higher probability of reward. Participants gained insight into the stimulus-reward contingencies according to monetary feedback presented after they had made an active choice or by observing the choices of a virtual partner. Participants showed a general improvement in learning performance on both learning tasks. P200, FRN, and P300 amplitudes were larger during active, as compared with observational, learning. Furthermore, nonreward elicited a significantly more negative FRN than did reward in the active learning task, while only a trend was observed for observational learning. Distinct subcomponents of trait cognitive empathy were related to poorer performance and smaller P300 amplitudes for observational learning only. Taken together, both the learning performance and event-related potentials during observational learning are affected by different aspects of trait cognitive empathy, and certain types of observational learning may actually be disrupted by a higher tendency to understand and adopt other people's perspectives.

  4. Phytochemistry and biological activities of Heracleum persicum: a review.

    PubMed

    Majidi, Zahra; Sadati Lamardi, S N

    2018-05-24

    Heracleum persicum Desf. ex Fisch is used in Iranian traditional medicines, for the treatment of various diseases including neurological, gastrointestinal, respiratory, rheumatological and urinary tract diseases. In phytochemical analysis of H. persicum, several classes of natural chemicals including volatile (aliphatic esters, carbonyls, phenyl propenes and terpenes) and nonvolatile (flavonoids, furanocoumarins, tannins and alkaloids) constituents as well as different minerals have been identified. Scientific studies on H. persicum proved that it has a wide range of biological and pharmacological activities. This article has provided comprehensive information on Iranian traditional uses, phytochemistry and pharmacological activities of H. persicum. Copyright © 2018 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  5. Synthesis, investigation of the new derivatives of dihydropyrimidines and determination of their biological activity

    NASA Astrophysics Data System (ADS)

    Maharramov, A. M.; Ramazanov, M. A.; Guliyeva, G. A.; Huseynzada, A. E.; Hasanova, U. A.; Shikhaliyev, N. G.; Eyvazova, G. M.; Hajiyeva, S. F.; Mamedov, I. G.; Aghayev, M. M.

    2017-08-01

    We reported of synthesis and investigation of the new biologically active derivatives of dihydropyrimidines 2 and 3. The investigation of structures of compounds by various experiments of NMR spectroscopy revealed the splitting of the signals to doublets and multiplets that confirms the presence of diastereomers in solution of compound 2 and the presence of diastereomers and tautomers in solution of compound 3. The individual diastereomer of compound 3 has been isolated. Biological activity of the synthesized compounds was studied on various species of genus Aspergillus fungi.

  6. Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds.

    PubMed

    Ares, Ana M; Nozal, María J; Bernal, José

    2013-10-25

    Broccoli (Brassica oleracea L. var. Italica) contains substantial amount of health-promoting compounds such as vitamins, glucosinolates, phenolic compounds, and dietary essential minerals; thus, it benefits health beyond providing just basic nutrition, and consumption of broccoli has been increasing over the years. This review gives an overview on the extraction and separation techniques, as well as the biological activity of some of the above mentioned compounds which have been published in the period January 2008 to January 2013. The work has been distributed according to the different families of health promoting compounds discussing the extraction procedures and the analytical techniques employed for their characterization. Finally, information about the different biological activities of these compounds has been also provided. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Reduced physical activity and risk of chronic disease: the biology behind the consequences.

    PubMed

    Booth, Frank W; Laye, Matthew J; Lees, Simon J; Rector, R Scott; Thyfault, John P

    2008-03-01

    This review focuses on three preserved, ancient, biological mechanisms (physical activity, insulin sensitivity, and fat storage). Genes in humans and rodents were selected in an environment of high physical activity that favored an optimization of aerobic metabolic pathways to conserve energy for a potential, future food deficiency. Today machines and other technologies have replaced much of the physical activity that selected optimal gene expression for energy metabolism. Distressingly, the negative by-product of a lack of ancient physical activity levels in our modern civilization is an increased risk of chronic disease. We have been employing a rodent wheel-lock model to approximate the reduction in physical activity in humans from the level under which genes were selected to a lower level observed in modern daily functioning. Thus far, two major changes have been identified when rats undertaking daily, natural voluntary running on wheels experience an abrupt cessation of the running (wheel lock model). First, insulin sensitivity in the epitrochlearis muscle of rats falls to sedentary values after 2 days of the cessation of running, confirming the decline to sedentary values in whole-body insulin sensitivity when physically active humans stop high levels of daily exercise. Second, visceral fat increases within 1 week after rats cease daily running, confirming the plasticity of human visceral fat. This review focuses on the supporting data for the aforementioned two outcomes. Our primary goal is to better understand how a physically inactive lifestyle initiates maladaptations that cause chronic disease.

  8. Titration of biologically active amyloid–β seeds in a transgenic mouse model of Alzheimer's disease

    PubMed Central

    Morales, Rodrigo; Bravo-Alegria, Javiera; Duran-Aniotz, Claudia; Soto, Claudio

    2015-01-01

    Experimental evidence in animal models suggests that misfolded Amyloid-β (Aβ) spreads in disease following a prion-like mechanism. Several properties characteristics of infectious prions have been shown for the induction of Aβ aggregates. However, a detailed titration of Aβ misfolding transmissibility and estimation of the minimum concentration of biologically active Aβ seeds able to accelerate pathological changes has not yet been performed. In this study, brain extracts from old tg2576 animals were serially diluted and intra-cerebrally injected into young subjects from the same transgenic line. Animals were sacrificed several months after treatment and brain slices were analyzed for amyloid pathology. We observed that administration of misfolded Aβ was able to significantly accelerate amyloid deposition in young mice, even when the original sample was diluted a million times. The titration curve obtained in this experiment was compared to the natural Aβ load spontaneously accumulated by these mice overtime. Our findings suggest that administration of the largest dose of Aβ seeds led to an acceleration of pathology equivalent to over a year. These results show that active Aβ seeds present in the brain can seed amyloidosis in a titratable manner, similarly as observed for infectious prions. PMID:25879692

  9. Preliminary evidence for biologic activity of toceranib phosphate (Palladia®) in solid tumors

    PubMed Central

    London, Cheryl; Mathie, Tamra; Stingle, Nicole; Clifford, Craig; Haney, Siobhan; Klein, Mary K.; Beaver, Linda; Vickery, Kate; Vail, David M.; Hershey, Betsey; Ettinger, Susan; Vaughan, Andrew; Alvarez, Francisco; Hillman, Lorin; Kiselow, Mike; Thamm, Doug; Higginbotham, Mary Lynn; Gauthier, Meredith; Krick, Erika; Phillips, Brenda; LaDue, Tracy; Jones, Pam; Bryan, Jeffery; Gill, Virginia; Novasad, Andrew; Fulton, Lisa; Carreras, Janet; McNeill, Conor; Henry, Carolyn; Gillings, Sarah

    2013-01-01

    The purpose of this study was to provide an initial assessment of the potential biologic activity of toceranib phosphate (Palladia®) in select solid tumors in dogs. Cases in which toceranib was used to treat dogs with anal sac anal gland adenocarcinoma, metastatic osteosarcoma, thyroid carcinoma, head and neck carcinoma, and nasal carcinoma were included. Clinical benefit (CB) was observed in 63/85 (74%) dogs including 28/32 anal sac tumors (8PR, 20SD), 11/23 osteosarcomas (1PR, 10SD), 12/15 thyroid carcinomas (4PR, 8SD), 7/8 head and neck carcinomas (1CR, 5PR, 1SD) and 5/7 (1CR, 4SD) nasal carcinomas. For dogs experiencing CB, the median dose of toceranib was 2.8 mg/kg, 36/63 (58.7%) were dosed on a Monday/Wednesday/Friday basis, and 47/63 (74.6%) were treated 4 months or longer. While these data povide preliminary evidence that toceranib exhibits CB in dogs with certain solid tumors, future prospective studies are necessary to define its true activity. PMID:22236194

  10. Ecological Roles and Biological Activities of Specialized Metabolites from the Genus Nicotiana.

    PubMed

    Jassbi, Amir Reza; Zare, Somayeh; Asadollahi, Mojtaba; Schuman, Meredith C

    2017-10-11

    Species of Nicotiana grow naturally in different parts of the world and have long been used both medicinally and recreationally by human societies. More recently in our history, Nicotiana tabacum has attracted interest as one of the most economically important industrial crops. Nicotiana species are frequently investigated for their bioactive natural products, and the ecological role of their specialized metabolites in responses to abiotic stress or biotic stress factors like pathogens and herbivores. The interest of tobacco companies in genetic information as well as the success of a few wild tobacco species as experimental model organisms have resulted in growing knowledge about the molecular biology and ecology of these plants and functional studies of the plant's natural products. Although a large number of reviews and books on biologically active natural products already exists, mostly from N. tabacum, we focus our attention on the ecological roles and biological activity of natural products, versus products from cured and processed material, in this Review. The studied compounds include alkaloids, aromatic compounds, flavonoids, volatiles, sesquiterpenoids, diterpenes alcohols, and sugar esters from trichomes of the plants, and recently characterized acyclic hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). In this Review (1800s-2017), we describe the above-mentioned classes of natural products, emphasizing their biological activities and functions as they have been determined either in bioassay-guided purification approaches or in bioassays with plants in which the expression of specific biosynthetic genes has been genetically manipulated. Additionally, a review on the history, taxonomy, ecology, and medicinal application of different Nicotiana species growing around the globe presented in this Review may be of interest for pharmacognosists, natural products, and ecological chemists.

  11. Soil Biological Activity Contributing to Phosphorus Availability in Vertisols under Long-Term Organic and Conventional Agricultural Management

    PubMed Central

    Bhat, Nisar A.; Riar, Amritbir; Ramesh, Aketi; Iqbal, Sanjeeda; Sharma, Mahaveer P.; Sharma, Sanjay K.; Bhullar, Gurbir S.

    2017-01-01

    Mobilization of unavailable phosphorus (P) to plant available P is a prerequisite to sustain crop productivity. Although most of the agricultural soils have sufficient amounts of phosphorus, low availability of native soil P remains a key limiting factor to increasing crop productivity. Solubilization and mineralization of applied and native P to plant available form is mediated through a number of biological and biochemical processes that are strongly influenced by soil carbon/organic matter, besides other biotic and abiotic factors. Soils rich in organic matter are expected to have higher P availability potentially due to higher biological activity. In conventional agricultural systems mineral fertilizers are used to supply P for plant growth, whereas organic systems largely rely on inputs of organic origin. The soils under organic management are supposed to be biologically more active and thus possess a higher capability to mobilize native or applied P. In this study we compared biological activity in soil of a long-term farming systems comparison field trial in vertisols under a subtropical (semi-arid) environment. Soil samples were collected from plots under 7 years of organic and conventional management at five different time points in soybean (Glycine max) -wheat (Triticum aestivum) crop sequence including the crop growth stages of reproductive significance. Upon analysis of various soil biological properties such as dehydrogenase, β-glucosidase, acid and alkaline phosphatase activities, microbial respiration, substrate induced respiration, soil microbial biomass carbon, organically managed soils were found to be biologically more active particularly at R2 stage in soybean and panicle initiation stage in wheat. We also determined the synergies between these biological parameters by using the methodology of principle component analysis. At all sampling points, P availability in organic and conventional systems was comparable. Our findings clearly indicate

  12. A "Vision and Change" Reform of Introductory Biology Shifts Faculty Perceptions and Use of Active Learning

    ERIC Educational Resources Information Center

    Auerbach, Anna Jo; Schussler, Elisabeth

    2017-01-01

    Increasing faculty use of active-learning (AL) pedagogies in college classrooms is a persistent challenge in biology education. A large research-intensive university implemented changes to its biology majors' two-course introductory sequence as outlined by the "Vision and Change in Undergraduate Biology Education" final report. One goal…

  13. Local or distributed activation? The view from biology

    NASA Astrophysics Data System (ADS)

    Reimers, Mark

    2011-06-01

    There is considerable disagreement among connectionist modellers over whether to represent distinct properties by distinct nodes of a network or whether properties should be represented by patterns of activity across all nodes. This paper draws on the literature of neuroscience to say that a more subtle way of describing how different brain regions contribute to a behaviour, in terms of individual learning and in terms of degrees of importance, may render the current debate moot: both sides of the 'localist' versus 'distributed' debate emphasise different aspects of biology.

  14. The activation of fibroblast growth factors by heparin: synthesis, structure, and biological activity of heparin-like oligosaccharides.

    PubMed

    de Paz, J L; Angulo, J; Lassaletta, J M; Nieto, P M; Redondo-Horcajo, M; Lozano, R M; Giménez-Gallego, G; Martín-Lomas, M

    2001-09-03

    An effective strategy has been designed for the synthesis of oligosaccharides of different sizes structurally related to the regular region of heparin; this is illustrated by the preparation of hexasaccharide 1 and octasaccharide 2. This synthetic strategy provides the oligosaccharide sequence containing a D-glucosamine unit at the nonreducing end that is not available either by enzymatic or chemical degradation of heparin. It may permit, after slight modifications, the preparation of oligosaccharide fragments with different charge distribution as well. NMR spectroscopy and molecular dynamics simulations have shown that the overall structure of 1 in solution is a stable right-hand helix with four residues per turn. Hexasaccharide 1 and, most likely, octasaccharide 2 are, therefore, chemically well-defined structural models of naturally occurring heparin-like oligosaccharides for use in binding and biological activity studies. Both compounds 1 and 2 induce the mitogenic activity of acid fibroblast growth factor (FGF1), with the half-maximum activating concentration of 2 being equivalent to that of heparin. Sedimentation equilibrium analysis with compound 2 suggests that heparin-induced FGF1 dimerization is not an absolute requirement for biological activity.

  15. Co-evaluation of plant extracts as petrochemical substitutes and for biologically active compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McChesney, J.D.; Adams, R.P.

    Recent efforts to discover phytochemicals that could substitute for petroleum-derived fuels and industrial feedstocks have not given much attention to the potential of these same phytochemicals to provide sources of biologically active compounds. The suitability of extraction products made to assess specific plants as potential botanochemical sources has been evaluated for use in screening procedures for evidence of biologically active compounds. Screening procedures for antibacterial, antifungal and toxic properties are discussed. Screening results are presented for extracts of nearly 80 species of plants from the southeastern United States and southern Great Plains that had previously been evaluated as sources ofmore » botanochemicals.« less

  16. Comparison of Phytochemical Composition and Biological Activities of Rubus ulmifolius Extracts Originating from Four Regions of Tunisia.

    PubMed

    Tabarki, Sonia; Aouadhi, Chedia; Mechergui, Kaouther; Hammi, Khaoula Mkadmini; Ksouri, Riadh; Raies, Aly; Toumi, Lamjed

    2017-01-01

    In the current study, the phenolic composition, antioxidant and antimicrobial activities of extracts from Rubus ulmifolius Schott leaves harvested in four localities (Sejnen, Tabarka, Faija and Ain drahem) in Tunisia were investigated for the first time. Great differences were found for the chemical composition, total phenol contents and biological activities among the evaluated extracts. HPLC analysis of methanolic extracts showed that the dominant compounds were kaempferol 3-O-rutinoside and naringenine. In addition, significant correlations were observed between antioxidant activities and phenolic contents. In fact, leaves collected from Sejnen presented higher total phenol content (53.32 mg GAE/g DW) and antioxidant activities (IC 50 = 39.40 mg/l) than the others samples. All extracts showed significant antimicrobial activity against six used bacteria with the inhibition zones diameters and minimal inhibitory concentration values were in the range of 8 - 16 mm and 6.25 - 25 mg/ml, respectively. The highest antimicrobial activities were recorded in Sejnen extract against Gram-positive bacteria. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  17. Synthesis and biological activities of turkesterone 11α-acyl derivatives

    PubMed Central

    Dinan, Laurence; Bourne, Pauline; Whiting, Pensri; Tsitsekli, Ada; Saatov, Ziyadilla; Dhadialla, Tarlochan S.; Hormann, Robert E.; Lafont, René; Coll, Josep

    2003-01-01

    Turkesterone is a phytoecdysteroid possessing an 11α-hydroxyl group. It is an analogue of the insect steroid hormone 20-hydroxyecdysone. Previous ecdysteroid QSAR and molecular modelling studies predicted that the cavity of the ligand binding domain of the ecdysteroid receptor would possess space in the vicinity of C-11/C-12 of the ecdysteroid. We report the regioselective synthesis of a series of turkesterone 11α-acyl derivatives in order to explore this possibility. The structures of the analogues have been unambiguously determined by spectroscopic means (NMR and low-resolution mass spectrometry). Purity was verified by HPLC. Biological activities have been determined in Drosophila melanogaster BII cell-based bioassay for ecdysteroid agonists and in an in vitro radioligand-displacement assay using bacterially-expressed D. melanogaster EcR/USP receptor proteins. The 11α-acyl derivatives do retain a significant amount of biological activity relative to the parent ecdysteroid. Further, although activity initially drops with the extension of the acyl chain length (C2 to C4), it then increases (C6 to C10), before decreasing again (C14 and C20). The implications of these findings for the interaction of ecdysteroids with the ecdysteroid receptor and potential applications in the generation of affinity-labelled and fluorescently-tagged ecdysteroids are discussed. Abbreviation: CoMFA comparative molecular field analysis DCM dichloromethane DMF dimethylformamide DMP 2,2-dimethoxypropane 4D-QSAR 4-dimensional quantitative structure-activity relationship EcR ecdysteroid receptor EcRE ecdysteroid response element HPLC high-performance liquid chromatography LBD ligand-binding domain NMR nuclear magnetic resonance ponA ponasterone A QSAR quantitative structure-activity relationship RXR retinoid X receptor SAR structure-activity relationship SPE solid-phase extraction THF tetrahydrofuran TLC thin-layer chromatography p-TsOH para-toluenesulphonic acid USP ultraspiracle UV

  18. Microscopic video observation of capillary vessel systems using diffuse back lighting

    NASA Astrophysics Data System (ADS)

    Sakai, Minako; Arai, Hiroki; Iwai, Toshiaki

    2017-04-01

    We have been developing a simple and practical video microscopy system based on absorption spectra of biological substance to perform spectroscopic observation of living tissues. The diffuse backlighting effect is actively used in the developed system, which is generated by multiple light scattering in the tissue. It is demonstrated that the light specularly reflected from the skin surface can be completely suppressed in the microscopic observation and the biological activity of the capillary vessel systems distributed under the skin can be successfully observed. As a result, we can confirm the effectiveness of the video microscopy system using diffuse backlighting and the applicability of our developed system.

  19. The ice nucleation activity of biological aerosols

    NASA Astrophysics Data System (ADS)

    Grothe, H.; Pummer, B.; Bauer, H.; Bernardi, J.

    2012-04-01

    Primary Biological Aerosol Particles (PBAPs), including bacteria, spores and pollen may be important for several atmospheric processes. Particularly, the ice nucleation caused by PBAPs is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate is not yet fully understood. In laboratory model studies we investigated the ice nucleation activity of selected PBAPs. We studied the immersion mode freezing using water-oil emulsion, which we observed by optical microscopy. We particularly focused on pollen. We show that pollen of different species strongly differ in their ice nucleation behavior. The average freezing temperatures in laboratory experiments range from 240 K to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen) have a distribution area up to the Northern timberline, their ice nucleation activity might be a cryoprotective mechanism. For comparison the ice nucleation activity of Snomax, fungal spores, and mushrooms will be discussed as well. In the past, pollen have been rejected as important atmospheric IN, as they are not as abundant in the atmosphere as bacteria or mineral dust and are too heavy to reach higher altitudes. However, in our experiments (Pummer et al. 2011) it turned out that water, which had been in contact with pollen and then been separated from the bodies, nucleates as good as the pollen grains themselves. So the ice nuclei have to be easily-suspendable macromolecules (100-300 kDa) located on the pollen. Once extracted, they can be distributed further through the atmosphere than the heavy pollen grains and so augment the impact of pollen on ice cloud formation even in the upper troposphere. It is widely known, that material from the pollen, like allergens and sugars, can indeed leave the pollen body and be distributed independently. The most probable mechanism is the pollen grain bursting by rain, which releases

  20. Evaluation of Biologically Active Compounds from Calendula officinalis Flowers using Spectrophotometry

    PubMed Central

    2012-01-01

    Background This study aimed to quantify the active biological compounds in C. officinalis flowers. Based on the active principles and biological properties of marigolds flowers reported in the literature, we sought to obtain and characterize the molecular composition of extracts prepared using different solvents. The antioxidant capacities of extracts were assessed by using spectrophotometry to measure both absorbance of the colorimetric free radical scavenger 2,2-diphenyl-1-picrylhydrazyl (DPPH) as well as the total antioxidant potential, using the ferric reducing power (FRAP) assay. Results Spectrophotometric assays in the ultraviolet-visible (UV-VIS) region enabled identification and characterization of the full range of phenolic and flavonoids acids, and high-performance liquid chromatography (HPLC) was used to identify and quantify phenolic compounds (depending on the method of extraction). Methanol ensured more efficient extraction of flavonoids than the other solvents tested. Antioxidant activity in methanolic extracts was correlated with the polyphenol content. Conclusions The UV-VIS spectra of assimilator pigments (e.g. chlorophylls), polyphenols and flavonoids extracted from the C. officinalis flowers consisted in quantitative evaluation of compounds which absorb to wavelengths broader than 360 nm. PMID:22540963

  1. Chemistry and Biological Activities of Flavonoids: An Overview

    PubMed Central

    Kumar, Shashank; Pandey, Abhay K.

    2013-01-01

    There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about their nuclear structure. Fruits and vegetables are the main dietary sources of flavonoids for humans, along with tea and wine. Most recent researches have focused on the health aspects of flavonoids for humans. Many flavonoids are shown to have antioxidative activity, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory, and anticancer activities, while some flavonoids exhibit potential antiviral activities. In plant systems, flavonoids help in combating oxidative stress and act as growth regulators. For pharmaceutical purposes cost-effective bulk production of different types of flavonoids has been made possible with the help of microbial biotechnology. This review highlights the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production. PMID:24470791

  2. Biological Activity and Phytochemical Study of Scutellaria platystegia.

    PubMed

    Madani Mousavi, Seyedeh Neda; Delazar, Abbas; Nazemiyeh, Hossein; Khodaie, Laleh

    2015-01-01

    This study aimed to determine biological activity and phytochemical study of Scutellaria platystegia (family Labiatae). Methanolic (MeOH) extract of aerial parts of S. platystegia and SPE fractions of methanolic extract (specially 20% and 40% methanolic fractions), growing in East-Azarbaijan province of Iran were found to have radical scavenging activity by DPPH (2, 2-diphenyl -1- pycryl hydrazyl) assay. Dichloromethane (DCM) extract of this plant exhibited animalarial activity by cell free method providing IC50 at 1.1876 mg/mL. Crude extracts did not exhibit any toxicity assessed by brine shrimp lethality assay. Phytochemical study of methanolic extract by using reverse phase HPLC method and NMR instrument for isolation and identification of pure compounds respectively, yielded 2-(4- hydroxy phenyl) ethyl-O-β-D- glucopyranoside from 10% and apigenin 7-O-glucoside, verbascoside and martynoside from 40% SPE fraction. Occurance of verbascoside and martynoside as biochemical markers appeared to be widespread in this genus. Antioxidant and antimalarial activity of MeOH and DCM extracts, respectively, as well as no general toxicity of them could provide a basis for further in-vitro and in-vivo studies and clinical trials to develop new therapeutical alternatives.

  3. Sciencing with Mother Goose: Observation Activities with Chicken Little.

    ERIC Educational Resources Information Center

    Angus, Carolyn

    1996-01-01

    Provides sample observation activities to accompany the nursery tale of Chicken Little. Includes five activities that involve the skills of observing, communicating, comparing, ordering, and categorizing to engage students in hands-on science. (DDR)

  4. Biological preconcentrator

    DOEpatents

    Manginell, Ronald P [Albuquerque, NM; Bunker, Bruce C [Albuquerque, NM; Huber, Dale L [Albuquerque, NM

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  5. Photoelectron spectra and biological activity of cinnamic acid derivatives revisited

    NASA Astrophysics Data System (ADS)

    Novak, Igor; Klasinc, Leo; McGlynn, Sean P.

    2018-01-01

    The electronic structures of several derivatives of cinnamic acid have been studied by UV photoelectron spectroscopy (UPS) and Green's function quantum chemical calculations. The spectra reveal the presence of dimers in the gas phase for p-coumaric and ferulic acids. The electronic structure analysis has been related to the biological properties of these compounds through the analysis of some structure-activity relationships (SAR).

  6. Insulin released from titanium discs with insulin coatings-Kinetics and biological activity.

    PubMed

    Malekzadeh, B Ö; Ransjo, M; Tengvall, P; Mladenovic, Z; Westerlund, A

    2017-10-01

    Local administration of insulin from a titanium surface has been demonstrated to increase bone formation in non-diabetic rats. The authors hypothesized that insulin was released from the titanium surface and with preserved biological activity after the release. Thus, in the present in vitro study, human recombinant insulin was immobilized onto titanium discs, and the insulin release kinetics was evaluated using Electro-chemiluminescence immunoassay. Neutral Red uptake assay and mineralization assay were used to evaluate the biological effects of the released insulin on human osteoblast-like MG-63 cells. The results confirmed that insulin was released from titanium surfaces during a six-week period. Etching the disc prior to insulin coating, thickening of the insulin coating and incubation of the discs in serum-enriched cell culture medium increased the release. However, longer storage time decreased the release of insulin. Furthermore, the released insulin had retained its biological activity, as demonstrated by the significant increase in cell number and a stimulated mineralization process, upon exposure to released insulin. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1847-1854, 2017. © 2016 Wiley Periodicals, Inc.

  7. Introduction to the Symposium "Leading Students and Faculty to Quantitative Biology through Active Learning".

    PubMed

    Waldrop, Lindsay D; Miller, Laura A

    2015-11-01

    The broad aim of this symposium and set of associated papers is to motivate the use of inquiry-based, active-learning teaching techniques in undergraduate quantitative biology courses. Practical information, resources, and ready-to-use classroom exercises relevant to physicists, mathematicians, biologists, and engineers are presented. These resources can be used to address the lack of preparation of college students in STEM fields entering the workforce by providing experience working on interdisciplinary and multidisciplinary problems in mathematical biology in a group setting. Such approaches can also indirectly help attract and retain under-represented students who benefit the most from "non-traditional" learning styles and strategies, including inquiry-based, collaborative, and active learning. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  8. Extracellular production of an intact and biologically active human growth hormone by the Bacillus brevis system.

    PubMed

    Kajino, T; Saito, Y; Asami, O; Yamada, Y; Hirai, M; Udata, S

    1997-10-01

    The characteristic features of the Bacillus brevis system are very high productivity of heterologous proteins and very low extracellular protease activity. However, degradation of some heterologous proteins, especially mammalian proteins, can be observed and resulted in a lowering of protein productivity. By using a mutant expressing low levels of proteases and the addition of EDTA to the medium, intact human growth hormone (hGH) was successfully produced with the B. brevis system. Signal peptide modification with higher basicity in the amino terminal region and higher hydrophobicity in the middle region brought about a twelve-fold increase in hGH production. The hGH yield was further elevated to 240 mg L-1 by optimization of culture conditions. Thus, biologically active and mature hGH can be efficiently produced directly in the medium with the B. brevis system.

  9. Traditional Uses, Chemical Constituents, and Biological Activities of Bixa orellana L.: A Review

    PubMed Central

    Vilar, Daniela de Araújo; Vilar, Marina Suênia de Araujo; Moura, Túlio Flávio Accioly de Lima e; Raffin, Fernanda Nervo; de Oliveira, Márcia Rosa; Franco, Camilo Flamarion de Oliveira; de Athayde-Filho, Petrônio Filgueiras; Diniz, Margareth de Fátima Formiga Melo; Barbosa-Filho, José Maria

    2014-01-01

    Bixa orellana L., popularly known as “urucum,” has been used by indigenous communities in Brazil and other tropical countries for several biological applications, which indicates its potential use as an active ingredient in pharmaceutical products. The aim of this work was to report the main evidence found in the literature, concerning the ethnopharmacology, the biological activity, and the phytochemistry studies related to Bixa orellana L. Therefore, this work comprises a systematic review about the use of Bixa orellana in the American continent and analysis of the data collected. This study shows the well-characterized pharmacological actions that may be considered relevant for the future development of an innovative therapeutic agent. PMID:25050404

  10. Design, Synthesis and Biological Activities of Novel Gemini 20S-Hydroxyvitamin D3 Analogs

    PubMed Central

    LIN, ZONGTAO; MAREPALLY, SRINIVASA R.; KIM, TAE-KANG; JANJETOVIC, ZORICA; OAK, ALLEN SW.; POSTLETHWAITE, ARNOLD E.; MYERS, LINDA K.; TUCKEY, ROBERT C.; SLOMINSKI, ANDRZEJ T.; MILLER, DUANE D.; LI, WEI

    2017-01-01

    Vitamin D3 (D3) can be metabolized by cytochrome P450scc (CYP11A1) into 20S-hydroxyvitamin D3 (20D3) as a major metabolite. This bioactive metabolite has shown strong antiproliferative, antifibrotic, pro-differentiation and anti-inflammatory effects while being non-toxic (non-calcemic) at high concentrations. Since D3 analogs with two symmetric side chains (Gemini analogs) result in potent activation of the vitamin D receptor (VDR), we hypothesized that the chain length and composition of these types of analogs also containing a 20-hydroxyl group would affect their biological activities. In this study, we designed and synthesized a series of Gemini 20D3 analogs. Biological tests showed that some of these analogs are partial VDR activators and can significantly stimulate the expression of mRNA for VDR and VDR-regulated genes including CYP24A1 and transient receptor potential cation channel V6 (TRPV6). These analogs inhibited the proliferation of melanoma cells with potency comparable to that of 1α,25-dihydroxyvitamin D3. Moreover, these analogs reduced the level of interferon γ and up-regulated the expression of leukocyte associated immunoglobulin-like receptor 1 in splenocytes, indicating that they have potent anti-inflammatory activities. There are no clear correlations between the Gemini chain length and their VDR activation or biological activities, consistent with the high flexibility of the ligand-binding pocket of the VDR. PMID:26976974

  11. Water at Biological Phase Boundaries: Its Role in Interfacial Activation of Enzymes and Metabolic Pathways.

    PubMed

    Damodaran, Srinivasan

    2015-01-01

    Many life-sustaining activities in living cells occur at the membrane-water interface. The pertinent questions that we need to ask are, what are the evolutionary reasons in biology for choosing the membrane-water interface as the site for performing and/or controlling crucial biological reactions, and what is the key physical principle that is very singular to the membrane-water interface that biology exploits for regulating metabolic processes in cells? In this chapter, a hypothesis is developed, which espouses that cells control activities of membrane-bound enzymes through manipulation of the thermodynamic activity of water in the lipid-water interfacial region. The hypothesis is based on the fact that the surface pressure of a lipid monolayer is a direct measure of the thermodynamic activity of water at the lipid-water interface. Accordingly, the surface pressure-dependent activation or inactivation of interfacial enzymes is directly related to changes in the thermodynamic activity of interfacial water. Extension of this argument suggests that cells may manipulate conformations (and activities) of membrane-bound enzymes by manipulating the (re)activity of interfacial water at various locations in the membrane by localized compression or expansion of the interface. In this respect, cells may use the membrane-bound hormone receptors, lipid phase transition, and local variations in membrane lipid composition as effectors of local compression and/or expansion of membrane, and thereby local water activity. Several experimental data in the literature will be reexamined in the light of this hypothesis.

  12. Research and Teaching: Instructor Use of Group Active Learning in an Introductory Biology Sequence

    ERIC Educational Resources Information Center

    Auerbach, Anna Jo; Schussler, Elisabeth E.

    2016-01-01

    Active learning (or learner-centered) pedagogies have been shown to enhance student learning in introductory biology courses. Student collaboration has also been shown to enhance student learning and may be a critical part of effective active learning practices. This study focused on documenting the use of individual active learning and group…

  13. Cocrystals of caffeine with formylphenoxyaliphatic acids: Syntheses, structural characterization, and biological activity

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, G. S.; Seethalakshmi, P. G.; Bhuvanesh, N.; Kumaresan, S.

    2013-02-01

    Three organic cocrystals namely, caffeine:p-formylphenoxyacetic acid [(caf)(p-fpaa)] (1) caffeine:o-formylphenoxyacetic acid monohydrate [(caf)(o-fpaa)]H2O (2) and caffeine:p-formylphenoxypropionic acid [(caf)(p-fppa)] (3) were synthesized and studied by FT-IR, NMR, and single crystal XRD studies. The crystal system of cocrystal [(caf)(p-fpaa)] (1) is monoclinic with space group P21/n and Z = 16, that of cocrystal [(caf)(o-fpaa)]H2O (2) is triclinic with space group P - 1 and Z = 2, and that of cocrystal [(caf)(p-fppa)] (3) is monoclinic with space group P21/c and Z = 4. The imidazole-carboxylic acid synthon is observed in all the three cocrystals. The intermolecular hydrogen bonds, Osbnd H···N and π-π interactions together play a major role in stabilizing the crystal structure of all the three cocrystals. The biological activities of crystals 1-3 were studied.

  14. [Biological activity evaluation of porous HA ceramics using NH4 HCO3/PVA as pore-creating agents].

    PubMed

    Wang, Songquan; Zhang, Dekun

    2010-12-01

    Porous HA ceramics were prepared by using NH4 HCO3/PVA as pore-formed material along with biological glass as intensifier, and these ceramics were immersed in Locke's Physiological Saline and Simulate Body Fluid (SBF). The changes of phase composition, grain size and crystallinity of porous HA ceramics before and after immersion were investigated by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The biological activity was evaluated. The porous HA ceramics showed various degrees of decomposition after immersion in the two solution systems, but there was no evident change in respect to crystallinity. Besides, the impact of different degrees of solution systems on the change of grain size and planar preferred orientation was observed. The TCP phase of the ceramics immersed in Locke's Physiological Saline decomposed and there was no crystal growth on the surface of ceramics; however, the grain size of ceramics immersed in SBF became refined in certain degree and the surface of ceramics took on the new crystal growth.

  15. Biology Myth-Killers

    ERIC Educational Resources Information Center

    Lampert, Evan

    2014-01-01

    "Biology Myth-Killers" is an activity designed to identify and correct common misconceptions for high school and college introductory biology courses. Students identify common myths, which double as biology misconceptions, and use appropriate sources to share the "truth" about the myths. This learner-centered activity is a fun…

  16. Synthesis and biological activity of imidazopyridine anticoccidial agents: Part II.

    PubMed

    Scribner, Andrew; Dennis, Richard; Lee, Shuliang; Ouvry, Gilles; Perrey, David; Fisher, Michael; Wyvratt, Matthew; Leavitt, Penny; Liberator, Paul; Gurnett, Anne; Brown, Chris; Mathew, John; Thompson, Donald; Schmatz, Dennis; Biftu, Tesfaye

    2008-06-01

    Coccidiosis is the major cause of morbidity and mortality in the poultry industry. Protozoan parasites of the genus Eimeria invade the intestinal lining of the avian host causing tissue pathology, poor weight gain, and in some cases mortality. Resistance to current anticoccidials has prompted the search for new therapeutic agents with potent in vitro and in vivo activity against Eimeria. Recently, we reported the synthesis and biological activity of potent imidazo[1,2-a]pyridine anticoccidial agents. Antiparasitic activity is due to inhibition of a parasite specific cGMP-dependent protein kinase (PKG). In this study, we report the synthesis and anticoccidial activity of a second set of such compounds, focusing on derivatization of the amine side chain at the imidazopyridine 7-position. From this series, several compounds showed subnanomolar in vitro activity and commercial levels of in vivo activity. However, the potential genotoxicity of these compounds precludes them from further development.

  17. Parsley: a review of ethnopharmacology, phytochemistry and biological activities.

    PubMed

    Farzaei, Mohammad Hosein; Abbasabadi, Zahra; Ardekani, Mohammad Reza Shams; Rahimi, Roja; Farzaei, Fatemeh

    2013-12-01

    To summarize comprehensive information concerning ethnomedicinal uses, phytochemistry, and pharmacological activities of parsley. Databases including PubMed, Scopus, Google Scholar, and Web of Science were searched for studies focusing on the ethnomedicinal use, phytochemical compounds and biological and pharmacological activities of parsley. Data were collected from 1966 to 2013. The search terms were: "Parsley" or "Petroselinum crispum" or "Petroselinum hortence". Parsley has been used as carminative, gastro tonic, diuretic, antiseptic of urinary tract, anti-urolithiasis, anti-dote and anti-inflammatory and for the treatment of amenorrhea, dysmenorrhea, gastrointestinal disorder, hypertension, cardiac disease, urinary disease, otitis, sniffle, diabetes and also various dermal disease in traditional and folklore medicines. Phenolic compounds and flavonoids particularly apigenin, apiin and 6"-Acetylapiin; essential oil mainly myristicin and apiol; and also coumarins are the active compounds identified in Petroselinum crispum. Wide range of pharmacological activity including antioxidant, hepatoprotective, brain protective, anti-diabetic, analgesic, spasmolytic, immunosuppressant, anti-platelet, gastroprotective, cytoprotective, laxative, estrogenic, diuretic, hypotensive, antibacterial and antifungal activities have been exhibited for this plant in modern medicine. It is expectant that this study resulted in improvement the tendencies toward Petroselinum crispum as a useful and important medicinal plant with wide range of proven medicinal activity.

  18. Physicochemical Properties, Biological Activity, Health Benefits, and General Limitations of Aged Black Garlic: A Review.

    PubMed

    Ryu, Ji Hyeon; Kang, Dawon

    2017-06-01

    Garlic (Allium sativum) has been used as a medicinal food since ancient times. However, some people are reluctant to ingest raw garlic due to its unpleasant odor and taste. Therefore, many types of garlic preparations have been developed to reduce these attributes without losing biological functions. Aged black garlic (ABG) is a garlic preparation with a sweet and sour taste and no strong odor. It has recently been introduced to Asian markets as a functional food. Extensive in vitro and in vivo studies have demonstrated that ABG has a variety of biological functions such as antioxidant, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, anti-allergic, cardioprotective, and hepatoprotective effects. Recent studies have compared the biological activity and function of ABG to those of raw garlic. ABG shows lower anti-inflammatory, anti-coagulation, immunomodulatory, and anti-allergic effects compared to raw garlic. This paper reviews the physicochemical properties, biological activity, health benefits, adverse effects, and general limitations of ABG.

  19. Novel chlorinated dibenzofurans isolated from the cellular slime mold, Polysphondylium filamentosum, and their biological activities.

    PubMed

    Kikuchi, Haruhisa; Kubohara, Yuzuru; Nguyen, Van Hai; Katou, Yasuhiro; Oshima, Yoshiteru

    2013-08-01

    Cellular slime molds are expected to have the huge potential for producing secondary metabolites including polyketides, and we have studied the diversity of secondary metabolites of cellular slime molds for their potential utilization as new biological resources for natural product chemistry. From the methanol extract of fruiting bodies of Polysphondylium filamentosum, we obtained new chlorinated benzofurans Pf-1 (4) and Pf-2 (5) which display multiple biological activities; these include stalk cell differentiation-inducing activity in the well-studied cellular slime mold, Dictyostelium discoideum, and inhibitory activities on cell proliferation in mammalian cells and gene expression in Drosophila melanogaster. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. In Search of a Better Bean: A Simple Activity to Introduce Plant Biology

    ERIC Educational Resources Information Center

    Spaccarotella, Kim; James, Roxie

    2014-01-01

    Measuring plant stem growth over time is a simple activity commonly used to introduce concepts in growth and development in plant biology (Reid & Pu, 2007). This Quick Fix updates the activity and incorporates a real-world application: students consider possible effects of soil substrate and sunlight conditions on plant growth without needing…

  1. Biological and therapeutic activities, and anticancer properties of curcumin.

    PubMed

    Perrone, Donatella; Ardito, Fatima; Giannatempo, Giovanni; Dioguardi, Mario; Troiano, Giuseppe; Lo Russo, Lucio; DE Lillo, Alfredo; Laino, Luigi; Lo Muzio, Lorenzo

    2015-11-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis.

  2. Polymer application for separation/filtration of biological active compounds

    NASA Astrophysics Data System (ADS)

    Tylkowski, B.; Tsibranska, I.

    2017-06-01

    Membrane technology is an important part of the engineer's toolbox. This is especially true for industries that process food and other products with their primary source from nature. This review is focused on ongoing development work using membrane technologies for concentration and separation of biologically active compounds, such as polyphenols and flavonoids. We provide the readers not only with the last results achieve in this field but also, we deliver detailed information about the membrane types and polymers used for their preparation.

  3. Reading about the actions of others: biological motion imagery and action congruency influence brain activity.

    PubMed

    Deen, Ben; McCarthy, Gregory

    2010-05-01

    Prior neuroimaging research has implicated regions within and near the posterior superior temporal sulcus (pSTS) in the visual processing of biological motion and of the intentions implied by specific movements. However, it is unknown whether this region is engaged during the processing of human motion at a conceptual level, such as during story comprehension. Here, we obtained functional magnetic resonance images from subjects reading brief stories that described a human character's background and then concluded with an action or decision made by the character. Half of the stories contained incidental descriptions of biological motion (such as the character's walking or grasping) while the remaining half did not. As a second factor, the final action of the story was either congruent or incongruent with the character's background and implied goals and intentions. Stories that contained biological motion strongly activated the pSTS bilaterally, along with ventral temporal areas, premotor cortex, left motor cortex, and the precuneus. Active regions of pSTS in individual subjects closely overlapped with regions identified with a separate biological motion localizer (point-light display) task. Reading incongruent versus congruent stories activated dorsal anterior cingulate cortex and bilateral anterior insula. These results support the hypothesis that reading can engage higher visual cortex in a content-specific manner, and suggest that the presence of biological motion should be controlled as a potential confound in fMRI studies using story comprehension tasks. 2010. Published by Elsevier Ltd.

  4. Multidirectional Efficacy of Biologically Active Nitro Compounds Included in Medicines.

    PubMed

    Olender, Dorota; Żwawiak, Justyna; Zaprutko, Lucjusz

    2018-05-29

    The current concept in searching for new bioactive products, including mainly original active substances with potential application in pharmacy and medicine, is based on compounds with a previously determined structure, well-known properties, and biological activity profile. Nowadays, many commonly used drugs originated from natural sources. Moreover, some natural materials have become the source of leading structures for processing further chemical modifications. Many organic compounds with great therapeutic significance have the nitro group in their structure. Very often, nitro compounds are active substances in many well-known preparations belonging to different groups of medicines that are classified according to their pharmacological potencies. Moreover, the nitro group is part of the chemical structure of veterinary drugs. In this review, we describe many bioactive substances with the nitro group, divided into ten categories, including substances with exciting activity and that are currently undergoing clinical trials.

  5. Altered Brain Activation During Action Imitation and Observation in Schizophrenia: A Translational Approach to Investigating Social Dysfunction in Schizophrenia

    PubMed Central

    Thakkar, Katharine N.; Peterman, Joel S.; Park, Sohee

    2015-01-01

    Objective Social impairments are a key feature of schizophrenia, but their underlying mechanisms are poorly understood. Imitation, a process through which we understand the minds of others, involves the so-called mirror neuron system, a network comprising the inferior parietal lobe, inferior frontal gyrus, and posterior superior temporal sulcus. The authors examined mirror neuron system function in schizophrenia. Method Sixteen medicated schizophrenia patients and 16 healthy comparison subjects performed an action imitation/ observation task during functional MRI. Participants saw a video of a moving hand or spatial cue and were instructed to either execute finger movements associated with the stimulus or simply observe. Activation in the mirror neuron system was measured during imitative versus nonimitative actions and observation of a moving hand versus a moving spatial cue. These contrasts were compared across groups. Results Activation in the mirror neuron system was less specific for imitation in schizophrenia. Relative to healthy subjects, patients had reduced activity in the posterior superior temporal sulcus during imitation and greater activity in the posterior superior temporal sulcus and inferior parietal lobe during nonimitative action. Patients also showed reduced activity in these regions during action observation. Mirror neuron system activation was related to symptom severity and social functioning in patients and to schizotypal syndrome in comparison subjects. Conclusions Given the role of the inferior parietal lobe and posterior superior temporal sulcus in imitation and social cognition, impaired imitative ability in schizophrenia may stem from faulty perception of biological motion and transformations from perception to action. These findings extend our understanding of social dysfunction in schizophrenia. PMID:24626638

  6. Biological Indicators in Studies of Earthquake Precursors

    NASA Astrophysics Data System (ADS)

    Sidorin, A. Ya.; Deshcherevskii, A. V.

    2012-04-01

    Time series of data on variations in the electric activity (EA) of four species of weakly electric fish Gnathonemus leopoldianus and moving activity (MA) of two cat-fishes Hoplosternum thoracatum and two groups of Columbian cockroaches Blaberus craniifer were analyzed. The observations were carried out in the Garm region of Tajikistan within the frameworks of the experiments aimed at searching for earthquake precursors. An automatic recording system continuously recorded EA and DA over a period of several years. Hourly means EA and MA values were processed. Approximately 100 different parameters were calculated on the basis of six initial EA and MA time series, which characterize different variations in the EA and DA structure: amplitude of the signal and fluctuations of activity, parameters of diurnal rhythms, correlated changes in the activity of various biological indicators, and others. A detailed analysis of the statistical structure of the total array of parametric time series obtained in the experiment showed that the behavior of all animals shows a strong temporal variability. All calculated parameters are unstable and subject to frequent changes. A comparison of the data obtained with seismicity allow us to make the following conclusions: (1) The structure of variations in the studied parameters is represented by flicker noise or even a more complex process with permanent changes in its characteristics. Significant statistics are required to prove the cause-and-effect relationship of the specific features of such time series with seismicity. (2) The calculation of the reconstruction statistics in the EA and MA series structure demonstrated an increase in their frequency in the last hours or a few days before the earthquake if the hypocenter distance is comparable to the source size. Sufficiently dramatic anomalies in the behavior of catfishes and cockroaches (changes in the amplitude of activity variation, distortions of diurnal rhythms, increase in the

  7. Quinones from plants of northeastern Brazil: structural diversity, chemical transformations, NMR data and biological activities.

    PubMed

    Lemos, Telma L G; Monte, Francisco J Q; Santos, Allana Kellen L; Fonseca, Aluisio M; Santos, Hélcio S; Oliveira, Mailcar F; Costa, Sonia M O; Pessoa, Otilia D L; Braz-Filho, Raimundo

    2007-05-20

    The present review focus in quinones found in species of Brazilian northeastern Capraria biflora, Lippia sidoides, Lippia microphylla and Tabebuia serratifolia. The review cover ethnopharmacological aspects including photography of species, chemical structure feature, NMR datea and biological properties. Chemical transformations of lapachol to form enamine derivatives and biological activities are discussed.

  8. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities

    PubMed Central

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-01-01

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression. PMID:27598154

  9. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities.

    PubMed

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-09-03

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  10. Calamintha nepeta (L.) Savi and its Main Essential Oil Constituent Pulegone: Biological Activities and Chemistry.

    PubMed

    Božović, Mijat; Ragno, Rino

    2017-02-14

    Medicinal plants play an important role in the treatment of a wide range of diseases, even if their chemical constituents are not always completely recognized. Observations on their use and efficacy significantly contribute to the disclosure of their therapeutic properties. Calamintha nepeta (L.) Savi is an aromatic herb with a mint-oregano flavor, used in the Mediterranean areas as a traditional medicine. It has an extensive range of biological activities, including antimicrobial, antioxidant and anti-inflammatory, as well as anti-ulcer and insecticidal properties. This study aims to review the scientific findings and research reported to date on Calamintha nepeta (L.) Savi that prove many of the remarkable various biological actions, effects and some uses of this species as a source of bioactive natural compounds. On the other hand, pulegone, the major chemical constituent of Calamintha nepeta (L.) Savi essential oil, has been reported to exhibit numerous bioactivities in cells and animals. Thus, this integrated overview also surveys and interprets the present knowledge of chemistry and analysis of this oxygenated monoterpene, as well as its beneficial bioactivities. Areas for future research are suggested.

  11. Design, synthesis, nuclear localization, and biological activity of a fluorescent duocarmycin analog, HxTfA.

    PubMed

    Kiakos, Konstantinos; Englinger, Bernhard; Yanow, Stephanie K; Wernitznig, Debora; Jakupec, Michael A; Berger, Walter; Keppler, Bernhard K; Hartley, John A; Lee, Moses; Patil, Pravin C

    2018-05-01

    HxTfA 4 is a fluorescent analog of a potent cytotoxic and antimalarial agent, TfA 3, which is currently being investigated for the development of an antimalarial vaccine, PlasProtect®. HxTfA contains a p-anisylbenzimidazole or Hx moiety, which is endowed with a blue emission upon excitation at 318 nm; thus enabling it to be used as a surrogate for probing the cellular fate of TfA using confocal microscopy, and addressing the question of nuclear localization. HxTfA exhibits similar selectivity to TfA for A-tract sequences of DNA, alkylating adenine-N3, albeit at 10-fold higher concentrations. It also possesses in vitro cytotoxicity against A549 human lung carcinoma cells and Plasmodium falciparum. Confocal microscopy studies showed for the first time that HxTfA, and by inference TfA, entered A549 cells and localized in the nucleus to exert its biological activity. At biologically relevant concentrations, HxTfA elicits DNA damage response as evidenced by a marked increase in the levels of γH2AX observed by confocal microscopy and immunoblotting studies, and ultimately induces apoptosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Preliminary evidence for biologic activity of toceranib phosphate (Palladia(®)) in solid tumours.

    PubMed

    London, C; Mathie, T; Stingle, N; Clifford, C; Haney, S; Klein, M K; Beaver, L; Vickery, K; Vail, D M; Hershey, B; Ettinger, S; Vaughan, A; Alvarez, F; Hillman, L; Kiselow, M; Thamm, D; Higginbotham, M L; Gauthier, M; Krick, E; Phillips, B; Ladue, T; Jones, P; Bryan, J; Gill, V; Novasad, A; Fulton, L; Carreras, J; McNeill, C; Henry, C; Gillings, S

    2012-09-01

    The purpose of this study was to provide an initial assessment of the potential biologic activity of toceranib phosphate (Palladia®, Pfizer Animal Health, Madison, NJ, USA) in select solid tumours in dogs. Cases in which toceranib was used to treat dogs with apocrine gland anal sac adenocarcinoma (AGASACA), metastatic osteosarcoma (OSA), thyroid carcinoma, head and neck carcinoma and nasal carcinoma were included. Clinical benefit (CB) was observed in 63/85 (74%) dogs including 28/32 AGASACA [8 partial response (PR), 20 stable disease (SD)], 11/23 OSAs (1 PR and 10 SD), 12/15 thyroid carcinomas (4 PR and 8 SD), 7/8 head and neck carcinomas [1 complete response (CR), 5 PR and 1 SD] and 5/7 (1 CR and 4 SD) nasal carcinomas. For dogs experiencing CB, the median dose of toceranib was 2.8 mg kg(-1) , 36/63 (58.7%) were dosed on a Monday/Wednesday/Friday basis and 47/63 (74.6%) were treated 4 months or longer. Although these data provide preliminary evidence that toceranib exhibits CB in dogs with certain solid tumours, future prospective studies are necessary to define its true activity. © 2011 Blackwell Publishing Ltd.

  13. DFT study of quercetin activated forms involved in antiradical, antioxidant, and prooxidant biological processes.

    PubMed

    Fiorucci, Sébastien; Golebiowski, Jérôme; Cabrol-Bass, Daniel; Antonczak, Serge

    2007-02-07

    Quercetin, one of the most representative flavonoid compounds, is involved in antiradical, antioxidant, and prooxidant biological processes. Despite a constant increase of knowledge on both positive and negative activities of quercetin, it is unclear which activated form (quinone, semiquinone, or deprotonated) actually plays a role in each of these processes. Structural, electronic, and energetic characteristics of quercetin, as well as the influence of a copper ion on all of these parameters, are studied by means of quantum chemical electronic structure calculations. Introduction of thermodynamic cycles together with the role of coreactive compounds, such as reactive oxygen species, gives a glimpse of the most probable reaction schemes. Such a theoretical approach provides another hint to clarify which reaction is likely to occur within the broad range of quercetin biological activities.

  14. Biological activities and potential health benefits of polysaccharides from Poria cocos and their derivatives.

    PubMed

    Sun, Yichun

    2014-07-01

    Poria cocos has a long history of medicinal use in Asian countries such as China, Japan, Korea and Thailand. It is a kind of edible and pharmaceutical mushroom. The chemical compositions of Poria cocos mainly include triterpenes, polysaccharides, steroids, amino acids, choline, histidine, etc. Great advances have been made in chemical and bioactive studies on Poria cocos polysaccharides (PCP) and their derivatives in recent decades. These PCP and their derivatives exhibit many beneficial biological activities including anticancer, anti-inflammatory, antioxidant and antiviral activities. Therefore, PCP and their derivatives have great potential for further development as therapy or adjuvant therapy for cancer, immune-modulatory and antiviral drugs. This paper presents an overview of biological activities and potential health benefits of PCP and their derivatives. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Investigations of biological processes in Austrian MBT plants.

    PubMed

    Tintner, J; Smidt, E; Böhm, K; Binner, E

    2010-10-01

    Mechanical biological treatment (MBT) of municipal solid waste (MSW) has become an important technology in waste management during the last decade. The paper compiles investigations of mechanical biological processes in Austrian MBT plants. Samples from all plants representing different stages of degradation were included in this study. The range of the relevant parameters characterizing the materials and their behavior, e.g. total organic carbon, total nitrogen, respiration activity and gas generation sum, was determined. The evolution of total carbon and nitrogen containing compounds was compared and related to process operation. The respiration activity decreases in most of the plants by about 90% of the initial values whereas the ammonium release is still ongoing at the end of the biological treatment. If the biogenic waste fraction is not separated, it favors humification in MBT materials that is not observed to such extent in MSW. The amount of organic carbon is about 15% dry matter at the end of the biological treatment. (c) 2010 Elsevier Ltd. All rights reserved.

  16. Detection and Quantification of Biologically Active Botulinum Neurotoxin Serotypes A and B Using a Förster Resonance Energy Transfer-Based Quantum Dot Nanobiosensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yun; Fry, H. Christopher; Skinner, Guy E.

    Botulinum neurotoxin (BoNT) is the most potent toxin known. The ingestion of food contaminated with biologically active BoNT causes foodborne botulism, which can lead to respiratory paralysis, coma, and death after ingestion of as little as 70 mu g for a 70 kg human. Because of its lethality and challenges associated with current detection methods, there is an urgent need for highly sensitive rapid screening techniques capable of detecting biologically active BoNT. Here, we describe a Forster resonance energy transfer-based nanobiosensor that uses quantum dots (QDs) and two specific quencher-labeled peptide probes to detect and differentiate two biologically active formsmore » of BoNT, serotypes A and B, which were responsible for 80% of human foodborne botulism cases in the U.S. from 2012 to 2015. Each peptide probe contains an enzymatic cleavage site specific to only one serotype. QDs were selected based on the spectral overlap with the quenchers. In the presence of the target BoNT serotype, the peptide probe is cleaved and the quenching of QD photoluminescence (PL) is reduced, giving a signal that is easily detected by a PL spectrophotometer. This sensor performance was evaluated with light chains of BoNT/A and BoNT/B (LcA and LcB), catalytic domains of the respective serotypes. LcA and LcB were detected in 3 h with limits of detection of 0.2 and 2 ng/mL, respectively. The specificity of the sensor was evaluated, and no cross-reactivity from nontarget serotypes was observed with 2 h of incubation. Because each serotype-specific peptide is conjugated to a QD with a unique emission wavelength, multiple biologically active BoNT serotypes could be detected in one PL spectrum. The sensor was also shown to be responsive to BoNT/A and BoNT/B holotoxins. Good performance of this sensor implies its potential application as a rapid screening method for biologically active BoNT/A and BoNT/B in the laboratory and in the field.« less

  17. The biological activity of chernozems in the Central Caucasus Mountains (Terskii variant of altitudinal zonality), Kabardino-Balkaria

    NASA Astrophysics Data System (ADS)

    Gedgafova, F. V.; Uligova, T. S.; Gorobtsova, O. N.; Tembotov, R. Kh.

    2015-12-01

    Some parameters of the biological activity (humus content; activity of hydrolytic enzymes invertase, phosphatase, urease; and the intensity of carbon dioxide emission) were studied in the chernozems of agrocenoses and native biogeocenoses in the foothills of the Caucasus Mountains representing the Terskii variant of the altitudinal zonality. The statistically significant differences were revealed between the relevant characteristics of the soils of the agrocenoses and of the native biogeocenoses. The integral index of the ecological-biological state of the soils was used to estimate changes in the biological activity of the arable chernozems. The 40-60% decrease of this index in the cultivated chernozems testified to their degradation with a decrease in fertility and the disturbance of ecological functions as compared to these characteristics in the virgin chernozems.

  18. Phytochemical Composition and Biological Activities of Dyssodia tagetiflora Lag.

    PubMed

    García-Bores, Ana María; Arciniegas-Arciniegas, Amira; Reyna-Campos, Alma; Céspedes-Acuña, Carlos; Avila-Suárez, Betsaida; Alarcón-Enos, Julio; Flores-Maya, Saul; Espinosa-González, Adriana Montserrat; de Vivar-Romo, Alfonso Romo; Pérez-Plasencia, Carlos; Avila-Acevedo, José Guillermo

    2018-02-01

    While plants of the genus Dyssodia are used by man to a certain extent, few phytochemical and pharmacological studies have been performed with species of this genus. D. tagetiflora is an endemic plant of Mexico and has been used as fodder. The aim of this research was to isolate and identify the main bioactive components and evaluate the insecticidal, antioxidant, genotoxic and cytoprotective activities of D. tagetiflora. The isolated substances included an essential oil composed of six monoterpenes, and extracts containing two flavonols, three flavonol-glycosides and four thiophenes. The compounds were characterized using spectroscopic and spectrometric methods, including GC/MS, MS and NMR. The essential oil showed insecticidal activity against Drosophila melanogaster larvae. The methanolic extract of D. tagetiflora (DTME) had strong antioxidant activity against DPPH and ABTS radicals; DTME showed no evidence of genotoxic or cytotoxic effects. In contrast, DTME showed a cytoprotective effect attenuating the formation of H 2 O 2 -induced micronuclei in Vicia faba roots. This report is the first to describe the phytochemical and biological activity of D. tagetiflora. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  19. Effect of Locked-Nucleic Acid on a Biologically Active G-Quadruplex. A Structure-Activity Relationship of the Thrombin Aptamer

    PubMed Central

    Bonifacio, Laura; Church, Frank C.; Jarstfer, Michael B.

    2008-01-01

    Here we tested the ability to augment the biological activity of the thrombin aptamer, d(GGTTGGTGTGGTTGG), by using locked nucleic acid (LNA) to influence its G-quadruplex structure. Compared to un-substituted control aptamer, LNA-containing aptamers displayed varying degrees of thrombin inhibition. Aptamers with LNA substituted in either positions G5, T7, or G8 showed decreased thrombin inhibition, whereas LNA at position G2 displayed activity comparable to un-substituted control aptamer. Interestingly, the thermal stability of the substituted aptamers does not correlate to activity – the more stable aptamers with LNA in position G5, T7, or G8 showed the least thrombin inhibition, while a less stable aptamer with LNA at G2 was as active as the un-substituted aptamer. These results suggest that LNA substitution at sites G5, T7, and G8 directly perturbs aptamer-thrombin affinity. This further implies that for the thrombin aptamer, activity is not dictated solely by the stability of the G-quadruplex structure, but by specific interactions between the central TGT loop and thrombin and that LNA can be tolerated in a biologically active nucleic acid structure albeit in a position dependent fashion. PMID:19325759

  20. Excretion of lead and its biological activity several years after termination of exposure

    PubMed Central

    Přerovská, I.; Teisinger, J.

    1970-01-01

    Přerovská, and Teisinger, J. (1970).Brit. J. industr. Med.,27, 352-355. Excretion of lead and its biological activity several years after termination of exposure. A group of 27 persons who had been treated some years previously for chronic lead poisoning at our clinic, and who had not come into occupational contact with lead since, was examined. Half of them had had no occupational exposure to lead for 3 to 5 years and the others for 8 to 17 years. In most of these persons there is still an increased lead excretion, originating from an increased deposit in the bones. The mobilization test after calcium versenate (CaEDTA) injection was greater than 0·350 mg/24 hours. The values found for haemoglobin, punctate basophilia, coproporphyrin and ALA in urine were normal, but there was, in all cases, a decreased ALA-D activity. This finding suggests biological activity of such negligible lead flow many years after termination of exposure. PMID:5488694

  1. Does disease activity at start of biologic therapy influence work-loss in RA patients?

    PubMed

    Olofsson, Tor; Johansson, Kari; Eriksson, Jonas K; van Vollenhoven, Ronald; Miller, Heather; Petersson, Ingemar F; Askling, Johan; Neovius, Martin

    2016-04-01

    To compare work-loss in RA patients starting their first biologic with high vs moderate disease activity. We identified all RA patients aged 20-63 years in the Swedish Biologics Register who started their first biologic 2007-09 with high disease activity (DAS28 >5.1; n = 868) or moderate disease activity (DAS28 3.2-5.1; n = 854). Work days lost, defined as sick leave and disability pension days from the Swedish Social Insurance Agency, were assessed over 5 years after first bio-start. We estimated between-group mean differences adjusted for age, sex, calendar year, education level, disease duration, comorbidities and work-loss the month before bio-start. During 5 years after anti-TNF start, mean monthly work days lost declined from 16.0 to 9.2 (42%; P < 0.001) in patients with high disease activity at baseline and from 12.0 to 7.2 (40%; P < 0.001) in patients with moderate disease activity, with no between-group difference (adjusted mean difference 0.81; 95% CI - 0.44, 2.05). Accumulated 5-year work-loss was, however, higher in the high activity group (724 vs 548 days; adjusted mean difference 70; 95% CI 20, 120), but after stratification on baseline disability pension status, no differences in accumulated work-loss were detected. Substantial work-loss was seen in both patients with high and patients with moderate disease activity at anti-TNF start, with a 5-year decline in mean monthly work days lost by ∼40% in both groups and no between-group difference. Accumulated work-loss over 5 years was higher in the high-activity group, which may be explained by differences in baseline disability pension status. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Composition and biological activities of hydrolyzable tannins of fruits of Phyllanthus emblica.

    PubMed

    Yang, Baoru; Liu, Pengzhan

    2014-01-22

    Fruits of emblic leafflower have been used as food and traditional medicine in Asia. A wide range of biological activities have been shown in modern research suggesting potential of the fruits as healthy food and raw material for bioactive ingredients of food. Hydrolyzable tannins are among the major bioactive components of the fruits. Mucic acid gallate, mucic acid lactone gallate, monogalloylglucose, gallic acid, digalloylglucose, putranjivain A, galloyl-HHDP-glucose, elaeocarpusin, and chebulagic acid are the most abundant hydrolyzable tannins. The compositional profiles of tannins in the fruits vary depending on the cultivars as well as ripening stages. Fruits and tannin-rich extracts of fruits have shown antidiabetic, antimicrobial, anti-inflammatory, and immune-regulating activities in vitro and in animal studies. The fruits and fruit extracts have manifested protective effects on organs/tissues from damages induced by chemicals, stresses, and aging in animal models. The fruits and fruit extracts have potential in inhibiting the growth of cancer cells and reducing DNA damage induced by chemicals and radiation. Antioxidative activities are likely among the mechanisms of the biological activities and physiological effects. Human intervention/clinical studies are needed to investigate the bioavailability and metabolism of the tannins and to substantiate the health benefits in humans. Emblic leafflower may be a potential raw material for natural food preservatives.

  3. [Biological properties of bacteriophages, active to Yersinia enterocolitica].

    PubMed

    Darsavelidze, M A; Kapanadze, Zh S; Chanishvili, T G

    2004-01-01

    The biological properties of 16 clones of Y. enterolitica bacteriophages were tested to select the most active for subsequent use. For the first time Y. enterocolitica virulent phages belonging to the family of Podoviridae were described and 7 serological groups of phages with no cross reactions were registered. The technology for the production of new therapeutic and prophylactic Y. enterocolitica polyvalent bacteriophage under laboratory conditions was developed. The effective multiplicity of contamination ensuring the maximum release of phages from bacterial cells, the optimum incubation temperature and the time of exposure were established. The experimental batches of therapeutic and prophylactic Y. enterocolitica polyvalent bacteriophage thus obtained met the requirements for antibacterial preparations.

  4. Use of the short-term inflammatory response in the mouse peritoneal cavity to assess the biological activity of leached vitreous fibers.

    PubMed Central

    Donaldson, K; Addison, J; Miller, B G; Cullen, R T; Davis, J M

    1994-01-01

    We used a special-purpose glass microfiber sample, Johns-Manville Code 100/475, to study the effects of various acid and alkali treatments on biological activity as assessed by inflammation in the mouse peritoneal cavity, the leaching of Si, and the phase contrast optical microscopy (PCOM) fiber number. We used mild and medium treatments with oxalic acid and Tris buffer and harsh treatment with concentrated HCl and NaOH. Mild oxalic acid and Tris treatment for 2 weeks had no effect on any of the end-points, but prolonging the mild oxalic acid treatment time to 2 months reduced the biological activity and the fiber number. Medium oxalic acid treatment reduced the biological activity and the fiber number and caused a loss of Si. Medium Tris alkali treatment reduced the PCOM-countable fibers and the biological activity but did not cause a substantial loss of Si. Harsh treatment with strong HCl did not affect the fiber number or cause leaching but the biological activity was reduced; strong NaOH reduced the fiber number and biological activity, and caused marked leaching of Si. The medium oxalic acid conditions (pH 1.4) were more acid than those found in lung cells but produced the same effects (reduction in fiber number and biological activity) as the more physiological mild treatment (pH 4.0), when prolonged. This study suggests that medium oxalic acid treatment can be used as a short-term assay to compare loss of Si, reduction in fiber number, and change in biological activity of vitreous fibers.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7882922

  5. Biologically Active and Antimicrobial Peptides from Plants

    PubMed Central

    Salas, Carlos E.; Badillo-Corona, Jesus A.; Ramírez-Sotelo, Guadalupe; Oliver-Salvador, Carmen

    2015-01-01

    Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application. PMID:25815307

  6. [Effects of biologically active pectin-containing dietary supplement on gastroduodenal motility in patients with a functional dyspepsia].

    PubMed

    Loranskaia, T I; Kabanova, I N; Klykova, E V

    2002-01-01

    For 21 patients with a functional dyspepsia the influencing biologically active additives to nutrition "Pekcecom" on dynamics of clinical symptoms and parameters gastroduodenal motility under the data gastroduodenoscintigraphy was studied. The usage of biologically active additives during 4 weeks was accompanied by deboosting of accelerated gastric emptying for want of statistically significant influencing on a normal and delayed gastric emptying and parameters of duodenal transit.

  7. Chemical Variability and Biological Activities of Eucalyptus spp. Essential Oils.

    PubMed

    Barbosa, Luiz Claudio Almeida; Filomeno, Claudinei Andrade; Teixeira, Robson Ricardo

    2016-12-07

    Many plant species produce mixtures of odorous and volatile compounds known as essential oils (EOs). These mixtures play important roles in Nature and have been utilized by mankind for different purposes, such as pharmaceuticals, agrochemicals, aromatherapy, and food flavorants. There are more than 3000 EOs reported in the literature, with approximately 300 in commercial use, including the EOs from Eucalyptus species. Most EOs from Eucalyptus species are rich in monoterpenes and many have found applications in pharmaceuticals, agrochemicals, food flavorants, and perfumes. Such applications are related to their diverse biological and organoleptic properties. In this study, we review the latest information concerning the chemical composition and biological activities of EOs from different species of Eucalyptus . Among the 900 species and subspecies of the Eucalyptus genus, we examined 68 species. The studies associated with these species were conducted in 27 countries. We have focused on the antimicrobial, acaricidal, insecticidal and herbicidal activities, hoping that such information will contribute to the development of research in this field. It is also intended that the information described in this study can be useful in the rationalization of the use of Eucalyptus EOs as components for pharmaceutical and agrochemical applications as well as food preservatives and flavorants.

  8. Biological tracer method

    DOEpatents

    Strong-Gunderson, Janet M.; Palumbo, Anthony V.

    1998-01-01

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer.

  9. Biological tracer method

    DOEpatents

    Strong-Gunderson, J.M.; Palumbo, A.V.

    1998-09-15

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer. 2 figs.

  10. Synthesis, characterization and biological activity of Rhein-cyclodextrin conjugate

    NASA Astrophysics Data System (ADS)

    Liu, Manshuo; Lv, Pin; Liao, Rongqiang; Zhao, Yulin; Yang, Bo

    2017-01-01

    Cyclodextrin conjugate complexation is a useful method to enhance the solubility and absorption of poorly soluble drugs. A series of new Rhein-β-cyclodextrin conjugates (Rh-CD conjugates) have been synthesized and examined. Rhein is covalently linked with the β-CD by amido linkage in a 1:1 molar ratio. The conjugates were characterized by 1H NMR, 13C NMR, HRMS, powder X-ray diffraction (powder XRD) as well as thermogravimetric analysis (TGA). The results reveal that incorporation of β-CD could improve the aqueous solubility of Rhein and the cytotoxicity against hepatocellular carcinoma (HepG2) cell line as well as antibacterial activity against three organisms. The improved biological activity and the satisfactory water solubility of the conjugates will be potentially useful for developing novel drug-cyclodextrin conjugates, such as herbal medicine.

  11. Some biologically active oxovanadium(IV) complexes of triazole derived Schiff bases: their synthesis, characterization and biological properties.

    PubMed

    Chohan, Zahid H; Sumrra, Sajjad H

    2010-10-01

    A series of biologically active oxovanadium(IV) complexes of triazole derived Schiff bases L(1)-L(5) have been synthesized and characterized by their physical, analytical, and spectral data. The synthesized ligands potentially act as bidentate, in which the oxygen of furfural and nitrogen of azomethine coordinate with the oxovanadium atom to give a stoichiometry of vanadyl complexes 1:2 (M:L) in a square-pyramidal geometry. In vitro antibacterial and antifungal activities on different species of pathogenic bacteria (E. coli, S. flexneri, P. aeruginosa, S. typhi, S. aureus, and B. subtilis) and fungi (T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glabrata) have been studied. All compounds showed moderate to significant antibacterial activity against one or more bacterial strains and good antifungal activity against most of the fungal strains. The brine shrimp bioassay was also carried out to check the cytotoxicity of coordinated and uncoordinated synthesized compounds.

  12. Photoelectron spectra and biological activity of cinnamic acid derivatives revisited.

    PubMed

    Novak, Igor; Klasinc, Leo; McGlynn, Sean P

    2018-01-15

    The electronic structures of several derivatives of cinnamic acid have been studied by UV photoelectron spectroscopy (UPS) and Green's function quantum chemical calculations. The spectra reveal the presence of dimers in the gas phase for p-coumaric and ferulic acids. The electronic structure analysis has been related to the biological properties of these compounds through the analysis of some structure-activity relationships (SAR). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. One-step production of a biologically active novel furan fatty acid from 7,10-dihydroxy-8(E)-octadecenoic acid

    USDA-ARS?s Scientific Manuscript database

    Furan fatty acids (F-acids) gain special attentions since they are known to play important roles in biological systems including humans. Specifically F-acids are known to have strong antioxidant activity like radical scavenging activity. Although widely distributed in most biological systems, F-ac...

  14. Protein aggregates as depots for the release of biologically active compounds.

    PubMed

    Artemova, Natalya V; Kasakov, Alexei S; Bumagina, Zoya M; Lyutova, Elena M; Gurvits, Bella Ya

    2008-12-12

    Protein misfolding and aggregation is one of the most serious problems in cell biology, molecular medicine, and biotechnology. Misfolded proteins interact with each other or with other proteins in non-productive or damaging ways. However, a new paradigm arises that protein aggregation may be exploited by nature to perform specific functions in different biological contexts. From this consideration, acceleration of stress-induced protein aggregation triggered by any factor resulting in the formation of soluble aggregates may have paradoxical positive consequences. Here, we suggest that amorphous aggregates can act as a source for the release of biologically active proteins after removal of stress conditions. To address this concept, we investigated the kinetics of thermal aggregation in vitro of yeast alcohol dehydrogenase (ADH) as a model substrate in the presence of two amphiphilic peptides: Arg-Phe or Ala-Phe-Lys. Using dynamic light scattering (DLS) and turbidimetry, we have demonstrated that under mild stress conditions the concentration-dependent acceleration of ADH aggregation by these peptides results in formation of large but soluble complexes of proteins prone to refolding.

  15. Active listening in medical consultations: development of the Active Listening Observation Scale (ALOS-global).

    PubMed

    Fassaert, Thijs; van Dulmen, Sandra; Schellevis, François; Bensing, Jozien

    2007-11-01

    Active listening is a prerequisite for a successful healthcare encounter, bearing potential therapeutic value especially in clinical situations that require no specific medical intervention. Although generally acknowledged as such, active listening has not been studied in depth. This paper describes the development of the Active Listening Observation Scale (ALOS-global), an observation instrument measuring active listening and its validation in a sample of general practice consultations for minor ailments. Five hundred and twenty-four videotaped general practice consultations involving minor ailments were observed with the ALOS-global. Hypotheses were tested to determine validity, incorporating patients' perception of GPs' affective performance, GPs' verbal attention, patients' self-reported anxiety level and gender differences. The final 7-item ALOS-global had acceptable inter- and intra-observer agreement. Factor analysis revealed one homogeneous dimension. The scalescore was positively related to verbal attention measured by RIAS, to patients' perception of GPs' performance and to their pre-visit anxiety level. Female GPs received higher active listening scores. The results of this study are promising concerning the psychometric properties of the ALOS-global. More research is needed to confirm these preliminary findings. After establishing how active listening differentiates between health professionals, the ALOS-global may become a valuable tool in feedback and training aimed at increasing listening skills.

  16. Ethnographic Observational Study of the Biologic Initiation Conversation Between Rheumatologists and Biologic-Naive Rheumatoid Arthritis Patients.

    PubMed

    Kottak, Nicholas; Tesser, John; Leibowitz, Evan; Rosenberg, Melissa; Parenti, Dennis; DeHoratius, Raphael

    2018-01-30

    This ethnographic market research study investigated the biologic initiation conversation between rheumatologists and biologic-naive patients with rheumatoid arthritis to assess how therapy options, particularly mode of administration, were discussed. Consenting rheumatologists (n = 16) and patients (n = 48) were videotaped during medical visits and interviewed by a trained ethnographer. The content, structure, and timing of conversations regarding biologic initiation were analyzed. The mean duration of physician-patient visits was approximately 15 minutes; biologic therapies were discussed for a mean of 5.6 minutes. Subcutaneous (SC) and intravenous (IV) therapy options were mentioned in 45 and 35 visits, respectively, out of a total of 48 visits. All patients had some familiarity with SC administration, but nearly half of patients (22 of 48) were unfamiliar with IV therapy going into the visit. IV administration was not defined or described by rheumatologists in 77% of visits (27 of 35) mentioning IV therapy. Thus, 19 of 22 patients who were initially unfamiliar with IV therapy remained unfamiliar after the visit. Disparities in physician-patient perceptions were revealed, as all rheumatologists (16 of 16) believed IV therapy would be less convenient than SC therapy for patients, while 46% of patients (22 of 48) felt this way. In post-visit interviews, some patients seemed confused and overwhelmed, particularly when presented with many treatment choices in a visit. Some patients stated they would benefit from visual aids or summary sheets of key points. This study revealed significant educational opportunities to improve the biologic initiation conversation and indicated a disparity between patients' and rheumatologists' perception of IV therapy. © 2018 The Authors. Arthritis Care & Research published by Wiley Periodicals, Inc. on behalf of American College of Rheumatology.

  17. Investigation of Marine-Derived Fungal Diversity and Their Exploitable Biological Activities

    PubMed Central

    Hong, Joo-Hyun; Jang, Seokyoon; Heo, Young Mok; Min, Mihee; Lee, Hwanhwi; Lee, Young Min; Lee, Hanbyul; Kim, Jae-Jin

    2015-01-01

    Marine fungi are potential producers of bioactive compounds that may have pharmacological and medicinal applications. Fungi were cultured from marine brown algae and identified using multiple target genes to confirm phylogenetic placement. These target genes included the internal transcribed spacer (ITS), the nuclear large subunit (LSU), and the β-tubulin region. Various biological activities of marine-derived fungi were evaluated, including their antifungal, antioxidant and cellulolytic enzyme activities. As a result, a total of 50 fungi was isolated from the brown algae Sargassum sp. Among the 50 isolated fungi, Corollospora angusta was the dominant species in this study. The genus Arthrinium showed a relatively strong antifungal activity to all of the target plant pathogenic fungi. In particular, Arthrinium saccharicola KUC21221 showed high radical scavenging activity and the highest activities in terms of filter paper units (0.39 U/mL), endoglucanase activity (0.38 U/mL), and β-glucosidase activity (1.04 U/mL). PMID:26133554

  18. Biological Potential in Serpentinizing Systems

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.

    2016-01-01

    Generation of the microbial substrate hydrogen during serpentinization, the aqueous alteration of ultramafic rocks, has focused interest on the potential of serpentinizing systems to support biological communities or even the origin of life. However the process also generates considerable alkalinity, a challenge to life, and both pH and hydrogen concentrations vary widely across natural systems as a result of different host rock and fluid composition and differing physical and hydrogeologic conditions. Biological potential is expected to vary in concert. We examined the impact of such variability on the bioenergetics of an example metabolism, methanogenesis, using a cell-scale reactive transport model to compare rates of metabolic energy generation as a function of physicochemical environment. Potential rates vary over more than 5 orders of magnitude, including bioenergetically non-viable conditions, across the range of naturally occurring conditions. In parallel, we assayed rates of hydrogen metabolism in wells associated with the actively serpentinizing Coast Range Ophiolite, which includes conditions more alkaline and considerably less reducing than is typical of serpentinizing systems. Hydrogen metabolism is observed at pH approaching 12 but, consistent with the model predictions, biological methanogenesis is not observed.

  19. Coming Out in Class: Challenges and Benefits of Active Learning in a Biology Classroom for LGBTQIA Students.

    PubMed

    Cooper, Katelyn M; Brownell, Sara E

    As we transition our undergraduate biology classrooms from traditional lectures to active learning, the dynamics among students become more important. These dynamics can be influenced by student social identities. One social identity that has been unexamined in the context of undergraduate biology is the spectrum of lesbian, gay, bisexual, transgender, queer, intersex, and asexual (LGBTQIA) identities. In this exploratory interview study, we probed the experiences and perceptions of seven students who identify as part of the LGBTQIA community. We found that students do not always experience the undergraduate biology classroom to be a welcoming or accepting place for their identities. In contrast to traditional lectures, active-learning classes increase the relevance of their LGBTQIA identities due to the increased interactions among students during group work. Finally, working with other students in active-learning classrooms can present challenges and opportunities for students considering their LGBTQIA identity. These findings indicate that these students' LGBTQIA identities are affecting their experience in the classroom and that there may be specific instructional practices that can mitigate some of the possible obstacles. We hope that this work can stimulate discussions about how to broadly make our active-learning biology classes more inclusive of this specific population of students. © 2016 K. M. Cooper and S. E. Brownell. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Active Interaction Mapping as a tool to elucidate hierarchical functions of biological processes.

    PubMed

    Farré, Jean-Claude; Kramer, Michael; Ideker, Trey; Subramani, Suresh

    2017-07-03

    Increasingly, various 'omics data are contributing significantly to our understanding of novel biological processes, but it has not been possible to iteratively elucidate hierarchical functions in complex phenomena. We describe a general systems biology approach called Active Interaction Mapping (AI-MAP), which elucidates the hierarchy of functions for any biological process. Existing and new 'omics data sets can be iteratively added to create and improve hierarchical models which enhance our understanding of particular biological processes. The best datatypes to further improve an AI-MAP model are predicted computationally. We applied this approach to our understanding of general and selective autophagy, which are conserved in most eukaryotes, setting the stage for the broader application to other cellular processes of interest. In the particular application to autophagy-related processes, we uncovered and validated new autophagy and autophagy-related processes, expanded known autophagy processes with new components, integrated known non-autophagic processes with autophagy and predict other unexplored connections.

  1. Characterization of the corrosion resistance of biologically active solutions: The effects of anodizing and welding

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1991-01-01

    An understanding of fabrication processes, metallurgy, electrochemistry, and microbiology is crucial to the resolution of microbiologically influenced corrosion (MIC) problems. The object of this effort was to use AC impedance spectroscopy to characterize the corrosion resistance of Type II anodized aluminum alloy 2219-T87 in sterile and biologically active media and to examine the corrosion resistance of 316L, alloy 2219-T87, and titanium alloy 6-4 in the welded and unwelded conditions. The latter materials were immersed in sterile and biologically active media and corrosion currents were measured using the polarization resistance (DC) technique.

  2. Nitrogen-Containing Constituents of Black Cohosh: Chemistry, Structure Elucidation, and Biological Activities

    PubMed Central

    Lankin, David C.; Cisowska, Tamara; Chen, Shao-Nong; Pauli, Guido F.; van Breemen, Richard B.

    2016-01-01

    The roots/rhizomes of black cohosh (Actaea racemosa L. syn. Cimicifuga racemosa [L]. Nutt., Ranunculaceae) have been used traditionally by Native Americans to treat colds, rheumatism, and a variety of conditions related to women’s health. In recent years black cohosh preparations have become popular dietary supplements among women seeking alternative treatments for menopausal complaints. The popularity of the plant has led to extensive phytochemical and biological investigations, including several clinical trials. Most of the phytochemical and biological research has focused on two abundant classes of compounds: the triterpene glycosides and phenolic acids. A third group of phytoconstituents that has received far less attention consists of the alkaloids and related compounds that contain nitrogen. This chapter summarizes the current state of knowledge of the chemistry and biological activities associated with this group of constituents and provides some perspective on their significance for future research on this interesting plant. PMID:27795590

  3. Essential Oil Variability and Biological Activities of Tetraclinis articulata (Vahl) Mast. Wood According to the Extraction Time.

    PubMed

    Djouahri, Abderrahmane; Saka, Boualem; Boudarene, Lynda; Baaliouamer, Aoumeur

    2016-12-01

    In the present work, the hydrodistillation (HD) and microwave-assisted hydrodistillation (MAHD) kinetics of essential oil (EO) extracted from Tetraclinis articulata (Vahl) Mast. wood was conducted, in order to assess the impact of extraction time and technique on chemical composition and biological activities. Gas chromatography (GC) and GC/mass spectrometry analyses showed significant differences between the extracted EOs, where each family class or component presents a specific kinetic according to extraction time, technique and especially for the major components: camphene, linalool, cedrol, carvacrol and α-acorenol. Furthermore, our findings showed a high variability for both antioxidant and anti-inflammatory activities, where each activity has a specific effect according to extraction time and technique. The highlighted variability reflects the high impact of extraction time and technique on chemical composition and biological activities, which led to conclude that we should select EOs to be investigated carefully depending on extraction time and technique, in order to isolate the bioactive components or to have the best quality of EO in terms of biological activities and preventive effects in food. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  4. Is chondroitin sulfate responsible for the biological effects attributed to the GC protein-derived Macrophage Activating Factor (GcMAF)?

    PubMed

    Ruggiero, Marco; Reinwald, Heinz; Pacini, Stefania

    2016-09-01

    We hypothesize that a plasma glycosaminoglycan, chondroitin sulfate, may be responsible for the biological and clinical effects attributed to the Gc protein-derived Macrophage Activating Factor (GcMAF), a protein that is extracted from human blood. Thus, Gc protein binds chondroitin sulfate on the cell surface and such an interaction may occur also in blood, colostrum and milk. This interpretation would solve the inconsistencies encountered in explaining the effects of GcMAF in vitro and in vivo. According to our model, the Gc protein or the GcMAF bind to chondroitin sulfate both on the cell surface and in bodily fluids, and the resulting multimolecular complexes, under the form of oligomers trigger a transmembrane signal or, alternatively, are internalized and convey the signal directly to the nucleus thus eliciting the diverse biological effects observed for both GcMAF and chondroitin sulfate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Chemical composition and biological activity of ripe pumpkin fruits (Cucurbita pepo L.) cultivated in Egyptian habitats.

    PubMed

    Badr, Sherif E A; Shaaban, Mohamed; Elkholy, Yehya M; Helal, Maher H; Hamza, Akila S; Masoud, Mohamed S; El Safty, Mounir M

    2011-09-01

    The chemical composition and biological activity of three parts (rind, flesh and seeds) of pumpkin fruits (Cucurbita pepo L.) cultivated in Egypt were studied. Chemical analysis of fibre, protein, β-carotene, carbohydrates, minerals and fatty acids present in the rind, flesh, seeds and defatted seeds meal was conducted. Chemical, GC-MS and biological assays of organic extracts of the main fruit parts, rind and flesh established their unique constituents. Chromatographic purification of the extracts afforded triglyceride fatty acid mixture (1), tetrahydro-thiophene (2), linoleic acid (3), calotropoleanly ester (4), cholesterol (5) and 13(18)-oleanen-3-ol (6). GC-MS analysis of the extract's unpolar fraction revealed the existence of dodecane and tetradecane. Structures of the isolated compounds (1-6) were confirmed by NMR and EI-MS spectrometry. Antimicrobial, antiviral and antitumour activities of the fruit parts were discussed. The promising combined extract of rind and flesh was biologically studied for microbial and cytotoxic activities in comparison with the whole isolated components.

  6. Biological activities of human mannose-binding lectin bound to two different ligand sugar structures, Lewis A and Lewis B antigens and high-mannose type oligosaccharides.

    PubMed

    Muto, S; Takada, T; Matsumoto, K

    2001-07-02

    The biological activities of mannose-binding lectin (MBL) which binds to different ligands on mammalian cells were examined using two types of Colo205 cells, a human colon adenocarcinoma cell line: one naturally expressing Lewis A and Lewis B antigens as ligands for MBL (NT-Colo205), and the other modified to express high-mannose type oligosaccharides by treatment with benzyl-2-acetamide-2-deoxy-alpha-galactopyranoside and 1-deoxymannojirimycin (Bz+dMM-Colo205). Although the final lysis was not observed, the deposition of C4 and C3 was observed on both types of Colo205 cells after treatment with MBL and complements as a result of complement activation by MBL. MBL bound to Bz+dMM-Colo205 could also activate human peripheral blood leukocytes and induce superoxide production; however, MBL bound to NT-Colo205 could not. This may be explained by the lower affinity of MBL to Lewis A and Lewis B antigens than to high-mannose type oligosaccharides under physiological conditions, since MBL bound to NT-Colo205 was more easily released from the cell surface than that bound to Bz+dMM-Colo205 at 37 degrees C. These findings suggest that the difference in the affinity of MBL to its ligands could influence the expression of some biological activities of MBL.

  7. Glycosylation Is a Major Regulator of Phenylpropanoid Availability and Biological Activity in Plants

    PubMed Central

    Le Roy, Julien; Huss, Brigitte; Creach, Anne; Hawkins, Simon; Neutelings, Godfrey

    2016-01-01

    The phenylpropanoid pathway in plants is responsible for the biosynthesis of a huge amount of secondary metabolites derived from phenylalanine and tyrosine. Both flavonoids and lignins are synthesized at the end of this very diverse metabolic pathway, as well as many intermediate molecules whose precise biological functions remain largely unknown. The diversity of these molecules can be further increased under the action of UDP-glycosyltransferases (UGTs) leading to the production of glycosylated hydroxycinnamates and related aldehydes, alcohols and esters. Glycosylation can change phenylpropanoid solubility, stability and toxic potential, as well as influencing compartmentalization and biological activity. (De)-glycosylation therefore represents an extremely important regulation point in phenylpropanoid homeostasis. In this article we review recent knowledge on the enzymes involved in regulating phenylpropanoid glycosylation status and availability in different subcellular compartments. We also examine the potential link between monolignol glycosylation and lignification by exploring co-expression of lignin biosynthesis genes and phenolic (de)glycosylation genes. Of the different biological roles linked with their particular chemical properties, phenylpropanoids are often correlated with the plant's stress management strategies that are also regulated by glycosylation. UGTs can for instance influence the resistance of plants during infection by microorganisms and be involved in the mechanisms related to environmental changes. The impact of flavonoid glycosylation on the color of flowers, leaves, seeds and fruits will also be discussed. Altogether this paper underlies the fact that glycosylation and deglycosylation are powerful mechanisms allowing plants to regulate phenylpropanoid localisation, availability and biological activity. PMID:27303427

  8. Selenylation Modification of Degraded Polysaccharide from Enteromorpha prolifera and Its Biological Activities

    NASA Astrophysics Data System (ADS)

    Lv, Haitao; Duan, Ke; Shan, Hu

    2018-04-01

    Polysaccharide extracted from Enteromorpha prolifera possessed excellent biological activities, but its molecular weight was greatly high which influenced the activity. Organic Se had higher biological activities and was safer than inorganic Se species. In the present study, Enteromorpha polysaccharide was degraded to low molecular weight by free-radical degradation method of H2O2 and ascorbic acid. By single factor and orthogonal experiments, the optimal degradation conditions were reaction time of 2 h, reaction temperature of 50°C, H2O2/ascorbic acid (n/n=1:1) concentration of 15 mmol L-1, and solid-liquid ratio of 1:50 (g mL-1). Then, the degraded polysaccharide was chemically modified to obtain its selenide derivatives by nitric acid-sodium selenite method. The selenium content was 1137.29 μg g-1, while the content of sulfate radical had no change. IR spectra indicated that the selenite ester group was formed. Degraded polysaccharide selenide was characterized and evaluated for antioxidant, antifungal and antibacterial activities. The results showed that degraded polysaccharide selenide had strong capacity of scavenging DPPH and ·OH free radical. It had significant antibacterial properties for Escherichia coli, Bacillus subtilis and Salmonella spp., and it also had significant antifungal properties for Apple anthrax. The result ascertained degradation and selenylation modification did not change the main structure of polysaccharides. It was possible that free-radical degradation was an effective way for enhancing antioxidant activity to decrease molecular weight of polysaccharides.

  9. Multiple, novel biologically active endophytic actinomycetes isolated from upper Amazonian rainforests.

    PubMed

    Bascom-Slack, Carol A; Ma, Cong; Moore, Emily; Babbs, Beatrice; Fenn, Kathleen; Greene, Joshua S; Hann, Bradley D; Keehner, Jocelyn; Kelley-Swift, Elizabeth G; Kembaiyan, Vivek; Lee, Sun Jin; Li, Puyao; Light, David Y; Lin, Emily H; Schorn, Michelle A; Vekhter, Daniel; Boulanger, Lori-Ann; Hess, W M; Vargas, Percy Núñez; Strobel, Gary A; Strobel, Scott A

    2009-08-01

    Microbial biodiversity provides an increasingly important source of medically and industrially useful compounds. We have isolated 14 actinomycete species from a collection of approximately 300 plant stem samples from the upper Amazonian rainforest in Peru. All of the cultured isolates produce substances with inhibitory activity directed at a range of potential fungal and bacterial pathogens. For some organisms, this activity is very broad in spectrum while other organisms show specific activity against a limited number of organisms. Two of these organisms preferentially inhibit bacterial test organisms over eukaryotic organisms. rDNA sequence analysis indicates that these organisms are not equivalent to any other cultured deposits in GenBank. Our results provide evidence of the untapped biodiversity in the form of biologically active microbes present within the tissues of higher plants.

  10. Earth observation archive activities at DRA Farnborough

    NASA Technical Reports Server (NTRS)

    Palmer, M. D.; Williams, J. M.

    1993-01-01

    Space Sector, Defence Research Agency (DRA), Farnborough have been actively involved in the acquisition and processing of Earth Observation data for over 15 years. During that time an archive of over 20,000 items has been built up. This paper describes the major archive activities, including: operation and maintenance of the main DRA Archive, the development of a prototype Optical Disc Archive System (ODAS), the catalog systems in use at DRA, the UK Processing and Archive Facility for ERS-1 data, and future plans for archiving activities.

  11. The biological activities and chemical composition of Pereskia species (Cactaceae)--a review.

    PubMed

    Pinto, Nícolas de Castro Campos; Scio, Elita

    2014-09-01

    The exploration of nature as a source of sustainable, novel bioactive substances continues to grow as natural products play a significant role in the search for new therapeutic and agricultural agents. In this context, plants of the genus Pereskia (Cactaceae) have been studied for their biological activities, and are evolving as an interesting subject in the search for new, bioactive compounds. These species are commonly used as human foodstuffs and in traditional medicine to treat a variety of diseases. This review focuses on the bioactivity and chemical composition of the genus Pereskia, and aims to stimulate further studies on the chemistry and biological potential of the genus.

  12. Bone effects of biologic drugs in rheumatoid arthritis.

    PubMed

    Corrado, Addolorata; Neve, Anna; Maruotti, Nicola; Cantatore, Francesco Paolo

    2013-01-01

    Biologic agents used in the treatment of rheumatoid arthritis (RA) are able to reduce both disease activity and radiographic progression of joint disease. These drugs are directed against several proinflammatory cytokines (TNF α , IL-6, and IL-1) which are involved both in the pathogenesis of chronic inflammation and progression of joint structural damage and in systemic and local bone loss typically observed in RA. However, the role of biologic drugs in preventing bone loss in clinical practice has not yet clearly assessed. Many clinical studies showed a trend to a positive effect of biologic agents in preventing systemic bone loss observed in RA. Although the suppression of inflammation is the main goal in the treatment of RA and the anti-inflammatory effects of biologic drugs exert a positive effect on bone metabolism, the exact relationship between the prevention of bone loss and control of inflammation has not been clearly established, and if the available biologic drugs against TNF α , IL-1, and IL-6 can exert their effect on systemic and local bone loss also through a direct mechanism on bone cell metabolism is still to be clearly defined.

  13. Biological collections and ecological/environmental research: a review, some observations and a look to the future.

    PubMed

    Pyke, Graham H; Ehrlich, Paul R

    2010-05-01

    collections have, for example, been particularly useful as sources of information regarding variation in attributes of individuals (e.g. morphology, chemical composition) in relation to environmental variables, and provided important information in relation to species' distributions, but less useful in the contexts of habitat associations and population sizes. Changes to policies, strategies and procedures associated with biological collections could mitigate these biases and limitations, and hence make such collections more useful in the context of ecological/environmental issues. Haphazard and opportunistic collecting could be replaced with strategies for adding to existing collections that prioritize projects that use biological collections and include, besides taxonomy and systematics, a focus on significant environmental/ecological issues. Other potential changes include increased recording of the nature and extent of collecting effort and information associated with each specimen such as nearby habitat and other individuals observed but not collected. Such changes have begun to occur within some institutions. Institutions that house biological collections should, we think, pursue a mission of 'understanding the life of the planet to inform its stewardship' (Krishtalka & Humphrey, 2000), as such a mission would facilitate increased use of biological collections in an ecological/environmental context and hence lead to increased appreciation, encouragement and support from the public for these collections, their associated research, and the institutions that house them.

  14. The Use of Group Activities in Introductory Biology Supports Learning Gains and Uniquely Benefits High-Achieving Students†

    PubMed Central

    Marbach-Ad, Gili; Rietschel, Carly H.; Saluja, Neeti; Carleton, Karen L.; Haag, Eric S.

    2016-01-01

    This study describes the implementation and effectiveness of small-group active engagement (GAE) exercises in an introductory biology course (BSCI207) taught in a large auditorium setting. BSCI207 (Principles of Biology III—Organismal Biology) is the third introductory core course for Biological Sciences majors. In fall 2014, the instructors redesigned one section to include GAE activities to supplement lecture content. One section (n = 198) employed three lectures per week. The other section (n = 136) replaced one lecture per week with a GAE class. We explored the benefits and challenges associated with implementing GAE exercises and their relative effectiveness for unique student groups (e.g., minority students, high- and low-grade point average [GPA] students). Our findings show that undergraduates in the GAE class exhibited greater improvement in learning outcomes than undergraduates in the traditional class. Findings also indicate that high-achieving students experienced the greatest benefit from GAE activities. Some at-risk student groups (e.g., two-year transfer students) showed comparably low learning gains in the course, despite the additional support that may have been afforded by active learning. Collectively, these findings provide valuable feedback that may assist other instructors who wish to revise their courses and recommendations for institutions regarding prerequisite coursework approval policies. PMID:28101262

  15. The Use of Group Activities in Introductory Biology Supports Learning Gains and Uniquely Benefits High-Achieving Students.

    PubMed

    Marbach-Ad, Gili; Rietschel, Carly H; Saluja, Neeti; Carleton, Karen L; Haag, Eric S

    2016-12-01

    This study describes the implementation and effectiveness of small-group active engagement (GAE) exercises in an introductory biology course (BSCI207) taught in a large auditorium setting. BSCI207 (Principles of Biology III-Organismal Biology) is the third introductory core course for Biological Sciences majors. In fall 2014, the instructors redesigned one section to include GAE activities to supplement lecture content. One section ( n = 198) employed three lectures per week. The other section ( n = 136) replaced one lecture per week with a GAE class. We explored the benefits and challenges associated with implementing GAE exercises and their relative effectiveness for unique student groups (e.g., minority students, high- and low-grade point average [GPA] students). Our findings show that undergraduates in the GAE class exhibited greater improvement in learning outcomes than undergraduates in the traditional class. Findings also indicate that high-achieving students experienced the greatest benefit from GAE activities. Some at-risk student groups (e.g., two-year transfer students) showed comparably low learning gains in the course, despite the additional support that may have been afforded by active learning. Collectively, these findings provide valuable feedback that may assist other instructors who wish to revise their courses and recommendations for institutions regarding prerequisite coursework approval policies.

  16. Coming Out in Class: Challenges and Benefits of Active Learning in a Biology Classroom for LGBTQIA Students

    PubMed Central

    Cooper, Katelyn M.; Brownell, Sara E.

    2016-01-01

    As we transition our undergraduate biology classrooms from traditional lectures to active learning, the dynamics among students become more important. These dynamics can be influenced by student social identities. One social identity that has been unexamined in the context of undergraduate biology is the spectrum of lesbian, gay, bisexual, transgender, queer, intersex, and asexual (LGBTQIA) identities. In this exploratory interview study, we probed the experiences and perceptions of seven students who identify as part of the LGBTQIA community. We found that students do not always experience the undergraduate biology classroom to be a welcoming or accepting place for their identities. In contrast to traditional lectures, active-learning classes increase the relevance of their LGBTQIA identities due to the increased interactions among students during group work. Finally, working with other students in active-learning classrooms can present challenges and opportunities for students considering their LGBTQIA identity. These findings indicate that these students’ LGBTQIA identities are affecting their experience in the classroom and that there may be specific instructional practices that can mitigate some of the possible obstacles. We hope that this work can stimulate discussions about how to broadly make our active-learning biology classes more inclusive of this specific population of students. PMID:27543636

  17. The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract

    NASA Astrophysics Data System (ADS)

    Kumara Swamy, M.; Sudipta, K. M.; Jayanta, K.; Balasubramanya, S.

    2015-01-01

    Biosynthesis of silver nanoparticles (Ag Nps) was carried out using methanol leaves extract of L. reticulata. Ag Nps were characterized based on the observations of UV-visible spectroscopy, transmission electron microscopy, and X-ray diffraction (XRD) analysis. These Ag Nps were tested for antimicrobial activity by agar well diffusion method against different pathogenic microorganisms and antioxidant activity was performed using DPPH assay. Further, the in vitro cytotoxic effects of Ag Nps were screened against HCT15 cancer cell line and viability of tumor cells was confirmed using MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole)) assay. The nuclear condensation was studied using the propidium iodide-staining method. The color change from green to dark brown and the absorbance peak at about 420 nm indicated the formation of nanoparticles. XRD pattern showed characteristic peaks indexed to the crystalline planes (111), (200) and (220) of face-centered cubic silver. The nanoparticles were of spherical shape with varying sizes ranging from 50 to 70 nm. Biosynthesized Ag Nps showed potent antibacterial activity and effective radical scavenging activity. MTT assay revealed a dose-dependent decrease in cell viability. Microscopic observations showed distinct cellular morphological changes indicating unhealthy cells, whereas the control appeared normal. Increase in the number of propidium iodide positive cells were observed in maximum concentration. Methanolic leaf extract of L. reticulata acts as an excellent capping agent for the formation of silver nanoparticles and demonstrates immense biological activities. Hence, these Ag NPs can be used as antibacterial, antioxidant as well as cytotoxic agent in treating many medical complications.

  18. Nonexercise activity thermogenesis (NEAT): environment and biology.

    PubMed

    Levine, James A

    2004-05-01

    Nonexercise activity thermogenesis (NEAT) is the energy expended for everything that is not sleeping, eating, or sports-like exercise. It includes the energy expended walking to work, typing, performing yard work, undertaking agricultural tasks, and fidgeting. NEAT can be measured by one of two approaches. The first is to measure or estimate total NEAT. Here, total daily energy expenditure is measured, and from it "basal metabolic rate-plus-thermic effect of food" is subtracted. The second is the factoral approach, whereby the components of NEAT are quantified, and total NEAT is calculated by summing these components. The amount of NEAT that humans perform represents the product of the amount and types of physical activities and the thermogenic cost of each activity. The factors that impact a human's NEAT are readily divisible into environmental factors, such as occupation or dwelling within a "concrete jungle," and biological factors such as weight, gender, and body composition. The combined impact of these factors explains the substantial variance in human NEAT. The variability in NEAT might be viewed as random, but human and animal data contradict this. It appears that changes in NEAT subtly accompany experimentally induced changes in energy balance and are important in the physiology of weight change. Inadequate modulation of NEAT plus a sedentary lifestyle may thus be important in obesity. It then becomes intriguing to dissect mechanistic studies that delineate how NEAT is regulated into neural, peripheral, and humoral factors. A scheme is described in this review in which NEAT corresponds to a carefully regulated "tank" of physical activity that is crucial for weight control.

  19. Waste-Activated Sludge Fermentation for Polyacrylamide Biodegradation Improved by Anaerobic Hydrolysis and Key Microorganisms Involved in Biological Polyacrylamide Removal

    PubMed Central

    Dai, Xiaohu; Luo, Fan; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dong, Bin

    2015-01-01

    During the anaerobic digestion of dewatered sludge, polyacrylamide (PAM), a chemical conditioner, can usually be consumed as a carbon and nitrogen source along with other organic matter (e.g., proteins and carbohydrates in the sludge). However, a significant accumulation of acrylamide monomers (AMs) was observed during the PAM biodegradation process. To improve the anaerobic hydrolysis of PAM, especially the amide hydrolysis process, and to avoid the generation of the intermediate product AM, a new strategy is reported herein that uses an initial pH of 9, 200 mg COD/L of PAM and a fermentation time of 17 d. First, response surface methodology (RSM) was applied to optimize PAM removal in the anaerobic digestion of the sludge. The biological hydrolysis of PAM reached 86.64% under the optimal conditions obtained from the RSM. Then, the mechanisms for the optimized parameters that significantly improved the biological hydrolysis of PAM were investigated by the synergistic effect of the main organic compounds in the sludge, the floc size distribution, and the enzymatic activities. Finally, semi-continuous-flow experiments for a microbial community study were investigated based on the determination of key microorganisms involved in the biological hydrolysis of PAM. PMID:26144551

  20. Waste-Activated Sludge Fermentation for Polyacrylamide Biodegradation Improved by Anaerobic Hydrolysis and Key Microorganisms Involved in Biological Polyacrylamide Removal.

    PubMed

    Dai, Xiaohu; Luo, Fan; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dong, Bin

    2015-07-06

    During the anaerobic digestion of dewatered sludge, polyacrylamide (PAM), a chemical conditioner, can usually be consumed as a carbon and nitrogen source along with other organic matter (e.g., proteins and carbohydrates in the sludge). However, a significant accumulation of acrylamide monomers (AMs) was observed during the PAM biodegradation process. To improve the anaerobic hydrolysis of PAM, especially the amide hydrolysis process, and to avoid the generation of the intermediate product AM, a new strategy is reported herein that uses an initial pH of 9, 200 mg COD/L of PAM and a fermentation time of 17 d. First, response surface methodology (RSM) was applied to optimize PAM removal in the anaerobic digestion of the sludge. The biological hydrolysis of PAM reached 86.64% under the optimal conditions obtained from the RSM. Then, the mechanisms for the optimized parameters that significantly improved the biological hydrolysis of PAM were investigated by the synergistic effect of the main organic compounds in the sludge, the floc size distribution, and the enzymatic activities. Finally, semi-continuous-flow experiments for a microbial community study were investigated based on the determination of key microorganisms involved in the biological hydrolysis of PAM.

  1. Physics of the Solar Active Regions from Radio Observations

    NASA Astrophysics Data System (ADS)

    Gelfreikh, G. B.

    1999-12-01

    Localized increase of the magnetic field observed by routine methods on the photosphere result in the growth of a number of active processes in the solar atmosphere and the heliosphere. These localized regions of increased magnetic field are called active regions (AR). The main processes of transfer, accumulation and release of energy in an AR is, however, out of scope of photospheric observations being essentially a 3D-process and happening either under photosphere or up in the corona. So, to investigate these plasma structures and processes we are bound to use either extrapolation of optical observational methods or observations in EUV, X-rays and radio. In this review, we stress and illustrate the input to the problem gained from radio astronomical methods and discuss possible future development of their applicatications. Historically speaking each new step in developing radio technique of observations resulted in detecting some new physics of ARs. The most significant progress in the last few years in radio diagnostics of the plasma structures of magnetospheres of the solar ARs is connected with the developing of the 2D full disk analysis on regular basis made at Nobeyama and detailed multichannel spectral-polarization (but one-dimensional and one per day) solar observations at the RATAN-600. In this report the bulk of attention is paid to the new approach to the study of solar activity gained with the Nobeyama radioheliograph and analyzing the ways for future progress. The most important new features of the multicomponent radio sources of the ARs studied using Nobeyama radioheliograph are as follow: 1. The analysis of magnetic field structures in solar corona above sunspot with 2000 G. Their temporal evolution and fluctuations with the periods around 3 and 5 minutes, due to MHD-waves in sunspot magnetic tubes and surrounding plasma. These investigations are certainly based on an analysis of thermal cyclotron emission of lower corona and CCTR above sunspot

  2. Time-dependent effects of ultraviolet and nonthermal atmospheric pressure plasma on the biological activity of titanium

    NASA Astrophysics Data System (ADS)

    Choi, Sung-Hwan; Jeong, Won-Seok; Cha, Jung-Yul; Lee, Jae-Hoon; Yu, Hyung-Seog; Choi, Eun-Ha; Kim, Kwang-Mahn; Hwang, Chung-Ju

    2016-09-01

    Here, we evaluated time-dependent changes in the effects of ultraviolet (UV) and nonthermal atmospheric pressure plasma (NTAPPJ) on the biological activity of titanium compared with that of untreated titanium. Grade IV machined surface titanium discs (12-mm diameter) were used immediately and stored up to 28 days after 15-min UV or 10-min NTAPPJ treatment. Changes of surface characteristics over time were evaluated using scanning electron microscopy, surface profiling, contact angle analysis, X-ray photoelectron spectroscopy, and surface zeta-potential. Changes in biological activity over time were as determined by analysing bovine serum albumin adsorption, MC3T3-E1 early adhesion and morphometry, and alkaline phosphatase (ALP) activity between groups. We found no differences in the effects of treatment on titanium between UV or NTAPPJ over time; both treatments resulted in changes from negatively charged hydrophobic (bioinert) to positively charged hydrophilic (bioactive) surfaces, allowing enhancement of albumin adsorption, osteoblastic cell attachment, and cytoskeleton development. Although this effect may not be prolonged for promotion of cell adhesion until 4 weeks, the effects were sufficient to maintain ALP activity after 7 days of incubation. This positive effect of UV and NTAPPJ treatment can enhance the biological activity of titanium over time.

  3. Salinity fluctuation influencing biological adaptation: growth dynamics and Na+ /K+ -ATPase activity in a euryhaline bacterium.

    PubMed

    Yang, Hao; Meng, Yang; Song, Youxin; Tan, Yalin; Warren, Alan; Li, Jiqiu; Lin, Xiaofeng

    2017-07-01

    Although salinity fluctuation is a prominent characteristic of many coastal ecosystems, its effects on biological adaptation have not yet been fully recognized. To test the salinity fluctuations on biological adaptation, population growth dynamics and Na + /K + -ATPase activity were investigated in the euryhaline bacterium Idiomarina sp. DYB, which was acclimated at different salinity exposure levels, exposure times, and shifts in direction of salinity. Results showed: (1) bacterial population growth dynamics and Na + /K + -ATPase activity changed significantly in response to salinity fluctuation; (2) patterns of variation in bacterial growth dynamics were related to exposure times, levels of salinity, and shifts in direction of salinity change; (3) significant tradeoffs were detected between growth rate (r) and carrying capacity (K) on the one hand, and Na + /K + -ATPase activity on the other; and (4) beneficial acclimation was confirmed in Idiomarina sp. DYB. In brief, this study demonstrated that salinity fluctuation can change the population growth dynamics, Na + /K + -ATPase activity, and tradeoffs between r, K, and Na + /K + -ATPase activity, thus facilitating bacterial adaption in a changing environment. These findings provide constructive information for determining biological response patterns to environmental change. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Observation and imitation of actions performed by humans, androids, and robots: an EMG study

    PubMed Central

    Hofree, Galit; Urgen, Burcu A.; Winkielman, Piotr; Saygin, Ayse P.

    2015-01-01

    Understanding others’ actions is essential for functioning in the physical and social world. In the past two decades research has shown that action perception involves the motor system, supporting theories that we understand others’ behavior via embodied motor simulation. Recently, empirical approach to action perception has been facilitated by using well-controlled artificial stimuli, such as robots. One broad question this approach can address is what aspects of similarity between the observer and the observed agent facilitate motor simulation. Since humans have evolved among other humans and animals, using artificial stimuli such as robots allows us to probe whether our social perceptual systems are specifically tuned to process other biological entities. In this study, we used humanoid robots with different degrees of human-likeness in appearance and motion along with electromyography (EMG) to measure muscle activity in participants’ arms while they either observed or imitated videos of three agents produce actions with their right arm. The agents were a Human (biological appearance and motion), a Robot (mechanical appearance and motion), and an Android (biological appearance and mechanical motion). Right arm muscle activity increased when participants imitated all agents. Increased muscle activation was found also in the stationary arm both during imitation and observation. Furthermore, muscle activity was sensitive to motion dynamics: activity was significantly stronger for imitation of the human than both mechanical agents. There was also a relationship between the dynamics of the muscle activity and motion dynamics in stimuli. Overall our data indicate that motor simulation is not limited to observation and imitation of agents with a biological appearance, but is also found for robots. However we also found sensitivity to human motion in the EMG responses. Combining data from multiple methods allows us to obtain a more complete picture of action

  5. Interprofessional pharmacy observation activity for third-year dental students.

    PubMed

    Conway, Susan E; Smith, Winter J; Truong, Teresa H; Shadid, Jill

    2014-09-01

    Interprofessional learning is a key component of today's health sciences education. Within a two-course series in dental pharmacology and therapeutics, a dental curriculum was revised to provide an interprofessional activity to expose dental students to a community pharmacy setting. The objectives of this activity were to augment students' learning about drug laws and prescription writing, as well as to foster interprofessional relationships and collaboration between pharmacists and dentists. Dental students were scheduled for one-hour observations at community pharmacies on campus. Learning objectives to guide this activity focused on demonstrating community pharmacy operating procedures, identifying ways to minimize prescribing and dosing errors, and understanding how pharmacists can assist dentists in prescribing. Following the observation, students were required to submit a written assignment, which accounted for 14 percent of their course grade. All 119 dental students (100 percent) enrolled in the course for the summers of 2012 and 2013 completed the activity. The average grade on the written assignment was 96.2 out of 100. At the end of the course, students were asked to participate in an online course evaluation survey, for which response rates were 37 percent and 43 percent for 2012 and 2013, respectively. The students rated the pharmacy observation activity favorably on this course evaluation. The pharmacy observation activity provided a successful interprofessional component to the didactic pharmacy course and was well received by the dental students as well as the community pharmacists.

  6. Performance of biological magnetic powdered activated carbon for drinking water purification.

    PubMed

    Lompe, Kim Maren; Menard, David; Barbeau, Benoit

    2016-06-01

    Combining the high adsorption capacity of powdered activated carbon (PAC) with magnetic properties of iron oxide nanoparticles (NPs) leads to a promising composite material, magnetic PAC or MPAC, which can be separated from water using magnetic separators. We propose MPAC as an alternative adsorbent in the biological hybrid membrane process and demonstrate that PAC covered with magnetic NPs is suitable as growth support for heterotrophic and nitrifying bacteria. MPAC with mass fractions of 0; 23; 38 and 54% maghemite was colonized in small bioreactors for over 90 days. Although the bacterial community composition (16s rRNA analysis) was different on MPAC compared to PAC, NPs neither inhibited dissolved organic carbon and ammonia biological removals nor contributed to significant adsorption of these compounds. The same amount of active heterotrophic biomass (48 μg C/cm(3)) developed on MPAC with a mass fraction of 54% NPs as on the non-magnetic PAC control. While X-ray diffraction confirmed that size and type of iron oxides did not change over the study period, a loss in magnetization between 10% and 34% was recorded. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Computer-aided discovery of biological activity spectra for anti-aging and anti-cancer olive oil oleuropeins.

    PubMed

    Corominas-Faja, Bruna; Santangelo, Elvira; Cuyàs, Elisabet; Micol, Vicente; Joven, Jorge; Ariza, Xavier; Segura-Carretero, Antonio; García, Jordi; Menendez, Javier A

    2014-09-01

    Aging is associated with common conditions, including cancer, diabetes, cardiovascular disease, and Alzheimer's disease. The type of multi-targeted pharmacological approach necessary to address a complex multifaceted disease such as aging might take advantage of pleiotropic natural polyphenols affecting a wide variety of biological processes. We have recently postulated that the secoiridoids oleuropein aglycone (OA) and decarboxymethyl oleuropein aglycone (DOA), two complex polyphenols present in health-promoting extra virgin olive oil (EVOO), might constitute a new family of plant-produced gerosuppressant agents. This paper describes an analysis of the biological activity spectra (BAS) of OA and DOA using PASS (Prediction of Activity Spectra for Substances) software. PASS can predict thousands of biological activities, as the BAS of a compound is an intrinsic property that is largely dependent on the compound's structure and reflects pharmacological effects, physiological and biochemical mechanisms of action, and specific toxicities. Using Pharmaexpert, a tool that analyzes the PASS-predicted BAS of substances based on thousands of "mechanism-effect" and "effect-mechanism" relationships, we illuminate hypothesis-generating pharmacological effects, mechanisms of action, and targets that might underlie the anti-aging/anti-cancer activities of the gerosuppressant EVOO oleuropeins.

  8. [Changes in active cysteine cathepsins in lysosomes from tissues thyroid papillary carcinomas with various biological characteristics].

    PubMed

    Kalinichenko, O V; Myshunina, T M; Tron'ko, M D

    2013-01-01

    To clarify possible role of cysteine cathepsin H, B and L in the proteolytic processes that contribute to the progression of tumor growth in the thyroid, we studied their activity in lysosomes isolated from the tissue of papillary carcinomas. It was shown that for these enzymes there is a dependence of the changes in their activity on a number of biological characteristics of the tumors. Thus, the sharp increase in the activity ofcathepsin H observed in lysosomes of tissue carcinomas category T2 and T3, with intra-and ekstrathyroid and lymphatic invasion of tumor cells. An increase in the activity of cathepsin B is set in the lysosomes of tissue heterogeneous follicular structure, especially in the presence of solid areas, in comparison with typical papillary tumors and in the lysosomes of tissue carcinomas in intrathyroid and cathepsin L-at extrathyroid invasion. A common feature of the enzymes is to increase the activity of cathepsins in lysosomes of tissue nonencapsulated papillary carcinomas. These enzymes probably do not take part in the invasion of tumor cells into blood vessels and in the mechanisms of tumor metastasis to regional lymph nodes. The latter shows no changes in the activity of cathepsins in lysosomes of tissue carcinomas category N1. The results indicate the different role of cathepsin H, B and L in thyroid carcinogenesis, where each enzyme has its specific function.

  9. An Introduction to Biological Modeling Using Coin Flips to Predict the Outcome of a Diffusion Activity

    ERIC Educational Resources Information Center

    Butcher, Greg Q.; Rodriguez, Juan; Chirhart, Scott; Messina, Troy C.

    2016-01-01

    In order to increase students' awareness for and comfort with mathematical modeling of biological processes, and increase their understanding of diffusion, the following lab was developed for use in 100-level, majors/non-majors biology and neuroscience courses. The activity begins with generation of a data set that uses coin-flips to replicate…

  10. Metal-containing Complexes of Lactams, Imidazoles, and Benzimidazoles and Their Biological Activity

    NASA Astrophysics Data System (ADS)

    Kukalenko, S. S.; Bovykin, B. A.; Shestakova, S. I.; Omel'chenko, A. M.

    1985-07-01

    The results of the latest investigations of the problem of the synthesis of metal-containing complexes of lactams, imidazoles, and benzimidazoles, their structure, and their stability in solutions are surveyed. Some data on their biological activity (pesticide and pharmacological) and the mechanism of their physiological action are presented. The bibliography includes 190 references.

  11. The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome.

    PubMed

    McDonald, Daniel; Clemente, Jose C; Kuczynski, Justin; Rideout, Jai Ram; Stombaugh, Jesse; Wendel, Doug; Wilke, Andreas; Huse, Susan; Hufnagle, John; Meyer, Folker; Knight, Rob; Caporaso, J Gregory

    2012-07-12

    We present the Biological Observation Matrix (BIOM, pronounced "biome") format: a JSON-based file format for representing arbitrary observation by sample contingency tables with associated sample and observation metadata. As the number of categories of comparative omics data types (collectively, the "ome-ome") grows rapidly, a general format to represent and archive this data will facilitate the interoperability of existing bioinformatics tools and future meta-analyses. The BIOM file format is supported by an independent open-source software project (the biom-format project), which initially contains Python objects that support the use and manipulation of BIOM data in Python programs, and is intended to be an open development effort where developers can submit implementations of these objects in other programming languages. The BIOM file format and the biom-format project are steps toward reducing the "bioinformatics bottleneck" that is currently being experienced in diverse areas of biological sciences, and will help us move toward the next phase of comparative omics where basic science is translated into clinical and environmental applications. The BIOM file format is currently recognized as an Earth Microbiome Project Standard, and as a Candidate Standard by the Genomic Standards Consortium.

  12. An observational study of emergency department intern activities.

    PubMed

    Zhu, Jia Ni; Weiland, Tracey J; Taylor, David M; Dent, Andrew W

    2008-05-05

    To describe how intern time is spent, and the frequency of activities performed by interns during emergency department (ED) rotations. Prospective observational study of 42 ED interns from three Melbourne city teaching hospitals during 5 months in 2006. Direct observations were made by a single researcher for 390.8 hours, sampling all days of the week and all hours of the day. Proportion of time spent on tasks and number of procedures performed or observed by interns. Direct patient-related tasks accounted for 86.6% of total intern time, including 43.9% spent on liaising and documentation, 17.5% obtaining patient histories, 9.3% on physical examinations, 5.6% on procedures, 4.8% ordering or interpreting investigations, 3.0% on handover and 4.9% on other clinical activities. Intern time spent on non-clinical activities included 4.2% on breaks, 3.7% on downtime, 1.7% on education, and 1.3% on teaching others. Adjusted for an 8-week term, the ED intern would take 253 patient histories, consult more senior ED staff on 683 occasions, perform 237 intravenous cannulations/phlebotomies, 39 arterial punctures, 12 wound repairs and apply 16 plasters. They would perform chest compressions under supervision on seven occasions, observe defibrillation twice and intubation once, but may not see a thoracostomy. The ED exposes interns to a broad range of activities. With the anticipated increase in intern numbers, dilution of the emergency medicine experience may occur, and requirements for supervision may increase. Substitution of ED rotations may deprive interns of a valuable learning experience.

  13. Biological agents for moderately to severely active ulcerative colitis: a systematic review and network meta-analysis.

    PubMed

    Danese, Silvio; Fiorino, Gionata; Peyrin-Biroulet, Laurent; Lucenteforte, Ersilia; Virgili, Gianni; Moja, Lorenzo; Bonovas, Stefanos

    2014-05-20

    Biological agents are emerging treatment options for the management of ulcerative colitis (UC). To assess the comparative efficacy and harm of biological agents in adult patients with moderately to severely active UC who are naive to biological agents. MEDLINE, EMBASE, and Cochrane Library from inception through December 2013, without language restrictions, and ClinicalTrials.gov, European Medicines Agency, and U.S. Food and Drug Administration Web sites. Randomized, placebo-controlled or head-to-head trials assessing biological agents as induction or maintenance therapy for moderately to severely active UC. Two reviewers independently abstracted study data and outcomes and rated each trial's risk of bias. There were no head-to-head trials. There were 7 double-blind, placebo-controlled trials that were rated as low risk of bias and showed that all biological agents (adalimumab, golimumab, infliximab, and vedolizumab) resulted in more clinical responses, clinical remissions, and mucosal healings than placebo for induction therapy. The results of network meta-analysis suggested that infliximab is more effective to induce clinical response (odds ratio, 2.36 [95% credible interval, 1.22 to 4.63]) and mucosal healing (odds ratio, 2.02 [95% credible interval, 1.13 to 3.59]) than adalimumab. No other indirect comparison reached statistical significance. For maintenance, 6 double-blind, placebo-controlled trials that were rated high risk of bias showed that all biological agents have greater clinical efficacy than placebo. The occurrence of adverse events was not different between biological agents and placebo. Few trials, no head-to-head comparisons, and inadequate follow-up in maintenance trials. Biological agents are effective treatments for UC, but head-to-head trials are warranted to establish the best therapeutic option.

  14. Is Biology Boring? Student Attitudes toward Biology

    ERIC Educational Resources Information Center

    Prokop, Pavol; Prokop, Matel; Tunnicliffe, Sue Dale

    2007-01-01

    The study examines the interests and attitudes of school students toward biology: through their interest in out-of-school activities and their attitude towards lessons as measured by interest, importance and difficulty. Biology lessons were relatively popular with the greatest preference found among students learning zoology. Girls showed…

  15. Antimicrobial and biological activity of leachate from light curable pulp capping materials.

    PubMed

    Arias-Moliz, Maria Teresa; Farrugia, Cher; Lung, Christie Y K; Wismayer, Pierre Schembri; Camilleri, Josette

    2017-09-01

    Characterization of a number of pulp capping materials and assessment of the leachate for elemental composition, antimicrobial activity and cell proliferation and expression. Three experimental light curable pulp-capping materials, Theracal and Biodentine were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The elemental composition of the leachate formed after 24h was assessed by inductively coupled plasma (ICP). The antimicrobial activity of the leachate was determined by the minimum inhibitory concentration (MIC) against multispecies suspensions of Streptococcus mutans ATCC 25175, Streptococcus gordonii ATCC 33478 and Streptococcus sobrinus ATCC 33399. Cell proliferation and cell metabolic function over the material leachate was assessed by an indirect contact test using 3-(4,5 dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The hydration behavior of the test materials varied with Biodentine being the most reactive and releasing the highest amount of calcium ions in solution. All materials tested except the unfilled resin exhibited depletion of phosphate ions from the solution indicating interaction of the materials with the media. Regardless the different material characteristics, there was a similar antimicrobial activity and cellular activity. All the materials exhibited no antimicrobial activity and were initially cytotoxic with cell metabolic function improving after 3days. The development of light curable tricalcium silicate-based pulp capping materials is important to improve the bonding to the final resin restoration. Testing of both antimicrobial activity and biological behavior is critical for material development. The experimental light curable materials exhibited promising biological properties but require further development to enhance the antimicrobial characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Antibacterial Free Fatty Acids and Monoglycerides: Biological Activities, Experimental Testing, and Therapeutic Applications

    PubMed Central

    Yoon, Bo Kyeong; Jackman, Joshua A.; Valle-González, Elba R.

    2018-01-01

    Antimicrobial lipids such as fatty acids and monoglycerides are promising antibacterial agents that destabilize bacterial cell membranes, causing a wide range of direct and indirect inhibitory effects. The goal of this review is to introduce the latest experimental approaches for characterizing how antimicrobial lipids destabilize phospholipid membranes within the broader scope of introducing current knowledge about the biological activities of antimicrobial lipids, testing strategies, and applications for treating bacterial infections. To this end, a general background on antimicrobial lipids, including structural classification, is provided along with a detailed description of their targeting spectrum and currently understood antibacterial mechanisms. Building on this knowledge, different experimental approaches to characterize antimicrobial lipids are presented, including cell-based biological and model membrane-based biophysical measurement techniques. Particular emphasis is placed on drawing out how biological and biophysical approaches complement one another and can yield mechanistic insights into how the physicochemical properties of antimicrobial lipids influence molecular self-assembly and concentration-dependent interactions with model phospholipid and bacterial cell membranes. Examples of possible therapeutic applications are briefly introduced to highlight the potential significance of antimicrobial lipids for human health and medicine, and to motivate the importance of employing orthogonal measurement strategies to characterize the activity profile of antimicrobial lipids. PMID:29642500

  17. Synthesis of Novel Aza-aromatic Curcuminoids with Improved Biological Activities towards Various Cancer Cell Lines.

    PubMed

    Theppawong, Atiruj; Van de Walle, Tim; Grootaert, Charlotte; Bultinck, Margot; Desmet, Tom; Van Camp, John; D'hooghe, Matthias

    2018-05-01

    Curcumin, a natural compound extracted from the rhizomes of Curcuma longa , displays pronounced anticancer properties but lacks good bioavailability and stability. In a previous study, we initiated structure modification of the curcumin scaffold by imination of the labile β-diketone moiety to produce novel β-enaminone derivatives. These compounds showed promising properties for elaborate follow-up studies. In this work, we focused on another class of nitrogen-containing curcuminoids with a similar objective: to address the bioavailability and stability issues and to improve the biological activity of curcumin. This paper thus reports on the synthesis of new pyridine-, indole-, and pyrrole-based curcumin analogues (aza-aromatic curcuminoids) and discusses their water solubility, antioxidant activity, and antiproliferative properties. In addition, multivariate statistics, including hierarchical clustering analysis and principal component analysis, were performed on a broad set of nitrogen-containing curcuminoids. Compared to their respective mother structures, that is, curcumin and bisdemethoxycurcumin, all compounds, and especially the pyridin-3-yl β-enaminone analogues, showed better water solubility profiles. Interestingly, the pyridine-, indole-, and pyrrole-based curcumin derivatives demonstrated improved biological effects in terms of mitochondrial activity impairment and protein content, in addition to comparable or decreased antioxidant properties. Overall, the biologically active N -alkyl β-enaminone aza-aromatic curcuminoids were shown to offer a desirable balance between good solubility and significant bioactivity.

  18. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia - current trends.

    PubMed

    Ali, Mohammad; Abbasi, Bilal Haider; Ahmad, Nisar; Khan, Haji; Ali, Gul Shad

    2017-11-01

    The genus Artemisia has been utilized worldwide due to its immense potential for protection against various diseases, especially malaria. Artemisia absinthium, previously renowned for its utilization in the popular beverage absinthe, is gaining resurgence due to its extensive pharmacological activities. Like A. annua, this species exhibits strong biological activities like antimalarial, anticancer and antioxidant. Although artemisinin was found to be the major metabolite for its antimalarial effects, several flavonoids and terpenoids are considered to possess biological activities when used alone and also to synergistically boost the bioavailability of artemisinin. However, due to the limited quantities of these metabolites in wild plants, in vitro cultures were established and strategies have been adopted to enhance medicinally important secondary metabolites in these cultures. This review elaborates on the traditional medicinal uses of Artemisia species and explains current trends to establish cell cultures of A. annua and A. absinthium for enhanced production of medicinally important secondary metabolites.

  19. Biological shielding test of hot cells with high active source 60Co (300 TBq)

    NASA Astrophysics Data System (ADS)

    Švrčula, P.; Zoul, D.; Zimina, M.; Petříčková, A.; Adamíková, T.; Schulc, M.; Srba, O.

    2017-11-01

    This article describes a method for testing of the efficiency of the biological shielding of the hot cell facility, which were constructed as a part of the project SUSEN. Ten hot cells and one semi-hot cell are present in the facility Radiochemistry II. The shielding is made from steel plates. In order to demonstrate sufficient efficiency of the biological shielding of the hot cells and a correspondence between measured and contractual values at selected points. The test was done using sealed high activity 60Co sources. The results are also used as a proof of the optimization of radiation protection for the workplace of this type. The results confirm significant optimization of radiation protection at the workplace. The dose received by a staff do not exceed one tens of annual limit during active service. Obtained results fulfill general requirements of radiation protection and will be used for further active service of hot cells facility.

  20. In vitro and in vivo biological activities of anthocyanins from Nitraria tangutorun Bobr. fruits.

    PubMed

    Ma, Tao; Hu, Na; Ding, Chenxi; Zhang, Qiulong; Li, Wencong; Suo, Yourui; Wang, Honglun; Bai, Bo; Ding, Chenxu

    2016-03-01

    Anthocyanins are the main compounds in Nitraria tangutorun Bobr. The enrichment and purification of anthocyanins on macroporous resins were investigated. Regarding anthocyanin purification, static adsorption and desorption were studied. The optimal experimental conditions were the following: resin type: X-5; static adsorption time: 6h; desorption solution: ethanol-water-HCl (80:19:1, V/V/V; pH 1); desorption time: 40min. Furthermore, the in vitro and in vivo biological activities of the anthocyanins were evaluated. The anthocyanins showed ideal scavenging effects on free radicals in vitro, especially on 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl free radical (OH). In the animal experiment, blood lipid metabolism of hyperlipidemia rats was regulated by anthocyanin contents. The superoxide dismutase (SOD) activity and the total antioxidant capacity (TAC) of hyperlipidemia rats were also improved by anthocyanins. These results showed that anthocyanins from N. tangutorun Bobr. fruits had potential biological activities in vivo as well as in vitro. Copyright © 2015. Published by Elsevier Ltd.

  1. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    NASA Astrophysics Data System (ADS)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  2. The Mediating Role of Physical Self-Concept on Relations between Biological Maturity Status and Physical Activity in Adolescent Females

    ERIC Educational Resources Information Center

    Cumming, Sean P.; Standage, Martyn; Loney, Tom; Gammon, Catherine; Neville, Helen; Sherar, Lauren B.; Malina, Robert M.

    2011-01-01

    The current study examined the mediating role of physical self-concept on relations between biological maturity status and self-reported physical activity in adolescent British females. Biological maturity status, physical self-concept and physical activity were assessed in 407 female British year 7-9 pupils (M age = 13.2 years, SD = 1.0).…

  3. Galileo SSI Observations of Volcanic Activity at Tvashtar Catena, Io

    NASA Technical Reports Server (NTRS)

    Milazzo, M. P.; Keszthely, L. P.; Radebaugh, J.; Davies, A. G.; Turtle, E. P.; Geissler, P.; Klaasen, K. P.; McEwen, A. S.

    2005-01-01

    Introduction: We report on the analysis of the Galileo SSI's observations of the volcanic activity at Tvashtar Catena, Io as discussed by Milazzo et al. Galileo's Solid State Imager (SSI) observed Tvashtar Catena (63 deg N, 120 deg W) four times between November 1999 and October 2001, providing a unique look at the distinctive high latitude volcanism on Io. The November 1999 observation spatially resolved, for the first time, an active extraterrestrial fissure eruption. The brightness temperature of the lavas at the November 1999 fissure eruption was 1300 K. The second observation (orbit I27, February 2000) showed a large (approx. 500 sq km) region with many, small spots of hot, active lava. The third observation was taken in conjunction with a Cassini observation in December 2000 and showed a Pele-like plume deposition ring, while the Cassini images revealed a 400 km high Pele-type plume above the Catena. The final Galileo SSI observation of Tvashtar was acquired in October 2001, and all obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. We have concentrated on analyzing the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of "simple" advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping (in time and space) eruptions.

  4. Assessing Preschool Children's Physical Activity: The Observational System for Recording Physical Activity in Children-Preschool Version

    ERIC Educational Resources Information Center

    Brown, William H.; Pfeiffer, Karin A.; McIver, Kerry L.; Dowda, Marsha; Almeida, M. Joao C. A.; Pate, Russell R.

    2006-01-01

    In this paper we present initial information concerning a new direct observation system--the Observational System for Recording Physical Activity in Children-Preschool Version. The system will allow researchers to record young children's physical activity levels while also coding the topography of their physical activity, as well as detailed…

  5. Active region upflows. I. Multi-instrument observations

    NASA Astrophysics Data System (ADS)

    Vanninathan, K.; Madjarska, M. S.; Galsgaard, K.; Huang, Z.; Doyle, J. G.

    2015-12-01

    Context. We study upflows at the edges of active regions, called AR outflows, using multi-instrument observations. Aims: This study intends to provide the first direct observational evidence of whether chromospheric jets play an important role in furnishing mass that could sustain coronal upflows. The evolution of the photospheric magnetic field, associated with the footpoints of the upflow region and the plasma properties of active region upflows is investigated with the aim of providing information for benchmarking data-driven modelling of this solar feature. Methods: We spatially and temporally combine multi-instrument observations obtained with the Extreme-ultraviolet Imaging Spectrometer on board the Hinode, the Atmospheric Imaging Assembly and the Helioseismic Magnetic Imager instruments on board the Solar Dynamics Observatory and the Interferometric BI-dimensional Spectro-polarimeter installed at the National Solar Observatory, Sac Peak, to study the plasma parameters of the upflows and the impact of the chromosphere on active region upflows. Results: Our analysis shows that the studied active region upflow presents similarly to those studied previously, i.e. it displays blueshifted emission of 5-20 kms-1 in Fe xii and Fe xiii and its average electron density is 1.8 × 109 cm-3 at 1 MK. The time variation of the density is obtained showing no significant change (in a 3σ error). The plasma density along a single loop is calculated revealing a drop of 50% over a distance of ~20 000 km along the loop. We find a second velocity component in the blue wing of the Fe xii and Fe xiii lines at 105 kms-1 reported only once before. For the first time we study the time evolution of this component at high cadence and find that it is persistent during the whole observing period of 3.5 h with variations of only ±15 kms-1. We also, for the first time, study the evolution of the photospheric magnetic field at high cadence and find that magnetic flux diffusion is

  6. A truncated Wnt7a retains full biological activity in skeletal muscle

    NASA Astrophysics Data System (ADS)

    von Maltzahn, Julia; Zinoviev, Radoslav; Chang, Natasha C.; Bentzinger, C. Florian; Rudnicki, Michael A.

    2013-11-01

    Wnt signaling has essential roles during embryonic development and tissue homoeostasis. Wnt proteins are post-translationally modified and the attachment of a palmitate moiety at two conserved residues is believed to be a prerequisite for the secretion and function of Wnt proteins. Here we demonstrate that a mammalian Wnt protein can be fully functional without palmitoylation. We generate a truncated Wnt7a variant, consisting of the C-terminal 137 amino acids lacking the conserved palmitoylation sites and show that it retains full biological activity in skeletal muscle. This includes binding to and signaling through its receptor Fzd7 to stimulate symmetric expansion of satellite stem cells by activating the planar-cell polarity pathway and inducing myofibre hypertrophy by signaling through the AKT/mTOR pathway. Furthermore, this truncated Wnt7a shows enhanced secretion and dispersion compared with the full-length protein. Together, these findings open important new avenues for the development of Wnt7a as a treatment for muscle-wasting diseases and have broad implications for the therapeutic use of Wnts as biologics.

  7. Air-liquid interface exposure to aerosols of poorly soluble nanomaterials induces different biological activation levels compared to exposure to suspensions.

    PubMed

    Loret, Thomas; Peyret, Emmanuel; Dubreuil, Marielle; Aguerre-Chariol, Olivier; Bressot, Christophe; le Bihan, Olivier; Amodeo, Tanguy; Trouiller, Bénédicte; Braun, Anne; Egles, Christophe; Lacroix, Ghislaine

    2016-11-03

    Recently, much progress has been made to develop more physiologic in vitro models of the respiratory system and improve in vitro simulation of particle exposure through inhalation. Nevertheless, the field of nanotoxicology still suffers from a lack of relevant in vitro models and exposure methods to predict accurately the effects observed in vivo, especially after respiratory exposure. In this context, the aim of our study was to evaluate if exposing pulmonary cells at the air-liquid interface to aerosols of inhalable and poorly soluble nanomaterials generates different toxicity patterns and/or biological activation levels compared to classic submerged exposures to suspensions. Three nano-TiO 2 and one nano-CeO 2 were used. An exposure system was set up using VitroCell® devices to expose pulmonary cells at the air-liquid interface to aerosols. A549 alveolar cells in monocultures or in co-cultures with THP-1 macrophages were exposed to aerosols in inserts or to suspensions in inserts and in plates. Submerged exposures in inserts were performed, using similar culture conditions and exposure kinetics to the air-liquid interface, to provide accurate comparisons between the methods. Exposure in plates using classical culture and exposure conditions was performed to provide comparable results with classical submerged exposure studies. The biological activity of the cells (inflammation, cell viability, oxidative stress) was assessed at 24 h and comparisons of the nanomaterial toxicities between exposure methods were performed. Deposited doses of nanomaterials achieved using our aerosol exposure system were sufficient to observe adverse effects. Co-cultures were more sensitive than monocultures and biological responses were usually observed at lower doses at the air-liquid interface than in submerged conditions. Nevertheless, the general ranking of the nanomaterials according to their toxicity was similar across the different exposure methods used. We showed that

  8. PORTAAL: A Classroom Observation Tool Assessing Evidence-Based Teaching Practices for Active Learning in Large Science, Technology, Engineering, and Mathematics Classes

    PubMed Central

    Eddy, Sarah L.; Converse, Mercedes; Wenderoth, Mary Pat

    2015-01-01

    There is extensive evidence that active learning works better than a completely passive lecture. Despite this evidence, adoption of these evidence-based teaching practices remains low. In this paper, we offer one tool to help faculty members implement active learning. This tool identifies 21 readily implemented elements that have been shown to increase student outcomes related to achievement, logic development, or other relevant learning goals with college-age students. Thus, this tool both clarifies the research-supported elements of best practices for instructor implementation of active learning in the classroom setting and measures instructors’ alignment with these practices. We describe how we reviewed the discipline-based education research literature to identify best practices in active learning for adult learners in the classroom and used these results to develop an observation tool (Practical Observation Rubric To Assess Active Learning, or PORTAAL) that documents the extent to which instructors incorporate these practices into their classrooms. We then use PORTAAL to explore the classroom practices of 25 introductory biology instructors who employ some form of active learning. Overall, PORTAAL documents how well aligned classrooms are with research-supported best practices for active learning and provides specific feedback and guidance to instructors to allow them to identify what they do well and what could be improved. PMID:26033871

  9. Correlation between structure, retention, property, and activity of biologically relevant 1,7-bis(aminoalkyl)diazachrysene derivatives.

    PubMed

    Šegan, Sandra; Trifković, Jelena; Verbić, Tatjana; Opsenica, Dejan; Zlatović, Mario; Burnett, James; Šolaja, Bogdan; Milojković-Opsenica, Dušanka

    2013-01-01

    The physicochemical properties, retention parameters (R(M)(0)), partition coefficients (logP(OW)), and pK(a) values for a series of thirteen 1,7-bis(aminoalkyl) diazachrysene (1,7-DAAC) derivatives were determined in order to reveal the characteristics responsible for their biological behavior. The investigated compounds inhibit three unrelated pathogens (the Botulinum neurotoxin serotype A light chain (BoNT/A LC), Plasmodium falciparum malaria, and Ebola filovirus) via three different mechanisms of action. To determine the most influential factors governing the retention and activities of the investigated diazachrysenes, R(M)(0), logP(OW), and biological activity values were correlated with 2D and 3D molecular descriptors, using a partial least squares regression. The resulting quantitative structure-retention (property) relationships indicate the importance of descriptors related to the hydrophobicity of the molecules (e.g., predicted partition coefficients and hydrophobic surface area). Quantitative structure-activity relationship models for describing biological activity against the BoNT/A LC and malarial strains also include overall compound polarity, electron density distribution, and proton donor/acceptor potential. Furthermore, models for Ebola filovirus inhibition are presented qualitatively to provide insights into parameters that may contribute to the compounds' antiviral activities. Overall, the models form the basis for selecting structural features that significantly affect the compound's absorption, distribution, metabolism, excretion, and toxicity profiles. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Effect of amino acid substitution on biological activity of cyanophlyctin-β and brevinin-2R

    NASA Astrophysics Data System (ADS)

    Ghorani-Azam, Adel; Balali-Mood, Mahdi; Aryan, Ehsan; Karimi, Gholamreza; Riahi-Zanjani, Bamdad

    2018-04-01

    Antimicrobial peptides (AMPs), as ancient immune components, are found in almost all types of living organisms. They are bioactive components with strong antibacterial, antiviral, and anti-tumor properties. In this study, we designed three sequences of antimicrobial peptides to study the effects of structural changes in biological activity compared with original peptides, cyanophlyctin β, and brevinin-2R. For antibacterial activity, two Gram-positive (Staphylococcus aureus and S. epidermidis) and two Gram-negative bacteria (Escherichia coli and Pseudomonas aeroginosa) were assayed. Unlike cyanophlyctin β and brevinin-2R, the synthesized peptide (brevinin-M1, brevinin-M2 and brevinin-M3) showed no considerable antibacterial properties. Hemolytic activity of these peptides was also ignorable even at very high concentrations of 2 mg/ml. However, after proteolytic digestion by trypsin, the peptides showed antibacterial activity comparable to their original template sequences. Structural prediction suggested that the motif sequence responsible for antibacterial activity may be re-exposed to bacterial cell membrane after proteolytic digestion. Also, findings showed that only a small change in primary sequence and therefore structure of peptides may result in a significant alteration in biological activity.

  11. Removal of novel antiandrogens identified in biological effluents of domestic wastewater by activated carbon.

    PubMed

    Ma, Dehua; Chen, Lujun; Liu, Rui

    2017-10-01

    Environmental antiandrogenic (AA) contaminants in effluents from wastewater treatment plants have the potential for negative impacts on wildlife and human health. The aim of our study was to identify chemical contaminants with likely AA activity in the biological effluents and evaluate the removal of these antiandrogens (AAs) during advanced treatment comprising adsorption onto granular activated carbon (GAC). In this study, profiling of AA contaminants in biological effluents and tertiary effluents was conducted using effect-directed analysis (EDA) including high performance liquid chromatography (HPLC) fractionation, a recombinant yeast screen containing androgen receptor (YAS), in combination with mass spectrometry analyses. Analysis of a wastewater secondary effluent from a membrane bioreactor revealed complex profiles of AA activity comprising 14 HPLC fractions and simpler profiles of GAC effluents with only 2 to 4 moderately polar HPLC fractions depending on GAC treatment conditions. Gas chromatography-mass spectrometry and ultra-high performance liquid chromatography-nanospray mass spectrometry analyses of AA fractions in the secondary effluent resulted in detection of over 10 chemical contaminants, which showed inhibition of YAS activity and were potential AAs. The putative AAs included biocides, food additives, flame retardants, pharmaceuticals and industrial contaminants. To our knowledge, it is the first time that the AA properties of N-ethyl-2-isopropyl-5-methylcyclohexanecarboxamide (WS3), cetirizine, and oxcarbazepine are reported. The EDA used in this study was proven to be a powerful tool to identify novel chemical structures with AA activity in the complex aquatic environment. The adsorption process to GAC of all the identified antiandrogens, except WS3 and triclosan, fit well with the pseudo-second order kinetics models. Adsorption to GAC could further remove most of the AAs identified in the biological effluents with high efficiencies. Copyright

  12. Monitoring biological effects of contamination in marine fish along French coasts by measurement of ethoxyresorufin-O-deethylase activity.

    PubMed

    Burgeot, T; Bocquené, G; Pingray, G; Godefroy, D; Legrand, J; Dimeet, J; Marco, F; Vincent, F; Henocque, Y; Jeanneret, H O

    1994-11-01

    The use of bioindicators to evaluate exposure to the biological effects of chemical pollutants in marine organisms constitutes a new tool in the monitoring field. The establishment of a North Sea monitoring network in 1991, involving such international organizations as the North Sea Task Force, the International Council for the Exploration of the Sea, and the Intergovernmental Oceanography Commission, led French researchers to develop an enzymatic biomarker to monitor biological effects within the National Observation Network. The biomarker, ethoxyresorufin-O-deethylase (EROD), dependent on the CP450 system, has been monitored biannually since 1992 in several species of fish (Callionymus lyra, Limanda limanda, Serranus sp., Mullus barbatus) in two coastal sites particularly exposed to industrial and domestic pollution. A rapid method is used to assay EROD enzymatic activity determined along a pollution gradient, and results are interpreted on a microplate reader. The strategy of this approach is to assess the effects on the marine ecosystem during prolonged exposure to specific pollutants such as polyaromatic hydrocarbons, polychlorinated biphenyls, and dioxins.

  13. Sesquiterpene Lactones from Artemisia Genus: Biological Activities and Methods of Analysis

    PubMed Central

    Miron, Anca; Corciova, Andreia

    2015-01-01

    Sesquiterpene lactones are a large group of natural compounds, found primarily in plants of Asteraceae family, with over 5000 structures reported to date. Within this family, genus Artemisia is very well represented, having approximately 500 species characterized by the presence of eudesmanolides and guaianolides, especially highly oxygenated ones, and rarely of germacranolides. Sesquiterpene lactones exhibit a wide range of biological activities, such as antitumor, anti-inflammatory, analgesic, antiulcer, antibacterial, antifungal, antiviral, antiparasitic, and insect deterrent. Many of the biological activities are attributed to the α-methylene-γ-lactone group in their molecule which reacts through a Michael-addition with free sulfhydryl or amino groups in proteins and alkylates them. Due to the fact that most sesquiterpene lactones are thermolabile, less volatile compounds, they present no specific chromophores in the molecule and are sensitive to acidic and basic mediums, and their identification and quantification represent a difficult task for the analyst. Another problematic aspect is represented by the complexity of vegetal samples, which may contain compounds that can interfere with the analysis. Therefore, this paper proposes an overview of the methods used for the identification and quantification of sesquiterpene lactones found in Artemisia genus, as well as the optimal conditions for their extraction and separation. PMID:26495156

  14. Approaching an experimental electron density model of the biologically active trans -epoxysuccinyl amide group-Substituent effects vs. crystal packing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Ming W.; Stewart, Scott G.; Sobolev, Alexandre N.

    The trans-epoxysuccinyl amide group as a biologically active moiety in cysteine protease inhibitors such as loxistatin acid E64c has been used as a benchmark system for theoretical studies of environmental effects on the electron density of small active ingredients in relation to their biological activity. Here, the synthesis and the electronic properties of the smallest possible active site model compound are reported to close the gap between the unknown experimental electron density of trans-epoxysuccinyl amides and the well-known function of related drugs. Intramolecular substituent effects are separated from intermolecular crystal packing effects on the electron density, which allows us tomore » predict the conditions under which an experimental electron density investigation on trans-epoxysuccinyl amides will be possible. In this context, the special importance of the carboxylic acid function in the model compound for both crystal packing and biological activity is revealed through the novel tool of model energy analysis.« less

  15. Memory for performed and observed activities following traumatic brain injury

    PubMed Central

    Wright, Matthew J.; Wong, Andrew L.; Obermeit, Lisa C.; Woo, Ellen; Schmitter-Edgecombe, Maureen; Fuster, Joaquín M.

    2014-01-01

    Traumatic brain injury (TBI) is associated with deficits in memory for the content of completed activities. However, TBI groups have shown variable memory for the temporal order of activities. We sought to clarify the conditions under which temporal order memory for activities is intact following TBI. Additionally, we evaluated activity source memory and the relationship between activity memory and functional outcome in TBI participants. Thus, we completed a study of activity memory with 18 severe TBI survivors and 18 healthy age- and education-matched comparison participants. Both groups performed eight activities and observed eight activities that were fashioned after routine daily tasks. Incidental encoding conditions for activities were utilized. The activities were drawn from two counterbalanced lists, and both performance and observation were randomly determined and interspersed. After all of the activities were completed, content memory (recall and recognition), source memory (conditional source identification), and temporal order memory (correlation between order reconstruction and actual order) for the activities were assessed. Functional ability was assessed via the Community Integration Questionnaire (CIQ). In terms of content memory, TBI participants recalled and recognized fewer activities than comparison participants. Recognition of performed and observed activities was strongly associated with social integration on the CIQ. There were no between- or within-group differences in temporal order or source memory, although source memory performances were near ceiling. The findings were interpreted as suggesting that temporal order memory following TBI is intact under conditions of both purposeful activity completion and incidental encoding, and that activity memory is related to functional outcomes following TBI. PMID:24524393

  16. Effect of Thermal and Shear Stressors on the Physical Properties, Structural Integrity and Biological Activity of the Anti-TNF-alpha Monoclonal Antibody, Infliximab.

    PubMed

    Alsaddique, Jihad A; Pabari, Ritesh M; Ramtoola, Zebunnissa

    The influence of thermal and shear stressors on the stability of the anti-TNF-α monoclonal antibody (mAb), Infliximab® (INF) was investigated. INF at concentrations of 1, 4 and 10 mg/ml was subjected to thermal stress at temperatures of 25-65°C and to shear force by sonication for 1 and 3 minutes. The stressed samples were analysed for physical properties by particle size, zeta potential, for structural integrity by gel electrophoresis (SDS-PAGE) and circular dichroism, INF content by UV spectroscopy and for biological activity by ELISA. Results show no change in physical properties or structural integrity of INF at any concentration tested, when subjected to a temperature of up to 50°C. At 65°C, aggregation and precipitation of INF was observed. When subjected to shear stress, higher concentrations of INF at 4 and 10mg/ml maintained their physical properties and structural integrity. However, the biological activity of INF was found to decrease with increasing temperature and sonication time, and was concentration dependent (ANOVA; p<0.05). Interestingly, lyophilisation of INF at 1mg/ml did not affect its physical properties, structural integrity or its biological activity. These findings have important implications with respect to pharmaceutical processing of INF and mAbs including formulation as polymeric micro and nanoparticle systems for sustained or targeted delivery. These findings also have important implications with respect to the handling and storage of INF and mAbs for clinical use.

  17. Einstein observations of active galaxies

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.

    1980-01-01

    X-ray observations of Cen A (NGC 5128) and seven other X-ray emitting active galaxies are discussed which were made with the imaging proportional counter and the high-resolution imager aboard the Einstein Observatory. In addition to Cen A, the sources observed were the N-type galaxy 3C 120, the quasars OX 169 and 3C 273, and four Class 1 Seyfert galaxies, viz., Mkn 509, Mkn 79, NGC 6814, and NGC 4151. For Cen A, it is found that the X-ray data are dominated by a central point source of about 2 cts/sec, that X-ray elongations (possibly associated with the inner radio lobes) extend in the NE and SW directions, and that an X-ray jet exists which is aligned with the optical jet. The results for the other sources are used to derive emitting-region sizes and black-hole masses for models based on an accreting central black hole.

  18. Biological activities caused by far-infrared radiation

    NASA Astrophysics Data System (ADS)

    Inoué, Shojiro; Kabaya, Morihiro

    1989-09-01

    Contrary to previous presumption, accumulated evidence indicates that far-infrared rays are biologically active. A small ceramic disk that emist far-infrared rays (4 16 μm) has commonly been applied to a local spot or a whole part of the body for exposure. Pioneering attempts to experimentally analyze an effect of acute and chronic radiation of far-infrared rays on living organisms have detected a growth-promoting effect in growing rats, a sleep-modulatory effect in freely behaving rats and an insomiac patient, and a blood circulation-enhancing effect in human skin. Question-paires to 542 users of far-infrared radiator disks embedded in bedelothes revealed that the majority of the users subjectively evaluated an improvement of their health. These effects on living organisms appear to be non-specifically triggered by an exposure to far-infrared rays, which eventually induce an increase in temperature of the body tissues or, more basically, an elevated motility of body fluids due to decrease in size of water clusters.

  19. Effect of biological activated carbon pre-treatment to control organic fouling in the microfiltration of biologically treated secondary effluent.

    PubMed

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2014-10-15

    Biological activated carbon (BAC) filtration was investigated as a pre-treatment for reducing the organic fouling of a microfiltration membrane (0.1 μm polyvinylidene fluoride) in the treatment of a biologically treated secondary effluent (BTSE) from a municipal wastewater treatment plant. BAC treatment of the BTSE resulted in a marked improvement in permeate flux, which was attributed to the effective removal of organic foulants and particulates. Although the BAC removed significantly less dissolved organic carbon than the granular activated carbon (GAC) treatment which was used as a control for comparison, it led to a markedly greater flux. This was attributed to the effective removal of the very high molecular weight substances such as biopolymers by the BAC through biodegradation and adsorption of those molecules on the biofilm. Size exclusion chromatography showed the BAC treatment led to approximately 30% reduction in these substances, whereas the GAC did not greatly remove these molecules. The BAC treatment led to a greater reduction of loosely-attached and firmly-attached membrane surface foulant, and this was confirmed by attenuated total reflection-fourier transform infrared spectroscopy analysis. This study demonstrated the potential of BAC pre-treatment for reducing organic fouling and thus improving flux for the microfiltration of BTSE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. [BIOLOGICALLY ACTIVE ALKALOIDS FROM RHIZOMES WITH ROOTS OF VINCA HERBACEA WALDST. ET KIT, GROWING IN GEORGIA].

    PubMed

    Vachnadze, V; Vachnadze, N; Gogitidze, N; Mushkiashvili, N; Mchedlidze, K

    2017-10-01

    Roots and rhizomes of Vinca herbacea Waldst. et Kit, were collected during early flowering and fruiting. Рhenophases biologically active substances I and II were obtained by liquid-liquid extraction. Dominant alkaloids: tabersonin, reserpine, maidine, norfluorocurarin and copsinin were obtained after the dispertion in citrare-phosfhate buffer and subsequent TLC. Accelerated restitution of granulocytopoiesis was observed in mice during both irradiation and myelotoxic drug-induced acute leucopenia. Increase in total WBC over 200% was observed after treatment by substance I in drug-induced leucopenia model (fivefold oral administration) and over 130% after treatment by substance I in irradiate mice (fivefold intraperitoneal administration). Morphological and anatomical structures of the underground organs of V. herbacea have been studied. The main microstructural characteristics are revealed - Rhizomes are characterized by coutinized epidermis, lamellar collenchyma, fibers and the texture of the vascular system of a monocyclic structure. The root system shows the whole cortex, the endoderm with Kaspar spots; the outer, radially continuous phloem tissue is located in the conducting system and distinguishes the cylindrical xylem tissue with annular and spiral-circular blood vessels.

  1. Books for the Amateur Naturalist: Sources of Experiments and Activities for Outdoor Biology Classes.

    ERIC Educational Resources Information Center

    Clewis, Beth

    1992-01-01

    Presents a series of books that serve as guides regarding outdoor activities for biology classes. Guides are categorized for the general study of nature and for the specific topics of birds, insects, and plants. (25 references) (MDH)

  2. Design, synthesis, and biological activity of second-generation synthetic oleanane triterpenoids.

    PubMed

    Fu, Liangfeng; Lin, Qi-Xian; Onyango, Evans O; Liby, Karen T; Sporn, Michael B; Gribble, Gordon W

    2017-07-19

    We report the synthesis and biological activity of C-24 demethyl CDDO-Me 2 and the C-28 amide derivatives 3 and 4, which are analogues of the anti-inflammatory synthetic triterpenoid bardoxolone methyl (CDDO-Me) 1. Demethylation of the C-24 methyl group was accomplished via "abnormal Beckmann" rearrangement and subsequent ring A reformation. Amides 3 and 4 were found to be potent inhibitors of the production of the inflammatory mediator NO in vitro.

  3. Coming out in Class: Challenges and Benefits of Active Learning in a Biology Classroom for LGBTQIA Students

    ERIC Educational Resources Information Center

    Cooper, Katelyn M.; Brownell, Sara E.

    2016-01-01

    As we transition our undergraduate biology classrooms from traditional lectures to active learning, the dynamics among students become more important. These dynamics can be influenced by student social identities. One social identity that has been unexamined in the context of undergraduate biology is the spectrum of lesbian, gay, bisexual,…

  4. The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome

    PubMed Central

    2012-01-01

    Background We present the Biological Observation Matrix (BIOM, pronounced “biome”) format: a JSON-based file format for representing arbitrary observation by sample contingency tables with associated sample and observation metadata. As the number of categories of comparative omics data types (collectively, the “ome-ome”) grows rapidly, a general format to represent and archive this data will facilitate the interoperability of existing bioinformatics tools and future meta-analyses. Findings The BIOM file format is supported by an independent open-source software project (the biom-format project), which initially contains Python objects that support the use and manipulation of BIOM data in Python programs, and is intended to be an open development effort where developers can submit implementations of these objects in other programming languages. Conclusions The BIOM file format and the biom-format project are steps toward reducing the “bioinformatics bottleneck” that is currently being experienced in diverse areas of biological sciences, and will help us move toward the next phase of comparative omics where basic science is translated into clinical and environmental applications. The BIOM file format is currently recognized as an Earth Microbiome Project Standard, and as a Candidate Standard by the Genomic Standards Consortium. PMID:23587224

  5. Processing of natural and recombinant CXCR3-targeting chemokines and implications for biological activity.

    PubMed

    Hensbergen, P J; van der Raaij-Helmer, E M; Dijkman, R; van der Schors, R C; Werner-Felmayer, G; Boorsma, D M; Scheper, R J; Willemze, R; Tensen, C P

    2001-09-01

    Chemokines comprise a class of peptides with chemotactic activity towards leukocytes. The potency of different chemokines for the same receptor often varies as a result of differences in primary structure. In addition, post-translational modifications have been shown to affect the effectiveness of chemokines. Although in several studies, natural CXCR3-targeting chemokines have been isolated, detailed information about the proteins and their possible modifications is lacking. Using a combination of liquid chromatography and mass spectrometry we studied the protein profile of CXCR3-targeting chemokines expressed by interferon-gamma-stimulated human keratinocytes. The biological implications of one of the identified modifications was studied in more detail using calcium mobilization and chemotaxis assays. We found that the primary structure of human CXCL10 is different from the generally accepted sequence. In addition we identified a C-terminally truncated CXCL10, lacking the last four amino acids. Native CXCL11 was primarily found in its intact mature form but we also found a mass corresponding to an N-terminally truncated human CXCL11, lacking the first two amino acids FP, indicating that this chemokine is a substrate for dipeptidylpeptidase IV. Interestingly, this same truncation was found when we expressed human CXCL11 in Drosophila S2 cells. The biological activity of this truncated form of CXCL11 was greatly reduced, both in calcium mobilization (using CXCR3 expressing CHO cells) as well as its chemotactic activity for CXCR3-expressing T-cells. It is concluded that detailed information on chemokines at the protein level is important to characterize the exact profile of these chemotactic peptides as modifications can severely alter their biological activity.

  6. Physicochemical stability and biological activity of Withania somnifera extract under real-time and accelerated storage conditions.

    PubMed

    Patil, Dada; Gautam, Manish; Jadhav, Umesh; Mishra, Sanjay; Karupothula, Suresh; Gairola, Sunil; Jadhav, Suresh; Patwardhan, Bhushan

    2010-03-01

    Stability testing at preformulation stages is a crucial part of drug development. We studied physicochemical stability and biological activity of Withania somnifera (ashwagandha) dried root aqueous extract during six months real-time and under accelerated storage conditions. The characteristic constituents of ashwagandha roots include withanolides such as withaferin A and withanolide A. We modified and validated the HPLC-DAD method for quantitative measurement of withanolides and fingerprint analysis. The results suggest a significant decline in withaferin A and withanolide A content under real and accelerated conditions. The HPLC fingerprint analysis showed significant changes in some peaks during real and accelerated storage (> 20 %). We also observed incidences of clump formation and moisture sensitivity (> 10 %) under real-time and accelerated storage conditions. These changes were concurrent with a significant decline in immunomodulatory activity (p < 0.01) during the third month of the accelerated storage. Thus, adequate control of temperature and humidity is important for WSE containing formulations. This study may help in proposing suitable guidance for storage conditions and shelf life of ashwagandha formulations. (c) Georg Thieme Verlag KG Stuttgart . New York.

  7. The Ferguson principle and an analysis of biological activity of gases and vapors.

    PubMed

    Abraham, M H; Nielsen, G D; Alarie, Y

    1994-05-01

    The Ferguson principle, that Pnar/PO (Pnar is the partial pressure of a series of compounds giving rise to a particular effect on a given system by a physical mechanism, and PO is the saturated vapor pressure of the liquid narcotic) is constant for a series of nonreactive narcotics or toxicants in a given system, is examined and shown to have no thermodynamic basis, contrary to the position of Brink and Posternak. Conditions under which Pnar/PO might be expected to be roughly constant, as an empirical observation, are set out and it is shown that such an observation is consistent with a receptor area in which the liquid narcotic solubilities are roughly constant. An interpretation of relationships between agonist descriptors and biological effects is carried out with three simple biological models. It is shown that the biological potency of nonreactive gases and vapors can be controlled either by an equilibrium between the agonist in the gas phase and the agonist in a receptor or by an equilibrium between the agonist in the gas phase and the agonist in a receptor phase. It is further shown that with the solvation equation of Abraham, solvents can be chosen that mimic the chemical properties of the receptor or receptor phase. For the example of upper respiratory tract irritation of male Swiss OF1 mice, such solvents include N-formylmorpholine, a trialkylphosphate, and wet octanol, but not water itself.

  8. Synthesis, structural elucidation, biological, antioxidant and nuclease activities of some 5-Fluorouracil-amino acid mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram

    2015-01-01

    Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.

  9. Visual Literacy Skills of Students in College-Level Biology: Learning Outcomes Following Digital or Hand-Drawing Activities

    ERIC Educational Resources Information Center

    Bell, Justine C.

    2014-01-01

    To test the claim that digital learning tools enhance the acquisition of visual literacy in this generation of biology students, a learning intervention was carried out with 33 students enrolled in an introductory college biology course. This study compared learning outcomes following two types of learning tools: a traditional drawing activity, or…

  10. Incorporating ToxCast and Tox21 datasets to rank biological activity of chemicals at Superfund sites in North Carolina.

    PubMed

    Tilley, Sloane K; Reif, David M; Fry, Rebecca C

    2017-04-01

    The Superfund program of the Environmental Protection Agency (EPA) was established in 1980 to address public health concerns posed by toxic substances released into the environment in the United States. Forty-two of the 1328 hazardous waste sites that remain on the Superfund National Priority List are located in the state of North Carolina. We set out to develop a database that contained information on both the prevalence and biological activity of chemicals present at Superfund sites in North Carolina. A chemical characterization tool, the Toxicological Priority Index (ToxPi), was used to rank the biological activity of these chemicals based on their predicted bioavailability, documented associations with biological pathways, and activity in in vitro assays of the ToxCast and Tox21 programs. The ten most prevalent chemicals found at North Carolina Superfund sites were chromium, trichloroethene, lead, tetrachloroethene, arsenic, benzene, manganese, 1,2-dichloroethane, nickel, and barium. For all chemicals found at North Carolina Superfund sites, ToxPi analysis was used to rank their biological activity. Through this data integration, residual pesticides and organic solvents were identified to be some of the most highly-ranking predicted bioactive chemicals. This study provides a novel methodology for creating state or regional databases of biological activity of contaminants at Superfund sites. These data represent a novel integrated profile of the most prevalent chemicals at North Carolina Superfund sites. This information, and the associated methodology, is useful to toxicologists, risk assessors, and the communities living in close proximity to these sites. Copyright © 2016. Published by Elsevier Ltd.

  11. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities.

    PubMed

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D; Correia, Cristina; Li, Hu

    2016-06-02

    The sequential chain of interactions altering the binary state of a biomolecule represents the 'information flow' within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein-protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes-network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Biology, literacy, and the African American voice: A case study of meaningful learning in the biology classroom

    NASA Astrophysics Data System (ADS)

    Reese, Keturah

    Under the direction of Sharon Murphy Augustine, Ph.D./Ph.D Curriculum and Instruction There was a substantial performance gap among African Americans and other ethnic groups. Additionally, African American students in a Title I school were at a significantly high risk of not meeting or exceeding on performance tests in science. Past reports have shown average gains in some subject areas, and declines in others (NCES, 2011; GADOE, 2012). Current instructional strategies and the lack of literacy within the biology classroom created a problem for African American high school students on national and state assessments. The purpose of this study was to examine the perceptions of African American students and teachers in the context of literacy and biology through the incorporation of an interactive notebook and other literacy strategies. The data was collected three ways: field notes for a two week observation period within the biology classroom, student and teacher interviews, and student work samples. During the observations, student work collection, and interviews, I looked for the following codes: active learning, constructive learning, collaborative learning, authentic learning, and intentional learning. In the process of coding for the pre-determined codes, three more codes emerged. The three codes that emerged were organization, studying/student ownership, and student teacher relationships. Students and teachers both solidified the notion that literacy and biology worked well together. The implemented literacy strategies were something that both teachers and students appreciated in their learning of biology. Overall students and teachers perceived that the interactive notebook along Cornell notes, Thinking maps, close reads, writing, lab experiments, and group work created meaningful learning experiences within the biology classroom.

  13. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including use of dwarf cichlids (fishes) in secondary school biology, teaching edge effects on stomatal diffusion, computer program on effects of selection on gene frequencies, biological oxidation/reduction reactions, short cuts with Drosophila, computer program…

  14. The use of an active learning approach in a SCALE-UP learning space improves academic performance in undergraduate General Biology.

    PubMed

    Hacisalihoglu, Gokhan; Stephens, Desmond; Johnson, Lewis; Edington, Maurice

    2018-01-01

    Active learning is a pedagogical approach that involves students engaging in collaborative learning, which enables them to take more responsibility for their learning and improve their critical thinking skills. While prior research examined student performance at majority universities, this study focuses on specifically Historically Black Colleges and Universities (HBCUs) for the first time. Here we present work that focuses on the impact of active learning interventions at Florida A&M University, where we measured the impact of active learning strategies coupled with a SCALE-UP (Student Centered Active Learning Environment with Upside-down Pedagogies) learning environment on student success in General Biology. In biology sections where active learning techniques were employed, students watched online videos and completed specific activities before class covering information previously presented in a traditional lecture format. In-class activities were then carefully planned to reinforce critical concepts and enhance critical thinking skills through active learning techniques such as the one-minute paper, think-pair-share, and the utilization of clickers. Students in the active learning and control groups covered the same topics, took the same summative examinations and completed identical homework sets. In addition, the same instructor taught all of the sections included in this study. Testing demonstrated that these interventions increased learning gains by as much as 16%, and students reported an increase in their positive perceptions of active learning and biology. Overall, our results suggest that active learning approaches coupled with the SCALE-UP environment may provide an added opportunity for student success when compared with the standard modes of instruction in General Biology.

  15. Mannheimia haemolytica leukotoxin activates a nonreceptor tyrosine kinase signaling cascade in bovine leukocytes, which induces biological effects.

    PubMed

    Jeyaseelan, S; Kannan, M S; Briggs, R E; Thumbikat, P; Maheswaran, S K

    2001-10-01

    The leukotoxin (LktA) produced by Mannheimia haemolytica binds to bovine lymphocyte function-associated antigen 1 (LFA-1) and induces biological effects in bovine leukocytes in a cellular and species-specific fashion. We have previously shown that LktA also binds to porcine LFA-1 without eliciting any effects. These findings suggest that the specificity of LktA effects must entail both binding to LFA-1 and activation of signaling pathways which are present in bovine leukocytes. However, the signaling pathways leading to biological effects upon LktA binding to LFA-1 have not been characterized. In this context, several reports have indicated that ligand binding to LFA-1 results in activation of a nonreceptor tyrosine kinase (NRTK) signaling cascade. We designed experiments with the following objectives: (i) to determine whether LktA binding to LFA-1 leads to activation of NRTKs, (ii) to examine whether LktA-induced NRTK activation is target cell specific, and (iii) to determine whether LktA-induced NRTK activation is required for biological effects. We used a biologically inactive mutant leukotoxin (DeltaLktA) for comparison with LktA. Our results indicate that LktA induces tyrosine phosphorylation (TP) of the CD18 tail of LFA-1 in bovine leukocytes. The DeltaLktA mutant does not induce TP of the CD18 tail, albeit binding to bovine LFA-1. LktA-induced TP of the CD18 tail was attenuated by an NRTK inhibitor, herbimycin A; a phosphatidylinositol 3'-kinase (PI 3-kinase) inhibitor, wortmannin; and a Src kinase inhibitor, PP2, in a concentration-dependent manner. Furthermore, LktA induces TP of the CD18 tail in bovine, but not porcine, leukocytes. Moreover, LktA-induced intracellular calcium ([Ca2+]i) elevation was also inhibited by herbimycin A, wortmannin, and PP2. Thus, our data represent the first evidence that binding of LktA to bovine LFA-1 induces a species-specific NRTK signaling cascade involving PI 3-kinase and Src kinases and that this signaling cascade is

  16. Teaching Biology through Statistics: Application of Statistical Methods in Genetics and Zoology Courses

    PubMed Central

    Colon-Berlingeri, Migdalisel; Burrowes, Patricia A.

    2011-01-01

    Incorporation of mathematics into biology curricula is critical to underscore for undergraduate students the relevance of mathematics to most fields of biology and the usefulness of developing quantitative process skills demanded in modern biology. At our institution, we have made significant changes to better integrate mathematics into the undergraduate biology curriculum. The curricular revision included changes in the suggested course sequence, addition of statistics and precalculus as prerequisites to core science courses, and incorporating interdisciplinary (math–biology) learning activities in genetics and zoology courses. In this article, we describe the activities developed for these two courses and the assessment tools used to measure the learning that took place with respect to biology and statistics. We distinguished the effectiveness of these learning opportunities in helping students improve their understanding of the math and statistical concepts addressed and, more importantly, their ability to apply them to solve a biological problem. We also identified areas that need emphasis in both biology and mathematics courses. In light of our observations, we recommend best practices that biology and mathematics academic departments can implement to train undergraduates for the demands of modern biology. PMID:21885822

  17. Teaching biology through statistics: application of statistical methods in genetics and zoology courses.

    PubMed

    Colon-Berlingeri, Migdalisel; Burrowes, Patricia A

    2011-01-01

    Incorporation of mathematics into biology curricula is critical to underscore for undergraduate students the relevance of mathematics to most fields of biology and the usefulness of developing quantitative process skills demanded in modern biology. At our institution, we have made significant changes to better integrate mathematics into the undergraduate biology curriculum. The curricular revision included changes in the suggested course sequence, addition of statistics and precalculus as prerequisites to core science courses, and incorporating interdisciplinary (math-biology) learning activities in genetics and zoology courses. In this article, we describe the activities developed for these two courses and the assessment tools used to measure the learning that took place with respect to biology and statistics. We distinguished the effectiveness of these learning opportunities in helping students improve their understanding of the math and statistical concepts addressed and, more importantly, their ability to apply them to solve a biological problem. We also identified areas that need emphasis in both biology and mathematics courses. In light of our observations, we recommend best practices that biology and mathematics academic departments can implement to train undergraduates for the demands of modern biology.

  18. Modulating the Biologic Activity of Mesenteric Lymph after Traumatic Shock Decreases Systemic Inflammation and End Organ Injury.

    PubMed

    Langness, Simone; Costantini, Todd W; Morishita, Koji; Eliceiri, Brian P; Coimbra, Raul

    2016-01-01

    Trauma/hemorrhagic shock (T/HS) causes the release of pro-inflammatory mediators into the mesenteric lymph (ML), triggering a systemic inflammatory response and acute lung injury (ALI). Direct and pharmacologic vagal nerve stimulation prevents gut barrier failure and alters the biologic activity of ML after injury. We hypothesize that treatment with a pharmacologic vagal agonist after T/HS would attenuate the biologic activity of ML and prevent ALI. ML was collected from male Sprague-Dawley rats after T/HS, trauma-sham shock (T/SS) or T/HS with administration of the pharmacologic vagal agonist CPSI-121. ML samples from each experimental group were injected into naïve mice to assess biologic activity. Blood samples were analyzed for changes in STAT3 phosphorylation (pSTAT3). Lung injury was characterized by histology, permeability and immune cell recruitment. T/HS lymph injected in naïve mice caused a systemic inflammatory response characterized by hypotension and increased circulating monocyte pSTAT3 activity. Injection of T/HS lymph also resulted in ALI, confirmed by histology, lung permeability and increased recruitment of pulmonary macrophages and neutrophils to lung parenchyma. CPSI-121 attenuated T/HS lymph-induced systemic inflammatory response and ALI with stable hemodynamics and similar monocyte pSTAT3 levels, lung histology, lung permeability and lung immune cell recruitment compared to animals injected with lymph from T/SS. Treatment with CPSI-121 after T/HS attenuated the biologic activity of the ML and decreased ALI. Given the superior clinical feasibility of utilizing a pharmacologic approach to vagal nerve stimulation, CPSI-121 is a potential treatment strategy to limit end organ dysfunction after injury.

  19. Synthesis and biological activity of amino acid conjugates of abscisic acid.

    PubMed

    Todoroki, Yasushi; Narita, Kenta; Muramatsu, Taku; Shimomura, Hajime; Ohnishi, Toshiyuki; Mizutani, Masaharu; Ueno, Kotomi; Hirai, Nobuhiro

    2011-03-01

    We prepared 19 amino acid conjugates of the plant hormone abscisic acid (ABA) and investigated their biological activity, enzymatic hydrolysis by a recombinant Arabidopsis amidohydrolases GST-ILR1 and GST-IAR3, and metabolic fate in rice seedlings. Different sets of ABA-amino acids induced ABA-like responses in different plants. Some ABA-amino acids, including some that were active in bioassays, were hydrolyzed by recombinant Arabidopsis GST-IAR3, although GST-ILR1 did not show hydrolysis activity for any of the ABA-amino acids. ABA-L-Ala, which was active in all the bioassays, an Arabidopsis seed germination, spinach seed germination, and rice seedling elongation assays, except in a lettuce seed germination assay and was hydrolyzed by GST-IAR3, was hydrolyzed to free ABA in rice seedlings. These findings suggest that some plant amidohydrolases hydrolyze some ABA-amino acid conjugates. Because our study indicates the possibility that different plants have hydrolyzing activity toward different ABA-amino acids, an ABA-amino acid may function as a species-selective pro-hormone of ABA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Preparation of Plant Samples for Phytochemical Research and the Study of Their Biological Activities

    USDA-ARS?s Scientific Manuscript database

    Prior to investigating plant natural products for biologically active constituents, it is necessary to establish guidelines and procedures for carefully collecting, cataloging, and storing specimens. All field collections should begin with detailed records on location, which should include a list o...

  1. Simultaneous Detection of Metalloprotease Activities in Complex Biological Samples Using the PrAMA (Proteolytic Activity Matrix Assay) Method.

    PubMed

    Conrad, Catharina; Miller, Miles A; Bartsch, Jörg W; Schlomann, Uwe; Lauffenburger, Douglas A

    2017-01-01

    Proteolytic Activity Matrix Analysis (PrAMA) is a method for simultaneously determining the activities of specific Matrix Metalloproteinases (MMPs) and A Disintegrin and Metalloproteinases (ADAMs) in complex biological samples. In mixtures of unknown proteases, PrAMA infers selective metalloproteinase activities by using a panel of moderately specific FRET-based polypeptide protease substrates in parallel, typically monitored by a plate-reader in a 96-well format. Fluorescence measurements are then quantitatively compared to a standard table of catalytic efficiencies measured from purified mixtures of individual metalloproteinases and FRET substrates. Computational inference of specific activities is performed with an easily used Matlab program, which is provided herein. Thus, we describe PrAMA as a combined experimental and mathematical approach to determine real-time metalloproteinase activities, which has previously been applied to live-cell cultures, cellular lysates, cell culture supernatants, and body fluids from patients.

  2. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.).

    PubMed

    Gigliarelli, Giulia; Becerra, Judith X; Curini, Massimo; Marcotullio, Maria Carla

    2015-12-12

    Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus) and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  3. The genus Machaerium (Fabaceae): taxonomy, phytochemistry, traditional uses and biological activities.

    PubMed

    Amen, Yhiya M; Marzouk, Amani M; Zaghloul, Mona G; Afifi, Mohamed S

    2015-01-01

    Machaerium, in the family Fabaceae, predominantly is a genus of a Neotropical distribution of trees, shrubs, and lianas occurring from southern Mexico to Brazil and northern Argentina and as far as South America. Several Machaerium species are widely used in traditional medicine and are considered to have multiple medicinal properties. This review aims to provide up-to-date and comprehensive information on the taxonomy, phytochemistry, traditional uses and biological activities of plants in the genus Machaerium.

  4. Portuguese Thymbra and Thymus species volatiles: chemical composition and biological activities.

    PubMed

    Figueiredo, A C; Barroso, J G; Pedro, L G; Salgueiro, L; Miguel, M G; Faleiro, M L

    2008-01-01

    Thymbra capitata and Thymus species are commonly known in Portugal as thyme and they are currently used as culinary herbs, as well as for ornamental, aromatizing and traditional medicinal purposes. The present work reports on the state of the art on the information available on the taxonomy, ethnobotany, cell and molecular biology of the Portuguese representatives of these genera and on the chemotaxonomy and antibacterial, antifungal and antioxidant activities of their essential oils and other volatile-containing extracts.

  5. HEROES Observations of a Quiescent Active Region

    NASA Astrophysics Data System (ADS)

    Shih, A. Y.; Christe, S.; Gaskin, J.; Wilson-Hodge, C.

    2014-12-01

    Hard X-ray (HXR) observations of solar flares reveal the signatures of energetic electrons, and HXR images with high dynamic range and high sensitivity can distinguish between where electrons are accelerated and where they stop. Even in the non-flaring corona, high-sensitivity HXR measurements may be able to detect the presence of electron acceleration. The High Energy Replicated Optics to Explore the Sun (HEROES) balloon mission added the capability of solar observations to an existing astrophysics balloon payload, HERO, which used grazing-incidence optics for direct HXR imaging. HEROES measures HXR emission from ~20 to ~75 keV with an angular resolution of 33" HPD. HEROES launched on 2013 September 21 from Fort Sumner, New Mexico, and had a successful one-day flight. We present the detailed analysis of the 7-hour observation of AR 11850, which sets new upper limits on the HXR emission from a quiescent active region, with corresponding constraints on the numbers of tens of keV energetic electrons present. Using the imaging capability of HEROES, HXR upper limits are also obtained for the quiet Sun surrounding the active region. We also discuss what can be achieved with new and improved HXR instrumentation on balloons.

  6. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including chi-square tests on a microcomputer, an integrated biology game, microscope slides of leaf stomata, culturing soil nematodes, technique for watering locust egg-laying tubes, hazards of biological chemicals (such as benzene, benzidene, calchicine,…

  7. H1N1 vaccines in a large observational cohort of patients with inflammatory bowel disease treated with immunomodulators and biological therapy.

    PubMed

    Rahier, Jean-François; Papay, Pavol; Salleron, Julia; Sebastian, Shaji; Marzo, Manuela; Peyrin-Biroulet, Laurent; Garcia-Sanchez, Valle; Fries, Walter; van Asseldonk, Dirk P; Farkas, Klaudia; de Boer, Nanne K; Sipponen, Taina; Ellul, Pierre; Louis, Edouard; Peake, Simon T C; Kopylov, Uri; Maul, Jochen; Makhoul, Badira; Fiorino, Gionata; Yazdanpanah, Yazdan; Chaparro, Maria

    2011-04-01

    Safety data are lacking on influenza vaccination in general and on A (H1N1)v vaccination in particular in patients with inflammatory bowel disease (IBD) receiving immmunomodulators and/or biological therapy. The authors conducted a multicentre observational cohort study to evaluate symptoms associated with influenza H1N1 adjuvanted (Pandemrix, Focetria, FluvalP) and non-adjuvanted (Celvapan) vaccines and to assess the risk of flare of IBD after vaccination. Patients with stable IBD treated with immunomodulators and/or biological therapy were recruited from November 2009 until March 2010 in 12 European countries. Harvey-Bradshaw Index and Partial Mayo Score were used to assess disease activity before and 4 weeks after vaccination in Crohn's disease (CD) and ulcerative colitis (UC). Vaccination-related events up to 7 days after vaccination were recorded. Of 575 patients enrolled (407 CD, 159 UC and nine indeterminate colitis; 53.9% female; mean age 40.3 years, SD 13.9), local and systemic symptoms were reported by 34.6% and 15.5% of patients, respectively. The most common local and systemic reactions were pain in 32.8% and fatigue in 6.1% of subjects. Local symptoms were more common with adjuvanted (39.3%) than non-adjuvanted (3.9%) vaccines (p < 0.0001), whereas rates of systemic symptoms were similar with both types (15.0% vs 18.4%, p = 0.44). Among the adjuvanted group, Pandemrix more often induced local reactions than FluvalP and Focetria (51.2% vs 27.6% and 15.4%, p < 0.0001). Solicited adverse events were not associated with any patient characteristics, specific immunomodulatory treatment, or biological therapy. Four weeks after vaccination, absence of flare was observed in 377 patients with CD (96.7%) and 151 with UC (95.6%). Influenza A (H1N1)v vaccines are well tolerated in patients with IBD. Non-adjuvanted vaccines are associated with fewer local reactions. The risk of IBD flare is probably not increased after H1N1 vaccination.

  8. APG: an Active Protein-Gene network model to quantify regulatory signals in complex biological systems.

    PubMed

    Wang, Jiguang; Sun, Yidan; Zheng, Si; Zhang, Xiang-Sun; Zhou, Huarong; Chen, Luonan

    2013-01-01

    Synergistic interactions among transcription factors (TFs) and their cofactors collectively determine gene expression in complex biological systems. In this work, we develop a novel graphical model, called Active Protein-Gene (APG) network model, to quantify regulatory signals of transcription in complex biomolecular networks through integrating both TF upstream-regulation and downstream-regulation high-throughput data. Firstly, we theoretically and computationally demonstrate the effectiveness of APG by comparing with the traditional strategy based only on TF downstream-regulation information. We then apply this model to study spontaneous type 2 diabetic Goto-Kakizaki (GK) and Wistar control rats. Our biological experiments validate the theoretical results. In particular, SP1 is found to be a hidden TF with changed regulatory activity, and the loss of SP1 activity contributes to the increased glucose production during diabetes development. APG model provides theoretical basis to quantitatively elucidate transcriptional regulation by modelling TF combinatorial interactions and exploiting multilevel high-throughput information.

  9. APG: an Active Protein-Gene Network Model to Quantify Regulatory Signals in Complex Biological Systems

    PubMed Central

    Wang, Jiguang; Sun, Yidan; Zheng, Si; Zhang, Xiang-Sun; Zhou, Huarong; Chen, Luonan

    2013-01-01

    Synergistic interactions among transcription factors (TFs) and their cofactors collectively determine gene expression in complex biological systems. In this work, we develop a novel graphical model, called Active Protein-Gene (APG) network model, to quantify regulatory signals of transcription in complex biomolecular networks through integrating both TF upstream-regulation and downstream-regulation high-throughput data. Firstly, we theoretically and computationally demonstrate the effectiveness of APG by comparing with the traditional strategy based only on TF downstream-regulation information. We then apply this model to study spontaneous type 2 diabetic Goto-Kakizaki (GK) and Wistar control rats. Our biological experiments validate the theoretical results. In particular, SP1 is found to be a hidden TF with changed regulatory activity, and the loss of SP1 activity contributes to the increased glucose production during diabetes development. APG model provides theoretical basis to quantitatively elucidate transcriptional regulation by modelling TF combinatorial interactions and exploiting multilevel high-throughput information. PMID:23346354

  10. A Journal-Club-Based Class that Promotes Active and Cooperative Learning of Biology

    ERIC Educational Resources Information Center

    Kitazono, Ana A.

    2010-01-01

    A journal-club-based class has been developed to promote active and cooperative learning and expose seniors in biochemistry and cellular molecular biology to recent research in the field. Besides giving oral presentations, students also write three papers: one discussing an article of their own choosing and two, discussing articles presented by…

  11. Observational Constraints on Cloud Feedbacks: The Role of Active Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Winker, David; Chepfer, Helene; Noel, Vincent; Cai, Xia

    2017-11-01

    Cloud profiling from active lidar and radar in the A-train satellite constellation has significantly advanced our understanding of clouds and their role in the climate system. Nevertheless, the response of clouds to a warming climate remains one of the largest uncertainties in predicting climate change and for the development of adaptions to change. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. We review recent progress in our understanding of the cloud feedback problem. Capabilities and advantages of active sensors for observing clouds are discussed, along with the importance of active sensors for deriving constraints on cloud feedbacks as an essential component of a global climate observing system.

  12. Heat treatment of curdlan enhances the enzymatic production of biologically active β-(1,3)-glucan oligosaccharides.

    PubMed

    Kumagai, Yuya; Okuyama, Masayuki; Kimura, Atsuo

    2016-08-01

    Biologically active β-(1,3)-glucan oligosaccharides were prepared from curdlan using GH64 enzyme (KfGH64). KfGH64 showed low activity toward native curdlan; thereby pretreatment conditions of curdlan were evaluated. KfGH64 showed the highest activity toward curdlan with heat treatment. The most efficient pretreatment (90°C for 0.5h) converted approximately 60% of curdlan into soluble saccharides under the optimized enzyme reaction conditions (pH 5.5, 37°C, 100rpm mixing speed, 24h, and 10μg of KfGH64/1g of curdlan). The resulting products were predominantly laminaripentaose and a small amount of β-(1,3)-glucans with an average degree of polymerization (DP) of 13 and 130. The products did not contain small oligosaccharides (DP<5), indicating that the hydrolysis of heat-treated curdlan by KfGH64 is a suitable method for the production of biologically active β-(1,3)-glucan oligosaccharides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. From Synthesis to Biological Impact of Pd (II) Complexes: Synthesis, Characterization, and Antimicrobial and Scavenging Activity

    PubMed Central

    Sharma, Nitin Kumar; Ameta, Rakesh Kumar; Singh, Man

    2016-01-01

    The Pd (II) complexes with a series of halosubstituted benzylamine ligands (BLs) have been synthesized and characterized with different spectroscopic technique such as FTIR, UV/Vis, LCMS, 1H, and 13C NMR. Their molecular sustainability in different solvents such as DMSO, DMSO : H2O, and DMSO : PBS at physiological condition (pH 7.2) was determined by UV/Vis spectrophotometer. The in vitro antibacterial and antifungal activities of the complexes were investigated against Gram-positive and Gram-negative microbes and two different fungi indicated their significant biological potential. Additionally, their antioxidant activity has been analyzed with DPPH• free radical through spectrophotometric method and the result inferred them as an antioxidant. The stronger antibacterial and antioxidant activities of the synthesized complexes suggested them as a stronger antimicrobial agent. Our study advances the biological importance of palladium (II) amine complexes in the field of antimicrobial and antioxidant activities. PMID:27119023

  14. Circumventing furin enhances factor VIII biological activity and ameliorates bleeding phenotypes in hemophilia models

    PubMed Central

    Siner, Joshua I.; Samelson-Jones, Benjamin J.; Crudele, Julie M.; French, Robert A.; Lee, Benjamin J.; Zhou, Shanzhen; Merricks, Elizabeth; Raymer, Robin; Camire, Rodney M.; Arruda, Valder R.

    2016-01-01

    Processing by the proprotein convertase furin is believed to be critical for the biological activity of multiple proteins involved in hemostasis, including coagulation factor VIII (FVIII). This belief prompted the retention of the furin recognition motif (amino acids 1645–1648) in the design of B-domain–deleted FVIII (FVIII-BDD) products in current clinical use and in the drug development pipeline, as well as in experimental FVIII gene therapy strategies. Here, we report that processing by furin is in fact deleterious to FVIII-BDD secretion and procoagulant activity. Inhibition of furin increases the secretion and decreases the intracellular retention of FVIII-BDD protein in mammalian cells. Our new variant (FVIII-ΔF), in which this recognition motif is removed, efficiently circumvents furin. FVIII-ΔF demonstrates increased recombinant protein yields, enhanced clotting activity, and higher circulating FVIII levels after adeno-associated viral vector–based liver gene therapy in a murine model of severe hemophilia A (HA) compared with FVIII-BDD. Moreover, we observed an amelioration of the bleeding phenotype in severe HA dogs with sustained therapeutic FVIII levels after FVIII-ΔF gene therapy at a lower vector dose than previously employed in this model. The immunogenicity of FVIII-ΔF did not differ from that of FVIII-BDD as a protein or a gene therapeutic. Thus, contrary to previous suppositions, FVIII variants that can avoid furin processing are likely to have enhanced translational potential for HA therapy. PMID:27734034

  15. Development of a System for Observing Dance Activities in the Classroom Environment (SODANCE)

    ERIC Educational Resources Information Center

    Sims, Meredith; Abel, Mark; Clasey, Jody; Beighle, Aaron; Fedewa, Alicia; Erwin, Heather

    2016-01-01

    This study sought to develop a system for observing dance activities in the classroom environment (SODANCE) based on the system for observing fitness instructional time (SOFIT). SODANCE utilizes direct observation to quantify the physical activity intensity of dance activities. Female students aged 11-17 years participated in an activity protocol…

  16. Barks Essential Oil, Secondary Metabolites and Biological Activities of Four Organs of Tunisian Calligonum azel Maire.

    PubMed

    Bannour, Marwa; Aouadhi, Chedia; Khalfaoui, Houssem; Aschi-Smiti, Samira; Khadhri, Ayda

    2016-11-01

    This study is the first to investigate the chemical composition of barks essential oil (EO), secondary metabolites and biological activities of the MeOH and infusions extracts of seeds, leaves, barks and roots of Calligonum azel Maire (Polygonaceae) harvested from Tunisian desert. The gas chromatography/mass spectrometry (GC/MS) results showed the presence of fifty-four compounds in barks EO. The major components were: viridiflorol (14.6%), α-eudesmol (8.65%), trans-caryophyllene (6.72%), elemol (6.63%), β-eudesmol (6.21%). The obtained results showed that C. azel is a very rich plant in secondary metabolites. High contents in polyphenols, flavonoids and tannins were observed in both extracts of all studied organs. Significant differences were found between both extracts of the four organs. Thus, polyphenols and tannins were more abundant in leaves infusion extract, while, flavonoids showed a high level in barks extract. The antioxidant activity data demonstrated that all extracts showed strong antioxidant and radical scavenging activities. The MeOH extracts presented potential for antibacterial and antifungal activities against all tested microorganisms. The inhibition zones diameters and minimal inhibitrice concentration values were in the range of 9 - 15 mm and 2.5 - 20 μg/ml, respectively. This study demonstrated that C. azel can be regarded as an excellent plant source for natural antimicrobial agents. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  17. Inhibition of boric acid and sodium borate on the biological activity of microorganisms in an aerobic biofilter.

    PubMed

    Güneş, Y

    2013-01-01

    The aim of this work was to study the inhibition effect of boric acid and sodium borate on the treatment of boron containing synthetic wastewater by a down flow aerobic fixed bed biofilm reactor at various chemical oxygen demand (COD)/boron ratios (0.47-20.54). The inhibitory effect of boron on activated sludge was evaluated on the basis of COD removal during the experimental period. The biofilter (effective volume = 2.5 L) was filled with a ring of plastic material inoculated with acclimated activated sludge. The synthetic wastewater composed of glucose, urea, KH2PO4, MgSO4, Fe2 SO4, ZnSO4 x 7H20, KCl, CaCl2, and di-sodium tetraborate decahydrate or boric acid (B = 100-2000 mg L(-1)). The biological treatment of boron containing wastewater resulted in a low treatment removal rate due to the reduced microbial activity as a result of toxic effects of high boron concentrations. The decrease in the COD removal rate by the presence of either boric acid or sodium borate was practically indistinguishable. It was observed from the experiments that about 90-95% of COD removal was possible at high COD/boron ratios.

  18. Positivity effect in healthy aging in observational but not active feedback-learning.

    PubMed

    Bellebaum, Christian; Rustemeier, Martina; Daum, Irene

    2012-01-01

    The present study investigated the impact of healthy aging on the bias to learn from positive or negative performance feedback in observational and active feedback learning. In active learning, a previous study had already shown a negative learning bias in healthy seniors older than 75 years, while no bias was found for younger seniors. However, healthy aging is accompanied by a 'positivity effect', a tendency to primarily attend to stimuli with positive valence. Based on recent findings of dissociable neural mechanisms in active and observational feedback learning, the positivity effect was hypothesized to influence older participants' observational feedback learning in particular. In two separate experiments, groups of young (mean age 27) and older participants (mean age 60 years) completed an observational or active learning task designed to differentially assess positive and negative learning. Older but not younger observational learners showed a significant bias to learn better from positive than negative feedback. In accordance with previous findings, no bias was found for active learning. This pattern of results is discussed in terms of differences in the neural underpinnings of active and observational learning from performance feedback.

  19. Evaluation of Biological Activity of Mastic Extracts Based on Chemotherapeutic Indices.

    PubMed

    Suzuki, Ryuichiro; Sakagami, Hiroshi; Amano, Shigeru; Fukuchi, Kunihiko; Sunaga, Katsuyoshi; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Shirataki, Yoshiaki; Tomomura, Mineko; Masuda, Yoshiko; Yokose, Satoshi; Tomomura, Akito; Watanabe, Hirofumi; Okawara, Masaki; Matahira, Yoshiharu

    2017-01-01

    Most previous mastic investigators have not considered its potent cytotoxicity that may significantly affect the interpretation of obtained data. In the present study, we re-evaluated several biological activities of mastic extracts, based on chemotherapeutic indexes. Pulverized mastic gum was extracted with n-hexane and then with ethyl acetate or independently with methanol or n-butanol. Tumor specificity (TS) of the extracts was determined by their cytotoxicity against human malignant and non-malignant cells. Antibacterial activity was determined by their cytotoxicity against bacteria and normal oral cells. Antiviral activity was determined by their protection of viral infection and cytotoxic activity. Cytochrome P-450 (CYP) 3A4 activity was measured by β-hydroxylation of testosterone. Ethyl acetate extract showed slightly higher tumor specificity (TS=2.6) and one order higher antibacterial activity (selectivity index (SI)=0.813) than other extracts (TS=1.4-2.5; SI=0.030-0.063). All extracts showed no anti-human immunodeficiency virus (HIV) activity, but some anti-herpes simplex virus (HSV) activity, which was masked by potent cytotoxicity. They showed strong inhibitory activity against CYP3A4. Ethyl acetate extraction following the removal of cytotoxic and CYP3A4 inhibitory substances by n-hexane can enhance antitumor and antibacterial activity of mastic. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Evaluation of Biological Activity of Mastic Extracts Based on Chemotherapeutic Indices

    PubMed Central

    SUZUKI, RYUICHIRO; SAKAGAMI, HIROSHI; AMANO, SHIGERU; FUKUCHI, KUNIHIKO; SUNAGA, KATSUYOSHI; KANAMOTO, TAISEI; TERAKUBO, SHIGEMI; NAKASHIMA, HIDEKI; SHIRATAKI, YOSHIAKI; TOMOMURA, MINEKO; MASUDA, YOSHIKO; YOKOSE, SATOSHI; TOMOMURA, AKITO; WATANABE, HIROFUMI; OKAWARA, MASAKI; MATAHIRA, YOSHIHARU

    2017-01-01

    Background: Most previous mastic investigators have not considered its potent cytotoxicity that may significantly affect the interpretation of obtained data. In the present study, we re-evaluated several biological activities of mastic extracts, based on chemotherapeutic indexes. Materials and Methods: Pulverized mastic gum was extracted with n-hexane and then with ethyl acetate or independently with methanol or n-butanol. Tumor specificity (TS) of the extracts was determined by their cytotoxicity against human malignant and non-malignant cells. Antibacterial activity was determined by their cytotoxicity against bacteria and normal oral cells. Antiviral activity was determined by their protection of viral infection and cytotoxic activity. Cytochrome P-450 (CYP) 3A4 activity was measured by β-hydroxylation of testosterone. Results: Ethyl acetate extract showed slightly higher tumor specificity (TS=2.6) and one order higher antibacterial activity (selectivity index (SI)=0.813) than other extracts (TS=1.4-2.5; SI=0.030-0.063). All extracts showed no anti-human immunodeficiency virus (HIV) activity, but some anti-herpes simplex virus (HSV) activity, which was masked by potent cytotoxicity. They showed strong inhibitory activity against CYP3A4. Conclusion: Ethyl acetate extraction following the removal of cytotoxic and CYP3A4 inhibitory substances by n-hexane can enhance antitumor and antibacterial activity of mastic. PMID:28652425

  1. [Characteristic of the removal of 2,4-dichlorophenol by biological activated carbon].

    PubMed

    Liu, Hong; Li, An-jie; Quan, Xiang-chun; Kong, Xiang-hui; Yun, Ying

    2004-11-01

    The adsorption characteristics and kinetics of 2,4-Dichlorophenol (2,4-DCP) by biological activated carbon (BAC) was studied through contrast experiments with conventional activated sludge alone or quartz as the carrier. The advantage and disadvantage of removing 2,4-DCP using BAC and the mechanism of this process were investigated. The results show that the method of removing 2,4-DCP by BAC is applicable in practices, and the process of BAC demonstrates high removal rate than the process of suspended activated sludge and biofilm with quartz as the carrier. In addition, the BAC process showed high resistance to shock loadings, therefore, it is suitable to be utilized at high organic loading and under long-term operation. In BAC-system, activated carbon could not only adsorb 2,4-DCP but also oxidized 2,4-DCP.

  2. Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Elnakady, Yasser A.; Rushdi, Ahmed I.; Franke, Raimo; Abutaha, Nael; Ebaid, Hossam; Baabbad, Mohannad; Omar, Mohamed O. M.; Al Ghamdi, Ahmad A.

    2017-02-01

    Propolis has been used to treat several diseases since ancient times, and is an important source of bioactive natural compounds and drug derivatives. These properties have kept the interest of investigators around the world, leading to the investigation of the chemical and biological properties and application of propolis. In this report, the chemical constituents that are responsible for the anticancer activities of propolis were analyzed. The propolis was sourced from Al-Baha in the southern part of the Kingdom of Saudi Arabia. Standard protocols for chemical fractionation and bioactivity-guided chemical analysis were used to identify the bio-active ethyl acetate fraction. The extraction was performed in methanol and then analyzed by gas chromatography-mass spectrometry (GC-MS). The major compounds are triterpenoids, with a relative concentration of 74.0%; steroids, with a relative concentration of 9.8%; and diterpenoids, with a relative concentration of 7.9%. The biological activity was characterized using different approaches and cell-based assays. Propolis was found to inhibit the proliferation of cancer cells in a concentration-dependent manner through apoptosis. Immunofluorescence staining with anti-α-tubulin antibodies and cell cycle analysis indicated that tubulin and/or microtubules are the cellular targets of the L-acetate fraction. This study demonstrates the importance of Saudi propolis as anti-cancer drug candidates.

  3. Biologically active protein fragments containing specific binding regions of serum albumin or related proteins

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1998-01-01

    In accordance with the present invention, biologically active protein fragments can be constructed which contain only those specific portions of the serum albumin family of proteins such as regions known as subdomains IIA and IIIA which are primarily responsible for the binding properties of the serum albumins. The artificial serums that can be prepared from these biologically active protein fragments are advantageous in that they can be produced much more easily than serums containing the whole albumin, yet still retain all or most of the original binding potential of the full albumin proteins. In addition, since the protein fragment serums of the present invention can be made from non-natural sources using conventional recombinant DNA techniques, they are far safer than serums containing natural albumin because they do not carry the potentially harmful viruses and other contaminants that will be found in the natural substances.

  4. Persistent organic pollutants and related biological responses measured in coastal fish using chemical and biological screening methods.

    PubMed

    Tairova, Zhanna; Strand, Jakob; Bossi, Rossana; Larsen, Martin M; Förlin, Lars; Bignert, Anders; Hedman, Jenny; Gercken, Jens; Lang, Thomas; Fricke, Nicolai F; Asmund, Gert; Long, Manhai; Bonefeld-Jørgensen, Eva C

    2017-01-01

    The aim of this study was to investigate the spatial distribution, levels of dioxin-like compounds (DLC), and biological responses in two fish species. The viviparous eelpout (Zoarces viviparus) was collected from various locations in the Baltic Sea and in fjords of Kattegat and Skagerrak, while shorthorn sculpin (Myoxocephalus scorpius) was obtained at the polychlorinated biphenyl (PCB) polluted site in North West Greenland. Significant differences were detected both in contaminant levels and relative contributions from either polychlorinated dibenzodioxins (PCDD) or polychlorinated dibenzofurans (PCDF or furans) and mono-ortho- and non-ortho (coplanar) polychlorinated biphenyls (dl-PCB). Fish from the eastern Baltic Sea generally displayed higher contributions from PCDD/F compared to dl-PCB, whereas dl-PCB were generally predominated in fish from Danish, Swedish, and German sites. Levels of dl-PCB in muscle tissues were above OSPAR environmental assessment criteria (EAC) for PCB118, indicating a potential risk of adverse biological effects in the ecosystem, whereas levels of the total WHO-TEQs were below threshold for sea food suggesting limited risks for humans. No significant relationships between levels of DLC (expressed as WHO-TEQ), and biological responses such as the induction of CYP1A enzymatic activity and fry reproductive disorders were observed in eelpout. No marked relationship between WHO-TEQ and combined biological aryl hydrocarbon receptor-mediated transactivity (expressed as AhR-TEQ) was noted. However, there was a positive correlation between polycyclic aromatic hydrocarbon (PAH) metabolites and induction of CYP1A activity, suggesting that PAH exhibited greater potential than DLC to produce biological effects in eelpout from the Baltic Sea.

  5. MOLECULAR CLONING, SEQUENCING, EXPRESSION AND BIOLOGICAL ACTIVITY OF GIANT PANDA (AILUROPODA MELANOLEUCA) INTERFERON-GAMMA.

    PubMed

    Zhu, Hui; Wang, Wen-Xiu; Wang, Bao-Qin; Zhu, Xiao-Fu; Wu, Xu-Jin; Ma, Qing-Yi; Chen, De-Kun

    2012-06-29

    The giant panda (Ailuropoda melanoleuca) is an endangered species and indigenous to China. Interferon-gamma (IFN-γ) is the only member of type □ IFN and is vital for the regulation of host adapted immunity and inflammatory response. Little is known aboutthe FN-γ gene and its roles in giant panda.In this study, IFN-γ gene of Qinling giant panda was amplified from total blood RNA by RT-CPR, cloned, sequenced and analysed. The open reading frame (ORF) of Qinling giant panda IFN-γ encodes 152 amino acidsand is highly similar to Sichuan giant panda with an identity of 99.3% in cDNA sequence. The IFN-γ cDNA sequence was ligated to the pET32a vector and transformed into E. coli BL21 competent cells. Expression of recombinant IFN-γ protein of Qinling giant panda in E. coli was confirmed by SDS-PAGE and Western blot analysis. Biological activity assay indicated that the recombinant IFN-γ protein at the concentration of 4-10 µg/ml activated the giant panda peripheral blood lymphocytes,while at 12 µg/mlinhibited. the activation of the lymphocytes.These findings provide insights into the evolution of giant panda IFN-γ and information regarding amino acid residues essential for their biological activity.

  6. Presence and biological activity of antibiotics used in fuel ethanol and corn co-product production.

    PubMed

    Compart, D M Paulus; Carlson, A M; Crawford, G I; Fink, R C; Diez-Gonzalez, F; Dicostanzo, A; Shurson, G C

    2013-05-01

    Antibiotics are used in ethanol production to control bacteria from competing with yeast for nutrients during starch fermentation. However, there is no published scientific information on whether antibiotic residues are present in distillers grains (DG), co-products from ethanol production, or whether they retain their biological activity. Therefore, the objectives of this study were to quantify concentrations of various antibiotic residues in DG and determine whether residues were biologically active. Twenty distillers wet grains and 20 distillers dried grains samples were collected quarterly from 9 states and 43 ethanol plants in the United States. Samples were analyzed for DM, CP, NDF, crude fat, S, P, and pH to describe the nutritional characteristics of the samples evaluated. Samples were also analyzed for the presence of erythromycin, penicillin G, tetracycline, tylosin, and virginiamycin M1, using liquid chromatography and mass spectrometry. Additionally, virginiamycin residues were determined, using a U.S. Food and Drug Administration-approved bioassay method. Samples were extracted and further analyzed for biological activity by exposing the sample extracts to 10(4) to 10(7) CFU/mL concentrations of sentinel bacterial strains Escherichia coli ATCC 8739 and Listeria monocytogenes ATCC 19115. Extracts that inhibited bacterial growth were considered to have biological activity. Physiochemical characteristics varied among samples but were consistent with previous findings. Thirteen percent of all samples contained low (≤1.12 mg/kg) antibiotic concentrations. Only 1 sample extract inhibited growth of Escherichia coli at 10(4) CFU/mL, but this sample contained no detectable concentrations of antibiotic residues. No extracts inhibited Listeria monocytogenes growth. These data indicate that the likelihood of detectable concentrations of antibiotic residues in DG is low; and if detected, they are found in very low concentrations. The inhibition in only 1 DG

  7. Quantitative assessment of groundwater quality using a biological indicator: some preliminary observations.

    PubMed

    Pfeil, R M; Venkat, J A; Plimmer, J R; Sham, S; Davis, K; Nair, P P

    1994-02-01

    The genotoxicity of groundwater was evaluated, using a novel application of the SOS microplate assay (SOSMA). Organic residues were extracted from groundwater samples from Maryland, Pennsylvania, and Delaware by using C-18 bonded silica solid phase extraction tubes. Total organic carbon content (TOC) of water samples was also determined. The genotoxicity of the extracts was determined by the SOSMA. Relative activity (RA) as determined by the SOSMA is a quantitative measure of genotoxicity based on a comparison to the activity of the mutagen, 4-nitroquinoline oxide. Low levels of RA (about 2x background) were detected in waters from sites within these states. There was considerable temporal and spatial variation in the observed RA, but no definite patterns were observed in the variation. Between sampling sites there was a positive correlation between RA and TOC; however, this relationship appeared to be reversed occasionally within a sampling site. The extraction and bioassay methods provide an easy and relatively inexpensive means of determining water quality.

  8. Novel coumarins and related copper complexes with biological activity: DNA binding, molecular docking and in vitro antiproliferative activity.

    PubMed

    Pivetta, Tiziana; Valletta, Elisa; Ferino, Giulio; Isaia, Francesco; Pani, Alessandra; Vascellari, Sarah; Castellano, Carlo; Demartin, Francesco; Cabiddu, Maria Grazia; Cadoni, Enzo

    2017-12-01

    Coumarins show biological activity and are widely exploited for their therapeutic effects. Although a great number of coumarins substituted by heterocyclic moieties have been prepared, few studies have been carried out on coumarins containing pyridine heterocycle, which is known to modulate their physiological activities. We prepared and characterized three novel 3-(pyridin-2-yl)coumarins and their corresponding copper(II) complexes. We extended our investigations also to three known similar coumarins, since no data about their biochemical activity was previously been reported. The antiproliferative activity of the studied compounds was tested against human derived tumor cell lines and one human normal cell line. The DNA binding constants were determined and docking studies with DNA carried out. Selected Quantitative Structure-Activity Relationship (QSAR) descriptors were calculated in order to relate a set of structural and topological descriptors of the studied compounds to their DNA interaction and cytotoxic activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Nanodiamonds as Carriers for Address Delivery of Biologically Active Substances

    NASA Astrophysics Data System (ADS)

    Purtov, K. V.; Petunin, A. I.; Burov, A. E.; Puzyr, A. P.; Bondar, V. S.

    2010-03-01

    Surface of detonation nanodiamonds was functionalized for the covalent attachment of immunoglobulin, and simultaneously bovine serum albumin and Rabbit Anti-Mouse Antibody. The nanodiamond-IgGI125 and RAM-nanodiamond-BSAI125 complexes are stable in blood serum and the immobilized proteins retain their biological activity. It was shown that the RAM-nanodiamond-BSAI125 complex is able to bind to the target antigen immobilized on the Sepharose 6B matrix through antibody-antigen interaction. The idea can be extended to use nanodiamonds as carriers for delivery of bioactive substances (i.e., drugs) to various targets in vivo.

  10. Do observed or perceived characteristics of the neighborhood environment mediate associations between neighborhood poverty and cumulative biological risk?

    PubMed Central

    Schulz, Amy J.; Mentz, Graciela; Lachance, Laurie; Zenk, Shannon N.; Johnson, Jonetta; Stokes, Carmen; Mandell, Rebecca

    2013-01-01

    Objective To examine contributions of observed and perceived neighborhood characteristics in explaining associations between neighborhood poverty and cumulative biological risk (CBR) in an urban community. Methods Multilevel regression analyses were conducted using cross-sectional data from a probability sample survey (n=919), and observational and census data. Dependent variable: CBR. Independent variables: Neighborhood disorder, deterioration and characteristics; perceived neighborhood social environment, physical environment, and neighborhood environment. Covariates: Neighborhood and individual demographics, health-related behaviors. Results Observed and perceived indicators of neighborhood conditions were significantly associated with CBR, after accounting for both neighborhood and individual level socioeconomic indicators. Observed and perceived neighborhood environmental conditions mediated associations between neighborhood poverty and CBR. Conclusions Findings were consistent with the hypothesis that neighborhood conditions associated with economic divestment mediate associations between neighborhood poverty and CBR. PMID:24100238

  11. Comparative biological activities of two nucleopolyhedrovirus preparations: Virin NSH and Gypchek (in Russian)

    Treesearch

    S.A. Bakhvalov; V.V. Martemyanov; J.D. Podgwaite; J.D. Podgwait

    2005-01-01

    The biological activities of the viral preparations Virin NSH and Gypchek were determined for two Western Siberia populations (Tatarsk and Altai) and for one American (New Jersey) population of gypsy moth, Lymantria dispar L. There were no significant differences in potency between the two preparations when tested against the Tatarsk population of L. dispar. Gypchek...

  12. Regional Observation of Seismic Activity in Baekdu Mountain

    NASA Astrophysics Data System (ADS)

    Kim, Geunyoung; Che, Il-Young; Shin, Jin-Soo; Chi, Heon-Cheol

    2015-04-01

    Seismic unrest in Baekdu Mountain area between North Korea and Northeast China region has called attention to geological research community in Northeast Asia due to her historical and cultural importance. Seismic bulletin shows level of seismic activity in the area is higher than that of Jilin Province of Northeast China. Local volcanic observation shows a symptom of magmatic unrest in period between 2002 and 2006. Regional seismic data have been used to analyze seismic activity of the area. The seismic activity could be differentiated from other seismic phenomena in the region by the analysis.

  13. The activation of fibroblast growth factors (FGFs) by glycosaminoglycans: influence of the sulfation pattern on the biological activity of FGF-1.

    PubMed

    Angulo, Jesús; Ojeda, Rafael; de Paz, José-Luis; Lucas, Ricardo; Nieto, Pedro M; Lozano, Rosa M; Redondo-Horcajo, Mariano; Giménez-Gallego, Guillermo; Martín-Lomas, Manuel

    2004-01-03

    Six synthetic heparin-like oligosaccharides have been used to investigate the effect of the oligosaccharide sulfation pattern on the stimulation of acidic fibroblast growth factor (FGF-1) induced mitogenesis signaling and the biological significance of FGF-1 trans dimerization in the FGF-1 activation process. It has been found that some molecules with a sulfation pattern that does not contain the internal trisaccharide motif, which has been proposed for high affinity for FGF-1, stimulate FGF-1 more efficiently than those with the structure of the regular region of heparin. In contrast to regular region oligosaccharides, in which the sulfate groups are distributed on both sides of their helical three-dimensional structures, the molecules containing this particular sulfation pattern display the sulfate groups only on one side of the helix. These results and the fact that these oligosaccharides do not promote FGF-1 dimerization according to sedimentation-equilibrium analysis, confirm the importance of negative-charge distribution in the activation process and strongly suggest that FGF dimerization is not a general and absolute requirement for biological activity.

  14. Effect of biologically active fraction of Nardostachys jatamansi on cerulein-induced acute pancreatitis

    PubMed Central

    Bae, Gi-Sang; Kim, Min-Sun; Park, Kyoung-Chel; Koo, Bon Soon; Jo, Il-Joo; Choi, Sun Bok; Lee, Dong-Sung; Kim, Youn-Chul; Kim, Tae-Hyeon; Seo, Sang-Wan; Shin, Yong Kook; Song, Ho-Joon; Park, Sung-Joo

    2012-01-01

    AIM: To determine if the fraction of Nardostachys jatamansi (NJ) has the potential to ameliorate the severity of acute pancreatitis (AP). METHODS: Mice were administered the biologically active fraction of NJ, i.e., the 4th fraction (NJ4), intraperitoneally, and then injected with the stable cholecystokinin analogue cerulein hourly for 6 h. Six hours after the last cerulein injection, the pancreas, lung, and blood were harvested for morphological examination, measurement of cytokine expression, and examination of neutrophil infiltration. RESULTS: NJ4 administration attenuated the severity of AP and lung injury associated with AP. It also reduced cytokine production and neutrophil infiltration and resulted in the in vivo up-regulation of heme oxygenase-1 (HO-1). Furthermore, NJ4 and its biologically active fraction, NJ4-2 inhibited the cerulein-induced death of acinar cells by inducing HO-1 in isolated pancreatic acinar cells. CONCLUSION: These results suggest that NJ4 may be a candidate fraction offering protection in AP and NJ4 might ameliorate the severity of pancreatitis by inducing HO-1 expression. PMID:22783046

  15. Removal of anaerobic soluble microbial products in a biological activated carbon reactor.

    PubMed

    Dong, Xiaojing; Zhou, Weili; He, Shengbing

    2013-09-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3 x day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L.

  16. Lactic acid bacteria: promising supplements for enhancing the biological activities of kombucha.

    PubMed

    Nguyen, Nguyen Khoi; Dong, Ngan Thi Ngoc; Nguyen, Huong Thuy; Le, Phu Hong

    2015-01-01

    Kombucha is sweetened black tea that is fermented by a symbiosis of bacteria and yeast embedded within a cellulose membrane. It is considered a health drink in many countries because it is a rich source of vitamins and may have other health benefits. It has previously been reported that adding lactic acid bacteria (Lactobacillus) strains to kombucha can enhance its biological functions, but in that study only lactic acid bacteria isolated from kefir grains were tested. There are many other natural sources of lactic acid bacteria. In this study, we examined the effects of lactic acid bacteria from various fermented Vietnamese food sources (pickled cabbage, kefir and kombucha) on kombucha's three main biological functions: glucuronic acid production, antibacterial activity and antioxidant ability. Glucuronic acid production was determined by high-performance liquid chromatography-mass spectrometry, antibacterial activity was assessed by the agar-well diffusion method and antioxidant ability was evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. Four strains of food-borne pathogenic bacteria were used in our antibacterial experiments: Listeria monocytogenes ATCC 19111, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028 and Bacillus cereus ATCC 11778. Our findings showed that lactic acid bacteria strains isolated from kefir are superior to those from other sources for improving glucuronic acid production and enhancing the antibacterial and antioxidant activities of kombucha. This study illustrates the potential of Lactobacillus casei and Lactobacillus plantarum isolated from kefir as biosupplements for enhancing the bioactivities of kombucha.

  17. Risk of Serious Infection in Juvenile Idiopathic Arthritis Patients Associated With Tumor Necrosis Factor Inhibitors and Disease Activity in the German Biologics in Pediatric Rheumatology Registry.

    PubMed

    Becker, Ingrid; Horneff, Gerd

    2017-04-01

    To examine the effects of tumor necrosis factor inhibitors on the risk for serious infections and other influencing factors in a registry. Patients exposed for the first time to etanercept, adalimumab, or methotrexate and serious infections were identified in the German Biologic Registry for Pediatric Rheumatology (BIKER) registry. Serious infection rates per 1,000 observation-years and relative risks were calculated. Cox regression identified risk factors and provided hazard ratios (HRs) for occurrence of infections. A total of 3,350 patients with 5,919 observation-years fulfilled the inclusion criteria for the study. The first biologic agents were etanercept (1,720 cases) and adalimumab (177 cases). A total of 1,453 patients were treated with methotrexate and no biologic agent. In total, 28 serious infections were reported in 26 patients (4.7 per 1,000 patient-years), 5 with methotrexate (1.6 per 1,000 patient-years), 21 with etanercept (8.1 per 1,000 patient-years), and 2 with adalimumab (9.7 per 1,000 patient-years). Significant univariate risk factors for infection were therapy with biologic agents, disease duration before therapy start, corticosteroid medication, nonbiologic premedications, higher clinical Juvenile Arthritis Disease Activity Score including maximal 10 joints (cJADAS10) at therapy start, and higher mean cJADAS10 during therapy. In multivariate Cox regression, only biologic therapy and cJADAS10 at therapy start remained significant. Risk for infection was increased by etanercept (univariate HR 6.0 [95% confidence interval (95% CI) 2.0-17.5]) or adalimumab (HR 7.3 [95% CI 1.3-40.0]) compared to methotrexate as well as by an elevated cJADAS10 at therapy start (HR 1.1 [95% CI 1.0-1.2] per unit increase). The total rate of serious infections reported in the BIKER registry seems low. Treatment with etanercept or adalimumab increases the risk for serious infection slightly, compared to methotrexate. Disease activity expressed by cJADAS10 appears to

  18. A review on acridinylthioureas and its derivatives: biological and cytotoxic activity.

    PubMed

    Kožurková, Mária; Sabolová, Danica; Kristian, Pavol

    2017-10-01

    Acridines possess two characteristics that have led many researchers to consider the agents interesting targets for future development as potential farmacophores: the planar acridine skeleton, which is able to intercalate into DNA, and the intense fluorescence of the agents. This review offers a study of the multifunctional character of acridines and the synthesis of novel acridine derivatives, with particular focus being placed on isothiocyanates and their congeners, e.g. thioureas, isothioureas, quaternary ammonium salts and platinum/gold conjugates. The review provides an overview of the structure, spectral properties, DNA binding and biological activity of acridinylthiourea congeners. These acridinylthiourea derivatives display significant cytotoxic activities against different types of cancer cell lines at micromolar concentrations. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity.

    PubMed

    Panagopoulos, Dimitris J; Johansson, Olle; Carlo, George L

    2015-10-12

    In the present study we analyze the role of polarization in the biological activity of Electromagnetic Fields (EMFs)/Electromagnetic Radiation (EMR). All types of man-made EMFs/EMR - in contrast to natural EMFs/EMR - are polarized. Polarized EMFs/EMR can have increased biological activity, due to: 1) Ability to produce constructive interference effects and amplify their intensities at many locations. 2) Ability to force all charged/polar molecules and especially free ions within and around all living cells to oscillate on parallel planes and in phase with the applied polarized field. Such ionic forced-oscillations exert additive electrostatic forces on the sensors of cell membrane electro-sensitive ion channels, resulting in their irregular gating and consequent disruption of the cell's electrochemical balance. These features render man-made EMFs/EMR more bioactive than natural non-ionizing EMFs/EMR. This explains the increasing number of biological effects discovered during the past few decades to be induced by man-made EMFs, in contrast to natural EMFs in the terrestrial environment which have always been present throughout evolution, although human exposure to the latter ones is normally of significantly higher intensities/energy and longer durations. Thus, polarization seems to be a trigger that significantly increases the probability for the initiation of biological/health effects.

  20. Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity

    PubMed Central

    Panagopoulos, Dimitris J.; Johansson, Olle; Carlo, George L.

    2015-01-01

    In the present study we analyze the role of polarization in the biological activity of Electromagnetic Fields (EMFs)/Electromagnetic Radiation (EMR). All types of man-made EMFs/EMR - in contrast to natural EMFs/EMR - are polarized. Polarized EMFs/EMR can have increased biological activity, due to: 1) Ability to produce constructive interference effects and amplify their intensities at many locations. 2) Ability to force all charged/polar molecules and especially free ions within and around all living cells to oscillate on parallel planes and in phase with the applied polarized field. Such ionic forced-oscillations exert additive electrostatic forces on the sensors of cell membrane electro-sensitive ion channels, resulting in their irregular gating and consequent disruption of the cell’s electrochemical balance. These features render man-made EMFs/EMR more bioactive than natural non-ionizing EMFs/EMR. This explains the increasing number of biological effects discovered during the past few decades to be induced by man-made EMFs, in contrast to natural EMFs in the terrestrial environment which have always been present throughout evolution, although human exposure to the latter ones is normally of significantly higher intensities/energy and longer durations. Thus, polarization seems to be a trigger that significantly increases the probability for the initiation of biological/health effects. PMID:26456585

  1. Polarization: A Key Difference between Man-made and Natural Electromagnetic Fields, in regard to Biological Activity

    NASA Astrophysics Data System (ADS)

    Panagopoulos, Dimitris J.; Johansson, Olle; Carlo, George L.

    2015-10-01

    In the present study we analyze the role of polarization in the biological activity of Electromagnetic Fields (EMFs)/Electromagnetic Radiation (EMR). All types of man-made EMFs/EMR - in contrast to natural EMFs/EMR - are polarized. Polarized EMFs/EMR can have increased biological activity, due to: 1) Ability to produce constructive interference effects and amplify their intensities at many locations. 2) Ability to force all charged/polar molecules and especially free ions within and around all living cells to oscillate on parallel planes and in phase with the applied polarized field. Such ionic forced-oscillations exert additive electrostatic forces on the sensors of cell membrane electro-sensitive ion channels, resulting in their irregular gating and consequent disruption of the cell’s electrochemical balance. These features render man-made EMFs/EMR more bioactive than natural non-ionizing EMFs/EMR. This explains the increasing number of biological effects discovered during the past few decades to be induced by man-made EMFs, in contrast to natural EMFs in the terrestrial environment which have always been present throughout evolution, although human exposure to the latter ones is normally of significantly higher intensities/energy and longer durations. Thus, polarization seems to be a trigger that significantly increases the probability for the initiation of biological/health effects.

  2. The relation between growth of four microbes on six different plasterboards and biological activity of spores.

    PubMed

    Murtoniemi, T; Hirvonen, M-R; Nevalainen, A; Suutari, M

    2003-03-01

    Microbial growth on water-damaged building materials is commonly associated with adverse health effects in the occupants. We examined the growth of Stachybotrys chartarum, Aspergillus versicolor, Penicillium spinulosum, and Streptomyces californicus, isolated from water-damaged buildings, on six different brands of plasterboards. The microbial growth was compared with the biological activity of the spores, that is the potential to induce cytotoxicity and proinflammatory mediators in RAW264.7 macrophages. These results showed that the microbial growth on plasterboard depended on both the microbial strain and the brand of plasterboard used. The biological activity of spores appeared to be regulated by different growth conditions on plasterboards so that good microbial growth was associated with a low bioactivity of the spores, whereas the spores collected from plasterboard supporting only weak growth usually were biologically active. Cytotoxicity of either S. chartarum or A. versicolor did not correlate with any particular growth conditions or induced inflammatory responses. Instead, there were positive correlations between cytotoxicity and levels of induced proinflammatory cytokines for P. spinulosum and S. californicus. These data suggest that both the microbial growth on plasterboard and the resulting bioactivity of spores vary and might be affected by changing the growth conditions provided by the plasterboards.

  3. Guanine-based amphiphiles: synthesis, ion transport properties and biological activity.

    PubMed

    Musumeci, Domenica; Irace, Carlo; Santamaria, Rita; Milano, Domenico; Tecilla, Paolo; Montesarchio, Daniela

    2015-03-01

    Novel amphiphilic guanine derivatives, here named Gua1 and Gua2, have been prepared through few, simple and efficient synthetic steps. In ion transport experiments through phospholipid bilayers, carried out to evaluate their ability to mediate H(+) transport, Gua2 showed high activity. When this compound was investigated for ion-selective transport activities, no major differences were observed in the behaviour with cations while, in the case of anions, selective activity was observed in the series I(-)>Br(-)>Cl(-)>F(-). The bioactivity of these guanine analogues has been evaluated on a panel of human tumour and non-tumour cell lines in preliminary in vitro cytotoxicity assays, showing a relevant antiproliferative profile for Gua2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Linking Microbial Community Structure, Activity and Carbon Cycling in Biological Soil Crust

    NASA Astrophysics Data System (ADS)

    Swenson, T.; Karaoz, U.; Swenson, J.; Bowen, B.; Northen, T.

    2016-12-01

    Soils play a key role in the global carbon cycle, but the relationships between soil microbial communities and metabolic pathways are poorly understood. In this study, biological soil crusts (biocrusts) from the Colorado Plateau are being used to develop soil metabolomics methods and statistical models to link active microbes to the abundance and turnover of soil metabolites and to examine the detailed substrate and product profiles of individual soil bacteria isolated from biocrust. To simulate a pulsed activity (wetting) event and to analyze the subsequent correlations between soil metabolite dynamics, community structure and activity, biocrusts were wetup with water and samples (porewater and DNA) were taken at various timepoints up to 49.5 hours post-wetup. DNA samples were sequenced using the HiSeq sequencing platform and porewater metabolites were analyzed using untargeted liquid chromatography/ mass spectrometry. Exometabolite analysis revealed the release of a breadth of metabolites including sugars, amino acids, fatty acids, dicarboxylic acids, nucleobases and osmolytes. In general, many metabolites (e.g. amino acids and nucleobases) immediately increased in abundance following wetup and then steadily decreased. However, a few continued to increase over time (e.g. xanthine). Interestingly, in a previous study exploring utilization of soil metabolites by sympatric bacterial isolates from biocrust, we observed xanthine to be released by some Bacilli sp. Furthermore, our current metagenomics data show that members of the Paenibacillaceae family increase in abundance in late wetup samples. Previous 16S amplicon data also show a "Firmicutes bloom" following wetup with the new metagenomic data resolving this at genome-level. Our continued metagenome and exometabolome analyses are allowing us to examine complex pulsed-activity events in biocrust microbial communities specifically by correlating the abundance of microbes to the release of soil metabolites

  5. Residual matrix from different separation techniques impacts exosome biological activity.

    PubMed

    Paolini, Lucia; Zendrini, Andrea; Di Noto, Giuseppe; Busatto, Sara; Lottini, Elisabetta; Radeghieri, Annalisa; Dossi, Alessandra; Caneschi, Andrea; Ricotta, Doris; Bergese, Paolo

    2016-03-24

    Exosomes are gaining a prominent role in research due to their intriguing biology and several therapeutic opportunities. However, their accurate purification from body fluids and detailed physicochemical characterization remain open issues. We isolated exosomes from serum of patients with Multiple Myeloma by four of the most popular purification methods and assessed the presence of residual contaminants in the preparations through an ad hoc combination of biochemical and biophysical techniques - including Western Blot, colloidal nanoplasmonics, atomic force microscopy (AFM) and scanning helium ion microscopy (HIM). The preparations obtained by iodixanol and sucrose gradients were highly pure. To the contrary, those achieved with limited processing (serial centrifugation or one step precipitation kit) resulted contaminated by a residual matrix, embedding the exosomes. The contaminated preparations showed lower ability to induce NfkB nuclear translocation in endothelial cells with respect to the pure ones, probably because the matrix prevents the interaction and fusion of the exosomes with the cell membrane. These findings suggest that exosome preparation purity must be carefully assessed since it may interfere with exosome biological activity. Contaminants can be reliably probed only by an integrated characterization approach aimed at both the molecular and the colloidal length scales.

  6. Biological Activities of the Essential Oil from Erigeron floribundus.

    PubMed

    Petrelli, Riccardo; Orsomando, Giuseppe; Sorci, Leonardo; Maggi, Filippo; Ranjbarian, Farahnaz; Biapa Nya, Prosper C; Petrelli, Dezemona; Vitali, Luca A; Lupidi, Giulio; Quassinti, Luana; Bramucci, Massimo; Hofer, Anders; Cappellacci, Loredana

    2016-08-13

    Erigeron floribundus (Asteraceae) is an herbaceous plant widely used in Cameroonian traditional medicine to treat various diseases of microbial and non-microbial origin. In the present study, we evaluated the in vitro biological activities displayed by the essential oil obtained from the aerial parts of E. floribundus, namely the antioxidant, antimicrobial and antiproliferative activities. Moreover, we investigated the inhibitory effects of E. floribundus essential oil on nicotinate mononucleotide adenylyltransferase (NadD), a promising new target for developing novel antibiotics, and Trypanosoma brucei, the protozoan parasite responsible for Human African trypanosomiasis. The essential oil composition was dominated by spathulenol (12.2%), caryophyllene oxide (12.4%) and limonene (8.8%). The E. floribundus oil showed a good activity against Staphylococcus aureus (inhibition zone diameter, IZD of 14 mm, minimum inhibitory concentration, MIC of 512 µg/mL). Interestingly, it inhibited the NadD enzyme from S. aureus (IC50 of 98 µg/mL), with no effects on mammalian orthologue enzymes. In addition, T. brucei proliferation was inhibited with IC50 values of 33.5 µg/mL with the essential oil and 5.6 µg/mL with the active component limonene. The essential oil exhibited strong cytotoxicity on HCT 116 colon carcinoma cells with an IC50 value of 14.89 µg/mL, and remarkable ferric reducing antioxidant power (tocopherol-equivalent antioxidant capacity, TEAC = 411.9 μmol·TE/g).

  7. Histological changes and some in vitro biological activities induced by lipopolysaccharide from Bacteroides gingivalis.

    PubMed

    Isogai, H; Isogai, E; Fujii, N; Oguma, K; Kagota, W; Takano, K

    1988-07-01

    The biological activities of lipopolysaccharide from Bacteroides gingivalis 381 (B-LPS) were examined in vivo and in vitro. Intra-oral mucosal injection of B-LPS induced an acute inflammation at the injection site. Intravenous injection of B-LPS induced necrotic lesions with many thrombi in the liver and lymphocytic reduction in the spleen. By immunohistochemical examination, B-LPS was detected in macrophages in the liver, spleen and lymph nodes. In vitro analysis showed that B-LPS was a potent activator of both neutrophils and macrophages in luminol-dependent response and IL-1 secretion from macrophages and was mitogenic to the spleen cells not only from BALB/c mice but also from LPS-non-responder C3H/HeJ mice. Interferon production from human peripheral mononuclear leucocytes was induced, in vitro, by stimulation with B-LPS but not with the other enterobacterial LPS. These findings clarified the various biological activities of B-LPS affecting various cells and tissues, especially neutrophils, macrophages and lymphocytes. The potent inflammability of B-LPS shown in the present study indicates that it is one of the effective agents to induce periodontitis.

  8. Synthesis, characterization and biological activities of semicarbazones and their copper complexes.

    PubMed

    Venkatachalam, Taracad K; Bernhardt, Paul V; Noble, Chris J; Fletcher, Nicholas; Pierens, Gregory K; Thurecht, Kris J; Reutens, David C

    2016-09-01

    Substituted semicarbazones/thiosemicarbazones and their copper complexes have been prepared and several single crystal structures examined. The copper complexes of these semicarbazone/thiosemicarbazones were prepared and several crystal structures examined. The single crystal X-ray structure of the pyridyl-substituted semicarbazone showed two types of copper complexes, a monomer and a dimer. We also found that the p-nitrophenyl semicarbazone formed a conventional 'magic lantern' acetate-bridged dimer. Electron Paramagnetic Resonance (EPR) of several of the copper complexes was consistent with the results of single crystal X-ray crystallography. The EPR spectra of the p-nitrophenyl semicarbazone copper complex in dimethylsulfoxide (DMSO) showed the presence of two species, confirming the structural information. Since thiosemicarbazones and semicarbazones have been reported to exhibit anticancer activity, we examined the anticancer activity of several of the derivatives reported in the present study and interestingly only the thiosemicarbazone showed activity while the semicarbazones were not active indicating that introduction of sulphur atom alters the biological profile of these thiosemicarbazones. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Biological capacitance studies of anodes in microbial fuel cells using electrochemical impedance spectroscopy.

    PubMed

    Lu, Zhihao; Girguis, Peter; Liang, Peng; Shi, Haifeng; Huang, Guangtuan; Cai, Lankun; Zhang, Lehua

    2015-07-01

    It is known that cell potential increases while anode resistance decreases during the start-up of microbial fuel cells (MFCs). Biological capacitance, defined as the apparent capacitance attributed to biological activity including biofilm production, plays a role in this phenomenon. In this research, electrochemical impedance spectroscopy was employed to study anode capacitance and resistance during the start-up period of MFCs so that the role of biological capacitance was revealed in electricity generation by MFCs. It was observed that the anode capacitance ranged from 3.29 to 120 mF which increased by 16.8% to 18-20 times over 10-12 days. Notably, lowering the temperature and arresting biological activity via fixation by 4% para formaldehyde resulted in the decrease of biological capacitance by 16.9 and 62.6%, indicating a negative correlation between anode capacitance and anode resistance of MFCs. Thus, biological capacitance of anode should play an important role in power generation by MFCs. We suggest that MFCs are not only biological reactors and/or electrochemical cells, but also biological capacitors, extending the vision on mechanism exploration of electron transfer, reactor structure design and electrode materials development of MFCs.

  10. Biological observations on the crocodile shark Pseudocarcharias kamoharai.

    PubMed

    Dai, X J; Zhu, J F; Chen, X J; Xu, L X; Chen, Y

    2012-04-01

    Sex ratios and gravid characteristics were analysed for the crocodile shark Pseudocarcharias kamoharai from the tropical eastern Pacific Ocean. Gravid females ranged from 80 to 102 cm fork length (L(F) ). The mode litter size was four (two embryos per uterus), mean embryo length was linearly correlated with maternal length (r = 0·465, n = 32); there was no significant difference in L(F) between female and male embryos. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  11. South African Helichrysum species: a review of the traditional uses, biological activity and phytochemistry.

    PubMed

    Lourens, A C U; Viljoen, A M; van Heerden, F R

    2008-10-28

    In South Africa, the genus Helichrysum is widely used in traditional medicine. The uses are well documented although renaming of species and the resulting confusing taxonomic nomenclature may cause uncertainty as to which specific species was referred to in some reports. The aim of this paper is to present a collated and coherent overview of the documented traditional uses of Helichrysum species and to update the botanical identity of previously studied species. Databases (Scifinder, ISI Web of Knowledge) and several books were used to collect in information on South African Helichrysum species. The traditional uses, chemistry and biological activity of Helichrysum species have been summarized. It was attempted to give clarity as to exactly which species is refer to in the ethnobotanical literature. Although a large number of ethnopharmacological uses have been documented and the chemistry of the genus has been studied extensively, only a few South African species have been investigated for their biological activity.

  12. The role and control of sludge age in biological nutrient removal activated sludge systems.

    PubMed

    Ekama, G A

    2010-01-01

    The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.

  13. Perception of Biological Motion in Schizophrenia and Healthy Individuals: A Behavioral and fMRI Study

    PubMed Central

    Kim, Jejoong; Park, Sohee; Blake, Randolph

    2011-01-01

    Background Anomalous visual perception is a common feature of schizophrenia plausibly associated with impaired social cognition that, in turn, could affect social behavior. Past research suggests impairment in biological motion perception in schizophrenia. Behavioral and functional magnetic resonance imaging (fMRI) experiments were conducted to verify the existence of this impairment, to clarify its perceptual basis, and to identify accompanying neural concomitants of those deficits. Methodology/Findings In Experiment 1, we measured ability to detect biological motion portrayed by point-light animations embedded within masking noise. Experiment 2 measured discrimination accuracy for pairs of point-light biological motion sequences differing in the degree of perturbation of the kinematics portrayed in those sequences. Experiment 3 measured BOLD signals using event-related fMRI during a biological motion categorization task. Compared to healthy individuals, schizophrenia patients performed significantly worse on both the detection (Experiment 1) and discrimination (Experiment 2) tasks. Consistent with the behavioral results, the fMRI study revealed that healthy individuals exhibited strong activation to biological motion, but not to scrambled motion in the posterior portion of the superior temporal sulcus (STSp). Interestingly, strong STSp activation was also observed for scrambled or partially scrambled motion when the healthy participants perceived it as normal biological motion. On the other hand, STSp activation in schizophrenia patients was not selective to biological or scrambled motion. Conclusion Schizophrenia is accompanied by difficulties discriminating biological from non-biological motion, and associated with those difficulties are altered patterns of neural responses within brain area STSp. The perceptual deficits exhibited by schizophrenia patients may be an exaggerated manifestation of neural events within STSp associated with perceptual errors made by

  14. [The release of biologically active compounds from peat peloids].

    PubMed

    Babaskin, D V

    2011-01-01

    This work had the objective to study kinetics of the release of flavonoides from peat peloid compositions containing extracts of medicinal herbs in model systems.The key parameters of the process are defined. The rate of liberation of flavonoides is shown to depend on their initial concentration in the compositions being used. The influence of the flavonoide composition of the tested extracts and dimethylsulfoxide on the release of biologically active compounds contained in the starting material in the model environment is estimated. The possibility of the layer-by-layer deposition of the compositions and peat peloids in order to increase the efficacy of flavonoide release from the starting composition and to ensure more rational utilization of the extracts of medicinal plants is demonstrated.

  15. Complex formation of blueberry (Vaccinium angustifolium) anthocyanins during freeze-drying and its influence on their biological activity.

    PubMed

    Correa-Betanzo, Julieta; Padmanabhan, Priya; Corredig, Milena; Subramanian, Jayasankar; Paliyath, Gopinadhan

    2015-03-25

    Biological activity of polyphenols is influenced by their uptake and is highly influenced by their interactions with the food matrix. This study evaluated the complex formation of blueberry polyphenols with fruit matrixes such as pectin and cellulose and their effect on the biological and antiproliferative properties of human colon cell lines HT-29 and CRL 1790. Free or complexed polyphenols were isolated by dialyzing aqueous or methanolic blueberry homogenates. Seven phenolic compounds and thirteen anthocyanins were identified in blueberry extracts. Blueberry extracts showed varying degrees of antioxidant and antiproliferative activities, as well as α-glucosidase activity. Fruit matrix containing cellulose and pectin, or purified polygalacturonic acid and cellulose, did not retain polyphenols and showed very low antioxidant or antiproliferative activities. These findings suggest that interactions between polyphenols and the food matrix may be more complex than a simple association and may play an important role in the bioefficacy of blueberry polyphenols.

  16. Phytochemical profile and biological activities of Deverra tortuosa (Desf.)DC.: a desert aromatic shrub widespread in Northern Region of Saudi Arabia.

    PubMed

    Guetat, Arbi; Boulila, Abdennacer; Boussaid, Mohamed

    2018-04-16

    The present study describes the chemical composition of the essential oil of different plant parts of Devrra tortuosa; in vivo and in vitro biological activities of plant extract and essential oils. Apiol was found to be the major component of the oil (between 65.73% and 74.41%). The best antioxidant activities were observed for the oil of flowers (IC50 = 175 μg/ml). The samples of stems and roots exhibit lower antioxidant activity (IC50 = 201 μg/ml and 182 μg/ml, respectively). The values of IC50 showed that the extracts of methanol exhibit the highest antioxidants activities (IC50 = 64.8 102 μg/ml). EOs showed excellent antifungal activity against yeasts with low azole susceptibilities (i.e. Malassezia spp. and Candida krusei). The MIC values of oils varied between 2.85 mg/mL and 27 mg/mL. The obtained results also showed that the plant extracts inhibited the germination and the shoot and root growth of Triticum æstivum seedlings.

  17. Mannheimia haemolytica Leukotoxin Activates a Nonreceptor Tyrosine Kinase Signaling Cascade in Bovine Leukocytes, Which Induces Biological Effects

    PubMed Central

    Jeyaseelan, S.; Kannan, M. S.; Briggs, R. E.; Thumbikat, P.; Maheswaran, S. K.

    2001-01-01

    The leukotoxin (LktA) produced by Mannheimia haemolytica binds to bovine lymphocyte function-associated antigen 1 (LFA-1) and induces biological effects in bovine leukocytes in a cellular and species-specific fashion. We have previously shown that LktA also binds to porcine LFA-1 without eliciting any effects. These findings suggest that the specificity of LktA effects must entail both binding to LFA-1 and activation of signaling pathways which are present in bovine leukocytes. However, the signaling pathways leading to biological effects upon LktA binding to LFA-1 have not been characterized. In this context, several reports have indicated that ligand binding to LFA-1 results in activation of a nonreceptor tyrosine kinase (NRTK) signaling cascade. We designed experiments with the following objectives: (i) to determine whether LktA binding to LFA-1 leads to activation of NRTKs, (ii) to examine whether LktA-induced NRTK activation is target cell specific, and (iii) to determine whether LktA-induced NRTK activation is required for biological effects. We used a biologically inactive mutant leukotoxin (ΔLktA) for comparison with LktA. Our results indicate that LktA induces tyrosine phosphorylation (TP) of the CD18 tail of LFA-1 in bovine leukocytes. The ΔLktA mutant does not induce TP of the CD18 tail, albeit binding to bovine LFA-1. LktA-induced TP of the CD18 tail was attenuated by an NRTK inhibitor, herbimycin A; a phosphatidylinositol 3′-kinase (PI 3-kinase) inhibitor, wortmannin; and a Src kinase inhibitor, PP2, in a concentration-dependent manner. Furthermore, LktA induces TP of the CD18 tail in bovine, but not porcine, leukocytes. Moreover, LktA-induced intracellular calcium ([Ca2+]i) elevation was also inhibited by herbimycin A, wortmannin, and PP2. Thus, our data represent the first evidence that binding of LktA to bovine LFA-1 induces a species-specific NRTK signaling cascade involving PI 3-kinase and Src kinases and that this signaling cascade is

  18. Biological Activities of Oleanolic Acid Derivatives from Calendula officinalis Seeds.

    PubMed

    Zaki, Ahmed; Ashour, Ahmed; Mira, Amira; Kishikawa, Asuka; Nakagawa, Toshinori; Zhu, Qinchang; Shimizu, Kuniyoshi

    2016-05-01

    Phytochemical examination of butanol fraction of Calendula officinalis seeds led to the isolation of two compounds identified as 28-O-β-D-glucopyranosyl-oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS1) and oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS2). Biological evaluation was carried out for these two compounds such as melanin biosynthesis inhibitory, hyaluronic acid production activities, anti obesity using lipase inhibition and adipocyte differentiation as well as evaluation of the protective effect against hydrogen peroxide induced neurotoxicity in neuro-2A cells. The results showed that, compound CS2 has a melanin biosynthesis stimulatory activity; however, compound CS1 has a potent stimulatory effect for the production of hyaluronic acid on normal human dermal fibroblast from adult (NHDF-Ad). Both compounds did not show any inhibitory effect on both lipase and adipocyte differentiation. Compound CS2 could protect neuro-2A cells and increased cell viability against H2 O2 . These activities (melanin biosynthesis stimulatory and protective effect against H2 O2 of CS2 and hyaluronic acid productive activities of these triterpene derivatives) have been reported for the first time. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Catalytically and biologically active silver nanoparticles synthesized using essential oil

    NASA Astrophysics Data System (ADS)

    Vilas, Vidya; Philip, Daizy; Mathew, Joseph

    2014-11-01

    There are numerous reports on phytosynthesis of silver nanoparticles and various phytochemicals are involved in the reduction and stabilization. Pure explicit phytosynthetic protocol for catalytically and biologically active silver nanoparticles is of importance as it is an environmentally benign green method. This paper reports the use of essential oil of Myristica fragrans enriched in terpenes and phenyl propenes in the reduction and stabilization. FTIR spectra of the essential oil and the synthesized biogenic silver nanoparticles are in accordance with the GC-MS spectral analysis reports. Nanosilver is initially characterized by an intense SPR band around 420 nm, followed by XRD and TEM analysis revealing the formation of 12-26 nm sized, highly pure, crystalline silver nanoparticles. Excellent catalytic and bioactive potential of the silver nanoparticles is due to the surface modification. The chemocatalytic potential of nanosilver is exhibited by the rapid reduction of the organic pollutant, para nitro phenol and by the degradation of the thiazine dye, methylene blue. Significant antibacterial activity of the silver colloid against Gram positive, Staphylococcus aureus (inhibition zone - 12 mm) and Gram negative, Escherichia coli (inhibition zone - 14 mm) is demonstrated by Agar-well diffusion method. Strong antioxidant activity of the biogenic silver nanoparticles is depicted through NO scavenging, hydrogen peroxide scavenging, reducing power, DPPH and total antioxidant activity assays.

  20. Value of Earth Observations: NASA Activities with Socioeconomic Analysis

    NASA Astrophysics Data System (ADS)

    Friedl, L.

    2016-12-01

    There is greater emphasis internationally on the social and economic benefits that organizations can derive from applications of Earth observations. A growing set of qualitative, anecdotal examples on the uses of Earth observations across a range of sectors can be complemented by the quantitative substantiation of the socioeconomic benefits. In turn, the expanding breadth of environmental data available and the awareness of their beneficial applications to inform decisions can support new products and services. To support these efforts, there are needs to develop impact assessments, populate the literature, and develop familiarity in the Earth science community with the terms, concepts and methods to assess impacts. Within NASA, the Earth Science Division's Applied Sciences Program has initiated and supported numerous activities in recent years to quantify the socioeconomic benefits from Earth observations applications and to build familiarity within the Earth science community. This paper will present an overview of measuring socioeconomic impacts of Earth observations and how the measures can be translated into a value of Earth observation information. It will address key terms, techniques, principles and applications of socioeconomic impact analyses. It will also discuss activities to support analytic techniques, expand the literature, and promote broader skills and capabilities.