Sample records for observed cell death

  1. Dictyostelium cell death

    PubMed Central

    Levraud, Jean-Pierre; Adam, Myriam; Luciani, Marie-Françoise; de Chastellier, Chantal; Blanton, Richard L.; Golstein, Pierre

    2003-01-01

    Cell death in the stalk of Dictyostelium discoideum, a prototypic vacuolar cell death, can be studied in vitro using cells differentiating as a monolayer. To identify early events, we examined potentially dying cells at a time when the classical signs of Dictyostelium cell death, such as heavy vacuolization and membrane lesions, were not yet apparent. We observed that most cells proceeded through a stereotyped series of differentiation stages, including the emergence of “paddle” cells showing high motility and strikingly marked subcellular compartmentalization with actin segregation. Paddle cell emergence and subsequent demise with paddle-to-round cell transition may be critical to the cell death process, as they were contemporary with irreversibility assessed through time-lapse videos and clonogenicity tests. Paddle cell demise was not related to formation of the cellulose shell because cells where the cellulose-synthase gene had been inactivated underwent death indistinguishable from that of parental cells. A major subcellular alteration at the paddle-to-round cell transition was the disappearance of F-actin. The Dictyostelium vacuolar cell death pathway thus does not require cellulose synthesis and includes early actin rearrangements (F-actin segregation, then depolymerization), contemporary with irreversibility, corresponding to the emergence and demise of highly polarized paddle cells. PMID:12654899

  2. Cell Death in C. elegans Development.

    PubMed

    Malin, Jennifer Zuckerman; Shaham, Shai

    2015-01-01

    Cell death is a common and important feature of animal development, and cell death defects underlie many human disease states. The nematode Caenorhabditis elegans has proven fertile ground for uncovering molecular and cellular processes controlling programmed cell death. A core pathway consisting of the conserved proteins EGL-1/BH3-only, CED-9/BCL2, CED-4/APAF1, and CED-3/caspase promotes most cell death in the nematode, and a conserved set of proteins ensures the engulfment and degradation of dying cells. Multiple regulatory pathways control cell death onset in C. elegans, and many reveal similarities with tumor formation pathways in mammals, supporting the idea that cell death plays key roles in malignant progression. Nonetheless, a number of observations suggest that our understanding of developmental cell death in C. elegans is incomplete. The interaction between dying and engulfing cells seems to be more complex than originally appreciated, and it appears that key aspects of cell death initiation are not fully understood. It has also become apparent that the conserved apoptotic pathway is dispensable for the demise of the C. elegans linker cell, leading to the discovery of a previously unexplored gene program promoting cell death. Here, we review studies that formed the foundation of cell death research in C. elegans and describe new observations that expand, and in some cases remodel, this edifice. We raise the possibility that, in some cells, more than one death program may be needed to ensure cell death fidelity. © 2015 Elsevier Inc. All rights reserved.

  3. Cell death in Tetrahymena thermophila: new observations on culture conditions.

    PubMed

    Christensen, S T; Sørensen, H; Beyer, N H; Kristiansen, K; Rasmussen, L; Rasmussen, M I

    2001-01-01

    We previously suggested that the cell fate of the protozoan ciliate, Tetrahymena thermophila, effectively relates to a quorum-sensing mechanism where cell-released factors support cell survival and proliferation. The cells have to be present above a critical initial density in a chemically defined nutrient medium in order to release a sufficient level of these factors to allow a new colony to flourish. At a relatively high rate of metabolism and/or macromolecular synthesis and below this critical density, cells began to die abruptly within 30 min of inoculation, and this death took the form of an explosive disintegration lasting less than 50 milliseconds. The cells died at any location in the culture, and the frequency of cell death was always lower in well-filled vials than those with medium/air interface. Cell death was inhibited by the addition of Actinomycin D or through modifications of the culture conditions either by reducing the oxygen tension or by decreasing the temperature of the growth medium. In addition, plastic caps in well-filled vials release substances, which promote cell survival. The fate of low-density cultures is related to certain 'physical' conditions, in addition to the availability of oxygen within closed culture systems. Copyright 2001 Academic Press.

  4. [Methuosis: a novel type of cell death].

    PubMed

    Cai, Hongbing; Liu, Jinkun; Fan, Qin; Li, Xin

    2013-12-01

    Cell death is a major physiological or pathological phenomenon in life activities. The classic forms of cell death include apoptosis, necrosis, and autophagy. Recently, a novel type of cell death has been observed and termed as methuosis, in which excessive stimuli can induce cytoplasmic uptake and accumulation of small bubbles that gradually merge into giant vacuoles, eventually leading to decreased cellular metabolic activity, cell membrane rupture and cell death. In this article, we describe the nomenclature, morphological characteristics and underlying mechanisms of methuosis, compare methuosis with autophagy, oncosis and paraptosis, and review the related researches.

  5. Cytoplasmic vacuolization in cell death and survival

    PubMed Central

    Komissarov, Alexey A.; Rafieva, Lola M.; Kostrov, Sergey V.

    2016-01-01

    Cytoplasmic vacuolization (also called cytoplasmic vacuolation) is a well-known morphological phenomenon observed in mammalian cells after exposure to bacterial or viral pathogens as well as to various natural and artificial low-molecular-weight compounds. Vacuolization often accompanies cell death; however, its role in cell death processes remains unclear. This can be attributed to studying vacuolization at the level of morphology for many years. At the same time, new data on the molecular mechanisms of the vacuole formation and structure have become available. In addition, numerous examples of the association between vacuolization and previously unknown cell death types have been reported. Here, we review these data to make a deeper insight into the role of cytoplasmic vacuolization in cell death and survival. PMID:27331412

  6. Cell death and cell lysis are separable events during pyroptosis

    PubMed Central

    DiPeso, Lucian; Ji, Daisy X; Vance, Russell E; Price, Jordan V

    2017-01-01

    Although much insight has been gained into the mechanisms by which activation of the inflammasome can trigger pyroptosis in mammalian cells, the precise kinetics of the end stages of pyroptosis have not been well characterized. Using time-lapse fluorescent imaging to analyze the kinetics of pyroptosis in individual murine macrophages, we observed distinct stages of cell death and cell lysis. Our data demonstrate that cell membrane permeability resulting from gasdermin D pore formation is coincident with the cessation of cell movement, loss of mitochondrial activity, and cell swelling, events that can be uncoupled from cell lysis. We propose a model of pyroptosis in which cell death can occur independently of cell lysis. The uncoupling of cell death from cell lysis may allow for better control of cytosolic contents upon activation of the inflammasome. PMID:29147575

  7. Aeromonas hydrophila exotoxin induces cytoplasmic vacuolation and cell death in VERO cells.

    PubMed

    Di Pietro, Angela; Picerno, Isa; Visalli, Giuseppa; Chirico, Cristina; Spataro, Pasquale; Cannavò, Giuseppe; Scoglio, Maria E

    2005-07-01

    Many organisms are able to cause cell vacuolation, but it is unclear if this can be considered a step of apoptosis or necrosis, or a distinct form of cell death. In this study VERO cells were used to evaluate the relationship between vacuolation and cell death pattern caused by exotoxins produced by environmental strains of A. hydrophila. Cell damage has been evaluated morphologically as well as biochemically. Cytotoxic and vacuolating titres were strictly correlated and the vacuolation has to be considered an early indicator of cytotoxicity that causes cell apoptosis or necrosis in relation to the dose. Signs of apoptosis (chromatin condensation and blebbing) were observed at low concentration and TGase activity, referable to apoptosis induction, confirms morphological observations. In fact, putrescine incorporation was related both to cytotoxin concentration and time of incubation. Moreover, the observed doubling cells with necrotic features permit us to suppose that cell sensitivity and death pattern could change during the different phases of cellular cycle.

  8. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    PubMed

    Galluzzi, Lorenzo; Vitale, Ilio; Aaronson, Stuart A; Abrams, John M; Adam, Dieter; Agostinis, Patrizia; Alnemri, Emad S; Altucci, Lucia; Amelio, Ivano; Andrews, David W; Annicchiarico-Petruzzelli, Margherita; Antonov, Alexey V; Arama, Eli; Baehrecke, Eric H; Barlev, Nickolai A; Bazan, Nicolas G; Bernassola, Francesca; Bertrand, Mathieu J M; Bianchi, Katiuscia; Blagosklonny, Mikhail V; Blomgren, Klas; Borner, Christoph; Boya, Patricia; Brenner, Catherine; Campanella, Michelangelo; Candi, Eleonora; Carmona-Gutierrez, Didac; Cecconi, Francesco; Chan, Francis K-M; Chandel, Navdeep S; Cheng, Emily H; Chipuk, Jerry E; Cidlowski, John A; Ciechanover, Aaron; Cohen, Gerald M; Conrad, Marcus; Cubillos-Ruiz, Juan R; Czabotar, Peter E; D'Angiolella, Vincenzo; Dawson, Ted M; Dawson, Valina L; De Laurenzi, Vincenzo; De Maria, Ruggero; Debatin, Klaus-Michael; DeBerardinis, Ralph J; Deshmukh, Mohanish; Di Daniele, Nicola; Di Virgilio, Francesco; Dixit, Vishva M; Dixon, Scott J; Duckett, Colin S; Dynlacht, Brian D; El-Deiry, Wafik S; Elrod, John W; Fimia, Gian Maria; Fulda, Simone; García-Sáez, Ana J; Garg, Abhishek D; Garrido, Carmen; Gavathiotis, Evripidis; Golstein, Pierre; Gottlieb, Eyal; Green, Douglas R; Greene, Lloyd A; Gronemeyer, Hinrich; Gross, Atan; Hajnoczky, Gyorgy; Hardwick, J Marie; Harris, Isaac S; Hengartner, Michael O; Hetz, Claudio; Ichijo, Hidenori; Jäättelä, Marja; Joseph, Bertrand; Jost, Philipp J; Juin, Philippe P; Kaiser, William J; Karin, Michael; Kaufmann, Thomas; Kepp, Oliver; Kimchi, Adi; Kitsis, Richard N; Klionsky, Daniel J; Knight, Richard A; Kumar, Sharad; Lee, Sam W; Lemasters, John J; Levine, Beth; Linkermann, Andreas; Lipton, Stuart A; Lockshin, Richard A; López-Otín, Carlos; Lowe, Scott W; Luedde, Tom; Lugli, Enrico; MacFarlane, Marion; Madeo, Frank; Malewicz, Michal; Malorni, Walter; Manic, Gwenola; Marine, Jean-Christophe; Martin, Seamus J; Martinou, Jean-Claude; Medema, Jan Paul; Mehlen, Patrick; Meier, Pascal; Melino, Sonia; Miao, Edward A; Molkentin, Jeffery D; Moll, Ute M; Muñoz-Pinedo, Cristina; Nagata, Shigekazu; Nuñez, Gabriel; Oberst, Andrew; Oren, Moshe; Overholtzer, Michael; Pagano, Michele; Panaretakis, Theocharis; Pasparakis, Manolis; Penninger, Josef M; Pereira, David M; Pervaiz, Shazib; Peter, Marcus E; Piacentini, Mauro; Pinton, Paolo; Prehn, Jochen H M; Puthalakath, Hamsa; Rabinovich, Gabriel A; Rehm, Markus; Rizzuto, Rosario; Rodrigues, Cecilia M P; Rubinsztein, David C; Rudel, Thomas; Ryan, Kevin M; Sayan, Emre; Scorrano, Luca; Shao, Feng; Shi, Yufang; Silke, John; Simon, Hans-Uwe; Sistigu, Antonella; Stockwell, Brent R; Strasser, Andreas; Szabadkai, Gyorgy; Tait, Stephen W G; Tang, Daolin; Tavernarakis, Nektarios; Thorburn, Andrew; Tsujimoto, Yoshihide; Turk, Boris; Vanden Berghe, Tom; Vandenabeele, Peter; Vander Heiden, Matthew G; Villunger, Andreas; Virgin, Herbert W; Vousden, Karen H; Vucic, Domagoj; Wagner, Erwin F; Walczak, Henning; Wallach, David; Wang, Ying; Wells, James A; Wood, Will; Yuan, Junying; Zakeri, Zahra; Zhivotovsky, Boris; Zitvogel, Laurence; Melino, Gerry; Kroemer, Guido

    2018-03-01

    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

  9. Cell Death and Cell Death Responses in Liver Disease: Mechanisms and Clinical Relevance

    PubMed Central

    Luedde, Tom; Kaplowitz, Neil; Schwabe, Robert F.

    2015-01-01

    Summary Hepatocellular death is present in almost all types of human liver disease and is used as a sensitive parameter for the detection of acute and chronic liver disease of viral, toxic, metabolic, or autoimmune origin. Clinical data and animal models suggest that hepatocyte death is the key trigger of liver disease progression, manifested by the subsequent development of inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Modes of hepatocellular death differ substantially between liver diseases. Different modes of cell death such as apoptosis, necrosis, and necroptosis trigger specific cell death responses and promote progression of liver disease through distinct mechanisms. In this review, we first discuss molecular mechanisms by which different modes of cell death, damage-associated molecular patterns, and specific cell death responses contribute to the development of liver disease. We then review the clinical relevance of cell death, focusing on biomarkers; the contribution of cell death to drug-induced, viral, and fatty liver disease and liver cancer; and evidence for cell death pathways as therapeutic targets. PMID:25046161

  10. Cell death proteomics database: consolidating proteomics data on cell death.

    PubMed

    Arntzen, Magnus Ø; Bull, Vibeke H; Thiede, Bernd

    2013-05-03

    Programmed cell death is a ubiquitous process of utmost importance for the development and maintenance of multicellular organisms. More than 10 different types of programmed cell death forms have been discovered. Several proteomics analyses have been performed to gain insight in proteins involved in the different forms of programmed cell death. To consolidate these studies, we have developed the cell death proteomics (CDP) database, which comprehends data from apoptosis, autophagy, cytotoxic granule-mediated cell death, excitotoxicity, mitotic catastrophe, paraptosis, pyroptosis, and Wallerian degeneration. The CDP database is available as a web-based database to compare protein identifications and quantitative information across different experimental setups. The proteomics data of 73 publications were integrated and unified with protein annotations from UniProt-KB and gene ontology (GO). Currently, more than 6,500 records of more than 3,700 proteins are included in the CDP. Comparing apoptosis and autophagy using overrepresentation analysis of GO terms, the majority of enriched processes were found in both, but also some clear differences were perceived. Furthermore, the analysis revealed differences and similarities of the proteome between autophagosomal and overall autophagy. The CDP database represents a useful tool to consolidate data from proteome analyses of programmed cell death and is available at http://celldeathproteomics.uio.no.

  11. Ferroptosis is Involved in Acetaminophen Induced Cell Death.

    PubMed

    Lőrincz, Tamás; Jemnitz, Katalin; Kardon, Tamás; Mandl, József; Szarka, András

    2015-09-01

    The recently described form of programmed cell death, ferroptosis can be induced by agents causing GSH depletion or the inhibition of GPX4. Ferroptosis clearly shows distinct morphologic, biochemical and genetic features from apoptosis, necrosis and autophagy. Since NAPQI the highly reactive metabolite of the widely applied analgesic and antipyretic, acetaminophen induces a cell death which can be characterized by GSH depletion, GPX inhibition and caspase independency the involvement of ferroptosis in acetaminophen induced cell death has been investigated. The specific ferroptosis inhibitor ferrostatin-1 failed to elevate the viability of acetaminophen treated HepG2 cells. It should be noticed that these cells do not form NAPQI due to the lack of phase I enzyme expression therefore GSH depletion cannot be observed. However in the case of acetaminophen treated primary mouse hepatocytes the significant elevation of cell viability could be observed upon ferrostatin-1 treatment. Similar to ferrostatin-1 treatment, the addition of the RIP1 kinase inhibitor necrostatin-1 could also elevate the viability of acetaminophen treated primary hepatocytes. Ferrostatin-1 has no influence on the expression of CYP2E1 or on the cellular GSH level which suggest that the protective effect of ferrostatin-1 in APAP induced cell death is not based on the reduced metabolism of APAP to NAPQI or on altered NAPQI conjugation by cellular GSH. Our results suggest that beyond necroptosis and apoptosis a third programmed cell death, ferroptosis is also involved in acetaminophen induced cell death in primary hepatocytes.

  12. Mechanism of cell death resulting from DNA interstrand cross-linking in mammalian cells

    PubMed Central

    Osawa, T; Davies, D; Hartley, J A

    2011-01-01

    DNA interstrand cross-links (ICLs) are critical cytotoxic lesions produced by cancer chemotherapeutic agents such as the nitrogen mustards and platinum drugs; however, the exact mechanism of ICL-induced cell death is unclear. Here, we show a novel mechanism of p53-independent apoptotic cell death involving prolonged cell-cycle (G2) arrest, ICL repair involving HR, transient mitosis, incomplete cytokinesis, and gross chromosomal abnormalities resulting from ICLs in mammalian cells. This characteristic ‘giant' cell death, observed by using time-lapse video microscopy, was reduced in ICL repair ERCC1- and XRCC3-deficient cells. Collectively, the results illustrate the coordination of ICL-induced cellular responses, including cell-cycle arrest, DNA damage repair, and cell death. PMID:21814285

  13. Dictyostelium cell death: early emergence and demise of highly polarized paddle cells.

    PubMed

    Levraud, Jean-Pierre; Adam, Myriam; Luciani, Marie-Françoise; de Chastellier, Chantal; Blanton, Richard L; Golstein, Pierre

    2003-03-31

    Cell death in the stalk of Dictyostelium discoideum, a prototypic vacuolar cell death, can be studied in vitro using cells differentiating as a monolayer. To identify early events, we examined potentially dying cells at a time when the classical signs of Dictyostelium cell death, such as heavy vacuolization and membrane lesions, were not yet apparent. We observed that most cells proceeded through a stereotyped series of differentiation stages, including the emergence of "paddle" cells showing high motility and strikingly marked subcellular compartmentalization with actin segregation. Paddle cell emergence and subsequent demise with paddle-to-round cell transition may be critical to the cell death process, as they were contemporary with irreversibility assessed through time-lapse videos and clonogenicity tests. Paddle cell demise was not related to formation of the cellulose shell because cells where the cellulose-synthase gene had been inactivated underwent death indistinguishable from that of parental cells. A major subcellular alteration at the paddle-to-round cell transition was the disappearance of F-actin. The Dictyostelium vacuolar cell death pathway thus does not require cellulose synthesis and includes early actin rearrangements (F-actin segregation, then depolymerization), contemporary with irreversibility, corresponding to the emergence and demise of highly polarized paddle cells.

  14. Detecting cell death with optical coherence tomography and envelope statistics

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Yang, Victor X. D.; Czarnota, Gregory J.; Kolios, Michael C.

    2011-02-01

    Currently no standard clinical or preclinical noninvasive method exists to monitor cell death based on morphological changes at the cellular level. In our past work we have demonstrated that quantitative high frequency ultrasound imaging can detect cell death in vitro and in vivo. In this study we apply quantitative methods previously used with high frequency ultrasound to optical coherence tomography (OCT) to detect cell death. The ultimate goal of this work is to use these methods for optically-based clinical and preclinical cancer treatment monitoring. Optical coherence tomography data were acquired from acute myeloid leukemia cells undergoing three modes of cell death. Significant increases in integrated backscatter were observed for cells undergoing apoptosis and mitotic arrest, while necrotic cells induced a decrease. These changes appear to be linked to structural changes observed in histology obtained from the cell samples. Signal envelope statistics were analyzed from fittings of the generalized gamma distribution to histograms of envelope intensities. The parameters from this distribution demonstrated sensitivities to morphological changes in the cell samples. These results indicate that OCT integrated backscatter and first order envelope statistics can be used to detect and potentially differentiate between modes of cell death in vitro.

  15. Dead Cert: Measuring Cell Death.

    PubMed

    Crowley, Lisa C; Marfell, Brooke J; Scott, Adrian P; Boughaba, Jeanne A; Chojnowski, Grace; Christensen, Melinda E; Waterhouse, Nigel J

    2016-12-01

    Many cells in the body die at specific times to facilitate healthy development or because they have become old, damaged, or infected. Defects in cells that result in their inappropriate survival or untimely death can negatively impact development or contribute to a variety of human pathologies, including cancer, AIDS, autoimmune disorders, and chronic infection. Cell death may also occur following exposure to environmental toxins or cytotoxic chemicals. Although this is often harmful, it can be beneficial in some cases, such as in the treatment of cancer. The ability to objectively measure cell death in a laboratory setting is therefore essential to understanding and investigating the causes and treatments of many human diseases and disorders. Often, it is sufficient to know the extent of cell death in a sample; however, the mechanism of death may also have implications for disease progression, treatment, and the outcomes of experimental investigations. There are a myriad of assays available for measuring the known forms of cell death, including apoptosis, necrosis, autophagy, necroptosis, anoikis, and pyroptosis. Here, we introduce a range of assays for measuring cell death in cultured cells, and we outline basic techniques for distinguishing healthy cells from apoptotic or necrotic cells-the two most common forms of cell death. We also provide personal insight into where these assays may be useful and how they may or may not be used to distinguish apoptotic cell death from other death modalities. © 2016 Cold Spring Harbor Laboratory Press.

  16. Increasing RpoS expression causes cell death in Borrelia burgdorferi.

    PubMed

    Chen, Linxu; Xu, Qilong; Tu, Jiagang; Ge, Yihe; Liu, Jun; Liang, Fang Ting

    2013-01-01

    RpoS, one of the two alternative σ factors in Borrelia burgdorferi, is tightly controlled by multiple regulators and, in turn, determines expression of many critical virulence factors. Here we show that increasing RpoS expression causes cell death. The immediate effect of increasing RpoS expression was to promote bacterial division and as a consequence result in a rapid increase in cell number before causing bacterial death. No DNA fragmentation or degradation was observed during this induced cell death. Cryo-electron microscopy showed induced cells first formed blebs, which were eventually released from dying cells. Apparently blebbing initiated cell disintegration leading to cell death. These findings led us to hypothesize that increasing RpoS expression triggers intracellular programs and/or pathways that cause spirochete death. The potential biological significance of induced cell death may help B. burgdorferi regulate its population to maintain its life cycle in nature.

  17. Colourful death: six-parameter classification of cell death by flow cytometry--dead cells tell tales.

    PubMed

    Munoz, Luis E; Maueröder, Christian; Chaurio, Ricardo; Berens, Christian; Herrmann, Martin; Janko, Christina

    2013-08-01

    The response of the immune system against dying and dead cells strongly depends on the cell death phenotype. Beside other forms of cell death, two clearly distinct populations, early apoptotic and secondary necrotic cells, have been shown to induce anti-inflammation/tolerance and inflammation/immune priming, respectively. Cytofluorometry is a powerful technique to detect morphological and phenotypical changes occurring during cell death. Here, we describe a new technique using AnnexinA5, propidiumiodide, DiIC1(5) and Hoechst 33342 to sub-classify populations of apoptotic and/or necrotic cells. The method allows the fast and reliable identification of several different phases and pathways of cell death by analysing the following cell death associated changes in a single tube: cellular granularity and shrinkage, phosphatidylserine exposure, ion selectivity of the plasma membrane, mitochondrial membrane potential, and DNA content. The clear characterisation of cell death is of major importance for instance in immunization studies, in experimental therapeutic settings, and in the exploration of cell-death associated diseases. It also enables the analysis of immunological properties of distinct populations of dying cells and the pathways involved in this process.

  18. Effects of high CD4 cell counts on death and attrition among HIV patients receiving antiretroviral treatment: an observational cohort study.

    PubMed

    Tang, Zhenzhu; Pan, Stephen W; Ruan, Yuhua; Liu, Xuanhua; Su, Jinming; Zhu, Qiuying; Shen, Zhiyong; Zhang, Heng; Chen, Yi; Lan, Guanghua; Xing, Hui; Liao, Lingjie; Feng, Yi; Shao, Yiming

    2017-06-09

    Current WHO guidelines recommend initiating ART regardless of CD4+ cell count. In response, we conducted an observational cohort study to assess the effects of pre-ART CD4+ cell count levels on death, attrition, and death or attrition in HIV treated patients. This large HIV treatment cohort study (n = 49,155) from 2010 to 2015 was conducted in Guangxi, China. We used a Cox regression model to analyze associations between pre-ART CD4+ cell counts and death, attrition, and death or attrition. The average mortality and ART attrition rates among all treated patients were 2.63 deaths and 5.32 attritions per 100 person-years, respectively. Compared to HIV patients with <350 CD4+ cells/mm 3 at ART initiation, HIV patients with >500 CD4+ cells/mm 3 at ART initiation had a significantly lower mortality rate (Adjusted hazard ratio: 0.56, 95% CI: 0.40-0.79), but significantly higher ART attrition rate (AHR: 1.17, 95% CI: 1.03-1.33). Results from this study suggest that HIV patients with high CD4+ cell counts at the time of ART initiation may be at greater risk of treatment attrition. To further reduce ART attrition, it is imperative that patient education and healthcare provider training on ART adherence be enhanced and account for CD4 levels at ART initiation.

  19. Effects of intracellular iron overload on cell death and identification of potent cell death inhibitors.

    PubMed

    Fang, Shenglin; Yu, Xiaonan; Ding, Haoxuan; Han, Jianan; Feng, Jie

    2018-06-11

    Iron overload causes many diseases, while the underlying etiologies of these diseases are unclear. Cell death processes including apoptosis, necroptosis, cyclophilin D-(CypD)-dependent necrosis and a recently described additional form of regulated cell death called ferroptosis, are dependent on iron or iron-dependent reactive oxygen species (ROS). However, whether the accumulation of intracellular iron itself induces ferroptosis or other forms of cell death is largely elusive. In present study, we study the role of intracellular iron overload itself-induced cell death mechanisms by using ferric ammonium citrate (FAC) and a membrane-permeable Ferric 8-hydroxyquinoline complex (Fe-8HQ) respectively. We show that FAC-induced intracellular iron overload causes ferroptosis. We also identify 3-phosphoinositide-dependent kinase 1 (PDK1) inhibitor GSK2334470 as a potent ferroptosis inhibitor. Whereas, Fe-8HQ-induced intracellular iron overload causes unregulated necrosis, but partially activates PARP-1 dependent parthanatos. Interestingly, we identify many phenolic compounds as potent inhibitors of Fe-8HQ-induced cell death. In conclusion, intracellular iron overload-induced cell death form might be dependent on the intracellular iron accumulation rate, newly identified cell death inhibitors in our study that target ferroptosis and unregulated oxidative cell death represent potential therapeutic strategies against iron overload related diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. What cell death does in development.

    PubMed

    Zakeri, Zahra; Penaloza, Carlos G; Smith, Kyle; Ye, Yixia; Lockshin, Richard A

    2015-01-01

    Cell death is prominent in gametogenesis and shapes and sculpts embryos. In non-mammalian embryos one sees little or no cell death prior to the maternal-zygotic transition, but, in mammalian embryos, characteristic deaths of one or two cells occur at the end of compaction and are apparently necessary for the separation of the trophoblast from the inner cell mass. Considerable sculpting of the embryo occurs by cell deaths during organogenesis, and appropriate cell numbers, especially in the CNS and in the immune system, are generated by massive overproduction of cells and selection of a few, with death of the rest. The timing, identity, and genetic control of specific cells that die have been well documented in Caenorhabditis, but in other embryos the stochastic nature of the deaths limit our ability to do more than identify the regions in which cells will die. Complete disruption of the cell death machinery can be lethal, but many mutations of the regulatory machinery yield only modest or no phenotypes, indicating substantial redundancy and compensation of regulatory mechanisms. Most of the deaths are apoptotic and are identified by techniques used to recognize apoptosis, but techniques identifying lysosomes (whether in dying or involuting cells or in the phagocytes that invade the tissue) also reveal patterns of cell death. Aberrant cell deaths that produce known phenotypes are typically localized, indicating that the mechanism of activating a programmed death in a specific region, rather than the mechanism of death, is aberrant. These results lead us to conclude that we need to know much more about the conversations among cells that lead cells to commit suicide.

  1. Autophagy promotes caspase-dependent cell death during Drosophila development.

    PubMed

    Mohseni, Nilufar; McMillan, Stephanie C; Chaudhary, Roopali; Mok, Jane; Reed, Bruce H

    2009-04-01

    The relationship between autophagic cell death and apoptosis is a poorly understood aspect of programmed cell death (PCD). We have examined this relationship by studying the elimination of an extra-embryonic tissue, known as the amnioserosa (AS), during Drosophila development. The AS becomes autophagic during the final stages of embryogenesis; ultimately, however, the elimination of the AS involves caspase-dependent nuclear fragmentation, tissue dissociation and engulfment by phagocytic macrophages. Mutants that are defective in the activation or execution of caspase-dependent PCD fail to degrade and eliminate the AS but show no abatement in AS autophagy. Sustained autophagy does not, therefore, necessarily result in cell death. Surprisingly, the downregulation of autophagy also results in a persistent AS phenotype and reduced cell death. Conversely, upregulation of autophagy results in caspase-dependent premature AS dissociation. These observations are consistent with the interpretation that autophagy is a prerequisite for caspase-dependent cell death in the AS.

  2. Glutathione Efflux and Cell Death

    PubMed Central

    2012-01-01

    Abstract Significance: Glutathione (GSH) depletion is a central signaling event that regulates the activation of cell death pathways. GSH depletion is often taken as a marker of oxidative stress and thus, as a consequence of its antioxidant properties scavenging reactive species of both oxygen and nitrogen (ROS/RNS). Recent Advances: There is increasing evidence demonstrating that GSH loss is an active phenomenon regulating the redox signaling events modulating cell death activation and progression. Critical Issues: In this work, we review the role of GSH depletion by its efflux, as an important event regulating alterations in the cellular redox balance during cell death independent from oxidative stress and ROS/RNS formation. We discuss the mechanisms involved in GSH efflux during cell death progression and the redox signaling events by which GSH depletion regulates the activation of the cell death machinery. Future Directions: The evidence summarized here clearly places GSH transport as a central mechanism mediating redox signaling during cell death progression. Future studies should be directed toward identifying the molecular identity of GSH transporters mediating GSH extrusion during cell death, and addressing the lack of sensitive approaches to quantify GSH efflux. Antioxid. Redox Signal. 17, 1694–1713. PMID:22656858

  3. The deaths of a cell: how language and metaphor influence the science of cell death.

    PubMed

    Reynolds, Andrew S

    2014-12-01

    Multicellular development and tissue maintenance involve the regular elimination of damaged and healthy cells. The science of this genetically regulated cell death is particularly rich in metaphors: 'programmed cell death' or 'cell suicide' is considered an 'altruistic' act on the part of a cell for the benefit of the organism as a whole. It is also considered a form of 'social control' exerted by the body/organism over its component cells. This paper analyzes the various functions of these metaphors and critical discussion about them within the scientific community. Bodies such as the Nomenclature Committee on Cell Death (NCCD) have been charged with bringing order to the language of cell death to facilitate scientific progress. While the NCCD recommends adopting more objective biochemical terminology to describe the mechanisms of cell death, the metaphors in question retain an important function by highlighting the broader context within which cell death occurs. Scientific metaphors act as conceptual 'tools' which fulfill various roles, from highlighting a phenomenon as of particular interest, situating it in a particular context, or suggesting explanatory causal mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Programmed cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The purpose of this conference to provide a multidisciplinary forum for exchange of state-of-the-art information on the role programmed cell death plays in normal development and homeostasis of many organisms. This volume contains abstracts of papers in the following areas: invertebrate development; immunology/neurology; bcl-2 family; biochemistry; programmed cell death in viruses; oncogenesis; vertebrate development; and diseases.

  5. Long-term treatment of anterior pituitary cells with nitric oxide induces programmed cell death.

    PubMed

    Velardez, Miguel Omar; Poliandri, Ariel Hernán; Cabilla, Jimena Paula; Bodo, Cristian Carlos Armando; Machiavelli, Leticia Inés; Duvilanski, Beatriz Haydeé

    2004-04-01

    Nitric oxide (NO) plays a complex role in modulating programmed cell death. It can either protect the cell from apoptotic death or mediate apoptosis, depending on its concentration and the cell type and/or status. In this study, we demonstrate that long-term exposition to NO induces cell death of anterior pituitary cells from Wistar female rats. DETA NONOate (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate, 1 mm], a NO donor that releases NO for an extended period of time, decreased cellular viability and prolactin release from primary cultures of anterior pituitary cells. Morphological studies showed an increase in the number of cells with chromatin condensation and nuclear fragmentation at 24 and 48 h after DETA/NO exposure. DNA internucleosomal fragmentation was also observed at the same time. Reversibility of the NO effect on cellular viability and prolactin release was observed only when the cells were incubated with DETA/NO for less than 6 h. Most apoptotic cells were immunopositive for prolactin, suggesting a high susceptibility of lactotrophs to the effect of NO. The cytotoxic effect of NO is dependent of caspase-9 and caspase-3, but seems to be independent of oxidative stress or nitrosative stress. Our results show that the exposition of anterior pituitary cells to NO for long periods induces programmed cell death of anterior pituitary cells.

  6. Nonthermal-plasma-mediated animal cell death

    NASA Astrophysics Data System (ADS)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Gyoo-Cheon; Kim, Kyong-Tai

    2011-01-01

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood.

  7. Contribution of TMEM16F to pyroptotic cell death.

    PubMed

    Ousingsawat, Jiraporn; Wanitchakool, Podchanart; Schreiber, Rainer; Kunzelmann, Karl

    2018-02-20

    Pyroptosis is a highly inflammatory form of programmed cell death that is caused by infection with intracellular pathogens and activation of canonical or noncanonical inflammasomes. The purinergic receptor P2X 7 is activated by the noncanonical inflammasome and contributes essentially to pyroptotic cell death. The Ca 2+ activated phospholipid scramblase and ion channel TMEM16F has been shown earlier to control cellular effects downstream of purinergic P2X 7 receptors that ultimately lead to cell death. As pyroptotic cell death is accompanied by an increases in intracellular Ca 2+ , we asked whether TMEM16F is activated during pyroptosis. The N-terminal cleavage product of gasdermin D (GD-N) is an executioner of pyroptosis by forming large plasma membrane pores. Expression of GD-N enhanced basal Ca 2+ levels and induced cell death. We observed that GD-N induced cell death in HEK293 and HAP1 cells, which was depending on expression of endogenous TMEM16F. GD-N activated large whole cell currents that were suppressed by knockdown or inhibition of TMEM16F. The results suggest that whole cell currents induced by the pore forming domain of gasdermin-D, are at least in part due to activation of TMEM16F. Knockdown of other TMEM16 paralogues expressed in HAP1 cells suggest TMEM16F as a crucial element during pyroptosis and excluded a role of other TMEM16 proteins. Thus TMEM16F supports pyroptosis and other forms of inflammatory cell death such as ferroptosis. Its potent inhibition by tannic acid may be part of the anti-inflammatory effects of flavonoids.

  8. Glutathione in Cancer Cell Death

    PubMed Central

    Ortega, Angel L.; Mena, Salvador; Estrela, Jose M.

    2011-01-01

    Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy. PMID:24212662

  9. Necroptosis-like Neuronal Cell Death Caused by Cellular Cholesterol Accumulation.

    PubMed

    Funakoshi, Takeshi; Aki, Toshihiko; Tajiri, Masateru; Unuma, Kana; Uemura, Koichi

    2016-11-25

    Aberrant cellular accumulation of cholesterol is associated with neuronal lysosomal storage disorders such as Niemann-Pick disease Type C (NPC). We have shown previously that l-norephedrine (l-Nor), a sympathomimetic amine, induces necrotic cell death associated with massive cytoplasmic vacuolation in SH-SY5Y human neuroblastoma cells. To reveal the molecular mechanism underling necrotic neuronal cell death caused by l-Nor, we examined alterations in the gene expression profile of cells during l-Nor exposure. DNA microarray analysis revealed that the gene levels for cholesterol transport (LDL receptor and NPC2) as well as cholesterol biosynthesis (mevalonate pathway enzymes) are increased after exposure to 3 mm l-Nor for ∼6 h. Concomitant with this observation, the master transcriptional regulator of cholesterol homeostasis, SREBP-2, is activated by l-Nor. The increase in cholesterol uptake as well as biosynthesis is not accompanied by an increase in cholesterol in the plasma membrane, but rather by aberrant accumulation in cytoplasmic compartments. We also found that cell death by l-Nor can be suppressed by nec-1s, an inhibitor of a regulated form of necrosis, necroptosis. Abrogation of SREBP-2 activation by the small molecule inhibitor betulin or by overexpression of dominant-negative SREBP-2 efficiently reduces cell death by l-Nor. The mobilization of cellular cholesterol in the presence of cyclodextrin also suppresses cell death. These results were also observed in primary culture of striatum neurons. Taken together, our results indicate that the excessive uptake as well as synthesis of cholesterol should underlie neuronal cell death by l-Nor exposure, and suggest a possible link between lysosomal cholesterol storage disorders and the regulated form of necrosis in neuronal cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Necroptosis-like Neuronal Cell Death Caused by Cellular Cholesterol Accumulation*

    PubMed Central

    Funakoshi, Takeshi; Aki, Toshihiko; Tajiri, Masateru; Unuma, Kana; Uemura, Koichi

    2016-01-01

    Aberrant cellular accumulation of cholesterol is associated with neuronal lysosomal storage disorders such as Niemann-Pick disease Type C (NPC). We have shown previously that l-norephedrine (l-Nor), a sympathomimetic amine, induces necrotic cell death associated with massive cytoplasmic vacuolation in SH-SY5Y human neuroblastoma cells. To reveal the molecular mechanism underling necrotic neuronal cell death caused by l-Nor, we examined alterations in the gene expression profile of cells during l-Nor exposure. DNA microarray analysis revealed that the gene levels for cholesterol transport (LDL receptor and NPC2) as well as cholesterol biosynthesis (mevalonate pathway enzymes) are increased after exposure to 3 mm l-Nor for ∼6 h. Concomitant with this observation, the master transcriptional regulator of cholesterol homeostasis, SREBP-2, is activated by l-Nor. The increase in cholesterol uptake as well as biosynthesis is not accompanied by an increase in cholesterol in the plasma membrane, but rather by aberrant accumulation in cytoplasmic compartments. We also found that cell death by l-Nor can be suppressed by nec-1s, an inhibitor of a regulated form of necrosis, necroptosis. Abrogation of SREBP-2 activation by the small molecule inhibitor betulin or by overexpression of dominant-negative SREBP-2 efficiently reduces cell death by l-Nor. The mobilization of cellular cholesterol in the presence of cyclodextrin also suppresses cell death. These results were also observed in primary culture of striatum neurons. Taken together, our results indicate that the excessive uptake as well as synthesis of cholesterol should underlie neuronal cell death by l-Nor exposure, and suggest a possible link between lysosomal cholesterol storage disorders and the regulated form of necrosis in neuronal cells. PMID:27756839

  11. Cell death monitoring using quantitative optical coherence tomography methods

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Yang, Victor X. D.; Kolios, Michael C.; Czarnota, Gregory J.

    2011-03-01

    Cell death is characterized by a series of predictable morphological changes, which modify the light scattering properties of cells. We present a multi-parametric approach to detecting changes in subcellular morphology related to cell death using optical coherence tomography (OCT). Optical coherence tomography data were acquired from acute myeloid leukemia (AML) cells undergoing apoptosis over a period of 48 hours. Integrated backscatter (IB) and spectral slope (SS) were computed from OCT backscatter spectra and statistical parameters were extracted from a generalized gamma (GG) distribution fit to OCT signal intensity histograms. The IB increased by 2-fold over 48 hours with significant increases observed as early as 4 hours. The SS increased in steepness by 2.5-fold with significant changes at 12 hours, while the GG parameters were sensitive to apoptotic changes at 24 to 48 hours. Histology slides indicated nuclear condensation and fragmentation at 24 hours, suggesting the late scattering changes could be related to nuclear structure. A second series of measurements from AML cells treated with cisplatin, colchicine or ionizing radiation suggested that the GG parameters could potentially differentiate between modes of cell death. Distinct cellular morphology was observed in histology slides obtained from cells treated under each condition.

  12. Protection of LLC-PK1 cells against hydrogen peroxide-induced cell death by modulation of ceramide level.

    PubMed

    Yoo, Jae-Myung; Lee, Youn-Sun; Choi, Heon-Kyo; Lee, Yong-Moon; Hong, Jin-Tae; Yun, Yeo-Pyo; Oh, Seikwan; Yoo, Hwan-Soo

    2005-03-01

    Oxidative stress has been reported to elevate ceramide level during cell death. The purpose of the present study was to modulate cell death in relation to cellular glutathione (GSH) level and GST (glutathione S-transferase) expression by regulating the sphingolipid metabolism. LLC-PK1 cells were treated with H2O2 in the absence of serum to induce cell death. Subsequent to exposure to H2O2, LLC-PK1 cells were treated with desipramine, sphingomyelinase inhibitor, and N-acetylcysteine (NAC), GSH substrate. Based on comparative visual observation with H2O2-treated control cells, it was observed that 0.5 microM of desipramine and 25 mM of NAC exhibited about 90 and 95% of cytoprotection, respectively, against H2O2-induced cell death. Desipramine and NAC lowered the release of LDH activity by 36 and 3%, respectively, when compared to 71% in H2O2-exposed cells. Cellular glutathione level in 500 microM H2O2-treated cells was reduced to 890 pmol as compared to control level of 1198 pmol per mg protein. GST P1-1 expression was decreased in H2O2-treated cells compared to healthy normal cells. In conclusion, it has been inferred that H2O2-induced cell death is closely related to cellular GSH level and GST P1-1 expression in LLC-PK1 cells and occurs via ceramide elevation by sphingomyelinase activation.

  13. Plasma membrane changes during programmed cell deaths

    PubMed Central

    Zhang, Yingying; Chen, Xin; Gueydan, Cyril; Han, Jiahuai

    2018-01-01

    Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers inflammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity. PMID:29076500

  14. Modelling the balance between quiescence and cell death in normal and tumour cell populations.

    PubMed

    Spinelli, Lorenzo; Torricelli, Alessandro; Ubezio, Paolo; Basse, Britta

    2006-08-01

    When considering either human adult tissues (in vivo) or cell cultures (in vitro), cell number is regulated by the relationship between quiescent cells, proliferating cells, cell death and other controls of cell cycle duration. By formulating a mathematical description we see that even small alterations of this relationship may cause a non-growing population to start growing with doubling times characteristic of human tumours. Our model consists of two age structured partial differential equations for the proliferating and quiescent cell compartments. Model parameters are death rates from and transition rates between these compartments. The partial differential equations can be solved for the steady-age distributions, giving the distribution of the cells through the cell cycle, dependent on specific model parameter values. Appropriate formulas can then be derived for various population characteristic quantities such as labelling index, proliferation fraction, doubling time and potential doubling time of the cell population. Such characteristic quantities can be estimated experimentally, although with decreasing precision from in vitro, to in vivo experimental systems and to the clinic. The model can be used to investigate the effects of a single alteration of either quiescence or cell death control on the growth of the whole population and the non-trivial dependence of the doubling time and other observable quantities on particular underlying cell cycle scenarios of death and quiescence. The model indicates that tumour evolution in vivo is a sequence of steady-states, each characterised by particular death and quiescence rate functions. We suggest that a key passage of carcinogenesis is a loss of the communication between quiescence, death and cell cycle machineries, causing a defect in their precise, cell cycle dependent relationship.

  15. Simultaneous induction of apoptotic, autophagic, and necrosis-like cell death by monoclonal antibodies recognizing chicken transferrin receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Yoshiya; Yagi, Hideki; Nakamura, Masanori

    Programmed cell death (PCD) is categorized as apoptotic, autophagic, or necrosis-like. Although the possibility that plural (two or three) death signals could be induced by a given stimulus has been reported, the precise mechanisms regulating PCD are not well understood. Recently, we have obtained two anti-chicken transferrin receptor (TfR) monoclonal antibodies (mAbs; D18 and D19) inducing a unique cell death. Although the cell death had several features of apoptosis, autophagic and necrosis-like morphological alterations were simultaneously observed in electron microphotographs. In addition to cells with condensed chromatin and an intact plasma membrane (apoptotic cells), cells having many vacuoles in themore » cytoplasm (autophagic cells), and enlarged cells with ruptured plasma membranes (necrosis-like cells) were observed in DT40 cells treated with the mAbs, however, the latter two types of dead cells were not detected upon treatment with staurosporine, a typical apoptosis inducer. In autophagic cells, numerous membrane-bound vesicles occupying most of the cytoplasmic space, which frequently contained electron-dense materials from cytoplasmic fragments and organelles, were observed. The simultaneous induction of multiple death signals from a stimulus via the TfR is of great interest to those researching cell death. In addition, activation of caspases was observed in DT40 cells treated with D19, however, the cell death was not inhibited with z-VAD-fmk, a pan-caspase inhibitor, suggesting that at least in part, a caspase-independent pathway is involved in the TfR-mediated cell death.« less

  16. Programmed Cell Death During Caenorhabditis elegans Development

    PubMed Central

    Conradt, Barbara; Wu, Yi-Chun; Xue, Ding

    2016-01-01

    Programmed cell death is an integral component of Caenorhabditis elegans development. Genetic and reverse genetic studies in C. elegans have led to the identification of many genes and conserved cell death pathways that are important for the specification of which cells should live or die, the activation of the suicide program, and the dismantling and removal of dying cells. Molecular, cell biological, and biochemical studies have revealed the underlying mechanisms that control these three phases of programmed cell death. In particular, the interplay of transcriptional regulatory cascades and networks involving multiple transcriptional regulators is crucial in activating the expression of the key death-inducing gene egl-1 and, in some cases, the ced-3 gene in cells destined to die. A protein interaction cascade involving EGL-1, CED-9, CED-4, and CED-3 results in the activation of the key cell death protease CED-3, which is tightly controlled by multiple positive and negative regulators. The activation of the CED-3 caspase then initiates the cell disassembly process by cleaving and activating or inactivating crucial CED-3 substrates; leading to activation of multiple cell death execution events, including nuclear DNA fragmentation, mitochondrial elimination, phosphatidylserine externalization, inactivation of survival signals, and clearance of apoptotic cells. Further studies of programmed cell death in C. elegans will continue to advance our understanding of how programmed cell death is regulated, activated, and executed in general. PMID:27516615

  17. Cell death in neural precursor cells and neurons before neurite formation prevents the emergence of abnormal neural structures in the Drosophila optic lobe.

    PubMed

    Hara, Yusuke; Sudo, Tatsuya; Togane, Yu; Akagawa, Hiromi; Tsujimura, Hidenobu

    2018-04-01

    Programmed cell death is a conserved strategy for neural development both in vertebrates and invertebrates and is recognized at various developmental stages in the brain from neurogenesis to adulthood. To understand the development of the central nervous system, it is essential to reveal not only molecular mechanisms but also the role of neural cell death (Pinto-Teixeira et al., 2016). To understand the role of cell death in neural development, we investigated the effect of inhibition of cell death on optic lobe development. Our data demonstrate that, in the optic lobe of Drosophila, cell death occurs in neural precursor cells and neurons before neurite formation and functions to prevent various developmental abnormalities. When neuronal cell death was inhibited by an effector caspase inhibitor, p35, multiple abnormal neuropil structures arose during optic lobe development-e.g., enlarged or fused neuropils, misrouted neurons and abnormal neurite lumps. Inhibition of cell death also induced morphogenetic defects in the lamina and medulla development-e.g., failures in the separation of the lamina and medulla cortices and the medulla rotation. These defects were reproduced in the mutant of an initiator caspase, dronc. If cell death was a mechanism for removing the abnormal neuropil structures, we would also expect to observe them in mutants defective for corpse clearance. However, they were not observed in these mutants. When dead cell-membranes were visualized with Apoliner, they were observed only in cortices and not in neuropils. These results suggest that the cell death occurs before mature neurite formation. Moreover, we found that inhibition of cell death induced ectopic neuroepithelial cells, neuroblasts and ganglion mother cells in late pupal stages, at sites where the outer and inner proliferation centers were located at earlier developmental stages. Caspase-3 activation was observed in the neuroepithelial cells and neuroblasts in the proliferation centers

  18. Inducible nitric oxide synthase in T cells regulates T cell death and immune memory

    PubMed Central

    Vig, Monika; Srivastava, Smita; Kandpal, Usha; Sade, Hadassah; Lewis, Virginia; Sarin, Apurva; George, Anna; Bal, Vineeta; Durdik, Jeannine M.; Rath, Satyajit

    2004-01-01

    The progeny of T lymphocytes responding to immunization mostly die rapidly, leaving a few long-lived survivors functioning as immune memory. Thus, control of this choice of death versus survival is critical for immune memory. There are indications that reactive radicals may be involved in this death pathway. We now show that, in mice lacking inducible nitric oxide synthase (iNOS), higher frequencies of both CD4 and CD8 memory T cells persist in response to immunization, even when iNOS+/+ APCs are used for immunization. Postactivation T cell death by neglect is reduced in iNOS–/– T cells, and levels of the antiapoptotic proteins Bcl-2 and Bcl-xL are increased. Inhibitors of the iNOS-peroxynitrite pathway also enhance memory responses and block postactivation death by neglect in both mouse and human T cells. However, early primary immune responses are not enhanced, which suggests that altered survival, rather than enhanced activation, is responsible for the persistent immunity observed. Thus, in primary immune responses, iNOS in activated T cells autocrinely controls their susceptibility to death by neglect to determine the level of persisting CD4 and CD8 T cell memory, and modulation of this pathway can enhance the persistence of immune memory in response to vaccination. PMID:15199408

  19. M1 muscarinic receptor activation mediates cell death in M1-HEK293 cells.

    PubMed

    Graham, E Scott; Woo, Kerhan K; Aalderink, Miranda; Fry, Sandie; Greenwood, Jeffrey M; Glass, Michelle; Dragunow, Mike

    2013-01-01

    HEK293 cells have been used extensively to generate stable cell lines to study G protein-coupled receptors, such as muscarinic acetylcholine receptors (mAChRs). The activation of M1 mAChRs in various cell types in vitro has been shown to be protective. To further investigate M1 mAChR-mediated cell survival, we generated stable HEK293 cell-lines expressing the human M1 mAChR. M1 mAChRs were efficiently expressed at the cell surface and efficiently internalised within 1 h by carbachol. Carbachol also induced early signalling cascades similar to previous reports. Thus, ectopically expressed M1 receptors behaved in a similar fashion to the native receptor over short time periods of analysis. However, substantial cell death was observed in HEK293-M1 cells within 24 h after carbachol application. Death was only observed in HEK cells expressing M1 receptors and fully blocked by M1 antagonists. M1 mAChR-stimulation mediated prolonged activation of the MEK-ERK pathway and resulted in prolonged induction of the transcription factor EGR-1 (>24 h). Blockade of ERK signalling with U0126 did not reduce M1 mAChR-mediated cell-death significantly but inhibited the acute induction of EGR-1. We investigated the time-course of cell death using time-lapse microscopy and xCELLigence technology. Both revealed the M1 mAChR cytotoxicity occurs within several hours of M1 activation. The xCELLigence assay also confirmed that the ERK pathway was not involved in cell-death. Interestingly, the MEK blocker did reduce carbachol-mediated cleaved caspase 3 expression in HEK293-M1 cells. The HEK293 cell line is a widely used pharmacological tool for studying G-protein coupled receptors, including mAChRs. Our results highlight the importance of investigating the longer term fate of these cells in short term signalling studies. Identifying how and why activation of the M1 mAChR signals apoptosis in these cells may lead to a better understanding of how mAChRs regulate cell-fate decisions.

  20. Stress and death of cnidarian host cells play a role in cnidarian bleaching.

    PubMed

    Paxton, Camille W; Davy, Simon K; Weis, Virginia M

    2013-08-01

    Coral bleaching occurs when there is a breakdown of the symbiosis between cnidarian hosts and resident Symbiodinium spp. Multiple mechanisms for the bleaching process have been identified, including apoptosis and autophagy, and most previous work has focused on the Symbiodinium cell as the initiator of the bleaching cascade. In this work we show that it is possible for host cells to initiate apoptosis that can contribute to death of the Symbiodinium cell. First we found that colchicine, which results in apoptosis in other animals, causes cell death in the model anemone Aiptasia sp. but not in cultured Symbiodinium CCMP-830 cells or in cells freshly isolated from host Aiptasia (at least within the time frame of our study). In contrast, when symbiotic Aiptasia were incubated in colchicine, cell death in the resident Symbiodinium cells was observed, suggesting a host effect on symbiont mortality. Using live-cell confocal imaging of macerated symbiotic host cell isolates, we identified a pattern where the initiation of host cell death was followed by mortality of the resident Symbiodinium cells. This same pattern was observed in symbiotic host cells that were subjected to temperature stress. This research suggests that mortality of symbionts during temperature-induced bleaching can be initiated in part by host cell apoptosis.

  1. Morphological classification of plant cell deaths.

    PubMed

    van Doorn, W G; Beers, E P; Dangl, J L; Franklin-Tong, V E; Gallois, P; Hara-Nishimura, I; Jones, A M; Kawai-Yamada, M; Lam, E; Mundy, J; Mur, L A J; Petersen, M; Smertenko, A; Taliansky, M; Van Breusegem, F; Wolpert, T; Woltering, E; Zhivotovsky, B; Bozhkov, P V

    2011-08-01

    Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during tissue and organ formation and elimination, whereas necrosis is typically found under abiotic stress. Some examples of plant PCD cannot be ascribed to either major class and are therefore classified as separate modalities. These are PCD associated with the hypersensitive response to biotrophic pathogens, which can express features of both necrosis and vacuolar cell death, PCD in starchy cereal endosperm and during self-incompatibility. The present classification is not static, but will be subject to further revision, especially when specific biochemical pathways are better defined.

  2. Extracellular acidification by lactic acid suppresses glucose deprivation-induced cell death and autophagy in B16 melanoma cells.

    PubMed

    Matsuo, Taisuke; Sadzuka, Yasuyuki

    2018-02-19

    In solid tumors, cancer cells survive and proliferate under conditions of microenvironment stress such as poor nutrients and hypoxia due to inadequate vascularization. These stress conditions in turn activate autophagy, which is important for cancer cell survival. However, autophagy has a contrary effect of inducing cell death in cancer cells cultured in vitro under conditions of glucose deprivation. In this study, we hypothesized that supplementation of lactic acid serves as a means of cell survival under glucose-deprived conditions. At neutral pH, cell death of B16 murine melanoma cells by autophagy under glucose-deprived conditions was observed. However, supplementation of lactic acid suppressed cell death and autophagy in B16 melanoma cells when cultured in glucose-deprived conditions. Sodium lactate, which does not change extracellular pH, did not inhibit cell death, while HCl-adjusted acidic pH suppressed cell death under glucose-deprived conditions. These results suggested that an acidic pH is crucial for cell survival under glucose-deprived conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Identification and characterization of cannabinoids that induce cell death through mitochondrial permeability transition in Cannabis leaf cells.

    PubMed

    Morimoto, Satoshi; Tanaka, Yumi; Sasaki, Kaori; Tanaka, Hiroyuki; Fukamizu, Tomohide; Shoyama, Yoshinari; Shoyama, Yukihiro; Taura, Futoshi

    2007-07-13

    Cannabinoids are secondary metabolites stored in capitate-sessile glands on leaves of Cannabis sativa. We discovered that cell death is induced in the leaf tissues exposed to cannabinoid resin secreted from the glands, and identified cannabichromenic acid (CBCA) and Delta(1)-tetrahydrocannabinolic acid (THCA) as unique cell death mediators from the resin. These cannabinoids effectively induced cell death in the leaf cells or suspension-cultured cells of C. sativa, whereas pretreatment with the mitochondrial permeability transition (MPT) inhibitor cyclosporin A suppressed this cell death response. Examinations using isolated mitochondria demonstrated that CBCA and THCA mediate opening of MPT pores without requiring Ca(2+) and other cytosolic factors, resulting in high amplitude mitochondrial swelling, release of mitochondrial proteins (cytochrome c and nuclease), and irreversible loss of mitochondrial membrane potential. Therefore, CBCA and THCA are considered to cause serious damage to mitochondria through MPT. The mitochondrial damage was also confirmed by a marked decrease of ATP level in cannabinoid-treated suspension cells. These features are in good accord with those of necrotic cell death, whereas DNA degradation was also observed in cannabinoid-mediated cell death. However, the DNA degradation was catalyzed by nuclease(s) released from mitochondria during MPT, indicating that this reaction was not induced via a caspase-dependent apoptotic pathway. Furthermore, the inhibition of the DNA degradation only slightly blocked the cell death induced by cannabinoids. Based on these results, we conclude that CBCA and THCA have the ability to induce necrotic cell death via mitochondrial dysfunction in the leaf cells of C. sativa.

  4. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walia, Rupali; Dardari, Rkia, E-mail: rdardari@ucalgary.ca; Chaiyakul, Mark

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathwaysmore » involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.« less

  5. Arabidopsis ACCELERATED CELL DEATH2 Modulates Programmed Cell DeathW⃞

    PubMed Central

    Yao, Nan; Greenberg, Jean T.

    2006-01-01

    The Arabidopsis thaliana chloroplast protein ACCELERATED CELL DEATH2 (ACD2) modulates the amount of programmed cell death (PCD) triggered by Pseudomonas syringae and protoporphyrin IX (PPIX) treatment. In vitro, ACD2 can reduce red chlorophyll catabolite, a chlorophyll derivative. We find that ACD2 shields root protoplasts that lack chlorophyll from light- and PPIX-induced PCD. Thus, chlorophyll catabolism is not obligatory for ACD2 anti-PCD function. Upon P. syringae infection, ACD2 levels and localization change in cells undergoing PCD and in their close neighbors. Thus, ACD2 shifts from being largely in chloroplasts to partitioning to chloroplasts, mitochondria, and, to a small extent, cytosol. ACD2 protects cells from PCD that requires the early mitochondrial oxidative burst. Later, the chloroplasts of dying cells generate NO, which only slightly affects cell viability. Finally, the mitochondria in dying cells have dramatically altered movements and cellular distribution. Overproduction of both ACD2 (localized to mitochondria and chloroplasts) and ascorbate peroxidase (localized to chloroplasts) greatly reduces P. syringae–induced PCD, suggesting a pro-PCD role for mitochondrial and chloroplast events. During infection, ACD2 may bind to and/or reduce PCD-inducing porphyrin-related molecules in mitochondria and possibly chloroplasts that generate reactive oxygen species, cause altered organelle behavior, and activate a cascade of PCD-inducing events. PMID:16387834

  6. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship.

    PubMed

    Strasser, A; Harris, A W; Cory, S

    1991-11-29

    Early death is the fate of most developing T lymphocytes. Because bcl-2 can promote cell survival, we tested its impact in mice expressing an E mu-bcl-2 transgene within the T lymphoid compartment. The T cells showed remarkably sustained viability and some spontaneous differentiation in vitro. They also resisted killing by lymphotoxic agents. Although total T cell numbers and the rate of thymic involution were unaltered, the response to immunization was enhanced, consistent with reduced death of activated T cells. No T cells reactive with self-superantigens appeared in the lymph nodes, but an excess was found in the thymus. These observations, together with previous findings on B cells, suggest that modulated bcl-2 expression is a determinant of life and death in normal lymphocytes.

  7. Mitochondrial fission proteins regulate programmed cell death in yeast.

    PubMed

    Fannjiang, Yihru; Cheng, Wen-Chih; Lee, Sarah J; Qi, Bing; Pevsner, Jonathan; McCaffery, J Michael; Hill, R Blake; Basañez, Gorka; Hardwick, J Marie

    2004-11-15

    The possibility that single-cell organisms undergo programmed cell death has been questioned in part because they lack several key components of the mammalian cell death machinery. However, yeast encode a homolog of human Drp1, a mitochondrial fission protein that was shown previously to promote mammalian cell death and the excessive mitochondrial fragmentation characteristic of apoptotic mammalian cells. In support of a primordial origin of programmed cell death involving mitochondria, we found that the Saccharomyces cerevisiae homolog of human Drp1, Dnm1, promotes mitochondrial fragmentation/degradation and cell death following treatment with several death stimuli. Two Dnm1-interacting factors also regulate yeast cell death. The WD40 repeat protein Mdv1/Net2 promotes cell death, consistent with its role in mitochondrial fission. In contrast to its fission function in healthy cells, Fis1 unexpectedly inhibits Dnm1-mediated mitochondrial fission and cysteine protease-dependent cell death in yeast. Furthermore, the ability of yeast Fis1 to inhibit mitochondrial fission and cell death can be functionally replaced by human Bcl-2 and Bcl-xL. Together, these findings indicate that yeast and mammalian cells have a conserved programmed death pathway regulated by a common molecular component, Drp1/Dnm1, that is inhibited by a Bcl-2-like function.

  8. Untangling the Roles of Anti-Apoptosis in Regulating Programmed Cell Death using Humanized Yeast Cells

    PubMed Central

    Clapp, Caitlin; Portt, Liam; Khoury, Chamel; Sheibani, Sara; Eid, Rawan; Greenwood, Matthew; Vali, Hojatollah; Mandato, Craig A.; Greenwood, Michael T.

    2012-01-01

    Genetically programmed cell death (PCD) mechanisms, including apoptosis, are important for the survival of metazoans since it allows, among things, the removal of damaged cells that interfere with normal function. Cell death due to PCD is observed in normal processes such as aging and in a number of pathophysiologies including hypoxia (common causes of heart attacks and strokes) and subsequent tissue reperfusion. Conversely, the loss of normal apoptotic responses is associated with the development of tumors. So far, limited success in preventing unwanted PCD has been reported with current therapeutic approaches despite the fact that inhibitors of key apoptotic inducers such as caspases have been developed. Alternative approaches have focused on mimicking anti-apoptotic processes observed in cells displaying increased resistance to apoptotic stimuli. Hormesis and pre-conditioning are commonly observed cellular strategies where sub-lethal levels of pro-apoptotic stimuli lead to increased resistance to higher or lethal levels of stress. Increased expression of anti-apoptotic sequences is a common mechanism mediating these protective effects. The relevance of the latter observation is exemplified by the observation that transgenic mice overexpressing anti-apoptotic genes show significant reductions in tissue damage following ischemia. Thus strategies aimed at increasing the levels of anti-apoptotic proteins, using gene therapy or cell penetrating recombinant proteins are being evaluated as novel therapeutics to decrease cell death following acute periods of cell death inducing stress. In spite of its functional and therapeutic importance, more is known regarding the processes involved in apoptosis than anti-apoptosis. The genetically tractable yeast Saccharomyces cerevisiae has emerged as an exceptional model to study multiple aspects of PCD including the mitochondrial mediated apoptosis observed in metazoans. To increase our knowledge of the process of anti

  9. Reactive Oxygen Species, Mitochondria, and Endothelial Cell Death during In Vitro Simulated Dives.

    PubMed

    Wang, Qiong; Guerrero, François; Mazur, Aleksandra; Lambrechts, Kate; Buzzacott, Peter; Belhomme, Marac; Theron, Michaël

    2015-07-01

    Excessive reactive oxygen species (ROS) is considered a consequence of hyperoxia and a major contributor to diving-derived vascular endothelial damage and decompression sickness. The aims of this work were: 1) to directly observe endothelial ROS production during simulated air dives as well as its relation with both mitochondrial activity and cell survival; and 2) to determine which ambient factor during air diving (hydrostatic pressure or oxygen and/or nitrogen partial pressure) is responsible for the observed modifications. In vitro diving simulation was performed with bovine arterial endothelial cells under real-time observation. The effects of air diving, hydrostatic, oxygen and nitrogen pressures, and N-acetylcysteine (NAC) treatment on mitochondrial ROS generation, mitochondrial membrane potential and cellular survival during simulation were investigated. Vascular endothelial cells performing air diving simulation suffered excessive mitochondrial ROS, mitochondrial depolarization, and cell death. These effects were prevented by NAC: after NAC treatment, the cells presented no difference in damage from nondiving cells. Oxygen diving showed a higher effect on ROS generation but lower impacts on mitochondrial depolarization and cell death than hydrostatic or nitrogen diving. Nitrogen diving had no effect on the inductions of ROS, mito-depolarization, or cell death. This study is the first direct observation of mitochondrial ROS production, mitochondrial membrane potential and cell survival during diving. Simulated air SCUBA diving induces excessive ROS production, which leads to mitochondrial depolarization and endothelial cell death. Oxygen partial pressure plays a crucial role in the production of ROS. Deleterious effects of hyperoxia-induced ROS are potentiated by hydrostatic pressure. These findings hold new implications for the pathogenesis of diving-derived endothelial dysfunction.

  10. Tributyltin induces Yca1p-dependent cell death of yeast Saccharomyces cerevisiae.

    PubMed

    Chahomchuen, Thippayarat; Akiyama, Koichi; Sekito, Takayuki; Sugimoto, Naoko; Okabe, Masaaki; Nishimoto, Sogo; Sugahara, Takuya; Kakinuma, Yoshimi

    2009-10-01

    Tributyltin chloride (TBT), an environmental pollutant, is toxic to a variety of eukaryotic and prokaryotic organisms. Although it has been reported that TBT induces apoptotic cell death in mammalian, the action of TBT on eukaryotic microorganisms has not yet been fully investigated. In this study we examined the mechanism involved in cell death caused by TBT exposure in Saccharomyces cerevisiae. The median lethal concentration of TBT was 10 microM for the parent strain BY4741 and 3 microM for the pdr5Delta mutant defective in a major multidrug transporter, respectively. Fluorescence microscopic observations revealed nuclear condensation and chromatin fragmentation in cells treated with TBT indicating that cells underwent an apoptosis-like cell dearth. TBT-induced cell death was suppressed by deletion of the yca1 gene encoding a homologue of the mammalian caspase. In parallel, reactive oxygen species (ROS) were produced by TBT. These results suggest that TBT induces apoptosis-like cell death in yeast via an Yca1p-dependent pathway possibly downstream of the ROS production. This is the first report on TBT-induced apoptotic cell death in yeast.

  11. Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonist, independently of PPAR{gamma} in human glioma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung Woo; Kim, Dae Seong; Kim, Hye Ryung

    Highlights: Black-Right-Pointing-Pointer Greater than 30 {mu}M ciglitazone induces cell death in glioma cells. Black-Right-Pointing-Pointer Cell death by ciglitazone is independent of PPAR{gamma} in glioma cells. Black-Right-Pointing-Pointer CGZ induces cell death by the loss of MMP via decreased Akt. -- Abstract: Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPAR{gamma} in CGZ-induced cell death was examined. At concentrations of greater than 30 {mu}M, CGZ, a synthetic PPAR{gamma} agonist, activated caspase-3 and induced apoptosis inmore » T98G cells. Treatment of T98G cells with less than 30 {mu}M CGZ effectively induced cell death after pretreatment with 30 {mu}M of the PPAR{gamma} antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPAR{gamma} was down-regulated cells by siRNA, lower concentrations of CGZ (<30 {mu}M) were sufficient to induce cell death, although higher concentrations of CGZ ( Greater-Than-Or-Slanted-Equal-To 30 {mu}M) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPAR{gamma}. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPAR{gamma} in glioma cells, by down-regulating Akt activity and inducing MMP collapse.« less

  12. Is necroptosis a death pathway in aluminum-induced neuroblastoma cell demise?

    PubMed

    Zhang, Q L; Niu, Q; Ji, X L; Conti, P; Boscolo, P

    2008-01-01

    Besides being an aggravating factor secondary to major physiological alterations in degenerative diseases, aluminum has also been considered as a risk factor in the etiology. Although many in vivo and in vitro data are in favor of apoptosis and necrosis being involved in Al induced neurodegenerative processes, there is considerable evidence that very complex events may contribute to neural cell death. Necroptosis, a novel cell death pathway, was recently reported to contribute to ischemia brain injury. It is different from, but associated with, apoptosis and necrosis, the two common major pathways of cell demise. In the present study, SH-SY5Y cells were put under stress by Al, a potential degenerative cell death inducer. Nec-1, a specific inhibitor, was used to identify necroptosis. The characteristics observed in Nec-1 and Al treated SH-SY5Y cells showed that necrotic morphological changes were reduced, and a sharp decrease of necrotic rate was detected. Besides, there were Al-induced mitochondria membrane potential decreasing, reactive oxygen species remaining, and autophagosomes declining. The mechanism of Nec-1s effect on cell death may be related to caspases pathways. To our best knowledge, this is the pioneer report on necroptosis in mixed human neural cell death pathways, which might offer a novel therapeutic target for neurodegenerative diseases, and an extended window for neuroprotection.

  13. Live-cell visualization of gasdermin D-driven pyroptotic cell death.

    PubMed

    Rathkey, Joseph K; Benson, Bryan L; Chirieleison, Steven M; Yang, Jie; Xiao, Tsan S; Dubyak, George R; Huang, Alex Y; Abbott, Derek W

    2017-09-01

    Pyroptosis is a form of cell death important in defenses against pathogens that can also result in a potent and sometimes pathological inflammatory response. During pyroptosis, GSDMD (gasdermin D), the pore-forming effector protein, is cleaved, forms oligomers, and inserts into the membranes of the cell, resulting in rapid cell death. However, the potent cell death induction caused by GSDMD has complicated our ability to understand the biology of this protein. Studies aimed at visualizing GSDMD have relied on expression of GSDMD fragments in epithelial cell lines that naturally lack GSDMD expression and also lack the proteases necessary to cleave GSDMD. In this work, we performed mutagenesis and molecular modeling to strategically place tags and fluorescent proteins within GSDMD that support native pyroptosis and facilitate live-cell imaging of pyroptotic cell death. Here, we demonstrate that these fusion proteins are cleaved by caspases-1 and -11 at Asp-276. Mutations that disrupted the predicted p30-p20 autoinhibitory interface resulted in GSDMD aggregation, supporting the oligomerizing activity of these mutations. Furthermore, we show that these novel GSDMD fusions execute inflammasome-dependent pyroptotic cell death in response to multiple stimuli and allow for visualization of the morphological changes associated with pyroptotic cell death in real time. This work therefore provides new tools that not only expand the molecular understanding of pyroptosis but also enable its direct visualization. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Cell cycle arrest and biochemical changes accompanying cell death in harmful dinoflagellates following exposure to bacterial algicide IRI-160AA

    NASA Astrophysics Data System (ADS)

    Pokrzywinski, Kaytee L.; Tilney, Charles L.; Warner, Mark E.; Coyne, Kathryn J.

    2017-03-01

    Bacteria may play a role in regulating harmful algal blooms, but little is known about the biochemical and physiological changes associated with cell death induced by algicidal bacteria. Previous work characterized an algicidal exudate (IRI-160AA) produced by Shewanella sp. IRI-160 that is effective against dinoflagellates, while having little to no effect on other phytoplankton species in laboratory culture experiments. The objective of this study was to evaluate biochemical changes associated with cell death and impacts on the cell cycle in three dinoflagellate species (Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum) after exposure to IRI-160AA. In this study, IRI-160AA induced cell cycle arrest in all dinoflagellates examined. Several indicators for programmed cell death (PCD) that are often observed in phytoplankton in response to a variety of stressors were also evaluated. Cell death was accompanied by significant increases in DNA degradation, intra- and extracellular ROS concentrations and DEVDase (caspase-3 like) protease activity, which have been associated with PCD in other phytoplankton species. Overall, results of this investigation provide strong evidence that treatment with the bacterial algicide, IRI-160AA results in cell cycle arrest and induces biochemical changes consistent with stress-related cell death responses observed in other phytoplankton.

  15. Cell cycle arrest and biochemical changes accompanying cell death in harmful dinoflagellates following exposure to bacterial algicide IRI-160AA

    PubMed Central

    Pokrzywinski, Kaytee L.; Tilney, Charles L.; Warner, Mark E.; Coyne, Kathryn J.

    2017-01-01

    Bacteria may play a role in regulating harmful algal blooms, but little is known about the biochemical and physiological changes associated with cell death induced by algicidal bacteria. Previous work characterized an algicidal exudate (IRI-160AA) produced by Shewanella sp. IRI-160 that is effective against dinoflagellates, while having little to no effect on other phytoplankton species in laboratory culture experiments. The objective of this study was to evaluate biochemical changes associated with cell death and impacts on the cell cycle in three dinoflagellate species (Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum) after exposure to IRI-160AA. In this study, IRI-160AA induced cell cycle arrest in all dinoflagellates examined. Several indicators for programmed cell death (PCD) that are often observed in phytoplankton in response to a variety of stressors were also evaluated. Cell death was accompanied by significant increases in DNA degradation, intra- and extracellular ROS concentrations and DEVDase (caspase-3 like) protease activity, which have been associated with PCD in other phytoplankton species. Overall, results of this investigation provide strong evidence that treatment with the bacterial algicide, IRI-160AA results in cell cycle arrest and induces biochemical changes consistent with stress-related cell death responses observed in other phytoplankton. PMID:28332589

  16. Curcumin induces autophagic cell death in Spodoptera frugiperda cells.

    PubMed

    Veeran, Sethuraman; Shu, Benshui; Cui, Gaofeng; Fu, Shengjiao; Zhong, Guohua

    2017-06-01

    The increasing interest in the role of autophagy (type II cell death) in the regulation of insect toxicology has propelled study of investigating autophagic cell death pathways. Turmeric, the rhizome of the herb Curcuma longa (Mañjaḷ in Tamil, India and Jiānghuáng in Chinese) have been traditionally used for the pest control either alone or combination with other botanical pesticides. However, the mechanisms by which Curcuma longa or curcumin exerts cytotoxicity in pests are not well understood. In this study, we investigated the potency of Curcuma longa (curcumin) as a natural pesticide employing Sf9 insect line. Autophagy induction effect of curcumin on Spodoptera frugiperda (Sf9) cells was investigated using various techniques including cell proliferation assay, morphology analysis with inverted phase contrast microscope and Transmission Electron Microscope (TEM) analysis. Autophagy was evaluated using the fluorescent dye monodansylcadaverine (MDC). Cell death measurement was examined using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) within the concentrations of 5-15μg/mL. Curcumin inhibited the growth of the Sf9 cells and induced autophagic cell death in a time and dose dependent manner. Staining the cells with MDC showed the presence of autophagic vacuoles while increased in a dose and time dependent manner. At the ultrastructural level transmission electron microscopy, cells revealed massive autophagy vacuole accumulation and absence of chromatin condensation. Protein expression levels of ATG8-I and ATG8-II, well-established markers of autophagy related protein were elevated in a time dependent manner after curcumin treatment. The present study proves that curcumin induces autophagic cell death in Sf9 insect cell line and this is the first report of cytotoxic effect of curcumin in insect cells and that will be utilized as natural pesticides in future. Copyright © 2017. Published by Elsevier Inc.

  17. Methods for assessing autophagy and autophagic cell death.

    PubMed

    Tasdemir, Ezgi; Galluzzi, Lorenzo; Maiuri, M Chiara; Criollo, Alfredo; Vitale, Ilio; Hangen, Emilie; Modjtahedi, Nazanine; Kroemer, Guido

    2008-01-01

    Autophagic (or type 2) cell death is characterized by the massive accumulation of autophagic vacuoles (autophagosomes) in the cytoplasm of cells that lack signs of apoptosis (type 1 cell death). Here we detail and critically assess a series of methods to promote and inhibit autophagy via pharmacological and genetic manipulations. We also review the techniques currently available to detect autophagy, including transmission electron microscopy, half-life assessments of long-lived proteins, detection of LC3 maturation/aggregation, fluorescence microscopy, and colocalization of mitochondrion- or endoplasmic reticulum-specific markers with lysosomal proteins. Massive autophagic vacuolization may cause cellular stress and represent a frustrated attempt of adaptation. In this case, cell death occurs with (or in spite of) autophagy. When cell death occurs through autophagy, on the contrary, the inhibition of the autophagic process should prevent cellular demise. Accordingly, we describe a strategy for discriminating cell death with autophagy from cell death through autophagy.

  18. Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis.

    PubMed

    Loor, Gabriel; Kondapalli, Jyothisri; Schriewer, Jacqueline M; Chandel, Navdeep S; Vanden Hoek, Terry L; Schumacker, Paul T

    2010-12-15

    Low levels of reactive oxygen species (ROS) can function as redox-active signaling messengers, whereas high levels of ROS induce cellular damage. Menadione generates ROS through redox cycling, and high concentrations trigger cell death. Previous work suggests that menadione triggers cytochrome c release from mitochondria, whereas other studies implicate the activation of the mitochondrial permeability transition pore as the mediator of cell death. We investigated menadione-induced cell death in genetically modified cells lacking specific death-associated proteins. In cardiomyocytes, oxidant stress was assessed using the redox sensor RoGFP, expressed in the cytosol or the mitochondrial matrix. Menadione elicited rapid oxidation in both compartments, whereas it decreased mitochondrial potential and triggered cytochrome c redistribution to the cytosol. Cell death was attenuated by N-acetylcysteine and exogenous glutathione or by overexpression of cytosolic or mitochondria-targeted catalase. By contrast, no protection was observed in cells overexpressing Cu,Zn-SOD or Mn-SOD. Overexpression of antiapoptotic Bcl-X(L) protected against staurosporine-induced cell death, but it failed to confer protection against menadione. Genetic deletion of Bax and Bak, cytochrome c, cyclophilin D, or caspase-9 conferred no protection against menadione-induced cell death. However, cells lacking PARP-1 showed a significant decrease in menadione-induced cell death. Thus, menadione induces cell death through the generation of oxidant stress in multiple subcellular compartments, yet cytochrome c, Bax/Bak, caspase-9, and cyclophilin D are dispensable for cell death in this model. These studies suggest that multiple redundant cell death pathways are activated by menadione, but that PARP plays an essential role in mediating each of them. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis

    PubMed Central

    Loor, Gabriel; Kondapalli, Jyothisri; Schriewer, Jacqueline M.; Chandel, Navdeep S.; Vanden Hoek, Terry L.; Schumacker, Paul T.

    2010-01-01

    Low levels of reactive oxygen species (ROS) can function as redox-active signaling messengers, whereas high levels of ROS induce cellular damage. Menadione generates ROS through redox cycling, and high concentrations trigger cell death. Previous work suggests that menadione triggers cytochrome c release from mitochondria, while other studies implicate activation of the mitochondrial permeability transition poreas the mediator of cell death. We investigated menadione-induced cell death in genetically modified cells lacking specific death-associated proteins. In cardiomyocytes, oxidant stress was assessed using the redox sensor RoGFP, expressed in the cytosol or the mitochondrial matrix. Menadione elicited rapid oxidation in both compartments, while it decreased mitochondrial potential and triggered cytochrome c redistribution to the cytosol. Cell death was attenuated by N-acetyl cysteine and exogenous glutathione (GSH), or by over-expression of cytosolic or mitochondria-targeted catalase. By contrast, no protection was observed in cells over-expressing Cu, Zn-SOD or MnSOD. Over-expression of antiapoptotic Bcl-XLprotected against staurosporine-induced cell death, but it failed to confer protection against menadione. Genetic deletion of Bax and Bak, cytochrome c, cyclophilin D or caspase-9 conferred no protection against menadione-induced cell death. However, cells lacking PARP-1 showed a significant decrease in menadione-induced cell death. Thus, menadione induces cell death through the generation of oxidant stress in multiple subcellular compartments, yet cytochromec, Bax/Bak, caspase-9 and cyclophilin D are dispensable for cell death in this model. These studies suggest that multiple redundant cell death pathways are activated by menadione, but that PARP plays an essential role in mediating each of them. PMID:20937380

  20. Ferroptosis and Cell Death Analysis by Flow Cytometry.

    PubMed

    Chen, Daishi; Eyupoglu, Ilker Y; Savaskan, Nicolai

    2017-01-01

    Cell death and its recently discovered regulated form ferroptosis are characterized by distinct morphological, electrophysiological, and pharmacological features. In particular ferroptosis can be induced by experimental compounds and clinical drugs (i.e., erastin, sulfasalazine, sorafenib, and artesunate) in various cell types and cancer cells. Pharmacologically, this cell death process can be inhibited by iron chelators and lipid peroxidation inhibitors. Relevance of this specific cell death form has been found in different pathological conditions such as cancer, neurotoxicity, neurodegeneration, and ischemia. Distinguishing cell viability and cell death is essential for experimental and clinical applications and a key component in flow cytometry experiments. Dead cells can compromise the integrity of the data by nonspecific binding of antibodies and dyes. Therefore it is essential that dead cells are robustly and reproducibly identified and characterized by means of cytometry application. Here we describe a procedure to detect and quantify cell death and its specific form ferroptosis based on standard flow cytometry techniques.

  1. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells.

    PubMed

    Marcos-Campos, I; Asín, L; Torres, T E; Marquina, C; Tres, A; Ibarra, M R; Goya, G F

    2011-05-20

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH(2)(+)) or negative (COOH(-)) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  2. Understanding cell cycle and cell death regulation provides novel weapons against human diseases.

    PubMed

    Wiman, K G; Zhivotovsky, B

    2017-05-01

    Cell division, cell differentiation and cell death are the three principal physiological processes that regulate tissue homoeostasis in multicellular organisms. The growth and survival of cells as well as the integrity of the genome are regulated by a complex network of pathways, in which cell cycle checkpoints, DNA repair and programmed cell death have critical roles. Disruption of genomic integrity and impaired regulation of cell death may both lead to uncontrolled cell growth. Compromised cell death can also favour genomic instability. It is becoming increasingly clear that dysregulation of cell cycle and cell death processes plays an important role in the development of major disorders such as cancer, cardiovascular disease, infection, inflammation and neurodegenerative diseases. Research achievements in these fields have led to the development of novel approaches for treatment of various conditions associated with abnormalities in the regulation of cell cycle progression or cell death. A better understanding of how cellular life-and-death processes are regulated is essential for this development. To highlight these important advances, the Third Nobel Conference entitled 'The Cell Cycle and Cell Death in Disease' was organized at Karolinska Institutet in 2016. In this review we will summarize current understanding of cell cycle progression and cell death and discuss some of the recent advances in therapeutic applications in pathological conditions such as cancer, neurological disorders and inflammation. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  3. Fasting boosts sensitivity of human skin melanoma to cisplatin-induced cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antunes, Fernanda; Corazzari, Marco; National Institute for Infectious Diseases IRCCS “Lazzaro Spallanzani”

    Melanoma is one of leading cause of tumor death worldwide. Anti-cancer strategy includes combination of different chemo-therapeutic agents as well as radiation; however these treatments have limited efficacy and induce significant toxic effects on healthy cells. One of most promising novel therapeutic approach to cancer therapy is the combination of anti-cancer drugs with calorie restriction. Here we investigated the effect Cisplatin (CDDP), one of the most potent chemotherapeutic agent used to treat tumors, in association with fasting in wild type and mutated BRAF{sup V600E} melanoma cell lines. Here we show that nutrient deprivation can consistently enhance the sensitivity of tumormore » cells to cell death induction by CDDP, also of those malignancies particularly resistant to any treatment, such as oncogenic BRAF melanomas. Mechanistic studies revealed that the combined therapy induced cell death is characterized by ROS accumulation and ATF4 in the absence of ER-stress. In addition, we show that autophagy is not involved in the enhanced sensitivity of melanoma cells to combined CDDP/EBSS-induced apoptosis. While, the exposure to 2-DG further enhanced the apoptotic rate observed in SK Mel 28 cells upon treatment with both CDDP and EBSS. - Highlights: • Calorie restriction associated to chemo-therapeutic drugs enhance cell death induction in many resistant malignancies • Cisplatin in association with starvation significantly increases cell death also in those high resistant melanoma cells bearing BRAF mutations • Combined treatment also including 2-DG results in similar cell death levels in both wild type and mutated BRAF cells.« less

  4. Apoptosis in fish: environmental factors and programmed cell death.

    PubMed

    AnvariFar, Hossein; Amirkolaie, Abdolsamad Keramat; Miandare, Hamed Kolangi; Ouraji, Hossein; Jalali, M Ali; Üçüncü, Sema İşisağ

    2017-06-01

    Apoptosis, a form of programmed cell death, is a critical component in maintaining homeostasis and growth in all tissues and plays a significant role in immunity and cytotoxicity. In contrast to necrosis or traumatic cell death, apoptosis is a well-controlled and vital process characterized mainly by cytoplasmic shrinkage, chromatin condensation, DNA fragmentation, membrane blebbing and apoptotic bodies. Our understanding of apoptosis is partly based on observations in invertebrates but mainly in mammals. Despite the great advantages of fish models in studying vertebrate development and diseases and the tremendous interest observed in recent years, reports on apoptosis in fish are still limited. Although apoptotic machinery is well conserved between aquatic and terrestrial organisms throughout the history of evolution, some differences exist in key components of apoptotic pathways. Core parts of apoptotic machinery in fish are virtually expressed as equivalent to the mammalian models. Some differences are, however, evident, such as the extrinsic and intrinsic pathways of apoptosis including lack of a C-terminal region in the Fas-associated protein with a death domain in fish. Aquatic species inhabit a complex and highly fluctuating environment, making these species good examples to reveal features of apoptosis that may not be easily investigated in mammals. Therefore, in order to gain a wider view on programmed cell death in fish, interactions between the main environmental factors, chemicals and apoptosis are discussed in this review. It is indicated that apoptosis can be induced in fish by exposure to environmental stressors during different stages of the fish life cycle.

  5. Die another way – non-apoptotic mechanisms of cell death

    PubMed Central

    Tait, Stephen W. G.; Ichim, Gabriel; Green, Douglas R.

    2014-01-01

    ABSTRACT Regulated, programmed cell death is crucial for all multicellular organisms. Cell death is essential in many processes, including tissue sculpting during embryogenesis, development of the immune system and destruction of damaged cells. The best-studied form of programmed cell death is apoptosis, a process that requires activation of caspase proteases. Recently it has been appreciated that various non-apoptotic forms of cell death also exist, such as necroptosis and pyroptosis. These non-apoptotic cell death modalities can be either triggered independently of apoptosis or are engaged should apoptosis fail to execute. In this Commentary, we discuss several regulated non-apoptotic forms of cell death including necroptosis, autophagic cell death, pyroptosis and caspase-independent cell death. We outline what we know about their mechanism, potential roles in vivo and define outstanding questions. Finally, we review data arguing that the means by which a cell dies actually matters, focusing our discussion on inflammatory aspects of cell death. PMID:24833670

  6. Patterns of cell death in the perinatal mouse forebrain.

    PubMed

    Mosley, Morgan; Shah, Charisma; Morse, Kiriana A; Miloro, Stephen A; Holmes, Melissa M; Ahern, Todd H; Forger, Nancy G

    2017-01-01

    The importance of cell death in brain development has long been appreciated, but many basic questions remain, such as what initiates or terminates the cell death period. One obstacle has been the lack of quantitative data defining exactly when cell death occurs. We recently created a "cell death atlas," using the detection of activated caspase-3 (AC3) to quantify apoptosis in the postnatal mouse ventral forebrain and hypothalamus, and found that the highest rates of cell death were seen at the earliest postnatal ages in most regions. Here we have extended these analyses to prenatal ages and additional brain regions. We quantified cell death in 16 forebrain regions across nine perinatal ages from embryonic day (E) 17 to postnatal day (P) 11 and found that cell death peaks just after birth in most regions. We found greater cell death in several regions in offspring delivered vaginally on the day of parturition compared with those of the same postconception age but still in utero at the time of collection. We also found massive cell death in the oriens layer of the hippocampus on P1 and in regions surrounding the anterior crossing of the corpus callosum on E18 as well as the persistence of large numbers of cells in those regions in adult mice lacking the pro-death Bax gene. Together these findings suggest that birth may be an important trigger of neuronal cell death and identify transient cell groups that may undergo wholesale elimination perinatally. J. Comp. Neurol. 525:47-64, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Antioxidant gene therapy against neuronal cell death

    PubMed Central

    Navarro-Yepes, Juliana; Zavala-Flores, Laura; Annadurai, Anandhan; Wang, Fang; Skotak, Maciej; Chandra, Namas; Li, Ming; Pappa, Aglaia; Martinez-Fong, Daniel; Razo, Luz Maria Del; Quintanilla-Vega, Betzabet; Franco, Rodrigo

    2014-01-01

    Oxidative stress is a common hallmark of neuronal cell death associated with neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, as well as brain stroke/ischemia and traumatic brain injury. Increased accumulation of reactive species of both oxygen (ROS) and nitrogen (RNS) has been implicated in mitochondrial dysfunction, energy impairment, alterations in metal homeostasis and accumulation of aggregated proteins observed in neurodegenerative disorders, which lead to the activation/modulation of cell death mechanisms that include apoptotic, necrotic and autophagic pathways. Thus, the design of novel antioxidant strategies to selectively target oxidative stress and redox imbalance might represent important therapeutic approaches against neurological disorders. This work reviews the evidence demonstrating the ability of genetically encoded antioxidant systems to selectively counteract neuronal cell loss in neurodegenerative diseases and ischemic brain damage. Because gene therapy approaches to treat inherited and acquired disorders offer many unique advantages over conventional therapeutic approaches, we discussed basic research/clinical evidence and the potential of virus-mediated gene delivery techniques for antioxidant gene therapy. PMID:24333264

  8. Cell death induced by hydroxyapatite on L929 fibroblast cells.

    PubMed

    Inayat-Hussain, S H; Rajab, N F; Roslie, H; Hussin, A A; Ali, A M; Annuar, B O

    2004-05-01

    Biomaterials intended for end-use application as bone-graft substitutes have to undergo safety evaluation. In this study, we investigated the in vitro cytotoxic effects especially to determine the mode of death of two hydroxyapatite compounds (HA2, HA3) which were synthesized locally. The methods used for cytotoxicity was the standard MTT assay whereas AO/PI staining was performed to determine the mode of cell death in HA treated L929 fibroblasts. Our results demonstrated that both HA2 and HA3 were not significantly cytotoxic as more than 75% cells after 72 hours treatment were viable. Furthermore, we found that the major mode of cell death in HA treated cells was apoptosis. In conclusion, our results demonstrated that these hydroxyapatite compounds are not cytotoxic where the mode of death was primarily via apoptosis.

  9. Histological and Finite Element Analysis of Cell Death due to Irreversible Electroporation

    PubMed Central

    Long, G.; Bakos, G.; Shires, P. K.; Gritter, L.; Crissman, J. W.; Harris, J. L.; Clymer, J. W.

    2014-01-01

    Irreversible electroporation (IRE) has been shown to be an effective method of killing cells locally. In contrast to radiofrequency ablation, the mechanism by which cells are thought to die via IRE is the creation of pores in cell membranes, without substantial increase in tissue temperature. To determine the degree to which cell death is non-thermal, we evaluated IRE in porcine hepatocytes in vivo. Using pulse widths of 10μs, bursts of 3 kV square-wave pulses were applied through a custom probe to the liver of an anesthetized pig. Affected tissue was evaluated histologically via stainings of hematoxylin & eosin (H&E), nitroblue tetrazolium (NBT) to monitor cell respiration and TUNEL to gauge apoptosis. Temperature was measured during the application of electroporation, and heat transfer was modeled via finite element analysis. Cell death was calculated via Arrhenius kinetics. Four distinct zones were observed within the ring return electrode; heat-fixed tissue, coagulation, necrotic, and viable. The Arrhenius damage integral estimated complete cell death only in the first zone, where the temperature exceeded 70°C, and partial or no cell death in the other zones, where maximum temperature was approximately 45°C. Except for a limited area near the electrode tip, cell death in IRE is predominantly due to a non-thermal mechanism. PMID:24000980

  10. Cell death at the intestinal epithelial front line.

    PubMed

    Delgado, Maria Eugenia; Grabinger, Thomas; Brunner, Thomas

    2016-07-01

    The intestinal epithelium represents the largest epithelial surface in our body. This single-cell-layer epithelium mediates important functions in the absorption of nutrients and in the maintenance of barrier function, preventing luminal microorganisms from invading the body. Due to its constant regeneration the intestinal epithelium is a tissue not only with very high proliferation rates but also with very prominent physiological and pathophysiological cell death induction. The normal physiological differentiation and maturation of intestinal epithelial cells leads to their shedding and apoptotic cell death within a few days, without disturbing the epithelial barrier integrity. In contrast excessive intestinal epithelial cell death induced by irradiation, drugs and inflammation severely impairs the vital functions of this tissue. In this review we discuss cell death processes in the intestinal epithelium in health and disease, with special emphasis on cell death triggered by the tumour necrosis factor receptor family. © 2015 FEBS.

  11. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells

    PubMed Central

    2013-01-01

    Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation. PMID:23701745

  12. Cinnamic acid induces apoptotic cell death and cytoskeleton disruption in human melanoma cells.

    PubMed

    Niero, Evandro Luís de Oliveira; Machado-Santelli, Gláucia Maria

    2013-05-23

    Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation.

  13. Cell death during Drosophila melanogaster early oogenesis is mediated through autophagy.

    PubMed

    Nezis, Ioannis P; Lamark, Trond; Velentzas, Athanassios D; Rusten, Tor Erik; Bjørkøy, Geir; Johansen, Terje; Papassideri, Issidora S; Stravopodis, Dimitrios J; Margaritis, Lukas H; Stenmark, Harald; Brech, Andreas

    2009-04-01

    Autophagy is a physiological and evolutionarily conserved process maintaining homeostatic functions, such as protein degradation and organelle turnover. Accumulating data provide evidence that autophagy also contributes to cell death under certain circumstances, but how this is achieved is not well known. Herein, we report that autophagy occurs during developmentally-induced cell death in the female germline, observed in the germarium and during middle developmental stages of oogenesis in Drosophila melanogaster. Degenerating germline cells exhibit caspase activation, chromatin condensation, DNA fragmentation and punctate staining of mCherry-DrAtg8a, a novel marker for monitoring autophagy in Drosophila. Genetic inhibition of autophagy, by removing atg1 or atg7 function, results in significant reduction of DNA fragmentation, suggesting that autophagy acts genetically upstream of DNA fragmentation in this tissue. This study provides new insights into the mechanisms that regulate cell death in vivo during development.

  14. Investigating the cell death mechanisms in primary prostate cancer cells using low-temperature plasma treatment

    NASA Astrophysics Data System (ADS)

    O'Connell, Deborah; Hirst, A. M.; Packer, J. R.; Simms, M. S.; Mann, V. M.; Frame, F. M.; Maitland, N. J.

    2016-09-01

    Atmospheric pressure plasmas have shown considerable promise as a potential cancer therapy. An atmospheric pressure plasma driven with kHz kV excitation, operated with helium and oxygen admixtures is used to investigate the interaction with prostate cancer cells. The cytopathic effect was verified first in two commonly used prostate cancer cell lines (BPH-1 and PC-3 cells) and further extended to examine the effects in paired normal and tumour prostate epithelial cells cultured directly from patient tissues. Through the formation of reactive species in cell culture media, and potentially other plasma components, we observed high levels of DNA damage, together with reduced cell viability and colony-forming ability. We observed differences in response between the prostate cell lines and primary cells, particularly in terms of the mechanism of cell death. The primary cells ultimately undergo necrotic cell death in both the normal and tumour samples, in the complete absence of apoptosis. In addition, we provide the first evidence of an autophagic response in primary cells. This work highlights the importance of studying primary cultures in order to gain a more realistic insight into patient efficacy. EPSRC EP/H003797/1 & EP/K018388/1, Yorkshire Cancer Research: YCR Y257PA.

  15. The slow cell death response when screening chemotherapeutic agents.

    PubMed

    Blois, Joseph; Smith, Adam; Josephson, Lee

    2011-09-01

    To examine the correlation between cell death and a common surrogate of death used in screening assays, we compared cell death responses to those obtained with the sulforhodamine B (SRB) cell protein-based "cytotoxicity" assay. With the SRB assay, the Hill equation was used to obtain an IC50 and final cell mass, or cell mass present at infinite agent concentrations, with eight adherent cell lines and four agents (32 agent/cell combinations). Cells were treated with high agent concentrations (well above the SRB IC50) and the death response determined as the time-dependent decrease in cells failing to bind both annexin V and vital fluorochromes by flow cytometry. Death kinetics were categorized as fast (5/32) (similar to the reference nonadherent Jurkat line), slow (17/32), or none (10/32), despite positive responses in the SRB assay in all cases. With slow cell death, a single exposure to a chemotherapeutic agent caused a slow, progressive increase in dead (necrotic) and dying (apoptotic) cells for at least 72 h. Cell death (defined by annexin and/or fluorochrome binding) did not correlate with the standard SRB "cytotoxicity" assay. With the slow cell death response, a single exposure to an agent caused a slow conversion from vital to apoptotic and necrotic cells over at least 72 h (the longest time point examined). Here, increasing the time of exposure to agent concentrations modestly above the SRB IC50 provides a method of maximizing cell kill. If tumors respond similarly, sustained low doses of chemotherapeutic agents, rather than a log-kill, maximum tolerated dose strategy may be an optimal strategy of maximizing tumor cell death.

  16. Immunological consequences of kidney cell death.

    PubMed

    Sarhan, Maysa; von Mässenhausen, Anne; Hugo, Christian; Oberbauer, Rainer; Linkermann, Andreas

    2018-01-25

    Death of renal cells is central to the pathophysiology of acute tubular necrosis, autoimmunity, necrotizing glomerulonephritis, cystic kidney disease, urosepsis, delayed graft function and transplant rejection. By means of regulated necrosis, immunogenic damage-associated molecular patterns (DAMPs) and highly reactive organelles such as lysosomes, peroxisomes and mitochondria are released from the dying cells, thereby causing an overwhelming immunologic response. The rupture of the plasma membrane exhibits the "point of no return" for the immunogenicity of regulated cell death, explaining why apoptosis, a highly organized cell death subroutine with long-lasting plasma membrane integrity, elicits hardly any immune response. Ferroptosis, an iron-dependent necrotic type cell death, results in the release of DAMPs and large amounts of lipid peroxides. In contrast, anti-inflammatory cytokines are actively released from cells that die by necroptosis, limiting the DAMP-induced immune response to a surrounding microenvironment, whereas at the same time, inflammasome-associated caspases drive maturation of intracellularly expressed interleukin-1β (IL-1β). In a distinct setting, additionally interleukin-18 (IL-18) is expressed during pyroptosis, initiated by gasdermin-mediated plasma membrane rupture. As all of these pathways are druggable, we provide an overview of regulated necrosis in kidney diseases with a focus on immunogenicity and potential therapeutic interventions.

  17. Low-frequency quantitative ultrasound imaging of cell death in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeghi-Naini, Ali; Falou, Omar; Czarnota, Gregory J.

    Purpose: Currently, no clinical imaging modality is used routinely to assess tumor response to cancer therapies within hours to days of the delivery of treatment. Here, the authors demonstrate the efficacy of ultrasound at a clinically relevant frequency to quantitatively detect changes in tumors in response to cancer therapies using preclinical mouse models.Methods: Conventional low-frequency and corresponding high-frequency ultrasound (ranging from 4 to 28 MHz) were used along with quantitative spectroscopic and signal envelope statistical analyses on data obtained from xenograft tumors treated with chemotherapy, x-ray radiation, as well as a novel vascular targeting microbubble therapy.Results: Ultrasound-based spectroscopic biomarkers indicatedmore » significant changes in cell-death associated parameters in responsive tumors. Specifically changes in the midband fit, spectral slope, and 0-MHz intercept biomarkers were investigated for different types of treatment and demonstrated cell-death related changes. The midband fit and 0-MHz intercept biomarker derived from low-frequency data demonstrated increases ranging approximately from 0 to 6 dBr and 0 to 8 dBr, respectively, depending on treatments administrated. These data paralleled results observed for high-frequency ultrasound data. Statistical analysis of ultrasound signal envelope was performed as an alternative method to obtain histogram-based biomarkers and provided confirmatory results. Histological analysis of tumor specimens indicated up to 61% cell death present in the tumors depending on treatments administered, consistent with quantitative ultrasound findings indicating cell death. Ultrasound-based spectroscopic biomarkers demonstrated a good correlation with histological morphological findings indicative of cell death (r{sup 2}= 0.71, 0.82; p < 0.001).Conclusions: In summary, the results provide preclinical evidence, for the first time, that quantitative ultrasound used at a clinically relevant

  18. A Novel ImageJ Macro for Automated Cell Death Quantitation in the Retina

    PubMed Central

    Maidana, Daniel E.; Tsoka, Pavlina; Tian, Bo; Dib, Bernard; Matsumoto, Hidetaka; Kataoka, Keiko; Lin, Haijiang; Miller, Joan W.; Vavvas, Demetrios G.

    2015-01-01

    Purpose TUNEL assay is widely used to evaluate cell death. Quantification of TUNEL-positive (TUNEL+) cells in tissue sections is usually performed manually, ideally by two masked observers. This process is time consuming, prone to measurement errors, and not entirely reproducible. In this paper, we describe an automated quantification approach to address these difficulties. Methods We developed an ImageJ macro to quantitate cell death by TUNEL assay in retinal cross-section images. The script was coded using IJ1 programming language. To validate this tool, we selected a dataset of TUNEL assay digital images, calculated layer area and cell count manually (done by two observers), and compared measurements between observers and macro results. Results The automated macro segmented outer nuclear layer (ONL) and inner nuclear layer (INL) successfully. Automated TUNEL+ cell counts were in-between counts of inexperienced and experienced observers. The intraobserver coefficient of variation (COV) ranged from 13.09% to 25.20%. The COV between both observers was 51.11 ± 25.83% for the ONL and 56.07 ± 24.03% for the INL. Comparing observers' results with macro results, COV was 23.37 ± 15.97% for the ONL and 23.44 ± 18.56% for the INL. Conclusions We developed and validated an ImageJ macro that can be used as an accurate and precise quantitative tool for retina researchers to achieve repeatable, unbiased, fast, and accurate cell death quantitation. We believe that this standardized measurement tool could be advantageous to compare results across different research groups, as it is freely available as open source. PMID:26469755

  19. Can deaths in police cells be prevented? Experience from Norway and death rates in other countries.

    PubMed

    Aasebø, Willy; Orskaug, Gunnar; Erikssen, Jan

    2016-01-01

    To describe the changes in death rates and causes of deaths in Norwegian police cells during the last 2 decades. To review reports on death rates in police cells that have been published in medical journals and elsewhere, and discuss the difficulties of comparing death rates between countries. Data on deaths in Norwegian police cells were collected retrospectively in 2002 and 2012 for two time periods: 1993-2001 (period 1) and 2003-2012 (period 2). Several databases were searched to find reports on deaths in police cells from as many countries as possible. The death rates in Norwegian police cells reduced significantly from 0.83 deaths per year per million inhabitants (DYM) in period 1 to 0.22 DYM in period 2 (p < 0.05). The most common cause of death in period 1 was alcohol intoxication including intracranial bleeding in persons with high blood alcohol levels, and the number declined from 16 persons in period 1 to 1 person in period 2 (p = 0.032). The median death rate in the surveyed Western countries was 0.44 DYM (range: 0.14-1.46 DYM). The number of deaths in Norwegian police cells reduced by about 75% over a period of approximately 10 years. This is probably mainly due to individuals with severe alcohol intoxication no longer being placed in police cells. However, there remain large methodology difficulties in comparing deaths rates between countries. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  20. Inhibition of caspases prevents ototoxic and ongoing hair cell death

    NASA Technical Reports Server (NTRS)

    Matsui, Jonathan I.; Ogilvie, Judith M.; Warchol, Mark E.

    2002-01-01

    Sensory hair cells die after acoustic trauma or ototoxic insults, but the signal transduction pathways that mediate hair cell death are not known. Here we identify several important signaling events that regulate the death of vestibular hair cells. Chick utricles were cultured in media supplemented with the ototoxic antibiotic neomycin and selected pharmacological agents that influence signaling molecules in cell death pathways. Hair cells that were treated with neomycin exhibited classically defined apoptotic morphologies such as condensed nuclei and fragmented DNA. Inhibition of protein synthesis (via treatment with cycloheximide) increased hair cell survival after treatment with neomycin, suggesting that hair cell death requires de novo protein synthesis. Finally, the inhibition of caspases promoted hair cell survival after neomycin treatment. Sensory hair cells in avian vestibular organs also undergo continual cell death and replacement throughout mature life. It is unclear whether the loss of hair cells stimulates the proliferation of supporting cells or whether the production of new cells triggers the death of hair cells. We examined the effects of caspase inhibition on spontaneous hair cell death in the chick utricle. Caspase inhibitors reduced the amount of ongoing hair cell death and ongoing supporting cell proliferation in a dose-dependent manner. In isolated sensory epithelia, however, caspase inhibitors did not affect supporting cell proliferation directly. Our data indicate that ongoing hair cell death stimulates supporting cell proliferation in the mature utricle.

  1. Cell death pathways associated with PDT

    NASA Astrophysics Data System (ADS)

    Kessel, David; Reiners, John J., Jr.

    2006-02-01

    Photodynamic therapy leads to both direct and indirect tumor cell death. The latter also involves the consequences of vascular shut-down and immunologic effects. While these factors are a major factor in tumor eradication, there is usually an element of direct cell killing that can reduce the cell population by as much as 2-3 logs. Necrosis was initially believed to represent the predominant PDT death mechanism. An apoptotic response to PDT was first reported by Oleinick in 1991, using a sensitizer that targets the anti-apoptotic protein Bcl-2. Apoptosis leads to fragmentation of DNA and of cells into apoptotic bodies that are removed by phagocytosis. Inflammatory effects are minimized, and the auto- catalytic elements of the process can amplify the death signal. In this study, we examined consequences of Bcl-2 photodamage by a porphycene sensitizer that targets the ER and causes photodamage to the anti-apoptotic protein Bcl-2. Death patterns after Bcl-2 inactivation by a small-molecular antagonist were also assessed. In addition to apoptosis, we also characterized a hitherto undescribed PDT effect, the initiation of autophagy. Autophagy was initially identified as a cell survival pathway, allowing the recycling of components as nutrients become scarce. We propose that autophagy can also represent both a potential survival pathway after PDT damage to cellular organelles, as well as a cell-death pathway. Recent literature reports indicate that autophagy, as well as apoptosis, can be evoked after down-regulation of Bcl-2, a result consistent with results reported here.

  2. Delineating the cell death mechanisms associated with skin electroporation.

    PubMed

    Schultheis, Katherine; Smith, Trevor R F; Kiosses, William B; Kraynyak, Kimberly A; Wong, Amelia; Oh, Janet; Broderick, Kate Elizabeth

    2018-06-28

    The immune responses elicited following delivery of DNA vaccines to the skin has previously been shown to be significantly enhanced by the addition of electroporation (EP) to the treatment protocol. Principally, EP increases the transfection of pDNA into the resident skin cells. In addition to increasing the levels of in vivo transfection, the physical insult induced by EP is associated with activation of innate pathways which are believed to mediate an adjuvant effect, further enhancing DNA vaccine responses. Here, we have investigated the possible mechanisms associated with this adjuvant effect, primarily focusing on the cell death pathways associated with the skin EP procedure independent of pDNA delivery. Using the minimally invasive CELLECTRA®-3P intradermal electroporation device that penetrates the epidermal and dermal layers of the skin, we have investigated apoptotic and necrotic cell death in relation to the vicinity of the electrode needles and electric field generated. Employing the well-established TUNEL assay, we detected apoptosis beginning as early as one hour after EP and peaking at the 4 hour time point. The majority of the apoptotic events were detected in the epidermal region directly adjacent to the electrode needle. Using a novel propidium iodide in vivo necrotic cell death assay, we detected necrotic events concentrated in the epidermal region adjacent to the electrode. Furthermore, we detected up-regulation of calreticulin expression on skin cells after EP, thus labeling these cells for uptake by dendritic cells and macrophages. These results allow us to delineate the cell death mechanisms occurring in the skin following intradermal EP independently of pDNA delivery. We believe these events contribute to the adjuvant effect observed following electroporation at the skin treatment site.

  3. Singlet Oxygen-Induced Membrane Disruption and Serpin-Protease Balance in Vacuolar-Driven Cell Death.

    PubMed

    Koh, Eugene; Carmieli, Raanan; Mor, Avishai; Fluhr, Robert

    2016-07-01

    Singlet oxygen plays a role in cellular stress either by providing direct toxicity or through signaling to initiate death programs. It was therefore of interest to examine cell death, as occurs in Arabidopsis, due to differentially localized singlet oxygen photosensitizers. The photosensitizers rose bengal (RB) and acridine orange (AO) were localized to the plasmalemma and vacuole, respectively. Their photoactivation led to cell death as measured by ion leakage. Cell death could be inhibited by the singlet oxygen scavenger histidine in treatments with AO but not with RB In the case of AO treatment, the vacuolar membrane was observed to disintegrate. Concomitantly, a complex was formed between a vacuolar cell-death protease, RESPONSIVE TO DESSICATION-21 and its cognate cytoplasmic protease inhibitor ATSERPIN1. In the case of RB treatment, the tonoplast remained intact and no complex was formed. Over-expression of AtSerpin1 repressed cell death, only under AO photodynamic treatment. Interestingly, acute water stress showed accumulation of singlet oxygen as determined by fluorescence of Singlet Oxygen Sensor Green, by electron paramagnetic resonance spectroscopy and the induction of singlet oxygen marker genes. Cell death by acute water stress was inhibited by the singlet oxygen scavenger histidine and was accompanied by vacuolar collapse and the appearance of serpin-protease complex. Over-expression of AtSerpin1 also attenuated cell death under this mode of cell stress. Thus, acute water stress damage shows parallels to vacuole-mediated cell death where the generation of singlet oxygen may play a role. © 2016 American Society of Plant Biologists. All Rights Reserved.

  4. Combined treatment with fenretinide and indomethacin induces AIF-mediated, non-classical cell death in human acute T-cell leukemia Jurkat cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hojka-Osinska, Anna, E-mail: hojka@immuno.iitd.pan.wroc.pl; Ziolo, Ewa, E-mail: ziolo@immuno.iitd.pan.wroc.pl; Rapak, Andrzej, E-mail: rapak@immuno.iitd.pan.wroc.pl

    Highlights: Black-Right-Pointing-Pointer The combination of fenretinide and indomethacin induces a high level of cell death. Black-Right-Pointing-Pointer Apoptotic pathway is caspase-independent. Black-Right-Pointing-Pointer Jurkat cells undergo AIF-mediated cell death. -- Abstract: Currently used cytotoxic drugs in cancer therapy have a similar mechanism of action and low specificity. Applied simultaneously, they show an additive effect with strong side effects. Clinical trials with the use of different agents in cancer therapy show that the use of these compounds alone is not very effective in fighting cancer. An alternative solution could be to apply a combination of these agents, because their combination has a synergisticmore » effect on some cancer cells. Therefore, in our investigations we examined the effects of a synthetic retinoid-fenretinide when combined with a non-steroidal anti-inflammatory drug-indomethacin on the process of apoptosis in the acute human T-cell leukemia cell line Jurkat. We demonstrate that treatment with the combination of the tested compounds induces the death of cells, that is peculiar and combines features of apoptosis as well as non-apoptotic cell death. In detail we observed, cell membrane permeabilization, phosphatydylserine exposure, no oligonucleosomal DNA fragmentation, no caspase-3 activation, but apoptosis inducing factor (AIF) nuclear translocation. Taken together these results indicate, that Jurkat cells after treatment with a combination of fenretinide and indomethacin undergo AIF-mediated programmed cell death.« less

  5. Protein Kinase G facilitates EGFR-mediated cell death in MDA-MB-468 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Nicole M.; Ceresa, Brian P., E-mail: brian.ceresa@louisville.edu

    The Epidermal Growth Factor Receptor (EGFR) is a transmembrane receptor tyrosine kinase with critical implications in cell proliferation, migration, wound healing and the regulation of apoptosis. However, the EGFR has been shown to be hyper-expressed in a number of human malignancies. The MDA-MB-468 metastatic breast cell line is one example of this. This particular cell line hyper-expresses the EGFR and undergoes EGFR-mediated apoptosis in response to EGF ligand. The goal of this study was to identify the kinases that could be potential intermediates for the EGFR-mediated induction of apoptosis intracellularly. After identifying Cyclic GMP-dependent Protein Kinase G (PKG) as amore » plausible intermediate, we wanted to determine the temporal relationship of these two proteins in the induction of apoptosis. We observed a dose-dependent decrease in MDA-MB-468 cell viability, which was co-incident with increased PKG activity as measured by VASPSer239 phosphorylation. In addition, we observed a dose dependent decrease in cell viability, as well as an increase in apoptosis, in response to two different PKG agonists, 8-Bromo-cGMP and 8-pCPT-cGMP. MDA-MB-468 cells with reduced PKG activity had attenuated EGFR-mediated apoptosis. These findings indicate that PKG does not induce cell death via transphosphorylation of the EGFR. Instead, PKG activity occurs following EGFR activation. Together, these data indicate PKG as an intermediary in EGFR-mediated cell death, likely via apoptotic pathway.« less

  6. Effect of blue light radiation on curcumin-induced cell death of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Zeng, X. B.; Leung, A. W. N.; Xia, X. S.; Yu, H. P.; Bai, D. Q.; Xiang, J. Y.; Jiang, Y.; Xu, C. S.

    2010-06-01

    In the present study, we have successfully set up a novel blue light source with the power density of 9 mW/cm2 and the wavelength of 435.8 nm and then the novel light source was used to investigate the effect of light radiation on curcumin-induced cell death. The cytotoxicity was investigated 24 h after the treatment of curcumin and blue light radiation together using MTT reduction assay. Nuclear chromatin was observed using a fluorescent microscopy with Hoechst33258 staining. The results showed blue light radiation could significantly enhance the cytotoxicity of curcumin on the MCF-7 cells and apoptosis induction. These findings demonstrated that blue light radiation could enhance curcumin-induced cell death of breast cancer cells, suggesting light radiation may be an efficient enhancer of curcumin in the management of breast cancer.

  7. BID links ferroptosis to mitochondrial cell death pathways.

    PubMed

    Neitemeier, Sandra; Jelinek, Anja; Laino, Vincenzo; Hoffmann, Lena; Eisenbach, Ina; Eying, Roman; Ganjam, Goutham K; Dolga, Amalia M; Oppermann, Sina; Culmsee, Carsten

    2017-08-01

    Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by erastin-mediated inhibition of the X c - system or inhibition of glutathione peroxidase 4 (Gpx4) to an increasing number of oxidative cell death paradigms in cancer cells, neurons or kidney cells, the biochemical pathways of oxidative cell death remained largely unclear. In particular, the role of mitochondrial damage in paradigms of ferroptosis needs further investigation. In the present study, we find that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels. These hallmarks of mitochondrial demise are also established features of oxytosis, a paradigm of cell death induced by X c - inhibition by millimolar concentrations of glutamate. Bid knockout using CRISPR/Cas9 approaches preserved mitochondrial integrity and function, and mediated neuroprotective effects against both, ferroptosis and oxytosis. Furthermore, the BID-inhibitor BI-6c9 inhibited erastin-induced ferroptosis, and, in turn, the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 prevented mitochondrial dysfunction and cell death in the paradigm of oxytosis. These findings show that mitochondrial transactivation of BID links ferroptosis to mitochondrial damage as the final execution step in this paradigm of oxidative cell death. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells.

    PubMed

    Pizato, Nathalia; Luzete, Beatriz Christina; Kiffer, Larissa Fernanda Melo Vasconcelos; Corrêa, Luís Henrique; de Oliveira Santos, Igor; Assumpção, José Antônio Fagundes; Ito, Marina Kiyomi; Magalhães, Kelly Grace

    2018-01-31

    The implication of inflammation in pathophysiology of several type of cancers has been under intense investigation. Omega-3 fatty acids can modulate inflammation and present anticancer effects, promoting cancer cell death. Pyroptosis is an inflammation related cell death and so far, the function of docosahexaenoic acid (DHA) in pyroptosis cell death has not been described. This study investigated the role of DHA in triggering pyroptosis activation in breast cancer cells. MDA-MB-231 breast cancer cells were supplemented with DHA and inflammation cell death was analyzed. DHA-treated breast cancer cells triggered increased caspase-1and gasdermin D activation, enhanced IL-1β secretion, translocated HMGB1 towards the cytoplasm, and membrane pore formation when compared to untreated cells, suggesting DHA induces pyroptosis programmed cell death in breast cancer cells. Moreover, caspase-1 inhibitor (YVAD) could protect breast cancer cells from DHA-induced pyroptotic cell death. In addition, membrane pore formation showed to be a lysosomal damage and ROS formation-depended event in breast cancer cells. DHA triggered pyroptosis cell death in MDA-MB-231by activating several pyroptosis markers in these cells. This is the first study that shows the effect of DHA triggering pyroptosis programmed cell death in breast cancer cells and it could improve the understanding of the omega-3 supplementation during breast cancer treatment.

  9. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    PubMed

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin + ) and leukemia stem cell population (CD34 + CD38 - Lin -/low ). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G 0 /G 1 (7μM) and G 2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Hengwen; Yang, Shana; Li, Jianhua

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expressionmore » in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.« less

  11. Death of mitochondria during programmed cell death of leaf mesophyll cells.

    PubMed

    Selga, Tūrs; Selga, Maija; Pāvila, Vineta

    2005-12-01

    The role of plant mitochondria in the programmed cell death (PCD) is widely discussed. However, spectrum and sequence of mitochondrial structural changes during different types of PCD in leaves are poorly described. Pea, cucumber and rye plants were grown under controlled growing conditions. A part of them were sprinkled with ethylene releaser to accelerate cell death. During yellowing the palisade parenchyma mitochondria were attracted to nuclear envelope. Mitochondrial matrix became electron translucent. Mitochondria entered vacuole by invagination of tonoplast and formed multivesicular bodies. Ethephon treatment increased the frequency of sticking of mitochondria to the nuclear envelope or chloroplasts and peroxisomes. Mitochondria divided by different mechanisms and became enclosed in Golgi and ER derived authopagic vacuoles or in the central vacuole. Several fold increase of the diameter of cristae became typical. In all cases mitochondria were attached to nuclear envelope. It can be considered as structural mechanism of promoting of PCD.

  12. Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast Cells

    PubMed Central

    Nishikawa, Yukihiro; Okuzaki, Daisuke; Fukushima, Kohshiro; Mukai, Satomi; Ohno, Shouichi; Ozaki, Yuki; Yabuta, Norikazu; Nojima, Hiroshi

    2015-01-01

    Withaferin A (WA), a major bioactive component of the Indian herb Withania somnifera, induces cell death (apoptosis/necrosis) in multiple types of tumor cells, but the molecular mechanism underlying this cytotoxicity remains elusive. We report here that 2 μM WA induced cell death selectively in androgen-insensitive PC-3 and DU-145 prostate adenocarcinoma cells, whereas its toxicity was less severe in androgen-sensitive LNCaP prostate adenocarcinoma cells and normal human fibroblasts (TIG-1 and KD). WA also killed PC-3 cells in spheroid-forming medium. DNA microarray analysis revealed that WA significantly increased mRNA levels of c-Fos and 11 heat-shock proteins (HSPs) in PC-3 and DU-145, but not in LNCaP and TIG-1. Western analysis revealed increased expression of c-Fos and reduced expression of the anti-apoptotic protein c-FLIP(L). Expression of HSPs such as HSPA6 and Hsp70 was conspicuously elevated; however, because siRNA-mediated depletion of HSF-1, an HSP-inducing transcription factor, reduced PC-3 cell viability, it is likely that these heat-shock genes were involved in protecting against cell death. Moreover, WA induced generation of reactive oxygen species (ROS) in PC-3 and DU-145, but not in normal fibroblasts. Immunocytochemistry and immuno-electron microscopy revealed that WA disrupted the vimentin cytoskeleton, possibly inducing the ROS generation, c-Fos expression and c-FLIP(L) suppression. These observations suggest that multiple events followed by disruption of the vimentin cytoskeleton play pivotal roles in WA-mediated cell death. PMID:26230090

  13. bis-Dehydroxy-Curcumin triggers mitochondrial-associated cell death in human colon cancer cells through ER-stress induced autophagy.

    PubMed

    Basile, Valentina; Belluti, Silvia; Ferrari, Erika; Gozzoli, Chiara; Ganassi, Sonia; Quaglino, Daniela; Saladini, Monica; Imbriano, Carol

    2013-01-01

    The activation of autophagy has been extensively described as a pro-survival strategy, which helps to keep cells alive following deprivation of nutrients/growth factors and other stressful cellular conditions. In addition to cytoprotective effects, autophagy can accompany cell death. Autophagic vacuoles can be observed before or during cell death, but the role of autophagy in the death process is still controversial. A complex interplay between autophagy and apoptosis has come to light, taking into account that numerous genes, such as p53 and Bcl-2 family members, are shared between these two pathways. In this study we showed a potent and irreversible cytotoxic activity of the stable Curcumin derivative bis-DeHydroxyCurcumin (bDHC) on human colon cancer cells, but not on human normal cells. Autophagy is elicited by bDHC before cell death as demonstrated by increased autophagosome formation -measured by electron microscopy, fluorescent LC3 puncta and LC3 lipidation- and autophagic flux -measured by interfering LC3-II turnover. The accumulation of poly-ubiquitinated proteins and ER-stress occurred upstream of autophagy induction and resulted in cell death. Cell cycle and Western blot analyses highlighted the activation of a mitochondrial-dependent apoptosis, which involves caspase 7, 8, 9 and Cytochrome C release. Using pharmacological inhibitions and RNAi experiments, we showed that ER-stress induced autophagy has a major role in triggering bDHC-cell death. Our findings describe the mechanism through which bDHC promotes tumor selective inhibition of proliferation, providing unequivocal evidence of the role of autophagy in contrasting the proliferation of colon cancer cells.

  14. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    PubMed Central

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS).We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. PMID:25034532

  15. Cell death pathways of particulate matter toxicity.

    PubMed

    Peixoto, Milena Simões; de Oliveira Galvão, Marcos Felipe; Batistuzzo de Medeiros, Silvia Regina

    2017-12-01

    Humans are exposed to various complex mixtures of particulate matter (PM) from different sources. Long-term exposure to high levels of these particulates has been linked to a diverse range of respiratory and cardiovascular diseases that have resulted in hospital admission. The evaluation of the effects of PM exposure on the mechanisms related to cell death has been a challenge for many researchers. Therefore, in this review, we have discussed the effects of airborne PM exposure on mechanisms related to cell death. For this purpose, we have compiled literature data on PM sources, the effects of exposure, and the assays and models used for evaluation, in order to establish comparisons between various studies. The analysis of this collected data suggested divergent responses to PM exposure that resulted in different cell death types (apoptosis, autophagy, and necrosis). In addition, PM induced oxidative stress within cells, which appeared to be an important factor in the determination of cell fate. When the levels of reactive oxygen species were overpowering, the cellular fate was directed toward cell death. This may be the underlying mechanism of the development or exacerbation of respiratory diseases, such as emphysema and chronic obstructive pulmonary diseases. In addition, PM was shown to cause DNA damage and the resulting mutations increased the risk of cancer. Furthermore, several conditions should be considered in the assessment of cell death in PM-exposed models, including the cell culture line, PM composition, and the interaction of the different cells types in in vivo models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Isogambogenic acid induces apoptosis-independent autophagic cell death in human non-small-cell lung carcinoma cells.

    PubMed

    Yang, Jianhong; Zhou, Yongzhao; Cheng, Xia; Fan, Yi; He, Shichao; Li, Shucai; Ye, Haoyu; Xie, Caifeng; Wu, Wenshuang; Li, Chunyan; Pei, Heying; Li, Luyuan; Wei, Zhe; Peng, Aihua; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2015-01-09

    To overcome drug resistance caused by apoptosis deficiency in patients with non-small cell lung carcinoma (NSCLC), there is a need to identify other means of triggering apoptosis-independent cancer cell death. We are the first to report that isogambogenic acid (iso-GNA) can induce apoptosis-independent autophagic cell death in human NSCLC cells. Several features of the iso-GNA-treated NSCLC cells indicated that iso-GNA induced autophagic cell death. First, there was no evidence of apoptosis or cleaved caspase 3 accumulation and activation. Second, iso-GNA treatment induced the formation of autophagic vacuoles, increased LC3 conversion, caused the appearance of autophagosomes and increased the expression of autophagy-related proteins. These findings provide evidence that iso-GNA induces autophagy in NSCLC cells. Third, iso-GNA-induced cell death was inhibited by autophagic inhibitors or by selective ablation of Atg7 and Beclin 1 genes. Furthermore, the mTOR inhibitor rapamycin increased iso-GNA-induced cell death by enhancing autophagy. Finally, a xenograft model provided additional evidence that iso-GNA exhibited anticancer effect through inducing autophagy-dependent cell death in NSCLC cells. Taken together, our results demonstrated that iso-GNA exhibited an anticancer effect by inducing autophagy-dependent cell death in NSCLC cells, which may be an effective chemotherapeutic agent that can be used against NSCLC in a clinical setting.

  17. Isogambogenic acid induces apoptosis-independent autophagic cell death in human non-small-cell lung carcinoma cells

    PubMed Central

    Yang, Jianhong; Zhou, Yongzhao; Cheng, Xia; Fan, Yi; He, Shichao; Li, Shucai; Ye, Haoyu; Xie, Caifeng; Wu, Wenshuang; Li, Chunyan; Pei, Heying; Li, Luyuan; Wei, Zhe; Peng, Aihua; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2015-01-01

    To overcome drug resistance caused by apoptosis deficiency in patients with non-small cell lung carcinoma (NSCLC), there is a need to identify other means of triggering apoptosis-independent cancer cell death. We are the first to report that isogambogenic acid (iso-GNA) can induce apoptosis-independent autophagic cell death in human NSCLC cells. Several features of the iso-GNA-treated NSCLC cells indicated that iso-GNA induced autophagic cell death. First, there was no evidence of apoptosis or cleaved caspase 3 accumulation and activation. Second, iso-GNA treatment induced the formation of autophagic vacuoles, increased LC3 conversion, caused the appearance of autophagosomes and increased the expression of autophagy-related proteins. These findings provide evidence that iso-GNA induces autophagy in NSCLC cells. Third, iso-GNA-induced cell death was inhibited by autophagic inhibitors or by selective ablation of Atg7 and Beclin 1 genes. Furthermore, the mTOR inhibitor rapamycin increased iso-GNA-induced cell death by enhancing autophagy. Finally, a xenograft model provided additional evidence that iso-GNA exhibited anticancer effect through inducing autophagy-dependent cell death in NSCLC cells. Taken together, our results demonstrated that iso-GNA exhibited an anticancer effect by inducing autophagy-dependent cell death in NSCLC cells, which may be an effective chemotherapeutic agent that can be used against NSCLC in a clinical setting. PMID:25571970

  18. Cell Death in the Epithelia of the Intestine and Hepatopancreas in Neocaridina heteropoda (Crustacea, Malacostraca)

    PubMed Central

    Sonakowska, Lidia; Włodarczyk, Agnieszka; Wilczek, Grażyna; Wilczek, Piotr; Student, Sebastian; Rost-Roszkowska, Magdalena Maria

    2016-01-01

    The endodermal region of the digestive system in the freshwater shrimp Neocaridina heteropoda (Crustacea, Malacostraca) consists of a tube-shaped intestine and large hepatopancreas, which is formed by numerous blind-ended tubules. The precise structure and ultrastructure of these regions were presented in our previous studies, while here we focused on the cell death processes and their effect on the functioning of the midgut. We used transmission electron microscopy, light and confocal microscopes to describe and detect cell death, while a quantitative assessment of cells with depolarized mitochondria helped us to establish whether there is the relationship between cell death and the inactivation of mitochondria. Three types of the cell death were observed in the intestine and hepatopancreas–apoptosis, necrosis and autophagy. No differences were observed in the course of these processes in males and females and or in the intestine and hepatopancreas of the shrimp that were examined. Our studies revealed that apoptosis, necrosis and autophagy only involves the fully developed cells of the midgut epithelium that have contact with the midgut lumen–D-cells in the intestine and B- and F-cells in hepatopancreas, while E-cells (midgut stem cells) did not die. A distinct correlation between the accumulation of E-cells and the activation of apoptosis was detected in the anterior region of the intestine, while necrosis was an accidental process. Degenerating organelles, mainly mitochondria were neutralized and eventually, the activation of cell death was prevented in the entire epithelium due to autophagy. Therefore, we state that autophagy plays a role of the survival factor. PMID:26844766

  19. Photoreceptor cell death and rescue in retinal detachment and degenerations

    PubMed Central

    Murakami, Yusuke; Notomi, Shoji; Hisatomi, Toshio; Nakazawa, Toru; Ishibashi, Tatsuro; Miller, Joan W.; Vavvas, Demetrios G.

    2013-01-01

    Photoreceptor cell death is the ultimate cause of vision loss in various retinal disorders, including retinal detachment (RD). Photoreceptor cell death has been thought to occur mainly through apoptosis, which is the most characterized form of programmed cell death. The caspase family of cysteine proteases plays a central role for inducing apoptosis, and in experimental models of RD, dying photoreceptor cells exhibit caspase activation; however, there is a paradox that caspase inhibition alone does not provide a sufficient protection against photoreceptor cell loss, suggesting that other mechanisms of cell death are involved. Recent accumulating evidence demonstrates that non-apoptotic forms of cell death, such as autophagy and necrosis, are also regulated by specific molecular machinery, such as those mediated by autophagy-related proteins and receptor-interacting protein kinases, respectively. Here we summarize the current knowledge of cell death signaling and its roles in photoreceptor cell death after RD and other retinal degenerative diseases. A body of studies indicate that not only apoptotic but also autophagic and necrotic signaling are involved in photoreceptor cell death, and that combined targeting of these pathways may be an effective neuroprotective strategy for retinal diseases associated with photoreceptor cell loss. PMID:23994436

  20. Cystine uptake through the cystine/glutamate antiporter xCT triggers glioblastoma cell death under glucose deprivation.

    PubMed

    Goji, Takeo; Takahara, Kazuhiko; Negishi, Manabu; Katoh, Hironori

    2017-12-01

    Oncogenic signaling in cancer cells alters glucose uptake and utilization to supply sufficient energy and biosynthetic intermediates for survival and sustained proliferation. Oncogenic signaling also prevents oxidative stress and cell death caused by increased production of reactive oxygen species. However, elevated glucose metabolism in cancer cells, especially in glioblastoma, results in the cells becoming sensitive to glucose deprivation ( i.e. in high glucose dependence), which rapidly induces cell death. However, the precise mechanism of this type of cell death remains unknown. Here, we report that glucose deprivation alone does not trigger glioblastoma cell death. We found that, for cell death to occur in glucose-deprived glioblastoma cells, cystine and glutamine also need to be present in culture media. We observed that cystine uptake through the cystine/glutamate antiporter xCT under glucose deprivation rapidly induces NADPH depletion, reactive oxygen species accumulation, and cell death. We conclude that although cystine uptake is crucial for production of antioxidant glutathione in cancer cells its transport through xCT also induces oxidative stress and cell death in glucose-deprived glioblastoma cells. Combining inhibitors targeting cancer-specific glucose metabolism with cystine and glutamine treatment may offer a therapeutic approach for glioblastoma tumors exhibiting high xCT expression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells.

    PubMed

    González-Polo, Rosa A; Niso-Santano, Mireia; Ortíz-Ortíz, Miguel A; Gómez-Martín, Ana; Morán, José M; García-Rubio, Lourdes; Francisco-Morcillo, Javier; Zaragoza, Concepción; Soler, Germán; Fuentes, José M

    2007-06-01

    Autophagy is a degradative mechanism involved in the recycling and turnover of cytoplasmic constituents from eukaryotic cells. This phenomenon of autophagy has been observed in neurons from patients with Parkinson's disease (PD), suggesting a functional role for autophagy in neuronal cell death. On the other hand, it has been demonstrated that exposure to pesticides can be a risk factor in the incidence of PD. In this sense, paraquat (PQ) (1,1'-dimethyl-4,4'-bipyridinium dichloride), a widely used herbicide that is structurally similar to the known dopaminergic neurotoxicant MPP(+) (1-methyl-4-phenyl-pyridine), has been suggested as a potential etiologic factor for the development of PD. The current study shows, for the first time, that low concentrations of PQ induce several characteristics of autophagy in human neuroblastoma SH-SY5Y cells. In this way, PQ induced the accumulation of autophagic vacuoles (AVs) in the cytoplasm and the recruitment of a LC3-GFP fusion protein to AVs. Furthermore, the cells treated with PQ showed an increase of the long-lived protein degradation which is blocked in the presence of the autophagy inhibitor 3-methyladenine and regulated by the mammalian target of rapamycin (mTOR) signaling. Finally, the cells succumbed to cell death with hallmarks of apoptosis such as phosphatidylserine exposure, caspase activation, and chromatin condensation. While caspase inhibition retarded cell death, autophagy inhibition accelerated the apoptotic cell death induced by PQ. Altogether, these findings show the relationship between autophagy and apoptotic cell death in human neuroblastoma cells treated with PQ.

  2. Morphodynamics of a growing microbial colony driven by cell death

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Levine, Herbert

    2017-11-01

    Bacterial cells can often self-organize into multicellular structures with complex spatiotemporal morphology. In this work, we study the spatiotemporal dynamics of a growing microbial colony in the presence of cell death. We present an individual-based model of nonmotile bacterial cells which grow and proliferate by consuming diffusing nutrients on a semisolid two-dimensional surface. The colony spreads by growth forces and sliding motility of cells and undergoes cell death followed by subsequent disintegration of the dead cells in the medium. We model cell death by considering two possible situations: In one of the cases, cell death occurs in response to the limitation of local nutrients, while the other case corresponds to an active death process, known as apoptotic or programmed cell death. We demonstrate how the colony morphology is influenced by the presence of cell death. Our results show that cell death facilitates transitions from roughly circular to highly branched structures at the periphery of an expanding colony. Interestingly, our results also reveal that for the colonies which are growing in higher initial nutrient concentrations, cell death occurs much earlier compared to the colonies which are growing in lower initial nutrient concentrations. This work provides new insights into the branched patterning of growing bacterial colonies as a consequence of complex interplay among the biochemical and mechanical effects.

  3. 1-Nitropyrene (1-NP) induces apoptosis and apparently a non-apoptotic programmed cell death (paraptosis) in Hepa1c1c7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asare, Nana; Landvik, Nina E.; Lagadic-Gossmann, Dominique

    2008-07-15

    Mechanistic studies of nitro-PAHs (polycyclic aromatic hydrocarbons) of interest might help elucidate which chemical characteristics are most important in eliciting toxic effects. 1-Nitropyrene (1-NP) is the predominant nitrated PAH emitted in diesel exhaust. 1-NP-exposed Hepa1c1c7 cells exhibited marked changes in cellular morphology, decreased proliferation and different forms of cell death. A dramatic increase in cytoplasmic vacuolization was observed already after 6 h of exposure and the cells started to round up at 12 h. The rate of cell proliferation was markedly reduced at 24 h and apoptotic as well as propidium iodide (PI)-positive cells appeared. Electron microscopic examination revealed thatmore » the vacuolization was partly due to mitochondria swelling. The caspase inhibitor Z-VAD-FMK inhibited only the apoptotic cell death and Nec-1 (an inhibitor of necroptosis) exhibited no inhibitory effects on either cell death or vacuolization. In contrast, cycloheximide markedly reduced both the number of apoptotic and PI-positive cells as well as the cytoplasmic vacuolization, suggesting that 1-NP induced paraptotic cell death. All the MAPKs; ERK1/2, p38 and JNK, appear to be involved in the death process since marked activation was observed upon 1-NP exposure, and their inhibitors partly reduced the induced cell death. The ERK1/2 inhibitor PD 98057 completely blocked the induced vacuolization, whereas the other MAPKs inhibitors only had minor effects on this process. These findings suggest that 1-NP may cause apoptosis and paraptosis. In contrast, the corresponding amine (1-aminopyrene) elicited only minor apoptotic and necrotic cell death, and cells with characteristics typical of paraptosis were absent.« less

  4. Cell Death Control by Matrix Metalloproteinases1[OPEN

    PubMed Central

    Zimmermann, Dirk; Sieferer, Elke; Pfannstiel, Jens

    2016-01-01

    In contrast to mammalian matrix metalloproteinases (MMPs) that play important roles in the remodeling of the extracellular matrix in animals, the proteases responsible for dynamic modifications of the plant cell wall are largely unknown. A possible involvement of MMPs was addressed by cloning and functional characterization of Sl2-MMP and Sl3-MMP from tomato (Solanum lycopersicum). The two tomato MMPs were found to resemble mammalian homologs with respect to gelatinolytic activity, substrate preference for hydrophobic amino acids on both sides of the scissile bond, and catalytic properties. In transgenic tomato seedlings silenced for Sl2/3-MMP expression, necrotic lesions were observed at the base of the hypocotyl. Cell death initiated in the epidermis and proceeded to include outer cortical cell layers. In later developmental stages, necrosis spread, covering the entire stem and extending into the leaves of MMP-silenced plants. The subtilisin-like protease P69B was identified as a substrate of Sl2- and Sl3-MMP. P69B was shown to colocalize with Sl-MMPs in the apoplast of the tomato hypocotyl, it exhibited increased stability in transgenic plants silenced for Sl-MMP activity, and it was cleaved and inactivated by Sl-MMPs in vitro. The induction of cell death in Sl2/3-MMP-silenced plants depended on P69B, indicating that Sl2- and Sl3-MMP act upstream of P69B in an extracellular proteolytic cascade that contributes to the regulation of cell death in tomato. PMID:27208293

  5. Mechanism of neem limonoids-induced cell death in cancer: role of oxidative phosphorylation

    PubMed Central

    Yadav, Neelu; Kumar, Sandeep; Kumar, Rahul; Srivastava, Pragya; Sun, Leimin; Rapali, Peter; Marlowe, Timothy; Schneider, Andrea; Inigo, Joseph; O’Malley, Jordan; Londonkar, Ramesh; Gogada, Raghu; Chaudhary, Ajay; Yadava, Nagendra; Chandra, Dhyan

    2016-01-01

    We have previously reported that neem limonoids (neem) induce multiple cancer cell death pathways. Here we dissect the underlying mechanisms of neem-induced apoptotic cell death in cancer. We observed that neem-induced caspase activation does not require Bax/Bak channel-mediated mitochondrial outer membrane permeabilization, permeability transition pore, and mitochondrial fragmentation. Neem enhanced mitochondrial DNA and mitochondrial biomass. While oxidative phosphorylation (OXPHOS) Complex-I activity was decreased, the activities of other OXPHOS complexes including Complex-II and -IV were unaltered. Increased reactive oxygen species (ROS) levels were associated with an increase in mitochondrial biomass and apoptosis upon neem exposure. Complex-I deficiency due to the loss of Ndufa1-encoded MWFE protein inhibited neem-induced caspase activation and apoptosis, but cell death induction was enhanced. Complex II-deficiency due to the loss of succinate dehydrogenase complex subunit C (SDHC) robustly decreased caspase activation, apoptosis, and cell death. Additionally, the ablation of Complexes-I, -III, -IV, and -V together did not inhibit caspase activation. Together, we demonstrate that neem limonoids target OXPHOS system to induce cancer cell death, which does not require upregulation or activation of proapoptotic Bcl-2 family proteins. PMID:26627937

  6. Mechanism of neem limonoids-induced cell death in cancer: Role of oxidative phosphorylation.

    PubMed

    Yadav, Neelu; Kumar, Sandeep; Kumar, Rahul; Srivastava, Pragya; Sun, Leimin; Rapali, Peter; Marlowe, Timothy; Schneider, Andrea; Inigo, Joseph R; O'Malley, Jordan; Londonkar, Ramesh; Gogada, Raghu; Chaudhary, Ajay K; Yadava, Nagendra; Chandra, Dhyan

    2016-01-01

    We have previously reported that neem limonoids (neem) induce multiple cancer cell death pathways. Here we dissect the underlying mechanisms of neem-induced apoptotic cell death in cancer. We observed that neem-induced caspase activation does not require Bax/Bak channel-mediated mitochondrial outer membrane permeabilization, permeability transition pore, and mitochondrial fragmentation. Neem enhanced mitochondrial DNA and mitochondrial biomass. While oxidative phosphorylation (OXPHOS) Complex-I activity was decreased, the activities of other OXPHOS complexes including Complex-II and -IV were unaltered. Increased reactive oxygen species (ROS) levels were associated with an increase in mitochondrial biomass and apoptosis upon neem exposure. Complex-I deficiency due to the loss of Ndufa1-encoded MWFE protein inhibited neem-induced caspase activation and apoptosis, but cell death induction was enhanced. Complex II-deficiency due to the loss of succinate dehydrogenase complex subunit C (SDHC) robustly decreased caspase activation, apoptosis, and cell death. Additionally, the ablation of Complexes-I, -III, -IV, and -V together did not inhibit caspase activation. Together, we demonstrate that neem limonoids target OXPHOS system to induce cancer cell death, which does not require upregulation or activation of proapoptotic Bcl-2 family proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Taxifolin synergizes Andrographolide-induced cell death by attenuation of autophagy and augmentation of caspase dependent and independent cell death in HeLa cells

    PubMed Central

    Alzaharna, Mazen; Alqouqa, Iyad; Cheung, Hon-Yeung

    2017-01-01

    Andrographolide (Andro) has emerged recently as a potential and effective anticancer agent with induction of apoptosis in some cancer cell lines while induction of G2/M arrest with weak apoptosis in others. Few studies have proved that Andro is also effective in combination therapy. The flavonoid Taxifolin (Taxi) has showed anti-oxidant and antiproliferative effects against different cancer cells. Therefore, the present study investigated the cytotoxic effects of Andro alone or in combination with Taxi on HeLa cells. The combination of Andro with Taxi was synergistic at all tested concentrations and combination ratios. Andro alone induced caspase-dependent apoptosis which was enhanced by the combination with Taxi and attenuated partly by using Z-Vad-Fmk. Andro induced a protective reactive oxygen species (ROS)-dependent autophagy which was attenuated by Taxi. The activation of p53 was involved in Andro-induced autophagy where the use of Taxi or pifithrin-α (PFT-α) decreased it while the activation of JNK was involved in the cell death of HeLa cells but not in the induction of autophagy. The mitochondrial outer-membrane permeabilization (MOMP) plays an important role in Andro-induced cell death in HeLa cells. Andro alone increased the MOMP which was further increased in the case of combination. This led to the increase in AIF and cytochrome c release from mitochondria which consequently increased caspase-dependent and independent cell death. In conclusion, Andro induced a protective autophagy in HeLa cells which was reduced by Taxi and the cell death was increased by increasing the MOMP and subsequently the caspase-dependent and independent cell death. PMID:28182713

  8. Sorafenib-induced defective autophagy promotes cell death by necroptosis.

    PubMed

    Kharaziha, Pedram; Chioureas, Dimitris; Baltatzis, George; Fonseca, Pedro; Rodriguez, Patricia; Gogvadze, Vladimir; Lennartsson, Lena; Björklund, Ann-Charlotte; Zhivotovsky, Boris; Grandér, Dan; Egevad, Lars; Nilsson, Sten; Panaretakis, Theocharis

    2015-11-10

    Autophagy is one of the main cytoprotective mechanisms that cancer cells deploy to withstand the cytotoxic stress and survive the lethal damage induced by anti-cancer drugs. However, under specific conditions, autophagy may, directly or indirectly, induce cell death. In our study, treatment of the Atg5-deficient DU145 prostate cancer cells, with the multi-tyrosine kinase inhibitor, sorafenib, induces mitochondrial damage, autophagy and cell death. Molecular inhibition of autophagy by silencing ULK1 and Beclin1 rescues DU145 cells from cell death indicating that, in this setting, autophagy promotes cell death. Re-expression of Atg5 restores the lipidation of LC3 and rescues DU145 and MEF atg5-/- cells from sorafenib-induced cell death. Despite the lack of Atg5 expression and LC3 lipidation, DU145 cells form autophagosomes as demonstrated by transmission and immuno-electron microscopy, and the formation of LC3 positive foci. However, the lack of cellular content in the autophagosomes, the accumulation of long-lived proteins, the presence of GFP-RFP-LC3 positive foci and the accumulated p62 protein levels indicate that these autophagosomes may not be fully functional. DU145 cells treated with sorafenib undergo a caspase-independent cell death that is inhibited by the RIPK1 inhibitor, necrostatin-1. Furthermore, treatment with sorafenib induces the interaction of RIPK1 with p62, as demonstrated by immunoprecipitation and a proximity ligation assay. Silencing of p62 decreases the RIPK1 protein levels and renders necrostatin-1 ineffective in blocking sorafenib-induced cell death. In summary, the formation of Atg5-deficient autophagosomes in response to sorafenib promotes the interaction of p62 with RIPK leading to cell death by necroptosis.

  9. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont

    PubMed Central

    Zheng, Weiwen; Rasmussen, Ulla; Zheng, Siping; Bao, Xiaodong; Chen, Bin; Gao, Yuan; Guan, Xiong; Larsson, John; Bergman, Birgitta

    2013-01-01

    Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom. PMID:23822984

  10. MEK inhibitor U0126 interferes with immunofluorescence analysis of apoptotic cell death.

    PubMed

    Blank, Norbert; Burger, Renate; Duerr, Birgit; Bakker, Frank; Wohlfarth, Anika; Dumitriu, Ingrid; Kalden, Joachim R; Herrmann, Martin

    2002-08-01

    Binding of extracellular growth factors to cell surface receptors often results in activation of the mitogen-activated protein kinase (MAPK). MAPK is regulated by MAPK kinase, also called MEK. Deprivation of growth factors during cell culture or intracellular MEK inhibition leads to inhibition of proliferation and apoptotic cell death. Besides other techniques, apoptotic cells can be identified by phosphatidylserine (PS) exposure and exclusion of membrane-impermeant propidium iodide (PI). We investigated the limitations of detection of apoptotic cell death and cytofluorometry in cells cultured in the presence of the MEK inhibitor U0126. Apoptotic cell death was induced in the plasmacytoma cell line INA-6, in peripheral blood mononuclear cells (PBMC), and in cultured T lymphoblasts by deprivation of interleukin-6 (IL-6) or by incubation with the MEK inhibitor U0126. Apoptotic cell death was quantified by flow cytometry using annexin V/propidium iodide (AxV/PI) double staining. U0126-treated cells dramatically changed their fluorescence pattern during cell culture. If AxV/PI staining is employed to detect apoptotic cell death, the background fluorescence mimicks PS exposure on viable cells. The compound itself has no intrinsic fluorescence in vitro but develops an intensive fluorescence during cell culture which can be observed in all fluorescence channels with a predominance in the FL1 channel (525 nm). We further demonstrate that at least some of the U0126-induced background fluorescence is dependent on cellular uptake and intracellular modifications or cellular responses. These results demonstrate that appropriate controls for every single time point are necessary if fluorescence analyses are performed in the presence of chemical enzyme inhibitors. In the case of MEK inhibitors, either the use of PD098059 or PD184352 as an alternative for U0126 or nonfluorometric methods for detection of apoptosis should be considered. Copyright 2002 Wiley-Liss, Inc.

  11. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morotomi-Yano, Keiko; Akiyama, Hidenori; Yano, Ken-ichi, E-mail: yanoken@kumamoto-u.ac.jp

    Highlights: •Nanosecond pulsed electric field (nsPEF) is a new and unique means for life sciences. •Apoptosis was induced by nsPEF exposure in Jurkat cells. •No signs of apoptosis were detected in HeLa S3 cells exposed to nsPEFs. •Formation of poly(ADP-ribose) was induced in nsPEF-exposed HeLa S3 cells. •Two distinct modes of cell death were activated by nsPEF in a cell-dependent manner. -- Abstract: Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in severalmore » cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs.« less

  12. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrero, Maria Teresa; Estevez, Sara; Negrin, Gledy

    Highlights: Black-Right-Pointing-Pointer Ayanin diacetate as apoptotic inducer in leukemia cells. Black-Right-Pointing-Pointer Cell death was prevented by caspase inhibitors and by the overexpression of Bcl-x{sub L}. Black-Right-Pointing-Pointer The intrinsic and the extrinsic pathways are involved in the mechanism of action. Black-Right-Pointing-Pointer Death receptors are up-regulated and TRAIL enhances apoptotic cell death. -- Abstract: Here we demonstrate that the semi-synthetic flavonoid ayanin diacetate induces cell death selectively in leukemia cells without affecting the proliferation of normal lymphocytes. Incubation of human leukemia cells with ayanin diacetate induced G{sub 2}-M phase cell cycle arrest and apoptosis which was prevented by the non-specific caspase inhibitormore » z-VAD-fmk and reduced by the overexpression of Bcl-x{sub L}. Ayanin diacetate-induced cell death was found to be associated with: (i) loss of inner mitochondrial membrane potential, (ii) the release of cytochrome c, (iii) the activation of multiple caspases, (iv) cleavage of poly(ADP-ribose) polymerase and (v) the up-regulation of death receptors for TRAIL, DR4 and DR5. Moreover, the combined treatment with ayanin diacetate and TRAIL amplified cell death, compared to single treatments. These results provide a basis for further exploring the potential applications of this combination for the treatment of cancer.« less

  13. Comparison of Types of Cell Death: Apoptosis and Necrosis.

    ERIC Educational Resources Information Center

    Manning, Francis; Zuzel, Katherine

    2003-01-01

    Cell death is an essential factor in many biological processes including development. Discusses two types of cell death: (1) necrosis (induced by sodium azide); and (2) apoptosis (induced by sodium chromate). Illustrates key features that differ between these two types of cells death including loss of membrane integrity and internucleosomal DNA…

  14. TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease.

    PubMed

    Wang, Tao; Lao, Uyen; Edgar, Bruce A

    2009-09-07

    Target of rapamycin (TOR) signaling is a regulator of cell growth. TOR activity can also enhance cell death, and the TOR inhibitor rapamycin protects cells against proapoptotic stimuli. Autophagy, which can protect against cell death, is negatively regulated by TOR, and disruption of autophagy by mutation of Atg5 or Atg7 can lead to neurodegeneration. However, the implied functional connection between TOR signaling, autophagy, and cell death or degeneration has not been rigorously tested. Using the Drosophila melanogaster visual system, we show in this study that hyperactivation of TOR leads to photoreceptor cell death in an age- and light-dependent manner and that this is because of TOR's ability to suppress autophagy. We also find that genetically inhibiting TOR or inducing autophagy suppresses cell death in Drosophila models of Huntington's disease and phospholipase C (norpA)-mediated retinal degeneration. Thus, our data indicate that TOR induces cell death by suppressing autophagy and provide direct genetic evidence that autophagy alleviates cell death in several common types of neurodegenerative disease.

  15. Autophagy Protects Against Aminochrome-Induced Cell Death in Substantia Nigra-Derived Cell Line

    PubMed Central

    Paris, Irmgard; Muñoz, Patricia; Huenchuguala, Sandro; Couve, Eduardo; Sanders, Laurie H.; Greenamyre, John Timothy; Caviedes, Pablo; Segura-Aguilar, Juan

    2011-01-01

    Aminochrome, the precursor of neuromelanin, has been proposed to be involved in the neurodegeneration neuromelanin-containing dopaminergic neurons in Parkinson’s disease. We aimed to study the mechanism of aminochrome-dependent cell death in a cell line derived from rat substantia nigra. We found that aminochrome (50μM), in the presence of NAD(P)H-quinone oxidoreductase, EC 1.6.99.2 (DT)-diaphorase inhibitor dicoumarol (DIC) (100μM), induces significant cell death (62 ± 3%; p < 0.01), increase in caspase-3 activation (p < 0.001), release of cytochrome C, disruption of mitochondrial membrane potential (p < 0.01), damage of mitochondrial DNA, damage of mitochondria determined with transmission electron microscopy, a dramatic morphological change characterized as cell shrinkage, and significant increase in number of autophagic vacuoles. To determine the role of autophagy on aminochrome-induced cell death, we incubated the cells in the presence of vinblastine and rapamycin. Interestingly, 10μM vinblastine induces a 5.9-fold (p < 0.001) and twofold (p < 0.01) significant increase in cell death when the cells were incubated with 30μM aminochrome in the absence and presence of DIC, respectively, whereas 10μM rapamycin preincubated 24 h before addition of 50μM aminochrome in the absence and the presence of 100μM DIC induces a significant decrease (p < 0.001) in cell death. In conclusion, autophagy seems to be an important protective mechanism against two different aminochrome-induced cell deaths that initially showed apoptotic features. The cell death induced by aminochrome when DT-diaphorase is inhibited requires activation of mitochondrial pathway, whereas the cell death induced by aminochrome alone requires inhibition of autophagy-dependent degrading of damaged organelles and recycling through lysosomes. PMID:21427056

  16. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com; Kim, Dong-Wook; Jung, Chang-Hwa

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We alsomore » found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.« less

  17. Crystalline structure of pulverized dental calculus induces cell death in oral epithelial cells.

    PubMed

    Ziauddin, S M; Yoshimura, A; Montenegro Raudales, J L; Ozaki, Y; Higuchi, K; Ukai, T; Kaneko, T; Miyazaki, T; Latz, E; Hara, Y

    2018-06-01

    Dental calculus is a mineralized deposit attached to the tooth surface. We have shown that cellular uptake of dental calculus triggers nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation, leading to the processing of the interleukin-1β precursor into its mature form in mouse and human phagocytes. The activation of the NLRP3 inflammasome also induced a lytic form of programmed cell death, pyroptosis, in these cells. However, the effects of dental calculus on other cell types in periodontal tissue have not been investigated. The aim of this study was to determine whether dental calculus can induce cell death in oral epithelial cells. HSC-2 human oral squamous carcinoma cells, HOMK107 human primary oral epithelial cells and immortalized mouse macrophages were exposed to dental calculus or 1 of its components, hydroxyapatite crystals. For inhibition assays, the cells were exposed to dental calculus in the presence or absence of cytochalasin D (endocytosis inhibitor), z-YVAD-fmk (caspase-1 inhibitor) or glyburide (NLRP3 inflammasome inhibitor). Cytotoxicity was determined by measuring lactate dehydrogenase (LDH) release and staining with propidium iodide. Tumor necrosis factor-α production was quantified by enzyme-linked immunosorbent assay. Oral epithelial barrier function was examined by permeability assay. Dental calculus induced cell death in HSC-2 cells, as judged by LDH release and propidium iodide staining. Dental calculus also induced LDH release from HOMK107 cells. Following heat treatment, dental calculus lost its capacity to induce tumor necrosis factor-α in mouse macrophages, but could induce LDH release in HSC-2 cells, indicating a major role of inorganic components in cell death. Hydroxyapatite crystals also induced cell death in both HSC-2 and HOMK107 cells, as judged by LDH release, indicating the capacity of crystal particles to induce cell death. Cell death induced by dental

  18. Programmed cell death as a defence against infection

    PubMed Central

    Jorgensen, Ine; Rayamajhi, Manira; Miao, Edward A.

    2017-01-01

    Eukaryotic cells can die from physical trauma, resulting in necrosis. Alternately, they can die via programmed cell death upon stimulation of specific signalling pathways. Here we discuss the utility of four cell death pathways in innate immune defence against bacterial and viral infection: apoptosis, necroptosis, pyroptosis and NETosis. We describe the interactions that interweave different programmed cell death pathways, which create complex signalling networks that cross-guard each other in the evolutionary arms race with pathogens. Finally, we describe how the resulting cell corpses — apoptotic bodies, pore-induced intracellular traps (PITs) and neutrophil extracellular traps (NETs) — promote clearance of infection. PMID:28138137

  19. Zanthoxylum fruit extract from Japanese pepper promotes autophagic cell death in cancer cells.

    PubMed

    Nozaki, Reo; Kono, Toru; Bochimoto, Hiroki; Watanabe, Tsuyoshi; Oketani, Kaori; Sakamaki, Yuichi; Okubo, Naoto; Nakagawa, Koji; Takeda, Hiroshi

    2016-10-25

    Zanthoxylum fruit, obtained from the Japanese pepper plant (Zanthoxylum piperitum De Candolle), and its extract (Zanthoxylum fruit extract, ZFE) have multiple physiological activities (e.g., antiviral activity). However, the potential anticancer activity of ZFE has not been fully examined. In this study, we investigated the ability of ZFE to induce autophagic cell death (ACD). ZFE caused remarkable autophagy-like cytoplasmic vacuolization, inhibited cell proliferation, and ultimately induced cell death in the human cancer cell lines DLD-1, HepG2, and Caco-2, but not in A549, MCF-7, or WiDr cells. ZFE increased the level of LC3-II protein, a marker of autophagy. Knockdown of ATG5 using siRNA inhibited ZFE-induced cytoplasmic vacuolization and cell death. Moreover, in cancer cells that could be induced to undergo cell death by ZFE, the extract increased the phosphorylation of c-Jun N-terminal kinase (JNK), and the JNK inhibitor SP600125 attenuated both vacuolization and cell death. Based on morphology and expression of marker proteins, ZFE-induced cell death was neither apoptosis nor necrosis. Normal intestinal cells were not affected by ZFE. Taken together, our findings show that ZFE induces JNK-dependent ACD, which appears to be the main mechanism underlying its anticancer activity, suggesting a promising starting point for anticancer drug development.

  20. Host-Cell Survival and Death During Chlamydia Infection

    PubMed Central

    Ying, Songmin; Pettengill, Matthew; Ojcius, David M.; Häcker, Georg

    2008-01-01

    Different Chlamydia trachomatis strains are responsible for prevalent bacterial sexually-transmitted disease and represent the leading cause of preventable blindness worldwide. Factors that predispose individuals to disease and mechanisms by which chlamydiae cause inflammation and tissue damage remain unclear. Results from recent studies indicate that prolonged survival and subsequent death of infected cells and their effect on immune effector cells during chlamydial infection may be important in determining the outcome. Survival of infected cells is favored at early times of infection through inhibition of the mitochondrial pathway of apoptosis. Death at later times displays features of both apoptosis and necrosis, but pro-apoptotic caspases are not involved. Most studies on chlamydial modulation of host-cell death until now have been performed in cell lines. The consequences for pathogenesis and the immune response will require animal models of chlamydial infection, preferably mice with targeted deletions of genes that play a role in cell survival and death. PMID:18843378

  1. HAMLET triggers apoptosis but tumor cell death is independent of caspases, Bcl-2 and p53.

    PubMed

    Hallgren, O; Gustafsson, L; Irjala, H; Selivanova, G; Orrenius, S; Svanborg, C

    2006-02-01

    HAMLET (Human alpha-lactalbumin Made Lethal to Tumor cells) triggers selective tumor cell death in vitro and limits tumor progression in vivo. Dying cells show features of apoptosis but it is not clear if the apoptotic response explains tumor cell death. This study examined the contribution of apoptosis to cell death in response to HAMLET. Apoptotic changes like caspase activation, phosphatidyl serine externalization, chromatin condensation were detected in HAMLET-treated tumor cells, but caspase inhibition or Bcl-2 over-expression did not prolong cell survival and the caspase response was Bcl-2 independent. HAMLET translocates to the nuclei and binds directly to chromatin, but the death response was unrelated to the p53 status of the tumor cells. p53 deletions or gain of function mutations did not influence the HAMLET sensitivity of tumor cells. Chromatin condensation was partly caspase dependent, but apoptosis-like marginalization of chromatin was also observed. The results show that tumor cell death in response to HAMLET is independent of caspases, p53 and Bcl-2 even though HAMLET activates an apoptotic response. The use of other cell death pathways allows HAMLET to successfully circumvent fundamental anti-apoptotic strategies that are present in many tumor cells.

  2. UV-Induced cell death in plants.

    PubMed

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  3. Further considerations on in vitro skeletal muscle cell death

    PubMed Central

    Battistelli, Michela; Salucci, Sara; Burattini, Sabrina; Falcieri, Elisabetta

    2013-01-01

    Summary The present review discusses the apoptotic behavior induced by chemical and physical triggers in C2C12 skeletal muscle cells, comparing myoblast to myotube sensitivity, and investigating it by means of morphological, biochemical and cytofluorimetric analyses. After all treatments, myotubes, differently from myoblasts, showed a poor sensitivity to cell death. Intriguingly, in cells exposed to staurosporine, etoposide and UVB radiation, apoptotic and normal nuclei within the same fibercould be revealed. The presence of nuclear-dependent “territorial” death domains in the syncytium could explain a delayed cell death of myotubes compared to mononucleated cells. Moreover, autophagic granules abundantly appeared in myotubes after each treatment. Autophagy could protect muscle cell integrity against chemical and physical stimuli, making C2C12 myotubes, more resistant to cell death induction. PMID:24596689

  4. Nuclear localized protein-1 (Nulp1) increases cell death of human osteosarcoma cells and binds the X-linked inhibitor of apoptosis protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steen, Hakan; Lindholm, Dan; Minerva Institute for Medical Research, Biomedicum Helsinki, Helsinki

    2008-02-08

    Nuclear localized protein-1 (Nulp1) is a recently identified gene expressed in mouse and human tissues particularly during embryonic development. Nulp1 belongs to the family of basic helix-loop-helix (bHLH) proteins that are important in development. The precise function of Nulp1 in cells is however not known. We observed that overexpression of Nulp1 induces a large increase in cell death of human osteosarcoma Saos2 cells with DNA fragmentation. In mouse N2A neuroblastoma cells Nulp1 affected cell proliferation and sensitized cells towards death induced by staurosporine. Staining using a novel antibody localized Nulp1 mainly to the cell nucleus and to some extent tomore » the cytoplasm. Nulp1 binds the X-linked inhibitor of apoptosis protein (XIAP) and this interaction was increased during cell death. These results indicate that Nulp1 plays a role in cell death control and may influence tumor growth.« less

  5. Agatharesinol biosynthesis-related changes of ray parenchyma in sapwood sticks of Cryptomeria japonica during cell death.

    PubMed

    Nakaba, Satoshi; Arakawa, Izumi; Morimoto, Hikaru; Nakada, Ryogo; Bito, Nobumasa; Imai, Takanori; Funada, Ryo

    2016-05-01

    The work demonstrates a relationship between the biosynthesis of the secondary metabolite, agatharesinol, and cytological changes that occur in ray parenchyma during cell death in sapwood sticks of Cryptomeria japonica under humidity-regulated conditions. To characterize the death of ray parenchyma cells that accompanies the biosynthesis of secondary metabolites, we examined cell death in sapwood sticks of Cryptomeria japonica under humidity-regulated conditions. We monitored features of ray parenchyma cells, such as viability, the morphology of nuclei and vacuoles, and the amount of starch grains. In addition, we analyzed levels of agatharesinol, a heartwood norlignan, by gas chromatography-mass spectrometry in the same sapwood sticks. Dramatic changes in the amount of starch grains and in the level of agatharesinol occurred simultaneously. Therefore, the biosynthesis of agatharesinol appeared to originate from the breakdown of starch. Furthermore, we observed the expansion of vacuoles in ray parenchyma cells prior to other cytological changes at the final stage of cell death. In our experimental system, we were able to follow the process of cell death and to demonstrate relationships between cytological changes and the biosynthesis of a secondary metabolite during the death of ray parenchyma cells.

  6. Loss of anchorage primarily induces non-apoptotic cell death in a human mammary epithelial cell line under atypical focal adhesion kinase signaling.

    PubMed

    Ishikawa, F; Ushida, K; Mori, K; Shibanuma, M

    2015-01-22

    Anchorage dependence of cellular growth and survival prevents inappropriate cell growth or survival in ectopic environments, and serves as a potential barrier to metastasis of cancer cells. Therefore, obtaining a better understanding of anchorage-dependent responses in normal cells is the first step to understand and impede anchorage independence of growth and survival in cancer cells and finally to eradicate cancer cells during metastasis. Anoikis, a type of apoptosis specifically induced by lack of appropriate cell-extracellular matrix adhesion, has been established as the dominant response of normal epithelial cells to anchorage loss. For example, under detached conditions, the untransformed mammary epithelial cell (MEC) line MCF-10 A, which exhibits myoepithelial characteristics, underwent anoikis dependent on classical ERK signaling. On the other hand, recent studies have revealed a variety of phenotypes resulting in cell death modalities distinct from anoikis, such as autophagy, necrosis, and cornification, in detached epithelial cells. In the present study, we characterized detachment-induced cell death (DICD) in primary human MECs immortalized with hTERT ((Tert)HMECs), which are bipotent progenitor-like cells with a differentiating phenotype to luminal cells. In contrast to MCF-10 A cells, apoptosis was not observed in detached (Tert)HMECs; instead, non-apoptotic cell death marked by features of entosis, cornification, and necrosis was observed along with downregulation of focal adhesion kinase (FAK) signaling. Cell death was overcome by anchorage-independent activities of FAK but not PI3K/AKT, SRC, and MEK/ERK, suggesting critical roles of atypical FAK signaling pathways in the regulation of non-apoptotic cell death. Further analysis revealed an important role of TRAIL (tumor necrosis factor (TNF)-related apoptosis-inducing ligand) as a mediator of FAK signaling in regulation of entosis and necrosis and a role of p38 MAPK in the induction of necrosis

  7. Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway.

    PubMed

    Erental, Ariel; Sharon, Idith; Engelberg-Kulka, Hanna

    2012-01-01

    In eukaryotes, the classical form of programmed cell death (PCD) is apoptosis, which has as its specific characteristics DNA fragmentation and membrane depolarization. In Escherichia coli a different PCD system has been reported. It is mediated by the toxin-antitoxin system module mazEF. The E. coli mazEF module is one of the most thoroughly studied toxin-antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. mazEF-mediated cell death is a population phenomenon requiring the quorum-sensing pentapeptide NNWNN designated Extracellular Death Factor (EDF). mazEF is triggered by several stressful conditions, including severe damage to the DNA. Here, using confocal microscopy and FACS analysis, we show that under conditions of severe DNA damage, the triggered mazEF-mediated cell death pathway leads to the inhibition of a second cell death pathway. The latter is an apoptotic-like death (ALD); ALD is mediated by recA and lexA. The mazEF-mediated pathway reduces recA mRNA levels. Based on these results, we offer a molecular model for the maintenance of an altruistic characteristic in cell populations. In our model, the ALD pathway is inhibited by the altruistic EDF-mazEF-mediated death pathway.

  8. Die Another Day: Inhibition of Cell Death Pathways by Cytomegalovirus.

    PubMed

    Brune, Wolfram; Andoniou, Christopher E

    2017-09-02

    Multicellular organisms have evolved multiple genetically programmed cell death pathways that are essential for homeostasis. The finding that many viruses encode cell death inhibitors suggested that cellular suicide also functions as a first line of defence against invading pathogens. This theory was confirmed by studying viral mutants that lack certain cell death inhibitors. Cytomegaloviruses, a family of species-specific viruses, have proved particularly useful in this respect. Cytomegaloviruses are known to encode multiple death inhibitors that are required for efficient viral replication. Here, we outline the mechanisms used by the host cell to detect cytomegalovirus infection and discuss the methods employed by the cytomegalovirus family to prevent death of the host cell. In addition to enhancing our understanding of cytomegalovirus pathogenesis we detail how this research has provided significant insights into the cross-talk that exists between the various cell death pathways.

  9. Mechanical Stress Promotes Cisplatin-Induced Hepatocellular Carcinoma Cell Death

    PubMed Central

    Riad, Sandra; Bougherara, Habiba

    2015-01-01

    Cisplatin (CisPt) is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2) cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death). Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death). PMID:25685789

  10. Altered Cytochrome c Display Precedes Apoptotic Cell Death in Drosophila

    PubMed Central

    Varkey, Johnson; Chen, Po; Jemmerson, Ronald; Abrams, John M.

    1999-01-01

    Drosophila affords a genetically well-defined system to study apoptosis in vivo. It offers a powerful extension to in vitro models that have implicated a requirement for cytochrome c in caspase activation and apoptosis. We found that an overt alteration in cytochrome c anticipates programmed cell death (PCD) in Drosophila tissues, occurring at a time that considerably precedes other known indicators of apoptosis. The altered configuration is manifested by display of an otherwise hidden epitope and occurs without release of the protein into the cytosol. Conditional expression of the Drosophila death activators, reaper or grim, provoked apoptogenic cytochrome c display and, surprisingly, caspase activity was necessary and sufficient to induce this alteration. In cell-free studies, cytosolic caspase activation was triggered by mitochondria from apoptotic cells but identical preparations from healthy cells were inactive. Our observations provide compelling validation of an early role for altered cytochrome c in PCD and suggest propagation of apoptotic physiology through reciprocal, feed-forward amplification involving cytochrome c and caspases. PMID:10037791

  11. Guidelines and recommendations on yeast cell death nomenclature.

    PubMed

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J; Breitenbach, Michael; Burhans, William C; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W; Grant, Chris M; Greenwood, Michael T; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D; Outeiro, Tiago F; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F; Sharon, Amir; Sigrist, Stephan J; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B; Tuite, Mick; Vögtle, F-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J; Zhao, Richard Y; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the defi-nition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differ-ential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death rou-tines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the au-thors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the pro-gress of this vibrant field of research.

  12. Guidelines and recommendations on yeast cell death nomenclature

    PubMed Central

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J.; Breitenbach, Michael; Burhans, William C.; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F.; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B.; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W.; Grant, Chris M.; Greenwood, Michael T.; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M.; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P.; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A.; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D.; Outeiro, Tiago F.; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F.; Sharon, Amir; Sigrist, Stephan J.; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M.; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B.; Tuite, Mick; Vögtle, F.-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J.; Zhao, Richard Y.; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death routines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the authors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the progress of this vibrant field of research. PMID:29354647

  13. Neuroprotective effects of silymarin on ischemia-induced delayed neuronal cell death in rat hippocampus.

    PubMed

    Hirayama, Koki; Oshima, Hideki; Yamashita, Akiko; Sakatani, Kaoru; Yoshino, Atsuo; Katayama, Yoichi

    2016-09-01

    We examined the effects of silymarin, which was extracted from Silybum marianum, on delayed neuronal cell death in the rat hippocampus. Rats were divided into four groups: sham-operated rats (sham group), rats which underwent ischemic surgery (control group), rats which were treated with silymarin before and after ischemic surgery (pre group), and rats which were treated with silymarin after ischemic surgery only (post group). We performed the ischemic surgery by occluding the bilateral carotid arteries for 20min and sacrificed the rats one week after the surgery. Silymarin was administered orally at 200mg/kg body weight. Smaller numbers of delayed cell deaths were noted in the rat CA1 region of the pre- and post-groups, and no significant difference was observed between these groups. There were few apoptotic cell deaths in all groups. Compared to the control group, significantly fewer cell deaths by autophagy were found in the pre- and post-group. We concluded that silymarin exerts a preservation effect on delayed neuronal cell death in the rat hippocampus and this effect has nothing to do with the timing of administering of silymarin. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Modeling activity and target-dependent developmental cell death of mouse retinal ganglion cells ex vivo.

    PubMed

    Voyatzis, Sylvie; Muzerelle, Aude; Gaspar, Patricia; Nicol, Xavier

    2012-01-01

    Programmed cell death is widespread during the development of the central nervous system and serves multiple purposes including the establishment of neural connections. In the mouse retina a substantial reduction of retinal ganglion cells (RGCs) occurs during the first postnatal week, coinciding with the formation of retinotopic maps in the superior colliculus (SC). We previously established a retino-collicular culture preparation which recapitulates the progressive topographic ordering of RGC projections during early post-natal life. Here, we questioned whether this model could also be suitable to examine the mechanisms underlying developmental cell death of RGCs. Brn3a was used as a marker of the RGCs. A developmental decline in the number of Brn3a-immunolabelled neurons was found in the retinal explant with a timing that paralleled that observed in vivo. In contrast, the density of photoreceptors or of starburst amacrine cells increased, mimicking the evolution of these cell populations in vivo. Blockade of neural activity with tetrodotoxin increased the number of surviving Brn3a-labelled neurons in the retinal explant, as did the increase in target availability when one retinal explant was confronted with 2 or 4 collicular slices. Thus, this ex vivo model reproduces the developmental reduction of RGCs and recapitulates its regulation by neural activity and target availability. It therefore offers a simple way to analyze developmental cell death in this classic system. Using this model, we show that ephrin-A signaling does not participate to the regulation of the Brn3a population size in the retina, indicating that eprhin-A-mediated elimination of exuberant projections does not involve developmental cell death.

  15. Transglutaminase induction by various cell death and apoptosis pathways.

    PubMed

    Fesus, L; Madi, A; Balajthy, Z; Nemes, Z; Szondy, Z

    1996-10-31

    Clarification of the molecular details of forms of natural cell death, including apoptosis, has become one of the most challenging issues of contemporary biomedical sciences. One of the effector elements of various cell death pathways is the covalent cross-linking of cellular proteins by transglutaminases. This review will discuss the accumulating data related to the induction and regulation of these enzymes, particularly of tissue type transglutaminase, in the molecular program of cell death. A wide range of signalling pathways can lead to the parallel induction of apoptosis and transglutaminase, providing a handle for better understanding the exact molecular interactions responsible for the mechanism of regulated cell death.

  16. [Novel Anticancer Strategy Targeting Switch Mechanisms in Two Types of Cell Death: Necrosis and Apoptosis].

    PubMed

    Sato, Akira

    2017-01-01

     Two types of cell death, necrosis and apoptosis, are defined in terms of cell death morphological features. We have been studying the mechanisms by which cell death processes are switched during the treatment of mouse tumor FM3A with anticancer, 5-fluoro-2'-deoxyuridine (FUdR): it induces original clone F28-7 to necrosis, but its sub-clone F28-7-A to apoptosis. We identified several such switch regulators of cell death: heat shock protein 90 (HSP90), lamin-B1, cytokeratin-19, and activating transcription factor 3 (ATF3), by using transcriptomic, proteomic analyses and siRNA screening. For example, the inhibition of HSP90 by its inhibitor geldanamycin in F28-7 caused a shift from necrosis to apoptosis. We also observed that the knockdown of lamin-B1, cytokeratin-19, or ATF3 expression in F28-7 resulted in a shift from necrosis to apoptosis. Recently, we used microRNA (miRNA, miR) microarray analyses to investigate the miRNA expression profiles in these sister cells. The miR-351 and miR-743a were expressed at higher levels in F28-7-A than in F28-7. Higher expression of miR-351 or miR-743a in F28-7, induced by transfecting the miR mimics, resulted in a switch of cell death mode: necrosis to apoptosis. Furthermore, transfection of an miR-351 inhibitor into F28-7-A resulted in morphological changes, and mode of cell death from apoptosis to necrosis. These findings suggest that the identified cell death regulators may have key roles in switching cell death mode. Possible mechanisms involving cell death regulators in the switch of necrosis or apoptosis are discussed. We propose a novel anticancer strategy targeting the switch regulators of necrosis or apoptosis.

  17. Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-Bromopyruvate

    PubMed Central

    Chen, Zhao; Zhang, Hui; Lu, Weiqin; Huang, Peng

    2009-01-01

    Summary It has long been observed that cancer cells rely more on glycolysis to generate ATP and actively use certain glycolytic metabolic intermediates for biosynthesis. Hexokinase II (HKII) is a key glycolytic enzyme that plays a role in the regulation of the mitochondria-initiated apoptotic cell death. As a potent inhibitor of hexokinase, 3-bromopyruvate (3-BrPA) is known to inhibit cancer cell energy metabolism and trigger cell death, supposedly through depletion of cellular ATP. The current study showed that 3-BrPA caused a covalent modification of HKII protein and directly triggered its dissociation from mitochondria, leading to a specific release of apoptosis-inducing factor (AIF) from the mitochondria to cytosol and eventual cell death. Co-immunoprecipitation revealed a physical interaction between HKII and AIF. Using a competitive peptide of HKII, we showed that the dissociation of hexokinase II from mitochondria alone could cause apoptotic cell death, especially in the mitochondria-deficient ρ0 cells that highly express HKII. Interestingly, the dissociation of HKII itself did no directly affect the mitochondrial membrane potential, ROS generation, and oxidative phosphorylation. Our study suggests that the physical association between HKII and AIF is important for the normal localization of AIF in the mitochondria, and disruption of this protein complex by 3-BrPA leads to their release from the mitochondria and eventual cell death. PMID:19285479

  18. E4F1 deficiency results in oxidative stress–mediated cell death of leukemic cells

    PubMed Central

    Hatchi, Elodie; Rodier, Genevieve; Lacroix, Matthieu; Caramel, Julie; Kirsh, Olivier; Jacquet, Chantal; Schrepfer, Emilie; Lagarrigue, Sylviane; Linares, Laetitia Karine; Lledo, Gwendaline; Tondeur, Sylvie; Dubus, Pierre

    2011-01-01

    The multifunctional E4F1 protein was originally discovered as a target of the E1A viral oncoprotein. Growing evidence indicates that E4F1 is involved in key signaling pathways commonly deregulated during cell transformation. In this study, we investigate the influence of E4F1 on tumorigenesis. Wild-type mice injected with fetal liver cells from mice lacking CDKN2A, the gene encoding Ink4a/Arf, developed histiocytic sarcomas (HSs), a tumor originating from the monocytic/macrophagic lineage. Cre-mediated deletion of E4F1 resulted in the death of HS cells and tumor regression in vivo and extended the lifespan of recipient animals. In murine and human HS cell lines, E4F1 inactivation resulted in mitochondrial defects and increased production of reactive oxygen species (ROS) that triggered massive cell death. Notably, these defects of E4F1 depletion were observed in HS cells but not healthy primary macrophages. Short hairpin RNA–mediated depletion of E4F1 induced mitochondrial defects and ROS-mediated death in several human myeloid leukemia cell lines. E4F1 protein is overexpressed in a large subset of human acute myeloid leukemia samples. Together, these data reveal a role for E4F1 in the survival of myeloid leukemic cells and support the notion that targeting E4F1 activities might have therapeutic interest. PMID:21708927

  19. Sulfated lentinan induced mitochondrial dysfunction leads to programmed cell death of tobacco BY-2 cells.

    PubMed

    Wang, Jie; Wang, Yaofeng; Shen, Lili; Qian, Yumei; Yang, Jinguang; Wang, Fenglong

    2017-04-01

    Sulphated lentinan (sLTN) is known to act as a resistance inducer by causing programmed cell death (PCD) in tobacco suspension cells. However, the underlying mechanism of this effect is largely unknown. Using tobacco BY-2 cell model, morphological and biochemical studies revealed that mitochondrial reactive oxygen species (ROS) production and mitochondrial dysfunction contribute to sLNT induced PCD. Cell viability, and HO/PI fluorescence imaging and TUNEL assays confirmed a typical cell death process caused by sLNT. Acetylsalicylic acid (an ROS scavenger), diphenylene iodonium (an inhibitor of NADPH oxidases) and protonophore carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (a protonophore and an uncoupler of mitochondrial oxidative phosphorylation) inhibited sLNT-induced H 2 O 2 generation and cell death, suggesting that ROS generation linked, at least partly, to a mitochondrial dysfunction and caspase-like activation. This conclusion was further confirmed by double-stained cells with the mitochondria-specific marker MitoTracker RedCMXRos and the ROS probe H 2 DCFDA. Moreover, the sLNT-induced PCD of BY-2 cells required cellular metabolism as up-regulation of the AOX family gene transcripts and induction of the SA biosynthesis, the TCA cycle, and miETC related genes were observed. It is concluded that mitochondria play an essential role in the signaling pathway of sLNT-induced ROS generation, which possibly provided new insight into the sLNT-mediated antiviral response, including PCD. Copyright © 2016. Published by Elsevier Inc.

  20. UV-Induced Cell Death in Plants

    PubMed Central

    Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-01

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059

  1. Mastoparan-induced programmed cell death in the unicellular alga Chlamydomonas reinhardtii

    PubMed Central

    Yordanova, Zhenya P.; Woltering, Ernst J.; Kapchina-Toteva, Veneta M.; Iakimova, Elena T.

    2013-01-01

    Background and Aims Under stress-promoting conditions unicellular algae can undergo programmed cell death (PCD) but the mechanisms of algal cellular suicide are still poorly understood. In this work, the involvement of caspase-like proteases, DNA cleavage and the morphological occurrence of cell death in wasp venom mastoparan (MP)-treated Chlamydomonas reinhardtii were studied. Methods Algal cells were exposed to MP and cell death was analysed over time. Specific caspase inhibitors were employed to elucidate the possible role of caspase-like proteases. YVADase activity (presumably a vacuolar processing enzyme) was assayed by using a fluorogenic caspase-1 substrate. DNA breakdown was evaluated by DNA laddering and Comet analysis. Cellular morphology was examined by confocal laser scanning microscopy. Key Results MP-treated C. reinhardtii cells expressed several features of necrosis (protoplast shrinkage) and vacuolar cell death (lytic vesicles, vacuolization, empty cell-walled corpse-containing remains of digested protoplast) sometimes within one single cell and in different individual cells. Nucleus compaction and DNA fragmentation were detected. YVADase activity was rapidly stimulated in response to MP but the early cell death was not inhibited by caspase inhibitors. At later time points, however, the caspase inhibitors were effective in cell-death suppression. Conditioned medium from MP-treated cells offered protection against MP-induced cell death. Conclusions In C. reinhardtii MP triggered PCD of atypical phenotype comprising features of vacuolar and necrotic cell deaths, reminiscent of the modality of hypersensitive response. It was assumed that depending on the physiological state and sensitivity of the cells to MP, the early cell-death phase might be not mediated by caspase-like enzymes, whereas later cell death may involve caspase-like-dependent proteolysis. The findings substantiate the hypothesis that, depending on the mode of induction and sensitivity of

  2. Natural Compounds As Modulators of Non-apoptotic Cell Death in Cancer Cells

    PubMed Central

    Guamán-Ortiz, Luis Miguel; Orellana, Maria Isabel Ramirez; Ratovitski, Edward A.

    2017-01-01

    Cell death is an innate capability of cells to be removed from microenvironment, if and when they are damaged by multiple stresses. Cell death is often regulated by multiple molecular pathways and mechanism, including apoptosis, autophagy, and necroptosis. The molecular network underlying these processes is often intertwined and one pathway can dynamically shift to another one acquiring certain protein components, in particular upon treatment with various drugs. The strategy to treat human cancer ultimately relies on the ability of anticancer therapeutics to induce tumor-specific cell death, while leaving normal adjacent cells undamaged. However, tumor cells often develop the resistance to the drug-induced cell death, thus representing a great challenge for the anticancer approaches. Numerous compounds originated from the natural sources and biopharmaceutical industries are applied today in clinics showing advantageous results. However, some exhibit serious toxic side effects. Thus, novel effective therapeutic approaches in treating cancers are continued to be developed. Natural compounds with anticancer activity have gained a great interest among researchers and clinicians alike since they have shown more favorable safety and efficacy then the synthetic marketed drugs. Numerous studies in vitro and in vivo have found that several natural compounds display promising anticancer potentials. This review underlines certain information regarding the role of natural compounds from plants, microorganisms and sea life forms, which are able to induce non-apoptotic cell death in tumor cells, namely autophagy and necroptosis. PMID:28367073

  3. Bcl-2 Family Members and Functional Electron Transport Chain Regulate Oxygen Deprivation-Induced Cell Death

    PubMed Central

    McClintock, David S.; Santore, Matthew T.; Lee, Vivian Y.; Brunelle, Joslyn; Budinger, G. R. Scott; Zong, Wei-Xing; Thompson, Craig B.; Hay, Nissim; Chandel, Navdeep S.

    2002-01-01

    The mechanisms underlying cell death during oxygen deprivation are unknown. We report here a model for oxygen deprivation-induced apoptosis. The death observed during oxygen deprivation involves a decrease in the mitochondrial membrane potential, followed by the release of cytochrome c and the activation of caspase-9. Bcl-XL prevented oxygen deprivation-induced cell death by inhibiting the release of cytochrome c and caspase-9 activation. The ability of Bcl-XL to prevent cell death was dependent on allowing the import of glycolytic ATP into the mitochondria to generate an inner mitochondrial membrane potential through the F1F0-ATP synthase. In contrast, although activated Akt has been shown to inhibit apoptosis induced by a variety of apoptotic stimuli, it did not prevent cell death during oxygen deprivation. In addition to Bcl-XL, cells devoid of mitochondrial DNA (ρ° cells) that lack a functional electron transport chain were resistant to oxygen deprivation. Further, murine embryonic fibroblasts from bax−/− bak−/− mice did not die in response to oxygen deprivation. These data suggest that when subjected to oxygen deprivation, cells die as a result of an inability to maintain a mitochondrial membrane potential through the import of glycolytic ATP. Proapoptotic Bcl-2 family members and a functional electron transport chain are required to initiate cell death in response to oxygen deprivation. PMID:11739725

  4. Singlet Oxygen-Induced Membrane Disruption and Serpin-Protease Balance in Vacuolar-Driven Cell Death1[OPEN

    PubMed Central

    Carmieli, Raanan; Mor, Avishai; Fluhr, Robert

    2016-01-01

    Singlet oxygen plays a role in cellular stress either by providing direct toxicity or through signaling to initiate death programs. It was therefore of interest to examine cell death, as occurs in Arabidopsis, due to differentially localized singlet oxygen photosensitizers. The photosensitizers rose bengal (RB) and acridine orange (AO) were localized to the plasmalemma and vacuole, respectively. Their photoactivation led to cell death as measured by ion leakage. Cell death could be inhibited by the singlet oxygen scavenger histidine in treatments with AO but not with RB. In the case of AO treatment, the vacuolar membrane was observed to disintegrate. Concomitantly, a complex was formed between a vacuolar cell-death protease, RESPONSIVE TO DESSICATION-21 and its cognate cytoplasmic protease inhibitor ATSERPIN1. In the case of RB treatment, the tonoplast remained intact and no complex was formed. Over-expression of AtSerpin1 repressed cell death, only under AO photodynamic treatment. Interestingly, acute water stress showed accumulation of singlet oxygen as determined by fluorescence of Singlet Oxygen Sensor Green, by electron paramagnetic resonance spectroscopy and the induction of singlet oxygen marker genes. Cell death by acute water stress was inhibited by the singlet oxygen scavenger histidine and was accompanied by vacuolar collapse and the appearance of serpin-protease complex. Over-expression of AtSerpin1 also attenuated cell death under this mode of cell stress. Thus, acute water stress damage shows parallels to vacuole-mediated cell death where the generation of singlet oxygen may play a role. PMID:26884487

  5. Molecular Characterization of Propolis-Induced Cell Death in Saccharomyces cerevisiae▿†

    PubMed Central

    de Castro, Patrícia Alves; Savoldi, Marcela; Bonatto, Diego; Barros, Mário Henrique; Goldman, Maria Helena S.; Berretta, Andresa A.; Goldman, Gustavo Henrique

    2011-01-01

    Propolis, a natural product of plant resins, is used by the bees to seal holes in their honeycombs and protect the hive entrance. However, propolis has also been used in folk medicine for centuries. Here, we apply the power of Saccharomyces cerevisiae as a model organism for studies of genetics, cell biology, and genomics to determine how propolis affects fungi at the cellular level. Propolis is able to induce an apoptosis cell death response. However, increased exposure to propolis provides a corresponding increase in the necrosis response. We showed that cytochrome c but not endonuclease G (Nuc1p) is involved in propolis-mediated cell death in S. cerevisiae. We also observed that the metacaspase YCA1 gene is important for propolis-mediated cell death. To elucidate the gene functions that may be required for propolis sensitivity in eukaryotes, the full collection of about 4,800 haploid S. cerevisiae deletion strains was screened for propolis sensitivity. We were able to identify 138 deletion strains that have different degrees of propolis sensitivity compared to the corresponding wild-type strains. Systems biology revealed enrichment for genes involved in the mitochondrial electron transport chain, vacuolar acidification, negative regulation of transcription from RNA polymerase II promoter, regulation of macroautophagy associated with protein targeting to vacuoles, and cellular response to starvation. Validation studies indicated that propolis sensitivity is dependent on the mitochondrial function and that vacuolar acidification and autophagy are important for yeast cell death caused by propolis. PMID:21193549

  6. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Fengjuan; Bexiga, Mariana G.; Anguissola, Sergio; Boya, Patricia; Simpson, Jeremy C.; Salvati, Anna; Dawson, Kenneth A.

    2013-10-01

    Positively charged polymers and nanoparticles (NPs) can be toxic to cells in various systems. Using human astrocytoma cells, we have previously shown that 50 nm amine-modified polystyrene NPs damage mitochondria and induce cell death by apoptosis. Here we provide comprehensive details of the cellular events occurring after exposure to the NPs in a time-resolved manner. We demonstrate that the accumulation of NPs in lysosomes plays a central role in the observed cell death, leading to swelling of the lysosomes and release of cathepsins into the cytosol, which ultimately propagates the damage to the mitochondria with subsequent activation of apoptosis. This is accompanied and sustained by other events, such as increasing ROS levels and autophagy. Using various inhibitors, we also show the interplay between apoptosis and autophagy as a response to NP accumulation in lysosomes.Positively charged polymers and nanoparticles (NPs) can be toxic to cells in various systems. Using human astrocytoma cells, we have previously shown that 50 nm amine-modified polystyrene NPs damage mitochondria and induce cell death by apoptosis. Here we provide comprehensive details of the cellular events occurring after exposure to the NPs in a time-resolved manner. We demonstrate that the accumulation of NPs in lysosomes plays a central role in the observed cell death, leading to swelling of the lysosomes and release of cathepsins into the cytosol, which ultimately propagates the damage to the mitochondria with subsequent activation of apoptosis. This is accompanied and sustained by other events, such as increasing ROS levels and autophagy. Using various inhibitors, we also show the interplay between apoptosis and autophagy as a response to NP accumulation in lysosomes. Electronic supplementary information (ESI) available: additional analysis of flow cytometry results, western blots and experiments with cathepsin inhibitors. See DOI: 10.1039/c3nr03249c

  7. Sickle cell trait and sudden death--bringing it home.

    PubMed Central

    Mitchell, Bruce L.

    2007-01-01

    Sickle cell trait continues to be the leading cause of sudden death for young African Americans in military basic training and civilian organized sports. The syndrome may have caused the death of up to 10 college football players since 1974 and, as recently as 2000, was suspected as the cause of death of three U.S. Army recruits. The penal military-style boot camps in the United States and the recent death of two teenagers with sickle cell trait merits renewed vigor in the education of athletic instructors, the military and the public about conditions associated with sudden death in individuals with sickle cell trait. Images Figure 1 Figure 2 PMID:17393956

  8. Necroptosis: an emerging type of cell death in liver diseases.

    PubMed

    Saeed, Waqar Khalid; Jun, Dae Won

    2014-09-21

    Cell death has been extensively evaluated for decades and it is well recognized that pharmacological interventions directed to inhibit cell death can prevent significant cell loss and can thus improve an organ's physiological function. For long, only apoptosis was considered as a sole form of programmed cell death. Recently necroptosis, a RIP1/RIP3-dependent programmed cell death, has been identified as an apoptotic backup cell death mechanism with necrotic morphology. The evidences of necroptosis and protective effects achieved by blocking necroptosis have been extensively reported in recent past. However, only a few studies reported the evidence of necroptosis and protective effects achieved by inhibiting necroptosis in liver related disease conditions. Although the number of necroptosis initiators is increasing; however, interestingly, it is still unclear that what actually triggers necroptosis in different liver diseases or if there is always a different necroptosis initiator in each specific disease condition followed by specific downstream signaling molecules. Understanding the precise mechanism of necroptosis as well as counteracting other cell death pathways in liver diseases could provide a useful insight towards achieving extensive therapeutic significance. By targeting necroptosis and/or other parallel death pathways, a significant cell loss and thus a decrement in an organ's physiological function can be prevented.

  9. 24(S)-Hydroxycholesterol induces RIPK1-dependent but MLKL-independent cell death in the absence of caspase-8.

    PubMed

    Vo, Diep-Khanh Ho; Urano, Yasuomi; Takabe, Wakako; Saito, Yoshiro; Noguchi, Noriko

    2015-07-01

    24(S)-Hydroxycholesterol (24S-OHC), which is enzymatically produced in the brain, is known to play an important role in maintaining brain cholesterol homeostasis. We have previously reported that 24S-OHC induces a type of non-apoptotic programmed necrosis in neuronal cells expressing little caspase-8. Necroptosis has been characterized as a type of programmed necrosis in which activation of receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL) is involved in the signaling pathway. In the present study, we investigated the involvement of these three proteins in 24S-OHC-induced cell death. We found that RIPK1 but neither RIPK3 nor MLKL was expressed in human neuroblastoma SH-SY5Y cells, while all three proteins were expressed in human T lymphoma caspase-8-deficient Jurkat (Jurkat(Cas8-/-)) cells. In Jurkat(Cas8-/-) cells, tumor necrosis factor α (TNFα)-induced cell death was significantly suppressed by treatment with respective inhibitors of RIPK1, RIPK3, and MLKL. In contrast, only RIPK1 inhibitor showed significant suppression of 24S-OHC-induced cell death, and even this was less prominent than was observed in TNFα-induced cell death. In Jurkat(Cas8-/-) cells, knockdown of either RIPK1 or RIPK3 caused moderate but significant suppression of 24S-OHC-induced cell death, but no such effect was observed as a result of knockdown of MLKL. Collectively, these results suggest that, for both SH-SY5Y cells and Jurkat(Cas8-/-) cells, 24S-OHC-induced cell death is dependent on RIPK1 but not on MLKL. We therefore conclude that, in the absence of caspase-8 activity, 24S-OHC induces a necroptosis-like cell death which is RIPK1-dependent but MLKL-independent. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. K6 linked polyubiquitylation of FADD by CHIP prevents death inducing signaling complex formation suppressing cell death.

    PubMed

    Seo, Jinho; Lee, Eun-Woo; Shin, Jihye; Seong, Daehyeon; Nam, Young Woo; Jeong, Manhyung; Lee, Seon-Hyeong; Lee, Cheolju; Song, Jaewhan

    2018-05-23

    Fas-associated death domain (FADD) is an adaptor protein recruiting complexes of caspase 8 to death ligand receptors to induce extrinsic apoptotic cell death in response to a TNF superfamily member. Although, formation of the complex of FADD and caspase 8 upon death stimuli has been studied in detail, posttranslational modifications fine-tuning these processes have yet to be identified. Here we revealed that K6-linked polyubiquitylation of FADD on lysines 149 and 153 mediated by C terminus HSC70-interacting protein (CHIP) plays an important role in preventing formation of the death inducing signaling complex (DISC), thus leading to the suppression of cell death. Cells depleted of CHIP showed higher sensitivity toward death ligands such as FasL and TRAIL, leading to upregulation of DISC formation composed of a death receptor, FADD, and caspase 8. CHIP was able to bind to FADD, induce K6-linked polyubiquitylation of FADD, and suppress DISC formation. By mass spectrometry, lysines 149 and 153 of FADD were found to be responsible for CHIP-mediated FADD ubiquitylation. FADD mutated at these sites was capable of more potent cell death induction as compared with the wild type and was no longer suppressed by CHIP. On the other hand, CHIP deficient in E3 ligase activity was not capable of suppressing FADD function and of FADD ubiquitylation. CHIP depletion in ME-180 cells induced significant sensitization of these cells toward TRAIL in xenograft analyses. These results imply that K6-linked ubiquitylation of FADD by CHIP is a crucial checkpoint in cytokine-dependent extrinsic apoptosis.

  11. C/EBPβ LIP augments cell death by inducing osteoglycin.

    PubMed

    Wassermann-Dozorets, Rina; Rubinstein, Menachem

    2017-04-06

    Many types of tumor cell are devoid of the extracellular matrix proteoglycan osteoglycin (Ogn), but its role in tumor biology is poorly studied. Here we show that RNAi of Ogn attenuates stress-triggered cell death, whereas its overexpression increases cell death. We found that the transcription factor C/EBPβ regulates the expression of Ogn. C/EBPβ is expressed as a full-length, active form (LAP) and as a truncated, dominant-negative form (LIP), and the LIP/LAP ratio is positively correlated with the extent of cell death under stress. For example, we reported that drug-resistant tumor cells lack LIP altogether, and its supplementation abolished their resistance to chemotherapy and to endoplasmic reticulum (ER) stress. Here we further show that elevated LIP/LAP ratio robustly increased Ogn expression and cell death under stress by modulating the mitogen-activated protein kinase/activator protein 1 pathway (MAPK/AP-1). Our findings suggest that LIP deficiency renders tumor cell resistant to ER stress by preventing the induction of Ogn.

  12. Diagnosis of Cell Death by Means of Infrared Spectroscopy

    PubMed Central

    Zelig, Udi; Kapelushnik, Joseph; Moreh, Raymond; Mordechai, Shaul; Nathan, Ilana

    2009-01-01

    Abstract Fourier transform infrared (FTIR) spectroscopy has been established as a fast spectroscopic method for biochemical analysis of cells and tissues. In this research we aimed to investigate FTIR's utility for identifying and characterizing different modes of cell death, using leukemic cell lines as a model system. CCRF-CEM and U937 leukemia cells were treated with arabinoside and doxorubicin apoptosis inducers, as well as with potassium cyanide, saponin, freezing-thawing, and H2O2 necrosis inducers. Cell death mode was determined by various gold standard biochemical methods in parallel with FTIR-microscope measurements. Both cell death modes exhibit large spectral changes in lipid absorbance during apoptosis and necrosis; however, these changes are similar and thus cannot be used to distinguish apoptosis from necrosis. In contrast to the above confounding factor, our results reveal that apoptosis and necrosis can still be distinguished by the degree of DNA opaqueness to infrared light. Moreover, these two cell death modes also can be differentiated by their infrared absorbance, which relates to the secondary structure of total cellular protein. In light of these findings, we conclude that, because of its capacity to monitor multiple biomolecular parameters, FTIR spectroscopy enables unambiguous and easy analysis of cell death modes and may be useful for biochemical and medical applications. PMID:19804743

  13. Sigma-2 ligands and PARP inhibitors synergistically trigger cell death in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Elizabeth S.; Mankoff, Julia; Makvandi, Mehran

    The sigma-2 receptor is overexpressed in proliferating cells compared to quiescent cells and has been used as a target for imaging solid tumors by positron emission tomography. Recent work has suggested that the sigma-2 receptor may also be an effective therapeutic target for cancer therapy. Poly (ADP-ribose) polymerase (PARP) is a family of enzymes involved in DNA damage response. In this study, we looked for potential synergy of cytotoxicity between PARP inhibitors and sigma-2 receptor ligands in breast cancer cell lines. We showed that the PARP inhibitor, YUN3-6, sensitized mouse breast cancer cell line, EMT6, to sigma-2 receptor ligand (SV119,more » WC-26, and RHM-138) induced cell death determined by cell viability assay and colony forming assay. The PARP inhibitor, olaparib, sensitized tumor cells to a different sigma-2 receptor ligand SW43-induced apoptosis and cell death in human triple negative cell line, MDA-MB-231. Olaparib inhibited PARP activity and cell proliferation, and arrested cells in G2/M phase of the cell cycle in MDA-MB-231 cells. Subsequently cells became sensitized to SW43 induced cell death. In conclusion, the combination of sigma-2 receptor ligands and PARP inhibitors appears to hold promise for synergistically triggering cell death in certain types of breast cancer cells and merits further investigation. - Highlights: • PARPi, YUN3-6 and olaparib, and σ2 ligands, SV119 and SW43, were evaluated. • Mouse and human breast cancer cells, EMT6 and MDA-MB-231 respectively, were used. • YUN3-6 and SV119 synergistically triggered cell death in EMT6 cells. • Olaparib and SW43 additively triggered cell death in MDA-MB-231 cells. • Olaparib arrested cells in G2/M in MDA-MB-231 cells.« less

  14. A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis.

    PubMed

    Collins, Tony J; Ylanko, Jarkko; Geng, Fei; Andrews, David W

    2015-11-01

    A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose-response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds.

  15. A Versatile Cell Death Screening Assay Using Dye-Stained Cells and Multivariate Image Analysis

    PubMed Central

    Collins, Tony J.; Ylanko, Jarkko; Geng, Fei

    2015-01-01

    Abstract A novel dye-based method for measuring cell death in image-based screens is presented. Unlike conventional high- and medium-throughput cell death assays that measure only one form of cell death accurately, using multivariate analysis of micrographs of cells stained with the inexpensive mix, red dye nonyl acridine orange, and a nuclear stain, it was possible to quantify cell death induced by a variety of different agonists even without a positive control. Surprisingly, using a single known cytotoxic agent as a positive control for training a multivariate classifier allowed accurate quantification of cytotoxicity for mechanistically unrelated compounds enabling generation of dose–response curves. Comparison with low throughput biochemical methods suggested that cell death was accurately distinguished from cell stress induced by low concentrations of the bioactive compounds Tunicamycin and Brefeldin A. High-throughput image-based format analyses of more than 300 kinase inhibitors correctly identified 11 as cytotoxic with only 1 false positive. The simplicity and robustness of this dye-based assay makes it particularly suited to live cell screening for toxic compounds. PMID:26422066

  16. How Kidney Cell Death Induces Renal Necroinflammation.

    PubMed

    Mulay, Shrikant R; Kumar, Santhosh V; Lech, Maciej; Desai, Jyaysi; Anders, Hans-Joachim

    2016-05-01

    The nephrons of the kidney are independent functional units harboring cells of a low turnover during homeostasis. As such, physiological renal cell death is a rather rare event and dead cells are flushed away rapidly with the urinary flow. Renal cell necrosis occurs in acute kidney injuries such as thrombotic microangiopathies, necrotizing glomerulonephritis, or tubular necrosis. All of these are associated with intense intrarenal inflammation, which contributes to further renal cell loss, an autoamplifying process referred to as necroinflammation. But how does renal cell necrosis trigger inflammation? Here, we discuss the role of danger-associated molecular patterns (DAMPs), mitochondrial (mito)-DAMPs, and alarmins, as well as their respective pattern recognition receptors. The capacity of DAMPs and alarmins to trigger cytokine and chemokine release initiates the recruitment of leukocytes into the kidney that further amplify necroinflammation. Infiltrating neutrophils often undergo neutrophil extracellular trap formation associated with neutrophil death or necroptosis, which implies a release of histones, which act not only as DAMPs but also elicit direct cytotoxic effects on renal cells, namely endothelial cells. Proinflammatory macrophages and eventually cytotoxic T cells further drive kidney cell death and inflammation. Dissecting the molecular mechanisms of necroinflammation may help to identify the best therapeutic targets to limit nephron loss in kidney injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Non-apoptotic cell death in animal development.

    PubMed

    Kutscher, Lena M; Shaham, Shai

    2017-08-01

    Programmed cell death (PCD) is an important process in the development of multicellular organisms. Apoptosis, a form of PCD characterized morphologically by chromatin condensation, membrane blebbing, and cytoplasm compaction, and molecularly by the activation of caspase proteases, has been extensively investigated. Studies in Caenorhabditis elegans, Drosophila, mice, and the developing chick have revealed, however, that developmental PCD also occurs through other mechanisms, morphologically and molecularly distinct from apoptosis. Some non-apoptotic PCD pathways, including those regulating germ cell death in Drosophila, still appear to employ caspases. However, another prominent cell death program, linker cell-type death (LCD), is morphologically conserved, and independent of the key genes that drive apoptosis, functioning, at least in part, through the ubiquitin proteasome system. These non-apoptotic processes may serve as backup programs when caspases are inactivated or unavailable, or, more likely, as freestanding cell culling programs. Non-apoptotic PCD has been documented extensively in the developing nervous system, and during the formation of germline and somatic gonadal structures, suggesting that preservation of these mechanisms is likely under strong selective pressure. Here, we discuss our current understanding of non-apoptotic PCD in animal development, and explore possible roles for LCD and other non-apoptotic developmental pathways in vertebrates. We raise the possibility that during vertebrate development, apoptosis may not be the major PCD mechanism.

  18. Technological advances in real-time tracking of cell death

    PubMed Central

    Skommer, Joanna; Darzynkiewicz, Zbigniew; Wlodkowic, Donald

    2010-01-01

    Cell population can be viewed as a quantum system, which like Schrödinger’s cat exists as a combination of survival- and death-allowing states. Tracking and understanding cell-to-cell variability in processes of high spatio-temporal complexity such as cell death is at the core of current systems biology approaches. As probabilistic modeling tools attempt to impute information inaccessible by current experimental approaches, advances in technologies for single-cell imaging and omics (proteomics, genomics, metabolomics) should go hand in hand with the computational efforts. Over the last few years we have made exciting technological advances that allow studies of cell death dynamically in real-time and with the unprecedented accuracy. These approaches are based on innovative fluorescent assays and recombinant proteins, bioelectrical properties of cells, and more recently also on state-of-the-art optical spectroscopy. Here, we review current status of the most innovative analytical technologies for dynamic tracking of cell death, and address the interdisciplinary promises and future challenges of these methods. PMID:20519963

  19. Chloroquine synergizes with FTS to enhance cell growth inhibition and cell death

    PubMed Central

    Schmukler, Eran; Wolfson, Eya; Haklai, Roni; Elad-Sfadia, Galit; Kloog, Yoel; Pinkas-Kramarski, Ronit

    2014-01-01

    The Ras family of small GTPases transmits extracellular signals that regulate cell growth, differentiation, motility and death. Ras signaling is constitutively active in a large number of human cancers. Ras can also regulate autophagy by affecting several signaling pathways including the mTOR pathway. Autophagy is a process that regulates the balance between protein synthesis and protein degradation. It is important for normal growth control, but may be defective in diseases. Previously, we have shown that Ras inhibition by FTS induces autophagy, which partially protects cancer cells and may limit the use of FTS as an anti-cancer drug. Since FTS is a non toxic drug we hypothesized that FTS and chloroquine (an autophagy inhibitor) will synergize in cell growth inhibition and cell death. Thus, in the present study, we explored the mechanism of each individual drug and their combined action. Our results demonstrate that in HCT-116 and in Panc-1 cells, FTS induces autophagy, which can be inhibited by chloroquine. Furthermore, the combined treatment synergistically decreased the number of viable cells. Interestingly, the combined treatment enhanced apoptotic cell death as indicated by increased sub-G1 cell population, increased Hoechst staining, activation of caspase 3, decrease in survivin expression and release of cytochrome c. Thus, chloroquine treatment may promote FTS-mediated inhibition of tumor cell growth and may stimulate apoptotic cell death. PMID:24368422

  20. Oxidized low-density lipoprotein induces calpain-dependent cell death and ubiquitination of caspase 3 in HMEC-1 endothelial cells.

    PubMed Central

    Pörn-Ares, M Isabella; Saido, Takaomi C; Andersson, Tommy; Ares, Mikko P S

    2003-01-01

    Oxidized low-density lipoprotein (oxLDL) is known to induce apoptosis in endothelial cells, and this is believed to contribute to the progression of atherosclerosis. In the present study we made the novel observation that oxLDL-induced death of HMEC-1 cells is accompanied by activation of calpain. The mu-calpain inhibitor PD 151746 decreased oxLDL-induced cytotoxicity, whereas the general caspase inhibitor BAF (t-butoxycarbonyl-Asp-methoxyfluoromethylketone) had no effect. Also, oxLDL provoked calpain-dependent proteolysis of cytoskeletal alpha-fodrin in the HMEC-1 cells. Our observation of an autoproteolytic cleavage of the 80 kDa subunit of mu-calpain provided further evidence for an oxLDL-induced stimulation of calpain activity. The Bcl-2 protein Bid was also cleaved during oxLDL-elicited cell death, and this was prevented by calpain inhibitors, but not by inhibitors of cathepsin B and caspases. Treating the HMEC-1 cells with oxLDL did not result in detectable activation of procaspase 3 or cleavage of PARP [poly(ADP-ribose) polymerase], but it did cause polyubiquitination of caspase 3, indicating inactivation and possible degradation of this protease. Despite the lack of caspase 3 activation, oxLDL treatment led to the formation of nucleosomal DNA fragments characteristic of apoptosis. These novel results show that oxLDL initiates a calpain-mediated death-signalling pathway in endothelial cells. PMID:12775216

  1. Control of non-apoptotic nurse cell death by engulfment genes in Drosophila.

    PubMed

    Timmons, Allison K; Mondragon, Albert A; Meehan, Tracy L; McCall, Kimberly

    2017-04-03

    Programmed cell death occurs as a normal part of oocyte development in Drosophila. For each egg that is formed, 15 germline-derived nurse cells transfer their cytoplasmic contents into the oocyte and die. Disruption of apoptosis or autophagy only partially inhibits the death of the nurse cells, indicating that other mechanisms significantly contribute to nurse cell death. Recently, we demonstrated that the surrounding stretch follicle cells non-autonomously promote nurse cell death during late oogenesis and that phagocytosis genes including draper, ced-12, and the JNK pathway are crucial for this process. When phagocytosis genes are inhibited in the follicle cells, events specifically associated with death of the nurse cells are impaired. Death of the nurse cells is not completely blocked in draper mutants, suggesting that other engulfment receptors are involved. Indeed, we found that the integrin subunit, αPS3, is enriched on stretch follicle cells during late oogenesis and is required for elimination of the nurse cells. Moreover, double mutant analysis revealed that integrins act in parallel to draper. Death of nurse cells in the Drosophila ovary is a unique example of programmed cell death that is both non-apoptotic and non-cell autonomously controlled.

  2. Mitochondrial Ca2+ influx targets cardiolipin to disintegrate respiratory chain complex II for cell death induction

    PubMed Central

    Hwang, M-S; Schwall, C T; Pazarentzos, E; Datler, C; Alder, N N; Grimm, S

    2014-01-01

    Massive Ca2+ influx into mitochondria is critically involved in cell death induction but it is unknown how this activates the organelle for cell destruction. Using multiple approaches including subcellular fractionation, FRET in intact cells, and in vitro reconstitutions, we show that mitochondrial Ca2+ influx prompts complex II of the respiratory chain to disintegrate, thereby releasing an enzymatically competent sub-complex that generates excessive reactive oxygen species (ROS) for cell death induction. This Ca2+-dependent dissociation of complex II is also observed in model membrane systems, but not when cardiolipin is replaced with a lipid devoid of Ca2+ binding. Cardiolipin is known to associate with complex II and upon Ca2+ binding coalesces into separate homotypic clusters. When complex II is deprived of this lipid, it disintegrates for ROS formation and cell death. Our results reveal Ca2+ binding to cardiolipin for complex II disintegration as a pivotal step for oxidative stress and cell death induction. PMID:24948011

  3. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.

    PubMed

    Rao, M V; Lee, H; Creelman, R A; Mullet, J E; Davis, K R

    2000-09-01

    Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.

  4. Determinants of suicide and accidental or violent death in the Australian HIV Observational Database.

    PubMed

    McManus, Hamish; Petoumenos, Kathy; Franic, Teo; Kelly, Mark D; Watson, Jo; O'Connor, Catherine C; Jeanes, Mark; Hoy, Jennifer; Cooper, David A; Law, Matthew G

    2014-01-01

    Rates of suicide and accidental or violent death remain high in HIV-positive populations despite significantly improved prognosis since the introduction of cART. We conducted a nested case-control study of suicide and accidental or violent death in the Australian HIV Observational Database (AHOD) between January 1999 and March 2012. For each case, 2 controls were matched by clinic, age, sex, mode of exposure and HIV-positive date to adjust for potential confounding by these covariates. Risk of suicide and accidental or violent death was estimated using conditional logistic regression. We included 27 cases (17 suicide and 10 violent/accidental death) and 54 controls. All cases were men who have sex with men (MSM) or MSM/ injecting drug use (IDU) mode of exposure. Increased risk was associated with unemployment (Odds Ratio (OR) 5.86, 95% CI: 1.69-20.37), living alone (OR 3.26, 95% CI: 1.06-10.07), suicidal ideation (OR 6.55, 95% CI: 1.70-25.21), and >2 psychiatric/cognitive risk factors (OR 4.99, 95% CI: 1.17-30.65). CD4 cell count of >500 cells/µL (OR 0.25, 95% CI: 0.07-0.87) and HIV-positive date ≥1990 (1990-1999 (OR 0.31, 95% CI: 0.11-0.89), post-2000 (OR 0.08, 95% CI: 0.01-0.84)) were associated with decreased risk. CD4 cell count ≥500 cells/µL remained a significant predictor of reduced risk (OR 0.15, 95% CI: 0.03-0.70) in a multivariate model adjusted for employment status, accommodation status and HIV-positive date. After adjustment for psychosocial factors, the immunological status of HIV-positive patients contributed to the risk of suicide and accidental or violent death. The number of psychiatric/cognitive diagnoses contributed to the level of risk but many psychosocial factors were not individually significant. These findings indicate a complex interplay of factors associated with risk of suicide and accidental or violent death.

  5. Early induction of c-Myc is associated with neuronal cell death.

    PubMed

    Lee, Hyun-Pil; Kudo, Wataru; Zhu, Xiongwei; Smith, Mark A; Lee, Hyoung-gon

    2011-11-14

    Neuronal cell cycle activation has been implicated in neurodegenerative diseases such as Alzheimer's disease, while the initiating mechanism of cell cycle activation remains to be determined. Interestingly, our previous studies have shown that cell cycle activation by c-Myc (Myc) leads to neuronal cell death which suggests Myc might be a key regulator of cell cycle re-entry mediated neuronal cell death. However, the pattern of Myc expression in the process of neuronal cell death has not been addressed. To this end, we examined Myc induction by the neurotoxic agents camptothecin and amyloid-β peptide in a differentiated SH-SY5Y neuronal cell culture model. Myc expression was found to be significantly increased following either treatment and importantly, the induction of Myc preceded neuronal cell death suggesting it is an early event of neuronal cell death. Since ectopic expression of Myc in neurons causes the cell cycle activation and neurodegeneration in vivo, the current data suggest that induction of Myc by neurotoxic agents or other disease factors might be a key mediator in cell cycle activation and consequent cell death that is a feature of neurodegenerative diseases. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Apoptosis and accidental cell death in cultured human keratinocytes after thermal injury.

    PubMed

    Matylevitch, N P; Schuschereba, S T; Mata, J R; Gilligan, G R; Lawlor, D F; Goodwin, C W; Bowman, P D

    1998-08-01

    The respective roles of apoptosis and accidental cell death after thermal injury were evaluated in normal human epidermal keratinocytes. By coupling the LIVE/DEAD fluorescence viability assay with the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) method and ultrastructural morphology, these two processes could be distinguished. Cells were grown on glass coverslips with a microgrid pattern so that the results of several staining procedures performed sequentially could be visualized in the same cells after heating at temperatures of up to 72 degrees C for 1 second. After exposure to temperatures of 58 to 59 degrees C, cells died predominantly by apoptosis; viable cells became TUNEL positive, indicating degradation of DNA. After exposure to temperatures of 60 to 66 degrees C, both TUNEL-positive viable cells and TUNEL-positive nonviable cells were observed, indicating that apoptosis and accidental cell death were occurring simultaneously. Cells died almost immediately after exposure to temperatures above 72 degrees C, presumably from heat fixation. The fluorescent mitochondrial probe MitoTracker Orange indicated that cells undergoing apoptosis became TUNEL positive before loss of mitochondrial function. Nucleosomal fragmentation of DNA analyzed by enzyme-linked immunosorbent assay and gel electrophoresis occurred after exposure to temperatures of 58 to 59 degrees C. The characteristic morphological findings of cells undergoing apoptosis, by transmission electron microscopy, included cellular shrinkage, cytoplasmic budding, and relatively intact mitochondria. Depending on temperature and time of exposure, normal human epidermal keratinocytes may die by apoptosis, accidental cell death, or heat fixation.

  7. Cardiac Glycoside Glucoevatromonoside Induces Cancer Type-Specific Cell Death

    PubMed Central

    Schneider, Naira F. Z.; Cerella, Claudia; Lee, Jin-Young; Mazumder, Aloran; Kim, Kyung Rok; de Carvalho, Annelise; Munkert, Jennifer; Pádua, Rodrigo M.; Kreis, Wolfgang; Kim, Kyu-Won; Christov, Christo; Dicato, Mario; Kim, Hyun-Jung; Han, Byung Woo; Braga, Fernão C.; Simões, Cláudia M. O.; Diederich, Marc

    2018-01-01

    Cardiac glycosides (CGs) are natural compounds used traditionally to treat congestive heart diseases. Recent investigations repositioned CGs as potential anticancer agents. To discover novel cytotoxic CG scaffolds, we selected the cardenolide glucoevatromonoside (GEV) out of 46 CGs for its low nanomolar anti-lung cancer activity. GEV presented reduced toxicity toward non-cancerous cell types (lung MRC-5 and PBMC) and high-affinity binding to the Na+/K+-ATPase α subunit, assessed by computational docking. GEV-induced cell death was caspase-independent, as investigated by a multiparametric approach, and culminates in severe morphological alterations in A549 cells, monitored by transmission electron microscopy, live cell imaging and flow cytometry. This non-canonical cell death was not preceded or accompanied by exacerbation of autophagy. In the presence of GEV, markers of autophagic flux (e.g. LC3I-II conversion) were impacted, even in presence of bafilomycin A1. Cell death induction remained unaffected by calpain, cathepsin, parthanatos, or necroptosis inhibitors. Interestingly, GEV triggered caspase-dependent apoptosis in U937 acute myeloid leukemia cells, witnessing cancer-type specific cell death induction. Differential cell cycle modulation by this CG led to a G2/M arrest, cyclin B1 and p53 downregulation in A549, but not in U937 cells. We further extended the anti-cancer potential of GEV to 3D cell culture using clonogenic and spheroid formation assays and validated our findings in vivo by zebrafish xenografts. Altogether, GEV shows an interesting anticancer profile with the ability to exert cytotoxic effects via induction of different cell death modalities. PMID:29545747

  8. Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Aggregation Causes Mitochondrial Dysfunction during Oxidative Stress-induced Cell Death*

    PubMed Central

    Itakura, Masanori; Kubo, Takeya; Kaneshige, Akihiro; Harada, Naoki; Izawa, Takeshi; Azuma, Yasu-Taka; Kuwamura, Mitsuru; Yamaji, Ryouichi; Takeuchi, Tadayoshi

    2017-01-01

    Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein that also mediates cell death under oxidative stress. We reported previously that the active-site cysteine (Cys-152) of GAPDH plays an essential role in oxidative stress-induced aggregation of GAPDH associated with cell death, and a C152A-GAPDH mutant rescues nitric oxide (NO)-induced cell death by interfering with the aggregation of wild type (WT)-GAPDH. However, the detailed mechanism underlying GAPDH aggregate-induced cell death remains elusive. Here we report that NO-induced GAPDH aggregation specifically causes mitochondrial dysfunction. First, we observed a correlation between NO-induced GAPDH aggregation and mitochondrial dysfunction, when GAPDH aggregation occurred at mitochondria in SH-SY5Y cells. In isolated mitochondria, aggregates of WT-GAPDH directly induced mitochondrial swelling and depolarization, whereas mixtures containing aggregates of C152A-GAPDH reduced mitochondrial dysfunction. Additionally, treatment with cyclosporin A improved WT-GAPDH aggregate-induced swelling and depolarization. In doxycycline-inducible SH-SY5Y cells, overexpression of WT-GAPDH augmented NO-induced mitochondrial dysfunction and increased mitochondrial GAPDH aggregation, whereas induced overexpression of C152A-GAPDH significantly suppressed mitochondrial impairment. Further, NO-induced cytochrome c release into the cytosol and nuclear translocation of apoptosis-inducing factor from mitochondria were both augmented in cells overexpressing WT-GAPDH but ameliorated in C152A-GAPDH-overexpressing cells. Interestingly, GAPDH aggregates induced necrotic cell death via a permeability transition pore (PTP) opening. The expression of either WT- or C152A-GAPDH did not affect other cell death pathways associated with protein aggregation, such as proteasome inhibition, gene expression induced by endoplasmic reticulum stress, or autophagy. Collectively, these results suggest that NO-induced GAPDH

  9. Role of Bax in death of uninfected retinal cells during murine cytomegalovirus retinitis.

    PubMed

    Mo, Juan; Marshall, Brendan; Covar, Jason; Zhang, Nancy Y; Smith, Sylvia B; Atherton, Sally S; Zhang, Ming

    2014-10-08

    Extensive death of uninfected bystander neuronal cells is an important component of the pathogenesis of cytomegalovirus retinitis. Our previous results have shown that caspase 3-dependent and -independent pathways are involved in death of uninfected bystander cells during murine cytomegalovirus (MCMV) retinitis and also that Bcl-2, an important inhibitor of apoptosis via the Bax-mediated mitochondrial pathway, is downregulated during this process. The purpose of this study was to determine whether Bax-mediated mitochondrial damage has a significant role in the death of uninfected retinal cells. BALB/c mice, Bax(-/-) mice, or Bax(+/+) mice were immunosuppressed with methylprednisolone and infected with 5 × 10(3) plaque-forming units (PFU) of the K181 strain of MCMV via the supraciliary route. Injected eyes were analyzed by plaque assay, electron microscopy, hematoxylin and eosin (H&E) staining, TUNEL assay, Western blot (for caspase 3, caspase 12, Bax, receptor interacting protein-1 [RIP1] and receptor interacting protein-3 [RIP3]), as well as immunohistochemical staining for MCMV early antigen and cleaved caspase 3. Significantly more Bax was detected in mitochondrial fractions of MCMV-infected eyes than in mitochondrial fractions of mock-infected control eyes. Furthermore, the level of cleaved caspase 3 was significantly lower in MCMV-infected Bax(-/-) eyes than in MCMV-infected Bax(+/+) eyes. However, more caspase 3-independent cell death of uninfected bystander retinal cells and more cleaved RIP1 were observed in Bax(-/-) than in Bax(+/+) eyes. During MCMV retinitis, Bax is activated and has an important role in death of uninfected bystander retinal cells by caspase 3-dependent apoptosis. Although the exact mechanism remains to be deciphered, active Bax might also prevent death of some types of uninfected retinal cells by a caspase 3-independent pathway. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  10. Role of Bax in Death of Uninfected Retinal Cells During Murine Cytomegalovirus Retinitis

    PubMed Central

    Mo, Juan; Marshall, Brendan; Covar, Jason; Zhang, Nancy Y.; Smith, Sylvia B.; Atherton, Sally S.; Zhang, Ming

    2014-01-01

    Purpose. Extensive death of uninfected bystander neuronal cells is an important component of the pathogenesis of cytomegalovirus retinitis. Our previous results have shown that caspase 3–dependent and –independent pathways are involved in death of uninfected bystander cells during murine cytomegalovirus (MCMV) retinitis and also that Bcl-2, an important inhibitor of apoptosis via the Bax-mediated mitochondrial pathway, is downregulated during this process. The purpose of this study was to determine whether Bax-mediated mitochondrial damage has a significant role in the death of uninfected retinal cells. Methods. BALB/c mice, Bax−/− mice, or Bax+/+ mice were immunosuppressed with methylprednisolone and infected with 5 × 103 plaque-forming units (PFU) of the K181 strain of MCMV via the supraciliary route. Injected eyes were analyzed by plaque assay, electron microscopy, hematoxylin and eosin (H&E) staining, TUNEL assay, Western blot (for caspase 3, caspase 12, Bax, receptor interacting protein-1 [RIP1] and receptor interacting protein-3 [RIP3]), as well as immunohistochemical staining for MCMV early antigen and cleaved caspase 3. Results. Significantly more Bax was detected in mitochondrial fractions of MCMV-infected eyes than in mitochondrial fractions of mock-infected control eyes. Furthermore, the level of cleaved caspase 3 was significantly lower in MCMV-infected Bax−/− eyes than in MCMV-infected Bax+/+ eyes. However, more caspase 3–independent cell death of uninfected bystander retinal cells and more cleaved RIP1 were observed in Bax−/− than in Bax+/+ eyes. Conclusions. During MCMV retinitis, Bax is activated and has an important role in death of uninfected bystander retinal cells by caspase 3–dependent apoptosis. Although the exact mechanism remains to be deciphered, active Bax might also prevent death of some types of uninfected retinal cells by a caspase 3–independent pathway. PMID:25298417

  11. Mouse embryonic stem cells undergo Charontosis, a novel programmed cell death pathway dependent upon cathepsins, p53, and EndoG, in response to etoposide treatment

    PubMed Central

    Tichy, Elisia D.; Stephan, Zachary A.; Osterburg, Andrew; Noel, Greg; Stambrook, Peter J.

    2013-01-01

    Embryonic stem cells (ESCs) are hypersensitive to many DNA damaging agents and can rapidly undergo cell death or cell differentiation following exposure. Treatment of mouse ESCs (mESCs) with etoposide (ETO), a topoisomerase II poison, followed by a recovery period resulted in massive cell death with characteristics of a programmed cell death pathway (PCD). While cell death was both caspase- and necroptosis-independent, it was partially dependent on the activity of lysosomal proteases. A role for autophagy in the cell death process was eliminated, suggesting that ETO induces a novel PCD pathway in mESCs. Inhibition of p53 either as a transcription factor by pifithrin α or in its mitochondrial role by pifithrin μ significantly reduced ESC death levels. Finally, EndoG was newly identified as a protease participating in the DNA fragmentation observed during ETO-induced PCD. We coined the term Charontosis after Charon, the ferryman of the dead in Greek mythology, to refer to the PCD signaling events induced by ETO in mESCs. PMID:23500643

  12. Mouse embryonic stem cells undergo charontosis, a novel programmed cell death pathway dependent upon cathepsins, p53, and EndoG, in response to etoposide treatment.

    PubMed

    Tichy, Elisia D; Stephan, Zachary A; Osterburg, Andrew; Noel, Greg; Stambrook, Peter J

    2013-05-01

    Embryonic stem cells (ESCs) are hypersensitive to many DNA damaging agents and can rapidly undergo cell death or cell differentiation following exposure. Treatment of mouse ESCs (mESCs) with etoposide (ETO), a topoisomerase II poison, followed by a recovery period resulted in massive cell death with characteristics of a programmed cell death pathway (PCD). While cell death was both caspase- and necroptosis-independent, it was partially dependent on the activity of lysosomal proteases. A role for autophagy in the cell death process was eliminated, suggesting that ETO induces a novel PCD pathway in mESCs. Inhibition of p53 either as a transcription factor by pifithrin α or in its mitochondrial role by pifithrin μ significantly reduced ESC death levels. Finally, EndoG was newly identified as a protease participating in the DNA fragmentation observed during ETO-induced PCD. We coined the term charontosis after Charon, the ferryman of the dead in Greek mythology, to refer to the PCD signaling events induced by ETO in mESCs. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Lysozyme activates Enterococcus faecium to induce necrotic cell death in macrophages.

    PubMed

    Gröbner, Sabine; Fritz, Evelyn; Schoch, Friederike; Schaller, Martin; Berger, Alexander C; Bitzer, Michael; Autenrieth, Ingo B

    2010-10-01

    Enterococci are commensal organisms in the alimentary tract. However, they can cause a variety of life-threatening infections, especially in nosocomial settings. We hypothesized that induction of cell death might enable these facultative pathogenic bacteria to evade the innate immune response and to cause infections of their host. We demonstrate that E. faecium when exposed to lysozyme induces cell death in macrophages in vitro and in vivo. Flow cytometric analyses of J774A.1 macrophages infected with E. faecium revealed loss of cell membrane integrity indicated by uptake of propidium iodide and decrease of the inner mitochondrial transmembrane potential DeltaPsi(m). Inhibition of caspases, treatment of macrophages with cytochalasin D, or rifampicin did not prevent cells from dying, suggesting cell death mechanisms that are independent of caspase activation, bacterial uptake, and intracellular bacterial replication. Characteristics of necrotic cell death were demonstrated by both lack of procaspase 3 activation and cell shrinkage, electron microscopy, and release of lactate dehydrogenase. Pretreatment of E. faecium with lysozyme and subsequently with broad spectrum protease considerably reduced cell death, suggesting that a bacterial surface protein is causative for cell death induction. Moreover, in a mouse peritonitis model we demonstrated that E. faecium induces cell death of peritoneal macrophages in vivo. Altogether, our results show that enterococci, under specific conditions such as exposure to lysozyme, induce necrotic cell death in macrophages, which might contribute to disseminated infections by these facultative pathogenic bacteria.

  14. Cylindromatosis mediates neuronal cell death in vitro and in vivo.

    PubMed

    Ganjam, Goutham K; Terpolilli, Nicole Angela; Diemert, Sebastian; Eisenbach, Ina; Hoffmann, Lena; Reuther, Christina; Herden, Christiane; Roth, Joachim; Plesnila, Nikolaus; Culmsee, Carsten

    2018-01-19

    The tumor-suppressor cylindromatosis (CYLD) is a deubiquitinating enzyme and key regulator of cell proliferation and inflammation. A genome-wide siRNA screen linked CYLD to receptor interacting protein-1 (RIP1) kinase-mediated necroptosis; however, the exact mechanisms of CYLD-mediated cell death remain unknown. Therefore, we investigated the precise role of CYLD in models of neuronal cell death in vitro and evaluated whether CYLD deletion affects brain injury in vivo. In vitro, downregulation of CYLD increased RIP1 ubiquitination, prevented RIP1/RIP3 complex formation, and protected neuronal cells from oxidative death. Similar protective effects were achieved by siRNA silencing of RIP1 or RIP3 or by pharmacological inhibition of RIP1 with necrostatin-1. In vivo, CYLD knockout mice were protected from trauma-induced brain damage compared to wild-type littermate controls. These findings unravel the mechanisms of CYLD-mediated cell death signaling in damaged neurons in vitro and suggest a cell death-mediating role of CYLD in vivo.

  15. Stem cell death and survival in heart regeneration and repair.

    PubMed

    Abdelwahid, Eltyeb; Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor

    2016-03-01

    Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.

  16. Stem cell death and survival in heart regeneration and repair

    PubMed Central

    Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor

    2016-01-01

    Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function. PMID:26687129

  17. Hypoxia promotes luteal cell death in bovine corpus luteum.

    PubMed

    Nishimura, Ryo; Komiyama, Junichi; Tasaki, Yukari; Acosta, Tomas J; Okuda, Kiyoshi

    2008-03-01

    Low oxygen caused by a decreasing blood supply is known to induce various responses of cells, including apoptosis. The present study was conducted to examine whether low-oxygen conditions (hypoxia) induce luteal cell apoptosis in cattle. Bovine midluteal cells incubated under hypoxia (3% O(2)) showed significantly more cell death than did those incubated under normoxia (20% O(2)) at 24 and 48 h of culture, and had significantly lower progesterone (P4) levels starting at 8 h. Characteristic features of apoptosis, such as shrunken nuclei and DNA fragmentation, were observed in cells cultured under hypoxia for 48 h. Hypoxia increased the mRNA expressions of BNIP3 and caspase 3 at 24 and 48 h of culture. Hypoxia had no significant effect on the expressions of BCL2 and BAX mRNA. Hypoxia also increased BNIP3 protein, and activated caspase-3. Treatment of P4 attenuated cell death, caspase-3 mRNA expression, and caspase-3 activity under hypoxia. Overall results of the present study indicate that hypoxia induces luteal cell apoptosis by enhancing the expression of proapoptotic protein, BNIP3, and by activating caspase-3, and that the induction of apoptosis by hypoxia is partially caused by a decrease in P4 production. Because hypoxia suppresses P4 synthesis in bovine luteal cells, we suggest that oxygen deficiency caused by a decreasing blood supply in bovine corpus luteum is one of the major factors contributing to both functional and structural luteolysis.

  18. Berberine Induces Caspase-Independent Cell Death in Colon Tumor Cells through Activation of Apoptosis-Inducing Factor

    PubMed Central

    Wang, Lihong; Liu, Liping; Shi, Yan; Cao, Hanwei; Chaturvedi, Rupesh; Calcutt, M. Wade; Hu, Tianhui; Ren, Xiubao; Wilson, Keith T.; Polk, D. Brent; Yan, Fang

    2012-01-01

    Berberine, an isoquinoline alkaloid derived from plants, is a traditional medicine for treating bacterial diarrhea and intestinal parasite infections. Although berberine has recently been shown to suppress growth of several tumor cell lines, information regarding the effect of berberine on colon tumor growth is limited. Here, we investigated the mechanisms underlying the effects of berberine on regulating the fate of colon tumor cells, specifically the mouse immorto-Min colonic epithelial (IMCE) cells carrying the Apc min mutation, and of normal colon epithelial cells, namely young adult mouse colonic epithelium (YAMC) cells. Berberine decreased colon tumor colony formation in agar, and induced cell death and LDH release in a time- and concentration-dependent manner in IMCE cells. In contrast, YAMC cells were not sensitive to berberine-induced cell death. Berberine did not stimulate caspase activation, and PARP cleavage and berberine-induced cell death were not affected by a caspase inhibitor in IMCE cells. Rather, berberine stimulated a caspase-independent cell death mediator, apoptosis-inducing factor (AIF) release from mitochondria and nuclear translocation in a ROS production-dependent manner. Amelioration of berberine-stimulated ROS production or suppression of AIF expression blocked berberine-induced cell death and LDH release in IMCE cells. Furthermore, two targets of ROS production in cells, cathepsin B release from lysosomes and PARP activation were induced by berberine. Blockage of either of these pathways decreased berberine-induced AIF activation and cell death in IMCE cells. Thus, berberine-stimulated ROS production leads to cathepsin B release and PARP activation-dependent AIF activation, resulting in caspase-independent cell death in colon tumor cells. Notably, normal colon epithelial cells are less susceptible to berberine-induced cell death, which suggests the specific inhibitory effects of berberine on colon tumor cell growth. PMID:22574158

  19. Vacuolar processing enzyme: an executor of plant cell death.

    PubMed

    Hara-Nishimura, Ikuko; Hatsugai, Noriyuki; Nakaune, Satoru; Kuroyanagi, Miwa; Nishimura, Mikio

    2005-08-01

    Apoptotic cell death in animals is regulated by cysteine proteinases called caspases. Recently, vacuolar processing enzyme (VPE) was identified as a plant caspase. VPE deficiency prevents cell death during hypersensitive response and cell death of limited cell layers at the early stage of embryogenesis. Because plants do not have macrophages, dying cells must degrade their materials by themselves. VPE plays an essential role in the regulation of the lytic system of plants during the processes of defense and development. VPE is localized in the vacuoles, unlike animal caspases, which are localized in the cytosol. Thus, plants might have evolved a regulated cellular suicide strategy that, unlike animal apoptosis, is mediated by VPE and the vacuoles.

  20. Hemoglobins, programmed cell death and somatic embryogenesis.

    PubMed

    Hill, Robert D; Huang, Shuanglong; Stasolla, Claudio

    2013-10-01

    Programmed cell death (PCD) is a universal process in all multicellular organisms. It is a critical component in a diverse number of processes ranging from growth and differentiation to response to stress. Somatic embryogenesis is one such process where PCD is significantly involved. Nitric oxide is increasingly being recognized as playing a significant role in regulating PCD in both mammalian and plant systems. Plant hemoglobins scavenge NO, and evidence is accumulating that events that modify NO levels in plants also affect hemoglobin expression. Here, we review the process of PCD, describing the involvement of NO and plant hemoglobins in the process. NO is an effector of cell death in both plants and vertebrates, triggering the cascade of events leading to targeted cell death that is a part of an organism's response to stress or to tissue differentiation and development. Expression of specific hemoglobins can alter this response in plants by scavenging the NO, thus, interrupting the death process. Somatic embryogenesis is used as a model system to demonstrate how cell-specific expression of different classes of hemoglobins can alter the embryogenic process, affecting hormone synthesis, cell metabolite levels and genes associated with PCD and embryogenic competence. We propose that plant hemoglobins influence somatic embryogenesis and PCD through cell-specific expression of a distinct plant hemoglobin. It is based on the premise that both embryogenic competence and PCD are strongly influenced by cellular NO levels. Increases in cellular NO levels result in elevated Zn(2+) and reactive-oxygen species associated with PCD, but they also result in decreased expression of MYC2, a transcription factor that is a negative effector of indoleacetic acid synthesis, a hormone that positively influences embryogenic competence. Cell-specific hemoglobin expression reduces NO levels as a result of NO scavenging, resulting in cell survival. Copyright © 2013 Elsevier Ireland Ltd

  1. The engulfment receptor Draper is required for autophagy during cell death.

    PubMed

    McPhee, Christina K; Baehrecke, Eric H

    2010-11-01

    Autophagy is a process to degrade and recycle cytoplasmic contents. Autophagy is required for survival in response to starvation, but has also been associated with cell death. How autophagy functions during cell survival in some contexts and cell death in others is unknown. Drosophila larval salivary glands undergo programmed cell death requiring autophagy genes, and are cleared in the absence of known phagocytosis. Recently, we demonstrated that Draper (Drpr), the Drosophila homolog of C. elegans engulfment receptor CED-1, is required for autophagy induction: during cell death, but not during cell survival. drpr mutants fail to clear salivary glands. drpr knockdown in salivary glands prevents the induction of autophagy, and Atg1 misexpression in drpr null mutants suppresses salivary gland persistence. Surprisingly, drpr knockdown cell-autonomously prevents autophagy induction in dying salivary gland cells, but not in larval fat body cells following starvation. This is the first engulfment factor shown to function in cellular self-clearance, and the first report of a cell-death-specific autophagy regulator.

  2. Glutamate mediates cell death and increases the Bax to Bcl-2 ratio in a differentiated neuronal cell line.

    PubMed

    Schelman, William R; Andres, Robert D; Sipe, Kimberly J; Kang, Evan; Weyhenmeyer, James A

    2004-09-28

    Excessive stimulation of the NMDA receptor by glutamate induces cell death and has been implicated in the development of several neurodegenerative diseases. While apoptosis plays a role in glutamate-mediated toxicity, the mechanisms underlying this process have yet to be completely determined. Recent evidence has shown that exposure to excitatory amino acids regulates the expression of the antiapoptotic protein, Bcl-2, and the proapoptotic protein, Bax, in neurons. Since it has been suggested that the ratio of Bax to Bcl-2 is an important determinant of neuronal survival, the reciprocal regulation of these Bcl-2 family proteins may play a role in the neurotoxicity mediated by glutamate. Here, we have used a differentiable neuronal cell line, N1E-115, to investigate the molecular properties of glutamate-induced cell death. Annexin V staining was used to determine apoptotic cell death between 0 and 5 days differentiation with DMSO/low serum. Immunoblot analysis was used to determine whether the expression of Bcl-2 or Bax was modulated during the differentiation process. Bcl-2 protein levels were increased during maturation while Bax expression remained unchanged. Maximum Bcl-2 expression was observed following 5 days of differentiation. Examination of Bcl-2 and Bax following glutamate treatment revealed that the expression of these proteins was inversely regulated. Exposure to glutamate (0.001-10 mM) for 20+/-2 h resulted in a dose-dependent decrease in cell survival (as measured by MTT analysis) that was maximal at 10 mM. These results further support the role of apoptosis in glutamate-mediated cell death. Furthermore, a significant decrease in Bcl-2 levels was observed at 1 mM and 10 mM glutamate (32.1%+/-4.8 and 33.7+/-12.8%, respectively) while a significant upregulation of Bax expression (88.2+/-17.9%) was observed at 10 mM glutamate. Interestingly, Bcl-2 and Bax levels in cells treated with glutamate from 12-24 h were not significantly different from those of

  3. Oxidative Stress and Programmed Cell Death in Yeast

    PubMed Central

    Farrugia, Gianluca; Balzan, Rena

    2012-01-01

    Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed. PMID:22737670

  4. Jasmonic Acid Signaling Modulates Ozone-Induced Hypersensitive Cell Death

    PubMed Central

    Rao, Mulpuri V.; Lee, Hyung-il; Creelman, Robert A.; Mullet, John E.; Davis, Keith R.

    2000-01-01

    Recent studies suggest that cross-talk between salicylic acid (SA)–, jasmonic acid (JA)–, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O3) exposure activates a hypersensitive response (HR)–like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O3-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O3-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O3-induced H2O2 content and SA concentrations and completely abolished O3-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O3 exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O3 of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O3-induced HR-like cell death. PMID:11006337

  5. BaxΔ2 sensitizes colorectal cancer cells to proteasome inhibitor-induced cell death

    PubMed Central

    Mañas, Adriana; Chen, Wenjing; Nelson, Adam; Yao, Qi; Xiang, Jialing

    2018-01-01

    Proteasome inhibitors, such as bortezomib and carfilzomib, are FDA approved for the treatment of hemopoietic cancers, but recent studies have shown their great potential for treatment of solid tumors. BaxΔ2, a unique proapoptotic Bax isoform, promotes non-mitochondrial cell death and sensitizes cancer cells to chemotherapy. However, endogenous BaxΔ2 proteins are unstable and susceptible to proteasomal degradation. Here, we screened a panel of proteasome inhibitors in colorectal cancer cells with different Bax statuses. We found that all proteasome inhibitors tested were able to block BaxΔ2 degradation without affecting the level of Baxα or Bcl-2 proteins. Among the inhibitors tested, only bortezomib and carfilzomib were able to induce differential cell death corresponding to the distinct Bax statuses. BaxΔ2-positive cells had a significantly higher level of cell death at low nanomolar concentrations than Baxα-positive or Bax-negative cells. Furthermore, bortezomib-induced cell death in BaxΔ2-positive cells was predominantly dependent on the caspase 8/3 pathway, consistent with our previous studies. These results imply that BaxΔ2 can selectively sensitize cancer cells to proteasome inhibitors, enhancing their potential to treat colon cancer and other solid tumors. PMID:29291406

  6. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, Merril C.; Peters, Amelia A.; Kenny, Paraic A.

    Highlights: •Some clinical breast cancers are associated with MCU overexpression. •MCU silencing did not alter cell death initiated with the Bcl-2 inhibitor ABT-263. •MCU silencing potentiated caspase-independent cell death initiated by ionomycin. •MCU silencing promoted ionomycin-mediated cell death without changes in bulk Ca{sup 2+}. -- Abstract: The mitochondrial calcium uniporter (MCU) transports free ionic Ca{sup 2+} into the mitochondrial matrix. We assessed MCU expression in clinical breast cancer samples using microarray analysis and the consequences of MCU silencing in a breast cancer cell line. Our results indicate that estrogen receptor negative and basal-like breast cancers are characterized by elevated levelsmore » of MCU. Silencing of MCU expression in the basal-like MDA-MB-231 breast cancer cell line produced no change in proliferation or cell viability. However, distinct consequences of MCU silencing were seen on cell death pathways. Caspase-dependent cell death initiated by the Bcl-2 inhibitor ABT-263 was not altered by MCU silencing; whereas caspase-independent cell death induced by the calcium ionophore ionomycin was potentiated by MCU silencing. Measurement of cytosolic Ca{sup 2+} levels showed that the promotion of ionomycin-induced cell death by MCU silencing occurs independently of changes in bulk cytosolic Ca{sup 2+} levels. This study demonstrates that MCU overexpression is a feature of some breast cancers and that MCU overexpression may offer a survival advantage against some cell death pathways. MCU inhibitors may be a strategy to increase the effectiveness of therapies that act through the induction of caspase-independent cell death pathways in estrogen receptor negative and basal-like breast cancers.« less

  7. The synthetic purine reversine selectively induces cell death of cancer cells.

    PubMed

    Piccoli, Marco; Palazzolo, Giacomo; Conforti, Erika; Lamorte, Giuseppe; Papini, Nadia; Creo, Pasquale; Fania, Chiara; Scaringi, Raffaella; Bergante, Sonia; Tringali, Cristina; Roncoroni, Leda; Mazzoleni, Stefania; Doneda, Luisa; Galli, Rossella; Venerando, Bruno; Tettamanti, Guido; Gelfi, Cecilia; Anastasia, Luigi

    2012-10-01

    The synthetic purine reversine has been shown to possess a dual activity as it promotes the de-differentiation of adult cells, including fibroblasts, into stem-cell-like progenitors, but it also induces cell growth arrest and ultimately cell death of cancer cells, suggesting its possible application as an anti-cancer agent. Aim of this study was to investigate the mechanism underneath reversine selectivity in inducing cell death of cancer cells by a comparative analysis of its effects on several tumor cells and normal dermal fibroblasts. We found that reversine is lethal for all cancer cells studied as it induces cell endoreplication, a process that malignant cells cannot effectively oppose due to aberrations in cell cycle checkpoints. On the other hand, normal cells, like dermal fibroblasts, can control reversine activity by blocking the cell cycle, entering a reversible quiescent state. However, they can be induced to become sensitive to the molecule when key cell cycle proteins, e.g., p53, are silenced. Copyright © 2012 Wiley Periodicals, Inc.

  8. Mechanisms underlying 3-bromopyruvate-induced cell death in colon cancer.

    PubMed

    Sun, Yiming; Liu, Zhe; Zou, Xue; Lan, Yadong; Sun, Xiaojin; Wang, Xiu; Zhao, Surong; Jiang, Chenchen; Liu, Hao

    2015-08-01

    3-Bromopyruvate (3BP) is an energy-depleting drug that inhibits Hexokinase II activity by alkylation during glycolysis, thereby suppressing the production of ATP and inducing cell death. As such, 3BP can potentially serve as an anti-tumorigenic agent. Our previous research showed that 3BP can induce apoptosis via AKT /protein Kinase B signaling in breast cancer cells. Here we found that 3BP can also induce colon cancer cell death by necroptosis and apoptosis at the same time and concentration in the SW480 and HT29 cell lines; in the latter, autophagy was also found to be a mechanism of cell death. In HT29 cells, combined treatment with 3BP and the autophagy inhibitor 3-methyladenine (3-MA) exacerbated cell death, while viability in 3BP-treated cells was enhanced by concomitant treatment with the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethylketone (z-VAD-fmk) and the necroptosis inhibitor necrostatin (Nec)-1. Moreover, 3BP inhibited tumor growth in a SW480 xenograft mouse model. These results indicate that 3BP can suppress tumor growth and induce cell death by multiple mechanisms at the same time and concentration in different types of colon cancer cell by depleting cellular energy stores.

  9. The importance of being dead: cell death mechanisms assessment in anti-sarcoma therapy.

    PubMed

    Rello-Varona, Santiago; Herrero-Martín, David; Lagares-Tena, Laura; López-Alemany, Roser; Mulet-Margalef, Núria; Huertas-Martínez, Juan; Garcia-Monclús, Silvia; García Del Muro, Xavier; Muñoz-Pinedo, Cristina; Tirado, Oscar Martínez

    2015-01-01

    Cell death can occur through different mechanisms, defined by their nature and physiological implications. Correct assessment of cell death is crucial for cancer therapy success. Sarcomas are a large and diverse group of neoplasias from mesenchymal origin. Among cell death types, apoptosis is by far the most studied in sarcomas. Albeit very promising in other fields, regulated necrosis and other cell death circumstances (as so-called "autophagic cell death" or "mitotic catastrophe") have not been yet properly addressed in sarcomas. Cell death is usually quantified in sarcomas by unspecific assays and in most cases the precise sequence of events remains poorly characterized. In this review, our main objective is to put into context the most recent sarcoma cell death findings in the more general landscape of different cell death modalities.

  10. Cell death sensitization of leukemia cells by opioid receptor activation

    PubMed Central

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  11. Polyoma small T antigen triggers cell death via mitotic catastrophe

    PubMed Central

    Fernando, Arun T Pores; Andrabi, Shaida; Cizmecioglu, Onur; Zhu, Cailei; Livingston, David M.; Higgins, Jonathan M.G; Schaffhausen, Brian S; Roberts, Thomas M

    2014-01-01

    Polyoma small T antigen (PyST), an early gene product of the polyoma virus, has been shown to cause cell death in a number of mammalian cells in a protein phosphatase 2A (PP2A)-dependent manner. In the current study, using a cell line featuring regulated expression of PyST, we found that PyST arrests cells in mitosis. Live-cell and immunofluorescence studies showed that the majority of the PyST-expressing cells were arrested in prometaphase with almost no cells progressing beyond metaphase. These cells exhibited defects in chromosomal congression, sister chromatid cohesion and spindle positioning, resulting in the activation of the Spindle Assembly Checkpoint (SAC). Prolonged mitotic arrest then led to cell death via mitotic catastrophe. Cell cycle inhibitors that block cells in G1/S prevented PyST-induced death. PyST-induced cell death that occurs during M is not dependent on p53 status. These data suggested, and our results confirmed that, PP2A inhibition could be used to preferentially kill cancer cells with p53 mutations that proliferate normally in the presence of cell cycle inhibitors. PMID:24998850

  12. Prior irradiation results in elevated programmed cell death protein 1 (PD-1) in T cells.

    PubMed

    Li, Deguan; Chen, Renxiang; Wang, Yi-Wen; Fornace, Albert J; Li, Heng-Hong

    2018-05-01

    In this study we addressed the question whether radiation-induced adverse effects on T cell activation are associated with alterations of T cell checkpoint receptors. Expression levels of checkpoint receptors on T cell subpopulations were analyzed at multiple post-radiation time points ranging from one to four weeks in mice receiving a single fraction of 1 or 4 Gy of γ-ray. T cell activation associated metabolic changes were assessed. Our results showed that prior irradiation resulted in significant elevated expression of programmed cell death protein 1 (PD-1) in both CD4+ and CD8+ populations, at all three post-radiation time points. T cells with elevated PD-1 mostly were either central memory or naïve cells. In addition, the feedback induction of PD-1 expression in activated T cells declined after radiation. Taken together, the elevated PD-1 level observed at weeks after radiation exposure is connected to T cell dysfunction. Recent preclinical and clinical studies have showed that a combination of radiotherapy and T cell checkpoint blockade immunotherapy including targeting the programmed death-ligand 1 (PD-L1)/PD-1 axis may potentiate the antitumor response. Understanding the dynamic changes in PD-1 levels in T cells after radiation should help in the development of a more effective therapeutic strategy.

  13. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures

    NASA Astrophysics Data System (ADS)

    Newcomb, Christina J.; Sur, Shantanu; Ortony, Julia H.; Lee, One-Sun; Matson, John B.; Boekhoven, Job; Yu, Jeong Min; Schatz, George C.; Stupp, Samuel I.

    2014-02-01

    Many naturally occurring peptides containing cationic and hydrophobic domains have evolved to interact with mammalian cell membranes and have been incorporated into materials for non-viral gene delivery, cancer therapy or treatment of microbial infections. Their electrostatic attraction to the negatively charged cell surface and hydrophobic interactions with the membrane lipids enable intracellular delivery or cell lysis. Although the effects of hydrophobicity and cationic charge of soluble molecules on the cell membrane are well known, the interactions between materials with these molecular features and cells remain poorly understood. Here we report that varying the cohesive forces within nanofibres of supramolecular materials with nearly identical cationic and hydrophobic structure instruct cell death or cell survival. Weak intermolecular bonds promote cell death through disruption of lipid membranes, while materials reinforced by hydrogen bonds support cell viability. These findings provide new strategies to design biomaterials that interact with the cell membrane.

  14. Apoptotic induction of skin cancer cell death by plant extracts.

    PubMed

    Thuncharoen, Walairat; Chulasiri, Malin; Nilwarangkoon, Sirinun; Nakamura, Yukio; Watanapokasin, Ramida

    2013-01-01

    The aim of the present study was to investigate the effects of plant extracts on cancer apoptotic induction. Human epidermoid carcinoma A431 cell line, obtained from the American Type Culture Collection (ATCC, Manassas, VA), was maintained in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) at 37 degrees C, 5% carbon dioxide (CO2). Plant extract solutions were obtained from S & J international enterprises public company limited. These plant extracts include 50% hydroglycol extracts from Etlingera elatior (Jack) R.M.Smith (torch ginger; EE), Rosa damascene (damask rose; DR) and Rafflesia kerrii Meijer (bua phut; RM). The cell viability, time and dose dependency were determined by MTT (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. A431 cells were treated with the plant extracts and stained with Hoechst 33342 fluorescent staining dye. Cell viability was demonstrated by the inhibitory concentration 50% (IC50). The anti-proliferative effects were shown to be dependent on time and dose. Typical characteristics of apoptosis which are cell morphological changes and chromatin condensation were clearly observed. The plant extracts was shown to be effective for anti-proliferation and induction of apoptosis cell death in skin cancer cells. Therefore, mechanisms underlying the cell death and its potential use for treatment of skin cancer will be further studied.

  15. Apoptosis and Accidental Cell Death in Cultured Human Keratinocytes after Thermal Injury

    PubMed Central

    Matylevitch, Natalia P.; Schuschereba, Steven T.; Mata, Jennifer R.; Gilligan, George R.; Lawlor, David F.; Goodwin, Cleon W.; Bowman, Phillip D.

    1998-01-01

    The respective roles of apoptosis and accidental cell death after thermal injury were evaluated in normal human epidermal keratinocytes. By coupling the LIVE/DEAD fluorescence viability assay with the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) method and ultrastructural morphology, these two processes could be distinguished. Cells were grown on glass coverslips with a microgrid pattern so that the results of several staining procedures performed sequentially could be visualized in the same cells after heating at temperatures of up to 72°C for 1 second. After exposure to temperatures of 58 to 59°C, cells died predominantly by apoptosis; viable cells became TUNEL positive, indicating degradation of DNA. After exposure to temperatures of 60 to 66°C, both TUNEL-positive viable cells and TUNEL-positive nonviable cells were observed, indicating that apoptosis and accidental cell death were occurring simultaneously. Cells died almost immediately after exposure to temperatures above 72°C, presumably from heat fixation. The fluorescent mitochondrial probe MitoTracker Orange indicated that cells undergoing apoptosis became TUNEL positive before loss of mitochondrial function. Nucleosomal fragmentation of DNA analyzed by enzyme-linked immunosorbent assay and gel electrophoresis occurred after exposure to temperatures of 58 to 59°C. The characteristic morphological findings of cells undergoing apoptosis, by transmission electron microscopy, included cellular shrinkage, cytoplasmic budding, and relatively intact mitochondria. Depending on temperature and time of exposure, normal human epidermal keratinocytes may die by apoptosis, accidental cell death, or heat fixation. PMID:9708816

  16. How does metabolism affect cell death in cancer?

    PubMed

    Villa, Elodie; Ricci, Jean-Ehrland

    2016-07-01

    In cancer research, identifying a specificity of tumor cells compared with 'normal' proliferating cells for targeted therapy is often considered the Holy Grail for researchers and clinicians. Although diverse in origin, most cancer cells share characteristics including the ability to escape cell death mechanisms and the utilization of different methods of energy production. In the current paradigm, aerobic glycolysis is considered the central metabolic characteristic of cancer cells (Warburg effect). However, recent data indicate that cancer cells also show significant changes in other metabolic pathways. Indeed, it was recently suggested that Kreb's cycle, pentose phosphate pathway intermediates, and essential and nonessential amino acids have key roles. Renewed interest in the fact that cancer cells have to reprogram their metabolism in order to proliferate or resist treatment must take into consideration the ability of tumor cells to adapt their metabolism to the local microenvironment (low oxygen, low nutrients). This variety of metabolic sources might be either a strength, resulting in infinite possibilities for adaptation and increased ability to resist chemotherapy-induced death, or a weakness that could be targeted to kill cancer cells. Here, we discuss recent insights showing how energetic metabolism may regulate cell death and how this might be relevant for cancer treatment. © 2015 FEBS.

  17. The pathway of cell dismantling during programmed cell death in lace plant (Aponogeton madagascariensis) leaves.

    PubMed

    Wertman, Jaime; Lord, Christina En; Dauphinee, Adrian N; Gunawardena, Arunika Hlan

    2012-07-25

    Developmentally regulated programmed cell death (PCD) is the controlled death of cells that occurs throughout the life cycle of both plants and animals. The lace plant (Aponogeton madagascariensis) forms perforations between longitudinal and transverse veins in spaces known as areoles, via developmental PCD; cell death begins in the center of these areoles and develops towards the margin, creating a gradient of PCD. This gradient was examined using both long- and short-term live cell imaging, in addition to histochemical staining, in order to establish the order of cellular events that occur during PCD. The first visible change observed was the reduction in anthocyanin pigmentation, followed by initial chloroplast changes and the bundling of actin microfilaments. At this stage, an increased number of transvacuolar strands (TVS) was evident. Perhaps concurrently with this, increased numbers of vesicles, small mitochondrial aggregates, and perinuclear accumulation of both chloroplasts and mitochondria were observed. The invagination of the tonoplast membrane and the presence of vesicles, both containing organelle materials, suggested evidence for both micro- and macro-autophagy, respectively. Mitochondrial aggregates, as well as individual chloroplasts were subsequently seen undergoing Brownian motion in the vacuole. Following these changes, fragmentation of nuclear DNA, breakdown of actin microfilaments and early cell wall changes were detected. The vacuole then swelled, causing nuclear displacement towards the plasma membrane (PM) and tonoplast rupture followed closely, indicating mega-autophagy. Subsequent to tonoplast rupture, cessation of Brownian motion occurred, as well as the loss of mitochondrial membrane potential (ΔΨm), nuclear shrinkage and PM collapse. Timing from tonoplast rupture to PM collapse was approximately 20 minutes. The entire process from initial chlorophyll reduction to PM collapse took approximately 48 hours. Approximately six hours

  18. A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants.

    PubMed

    Olvera-Carrillo, Yadira; Van Bel, Michiel; Van Hautegem, Tom; Fendrych, Matyáš; Huysmans, Marlies; Simaskova, Maria; van Durme, Matthias; Buscaill, Pierre; Rivas, Susana; Coll, Nuria S.; Coppens, Frederik; Maere, Steven; Nowack, Moritz K.

    2015-12-01

    A plethora of diverse programmed cell death (PCD) processes has been described in living organisms. In animals and plants, different forms of PCD play crucial roles in development, immunity, and responses to the environment. While the molecular control of some animal PCD forms such as apoptosis is known in great detail, we still know comparatively little about the regulation of the diverse types of plant PCD. In part, this deficiency in molecular understanding is caused by the lack of reliable reporters to detect PCD processes. Here, we addressed this issue by using a combination of bioinformatics approaches to identify commonly regulated genes during diverse plant PCD processes in Arabidopsis (Arabidopsis thaliana). Our results indicate that the transcriptional signatures of developmentally controlled cell death are largely distinct from the ones associated with environmentally induced cell death. Moreover, different cases of developmental PCD share a set of cell death-associated genes. Most of these genes are evolutionary conserved within the green plant lineage, arguing for an evolutionary conserved core machinery of developmental PCD. Based on this information, we established an array of specific promoter-reporter lines for developmental PCD in Arabidopsis. These PCD indicators represent a powerful resource that can be used in addition to established morphological and biochemical methods to detect and analyze PCD processes in vivo and in planta. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. Ecdysone-dependent and ecdysone-independent programmed cell death in the developing optic lobe of Drosophila.

    PubMed

    Hara, Yusuke; Hirai, Keiichiro; Togane, Yu; Akagawa, Hiromi; Iwabuchi, Kikuo; Tsujimura, Hidenobu

    2013-02-01

    The adult optic lobe of Drosophila develops from the primordium during metamorphosis from mid-3rd larval stage to adult. Many cells die during development of the optic lobe with a peak of the number of dying cells at 24 h after puparium formation (h APF). Dying cells were observed in spatio-temporal specific clusters. Here, we analyzed the function of a component of the insect steroid hormone receptor, EcR, in this cell death. We examined expression patterns of two EcR isoforms, EcR-A and EcR-B1, in the optic lobe. Expression of each isoform altered during development in isoform-specific manner. EcR-B1 was not expressed in optic lobe neurons from 0 to 6h APF, but was expressed between 9 and 48 h APF and then disappeared by 60 h APF. In each cortex, its expression was stronger in older glia-ensheathed neurons than in younger ones. EcR-B1 was also expressed in some types of glia. EcR-A was expressed in optic lobe neurons and many types of glia from 0 to 60 h APF in a different pattern from EcR-B1. Then, we genetically analyzed EcR function in the optic lobe cell death. At 0 h APF, the optic lobe cell death was independent of any EcR isoforms. In contrast, EcR-B1 was required for most optic lobe cell death after 24 h APF. It was suggested that cell death cell-autonomously required EcR-B1 expressed after puparium formation. βFTZ-F1 was also involved in cell death in many dying-cell clusters, but not in some of them at 24 h APF. Altogether, the optic lobe cell death occurred in ecdysone-independent manner at prepupal stage and ecdysone-dependent manner after 24 h APF. The acquisition of ecdysone-dependence was not directly correlated with the initiation or increase of EcR-B1 expression. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Using natural products to promote caspase-8-dependent cancer cell death.

    PubMed

    Tewary, Poonam; Gunatilaka, A A Leslie; Sayers, Thomas J

    2017-02-01

    The selective killing of cancer cells without toxicity to normal nontransformed cells is an idealized goal of cancer therapy. Thus, there has been much interest in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a protein that appears to selectively kill cancer cells. TRAIL has been reported to trigger apoptosis and under some circumstances, an alternate death signaling pathway termed necroptosis. The relative importance of necroptosis for cell death induction in vivo is under intensive investigation. Nonetheless, many cancer cells (particularly those freshly isolated from cancer patients) are highly resistant to TRAIL-mediated cell death. Therefore, there is an underlying interest in identifying agents that can be combined with TRAIL to improve its efficacy. There are numerous reports in which combination of TRAIL with standard antineoplastic drugs has resulted in enhanced cancer cell death in vitro. However, many of these chemotherapeutic drugs are nonspecific and associated with adverse effects, which raise serious concerns for cancer therapy in patients. By contrast, natural products have been shown to be safer and efficacious alternatives. Recently, a number of studies have suggested that certain natural products when combined with TRAIL can enhance cancer cell death. In this review, we highlight molecular pathways that might be targeted by various natural products to promote cell death, and focus on our recent work with withanolides as TRAIL sensitizers. Finally, we will suggest synergistic approaches for combining active withanolides with various forms of immunotherapy to promote cancer cell death and an effective antitumor immune response.

  1. Independent controls for neocortical neuron production and histogenetic cell death

    NASA Technical Reports Server (NTRS)

    Verney, C.; Takahashi, T.; Bhide, P. G.; Nowakowski, R. S.; Caviness, V. S. Jr

    2000-01-01

    We estimated the proportion of cells eliminated by histogenetic cell death during the first 2 postnatal weeks in areas 1, 3 and 40 of the mouse parietal neocortex. For each layer and for the subcortical white matter in each neocortical area, the number of dying cells per mm(2) was calculated and the proportionate cell death for each day of the 2-week interval was estimated. The data show that cell death proceeds essentially uniformly across the neocortical areas and layers and that it does not follow either the spatiotemporal gradient of cell cycle progression in the pseudostratified ventricular epithelium of the cerebral wall, the source of neocortical neurons, or the 'inside-out' neocortical neuronogenetic sequence. Therefore, we infer that the control mechanisms of neocortical histogenetic cell death are independent of mechanisms controlling neuronogenesis or neuronal migration but may be associated with the ingrowth, expansion and a system-wide matching of neuronal connectivity. Copyright 2000 S. Karger AG, Basel.

  2. Sensory hair cell death and regeneration in fishes

    PubMed Central

    Monroe, Jerry D.; Rajadinakaran, Gopinath; Smith, Michael E.

    2015-01-01

    Sensory hair cells are specialized mechanotransductive receptors required for hearing and vestibular function. Loss of hair cells in humans and other mammals is permanent and causes reduced hearing and balance. In the early 1980’s, it was shown that hair cells continue to be added to the inner ear sensory epithelia in cartilaginous and bony fishes. Soon thereafter, hair cell regeneration was documented in the chick cochlea following acoustic trauma. Since then, research using chick and other avian models has led to great insights into hair cell death and regeneration. However, with the rise of the zebrafish as a model organism for studying disease and developmental processes, there has been an increased interest in studying sensory hair cell death and regeneration in its lateral line and inner ears. Advances derived from studies in zebrafish and other fish species include understanding the effect of ototoxins on hair cells and finding otoprotectants to mitigate ototoxin damage, the role of cellular proliferation vs. direct transdifferentiation during hair cell regeneration, and elucidating cellular pathways involved in the regeneration process. This review will summarize research on hair cell death and regeneration using fish models, indicate the potential strengths and weaknesses of these models, and discuss several emerging areas of future studies. PMID:25954154

  3. Dying dangerously: Necrotic cell death and chronic inflammation promote tumor growth.

    PubMed

    Lotze, Michael T; Demarco, Richard A

    2004-12-01

    Extract: We all shudder about untimely deaths or those that we were not prepared for. As such we perceive such "unscheduled" deaths as dangerous. Similarly, apoptotic death (literally falling leaves) or the programmed cell death of cells in multicellular organisms ranging from slime mold and simple worms through to mammals, has a level of tidiness and well-orchestrated activities with literally hundreds if not thousands of gene products employed with either the primary or secondary purpose of coordinating the orderly death of cells throughout life. During inflammation of any sort, driven by tissue damage or injury or infection by pathogens (virus, bacteria, and parasites), apoptotic death similarly serves to quickly rid the host of damaged cells, promote removal and digestion of the infected cell, and prepare the way for tissue remodeling and repair. When this goes awry, for example during periods of chronic inflammation, tissues are subjected to the contrasting needs of driving apoptotic death whilst maintaining the barrier function of the epithelia (such as skin cells) as well as the selective permeability of mucosal sites (i.e., areas where mucus is secreted to protect the cells from their surroundings, such as gut cells protecting themselves from the gastric acids). Prudently, they need to limit and husband local resources sufficiently for the maintenance of tissue integrity and renewal. It is our provocative and novel contention that cancer in adults (and not children) most often arises in a setting of chronic inflammation and disordered cell death rather than one associated primarily with disordered cell growth as it is popularly imagined by scientists, clinicians, and the general public.

  4. Transient Receptor Potential Vanilloid 1 Expression Mediates Capsaicin-Induced Cell Death.

    PubMed

    Ramírez-Barrantes, Ricardo; Córdova, Claudio; Gatica, Sebastian; Rodriguez, Belén; Lozano, Carlo; Marchant, Ivanny; Echeverria, Cesar; Simon, Felipe; Olivero, Pablo

    2018-01-01

    The transient receptor potential (TRP) ion channel family consists of a broad variety of non-selective cation channels that integrate environmental physicochemical signals for dynamic homeostatic control. Involved in a variety of cellular physiological processes, TRP channels are fundamental to the control of the cell life cycle. TRP channels from the vanilloid (TRPV) family have been directly implicated in cell death. TRPV1 is activated by pain-inducing stimuli, including inflammatory endovanilloids and pungent exovanilloids, such as capsaicin (CAP). TRPV1 activation by high doses of CAP (>10 μM) leads to necrosis, but also exhibits apoptotic characteristics. However, CAP dose-response studies are lacking in order to determine whether CAP-induced cell death occurs preferentially via necrosis or apoptosis. In addition, it is not known whether cytosolic Ca 2+ and mitochondrial dysfunction participates in CAP-induced TRPV1-mediated cell death. By using TRPV1-transfected HeLa cells, we investigated the underlying mechanisms involved in CAP-induced TRPV1-mediated cell death, the dependence of CAP dose, and the participation of mitochondrial dysfunction and cytosolic Ca 2+ increase. Together, our results contribute to elucidate the pathophysiological steps that follow after TRPV1 stimulation with CAP. Low concentrations of CAP (1 μM) induce cell death by a mechanism involving a TRPV1-mediated rapid and transient intracellular Ca 2+ increase that stimulates plasma membrane depolarization, thereby compromising plasma membrane integrity and ultimately leading to cell death. Meanwhile, higher doses of CAP induce cell death via a TRPV1-independent mechanism, involving a slow and persistent intracellular Ca 2+ increase that induces mitochondrial dysfunction, plasma membrane depolarization, plasma membrane loss of integrity, and ultimately, cell death.

  5. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting, E-mail: BTZhu@kumc.edu

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K{sub 3}) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid developmentmore » of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ∼ 12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. -- Highlights: ► Menadione causes mitochondrial superoxide accumulation and injury. ► Menadione-induced cell death is caspase-independent, due to rapid

  6. Targeting Programmed Cell Death Using Small-Molecule Compounds to Improve Potential Cancer Therapy.

    PubMed

    Ke, Bowen; Tian, Mao; Li, Jingjing; Liu, Bo; He, Gu

    2016-11-01

    Evasion of cell death is one of the hallmarks of cancer cells, beginning with long-established apoptosis and extending to other new forms of cell death. An elaboration of cell death pathways thus will contribute to a better understanding of cancer pathogenesis and therapeutics. With the recent substantial biochemical and genetic explorations of cell death subroutines, their classification has switched from primarily morphological to more molecular definitions. According to their measurable biochemical features and intricate mechanisms, cell death subroutines can be divided into apoptosis, autophagic cell death, mitotic catastrophe, necroptosis, parthanatos, ferroptosis, pyroptosis, pyronecrosis, anoikis, cornification, entosis, and NETosis. Supportive evidence has gradually revealed the prime molecular mechanisms of each subroutine and thus providing series of possible targets in cancer therapy, while the intricate relationships between different cell death subroutines still remain to be clarified. Over the past decades, cancer drug discovery has significantly benefited from the use of small-molecule compounds to target classical modalities of cell death such as apoptosis, while newly identified cell death subroutines has also emerging their potential for cancer drug discovery in recent years. In this review, we comprehensively focus on summarizing 12 cell death subroutines and discussing their corresponding small-molecule compounds in potential cancer therapy. Together, these inspiring findings may provide more evidence to fill in the gaps between cell death subroutines and small-molecule compounds to better develop novel cancer therapeutic strategies. © 2016 Wiley Periodicals, Inc.

  7. KML001 Induces Apoptosis and Autophagic Cell Death in Prostate Cancer Cells via Oxidative Stress Pathway

    PubMed Central

    You, Dalsan; Kim, Yunlim; Jang, Myoung Jin; Lee, Chunwoo; Jeong, In Gab; Cho, Yong Mee; Hwang, Jung Jin; Hong, Jun Hyuk; Ahn, Hanjong; Kim, Choung-Soo

    2015-01-01

    We investigated the effects of KML001 (NaAsO2, sodium metaarsenite, Kominox), an orally bioavailable arsenic compound, on the growth and death of human prostate cancer cells and its mechanism of action. Growth inhibition was assessed by cytotoxicity assays in the presence or absence of inhibitor of apoptosis, inhibitor of autophagy or antioxidant N-Acetyl-L-cysteine to study mechanism of cell death induced by KML001 in PC3, DU145 and LNCaP prostate cancer cell lines. Electron microscopy, flow cytometry and Western blotting were used to study apoptotic and autophagic mechanisms. The DU145 xenograft model was used to determine the efficacy of KML001 in vivo. KML001 decreased the viability of cells and increased the percentage of annexin V-positive cells dose-dependently in prostate cancer cells, and LNCaP cells were more sensitive to KML001 than PC3 or DU145 cells. Electron microscopy revealed typical apoptotic characters and autophagic vacuoles in cells treated with KML001. Exposure to KML001 in prostate cancer cells induced apoptosis and autophagy in a time- and dose-dependent manner. KML001 induced dose-dependent accumulation of reactive oxygen species, and scavenging the reactive oxygen species with N-Acetyl-L-cysteine reduced LC3 and cleaved poly (ADP-ribose) polymerase. KML001 significantly inhibited tumor growth in the DU145 xenograft model. In addition, significant decrease of proliferation and significant increases of apoptosis and autophagy were observed in KML001-treated tumors than in vehicle-treated tumors. Exposure of human prostate cancer cells to KML001 induced both apoptosis and autophagic cell death via oxidative stress pathway. And KML001 had an antiproliferative effect on DU145 cells in xenograft mice. PMID:26352139

  8. KML001 Induces Apoptosis and Autophagic Cell Death in Prostate Cancer Cells via Oxidative Stress Pathway.

    PubMed

    You, Dalsan; Kim, Yunlim; Jang, Myoung Jin; Lee, Chunwoo; Jeong, In Gab; Cho, Yong Mee; Hwang, Jung Jin; Hong, Jun Hyuk; Ahn, Hanjong; Kim, Choung-Soo

    2015-01-01

    We investigated the effects of KML001 (NaAsO2, sodium metaarsenite, Kominox), an orally bioavailable arsenic compound, on the growth and death of human prostate cancer cells and its mechanism of action. Growth inhibition was assessed by cytotoxicity assays in the presence or absence of inhibitor of apoptosis, inhibitor of autophagy or antioxidant N-Acetyl-L-cysteine to study mechanism of cell death induced by KML001 in PC3, DU145 and LNCaP prostate cancer cell lines. Electron microscopy, flow cytometry and Western blotting were used to study apoptotic and autophagic mechanisms. The DU145 xenograft model was used to determine the efficacy of KML001 in vivo. KML001 decreased the viability of cells and increased the percentage of annexin V-positive cells dose-dependently in prostate cancer cells, and LNCaP cells were more sensitive to KML001 than PC3 or DU145 cells. Electron microscopy revealed typical apoptotic characters and autophagic vacuoles in cells treated with KML001. Exposure to KML001 in prostate cancer cells induced apoptosis and autophagy in a time- and dose-dependent manner. KML001 induced dose-dependent accumulation of reactive oxygen species, and scavenging the reactive oxygen species with N-Acetyl-L-cysteine reduced LC3 and cleaved poly (ADP-ribose) polymerase. KML001 significantly inhibited tumor growth in the DU145 xenograft model. In addition, significant decrease of proliferation and significant increases of apoptosis and autophagy were observed in KML001-treated tumors than in vehicle-treated tumors. Exposure of human prostate cancer cells to KML001 induced both apoptosis and autophagic cell death via oxidative stress pathway. And KML001 had an antiproliferative effect on DU145 cells in xenograft mice.

  9. Cannabinoid-induced cell death in endometrial cancer cells: involvement of TRPV1 receptors in apoptosis.

    PubMed

    Fonseca, B M; Correia-da-Silva, G; Teixeira, N A

    2018-05-01

    Among a variety of phytocannabinoids, Δ 9 -tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most promising therapeutic compounds. Besides the well-known palliative effects in cancer patients, cannabinoids have been shown to inhibit in vitro growth of tumor cells. Likewise, the major endocannabinoids (eCBs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG), induce tumor cell death. The purpose of the present study was to characterize cannabinoid elements and evaluate the effect of cannabinoids in endometrial cancer cell viability. The presence of cannabinoid receptors, transient receptor potential vanilloid 1 (TRPV1), and endocannabinoid-metabolizing enzymes were determined by qRT-PCR and Western blot. We also examined the effects and the underlying mechanisms induced by eCBs and phytocannabinoids in endometrial cancer cell viability. Besides TRPV1, both EC cell lines express all the constituents of the endocannabinoid system. We observed that at concentrations higher than 5 μM, eCBs and CBD induced a significant reduction in cell viability in both Ishikawa and Hec50co cells, whereas THC did not cause any effect. In Ishikawa cells, contrary to Hec50co, treatment with AEA and CBD resulted in an increase in the levels of activated caspase -3/-7, in cleaved PARP, and in reactive oxygen species generation, confirming that the reduction in cell viability observed in the MTT assay was caused by the activation of the apoptotic pathway. Finally, these effects were dependent on TRPV1 activation and intracellular calcium levels. These data indicate that cannabinoids modulate endometrial cancer cell death. Selective targeting of TPRV1 by AEA, CBD, or other stable analogues may be an attractive research area for the treatment of estrogen-dependent endometrial carcinoma. Our data further support the evaluation of CBD and CBD-rich extracts for the potential treatment of endometrial cancer, particularly, that has become non-responsive to common therapies.

  10. Regulated Forms of Cell Death in Fungi

    PubMed Central

    Gonçalves, A. Pedro; Heller, Jens; Daskalov, Asen; Videira, Arnaldo; Glass, N. Louise

    2017-01-01

    Cell death occurs in all domains of life. While some cells die in an uncontrolled way due to exposure to external cues, other cells die in a regulated manner as part of a genetically encoded developmental program. Like other eukaryotic species, fungi undergo programmed cell death (PCD) in response to various triggers. For example, exposure to external stress conditions can activate PCD pathways in fungi. Calcium redistribution between the extracellular space, the cytoplasm and intracellular storage organelles appears to be pivotal for this kind of cell death. PCD is also part of the fungal life cycle, in which it occurs during sexual and asexual reproduction, aging, and as part of development associated with infection in phytopathogenic fungi. Additionally, a fungal non-self-recognition mechanism termed heterokaryon incompatibility (HI) also involves PCD. Some of the molecular players mediating PCD during HI show remarkable similarities to major constituents involved in innate immunity in metazoans and plants. In this review we discuss recent research on fungal PCD mechanisms in comparison to more characterized mechanisms in metazoans. We highlight the role of PCD in fungi in response to exogenic compounds, fungal development and non-self-recognition processes and discuss identified intracellular signaling pathways and molecules that regulate fungal PCD. PMID:28983298

  11. Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.

    PubMed

    Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko

    2017-07-17

    Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.

  12. Necroptosis: an alternative cell death program defending against cancer

    PubMed Central

    Chen, Dongshi; Yu, Jian; Zhang, Lin

    2016-01-01

    One of the hallmarks of cancer is resistance to programmed cell death, which maintains the survival of cells en route to oncogenic transformation and underlies therapeutic resistance. Recent studies demonstrate that programmed cell death is not confined to caspase-dependent apoptosis, but includes necroptosis, a form of necrotic death governed by Receptor-Interacting Protein 1 (RIP1), RIP3, and Mixed Lineage Kinase Domain-Like (MLKL). Necroptosis serves as a critical cell-killing mechanism in response to severe stress and blocked apoptosis, and can be induced by inflammatory cytokines or chemotherapeutic drugs. Genetic or epigenetic alterations of necroptosis regulators such as RIP3 and cylindromatosis (CYLD), are frequently found in human tumors. Unlike apoptosis, necroptosis elicits a more robust immune response that may function as a defensive mechanism by eliminating tumor-causing mutations and viruses. Furthermore, several classes of anticancer agents currently under clinical development, such as SMAC and BH3 mimetics, can promote necroptosis in addition to apoptosis. A more complete understanding of the interplay among necroptosis, apoptosis, and other cell death modalities is critical for developing new therapeutic strategies to enhance killing of tumor cells. PMID:26968619

  13. Necroptosis: an alternative cell death program defending against cancer.

    PubMed

    Chen, Dongshi; Yu, Jian; Zhang, Lin

    2016-04-01

    One of the hallmarks of cancer is resistance to programmed cell death, which maintains the survival of cells en route to oncogenic transformation and underlies therapeutic resistance. Recent studies demonstrate that programmed cell death is not confined to caspase-dependent apoptosis, but includes necroptosis, a form of necrotic death governed by Receptor-Interacting Protein 1 (RIP1), RIP3, and Mixed Lineage Kinase Domain-Like (MLKL) protein. Necroptosis serves as a critical cell-killing mechanism in response to severe stress and blocked apoptosis, and can be induced by inflammatory cytokines or chemotherapeutic drugs. Genetic or epigenetic alterations of necroptosis regulators such as RIP3 and cylindromatosis (CYLD), are frequently found in human tumors. Unlike apoptosis, necroptosis elicits a more robust immune response that may function as a defensive mechanism by eliminating tumor-causing mutations and viruses. Furthermore, several classes of anticancer agents currently under clinical development, such as SMAC and BH3 mimetics, can promote necroptosis in addition to apoptosis. A more complete understanding of the interplay among necroptosis, apoptosis, and other cell death modalities is critical for developing new therapeutic strategies to enhance killing of tumor cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Determinants of Suicide and Accidental or Violent Death in the Australian HIV Observational Database

    PubMed Central

    McManus, Hamish; Petoumenos, Kathy; Franic, Teo; Kelly, Mark D.; Watson, Jo; O’Connor, Catherine C.; Jeanes, Mark; Hoy, Jennifer; Cooper, David A.; Law, Matthew G.

    2014-01-01

    Background Rates of suicide and accidental or violent death remain high in HIV-positive populations despite significantly improved prognosis since the introduction of cART. Methods We conducted a nested case-control study of suicide and accidental or violent death in the Australian HIV Observational Database (AHOD) between January 1999 and March 2012. For each case, 2 controls were matched by clinic, age, sex, mode of exposure and HIV-positive date to adjust for potential confounding by these covariates. Risk of suicide and accidental or violent death was estimated using conditional logistic regression. Results We included 27 cases (17 suicide and 10 violent/accidental death) and 54 controls. All cases were men who have sex with men (MSM) or MSM/ injecting drug use (IDU) mode of exposure. Increased risk was associated with unemployment (Odds Ratio (OR) 5.86, 95% CI: 1.69–20.37), living alone (OR 3.26, 95% CI: 1.06–10.07), suicidal ideation (OR 6.55, 95% CI: 1.70–25.21), and >2 psychiatric/cognitive risk factors (OR 4.99, 95% CI: 1.17–30.65). CD4 cell count of >500 cells/µL (OR 0.25, 95% CI: 0.07–0.87) and HIV-positive date ≥1990 (1990–1999 (OR 0.31, 95% CI: 0.11–0.89), post-2000 (OR 0.08, 95% CI: 0.01–0.84)) were associated with decreased risk. CD4 cell count ≥500 cells/µL remained a significant predictor of reduced risk (OR 0.15, 95% CI: 0.03–0.70) in a multivariate model adjusted for employment status, accommodation status and HIV-positive date. Conclusions After adjustment for psychosocial factors, the immunological status of HIV-positive patients contributed to the risk of suicide and accidental or violent death. The number of psychiatric/cognitive diagnoses contributed to the level of risk but many psychosocial factors were not individually significant. These findings indicate a complex interplay of factors associated with risk of suicide and accidental or violent death. PMID:24586519

  15. Exposure of Bacterial Biofilms to Electrical Current Leads to Cell Death Mediated in Part by Reactive Oxygen Species

    PubMed Central

    Brinkman, Cassandra L.; Schmidt-Malan, Suzannah M.; Karau, Melissa J.; Greenwood-Quaintance, Kerryl; Hassett, Daniel J.; Mandrekar, Jayawant N.

    2016-01-01

    Bacterial biofilms may form on indwelling medical devices such as prosthetic joints, heart valves and catheters, causing challenging-to-treat infections. We have previously described the ‘electricidal effect’, in which bacterial biofilms are decreased following exposure to direct electrical current. Herein, we sought to determine if the decreased bacterial quantities are due to detachment of biofilms or cell death and to investigate the role that reactive oxygen species (ROS) play in the observed effect. Using confocal and electron microscopy and flow cytometry, we found that direct current (DC) leads to cell death and changes in the architecture of biofilms formed by Gram-positive and Gram-negative bacteria. Reactive oxygen species (ROS) appear to play a role in DC-associated cell death, as there was an increase in ROS-production by Staphylococcus aureus and Staphylococcus epidermidis biofilms following exposure to DC. An increase in the production of ROS response enzymes catalase and superoxide dismutase (SOD) was observed for S. aureus, S. epidermidis and Pseudomonas aeruginosa biofilms following exposure to DC. Additionally, biofilms were protected from cell death when supplemented with antioxidants and oxidant scavengers, including catalase, mannitol and Tempol. Knocking out SOD (sodAB) in P. aeruginosa led to an enhanced DC effect. Microarray analysis of P. aeruginosa PAO1 showed transcriptional changes in genes related to the stress response and cell death. In conclusion, the electricidal effect results in death of bacteria in biofilms, mediated, at least in part, by production of ROS. PMID:27992529

  16. Exposure of Bacterial Biofilms to Electrical Current Leads to Cell Death Mediated in Part by Reactive Oxygen Species.

    PubMed

    Brinkman, Cassandra L; Schmidt-Malan, Suzannah M; Karau, Melissa J; Greenwood-Quaintance, Kerryl; Hassett, Daniel J; Mandrekar, Jayawant N; Patel, Robin

    2016-01-01

    Bacterial biofilms may form on indwelling medical devices such as prosthetic joints, heart valves and catheters, causing challenging-to-treat infections. We have previously described the 'electricidal effect', in which bacterial biofilms are decreased following exposure to direct electrical current. Herein, we sought to determine if the decreased bacterial quantities are due to detachment of biofilms or cell death and to investigate the role that reactive oxygen species (ROS) play in the observed effect. Using confocal and electron microscopy and flow cytometry, we found that direct current (DC) leads to cell death and changes in the architecture of biofilms formed by Gram-positive and Gram-negative bacteria. Reactive oxygen species (ROS) appear to play a role in DC-associated cell death, as there was an increase in ROS-production by Staphylococcus aureus and Staphylococcus epidermidis biofilms following exposure to DC. An increase in the production of ROS response enzymes catalase and superoxide dismutase (SOD) was observed for S. aureus, S. epidermidis and Pseudomonas aeruginosa biofilms following exposure to DC. Additionally, biofilms were protected from cell death when supplemented with antioxidants and oxidant scavengers, including catalase, mannitol and Tempol. Knocking out SOD (sodAB) in P. aeruginosa led to an enhanced DC effect. Microarray analysis of P. aeruginosa PAO1 showed transcriptional changes in genes related to the stress response and cell death. In conclusion, the electricidal effect results in death of bacteria in biofilms, mediated, at least in part, by production of ROS.

  17. Time-resolved, single-cell analysis of induced and programmed cell death via non-invasive propidium iodide and counterstain perfusion.

    PubMed

    Krämer, Christina E M; Wiechert, Wolfgang; Kohlheyer, Dietrich

    2016-09-01

    Conventional propidium iodide (PI) staining requires the execution of multiple steps prior to analysis, potentially affecting assay results as well as cell vitality. In this study, this multistep analysis method has been transformed into a single-step, non-toxic, real-time method via live-cell imaging during perfusion with 0.1 μM PI inside a microfluidic cultivation device. Dynamic PI staining was an effective live/dead analytical tool and demonstrated consistent results for single-cell death initiated by direct or indirect triggers. Application of this method for the first time revealed the apparent antibiotic tolerance of wild-type Corynebacterium glutamicum cells, as indicated by the conversion of violet fluorogenic calcein acetoxymethyl ester (CvAM). Additional implementation of this method provided insight into the induced cell lysis of Escherichia coli cells expressing a lytic toxin-antitoxin module, providing evidence for non-lytic cell death and cell resistance to toxin production. Finally, our dynamic PI staining method distinguished necrotic-like and apoptotic-like cell death phenotypes in Saccharomyces cerevisiae among predisposed descendants of nutrient-deprived ancestor cells using PO-PRO-1 or green fluorogenic calcein acetoxymethyl ester (CgAM) as counterstains. The combination of single-cell cultivation, fluorescent time-lapse imaging, and PI perfusion facilitates spatiotemporally resolved observations that deliver new insights into the dynamics of cellular behaviour.

  18. Glioblastoma cells deficient in DNA-dependent protein kinase are resistant to cell death.

    PubMed

    Chen, George G; Sin, Fanny L F; Leung, Billy C S; Ng, Ho K; Poon, Wai S

    2005-04-01

    DNA-dependent protein kinase (DNA-PK), a nuclear serine/threonine kinase, is responsible for the DNA double-strand break repair. Cells lacking or with dysfunctional DNA-PK are often associated with mis-repair, chromosome aberrations, and complex exchanges, all of which are known to contribute to the development of human cancers including glioblastoma. Two human glioblastoma cell lines were used in the experiment, M059J cells lacking the catalytic subunit of DNA-PK, and their isogenic but DNA-PK proficient counterpart, M059K. We found that M059K cells were much more sensitive to staurosporine (STS) treatment than M059J cells, as demonstrated by MTT assay, TUNEL detection, and annexin-V and propidium iodide (PI) staining. A possible mechanism responsible for the different sensitivity in these two cell lines was explored by the examination of Bcl-2, Bax, Bak, and Fas. The cell death stimulus increased anti-apoptotic Bcl-2 and decreased pro-apoptotic Bcl-2 members (Bak and Bax) and Fas in glioblastoma cells deficient in DNA-PK. Activation of DNA-PK is known to promote cell death of human tumor cells via modulation of p53, which can down-regulate the anti-apoptotic Bcl-2 member proteins, induce pro-apoptotic Bcl-2 family members and promote a Bax-Bak interaction. Our experiment also demonstrated that the mode of glioblastoma cell death induced by STS consisted of both apoptosis and necrosis and the percentage of cell death in both modes was similar in glioblastoma cell lines either lacking DNA-PK or containing intact DNA-PK. Taken together, our findings suggest that DNA-PK has a positive role in the regulation of apoptosis in human glioblastomas. The aberrant expression of Bcl-2 family members and Fas was, at least in part, responsible for decreased sensitivity of DNA-PK deficient glioblastoma cells to cell death stimuli. 2004 Wiley-Liss, Inc.

  19. Activation of apoptotic pathways in the absence of cell death in an inner-ear immortomouse cell line

    PubMed Central

    Chen, Fu-Quan; Hill, Kayla; Guan, Ya-Jun; Schacht, Jochen; Sha, Su-Hua

    2012-01-01

    Aminoglycoside antibiotics and cisplatin (CDDP) are the major ototoxins of clinical medicine due to their capacity to cause significant, as well as permanent hearing loss by targeting the mammalian sensory cells. Understanding the pathogenesis of damage is the first step in designing effective prevention of drug-induced hearing loss. In-vitro systems greatly enhance the efficiency of biochemical and molecular investigations through ease of access and manipulation. HEI-OC1, an inner ear cell line derived from the immortomouse, expresses markers for auditory sensory cells and, therefore, is a potential tool to study the ototoxic mechanisms of drugs like aminoglycoside antibiotics and CDDP. HEI-OC1 cells (and also HeLa cells) efficiently take up fluorescently tagged gentamicin and respond to drug treatment with changes in cell death and survival signaling pathways. Within hours, the C-jun N-terminal kinase pathway and the transcription factor AP-1 were activated and at later times, the “executioner caspase”, caspase-3. These responses were robust and elicited by both gentamicin and kanamycin. However, despite the initiation of apoptotic pathways and transient changes in nuclear morphology, cell death was not observed following aminoglycoside treatment, while administration of CDDP lead to significant cell death as determined by flow cytometric measurements; β-galactosidase analysis ruled out senescence in gentamicin-treated cells. The ability to withstand treatment with aminoglycosides but not with CDDP suggests that this cell line might be helpful in providing some insight into the differential actions of the two ototoxic drugs. PMID:22240458

  20. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection

    NASA Astrophysics Data System (ADS)

    Doitsh, Gilad; Galloway, Nicole L. K.; Geng, Xin; Yang, Zhiyuan; Monroe, Kathryn M.; Zepeda, Orlando; Hunt, Peter W.; Hatano, Hiroyu; Sowinski, Stefanie; Muñoz-Arias, Isa; Greene, Warner C.

    2014-01-01

    The pathway causing CD4 T-cell death in HIV-infected hosts remains poorly understood although apoptosis has been proposed as a key mechanism. We now show that caspase-3-mediated apoptosis accounts for the death of only a small fraction of CD4 T cells corresponding to those that are both activated and productively infected. The remaining over 95% of quiescent lymphoid CD4 T cells die by caspase-1-mediated pyroptosis triggered by abortive viral infection. Pyroptosis corresponds to an intensely inflammatory form of programmed cell death in which cytoplasmic contents and pro-inflammatory cytokines, including IL-1β, are released. This death pathway thus links the two signature events in HIV infection--CD4 T-cell depletion and chronic inflammation--and creates a pathogenic vicious cycle in which dying CD4 T cells release inflammatory signals that attract more cells to die. This cycle can be broken by caspase 1 inhibitors shown to be safe in humans, raising the possibility of a new class of `anti-AIDS' therapeutics targeting the host rather than the virus.

  1. Plasmodium falciparum exhibits markers of regulated cell death at high population density in vitro.

    PubMed

    Engelbrecht, Dewaldt; Coetzer, Thérèsa Louise

    2016-12-01

    The asexual erythrocytic cycle of the protozoan parasite Plasmodium falciparum is responsible for the pathogenesis of malaria and causes the overwhelming majority of malaria deaths. Rapidly increasing parasitaemia during this 48hour cycle threatens the survival of the human host and the parasite prior to transmission of the slow-maturing sexual stages to the mosquito host. The parasite may utilise regulated cell death (RCD) to control the burden of infection on the host and thus aid its own survival and transmission. The occurrence of RCD in P. falciparum remains a controversial topic. We provide strong evidence for the occurrence of an apoptosis-like phenotype of RCD in P. falciparum under conditions of high parasite density. P. falciparum was maintained in vitro and stressed by allowing growth to an unrestricted peak parasitaemia. Cell death markers, including morphological changes, DNA fragmentation, mitochondrial polarisation and phosphatidylserine externalisation were used to characterise parasite death at the time of peak parasitaemia and 24h later. At peak parasitaemia, mitochondrial depolarisation was observed, together with phosphatidylserine externalisation in both parasitised- and neighbouring non-infected erythrocytes. DNA fragmentation coincided with a decline in parasitaemia. Fewer merozoites were observed in mature schizonts at peak parasitaemia. Growth recovery to near-peak parasitaemia was noted within two intraerythrocytic cycles. The combination and chronological order of the biochemical markers of cell death suggest the occurrence of an apoptosis-like phenotype. The identification of a RCD pathway in P. falciparum may provide novel drug targets, particularly if the pathway differs from the host machinery. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Triorganotin Derivatives Induce Cell Death Effects on L1210 Leukemia Cells at Submicromolar Concentrations Independently of P-glycoprotein Expression.

    PubMed

    Bohacova, Viera; Seres, Mario; Pavlikova, Lucia; Kontar, Szilvia; Cagala, Martin; Bobal, Pavel; Otevrel, Jan; Brtko, Julius; Sulova, Zdena; Breier, Albert

    2018-05-01

    The acceleration of drug efflux activity realized by plasma membrane transporters in neoplastic cells, particularly by P-glycoprotein (P-gp, ABCB1 member of the ABC transporter family), represents a frequently observed molecular cause of multidrug resistance (MDR). This multiple resistance represents a real obstacle in the effective chemotherapy of neoplastic diseases. Therefore, identifying cytotoxic substances that are also effective in P-gp overexpressing cells may be useful for the rational design of substances for the treatment of malignancies with developed MDR. Here, we showed that triorganotin derivatives—tributyltin-chloride (TBT-Cl), tributyltin-bromide (TBT-Br), tributyltin-iodide (TBT-I) and tributyltin-isothiocyanate (TBT-NCS) or triphenyltin-chloride (TPT-Cl) and triphenyltin-isothiocyanate (TPT-NCS)—could induce the death of L1210 mice leukemia cells at a submicromolar concentration independently of P-gp overexpression. The median lethal concentration obtained for triorganotin derivatives did not exceed 0.5 µM in the induction of cell death of either P-gp negative or P-gp positive L1210 cells. Apoptosis related to regulatory pathway of Bcl-2 family proteins seems to be the predominant mode of cell death in either P-gp negative or P-gp positive L1210 cells. TBT-Cl and TBT-Br were more efficient with L1210 cells overexpressing P-gp than with their counterpart P-gp negative cells. In contrast, TBT-I and TPT-NCS induced a more pronounced cell death effect on P-gp negative cells than on P-gp positive cells. Triorganotin derivatives did not affect P-gp efflux in native cells measured by calcein retention within the cells. Taken together, we assumed that triorganotin derivatives represent substances suitable for suppressing the viability of P-gp positive malignant cells.

  3. Rapid cell death in Xanthomonas campestris pv. glycines.

    PubMed

    Gautam, Satyendra; Sharma, Arun

    2002-04-01

    Xanthomonas campestris pv. glycines strain AM2 (XcgAM2), the etiological agent of bacterial pustule disease of soybean, exhibited post-exponential rapid cell death (RCD) in LB medium. X. campestris pv. malvacearum NCIM 2310 and X. campestris NCIM 2961 also displayed RCD, though less pronouncedly than XcgAM2. RCD was not observed in Pseudomonas syringae pv. glycines, or Escherichia coli DH5alpha. Incubation of the post-exponential LB-grown XcgAM2 cultures at 4 degrees C arrested the RCD. RCD was also inhibited by the addition of starch during the exponential phase of LB-growing XcgAM2. Protease negative mutants of XcgAM2 were found to be devoid of RCD behavior observed in the wild type XcgAM2. While undergoing RCD, the organism was found to transform to spherical membrane bodies. The presence of membrane bodies was confirmed by using a membrane specific fluorescent label, 1,6-diphenyl 1,3,5-hexatriene (DPH), and also by visualizing these structures under microscope. The membrane bodies of XcgAM2 were found to contain DNA, which was devoid of the indigenous plasmids of the organism. The membrane bodies were found to bind annexin V indicative of the externalization of membrane phosphatidyl serine. Nicking of DNA in XcgAM2 cultures undergoing RCD in LB medium was also detected using a TUNEL assay. The RCD in XcgAM2 appeared to have features similar to the programmed cell death in eukaryotes.

  4. Curcumin Attenuates Staurosporine-Mediated Death of Retinal Ganglion Cells

    PubMed Central

    Burugula, Balabharathi; Ganesh, Bhagyalaxmi S.

    2011-01-01

    Purpose. Staurosporine (SS) causes retinal ganglion cell (RGC) death in vivo, but the underlying mechanisms have been unclear. Since previous studies on RGC-5 cells indicated that SS induces cell death by elevating proteases, this study was undertaken to investigate whether SS induces RGC loss by elevating proteases in the retina, and curcumin prevents SS-mediated death of RGCs. Methods. Transformed mouse retinal ganglion-like cells (RGC-5) were treated with 2.0 μM SS and various doses of curcumin. Two optimal doses of SS (12.5 and 100 nM) and curcumin (2.5 and 10 μM) were injected into the vitreous of C57BL/6 mice. Matrix metalloproteinase (MMP)-9, tissue plasminogen activator (tPA), and urokinase plasminogen activator (uPA) activities were assessed by zymography assays. Viability of RGC-5 cells was assessed by MTT assays. RGC and amacrine cell loss in vivo was assessed by immunostaining with Brn3a and ChAT antibodies, respectively. Frozen retinal cross sections were immunostained for nuclear factor-κB (NF-κB). Results. Staurosporine induced uPA and tPA levels in RGC-5 cells, and MMP-9, uPA, and tPA levels in the retinas and promoted the death of RGC-5 cells in vitro and RGCs and amacrine cells in vivo. In contrast, curcumin attenuated RGC and amacrine cell loss, despite elevated levels of proteases. An NF-κB inhibitory peptide reversed curcumin-mediated protective effect on RGC-5 cells, but did not inhibit protease levels. Curcumin did not inhibit protease levels in vivo, but attenuated RGC and amacrine cell loss by restoring NF-κB expression. Conclusions. The results show that curcumin attenuates RGC and amacrine cell death despite elevated levels of proteases and raises the possibility that it may be used as a plausible adjuvant therapeutic agent to prevent the loss of these cells in retinal degenerative conditions. PMID:21498608

  5. Nuclear DAMP complex-mediated RAGE-dependent macrophage cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ruochan; Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008; Fu, Sha

    High mobility group box 1 (HMGB1), histone, and DNA are essential nuclear components involved in the regulation of chromosome structure and function. In addition to their nuclear function, these molecules act as damage-associated molecular patterns (DAMPs) alone or together when released extracellularly. The synergistic effect of these nuclear DNA-HMGB1-histone complexes as DAMP complexes (nDCs) on immune cells remains largely unexplored. Here, we demonstrate that nDCs limit survival of macrophages (e.g., RAW264.7 and peritoneal macrophages) but not cancer cells (e.g., HCT116, HepG2 and Hepa1-6). nDCs promote production of inflammatory tumor necrosis factor α (TNFα) release, triggering reactive oxygen species-dependent apoptosis andmore » necrosis. Moreover, the receptor for advanced glycation end products (RAGE), but not toll-like receptor (TLR)-4 and TLR-2, was required for Akt-dependent TNFα release and subsequent cell death following treatment with nDCs. Genetic depletion of RAGE by RNAi, antioxidant N-Acetyl-L-cysteine, and TNFα neutralizing antibody significantly attenuated nDC-induced cell death. These findings provide evidence supporting novel signaling mechanisms linking nDCs and inflammation in macrophage cell death. - Highlights: • Nuclear DAMP complexes (nDCs) selectively induce cell death in macrophages, but not cancer cells. • TNFα-mediated oxidative stress is required for nDC-induced death. • RAGE-mediated Akt activation is required for nDC-induced TNFα release. • Blocking RAGE and TNFα inhibits nDC-induced macrophage cell death.« less

  6. Coordination of cell death and the cell cycle: linking proliferation to death through private and communal couplers.

    PubMed

    Abrams, John M; White, Michael A

    2004-12-01

    In development and in the adult, complex signaling pathways operate within and between cells to coordinate proliferation and cell death. These networks can be viewed as coupling devices that link engines driving the cell cycle and the initiation of apoptosis. We propose three simple frameworks for modeling the effects of proliferative drive on apoptotic propensity. This perspective offers a potentially useful foundation for predicting group behaviors of cells in normal and pathological settings.

  7. Rapid death of duck cells infected with influenza: a potential mechanism for host resistance to H5N1.

    PubMed

    Kuchipudi, Suresh V; Dunham, Stephen P; Nelli, Rahul; White, Gavin A; Coward, Vivien J; Slomka, Marek J; Brown, Ian H; Chang, Kin Chow

    2012-01-01

    Aquatic birds are the natural reservoir for most subtypes of influenza A, and a source of novel viruses with the potential to cause human pandemics, fatal zoonotic disease or devastating epizootics in poultry. It is well recognised that waterfowl typically show few clinical signs following influenza A infection, in contrast, terrestrial poultry such as chickens may develop severe disease with rapid death following infection with highly pathogenic avian influenza. This study examined the cellular response to influenza infection in primary cells derived from resistant (duck) and susceptible (chicken) avian hosts. Paradoxically, we observed that duck cells underwent rapid cell death following infection with low pathogenic avian H2N3, classical swine H1N1 and 'classical' highly pathogenic H5N1 viruses. Dying cells showed morphological features of apoptosis, increased DNA fragmentation and activation of caspase 3/7. Following infection of chicken cells, cell death occurred less rapidly, accompanied by reduced DNA fragmentation and caspase activation. Duck cells produced similar levels of viral RNA but less infectious virus, in comparison with chicken cells. Such rapid cell death was not observed in duck cells infected with a contemporary Eurasian lineage H5N1 fatal to ducks. The induction of rapid death in duck cells may be part of a mechanism of host resistance to influenza A, with the loss of this response leading to increased susceptibility to emergent strains of H5N1. These studies provide novel insights that should help resolve the long-standing enigma of host-pathogen relationships for highly pathogenic and zoonotic avian influenza.

  8. Therapeutic approaches to preventing cell death in Huntington disease.

    PubMed

    Kaplan, Anna; Stockwell, Brent R

    2012-12-01

    Neurodegenerative diseases affect the lives of millions of patients and their families. Due to the complexity of these diseases and our limited understanding of their pathogenesis, the design of therapeutic agents that can effectively treat these diseases has been challenging. Huntington disease (HD) is one of several neurological disorders with few therapeutic options. HD, like numerous other neurodegenerative diseases, involves extensive neuronal cell loss. One potential strategy to combat HD and other neurodegenerative disorders is to intervene in the execution of neuronal cell death. Inhibiting neuronal cell death pathways may slow the development of neurodegeneration. However, discovering small molecule inhibitors of neuronal cell death remains a significant challenge. Here, we review candidate therapeutic targets controlling cell death mechanisms that have been the focus of research in HD, as well as an emerging strategy that has been applied to developing small molecule inhibitors-fragment-based drug discovery (FBDD). FBDD has been successfully used in both industry and academia to identify selective and potent small molecule inhibitors, with a focus on challenging proteins that are not amenable to traditional high-throughput screening approaches. FBDD has been used to generate potent leads, pre-clinical candidates, and has led to the development of an FDA approved drug. This approach can be valuable for identifying modulators of cell-death-regulating proteins; such compounds may prove to be the key to halting the progression of HD and other neurodegenerative disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Therapeutic approaches to preventing cell death in Huntington disease

    PubMed Central

    Kaplan, Anna; Stockwell, Brent R.

    2012-01-01

    Neurodegenerative diseases affect the lives of millions of patients and their families. Due to the complexity of these diseases and our limited understanding of their pathogenesis, the design of therapeutic agents that can effectively treat these diseases has been challenging. Huntington disease (HD) is one of several neurological disorders with few therapeutic options. HD, like numerous other neurodegenerative diseases, involves extensive neuronal cell loss. One potential strategy to combat HD and other neurodegenerative disorders is to intervene in the execution of neuronal cell death. Inhibiting neuronal cell death pathways may slow the development of neurodegeneration. However, discovering small molecule inhibitors of neuronal cell death remains a significant challenge. Here, we review candidate therapeutic targets controlling cell death mechanisms that have been the focus of research in HD, as well as an emerging strategy that has been applied to developing small molecule inhibitors—fragment-based drug discovery (FBDD). FBDD has been successfully used in both industry and academia to identify selective and potent small molecule inhibitors, with a focus on challenging proteins that are not amenable to traditional high-throughput screening approaches. FBDD has been used to generate potent leads, pre-clinical candidates, and has led to the development of an FDA approved drug. This approach can be valuable for identifying modulators of cell-death-regulating proteins; such compounds may prove to be the key to halting the progression of HD and other neurodegenerative disorders. PMID:22967354

  10. Cytoprotective dibenzoylmethane derivatives protect cells from oxidative stress-induced necrotic cell death.

    PubMed

    Hegedűs, Csaba; Lakatos, Petra; Kiss-Szikszai, Attila; Patonay, Tamás; Gergely, Szabolcs; Gregus, Andrea; Bai, Péter; Haskó, György; Szabó, Éva; Virág, László

    2013-06-01

    Screening of a small in-house library of 1863 compounds identified 29 compounds that protected Jurkat cells from hydrogen peroxide-induced cytotoxicity. From the cytoprotective compounds eleven proved to possess antioxidant activity (ABTS radical scavenger effect) and two were found to inhibit poly(ADP-ribosyl)ation (PARylation), a cytotoxic pathway operating in severely injured cells. Four cytoprotective dibenzoylmethane (DBM) derivatives were investigated in more detail as they did not scavenge hydrogen peroxide nor did they inhibit PARylation. These compounds protected cells from necrotic cell death while caspase activation, a parameter of apoptotic cell death was not affected. Hydrogen peroxide activated extracellular signal regulated kinase (ERK1/2) and p38 MAP kinases but not c-Jun N-terminal kinase (JNK). The cytoprotective DBMs suppressed the activation of Erk1/2 but not that of p38. Cytoprotection was confirmed in another cell type (A549 lung epithelial cells), indicating that the cytoprotective effect is not cell type specific. In conclusion we identified DBM analogs as a novel class of cytoprotective compounds inhibiting ERK1/2 kinase and protecting from necrotic cell death by a mechanism independent of poly(ADP-ribose) polymerase inhibition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. 6-shogaol induces autophagic cell death then triggered apoptosis in colorectal adenocarcinoma HT-29 cells.

    PubMed

    Li, Ting-Yi; Chiang, Been-Huang

    2017-09-01

    6-shogaol is a phytochemical of dietary ginger, we found that 6-shogaol could induced both autophagic and apoptotic death in human colon adenocarcinoma (HT-29) cells. Results of this study showed that 6-shogal induced cell cycle arrest, autophagy, and apoptosis in HT-29 cells in a time sequence. After 6h, 6-shogal induced apparent G2/M arrest, then the HT-29 cells formed numerous autophagosomes in each phase of the cell cycle. After 18h, increases in acidic vesicles and LAMP-1 (Lysosome-associated membrane proteins 1) showed that 6-shogaol had caused autophagic cell death. After 24h, cell shrinkage and Caspase-3/7 activities rising, suggesting that apoptotic cell death had increased. And after 48h, the result of TUNEL assay indicated the highest occurrence of apoptosis upon 6-shogaol treatment. It appeared that apoptosis is triggered by autophagy in 6-shogaol treated HT-29 cells, the damage of autophagic cell death initiated apoptosis program. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Incomplete inhibition of HIV infection results in more HIV infected lymph node cells by reducing cell death

    PubMed Central

    Cele, Sandile; Ferreira, Isabella Markham; Young, Andrew C; Karim, Farina; Madansein, Rajhmun; Dullabh, Kaylesh J; Chen, Chih-Yuan; Buckels, Noel J; Ganga, Yashica; Khan, Khadija; Boulle, Mikael; Lustig, Gila; Neher, Richard A

    2018-01-01

    HIV has been reported to be cytotoxic in vitro and in lymph node infection models. Using a computational approach, we found that partial inhibition of transmissions of multiple virions per cell could lead to increased numbers of live infected cells. If the number of viral DNA copies remains above one after inhibition, then eliminating the surplus viral copies reduces cell death. Using a cell line, we observed increased numbers of live infected cells when infection was partially inhibited with the antiretroviral efavirenz or neutralizing antibody. We then used efavirenz at concentrations reported in lymph nodes to inhibit lymph node infection by partially resistant HIV mutants. We observed more live infected lymph node cells, but with fewer HIV DNA copies per cell, relative to no drug. Hence, counterintuitively, limited attenuation of HIV transmission per cell may increase live infected cell numbers in environments where the force of infection is high. PMID:29555018

  13. HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death.

    PubMed

    Aits, Sonja; Gustafsson, Lotta; Hallgren, Oskar; Brest, Patrick; Gustafsson, Mattias; Trulsson, Maria; Mossberg, Ann-Kristin; Simon, Hans-Uwe; Mograbi, Baharia; Svanborg, Catharina

    2009-03-01

    HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

  14. Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods

    PubMed Central

    Fernandez Cabada, Tamara; Sanchez Lopez de Pablo, Cristina; Martinez Serrano, Alberto; del Pozo Guerrero, Francisco; Serrano Olmedo, Jose Javier; Ramos Gomez, Milagros

    2012-01-01

    Background Metallic nanorods are promising agents for a wide range of biomedical applications. In this study, we developed an optical hyperthermia method capable of inducing in vitro death of glioblastoma cells. Methods The procedure used was based on irradiation of gold nanorods with a continuous wave laser. This kind of nanoparticle converts absorbed light into localized heat within a short period of time due to the surface plasmon resonance effect. The effectiveness of the method was determined by measuring changes in cell viability after laser irradiation of glioblastoma cells in the presence of gold nanorods. Results Laser irradiation in the presence of gold nanorods induced a significant decrease in cell viability, while no decrease in cell viability was observed with laser irradiation or incubation with gold nanorods alone. The mechanism of cell death mediated by gold nanorods during photothermal ablation was analyzed, indicating that treatment compromised the integrity of the cell membrane instead of initiating the process of programmed cell death. Conclusion The use of gold nanorods in hyperthermal therapies is very effective in eliminating glioblastoma cells, and therefore represents an important area of research for therapeutic development. PMID:22619509

  15. S-Adenosyl-L-methionine protects the probiotic yeast, Saccharomyces boulardii, from acid-induced cell death.

    PubMed

    Cascio, Vincent; Gittings, Daniel; Merloni, Kristen; Hurton, Matthew; Laprade, David; Austriaco, Nicanor

    2013-02-13

    Saccharomyces boulardii is a probiotic yeast routinely used to prevent and to treat gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. However, only 1-3% of the yeast administered orally is recovered alive in the feces suggesting that this yeast is unable to survive the acidic environment of the gastrointestinal tract. We provide evidence that suggests that S. boulardii undergoes programmed cell death (PCD) in acidic environments, which is accompanied by the generation of reactive oxygen species and the appearance of caspase-like activity. To better understand the mechanism of cell death at the molecular level, we generated microarray gene expression profiles of S. boulardii cells cultured in an acidic environment. Significantly, functional annotation revealed that the up-regulated genes were significantly over-represented in cell death pathways Finally, we show that S-adenosyl-L-methionine (AdoMet), a commercially available, FDA-approved dietary supplement, enhances the viability of S. boulardii in acidic environments, most likely by preventing programmed cell death. In toto, given the observation that many of the proven health benefits of S. boulardii are dependent on cell viability, our data suggests that taking S. boulardii and AdoMet together may be a more effective treatment for gastrointestinal disorders than taking the probiotic yeast alone.

  16. Tritrichomonas foetus Induces Apoptotic Cell Death in Bovine Vaginal Epithelial Cells

    PubMed Central

    Singh, B. N.; Lucas, J. J.; Hayes, G. R.; Kumar, Ish; Beach, D. H.; Frajblat, Marcel; Gilbert, R. O.; Sommer, U.; Costello, C. E.

    2004-01-01

    Tritrichomonas foetus is a serious veterinary pathogen, causing bovine trichomoniasis, a sexually transmitted disease leading to infertility and abortion. T. foetus infects the mucosal surfaces of the reproductive tract. Infection with T. foetus leads to apoptotic cell death of bovine vaginal epithelial cells (BVECs) in culture. An affinity-purified cysteine protease (CP) fraction yielding on sodium dodecyl sulfate-polyacrylamide gel electrophoresis a single band with an apparent molecular mass of 30 kDa (CP30) also induces BVEC apoptosis. Treatment of CP30 with the protease inhibitors TLCK (Nα-p-tosyl-l-lysine chloromethyl ketone) and E-64 [l-trans-epoxysuccinyl-leucylamide-(4-guanido)-butane] greatly reduces induction of BVEC apoptosis. Matrix-assisted laser desorption ionization-time-of-flight MALDI-TOF mass spectrometry analysis of CP30 reveals a single peak with a molecular mass of 23.7 kDa. Mass spectral peptide sequence analysis of proteolytically digested CP30 reveals homologies to a previously reported cDNA clone, CP8 (D. J. Mallinson, J. Livingstone, K. M. Appleton, S. J. Lees, G. H. Coombs, and M. J. North, Microbiology 141:3077-3085, 1995). Induction of apoptosis is highly species specific, since the related human parasite Trichomonas vaginalis and associated purified CPs did not induce BVEC death. Fluorescence microscopy along with the Cell Death Detection ELISAPLUS assay and flow cytometry analyses were used to detect apoptotic nuclear condensation, DNA fragmentation, and changes in plasma membrane asymmetry in host cells undergoing apoptosis in response to T. foetus infection or incubation with CP30. Additionally, the activation of caspase-3 and inhibition of cell death by caspase inhibitors indicates that caspases are involved in BVEC apoptosis. These results imply that apoptosis is involved in the pathogenesis of T. foetus infection in vivo, which may have important implications for therapeutic interference with host cell death that could alter

  17. Zinc as a paracrine effector in pancreatic islet cell death.

    PubMed

    Kim, B J; Kim, Y H; Kim, S; Kim, J W; Koh, J Y; Oh, S H; Lee, M K; Kim, K W; Lee, M S

    2000-03-01

    Because of a huge amount of Zn2+ in secretory granules of pancreatic islet beta-cells, Zn2+ released in certain conditions might affect the function or survival of islet cells. We studied potential paracrine effects of endogenous Zn2+ on beta-cell death. Zn2+ induced insulinoma/islet cell death in a dose-dependent manner. Chelation of released endogenous Zn2+ by CaEDTA significantly decreased streptozotocin (STZ)-induced islet cell death in an in vitro culture system simulating in vivo circumstances but not in the conventional culture system. Zn2+ chelation in vivo by continuous CaEDTA infusion significantly decreased the incidence of diabetes after STZ administration. N-(6-methoxy-quinolyl)-para-toluene-sulfonamide staining revealed that Zn2+ was densely deposited in degenerating islet cells 24 h after STZ treatment, which was decreased by CaEDTA infusion. We show here that Zn2+ is not a passive element for insulin storage but an active participant in islet cell death in certain conditions, which in time might contribute to the development of diabetes in aged people.

  18. Anticancer Effect of Ginger Extract against Pancreatic Cancer Cells Mainly through Reactive Oxygen Species-Mediated Autotic Cell Death

    PubMed Central

    Akimoto, Miho; Iizuka, Mari; Kanematsu, Rie; Yoshida, Masato; Takenaga, Keizo

    2015-01-01

    The extract of ginger (Zingiber officinale Roscoe) and its major pungent components, [6]-shogaol and [6]-gingerol, have been shown to have an anti-proliferative effect on several tumor cell lines. However, the anticancer activity of the ginger extract in pancreatic cancer is poorly understood. Here, we demonstrate that the ethanol-extracted materials of ginger suppressed cell cycle progression and consequently induced the death of human pancreatic cancer cell lines, including Panc-1 cells. The underlying mechanism entailed autosis, a recently characterized form of cell death, but not apoptosis or necroptosis. The extract markedly increased the LC3-II/LC3-I ratio, decreased SQSTM1/p62 protein, and enhanced vacuolization of the cytoplasm in Panc-1 cells. It activated AMPK, a positive regulator of autophagy, and inhibited mTOR, a negative autophagic regulator. The autophagy inhibitors 3-methyladenine and chloroquine partially prevented cell death. Morphologically, however, focal membrane rupture, nuclear shrinkage, focal swelling of the perinuclear space and electron dense mitochondria, which are unique morphological features of autosis, were observed. The extract enhanced reactive oxygen species (ROS) generation, and the antioxidant N-acetylcystein attenuated cell death. Our study revealed that daily intraperitoneal administration of the extract significantly prolonged survival (P = 0.0069) in a peritoneal dissemination model and suppressed tumor growth in an orthotopic model of pancreatic cancer (P < 0.01) without serious adverse effects. Although [6]-shogaol but not [6]-gingerol showed similar effects, chromatographic analyses suggested the presence of other constituent(s) as active substances. Together, these results show that ginger extract has potent anticancer activity against pancreatic cancer cells by inducing ROS-mediated autosis and warrants further investigation in order to develop an efficacious candidate drug. PMID:25961833

  19. Caspase inhibition augmented oridonin-induced cell death in murine fibrosarcoma l929 by enhancing reactive oxygen species generation.

    PubMed

    Wu, Jin-Nan; Huang, Jian; Yang, Jia; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2008-09-01

    Oridonin, a diterpenoid isolated from Rabdosia rubescences, has been reported to have antitumor effects. In this study, the growth-inhibitory activity of oridonin for L929 cells was exerted in a time-and dose-dependent manner. After treatment with oridonin for 24 h, L929 cells underwent both apoptosis and necrosis as measured by an lactate dehydrogenase (LDH) activity-based assay. A rapid generation of reactive oxygen species (ROS) was triggered by oridonin, and subsequently up-regulation of phospho-p53 (ser 15) expression and an increased expression ratio of Bax/Bcl-2 was observed. Furthermore, there was a significant fall in mitochondrial membrane potential (MMP) and increase in caspase-3 activity after exposure to oridonin for 24 h. Surprisingly, the pan-caspase inhibitor z-VAD-fmk and caspase3 inhibitor z-DEVD-fmk rendered L929 cells more sensitive to oridonin, rather than preventing oridonin-induced cell death. Oridonin and z-VAD-fmk co-treatment not only resulted in an even higher ROS production, but also made a more significant reduction in the MMP. Pretreatment of ROS scavenger N-acetylcysteine (NAC) led to a complete inhibition of oridonin-induced cell death, intracellular ROS generation, and MMP collapse. NAC treatment also reversed the potentiation of cell death by the pan-caspase inhibitor z-VAD-fmk. Taken together, these observations showed that oridonin-induced cell death in L929 cells involved intracellular ROS generation, activation of phospho-p53 (ser 15), and up-regulation of the Bax/Bcl-2 ratio; and the augmented cell death by z-VAD-fmk was dependent on an increased ROS production.

  20. Anti-CHMP5 single chain variable fragment antibody retrovirus infection induces programmed cell death of AML leukemic cells in vitro.

    PubMed

    Wang, Hai-rong; Xiao, Zhen-yu; Chen, Miao; Wang, Fei-long; Liu, Jia; Zhong, Hua; Zhong, Ji-hua; Ou-Yang, Ren-rong; Shen, Yan-lin; Pan, Shu-ming

    2012-06-01

    Over-expressed CHMP5 was found to act as oncogene that probably participated in leukemogenesis. In this study, we constructed the CHMP5 single chain variable fragment antibody (CHMP5-scFv) retrovirus and studied the changes of programmed cell death (PCD) of AML leukemic cells after infection by the retrovirus. The anti-CHMP5 KC14 hybridoma cell line was constructed to generate monoclonal antibody of CHMP5. The protein expression of CHMP5 was studied using immunofluorescence analysis. pMIG-CHMP5 scFv antibody expressible retroviral vector was constructed to prepare CHMP5-scFv retrovirus. AML leukemic U937 cells were infected with the retrovirus, and programmed cell death was studied using confocal microscope, FCM and Western blot. We obtained a monoclonal antibody of CHMP5, and found the expression of CHMP5 was up-regulated in the leukemic cells. After U937 cells were infected with CHMP5-scFv retrovirus, CHMP5 protein was neutralized. Moreover, the infection resulted in a significant increase in apoptosis and necrosis of U937 cells. In U937 cells infected with CHMP5-scFv retrovirus, apoptosis-inducing factor (AIF)-mediated caspase-independent necrotic PCD was activated, but autophagic programmed cell death was not observed. Neither the intrinsic nor extrinsic apoptotic PCD pathway was activated. The granzyme B/perforin-mediated caspase-dependent apoptotic PCD pathway was not activated. CHMP5-scFv retrovirus can neutralize the abnormally high levels of the CHMP5 protein in the cytosol of AML leukemic U937 cells, thereby inducing the programmed cell death of the leukemic cells via AIF-mediated caspase-independent necrosis and apoptosis.

  1. Characterization of the programmed cell death induced by metabolic products of Alternaria alternata in tobacco BY-2 cells.

    PubMed

    Cheng, Dan-Dan; Jia, Yu-Jiao; Gao, Hui-Yuan; Zhang, Li-Tao; Zhang, Zi-Shan; Xue, Zhong-Cai; Meng, Qing-Wei

    2011-02-01

    Alternaria alternata has received considerable attention in current literature and most of the studies are focused on its pathogenic effects on plant chloroplasts, but little is known about the characteristics of programmed cell death (PCD) induced by metabolic products (MP) of A. alternata, the effects of the MP on mitochondrial respiration and its relation to PCD. The purpose of this study was to explore the mechanism of MP-induced PCD in non-green tobacco BY-2 cells and to explore the role of mitochondrial inhibitory processes in the PCD of tobacco BY-2 cells. MP treatment led to significant cell death that was proven to be PCD by the concurrent cytoplasm shrinkage, chromatin condensation and DNA laddering observed in the cells. Moreover, MP treatment resulted in the overproduction of reactive oxygen species (ROS), rapid ATP depletion and a respiratory decline in the tobacco BY-2 cells. It was concluded that the direct inhibition of the mitochondrial electron transport chain (ETC), alternative pathway (AOX) capacity and catalase (CAT) activity by the MP might be the main contributors to the MP-induced ROS burst observed in tobacco BY-2 cells. The addition of adenosine together with the MP significantly inhibited ATP depletion without preventing PCD; however, when the cells were treated with the MP plus CAT, ROS overproduction was blocked and PCD did not occur. The data presented here demonstrate that the ROS burst played an important role in MP-induced PCD in the tobacco BY-2 cells.

  2. Heat shock during rat embryo development in vitro results in decreased mitosis and abundant cell death.

    PubMed

    Breen, J G; Claggett, T W; Kimmel, G L; Kimmel, C A

    1999-01-01

    Epidemiologic studies strongly suggest that in utero exposure to hyperthermia results in developmental defects in humans. Rats, mice, guinea pigs, and other species exposed to hyperthermia also exhibit a variety of developmental defects. Studies in our laboratory have focused on exposure to hyperthermia on Gestation Day (GD) 10 of rats in vivo or in vitro. Within 24 h after in vivo or in vitro exposure, delayed or abnormal CNS, optic cup, somite, and limb development can be observed. At birth, only rib and vertebral malformations are seen after hyperthermia on GD 10, and these have been shown to be due to alterations in somite segmentation. Unsegmented somites have been thought to result from a cell-cycle block in the presomitic mesoderm, from which somites emerge individually during normal development. In the present study, DNA fragmentation (terminal deoxynucleotidyl transferase (TdT) catalyzed fluorescein-12-dUTP DNA end-labelling), indicative of apoptotic cell death, and changes in cell proliferation were examined in vitro in 37 degrees C control and heat treated (42 degrees C for 15 min) GD 10 CD rat embryos. Embryos were returned to 37 degrees C culture following exposure and evaluated 5, 8, or 18 h later. A temperature-related increase in TdT labelled cells was observed in the CNS, optic vesicle, neural tube, and somites. Increased cell death in the presomitic mesoderm also was evident. Changes in cell proliferation were examined using the cell-specific abundance of proliferating cell nuclear antigen (PCNA) and the quantification of mitotic figures. In neuroectodermal cells in the region of the optic cup, a change in the abundance of PCNA was not apparent, but a marked decrease in mitotic figures was observed. A significant change in cell proliferation in somites was not detected by either method. These results suggest that acute hyperthermia disrupts embryonic development through a combination of inappropriate cell death and/or altered cell proliferation in

  3. Sugar suppresses cell death caused by disruption of fumarylacetoacetate hydrolase in Arabidopsis.

    PubMed

    Zhi, Tiantian; Zhou, Zhou; Huang, Yi; Han, Chengyun; Liu, Yan; Zhu, Qi; Ren, Chunmei

    2016-09-01

    Sugar negatively regulates cell death resulting from the loss of fumarylacetoacetate hydrolase that catalyzes the last step in the Tyr degradation pathway in Arabidopsis . Fumarylacetoacetate hydrolase (FAH) hydrolyzes fumarylacetoacetate to fumarate and acetoacetate, the final step in the tyrosine (Tyr) degradation pathway that is essential to animals. Previously, we first found that the Tyr degradation pathway plays an important role in plants. Mutation of the SSCD1 gene encoding FAH in Arabidopsis leads to spontaneous cell death under short-day conditions. In this study, we presented that the lethal phenotype of the short-day sensitive cell death1 (sscd1) seedlings was suppressed by sugars including sucrose, glucose, fructose, and maltose in a dose-dependent manner. Real-time quantitative PCR (RT-qPCR) analysis showed the expression of Tyr degradation pathway genes homogentisate dioxygenase and maleylacetoacetate isomerase, and sucrose-processing genes cell-wall invertase 1 and alkaline/neutral invertase G, was up-regulated in the sscd1 mutant, however, this up-regulation could be repressed by sugar. In addition, a high concentration of sugar attenuated cell death of Arabidopsis wild-type seedlings caused by treatment with exogenous succinylacetone, an abnormal metabolite resulting from the loss of FAH in the Tyr degradation pathway. These results indicated that (1) sugar could suppress cell death in sscd1, which might be because sugar supply enhances the resistance of Arabidopsis seedlings to toxic effects of succinylacetone and reduces the accumulation of Tyr degradation intermediates, resulting in suppression of cell death; and (2) sucrose-processing genes cell-wall invertase 1 and alkaline/neutral invertase G might be involved in the cell death in sscd1. Our work provides insights into the relationship between sugar and sscd1-mediated cell death, and contributes to elucidation of the regulation of cell death resulting from the loss of FAH in plants.

  4. Programmed Cell Death-1/Programmed Death-ligand 1 Pathway: A New Target for Sepsis.

    PubMed

    Liu, Qiang; Li, Chun-Sheng

    2017-04-20

    Sepsis remains a leading cause of death in many Intensive Care Units worldwide. Immunosuppression has been a primary focus of sepsis research as a key pathophysiological mechanism. Given the important role of the negative costimulatory molecules programmed cell death-1 (PD-1) and programmed death-ligand 1 (PD-L1) in the occurrence of immunosuppression during sepsis, we reviewed literatures related to the PD-1/PD-L1 pathway to examine its potential as a new target for sepsis treatment. Studies of the association between PD-1/PD-L1 and sepsis published up to January 31, 2017, were obtained by searching the PubMed database. English language studies, including those based on animal models, clinical research, and reviews, with data related to PD-1/PD-L1 and sepsis, were evaluated. Immunomodulatory therapeutics could reverse the deactivation of immune cells caused by sepsis and restore immune cell activation and function. Blockade of the PD-1/PD-L1 pathway could reduce the exhaustion of T-cells and enhance the proliferation and activation of T-cells. The anti-PD-1/PD-L1 pathway shows promise as a new target for sepsis treatment. This review provides a basis for clinical trials and future studies aimed at revaluating the efficacy and safety of this targeted approach.

  5. Pelle Modulates dFoxO-Mediated Cell Death in Drosophila.

    PubMed

    Wu, Chenxi; Chen, Yujun; Wang, Feng; Chen, Changyan; Zhang, Shiping; Li, Chaojie; Li, Wenzhe; Wu, Shian; Xue, Lei

    2015-10-01

    Interleukin-1 receptor-associated kinases (IRAKs) are crucial mediators of the IL-1R/TLR signaling pathways that regulate the immune and inflammation response in mammals. Recent studies also suggest a critical role of IRAKs in tumor development, though the underlying mechanism remains elusive. Pelle is the sole Drosophila IRAK homolog implicated in the conserved Toll pathway that regulates Dorsal/Ventral patterning, innate immune response, muscle development and axon guidance. Here we report a novel function of pll in modulating apoptotic cell death, which is independent of the Toll pathway. We found that loss of pll results in reduced size in wing tissue, which is caused by a reduction in cell number but not cell size. Depletion of pll up-regulates the transcription of pro-apoptotic genes, and triggers caspase activation and cell death. The transcription factor dFoxO is required for loss-of-pll induced cell death. Furthermore, loss of pll activates dFoxO, promotes its translocation from cytoplasm to nucleus, and up-regulates the transcription of its target gene Thor/4E-BP. Finally, Pll physically interacts with dFoxO and phosphorylates dFoxO directly. This study not only identifies a previously unknown physiological function of pll in cell death, but also shed light on the mechanism of IRAKs in cell survival/death during tumorigenesis.

  6. Modulating cell-to-cell variability and sensitivity to death ligands by co-drugging

    NASA Astrophysics Data System (ADS)

    Flusberg, Deborah A.; Sorger, Peter K.

    2013-06-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) holds promise as an anti-cancer therapeutic but efficiently induces apoptosis in only a subset of tumor cell lines. Moreover, even in clonal populations of responsive lines, only a fraction of cells dies in response to TRAIL and individual cells exhibit cell-to-cell variability in the timing of cell death. Fractional killing in these cell populations appears to arise not from genetic differences among cells but rather from differences in gene expression states, fluctuations in protein levels and the extent to which TRAIL-induced death or survival pathways become activated. In this study, we ask how cell-to-cell variability manifests in cell types with different sensitivities to TRAIL, as well as how it changes when cells are exposed to combinations of drugs. We show that individual cells that survive treatment with TRAIL can regenerate the sensitivity and death-time distribution of the parental population, demonstrating that fractional killing is a stable property of cell populations. We also show that cell-to-cell variability in the timing and probability of apoptosis in response to treatment can be tuned using combinations of drugs that together increase apoptotic sensitivity compared to treatment with one drug alone. In the case of TRAIL, modulation of cell-to-cell variability by co-drugging appears to involve a reduction in the threshold for mitochondrial outer membrane permeabilization.

  7. Autophagy protein p62/SQSTM1 is involved in HAMLET-induced cell death by modulating apotosis in U87MG cells

    PubMed Central

    Zhang, Y-B; Gong, J-L; Xing, T-Y; Zheng, S-P; Ding, W

    2013-01-01

    HAMLET is a complex of oleic acids and decalcified α-lactalbumin that was discovered to selectively kill tumor cells both in vitro and in vivo. Autophagy is an important cellular process involved in drug-induced cell death of glioma cells. We treated U87MG human glioma cells with HAMLET and found that the cell viability was significantly decreased and accompanied with the activation of autophagy. Interestingly, we observed an increase in p62/SQSTM1, an important substrate of autophagosome enzymes, at the protein level upon HAMLET treatment for short periods. To better understand the functionality of autophagy and p62/SQSTM1 in HAMLET-induced cell death, we modulated the level of autophagy or p62/SQSTM1 with biochemical or genetic methods. The results showed that inhibition of autophagy aggravated HAMLET-induced cell death, whereas activation of authophagy attenuated this process. Meanwhile, we found that overexpression of wild-type p62/SQSTM1 was able to activate caspase-8, and then promote HAMLET-induced apoptosis, whereas knockdown of p62/SQSTM1 manifested the opposite effect. We further demonstrated that the function of p62/SQSTM1 following HAMLET treatment required its C-terminus UBA domain. Our results indicated that in addition to being a marker of autophagy activation in HAMLET-treated glioma cells, p62/SQSTM1 could also function as an important mediator for the activation of caspase-8-dependent cell death. PMID:23519119

  8. Autophagy protein p62/SQSTM1 is involved in HAMLET-induced cell death by modulating apotosis in U87MG cells.

    PubMed

    Zhang, Y-B; Gong, J-L; Xing, T-Y; Zheng, S-P; Ding, W

    2013-03-21

    HAMLET is a complex of oleic acids and decalcified α-lactalbumin that was discovered to selectively kill tumor cells both in vitro and in vivo. Autophagy is an important cellular process involved in drug-induced cell death of glioma cells. We treated U87MG human glioma cells with HAMLET and found that the cell viability was significantly decreased and accompanied with the activation of autophagy. Interestingly, we observed an increase in p62/SQSTM1, an important substrate of autophagosome enzymes, at the protein level upon HAMLET treatment for short periods. To better understand the functionality of autophagy and p62/SQSTM1 in HAMLET-induced cell death, we modulated the level of autophagy or p62/SQSTM1 with biochemical or genetic methods. The results showed that inhibition of autophagy aggravated HAMLET-induced cell death, whereas activation of authophagy attenuated this process. Meanwhile, we found that overexpression of wild-type p62/SQSTM1 was able to activate caspase-8, and then promote HAMLET-induced apoptosis, whereas knockdown of p62/SQSTM1 manifested the opposite effect. We further demonstrated that the function of p62/SQSTM1 following HAMLET treatment required its C-terminus UBA domain. Our results indicated that in addition to being a marker of autophagy activation in HAMLET-treated glioma cells, p62/SQSTM1 could also function as an important mediator for the activation of caspase-8-dependent cell death.

  9. Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death

    PubMed Central

    Graham, Nicholas A; Tahmasian, Martik; Kohli, Bitika; Komisopoulou, Evangelia; Zhu, Maggie; Vivanco, Igor; Teitell, Michael A; Wu, Hong; Ribas, Antoni; Lo, Roger S; Mellinghoff, Ingo K; Mischel, Paul S; Graeber, Thomas G

    2012-01-01

    The altered metabolism of cancer can render cells dependent on the availability of metabolic substrates for viability. Investigating the signaling mechanisms underlying cell death in cells dependent upon glucose for survival, we demonstrate that glucose withdrawal rapidly induces supra-physiological levels of phospho-tyrosine signaling, even in cells expressing constitutively active tyrosine kinases. Using unbiased mass spectrometry-based phospho-proteomics, we show that glucose withdrawal initiates a unique signature of phospho-tyrosine activation that is associated with focal adhesions. Building upon this observation, we demonstrate that glucose withdrawal activates a positive feedback loop involving generation of reactive oxygen species (ROS) by NADPH oxidase and mitochondria, inhibition of protein tyrosine phosphatases by oxidation, and increased tyrosine kinase signaling. In cells dependent on glucose for survival, glucose withdrawal-induced ROS generation and tyrosine kinase signaling synergize to amplify ROS levels, ultimately resulting in ROS-mediated cell death. Taken together, these findings illustrate the systems-level cross-talk between metabolism and signaling in the maintenance of cancer cell homeostasis. PMID:22735335

  10. Apoptosis and tumor cell death in response to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    PubMed

    Hallgren, Oskar; Aits, Sonja; Brest, Patrick; Gustafsson, Lotta; Mossberg, Ann-Kristin; Wullt, Björn; Svanborg, Catharina

    2008-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a molecular complex derived from human milk that kills tumor cells by a process resembling programmed cell death. The complex consists of partially unfolded alpha-lactalbumin and oleic acid, and both the protein and the fatty acid are required for cell death. HAMLET has broad antitumor activity in vitro, and its therapeutic effect has been confirmed in vivo in a human glioblastoma rat xenograft model, in patients with skin papillomas and in patients with bladder cancer. The mechanisms of tumor cell death remain unclear, however. Immediately after the encounter with tumor cells, HAMLET invades the cells and causes mitochondrial membrane depolarization, cytochrome c release, phosphatidyl serine exposure, and a low caspase response. A fraction of the cells undergoes morphological changes characteristic of apoptosis, but caspase inhibition does not rescue the cells and Bcl-2 overexpression or altered p53 status does not influence the sensitivity of tumor cells to HAMLET. HAMLET also creates a state of unfolded protein overload and activates 20S proteasomes, which contributes to cell death. In parallel, HAMLET translocates to tumor cell nuclei, where high-affinity interactions with histones cause chromatin disruption, loss of transcription, and nuclear condensation. The dying cells also show morphological changes compatible with macroautophagy, and recent studies indicate that macroautophagy is involved in the cell death response to HAMLET. The results suggest that HAMLET, like a hydra with many heads, may interact with several crucial cellular organelles, thereby activating several forms of cell death, in parallel. This complexity might underlie the rapid death response of tumor cells and the broad antitumor activity of HAMLET.

  11. Hyaluronan Protects Bovine Articular Chondrocytes against Cell Death Induced by Bupivacaine under Supraphysiologic Temperatures

    PubMed Central

    Liu, Sen; Zhang, Qing-Song; Hester, William; O’Brien, Michael J.; Savoie, Felix H.; You, Zongbing

    2013-01-01

    Background Bupivacaine and supraphysiologic temperature can independently reduce cell viability of articular chondrocytes. In combination these two deleterious factors could further impair cell viability. Hypothesis Hyaluronan may protect chondrocytes from death induced by bupivacaine at supraphysiologic temperatures. Study Design Controlled laboratory study. Methods Bovine articular chondrocytes were treated with hyaluronan at physiologic (37°C) and supraphysiologic temperatures (45°C and 50°C) for one hour, and then exposed to bupivacaine for one hour at room temperature. Cell viability was assessed at three time points: immediately after treatment, six hours later, and twenty-four hours later using flow cytometry and fluorescence microscopy. The effects of hyaluronan on the levels of sulfated glycosaminoglycan in the chondrocytes were determined using Alcian blue staining. Results (1) Bupivacaine alone did not induce noticeable chondrocyte death at 37°C; (2) bupivacaine and temperature synergistically increased chondrocyte death, that is, when the chondrocytes were conditioned to 45°C and 50°C, 0.25% and 0.5% bupivacaine increased the cell death rate by 131% to 383% in comparison to the phosphate-buffered saline control group; and, (3) addition of hyaluronan reduced chondrocyte death rates to approximately 14% and 25% at 45°C and 50°C, respectively. Hyaluronan’s protective effects were still observed at six and twenty-four hours after bupivacaine treatment at 45°C. However, at 50°C, hyaluronan delayed but did not prevent the cell death caused by bupivacaine. One-hour treatment with hyaluronan significantly increased sulfated glycosaminoglycan levels in the chondrocytes. Conclusions Bupivacaine and supraphysiologic temperature synergistically increase chondrocyte death and hyaluronan may protect articular chondrocytes from death caused by bupivacaine. Clinical Relevance This study provides a rationale to perform pre-clinical and clinical studies to

  12. N-Desmethyldauricine Induces Autophagic Cell Death in Apoptosis-Defective Cells via Ca2+ Mobilization.

    PubMed

    Law, Betty Y K; Mok, Simon W F; Chen, Juan; Michelangeli, Francesco; Jiang, Zhi-Hong; Han, Yu; Qu, Yuan Q; Qiu, Alena C L; Xu, Su-Wei; Xue, Wei-Wei; Yao, Xiao-Jun; Gao, Jia Y; Javed, Masood-Ul-Hassan; Coghi, Paolo; Liu, Liang; Wong, Vincent K W

    2017-01-01

    Resistance of cancer cells to chemotherapy remains a significant problem in oncology. Mechanisms regulating programmed cell death, including apoptosis, autophagy or necrosis, in the treatment of cancers have been extensively investigated over the last few decades. Autophagy is now emerging as an important pathway in regulating cell death or survival in cancer therapy. Recent studies demonstrated variety of natural small-molecules could induce autophagic cell death in apoptosis-resistant cancer cells, therefore, discovery of novel autophagic enhancers from natural products could be a promising strategy for treatment of chemotherapy-resistant cancer. By computational virtual docking analysis, biochemical assays, and advanced live-cell imaging techniques, we have identified N -desmethyldauricine (LP-4), isolated from rhizoma of Menispermum dauricum DC as a novel inducer of autophagy. LP-4 was shown to induce autophagy via the Ulk-1-PERK and Ca 2+ /Calmodulin-dependent protein kinase kinase β (CaMKKβ)-AMPK-mTOR signaling cascades, via mobilizing calcium release through inhibition of SERCA, and importantly, lead to autophagic cell death in a panel of cancer cells, apoptosis-defective and apoptosis-resistant cells. Taken together, this study provides detailed insights into the cytotoxic mechanism of a novel autophagic compound that targeting the apoptosis resistant cancer cells, and new implication on drug discovery from natural products for drug resistant cancer therapy.

  13. Cell Death Pathways and Phthalocyanine as an Efficient Agent for Photodynamic Cancer Therapy

    PubMed Central

    Mfouo-Tynga, Ivan; Abrahamse, Heidi

    2015-01-01

    The mechanisms of cell death can be predetermined (programmed) or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS) are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT) uses non-toxic chemotherapeutic agents, photosensitizer (PS), to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs) are third generation and stable PSs with improved photochemical abilities. They are effective inducers of cell death in various neoplastic models. The metallated PCs localize in critical cellular organelles and are better inducers of cell death than other previous generation PSs as they favor mainly apoptotic cell death events. PMID:25955645

  14. The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction.

    PubMed

    Swiderski, Michal R; Birker, Doris; Jones, Jonathan D G

    2009-02-01

    In plants, the TIR (toll interleukin 1 receptor) domain is found almost exclusively in nucleotide-binding (NB) leucine-rich repeat resistance proteins and their truncated homologs, and has been proposed to play a signaling role during resistance responses mediated by TIR containing R proteins. Transient expression in Nicotiana benthamiana leaves of "TIR + 80", the RPS4 truncation without the NB-ARC domain, leads to EDS1-, SGT1-, and HSP90-dependent cell death. Transgenic Arabidopsis plants expressing the RPS4 TIR+80 from either dexamethasone or estradiol-inducible promoters display inducer-dependent cell death. Cell death is also elicited by transient expression of similarly truncated constructs from two other R proteins, RPP1A and At4g19530, but is not elicited by similar constructs representing RPP2A and RPP2B proteins. Site-directed mutagenesis of the RPS4 TIR domain identified many loss-of-function mutations but also revealed several gain-of function substitutions. Lack of cell death induction by the E160A substitution suggests that amino acids outside of the TIR domain contribute to cell death signaling in addition to the TIR domain itself. This is consistent with previous observations that the TIR domain itself is insufficient to induce cell death upon transient expression.

  15. Inhibiting connexin channels protects against cryopreservation-induced cell death in human blood vessels.

    PubMed

    Bol, M; Van Geyt, C; Baert, S; Decrock, E; Wang, N; De Bock, M; Gadicherla, A K; Randon, C; Evans, W H; Beele, H; Cornelissen, R; Leybaert, L

    2013-04-01

    Cryopreserved blood vessels are being increasingly employed in vascular reconstruction procedures but freezing/thawing is associated with significant cell death that may lead to graft failure. Vascular cells express connexin proteins that form gap junction channels and hemichannels. Gap junction channels directly connect the cytoplasm of adjacent cells and may facilitate the passage of cell death messengers leading to bystander cell death. Two hemichannels form a gap junction channel but these channels are also present as free non-connected hemichannels. Hemichannels are normally closed but may open under stressful conditions and thereby promote cell death. We here investigated whether blocking gap junctions and hemichannels could prevent cell death after cryopreservation. Inclusion of Gap27, a connexin channel inhibitory peptide, during cryopreservation and thawing of human saphenous veins and femoral arteries was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assays and histological examination. We report that Gap27 significantly reduces cell death in human femoral arteries and saphenous veins when present during cryopreservation/thawing. In particular, smooth muscle cell death was reduced by 73% in arteries and 71% in veins, while endothelial cell death was reduced by 32% in arteries and 51% in veins. We conclude that inhibiting connexin channels during cryopreservation strongly promotes vascular cell viability. Copyright © 2012 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  16. Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells.

    PubMed

    Scarlatti, F; Maffei, R; Beau, I; Codogno, P; Ghidoni, R

    2008-08-01

    Resveratrol, a polyphenol found in grapes and other fruit and vegetables, is a powerful chemopreventive and chemotherapeutic molecule potentially of interest for the treatment of breast cancer. The human breast cancer cell line MCF-7, which is devoid of caspase-3 activity, is refractory to apoptotic cell death after incubation with resveratrol. Here we show that resveratrol arrests cell proliferation, triggers death and decreases the number of colonies of cells that are sensitive to caspase-3-dependent apoptosis (MCF-7 casp-3) and also those that are unresponsive to it (MCF-7vc). We demonstrate that resveratrol (i) acts via multiple pathways to trigger cell death, (ii) induces caspase-dependent and caspase-independent cell death in MCF-7 casp-3 cells, (iii) induces only caspase-independent cell death in MCF-7vc cells and (iv) stimulates macroautophagy. Using BECN1 and hVPS34 (human vacuolar protein sorting 34) small interfering RNAs, we demonstrate that resveratrol activates Beclin 1-independent autophagy in both cell lines, whereas cell death via this uncommon form of autophagy occurs only in MCF-7vc cells. We also show that this variant form of autophagic cell death is blocked by the expression of caspase-3, but not by its enzymatic activity. In conclusion, this study reveals that non-canonical autophagy induced by resveratrol can act as a caspase-independent cell death mechanism in breast cancer cells.

  17. VX-induced cell death involves activation of caspase-3 in cultured rat cortical neurons.

    PubMed

    Tenn, Catherine C; Wang, Yushan

    2007-05-01

    Exposure of cell cultures to organophosphorous compounds such as VX can result in cell death. However, it is not clear whether VX-induced cell death is necrotic or involves programmed cell death mechanisms. Activation of caspases, a family of cysteine proteases, is often involved in cell death, and in particular, caspase-3 activation appears to be a key event in programmed cell death processes including apoptosis. In this study, we investigated VX-induced neuronal cell death, as well as the underlying mechanism in terms of its effect on caspase-3 activity. Primary cortical neuronal cultures were prepared from gestational days 17 to 19 Sprague Dawley rat fetuses. At maturation, the cells were treated with varying concentrations of VX and cell death was evaluated by lactate dehydrogenase (LDH) release. VX induced an increase in LDH release in a concentration-dependent manner. Morphological VX-induced cell death was also characterized by using nuclear staining with propidium iodide and Hoechst 33342. VX induced a concentration- and time-dependent increase in caspase-3 activation. Caspase-3 activation was also confirmed by the proteolytic cleavage of poly(ADP-ribose)polymerase (PARP), an endogenous caspase-3 substrate. These data suggested that in rat cortical neurons, VX-induced cell death via a programmed cell death pathway that involves changes in caspase-3 protease.

  18. Hypoxic Switch in Mitochondrial Myeloid Cell Leukemia Factor-1/Mtd Apoptotic Rheostat Contributes to Human Trophoblast Cell Death in Preeclampsia

    PubMed Central

    Soleymanlou, Nima; Jurisicova, Andrea; Wu, Yuanhong; Chijiiwa, Mari; Ray, Jocelyn E.; Detmar, Jacqui; Todros, Tullia; Zamudio, Stacy; Post, Martin; Caniggia, Isabella

    2007-01-01

    Preeclampsia, a disorder of pregnancy, is characterized by increased trophoblast cell death and altered trophoblast-mediated remodeling of myometrial spiral arteries resulting in reduced uteroplacental perfusion. Mitochondria-associated Bcl-2 family members are important regulators of programed cell death. The mechanism whereby hypoxia alters the mitochondrial apoptotic rheostat is essential to our understanding of placental disease. Herein, myeloid cell leukemia factor-1 (Mcl-1) isoform expression was examined in physiological/pathological models of placental hypoxia. Preeclamptic placentae were characterized by caspase-dependent cleavage of death-suppressing Mcl-1L and switch toward cell death-inducing Mcl-1S. In vitro, Mcl-1L cleavage was induced by hypoxia-reoxygenation in villous explants, whereas Mcl-1L overexpression under hypoxia-reoxygenation rescued trophoblast cells from undergoing apoptosis. Cleavage was mediated by caspase-3/-7 because pharmacological caspase inhibition prevented this process. Altitude-induced chronic hypoxia was characterized by expression of Mcl-1L; resulting in a reduction of apoptotic markers (cleaved caspase-3/-8 and p85 poly-ADP-ribose polymerase). Moreover, in both physiological (explants and high altitude) and pathological (preeclampsia) placental hypoxia, decreased trophoblast syncytin expression was observed. Hence, although both pathological and physiological placental hypoxia are associated with slowed trophoblast differentiation, trophoblast apoptosis is only up-regulated in preeclampsia, because of a hypoxia-reoxygenation-induced switch in generation of proapoptotic Mcl-1 isoforms. PMID:17600131

  19. Zebrafish hair cell mechanics and physiology through the lens of noise-induced hair cell death

    NASA Astrophysics Data System (ADS)

    Coffin, Allison B.; Xu, Jie; Uribe, Phillip M.

    2018-05-01

    Hair cells are exquisitely sensitive to auditory stimuli, but also to damage from a variety of sources including noise trauma and ototoxic drugs. Mammals cannot regenerate cochlear hair cells, while non-mammalian vertebrates exhibit robust regenerative capacity. Our research group uses the lateral line system of larval zebrafish to explore the mechanisms underlying hair cell damage, identify protective therapies, and determine molecular drivers of innate regeneration. The lateral line system contains externally located sensory organs called neuromasts, each composed of ˜8-20 hair cells. Lateral line hair cells are homologous to vertebrate inner ear hair cells and share similar susceptibility to ototoxic damage. In the last decade, the lateral line has emerged as a powerful model system for understanding hair cell death mechanisms and for identifying novel protective compounds. Here we demonstrate that the lateral line is a tractable model for noise-induced hair cell death. We have developed a novel noise damage system capable of inducing over 50% loss of lateral line hair cells, with hair cell death occurring in a dose- and time-dependent manner. Cell death is greatest 72 hours post-exposure. However, early signs of hair cell damage, including changes in membrane integrity and reduced mechanotransduction, are apparent within hours of noise exposure. These features, early signs of damage followed by delayed hair cell death, are consistent with mammalian data, suggesting that noise acts similarly on zebrafish and mammalian hair cells. In our future work we will use our new model system to investigate noise damage events in real time, and to develop protective therapies for future translational research.

  20. Impaired autophagy flux is associated with neuronal cell death after traumatic brain injury

    PubMed Central

    Sarkar, Chinmoy; Zhao, Zaorui; Aungst, Stephanie; Sabirzhanov, Boris; Faden, Alan I; Lipinski, Marta M

    2015-01-01

    Dysregulation of autophagy contributes to neuronal cell death in several neurodegenerative and lysosomal storage diseases. Markers of autophagy are also increased after traumatic brain injury (TBI), but its mechanisms and function are not known. Following controlled cortical impact (CCI) brain injury in GFP-Lc3 (green fluorescent protein-LC3) transgenic mice, we observed accumulation of autophagosomes in ipsilateral cortex and hippocampus between 1 and 7 d. This accumulation was not due to increased initiation of autophagy but rather to a decrease in clearance of autophagosomes, as reflected by accumulation of the autophagic substrate SQSTM1/p62 (sequestosome 1). This was confirmed by ex vivo studies, which demonstrated impaired autophagic flux in brain slices from injured as compared to control animals. Increased SQSTM1 peaked at d 1–3 but resolved by d 7, suggesting that the defect in autophagy flux is temporary. The early impairment of autophagy is at least in part caused by lysosomal dysfunction, as evidenced by lower protein levels and enzymatic activity of CTSD (cathepsin D). Furthermore, immediately after injury both autophagosomes and SQSTM1 accumulated predominantly in neurons. This was accompanied by appearance of SQSTM1 and ubiquitin-positive puncta in the affected cells, suggesting that, similar to the situation observed in neurodegenerative diseases, impaired autophagy may contribute to neuronal injury. Consistently, GFP-LC3 and SQSTM1 colocalized with markers of both caspase-dependent and caspase-independent cell death in neuronal cells proximal to the injury site. Taken together, our data indicated for the first time that autophagic clearance is impaired early after TBI due to lysosomal dysfunction, and correlates with neuronal cell death. PMID:25484084

  1. Dual Agonist Surrobody Simultaneously Activates Death Receptors DR4 and DR5 to Induce Cancer Cell Death.

    PubMed

    Milutinovic, Snezana; Kashyap, Arun K; Yanagi, Teruki; Wimer, Carina; Zhou, Sihong; O'Neil, Ryann; Kurtzman, Aaron L; Faynboym, Alexsandr; Xu, Li; Hannum, Charles H; Diaz, Paul W; Matsuzawa, Shu-ichi; Horowitz, Michael; Horowitz, Lawrence; Bhatt, Ramesh R; Reed, John C

    2016-01-01

    Death receptors of the TNF family are found on the surface of most cancer cells and their activation typically kills cancer cells through the stimulation of the extrinsic apoptotic pathway. The endogenous ligand for death receptors 4 and 5 (DR4 and DR5) is TNF-related apoptosis-inducing ligand, TRAIL (Apo2L). As most untransformed cells are not susceptible to TRAIL-induced apoptosis, death receptor activators have emerged as promising cancer therapeutic agents. One strategy to stimulate death receptors in cancer patients is to use soluble human recombinant TRAIL protein, but this agent has limitations of a short half-life and decoy receptor sequestration. Another strategy that attempted to evade decoy receptor sequestration and to provide improved pharmacokinetic properties was to generate DR4 or DR5 agonist antibodies. The resulting monoclonal agonist antibodies overcame the limitations of short half-life and avoided decoy receptor sequestration, but are limited by activating only one of the two death receptors. Here, we describe a DR4 and DR5 dual agonist produced using Surrobody technology that activates both DR4 and DR5 to induce apoptotic death of cancer cells in vitro and in vivo and also avoids decoy receptor sequestration. This fully human anti-DR4/DR5 Surrobody displays superior potency to DR4- and DR5-specific antibodies, even when combined with TRAIL-sensitizing proapoptotic agents. Moreover, cancer cells were less likely to acquire resistance to Surrobody than either anti-DR4 or anti-DR5 monospecific antibodies. Taken together, Surrobody shows promising preclinical proapoptotic activity against cancer cells, meriting further exploration of its potential as a novel cancer therapeutic agent. ©2015 American Association for Cancer Research.

  2. Dual agonist Surrobody™ simultaneously activates death receptors DR4 and DR5 to induce cancer cell death

    PubMed Central

    Milutinovic, Snezana; Kashyap, Arun K.; Yanagi, Teruki; Wimer, Carina; Zhou, Sihong; O' Neil, Ryann; Kurtzman, Aaron L.; Faynboym, Alexsandr; Xu, Li; Hannum, Charles H.; Diaz, Paul W.; Matsuzawa, Shu-ichi; Horowitz, Michael; Horowitz, Lawrence; Bhatt, Ramesh R.; Reed, John C.

    2015-01-01

    Death receptors of the Tumor Necrosis Factor (TNF) family are found on surface of most cancer cells and their activation typically kills cancer cells through the stimulation of the extrinsic apoptotic pathway. The endogenous ligand for death receptors-4 and -5 (DR4 and DR5) is Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand, TRAIL (Apo2L). Since most untransformed cells are not susceptible to TRAIL-induced apoptosis, death receptor activators have emerged as promising cancer therapeutic agents. One strategy to stimulate death receptors in cancer patients is to use soluble human recombinant TRAIL protein, but this agent has limitations of a short half-life and decoy receptor sequestration. Another strategy that attempted to evade decoy receptor sequestration and to provide improved pharmacokinetic properties was to generate DR4 or DR5 agonist antibodies. The resulting monoclonal agonist antibodies overcame the limitations of short half-life and avoided decoy receptor sequestration, but are limited by activating only one of the two death receptors. Here, we describe a DR4 and DR5 dual agonist produced using Surrobody™ technology that activates both DR4 and DR5 to induce apoptotic death of cancer cells in vitro and in vivo and also avoids decoy receptor sequestration. This fully human anti-DR4/DR5 Surrobody displays superior potency to DR4- and DR5-specific antibodies, even when combined with TRAIL-sensitizing pro-apoptotic agents. Moreover, cancer cells were less likely to acquire resistance to Surrobody than either anti-DR4 or anti-DR5 mono-specific antibodies. Taken together, Surrobody shows promising preclinical pro-apoptotic activity against cancer cells, meriting further exploration of its potential as a novel cancer therapeutic agent. PMID:26516157

  3. Streptococcus sanguinis induces foam cell formation and cell death of macrophages in association with production of reactive oxygen species.

    PubMed

    Okahashi, Nobuo; Okinaga, Toshinori; Sakurai, Atsuo; Terao, Yutaka; Nakata, Masanobu; Nakashima, Keisuke; Shintani, Seikou; Kawabata, Shigetada; Ooshima, Takashi; Nishihara, Tatsuji

    2011-10-01

    Streptococcus sanguinis, a normal inhabitant of the human oral cavity, is a common streptococcal species implicated in infective endocarditis. Herein, we investigated the effects of infection with S. sanguinis on foam cell formation and cell death of macrophages. Infection with S. sanguinis stimulated foam cell formation of THP-1, a human macrophage cell line. At a multiplicity of infection >100, S. sanguinis-induced cell death of the macrophages. Viable bacterial infection was required to trigger cell death because heat-inactivated S. sanguinis did not induce cell death. The production of cytokines interleukin-1β and tumor necrosis factor-α from macrophages was also stimulated during bacterial infection. Inhibition of the production of reactive oxygen species (ROS) resulted in reduced cell death, suggesting an association of ROS with cell death. Furthermore, S. sanguinis-induced cell death appeared to be independent of activation of inflammasomes, because cleavage of procaspase-1 was not evident in infected macrophages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. S-Adenosyl-L-Methionine protects the probiotic yeast, Saccharomyces boulardii, from acid-induced cell death

    PubMed Central

    2013-01-01

    Background Saccharomyces boulardii is a probiotic yeast routinely used to prevent and to treat gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. However, only 1-3% of the yeast administered orally is recovered alive in the feces suggesting that this yeast is unable to survive the acidic environment of the gastrointestinal tract. Results We provide evidence that suggests that S. boulardii undergoes programmed cell death (PCD) in acidic environments, which is accompanied by the generation of reactive oxygen species and the appearance of caspase-like activity. To better understand the mechanism of cell death at the molecular level, we generated microarray gene expression profiles of S. boulardii cells cultured in an acidic environment. Significantly, functional annotation revealed that the up-regulated genes were significantly over-represented in cell death pathways Finally, we show that S-adenosyl-L-methionine (AdoMet), a commercially available, FDA-approved dietary supplement, enhances the viability of S. boulardii in acidic environments, most likely by preventing programmed cell death. Conclusions In toto, given the observation that many of the proven health benefits of S. boulardii are dependent on cell viability, our data suggests that taking S. boulardii and AdoMet together may be a more effective treatment for gastrointestinal disorders than taking the probiotic yeast alone. PMID:23402325

  5. Cell Death During Crisis Is Mediated by Mitotic Telomere Deprotection

    PubMed Central

    Hayashi, Makoto T.; Cesare, Anthony J.; Rivera, Teresa; Karlseder, Jan

    2015-01-01

    Tumour formation is blocked by two barriers, replicative senescence and crisis1. Senescence is triggered by short telomeres and is bypassed by disruption of tumour suppressive pathways. After senescence bypass, cells undergo crisis, during which almost all of the cells in the population die. Cells that escape crisis harbor unstable genomes and other parameters of transformation. The mechanism of cell death during crisis remained elusive. We show that cells in crisis undergo spontaneous mitotic arrest, resulting in death during mitosis or in the following cell cycle. The phenotype was induced by loss of p53 function, and suppressed by telomerase overexpression. Telomere fusions triggered mitotic arrest in p53-compromised non-crisis cells, indicating such fusions as the underlying cause. Exacerbation of mitotic telomere deprotection by partial TRF2 knockdown2 increased the ratio of cells that died during mitotic arrest and sensitized cancer cells to mitotic poisons. We propose a crisis pathway wherein chromosome fusions induce mitotic arrest, resulting in mitotic telomere deprotection and cell death, thereby eliminating precancerous cells from the population. PMID:26108857

  6. Sulbutiamine counteracts trophic factor deprivation induced apoptotic cell death in transformed retinal ganglion cells.

    PubMed

    Kang, Kui Dong; Majid, Aman Shah Abdul; Kim, Kyung-A; Kang, Kyungsu; Ahn, Hong Ryul; Nho, Chu Won; Jung, Sang Hoon

    2010-11-01

    Sulbutiamine is a highly lipid soluble synthetic analogue of vitamin B(1) and is used clinically for the treatment of asthenia. The aim of our study was to demonstrate whether sulbutiamine is able to attenuate trophic factor deprivation induced cell death to transformed retinal ganglion cells (RGC-5). Cells were subjected to serum deprivation for defined periods and sulbutiamine at different concentrations was added to the cultures. Various procedures (e.g. cell viability assays, apoptosis assay, reactive oxygen species analysis, Western blot analysis, flow cytometric analysis, glutathione (GSH) and glutathione-S-transferase (GST) measurement) were used to demonstrate the effect of sulbutiamine. Sulbutiamine dose-dependently attenuated apoptotic cell death induced by serum deprivation and stimulated GSH and GST activity. Moreover, sulbutiamine decreased the expression of cleaved caspase-3 and AIF. This study demonstrates for the first time that sulbutiamine is able to attenuate trophic factor deprivation induced apoptotic cell death in neuronal cells in culture.

  7. TORC1 is required to balance cell proliferation and cell death in planarians

    PubMed Central

    Tu, Kimberly C.; Pearson, Bret J.; Alvarado, Alejandro Sánchez

    2012-01-01

    Multicellular organisms are equipped with cellular mechanisms that enable them to replace differentiated cells lost to normal physiological turnover, injury, and for some such as planarians, even amputation. This process of tissue homeostasis is generally mediated by adult stem cells (ASCs), tissue-specific stem cells responsible for maintaining anatomical form and function. To do so, ASCs must modulate the balance between cell proliferation, i.e. in response to nutrients, and that of cell death, i.e. in response to starvation or injury. But how these two antagonistic processes are coordinated remains unclear. Here, we explore the role of the core components of the TOR pathway during planarian tissue homeostasis and regeneration and identified an essential function for TORC1 in these two processes. RNAi-mediated silencing of TOR in intact animals resulted in a significant increase in cell death, whereas stem cell proliferation and stem cell maintenance were unaffected. Amputated animals failed to increase stem cell proliferation after wounding and displayed defects in tissue remodeling. Together, our findings suggest two distinct roles for TORC1 in planarians. TORC1 is required to modulate the balance between cell proliferation and cell death during normal cell turnover and in response to nutrients. In addition, it is required to initiate appropriate stem cell proliferation during regeneration and for proper tissue remodeling to occur to maintain scale and proportion. PMID:22445864

  8. Ethylene Insensitivity Modulates Ozone-Induced Cell Death in Birch1

    PubMed Central

    Vahala, Jorma; Ruonala, Raili; Keinänen, Markku; Tuominen, Hannele; Kangasjärvi, Jaakko

    2003-01-01

    We have used genotypic variation in birch (Betula pendula Roth) to investigate the roles of ozone (O3)-induced ethylene (ET), jasmonic acid, and salicylic acid in the regulation of tissue tolerance to O3. Of these hormones, ET evolution correlated best with O3-induced cell death. Disruption of ET perception by transformation of birch with the dominant negative mutant allele etr1-1 of the Arabidopsis ET receptor gene ETR1 or blocking of ET perception with 1-methylcyclopropene reduced but did not completely prevent the O3-induced cell death, when inhibition of ET biosynthesis with aminooxyacetic acid completely abolished O3 lesion formation. This suggests the presence of an ET-signaling-independent but ET biosynthesis-dependent component in the ET-mediated stimulation of cell death in O3-exposed birch. Functional ET signaling was required for the O3 induction of the gene encoding β-cyanoalanine synthase, which catalyzes detoxification of the cyanide formed during ET biosynthesis. The results suggest that functional ET signaling is required to protect birch from the O3-induced cell death and that a decrease in ET sensitivity together with a simultaneous, high ET biosynthesis can potentially cause cell death through a deficient detoxification of cyanide. PMID:12746524

  9. Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia.

    PubMed

    Chen, Yongqiang; Henson, Elizabeth S; Xiao, Wenyan; Huang, Daniel; McMillan-Ward, Eileen M; Israels, Sara J; Gibson, Spencer B

    2016-06-02

    Autophagy is an intracellular lysosomal degradation pathway where its primary function is to allow cells to survive under stressful conditions. Autophagy is, however, a double-edge sword that can either promote cell survival or cell death. In cancer, hypoxic regions contribute to poor prognosis due to the ability of cancer cells to adapt to hypoxia in part through autophagy. In contrast, autophagy could contribute to hypoxia induced cell death in cancer cells. In this study, we showed that autophagy increased during hypoxia. At 4 h of hypoxia, autophagy promoted cell survival whereas, after 48 h of hypoxia, autophagy increased cell death. Furthermore, we found that the tyrosine phosphorylation of EGFR (epidermal growth factor receptor) decreased after 16 h in hypoxia. Furthermore, EGFR binding to BECN1 in hypoxia was significantly higher at 4 h compared to 72 h. Knocking down or inhibiting EGFR resulted in an increase in autophagy contributing to increased cell death under hypoxia. In contrast, when EGFR was reactivated by the addition of EGF, the level of autophagy was reduced which led to decreased cell death. Hypoxia led to autophagic degradation of the lipid raft protein CAV1 (caveolin 1) that is known to bind and activate EGFR in a ligand-independent manner during hypoxia. By knocking down CAV1, the amount of EGFR phosphorylation was decreased in hypoxia and amount of autophagy and cell death increased. This indicates that the activation of EGFR plays a critical role in the switch between cell survival and cell death induced by autophagy in hypoxia.

  10. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis☆

    PubMed Central

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting

    2013-01-01

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K3) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ~12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. PMID:22575170

  11. Expression of Interferon Lambda 4 Is Associated with Reduced Proliferation and Increased Cell Death in Human Hepatic Cells

    PubMed Central

    Onabajo, Olusegun O.; Porter-Gill, Patricia; Paquin, Ashley; Rao, Nina; Liu, Luyang; Tang, Wei; Brand, Nathan

    2015-01-01

    Interferon lambda 4 (IFN-λ4) is a novel type-III interferon that can be generated only in individuals carrying a ΔG frame-shift allele of an exonic genetic variant (rs368234815-ΔG/TT). The rs368234815-ΔG allele is strongly associated with decreased clearance of hepatitis C virus (HCV) infection. Here, we further explored the biological function of IFN-λ4 expressed in human hepatic cells—a hepatoma cell line HepG2 and fresh primary human hepatocytes (PHHs). We performed live confocal imaging, cell death and proliferation assays, mRNA expression profiling, protein detection, and antibody blocking assays using transient and inducible stable in vitro systems. Not only did we observe significant intracellular retention of IFN-λ4 but also detected secreted IFN-λ4 in the culture media of expressing cells. Secreted IFN-λ4 induced strong activation of the interferon-stimulated genes (ISGs) in IFN-λ4-expressing and surrounding cells in transwell assays. Specifically, in PHHs, secreted IFN-λ4 induced expression of the CXCL10 transcript and a corresponding pro-inflammatory chemokine, IP-10. In IFN-λ4-expressing HepG2 cells, we also observed decreased proliferation and increased cell death. All IFN-λ4-induced phenotypes—activation of ISGs, decreased proliferation, and increased cell death—could be inhibited by an anti-IFN-λ4-specific antibody. Our study offers new insights into biology of IFN-λ4 and its possible role in HCV clearance. PMID:26134097

  12. Violacein Induces Death of Resistant Leukaemia Cells via Kinome Reprogramming, Endoplasmic Reticulum Stress and Golgi Apparatus Collapse

    PubMed Central

    Queiroz, Karla C. S.; Milani, Renato; Ruela-de-Sousa, Roberta R.; Fuhler, Gwenny M.; Justo, Giselle Z.; Zambuzzi, Willian F.; Duran, Nelson; Diks, Sander H.; Spek, C. Arnold; Ferreira, Carmen V.; Peppelenbosch, Maikel P.

    2012-01-01

    It is now generally recognised that different modes of programmed cell death (PCD) are intimately linked to the cancerous process. However, the mechanism of PCD involved in cancer chemoprevention is much less clear and may be different between types of chemopreventive agents and tumour cell types involved. Therefore, from a pharmacological view, it is crucial during the earlier steps of drug development to define the cellular specificity of the candidate as well as its capacity to bypass dysfunctional tumoral signalling pathways providing insensitivity to death stimuli. Studying the cytotoxic effects of violacein, an antibiotic dihydro-indolone synthesised by an Amazon river Chromobacterium, we observed that death induced in CD34+/c-Kit+/P-glycoprotein+/MRP1+ TF1 leukaemia progenitor cells is not mediated by apoptosis and/or autophagy, since biomarkers of both types of cell death were not significantly affected by this compound. To clarify the working mechanism of violacein, we performed kinome profiling using peptide arrays to yield comprehensive descriptions of cellular kinase activities. Pro-death activity of violacein is actually carried out by inhibition of calpain and DAPK1 and activation of PKA, AKT and PDK, followed by structural changes caused by endoplasmic reticulum stress and Golgi apparatus collapse, leading to cellular demise. Our results demonstrate that violacein induces kinome reprogramming, overcoming death signaling dysfunctions of intrinsically resistant human leukaemia cells. PMID:23071514

  13. (+)-Grandifloracin, an antiausterity agent, induces autophagic PANC-1 pancreatic cancer cell death.

    PubMed

    Ueda, Jun-ya; Athikomkulchai, Sirivan; Miyatake, Ryuta; Saiki, Ikuo; Esumi, Hiroyasu; Awale, Suresh

    2014-01-01

    Human pancreatic tumors are known to be highly resistant to nutrient starvation, and this prolongs their survival in the hypovascular (austere) tumor microenvironment. Agents that retard this tolerance to nutrient starvation represent a novel antiausterity strategy in anticancer drug discovery. (+)-Grandifloracin (GF), isolated from Uvaria dac, has shown preferential toxicity to PANC-1 human pancreatic cancer cells under nutrient starvation, with a PC50 value of 14.5 μM. However, the underlying mechanism is not clear. In this study, GF was found to preferentially induce PANC-1 cell death in a nutrient-deprived medium via hyperactivation of autophagy, as evidenced by a dramatic upregulation of microtubule-associated protein 1 light chain 3. No change was observed in expression of the caspase-3 and Bcl-2 apoptosis marker proteins. GF was also found to strongly inhibit the activation of Akt, a key regulator of cancer cell survival and proliferation. Because pancreatic tumors are highly resistant to current therapies that induce apoptosis, the alternative cell death mechanism exhibited by GF provides a novel therapeutic insight into antiausterity drug candidates.

  14. Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells.

    PubMed

    La, Xiaoqin; Zhang, Lichao; Li, Zhuoyu; Yang, Peng; Wang, Yingying

    2017-03-28

    Berberine, an isoquinoline alkaloid extracted from Coptidis Rhizoma, has been shown to induce cancer cell autophagic death. Glucose regulated protein 78 (GRP78) is associated with stress-induced autophagy. However, the related mechanisms between berberine-induced cancer cell autophagy and GRP78 remain to be elucidated. Here, we report that berberine can induce autophagic cancer cell death by elevating levels of GRP78. These results further demonstrated that berberine enhanced GRP78 by suppression of ubiquitination / proteasomal degradation of GRP78 and activation of ATF6. Moreover, fluorescence spectrum assay revealed that berberine could bind to GRP78 and form complexes. Finally, co-IP analysis showed that the ability of GRP78 to bind to VPS34 was increased with berberine treatment. Taken together, our results suggest that berberine induces autophagic cancer cell death via enhancing GRP78 levels and the ability of GRP78 to bind to VPS34.

  15. Myricetin Protects Against Cytokine-Induced Cell Death in RIN-m5f β Cells

    PubMed Central

    Ding, Ye; Zhang, Zhao-Feng; Dai, Xiao-Qian

    2012-01-01

    Abstract Cytokine-induced cell death is recognized as a major cause of progressive β-cell loss. Tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and interferon γ (IFN-γ) in combination trigger a series of events that lead to β-cell death. In the past few decades, the use of myricetin as an anti-inflammatory and cytoprotective agent has gained much attention. The present study focused on the protective roles of myricetin against cytokine-induced cell death in insulin-secreting RIN-m5f β cells. The results showed that myricetin (especially at concentrations of 10 μM and 20 μM) increased cell viability and decreased cell apoptosis induced by the cytokine mixture of TNF-α (10 ng/mL), IL-1β (5 ng/mL), and IFN-γ (1000 IU/mL) for 3 days. Moreover, the cytokines increased the total and p65 subunit levels of nuclear factor κB, decreased inhibitor κB α levels, stimulated the accumulation of nitric oxide, increased cytochrome c release from mitochondria, and induced reactive oxygen species generation; myricetin (especially at the concentration of 20 μM) abolished all of these parameters. These results suggest that myricetin might have therapeutic value for preventing β-cell death. PMID:22846080

  16. Ongoing cell death and immune influences on regeneration in the vestibular sensory organs

    NASA Technical Reports Server (NTRS)

    Warchol, M. E.; Matsui, J. I.; Simkus, E. L.; Ogilive, J. M.

    2001-01-01

    Hair cells in the vestibular organs of birds have a relatively short life span. Mature hair cells appear to die spontaneously and are then quickly replaced by new hair cells that arise from the division of epithelial supporting cells. A similar regenerative mechanism also results in hair cell replacement after ototoxic damage. The cellular basis of hair cell turnover in the avian ear is not understood. We are investigating the signaling pathways that lead to hair cell death and the relationship between ongoing cell death and cell production. In addition, work from our lab and others has demonstrated that the avian inner ear contains a resident population of macrophages and that enhanced numbers of macrophages are recruited to sites of hair cells lesions. Those observations suggest that macrophages and their secretory products (cytokines) may be involved in hair cell regeneration. Consistent with that suggestion, we have found that treatment with the anti-inflammatory drug dexamethasone reduces regenerative cell proliferation in the avian ear, and that certain macrophage-secreted cytokines can influence the proliferation of vestibular supporting cells and the survival of statoacoustic neurons. Those results suggest a role for the immune system in the process of sensory regeneration in the inner ear.

  17. Metal-accelerated oxidation in plant cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czuba, M.

    1993-05-01

    Cadmium and mercury toxicity is further enhanced by external oxidizing conditions O[sub 3] or inherent plant processes. Lepidium sativum L, Lycopersicon esculentum Mill., or Phaseolus vulgaris L, were grown inpeat-lite to maturity under continuous cadmium exposure followed by one oxidant (O[sub 3]-6 hr. 30 pphm) exposure, with or without foliar calcium pretreatments. In comparison, Daucus carota, L and other species grown in a 71-V suspension, with or without 2,4-D were exposed continuously to low levels of methylmercury during exponential growth and analyzed in aggregates of distinct populations. Proteins were extracted and analyzed. Mechanisms of toxicity and eventual cell death aremore » Ca-mediated and involve chloroplast, stomatal-water relations and changes in oxidant-anti-oxidant components in cells. Whether the metal-accelerated oxidative damage proceeds to cell death, depends on the species and its differential biotransformation system and cell association component.« less

  18. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments

    PubMed Central

    Inoue, H; Tani, K

    2014-01-01

    Apoptotic cell death generally characterized by a morphologically homogenous entity has been considered to be essentially non-immunogenic. However, apoptotic cancer cell death, also known as type 1 programmed cell death (PCD), was recently found to be immunogenic after treatment with several chemotherapeutic agents and oncolytic viruses through the emission of various danger-associated molecular patterns (DAMPs). Extensive studies have revealed that two different types of immunogenic cell death (ICD) inducers, recently classified by their distinct actions in endoplasmic reticulum (ER) stress, can reinitiate immune responses suppressed by the tumor microenvironment. Indeed, recent clinical studies have shown that several immunotherapeutic modalities including therapeutic cancer vaccines and oncolytic viruses, but not conventional chemotherapies, culminate in beneficial outcomes, probably because of their different mechanisms of ICD induction. Furthermore, interests in PCD of cancer cells have shifted from its classical form to novel forms involving autophagic cell death (ACD), programmed necrotic cell death (necroptosis), and pyroptosis, some of which entail immunogenicity after anticancer treatments. In this review, we provide a brief outline of the well-characterized DAMPs such as calreticulin (CRT) exposure, high-mobility group protein B1 (HMGB1), and adenosine triphosphate (ATP) release, which are induced by the morphologically distinct types of cell death. In the latter part, our review focuses on how emerging oncolytic viruses induce different forms of cell death and the combinations of oncolytic virotherapies with further immunomodulation by cyclophosphamide and other immunotherapeutic modalities foster dendritic cell (DC)-mediated induction of antitumor immunity. Accordingly, it is increasingly important to fully understand how and which ICD inducers cause multimodal ICD, which should aid the design of reasonably multifaceted anticancer modalities to

  19. NADPH Oxidase Activation Contributes to Heavy Ion Irradiation–Induced Cell Death

    PubMed Central

    Wang, Yupei; Liu, Qing; Zhao, Weiping; Zhou, Xin; Miao, Guoying; Sun, Chao

    2017-01-01

    Increased oxidative stress plays an important role in heavy ion radiation–induced cell death. The mechanism involved in the generation of elevated reactive oxygen species (ROS) is not fully illustrated. Here we show that NADPH oxidase activation is closely related to heavy ion radiation–induced cell death via excessive ROS generation. Cell death and cellular ROS can be greatly reduced in irradiated cancer cells with the preincubation of diphenyleneiodium, an inhibitor of NADPH oxidase. Most of the NADPH oxidase (NOX) family proteins (NOX1, NOX2, NOX3, NOX4, and NOX5) showed increased expression after heavy ion irradiation. Meanwhile, the cytoplasmic subunit p47phox was translocated to the cell membrane and localized with NOX2 to form reactive NADPH oxidase. Our data suggest for the first time that ROS generation, as mediated by NADPH oxidase activation, could be an important contributor to heavy ion irradiation–induced cell death. PMID:28473742

  20. An endogenous 55 kDa TNF receptor mediates cell death in a neural cell line.

    PubMed

    Sipe, K J; Srisawasdi, D; Dantzer, R; Kelley, K W; Weyhenmeyer, J A

    1996-06-01

    Tumor necrosis factor-alpha (TNF) is associated with developmental and injury-related events in the central nervous system (CNS). In the present study, we have examined the role of TNF on neurons using the clonal murine neuroblastoma line, N1E-115 (N1E). N1E cells represent a well-defined model for studying neuronal development since they can be maintained as either undifferentiated, mitotically active neuroblasts or as differentiated, mature neurons. Northern and reverse transcription-polymerase chain reaction (RT-PCR) analyses revealed that both undifferentiated and differentiated N1Es express transcripts for the 55 kDa TNF receptor (TNFR), but not the 75 kDa TNFR. The biological activity of the expressed TNF receptor was demonstrated by a dose dependent cytotoxicity to either recombinant murine or human TNF when the cells were incubated with the transcriptional inhibitor actinomycin D. The lack of the 75 kDa receptor mRNA expression and the dose dependent response to rHuTNF, an agonist specific for the murine 55 kDa receptor, suggest that the TNF induced cytotoxicity is mediated through the 55 kDa receptor in both the undifferentiated and differentiated N1Es. Light microscopic observations, flow cytometric analysis of hypodiploid DNA, and electrophoretic analysis of nucleosomal DNA fragmentation of N1Es treated with actinomycin D and TNF revealed features characteristic of both necrotic and apoptotic cell death. These findings demonstrate that blast and mature N1E cells express the 55 kDa TNF receptor which is responsible for inducing both necrotic and apoptotic death in these cells. The observation that actinomycin D renders N1E cells susceptible to the cytotoxic effects of TNF indicates that a sensitization step, such as removal of an endogenous protective factor or viral-mediated inhibition of transcription, may be necessary for TNF cytotoxicity in neurons.

  1. Methylene blue photodynamic therapy induces selective and massive cell death in human breast cancer cells.

    PubMed

    Dos Santos, Ancély F; Terra, Letícia F; Wailemann, Rosangela A M; Oliveira, Talita C; Gomes, Vinícius de Morais; Mineiro, Marcela Franco; Meotti, Flávia Carla; Bruni-Cardoso, Alexandre; Baptista, Maurício S; Labriola, Leticia

    2017-03-15

    Breast cancer is the main cause of mortality among women. The disease presents high recurrence mainly due to incomplete efficacy of primary treatment in killing all cancer cells. Photodynamic therapy (PDT), an approach that causes tissue destruction by visible light in the presence of a photosensitizer (Ps) and oxygen, appears as a promising alternative therapy that could be used adjunct to chemotherapy and surgery for curing cancer. However, the efficacy of PDT to treat breast tumours as well as the molecular mechanisms that lead to cell death remain unclear. In this study, we assessed the cell-killing potential of PDT using methylene blue (MB-PDT) in three breast epithelial cell lines that represent non-malignant conditions and different molecular subtypes of breast tumours. Cells were incubated in the absence or presence of MB and irradiated or not at 640 nm with 4.5 J/cm 2 . We used a combination of imaging and biochemistry approaches to assess the involvement of classical autophagic and apoptotic pathways in mediating the cell-deletion induced by MB-PDT. The role of these pathways was investigated using specific inhibitors, activators and gene silencing. We observed that MB-PDT differentially induces massive cell death of tumour cells. Non-malignant cells were significantly more resistant to the therapy compared to malignant cells. Morphological and biochemical analysis of dying cells pointed to alternative mechanisms rather than classical apoptosis. MB-PDT-induced autophagy modulated cell viability depending on the cell model used. However, impairment of one of these pathways did not prevent the fatal destination of MB-PDT treated cells. Additionally, when using a physiological 3D culture model that recapitulates relevant features of normal and tumorous breast tissue morphology, we found that MB-PDT differential action in killing tumour cells was even higher than what was detected in 2D cultures. Finally, our observations underscore the potential of MB

  2. Sex-specific activation of cell death signalling pathways in cerebellar granule neurons exposed to oxygen glucose deprivation followed by reoxygenation

    PubMed Central

    Sharma, Jaswinder; Nelluru, Geetha; Ann Wilson, Mary; Johnston, Michael V; Ahamed Hossain, Mir

    2011-01-01

    Neuronal death pathways following hypoxia–ischaemia are sexually dimorphic, but the underlying mechanisms are unclear. We examined cell death mechanisms during OGD (oxygen-glucose deprivation) followed by Reox (reoxygenation) in segregated male (XY) and female (XX) mouse primary CGNs (cerebellar granule neurons) that are WT (wild-type) or Parp-1 [poly(ADP-ribose) polymerase 1] KO (knockout). Exposure of CGNs to OGD (1.5 h)/Reox (7 h) caused cell death in XY and XX neurons, but cell death during Reox was greater in XX neurons. ATP levels were significantly lower after OGD/Reox in WT-XX neurons than in XY neurons; this difference was eliminated in Parp-1 KO-XX neurons. AIF (apoptosis-inducing factor) was released from mitochondria and translocated to the nucleus by 1 h exclusively in WT-XY neurons. In contrast, there was a release of Cyt C (cytochrome C) from mitochondria in WT-XX and Parp-1 KO neurons of both sexes; delayed activation of caspase 3 was observed in the same three groups. Thus deletion of Parp-1 shunted cell death towards caspase 3-dependent apoptosis. Delayed activation of caspase 8 was also observed in all groups after OGD/Reox, but was much greater in XX neurons, and caspase 8 translocated to the nucleus in XX neurons only. Caspase 8 activation may contribute to increased XX neuronal death during Reox, via caspase 3 activation. Thus, OGD/Reox induces death of XY neurons via a PARP-1-AIF-dependent mechanism, but blockade of PARP-1-AIF pathway shifts neuronal death towards a caspase-dependent mechanism. In XX neurons, OGD/Reox caused prolonged depletion of ATP and delayed activation of caspase 8 and caspase 3, culminating in greater cell death during Reox. PMID:21382016

  3. Thiol-redox signaling, dopaminergic cell death, and Parkinson's disease.

    PubMed

    Garcia-Garcia, Aracely; Zavala-Flores, Laura; Rodriguez-Rocha, Humberto; Franco, Rodrigo

    2012-12-15

    Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons of the substantia nigra pars compacta, which has been widely associated with oxidative stress. However, the mechanisms by which redox signaling regulates cell death progression remain elusive. Early studies demonstrated that depletion of glutathione (GSH), the most abundant low-molecular-weight thiol and major antioxidant defense in cells, is one of the earliest biochemical events associated with PD, prompting researchers to determine the role of oxidative stress in dopaminergic cell death. Since then, the concept of oxidative stress has evolved into redox signaling, and its complexity is highlighted by the discovery of a variety of thiol-based redox-dependent processes regulating not only oxidative damage, but also the activation of a myriad of signaling/enzymatic mechanisms. GSH and GSH-based antioxidant systems are important regulators of neurodegeneration associated with PD. In addition, thiol-based redox systems, such as peroxiredoxins, thioredoxins, metallothioneins, methionine sulfoxide reductases, transcription factors, as well as oxidative modifications in protein thiols (cysteines), including cysteine hydroxylation, glutathionylation, and nitrosylation, have been demonstrated to regulate dopaminergic cell loss. In this review, we summarize major advances in the understanding of the role of thiol-redox signaling in dopaminergic cell death in experimental PD. Future research is still required to clearly understand how integrated thiol-redox signaling regulates the activation of the cell death machinery, and the knowledge generated should open new avenues for the design of novel therapeutic approaches against PD.

  4. Ammonium Accumulation and Cell Death in a Rat 3D Brain Cell Model of Glutaric Aciduria Type I

    PubMed Central

    Jafari, Paris; Braissant, Olivier; Zavadakova, Petra; Henry, Hugues; Bonafé, Luisa; Ballhausen, Diana

    2013-01-01

    Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I. PMID:23326493

  5. Ammonium accumulation and cell death in a rat 3D brain cell model of glutaric aciduria type I.

    PubMed

    Jafari, Paris; Braissant, Olivier; Zavadakova, Petra; Henry, Hugues; Bonafé, Luisa; Ballhausen, Diana

    2013-01-01

    Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I.

  6. Optical coherence tomography speckle decorrelation for detecting cell death

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Mariampillai, Adrian; Yang, Victor X. D.; Czarnota, Gregory J.; Kolios, Michael C.

    2011-03-01

    We present a dynamic light scattering technique applied to optical coherence tomography (OCT) for detecting changes in intracellular motion caused by cellular reorganization during apoptosis. We have validated our method by measuring Brownian motion in microsphere suspensions and comparing the measured values to those derived based on particle diffusion calculated using the Einstein-Stokes equation. Autocorrelations of OCT signal intensities acquired from acute myeloid leukemia cells as a function of treatment time demonstrated a significant drop in the decorrelation time after 24 hours of cisplatin treatment. This corresponded with nuclear fragmentation and irregular cell shape observed in histological sections. A similar analysis conducted with multicellular tumor spheroids indicated a shorter decorrelation time in the spheroid core relative to its edges. The spheroid core corresponded to a region exhibiting signs of cell death in histological sections and increased backscatter intensity in OCT images.

  7. Prodigiosin activates endoplasmic reticulum stress cell death pathway in human breast carcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Mu-Yun; Shen, Yuh-Chiang; National Research Institute of Chinese Medicine, Taipei, Taiwan

    Prodigiosin is a bacterial tripyrrole pigment with potent cytotoxicity against diverse human cancer cell lines. Endoplasmic reticulum (ER) stress is initiated by accumulation of unfolded or misfolded proteins in the ER lumen and may induce cell death when irremediable. In this study, the role of ER stress in prodigiosin-induced cytotoxicity was elucidated for the first time. Comparable to the ER stress inducer thapsigargin, prodigiosin up-regulated signature ER stress markers GRP78 and CHOP in addition to activating the IRE1, PERK and ATF6 branches of the unfolded protein response (UPR) in multiple human breast carcinoma cell lines, confirming prodigiosin as an ERmore » stress inducer. Prodigiosin transcriptionally up-regulated CHOP, as evidenced by its promoting effect on the CHOP promoter activity. Of note, knockdown of CHOP effectively lowered prodigiosin's capacity to evoke PARP cleavage, reduce cell viability and suppress colony formation, highlighting an essential role of CHOP in prodigiosin-induced cytotoxic ER stress response. In addition, prodigiosin down-regulated BCL2 in a CHOP-dependent manner. Importantly, restoration of BCL2 expression blocked prodigiosin-induced PARP cleavage and greatly enhanced the survival of prodigiosin-treated cells, suggesting that CHOP-dependent BCL2 suppression mediates prodigiosin-elicited cell death. Moreover, pharmacological inhibition of JNK by SP600125 or dominant-negative blockade of PERK-mediated eIF2α phosphorylation impaired prodigiosin-induced CHOP up-regulation and PARP cleavage. Collectively, these results identified ER stress-mediated cell death as a mode-of-action of prodigiosin's tumoricidal effect. Mechanistically, prodigiosin engages the IRE1–JNK and PERK–eIF2α branches of the UPR signaling to up-regulate CHOP, which in turn mediates BCL2 suppression to induce cell death. Highlights: ► Prodigiosin is a bacterial tripyrrole pigment with potent anticancer effect. ► Prodigiosin is herein identified

  8. Cell death and survival signalling in the cardiovascular system.

    PubMed

    Tucka, Joanna; Bennett, Martin; Littlewood, Trevor

    2012-01-01

    The loss of cells is an important factor in many diseases, including those of the cardiovascular system. Whereas apoptosis is an essential process in development and tissue homeostasis, its occurrence is often associated with various pathologies. Apoptosis of neurons that fail to make appropriate connections is essential for the selection of correct neural signalling in the developing embryo, but its appearance in adults is often associated with neurodegenerative disease. Similarly, in the cardiovascular system, remodeling of the mammalian outflow tract during the transition from a single to dual series circulation with four chambers is accompanied by a precise pattern of cell death, but apoptosis of cardiomyocytes contributes to ischemia-reperfusion injury in the heart. In many cases, it is unclear whether apoptosis represents a causative association or merely a consequence of the disease itself. There are many excellent reviews on cell death in the cardiovascular system (1-5); in this review we outline the critical signalling pathways that promote the survival of cardiovascular cells, and their relevance to both physiological cell death and disease.

  9. Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics.

    PubMed

    Garg, Abhishek D; More, Sanket; Rufo, Nicole; Mece, Odeta; Sassano, Maria Livia; Agostinis, Patrizia; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2017-01-01

    The expression "immunogenic cell death" (ICD) refers to a functionally unique form of cell death that facilitates (instead of suppressing) a T cell-dependent immune response specific for dead cell-derived antigens. ICD critically relies on the activation of adaptive responses in dying cells, culminating with the exposure or secretion of immunostimulatory molecules commonly referred to as "damage-associated molecular patterns". Only a few agents can elicit bona fide ICD, including some clinically established chemotherapeutics such as doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin. In this Trial Watch, we discuss recent progress on the development of ICD-inducing chemotherapeutic regimens, focusing on studies that evaluate clinical efficacy in conjunction with immunological biomarkers.

  10. Berberine-induced autophagic cell death by elevating GRP78 levels in cancer cells

    PubMed Central

    Li, Zhuoyu; Yang, Peng; Wang, Yingying

    2017-01-01

    Berberine, an isoquinoline alkaloid extracted from Coptidis Rhizoma, has been shown to induce cancer cell autophagic death. Glucose regulated protein 78 (GRP78) is associated with stress-induced autophagy. However, the related mechanisms between berberine-induced cancer cell autophagy and GRP78 remain to be elucidated. Here, we report that berberine can induce autophagic cancer cell death by elevating levels of GRP78. These results further demonstrated that berberine enhanced GRP78 by suppression of ubiquitination / proteasomal degradation of GRP78 and activation of ATF6. Moreover, fluorescence spectrum assay revealed that berberine could bind to GRP78 and form complexes. Finally, co-IP analysis showed that the ability of GRP78 to bind to VPS34 was increased with berberine treatment. Taken together, our results suggest that berberine induces autophagic cancer cell death via enhancing GRP78 levels and the ability of GRP78 to bind to VPS34. PMID:28157699

  11. Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis.

    PubMed

    Mistry, Pragnesh; Kaplan, Mariana J

    2017-12-01

    Nephritis is one of the most severe complications of systemic lupus erythematosus (SLE). One key characteristic of lupus nephritis (LN) is the deposition of immune complexes containing nucleic acids and/or proteins binding to nucleic acids and autoantibodies recognizing these molecules. A variety of cell death processes are implicated in the generation and externalization of modified nuclear autoantigens and in the development of LN. Among these processes, apoptosis, primary and secondary necrosis, NETosis, necroptosis, pyroptosis, and autophagy have been proposed to play roles in tissue damage and immune dysregulation. Cell death occurs in healthy individuals during conditions of homeostasis yet autoimmunity does not develop, at least in part, because of rapid clearance of dying cells. In SLE, accelerated cell death combined with a clearance deficiency may lead to the accumulation and externalization of nuclear autoantigens and to autoantibody production. In addition, specific types of cell death may modify autoantigens and alter their immunogenicity. These modified molecules may then become novel targets of the immune system and promote autoimmune responses in predisposed hosts. In this review, we examine various cell death pathways and discuss how enhanced cell death, impaired clearance, and post-translational modifications of proteins could contribute to the development of lupus nephritis. Published by Elsevier Inc.

  12. Evidence for alternative pathways of granulosa cell death in healthy and slightly atretic bovine antral follicles.

    PubMed

    Van Wezel, I L; Dharmarajan, A M; Lavranos, T C; Rodgers, R J

    1999-06-01

    Granulosa cell death is an early feature of atresia; however, there are many apparent contradictions in the literature concerning the mode of granulosa cell death. We have therefore examined this process in bovine healthy and atretic antral follicles, using a variety of established techniques. Light and electron microscopic observations indicated the presence of pyknotic or shrunken nuclei in both the membrana granulosa and the antrum. In the membrana granulosa, these nuclei were frequently crescent shaped and uniformly electron dense and were approximately the same size as healthy nuclei, all of which are typical of early apoptosis. However, these nuclei were within the membranes of a healthy granulosa cell, suggesting that phagocytosis by a neighboring granulosa cell is an unusually early event in the apoptotic pathway of granulosa cells. In the membrana granulosa, pyknotic nuclei stained intensely with hematoxylin but weakly with the DNA-intercalating stain propidium iodide. A percentage of these pyknotic nuclei stained by TUNEL (terminal deoxy-UTP nick end-labeling). However, in the antrum, the pyknotic nuclei and larger globules of DNA stained intensely with both hematoxylin and propidium iodide, but were not TUNEL positive. The comet assay of cell death produced a streak tail of randomly nicked DNA, rather than the plume of low mol wt apoptotic DNA. Globules collected from fresh follicular fluid stained intensely with propidium iodide and were shown by PAGE to contain DNA, the majority of which was high mol wt. In conclusion, granulosa cells within the membrana granulosa die by apoptosis, with phagocytosis by a neighboring cell preceding any potential budding of the nucleus or cell itself. Granulosa cells near the antrum are sloughed off into the antrum, and their death has features more consistent with that of other cell types that undergo death as a result of terminal differentiation.

  13. ERK1/2-dependent bestrophin-3 expression prevents ER-stress-induced cell death in renal epithelial cells by reducing CHOP.

    PubMed

    Lee, Wing-Kee; Chakraborty, Prabir K; Roussa, Eleni; Wolff, Natascha A; Thévenod, Frank

    2012-10-01

    Upon endoplasmic reticulum (ER) stress induction, cells endeavor to survive by engaging the adaptive stress response known as the unfolded protein response or by removing aggregated proteins via autophagy. Chronic ER stress culminates in apoptotic cell death, which involves induction of pro-apoptotic CHOP. Here, we show that bestrophin-3 (Best-3), a protein previously associated with Ca(2+)-activated Cl(-) channel activity, is upregulated by the ER stressors, thapsigargin (TG), tunicamycin (TUN) and the toxic metal Cd(2+). In cultured rat kidney proximal tubule cells, ER stress, CHOP and cell death were induced after 6h by Cd(2+) (25μM), TG (3μM) and TUN (6μM), were associated with increased cytosolic Ca(2+) and downstream formation of reactive oxygen species and attenuated by the Ca(2+) chelator BAPTA-AM (10μM), the antioxidant α-tocopherol (100μM), or overexpression of catalase (CAT). Immunofluorescence staining showed Best-3 expression in the plasma membrane, nuclei and intracellular compartments, though not in the ER, in cultured cells and rat kidney cortex sections. Best-3 mRNA was augmented by ER stress and signaled through increased Ca(2+), oxidative stress and ERK1/2 phosphorylation, because it was attenuated by α-tocopherol, CAT expression, BAPTA-AM, calmodulin kinase inhibitor calmidazolium (40μM), ERK1/2 inhibitor U0126 (10μM), and ERK1/2 RNAi. Knockdown of Best-3 resulted in decreased cell number consequentially of cell death, as determined by nuclear staining and PARP-1 cleavage. Furthermore, reduced ER stress-cell death by Best-3 overexpression is attributed to diminished CHOP. Since Best-3 overexpression did not affect upstream signaling pathways, we hypothesize that Best-3 possibly interferes with CHOP transcription. From our novel observations, we conclude that ERK1/2-dependent Best-3 activation regulates cell fate decisions during ER stress by suppressing CHOP induction and death. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. The importance of serum serotonin levels in the measurement of radiation-induced bystander cell death in HaCaT cells.

    PubMed

    Lyng, Fiona M; Desplanques, Maxime; Jella, Kishore Kumar; Garcia, Amaya; McClean, Brendan

    2012-10-01

    The aim of this study was to investigate the importance of serum serotonin levels in the measurement of bystander cell death. The study was undertaken as part of an intercomparison exercise involving seven European laboratories funded under the European Union Sixth Framework Programme (FP6) Non-Targeted Effects (NOTE) integrated project. Three batches of foetal bovine serum were tested; serum with high and low serotonin content from the intercomparison exercise as well as serum from the home laboratory. Three sets of human keratinocytes (HaCaT cell line) were cultured in DMEM:F12 medium supplemented with serum with high or low serotonin content or serum from the home laboratory and both donor and recipient HaCaT cells were plated. The donor HaCaT cells were irradiated (0.5 Gy) using a cobalt 60 teletherapy unit, the medium was harvested 1 hour post irradiation and transferred to the recipient HaCaT cells. Bystander induced cell death was measured by the clonogenic survival assay and the Alamar blue viability assay. A significant reduction in cell survival, as measured by the clonogenic assay, and in cell viability, as measured by the Alamar blue assay, was observed in the recipient HaCaT cells treated with medium from irradiated cells compared to the cells treated with medium from unirradiated cells. No significant difference was found between the three batches of serum. The data suggest that in our cell system and with our endpoints (clonogenic assay and Alamar blue assay), serum serotonin levels do not play a role in bystander-induced cell death.

  15. Cell Death and Cancer Therapy: Don't Forget to Kill the Cancer Cell!

    PubMed

    Letai, Anthony

    2015-11-15

    In our current age of targeted therapies, there is understandably considerable attention paid to the specific molecular targets of pharmaceutical intervention. For a targeted drug to work, it must bind to a target selectively and impair its function. Monitoring biomarkers of the impaired target function can provide vital in vivo pharmacodynamic information. Moreover, genetic changes to the target are often the source of resistance to targeted agents. However, for the treatment of cancer, it is necessary that the therapy not only provide efficient binding and inhibition of the target, but also that this intervention reliably kills the cancer cell. In this CCR Focus section, four articles make the connection between therapies that target T-cell activation, autophagy, IAP proteins, and BCL-2 and the commitment of cancer cells to cell death. Before addressing those exciting classes of targeted therapies, however, an overview is provided to discuss cell death induced by what is arguably still the most successful set of drugs in the history of medical oncology, conventional chemotherapy. See all articles in this CCR Focus section, "Cell Death and Cancer Therapy." ©2015 American Association for Cancer Research.

  16. Combined effects of starvation and butyrate on autophagy-dependent gingival epithelial cell death.

    PubMed

    Evans, M; Murofushi, T; Tsuda, H; Mikami, Y; Zhao, N; Ochiai, K; Kurita-Ochiai, T; Yamamoto, M; Otsuka, K; Suzuki, N

    2017-06-01

    Bacteria in the dental biofilm surrounding marginal gingival grooves cause periodontal diseases. Numerous bacteria within the biofilm consume nutrients from the gingival crevicular fluid. Furthermore, some gram-negative bacteria in mature dental biofilms produce butyrate. Thus, gingival epithelial cells in close proximity to mature dental biofilms are at risk of both starvation and exposure to butyrate. In the present study, we determined the combined effects of starvation and butyrate exposure on gingival epithelial cell death and the underlying mechanisms. The Ca9-22 cell line was used as an in vitro counterpart of gingival epithelial cells. Cell death was measured as the amount of total DNA in the dead cells using SYTOX Green dye, which penetrates through membranes of dead cells and emits fluorescence when it intercalates into double-stranded DNA. AMP-activated protein kinase (AMPK) activity, the amount of autophagy, and acetylation of histone H3 were determined using western blot. Gene expression levels of microtubule-associated protein 1 light chain 3b (lc3b) were determined using quantitative reverse transcription-polymerase chain reaction. Butyrate-induced cell death occurred in a dose-dependent manner whether cells were starved or fed. However, the induction of cell death was two to four times higher when cells were placed under starvation conditions compared to when they were fed. Moreover, both starvation and butyrate exposure induced AMPK activity and autophagy. While AMPK inactivation resulted in decreased autophagy and butyrate-induced cell death under conditions of starvation, AMPK activation resulted in butyrate-induced cell death when cells were fed. Combined with the results of our previous report, which demonstrated butyrate-induced autophagy-dependent cell death, the results of this study suggest that the combination of starvation and butyrate exposure activates AMPK inducing autophagy and subsequent cell death. Notably, this combination markedly

  17. Simulation of Cell Patterning Triggered by Cell Death and Differential Adhesion in Drosophila Wing.

    PubMed

    Nagai, Tatsuzo; Honda, Hisao; Takemura, Masahiko

    2018-02-27

    The Drosophila wing exhibits a well-ordered cell pattern, especially along the posterior margin, where hair cells are arranged in a zigzag pattern in the lateral view. Based on an experimental result observed during metamorphosis of Drosophila, we considered that a pattern of initial cells autonomously develops to the zigzag pattern through cell differentiation, intercellular communication, and cell death (apoptosis) and performed computer simulations of a cell-based model of vertex dynamics for tissues. The model describes the epithelial tissue as a monolayer cell sheet of polyhedral cells. Their vertices move according to equations of motion, minimizing the sum total of the interfacial and elastic energies of cells. The interfacial energy densities between cells are introduced consistently with an ideal zigzag cell pattern, extracted from the experimental result. The apoptosis of cells is modeled by gradually reducing their equilibrium volume to zero and by assuming that the hair cells prohibit neighboring cells from undergoing apoptosis. Based on experimental observations, we also assumed wing elongation along the proximal-distal axis. Starting with an initial cell pattern similar to the micrograph experimentally obtained just before apoptosis, we carried out the simulations according to the model mentioned above and successfully reproduced the ideal zigzag cell pattern. This elucidates a physical mechanism of patterning triggered by cell apoptosis theoretically and exemplifies, to our knowledge, a new framework to study apoptosis-induced patterning. We conclude that the zigzag cell pattern is formed by an autonomous communicative process among the participant cells. Copyright © 2018 Biophysical Society. All rights reserved.

  18. Senescent cells re-engineered to express soluble programmed death receptor-1 for inhibiting programmed death receptor-1/programmed death ligand-1 as a vaccination approach against breast cancer.

    PubMed

    Chen, Zehong; Hu, Kang; Feng, Lieting; Su, Ruxiong; Lai, Nan; Yang, Zike; Kang, Shijun

    2018-06-01

    Various types of vaccines have been proposed as approaches for prevention or delay of the onset of cancer by boosting the endogenous immune system. We previously developed a senescent-cell-based vaccine, induced by radiation and veliparib, as a preventive and therapeutic tool against triple-negative breast cancer. However, the programmed death receptor-1/programmed death ligand-1 (PD-1/PD-L1) pathway was found to play an important role in vaccine failure. Hence, we further developed soluble programmed death receptor-1 (sPD1)-expressing senescent cells to overcome PD-L1/PD-1-mediated immune suppression while vaccinating to promote dendritic cell (DC) maturity, thereby amplifying T-cell activation. In the present study, sPD1-expressing senescent cells showed a particularly active status characterized by growth arrest and modified immunostimulatory cytokine secretion in vitro. As expected, sPD1-expressing senescent tumor cell vaccine (STCV/sPD-1) treatment attracted more mature DC and fewer exhausted-PD1 + T cells in vivo. During the course of the vaccine studies, we observed greater safety and efficacy for STCV/sPD-1 than for control treatments. STCV/sPD-1 pre-injections provided complete protection from 4T1 tumor challenge in mice. Additionally, the in vivo therapeutic study of mice with s.c. 4T1 tumor showed that STCV/sPD-1 vaccination delayed tumorigenesis and suppressed tumor progression at early stages. These results showed that STCV/sPD-1 effectively induced a strong antitumor immune response against cancer and suggested that it might be a potential strategy for TNBC prevention. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. Characterization of cell death caused by diplodiatoxin and dipmatol, toxic metabolites of Stenocarpella maydis.

    PubMed

    Masango, Mxolisi G; Ellis, Charlotte E; Botha, Christo J

    2015-08-01

    Diplodiosis, a neuromycotoxicosis of cattle and sheep grazing on mouldy cobs infected by Stenocarpella maydis, is considered the last major veterinary mycotoxicosis for which the causative mycotoxin is still unknown. The current study was aimed at characterizing the cell death observed in mouse neuroblastoma (Neuro-2a), Chinese hamster ovary (CHO-K1) and Madin-Darby bovine kidney (MDBK) cell lines exposed to the S. maydis metabolites (i.e. diplodiatoxin and dipmatol) by investigating the roles of necrosis and apoptosis. Necrosis was investigated using the lactate dehydrogenase (LDH) leakage and propidium iodide (PI) flow cytometry assays and apoptosis was evaluated using the caspase-3/7 and Annexin V flow cytometry assays. In addition, transmission electron microscopy (TEM) was used to correlate the cell death pathways observed in this study with their typical morphologies. Both diplodiatoxin and dipmatol (750 μM) induced necrosis and caspase-dependent apoptosis in Neuro-2a, CHO-K1 and MDBK cells. Ultrastructurally, the two mycotoxins induced mitochondrial damage, cytoplasmic vacuolation and nuclear fragmentation in the three cell lines. These findings have laid a foundation for future studies aimed at elucidating in detail the mechanism of action of the S. maydis metabolites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Activation of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) induces cell death through MAPK-dependent mechanism in osteoblastic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung Hun; Yoo, Chong Il; Medical Research Institute, College of Medicine, Pusan National University, Pusan, 602-739

    2006-09-01

    The present study was undertaken to determine the role of the mitogen-activated protein kinase (MAPK) subfamilies in cell death induced by PPAR{gamma} agonists in osteoblastic cells. Ciglitazone and troglitazone, PPAR{gamma} agonists, resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. But a PPAR{alpha} agonist ciprofibrate did not affect the cell death. Ciglitazone caused reactive oxygen species (ROS) generation and ciglitazone-induced cell death was prevented by antioxidants, suggesting an important role of ROS generation in the ciglitazone-induced cell death. ROS generation and cell death induced by ciglitazone were inhibited by the PPAR{gamma} antagonist GW9662. Ciglitazone treatmentmore » caused activation of extracellular signal-regulated kinase (ERK) and p38. Activation of ERK was dependent on epidermal growth factor receptor (EGFR) and that of p38 was independent. Ciglitazone-induced cell death was significantly prevented by PD98059, an inhibitor of ERK upstream kinase MEK1/2, and SB203580, a p38 inhibitor. Ciglitazone treatment increased Bax expression and caused a loss of mitochondrial membrane potential, and its effect was prevented by N-acetylcysteine, PD98059, and SB203580. Ciglitazone induced caspase activation, which was prevented by PD98059 and SB203580. The general caspase inhibitor z-DEVD-FMK and the specific inhibitor of caspases-3 DEVD-CHO exerted the protective effect against the ciglitazone-induced cell death. The EGFR inhibitors AG1478 and suramin protected against the ciglitazone-induced cell death. Taken together, these findings suggest that the MAPK signaling pathways play an active role in mediating the ciglitazone-induced cell death of osteoblasts and function upstream of a mitochondria-dependent mechanism. These data may provide a novel insight into potential therapeutic strategies for treatment of osteoporosis.« less

  1. Differential Induction of Immunogenic Cell Death and Interferon Expression in Cancer Cells by Structured ssRNAs.

    PubMed

    Lee, Jaewoo; Lee, Youngju; Xu, Li; White, Rebekah; Sullenger, Bruce A

    2017-06-07

    Activation of the RNA-sensing pattern recognition receptor (PRR) in cancer cells leads to cell death and cytokine expression. This cancer cell death releases tumor antigens and damage-associated molecular patterns (DAMPs) that induce anti-tumor immunity. However, these cytokines and DAMPs also cause adverse inflammatory and thrombotic complications that can limit the overall therapeutic benefits of PRR-targeting anti-cancer therapies. To overcome this problem, we generated and evaluated two novel and distinct ssRNA molecules (immunogenic cell-killing RNA [ICR]2 and ICR4). ICR2 and ICR4 differentially stimulated cell death and PRR signaling pathways and induced different patterns of cytokine expression in cancer and innate immune cells. Interestingly, DAMPs released from ICR2- and ICR4-treated cancer cells had distinct patterns of stimulation of innate immune receptors and coagulation. Finally, ICR2 and ICR4 inhibited in vivo tumor growth as effectively as poly(I:C). ICR2 and ICR4 are potential therapeutic agents that differentially induce cell death, immune stimulation, and coagulation when introduced into tumors. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  2. Calpain Determines the Propensity of Adult Hippocampal Neural Stem Cells to Autophagic Cell Death Following Insulin Withdrawal.

    PubMed

    Chung, Kyung Min; Park, Hyunhee; Jung, Seonghee; Ha, Shinwon; Yoo, Seung-Jun; Woo, Hanwoong; Lee, Hyang Ju; Kim, Seong Who; Kim, Eun-Kyoung; Moon, Cheil; Yu, Seong-Woon

    2015-10-01

    Programmed cell death (PCD) has significant effects on the function of neural stem cells (NSCs) during brain development and degeneration. We have previously reported that adult rat hippocampal neural stem (HCN) cells underwent autophagic cell death (ACD) rather than apoptosis following insulin withdrawal despite their intact apoptotic capabilities. Here, we report a switch in the mode of cell death in HCN cells with calpain as a critical determinant. In HCN cells, calpain 1 expression was barely detectable while calpain 2 was predominant. Inhibition of calpain in insulin-deprived HCN cells further augmented ACD. In contrast, expression of calpain 1 switched ACD to apoptosis. The proteasome inhibitor lactacystin blocked calpain 2 degradation and elevated the intracellular Ca(2+) concentration. In combination, these effects potentiated calpain activity and converted the mode of cell death to apoptosis. Our results indicate that low calpain activity, due to absence of calpain 1 and degradation of calpain 2, results in a preference for ACD over apoptosis in insulin-deprived HCN cells. On the other hand, conditions leading to high calpain activity completely switch the mode of cell death to apoptosis. This is the first report on the PCD mode switching mechanism in NSCs. The dynamic change in calpain activity through the proteasome-mediated modulation of the calpain and intracellular Ca(2+) levels may be the critical contributor to the demise of NSCs. Our findings provide a novel insight into the complex mechanisms interconnecting autophagy and apoptosis and their roles in the regulation of NSC death. © 2015 AlphaMed Press.

  3. Esterification of 24S-OHC induces formation of atypical lipid droplet-like structures, leading to neuronal cell death[S

    PubMed Central

    Takabe, Wakako; Urano, Yasuomi; Vo, Diep-Khanh Ho; Shibuya, Kimiyuki; Tanno, Masaki; Kitagishi, Hiroaki; Fujimoto, Toyoshi; Noguchi, Noriko

    2016-01-01

    The 24(S)-hydroxycholesterol (24S-OHC), which plays an important role in maintaining brain cholesterol homeostasis, has been shown to possess neurotoxicity. We have previously reported that 24S-OHC esterification by ACAT1 and the resulting lipid droplet (LD) formation are responsible for 24S-OHC-induced cell death. In the present study, we investigate the functional roles of 24S-OHC esters and LD formation in 24S-OHC-induced cell death, and we identify four long-chain unsaturated fatty acids (oleic acid, linoleic acid, arachidonic acid, and DHA) with which 24S-OHC is esterified in human neuroblastoma SH-SY5Y cells treated with 24S-OHC. Here, we find that cotreatment of cells with 24S-OHC and each of these four unsaturated fatty acids increases prevalence of the corresponding 24S-OHC ester and exacerbates induction of cell death as compared with cell death induced by treatment with 24S-OHC alone. Using electron microscopy, we find in the present study that 24S-OHC induces formation of LD-like structures coupled with enlarged endoplasmic reticulum (ER) lumina, and that these effects are suppressed by treatment with ACAT inhibitor. Collectively, these results illustrate that ACAT1-catalyzed esterification of 24S-OHC with long-chain unsaturated fatty acid followed by formation of atypical LD-like structures at the ER membrane is a critical requirement for 24S-OHC-induced cell death. PMID:27647838

  4. RSL3 and Erastin differentially regulate redox signaling to promote Smac mimetic-induced cell death

    PubMed Central

    Dächert, Jasmin; Schoeneberger, Hannah; Rohde, Katharina; Fulda, Simone

    2016-01-01

    Redox mechanisms play an important role in the control of various signaling pathways. Here, we report that Second mitochondrial activator of caspases (Smac) mimetic-induced cell death is regulated by redox signaling. We show that RSL3, a glutathione (GSH) peroxidase (GPX) 4 inhibitor, or Erastin, an inhibitor of the cystine/glutamate antiporter, cooperate with the Smac mimetic BV6 to induce reactive oxygen species (ROS)-dependent cell death in acute lymphoblastic leukemia (ALL) cells. Addition of the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) fails to rescue ROS-induced cell death, demonstrating that RSL3/BV6- or Erastin/BV6-induced cell death occurs in a caspase-independent manner. Interestingly, the iron chelator Deferoxamine (DFO) significantly inhibits RSL3/BV6-induced cell death, whereas it is unable to rescue cell death by Erastin/BV6, showing that RSL3/BV6-, but not Erastin/BV6-mediated cell death depends on iron. ROS production is required for both RSL3/BV6- and Erastin/BV6-induced cell death, since the ROS scavenger α-tocopherol (α-Toc) rescues RSL3/BV6- and Erastin/BV6-induced cell death. By comparison, genetic or pharmacological inhibition of lipid peroxidation by GPX4 overexpression or ferrostatin (Fer)-1 significantly decreases RSL3/BV6-, but not Erastin/BV6-induced cell death, despite inhibition of lipid peroxidation upon exposure to RSL3/BV6 or Erastin/BV6. Of note, inhibition of lipid peroxidation by Fer-1 protects from RSL3/BV6-, but not from Erastin/BV6-stimulated ROS production, indicating that other forms of ROS besides lipophilic ROS occur during Erastin/BV6-induced cell death. Taken together, RSL3/BV6 and Erastin/BV6 differentially regulate redox signaling and cell death in ALL cells. While RSL3/BV6 cotreatment induces ferroptotic cell death, Erastin/BV6 stimulates oxidative cell death independently of iron. These findings have important implications for the therapeutic targeting of redox signaling to

  5. RSL3 and Erastin differentially regulate redox signaling to promote Smac mimetic-induced cell death.

    PubMed

    Dächert, Jasmin; Schoeneberger, Hannah; Rohde, Katharina; Fulda, Simone

    2016-09-27

    Redox mechanisms play an important role in the control of various signaling pathways. Here, we report that Second mitochondrial activator of caspases (Smac) mimetic-induced cell death is regulated by redox signaling. We show that RSL3, a glutathione (GSH) peroxidase (GPX) 4 inhibitor, or Erastin, an inhibitor of the cystine/glutamate antiporter, cooperate with the Smac mimetic BV6 to induce reactive oxygen species (ROS)-dependent cell death in acute lymphoblastic leukemia (ALL) cells. Addition of the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) fails to rescue ROS-induced cell death, demonstrating that RSL3/BV6- or Erastin/BV6-induced cell death occurs in a caspase-independent manner. Interestingly, the iron chelator Deferoxamine (DFO) significantly inhibits RSL3/BV6-induced cell death, whereas it is unable to rescue cell death by Erastin/BV6, showing that RSL3/BV6-, but not Erastin/BV6-mediated cell death depends on iron. ROS production is required for both RSL3/BV6- and Erastin/BV6-induced cell death, since the ROS scavenger α-tocopherol (α-Toc) rescues RSL3/BV6- and Erastin/BV6-induced cell death. By comparison, genetic or pharmacological inhibition of lipid peroxidation by GPX4 overexpression or ferrostatin (Fer)-1 significantly decreases RSL3/BV6-, but not Erastin/BV6-induced cell death, despite inhibition of lipid peroxidation upon exposure to RSL3/BV6 or Erastin/BV6. Of note, inhibition of lipid peroxidation by Fer-1 protects from RSL3/BV6-, but not from Erastin/BV6-stimulated ROS production, indicating that other forms of ROS besides lipophilic ROS occur during Erastin/BV6-induced cell death. Taken together, RSL3/BV6 and Erastin/BV6 differentially regulate redox signaling and cell death in ALL cells. While RSL3/BV6 cotreatment induces ferroptotic cell death, Erastin/BV6 stimulates oxidative cell death independently of iron. These findings have important implications for the therapeutic targeting of redox signaling to

  6. Zinc deficiency mediates alcohol-induced apoptotic cell death in the liver of rats through activating ER and mitochondrial cell death pathways

    PubMed Central

    Sun, Qian; Zhong, Wei; Zhang, Wenliang; Li, Qiong; Sun, Xiuhua; Tan, Xiaobing; Sun, Xinguo; Dong, Daoyin

    2015-01-01

    Hepatic zinc deficiency has been well documented in alcoholic patients, but the mechanisms by which zinc deficiency mediates cell death have not been well defined. The objectives of this study were to determine whether alcohol perturbs subcellular zinc homeostasis and how organelle zinc depletion may link with cell death pathways. Wistar rats were pair-fed with the Lieber-DeCarli control or ethanol diet for 5 mo. Chronic alcohol exposure significantly reduced zinc level in isolated hepatic endoplasmic reticulum (ER) and mitochondria. Among the detected zinc transporters, ER Zrt/Irt-like protein (ZIP)13 and mitochondrial ZIP8, which transport zinc from ER and mitochondria to cytosol, were significantly increased. Mitochondrial zinc transporter (ZnT) 4, which transports zinc from cytosol to mitochondria, was also increased. ER phosphorylated eukaryotic initiation factor 2α, activating transcription factor 4, and C/EBP homologous protein were significantly upregulated, and mitochondrial cytochrome c release and Bax insertion were detected in association with caspase-3 activation and apoptotic cell death. To define the role of zinc deficiency in ER and mitochondrial stress, H4IIEC3 cells were treated with 3 μM N,N,N′,N′-tetrakis (2-pyridylmethyl) ethylenediamine for 6 h with or without supplementation with zinc or N-acetylcysteine (NAC). The results demonstrated that zinc deprivation induced caspase-3 activation and apoptosis in association with ER and mitochondria dysfunction, which were inhibited by zinc as low as 10 μM but not by 2 mM NAC. These results suggest that chronic ethanol exposure induced in ER and mitochondrial zinc deficiency might activate intrinsic cell death signaling pathway, which could not be effectively rescued by antioxidant treatment. PMID:25767260

  7. Programmed cell death in C. elegans, mammals and plants.

    PubMed

    Lord, Christina E N; Gunawardena, Arunika H L A N

    2012-08-01

    Programmed cell death (PCD) is the regulated removal of cells within an organism and plays a fundamental role in growth and development in nearly all eukaryotes. In animals, the model organism Caenorhabditis elegans (C. elegans) has aided in elucidating many of the pathways involved in the cell death process. Various analogous PCD processes can also be found within mammalian PCD systems, including vertebrate limb development. Plants and animals also appear to share hallmarks of PCD, both on the cellular and molecular level. Cellular events visualized during plant PCD resemble those seen in animals including: nuclear condensation, DNA fragmentation, cytoplasmic condensation, and plasma membrane shrinkage. Recently the molecular mechanisms involved in plant PCD have begun to be elucidated. Although few regulatory proteins have been identified as conserved across all eukaryotes, molecular features such as the participation of caspase-like proteases, Bcl-2-like family members and mitochondrial proteins appear to be conserved between plant and animal systems. Transgenic expression of mammalian and C. elegans pro- and anti-apoptotic genes in plants has been observed to dramatically influence the regulatory pathways of plant PCD. Although these genes often show little to no sequence similarity they can frequently act as functional substitutes for one another, thus suggesting that action may be more important than sequence resemblance. Here we present a summary of these findings, focusing on the similarities, between mammals, C. elegans, and plants. An emphasis will be placed on the mitochondria and its role in the cell death pathway within each organism. Through the comparison of these systems on both a cellular and molecular level we can begin to better understand PCD in plant systems, and perhaps shed light on the pathways, which are controlling the process. This manuscript adds to the field of PCD in plant systems by profiling apoptotic factors, to scale on a protein

  8. Love is a battlefield: programmed cell death during fertilization.

    PubMed

    Heydlauff, Juliane; Groß-Hardt, Rita

    2014-03-01

    Plant development and growth is sustained by the constant generation of tremendous amounts of cells, which become integrated into various types of tissues and organs. What is all too often overlooked is that this thriving life also requires the targeted degeneration of selected cells, which undergo cell death according to genetically encoded programmes or environmental stimuli. The side-by-side existence of generation and demise is particularly evident in the haploid phase of the flowering plants cycle. Here, the lifespan of terminally differentiated accessory cells contrasts with that of germ cells, which by definition live on to form the next generation. In fact, with research in recent years it is becoming increasingly clear that the gametophytes of flowering plants constitute an attractive and powerful system for investigating the molecular mechanisms underlying selective cell death.

  9. METACASPASE9 modulates autophagy to confine cell death to the target cells during Arabidopsis vascular xylem differentiation

    PubMed Central

    Escamez, Sacha; André, Domenique; Zhang, Bo; Bollhöner, Benjamin; Pesquet, Edouard; Tuominen, Hannele

    2016-01-01

    ABSTRACT We uncovered that the level of autophagy in plant cells undergoing programmed cell death determines the fate of the surrounding cells. Our approach consisted of using Arabidopsis thaliana cell cultures capable of differentiating into two different cell types: vascular tracheary elements (TEs) that undergo programmed cell death (PCD) and protoplast autolysis, and parenchymatic non-TEs that remain alive. The TE cell type displayed higher levels of autophagy when expression of the TE-specific METACASPASE9 (MC9) was reduced using RNAi (MC9-RNAi). Misregulation of autophagy in the MC9-RNAi TEs coincided with ectopic death of the non-TEs, implying the existence of an autophagy-dependent intercellular signalling from within the TEs towards the non-TEs. Viability of the non-TEs was restored when AUTOPHAGY2 (ATG2) was downregulated specifically in MC9-RNAi TEs, demonstrating the importance of autophagy in the spatial confinement of cell death. Our results suggest that other eukaryotic cells undergoing PCD might also need to tightly regulate their level of autophagy to avoid detrimental consequences for the surrounding cells. PMID:26740571

  10. IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectromicroscopy

    NASA Technical Reports Server (NTRS)

    Holman, H. Y.; Martin, M. C.; Blakely, E. A.; Bjornstad, K.; McKinney, W. R.

    2000-01-01

    Synchrotron radiation based Fourier transform IR (SR-FTIR) spectromicroscopy allows the study of individual living cells with a high signal to noise ratio. Here we report the use of the SR-FTIR technique to investigate changes in IR spectral features from individual human lung fibroblast (IMR-90) cells in vitro at different points in their cell cycle. Clear changes are observed in the spectral regions corresponding to proteins, DNA, and RNA as a cell changes from the G(1)-phase to the S-phase and finally into mitosis. These spectral changes include markers for the changing secondary structure of proteins in the cell, as well as variations in DNA/RNA content and packing as the cell cycle progresses. We also observe spectral features that indicate that occasional cells are undergoing various steps in the process of cell death. The dying or dead cell has a shift in the protein amide I and II bands corresponding to changing protein morphologies, and a significant increase in the intensity of an ester carbonyl C===O peak at 1743 cm(-1) is observed. Copyright John Wiley & Sons, Inc. Biopolymers (Biospectroscopy) 57: 329-335, 2000.

  11. Live to die another way: modes of programmed cell death and the signals emanating from dying cells

    PubMed Central

    Fuchs, Yaron; Steller, Hermann

    2015-01-01

    Preface All life ends in death, but perhaps one of life’s grander ironies is that it also depends on death. Cell-intrinsic suicide pathways, termed programmed cell death (PCD), are crucial for animal development, tissue homeostasis and pathogenesis. Originally, PCD was virtually synonymous with apoptosis, but recently, alternative PCD mechanisms have been reported. Here, we provide an overview of several distinct PCD mechanisms, namely apoptosis, autophagy and necroptosis. In addition, we discuss the complex signals emanating from dying cells, which can either fuel regeneration or instruct additional killing. Further advances in understanding the physiological role of multiple cell death mechanisms and associated signals will be important to selectively manipulate PCD for therapeutic purposes. PMID:25991373

  12. Effect of hypothermia on doxorubicin-induced cardiac myoblast signaling and cell death.

    PubMed

    L'Ecuyer, Thomas J; Aggarwal, Sanjeev; Zhang, Jiang Ping; Van der Heide, Richard S

    2012-01-01

    Anthracyclines (AC) are useful chemotherapeutic agents whose principal limitation is cardiac toxicity, which may progress to heart failure, transplantation or even death. We have shown that this toxicity involves oxidative stress-induced activation of the DNA damage pathway. Hypothermia has been shown to be protective against other diseases involving oxidative stress but has not been studied in models of AC toxicity. In the current experiments, H9C2 cardiac myoblasts were treated with varying concentrations of the AC doxorubicin (DOX) during normothermia (37°C) or mild hypothermia (35°C). Total cell death was assayed using trypan blue exclusion and apoptosis by terminal deoxynucleotidyl transferase-mediated deoxyuridine-biotin nick end labeling (TUNEL) staining. Oxidative stress was assayed using the fluorescent indicator 2'7'-dichlorofluorescein diacetate. DNA damage pathway activation was assayed by immunostaining for H2AX and p53. Mitochondrial membrane potential was assayed by JC-1 staining. At all concentrations of DOX examined (1, 2.5 and 5 μM), hypothermia reduced oxidative stress, activation of H2AX and p53, loss of mitochondrial membrane potential and total and apoptotic cell death (P=.001-.03 for each observation). The reduction of oxidative stress-induced activation of the DNA damage pathway and consequent cell death by mild hypothermia supports a possible protective role to reduce the clinical impact of DOX-induced cardiac toxicity. Such an approach may allow expanded use of these effective chemotherapeutic agents to increase cancer cure rates. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Neuroprotection by GH against excitotoxic-induced cell death in retinal ganglion cells.

    PubMed

    Martínez-Moreno, Carlos G; Ávila-Mendoza, José; Wu, Yilun; Arellanes-Licea, Elvira Del Carmen; Louie, Marcela; Luna, Maricela; Arámburo, Carlos; Harvey, Steve

    2016-08-01

    Retinal growth hormone (GH) has been shown to promote cell survival in retinal ganglion cells (RGCs) during developmental waves of apoptosis during chicken embryonic development. The possibility that it might also against excitotoxicity-induced cell death was therefore examined in the present study, which utilized quail-derived QNR/D cells as an in vitro RGC model. QNR/D cell death was induced by glutamate in the presence of BSO (buthionine sulfoxamide) (an enhancer of oxidative stress), but this was significantly reduced (P<0.01) in the presence of exogenous recombinant chicken GH (rcGH). Similarly, QNR/D cells that had been prior transfected with a GH plasmid to overexpress secreted and non-secreted GH. This treatment reduced the number of TUNEL-labeled cells and blocked their release of lactate dehydrogenase (LDH). In a further experiment with dissected neuroretinal explants from ED (embryonic day) 10 embryos, rcGH treatment of the explants also reduced (P<0.01) the number of glutamate-BSO-induced apoptotic cells and blocked the explant release of LDH. This neuroprotective action was likely mediated by increased STAT5 phosphorylation and increased bcl-2 production, as induced by exogenous rcGH treatment and the media from GH-overexpressing QNR/D cells. As rcGH treatment and GH-overexpression cells also increased the content of IGF-1 and IGF-1 mRNA this neuroprotective action of GH is likely to be mediated, at least partially, through an IGF-1 mechanism. This possibility is supported by the fact that the siRNA knockdown of GH or IGF-1 significantly reduced QNR/D cell viability, as did the immunoneutralization of IGF-1. GH is therefore neuroprotective against excitotoxicity-induced RGC cell death by anti-apoptotic actions involving IGF-1 stimulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Heterotrimeric G Protein Signaling Is Required for Epidermal Cell Death in Rice[W][OA

    PubMed Central

    Steffens, Bianka; Sauter, Margret

    2009-01-01

    In rice (Oryza sativa) adventitious root primordia are formed at the nodes as part of normal development. Upon submergence of rice plants, adventitious roots emerge from the nodes preceded by death of epidermal cells above the root primordia. Cell death is induced by ethylene and mediated by hydrogen peroxide (H2O2). Pharmacological experiments indicated that epidermal cell death was dependent on signaling through G proteins. Treatment with GTP-γ-S induced epidermal cell death, whereas GDP-β-S partially inhibited ethylene-induced cell death. The dwarf1 (d1) mutant of rice has repressed expression of the Gα subunit RGA1 of heterotrimeric G protein. In d1 plants, cell death in response to ethylene and H2O2 was nearly completely abolished, indicating that signaling through Gα is essential. Ethylene and H2O2 were previously shown to alter gene expression in epidermal cells that undergo cell death. Transcriptional regulation was not generally affected in the d1 mutant, indicating that altered gene expression is not sufficient to trigger cell death in the absence of Gα. Analysis of genes encoding proteins related to G protein signaling revealed that four small GTPase genes, two GTPase-activating protein genes, and one GDP dissociation inhibitor gene but not RGA1 were differentially expressed in epidermal cells above adventitious roots, indicating that Gα activity is regulated posttranscriptionally. PMID:19656904

  15. Apoptotic Cell Death Induced by Resveratrol Is Partially Mediated by the Autophagy Pathway in Human Ovarian Cancer Cells

    PubMed Central

    Lang, Fangfang; Qin, Zhaoyang; Li, Fang; Zhang, Huilin; Fang, Zhenghui; Hao, Enkui

    2015-01-01

    Resveratrol (trans-3,4,5’ –trihydroxystilbene) is an active compound in food, such as red grapes, peanuts, and berries. Resveratrol exhibits an anticancer effect on various human cancer cells. However, the mechanism of resveratrol-induced anti-cancer effect at the molecular level remains to be elucidated. In this study, the mechanism underlying the anti-cancer effect of resveratrol in human ovarian cancer cells (OVCAR-3 and Caov-3) was investigated using various molecular biology techniques, such as flow cytometry, western blotting, and RNA interference, with a major focus on the potential role of autophagy in resveratrol-induced apoptotic cell death. We demonstrated that resveratrol induced reactive oxygen species (ROS) generation, which triggers autophagy and subsequent apoptotic cell death. Resveratrol induced ATG5 expression and promoted LC3 cleavage. The apoptotic cell death induced by resveratrol was attenuated by both pharmacological and genetic inhibition of autophagy. The autophagy inhibitor chloroquine, which functions at the late stage of autophagy, significantly reduced resveratrol-induced cell death and caspase 3 activity in human ovarian cancer cells. We also demonstrated that targeting ATG5 by siRNA also suppressed resveratrol-induced apoptotic cell death. Thus, we concluded that a common pathway between autophagy and apoptosis exists in resveratrol-induced cell death in OVCAR-3 human ovarian cancer cells. PMID:26067645

  16. Melatonin pre-treatment mitigates SHSY-5Y cells against oxaliplatin induced mitochondrial stress and apoptotic cell death

    PubMed Central

    Choudhury, Arnab; Kar, Sudeshna; Tabassum, Heena

    2017-01-01

    Oxaliplatin (Oxa) treatment to SH-SY5Y human neuroblastoma cells has been shown by previous studies to induce oxidative stress, which in turn modulates intracellular signaling cascades resulting in cell death. While this phenomenon of Oxa-induced neurotoxicity is known, the underlying mechanisms involved in this cell death cascade must be clarified. Moreover, there is still little known regarding the roles of neuronal mitochondria and cytosolic compartments in mediating Oxa-induced neurotoxicity. With a better grasp of the mechanisms driving neurotoxicity in Oxa-treated SH-SY5Y cells, we can then identify certain pathways to target in protecting against neurotoxic cell damage. Therefore, the purpose of this study was to determine whether one such agent, melatonin (Mel), could confer protection against Oxa-induced neurotoxicity in SH-SY5Y cells. Results from the present study found Oxa to significantly reduce SH-SY5Y cell viability in a dose-dependent manner. Alternatively, we found Mel pre-treatment to SH-SY5Y cells to attenuate Oxa-induced toxicity, resulting in a markedly increased cell viability. Mel exerted its protective effects by regulating reactive oxygen species (ROS) production and reducing superoxide radicals inside Oxa-exposed. In addition, we observed pre-treatment with Mel to rescue Oxa-treated cells by protecting mitochondria. As Oxa-treatment alone decreases mitochondrial membrane potential (Δψm), resulting in an altered Bcl-2/Bax ratio and release of sequestered cytochrome c, so Mel was shown to inhibit these pathways. Mel was also found to inhibit proteolytic activation of caspase 3, inactivation of Poly (ADP Ribose) polymerase, and DNA damage, thereby allowing SH-SY5Y cells to resist apoptotic cell death. Collectively, our results suggest a role for melatonin in reducing Oxa induced neurotoxicity. Further studies exploring melatonin’s protective effects may prove successful in eliciting pathways to further alter the neurotoxic pathways of

  17. Dynamic quantitative photothermal monitoring of cell death of individual human red blood cells upon glucose depletion

    NASA Astrophysics Data System (ADS)

    Vasudevan, Srivathsan; Chen, George Chung Kit; Andika, Marta; Agarwal, Shuchi; Chen, Peng; Olivo, Malini

    2010-09-01

    Red blood cells (RBCs) have been found to undergo ``programmed cell death,'' or eryptosis, and understanding this process can provide more information about apoptosis of nucleated cells. Photothermal (PT) response, a label-free photothermal noninvasive technique, is proposed as a tool to monitor the cell death process of living human RBCs upon glucose depletion. Since the physiological status of the dying cells is highly sensitive to photothermal parameters (e.g., thermal diffusivity, absorption, etc.), we applied linear PT response to continuously monitor the death mechanism of RBC when depleted of glucose. The kinetics of the assay where the cell's PT response transforms from linear to nonlinear regime is reported. In addition, quantitative monitoring was performed by extracting the relevant photothermal parameters from the PT response. Twofold increases in thermal diffusivity and size reduction were found in the linear PT response during cell death. Our results reveal that photothermal parameters change earlier than phosphatidylserine externalization (used for fluorescent studies), allowing us to detect the initial stage of eryptosis in a quantitative manner. Hence, the proposed tool, in addition to detection of eryptosis earlier than fluorescence, could also reveal physiological status of the cells through quantitative photothermal parameter extraction.

  18. Can dead bacterial cells be defined and are genes expressed after cell death?

    PubMed

    Trevors, J T

    2012-07-01

    There is a paucity of knowledge on gene expression in dead bacterial cells. Why would this knowledge be useful? The cells are dead. However, the time duration of gene expression following cell death is often unknown, and possibly in the order of minutes. In addition, it is a challenge to determine if bacterial cells are dead, or viable but non-culturable (VBNC), and what is an agreed upon correct definition of dead bacteria. Cells in the bacterial population or community may die at different rates or times and this complicates both the viability and gene expression analysis. In this article, the definition of dead bacterial cells is discussed and its significance in continued gene expression in cells following death. The definition of living and dead has implications for possible, completely, synthetic bacterial cells that may be capable of growth and division. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Cell death during the development of the truncus and conus of the chick embryo heart.

    PubMed Central

    Hurle, J M; Ojeda, J L

    1979-01-01

    The presence of cell death in the walls of the truncus and conus of the developing chick heart was investigated by a variety of light and electron microscopic techniques. Necrotic areas were observed in the myocardial layer of the truncus and conus and within the mesenchymal cells of the truncoconal ridges and aortopulmonary septum. These necrotic zones appeared first at Stage 25-26 and reached their maximum extent at Stages 29-32 undergoing later progressive disappearance. The morphological changes of the degenerating cells detectable under both transmission and scanning electron microscopy are also reported. The possible role of cell death in the morphogenesis of the truncus and conus is discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 PMID:500497

  20. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells

    PubMed Central

    Mahamed, Deeqa; Boulle, Mikael; Ganga, Yashica; Mc Arthur, Chanelle; Skroch, Steven; Oom, Lance; Catinas, Oana; Pillay, Kelly; Naicker, Myshnee; Rampersad, Sanisha; Mathonsi, Colisile; Hunter, Jessica; Wong, Emily B; Suleman, Moosa; Sreejit, Gopalkrishna; Pym, Alexander S; Lustig, Gila; Sigal, Alex

    2017-01-01

    A hallmark of pulmonary tuberculosis is the formation of macrophage-rich granulomas. These may restrict Mycobacterium tuberculosis (Mtb) growth, or progress to central necrosis and cavitation, facilitating pathogen growth. To determine factors leading to Mtb proliferation and host cell death, we used live cell imaging to track Mtb infection outcomes in individual primary human macrophages. Internalization of Mtb aggregates caused macrophage death, and phagocytosis of large aggregates was more cytotoxic than multiple small aggregates containing similar numbers of bacilli. Macrophage death did not result in clearance of Mtb. Rather, it led to accelerated intracellular Mtb growth regardless of prior activation or macrophage type. In contrast, bacillary replication was controlled in live phagocytes. Mtb grew as a clump in dead cells, and macrophages which internalized dead infected cells were very likely to die themselves, leading to a cell death cascade. This demonstrates how pathogen virulence can be achieved through numbers and aggregation states. DOI: http://dx.doi.org/10.7554/eLife.22028.001 PMID:28130921

  1. Regulated Cell Death of Lymphoma Cells after Graded Mitochondrial Damage is Differentially Affected by Drugs Targeting Cell Stress Responses.

    PubMed

    Lombardo, Tomás; Folgar, Martín Gil; Salaverry, Luciana; Rey-Roldán, Estela; Alvarez, Elida M; Carreras, María C; Kornblihtt, Laura; Blanco, Guillermo A

    2018-05-01

    Collapse of the mitochondrial membrane potential (MMP) is often considered the initiation of regulated cell death (RCD). Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) is an uncoupler of the electron transport chain (ETC) that facilitates the translocation of protons into the mitochondrial matrix leading to the collapse of the MMP. Several cell stress responses such as mitophagy, mitochondrial biogenesis and the ubiquitin proteasome system may differentially contribute to restrain the initiation of RCD depending on the extent of mitochondrial damage. We induced graded mitochondrial damage after collapse of MMP with the mitochondrial uncoupler CCCP in Burkitt's lymphoma cells, and we evaluated the effect of several drugs targeting cell stress responses over RCD at 72 hr, using a multiparametric flow cytometry approach. CCCP caused collapse of MMP after 30 min., massive mitochondrial fission, oxidative stress and increased mitophagy within the 5-15 μM low-dose range (LDR) of CCCP. Within the 20-50 μM high-dose range (HDR), CCCP caused lysosomal destabilization and rupture, thus precluding mitophagy and autophagy. Cell death after 72 hr was below 20%, with increased mitochondrial mass (MM). The inhibitors of mitophagy 3-(2,4-dichloro-5-methoxyphenyl)-2,3-dihydro-2-thioxo-4(1H)-quinazolinone (Mdivi-1) and vincristine (VCR) increased cell death from CCCP within the LDR, while valproic acid (an inducer of mitochondrial biogenesis) also increased MM and cell death within the LDR. The proteasome inhibitor, MG132, increased cell death only in the HDR. Doxycycline, an antibiotic that disrupts mitochondrial biogenesis, had no effect on cell survival, while iodoacetamide, an inhibitor of glycolysis, increased cell death at the HDR. We conclude that mitophagy influenced RCD of lymphoma cells after MMP collapse by CCCP only within the LDR, while proteasome activity and glycolysis contributed to survival in the HDR under extensive mitochondria and lysosome damage. © 2017

  2. ZBP1/DAI ubiquitination and sensing of influenza vRNPs activate programmed cell death

    PubMed Central

    Kuriakose, Teneema; Malireddi, R.K. Subbarao; Mishra, Ashutosh

    2017-01-01

    Innate sensing of influenza virus infection induces activation of programmed cell death pathways. We have recently identified Z-DNA–binding protein 1 (ZBP1) as an innate sensor of influenza A virus (IAV). ZBP1-mediated IAV sensing is critical for triggering programmed cell death in the infected lungs. Surprisingly, little is known about the mechanisms regulating ZBP1 activation to induce programmed cell death. Here, we report that the sensing of IAV RNA by retinoic acid inducible gene I (RIG-I) initiates ZBP1-mediated cell death via the RIG-I–MAVS–IFN-β signaling axis. IAV infection induces ubiquitination of ZBP1, suggesting potential regulation of ZBP1 function through posttranslational modifications. We further demonstrate that ZBP1 senses viral ribonucleoprotein (vRNP) complexes of IAV to trigger cell death. These findings collectively indicate that ZBP1 activation requires RIG-I signaling, ubiquitination, and vRNP sensing to trigger activation of programmed cell death pathways during IAV infection. The mechanism of ZBP1 activation described here may have broader implications in the context of virus-induced cell death. PMID:28634194

  3. Methylglyoxal-bis(guanylhydrazone), a polyamine analogue, sensitized γ-radiation-induced cell death in HL-60 leukemia cells Sensitizing effect of MGBG on γ-radiation-induced cell death.

    PubMed

    Kim, Jin Sik; Lee, Jin; Chung, Hai Won; Choi, Han; Paik, Sang Gi; Kim, In Gyu

    2006-09-01

    Methylglyoxal-bis(guanylhydrazone) (MGBG), a polyamine analogue, has been known to inhibit the biosynthesis of polyamines, which are important in cell proliferation. We showed that MGBG treatment significantly affected γ-radiation-induced cell cycle transition (G(1)/G(0)→S→G(2)/M) and thus γ-radiation-induced cell death. As determined by micronuclei and comet assay, we showed that it sensitized the cytotoxic effect induced by γ-radiation. One of the reasons is that polyamine depletion by MGBG treatment did not effectively protect against the chemical (OH) or physical damage to DNA caused by γ-radiation. Through in vitro experiment, we confirmed that DNA strand breaks induced by γ-radiation was prevented more effectively in the presence of polyamines (spermine and spermidine) than in the absence of polyamines. MGBG also blocks the cell cycle transition caused by γ-radiation (G(2) arrest), which helps protect cells by allowing time for DNA repair before entry into mitosis or apoptosis, via the down regulation of cyclin D1, which mediates the transition from G(1) to S phase of cell cycle, and ataxia telangiectasia mutated, which is involved in the DNA sensing, repair and cell cycle check point. Therefore, the abrogation of G(2) arrest sensitizes cells to the effect of γ-radiation. As a result, γ-radiation-induced cell death increased by about 2.5-3.0-fold in cells treated with MGBG. However, exogenous spermidine supplement partially relieved this γ-radiation-induced cytotoxicity and cell death. These findings suggest a potentially therapeutic strategy for increasing the cytotoxic efficacy of γ-radiation.

  4. Polychlorinated biphenyl 138 exposure-mediated lipid droplet enlargement endows adipocytes with resistance to TNF-α-induced cell death.

    PubMed

    Kim, Yeon A; Kim, Hye Young; Oh, Yoo Jin; Kwon, Woo Young; Lee, Mi Hwa; Bae, Ju Yong; Woo, Min Seok; Kim, Jong-Min; Yoo, Young Hyun

    2018-04-25

    Although epidemiological reports have shown the association between polychlorinated biphenyls (PCBs) and obesity, the molecular mechanism of PCB-induced obesity is mostly unknown. The aim of the present study was to further dissect the significance of lipid droplet (LD) enlargement in PCB-induced obesity. For this aim, we hypothesized that PCB-induced LD enlargement endows adipocytes with resistance to cell death, inhibiting the natural loss of adipocytes. Four types of PCBs were screened, and the detailed molecular mechanism was investigated by using PCB-138. We observed that PCB-138-conferred cell death resistance to hypertrophic adipocytes with enlarged LDs. We further observed that PCB-138 prevents Tumour necrosis factor-α (TNF-α)-induced apoptosis and necroptosis in 3T3-L1 adipocytes and increases the expression of anti-apoptotic proteins, including survivin, in vitro and in vivo. In addition, we demonstrated that fat-specific protein 27 (Fsp27), perilipin, and survivin endow adipocytes with resistance to TNF-α-induced cell death through sustaining enlarged LDs. Thus, the present study suggests that PCB-138-induced LD enlargement endows adipocytes with resistance to TNF-α-induced cell death and that Fsp27, perilipin, and survivin, at least in part, help adipocytes to sustain enlarged LDs, contributing to the induction of obesity. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. alpha-Tocopheryl succinate promotes selective cell death induced by vitamin K3 in combination with ascorbate.

    PubMed

    Tomasetti, M; Strafella, E; Staffolani, S; Santarelli, L; Neuzil, J; Guerrieri, R

    2010-04-13

    A strategy to reduce the secondary effects of anti-cancer agents is to potentiate the therapeutic effect by their combination. A combination of vitamin K3 (VK3) and ascorbic acid (AA) exhibited an anti-cancer synergistic effect, associated with extracellular production of H(2)O(2) that promoted cell death. The redox-silent vitamin E analogue alpha-tocopheryl succinate (alpha-TOS) was used in combination with VK3 and AA to evaluate their effect on prostate cancer cells. Prostate cancer cells were sensitive to alpha-TOS and VK3 treatment, but resistant to AA upto 3.2 mM. When combined, a synergistic effect was found for VK3-AA, whereas alpha-TOS-VK3 and alpha-TOS-AA combination showed an antagonist and additive effect, respectively. However, sub-lethal doses of AA-VK3 combination combined with a sub-toxic dose of alpha-TOS showed to induce efficient cell death that resembles autoschizis. Associated with this cell demise, lipid peroxidation, DNA damage, cytoskeleton alteration, lysosomal-mitochondrial perturbation, and release of cytochrome c without caspase activation were observed. Inhibition of lysosomal proteases did not attenuate cell death induced by the combined agents. Furthermore, cell deaths by apoptosis and autoschizis were detected. These finding support the emerging idea that synergistic combinations of some agents can overcome toxicity and other side-effects associated with high doses of single drugs creating the opportunity for therapeutically relevant selectivity.

  6. Nitric oxide production is not required for dihydrosphingosine-induced cell death in tobacco BY-2 cells.

    PubMed

    Da Silva, Daniel; Lachaud, Christophe; Cotelle, Valérie; Brière, Christian; Grat, Sabine; Mazars, Christian; Thuleau, Patrice

    2011-05-01

    Sphinganine or dihydrosphingosine (d18:0, DHS), one of the most abundant free sphingoid Long Chain Base (LCB) in plants, is known to induce a calcium dependent programmed cell death (PCD) in tobacco BY-2 cells. In addition, we have recently shown that DHS triggers a production of H2O2, via the activation of NADPH oxidase(s). However, this production of H2O2 is not correlated with the DHS-induced cell death but would rather be associated with basal cell defense mechanisms. In the present study, we extend our current knowledge of the DHS signaling pathway, by demonstrating that DHS also promotes a production of nitric oxide (NO) in tobacco BY-2 cells. As for H2O2, this NO production is not necessary for cell death induction. 

  7. Using stochastic cell division and death to probe minimal units of cellular replication

    NASA Astrophysics Data System (ADS)

    Chib, Savita; Das, Suman; Venkatesan, Soumya; Sai Narain Seshasayee, Aswin; Thattai, Mukund

    2018-03-01

    The invariant cell initiation mass measured in bacterial growth experiments has been interpreted as a minimal unit of cellular replication. Here we argue that the existence of such minimal units induces a coupling between the rates of stochastic cell division and death. To probe this coupling we tracked live and dead cells in Escherichia coli populations treated with a ribosome-targeting antibiotic. We find that the growth exponent from macroscopic cell growth or decay measurements can be represented as the difference of microscopic first-order cell division and death rates. The boundary between cell growth and decay, at which the number of live cells remains constant over time, occurs at the minimal inhibitory concentration (MIC) of the antibiotic. This state appears macroscopically static but is microscopically dynamic: division and death rates exactly cancel at MIC but each is remarkably high, reaching 60% of the antibiotic-free division rate. A stochastic model of cells as collections of minimal replicating units we term ‘widgets’ reproduces both steady-state and transient features of our experiments. Sub-cellular fluctuations of widget numbers stochastically drive each new daughter cell to one of two alternate fates, division or death. First-order division or death rates emerge as eigenvalues of a stationary Markov process, and can be expressed in terms of the widget’s molecular properties. High division and death rates at MIC arise due to low mean and high relative fluctuations of widget number. Isolating cells at the threshold of irreversible death might allow molecular characterization of this minimal replication unit.

  8. Investigation of selective induction of breast cancer cells to death with treatment of plasma-activated medium

    NASA Astrophysics Data System (ADS)

    Hashizume, Hiroshi; Tanaka, Hiromasa; Nakamura, Kae; Kano, Hiroyuki; Ishikawa, Kenji; Kikkawa, Fumitaka; Mizuno, Masaaki; Hori, Masaru

    2015-09-01

    The applications of plasma in medicine have much attention. We previously showed that plasma-activated medium (PAM) induced glioblastoma cells to apoptosis. However, it has not been elucidated the selectivity of PAM in detail. In this study, we investigated the selective effect of PAM on the death of human breast normal and cancer cells, MCF10A and MCF7, respectively, and observed the selective death with fluorescent microscopy. For the investigation of cell viability with PAM treatment, we prepared various PAMs according to the strengths, and treated each of cells with PAMs. Week PAM treatment only decreased the viability of MCF7 cells, while strong PAM treatment significantly affected both viabilities of MCF7 and MCF10A cells. For the fluorescent observation, we prepared the mixture of MCF7 and fluorescent-probed MCF10A cells, and seeded them. After the treatment of PAMs, the images showed that only MCF7 cells damaged in the mixture with week PAM treatment. These results suggested that a specific range existed with the selective effect in the strength of PAM. This work was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' Grant No. 24108002 and 24108008 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  9. Antiproliferation and induction of cell death of Phaffia rhodozyma (Xanthophyllomyces dendrorhous) extract fermented by brewer malt waste on breast cancer cells.

    PubMed

    Teo, Ivy Tuang Ngo; Chui, Chung Hin; Tang, Johnny Cheuk On; Lau, Fung Yi; Cheng, Gregory Yin Ming; Wong, Raymond Siu Ming; Kok, Stanton Hon Lung; Cheng, Chor Hing; Chan, Albert Sun Chi; Ho, Kwok Ping

    2005-11-01

    Astaxanthin has been shown to have antiproliferative activity on breast cancer and skin cancer cells. However, the high cost of production, isolation and purification of purified astaxanthin from natural sources or chemically synthetic methods limit its usage on cancer therapy. We show that astaxanthin could be produced by fermentating the Phaffia rhodozyma (Xanthophyllomyces dendrorhous) yeast cells with brewer malt waste using a 20 L B. Braun fermentor. The percentage composition of astaxanthin from the P. rhodozyma was >70% of total pigment as estimated by the high performance liquid chromatographic analysis. Furthermore, the antiproliferative activity of this P. rhodozyma cell extract (PRE) was demonstrated on breast cancer cell lines including the MCF-7 (estrogen receptor positive) and MDA-MB231 (estrogen receptor negative) by using the [3-(4,5-dimethylthiazol-2-yl)-5-(3-arboxymethoxyphenyl)-2- (4-sulfophenyl)-2H-tetrazolium] (MTS) assay. No apoptotic cell death, but growth inhibitory effect was induced after 48 h of PRE incubation as suggested by morphological investigation. Anchorage-dependent clonogenicity assay showed that PRE could reduce the colony formation potential of both breast cancer cell lines. Cell death was observed from both breast cancer cell lines after incubation with PRE for 6 days. Taken together, our results showed that by using an economic method of brewer malt waste fermentation, we obtained P. rhodozyma with a high yield of astaxanthin and the corresponding PRE could have short-term growth inhibition and long-term cell death activity on breast cancer cells.

  10. Iron and cell death in Parkinson's disease: a nuclear microscopic study into iron-rich granules in the parkinsonian substantia nigra of primate models

    NASA Astrophysics Data System (ADS)

    Thong, P. S. P.; Watt, F.; Ponraj, D.; Leong, S. K.; He, Y.; Lee, T. K. Y.

    1999-10-01

    Parkinson's disease is a degenerative brain disease characterised by a loss of cells in the substantia nigra (SN) region of the brain and accompanying biochemical changes such as inhibition of mitochondrial function, increased iron concentrations and decreased glutathione levels in the parkinsonian SN. Though the aetiology of the disease is still unknown, the observed biochemical changes point to the involvement of oxidative stress. In particular, iron is suspected to play a role by promoting free radical production, leading to oxidative stress and cell death. The increase in iron in the parkinsonian SN has been confirmed by several research groups, both in human post-mortem brains and in brain tissue from parkinsonian animal models. However, the question remains as to whether the observed increase in iron is a cause or a consequence of the SN cell death process. Our previous study using unilaterally 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-lesioned monkeys in a time sequence experiment has shown that the increase in bulk iron concentrations follow rather than precede dopaminergic cell death. However, changes in the localised iron concentrations, which may play a more direct role in SN cell death, may not be reflected at the bulk level. Indeed, we have observed iron-rich granules in parkinsonian SNs. From this time sequence study into the iron content of iron-rich granules in the SNs of an untreated control and unilaterally MPTP-lesioned parkinsonian models, we present the following observations: (1) Iron-rich granules are found in both control and parkinsonian SNs and are variable in size and iron content in any one model. (2) These iron-rich granules may be associated with neuromelanin granules found in the SN and are known to accumulate transition metal ions such as iron. (3) The early onset of bulk SN cell loss (35%) was accompanied by a significant elevation of iron in granules found in the MPTP-injected SN compared to the contra-lateral SN. This

  11. Metabolic control of T-cell activation and death in SLE

    PubMed Central

    Fernandez, David; Perl, Andras

    2009-01-01

    Systemic lupus erythematosus (SLE) is characterized by abnormal T-cell activation and death, processes which are crucially dependent on the controlled production of reactive oxygen intermediates (ROI) and of ATP in mitochondria. The mitochondrial transmembrane potential (Δψm) has conclusively emerged as a critical checkpoint of ATP synthesis and cell death. Lupus T cells exhibit persistent elevation of Δψm or mitochondrial hyperpolarization (MHP) as well as depletion of ATP and glutathione which decrease activation-induced apoptosis and instead predispose T cells for necrosis, thus stimulating inflammation in SLE. NO-induced mitochondrial biogenesis in normal T cells accelerates the rapid phase and reduces the plateau of Ca2+ influx upon CD3/CD28 co-stimulation, thus mimicking the Ca2+ signaling profile of lupus T cells. Treatment of SLE patients with rapamycin improves disease activity, normalizes CD3/CD28-induced Ca2+ fluxing but fails to affect MHP, suggesting that altered Ca2+ fluxing is downstream or independent of mitochondrial dysfunction. Understanding the molecular basis and consequences of MHP is essential for controlling T-cell activation and death signaling in SLE. Lupus T cells exhibit mitochondrial dysfunctionMitochondrial hyperpolarization (MHP) and ATP depletion predispose lupus T cells to death by necrosis which is pro-inflammatoryMHP is caused by depletion of glutathione and exposure to nitric oxide (NO)NO-induced mitochondrial biogenesis regenerates the Ca2+ signaling profile of lupus T cellsRapamycin treatment normalizes Ca2+ fluxing but not MHP, suggesting that the mammalian target of rapamycin, acts as a sensor and effector of MHP in SLE PMID:18722557

  12. Cell death in response to antimetabolites directed at thymidylate synthase.

    PubMed

    Barbour, Karen W; Berger, Franklin G

    2008-02-01

    Thymidylate synthase (TS) is an indispensable enzyme in the de novo biosynthesis of TMP during DNA replication and cell growth, and has, therefore, been an important target for several classes of antimetabolites used in cancer chemotherapy. While most investigations of the action of TS-directed agents have focused on apoptosis as the primary means of cell death, little is known regarding the role, if any, of non-apoptotic mechanisms. In the present study, we have examined the mode of cell death induced by several TS inhibitors. Apoptosis and necrosis in response to TS inhibitors was assessed. The roles of caspases and the transcriptional regulator nuclear factor kappa B (NFkappaB) in drug-induced cell death were analyzed. Finally, drug-mediated changes in expression of several proteins involved in regulation of apoptosis were analyzed. Though human colon tumor cells exposed to TS inhibitors undergo classical apoptosis, it is not the predominant mechanism of response; rather, a necrosis-like mechanism prevails. The apoptotic response to TS inhibitors is caspase-dependent, and is promoted by NFkappaB. In contrast, the necrosis-like response is independent of both caspases and NFkappaB. Exposure to TS inhibitors induces PARP cleavage, but does not alter expression of the pro or activated forms of caspases-3 or caspases-8, Fas, or FasL. Treatment with the death-inducing cytokine TNFalpha, like TS inhibitors, results in a limited extent of apoptosis that is both caspase- and NFkappaB-dependent; however, unlike TS inhibitors, the cytokine does not induce necrosis. Classical apoptosis occurs to a limited extent in human colon tumor cells exposed to TS inhibitors, with caspase-independent necrosis being the prinicipal mechanism of cell death. We suggest that the role of necrosis and necrosis-like mechanisms should be considered in future studies of the action of TS-directed antimetabolites, as well as other chemotherapeutic agents.

  13. Contact-independent cell death of human microglial cells due to pathogenic Naegleria fowleri trophozoites.

    PubMed

    Kim, Jong-Hyun; Kim, Daesik; Shin, Ho-Joon

    2008-12-01

    Free-living Naegleria fowleri leads to a fatal infection known as primary amebic meningoencephalitis in humans. Previously, the target cell death could be induced by phagocytic activity of N. fowleri as a contact-dependent mechanism. However, in this study we investigated the target cell death under a non-contact system using a tissue-culture insert. The human microglial cells, U87MG cells, co-cultured with N. fowleri trophozoites for 30 min in a non-contact system showed morphological changes such as the cell membrane destruction and a reduction in the number. By fluorescence-activated cell sorter (FACS) analysis, U87MG cells co-cultured with N. fowleri trophozoites in a non-contact system showed a significant increase of apoptotic cells (16%) in comparison with that of the control or N. fowleri lysate. When U87MG cells were co-cultured with N. fowleri trophozoites in a non-contact system for 30 min, 2 hr, and 4 hr, the cytotoxicity of amebae against target cells was 40.5, 44.2, and 45.6%, respectively. By contrast, the cytotoxicity of non-pathogenic N. gruberi trophozoites was 10.2, 12.4, and 13.2%, respectively. These results suggest that the molecules released from N. fowleri in a contact-independent manner as well as phagocytosis in a contact-dependent manner may induce the host cell death.

  14. Contact-Independent Cell Death of Human Microglial Cells due to Pathogenic Naegleria fowleri Trophozoites

    PubMed Central

    Kim, Jong-Hyun

    2008-01-01

    Free-living Naegleria fowleri leads to a fatal infection known as primary amebic meningoencephalitis in humans. Previously, the target cell death could be induced by phagocytic activity of N. fowleri as a contact-dependent mechanism. However, in this study we investigated the target cell death under a non-contact system using a tissue-culture insert. The human microglial cells, U87MG cells, co-cultured with N. fowleri trophozoites for 30 min in a non-contact system showed morphological changes such as the cell membrane destruction and a reduction in the number. By fluorescence-activated cell sorter (FACS) analysis, U87MG cells co-cultured with N. fowleri trophozoites in a non-contact system showed a significant increasse of apoptotic cells (16%) in comparison with that of the control or N. fowleri lysate. When U87MG cells were co-cultured with N. fowleri trophozoites in a non-contact system for 30 min, 2 hr, and 4 hr, the cytotoxicity of amebae against target cells was 40.5, 44.2, and 45.6%, respectively. By contrast, the cytotoxicity of non-pathogenic N. gruberi trophozoites was 10.2, 12.4, and 13.2%, respectively. These results suggest that the molecules released from N. fowleri in a contact-independent manner as well as phagocytosis in a contact-dependent manner may induce the host cell death. PMID:19127326

  15. HPMA copolymer-bound doxorubicin induces immunogenic tumor cell death.

    PubMed

    Sirova, M; Kabesova, M; Kovar, L; Etrych, T; Strohalm, J; Ulbrich, K; Rihova, B

    2013-01-01

    Treatment of murine EL4 T cell lymphoma with N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugates of doxorubicin (Dox) leads to complete tumor regression and to the development of therapy-dependent longlasting cancer resistance. This phenomenon occurs with two types of Dox conjugates tested, despite differences in the covalent linkage of Dox to the polymer carrier. Such a cancer resistance cannot fully express in conventional treatment with free Dox, due to substantial immunotoxicity of the treatment, which was not observed in the polymer conjugates. In this study, calreticulin (CRT) translocation and high mobility group box-1 protein (HMGB1) release was observed in EL4 cells treated with a conjugate releasing Dox by a pH-dependent manner. As a result, the treated tumor cells were engulfed by dendritic cells (DC) in vitro, and induced their expression of CD80, CD86, and MHC II maturation markers. Conjugates with Dox bound via an amide bond only increased translocation of HSPs to the membrane, which led to an elevated phagocytosis but was not sufficient to induce increase of the maturation markers on DCs in vitro. Both types of conjugates induced engulfment of the target tumor cells in vivo, that was more intense than that seen with free Dox. It means that the induction of anti-tumor immunity documented upon treatment of EL4 lymphoma with HPMA-bound Dox conjugates does not rely solely on CRT-mediated cell death, but involves multiple mechanisms.

  16. Semaphorin 3A is a retrograde cell death signal in developing sympathetic neurons

    PubMed Central

    Wehner, Amanda B.; Abdesselem, Houari; Dickendesher, Travis L.; Imai, Fumiyasu; Yoshida, Yutaka; Giger, Roman J.; Pierchala, Brian A.

    2016-01-01

    ABSTRACT During development of the peripheral nervous system, excess neurons are generated, most of which will be lost by programmed cell death due to a limited supply of neurotrophic factors from their targets. Other environmental factors, such as ‘competition factors' produced by neurons themselves, and axon guidance molecules have also been implicated in developmental cell death. Semaphorin 3A (Sema3A), in addition to its function as a chemorepulsive guidance cue, can also induce death of sensory neurons in vitro. The extent to which Sema3A regulates developmental cell death in vivo, however, is debated. We show that in compartmentalized cultures of rat sympathetic neurons, a Sema3A-initiated apoptosis signal is retrogradely transported from axon terminals to cell bodies to induce cell death. Sema3A-mediated apoptosis utilizes the extrinsic pathway and requires both neuropilin 1 and plexin A3. Sema3A is not retrogradely transported in older, survival factor-independent sympathetic neurons, and is much less effective at inducing apoptosis in these neurons. Importantly, deletion of either neuropilin 1 or plexin A3 significantly reduces developmental cell death in the superior cervical ganglia. Taken together, a Sema3A-initiated apoptotic signaling complex regulates the apoptosis of sympathetic neurons during the period of naturally occurring cell death. PMID:27143756

  17. Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikuchi, Kiyoshi; Department of Neurosurgery, Omuta City General Hospital, 2-19-1 Takarazaka, Omuta-City, Fukuoka 836-8567; Kawahara, Ko-ichi

    2009-07-24

    High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death inmore » a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.« less

  18. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death

    PubMed Central

    Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J.; Cheng, Qiang (Shawn); D’Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M.; Gonzalez Guzman, Michael J.; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K.; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G.; Ryan, Elizabeth P.; Colacci, Anna Maria; Hamid, Roslida A.; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K.; Woodrick, Jordan; Scovassi, A.Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H.; Lowe, Leroy; Park, Hyun Ho

    2015-01-01

    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. PMID:26106145

  19. Multiple programmed cell death pathways are involved in N-methyl-N-nitrosourea-induced photoreceptor degeneration.

    PubMed

    Reisenhofer, Miriam; Balmer, Jasmin; Zulliger, Rahel; Enzmann, Volker

    2015-05-01

    To identify programmed cell death (PCD) pathways involved in N-methyl-N-nitrosourea (MNU)-induced photoreceptor (PR) degeneration. Adult C57BL/6 mice received a single MNU i.p. injection (60 mg/kg bodyweight), and were observed over a period of 7 days. Degeneration was visualized by H&E overview staining and electron microscopy. PR cell death was measured by quantifying TUNEL-positive cells in the outer nuclear layer (ONL). Activity measurements of key PCD enzymes (calpain, caspases) were used to identify the involved cell death pathways. Furthermore, the expression level of C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78), key players in endoplasmic reticulum (ER) stress-induced apoptosis, was analyzed using quantitative real-time PCR. A decrease in ONL thickness and the appearance of apoptotic PR nuclei could be detected beginning 3 days post-injection (PI). This was accompanied by an increase of TUNEL-positive cells. Significant upregulation of activated caspases (3, 9, 12) was found at different time periods after MNU injection. Additionally, several other players of nonconventional PCD pathways were also upregulated. Consequently, calpain activity increased in the ONL, with a maximum on day 7 PI and an upregulation of CHOP and GRP78 expression beginning on day 1 PI was found. The data indicate that regular apoptosis is the major cause of MNU-induced PR cell death. However, alternative PCD pathways, including ER stress and calpain activation, are also involved. Knowledge about the mechanisms involved in this mouse model of PR degeneration could facilitate the design of putative combinatory therapeutic approaches.

  20. Loss of Atrx Sensitizes Cells to DNA Damaging Agents through p53-Mediated Death Pathways

    PubMed Central

    Conte, Damiano; Huh, Michael; Goodall, Emma; Delorme, Marilyne; Parks, Robin J.; Picketts, David J.

    2012-01-01

    Prevalent cell death in forebrain- and Sertoli cell-specific Atrx knockout mice suggest that Atrx is important for cell survival. However, conditional ablation in other tissues is not associated with increased death indicating that diverse cell types respond differently to the loss of this chromatin remodeling protein. Here, primary macrophages isolated from Atrx f/f mice were infected with adenovirus expressing Cre recombinase or β-galactosidase, and assayed for cell survival under different experimental conditions. Macrophages survive without Atrx but undergo rapid apoptosis upon lipopolysaccharide (LPS) activation suggesting that chromatin reorganization in response to external stimuli is compromised. Using this system we next tested the effect of different apoptotic stimuli on cell survival. We observed that survival of Atrx-null cells were similar to wild type cells in response to serum withdrawal, anti-Fas antibody, C2 ceramide or dexamethasone treatment but were more sensitive to 5-fluorouracil (5-FU). Cell survival could be rescued by re-introducing Atrx or by removal of p53 demonstrating the cell autonomous nature of the effect and its p53-dependence. Finally, we demonstrate that multiple primary cell types (myoblasts, embryonic fibroblasts and neurospheres) were sensitive to 5-FU, cisplatin, and UV light treatment. Together, our results suggest that cells lacking Atrx are more sensitive to DNA damaging agents and that this may result in enhanced death during development when cells are at their proliferative peak. Moreover, it identifies potential treatment options for cancers associated with ATRX mutations, including glioblastoma and pancreatic neuroendocrine tumors. PMID:23284920

  1. Loss of Atrx sensitizes cells to DNA damaging agents through p53-mediated death pathways.

    PubMed

    Conte, Damiano; Huh, Michael; Goodall, Emma; Delorme, Marilyne; Parks, Robin J; Picketts, David J

    2012-01-01

    Prevalent cell death in forebrain- and Sertoli cell-specific Atrx knockout mice suggest that Atrx is important for cell survival. However, conditional ablation in other tissues is not associated with increased death indicating that diverse cell types respond differently to the loss of this chromatin remodeling protein. Here, primary macrophages isolated from Atrx(f/f) mice were infected with adenovirus expressing Cre recombinase or β-galactosidase, and assayed for cell survival under different experimental conditions. Macrophages survive without Atrx but undergo rapid apoptosis upon lipopolysaccharide (LPS) activation suggesting that chromatin reorganization in response to external stimuli is compromised. Using this system we next tested the effect of different apoptotic stimuli on cell survival. We observed that survival of Atrx-null cells were similar to wild type cells in response to serum withdrawal, anti-Fas antibody, C2 ceramide or dexamethasone treatment but were more sensitive to 5-fluorouracil (5-FU). Cell survival could be rescued by re-introducing Atrx or by removal of p53 demonstrating the cell autonomous nature of the effect and its p53-dependence. Finally, we demonstrate that multiple primary cell types (myoblasts, embryonic fibroblasts and neurospheres) were sensitive to 5-FU, cisplatin, and UV light treatment. Together, our results suggest that cells lacking Atrx are more sensitive to DNA damaging agents and that this may result in enhanced death during development when cells are at their proliferative peak. Moreover, it identifies potential treatment options for cancers associated with ATRX mutations, including glioblastoma and pancreatic neuroendocrine tumors.

  2. Ozone-Induced Cell Death in Tobacco Cultivar Bel W3 Plants. The Role of Programmed Cell Death in Lesion Formation

    PubMed Central

    Pasqualini, Stefania; Piccioni, Claudia; Reale, Lara; Ederli, Luisa; Della Torre, Guido; Ferranti, Francesco

    2003-01-01

    Treatment of the ozone-sensitive tobacco (Nicotiana tabacum L. cv Bel W3) with an ozone pulse (150 nL L–1 for 5 h) induced visible injury, which manifested 48 to 72 h from onset of ozone fumigation. The “classical” ozone symptoms in tobacco cv Bel W3 plants occur as sharply defined, dot-like lesions on the adaxial side of the leaf and result from the death of groups of palisade cells. We investigated whether this reaction had the features of a hypersensitive response like that which results from the incompatible plant-pathogen interaction. We detected an oxidative burst, the result of H2O2 accumulation at 12 h from the starting of fumigation. Ozone treatment induced deposition of autofluorescent compounds and callose 24 h from the start of treatment. Total phenolic content was also strongly stimulated at the 10th and 72nd h from starting fumigation, concomitant with an enhancement in phenylalanine ammonia-lyase a and phenylalanine ammonia-lyase b expression, as evaluated by reverse transcriptase-polymerase chain reaction. There was also a marked, but transient, increase in the mRNA level of pathogenesis-related-1a, a typical hypersensitive response marker. Overall, these results are evidence that ozone triggers a hypersensitive response in tobacco cv Bel W3 plants. We adopted four criteria for detecting programmed cell death in ozonated tobacco cv Bel W3 leaves: (a) early release of cytochrome c from mitochondria; (b) activation of protease; (c) DNA fragmentation by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling of DNA 3′-OH groups; and (d) ultrastructural changes characteristic of programmed cell death, including chromatin condensation and blebbing of plasma membrane. We, therefore, provide evidence that ozone-induced oxidative stress triggers a cell death program in tobacco cv Bel W3. PMID:14612586

  3. Cytotoxicity of peracetic acid: evaluation of effects on metabolism, structure and cell death.

    PubMed

    Viola, K S; Rodrigues, E M; Tanomaru-Filho, M; Carlos, I Z; Ramos, S G; Guerreiro-Tanomaru, J M; Faria, G

    2017-01-30

    To evaluate the cytotoxicity and the mechanism of cell aggression of peracetic acid (PA) in comparison with sodium hypochlorite (NaOCl). L929 fibroblasts were exposed to 1% PA and 2.5% NaOCl, at several dilutions for 10 min. The following parameters were evaluated: cell metabolism by methylthiazol tetrazolium assay, external morphology by scanning electron microscopy, ultrastructure by transmission electron microscopy, the cytoskeleton by means of actin and α-tubulin labelling, and the type of cell death by flow cytometry (apoptosis/necrosis). The data were analysed by two-way anova and the Bonferroni post-test (α = 0.05). The PA group had lower cell viability and a higher percentage of necrotic cells than the NaOCl group (P < 0.05). Both solutions diminished cell metabolism, led to destructuring of the cytoskeleton, created changes in the external morphology, resulted in the accumulation of proteins in the rough endoplasmic reticulum and induced cell death predominantly by necrosis. However, these changes were observed in lower doses of PA when compared with NaOCl. Although they had the same mechanism of cytotoxicity, 1% PA had greater cytotoxic potential than 2.5% NaOCl. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  4. Boron Nutrition of Tobacco BY-2 Cells. V. Oxidative Damage is the Major Cause of Cell Death Induced by Boron Deprivation

    PubMed Central

    Koshiba, Taichi; Kobayashi, Masaru; Matoh, Toru

    2009-01-01

    Boron (B) is an essential micronutrient for vascular plants. However, it remains unclear how B deficiency leads to various metabolic disorders and cell death. To understand this mechanism, we analyzed the physiological changes in suspension-cultured tobacco (Nicotiana tabacum) BY-2 cells upon B deprivation. When 3-day-old cells were transferred to B-free medium, cell death was detectable as early as 12 h after treatment. The B-deprived cells accumulated more reactive oxygen species and lipid peroxides than control cells, and showed a slight but significant decrease in the cellular ascorbate pool. Supplementing the media with lipophilic antioxidants effectively suppressed the death of B-deprived cells, suggesting that the oxidative damage is the immediate and major cause of cell death under B deficiency. Dead cells in B-free culture exhibited a characteristic morphology with a shrunken cytoplasm, which is often seen in cells undergoing programmed cell death (PCD). However, they did not display other hallmarks of PCD such as internucleosomal DNA fragmentation, decreased ascorbate peroxidase expression and protection from death by cycloheximide. These results suggest that the death of tobacco cells induced by B deprivation is not likely to be a typical PCD. PMID:19054807

  5. Megasporogenesis and programmed cell death in Tillandsia (Bromeliaceae).

    PubMed

    Papini, Alessio; Mosti, Stefano; Milocani, Eva; Tani, Gabriele; Di Falco, Pietro; Brighigna, Luigi

    2011-10-01

    The degeneration of three of four meiotic products is a very common process in the female gender of oogamous eukaryotes. In Tillandsia (and many other angiosperms), the surviving megaspore has a callose-free wall in chalazal position while the other three megaspores are completely embedded in callose. Therefore, nutrients and signals can reach more easily the functional megaspore from the nucellus through the chalazal pole with respect to the other megaspores. The abortion of three of four megaspores was already recognized as the result of a programmed cell death (PCD) process. We investigated the process to understand the modality of this specific type of PCD and its relationship to the asymmetric callose deposition around the tetrad. The decision on which of the four megaspores will be the supernumerary megaspores in angiosperms, and hence destined to undergo programmed cell death, appears to be linked to the callose layer deposition around the tetrad. During supernumerary megaspores degeneration, events leading to the deletion of the cells do not appear to belong to a single type of cell death. The first morphological signs are typical of autophagy, including the formation of autophagosomes. The TUNEL positivity and a change in morphology of mitochondria and chloroplasts indicate the passage to an apoptotic-like PCD phase, while the cellular remnants undergo a final process resembling at least partially (ER swelling) necrotic morphological syndromes, eventually leading to a mainly lipidic cell corpse still separated from the functional megaspore by a callose layer.

  6. Inhibitory effects of mouse bone marrow mesenchymal stem cell soup on staurospurine-induced cell death in MCF-7 and AGS.

    PubMed

    Zhaleh, M; Azadbakht, M; Bidmeshki Pour, A

    2017-01-01

    Staurospurine induces apoptosis in cell line. Bone Marrow Mesenchymal stem cells Soup is a promising tool for cell proliferation via a variety of secreted factors. In this study, we examined the effects of BMSCs Soup on Staurospurine induced-cell death in MCF-7 and AGS cells. There were three Groups: Group I: no incubation with BM Soup; Group II: incubated with 24 h BM Soup; Group III: incubation with 48 h BM Soup. There were two treatments in each group. The treatments were 1μM Staurospurine (Treatment 1) and 0.0 μM Staurospurine (Treatment 2). The cells were cultured in culture medium containing 0.2 % BSA. We obtained the cell viability, cell death and NO concentration. Our results showed that BM soup administration for 48 hours protectsed against 1μM staurosporine concentration induced cell death and reduced cell toxicity in MCF-7 and AGS cells. Cell viability and cell toxicity assay showed that BM soup in time dependent manner increased cell viability (p < 0.05) and cell death assay showed that cell death in time dependent manner was decreased(p < 0.05). Our data showed that BM soup with increasing NO concentration reduced staurospurine induced cell death and cell cytotoxicity (p < 0.05). It's concluded that BMSCs soup suppressed staurospurine-induced cytotoxicity activity process in MCF-7 and AGS cells (Fig. 9, Ref. 79).

  7. Tumour Vascular Shutdown and Cell Death Following Ultrasound-Microbubble Enhanced Radiation Therapy

    PubMed Central

    El Kaffas, Ahmed; Gangeh, Mehrdad J.; Farhat, Golnaz; Tran, William Tyler; Hashim, Amr; Giles, Anoja; Czarnota, Gregory J.

    2018-01-01

    High-dose radiotherapy effects are regulated by acute tumour endothelial cell death followed by rapid tumour cell death instead of canonical DNA break damage. Pre-treatment with ultrasound-stimulated microbubbles (USMB) has enabled higher-dose radiation effects with conventional radiation doses. This study aimed to confirm acute and longitudinal relationships between vascular shutdown and tumour cell death following radiation and USMB in a wild type murine fibrosarcoma model using in vivo imaging. Methods: Tumour xenografts were treated with single radiation doses of 2 or 8 Gy alone, or in combination with low-/high-concentration USMB. Vascular changes and tumour cell death were evaluated at 3, 24 and 72 h following therapy, using high-frequency 3D power Doppler and quantitative ultrasound spectroscopy (QUS) methods, respectively. Staining using in situ end labelling (ISEL) and cluster of differentiation 31 (CD31) of tumour sections were used to assess cell death and vascular distributions, respectively, as gold standard histological methods. Results: Results indicated a decrease in the power Doppler signal of up to 50%, and an increase of more than 5 dBr in cell-death linked QUS parameters at 24 h for tumours treated with combined USMB and radiotherapy. Power Doppler and quantitative ultrasound results were significantly correlated with CD31 and ISEL staining results (p < 0.05), respectively. Moreover, a relationship was found between ultrasound power Doppler and QUS results, as well as between micro-vascular densities (CD31) and the percentage of cell death (ISEL) (R2 0.5-0.9). Conclusions: This study demonstrated, for the first time, the link between acute vascular shutdown and acute tumour cell death using in vivo longitudinal imaging, contributing to the development of theoretical models that incorporate vascular effects in radiation therapy. Overall, this study paves the way for theranostic use of ultrasound in radiation oncology as a diagnostic modality to

  8. The natural product peiminine represses colorectal carcinoma tumor growth by inducing autophagic cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyu, Qing; Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055; Tou, Fangfang

    Autophagy is evolutionarily conservative in eukaryotic cells that engulf cellular long-lived proteins and organelles, and it degrades the contents through fusion with lysosomes, via which the cell acquires recycled building blocks for the synthesis of new molecules. In this study, we revealed that peiminine induces cell death and enhances autophagic flux in colorectal carcinoma HCT-116 cells. We determined that peiminine enhances the autophagic flux by repressing the phosphorylation of mTOR through inhibiting upstream signals. Knocking down ATG5 greatly reduced the peiminine-induced cell death in wild-type HCT-116 cells, while treating Bax/Bak-deficient cells with peiminine resulted in significant cell death. In summary,more » our discoveries demonstrated that peiminine represses colorectal carcinoma cell proliferation and cell growth by inducing autophagic cell death. - Highlights: • Peiminine induces autophagy and upregulates autophagic flux. • Peiminine represses colorectal carcinoma tumor growth. • Peiminine induces autophagic cell death. • Peiminine represses mTOR phosphorylation by influencing PI3K/Akt and AMPK pathway.« less

  9. Decoding cell death signals in liver inflammation.

    PubMed

    Brenner, Catherine; Galluzzi, Lorenzo; Kepp, Oliver; Kroemer, Guido

    2013-09-01

    Inflammation can be either beneficial or detrimental to the liver, depending on multiple factors. Mild (i.e., limited in intensity and destined to resolve) inflammatory responses have indeed been shown to exert consistent hepatoprotective effects, contributing to tissue repair and promoting the re-establishment of homeostasis. Conversely, excessive (i.e., disproportionate in intensity and permanent) inflammation may induce a massive loss of hepatocytes and hence exacerbate the severity of various hepatic conditions, including ischemia-reperfusion injury, systemic metabolic alterations (e.g., obesity, diabetes, non-alcoholic fatty liver disorders), alcoholic hepatitis, intoxication by xenobiotics and infection, de facto being associated with irreversible liver damage, fibrosis, and carcinogenesis. Both liver-resident cells (e.g., Kupffer cells, hepatic stellate cells, sinusoidal endothelial cells) and cells that are recruited in response to injury (e.g., monocytes, macrophages, dendritic cells, natural killer cells) emit pro-inflammatory signals including - but not limited to - cytokines, chemokines, lipid messengers, and reactive oxygen species that contribute to the apoptotic or necrotic demise of hepatocytes. In turn, dying hepatocytes release damage-associated molecular patterns that-upon binding to evolutionary conserved pattern recognition receptors-activate cells of the innate immune system to further stimulate inflammatory responses, hence establishing a highly hepatotoxic feedforward cycle of inflammation and cell death. In this review, we discuss the cellular and molecular mechanisms that account for the most deleterious effect of hepatic inflammation at the cellular level, that is, the initiation of a massive cell death response among hepatocytes. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  10. CD47-ligation induced cell death in T-acute lymphoblastic leukemia.

    PubMed

    Leclair, Pascal; Liu, Chi-Chao; Monajemi, Mahdis; Reid, Gregor S; Sly, Laura M; Lim, Chinten James

    2018-05-10

    CD47 is a cell-surface marker well recognized for its anti-phagocytic functions. As such, an emerging avenue for targeted cancer therapies involves neutralizing the anti-phagocytic function using monoclonal antibodies (mAbs) to enhance tumour cell immunogenicity. A lesser known consequence of CD47 receptor ligation is the direct induction of tumour cell death. While several mAbs and their derivatives with this property have been studied, the best characterized is the commercially available mAb B6H12, which requires immobilization for induction of cell death. Here, we describe a commercially available mAb, CC2C6, which induces T-cell acute lymphoblastic leukemia (ALL) cell death in soluble form. Soluble CC2C6 induces CD47-dependent cell death in a manner consistent with immobilized B6H12, which is characterized by mitochondrial deficiencies but is independent of caspase activation. Titration studies indicated that CC2C6 shares a common CD47-epitope with B6H12. Importantly, CC2C6 retains the anti-phagocytic neutralizing function, thus possessing dual anti-tumour properties. Although CD47-ligation induced cell death occurs in a caspase-independent manner, CC2C6 was found to stimulate increases in Mcl-1 and NOXA levels, two Bcl-2 family proteins that govern the intrinsic apoptosis pathway. Further analysis revealed that the ratio of Mcl-1:NOXA were minimally altered for cells treated with CC2C6, in comparison to cells treated with agents that induced caspase-dependent apoptosis which alter this ratio in favour of NOXA. Finally, we found that CC2C6 can synergize with low dose chemotherapeutic agents that induce classical apoptosis, giving rise to the possibility of an effective combination treatment with reduced long-term sequelae associated with high-dose chemotherapies in childhood ALL.

  11. Cell death during the postnatal morphogenesis of the normal rabbit kidney and in experimental renal polycystosis.

    PubMed Central

    García-Porrero, J A; Ojeda, J L; Hurlé, J M

    1978-01-01

    We have studied, by means of optic and electron microscopy, the normal and abnormal cell death that takes place during the postnatal morphogenesis of rabbit kidney, and in the experimental renal polycystosis produced by methylprednisolone acetate. In the normal kidney intertubular cell death can be observed during the first 20 days of the postnatal development. However, cell death in the normal metanephric blastema is a very rare event. In the polycystic kidney numerous dead cells can be seen between the third and forty eighth days after injection. The topography and morphology of the dead cells depend on the stage in the evolution of the disease. In the 'stage of renal immaturity', dying and dead cells are present in the nephrogenic tissue, in the dilating collecting tubules and in the intertubular spaces. In this stage the cellular pathology is essentially nuclear. In the stage of tubular cysts, the dead cells are mostly located in the walls of cysts, with some dead cells, but mostly cellular debris in their lumina. At this stage the cellular pathology is basically cytoplasmic. The dead cells are eventually digested by what appear to be phagocytes of tubular epithelial origin. It is suggested that cell death is an important factor in the evolution of the lesions of renal polycystosis induced by corticosteroids, and probably in the initiation of the pathological process as well. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 Fig. 19 PMID:670065

  12. Alpha-crystallin-mediated protection of lens cells against heat and oxidative stress-induced cell death.

    PubMed

    Christopher, Karen L; Pedler, Michelle G; Shieh, Biehuoy; Ammar, David A; Petrash, J Mark; Mueller, Niklaus H

    2014-02-01

    In addition to their key role as structural lens proteins, α-crystallins also appear to confer protection against many eye diseases, including cataract, retinitis pigmentosa, and macular degeneration. Exogenous recombinant α-crystallin proteins were examined for their ability to prevent cell death induced by heat or oxidative stress in a human lens epithelial cell line (HLE-B3). Wild type αA- or αB-crystallin (WT-αA and WT-αB) and αA- or αB-crystallins, modified by the addition of a cell penetration peptide (CPP) designed to enhance the uptake of proteins into cells (gC-αB, TAT-αB, gC-αA), were produced by recombinant methods. In vitro chaperone-like assays were used to assay the ability of α-crystallins to protect client proteins from chemical or heat induced aggregation. In vivo viability assays were performed in HLE-B3 to determine whether pre-treatment with α-crystallins reduced death after exposure to oxidative or heat stress. Most of the five recombinant α-crystallin proteins tested conferred some in vitro protection from protein aggregation, with the greatest effect seen with WT-αB and gC-αB. All α-crystallins displayed significant protection to oxidative stress induced cell death, while only the αB-crystallins reduced cell death induced by thermal stress. Our findings indicate that the addition of the gC tag enhanced the protective effect of αB-crystallin against oxidative but not thermally-induced cell death. In conclusion, modifications that increase the uptake of α-crystallin proteins into cells, without destroying their chaperone-like activity and anti-apoptotic functions, create the potential to use these proteins therapeutically. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Fas/Fas ligand regulation mediates cell death in human Ewing's sarcoma cells treated with melatonin

    PubMed Central

    García-Santos, G; Martin, V; Rodríguez-Blanco, J; Herrera, F; Casado-Zapico, S; Sánchez-Sánchez, A M; Antolín, I; Rodríguez, C

    2012-01-01

    Background: Despite recent advances in cancer therapy, the 5-year survival rate for Ewing's sarcoma is still very low, and new therapeutic approaches are necessary. It was found previously that melatonin induces cell death in the Ewing's sarcoma cell line, SK-N-MC, by activating the extrinsic apoptotic pathway. Methods: Melatonin actions were analysed by metabolic viability/survival cell assays, flow cytometry, quantitative PCR for mRNA expression, western blot for protein activation/expression and electrophoretic mobility shift assay for transcription factor activation. Results: Melatonin increases the expression of Fas and its ligand Fas L, this increase being responsible for cell death induced by the indolamine. Melatonin also produces a transient increase in intracellular oxidants and activation of the redox-regulated transcription factor Nuclear factor-kappaB. Inhibition of such activation prevents cell death and Fas/Fas L upregulation. Cytotoxic effect and Fas/Fas L regulation occur in all Ewing's cell lines studied, and do not occur in the other tumour cell lines studied where melatonin does not induce cell death. Conclusion: Our data offers new insights in the study of alternative therapeutic strategies in the treatment of Ewing's sarcoma. Further attention deserves to be given to the differences in the cellular biology of sensitive tumours that could explain the cytotoxic effect of melatonin and the increase in the level of free radicals caused by this molecule, in particular cancer types. PMID:22382690

  14. Dehydroascorbic Acid Promotes Cell Death in Neurons Under Oxidative Stress: a Protective Role for Astrocytes.

    PubMed

    García-Krauss, Andrea; Ferrada, Luciano; Astuya, Allisson; Salazar, Katterine; Cisternas, Pedro; Martínez, Fernando; Ramírez, Eder; Nualart, Francisco

    2016-11-01

    Ascorbic acid (AA), the reduced form of vitamin C, is incorporated into neurons via the sodium ascorbate co-transporter SVCT2. However, this transporter is not expressed in astrocytes, which take up the oxidized form of vitamin C, dehydroascorbic acid (DHA), via the facilitative hexose transporter GLUT1. Therefore, neuron and astrocyte interactions are thought to mediate vitamin C recycling in the nervous system. Although astrocytes are essential for the antioxidant defense of neurons under oxidative stress, a condition in which a large amount of ROS is generated that may favor the extracellular oxidation of AA and the subsequent neuronal uptake of DHA via GLUT3, potentially increasing oxidative stress in neurons. This study analyzed the effects of oxidative stress and DHA uptake on neuronal cell death in vitro. Different analyses revealed the presence of the DHA transporters GLUT1 and GLUT3 in Neuro2a and HN33.11 cells and in cortical neurons. Kinetic analyses confirmed that all cells analyzed in this study possess functional GLUTs that take up 2-deoxyglucose and DHA. Thus, DHA promotes the death of stressed neuronal cells, which is reversed by incubating the cells with cytochalasin B, an inhibitor of DHA uptake by GLUT1 and GLUT3. Additionally, the presence of glial cells (U87 and astrocytes), which promote DHA recycling, reverses the observed cell death of stressed neurons. Taken together, these results indicate that DHA promotes the death of stressed neurons and that astrocytes are essential for the antioxidative defense of neurons. Thus, the astrocyte-neuron interaction may function as an essential mechanism for vitamin C recycling, participating in the antioxidative defense of the brain.

  15. Parg deficiency confers radio-sensitization through enhanced cell death in mouse ES cells exposed to various forms of ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirai, Hidenori; Fujimori, Hiroaki; Gunji, Akemi

    Highlights: •Parg{sup −/−} ES cells were more sensitive to γ-irradiation than Parp-1{sup −/−} ES cells. •Parg{sup −/−} cells were more sensitive to carbon-ion irradiation than Parp-1{sup −/−} cells. •Parg{sup −/−} cells showed defects in DSB repair after carbon-ion irradiation. •PAR accumulation was enhanced after carbon-ion irradiation compared to γ-irradiation. -- Abstract: Poly(ADP-ribose) glycohydrolase (Parg) is the main enzyme involved in poly(ADP-ribose) degradation. Here, the effects of Parg deficiency on sensitivity to low and high linear-energy-transfer (LET) radiation were investigated in mouse embryonic stem (ES) cells. Mouse Parg{sup −/−} and poly(ADP-ribose) polymerase-1 deficient (Parp-1{sup −/−}) ES cells were used and responsesmore » to low and high LET radiation were assessed by clonogenic survival and biochemical and biological analysis methods. Parg{sup −/−} cells were more sensitive to γ-irradiation than Parp-1{sup −/−} cells. Transient accumulation of poly(ADP-ribose) was enhanced in Parg{sup −/−} cells. Augmented levels of phosphorylated H2AX (γ-H2AX) from early phase were observed in Parg{sup −/−} ES cells. The induction level of p53 phophorylation at ser18 was similar in wild-type and Parp-1{sup −/−} cells and apoptotic cell death process was mainly observed in the both genotypes. These results suggested that the enhanced sensitivity of Parg{sup −/−} ES cells to γ-irradiation involved defective repair of DNA double strand breaks. The effects of Parg and Parp-1 deficiency on the ES cell response to carbon-ion irradiation (LET13 and 70 keV/μm) and Fe-ion irradiation (200 keV/μm) were also examined. Parg{sup −/−} cells were more sensitive to LET 70 keV/μm carbon-ion irradiation than Parp-1{sup −/−} cells. Enhanced apoptotic cell death also accompanied augmented levels of γ-H2AX in a biphasic manner peaked at 1 and 24 h. The induction level of p53 phophorylation at

  16. Induction of non-apoptotic cell death by morphinone in human promyelocytic leukemia HL-60 cells.

    PubMed

    Takeuchi, Risa; Hoshijima, Hiroshi; Nagasaka, Hiroshi; Chowdhury, Shahead Ali; Kikuchi, Hirotaka; Kanda, Yumiko; Kunii, Shiro; Kawase, Masami; Sakagami, Hiroshi

    2006-01-01

    As previously suggested, codeinone (oxidation product of codeine) induces non-apoptotic cell death, characterized by marginal caspase activation and the lack of DNA fragmentation in HL-60 human promyelocytic leukemia cells, which was inhibited by N-acetyl-L-cysteine. Whether, morphinone, an oxidative metabolite of morphine, also induced a similar type of cell death in HL-60 cells was investigated. Morphinone showed slightly higher cytotoxic activity against human tumor cell lines (oral squamous cell carcinoma HSC-2, HSC-3, HSC-4, NA, Ca9-22, promyelocytic leukemia HL-60, cervical carcinoma HeLa) than against normal oral human cells (gingival fibroblast HGF, pulp cells HPC, periodontal ligament fibroblast HPLF). Morphinone also induced an almost undetectable level of internucleosomal DNA fragmentation in the HL-60 cells. Morphinone did not activate caspase-8 or -9 in these cells. Morphinone dose-dependently activated caspase-3 in both HL-60 and HSC-2 cell lines, but to a much lesser extent than actinomycin D. Electron microscopy demonstrated that morphinone induced mitochondrial shrinkage, vacuolization and production of autophagosome and the loss of cell surface microvilli, without destruction of cell surface and nuclear membranes in the HL-60 cells. The autophagy inhibitor 3-methyladenine (0.3-10 mM) slightly inhibited the morphinone-induced cytotoxicity, when corrected for its own cytotoxicity. These data suggest that morphinone induces non-apoptotic cell death in HL-60 cells.

  17. The lysosomotropic drug LeuLeu-OMe induces lysosome disruption and autophagy-independent cell death in Trypanosoma brucei

    PubMed Central

    Koh, Hazel X.; Aye, Htay M.; Tan, Kevin S. W.; He, Cynthia Y.

    2015-01-01

    Background: Trypanosoma brucei is a blood-borne, protozoan parasite that causes African sleeping sickness in humans and nagana in animals. The current chemotherapy relies on only a handful of drugs that display undesirable toxicity, poor efficacy and drug-resistance. In this study, we explored the use of lysosomotropic drugs to induce bloodstream form T. brucei cell death via lysosome destabilization. Methods: We measured drug concentrations that inhibit cell proliferation by 50% (IC50) for several compounds, chosen based on their lysosomotropic effects previously reported in Plasmodium falciparum. The lysosomal effects and cell death induced by L-leucyl-L-leucyl methyl ester (LeuLeu-OMe) were further analyzed by flow cytometry and immunofluorescence analyses of different lysosomal markers. The effect of autophagy in LeuLeu-OMe-induced lysosome destabilization and cytotoxicity was also investigated in control and autophagy-deficient cells. Results: LeuLeu-OMe was selected for detailed analyses due to its strong inhibitory profile against T. brucei with minimal toxicity to human cell lines in vitro. Time-dependent immunofluorescence studies confirmed an effect of LeuLeu-OMe on the lysosome. LeuLeu-OMe-induced cytotoxicity was also found to be dependent on the acidic pH of the lysosome. Although an increase in autophagosomes was observed upon LeuLeu-OMe treatment, autophagy was not required for the cell death induced by LeuLeu-OMe. Necrosis appeared to be the main cause of cell death upon LeuLeu-OMe treatment. Conclusions: LeuLeu-OMe is a lysosomotropic agent capable of destabilizing lysosomes and causing necrotic cell death in bloodstream form of T. brucei. PMID:28357304

  18. Cementocyte cell death occurs in rat cellular cementum during orthodontic tooth movement.

    PubMed

    Matsuzawa, Humihiro; Toriya, Naoko; Nakao, Yuya; Konno-Nagasaka, Moe; Arakawa, Toshiya; Okayama, Miki; Mizoguchi, Itaru

    2017-05-01

    To clarify the mechanism of root resorption during orthodontic treatment, we examined cementocyte cell death and root resorption in the cellular cementum on the pressure side during experimental tooth movement. Using 8-week-old male Wistar rats, the right first molar was pushed mesiobuccally with a force of 40 g by a Ni-Ti alloy wire while the contralateral first molar was used as a control. Localization and number of cleaved caspase-3-positive and single-stranded DNA (ssDNA) - positive cells were evaluated using dual-label immunohistochemistry with anticleaved caspase-3 and anti-ssDNA antibodies. In addition, tartrate-resistant acid phosphatase (TRAP)-positive cells in the cellular cementum were evaluated using TRAP histochemical staining. Caspase-3- and ssDNA-positive cells appeared at 12 hours, but were restricted to the compressed periodontal ligament (PDL) and not the cellular cementum. Cleaved caspase-3-positive cementocytes were observed in the cellular cementum adjacent to the compressed PDL on day 1. From days 2 to 4, the number of caspase-3- and ssDNA-positive cementocytes increased. TRAP-positive cells appeared on the cellular cementum at the periphery of the hyalinized tissue on day 7, and resorption progressed into the broad surface of the cementum by day 14. Cementocytes adjacent to the hyalinized tissue underwent apoptotic cell death during orthodontic tooth movement, which might have been associated with subsequent root resorption.

  19. Preneoplastic lesion growth driven by the death of adjacent normal stem cells

    PubMed Central

    Chao, Dennis L.; Eck, J. Thomas; Brash, Douglas E.; Maley, Carlo C.; Luebeck, E. Georg

    2008-01-01

    Clonal expansion of premalignant lesions is an important step in the progression to cancer. This process is commonly considered to be a consequence of sustaining a proliferative mutation. Here, we investigate whether the growth trajectory of clones can be better described by a model in which clone growth does not depend on a proliferative advantage. We developed a simple computer model of clonal expansion in an epithelium in which mutant clones can only colonize space left unoccupied by the death of adjacent normal stem cells. In this model, competition for space occurs along the frontier between mutant and normal territories, and both the shapes and the growth rates of lesions are governed by the differences between mutant and normal cells' replication or apoptosis rates. The behavior of this model of clonal expansion along a mutant clone's frontier, when apoptosis of both normal and mutant cells is included, matches the growth of UVB-induced p53-mutant clones in mouse dorsal epidermis better than a standard exponential growth model that does not include tissue architecture. The model predicts precancer cell mutation and death rates that agree with biological observations. These results support the hypothesis that clonal expansion of premalignant lesions can be driven by agents, such as ionizing or nonionizing radiation, that cause cell killing but do not directly stimulate cell replication. PMID:18815380

  20. Regulation of programmed cell death or apoptosis in atherosclerosis.

    PubMed

    Geng, Y J

    1997-01-01

    Intimal thickening caused by accumulation of cells, lipids, and connective tissue characterizes atherosclerosis, an arterial disease that leads to cardiac and cerebral infarction. Apoptosis, or genetically programmed cell death, is important for the development and morphogenesis of organs and tissues. As in other tissues, cells of cardiovascular tissues can undergo apoptosis. Increased apoptosis has been found in both human and animal atherosclerotic lesions, mediating tissue turnover and lesion development. In addition to vascular cells, many activated immune cells, mainly macrophages and T cells, are present in atherosclerotic lesions, where these cells produce biologically active substances such as the proinflammatory cytokines tumor necrosis factor, interleukin-1 (IL-1), and interferon-gamma. Simultaneous exposure to these cytokines may trigger apoptosis of vascular smooth muscle cells. The products of death-regulating genes including Fas/Fas ligand, members of IL-1 beta cysteinyl protease (caspase) family, the tumor suppressive gene p53, and the protooncogene c-myc have been found in vascular cells and may participate in the regulation of vascular apoptosis during the development of atherosclerosis. Abnormal occurrence of apoptosis may take place in atherosclerotic lesions, including attenuation or acceleration of the apoptotic death process. The former may cause an increase in the cellularity of the lesions, and the latter can reduce cellular components important for maintaining the integrity and stability of the plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of patients with atherosclerosis and its major complications, heart attack and stroke.

  1. Lack of Both Nucleotide-Binding Oligomerization Domain-Containing Proteins 1 and 2 Primes T Cells for Activation-Induced Cell Death.

    PubMed

    Kasimsetty, Sashi G; Shigeoka, Alana A; Scheinok, Andrew A; Gavin, Amanda L; Ulevitch, Richard J; McKay, Dianne B

    2017-08-01

    Nucleotide-binding oligomerization domain (Nod)-containing proteins Nod1 and Nod2 play important roles in the innate immune response to pathogenic microbes, but mounting data suggest these pattern recognition receptors might also play key roles in adaptive immune responses. Targeting Nod1 and Nod2 signaling pathways in T cells is likely to provide a new strategy to modify inflammation in a variety of disease states, particularly those that depend on Ag-induced T cell activation. To better understand how Nod1 and Nod2 proteins contribute to adaptive immunity, this study investigated their role in alloantigen-induced T cell activation and asked whether their absence might impact in vivo alloresponses using a severe acute graft versus host disease model. The study provided several important observations. We found that the simultaneous absence of Nod1 and Nod2 primed T cells for activation-induced cell death. T cells from Nod1 × 2 -/- mice rapidly underwent cell death upon exposure to alloantigen. The Nod1 × 2 -/- T cells had sustained p53 expression that was associated with downregulation of its negative regulator MDM2. In vivo, mice transplanted with an inoculum containing Nod1 × 2 -/- T cells were protected from severe graft versus host disease. The results show that the simultaneous absence of Nod1 and Nod2 is associated with accelerated T cell death upon alloantigen encounter, suggesting these proteins might provide new targets to ameliorate T cell responses in a variety of inflammatory states, including those associated with bone marrow or solid organ transplantation. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. CD147 is increased in HCC cells under starvation and reduces cell death through upregulating p-mTOR in vitro.

    PubMed

    Gou, Xingchun; Tang, Xu; Kong, Derek Kai; He, Xinying; Gao, Xingchun; Guo, Na; Hu, Zhifang; Zhao, Zhaohua; Chen, Yanke

    2016-01-01

    Transarterial chemoembolization (TACE) is the standard of care for treatment of intermediate hepatocellular carcinoma (HCC), however, key molecules involved in HCC cell survival and tumor metastasis post-TACE remain unclear. CD147 is a member of the immunoglobulin superfamily that is overexpressed on the surface of HCC cells and is associated with malignant potential and poor prognosis in HCC patients. In this study, using an Earle's Balanced Salt Solution medium culture model that mimics nutrient deprivation induced by TACE, we investigated the regulation of CD147 expression on HCC cells under starvation conditions and its functional effects on HCC cell death. During early stages of starvation, the expression of CD147 was considerably upregulated in SMMC7721, HepG2 and HCC9204 hepatoma cell lines at the protein levels. Downregulation of CD147 by specific small interfering RNA (siRNA) significantly promoted starvation-induced cell death. In addition, CD147 siRNA-transfected SMMC7721 cells demonstrated significantly increased levels of both apoptosis and autophagy as compared to cells transfected with control siRNA under starvation conditions, whereas no difference was observed between the two treatment groups under normal culture conditions. Furthermore, silencing of CD147 resulted in a remarkable downregulation of phosphorylated mammalian target of rapamycin (p-mTOR) in starved SMMC7721 cells. Finally, the combined treatment of starvation and anti-CD147 monoclonal antibody exhibited a synergistic HCC cell killing effect. Our study suggests that upregulation of CD147 under starvation may reduce hepatoma cell death by modulating both apoptosis and autophagy through mTOR signaling, and that CD147 may be a novel potential molecular target to improve the efficacy of TACE.

  3. Apoptosis inducing factor gene depletion inhibits zearalenone-induced cell death in a goat Leydig cell line.

    PubMed

    Yang, Diqi; Jiang, Tingting; Lin, Pengfei; Chen, Huatao; Wang, Lei; Wang, Nan; Zhao, Fan; Tang, Keqiong; Zhou, Dong; Wang, Aihua; Jin, Yaping

    2017-01-01

    Zearalenone (ZEA) is a contaminant of human food and animal feedstuffs that causes health hazards. However, the signal pathways underlying ZEA toxicity remain elusive. The aims of this study were to determine which pathways are involved in ZEA-induced cell death and investigate the effect of apoptosis inducing factor (AIF) on cell death during ZEA treatment in the immortalized goat Leydig cell line hTERT-GLC. This study showed that ZEA-induced cell death in hTERT-GLCs works via endoplasmic reticulum (ER) stress, the caspase-dependent pathway, the caspase-independent pathway and autophagy. Recombinant lentiviral vectors were constructed to silence AIF expression in hTERT-GLCs. Flow cytometry results showed that knockdown of AIF diminished ZEA-induced cell apoptosis in hTERT-GLCs. Furthermore, we found AIF depletion down-regulated phosphoIRE1α, GRP78, CHOP and promoted the switch of LC3-I to LC3-II. Therefore, ZEA induces cytotoxicity in hTERT-GLCs via different pathways, while AIF-mediated signaling plays a critical role in ZEA-induced cell death in hTERT-GLCs. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Silicon does not mitigate cell death in cultured tobacco BY-2 cells subjected to salinity without ethylene emission.

    PubMed

    Liang, Xiaolei; Wang, Huahua; Hu, Yanfeng; Mao, Lina; Sun, Lili; Dong, Tian; Nan, Wenbin; Bi, Yurong

    2015-02-01

    Silicon induces cell death when ethylene is suppressed in cultured tobacco BY-2 cells. There is a crosstalk between Si and ethylene signaling. Silicon (Si) is beneficial for plant growth. It alleviates both biotic and abiotic stresses in plants. How Si works in plants is still mysterious. This study investigates the mechanism of Si-induced cell death in tobacco BY-2 cell cultures when ethylene is suppressed. Results showed that K2SiO3 alleviated the damage of NaCl stress. Si treatment rapidly increased ethylene emission and the expression of ethylene biosynthesis genes. Treatments with Si + Ag and Si + aminooxyacetic acid (AOA, ethylene biosynthesis inhibitor) reduced the cell growth and increased cell damage. The treatment with Si + Ag induced hydrogen peroxide (H2O2) generation and ultimately cell death. Some nucleus of BY-2 cells treated with Si + Ag appeared TUNEL positive. The inhibition of H2O2 and nitric oxide (NO) production reduced the cell death rate induced by Si + Ag treatment. Si eliminated the up-regulation of alternative pathway by Ag. These data suggest that ethylene plays an important role in Si function in plants. Without ethylene, Si not only failed to enhance plant resistance, but also elevated H2O2 generation and further induced cell death in tobacco BY-2 cells.

  5. The antioxidant N-acetyl cysteine suppresses lidocaine-induced intracellular reactive oxygen species production and cell death in neuronal SH-SY5Y cells.

    PubMed

    Okamoto, Akihisa; Tanaka, Masahiro; Sumi, Chisato; Oku, Kanako; Kusunoki, Munenori; Nishi, Kenichiro; Matsuo, Yoshiyuki; Takenaga, Keizo; Shingu, Koh; Hirota, Kiichi

    2016-10-24

    The local anesthetic lidocaine can affect intra- and extra-cellular signaling pathways in both neuronal and non-neuronal cells, resulting in long-term modulation of biological functions, including cell growth and death. Indeed, lidocaine was shown to induce necrosis and apoptosis in vitro. While several studies have suggested that lidocaine-induced apoptosis is mitochondrial pathway-dependent, it remains unclear whether reactive oxygen species (ROS) are involved in this process and whether the observed cell death can be prevented by antioxidant treatment. The effects of lidocaine and antioxidants on cell viability and death were evaluated using SH-SY5Y cells, HeLa cells, and HeLa cell derivatives. Cell viability was examined via MTS/PES ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt]/phenazine ethosulfate) assay. Meanwhile, cell apoptosis and necrosis were evaluated using a cell death detection assay with Annexin V-FITC and PI staining, as well as by assaying for caspase-3/7 and caspase-9 activity, and by measuring the release of lactate dehydrogenase, respectively. Mitochondrial transmembrane potential (ΔΨm) was assessed using the fluorescent probe tetramethylrhodamine ethyl ester. Lidocaine treatment resulted in suppression of the mitochondrial electron transport chain and subsequent attenuation of mitochondrial membrane potential, as well as enhanced ROS production, activation of caspase-3/7 and caspase-9, and induction of apoptosis and necrosis in SH-SY5Y cells in a dose- and time-dependent manner. Likewise, the anesthetics mepivacaine and bupivacaine also induced apoptosis in SH-SY5Y cells. Notably, the antioxidants N-acetyl cysteine (NAC) and Trolox successfully scavenged the mitochondria-derived ROS and suppressed local lidocaine-induced cell death. Our findings demonstrate that the local anesthetics lidocaine, mepivacaine, and bupivacaine inhibited the activity of mitochondria and induced apoptosis

  6. D-galactose induces necroptotic cell death in neuroblastoma cell lines.

    PubMed

    Li, Na; He, Yangyan; Wang, Ling; Mo, Chunfen; Zhang, Jie; Zhang, Wei; Li, Junhong; Liao, Zhiyong; Tang, Xiaoqiang; Xiao, Hengyi

    2011-12-01

    D-Galactose (D-gal) can induce oxidative stress in non-cancer cells and result in cell damage by disturbing glucose metabolism. However, the effect of D-gal on cancer cells is yet to be explored. In this study, we investigated the toxicity of D-gal to malignant cells specifically neuroblastoma cells. As the results, high concentrations of D-gal had significant toxicity to cancer cells, whereas the same concentrations of glucose had no; the viability loss via D-gal treatment was prominent to malignant cells (Neuro2a, SH-SY5Y, PC-3, and HepG2) comparing to non-malignant cells (NIH3T3 and LO(2)). Differing from the apoptosis induced by H(2) O(2), D-gal damaged cells showed the characters of necrotic cell death, such as trypan blue-tangible and early phase LDH leakage. Further experiments displayed that the toxic effect of D-gal can be alleviated by necroptosis inhibitor Necrostatin (Nec-1) and autophagy inhibitor 3-methyladenine (3-MA) but not by caspase inhibitor z-VAD-fmk. D-Gal treatment can transcriptionally up-regulate the genes relevant to necroptosis (Bmf, Bnip3) and autophagy (Atg5, TIGAR) but not the genes related to apoptosis (Caspase3, Bax, and p53). D-Gal did not activate Caspase-3, but prompted puncta-like GFP-LC3 distribution, an indicator for activated autophagy. The involvement of aldose reductase (AR)-mediated polyol pathway was proved because the inhibitor of AR can attenuate the toxicity of D-gal and D-gal treatment elevates the expression of AR. This study demonstrates for the first time that D-gal can induce non-apoptotic but necroptotic cell death in neuroblastoma cells and provides a new clue for developing the strategy against apoptosis-resistant cancers. Copyright © 2011 Wiley Periodicals, Inc.

  7. Thiosemicarbazone p-Substituted Acetophenone Derivatives Promote the Loss of Mitochondrial Δψ, GSH Depletion, and Death in K562 Cells

    PubMed Central

    Pessoto, Felipe S.; Yokomizo, Cesar H.; Prieto, Tatiana; Fernandes, Cleverton S.; Silva, Alan P.; Kaiser, Carlos R.; Basso, Ernani A.; Nantes, Iseli L.

    2015-01-01

    A series of thiosemicarbazone (TSC) p-substituted acetophenone derivatives were synthesized and chemically characterized. The p-substituents appended to the phenyl group of the TSC structures were hydrogen, fluor, chlorine, methyl, and nitro, producing compounds named TSC-H, TSC-F, TSC-Cl, TSC-Me, and TSC-NO2, respectively. The TSC compounds were evaluated for their capacity to induce mitochondrial permeability, to deplete mitochondrial thiol content, and to promote cell death in the K562 cell lineage using flow cytometry and fluorescence microscopy. TSC-H, TSC-F, and TSC-Cl exhibited a bell-shaped dose-response curve for the induction of apoptosis in K562 cells due to the change from apoptosis to necrosis as the principal mechanism of cell death at the highest tested doses. TSC-Me and TSC-NO2 exhibited a typical dose-response profile, with a half maximal effective concentration of approximately 10 µM for cell death. Cell death was also evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, which revealed lower toxicity of these compounds for peripheral blood mononuclear cells than for K562 cells. The possible mechanisms leading to cell death are discussed based on the observed effects of the new TSC compounds on the cellular thiol content and on mitochondrial bioenergetics. PMID:26075034

  8. Up-regulation of K{sub ir}2.1 by ER stress facilitates cell death of brain capillary endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kito, Hiroaki; Yamazaki, Daiju; Department of Biological Chemistry, Kyoto University, Graduate School of Pharmaceutical Sciences, Kyoto

    Highlights: {yields} We found that application of endoplasmic reticulum (ER) stress with tunicamycin to brain capillary endothelial cells (BCECs) induced cell death. {yields} The ER stress facilitated the expression of inward rectifier K{sup +} channel (K{sub ir}2.1) and induced sustained membrane hyperpolarization. {yields} The membrane hyperpolarization induced sustained Ca{sup 2+} entry through voltage-independent nonspecific cation channels and consequently facilitated cell death. {yields} The K{sub ir}2.1 up-regulation by ER stress is, at least in part, responsible for cell death of BCECs under pathological conditions. -- Abstract: Brain capillary endothelial cells (BCECs) form blood brain barrier (BBB) to maintain brain homeostasis. Cellmore » turnover of BCECs by the balance of cell proliferation and cell death is critical for maintaining the integrity of BBB. Here we found that stimuli with tunicamycin, endoplasmic reticulum (ER) stress inducer, up-regulated inward rectifier K{sup +} channel (K{sub ir}2.1) and facilitated cell death in t-BBEC117, a cell line derived from bovine BCECs. The activation of K{sub ir} channels contributed to the establishment of deeply negative resting membrane potential in t-BBEC117. The deep resting membrane potential increased the resting intracellular Ca{sup 2+} concentration due to Ca{sup 2+} influx through non-selective cation channels and thereby partly but significantly regulated cell death in t-BBEC117. The present results suggest that the up-regulation of K{sub ir}2.1 is, at least in part, responsible for cell death/cell turnover of BCECs induced by a variety of cellular stresses, particularly ER stress, under pathological conditions.« less

  9. Tales of cannibalism, suicide, and murder: Programmed cell death in C. elegans.

    PubMed

    Kinchen, Jason M; Hengartner, Michael O

    2005-01-01

    "Life is pleasant. Death is peaceful. It's the transition that's troublesome," said Isaac Asimov. Indeed, much scientific work over the last hundred years centered around attempts either to stave off or to induce the onset of death, at both the organismal and the cellular levels. In this quest, the nematode C. elegans has proven an invaluable tool, first, in the articulation of the genetic pathway by which programmed cell death proceeds, and also as a continuing source of inspiration. It is our purpose in this Chapter to familiarize the reader with the topic of programmed cell death in C. elegans and its relevance to current research in the fields of apoptosis and cell corpse clearance.

  10. Rhinacanthus nasutus protects cultured neuronal cells against hypoxia induced cell death.

    PubMed

    Brimson, James M; Tencomnao, Tewin

    2011-07-26

    Rhinacanthus nasutus (L.) Kurz (Acanthaceae) is an herb native to Thailand and Southeast Asia, known for its antioxidant properties. Hypoxia leads to an increase in reactive oxygen species in cells and is a leading cause of neuronal damage. Cell death caused by hypoxia has been linked with a number of neurodegenerative diseases including some forms of dementia and stroke, as well as the build up of reactive oxygen species which can lead to diseases such as Huntington's disease, Parkinson's disease and Alzeheimer's disease. In this study we used an airtight culture container and the Mitsubishi Gas Company anaeropack along with the MTT assay, LDH assay and the trypan blue exlusion assay to show that 1 and 10 µg mL⁻¹ root extract of R. nasutus is able to significantly prevent the death of HT-22 cells subjected to hypoxic conditions, and 0.1 to 10 µg mL⁻¹ had no toxic effect on HT-22 under normal conditions, whereas 100 µg mL⁻¹ reduced HT-22 cell proliferation. We also used H₂DCFDA staining to show R. nasutus can reduce reactive oxygen species production in HT-22 cells.

  11. Glutamine-mediated protection from neuronal cell death depends on mitochondrial activity.

    PubMed

    Stelmashook, E V; Lozier, E R; Goryacheva, E S; Mergenthaler, P; Novikova, S V; Zorov, D B; Isaev, N K

    2010-09-27

    The specific aim of this study was to elucidate the role of mitochondria in a neuronal death caused by different metabolic effectors and possible role of intracellular calcium ions ([Ca(2+)](i)) and glutamine in mitochondria- and non-mitochondria-mediated cell death. Inhibition of mitochondrial complex I by rotenone was found to cause intensive death of cultured cerebellar granule neurons (CGNs) that was preceded by an increase in intracellular calcium concentration ([Ca(2+)](i)). The neuronal death induced by rotenone was significantly potentiated by glutamine. In addition, inhibition of Na/K-ATPase by ouabain also caused [Ca(2+)](i) increase, but it induced neuronal cell death only in the absence of glucose. Treatment with glutamine prevented the toxic effect of ouabain and decreased [Ca(2+)](i). Blockade of ionotropic glutamate receptors prevented neuronal death and significantly decreased [Ca(2+)](i), demonstrating that toxicity of rotenone and ouabain was at least partially mediated by activation of these receptors. Activation of glutamate receptors by NMDA increased [Ca(2+)](i) and decreased mitochondrial membrane potential leading to markedly decreased neuronal survival under glucose deprivation. Glutamine treatment under these conditions prevented cell death and significantly decreased the disturbances of [Ca(2+)](i) and changes in mitochondrial membrane potential caused by NMDA during hypoglycemia. Our results indicate that glutamine stimulates glutamate-dependent neuronal damage when mitochondrial respiration is impaired. However, when mitochondria are functionally active, glutamine can be used by mitochondria as an alternative substrate to maintain cellular energy levels and promote cell survival. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  12. Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs).

    PubMed

    Danese, Alberto; Patergnani, Simone; Bonora, Massimo; Wieckowski, Mariusz R; Previati, Maurizio; Giorgi, Carlotta; Pinton, Paolo

    2017-08-01

    Until 1972, the term 'apoptosis' was used to differentiate the programmed cell death that naturally occurs in organismal development from the acute tissue death referred to as necrosis. Many studies on cell death and programmed cell death have been published and most are, at least to some degree, related to cancer. Some key proteins and molecular pathways implicated in cell death have been analyzed, whereas others are still being actively researched; therefore, an increasing number of cellular compartments and organelles are being implicated in cell death and cancer. Here, we discuss the mitochondria and subdomains of the endoplasmic reticulum (ER) that interact with mitochondria, the mitochondria-associated membranes (MAMs), which have been identified as critical hubs in the regulation of cell death and tumor growth. MAMs-dependent calcium (Ca 2+ ) release from the ER allows selective Ca 2+ uptake by the mitochondria. The perturbation of Ca 2+ homeostasis in cancer cells is correlated with sustained cell proliferation and the inhibition of cell death through the modulation of Ca 2+ signaling. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Vacuolar and cytoskeletal dynamics during elicitor-induced programmed cell death in tobacco BY-2 cells.

    PubMed

    Higaki, Takumi; Kadota, Yasuhiro; Goh, Tatsuaki; Hayashi, Teruyuki; Kutsuna, Natsumaro; Sano, Toshio; Hasezawa, Seiichiro; Kuchitsu, Kazuyuki

    2008-09-01

    Responses of plant cells to environmental stresses often involve morphological changes, differentiation and redistribution of various organelles and cytoskeletal network. Tobacco BY-2 cells provide excellent model system for in vivo imaging of these intracellular events. Treatment of the cell cycle-synchronized BY-2 cells with a proteinaceous oomycete elicitor, cryptogein, induces highly synchronous programmed cell death (PCD) and provide a model system to characterize vacuolar and cytoskeletal dynamics during the PCD. Sequential observation revealed dynamic reorganization of the vacuole and actin microfilaments during the execution of the PCD. We further characterized the effects cryptogein on mitotic microtubule organization in cell cycle-synchronized cells. Cryptogein treatment at S phase inhibited formation of the preprophase band, a cortical microtubule band that predicts the cell division site. Cortical microtubules kept their random orientation till their disruption that gradually occurred during the execution of the PCD twelve hours after the cryptogein treatment. Possible molecular mechanisms and physiological roles of the dynamic behavior of the organelles and cytoskeletal network in the pathogenic signal-induced PCD are discussed.

  14. Estrogen attenuates glutamate-induced cell death by inhibiting Ca2+ influx through L-type voltage-gated Ca2+ channels

    PubMed Central

    Sribnick, Eric A.; Del Re, Angelo M.; Ray, Swapan K.; Woodward, John J.; Banik, Naren L.

    2009-01-01

    Estrogen-mediated neuroprotection is observed in neurodegenerative disease and neurotrauama models; however, determining a mechanism for these effects has been difficult. We propose that estrogen may limit cell death in the nervous system tissue by inhibiting increases in intracellular free Ca2+. Here, we present data using VSC 4.1 cell line, a ventral spinal motoneuron and neuroblastoma hybrid cell line. Treatment with 1 mM glutamate for 24 h induced apoptosis. When cells were pre-treated with 100 nM 17β-estradiol (estrogen) for 1 h and then co-treated with glutamate, apoptotic death was significantly attenuated. Estrogen also prevented glutamate-mediated changes in resting membrane potential and membrane capacitance. Treatment with either 17α-estradiol or cell impermeable estrogen did not mimic the findings seen with estrogen. Glutamate treatment significantly increased both intracellular free Ca2+ and the activities of downstream proteases such as calpain and caspase-3. Estrogen attenuated both the increases in intracellular free Ca2+ and protease activities. In order to determine the pathway responsible for estrogen-mediated inhibition of these increases in intracellular free Ca2+, cells were treated with several Ca2+ entry inhibitors, but only the L-type Ca2+ channel blocker nifedipine demonstrated cytoprotective effects comparable to estrogen. To expand these findings, cells were treated with the L-type Ca2+ channel agonist FPL 64176, which increased both cell death and intracellular free Ca2+, and estrogen inhibited both effects. From these observations, we conclude that estrogen limits glutamate-induced cell death in VSC 4.1 cells through effects on L-type Ca2+ channels, inhibiting Ca2+ influx as well as activation of the pro-apoptotic proteases calpain and caspase-3. PMID:19389388

  15. Persistent random walk of cells involving anomalous effects and random death

    NASA Astrophysics Data System (ADS)

    Fedotov, Sergei; Tan, Abby; Zubarev, Andrey

    2015-04-01

    The purpose of this paper is to implement a random death process into a persistent random walk model which produces sub-ballistic superdiffusion (Lévy walk). We develop a stochastic two-velocity jump model of cell motility for which the switching rate depends upon the time which the cell has spent moving in one direction. It is assumed that the switching rate is a decreasing function of residence (running) time. This assumption leads to the power law for the velocity switching time distribution. This describes the anomalous persistence of cell motility: the longer the cell moves in one direction, the smaller the switching probability to another direction becomes. We derive master equations for the cell densities with the generalized switching terms involving the tempered fractional material derivatives. We show that the random death of cells has an important implication for the transport process through tempering of the superdiffusive process. In the long-time limit we write stationary master equations in terms of exponentially truncated fractional derivatives in which the rate of death plays the role of tempering of a Lévy jump distribution. We find the upper and lower bounds for the stationary profiles corresponding to the ballistic transport and diffusion with the death-rate-dependent diffusion coefficient. Monte Carlo simulations confirm these bounds.

  16. Blocking CD147 induces cell death in cancer cells through impairment of glycolytic energy metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Miyako; Inoue, Masahiro; Itoh, Kazuyuki

    2008-09-12

    CD147 is a multifunctional transmembrane protein and promotes cancer progression. We found that the anti-human CD147 mouse monoclonal antibody MEM-M6/1 strongly induces necrosis-like cell death in LoVo, HT-29, WiDr, and SW620 colon cancer cells and A2058 melanoma cells, but not in WI-38 and TIG-113 normal fibroblasts. Silencing or overexpression of CD147 in LoVo cells enhanced or decreased the MEM-M6/1 induced cell death, respectively. CD147 is known to form complex with proton-linked monocarboxylate transporters (MCTs), which is critical for lactate transport and intracellular pH (pHi) homeostasis. In LoVo cells, CD147 and MCT-1 co-localized on the cell surface, and MEM-M6/1 inhibited themore » association of these molecules. MEM-M6/1 inhibited lactate uptake, lactate release, and reduced pHi. Further, the induction of acidification was parallel to the decrease of the glycolytic flux and intracellular ATP levels. These effects were not found in the normal fibroblasts. As cancer cells depend on glycolysis for their energy production, CD147 inhibition might induce cell death specific to cancer cells.« less

  17. The oncolytic peptide LTX-315 triggers immunogenic cell death

    PubMed Central

    Zhou, H; Forveille, S; Sauvat, A; Yamazaki, T; Senovilla, L; Ma, Y; Liu, P; Yang, H; Bezu, L; Müller, K; Zitvogel, L; Rekdal, Ø; Kepp, O; Kroemer, G

    2016-01-01

    LTX-315 is a cationic amphilytic peptide that preferentially permeabilizes mitochondrial membranes, thereby causing partially BAX/BAK1-regulated, caspase-independent necrosis. Based on the observation that intratumorally injected LTX-315 stimulates a strong T lymphocyte-mediated anticancer immune response, we investigated whether LTX-315 may elicit the hallmarks of immunogenic cell death (ICD), namely (i) exposure of calreticulin on the plasma membrane surface, (ii) release of ATP into the extracellular space, (iii) exodus of HMGB1 from the nucleus, and (iv) induction of a type-1 interferon response. Using a panel of biosensor cell lines and robotized fluorescence microscopy coupled to automatic image analysis, we observed that LTX-315 induces all known ICD characteristics. This conclusion was validated by several independent methods including immunofluorescence stainings (for calreticulin), bioluminescence assays (for ATP), immunoassays (for HMGB1), and RT-PCRs (for type-1 interferon induction). When injected into established cancers, LTX-315 caused a transiently hemorrhagic focal necrosis that was accompanied by massive release of HMGB1 (from close-to-all cancer cells), as well as caspase-3 activation in a fraction of the cells. LTX-315 was at least as efficient as the positive control, the anthracycline mitoxantrone (MTX), in inducing local inflammation with infiltration by myeloid cells and T lymphocytes. Collectively, these results support the idea that LTX-315 can induce ICD, hence explaining its capacity to mediate immune-dependent therapeutic effects. PMID:26962684

  18. The oncolytic peptide LTX-315 triggers immunogenic cell death.

    PubMed

    Zhou, H; Forveille, S; Sauvat, A; Yamazaki, T; Senovilla, L; Ma, Y; Liu, P; Yang, H; Bezu, L; Müller, K; Zitvogel, L; Rekdal, Ø; Kepp, O; Kroemer, G

    2016-03-10

    LTX-315 is a cationic amphilytic peptide that preferentially permeabilizes mitochondrial membranes, thereby causing partially BAX/BAK1-regulated, caspase-independent necrosis. Based on the observation that intratumorally injected LTX-315 stimulates a strong T lymphocyte-mediated anticancer immune response, we investigated whether LTX-315 may elicit the hallmarks of immunogenic cell death (ICD), namely (i) exposure of calreticulin on the plasma membrane surface, (ii) release of ATP into the extracellular space, (iii) exodus of HMGB1 from the nucleus, and (iv) induction of a type-1 interferon response. Using a panel of biosensor cell lines and robotized fluorescence microscopy coupled to automatic image analysis, we observed that LTX-315 induces all known ICD characteristics. This conclusion was validated by several independent methods including immunofluorescence stainings (for calreticulin), bioluminescence assays (for ATP), immunoassays (for HMGB1), and RT-PCRs (for type-1 interferon induction). When injected into established cancers, LTX-315 caused a transiently hemorrhagic focal necrosis that was accompanied by massive release of HMGB1 (from close-to-all cancer cells), as well as caspase-3 activation in a fraction of the cells. LTX-315 was at least as efficient as the positive control, the anthracycline mitoxantrone (MTX), in inducing local inflammation with infiltration by myeloid cells and T lymphocytes. Collectively, these results support the idea that LTX-315 can induce ICD, hence explaining its capacity to mediate immune-dependent therapeutic effects.

  19. Identification of factors that function in Drosophila salivary gland cell death during development using proteomics

    PubMed Central

    McPhee, C K; Balgley, B M; Nelson, C; Hill, J H; Batlevi, Y; Fang, X; Lee, C S; Baehrecke, E H

    2013-01-01

    Proteasome inhibitors induce cell death and are used in cancer therapy, but little is known about the relationship between proteasome impairment and cell death under normal physiological conditions. Here, we investigate the relationship between proteasome function and larval salivary gland cell death during development in Drosophila. Drosophila larval salivary gland cells undergo synchronized programmed cell death requiring both caspases and autophagy (Atg) genes during development. Here, we show that ubiquitin proteasome system (UPS) function is reduced during normal salivary gland cell death, and that ectopic proteasome impairment in salivary gland cells leads to early DNA fragmentation and salivary gland condensation in vivo. Shotgun proteomic analyses of purified dying salivary glands identified the UPS as the top category of proteins enriched, suggesting a possible compensatory induction of these factors to maintain proteolysis during cell death. We compared the proteome following ectopic proteasome impairment to the proteome during developmental cell death in salivary gland cells. Proteins that were enriched in both populations of cells were screened for their function in salivary gland degradation using RNAi knockdown. We identified several factors, including trol, a novel gene CG11880, and the cop9 signalsome component cop9 signalsome 6, as required for Drosophila larval salivary gland degradation. PMID:22935612

  20. Differential immunomodulatory activity of tumor cell death induced by cancer therapeutic toll-like receptor ligands.

    PubMed

    Klein, Johanna C; Wild, Clarissa A; Lang, Stephan; Brandau, Sven

    2016-06-01

    Synthetic toll-like receptor (TLR) ligands stimulate defined immune cell subsets and are currently tested as novel immunotherapeutic agents against cancer with, however, varying clinical efficacy. Recent data showed the expression of TLR receptors also on tumor cells. In this study we investigated immunological events associated with the induction of tumor cell death by poly(I:C) and imiquimod. A human head and neck squamous cell carcinoma (HNSCC) cell line was exposed to poly(I:C) and imiquimod, which were delivered exogenously via culture medium or via electroporation. Cell death and cell biological consequences thereof were analyzed. For in vivo analyses, a human xenograft and a syngeneic immunocompetent mouse model were used. Poly(I:C) induced cell death only if delivered by electroporation into the cytosol. Cell death induced by poly(I:C) resulted in cytokine release and activation of monocytes in vitro. Monocytes activated by the supernatant of cancer cells previously exposed to poly(I:C) recruited significantly more Th1 cells than monocytes exposed to control supernatants. If delivered exogenously, imiquimod also induced tumor cell death and some release of interleukin-6, but cell death was not associated with release of Th1 cytokines, interferons, monocyte activation and Th1 recruitment. Interestingly, intratumoral injection of poly(I:C) triggered tumor cell death in tumor-bearing mice and reduced tumor growth independent of TLR signaling on host cells. Imiquimod did not affect tumor size. Our data suggest that common cancer therapeutic RNA compounds can induce functionally diverse types of cell death in tumor cells with implications for the use of TLR ligands in cancer immunotherapy.

  1. Docetaxel-induced prostate cancer cell death involves concomitant activation of caspase and lysosomal pathways and is attenuated by LEDGF/p75

    PubMed Central

    Mediavilla-Varela, Melanie; Pacheco, Fabio J; Almaguel, Frankis; Perez, Jossymar; Sahakian, Eva; Daniels, Tracy R; Leoh, Lai Sum; Padilla, Amelia; Wall, Nathan R; Lilly, Michael B; De Leon, Marino; Casiano, Carlos A

    2009-01-01

    Background Hormone-refractory prostate cancer (HRPC) is characterized by poor response to chemotherapy and high mortality, particularly among African American men when compared to other racial/ethnic groups. It is generally accepted that docetaxel, the standard of care for chemotherapy of HRPC, primarily exerts tumor cell death by inducing mitotic catastrophe and caspase-dependent apoptosis following inhibition of microtubule depolymerization. However, there is a gap in our knowledge of mechanistic events underlying docetaxel-induced caspase-independent cell death, and the genes that antagonize this process. This knowledge is important for circumventing HRPC chemoresistance and reducing disparities in prostate cancer mortality. Results We investigated mechanistic events associated with docetaxel-induced death in HRPC cell lines using various approaches that distinguish caspase-dependent from caspase-independent cell death. Docetaxel induced both mitotic catastrophe and caspase-dependent apoptosis at various concentrations. However, caspase activity was not essential for docetaxel-induced cytotoxicity since cell death associated with lysosomal membrane permeabilization still occurred in the presence of caspase inhibitors. Partial inhibition of docetaxel-induced cytotoxicity was observed after inhibition of cathepsin B, but not inhibition of cathepsins D and L, suggesting that docetaxel induces caspase-independent, lysosomal cell death. Simultaneous inhibition of caspases and cathepsin B dramatically reduced docetaxel-induced cell death. Ectopic expression of lens epithelium-derived growth factor p75 (LEDGF/p75), a stress survival autoantigen and transcription co-activator, attenuated docetaxel-induced lysosomal destabilization and cell death. Interestingly, LEDGF/p75 overexpression did not protect cells against DTX-induced mitotic catastrophe, and against apoptosis induced by tumor necrosis factor related apoptosis inducing ligand (TRAIL), suggesting selectivity in

  2. Disruptive environmental chemicals and cellular mechanisms that confer resistance to cell death.

    PubMed

    Narayanan, Kannan Badri; Ali, Manaf; Barclay, Barry J; Cheng, Qiang Shawn; D'Abronzo, Leandro; Dornetshuber-Fleiss, Rita; Ghosh, Paramita M; Gonzalez Guzman, Michael J; Lee, Tae-Jin; Leung, Po Sing; Li, Lin; Luanpitpong, Suidjit; Ratovitski, Edward; Rojanasakul, Yon; Romano, Maria Fiammetta; Romano, Simona; Sinha, Ranjeet K; Yedjou, Clement; Al-Mulla, Fahd; Al-Temaimi, Rabeah; Amedei, Amedeo; Brown, Dustin G; Ryan, Elizabeth P; Colacci, Annamaria; Hamid, Roslida A; Mondello, Chiara; Raju, Jayadev; Salem, Hosni K; Woodrick, Jordan; Scovassi, A Ivana; Singh, Neetu; Vaccari, Monica; Roy, Rabindra; Forte, Stefano; Memeo, Lorenzo; Kim, Seo Yun; Bisson, William H; Lowe, Leroy; Park, Hyun Ho

    2015-06-01

    Cell death is a process of dying within biological cells that are ceasing to function. This process is essential in regulating organism development, tissue homeostasis, and to eliminate cells in the body that are irreparably damaged. In general, dysfunction in normal cellular death is tightly linked to cancer progression. Specifically, the up-regulation of pro-survival factors, including oncogenic factors and antiapoptotic signaling pathways, and the down-regulation of pro-apoptotic factors, including tumor suppressive factors, confers resistance to cell death in tumor cells, which supports the emergence of a fully immortalized cellular phenotype. This review considers the potential relevance of ubiquitous environmental chemical exposures that have been shown to disrupt key pathways and mechanisms associated with this sort of dysfunction. Specifically, bisphenol A, chlorothalonil, dibutyl phthalate, dichlorvos, lindane, linuron, methoxychlor and oxyfluorfen are discussed as prototypical chemical disruptors; as their effects relate to resistance to cell death, as constituents within environmental mixtures and as potential contributors to environmental carcinogenesis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Patterns of cell death in the embryonic antenna of the grasshopper Schistocerca gregaria.

    PubMed

    Boyan, George; Graf, Philip; Ehrhardt, Erica

    2018-03-01

    We have investigated the pattern of apoptosis in the antennal epithelium during embryonic development of the grasshopper Schistocerca gregaria. The molecular labels lachesin and annulin reveal that the antennal epithelium becomes subdivided into segment-like meristal annuli within which sensory cell clusters later differentiate. To determine whether apoptosis is involved in the development of such sensory cell clusters, we examined the expression pattern of the cell death labels acridine orange and TUNEL in the epithelium. We found stereotypic, age-dependent, wave-like patterns of cell death in the antenna. Early in embryogenesis, apoptosis is restricted to the most basal meristal annuli but subsequently spreads to encompass almost the entire antenna. Cell death then declines in more basal annuli and is only found in the tip region later in embryogenesis. Apoptosis is restricted throughout to the midregion of a given annulus and away from its border with neighboring annuli, arguing against a causal role in annular formation. Double-labeling for cell death and sensory cell differentiation reveals apoptosis occurring within bands of differentiating sensory cell clusters, matching the meristal organization of the apical antenna. Examination of the individual epithelial lineages which generate sensory cells reveals that apoptosis begins peripherally within a lineage and with age expands to encompass the differentiated sensory cell at the base. We conclude that complete lineages can undergo apoptosis and that the youngest cells in these lineages appear to die first, with the sensory neuron dying last. Lineage-based death in combination with cell death patterns in different regions of the antenna may contribute to odor-mediated behaviors in the grasshopper.

  4. Coniferyl Aldehyde Attenuates Radiation Enteropathy by Inhibiting Cell Death and Promoting Endothelial Cell Function

    PubMed Central

    Son, Yeonghoon; Jang, Jun-Ho; Lee, Yoon-Jin; Kim, Sung-Ho; Ko, Young-Gyo; Lee, Yun-Sil; Lee, Hae-June

    2015-01-01

    Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA), an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR) to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function. PMID:26029925

  5. DRAM Triggers Lysosomal Membrane Permeabilization and Cell Death in CD4+ T Cells Infected with HIV

    PubMed Central

    Laforge, Mireille; Limou, Sophie; Harper, Francis; Casartelli, Nicoletta; Rodrigues, Vasco; Silvestre, Ricardo; Haloui, Houda; Zagury, Jean-Francois; Senik, Anna; Estaquier, Jerome

    2013-01-01

    Productive HIV infection of CD4+ T cells leads to a caspase-independent cell death pathway associated with lysosomal membrane permeabilization (LMP) and cathepsin release, resulting in mitochondrial outer membrane permeabilization (MOMP). Herein, we demonstrate that HIV infection induces damage-regulated autophagy modulator (DRAM) expression in a p53-dependent manner. Knocking down the expression of DRAM and p53 genes with specific siRNAs inhibited autophagy and LMP. However, inhibition of Atg5 and Beclin genes that prevents autophagy had a minor effect on LMP and cell death. The knock down of DRAM gene inhibited cytochrome C release, MOMP and cell death. However, knocking down DRAM, we increased viral infection and production. Our study shows for the first time the involvement of DRAM in host-pathogen interactions, which may represent a mechanism of defense via the elimination of infected cells. PMID:23658518

  6. Effects of hydrogen peroxide on vestibular hair cells in the guinea pig: importance of cell membrane impairment preceding cell death.

    PubMed

    Tanigawa, Tohru; Tanaka, Hirokazu; Hayashi, Ken; Nakayama, Meiho; Iwasaki, Satoshi; Banno, Shinya; Takumida, Masaya; Brodie, Hirally; Inafuku, Shigeru

    2008-11-01

    Our findings indicate that oxidative stress induces morphological changes in vestibular hair cells and subsequently leads to cell death after 2.5 h. The aim of this study was to confirm the direct effects of oxidative stress on vestibular hair cells. Vestibular hair cells isolated from guinea pigs were loaded with 1 or 10 mM H2O2, and morphological changes were observed. In addition, in a viability/cytotoxicity assay system, the numbers of dead cells in isolated cristae ampullares were counted 1, 3, and 5 h after loading with H2O2 or artificial perilymph (control). Reactive oxygen, in the form of H2O2, directly affects the cell membrane of isolated vestibular hair cells and causes swelling of the cell body, bleb formation, and shortening of the neck region. Morphological changes occur within 30 min after loading with H2O2, but a significant increase in the number of dead cells is noted only after 3 h.

  7. Hepatic leukemia factor promotes resistance to cell death: Implications for therapeutics and chronotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, Katrina M.; Sontag, Ryan L.; Weber, Thomas J., E-mail: Thomas.Weber@pnl.gov

    Physiological variation related to circadian rhythms and aberrant gene expression patterns are believed to modulate therapeutic efficacy, but the precise molecular determinants remain unclear. Here we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation. Microarray analysis indicates that HLF regulates a complex multi-gene transcriptional programmore » encompassing upregulation of anti-apoptotic genes, downregulation of pro-apoptotic genes, and many additional changes that are consistent with an anti-death program. Collectively, our results demonstrate that ectopic expression of HLF, an established transcription factor that cycles with circadian rhythms, can recapitulate many features associated with circadian-dependent physiological variation. - Highlights: ► Circadian-dependent physiological variation impacts therapeutic efficacy. ► Hepatic leukemia factor inhibits cell death and is a candidate circadian factor. ► Hepatic leukemia factor anti-death program is conserved in murine and human cells. ► Transcriptomics indicates the anti-death program results from a systems response.« less

  8. Coherence-controlled holographic microscopy enabled recognition of necrosis as the mechanism of cancer cells death after exposure to cytopathic turbid emulsion

    NASA Astrophysics Data System (ADS)

    Collakova, Jana; Krizova, Aneta; Kollarova, Vera; Dostal, Zbynek; Slaba, Michala; Vesely, Pavel; Chmelik, Radim

    2015-11-01

    Coherence-controlled holographic microscopy (CCHM) in low-coherence mode possesses a pronounced coherence gate effect. This offers an option to investigate the details of cellular events leading to cell death caused by cytopathic turbid emulsions. CCHM capacity was first assessed in model situations that showed clear images obtained with low coherence of illumination but not with high coherence of illumination. Then, the form of death of human cancer cells induced by treatment with biologically active phospholipids (BAPs) preparation was investigated. The observed overall retraction of cell colony was apparently caused by the release of cell-to-substratum contacts. This was followed by the accumulation of granules decorating the nuclear membrane. Then, the occurrence of nuclear membrane indentations signaled the start of damage to the integrity of the cell nucleus. In the final stage, cells shrunk and disintegrated. This indicated that BAPs cause cell death by necrosis and not apoptosis. An intriguing option of checking the fate of cancer cells caused by the anticipated cooperative effect after adding another tested substance sodium dichloroacetate to turbid emulsion is discussed on grounds of pilot experiments. Such observations should reveal the impact and mechanism of action of the interacting drugs on cell behavior and fate that would otherwise remain hidden in turbid milieu.

  9. Hamamelitannin from Hamamelis virginiana inhibits the tumour necrosis factor-alpha (TNF)-induced endothelial cell death in vitro.

    PubMed

    Habtemariam, Solomon

    2002-01-01

    The tumour necrosis factor-alpha (TNF) inhibitory activity of hamamelitannin from Hamamelis virginiana was investigated by assessing the TNF-mediated EAhy926 endothelial cell death and adhesiveness to monocytes. Treatment of the cells by TNF (25 ng/ml) and actinomycin D (0.1ng/ml) resulted in significant DNA fragmentation (34+/-0.6, n=4) and cytotoxicity (97+/-4.5%, n=6) following treatment for 8 and 24h, respectively. One to 100 microM concentrations of hamamelitannin inhibited the TNF-mediated endothelial cell death and DNA fragmentation in a dose-dependent manner. One hundred % protection against TNF-induced DNA fragmentation and cytotoxicity was obtained for hamamelitannin concentrations higher than 10 microM. The protective effect of hamamelitannin was comparable with that of a related compound epigallocatechin gallate while gallic acid was a weak protective agent (<40% protection). EAhy926 endothelial cells upregulated (by 4- to 7-fold) the surface expression of intercellular adhesion molecule-1 (ICAM-1) and adhesiveness to monocytic U937 cells after treatment with TNF (0.5ng/ml) for 6 or 24h. Concentrations (1-100 microM) of hamamelitannin that inhibited the TNF-mediated cell death and DNA fragmentation, however, failed to inhibit the TNF-induced ICAM-1 expression and EAhy926 cell adhesiveness to U937 cells. Thus, hamamelitannin inhibits the TNF-mediated endothelial cell death without altering the TNF-induced upregulation of endothelial adhesiveness. The observed anti-TNF activity of hamamelitannin may explain the antihamorrhaegic use of H. virginiana in traditional medicine and its claimed use as a protective agent for UV radiation.

  10. Corosolic Acid Induces Non-Apoptotic Cell Death through Generation of Lipid Reactive Oxygen Species Production in Human Renal Carcinoma Caki Cells.

    PubMed

    Woo, Seon Min; Seo, Seung Un; Min, Kyoung-Jin; Im, Seung-Soon; Nam, Ju-Ock; Chang, Jong-Soo; Kim, Shin; Park, Jong-Wook; Kwon, Taeg Kyu

    2018-04-27

    Corosolic acid is one of the pentacyclic triterpenoids isolated from Lagerstroemia speciose and has been reported to exhibit anti-cancer and anti-proliferative activities in various cancer cells. In the present study, we investigated the molecular mechanisms of corosolic acid in cancer cell death. Corosolic acid induces a decrease of cell viability and an increase of cell cytotoxicity in human renal carcinoma Caki cells. Corosolic acid-induced cell death is not inhibited by apoptosis inhibitor (z-VAD-fmk, a pan-caspase inhibitor), necroptosis inhibitor (necrostatin-1), or ferroptosis inhibitors (ferrostatin-1 and deferoxamine (DFO)). Furthermore, corosolic acid significantly induces reactive oxygen species (ROS) levels, but antioxidants ( N -acetyl-l-cysteine (NAC) and trolox) do not inhibit corosolic acid-induced cell death. Interestingly, corosolic acid induces lipid oxidation, and α-tocopherol markedly prevents corosolic acid-induced lipid peroxidation and cell death. Anti-chemotherapeutic effects of α-tocopherol are dependent on inhibition of lipid oxidation rather than inhibition of ROS production. In addition, corosolic acid induces non-apoptotic cell death in other renal cancer (ACHN and A498), breast cancer (MDA-MB231), and hepatocellular carcinoma (SK-Hep1 and Huh7) cells, and α-tocopherol markedly inhibits corosolic acid-induced cell death. Therefore, our results suggest that corosolic acid induces non-apoptotic cell death in cancer cells through the increase of lipid peroxidation.

  11. Endoplasmic reticulum calcium release potentiates the ER stress and cell death caused by an oxidative stress in MCF-7 cells.

    PubMed

    Dejeans, Nicolas; Tajeddine, Nicolas; Beck, Raphaël; Verrax, Julien; Taper, Henryk; Gailly, Philippe; Calderon, Pedro Buc

    2010-05-01

    Increase in cytosolic calcium concentration ([Ca2+](c)), release of endoplasmic reticulum (ER) calcium ([Ca2+](er)) and ER stress have been proposed to be involved in oxidative toxicity. Nevertheless, their relative involvements in the processes leading to cell death are not well defined. In this study, we investigated whether oxidative stress generated during ascorbate-driven menadione redox cycling (Asc/Men) could trigger these three events, and, if so, whether they contributed to Asc/Men cytoxicity in MCF-7 cells. Using microspectrofluorimetry, we demonstrated that Asc/Men-generated oxidative stress was associated with a slow and moderate increase in [Ca2+](c), largely preceding permeation of propidium iodide, and thus cell death. Asc/Men treatment was shown to partially deplete ER calcium stores after 90 min (decrease by 45% compared to control). This event was associated with ER stress activation, as shown by analysis of eIF2 phosphorylation and expression of the molecular chaperone GRP94. Thapsigargin (TG) was then used to study the effect of complete [Ca2+](er) emptying during the oxidative stress generated by Asc/Men. Surprisingly, the combination of TG and Asc/Men increased ER stress to a level considerably higher than that observed for either treatment alone, suggesting that [Ca2+](er) release alone is not sufficient to explain ER stress activation during oxidative stress. Finally, TG-mediated [Ca2+](er) release largely potentiated ER stress, DNA fragmentation and cell death caused by Asc/Men, supporting a role of ER stress in the process of Asc/Men cytotoxicity. Taken together, our results highlight the involvement of ER stress and [Ca2+](er) decrease in the process of oxidative stress-induced cell death in MCF-7 cells. 2009 Elsevier Inc. All rights reserved.

  12. Baicalein induces cell death in murine T cell lymphoma via inhibition of thioredoxin system.

    PubMed

    Patwardhan, Raghavendra S; Pal, Debojyoti; Checker, Rahul; Sharma, Deepak; Sandur, Santosh K

    2017-10-01

    We have earlier demonstrated the radioprotective potential of baicalein using murine splenic lymphocytes. Here, we have studied the effect of baicalein on murine T cell lymphoma EL4 cells and investigated the underlying mechanism of action. We observed that baicalein induced a dose dependent cell death in EL4 cells in vitro and significantly reduced the frequency of cancer stem cells. Previously, we have reported that murine and human T cell lymphoma cells have increased oxidative stress tolerance capacity due to active thioredoxin system. Hence, we monitored the effect of baicalein on thioredoxin system in EL4 cells. Docking studies revealed that baicalein could bind to the active site of thioredoxin reductase. Baicalein treatment led to significant reduction in the activity of thioredoxin reductase and nuclear levels of thioredoxin-1 thereby increasing ASK1 levels and caspase-3 activity. Interestingly, CRISPR-Cas9 based knock-out of ASK1 or over-expression of thioredoxin-1 abolished anti-tumor effects of baicalein in EL4 cells. Further, baicalein administration significantly reduced intra-peritoneal tumor burden of EL4 cells in C57BL/6 mice. Thus, our study describes anti-tumor effects of baicalein in EL4 cells via inhibition of thioredoxin system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The inducers of immunogenic cell death for tumor immunotherapy.

    PubMed

    Li, Xiuying

    2018-01-01

    Immunotherapy is a promising treatment modality that acts by selectively harnessing the host immune defenses against cancer. An effective immune response is often needed to eliminate tumors following treatment which can trigger the immunogenicity of dying tumor cells. Some treatment modalities (such as photodynamic therapy, high hydrostatic pressure or radiotherapy) and agents (some chemotherapeutic agents, oncolytic viruses) have been used to endow tumor cells with immunogenicity and/or increase their immunogenicity. These treatments and agents can boost the antitumor capacity by inducing immune responses against tumor neoantigens. Immunogenic cell death is a manner of cell death that can induce the emission of immunogenic damage-associated molecular patterns (DAMPs). DAMPs are sufficient for immunocompetent hosts to trigger the immune system. This review focuses on the latest developments in the treatment modalities and agents that can induce and/or enhance the immunogenicity of cancer cells.

  14. Fluorescence imaging analysis of taxol-induced ASTC-a-1 cell death with cell swelling and cytoplasmic vacuolization

    NASA Astrophysics Data System (ADS)

    Chen, Tong-sheng; Sun, Lei; Wang, Longxiang; Wang, Huiying

    2008-02-01

    Taxol (Paclitaxel), an isolated component from the bark of the Pacific yew Taxus brevifolia, exhibits a broad spectrum of clinical activity against human cancers. Taxol can promote microtubule (MT) assembly, inhibit depolymerization, and change MT dynamics, resulting in disruption of the normal reorganization of the microtubule network required for mitosis and cell proliferation. However, the molecular mechanism of taxol-induced cell death is still unclear. In this report, CCK-8 was used to assay the inhibition of taxol on the human lung adenocarcinoma (ASTC-a-1) cells viability, confocal fluorescence microscope was used to monitor the morphology changes of cells with taxol treatment. We for the first time describe the characteristics of taxol-induced cells swelling, cytoplasmic vacuolization and cell death. Taxol induced swelling, cytoplasmatic vacuolization and cell death without cell shrinkage and membrane rupture. These features differ from those of apoptosis and resemble the paraptosis, a novel nonapoptotic PCD.

  15. Delicaflavone induces autophagic cell death in lung cancer via Akt/mTOR/p70S6K signaling pathway.

    PubMed

    Sui, Yuxia; Yao, Hong; Li, Shaoguang; Jin, Long; Shi, Peiying; Li, Zhijun; Wang, Gang; Lin, Shilan; Wu, Youjia; Li, Yuxiang; Huang, Liying; Liu, Qicai; Lin, Xinhua

    2017-03-01

    Searching for potential anticancer agents from natural sources is an effective strategy for developing novel chemotherapeutic agents. In this study, data supporting the in vitro and in vivo anticancer effects of delicaflavone, a rarely occurring biflavonoid from Selaginella doederleinii, were reported. Delicaflavone exhibited favorable anticancer properties, as shown by the MTT assay and xenograft model of human non-small cell lung cancer in male BALB/c nude mice without observable adverse effect. By transmission electron microscopy with acridine orange and Cyto-ID®Autophagy detection dyes, Western blot analysis, and RT-PCR assay, we confirmed that delicaflavone induces autophagic cell death by increasing the ratio of LC3-II to LC3-I, which are autophagy-related proteins, and promoting the generation of acidic vesicular organelles and autolysosomes in the cytoplasm of human lung cancer A549 and PC-9 cells in a time- and dose-dependent manner. Delicaflavone downregulated the expression of phospho-Akt, phospho-mTOR, and phospho-p70S6K in a time- and dose-dependent manner, suggesting that it induced autophagy by inhibiting the Akt/mTOR/p70S6K pathway in A549 and PC-9 cells. Delicaflavone is a potential anticancer agent that can induce autophagic cell death in human non-small cell lung cancer via the Akt/mTOR/p70S6K signaling pathway. Delicaflavone showed anti-lung cancer effects in vitro and in vivo. Delicaflavone induced autophagic cell death via Akt/mTOR/p70S6K signaling pathway. Delicaflavone did not show observable side effects in a xenograft mouse model. Delicaflavone may represent a potential therapeutic agent for lung cancer. Delicaflavone showed anti-lung cancer effects in vitro and in vivo. Delicaflavone induced autophagic cell death via Akt/mTOR/p70S6K signaling pathway. Delicaflavone did not show observable side effects in a xenograft mouse model. Delicaflavone may represent a potential therapeutic agent for lung cancer.

  16. Impact of nutrient imbalance on wine alcoholic fermentations: nitrogen excess enhances yeast cell death in lipid-limited must.

    PubMed

    Tesnière, Catherine; Delobel, Pierre; Pradal, Martine; Blondin, Bruno

    2013-01-01

    We evaluated the consequences of nutritional imbalances, particularly lipid/nitrogen imbalances, on wine yeast survival during alcoholic fermentation. We report that lipid limitation (ergosterol limitation in our model) led to a rapid loss of viability during the stationary phase of fermentation and that the cell death rate is strongly modulated by nitrogen availability and nature. Yeast survival was reduced in the presence of excess nitrogen in lipid-limited fermentations. The rapidly dying yeast cells in fermentations in high nitrogen and lipid-limited conditions displayed a lower storage of the carbohydrates trehalose and glycogen than observed in nitrogen-limited cells. We studied the cell stress response using HSP12 promoter-driven GFP expression as a marker, and found that lipid limitation triggered a weaker stress response than nitrogen limitation. We used a SCH9-deleted strain to assess the involvement of nitrogen signalling pathways in the triggering of cell death. Deletion of SCH9 increased yeast viability in the presence of excess nitrogen, indicating that a signalling pathway acting through Sch9p is involved in this nitrogen-triggered cell death. We also show that various nitrogen sources, but not histidine or proline, provoked cell death. Our various findings indicate that lipid limitation does not elicit a transcriptional programme that leads to a stress response protecting yeast cells and that nitrogen excess triggers cell death by modulating this stress response, but not through HSP12. These results reveal a possibly negative role of nitrogen in fermentation, with reported effects referring to ergosterol limitation conditions. These effects should be taken into account in the management of alcoholic fermentations.

  17. Impact of Nutrient Imbalance on Wine Alcoholic Fermentations: Nitrogen Excess Enhances Yeast Cell Death in Lipid-Limited Must

    PubMed Central

    Tesnière, Catherine; Delobel, Pierre; Pradal, Martine; Blondin, Bruno

    2013-01-01

    We evaluated the consequences of nutritional imbalances, particularly lipid/nitrogen imbalances, on wine yeast survival during alcoholic fermentation. We report that lipid limitation (ergosterol limitation in our model) led to a rapid loss of viability during the stationary phase of fermentation and that the cell death rate is strongly modulated by nitrogen availability and nature. Yeast survival was reduced in the presence of excess nitrogen in lipid-limited fermentations. The rapidly dying yeast cells in fermentations in high nitrogen and lipid-limited conditions displayed a lower storage of the carbohydrates trehalose and glycogen than observed in nitrogen-limited cells. We studied the cell stress response using HSP12 promoter-driven GFP expression as a marker, and found that lipid limitation triggered a weaker stress response than nitrogen limitation. We used a SCH9-deleted strain to assess the involvement of nitrogen signalling pathways in the triggering of cell death. Deletion of SCH9 increased yeast viability in the presence of excess nitrogen, indicating that a signalling pathway acting through Sch9p is involved in this nitrogen-triggered cell death. We also show that various nitrogen sources, but not histidine or proline, provoked cell death. Our various findings indicate that lipid limitation does not elicit a transcriptional programme that leads to a stress response protecting yeast cells and that nitrogen excess triggers cell death by modulating this stress response, but not through HSP12. These results reveal a possibly negative role of nitrogen in fermentation, with reported effects referring to ergosterol limitation conditions. These effects should be taken into account in the management of alcoholic fermentations. PMID:23658613

  18. Augmented trophoblast cell death in preeclampsia can proceed via ceramide-mediated necroptosis

    PubMed Central

    Bailey, Liane Jennifer; Alahari, Sruthi; Tagliaferro, Andrea; Post, Martin; Caniggia, Isabella

    2017-01-01

    Preeclampsia, a serious hypertensive disorder of pregnancy, is characterized by elevated ceramide (CER) content that is responsible for heightened trophoblast cell death rates via apoptosis and autophagy. Whether trophoblast cells undergo necroptosis, a newly characterized form of regulated necrosis, and the potential role of CER in this process remain to be established. Herein, we report that exposure of both JEG3 cells and primary isolated cytotrophoblasts to C16:0 CER in conjunction with a caspase-8 inhibitor (Q-VD-OPh) promoted necroptotic cell death, as evidenced by increased expression and association of receptor-interacting protein kinases RIP1 and RIP3, as well as phosphorylation of mixed lineage kinase domain-like (MLKL) protein. MLKL activation and oligomerization could be abrogated by pretreatment with the necroptosis inhibitor necrostatin-1 (Nec-1). CER+Q-VD-OPH-treated primary trophoblasts displayed striking necrotic morphology along with disrupted fusion processes as evidenced by maintenance of E-cadherin-stained membrane boundaries and reduced glial cell missing-1 expression, but these events were effectively reversed using Nec-1. Of clinical relevance, we established an increased susceptibility to necroptotic cell death in preeclamptic placentae relative to normotensive controls. In preeclampsia, increased necrosome (RIP1/RIP3) protein levels, as well as MLKL activation and oligomerization associated with necrotic cytotrophoblast morphology. In addition, caspase-8 activity was reduced in severe early-onset preeclampsia cases. This study is the first to report that trophoblast cells undergo CER-induced necroptotic cell death, thereby contributing to the increased placental dysfunction and cell death found in preeclampsia. PMID:28151467

  19. Crocetin shifts autophagic cell survival to death of breast cancer cells in chemotherapy.

    PubMed

    Zhang, Ailian; Li, Jincheng

    2017-03-01

    The chemotherapy with fluorouracil is not always effective, in which some breast cancer cells may survive the fluorouracil treatment through enhanced autophagy. Crocetin is the major constituent of saffron, a Chinese traditional herb, which has recently found to have multiple pharmacological effects, including anticancer. However, the effects of Crocetin on the outcome of fluorouracil therapy for breast cancer have not been studied. Here, we showed that fluorouracil treatment inhibited the growth of breast cancer cells, in either a Cell Counting Kit-8 assay or an MTT assay. Inhibition of autophagy further suppressed breast cancer cell growth, suggesting that the breast cancer cells increased autophagic cell survival during fluorouracil treatment. However, Crocetin significantly increased the suppressive effects of fluorouracil on breast cancer cell growth, without affecting either cell apoptosis or autophagy. Inhibition of autophagy at the presence of Crocetin partially abolished the suppressive effects on breast cancer cell growth, suggesting that Crocetin may increase autophagic cell death in fluorouracil-treated breast cancer cells. Furthermore, Crocetin decreased Beclin-1 levels but increased ATG1 levels in fluorouracil-treated breast cancer cells. Together, these data suggest that Crocetin may shift autophagic cell survival to autophagic cell death in fluorouracil-treated breast cancer cells, possibly through modulation of the expression of ATG1 and Beclin-1.

  20. Lack of T-cell receptor-induced signaling is crucial for CD95 ligand up-regulation and protects cutaneous T-cell lymphoma cells from activation-induced cell death.

    PubMed

    Klemke, Claus-Detlev; Brenner, Dirk; Weiss, Eva-Maria; Schmidt, Marc; Leverkus, Martin; Gülow, Karsten; Krammer, Peter H

    2009-05-15

    Restimulation of previously activated T cells via the T-cell receptor (TCR) leads to activation-induced cell death (AICD), which is, at least in part, dependent on the death receptor CD95 (APO-1, FAS) and its natural ligand (CD95L). Here, we characterize cutaneous T-cell lymphoma (CTCL) cells (CTCL tumor cell lines and primary CTCL tumor cells from CTCL patients) as AICD resistant. We show that CTCL cells have elevated levels of the CD95-inhibitory protein cFLIP. However, cFLIP is not responsible for CTCL AICD resistance. Instead, our data suggest that reduced TCR-proximal signaling in CTCL cells is responsible for the observed AICD resistance. CTCL cells exhibit no PLC-gamma1 activity, resulting in an impaired Ca(2+)release and reduced generation of reactive oxygen species upon TCR stimulation. Ca(2+) and ROS production are crucial for up-regulation of CD95L and reconstitution of both signals resulted in AICD sensitivity of CTCL cells. In accordance with these data, CTCL tumor cells from patients with Sézary syndrome do not up-regulate CD95L upon TCR-stimulation and are therefore resistant to AICD. These results show a novel mechanism of AICD resistance in CTCL that could have future therapeutic implications to overcome apoptosis resistance in CTCL patients.

  1. Vacuolar processing enzyme in plant programmed cell death

    PubMed Central

    Hatsugai, Noriyuki; Yamada, Kenji; Goto-Yamada, Shino; Hara-Nishimura, Ikuko

    2015-01-01

    Vacuolar processing enzyme (VPE) is a cysteine proteinase originally identified as the proteinase responsible for the maturation and activation of vacuolar proteins in plants, and it is known to be an ortholog of animal asparaginyl endopeptidase (AEP/VPE/legumain). VPE has been shown to exhibit enzymatic properties similar to that of caspase 1, which is a cysteine protease that mediates the programmed cell death (PCD) pathway in animals. Although there is limited sequence identity between VPE and caspase 1, their predicted three-dimensional structures revealed that the essential amino-acid residues for these enzymes form similar pockets for the substrate peptide YVAD. In contrast to the cytosolic localization of caspases, VPE is localized in vacuoles. VPE provokes vacuolar rupture, initiating the proteolytic cascade leading to PCD in the plant immune response. It has become apparent that the VPE-dependent PCD pathway is involved not only in the immune response, but also in the responses to a variety of stress inducers and in the development of various tissues. This review summarizes the current knowledge on the contribution of VPE to plant PCD and its role in vacuole-mediated cell death, and it also compares VPE with the animal cell death executor caspase 1. PMID:25914711

  2. Cell birth, cell death, cell diversity and DNA breaks: how do they all fit together?

    NASA Technical Reports Server (NTRS)

    Gilmore, E. C.; Nowakowski, R. S.; Caviness, V. S. Jr; Herrup, K.

    2000-01-01

    Substantial death of migrating and differentiating neurons occurs within the developing CNS of mice that are deficient in genes required for repair of double-stranded DNA breaks. These findings suggest that large-scale, yet previously unrecognized, double-stranded DNA breaks occur normally in early postmitotic and differentiating neurons. Moreover, they imply that cell death occurs if the breaks are not repaired. The cause and natural function of such breaks remains a mystery; however, their occurrence has significant implications. They might be detected by histological methods that are sensitive to DNA fragmentation and mistakenly interpreted to indicate cell death when no relationship exists. In a broader context, there is now renewed speculation that DNA recombination might be occurring during neuronal development, similar to DNA recombination in developing lymphocytes. If this is true, the target gene(s) of recombination and their significance remain to be determined.

  3. Varying butyric acid amounts induce different stress- and cell death-related signals in nerve growth factor-treated PC12 cells: implications in neuropathic pain absence during periodontal disease progression.

    PubMed

    Seki, Keisuke; Cueno, Marni E; Kamio, Noriaki; Saito, Yuko; Kamimoto, Atsushi; Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu

    2016-06-01

    Neuropathic pain is absent from the early stages of periodontal disease possibly due to neurite retraction. Butyric acid (BA) is a periodontopathic metabolite that activates several stress-related signals and, likewise, induce neurite retraction. Neuronal cell death is associated to neurite retraction which would suggest that BA-induced neurite retraction is ascribable to neuronal cell death. However, the underlying mechanism of BA-related cell death signaling remains unknown. In this study, we exposed NGF-treated PC12 cells to varying BA concentrations [0 (control), 0.5, 1.0, 5.0 mM] and determined selected stress-related (H2O2, glutathione reductase, calcium (Ca(2+)), plasma membrane Ca(2+) ATPase (PMCA), and GADD153/CHOPS) and cell death-associated (extrinsic: FasL, TNF-α, TWEAK, and TRAIL; intrinsic: cytochrome C (CytC), NF-kB, CASP8, CASP9, CASP10, and CASP3) signals. Similarly, we confirmed cell death execution by chromatin condensation. Our results showed that low (0.5 mM) and high (1.0 and 5.0 mM) BA levels differ in stress and cell death signaling. Moreover, at periodontal disease-level BA concentration (5 mM), we observed that only FasL amounts were affected and occurred concurrently with chromatin condensation insinuating that cells have fully committed to neurodegeneration. Thus, we believe that both stress and cell death signaling in NGF-treated PC12 cells are affected differently depending on BA concentration. In a periodontal disease scenario, we hypothesize that during the early stages, low BA amounts accumulate resulting to both stress- and cell death-related signals that favor neurite non-proliferation, whereas, during the later stages, high BA amounts accumulate resulting to both stress- and cell death-related signals that favor neurodegeneration. More importantly, we propose that neuropathic pain absence at any stage of periodontal disease progression is ascribable to BA accumulation regardless of amount.

  4. Comparative study of autophagy inhibition by 3MA and CQ on Cytarabine‑induced death of leukaemia cells.

    PubMed

    Palmeira dos Santos, Caroline; Pereira, Gustavo J S; Barbosa, Christiano M V; Jurkiewicz, Aron; Smaili, Soraya S; Bincoletto, Claudia

    2014-06-01

    As the molecular mechanisms of Cytarabine,one of the most important drugs used in the leukaemia’s treatment, are only partially understood and the role of autophagy on leukaemia development and treatment is only recently being investigated, in this study, by using Chloroquine (CQ) and 3-methyladenine (3MA) as autophagy inhibitors, we aim to evaluate the contribution of an autophagic mechanism to Cytarabine (AraC)-induced death of HL60 leukaemia cells. Trypan blue exclusion and AnnexinV/PI assays were used to evaluate HL60 cell death under AraC treatment in the presence or absence of 3MA and CQ. Western blotting and immunofluorescence experiments were performed to show the involvement of apoptosis and autophagy protein expressions. Phenotypic characterization of HL60-treated cells was performed by using immunophenotyping. Clonogenic assays were applied to analyse clonal function of HL60-treated cells. We observed that although autophagy inhibition by 3MA, but not CQ, increased the death of HL60 AraC cells after 24 h of treatment, no significant differences between AraC and AraC + 3MA-treated groups were observed by using clonogenic assay. In addition, increased number of immature (CD34(+)/CD38(−)Lin(−/low)) HL60 cells was found in AraC and AraC-3MA groups when compared with control untreated cells. Although AraC anti-leukaemia effects could be potentiated by 3MA autophagy inhibition after 24 h of exposure, leukaemia cell resistance, the main causes of treatment failure, is also promoted by autophagy initial stage impairment by 3MA, denoting the complex role of autophagy in leukaemia cells’ response to chemotherapy.

  5. Label-free monitoring of cell death induced by oxidative stress in living human cells using terahertz ATR spectroscopy

    PubMed Central

    Zou, Yi; Liu, Qiao; Yang, Xia; Huang, Hua-Chuan; Li, Jiang; Du, Liang-Hui; Li, Ze-Ren; Zhao, Jian-Heng; Zhu, Li-Guo

    2017-01-01

    We demonstrated that attenuated total reflectance terahertz time-domain spectroscopy (ATR THz-TDS) is able to monitor oxidative stress response of living human cells, which is proven in this work that it is an efficient non-invasive, label-free, real-time and in situ monitoring of cell death. Furthermore, the dielectric constant and dielectric loss of cultured living human breast epithelial cells, and along with their evolution under oxidative stress response induced by high concentration of H2O2, were quantitatively determined in the work. Our observation and results were finally confirmed using standard fluorescence-labeled flow cytometry measurements and visible fluorescence imaging. PMID:29359084

  6. Mangiferin induces cell death against rhabdomyosarcoma through sustained oxidative stress.

    PubMed

    Padma, Vishwanadha Vijaya; Kalaiselvi, Palanisamy; Yuvaraj, Rangasamy; Rabeeth, M

    2015-06-01

    Embryonic rhabdomyosarcoma (RD) is the most prevalent type of cancer among children. The present study aimed to investigate cell death induced by mangiferin in RD cells. The Inhibitory concentration (IC 50 ) value of mangiferin was determined by an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. Cell death induced by mangiferin against RD cells was determined through lactate dehydrogenase and nitric oxide release, intracellular calcium levels, reactive oxygen species generation, antioxidant status, mitochondrial calcium level, and mitochondrial membrane potential. Furthermore, acridine orange/ethidium bromide staining was performed to determine early/late apoptotic event. Mangiferin induced cell death in RD cells with an IC 50 value of 70 μM. The cytotoxic effect was reflected in a dose-dependent increase in lactate dehydrogenase leakage and nitric oxide release during mangiferin treatment. Mangiferin caused dose dependent increase in reactive oxygen species generation, intracellular calcium levels with subsequent decrease in antioxidant status (catalase, superoxide dismutase, glutathione-S-transferase, and glutathione) and loss of mitochondrial membrane potential in RD cells. Further data from fluorescence microscopy suggest that mangiferin caused cell shrinkage and nuclear condensation along with the occurrence of a late event of apoptosis. Results of the present study shows that mangiferin can act as a promising chemopreventive agent against RD by inducing sustained oxidative stress.

  7. Cell block eleven, looking from the "Death Row" exercise yard, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cell block eleven, looking from the "Death Row" exercise yard, facing north (note cell block fifteen to the right and cell block fourteen in the distance_ - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  8. Glutathione peroxidase 4 overexpression inhibits ROS-induced cell death in diffuse large B-cell lymphoma.

    PubMed

    Kinowaki, Yuko; Kurata, Morito; Ishibashi, Sachiko; Ikeda, Masumi; Tatsuzawa, Anna; Yamamoto, Masahide; Miura, Osamu; Kitagawa, Masanobu; Yamamoto, Kouhei

    2018-02-20

    Regulation of oxidative stress and redox systems has important roles in carcinogenesis and cancer progression, and for this reason has attracted much attention as a new area of cancer therapeutic targets. Glutathione peroxidase 4 (GPX4), an antioxidant enzyme, has biological important functions such as signaling cell death by suppressing peroxidation of membrane phospholipids. However, few studies exist on the expression and clinical relevance of GPX4 in malignant lymphomas such as diffuse large B-cell lymphoma. In this study, we assessed the expression of GPX4 immunohistochemically. GPX4 was expressed in 35.5% (33/93) cases of diffuse large B-cell lymphoma. The GPX4-positive group had poor overall survival (P = 0.0032) and progression-free survival (P = 0.0004) compared with those of the GPX4-negative group. In a combined analysis of GPX4 and 8-hydroxydeoxyguanosine (8-OHdG), an oxidative stress marker, there was a negative correlation between GPX4 and 8-hydroxydeoxyguanosine (P = 0.0009). The GPX4-positive and 8-hydroxydeoxyguanosine-negative groups had a significantly worse prognosis than the other groups in both overall survival (P = 0.0170) and progression-free survival (P = 0.0005). These results suggest that the overexpression of GPX4 is an independent prognostic predictor in diffuse large B-cell lymphoma. Furthermore, in vitro analysis demonstrated that GPX4-overexpressing cells were resistant to reactive oxygen species-induced cell death (P = 0.0360). Conversely, GPX4-knockdown cells were sensitive to reactive oxygen species-induced cell death (P = 0.0111). From these data, we conclude that GPX4 regulates reactive oxygen species-induced cell death. Our results suggest a novel therapeutic strategy using the mechanism of ferroptosis, as well as a novel prognostic predictor of diffuse large B-cell lymphoma.

  9. Deferasirox-induced iron depletion promotes BclxL downregulation and death of proximal tubular cells

    PubMed Central

    Martin-Sanchez, Diego; Gallegos-Villalobos, Angel; Fontecha-Barriuso, Miguel; Carrasco, Susana; Sanchez-Niño, Maria Dolores; Lopez-Hernandez, Francisco J; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto; Sanz, Ana Belén

    2017-01-01

    Iron deficiency has been associated with kidney injury. Deferasirox is an oral iron chelator used to treat blood transfusion-related iron overload. Nephrotoxicity is the most serious and common adverse effect of deferasirox and may present as an acute or chronic kidney disease. However, scarce data are available on the molecular mechanisms of nephrotoxicity. We explored the therapeutic modulation of deferasirox-induced proximal tubular cell death in culture. Deferasirox induced dose-dependent tubular cell death and AnexxinV/7AAD staining showed features of apoptosis and necrosis. However, despite inhibiting caspase-3 activation, the pan-caspase inhibitor zVAD-fmk failed to prevent deferasirox-induced cell death. Moreover, zVAD increased deferasirox-induced cell death, a feature sometimes found in necroptosis. Electron microscopy identified mitochondrial injury and features of necrosis. However, neither necrostatin-1 nor RIP3 knockdown prevented deferasirox-induced cell death. Deferasirox caused BclxL depletion and BclxL overexpression was protective. Preventing iron depletion protected from BclxL downregulation and deferasirox cytotoxicity. In conclusion, deferasirox promoted iron depletion-dependent cell death characterized by BclxL downregulation. BclxL overexpression was protective, suggesting a role for BclxL downregulation in iron depletion-induced cell death. This information may be used to develop novel nephroprotective strategies. Furthermore, it supports the concept that monitoring kidney tissue iron depletion may decrease the risk of deferasirox nephrotoxicity. PMID:28139717

  10. Deferasirox-induced iron depletion promotes BclxL downregulation and death of proximal tubular cells.

    PubMed

    Martin-Sanchez, Diego; Gallegos-Villalobos, Angel; Fontecha-Barriuso, Miguel; Carrasco, Susana; Sanchez-Niño, Maria Dolores; Lopez-Hernandez, Francisco J; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto; Sanz, Ana Belén

    2017-01-31

    Iron deficiency has been associated with kidney injury. Deferasirox is an oral iron chelator used to treat blood transfusion-related iron overload. Nephrotoxicity is the most serious and common adverse effect of deferasirox and may present as an acute or chronic kidney disease. However, scarce data are available on the molecular mechanisms of nephrotoxicity. We explored the therapeutic modulation of deferasirox-induced proximal tubular cell death in culture. Deferasirox induced dose-dependent tubular cell death and AnexxinV/7AAD staining showed features of apoptosis and necrosis. However, despite inhibiting caspase-3 activation, the pan-caspase inhibitor zVAD-fmk failed to prevent deferasirox-induced cell death. Moreover, zVAD increased deferasirox-induced cell death, a feature sometimes found in necroptosis. Electron microscopy identified mitochondrial injury and features of necrosis. However, neither necrostatin-1 nor RIP3 knockdown prevented deferasirox-induced cell death. Deferasirox caused BclxL depletion and BclxL overexpression was protective. Preventing iron depletion protected from BclxL downregulation and deferasirox cytotoxicity. In conclusion, deferasirox promoted iron depletion-dependent cell death characterized by BclxL downregulation. BclxL overexpression was protective, suggesting a role for BclxL downregulation in iron depletion-induced cell death. This information may be used to develop novel nephroprotective strategies. Furthermore, it supports the concept that monitoring kidney tissue iron depletion may decrease the risk of deferasirox nephrotoxicity.

  11. Interferon-induced TRAIL-independent cell death in DNase II-/- embryos.

    PubMed

    Kitahara, Yusuke; Kawane, Kohki; Nagata, Shigekazu

    2010-09-01

    The chromosomal DNA of apoptotic cells and the nuclear DNA expelled from erythroid precursors is cleaved by DNase II in lysosomes after the cells or nuclei are engulfed by macrophages. DNase II(-/-) embryos suffer from lethal anemia due to IFN-beta produced in the macrophages carrying undigested DNA. Here, we show that Type I IFN induced a caspase-dependent cell death in human epithelial cells that were transformed to express a high level of IFN type I receptor. During this death process, a set of genes was strongly activated, one of which encoded TRAIL, a death ligand. A high level of TRAIL mRNA was also found in the fetal liver of the lethally anemic DNase II(-/-) embryos, and a lack of IFN type I receptor in the DNase II(-/-) IFN-IR(-/-) embryos blocked the expression of TRAIL mRNA. However, a null mutation in TRAIL did not rescue the lethal anemia of the DNase II(-/-) embryos, indicating that TRAIL is dispensable for inducing the apoptosis of erythroid cells in DNase II(-/-) embryos, and therefore, that there is a TRAIL-independent mechanism for the IFN-induced apoptosis.

  12. Autophagy in lurcher mice: indicted but yet to be acquitted for the death of Purkinje cells.

    PubMed

    Yue, Zhenyu

    2010-05-01

    A recent study published in the Journal of Neuroscience by Nishiyama et al., has revisited an autophagy-neurodegeneration model of lurcher (Lc) mice and promoted further discussion regarding the "autophagic cell death" hypothesis. While the study confirmed the previous report by Yue et al., that GluRD2Lc induces autophagy both in vitro and in vivo, it also suggests that GluRD2 (Lc)-mediated autophagy and cell death occur via pathways outside the nPIST-Beclin 1 pathway. For example, the study makes an interesting observation that GluRD2 (Lc)-induced degeneration is associated with energy crisis and an aberrant AMPK activity. The result provides insight into the downstream events induced by GluRD2 (Lc); however, it is not surprising considering that constitutive ion influx caused by the Lc mutation is expected to cause activation of multiple cellular pathways or responses. In conclusion, the authors state that "constitutive ion flux causes cell death with, but not by, autophagy." The conclusion appears consistent with the primary function of autophagy, from an evolutionary point of view, as a survival mechanism.

  13. Cell damage and death by autoschizis in human bladder (RT4) carcinoma cells resulting from treatment with ascorbate and menadione.

    PubMed

    Gilloteaux, Jacques; Jamison, James M; Neal, Deborah R; Loukas, Marios; Doberzstyn, Theresa; Summers, Jack L

    2010-05-01

    A human bladder carcinoma cell line RT4 was sham-treated with buffer or treated with ascorbate (VC) alone, menadione alone (VK(3)), or a combination of ascorbate:menadione (VC+VK(3)) for 1, 2, and 4 h. Cytotoxic damage was found to be treatment-dependent in this sequence: VC+VK(3)>VC>VK(3)>sham. The combined treatment induced the greatest oxidative stress, with early tumor cell injury affecting the cytoskeletal architecture and contributing to the self-excisions of pieces of cytoplasm freed from organelles. Additional damage, including a reduction in cell size, organelle alterations, nuclear damage, and nucleic acid degradation as well as compromised lysosome integrity, is caused by reactivation of DNases and the redox cycling of VC or VC+VK(3). In addition, cell death caused by VC+VK(3) treatment as well as by prolonged VC treatment is consistent with cell demise by autoschizis, not apoptosis. This report confirms and complements previous observations about this new mode of tumor cell death. It supports the contention that a combination of VC+VK(3), also named Apatone, could be co-administered as a nontoxic adjuvant with radiation and/or chemotherapies to kill bladder tumor cells and other cancer cells without any supplementary risk or side effects for patients.

  14. Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft.

    PubMed

    Yamamoto, Yutaro; Tomiyama, Arata; Sasaki, Nobuyoshi; Yamaguchi, Hideki; Shirakihara, Takuya; Nakashima, Katsuhiko; Kumagai, Kosuke; Takeuchi, Satoru; Toyooka, Terushige; Otani, Naoki; Wada, Kojiro; Narita, Yoshitaka; Ichimura, Koichi; Sakai, Ryuichi; Namba, Hiroki; Mori, Kentaro

    2018-01-01

    Development of resistance against temozolomide (TMZ) in glioblastoma (GBM) after continuous treatment with TMZ is one of the critical problems in clinical GBM therapy. Intracellular cholesterol regulates cancer cell biology, but whether intracellular cholesterol is involved in TMZ resistance of GBM cells remains unclear. The involvement of intracellular cholesterol in acquired resistance against TMZ in GBM cells was investigated. Intracellular cholesterol levels were measured in human U251 MG cells with acquired TMZ resistance (U251-R cells) and TMZ-sensitive control U251 MG cells (U251-Con cells), and found that the intracellular cholesterol level was significantly lower in U251-R cells than in U251-Con cells. In addition, treatment by intracellular cholesterol remover, methyl-beta cyclodextrin (MβCD), or intracellular cholesterol inducer, soluble cholesterol (Chol), regulated TMZ-induced U251-Con cell death in line with changes in intracellular cholesterol level. Involvement of death receptor 5 (DR5), a death receptor localized in the plasma membrane, was evaluated. TMZ without or with MβCD and/or Chol caused accumulation of DR5 into the plasma membrane lipid raft and formed a complex with caspase-8, an extrinsic caspase cascade inducer, reflected in the induction of cell death. In addition, treatment with caspase-8 inhibitor or knockdown of DR5 dramatically suppressed U251-Con cell death induced by combination treatment with TMZ, MβCD, and Chol. Combined treatment of Chol with TMZ reversed the TMZ resistance of U251-R cells and another GBM cell model with acquired TMZ resistance, whereas clinical antihypercholesterolemia agents at physiological concentrations suppressed TMZ-induced cell death of U251-Con cells. These findings suggest that intracellular cholesterol level affects TMZ treatment of GBM mediated via a DR5-caspase-8 mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. How well can morphology assess cell death modality? A proteomics study

    PubMed Central

    Chernobrovkin, Alexey L; Zubarev, Roman A

    2016-01-01

    While the focus of attempts to classify cell death programs has finally shifted in 2010s from microscopy-based morphological characteristics to biochemical assays, more recent discoveries have put the underlying assumptions of many such assays under severe stress, mostly because of the limited specificity of the assays. On the other hand, proteomics can quantitatively measure the abundances of thousands of proteins in a single experiment. Thus proteomics could develop a modern alternative to both semiquantitative morphology assessment as well as single-molecule biochemical assays. Here we tested this hypothesis by analyzing the proteomes of cells dying after been treated with various chemical agents. The most striking finding is that, for a multivariate model based on the proteome changes in three cells lines, the regulation patterns of the 200–500 most abundant proteins typically attributed to household type more accurately reflect that of the proteins directly interacting with the drug than any other protein subset grouped by common function or biological process, including cell death. This is in broad agreement with the 'rigid cell death mechanics' model where drug action mechanism and morphological changes caused by it are bijectively linked. This finding, if confirmed, will open way for a broad use of proteomics in death modality assessment. PMID:27752363

  16. PDT: death pathways

    NASA Astrophysics Data System (ADS)

    Kessel, David

    2007-02-01

    Cellular targets of photodynamic therapy include mitochondria, lysosomes, the endoplasmic reticulum (ER) and the plasma membrane. PDT can evoke necrosis, autophagy and apoptosis, or combinations of these, depending on the PDT dose, the site(s) of photodamage and the cellular phenotype. It has been established that loss of viability occurs even when the apoptotic program is inhibited. Studies assessing effects of ER or mitochondrial photodamage, involving loss of Bcl-2 function, indicate that low-dose PDT elicited a rapid autophagic response in L1210 cells. This was attributed to the ability of autophagy to recycle photodamaged organelles, and there was partial protection from loss of viability. This effect was not observed in L1210/Atg7, where autophagy was silenced. At higher PDT doses, apoptotic cells were observed within 60 min in both cell lines, but more so in L1210. The ability of L1210 cells to undergo autophagy did not offer protection from cell death at the higher PDT dose. Previous studies had indicated that autophagy can contribute to cell death, since L1210 cells that do not undergo an initial apoptotic response often contain multiple autophagic vacuoles 24 hr later. With L1210/Atg7, apoptosis alone may account for the loss of viability at an LD 90 PDT dose.

  17. Morusin induces paraptosis-like cell death through mitochondrial calcium overload and dysfunction in epithelial ovarian cancer.

    PubMed

    Xue, Jing; Li, Rui; Zhao, Xinrui; Ma, Congcong; Lv, Xin; Liu, Lidong; Liu, Peishu

    2018-03-01

    Epithelial ovarian cancer (EOC) is the leading cause of death among all gynecological cancers. Morusin, a prenylated flavonoid extracted from the root bark of Morus australis, has been reported to exhibit anti-tumor activity against various human cancers except EOC. In the present study, we explored the potential anti-cancer activity of morusin against EOC in vitro and in vivo and possible underlying mechanisms for the first time. We first found that morusin effectively inhibited EOC cell proliferation and survival in vitro and suppressed tumor growth in vivo. Then we observed that treatment of EOC cells with morusin resulted in paraptosis-like cell death, a novel mode of non-apoptotic programmed cell death that is characterized by extensive cytoplasmic vacuolation due to dilation of the endoplasmic reticulum (ER) and mitochondria and lack of apoptotic hallmarks. In addition, we discovered that morusin induced obvious increase in mitochondrial Ca 2+ levels, accumulation of ER stress markers, generation of reactive oxygen species (ROS), and loss of mitochondrial membrane potential (Δψm) in EOC cells. Furthermore, pretreatment with 4, 4'-diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS), a chemical inhibitor of voltage-dependent anion channel (VDAC) on the outer mitochondrial membrane, effectively inhibited mitochondrial Ca 2+ influx, cytoplasmic vacuolation and cell death induced by morusin in EOC cells. Moreover, DIDS pretreatment also suppressed morusin-induced accumulation of ER stress markers, ROS production and depletion of Δψm. Consistently, tumor xenograft assays showed that co-treatment with DIDS partially reversed the inhibitory effects of morusin on tumor growth in vivo and inhibited the increased levels of ER stress markers induced by morusin in tumor tissues. Collectively, our results suggest that VDAC-mediated Ca 2+ influx into mitochondria and subsequent mitochondrial Ca 2+ overload contribute to mitochondrial swelling and dysfunction, leading to

  18. Nanosecond-Pulsed DBD Plasma-Generated Reactive Oxygen Species Trigger Immunogenic Cell Death in A549 Lung Carcinoma Cells through Intracellular Oxidative Stress

    PubMed Central

    Lin, Abraham; Truong, Billy; Patel, Sohil; Kaushik, Nagendra; Choi, Eun Ha; Fridman, Gregory; Fridman, Alexander; Miller, Vandana

    2017-01-01

    A novel application for non-thermal plasma is the induction of immunogenic cancer cell death for cancer immunotherapy. Cells undergoing immunogenic death emit danger signals which facilitate anti-tumor immune responses. Although pathways leading to immunogenic cell death are not fully understood; oxidative stress is considered to be part of the underlying mechanism. Here; we studied the interaction between dielectric barrier discharge plasma and cancer cells for oxidative stress-mediated immunogenic cell death. We assessed changes to the intracellular oxidative environment after plasma treatment and correlated it to emission of two danger signals: surface-exposed calreticulin and secreted adenosine triphosphate. Plasma-generated reactive oxygen and charged species were recognized as the major effectors of immunogenic cell death. Chemical attenuators of intracellular reactive oxygen species successfully abrogated oxidative stress following plasma treatment and modulated the emission of surface-exposed calreticulin. Secreted danger signals from cells undergoing immunogenic death enhanced the anti-tumor activity of macrophages. This study demonstrated that plasma triggers immunogenic cell death through oxidative stress pathways and highlights its potential development for cancer immunotherapy. PMID:28467380

  19. Inhibition of Cyclooxygenase-2 (COX-2) Initiates Autophagy and Potentiates MPTP-Induced Autophagic Cell Death of Human Neuroblastoma Cells, SH-SY5Y: an Inside in the Pathology of Parkinson's Disease.

    PubMed

    Niranjan, Rituraj; Mishra, Kaushal Prasad; Thakur, Ashwani Kumar

    2018-03-01

    Cyclooxygenase-2 or COX-2 has been known to be crucial for Parkinson's disease (PD) pathogenesis; however, its exact role is still not known. We first time report that inhibition of COX-2 promotes 1-methyl-4-phenyl 1,2,3,6 tetrahydropyridine (MPTP)-induced neuronal cell death via induction of autophagic mechanisms. We found that treatment with MPTP induced cell death of neuroblastoma cells SH-SY5Y in a dose dependent manner. Treatment of MPTP has also upregulated the expressions of autophagic proteins such as LC3, beclin, ATG-5, and p62. Interestingly, nimesulide, a preferential COX-2 inhibitor, further potentiated the MPTP-induced cell death of human neuroblastoma cells. Treatment of nimesulide with MPTP further potentiated expressions of p62, ATG-5, beclin-1, LC3 autophagic proteins. Furthermore, nimesulide with MPTP increased apoptotic protein cleaved caspase-3 and also induced expression of p53 gene. Interestingly, it was observed that Akt inhibitor significantly increased MPTP-induced cell death of neuroblastoma cells. However, (-) deprenyl, a monoamine oxidase B (MAO B) inhibitor, attenuated MPTP-induced autophagic response and protected cell death. The prior treatment with prostaglandin E2 protected against nimesulide induced-death of neuronal cells. This study confirms that neuroinflammation is associated to the autophagy and may be one of the main pathological mechanisms in Parkinson's disease and other inflammation-associated disorders.

  20. 'Hints' in the killer protein gasdermin D: unveiling the secrets of gasdermins driving cell death.

    PubMed

    Qiu, Shiqiao; Liu, Jing; Xing, Feiyue

    2017-04-01

    Pyroptosis is a lytic form of cell death distinguished from apoptosis, ferroptosis, necrosis, necroptosis, NETosis, oncosis, pyronecrosis and autophagy. Proinflammatory caspases cleave a gasdermin D (GSDMD) protein to generate a 31 kDa N-terminal domain. The cleavage relieves the intramolecular inhibition on the gasdermin-N domain, which then moves to the plasma membrane to exhibit pore-forming activity. Thus, GSDMD acts as the final and direct executor of pyroptotic cell death. Owing to the selective targeting of the inner leaflet of the plasma membrane with the pore-forming that determines pyroptotic cell death, GSDMD could be a potential target to control cell death or extracellular bacterial infections. Intriguingly, other gasdermin family members also share similar N-terminal domains, but they present different cell death programs. Herein, we summarize features and functions of the novel player proteins in cell death, including GSDMD triggering pyroptosis, Gsdma3/GSDMA initiating autophagy/apoptosis and DFNA5 inducing apoptosis/secondary necrosis. The gasdermin N terminus appears to be a novel pore-forming protein. This provides novel insight into the underlying roles and mechanisms of lytic or nonlytic forms of programmed cell death, as well as their potential applications in inflammation-associated diseases.

  1. Rip3 knockdown rescues photoreceptor cell death in blind pde6c zebrafish.

    PubMed

    Viringipurampeer, I A; Shan, X; Gregory-Evans, K; Zhang, J P; Mohammadi, Z; Gregory-Evans, C Y

    2014-05-01

    Achromatopsia is a progressive autosomal recessive retinal disease characterized by early loss of cone photoreceptors and later rod photoreceptor loss. In most cases, mutations have been identified in CNGA3, CNGB3, GNAT2, PDE6C or PDE6H genes. Owing to this genetic heterogeneity, mutation-independent therapeutic schemes aimed at preventing cone cell death are very attractive treatment strategies. In pde6c(w59) mutant zebrafish, cone photoreceptors expressed high levels of receptor-interacting protein kinase 1 (RIP1) and receptor-interacting protein kinase 3 (RIP3) kinases, key regulators of necroptotic cell death. In contrast, rod photoreceptor cells were alternatively immunopositive for caspase-3 indicating activation of caspase-dependent apoptosis in these cells. Morpholino gene knockdown of rip3 in pde6c(w59) embryos rescued the dying cone photoreceptors by inhibiting the formation of reactive oxygen species and by inhibiting second-order neuron remodelling in the inner retina. In rip3 morphant larvae, visual function was restored in the cones by upregulation of the rod phosphodiesterase genes (pde6a and pde6b), compensating for the lack of cone pde6c suggesting that cones are able to adapt to their local environment. Furthermore, we demonstrated through pharmacological inhibition of RIP1 and RIP3 activity that cone cell death was also delayed. Collectively, these results demonstrate that the underlying mechanism of cone cell death in the pde6c(w59) mutant retina is through necroptosis, whereas rod photoreceptor bystander death occurs through a caspase-dependent mechanism. This suggests that targeting the RIP kinase signalling pathway could be an effective therapeutic intervention in retinal degeneration patients. As bystander cell death is an important feature of many retinal diseases, combinatorial approaches targeting different cell death pathways may evolve as an important general principle in treatment.

  2. E-Cigarette Aerosol Exposure Induces Reactive Oxygen Species, DNA Damage, and Cell Death in Vascular Endothelial Cells.

    PubMed

    Anderson, Chastain; Majeste, Andrew; Hanus, Jakub; Wang, Shusheng

    2016-12-01

    Cigarette smoking remains one of the leading causes of preventable death worldwide. Vascular cell death and dysfunction is a central or exacerbating component in the majority of cigarette smoking related pathologies. The recent development of the electronic nicotine delivery systems known as e-cigarettes provides an alternative to conventional cigarette smoking; however, the potential vascular health risks of e-cigarette use remain unclear. This study evaluates the effects of e-cigarette aerosol extract (EAE) and conventional cigarette smoke extract (CSE) on human umbilical vein endothelial cells (HUVECs). A laboratory apparatus was designed to produce extracts from e-cigarettes and conventional cigarettes according to established protocols for cigarette smoking. EAE or conventional CSE was applied to human vascular endothelial cells for 4-72 h, dependent on the assay. Treated cells were assayed for reactive oxygen species, DNA damage, cell viability, and markers of programmed cell death pathways. Additionally, the anti-oxidants α-tocopherol and n-acetyl-l-cysteine were used to attempt to rescue e-cigarette induced cell death. Our results indicate that e-cigarette aerosol is capable of inducing reactive oxygen species, causing DNA damage, and significantly reducing cell viability in a concentration dependent fashion. Immunofluorescent and flow cytometry analysis indicate that both the apoptosis and programmed necrosis pathways are triggered by e-cigarette aerosol treatment. Additionally, anti-oxidant treatment provides a partial rescue of the induced cell death, indicating that reactive oxygen species play a causal role in e-cigarette induced cytotoxicity. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Ursodeoxycholic acid effectively kills drug-resistant gastric cancer cells through induction of autophagic death.

    PubMed

    Lim, Sung-Chul; Han, Song Iy

    2015-09-01

    Carcinoma cells that have acquired drug resistance often exhibit cross-resistance to various other cytotoxic stimuli. Here, we investigated the effects of ursodeoxycholic acid (UDCA), a gastrointestinal tumor-suppressor, on a cisplatin‑resistant SNU601 gastric cancer subline (SNU601/R). While other anticancer drugs, including L-OHP, etoposide, and death ligand TRAIL, had minimal effects on the viability of these resistant cells, they were sensitive to UDCA. The UDCA‑induced reduction in the viability of the SNU601/R cells was accomplished through autophagy while the primary means of cell death in the parental SNU601 cells (SNU601/WT) was apoptosis. Previously, we demonstrated that the UDCA-triggered apoptosis of gastric cancer cells was regulated by a cell surface death receptor, TRAIL-R2/DR5, which was upregulated and re-distributed on lipid rafts. The UDCA stimulation of TRAIL-R2/DR5 also occurred in the SNU601/R cells despite the lack of apoptosis. In the present study, we found that CD95/Fas, another cell surface death receptor, was also translocated into lipid rafts in response to UDCA although it was not involved in the decrease in cell viability. Specifically, raft relocalization of CD95/Fas was triggered by UDCA in the SNU601/WT cells in which apoptosis occurred, but not in the SNU601/R cells where autophagic death occurred. Notably, UDCA reduced ATG5 levels, an essential component of autophagy, in the SNU601/WT, but not in the SNU601/R cell line. Moreover, in CD95/Fas-silenced SNU601/WT cells, UDCA did not decrease ATG5 levels and induced autophagic cell death rather than apoptosis. These results imply that raft‑distributed CD95/Fas may support UDCA-induced apoptosis via downregulation of ATG5 levels, preventing the autophagic pathway. Taken together, these results suggest that UDCA induces both apoptotic and autophagic cell death depending on the intracellular signaling environment, thereby conferring the advantage to overcome drug resistance

  4. The cell on the edge of life and death: Crosstalk between autophagy and apoptosis.

    PubMed

    Kasprowska-Liśkiewicz, Daniela

    2017-09-21

    Recently, the crosstalk between autophagy and apoptosis has attracted broader attention. Basal autophagy serves to maintain cell homeostasis, while the upregulation of this process is an element of stress response that enables the cell to survive under adverse conditions. Autophagy may also determine the fate of the cell through its interactions with cell death pathways. The protein networks that control the initiation and the execution phase of these two processes are highly interconnected. Several scenarios for the crosstalk between autophagy and apoptosis exist. In most cases, the activation of autophagy represents an attempt of the cell to cope with stress, and protects the cell from apoptosis or delays its initiation. Generally, the simultaneous activation of pro-survival and pro-death pathways is prevented by the mutual inhibitory crosstalk between autophagy and apoptosis. But in some circumstances, autophagy or the proteins of the core autophagic machinery may promote cellular demise through excessive self-digestion (so-called "autophagic cell death") or by stimulating the activation of other cell death pathways. It is controversial whether cells actually die via autophagy, which is why the term "autophagic cell death" has been under intense debate lately. This review summarizes the recent findings on the multilevel crosstalk between autophagy and apoptosis in aspects of common regulators, mutual inhibition of these processes, the stimulation of apoptosis by autophagy or autophagic proteins and finally the role of autophagy as a death-execution mechanism.

  5. Circadian Stress Regimes Affect the Circadian Clock and Cause Jasmonic Acid-Dependent Cell Death in Cytokinin-Deficient Arabidopsis Plants[OPEN

    PubMed Central

    Nitschke, Silvia; Cortleven, Anne; Iven, Tim; Havaux, Michel; Schmülling, Thomas

    2016-01-01

    The circadian clock helps plants measure daylength and adapt to changes in the day-night rhythm. We found that changes in the light-dark regime triggered stress responses, eventually leading to cell death, in leaves of Arabidopsis thaliana plants with reduced cytokinin levels or defective cytokinin signaling. Prolonged light treatment followed by a dark period induced stress and cell death marker genes while reducing photosynthetic efficiency. This response, called circadian stress, is also characterized by altered expression of clock and clock output genes. In particular, this treatment strongly reduced the expression of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). Intriguingly, similar changes in gene expression and cell death were observed in clock mutants lacking proper CCA1 and LHY function. Circadian stress caused strong changes in reactive oxygen species- and jasmonic acid (JA)-related gene expression. The activation of the JA pathway, involving the accumulation of JA metabolites, was crucial for the induction of cell death, since the cell death phenotype was strongly reduced in the jasmonate resistant1 mutant background. We propose that adaptation to circadian stress regimes requires a normal cytokinin status which, acting primarily through the AHK3 receptor, supports circadian clock function to guard against the detrimental effects of circadian stress. PMID:27354555

  6. Circadian Stress Regimes Affect the Circadian Clock and Cause Jasmonic Acid-Dependent Cell Death in Cytokinin-Deficient Arabidopsis Plants.

    PubMed

    Nitschke, Silvia; Cortleven, Anne; Iven, Tim; Feussner, Ivo; Havaux, Michel; Riefler, Michael; Schmülling, Thomas

    2016-07-01

    The circadian clock helps plants measure daylength and adapt to changes in the day-night rhythm. We found that changes in the light-dark regime triggered stress responses, eventually leading to cell death, in leaves of Arabidopsis thaliana plants with reduced cytokinin levels or defective cytokinin signaling. Prolonged light treatment followed by a dark period induced stress and cell death marker genes while reducing photosynthetic efficiency. This response, called circadian stress, is also characterized by altered expression of clock and clock output genes. In particular, this treatment strongly reduced the expression of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). Intriguingly, similar changes in gene expression and cell death were observed in clock mutants lacking proper CCA1 and LHY function. Circadian stress caused strong changes in reactive oxygen species- and jasmonic acid (JA)-related gene expression. The activation of the JA pathway, involving the accumulation of JA metabolites, was crucial for the induction of cell death, since the cell death phenotype was strongly reduced in the jasmonate resistant1 mutant background. We propose that adaptation to circadian stress regimes requires a normal cytokinin status which, acting primarily through the AHK3 receptor, supports circadian clock function to guard against the detrimental effects of circadian stress. © 2016 American Society of Plant Biologists. All rights reserved.

  7. Reactive oxygen species induced by Streptococcus pyogenes invasion trigger apoptotic cell death in infected epithelial cells.

    PubMed

    Aikawa, Chihiro; Nozawa, Takashi; Maruyama, Fumito; Tsumoto, Kohei; Hamada, Shigeyuki; Nakagawa, Ichiro

    2010-06-01

    Streptococcus pyogenes (group A streptococcus, GAS), one of the most common pathogens of humans, attaches and invades into human pharyngeal or skin epithelial cells. We have previously reported that induction of apoptosis is associated with GAS invasion, which induces mitochondrial dysfunction and apoptotic cell death. We demonstrate here that GAS-induced apoptosis is mediated by reactive oxygen species (ROS) production. Both the induction of apoptosis and ROS production markedly increased upon invasion of wild-type GAS strain JRS4 into HeLa cells; however, the apoptotic response was not observed in fibronectin-binding protein F1-disrupted mutant SAM1-infected cells. In Bcl-2-overexpressing HeLa cells (HBD98-2-4), the induction of apoptosis, ROS production and mitochondrial dysfunction were significantly suppressed, whereas the numbers of invaded GAS was not different between HeLa (mock cells) and the HeLa HBD98-2-4 cells. Whereas Rac1 activation occurred during GAS invasion, ROS production in GAS-infected cells was clearly inhibited by transfection with the Rac1 mutants (L37 or V12L37), but not by the dominant active mutant (V12L61) or by the dominant negative mutant (N17). These observations indicate that GAS invasion triggers ROS production through Rac1 activation and generated ROS induced mitochondrial dysfunction leading to cellular apoptosis.

  8. Effects of blocking developmental cell death on sexually dimorphic calbindin cell groups in the preoptic area and bed nucleus of the stria terminalis

    PubMed Central

    2012-01-01

    Background Calbindin-D28 has been used as a marker for the sexually dimorphic nucleus of the preoptic area (SDN-POA). Males have a distinct cluster of calbindin-immunoreactive (ir) cells in the medial preoptic area (CALB-SDN) that is reduced or absent in females. However, it is not clear whether the sex difference is due to the absolute number of calbindin-ir cells or to cell position (that is, spread), and the cellular mechanisms underlying the sex difference are not known. We examined the number of cells in the CALB-SDN and surrounding regions of C57Bl/6 mice and used mice lacking the pro-death gene, Bax, to test the hypothesis that observed sex differences are due to cell death. Methods Experiment 1 compared the number of cells in the CALB-SDN and surrounding regions in adult males, females, and females injected with estradiol benzoate on the day of birth. In experiment 2, cell number in the CALB-SDN and adjacent regions were compared in wild-type and Bax knockout mice of both sexes. In addition, calbindin-ir cells were quantified within the principal nucleus of the bed nucleus of the stria terminalis (BNSTp), a nearby region that is larger in males due to Bax-dependent cell death. Results Males had more cells in the CALB-SDN as well as in surrounding regions than did females, and estradiol treatment of females at birth masculinized both measures. Bax deletion had no effect on cell number in the CALB-SDN or surrounding regions but increased calbindin-ir cell number in the BNSTp. Conclusions The sex difference in the CALB-SDN of mice results from an estrogen-dependent difference in cell number with no evidence found for greater spread of cells in females. Blocking Bax-dependent cell death does not prevent sex differences in calbindin-ir cell number in the BNST or CALB-SDN but increases calbindin-ir cell number in the BNSTp of both sexes. PMID:22336348

  9. Effects of blocking developmental cell death on sexually dimorphic calbindin cell groups in the preoptic area and bed nucleus of the stria terminalis.

    PubMed

    Gilmore, Richard F; Varnum, Megan M; Forger, Nancy G

    2012-02-15

    Calbindin-D28 has been used as a marker for the sexually dimorphic nucleus of the preoptic area (SDN-POA). Males have a distinct cluster of calbindin-immunoreactive (ir) cells in the medial preoptic area (CALB-SDN) that is reduced or absent in females. However, it is not clear whether the sex difference is due to the absolute number of calbindin-ir cells or to cell position (that is, spread), and the cellular mechanisms underlying the sex difference are not known. We examined the number of cells in the CALB-SDN and surrounding regions of C57Bl/6 mice and used mice lacking the pro-death gene, Bax, to test the hypothesis that observed sex differences are due to cell death. Experiment 1 compared the number of cells in the CALB-SDN and surrounding regions in adult males, females, and females injected with estradiol benzoate on the day of birth. In experiment 2, cell number in the CALB-SDN and adjacent regions were compared in wild-type and Bax knockout mice of both sexes. In addition, calbindin-ir cells were quantified within the principal nucleus of the bed nucleus of the stria terminalis (BNSTp), a nearby region that is larger in males due to Bax-dependent cell death. Males had more cells in the CALB-SDN as well as in surrounding regions than did females, and estradiol treatment of females at birth masculinized both measures. Bax deletion had no effect on cell number in the CALB-SDN or surrounding regions but increased calbindin-ir cell number in the BNSTp. The sex difference in the CALB-SDN of mice results from an estrogen-dependent difference in cell number with no evidence found for greater spread of cells in females. Blocking Bax-dependent cell death does not prevent sex differences in calbindin-ir cell number in the BNST or CALB-SDN but increases calbindin-ir cell number in the BNSTp of both sexes.

  10. Autophagic Cell Death, Polyploidy and Senescence Induced in Breast Tumor Cells by the Substituted Pyrrole JG-03-14, a Novel Microtubule Poison

    PubMed Central

    Arthur, Christopher R.; Gupton, John T.; Kellogg, Glen E.; Yeudall, W. Andrew; Cabot, Myles C.; Newsham, Irene; Gewirtz, David A.

    2007-01-01

    JG-03-14, a substituted pyrrole that inhibits microtubule polymerization, was screened against MCF-7 (p53 wild type), MDA-MB 231 (p53 mutant), MCF-7/caspase 3 and MCF-7/ADR (multidrug resistant) breast tumor cell lines. Cell viability and growth inhibition were assessed by the crystal violet dye assay. Apoptosis was evaluated by the TUNEL assay, cell cycle distribution by flow cytometry, autophagy by acridine orange staining of vesicle formation, and senescence based on β-galactosidase staining and cell morphology. Our studies indicate that exposure to JG-03-14, at a concentration of 500 nM, induces time dependent cell death in the MCF-7 and MDA-MB 231 cell lines. In MCF-7 cells, a residual surviving cell population was found to be senescent; in contrast, there was no surviving senescent population in treated MDA-MB 231 cells. No proliferative recovery was detected over a period of 15 days post-treatment in either cell line. Both the TUNEL assay and FLOW cytometry indicated a relatively limited degree of apoptosis (< 10%) in response to drug treatment in MCF-7 cells with more extensive apoptosis (but < 20%) in MDA-MB231 cells; acidic vacuole formation indicative of autophagic cell death was relatively extensive in both MCF-7 and MDA-MB231 cells. In addition, JG-03-14 induced the formation of a large hyperdiploid cell population in MDA-MB231 cells. JG-03-14 also demonstrated pronounced anti-proliferative activity in MCF-7/caspase 3 cells and in the MCF-7/ADR cell line. The observation that JG-03-14 promotes autophagic cell death and also retains activity in tumor cells expressing the multidrug resistance pump indicates that novel microtubule poisons of the substituted pyrroles class may hold promise in the treatment of breast cancer. PMID:17692290

  11. Rational development of a cytotoxic peptide to trigger cell death.

    PubMed

    Boohaker, Rebecca J; Zhang, Ge; Lee, Michael W; Nemec, Kathleen N; Santra, Santimukul; Perez, J Manuel; Khaled, Annette R

    2012-07-02

    Defects in the apoptotic machinery can contribute to tumor formation and resistance to treatment, creating a need to identify new agents that kill cancer cells by alternative mechanisms. To this end, we examined the cytotoxic properties of a novel peptide, CT20p, derived from the C-terminal, alpha-9 helix of Bax, an amphipathic domain with putative membrane binding properties. Like many antimicrobial peptides, CT20p contains clusters of hydrophobic and cationic residues that could enable the peptide to associate with lipid membranes. CT20p caused the release of calcein from mitochondrial-like lipid vesicles without disrupting vesicle integrity and, when expressed as a fusion protein in cells, localized to mitochondria. The amphipathic nature of CT20p allowed it to be encapsulated in polymeric nanoparticles (NPs) that have the capacity to harbor targeting molecules, dyes or drugs. The resulting CT20p-NPs proved an effective killer, in vitro, of colon and breast cancer cells, and in vivo, using a murine breast cancer tumor model. By introducing CT20p to Bax deficient cells, we demonstrated that the peptide's lethal activity was independent of endogenous Bax. CT20p also caused an increase in the mitochondrial membrane potential that was followed by plasma membrane rupture and cell death, without the characteristic membrane asymmetry associated with apoptosis. We determined that cell death triggered by the CT20p-NPs was minimally dependent on effector caspases and resistant to Bcl-2 overexpression, suggesting that it acts independently of the intrinsic apoptotic death pathway. Furthermore, use of CT20p with the apoptosis-inducing drug, cisplatin, resulted in additive toxicity. These results reveal the novel features of CT20p that allow nanoparticle-mediated delivery to tumors and the potential application in combination therapies to activate multiple death pathways in cancer cells.

  12. MLKL-PITPα signaling-mediated necroptosis contributes to cisplatin-triggered cell death in lung cancer A549 cells.

    PubMed

    Jing, Lin; Song, Fei; Liu, Zhenyu; Li, Jianghua; Wu, Bo; Fu, Zhiguang; Jiang, Jianli; Chen, Zhinan

    2018-02-01

    Necroptosis has been reported to be involved in cisplatin-induced cell death, but the mechanisms underlying the occurrence of necroptosis are not fully elucidated. In this study, we show that apart from apoptosis, cisplatin induces necroptosis in A549 cells. The alleviation of cell death by two necroptosis inhibitors-necrostatin-1 (Nec-1) and necrosulfonamide (NSA), and the phosphorylation of mixed lineage kinase domain-like protein (MLKL) at serine 358, suggest the involvement of receptor-interacting protein kinase 1 (RIPK1)-RIPK3-MLKL signaling in cisplatin-treated A549 cells. Additionally, the initiation of cisplatin-induced necroptosis relies on autocrine tumor necrosis factor alpha (TNF-α). Furthermore, we present the first evidence that phosphatidylinositol transfer protein alpha (PITPα) is involved in MLKL-mediated necroptosis by interacting with the N terminal MLKL on its sixth helix and the preceding loop, which facilitates MLKL oligomerization and plasma membrane translocation in necroptosis. Silencing of PITPα expression interferes with MLKL function and reduces cell death. Our data elucidate that cisplatin-treated lung cancer cells undergo a new type of programmed cell death called necroptosis and shed new light on how MLKL translocates to the plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fork head controls the timing and tissue selectivity of steroid-induced developmental cell death

    PubMed Central

    Cao, Chike; Liu, Yanling; Lehmann, Michael

    2007-01-01

    Cell death during Drosophila melanogaster metamorphosis is controlled by the steroid hormone 20-hydroxyecdysone (20E). Elements of the signaling pathway that triggers death are known, but it is not known why some tissues, and not others, die in response to a particular hormone pulse. We found that loss of the tissue-specific transcription factor Fork head (Fkh) is both required and sufficient to specify a death response to 20E in the larval salivary glands. Loss of fkh itself is a steroid-controlled event that is mediated by the 20E-induced BR-C gene, and that renders the key death regulators hid and reaper hormone responsive. These results implicate the D. melanogaster FOXA orthologue Fkh with a novel function as a competence factor for steroid-controlled cell death. They explain how a specific tissue is singled out for death, and why this tissue survives earlier hormone pulses. More generally, they suggest that cell identity factors like Fkh play a pivotal role in the normal control of developmental cell death. PMID:17339378

  14. Anti-cancer Effect of Luminacin, a Marine Microbial Extract, in Head and Neck Squamous Cell Carcinoma Progression via Autophagic Cell Death.

    PubMed

    Shin, Yoo Seob; Cha, Hyun Young; Lee, Bok-Soon; Kang, Sung Un; Hwang, Hye Sook; Kwon, Hak Cheol; Kim, Chul-Ho; Choi, Eun Chang

    2016-04-01

    The purpose of this study is to determine whether luminacin, a marine microbial extract from the Streptomyces species, has anti-tumor effects on head and neck squamous cell carcinoma (HNSCC) cell lines via autophagic cell death. Inhibition of cell survival and increased cell death was measured using cell viability, colony forming, and apoptosis assays. Migration and invasion abilities of head and cancer cells were evaluated using wound healing, scattering, and invasion assays. Changes in the signal pathway related to autophagic cell death were investigated. Drug toxicity of luminacin was examined in in vitro HaCaT cells and an in vivo zebrafish model. Luminacin showed potent cytotoxicity in HNSCC cells in cell viability, colony forming, and fluorescence-activated cell sorting analysis. In vitro migration and invasion of HNSCC cells were attenuated by luminacin treatment. Combined with Beclin-1 and LC3B, Luminacin induced autophagic cell death in head and neck cancer cells. In addition, in a zebrafish model and human keratinocyte cell line used for toxicity testing, luminacin treatment with a cytotoxic concentration to HNSCC cells did not cause toxicity. Taken together, these results demonstrate that luminacin induces the inhibition of growth and cancer progression via autophagic cell death in HNSCC cell lines, indicating a possible alternative chemotherapeutic approach for treatment of HNSCC.

  15. Tumor necrosis factor (TNF) biology and cell death.

    PubMed

    Bertazza, Loris; Mocellin, Simone

    2008-01-01

    Tumor necrosis factor (TNF) was the first cytokine to be used in humans for cancer therapy. However, its role in the treatment of cancer patients is debated. Most uncertainties in this field stem from the knowledge that the pathways directly activated or indirectly affected upon TNF engagement with its receptors can ultimately lead to very different outcomes in terms of cell survival. In this article, we summarize the fundamental molecular biology aspects of this cytokine. Such a basis is a prerequisite to critically approach the sometimes conflicting preclinical and clinical findings regarding the relationship between TNF, tumor biology and anticancer therapy. Although the last decade has witnessed remarkable advances in this field, we still do not know in detail how cells choose between life and death after TNF stimulation. Understanding this mechanism will not only shed new light on the physiological significance of TNF-driven programmed cell death but also help investigators maximize the anticancer potential of this cytokine.

  16. Cell Death and Serum Markers of Collagen Metabolism during Cardiac Remodeling in Cavia porcellus Experimentally Infected with Trypanosoma cruzi

    PubMed Central

    Castro-Sesquen, Yagahira E.; Gilman, Robert H.; Paico, Henry; Yauri, Verónica; Angulo, Noelia; Ccopa, Fredy; Bern, Caryn

    2013-01-01

    We studied cell death by apoptosis and necrosis in cardiac remodeling produced by Trypanosoma cruzi infection. In addition, we evaluated collagen I, III, IV (CI, CIII and CIV) deposition in cardiac tissue, and their relationship with serum levels of procollagen type I carboxy-terminal propeptide (PICP) and procollagen type III amino-terminal propeptide (PIIINP). Eight infected and two uninfected guinea pigs were necropsied at seven time points up to one year post-infection. Cell death by necrosis and apoptosis was determined by histopathological observation and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. Deposition of cardiac collagen types was determined by immunohistochemistry and serum levels of PICP, PIIINP, and anti-T. cruzi IgG1 and IgG2 by ELISA. IgG2 (Th1 response) predominated throughout the course of infection; IgG1 (Th2 response) was detected during the chronic phase. Cardiac cell death by necrosis predominated over apoptosis during the acute phase; during the chronic phase, both apoptosis and necrosis were observed in cardiac cells. Apoptosis was also observed in lymphocytes, endothelial cells and epicardial adipose tissue, especially in the chronic phase. Cardiac levels of CI, CIII, CIV increased progressively, but the highest levels were seen in the chronic phase and were primarily due to increase in CIII and CIV. High serum levels of PICP and PIIINP were observed throughout the infection, and increased levels of both biomarkers were associated with cardiac fibrosis (p = 0.002 and p = 0.038, respectively). These results confirm the role of apoptosis in cell loss mainly during the chronic phase and the utility of PICP and PIIINP as biomarkers of fibrosis in cardiac remodeling during T. cruzi infection. PMID:23409197

  17. Methyl Vitamin B12 but not methylfolate rescues a motor neuron-like cell line from homocysteine-mediated cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemendinger, Richelle A., E-mail: richelle.hemendinger@carolinashealthcare.org; Armstrong, Edward J.; Brooks, Benjamin Rix

    Homocysteine is an excitatory amino acid implicated in multiple diseases including amyotrophic lateral sclerosis (ALS). Information on the toxicity of homocysteine in motor neurons is limited and few studies have examined how this toxicity can be modulated. In NSC-34D cells (a hybrid cell line derived from motor neuron-neuroblastoma), homocysteine induces apoptotic cell death in the millimolar range with a TC{sub 50} (toxic concentration at which 50% of maximal cell death is achieved) of 2.2 mM, confirmed by activation of caspase 3/7. Induction of apoptosis was independent of short-term reactive oxygen species (ROS) generation. Methyl Vitamin B12 (MeCbl) and methyl tetrahydrofolatemore » (MTHF), used clinically to treat elevated homocysteine levels, were tested for their ability to reverse homocysteine-mediated motor neuron cell death. MeCbl in the micromolar range was able to provide neuroprotection (2 h pretreatment prior to homocysteine) and neurorescue (simultaneous exposure with homocysteine) against millimolar homocysteine with an IC{sub 50} (concentration at which 50% of maximal cell death is inhibited) of 0.6 {mu}M and 0.4 {mu}M, respectively. In contrast, MTHF (up to 10 {mu}M) had no effect on homocysteine-mediated cell death. MeCbl inhibited caspase 3/7 activation by homocysteine in a time- and dose-dependent manner, whereas MTHF had no effect. We conclude that MeCbl is effective against homocysteine-induced cell death in motor neurons in a ROS-independent manner, via a reduction in caspase activation and apoptosis. MeCbl decreases Hcy induced motor neuron death in vitro in a hybrid cell line derived from motor neuron-neuroblastoma and may play a role in the treatment of late stage ALS where HCy levels are increased in animal models of ALS.« less

  18. Bar represses dPax2 and decapentaplegic to regulate cell fate and morphogenetic cell death in Drosophila eye.

    PubMed

    Kang, Jongkyun; Yeom, Eunbyul; Lim, Janghoo; Choi, Kwang-Wook

    2014-01-01

    The coordinated regulation of cell fate and cell survival is crucial for normal pattern formation in developing organisms. In Drosophila compound eye development, crystalline arrays of hexagonal ommatidia are established by precise assembly of diverse cell types, including the photoreceptor cells, cone cells and interommatidial (IOM) pigment cells. The molecular basis for controlling the number of cone and IOM pigment cells during ommatidial pattern formation is not well understood. Here we present evidence that BarH1 and BarH2 homeobox genes are essential for eye patterning by inhibiting excess cone cell differentiation and promoting programmed death of IOM cells. Specifically, we show that loss of Bar from the undifferentiated retinal precursor cells leads to ectopic expression of Prospero and dPax2, two transcription factors essential for cone cell specification, resulting in excess cone cell differentiation. We also show that loss of Bar causes ectopic expression of the TGFβ homolog Decapentaplegic (Dpp) posterior to the morphogenetic furrow in the larval eye imaginal disc. The ectopic Dpp expression is not responsible for the formation of excess cone cells in Bar loss-of-function mutant eyes. Instead, it causes reduction in IOM cell death in the pupal stage by antagonizing the function of pro-apoptotic gene reaper. Taken together, this study suggests a novel regulatory mechanism in the control of developmental cell death in which the repression of Dpp by Bar in larval eye disc is essential for IOM cell death in pupal retina.

  19. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    PubMed Central

    Galluzzi, L; Bravo-San Pedro, J M; Vitale, I; Aaronson, S A; Abrams, J M; Adam, D; Alnemri, E S; Altucci, L; Andrews, D; Annicchiarico-Petruzzelli, M; Baehrecke, E H; Bazan, N G; Bertrand, M J; Bianchi, K; Blagosklonny, M V; Blomgren, K; Borner, C; Bredesen, D E; Brenner, C; Campanella, M; Candi, E; Cecconi, F; Chan, F K; Chandel, N S; Cheng, E H; Chipuk, J E; Cidlowski, J A; Ciechanover, A; Dawson, T M; Dawson, V L; De Laurenzi, V; De Maria, R; Debatin, K-M; Di Daniele, N; Dixit, V M; Dynlacht, B D; El-Deiry, W S; Fimia, G M; Flavell, R A; Fulda, S; Garrido, C; Gougeon, M-L; Green, D R; Gronemeyer, H; Hajnoczky, G; Hardwick, J M; Hengartner, M O; Ichijo, H; Joseph, B; Jost, P J; Kaufmann, T; Kepp, O; Klionsky, D J; Knight, R A; Kumar, S; Lemasters, J J; Levine, B; Linkermann, A; Lipton, S A; Lockshin, R A; López-Otín, C; Lugli, E; Madeo, F; Malorni, W; Marine, J-C; Martin, S J; Martinou, J-C; Medema, J P; Meier, P; Melino, S; Mizushima, N; Moll, U; Muñoz-Pinedo, C; Nuñez, G; Oberst, A; Panaretakis, T; Penninger, J M; Peter, M E; Piacentini, M; Pinton, P; Prehn, J H; Puthalakath, H; Rabinovich, G A; Ravichandran, K S; Rizzuto, R; Rodrigues, C M; Rubinsztein, D C; Rudel, T; Shi, Y; Simon, H-U; Stockwell, B R; Szabadkai, G; Tait, S W; Tang, H L; Tavernarakis, N; Tsujimoto, Y; Vanden Berghe, T; Vandenabeele, P; Villunger, A; Wagner, E F; Walczak, H; White, E; Wood, W G; Yuan, J; Zakeri, Z; Zhivotovsky, B; Melino, G; Kroemer, G

    2015-01-01

    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death' (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death. PMID:25236395

  20. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015.

    PubMed

    Galluzzi, L; Bravo-San Pedro, J M; Vitale, I; Aaronson, S A; Abrams, J M; Adam, D; Alnemri, E S; Altucci, L; Andrews, D; Annicchiarico-Petruzzelli, M; Baehrecke, E H; Bazan, N G; Bertrand, M J; Bianchi, K; Blagosklonny, M V; Blomgren, K; Borner, C; Bredesen, D E; Brenner, C; Campanella, M; Candi, E; Cecconi, F; Chan, F K; Chandel, N S; Cheng, E H; Chipuk, J E; Cidlowski, J A; Ciechanover, A; Dawson, T M; Dawson, V L; De Laurenzi, V; De Maria, R; Debatin, K-M; Di Daniele, N; Dixit, V M; Dynlacht, B D; El-Deiry, W S; Fimia, G M; Flavell, R A; Fulda, S; Garrido, C; Gougeon, M-L; Green, D R; Gronemeyer, H; Hajnoczky, G; Hardwick, J M; Hengartner, M O; Ichijo, H; Joseph, B; Jost, P J; Kaufmann, T; Kepp, O; Klionsky, D J; Knight, R A; Kumar, S; Lemasters, J J; Levine, B; Linkermann, A; Lipton, S A; Lockshin, R A; López-Otín, C; Lugli, E; Madeo, F; Malorni, W; Marine, J-C; Martin, S J; Martinou, J-C; Medema, J P; Meier, P; Melino, S; Mizushima, N; Moll, U; Muñoz-Pinedo, C; Nuñez, G; Oberst, A; Panaretakis, T; Penninger, J M; Peter, M E; Piacentini, M; Pinton, P; Prehn, J H; Puthalakath, H; Rabinovich, G A; Ravichandran, K S; Rizzuto, R; Rodrigues, C M; Rubinsztein, D C; Rudel, T; Shi, Y; Simon, H-U; Stockwell, B R; Szabadkai, G; Tait, S W; Tang, H L; Tavernarakis, N; Tsujimoto, Y; Vanden Berghe, T; Vandenabeele, P; Villunger, A; Wagner, E F; Walczak, H; White, E; Wood, W G; Yuan, J; Zakeri, Z; Zhivotovsky, B; Melino, G; Kroemer, G

    2015-01-01

    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as 'accidental cell death' (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. 'Regulated cell death' (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death.

  1. 24(S)-hydroxycholesterol induces neuronal cell death through necroptosis, a form of programmed necrosis.

    PubMed

    Yamanaka, Kazunori; Saito, Yoshiro; Yamamori, Tohru; Urano, Yasuomi; Noguchi, Noriko

    2011-07-15

    24(S)-Hydroxycholesterol (24S-OHC) produced by cholesterol 24-hydroxylase expressed mainly in neurons plays an important physiological role in the brain. Conversely, it has been reported that 24S-OHC possesses potent cytotoxicity. The molecular mechanisms of 24S-OHC-induced cell death have not yet been fully elucidated. In this study, using human neuroblastoma SH-SY5Y cells and primary cortical neuronal cells derived from rat embryo, we characterized the form of cell death induced by 24S-OHC. SH-SY5Y cells treated with 24S-OHC exhibited neither fragmentation of the nucleus nor caspase activation, which are the typical characteristics of apoptosis. 24S-OHC-treated cells showed necrosis-like morphological changes but did not induce ATP depletion, one of the features of necrosis. When cells were treated with necrostatin-1, an inhibitor of receptor-interacting serine/threonine kinase 1 (RIPK1) required for necroptosis, 24S-OHC-induced cell death was significantly suppressed. The knockdown of RIPK1 by transfection of small interfering RNA of RIPK1 effectively attenuated 24S-OHC-induced cell death. It was found that neither SH-SY5Y cells nor primary cortical neuronal cells expressed caspase-8, which was regulated for RIPK1-dependent apoptosis. Collectively, these results suggest that 24S-OHC induces neuronal cell death by necroptosis, a form of programmed necrosis.

  2. 24(S)-Hydroxycholesterol Induces Neuronal Cell Death through Necroptosis, a Form of Programmed Necrosis*

    PubMed Central

    Yamanaka, Kazunori; Saito, Yoshiro; Yamamori, Tohru; Urano, Yasuomi; Noguchi, Noriko

    2011-01-01

    24(S)-Hydroxycholesterol (24S-OHC) produced by cholesterol 24-hydroxylase expressed mainly in neurons plays an important physiological role in the brain. Conversely, it has been reported that 24S-OHC possesses potent cytotoxicity. The molecular mechanisms of 24S-OHC-induced cell death have not yet been fully elucidated. In this study, using human neuroblastoma SH-SY5Y cells and primary cortical neuronal cells derived from rat embryo, we characterized the form of cell death induced by 24S-OHC. SH-SY5Y cells treated with 24S-OHC exhibited neither fragmentation of the nucleus nor caspase activation, which are the typical characteristics of apoptosis. 24S-OHC-treated cells showed necrosis-like morphological changes but did not induce ATP depletion, one of the features of necrosis. When cells were treated with necrostatin-1, an inhibitor of receptor-interacting serine/threonine kinase 1 (RIPK1) required for necroptosis, 24S-OHC-induced cell death was significantly suppressed. The knockdown of RIPK1 by transfection of small interfering RNA of RIPK1 effectively attenuated 24S-OHC-induced cell death. It was found that neither SH-SY5Y cells nor primary cortical neuronal cells expressed caspase-8, which was regulated for RIPK1-dependent apoptosis. Collectively, these results suggest that 24S-OHC induces neuronal cell death by necroptosis, a form of programmed necrosis. PMID:21613228

  3. Cell-cycle control in the face of damage--a matter of life or death.

    PubMed

    Clarke, Paul R; Allan, Lindsey A

    2009-03-01

    Cells respond to DNA damage or defects in the mitotic spindle by activating checkpoints that arrest the cell cycle. Alternatively, damaged cells can undergo cell death by the process of apoptosis. The correct balance between these pathways is important for the maintenance of genomic integrity while preventing unnecessary cell death. Although the molecular mechanisms of the cell cycle and apoptosis have been elucidated, the links between them have not been clear. Recent work, however, indicates that common components directly link the regulation of apoptosis with cell-cycle checkpoints operating during interphase, whereas in mitosis, the control of apoptosis is directly coupled to the cell-cycle machinery. These findings shed new light on how the balance between cell-cycle progression and cell death is controlled.

  4. Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells.

    PubMed

    Ge, Peng-Fei; Zhang, Ji-Zhou; Wang, Xiao-Fei; Meng, Fan-Kai; Li, Wen-Chen; Luan, Yong-Xin; Ling, Feng; Luo, Yi-Nan

    2009-07-01

    The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Recent studies suggest that proteasome inhibitors may reduce tumor growth and activate autophagy. Due to the dual roles of autophagy in tumor cell survival and death, the effect of autophagy on the destiny of glioma cells remains unclear. In this study, we sought to investigate whether inhibition of the proteasome can induce autophagy and the effects of autophagy on the fate of human SHG-44 glioma cells. The proteasome inhibitor MG-132 was used to induce autophagy in SHG-44 glioma cells, and the effect of autophagy on the survival of SHG-44 glioma cells was investigated using an autophagy inhibitor 3-MA. Cell viability was measured by MTT assay. Apoptosis and cell cycle were detected by flow cytometry. The expression of autophagy related proteins was determined by Western blot. MG-132 inhibited cell proliferation, induced cell death and cell cycle arrest at G(2)/M phase, and activated autophagy in SHG-44 glioma cells. The expression of autophagy-related Beclin-1 and LC3-I was significantly up-regulated and part of LC3-I was converted into LC3-II. However, when SHG-44 glioma cells were co-treated with MG-132 and 3-MA, the cells became less viable, but cell death and cell numbers at G(2)/M phase increased. Moreover, the accumulation of acidic vesicular organelles was decreased, the expression of Beclin-1 and LC3 was significantly down-regulated and the conversion of LC3-II from LC3-I was also inhibited. Inhibition of the proteasome can induce autophagy in human SHG-44 glioma cells, and inhibition of autophagy increases cell death. This discovery may shed new light on the effect of autophagy on modulating the fate of SHG-44 glioma cells.Acta Pharmacologica Sinica (2009) 30: 1046-1052; doi: 10.1038/aps.2009.71.

  5. Arabidopsis GRI is involved in the regulation of cell death induced by extracellular ROS.

    PubMed

    Wrzaczek, Michael; Brosché, Mikael; Kollist, Hannes; Kangasjärvi, Jaakko

    2009-03-31

    Reactive oxygen species (ROS) have important functions in plant stress responses and development. In plants, ozone and pathogen infection induce an extracellular oxidative burst that is involved in the regulation of cell death. However, very little is known about how plants can perceive ROS and regulate the initiation and the containment of cell death. We have identified an Arabidopsis thaliana protein, GRIM REAPER (GRI), that is involved in the regulation of cell death induced by extracellular ROS. Plants with an insertion in GRI display an ozone-sensitive phenotype. GRI is an Arabidopsis ortholog of the tobacco flower-specific Stig1 gene. The GRI protein appears to be processed in leaves with a release of an N-terminal fragment of the protein. Infiltration of the N-terminal fragment of the GRI protein into leaves caused cell death in a superoxide- and salicylic acid-dependent manner. Analysis of the extracellular GRI protein yields information on how plants can initiate ROS-induced cell death during stress response and development.

  6. Autophagy regulates death of retinal pigment epithelium cells in age-related macular degeneration.

    PubMed

    Kaarniranta, Kai; Tokarz, Paulina; Koskela, Ali; Paterno, Jussi; Blasiak, Janusz

    2017-04-01

    Age-related macular degeneration (AMD) is an eye disease underlined by the degradation of retinal pigment epithelium (RPE) cells, photoreceptors, and choriocapillares, but the exact mechanism of cell death in AMD is not completely clear. This mechanism is important for prevention of and therapeutic intervention in AMD, which is a hardly curable disease. Present reports suggest that both apoptosis and pyroptosis (cell death dependent on caspase-1) as well as necroptosis (regulated necrosis dependent on the proteins RIPK3 and MLKL, caspase-independent) can be involved in the AMD-related death of RPE cells. Autophagy, a cellular clearing system, plays an important role in AMD pathogenesis, and this role is closely associated with the activation of the NLRP3 inflammasome, a central event for advanced AMD. Autophagy can play a role in apoptosis, pyroptosis, and necroptosis, but its contribution to AMD-specific cell death is not completely clear. Autophagy can be involved in the regulation of proteins important for cellular antioxidative defense, including Nrf2, which can interact with p62/SQSTM, a protein essential for autophagy. As oxidative stress is implicated in AMD pathogenesis, autophagy can contribute to this disease by deregulation of cellular defense against the stress. However, these and other interactions do not explain the mechanisms of RPE cell death in AMD. In this review, we present basic mechanisms of autophagy and its involvement in AMD pathogenesis and try to show a regulatory role of autophagy in RPE cell death. This can result in considering the genes and proteins of autophagy as molecular targets in AMD prevention and therapy.

  7. The Phytoalexin Resveratrol Regulates the Initiation of Hypersensitive Cell Death in Vitis Cell

    PubMed Central

    Chang, Xiaoli; Heene, Ernst; Qiao, Fei; Nick, Peter

    2011-01-01

    Resveratrol is a major phytoalexin produced by plants in response to various stresses and promotes disease resistance. The resistance of North American grapevine Vitis rupestris is correlated with a hypersensitive reaction (HR), while susceptible European Vitis vinifera cv. ‘Pinot Noir’ does not exhibit HR, but expresses basal defence. We have shown previously that in cell lines derived from the two Vitis species, the bacterial effector Harpin induced a rapid and sensitive accumulation of stilbene synthase (StSy) transcripts, followed by massive cell death in V. rupestris. In the present work, we analysed the function of the phytoalexin resveratrol, the product of StSy. We found that cv. ‘Pinot Noir’ accumulated low resveratrol and its glycoside trans-piceid, whereas V. rupestris produced massive trans-resveratrol and the toxic oxidative δ-viniferin, indicating that the preferred metabolitism of resveratrol plays role in Vitis resistance. Cellular responses to resveratrol included rapid alkalinisation, accumulation of pathogenesis-related protein 5 (PR5) transcripts, oxidative burst, actin bundling, and cell death. Microtubule disruption and induction of StSy were triggered by Harpin, but not by resveratrol. Whereas most responses proceeded with different amplitude for the two cell lines, the accumulation of resveratrol, and the competence for resveratrol-induced oxidative burst differed in quality. The data lead to a model, where resveratrol, in addition to its classical role as antimicrobial phytoalexin, represents an important regulator for initiation of HR-related cell death. PMID:22053190

  8. A CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death.

    PubMed

    Ma, Hongming; Dang, Ying; Wu, Yonggan; Jia, Gengxiang; Anaya, Edgar; Zhang, Junli; Abraham, Sojan; Choi, Jang-Gi; Shi, Guojun; Qi, Ling; Manjunath, N; Wu, Haoquan

    2015-07-28

    West Nile virus (WNV) causes an acute neurological infection attended by massive neuronal cell death. However, the mechanism(s) behind the virus-induced cell death is poorly understood. Using a library containing 77,406 sgRNAs targeting 20,121 genes, we performed a genome-wide screen followed by a second screen with a sub-library. Among the genes identified, seven genes, EMC2, EMC3, SEL1L, DERL2, UBE2G2, UBE2J1, and HRD1, stood out as having the strongest phenotype, whose knockout conferred strong protection against WNV-induced cell death with two different WNV strains and in three cell lines. Interestingly, knockout of these genes did not block WNV replication. Thus, these appear to be essential genes that link WNV replication to downstream cell death pathway(s). In addition, the fact that all of these genes belong to the ER-associated protein degradation (ERAD) pathway suggests that this might be the primary driver of WNV-induced cell death. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Dimethyl sulfoxide (DMSO) exacerbates cisplatin-induced sensory hair cell death in zebrafish (Danio rerio).

    PubMed

    Uribe, Phillip M; Mueller, Melissa A; Gleichman, Julia S; Kramer, Matthew D; Wang, Qi; Sibrian-Vazquez, Martha; Strongin, Robert M; Steyger, Peter S; Cotanche, Douglas A; Matsui, Jonathan I

    2013-01-01

    Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO.

  10. Dimethyl Sulfoxide (DMSO) Exacerbates Cisplatin-induced Sensory Hair Cell Death in Zebrafish (Danio rerio)

    PubMed Central

    Gleichman, Julia S.; Kramer, Matthew D.; Wang, Qi; Sibrian-Vazquez, Martha; Strongin, Robert M.; Steyger, Peter S.; Cotanche, Douglas A.; Matsui, Jonathan I.

    2013-01-01

    Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO. PMID:23383324

  11. Eosinophilic Otitis Media: the Aftermath of Eosinophil Extracellular Trap Cell Death.

    PubMed

    Ueki, Shigeharu; Ohta, Nobuo; Takeda, Masahide; Konno, Yasunori; Hirokawa, Makoto

    2017-05-01

    Eosinophilic otitis media (EOM) is a refractory disease characterized by the accumulation of eosinophils in middle ear effusion and mucosa. We summarize current knowledge regarding the clinical characteristics and management of EOM. Although eosinophil activation in inflamed foci is involved in the pathogenesis of EOM, little is known about the fate of the eosinophils and aftermath of their cell death. We discuss the possibility that eosinophils undergo non-apoptotic cell death that worsens tissue damage and increases effusion viscosity. Unlike chronic otitis media, EOM is strongly associated with an allergic background. Corticosteroids are currently the only effective pharmacological treatment, and surgical intervention is often required. Mucosal eosinophils infiltrate extensively into the middle ear cavity where they are stimulated by locally produced activators including interleukin-5 and eotaxin. The eosinophils undergo cytolysis in the effusion, which represents a major fate of activated eosinophils in vivo. Recent data revealed cytolysis could be renamed as extracellular trap cell death (ETosis). ETosis represents suicidal cell death involving total cell degranulation and development of sticky chromatin structures (extracellular traps (ETs)). The characteristics of eosinophil- and neutrophil-derived ET polymers might contribute to the difference in viscosity of secretions between EOM and common chronic otitis media. The extracellular products remaining after eosinophil ETosis are an important aspect of EOM pathology. The concept of ETosis also has novel implications for potential therapeutic modalities in various eosinophilic disorders.

  12. The MST/Hippo Pathway and Cell Death: A Non-Canonical Affair

    PubMed Central

    Fallahi, Emma; O’Driscoll, Niamh A.; Matallanas, David

    2016-01-01

    The MST/Hippo signalling pathway was first described over a decade ago in Drosophila melanogaster and the core of the pathway is evolutionary conserved in mammals. The mammalian MST/Hippo pathway regulates organ size, cell proliferation and cell death. In addition, it has been shown to play a central role in the regulation of cellular homeostasis and it is commonly deregulated in human tumours. The delineation of the canonical pathway resembles the behaviour of the Hippo pathway in the fly where the activation of the core kinases of the pathway prevents the proliferative signal mediated by the key effector of the pathway YAP. Nevertheless, several lines of evidence support the idea that the mammalian MST/Hippo pathway has acquired new features during evolution, including different regulators and effectors, crosstalk with other essential signalling pathways involved in cellular homeostasis and the ability to actively trigger cell death. Here we describe the current knowledge of the mechanisms that mediate MST/Hippo dependent cell death, especially apoptosis. We include evidence for the existence of complex signalling networks where the core proteins of the pathway play a central role in controlling the balance between survival and cell death. Finally, we discuss the possible involvement of these signalling networks in several human diseases such as cancer, diabetes and neurodegenerative disorders. PMID:27322327

  13. Oxidative stress activates the TRPM2-Ca2+-CaMKII-ROS signaling loop to induce cell death in cancer cells.

    PubMed

    Wang, Qian; Huang, Lihong; Yue, Jianbo

    2017-06-01

    High intracellular levels of reactive oxygen species (ROS) cause oxidative stress that results in numerous pathologies, including cell death. Transient potential receptor melastatin-2 (TRPM2), a Ca 2+ -permeable cation channel, is mainly activated by intracellular adenosine diphosphate ribose (ADPR) in response to oxidative stress. Here we studied the role and mechanisms of TRPM2-mediated Ca 2+ influx on oxidative stress-induced cell death in cancer cells. We found that oxidative stress activated the TRPM2-Ca 2+ -CaMKII cascade to inhibit early autophagy induction, which ultimately led to cell death in TRPM2 expressing cancer cells. On the other hand, TRPM2 knockdown switched cells from cell death to autophagy for survival in response to oxidative stress. Moreover, we found that oxidative stress activated the TRPM2-CaMKII cascade to further induce intracellular ROS production, which led to mitochondria fragmentation and loss of mitochondrial membrane potential. In summary, our data demonstrated that oxidative stress activates the TRPM2-Ca 2+ -CaMKII-ROS signal loop to inhibit autophagy and induce cell death. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Death losses due to stillbirth, neonatal death and diseases in cloned cattle derived from somatic cell nuclear transfer and their progeny: a result of nationwide survey in Japan.

    PubMed

    Watanabe, Shinya; Nagai, Takashi

    2009-06-01

    To obtain the data concerning death losses due to stillbirth, neonatal death and diseases in cloned cattle derived from somatic cell nuclear transfer (SCNT) and their progeny produced by Japanese institutions, a nationwide survey was carried out in July-August, 2006. As a result, lifetime data concerning 482 SCNT cattle (97.5% of cattle produced in the country at that time) and 202 progeny of SCNT cattle were accumulated and the death loss of these cattle was analyzed. Although 1/3 of delivered SCNT calves died during the perinatal period due to stillbirth and neonatal death, incidence of death loss due to diseases in SCNT cattle surviving more than 200 days after birth seems to be the same as these in conventionally bred cattle. In contrast, progeny of SCNT cattle showed the same level in death loss as observed in conventionally bred cattle throughout their lifetime. These results suggest that robust health would be expected in SCNT cattle surviving to adulthood and their progeny.

  15. Changes in metabolic markers in insulin-producing β-cells during hypoxia-induced cell death as studied by NMR metabolomics.

    PubMed

    Tian, Lianji; Kim, Hoe Suk; Kim, Heyonjin; Jin, Xing; Jung, Hye Seung; Park, Kyong Soo; Cho, Kyoung Won; Park, Sunghyouk; Moon, Woo Kyung

    2013-08-02

    This study was designed to investigate changes in the metabolites in the intracellular fluid of the pancreatic β-cell line INS-1 to identify potential early and late biomarkers for predicting hypoxia-induced cell death. INS-1 cells were incubated under normoxic conditions (95% air, 5% CO₂) or hypoxic conditions (1% O₂, 5% CO₂, 95% N₂) for 2, 4, 6, 12, or 24 h. The biological changes indicating the process of cell death were analyzed using the MTT assay, flow cytometry, Western blotting, and immunostaining. Changes in the metabolic profiles from cell lysates were identified using ¹H nuclear magnetic resonance (¹H NMR) spectroscopy, and the spectra were analyzed by the multivariate model Orthogonal Projections to Latent Structure-Discriminant Analysis. Cell viability decreased approximately 40% after 12-24 h of hypoxia, coincident with a high level of cleaved caspase-3. A high level of HIF-1α was detected in the 12-24 h hypoxic conditions. The metabolite profiles were altered according to the degree of exposure to hypoxia. A spectral analysis showed significant differences in creatine-containing compounds at the early stage (2-6 h) and taurine-containing compounds at the late stage (12-24 h), with the detection of HIF-1α and cleaved caspase-3 in cells exposed to hypoxia compared to normoxia. Glycerophosphocholine decreased during the early stage hypoxia. The change in taurine- and creatine-containing compounds and choline species could be involved in the β-cell death process as inhibitors or activators of cell death. Our results imply that assessment by ¹H NMR spectroscopy would be a useful tool to predict the cell death process and to identify molecules regulating hypoxia-induced cell death mechanisms.

  16. Induction of cytosine arabinoside-resistant human myeloid leukemia cell death through autophagy regulation by hydroxychloroquine.

    PubMed

    Kim, Yundeok; Eom, Ju-In; Jeung, Hoi-Kyung; Jang, Ji Eun; Kim, Jin Seok; Cheong, June-Won; Kim, Young Sam; Min, Yoo Hong

    2015-07-01

    We investigated the effects of the autophagy inhibitor hydroxychloroquine (HCQ) on cell death of cytosine arabinoside (Ara-C)-resistant human acute myeloid leukemia (AML) cells. Ara-C-sensitive (U937, AML-2) and Ara-C-resistant (U937/AR, AML-2/AR) human AML cell lines were used to evaluate HCQ-regulated cytotoxicity, autophagy, and apoptosis as well as effects on cell death-related signaling pathways. We found that HCQ-induced dose- and time-dependent cell death in Ara-C-resistant cells compared to Ara-C-sensitive cell lines. The extent of cell death and features of HCQ-induced autophagic markers including increase in microtubule-associated protein light chain 3 (LC3) I conversion to LC3-II, beclin-1, ATG5, as well as green fluorescent protein-LC3 positive puncta and autophagosome were remarkably greater in U937/AR cells. Also, p62/SQSTM1 was increased in response to HCQ. p62/SQSTM1 protein interacts with both LC3-II and ubiquitin protein and is degraded in autophagosomes. Therefore, a reduction of p62/SQSTM1 indicates increased autophagic degradation, whereas an increase of p62/SQSTM1 by HCQ indicates inhibited autophagic degradation. Knock down of p62/SQSTM1 using siRNA were prevented the HCQ-induced LC3-II protein level as well as significantly reduced the HCQ-induced cell death in U937/AR cells. Also, apoptotic cell death and caspase activation in U937/AR cells were increased by HCQ, provided evidence that HCQ-induced autophagy blockade. Taken together, our data show that HCQ-induced apoptotic cell death in Ara-C-resistant AML cells through autophagy regulation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Fluorescent chlorophyll catabolites in bananas light up blue halos of cell death

    PubMed Central

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Jockusch, Steffen; Turro, Nicholas J.; Kräutler, Bernhard

    2009-01-01

    Breakdown of chlorophyll is a major contributor to the diagnostic color changes in fall leaves, and in ripening apples and pears, where it commonly provides colorless, nonfluorescent tetrapyrroles. In contrast, in ripening bananas (Musa acuminata) chlorophylls fade to give unique fluorescent catabolites (FCCs), causing yellow bananas to glow blue, when observed under UV light. Here, we demonstrate the capacity of the blue fluorescent chlorophyll catabolites to signal symptoms of programmed cell death in a plant. We report on studies of bright blue luminescent rings on the peel of very ripe bananas, which arise as halos around necrotic areas in ‘senescence associated’ dark spots. These dark spots appear naturally on the peel of ripe bananas and occur in the vicinity of stomata. Wavelength, space, and time resolved fluorescence measurements allowed the luminescent areas to be monitored on whole bananas. Our studies revealed an accumulation of FCCs in luminescent rings, within senescing cells undergoing the transition to dead tissue, as was observable by morphological textural cellular changes. FCCs typically are short lived intermediates of chlorophyll breakdown. In some plants, FCCs are uniquely persistent, as is seen in bananas, and can thus be used as luminescent in vivo markers in tissue undergoing senescence. While FCCs still remain to be tested for their own hypothetical physiological role in plants, they may help fill the demand for specific endogenous molecular reporters in noninvasive assays of plant senescence. Thus, they allow for in vivo studies, which provide insights into critical stages preceding cell death. PMID:19805212

  18. Nanoarchitectured electrochemical cytosensors for selective detection of leukemia cells and quantitative evaluation of death receptor expression on cell surfaces.

    PubMed

    Zheng, Tingting; Fu, Jia-Ju; Hu, Lihui; Qiu, Fan; Hu, Minjin; Zhu, Jun-Jie; Hua, Zi-Chun; Wang, Hui

    2013-06-04

    The variable susceptibility to the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment observed in various types of leukemia cells is related to the difference in the expression levels of death receptors, DR4 and DR5, on the cell surfaces. Quantifying the DR4/DR5 expression status on leukemia cell surfaces is of vital importance to the development of diagnostic tools to guide death receptor-based leukemia treatment. Taking the full advantages of novel nanobiotechnology, we have developed a robust electrochemical cytosensing approach toward ultrasensitive detection of leukemia cells with detection limit as low as ~40 cells and quantitative evaluation of DR4/DR5 expression on leukemia cell surfaces. The optimization of electron transfer and cell capture processes at specifically tailored nanobiointerfaces and the incorporation of multiple functions into rationally designed nanoprobes provide unique opportunities of integrating high specificity and signal amplification on one electrochemical cytosensor. The high sensitivity and selectivity of this electrochemical cytosensing approach also allows us to evaluate the dynamic alteration of DR4/DR5 expression on the surfaces of living cells in response to drug treatments. Using the TRAIL-resistant HL-60 cells and TRAIL-sensitive Jurkat cells as model cells, we have further verified that the TRAIL susceptibility of various types of leukemia cells is directly correlated to the surface expression levels of DR4/DR5. This versatile electrochemical cytosensing platform is believed to be of great clinical value for the early diagnosis of human leukemia and the evaluation of therapeutic effects on leukemia patients after radiation therapy or drug treatment.

  19. The bioenergetic signature of isogenic colon cancer cells predicts the cell death response to treatment with 3-bromopyruvate, iodoacetate or 5-fluorouracil

    PubMed Central

    2011-01-01

    Background Metabolic reprogramming resulting in enhanced glycolysis is a phenotypic trait of cancer cells, which is imposed by the tumor microenvironment and is linked to the down-regulation of the catalytic subunit of the mitochondrial H+-ATPase (β-F1-ATPase). The bioenergetic signature is a protein ratio (β-F1-ATPase/GAPDH), which provides an estimate of glucose metabolism in tumors and serves as a prognostic indicator for cancer patients. Targeting energetic metabolism could be a viable alternative to conventional anticancer chemotherapies. Herein, we document that the bioenergetic signature of isogenic colon cancer cells provides a gauge to predict the cell-death response to the metabolic inhibitors, 3-bromopyruvate (3BrP) and iodoacetate (IA), and the anti-metabolite, 5-fluorouracil (5-FU). Methods The bioenergetic signature of the cells was determined by western blotting. Aerobic glycolysis was determined from lactate production rates. The cell death was analyzed by fluorescence microscopy and flow cytometry. Cellular ATP concentrations were determined using bioluminiscence. Pearson's correlation coefficient was applied to assess the relationship between the bioenergetic signature and the cell death response. In vivo tumor regression activities of the compounds were assessed using a xenograft mouse model injected with the highly glycolytic HCT116 colocarcinoma cells. Results We demonstrate that the bioenergetic signature of isogenic HCT116 cancer cells inversely correlates with the potential to execute necrosis in response to 3BrP or IA treatment. Conversely, the bioenergetic signature directly correlates with the potential to execute apoptosis in response to 5-FU treatment in the same cells. However, despite the large differences observed in the in vitro cell-death responses associated with 3BrP, IA and 5-FU, the in vivo tumor regression activities of these agents were comparable. Conclusions Overall, we suggest that the determination of the bioenergetic

  20. The bioenergetic signature of isogenic colon cancer cells predicts the cell death response to treatment with 3-bromopyruvate, iodoacetate or 5-fluorouracil.

    PubMed

    Sánchez-Aragó, María; Cuezva, José M

    2011-02-08

    Metabolic reprogramming resulting in enhanced glycolysis is a phenotypic trait of cancer cells, which is imposed by the tumor microenvironment and is linked to the down-regulation of the catalytic subunit of the mitochondrial H+-ATPase (β-F1-ATPase). The bioenergetic signature is a protein ratio (β-F1-ATPase/GAPDH), which provides an estimate of glucose metabolism in tumors and serves as a prognostic indicator for cancer patients. Targeting energetic metabolism could be a viable alternative to conventional anticancer chemotherapies. Herein, we document that the bioenergetic signature of isogenic colon cancer cells provides a gauge to predict the cell-death response to the metabolic inhibitors, 3-bromopyruvate (3BrP) and iodoacetate (IA), and the anti-metabolite, 5-fluorouracil (5-FU). The bioenergetic signature of the cells was determined by western blotting. Aerobic glycolysis was determined from lactate production rates. The cell death was analyzed by fluorescence microscopy and flow cytometry. Cellular ATP concentrations were determined using bioluminiscence. Pearson's correlation coefficient was applied to assess the relationship between the bioenergetic signature and the cell death response. In vivo tumor regression activities of the compounds were assessed using a xenograft mouse model injected with the highly glycolytic HCT116 colocarcinoma cells. We demonstrate that the bioenergetic signature of isogenic HCT116 cancer cells inversely correlates with the potential to execute necrosis in response to 3BrP or IA treatment. Conversely, the bioenergetic signature directly correlates with the potential to execute apoptosis in response to 5-FU treatment in the same cells. However, despite the large differences observed in the in vitro cell-death responses associated with 3BrP, IA and 5-FU, the in vivo tumor regression activities of these agents were comparable. Overall, we suggest that the determination of the bioenergetic signature of colon carcinomas could

  1. Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia.

    PubMed

    Jiang, Jin-Yi; Cheung, Carmen K M; Wang, Yifang; Tsang, Benjamin K

    2003-01-01

    Mammalian ovarian follicular development and atresia is closely regulated by the cross talk of cell death and cell survival signals, which include endocrine hormones (gonadotropins) and intra-ovarian regulators (gonadal steroids, cytokines and growth factors). The fate of the follicle is dependent on a delicate balance in the expression and actions of factors promoting follicular cell proliferation, growth and differentiation and of those inducing programmed cell death (apoptosis). As an important endocrine hormone, FSH binds to its granulosa cell receptors and promotes ovarian follicle survival and growth not only by stimulating proliferation and estradiol secretion of these cells, but also inhibiting the apoptosis by up-regulating the expression of intracellular anti-apoptotic proteins, such as XIAP and FLIP. In addition, intra-ovarian regulators, such as TGF-alpha and TNF-alpha, also play an important role in the control of follicular development and atresia. In response to FSH, Estradiol-17 beta synthesized from the granulosa cells stimulates thecal expression of TGF-alpha, which in turn increases granulosa cell XIAP expression and proliferation. The death receptor and ligand, Fas and Fas ligand, are expressed in granulosa cells following gonadotropin withdrawal, culminating in caspase-mediated apoptosis and follicular atresia. In contrast, TNF-alpha has both survival and pro-apoptotic function in the follicle, depending on the receptor subtype activated, but has been shown to promote granulosa cell survival by increasing XIAP and FLIP expression via the IkappaB-NFkappaB pathway. The pro-apoptotic action of TNF-alpha is mediated through the activation of caspases, via its receptor- (i.e. Caspases-8 and -3) and mitochrondria- (i.e. Caspase-9 and -3) death pathways. In the present manuscript, we have reviewed the actions and interactions of gonadotropins and intra-ovarian regulators in the control of granulosa cell fate and ultimately follicular destiny. We have

  2. Oxidative stress and cell death in the cerebral cortex as a long-term consequence of neonatal hypoglycemia.

    PubMed

    Anju, T R; Akhilraj, P R; Paulose, C S

    2016-09-01

    Neonatal hypoglycemia limits glucose supply to cells leading to long-term consequences in brain function. The present study evaluated antioxidant and cell death factors' alterations in cerebral cortex of 1-month-old rats exposed to neonatal hypoglycemia. Gene expression studies by real-time PCR were carried out using gene-specific TaqMan probes. Fluorescent dyes were used for immunohistochemistry and nuclear staining and imaged by confocal microscope. Total antioxidant level and expression of antioxidant enzymes - superoxide dismutase (SOD) and gluthathione peroxide (GPx) - mRNA was significantly reduced along with high peroxide level in the cerebral cortex of 1-month-old rats exposed to neonatal hypoglycemia. Real-time PCR analysis showed an upregulation of Bax, caspase 3, and caspase 8 gene expression. Confocal imaging with TOPRO-3 staining and immunohistochemistry with caspase 3 antibody indicated cell death activation. The reduced free radical scavenging capability coupled with the expression of key factors involved in cell death pathway points to the possibility of oxidative stress in the cortex of 1-month-old rats exposed to neonatal hypoglycemia. The observed results indicate the effects of neonatal hypoglycemia in determining the antioxidant capability of cerebral cortex in a later stage of life.

  3. Endoplasmic reticulum and mitochondria interplay mediates apoptotic cell death: relevance to Parkinson's disease.

    PubMed

    Arduíno, Daniela Moniz; Esteves, A Raquel; Cardoso, Sandra M; Oliveira, Catarina R

    2009-09-01

    Sporadic Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta. Many cellular mechanisms are thought to be involved in the death of these specific neurons in PD, including oxidative stress, changes of intracellular calcium homeostasis, and mitochondrial dysfunction. Since recent studies have revealed that also endoplasmic reticulum (ER) stress in conjunction with abnormal protein degradation can contribute to the PD pathophysiology, we investigated here the molecular mechanisms underlying the interplay between ER and mitochondria and its relevance in the control of neuronal cell death in PD. We observed that MPP+ induced changes in the mitochondrial function, affecting mitochondrial membrane potential and electron transport chain function. Likewise, it was also evident the unfolded protein response activation by an overexpression of GRP78 protein. Moreover, stress stimuli caused the release of Ca2+ from the ER that consistently induced mitochondrial Ca2+ uptake, with a rise of mitochondrial matrix free Ca2+. Besides, Ca2+ release inhibition prevented MPP+ mediated mitochondria-dependent caspases activation. Our findings show that ER and mitochondria are in a close communication, establishing a dynamic ER-Ca2+-mitochondria interconnection that can play a prominent role in the neuronal cell death induction under particular stressful circumstances of PD pathology.

  4. MPP+ induces necrostatin-1- and ferrostatin-1-sensitive necrotic death of neuronal SH-SY5Y cells.

    PubMed

    Ito, Keisuke; Eguchi, Yutaka; Imagawa, Yusuke; Akai, Shuji; Mochizuki, Hideki; Tsujimoto, Yoshihide

    2017-01-01

    Regulation of cell death is potentially a powerful treatment modality for intractable diseases such as neurodegenerative diseases. Although there have been many reports about the possible involvement of various types of cell death in neurodegenerative diseases, it is still unclear exactly how neurons die in patients with these diseases, thus treatment strategies based on cell death regulation have not been established yet. To obtain some insight into the mechanisms of cell death involved in neurodegenerative diseases, we studied the effect of 1-methyl-4-phenylpyridinium (MPP+) on the human neuroblastoma cell line SH-SY5Y (a widely used model of Parkinson's disease). We found that MPP+ predominantly induced non-apoptotic death of neuronally differentiated SH-SY5Y cells. This cell death was strongly inhibited by necrostatin-1 (Nec-1), a necroptosis inhibitor, and by an indole-containing compound (3,3'-diindolylmethane: DIM). However, it occurred independently of receptor-interacting serine/threonine-protein kinase 1/3 (RIP1/RIP3), indicating that this form of cell death was not necroptosis. MPP+-induced cell death was also inhibited by several inhibitors of ferroptosis, including ferrostatin-1 (Fer-1). Although MPP+-induced death and ferroptosis shared some features, such as occurrence of lipid peroxidation and inhibition by Fer-1, MPP+-induced death seemed to be distinct from ferroptosis because MPP+-induced death (but not ferroptosis) was inhibited by Nec-1, was independent of p53, and was accompanied by ATP depletion and mitochondrial swelling. Further investigation of MPP+-induced non-apoptotic cell death may be useful for understanding the mechanisms of neuronal loss and for treatment of neurodegenerative diseases such as Parkinson's disease.

  5. MPP+ induces necrostatin-1- and ferrostatin-1-sensitive necrotic death of neuronal SH-SY5Y cells

    PubMed Central

    Ito, Keisuke; Eguchi, Yutaka; Imagawa, Yusuke; Akai, Shuji; Mochizuki, Hideki; Tsujimoto, Yoshihide

    2017-01-01

    Regulation of cell death is potentially a powerful treatment modality for intractable diseases such as neurodegenerative diseases. Although there have been many reports about the possible involvement of various types of cell death in neurodegenerative diseases, it is still unclear exactly how neurons die in patients with these diseases, thus treatment strategies based on cell death regulation have not been established yet. To obtain some insight into the mechanisms of cell death involved in neurodegenerative diseases, we studied the effect of 1-methyl-4-phenylpyridinium (MPP+) on the human neuroblastoma cell line SH-SY5Y (a widely used model of Parkinson’s disease). We found that MPP+ predominantly induced non-apoptotic death of neuronally differentiated SH-SY5Y cells. This cell death was strongly inhibited by necrostatin-1 (Nec-1), a necroptosis inhibitor, and by an indole-containing compound (3,3′-diindolylmethane: DIM). However, it occurred independently of receptor-interacting serine/threonine-protein kinase 1/3 (RIP1/RIP3), indicating that this form of cell death was not necroptosis. MPP+-induced cell death was also inhibited by several inhibitors of ferroptosis, including ferrostatin-1 (Fer-1). Although MPP+-induced death and ferroptosis shared some features, such as occurrence of lipid peroxidation and inhibition by Fer-1, MPP+-induced death seemed to be distinct from ferroptosis because MPP+-induced death (but not ferroptosis) was inhibited by Nec-1, was independent of p53, and was accompanied by ATP depletion and mitochondrial swelling. Further investigation of MPP+-induced non-apoptotic cell death may be useful for understanding the mechanisms of neuronal loss and for treatment of neurodegenerative diseases such as Parkinson’s disease. PMID:28250973

  6. Bcl-2 proteins and autophagy regulate mitochondrial dynamics during programmed cell death in the Drosophila ovary.

    PubMed

    Tanner, Elizabeth A; Blute, Todd A; Brachmann, Carrie Baker; McCall, Kimberly

    2011-01-01

    The Bcl-2 family has been shown to regulate mitochondrial dynamics during cell death in mammals and C. elegans, but evidence for this in Drosophila has been elusive. Here, we investigate the regulation of mitochondrial dynamics during germline cell death in the Drosophila melanogaster ovary. We find that mitochondria undergo a series of events during the progression of cell death, with remodeling, cluster formation and uptake of clusters by somatic follicle cells. These mitochondrial dynamics are dependent on caspases, the Bcl-2 family, the mitochondrial fission and fusion machinery, and the autophagy machinery. Furthermore, Bcl-2 family mutants show a striking defect in cell death in the ovary. These data indicate that a mitochondrial pathway is a major mechanism for activation of cell death in Drosophila oogenesis.

  7. Effect of vitamin E on 24(S)-hydroxycholesterol-induced necroptosis-like cell death and apoptosis.

    PubMed

    Nakazawa, Takaya; Miyanoki, Yuta; Urano, Yasuomi; Uehara, Madoka; Saito, Yoshiro; Noguchi, Noriko

    2017-05-01

    24(S)-Hydroxycholesterol (24S-OHC) has diverse physiological and pathological functions. In particular, cytotoxic effects of 24S-OHC in neuronal cells are important in development of neurodegenerative diseases. 24S-OHC induces necroptosis-like cell death in SH-SY5Y cells expressing little caspase-8. In the present study, 24S-OHC was found to induce apoptosis as determined by caspase-3 activation in all-trans-retinoic acid (atRA)-treated SH-SY5Y cells in which expression of caspase-8 was induced. 24S-OHC-induced cell death was inhibited by α-tocopherol (α-Toc) but not by α-tocotrienol (α-Toc3) in SH-SY5Y cells regardless of whether cells were treated with atRA. In contrast, cumene hydroperoxide (CumOOH)-induced cell death was significantly inhibited by α-Toc and α-Toc3. In atRA-treated SH-SY5Y cells, generation of reactive oxygen species (ROS) was induced by stimulation with CumOOH but was not induced by stimulation with 24S-OHC. These results suggest that inhibition of 24S-OHC-induced cell death by α-Toc cannot be explained by its radical scavenging antioxidant activity. Esterification of 24S-OHC followed by lipid droplet (LD) formation due to acyl-CoA:cholesterol acyltransferase 1 (ACAT1) are key events in 24S-OHC-induced cell death in atRA-treated SH-SY5Y cells as demonstrated by inhibition of cell death by ACAT1 inhibitor. LD number was not changed by treatment with either α-Toc or α-Toc3. The different physical properties of α-Toc and α-Toc3 may account for their different inhibitory effects on 24S-OHC-induced cell death. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration.

    PubMed

    Viringipurampeer, Ishaq A; Gregory-Evans, Cheryl Y; Metcalfe, Andrew L; Bashar, Emran; Moritz, Orson L; Gregory-Evans, Kevin

    2018-06-18

    Retinitis pigmentosa (RP) is a group of inherited neurological disorders characterized by rod photoreceptor cell death, followed by secondary cone cell death leading to progressive blindness. Currently, there are no viable treatment options for RP. Due to incomplete knowledge of the molecular signaling pathways associated with RP pathogenesis, designing therapeutic strategies remains a challenge. In particular, preventing secondary cone photoreceptor cell loss is a key goal in designing potential therapies. In this study, we identified the main drivers of rod cell death and secondary cone loss in the transgenic S334ter rhodopsin rat model, tested the efficacy of specific cell death inhibitors on retinal function, and compared the effect of combining drugs to target multiple pathways in the S334ter and P23H rhodopsin rat models. The primary driver of early rod cell death in the S334ter model was a caspase-dependent process, whereas cone cell death occurred though RIP3-dependent necroptosis. In comparison, rod cell death in the P23H model was via necroptotic signaling, whereas cone cell loss occurred through inflammasome activation. Combination therapy of four drugs worked better than the individual drugs in the P23H model but not in the S334ter model. These differences imply that treatment modalities need to be tailored for each genotype. Taken together, our data demonstrate that rationally designed genotype-specific drug combinations will be an important requisite to effectively target primary rod cell loss and more importantly secondary cone survival.

  9. Dihydroartemisinin induces autophagy-dependent death in human tongue squamous cell carcinoma cells through DNA double-strand break-mediated oxidative stress

    PubMed Central

    Li, Xiaoming; Bai, Jing; Li, Jianchun; Li, Shenghao; Wang, Zeming; Zhou, Mingrui

    2017-01-01

    Dihydroartemisinin is an effective antimalarial agent with multiple biological activities. In the present investigation, we elucidated its therapeutic potential and working mechanism on human tongue squamous cell carcinoma (TSCC). It was demonstrated that dihydroartemisinin could significantly inhibit cell growth in a dose- and time-dependent manner by the Cell Counting Kit-8 and colony formation assay in vitro. Meanwhile, autophagy was promoted in the Cal-27 cells treated by dihydroartemisinin, evidenced by increased LC3B-II level, increased autophagosome formation, and increased Beclin-1 level compared to dihydroartemisinin-untreated cells. Importantly, dihydroartemisinin caused DNA double-strand break with simultaneously increased γH2AX foci and oxidative stress; this inhibited the nuclear localization of phosphorylated signal transducer and activator of transcription 3 (p-STAT3), finally leading to autophagic cell death. Furthermore, the antitumor effect of dihydroartemisinin-monotherapy was confirmed with a mouse xenograft model, and no kidney injury associated with toxic effect was observed after intraperitoneal injection with dihydroartemisinin for 3 weeks in vivo. In the present study, it was revealed that dihydroartemisinin-induced DNA double-strand break promoted oxidative stress, which decreased p-STAT3 (Tyr705) nuclear localization, and successively increased autophagic cell death in the Cal-27 cells. Thus, dihydroartemisinin alone may represent an effective and safe therapeutic agent for human TSCC. PMID:28526807

  10. Improving Accuracy in Arrhenius Models of Cell Death: Adding a Temperature-Dependent Time Delay.

    PubMed

    Pearce, John A

    2015-12-01

    The Arrhenius formulation for single-step irreversible unimolecular reactions has been used for many decades to describe the thermal damage and cell death processes. Arrhenius predictions are acceptably accurate for structural proteins, for some cell death assays, and for cell death at higher temperatures in most cell lines, above about 55 °C. However, in many cases--and particularly at hyperthermic temperatures, between about 43 and 55 °C--the particular intrinsic cell death or damage process under study exhibits a significant "shoulder" region that constant-rate Arrhenius models are unable to represent with acceptable accuracy. The primary limitation is that Arrhenius calculations always overestimate the cell death fraction, which leads to severely overoptimistic predictions of heating effectiveness in tumor treatment. Several more sophisticated mathematical model approaches have been suggested and show much-improved performance. But simpler models that have adequate accuracy would provide useful and practical alternatives to intricate biochemical analyses. Typical transient intrinsic cell death processes at hyperthermic temperatures consist of a slowly developing shoulder region followed by an essentially constant-rate region. The shoulder regions have been demonstrated to arise chiefly from complex functional protein signaling cascades that generate delays in the onset of the constant-rate region, but may involve heat shock protein activity as well. This paper shows that acceptably accurate and much-improved predictions in the simpler Arrhenius models can be obtained by adding a temperature-dependent time delay. Kinetic coefficients and the appropriate time delay are obtained from the constant-rate regions of the measured survival curves. The resulting predictions are seen to provide acceptably accurate results while not overestimating cell death. The method can be relatively easily incorporated into numerical models. Additionally, evidence is presented

  11. Irreversible EGFR Inhibitor EKB-569 Targets Low-LET γ-Radiation-Triggered Rel Orchestration and Potentiates Cell Death in Squamous Cell Carcinoma

    PubMed Central

    Aravindan, Natarajan; Thomas, Charles R.; Aravindan, Sheeja; Mohan, Aswathi S.; Veeraraghavan, Jamunarani; Natarajan, Mohan

    2011-01-01

    EKB-569 (Pelitinib), an irreversible EGFR tyrosine kinase inhibitor has shown potential therapeutic efficiency in solid tumors. However, cell-killing potential in combination with radiotherapy and its underlying molecular orchestration remain to be explored. The objective of this study was to determine the effect of EKB-569 on ionizing radiation (IR)-associated NFκB-dependent cell death. SCC-4 and SCC-9 cells exposed to IR (2Gy) with and without EKB-569 treatment were analyzed for transactivation of 88 NFκB pathway molecules, NFκB DNA-binding activity, translation of the NFκB downstream mediators, Birc1, 2 and 5, cell viability, metabolic activity and apoptosis. Selective targeting of IR-induced NFκB by EKB-569 and its influence on cell-fate were assessed by overexpressing (p50/p65) and silencing (ΔIκBα) NFκB. QPCR profiling after IR exposure revealed a significant induction of 74 NFκB signal transduction molecules. Of those, 72 were suppressed with EKB-569. EMSA revealed a dose dependent inhibition of NFκB by EKB-569. More importantly, EKB-569 inhibited IR-induced NFκB in a dose-dependent manner, and this inhibition was sustained up to at least 72 h. Immunoblotting revealed a significant suppression of IR-induced Birc1, 2 and 5 by EKB-569. We observed a dose-dependent inhibition of cell viability, metabolic activity and apoptosis with EKB-569. EKB-569 significantly enhanced IR-induced cell death and apoptosis. Blocking NFκB improved IR-induced cell death. Conversely, NFκB overexpression negates EKB-569 -induced cell-killing. Together, these pre-clinical data suggest that EKB-569 is a radiosensitizer of squamous cell carcinoma and may mechanistically involve selective targeting of IR-induced NFκB-dependent survival signaling. Further pre-clinical in-vivo studies are warranted. PMID:22242139

  12. Involvement of apoptotic cell death and cell cycle perturbation in retinoic acid-induced cleft palate in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okano, Junko; Suzuki, Shigehiko; Shiota, Kohei

    2007-05-15

    Retinoic acid (RA), a metabolite of vitamin A, plays a key role in a variety of biological processes and is essential for normal embryonic development. On the other hand, exogenous RA could cause cleft palate in offspring when it is given to pregnant animals at either the early or late phases of palatogenesis, but the pathogenetic mechanism of cleft palate caused by excess RA remains not fully elucidated. The aim of the present study was to investigate the effects of excess of RA on early palatogenesis in mouse fetuses and analyze the teratogenic mechanism, especially at the stage prior tomore » palatal shelf elevation. We gave all-trans RA (100 mg/kg) orally to E11.5 ICR pregnant mice and observed the changes occurring in the palatal shelves of their fetuses. It was found that apoptotic cell death increased not only in the epithelium of the palatal shelves but also in the tongue primordium, which might affect tongue withdrawal movement during palatogenesis and impair the horizontal elevation of palatal shelves. In addition, RA was found to prevent the G{sub 1}/S progression of palatal mesenchymal cells through upregulation of p21 {sup Cip1}, leading to Rb hypophospholylation. Thus, RA appears to cause G{sub 1} arrest in palatal mesenchymal cells in a similar manner as in various cancer and embryonic cells. It is likely that apoptotic cell death and cell cycle disruption are involved in cleft palate formation induced by RA.« less

  13. Autophagy modulates endoplasmic reticulum stress-induced cell death in podocytes: A protective role

    PubMed Central

    Cheng, Yu-Chi; Chang, Jer-Ming; Chen, Chien-An

    2015-01-01

    Endoplasmic reticulum stress occurs in a variety of patho-physiological mechanisms and there has been great interest in managing this pathway for the treatment of clinical diseases. Autophagy is closely interconnected with endoplasmic reticulum stress to counteract the possible injurious effects related with the impairment of protein folding. Studies have shown that glomerular podocytes exhibit high rate of autophagy to maintain as terminally differentiated cells. In this study, podocytes were exposed to tunicamycin and thapsigargin to induce endoplasmic reticulum stress. Thapsigargin/tunicamycin treatment induced a significant increase in endoplasmic reticulum stress and of cell death, represented by higher GADD153 and GRP78 expression and propidium iodide flow cytometry, respectively. However, thapsigargin/tunicamycin stimulation also enhanced autophagy development, demonstrated by monodansylcadaverine assay and LC3 conversion. To evaluate the regulatory effects of autophagy on endoplasmic reticulum stress-induced cell death, rapamycin (Rap) or 3-methyladenine (3-MA) was added to enhance or inhibit autophagosome formation. Endoplasmic reticulum stress-induced cell death was decreased at 6 h, but was not reduced at 24 h after Rap+TG or Rap+TM treatment. In contrast, endoplasmic reticulum stress-induced cell death increased at 6 and 24 h after 3-MA+TG or 3-MA+TM treatment. Our study demonstrated that thapsigargin/tunicamycin treatment induced endoplasmic reticulum stress which resulted in podocytes death. Autophagy, which counteracted the induced endoplasmic reticulum stress, was simultaneously enhanced. The salvational role of autophagy was supported by adding Rap/3-MA to mechanistically regulate the expression of autophagy and autophagosome formation. In summary, autophagy helps the podocytes from cell death and may contribute to sustain the longevity as a highly differentiated cell lineage. PMID:25322957

  14. Yeast Genetics for Delineating Bax/Bcl Pathway of Cell Death Regulation.

    DTIC Science & Technology

    1998-07-01

    differences in tosol. The cytosol also became electron dense ("cyto- the copy number of the episomal plasmid from which solic condensation"), similar to...Cell Death & Differ . 3, 229-236. (1993). The C. eheans cell death gene ccd-3 encodes a protein similar ¶Xhitc. K., Tahaoglu, E., and Steller, H. (1996...components may be used in different functional contexts. Similar modules might exist in metazoan apoptotic pathways. Even though yeast does not contain

  15. Fluoxetine Prevents Oligodendrocyte Cell Death by Inhibiting Microglia Activation after Spinal Cord Injury

    PubMed Central

    Lee, Jee Y.; Kang, So R.

    2015-01-01

    Abstract Oligodendrocyte cell death and axon demyelination after spinal cord injury (SCI) are known to be important secondary injuries contributing to permanent neurological disability. Thus, blocking oligodendrocyte cell death should be considered for therapeutic intervention after SCI. Here, we demonstrated that fluoxetine, an antidepressant drug, alleviates oligodendrocyte cell death by inhibiting microglia activation after SCI. After injury at the T9 level with a Precision Systems and Instrumentation (Lexington, KY) device, fluoxetine (10 mg/kg, intraperitoneal) was administered once a day for the indicated time points. Immunostaining with CD11b (OX-42) antibody and quantification analysis showed that microglia activation was significantly inhibited by fluoxetine at 5 days after injury. Fluoxetine also significantly inhibited activation of p38 mitogen-activated protein kinase (p38-MAPK) and expression of pro-nerve growth factor (pro-NGF), which is known to mediate oligodendrocyte cell death through the p75 neurotrophin receptor after SCI. In addition, fluoxetine attenuated activation of Ras homolog gene family member A and decreased the level of phosphorylated c-Jun and, ultimately, alleviated caspase-3 activation and significantly reduced cell death of oligodendrocytes at 5 days after SCI. Further, the decrease of myelin basic protein, myelin loss, and axon loss in white matter was also significantly blocked by fluoxetine, as compared to vehicle control. These results suggest that fluoxetine inhibits oligodendrocyte cell death by inhibiting microglia activation and p38-MAPK activation, followed by pro-NGF production after SCI, and provide a potential usage of fluoxetine for a therapeutic agent after acute SCI in humans. PMID:25366938

  16. Investigations into the Mechanisms of Cell Death: The Common Link between Anticancer Nanotherapeutics and Nanotoxicology

    NASA Astrophysics Data System (ADS)

    Minocha, Shalini

    Nanotoxicology and anticancer nanotherapeutics are essentially two sides of the same coin. The nanotoxicology discipline deals with the nanoparticle (NP)-induced toxicity and mechanisms of cell death in healthy cells, whereas anticancer agents delivered via nano-based approaches aim to induce cell death in abnormally proliferating cancer cells. The objectives of the studies presented herein were two-fold; to (a) systematically study the physico-chemical properties and cell death mechanisms of model NPs and (b) utilize the knowledge gained from cell death-nanotoxicity studies in developing a potentially novel anticancer nanotherapeutic agent. For the first objective, the effect of a distinguishing characteristic, i.e., surface carbon coating on the matched pairs of carbon-coated and non-coated copper and nickel NPs (Cu, C-Cu, Ni and C-Ni) on the physico-chemical properties and toxicity in A549 alveolar epithelial cells were evaluated. The effect of carbon coating on particle size, zeta potential, oxidation state, cellular uptake, release of soluble metal and concentration dependent toxicity of Cu and Ni NPs was systematically evaluated. A significant effect of carbon coating was observed on the physico-chemical properties, interaction with cellular membranes, and overall toxicity of the NPs. C-Cu NPs, compared to Cu NPs, showed four-fold lower release of soluble copper, ten-fold higher cellular uptake and protection against surface oxidation. In toxicity assays, C-Cu NPs induced higher mitochondrial damage than Cu NPs whereas Cu NPs were associated with a significant damage to plasma membrane integrity. Nickel and carbon coated nickel NPs were less toxic compared to Cu and C-Cu NPs. Thus, by studying the effect of carbon coating, correlations between physico-chemical properties and toxicity of NPs were established. The second objective was focused on utilizing nano-based approaches for the intracellular delivery of an anticancer agent, Cytochrome c (Cyt c), to

  17. Vitamin K3 triggers human leukemia cell death through hydrogen peroxide generation and histone hyperacetylation.

    PubMed

    Lin, Changjun; Kang, Jiuhong; Zheng, Rongliang

    2005-10-01

    Vitamin K3 (VK3) is a well-known anticancer agent, but its mechanism remains elusive. In the present study, VK3 was found to simultaneously induce cell death, reactive oxygen species (ROS) generation, including superoxide anion (O2*-) and hydrogen peroxide (H2O2) generation, and histone hyperacetylation in human leukemia HL-60 cells in a concentration- and time-dependent manner. Catalase (CAT), an antioxidant enzyme that specifically scavenges H2O2, could significantly diminish both histone acetylation increase and cell death caused by VK3, whereas superoxide dismutase (SOD), an enzyme that specifically eliminates O2*-, showed no effect on both of these, leading to the conclusion that H2O2 generation, but not O2*- generation, contributes to VK3-induced histone hyperacetylation and cell death. This conclusion was confirmed by the finding that enhancement of VK3-induced H2O2 generation by vitamin C (VC) could significantly promote both the histone hyperacetylation and cell death. Further studies suggested that histone hyperacetylation played an important role in VK3-induced cell death, since sodium butyrate, a histone deacetylase (HDAC) inhibitor, showed no effect on ROS generation, but obviously potentiated VK3-induced histone hyperacetylation and cell death. Collectively, these results demonstrate a novel mechanism for the anticancer activity of VK3, i.e., VK3 induced tumor cell death through H2O2 generation, which then further induced histone hyperacetylation.

  18. An Early and Robust Activation of Caspases Heads Cells for a Regulated Form of Necrotic-like Cell Death.

    PubMed

    Garcia-Belinchón, Mercè; Sánchez-Osuna, María; Martínez-Escardó, Laura; Granados-Colomina, Carla; Pascual-Guiral, Sònia; Iglesias-Guimarais, Victoria; Casanelles, Elisenda; Ribas, Judit; Yuste, Victor J

    2015-08-21

    Apoptosis is triggered by the activation of caspases and characterized by chromatin condensation and nuclear fragmentation (type II nuclear morphology). Necrosis is depicted by a gain in cell volume (oncosis), swelling of organelles, plasma membrane leakage, and subsequent loss of intracellular contents. Although considered as different cell death entities, there is an overlap between apoptosis and necrosis. In this sense, mounting evidence suggests that both processes can be morphological expressions of a common biochemical network known as "apoptosis-necrosis continuum." To gain insight into the events driving the apoptosis-necrosis continuum, apoptotically proficient cells were screened facing several apoptotic inducers for the absence of type II apoptotic nuclear morphologies. Chelerythrine was selected for further studies based on its cytotoxicity and the lack of apoptotic nuclear alterations. Chelerythrine triggered an early plasma membrane leakage without condensed chromatin aggregates. Ultrastructural analysis revealed that chelerythrine-mediated cytotoxicity was compatible with a necrotic-like type of cell death. Biochemically, chelerythrine induced the activation of caspases. Moreover, the inhibition of caspases prevented chelerythrine-triggered necrotic-like cell death. Compared with staurosporine, chelerythrine induced stronger caspase activation detectable at earlier times. After using a battery of chemicals, we found that high concentrations of thiolic antioxidants fully prevented chelerythrine-driven caspase activation and necrotic-like cell death. Lower amounts of thiolic antioxidants partially prevented chelerythrine-mediated cytotoxicity and allowed cells to display type II apoptotic nuclear morphology correlating with a delay in caspase-3 activation. Altogether, these data support that an early and pronounced activation of caspases can drive cells to undergo a form of necrotic-like regulated cell death. © 2015 by The American Society for

  19. An Early and Robust Activation of Caspases Heads Cells for a Regulated Form of Necrotic-like Cell Death*

    PubMed Central

    Garcia-Belinchón, Mercè; Sánchez-Osuna, María; Martínez-Escardó, Laura; Granados-Colomina, Carla; Pascual-Guiral, Sònia; Iglesias-Guimarais, Victoria; Casanelles, Elisenda; Ribas, Judit; Yuste, Victor J.

    2015-01-01

    Apoptosis is triggered by the activation of caspases and characterized by chromatin condensation and nuclear fragmentation (type II nuclear morphology). Necrosis is depicted by a gain in cell volume (oncosis), swelling of organelles, plasma membrane leakage, and subsequent loss of intracellular contents. Although considered as different cell death entities, there is an overlap between apoptosis and necrosis. In this sense, mounting evidence suggests that both processes can be morphological expressions of a common biochemical network known as “apoptosis-necrosis continuum.” To gain insight into the events driving the apoptosis-necrosis continuum, apoptotically proficient cells were screened facing several apoptotic inducers for the absence of type II apoptotic nuclear morphologies. Chelerythrine was selected for further studies based on its cytotoxicity and the lack of apoptotic nuclear alterations. Chelerythrine triggered an early plasma membrane leakage without condensed chromatin aggregates. Ultrastructural analysis revealed that chelerythrine-mediated cytotoxicity was compatible with a necrotic-like type of cell death. Biochemically, chelerythrine induced the activation of caspases. Moreover, the inhibition of caspases prevented chelerythrine-triggered necrotic-like cell death. Compared with staurosporine, chelerythrine induced stronger caspase activation detectable at earlier times. After using a battery of chemicals, we found that high concentrations of thiolic antioxidants fully prevented chelerythrine-driven caspase activation and necrotic-like cell death. Lower amounts of thiolic antioxidants partially prevented chelerythrine-mediated cytotoxicity and allowed cells to display type II apoptotic nuclear morphology correlating with a delay in caspase-3 activation. Altogether, these data support that an early and pronounced activation of caspases can drive cells to undergo a form of necrotic-like regulated cell death. PMID:26124276

  20. Leptospermum flavescens Constituent-LF1 Causes Cell Death through the Induction of Cell Cycle Arrest and Apoptosis in Human Lung Carcinoma Cells

    PubMed Central

    Navanesan, Suerialoasan; Abdul Wahab, Norhanom; Manickam, Sugumaran; Sim, Kae Shin

    2015-01-01

    Leptospermum flavescens Sm. (Myrtaceae), locally known as ‘Senna makki’ is a smallish tree that is widespread and recorded to naturally occur in the montane regions above 900 m a.s.l from Burma to Australia. Although the species is recorded to be used traditionally to treat various ailments, there is limited data on biological and chemical investigations of L. flavescens. The aim of the present study was to investigate and understand the ability of L. flavescens in inducing cell death in lung cancer cells. The cytotoxic potentials of the extraction yields (methanol, hexane, ethyl acetate and water extracts as wells as a semi pure fraction, LF1) were evaluated against two human non-small cell lung carcinoma cell lines (A549 and NCI-H1299) using the MTT assay. LF1 showed the greatest cytotoxic effect against both cell lines with IC50 values of 7.12 ± 0.07 and 9.62 ± 0.50 μg/ml respectively. LF1 treated cells showed a sub-G1 region in the cell cycle analysis and also caused the presence of apoptotic morphologies in cells stained with acridine orange and ethidium bromide. Treatment with LF1 manifested an apoptotic population in cells that were evaluated using the Annexin V/ propidium iodide assay. Increasing dosage of LF1 caused a rise in the presence of activated caspase-3 enzymes in treated cells. Blockage of cell cycle progression was also observed in LF1-treated cells. These findings suggest that LF1 induces apoptosis and cell cycle arrest in treated lung cancer cells. Further studies are being conducted to isolate and identify the active compound as well to better understand the mechanism involved in inducing cell death. PMID:26287817

  1. Arabidopsis GRI is involved in the regulation of cell death induced by extracellular ROS

    PubMed Central

    Wrzaczek, Michael; Brosché, Mikael; Kollist, Hannes; Kangasjärvi, Jaakko

    2009-01-01

    Reactive oxygen species (ROS) have important functions in plant stress responses and development. In plants, ozone and pathogen infection induce an extracellular oxidative burst that is involved in the regulation of cell death. However, very little is known about how plants can perceive ROS and regulate the initiation and the containment of cell death. We have identified an Arabidopsis thaliana protein, GRIM REAPER (GRI), that is involved in the regulation of cell death induced by extracellular ROS. Plants with an insertion in GRI display an ozone-sensitive phenotype. GRI is an Arabidopsis ortholog of the tobacco flower-specific Stig1 gene. The GRI protein appears to be processed in leaves with a release of an N-terminal fragment of the protein. Infiltration of the N-terminal fragment of the GRI protein into leaves caused cell death in a superoxide- and salicylic acid-dependent manner. Analysis of the extracellular GRI protein yields information on how plants can initiate ROS-induced cell death during stress response and development. PMID:19279211

  2. Intracellular Serine Protease Inhibitor SERPINB4 Inhibits Granzyme M-Induced Cell Death

    PubMed Central

    de Koning, Pieter J. A.; Kummer, J. Alain; de Poot, Stefanie A. H.; Quadir, Razi; Broekhuizen, Roel; McGettrick, Anne F.; Higgins, Wayne J.; Devreese, Bart; Worrall, D. Margaret; Bovenschen, Niels

    2011-01-01

    Granzyme-mediated cell death is the major pathway for cytotoxic lymphocytes to kill virus-infected and tumor cells. In humans, five different granzymes (i.e. GrA, GrB, GrH, GrK, and GrM) are known that all induce cell death. Expression of intracellular serine protease inhibitors (serpins) is one of the mechanisms by which tumor cells evade cytotoxic lymphocyte-mediated killing. Intracellular expression of SERPINB9 by tumor cells renders them resistant to GrB-induced apoptosis. In contrast to GrB, however, no physiological intracellular inhibitors are known for the other four human granzymes. In the present study, we show that SERPINB4 formed a typical serpin-protease SDS-stable complex with both recombinant and native human GrM. Mutation of the P2-P1-P1′ triplet in the SERPINB4 reactive center loop completely abolished complex formation with GrM and N-terminal sequencing revealed that GrM cleaves SERPINB4 after P1-Leu. SERPINB4 inhibited GrM activity with a stoichiometry of inhibition of 1.6 and an apparent second order rate constant of 1.3×104 M−1s−1. SERPINB4 abolished cleavage of the macromolecular GrM substrates α-tubulin and nucleophosmin. Overexpression of SERPINB4 in tumor cells inhibited recombinant GrM-induced as well as NK cell-mediated cell death and this inhibition depended on the reactive center loop of the serpin. As SERPINB4 is highly expressed by squamous cell carcinomas, our results may represent a novel mechanism by which these tumor cells evade cytotoxic lymphocyte-induced GrM-mediated cell death. PMID:21857942

  3. Ultrastructural aspects of autoschizis: a new cancer cell death induced by the synergistic action of ascorbate/menadione on human bladder carcinoma cells.

    PubMed

    Gilloteaux, J; Jamison, J M; Arnold, D; Taper, H S; Summers, J L

    2001-01-01

    Scanning and transmission electron microscopy were employed to further characterize the cytotoxic effects of a ascorbic acid/menadione (or vitamin C/vitamin K3) combination on a human bladder carcinoma T24 cell line. Following 1-h treatment T24 cells display membrane and mitochondrial defects as well as excision of cytoplasmic fragments that contain no organelles. These continuous self-excisions reduce the cell size. Concomitant, nuclear changes, chromatin disassembly, nucleolar condensation and fragmentation, and decreased nuclear volume lead to cell death via a process similar to karyorrhexis and karyolysis. Because this cell death is achieved through a progressive loss of cytoplasm due to self-morsellation, the authors named this mode of cell death autoschizis (from the Greek autos, self, and schizein, to split, as defined in Scanning. 1998; 20: 564-575). This morphological characterization of autoschizic cell death confirms and extends the authors previous reports and demonstrates that this cell death is distinct from apoptosis.

  4. Hop/STI1 modulates retinal proliferation and cell death independent of PrP{sup C}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arruda-Carvalho, Maithe; Njaine, Brian; Silveira, Mariana S.

    Hop/STI1 is a co-chaperone adaptor protein for Hsp70/Hsp90 complexes. Hop/STI1 is found extracellularly and modulates cell death and differentiation through interaction with the prion protein (PrP{sup C}). Here, we investigated the expression of hop/STI1 and its role upon cell proliferation and cell death in the developing retina. Hop/STI1 is more expressed in developing rat retina than in the mature tissue. Hop/STI1 blocks retinal cell death in the neuroblastic layer (NBL) in a PrP{sup C} dependent manner, but failed to protect ganglion cells against axotomy-induced cell death. An antibody raised against hop/STI1 ({alpha}-STI1) blocked both ganglion cell and NBL cell deathmore » independent of PrP{sup C}. cAMP/PKA, ERK, PI3K and PKC signaling pathways were not involved in these effects. Hop/STI1 treatment reduced proliferation, while {alpha}-STI1 increased proliferation in the developing retina, both independent of PrP{sup C}. We conclude that hop/STI1 can modulate both proliferation and cell death in the developing retina independent of PrP{sup C}.« less

  5. Ethylene is required for elicitin-induced oxidative burst but not for cell death induction in tobacco cell suspension cultures.

    PubMed

    Koehl, Julia; Djulic, Alma; Kirner, Veronika; Nguyen, Tach Thao; Heiser, Ingrid

    2007-12-01

    The signal compound ethylene and its relationships with oxidative burst and cell death were analyzed in cultured tobacco cells treated with the proteinaceous elicitor quercinin. Quercinin belongs to the protein family of elicitins and was isolated from the soil-born oak pathogen Phytophthora quercina. It was shown to induce a dose-dependent oxidative burst in tobacco cell culture in concentrations from 0.05 to 0.5 nM, and subsequently, cell death. The characteristics of quercinin-induced cell death included both membrane damage and DNA fragmentation in tobacco cell culture. At higher quercinin concentrations (2 nM), H(2)O(2) formation and ethylene biosynthesis were inhibited. Ethylene at low concentrations proved to be necessary for induction and maintenance of H(2)O(2) production in tobacco cells treated with quercinin. It was demonstrated that external addition of inhibitors of ethylene biosynthesis such as alpha-amino-oxy-acetic acid (AOA) and CoCl(2) also decreased or even inhibited the quercinin-induced oxidative burst, but did not influence cell death induction. These results demonstrate evidence for a requirement of the plant hormone ethylene for the onset of the quercinin-induced oxidative burst.

  6. Role of Hsp-70 in triptolide-mediated cell death of neuroblastoma.

    PubMed

    Antonoff, Mara B; Chugh, Rohit; Skube, Steven J; Dudeja, Vikas; Borja-Cacho, Daniel; Clawson, Kimberly A; Vickers, Selwyn M; Saluja, Ashok K

    2010-09-01

    Our recent work demonstrated that treatment of neuroblastoma with triptolide causes apoptotic cell death in vitro and decreases tumor size in vivo. Triptolide therapy has been associated with reduced expression of Hsp-70, suggesting a mechanism of cell killing involving Hsp-70 inhibition. The principal objective of this study was to investigate the role of Hsp-70 in triptolide-mediated cell death in neuroblastoma. Neuroblastoma cells were transfected with Hsp-70-specific siRNA. Viability, caspase activity, and phosphatidylserine externalization were subsequently measured. An orthotopic, syngeneic murine tumor model was developed, and randomized mice received daily injections of triptolide or vehicle. At 21 d, mice were sacrificed. Immunohistochemisty was used to characterize Hsp-70 levels in residual tumors, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was performed to identify cells undergoing apoptosis. Targeted silencing of Hsp-70 with siRNA significantly decreased cellular viability, augmented caspase-3 activity, and resulted in increased annexin-V staining. These effects parallel those findings obtained following treatment with triptolide. Residual tumors from triptolide-treated mice showed minimal staining with Hsp-70 immunohistochemistry, while control tumors stained prominently. Tumors from treated mice demonstrated marked staining with the TUNEL assay, while control tumors showed no evidence of apoptosis. Use of siRNA to suppress Hsp-70 expression in neuroblastoma resulted in apoptotic cell death, similar to the effects of triptolide. Residual tumors from triptolide-treated mice expressed decreased levels of Hsp-70 and demonstrated significant apoptosis. These findings support the hypothesis that Hsp-70 inhibition plays a significant role in triptolide-mediated neuroblastoma cell death. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Hedgehog inhibition promotes a switch from Type II to Type I cell death receptor signaling in cancer cells.

    PubMed

    Kurita, Satoshi; Mott, Justin L; Cazanave, Sophie C; Fingas, Christian D; Guicciardi, Maria E; Bronk, Steve F; Roberts, Lewis R; Fernandez-Zapico, Martin E; Gores, Gregory J

    2011-03-31

    TRAIL is a promising therapeutic agent for human malignancies. TRAIL often requires mitochondrial dysfunction, referred to as the Type II death receptor pathway, to promote cytotoxicity. However, numerous malignant cells are TRAIL resistant due to inhibition of this mitochondrial pathway. Using cholangiocarcinoma cells as a model of TRAIL resistance, we found that Hedgehog signaling blockade sensitized these cancer cells to TRAIL cytotoxicity independent of mitochondrial dysfunction, referred to as Type I death receptor signaling. This switch in TRAIL requirement from Type II to Type I death receptor signaling was demonstrated by the lack of functional dependence on Bid/Bim and Bax/Bak, proapoptotic components of the mitochondrial pathway. Hedgehog signaling modulated expression of X-linked inhibitor of apoptosis (XIAP), which serves to repress the Type I death receptor pathway. siRNA targeted knockdown of XIAP mimics sensitization to mitochondria-independent TRAIL killing achieved by Hedgehog inhibition. Regulation of XIAP expression by Hedgehog signaling is mediated by the glioma-associated oncogene 2 (GLI2), a downstream transcription factor of Hedgehog. In conclusion, these data provide additional mechanisms modulating cell death by TRAIL and suggest Hedgehog inhibition as a therapeutic approach for TRAIL-resistant neoplasms.

  8. Stress Management in Cyst-Forming Free-Living Protists: Programmed Cell Death and/or Encystment

    PubMed Central

    Khan, Naveed Ahmed; Iqbal, Junaid

    2015-01-01

    In the face of harsh conditions and given a choice, a cell may (i) undergo programmed cell death, (ii) transform into a cancer cell, or (iii) enclose itself into a cyst form. In metazoans, the available evidence suggests that cellular machinery exists only to execute or avoid programmed cell death, while the ability to form a cyst was either lost or never developed. For cyst-forming free-living protists, here we pose the question whether the ability to encyst was gained at the expense of the programmed cell death or both functions coexist to counter unfavorable environmental conditions with mutually exclusive phenotypes. PMID:25648302

  9. Ursodeoxycholic Acid Induces Death Receptor-mediated Apoptosis in Prostate Cancer Cells

    PubMed Central

    Lee, Won Sup; Jung, Ji Hyun; Panchanathan, Radha; Yun, Jeong Won; Kim, Dong Hoon; Kim, Hye Jung; Kim, Gon Sup; Ryu, Chung Ho; Shin, Sung Chul; Hong, Soon Chan; Choi, Yung Hyun; Jung, Jin-Myung

    2017-01-01

    Background Bile acids have anti-cancer properties in a certain types of cancers. We determined anticancer activity and its underlying molecular mechanism of ursodeoxycholic acid (UDCA) in human DU145 prostate cancer cells. Methods Cell viability was measured with an MTT assay. UDCA-induced apoptosis was determined with flow cytometric analysis. The expression levels of apoptosis-related signaling proteins were examined with Western blotting. Results UDCA treatment significantly inhibited cell growth of DU145 in a dose-dependent manner. It induced cellular shrinkage and cytoplasmic blebs and accumulated the cells with sub-G1 DNA contents. Moreover, UDCA activated caspase 8, suggesting that UDCA-induced apoptosis is associated with extrinsic pathway. Consistent to this finding, UDCA increased the expressions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, death receptor 4 (DR4) and death receptor 5 (DR5), and TRAIL augmented the UDCA-induced cell death in DU145 cells. In addition, UDCA also increased the expressions of Bax and cytochrome c and decreased the expression of Bcl-xL in DU145 cells. This finding suggests that UDCA-induced apoptosis may be involved in intrinsic pathway. Conclusions UDCA induces apoptosis via extrinsic pathway as well as intrinsic pathway in DU145 prostate cancer cells. UDCA may be a promising anti-cancer agent against prostate cancer. PMID:28382282

  10. The GYF domain protein PSIG1 dampens the induction of cell death during plant-pathogen interactions

    PubMed Central

    Matsui, Hidenori; Nomura, Yuko; Egusa, Mayumi; Hamada, Takahiro; Hyon, Gang-Su; Kaminaka, Hironori; Ueda, Takashi

    2017-01-01

    The induction of rapid cell death is an effective strategy for plants to restrict biotrophic and hemi-biotrophic pathogens at the infection site. However, activation of cell death comes at a high cost, as dead cells will no longer be available for defense responses nor general metabolic processes. In addition, necrotrophic pathogens that thrive on dead tissue, take advantage of cell death-triggering mechanisms. Mechanisms by which plants solve this conundrum remain described. Here, we identify PLANT SMY2-TYPE ILE-GYF DOMAIN-CONTAINING PROTEIN 1 (PSIG1) and show that PSIG1 helps to restrict cell death induction during pathogen infection. Inactivation of PSIG1 does not result in spontaneous lesions, and enhanced cell death in psig1 mutants is independent of salicylic acid (SA) biosynthesis or reactive oxygen species (ROS) production. Moreover, PSIG1 interacts with SMG7, which plays a role in nonsense-mediated RNA decay (NMD), and the smg7-4 mutant allele mimics the cell death phenotype of the psig1 mutants. Intriguingly, the psig1 mutants display enhanced susceptibility to the hemi-biotrophic bacterial pathogen. These findings point to the existence and importance of the SA- and ROS-independent cell death constraining mechanism as a part of the plant immune system. PMID:29073135

  11. Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line.

    PubMed

    Thomas, Andrew J; Hailey, Dale W; Stawicki, Tamara M; Wu, Patricia; Coffin, Allison B; Rubel, Edwin W; Raible, David W; Simon, Julian A; Ou, Henry C

    2013-03-06

    Cisplatin, one of the most commonly used anticancer drugs, is known to cause inner ear hair cell damage and hearing loss. Despite much investigation into mechanisms of cisplatin-induced hair cell death, little is known about the mechanism whereby cisplatin is selectively toxic to hair cells. Using hair cells of the zebrafish lateral line, we found that chemical inhibition of mechanotransduction with quinine and EGTA protected against cisplatin-induced hair cell death. Furthermore, we found that the zebrafish mutants mariner (myo7aa) and sputnik (cad23) that lack functional mechanotransduction were resistant to cisplatin-induced hair cell death. Using a fluorescent analog of cisplatin, we found that chemical or genetic inhibition of mechanotransduction prevented its uptake. These findings demonstrate that cisplatin-induced hair cell death is dependent on functional mechanotransduction in the zebrafish lateral line.

  12. Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line

    PubMed Central

    Thomas, Andrew J.; Hailey, Dale W.; Stawicki, Tamara M.; Wu, Patricia; Coffin, Allison B.; Rubel, Edwin W.; Raible, David W.; Simon, Julian A.; Ou, Henry C.

    2013-01-01

    Cisplatin, one of the most commonly used anti-cancer drugs, is known to cause inner ear hair cell damage and hearing loss. Despite much investigation into mechanisms of cisplatin-induced hair cell death, little is known about the mechanism whereby cisplatin is selectively toxic to hair cells. Using hair cells of the zebrafish lateral line, we found that chemical inhibition of mechanotransduction with quinine and EGTA protected against cisplatin-induced hair cell death. Furthermore, we found that the zebrafish mutants mariner (myo7aa) and sputnik (cad23) that lack functional mechanotransduction were resistant to cisplatin-induced hair cell death. Using a fluorescent analogue of cisplatin, we found that chemical or genetic inhibition of mechanotransduction prevented its uptake. These findings demonstrate that cisplatin-induced hair cell death is dependent on functional mechanotransduction in the zebrafish lateral line. PMID:23467357

  13. Cytokinin-induced cell death is associated with elevated expression of alternative oxidase in tobacco BY-2 cells.

    PubMed

    Mlejnek, Petr

    2013-10-01

    N(6)-benzyladenine (BA) and N(6)-benzyladenosine ([9R]BA) induce massive production of reactive oxygen species (ROS) that is eventually followed by a loss of cell viability in tobacco BY-2 cells (Mlejnek et al. Plant Cell Environ 26:1723-1735, 2003, Plant Sci 168:389-395, 2005). Results presented in this work suggest that the main sources of ROS are likely mitochondria and that the maintenance of the mitochondrial transmembrane potential is crucial for ROS production in cytokinin-treaded BY-2 cells. Therefore, the possible involvement of alternative oxidase (AOX) in cell death process induced by BA and [9R]BA was studied. About three- to fourfold increase in mRNA levels of AOX1 was observed a few hours after the BA and [9R]BA addition into the growth medium. The elevated expression of AOX1 mRNA could be prevented by adding adenine and adenosine which simultaneously reduced the cytotoxic effects of BA and [9R]BA, respectively. N(6)-benzyladenine 7-β-D-glucoside ([7G]BA) which is a common non-toxic metabolite of BA and [9R]BA did not affect the AOX1 mRNA expression. Although AOX1 seemed to be involved in protection of BY-2 cells against the abiotic stress induced by BA and [9R]BA, the results do not support the idea that it protects cells from death exclusively by scavenging of reactive oxygen species. Indeed, N-propyl gallate, an inhibitor of AOX, decreased cell survival despite it concomitantly decreased the ROS production. This finding is in contrast to the effect of salicylhydroxamic acid, another well-known inhibitor of AOX, which also increased the number of dying cells while it increased the ROS production.

  14. Multiple reaction monitoring targeted LC-MS analysis of potential cell death marker proteins for increased bioprocess control.

    PubMed

    Albrecht, Simone; Kaisermayer, Christian; Reinhart, David; Ambrose, Monica; Kunert, Renate; Lindeberg, Anna; Bones, Jonathan

    2018-05-01

    The monitoring of protein biomarkers for the early prediction of cell stress and death is a valuable tool for process characterization and efficient biomanufacturing control. A representative set of six proteins, namely GPDH, PRDX1, LGALS1, CFL1, TAGLN2 and MDH, which were identified in a previous CHO-K1 cell death model using discovery LC-MS E was translated into a targeted liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM-MS) platform and verified. The universality of the markers was confirmed in a cell growth model for which three Chinese hamster ovary host cell lines (CHO-K1, CHO-S, CHO-DG44) were grown in batch culture in two different types of basal media. LC-MRM-MS was also applied to spent media (n = 39) from four perfusion biomanufacturing series. Stable isotope-labelled peptide analogues and a stable isotope-labelled monoclonal antibody were used for improved protein quantitation and simultaneous monitoring of the workflow reproducibility. Significant increases in protein concentrations were observed for all viability marker proteins upon increased dead cell numbers and allowed for discrimination of spent media with dead cell densities below and above 1 × 10 6  dead cells/mL which highlights the potential of the selected viability marker proteins in bioprocess control. Graphical abstract Overview of the LC-MRM-MS workflow for the determination of proteomic markers in conditioned media from the bioreactor that correlate with CHO cell death.

  15. Influence of PD-L1 cross-linking on cell death in PD-L1-expressing cell lines and bovine lymphocytes

    PubMed Central

    Ikebuchi, Ryoyo; Konnai, Satoru; Okagawa, Tomohiro; Yokoyama, Kazumasa; Nakajima, Chie; Suzuki, Yasuhiko; Murata, Shiro; Ohashi, Kazuhiko

    2014-01-01

    Programmed death-ligand 1 (PD-L1) blockade is accepted as a novel strategy for the reactivation of exhausted T cells that express programmed death-1 (PD-1). However, the mechanism of PD-L1-mediated inhibitory signalling after PD-L1 cross-linking by anti-PD-L1 monoclonal antibody (mAb) or PD-1–immunogloblin fusion protein (PD-1-Ig) is still unknown, although it may induce cell death of PD-L1+ cells required for regular immune reactions. In this study, PD-1-Ig or anti-PD-L1 mAb treatment was tested in cell lines that expressed PD-L1 and bovine lymphocytes to investigate whether the treatment induces immune reactivation or PD-L1-mediated cell death. PD-L1 cross-linking by PD-1-Ig or anti-PD-L1 mAb primarily increased the number of dead cells in PD-L1high cells, but not in PD-L1low cells; these cells were prepared from Cos-7 cells in which bovine PD-L1 expression was induced by transfection. The PD-L1-mediated cell death also occurred in Cos-7 and HeLa cells transfected with vectors only encoding the extracellular region of PD-L1. In bovine lymphocytes, the anti-PD-L1 mAb treatment up-regulated interferon-γ (IFN-γ) production, whereas PD-1-Ig treatment decreased this cytokine production and cell proliferation. The IFN-γ production in B-cell-depleted peripheral blood mononuclear cells was not reduced by PD-1-Ig treatment and the percentages of dead cells in PD-L1+ B cells were increased by PD-1-Ig treatment, indicating that PD-1-Ig-induced immunosuppression in bovine lymphocytes could be caused by PD-L1-mediated B-cell death. This study provides novel information for the understanding of signalling through PD-L1. PMID:24405267

  16. Resistance to Cell Death and Its Modulation in Cancer Stem Cells

    PubMed Central

    Safa, Ahmad R.

    2017-01-01

    Accumulating evidence has demonstrated that human cancers arise from various tissues of origin that initiate from cancer stem cells (CSCs) or cancer-initiating cells. The extrinsic and intrinsic apoptotic pathways are dysregulated in CSCs, and these cells play crucial roles in tumor initiation, progression, cell death resistance, chemo- and radiotherapy resistance, and tumor recurrence. Understanding CSC-specific signaling proteins and pathways is necessary to identify specific therapeutic targets that may lead to the development of more efficient therapies selectively targeting CSCs. Several signaling pathways—including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), maternal embryonic leucine zipper kinase (MELK), NOTCH1, and Wnt/β-catenin—and expression of the CSC markers CD133, CD24, CD44, Oct4, Sox2, Nanog, and ALDH1A1 maintain CSC properties. Studying such pathways may help to understand CSC biology and lead to the development of potential therapeutic interventions to render CSCs more sensitive to cell death triggered by chemotherapy and radiation therapy. Moreover, recent demonstrations of dedifferentiation of differentiated cancer cells into CSC-like cells have created significant complexity in the CSCs hypothesis. Therefore, any successful therapeutic agent or combination of drugs for cancer therapy must eliminate not only CSCs but differentiated cancer cells and the entire bulk of tumor cells. This review article expands on the CSC hypothesis and paradigm with respect to major signaling pathways and effectors that regulate CSC apoptosis resistance. Moreover, selective CSC apoptotic modulators and their therapeutic potential for making tumors more responsive to therapy are discussed. The use of novel therapies, including small-molecule inhibitors of specific proteins in signaling pathways that regulate stemness, proliferation and migration of CSCs, immunotherapy, and noncoding microRNAs may provide better means of

  17. Control of adult neurogenesis by programmed cell death in the mammalian brain.

    PubMed

    Ryu, Jae Ryun; Hong, Caroline Jeeyeon; Kim, Joo Yeon; Kim, Eun-Kyoung; Sun, Woong; Yu, Seong-Woon

    2016-04-21

    The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases.

  18. Dimethoxycurcumin-induced cell death in human breast carcinoma MCF7 cells: evidence for pro-oxidant activity, mitochondrial dysfunction, and apoptosis.

    PubMed

    Kunwar, A; Jayakumar, S; Srivastava, A K; Priyadarsini, K I

    2012-04-01

    The factors responsible for the induction of cell death by dimethoxycurcumin (Dimc), a synthetic analog of curcumin, were assessed in human breast carcinoma MCF7 cells. Initial cytotoxic studies with both curcumin and Dimc using MTT assay indicated their comparable effects. Further, the mechanism of action was explored in terms of oxidative stress, mitochondrial dysfunction, and modulation in the expression of proteins involved in cell cycle regulation and apoptosis. Dimc (5-50 μM) caused generation of reactive oxygen species, reduction in glutathione level, and induction of DNA damage. The mitochondrial dysfunction induced by Dimc was evidenced by the reduction in mitochondrial membrane potential and decrease in cellular energy status (ATP/ADP) monitored by HPLC analysis. The observed decrease in ATP was also supported by the significant suppression of different (α, β, γ, and ε) subunits of ATP synthase. The cytotoxic effect of Dimc was further characterized in terms of induction of S-phase cell cycle arrest and apoptosis, and their relative contribution was found to vary with the treatment concentration of Dimc. The S-phase arrest and apoptosis could also be correlated with the changes in the expressions of cell cycle proteins like p53, p21, CDK4, and cyclin-D1 and apoptotic markers like Bax and Bcl-2. Overall, the results demonstrated that Dimc induced cell death in MCF7 cells through S-phase arrest and apoptosis.

  19. Identification of ion-channel modulators that protect against aminoglycoside-induced hair cell death

    PubMed Central

    Kenyon, Emma J.; Kirkwood, Nerissa K.; Kitcher, Siân R.; O’Reilly, Molly; Cantillon, Daire M.; Goodyear, Richard J.; Secker, Abigail; Baxendale, Sarah; Bull, James C.; Waddell, Simon J.; Whitfield, Tanya T.; Ward, Simon E.; Kros, Corné J.; Richardson, Guy P.

    2017-01-01

    Aminoglycoside antibiotics are used to treat life-threatening bacterial infections but can cause deafness due to hair cell death in the inner ear. Compounds have been described that protect zebrafish lateral line hair cells from aminoglycosides, but few are effective in the cochlea. As the aminoglycosides interact with several ion channels, including the mechanoelectrical transducer (MET) channels by which they can enter hair cells, we screened 160 ion-channel modulators, seeking compounds that protect cochlear outer hair cells (OHCs) from aminoglycoside-induced death in vitro. Using zebrafish, 72 compounds were identified that either reduced loading of the MET-channel blocker FM 1-43FX, decreased Texas red–conjugated neomycin labeling, or reduced neomycin-induced hair cell death. After testing these 72 compounds, and 6 structurally similar compounds that failed in zebrafish, 13 were found that protected against gentamicin-induced death of OHCs in mouse cochlear cultures, 6 of which are permeant blockers of the hair cell MET channel. None of these compounds abrogated aminoglycoside antibacterial efficacy. By selecting those without adverse effects at high concentrations, 5 emerged as leads for developing pharmaceutical otoprotectants to alleviate an increasing clinical problem. PMID:29263311

  20. Identification of ion-channel modulators that protect against aminoglycoside-induced hair cell death.

    PubMed

    Kenyon, Emma J; Kirkwood, Nerissa K; Kitcher, Siân R; O'Reilly, Molly; Derudas, Marco; Cantillon, Daire M; Goodyear, Richard J; Secker, Abigail; Baxendale, Sarah; Bull, James C; Waddell, Simon J; Whitfield, Tanya T; Ward, Simon E; Kros, Corné J; Richardson, Guy P

    2017-12-21

    Aminoglycoside antibiotics are used to treat life-threatening bacterial infections but can cause deafness due to hair cell death in the inner ear. Compounds have been described that protect zebrafish lateral line hair cells from aminoglycosides, but few are effective in the cochlea. As the aminoglycosides interact with several ion channels, including the mechanoelectrical transducer (MET) channels by which they can enter hair cells, we screened 160 ion-channel modulators, seeking compounds that protect cochlear outer hair cells (OHCs) from aminoglycoside-induced death in vitro. Using zebrafish, 72 compounds were identified that either reduced loading of the MET-channel blocker FM 1-43FX, decreased Texas red-conjugated neomycin labeling, or reduced neomycin-induced hair cell death. After testing these 72 compounds, and 6 structurally similar compounds that failed in zebrafish, 13 were found that protected against gentamicin-induced death of OHCs in mouse cochlear cultures, 6 of which are permeant blockers of the hair cell MET channel. None of these compounds abrogated aminoglycoside antibacterial efficacy. By selecting those without adverse effects at high concentrations, 5 emerged as leads for developing pharmaceutical otoprotectants to alleviate an increasing clinical problem.