Sample records for observed chemical trends

  1. Trends in Exposure to Chemicals in Personal Care and Consumer Products.

    PubMed

    Calafat, Antonia M; Valentin-Blasini, Liza; Ye, Xiaoyun

    2015-12-01

    Synthetic organic chemicals can be used in personal care and consumer products. Data on potential human health effects of these chemicals are limited-sometimes even contradictory-but because several of these chemicals are toxic in experimental animals, alternative compounds are entering consumer markets. Nevertheless, limited information exists on consequent exposure trends to both the original chemicals and their replacements. Biomonitoring (measuring concentrations of chemicals or their metabolites in people) provides invaluable information for exposure assessment. We use phthalates and bisphenol A-known industrial chemicals-and organophosphate insecticides as case studies to show exposure trends to these chemicals and their replacements (e.g., other phthalates, non-phthalate plasticizers, various bisphenols, pyrethroid insecticides) among the US general population. We compare US trends to national trends from Canada and Germany. Exposure to the original compounds is still prevalent among these general populations, but exposures to alternative chemicals may be increasing.

  2. Systematic trends in photonic reagent induced reactions in a homologous chemical family.

    PubMed

    Tibbetts, Katharine Moore; Xing, Xi; Rabitz, Herschel

    2013-08-29

    The growing use of ultrafast laser pulses to induce chemical reactions prompts consideration of these pulses as "photonic reagents" in analogy to chemical reagents. This work explores the prospect that photonic reagents may affect systematic trends in dissociative ionization reactions of a homologous family of halomethanes, much as systematic outcomes are often observed for reactions between homologous families of chemical reagents and chemical substrates. The experiments in this work with photonic reagents of varying pulse energy and linear spectral chirp reveal systematic correlations between observable ion yields and the following set of natural variables describing the substrate molecules: the ionization energy of the parent molecule, the appearance energy of each fragment ion, and the relative strength of carbon-halogen bonds in molecules containing two different halogens. The results suggest that reactions induced by photonic reagents exhibit systematic behavior analogous to that observed in reactions driven by chemical reagents, which provides a basis to consider empirical "rules" for predicting the outcomes of photonic reagent induced reactions.

  3. Trends analysis of PM source contributions and chemical tracers in NE Spain during 2004-2014: a multi-exponential approach

    NASA Astrophysics Data System (ADS)

    Pandolfi, Marco; Alastuey, Andrés; Pérez, Noemi; Reche, Cristina; Castro, Iria; Shatalov, Victor; Querol, Xavier

    2016-09-01

    In this work for the first time data from two twin stations (Barcelona, urban background, and Montseny, regional background), located in the northeast (NE) of Spain, were used to study the trends of the concentrations of different chemical species in PM10 and PM2.5 along with the trends of the PM10 source contributions from the positive matrix factorization (PMF) model. Eleven years of chemical data (2004-2014) were used for this study. Trends of both species concentrations and source contributions were studied using the Mann-Kendall test for linear trends and a new approach based on multi-exponential fit of the data. Despite the fact that different PM fractions (PM2.5, PM10) showed linear decreasing trends at both stations, the contributions of specific sources of pollutants and of their chemical tracers showed exponential decreasing trends. The different types of trends observed reflected the different effectiveness and/or time of implementation of the measures taken to reduce the concentrations of atmospheric pollutants. Moreover, the trends of the contributions of specific sources such as those related with industrial activities and with primary energy consumption mirrored the effect of the financial crisis in Spain from 2008. The sources that showed statistically significant downward trends at both Barcelona (BCN) and Montseny (MSY) during 2004-2014 were secondary sulfate, secondary nitrate, and V-Ni-bearing source. The contributions from these sources decreased exponentially during the considered period, indicating that the observed reductions were not gradual and consistent over time. Conversely, the trends were less steep at the end of the period compared to the beginning, thus likely indicating the attainment of a lower limit. Moreover, statistically significant decreasing trends were observed for the contributions to PM from the industrial/traffic source at MSY (mixed metallurgy and road traffic) and from the industrial (metallurgy mainly) source at BCN

  4. Chemical trends in ocean islands explained by plume–slab interaction

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Gassmöller, Rene

    2018-04-01

    Earth's surface shows many features, of which the genesis can be understood only through their connection with processes in Earth's deep interior. Recent studies indicate that spatial geochemical patterns at oceanic islands correspond to structures in the lowermost mantle inferred from seismic tomographic models. This suggests that hot, buoyant upwellings can carry chemical heterogeneities from the deep lower mantle toward the surface, providing a window to the composition of the lowermost mantle. The exact nature of this link between surface and deep Earth remains debated and poorly understood. Using computational models, we show that subducted slabs interacting with dense thermochemical piles can trigger the ascent of hot plumes that inherit chemical gradients present in the lowermost mantle. We identify two key factors controlling this process: (i) If slabs induce strong lower-mantle flow toward the edges of these piles where plumes rise, the pile-facing side of the plume preferentially samples material originating from the pile, and bilaterally asymmetric chemical zoning develops. (ii) The composition of the melt produced reflects this bilateral zoning if the overlying plate moves roughly perpendicular to the chemical gradient in the plume conduit. Our results explain some of the observed geochemical trends of oceanic islands and provide insights into how these trends may originate.

  5. Trends in Classroom Observation Scores

    PubMed Central

    Lockwood, J. R.; McCaffrey, Daniel F.

    2014-01-01

    Observations and ratings of classroom teaching and interactions collected over time are susceptible to trends in both the quality of instruction and rater behavior. These trends have potential implications for inferences about teaching and for study design. We use scores on the Classroom Assessment Scoring System–Secondary (CLASS-S) protocol from 458 middle school teachers over a 2-year period to study changes over time in (a) the average quality of teaching for the population of teachers, (b) the average severity of the population of raters, and (c) the severity of individual raters. To obtain these estimates and assess them in the context of other factors that contribute to the variability in scores, we develop an augmented G study model that is broadly applicable for modeling sources of variability in classroom observation ratings data collected over time. In our data, we found that trends in teaching quality were small. Rater drift was very large during raters’ initial days of observation and persisted throughout nearly 2 years of scoring. Raters did not converge to a common level of severity; using our model we estimate that variability among raters actually increases over the course of the study. Variance decompositions based on the model find that trends are a modest source of variance relative to overall rater effects, rater errors on specific lessons, and residual error. The discussion provides possible explanations for trends and rater divergence as well as implications for designs collecting ratings over time. PMID:29795823

  6. Trends in Classroom Observation Scores.

    PubMed

    Casabianca, Jodi M; Lockwood, J R; McCaffrey, Daniel F

    2015-04-01

    Observations and ratings of classroom teaching and interactions collected over time are susceptible to trends in both the quality of instruction and rater behavior. These trends have potential implications for inferences about teaching and for study design. We use scores on the Classroom Assessment Scoring System-Secondary (CLASS-S) protocol from 458 middle school teachers over a 2-year period to study changes over time in (a) the average quality of teaching for the population of teachers, (b) the average severity of the population of raters, and (c) the severity of individual raters. To obtain these estimates and assess them in the context of other factors that contribute to the variability in scores, we develop an augmented G study model that is broadly applicable for modeling sources of variability in classroom observation ratings data collected over time. In our data, we found that trends in teaching quality were small. Rater drift was very large during raters' initial days of observation and persisted throughout nearly 2 years of scoring. Raters did not converge to a common level of severity; using our model we estimate that variability among raters actually increases over the course of the study. Variance decompositions based on the model find that trends are a modest source of variance relative to overall rater effects, rater errors on specific lessons, and residual error. The discussion provides possible explanations for trends and rater divergence as well as implications for designs collecting ratings over time.

  7. Trends in Classroom Observation Scores

    ERIC Educational Resources Information Center

    Casabianca, Jodi M.; Lockwood, J. R.; McCaffrey, Daniel F.

    2015-01-01

    Observations and ratings of classroom teaching and interactions collected over time are susceptible to trends in both the quality of instruction and rater behavior. These trends have potential implications for inferences about teaching and for study design. We use scores on the Classroom Assessment Scoring System-Secondary (CLASS-S) protocol from…

  8. Understanding NOx emission trends in China based on OMI observations

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Ga, D.; Smeltzer, C. D.; Yi, R.; Liu, Z.

    2012-12-01

    We analyze OMI observations of NO2 columns over China from 2005 to 2010. Simulations using a regional 3-D chemical transport model (REAM) are used to derive the top-down anthropogenic NOx emissions. The Kendall method is then applied to derive the emission trend. The emission trend is affected by the economic slowdown in 2009. After removing the effect of one year abnormal data, the overall emission trend is 4.35±1.42% per year, which is slower than the linear-regression trend of 5.8-10.8% per year reported for previous years. We find large regional, seasonal, and urban-rural variations in emission trend. The annual emission trends of Northeast China, Central China Plain, Yangtze River Delta and Pearl River Delta are 44.98±1.39%, 5.24±1.63%, 3.31±1.02% and -4.02±1.87%, respectively. The annual emission trends of four megacities, Beijing, Shanghai, Guangzhou and Shenzhen are 0.7±0.27%, -0.75±0.31%, -4.08±1.21% and -6.22±2.85%,, considerably lower than the regional averages. These results appear to suggest that a number of factors, including migration of high-emission industries, vehicle emission regulations, emission control measures of thermal power plants, increased hydro-power usage, have reduced or reversed the increasing trend of NOx emissions in more economically developed megacities and southern coastal regions.

  9. 125Te NMR chemical-shift trends in PbTe–GeTe and PbTe–SnTe alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Njegic, Bosiljka; Levin, Evgenii M.; Schmidt-Rohr, Klaus

    2013-10-08

    Complex tellurides, such as doped PbTe, GeTe, and their alloys, are among the best thermoelectric materials. Knowledge of the change in 125Te NMR chemical shift due to bonding to dopant or “solute” atoms is useful for determination of phase composition, peak assignment, and analysis of local bonding. We have measured the 125Te NMR chemical shifts in PbTe-based alloys, Pb 1-xGe xTe and Pb 1-xSn xTe, which have a rocksalt-like structure, and analyzed their trends. For low x, several peaks are resolved in the 22-kHz MAS 125Te NMR spectra. A simple linear trend in chemical shifts with the number of Pbmore » neighbors is observed. No evidence of a proposed ferroelectric displacement of Ge atoms in a cubic PbTe matrix is detected at low Ge concentrations. The observed chemical shift trends are compared with the results of DFT calculations, which confirm the linear dependence on the composition of the first-neighbor shell. The data enable determination of the composition of various phases in multiphase telluride materials. They also provide estimates of the 125Te chemical shifts of GeTe and SnTe (+970 and +400±150 ppm, respectively, from PbTe), which are otherwise difficult to access due to Knight shifts of many hundreds of ppm in neat GeTe and SnTe.« less

  10. Version 8 SBUV Ozone Profile Trends Compared with Trends from a Zonally Averaged Chemical Model

    NASA Technical Reports Server (NTRS)

    Rosenfield, Joan E.; Frith, Stacey; Stolarski, Richard

    2004-01-01

    Linear regression trends for the years 1979-2003 were computed using the new Version 8 merged Solar Backscatter Ultraviolet (SBUV) data set of ozone profiles. These trends were compared to trends computed using ozone profiles from the Goddard Space Flight Center (GSFC) zonally averaged coupled model. Observed and modeled annual trends between 50 N and 50 S were a maximum in the higher latitudes of the upper stratosphere, with southern hemisphere (SH) trends greater than northern hemisphere (NH) trends. The observed upper stratospheric maximum annual trend is -5.5 +/- 0.9 % per decade (1 sigma) at 47.5 S and -3.8 +/- 0.5 % per decade at 47.5 N, to be compared with the modeled trends of -4.5 +/- 0.3 % per decade in the SH and -4.0 +/- 0.2% per decade in the NH. Both observed and modeled trends are most negative in winter and least negative in summer, although the modeled seasonal difference is less than observed. Model trends are shown to be greatest in winter due to a repartitioning of chlorine species and the increasing abundance of chlorine with time. The model results show that trend differences can occur depending on whether ozone profiles are in mixing ratio or number density coordinates, and on whether they are recorded on pressure or altitude levels.

  11. An 'Observational Large Ensemble' to compare observed and modeled temperature trend uncertainty due to internal variability.

    NASA Astrophysics Data System (ADS)

    Poppick, A. N.; McKinnon, K. A.; Dunn-Sigouin, E.; Deser, C.

    2017-12-01

    Initial condition climate model ensembles suggest that regional temperature trends can be highly variable on decadal timescales due to characteristics of internal climate variability. Accounting for trend uncertainty due to internal variability is therefore necessary to contextualize recent observed temperature changes. However, while the variability of trends in a climate model ensemble can be evaluated directly (as the spread across ensemble members), internal variability simulated by a climate model may be inconsistent with observations. Observation-based methods for assessing the role of internal variability on trend uncertainty are therefore required. Here, we use a statistical resampling approach to assess trend uncertainty due to internal variability in historical 50-year (1966-2015) winter near-surface air temperature trends over North America. We compare this estimate of trend uncertainty to simulated trend variability in the NCAR CESM1 Large Ensemble (LENS), finding that uncertainty in wintertime temperature trends over North America due to internal variability is largely overestimated by CESM1, on average by a factor of 32%. Our observation-based resampling approach is combined with the forced signal from LENS to produce an 'Observational Large Ensemble' (OLENS). The members of OLENS indicate a range of spatially coherent fields of temperature trends resulting from different sequences of internal variability consistent with observations. The smaller trend variability in OLENS suggests that uncertainty in the historical climate change signal in observations due to internal variability is less than suggested by LENS.

  12. Stratospheric Temperature Trends Observed by TIMED/SABER

    NASA Astrophysics Data System (ADS)

    Xian, T.; Tan, R.

    2017-12-01

    Trends in the stratospheric temperature are studied based on the temperature profile observation from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). The spatially trends are evaluated in different time scales ranging from decadal to monthly resolved. The results indicate a signature of BDC acceleration. There are strong warming trends (up to 9 K/decade) in the middle to upper stratosphere in the high latitude spring, summer, and autumn seasons, accompanied by strong cooling trends in the lower stratosphere. Besides, strong warming trends occurs through the whole stratosphere over the Southern Hemisphere, which confirms Antarctic ozone layer healing since 2000. In addition, the results demonstrate a significant warming trends in the middle of tropical stratosphere, which becomes strongest during June-July-August.

  13. Trends in chemical concentration in sediment cores from three lakes in New Jersey and one lake on Long Island, New York

    USGS Publications Warehouse

    Long, Gary R.; Ayers, Mark A.; Callender, Edward; Van Metre, Peter C.

    2003-01-01

    Data from this study indicate that changes in population, land use, and chemical use in the urbanized watersheds over the period of sedimentary record have contributed to upward trends in concentrations of trace elements and hydrophobic organic compounds. Although downward trends were observed for some constituents in the years after their concentrations peaked, concentrations of most constituents in urban lake cores were higher in the most recently deposited sediments than at the base of each respective core and in the reference lake cores. Similar trends in concentrations of these constituents have been observed in sediment cores from other urban lakes across the United States.

  14. COMPUTER SUPPORT SYSTEMS FOR ESTIMATING CHEMICAL TOXICITY: PRESENT CAPABILITIES AND FUTURE TRENDS

    EPA Science Inventory

    Computer Support Systems for Estimating Chemical Toxicity: Present Capabilities and Future Trends

    A wide variety of computer-based artificial intelligence (AI) and decision support systems exist currently to aid in the assessment of toxicity for environmental chemicals. T...

  15. Comparison of Recent Modeled and Observed Trends in Total Column Ozone

    NASA Technical Reports Server (NTRS)

    Andersen, S. B.; Weatherhead, E. C.; Stevermer, A.; Austin, J.; Bruehl, C.; Fleming, E. L.; deGrandpre, J.; Grewe, V.; Isaksen, I.; Pitari, G.; hide

    2006-01-01

    We present a comparison of trends in total column ozone from 10 two-dimensional and 4 three-dimensional models and solar backscatter ultraviolet-2 (SBUV/2) satellite observations from the period 1979-2003. Trends for the past (1979-2000), the recent 7 years (1996-2003), and the future (2000-2050) are compared. We have analyzed the data using both simple linear trends and linear trends derived with a hockey stick method including a turnaround point in 1996. If the last 7 years, 1996-2003, are analyzed in isolation, the SBUV/2 observations show no increase in ozone, and most of the models predict continued depletion, although at a lesser rate. In sharp contrast to this, the recent data show positive trends for the Northern and the Southern Hemispheres if the hockey stick method with a turnaround point in 1996 is employed for the models and observations. The analysis shows that the observed positive trends in both hemispheres in the recent 7-year period are much larger than what is predicted by the models. The trends derived with the hockey stick method are very dependent on the values just before the turnaround point. The analysis of the recent data therefore depends greatly on these years being representative of the overall trend. Most models underestimate the past trends at middle and high latitudes. This is particularly pronounced in the Northern Hemisphere. Quantitatively, there is much disagreement among the models concerning future trends. However, the models agree that future trends are expected to be positive and less than half the magnitude of the past downward trends. Examination of the model projections shows that there is virtually no correlation between the past and future trends from the individual models.

  16. Comparison of recent modeled and observed trends in total column ozone

    NASA Astrophysics Data System (ADS)

    Andersen, S. B.; Weatherhead, E. C.; Stevermer, A.; Austin, J.; Brühl, C.; Fleming, E. L.; de Grandpré, J.; Grewe, V.; Isaksen, I.; Pitari, G.; Portmann, R. W.; Rognerud, B.; Rosenfield, J. E.; Smyshlyaev, S.; Nagashima, T.; Velders, G. J. M.; Weisenstein, D. K.; Xia, J.

    2006-01-01

    We present a comparison of trends in total column ozone from 10 two-dimensional and 4 three-dimensional models and solar backscatter ultraviolet-2 (SBUV/2) satellite observations from the period 1979-2003. Trends for the past (1979-2000), the recent 7 years (1996-2003), and the future (2000-2050) are compared. We have analyzed the data using both simple linear trends and linear trends derived with a hockey stick method including a turnaround point in 1996. If the last 7 years, 1996-2003, are analyzed in isolation, the SBUV/2 observations show no increase in ozone, and most of the models predict continued depletion, although at a lesser rate. In sharp contrast to this, the recent data show positive trends for the Northern and the Southern Hemispheres if the hockey stick method with a turnaround point in 1996 is employed for the models and observations. The analysis shows that the observed positive trends in both hemispheres in the recent 7-year period are much larger than what is predicted by the models. The trends derived with the hockey stick method are very dependent on the values just before the turnaround point. The analysis of the recent data therefore depends greatly on these years being representative of the overall trend. Most models underestimate the past trends at middle and high latitudes. This is particularly pronounced in the Northern Hemisphere. Quantitatively, there is much disagreement among the models concerning future trends. However, the models agree that future trends are expected to be positive and less than half the magnitude of the past downward trends. Examination of the model projections shows that there is virtually no correlation between the past and future trends from the individual models.

  17. Uses of NHANES Biomarker Data for Chemical Risk Assessment: Trends, Challenges, and Opportunities

    PubMed Central

    DeWoskin, Robert S.; Tan, Yu-Mei; Pleil, Joachim D.; Phillips, Martin Blake; George, Barbara Jane; Christensen, Krista; Schreinemachers, Dina M.; Williams, Marc A.; Hubal, Elaine A. Cohen; Edwards, Stephen W.

    2015-01-01

    Background Each year, the U.S. NHANES measures hundreds of chemical biomarkers in samples from thousands of study participants. These biomarker measurements are used to establish population reference ranges, track exposure trends, identify population subsets with elevated exposures, and prioritize research needs. There is now interest in further utilizing the NHANES data to inform chemical risk assessments. Objectives This article highlights a) the extent to which U.S. NHANES chemical biomarker data have been evaluated, b) groups of chemicals that have been studied, c) data analysis approaches and challenges, and d) opportunities for using these data to inform risk assessments. Methods A literature search (1999–2013) was performed to identify publications in which U.S. NHANES data were reported. Manual curation identified only the subset of publications that clearly utilized chemical biomarker data. This subset was evaluated for chemical groupings, data analysis approaches, and overall trends. Results A small percentage of the sampled NHANES-related publications reported on chemical biomarkers (8% yearly average). Of 11 chemical groups, metals/metalloids were most frequently evaluated (49%), followed by pesticides (9%) and environmental phenols (7%). Studies of multiple chemical groups were also common (8%). Publications linking chemical biomarkers to health metrics have increased dramatically in recent years. New studies are addressing challenges related to NHANES data interpretation in health risk contexts. Conclusions This article demonstrates growing use of NHANES chemical biomarker data in studies that can impact risk assessments. Best practices for analysis and interpretation must be defined and adopted to allow the full potential of NHANES to be realized. Citation Sobus JR, DeWoskin RS, Tan YM, Pleil JD, Phillips MB, George BJ, Christensen K, Schreinemachers DM, Williams MA, Cohen Hubal EA, Edwards SW. 2015. Uses of NHANES biomarker data for chemical risk

  18. AOD trends during 2001-2010 from observations and model simulations

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; de Meij, A.; Yoon, J.; Tost, H.; Georgoulias, A. K.; Astitha, M.

    2015-05-01

    The aerosol optical depth (AOD) trend between 2001 and 2010 is estimated globally and regionally from observations and results from simulations with the EMAC (ECHAM5/MESSy Atmospheric Chemistry) model. Although interannual variability is applied only to anthropogenic and biomass-burning emissions, the model is able to quantitatively reproduce the AOD trends as observed by the MODIS (Moderate Resolution Imaging Spectroradiometer) satellite sensor, while some discrepancies are found when compared to MISR (Multi-angle Imaging SpectroRadiometer) and SeaWIFS (Sea-viewing Wide Field-of-view Sensor) observations. Thanks to an additional simulation without any change in emissions, it is shown that decreasing AOD trends over the US and Europe are due to the decrease in the emissions, while over the Sahara Desert and the Middle East region, the meteorological changes play a major role. Over Southeast Asia, both meteorology and emissions changes are equally important in defining AOD trends. Additionally, decomposing the regional AOD trends into individual aerosol components reveals that the soluble components are the most dominant contributors to the total AOD, as their influence on the total AOD is enhanced by the aerosol water content.

  19. Century Scale Evaporation Trend: An Observational Study

    NASA Technical Reports Server (NTRS)

    Bounoui, Lahouari

    2012-01-01

    Several climate models with different complexity indicate that under increased CO2 forcing, runoff would increase faster than precipitation overland. However, observations over large U.S watersheds indicate otherwise. This inconsistency between models and observations suggests that there may be important feedbacks between climate and land surface unaccounted for in the present generation of models. We have analyzed century-scale observed annual runoff and precipitation time-series over several United States Geological Survey hydrological units covering large forested regions of the Eastern United States not affected by irrigation. Both time-series exhibit a positive long-term trend; however, in contrast to model results, these historic data records show that the rate of precipitation increases at roughly double the rate of runoff increase. We considered several hydrological processes to close the water budget and found that none of these processes acting alone could account for the total water excess generated by the observed difference between precipitation and runoff. We conclude that evaporation has increased over the period of observations and show that the increasing trend in precipitation minus runoff is correlated to observed increase in vegetation density based on the longest available global satellite record. The increase in vegetation density has important implications for climate; it slows but does not alleviate the projected warming associated with greenhouse gases emission.

  20. Understanding observed and simulated historical temperature trends in California

    NASA Astrophysics Data System (ADS)

    Bonfils, C. J.; Duffy, P. B.; Santer, B. D.; Lobell, D. B.; Wigley, T. M.

    2006-12-01

    In our study, we attempt 1) to improve our understanding of observed historical temperature trends and their underlying causes in the context of regional detection of climate change and 2) to identify possible neglected forcings and errors in the model response to imposed forcings at the origin of inconsistencies between models and observations. From eight different observational datasets, we estimate California-average temperature trends over 1950- 1999 and compare them to trends from a suite of IPCC control simulations of natural internal climate variability. We find that the substantial night-time warming occurring from January to September is inconsistent with model-based estimates of natural internal climate variability, and thus requires one or more external forcing agents to be explained. In contrast, we find that a significant day-time warming occurs only from January to March. Our confidence in these findings is increased because there is no evidence that the models systematically underestimate noise on interannual and decadal timescales. However, we also find that IPCC simulations of the 20th century that include combined anthropogenic and natural forcings are not able to reproduce such a pronounced seasonality of the trends. Our first hypothesis is that the warming of Californian winters over the second half of the twentieth century is associated with changes in large-scale atmospheric circulation that are likely to be human-induced. This circulation change is underestimated in the historical simulations, which may explain why the simulated warming of Californian winters is too weak. We also hypothesize that the lack of a detectable observed increase in summertime maximum temperature arises from a cooling associated with large-scale irrigation. This cooling may have, until now, counteracted the warming induced by increasing greenhouse gases and urbanization effects. Omitting to include this forcing in the simulations can result in overestimating the

  1. Long-Term Trends Worldwide in Ambient NO2 Concentrations Inferred from Satellite Observations.

    PubMed

    Geddes, Jeffrey A; Martin, Randall V; Boys, Brian L; van Donkelaar, Aaron

    2016-03-01

    Air pollution is associated with morbidity and premature mortality. Satellite remote sensing provides globally consistent decadal-scale observations of ambient nitrogen dioxide (NO2) pollution. We determined global population-weighted annual mean NO2 concentrations from 1996 through 2012. We used observations of NO2 tropospheric column densities from three satellite instruments in combination with chemical transport modeling to produce a global 17-year record of ground-level NO2 at 0.1° × 0.1° resolution. We calculated linear trends in population-weighted annual mean NO2 (PWMNO2) concentrations in different regions around the world. We found that PWMNO2 in high-income North America (Canada and the United States) decreased more steeply than in any other region, having declined at a rate of -4.7%/year [95% confidence interval (CI): -5.3, -4.1]. PWMNO2 decreased in western Europe at a rate of -2.5%/year (95% CI: -3.0, -2.1). The highest PWMNO2 occurred in high-income Asia Pacific (predominantly Japan and South Korea) in 1996, with a subsequent decrease of -2.1%/year (95% CI: -2.7, -1.5). In contrast, PWMNO2 almost tripled in East Asia (China, North Korea, and Taiwan) at a rate of 6.7%/year (95% CI: 6.0, 7.3). The satellite-derived estimates of trends in ground-level NO2 were consistent with regional trends inferred from data obtained from ground-station monitoring networks in North America (within 0.7%/year) and Europe (within 0.3%/year). Our rankings of regional average NO2 and long-term trends differed from the satellite-derived estimates of fine particulate matter reported elsewhere, demonstrating the utility of both indicators to describe changing pollutant mixtures. Long-term trends in satellite-derived ambient NO2 provide new information about changing global exposure to ambient air pollution. Our estimates are publicly available at http://fizz.phys.dal.ca/~atmos/martin/?page_id=232.

  2. Historical trends in the accumulation of chemicals in Puget Sound. National status and trends program for marine environmental quality: Technical memo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lefkovitz, L.F.; Cullinan, V.I.; Crecelius, E.A.

    The purpose of the study is to: (1) continue monitoring historical trends in the concentration of contaminants in Puget Sound sediments, and (2) quantify recent trends in the recovery of contaminated sediments. Results from this study can be compared with those obtained in the 1982 study to determine whether sediment quality is still improving and to estimate the rate of recovery. A statistically significant reduction in sediment contamination over the past 20 years would provide empirical evidence that environmental regulation has had a positive impact on the water quality in Puget Sound. Chemical trends were evaluated from six age-dated sedimentmore » cores collected from the main basin of Puget Sound. Chemical analyses included metals, polynuclear aromatic hydrocarbons (PAHs), PCBs and chlorinated pesticides, nutrients (total nitrogen (N), and phosphorus (P)), butyl tins, and total organic carbon (TOC). Sedimentation (cm/yr) and deposition rates (g/sq cm/yr) were estimated using a steady-state Pb-210 dating technique.« less

  3. Factors Associated With the Trend of Physical and Chemical Restraint Use Among Long-Term Care Facility Residents in Hong Kong: Data From an 11-Year Observational Study.

    PubMed

    Lam, Kuen; Kwan, Joseph S K; Wai Kwan, Chi; Chong, Alice M L; Lai, Claudia K Y; Lou, Vivian W Q; Leung, Angela Y M; Liu, Justina Y W; Bai, Xue; Chi, Iris

    2017-12-01

    Negative effects of restraint use have been well-documented. However, the prevalence of restraints use has been high in long-term care facilities in Hong Kong compared with other countries and this goes against the basic principles of ethical and compassionate care for older people. The present study aimed to review the change in the prevalence of physical and chemical restraint use in long-term care facilities (LTCFs) over a period of 11 years in Hong Kong and to identify the major factors associated with their use. This is an observational study with data obtained from the Hong Kong Longitudinal Study on LTCF Residents between 2005 and 2015. Trained assessors (nurses, social workers, and therapists) used the Minimum Data Set Resident Assessment Instrument to collect the data from 10 residential LTCFs. Physical restraint was defined as the use of any of the following: full bedside rails on all open sides of bed, other types of bedside rails used, trunk restraint, limb restraint, or the use of chair to prevent rising during the past 7 days. Chemical restraint was defined as the use of any of the following medications: antipsychotic, antianxiety, or hypnotic agents during past 7 days, excluding elder residents with a diagnosis of psychiatric illness. Annual prevalence of restraint use over 11 years and factors that were associated with the use of physical and chemical restraints. We analyzed the data for 2896 older people (978 male individuals, mean age = 83.3 years). Between 2005 and 2015, the prevalence of restraint use was as follows: physical restraint use increased from 52.7% to 70.2%; chemical restraint use increased from 15.9% to 21.78%; and either physical or chemical restraint use increased from 57.9% to 75.7%. Physical restraint use was independently associated with older age, impaired activities of daily living or cognitive function, bowel and bladder incontinence, dementia, and negative mood. Chemical restraint use was independently associated

  4. AOD trends during 2001-2010 from observations and model simulations

    NASA Astrophysics Data System (ADS)

    Pozzer, Andrea; de Meij, Alexander; Yoon, Jongmin; Astitha, Marina

    2016-04-01

    The trend of aerosol optical depth (AOD) between 2001 and 2010 is estimated globally and regionally from remote sensed observations by the MODIS (Moderate Resolution Imaging Spectroradiometer), MISR (Multi-angle Imaging SpectroRadiometer) and SeaWIFS (Sea-viewing Wide Field-of-view Sensor) satellite sensor. The resulting trends have been compared to model results from the EMAC (ECHAM5/MESSy Atmospheric Chemistry {[1]}), model. Although interannual variability is applied only to anthropogenic and biomass-burning emissions, the model is able to quantitatively reproduce the AOD trends as observed by MODIS, while some discrepancies are found when compared to MISR and SeaWIFS. An additional numerical simulation with the same model was performed, neglecting any temporal change in the emissions, i.e. with no interannual variability for any emission source. It is shown that decreasing AOD trends over the US and Europe are due to the decrease in the (anthropogenic) emissions. On contrary over the Sahara Desert and the Middle East region, the meteorological/dynamical changes in the last decade play a major role in driving the AOD trends. Further, over Southeast Asia, both meteorology and emissions changes are equally important in defining AOD trends {[2]}. Finally, decomposing the regional AOD trends into individual aerosol components reveals that the soluble components are the most dominant contributors to the total AOD, as their influence on the total AOD is enhanced by the aerosol water content. {[1]}: Jöckel, P., Kerkweg, A., Pozzer, A., Sander, R., Tost, H., Riede, H., Baumgaertner, A., Gromov, S., and Kern, B.: Development cycle 2 of the Modular Earth Submodel System (MESSy2), Geosci. Model Dev., 3, 717-752, doi:10.5194/gmd-3-717-2010, 2010. {[2]}: Pozzer, A., de Meij, A., Yoon, J., Tost, H., Georgoulias, A. K., and Astitha, M.: AOD trends during 2001-2010 from observations and model simulations, Atmos. Chem. Phys., 15, 5521-5535, doi:10.5194/acp-15-5521-2015, 2015.

  5. Temporal trends (1987-2002) of persistent, bioaccumulative and toxic (PBT) chemicals in beluga whales (Delphinapterus leucas) from the St. Lawrence Estuary, Canada.

    PubMed

    Lebeuf, Michel; Noël, Michelle; Trottier, Steve; Measures, Lena

    2007-09-20

    Temporal trends of persistent, bioaccumulative and toxic (PBT) chemicals were examined in beluga whales (Delphinapterus leucas) from the St. Lawrence Estuary (SLE), Canada. Blubber samples of 86 adult belugas were collected from animals stranded on the shore of the SLE between 1987 and 2002 and analyzed for several regulated PBTs, including polychlorinated biphenyls (PCBs), p,p'dichlorodiphenyltrichloroethane (DDT) and its metabolites, chlordane (CHL) and related compounds, hexachlorocyclohexane (HCH) isomers, hexachlorobenzene (HCB) and Mirex. In addition, time trends of tris(4-chlorophenyl)methane (TCPMe) and tris(4-chlorophenyl)methanol (TCPMOH), two compounds that may origin from DDT formulations, were also examined. Concentrations of most of the PBTs examined had exponentially decreased by at least a factor of two (half-life time (t(1/2))<15 years) in beluga between 1987 and 2002 while no increasing trends were observed for any of the PBTs measured. The decreasing trends of PBT concentrations in SLE beluga may be due to a decline in contamination of its diet following North American and international regulations on the use and production of these compounds or by a change in its diet itself or by a combination of both. Some PBTs did not exhibit any significant trends in beluga possibly because the most intense elimination phase subsequent to legislative regulations occurred prior to the 1987-2002 time period. Other chemicals, such gamma-HCH, did not significantly decrease likely because they are still currently used in some restricted applications. Conversely, alpha-HCH showed a significant decreasing trend indicating that SigmaHCHs is not representative of all HCHs. Both TCPMe and TCPMOH exhibited no trends in beluga during the time period examined. The metabolic capacity of SLE beluga has apparently accelerated the depletion of at least one PBT, namely CB-28/31. A significant relationship between the half-life of PBTs in beluga and log Kow was observed for

  6. Ionospheric Trend Over Wuhan During 1947-2017: Comparison Between Simulation and Observation

    NASA Astrophysics Data System (ADS)

    Yue, Xinan; Hu, Lianhuan; Wei, Yong; Wan, Weixing; Ning, Baiqi

    2018-02-01

    Since Roble and Dickinson (1989), who drew the community's attention about the greenhouse gas effect on the ionosphere, huge efforts have been implemented on ionospheric climate study. However, direct comparison between observations and simulations is still rare. Recently, the Wuhan ionosonde observations were digitized and standardized through unified method back to 1947. In this study, the NCAR-TIEGCM was driven by Mauna Loa Observatory observed CO2 level and International Geomagnetic Reference Field (IGRF) geomagnetic field to simulate their effects on ionospheric long-term trend over Wuhan. Only March equinox was considered in both data analysis and simulation. Simulation results show that the CO2 and geomagnetic field have comparable effect on hmF2 trend, while geomagnetic field effect is stronger than CO2 on foF2 trend over Wuhan. Both factors result in obvious but different diurnal variations of foF2/hmF2 long-term trends. The geomagnetic field effect is nonlinear versus years since the long-term variation of geomagnetic field intensity and orientation is complex. Mean value of foF2 and hmF2 trend is (-0.0021 MHz/yr, -0.106 km/yr) and (-0.0022 MHz/yr, -0.0763 km/yr) for observation and simulation, respectively. Regarding the diurnal variation of the trend, the simulation accords well with that of observation except hmF2 results around 12 UT. Overall, good agreement between observation and simulation illustrates the good quality of Wuhan ionosonde long-term data and the validity of ancient ionosphere reconstruction based on realistic indices driving simulation.

  7. Space-based observations of nitrogen dioxide: Trends in anthropogenic emissions

    NASA Astrophysics Data System (ADS)

    Russell, Ashley Ray

    Space-based instruments provide routine global observations, offering a unique perspective on the spatial and temporal variation of atmospheric constituents. In this dissertation, trends in regional-scale anthropogenic nitrogen oxide emissions (NO + NO2 ≡ NOx) are investigated using high resolution observations from the Ozone Monitoring Instrument (OMI). By comparing trends in OMI observations with those from ground-based measurements and an emissions inventory, I show that satellite observations are well-suited for capturing changes in emissions over time. The high spatial and temporal resolutions of the observations provide a uniquely complete view of regional-scale changes in the spatial patterns of NO 2. I show that NOx concentrations have decreased significantly in urban regions of the United States between 2005 and 2011, with an average reduction of 32 ± 7%. By examining day-of-week and interannual trends, I show that these reductions can largely be attributed to improved emission control technology in the mobile source fleet; however, I also show that the economic downturn of the late 2000's has impacted emissions. Additionally, I describe the development of a high-resolution retrieval of NO2 from OMI observations known as the Berkeley High Resolution (BEHR) retrieval. The BEHR product uses higher spatial and temporal resolution terrain and profile parameters than the operational retrievals and is shown to provide a more quantitative measure of tropospheric NO2 column density. These results have important implications for future retrievals of NO2 from space-based observations.

  8. Contribution of Increasing Glacial Freshwater Fluxes to Observed Trends in Antarctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Le Sommer, J.; Merino, N.; Durand, G.; Jourdain, N.; Goosse, H.; Mathiot, P.; Gurvan, M.

    2016-02-01

    Southern Ocean sea-ice extent has experienced an overall positive trend over recent decades. While the amplitude of this trend is open to debate, the geographical pattern of regional changes has been clearly identified by observations. Mechanisms driving changes in the Antarctic Sea Ice Extent (SIE) are not fully understood and climate models fail to simulate these trends. Changes in different atmospheric features such as SAM or ENSO seem to explain the observed trend of Antartic sea ice, but only partly, since they can not account for the actual amplitude of the observed signal. The increasing injection of freshwater due to the accelerating ice discharge from Antarctica Ice Sheet (AIS) during the last two decades has been proposed as another candidate to contribute to SIE trend. However, the quantity and the distribution of the extra freshwater injection were not properly constrained. Recent glaciological estimations may improve the way the glacial freshwater is injected in the model. Here, we study the role of the glacial freshwater into the observed SIE trend, using the state-of-the-art Antarctic mass loss estimations. Ocean/sea-ice model simulations have been carried out with two different Antarctic freshwater scenarios corresponding to 20-years of Antarctic Ice Sheet evolution. The combination of an improved iceberg model with the most recent glaciological estimations has been applied to account for the most realistic possible Antarctic freshwater evolution scenarios. Results suggest that Antarctica has contributed to almost a 30% of the observed trend in regions of the South Pacific and South East Indian sectors, but has little impact in the South Atlantic sector. We conclude that the observed SIE trend over the last decades is due to a combination of both an atmospheric forcing and the extra freshwater injection. Our results advocates that the evolution of glacial freshwater needs to be correctly represented in climate models.

  9. Interpreting the Latitudinal Structure of Differences Between Modeled and Observed Temperature Trends (Invited)

    NASA Astrophysics Data System (ADS)

    Santer, B. D.; Mears, C. A.; Gleckler, P. J.; Solomon, S.; Wigley, T.; Arblaster, J.; Cai, W.; Gillett, N. P.; Ivanova, D. P.; Karl, T. R.; Lanzante, J.; Meehl, G. A.; Stott, P.; Taylor, K. E.; Thorne, P.; Wehner, M. F.; Zou, C.

    2010-12-01

    We perform the most comprehensive comparison to date of simulated and observed temperature trends. Comparisons are made for different latitude bands, timescales, and temperature variables, using information from a multi-model archive and a variety of observational datasets. Our focus is on temperature changes in the lower troposphere (TLT), the mid- to upper troposphere (TMT), and at the sea surface (SST). For SST, TLT, and TMT, trend comparisons over the satellite era (1979 to 2009) always yield closest agreement in mid-latitudes of the Northern Hemisphere. There are pronounced discrepancies in the tropics and in the Southern Hemisphere: in both regions, the multi-model average warming is consistently larger than observed. At high latitudes in the Northern Hemisphere, the observed tropospheric warming exceeds multi-model average trends. The similarity in the latitudinal structure of this discrepancy pattern across different temperature variables and observational data sets suggests that these trend differences are real, and are not due to residual inhomogeneities in the observations. The interpretation of these results is hampered by the fact that the CMIP-3 multi-model archive analyzed here convolves errors in key external forcings with errors in the model response to forcing. Under a "forcing error" interpretation, model-average temperature trends in the Southern Hemisphere extratropics are biased warm because many models neglect (and/or inaccurately specify) changes in stratospheric ozone and the indirect effects of aerosols. An alternative "response error" explanation for the model trend errors is that there are fundamental problems with model clouds and ocean heat uptake over the Southern Ocean. When SST changes are compared over the longer period 1950 to 2009, there is close agreement between simulated and observed trends poleward of 50°S. This result is difficult to reconcile with the hypothesis that the trend discrepancies over 1979 to 2009 are primarily

  10. Agricultural chemicals in Iowa's ground water, 1982-95: What are the trends?

    USGS Publications Warehouse

    Koplin, Dana W.; Hallberg, George; Sneck-Fahrer, D. A.; Libra, Robert

    1997-01-01

    The Iowa Department of Natural Resources. Geological Survey Bureau: the University of Iowa Hygienic Laboratory; and the U.S. Geological Survey (USGS) have been working together to address this question. As part of the Iowa Ground-Water Monitoring Program (IGWM). water samples have been collected from selected Iowa municipal wells since 1982. An examination of this data identified two trends: (1) concentrations of atrazine in Iowa's ground water generally were decreasing over time, and (2) concentrations of metolachlor generally were increasing. Continuing ground-water sampling can determine if these trends represent long-term changes in chemical concentrations.

  11. Understanding Southern Ocean SST Trends in Historical Simulations and Observations

    NASA Astrophysics Data System (ADS)

    Kostov, Yavor; Ferreira, David; Marshall, John; Armour, Kyle

    2017-04-01

    Historical simulations with CMIP5 global climate models do not reproduce the observed 1979-2014 Southern Ocean (SO) cooling, and most ensemble members predict gradual warming around Antarctica. In order to understand this discrepancy and the mechanisms behind the SO cooling, we analyze output from 19 CMIP5 models. For each ensemble member we estimate the characteristic responses of SO SST to step changes in greenhouse gas (GHG) forcing and in the seasonal indices of the Southern Annular Mode (SAM). Using these step-response functions and linear convolution theory, we reconstruct the original CMIP5 simulations of 1979-2014 SO SST trends. We recover the CMIP5 ensemble mean trend, capture the intermodel spread, and reproduce very well the behavior of individual models. We thus suggest that GHG forcing and the SAM are major drivers of the simulated 1979-2014 SO SST trends. In consistence with the seasonal signature of the Antarctic ozone hole, our results imply that the summer (DJF) and fall (MAM) SAM exert a particularly important effect on the SO SST. In some CMIP5 models the SO SST response to SAM partially counteracts the warming due to GHG forcing, while in other ensemble members the SAM-induced SO SST trends complement the warming effect of GHG forcing. The compensation between GHG and SAM-induced SO SST anomalies is model-dependent and is determined by multiple factors. Firstly, CMIP5 models have different characteristic SST step response functions to SAM. Kostov et al. (2016) relate these differences to biases in the models' climatological SO temperature gradients. Secondly, many CMIP5 historical simulations underestimate the observed positive trends in the DJF and MAM seasonal SAM indices. We show that this affects the models' ability to reproduce the observed SO cooling. Last but not least, CMIP5 models differ in their SO SST step response functions to GHG forcing. Understanding the diverse behavior of CMIP5 models helps shed light on the physical processes

  12. Concentrations and trends of Perfluorinated chemicals in potential indoor sources from 2007 through 2011 in the US

    EPA Science Inventory

    Certain perfluorinated chemicals in consumer products have been associated with developmental toxicity and other adverse health effects. Temporal trends in the concentrations of selected perfluorinated chemicals (PFCs), including perfluorooctanoic acid (PFOA) and other perfluoroc...

  13. A Test of Model Validation from Observed Temperature Trends

    NASA Astrophysics Data System (ADS)

    Singer, S. F.

    2006-12-01

    How much of current warming is due to natural causes and how much is manmade? This requires a comparison of the patterns of observed warming with the best available models that incorporate both anthropogenic (greenhouse gases and aerosols) as well as natural climate forcings (solar and volcanic). Fortunately, we have the just published U.S.-Climate Change Science Program (CCSP) report (www.climatescience.gov/Library/sap/sap1-1/finalreport/default.htm), based on best current information. As seen in Fig. 1.3F of the report, modeled surface temperature trends change little with latitude, except for a stronger warming in the Arctic. The observations, however, show a strong surface warming in the northern hemisphere but not in the southern hemisphere (see Fig. 3.5C and 3.6D). The Antarctic is found to be cooling and Arctic temperatures, while currently rising, were higher in the 1930s than today. Although the Executive Summary of the CCSP report claims "clear evidence" for anthropogenic warming, based on comparing tropospheric and surface temperature trends, the report itself does not confirm this. Greenhouse models indicate that the tropics should provide the most sensitive location for their validation; trends there should increase by 200-300 percent with altitude, peaking at around 10 kilometers. The observations, however, show the opposite: flat or even decreasing tropospheric trend values (see Fig. 3.7 and also Fig. 5.7E). This disparity is demonstrated most strikingly in Fig. 5.4G, which shows the difference between surface and troposphere trends for a collection of models (displayed as a histogram) and for balloon and satellite data. [The disparities are less apparent in the Summary, which displays model results in terms of "range" rather than as histograms.] There may be several possible reasons for the disparity: Instrumental and other effects that exaggerate or otherwise distort observed temperature trends. Or, more likely: Shortcomings in models that result

  14. Uses of NHANES biomarker data for chemical risk assessment: Trends, challenges and opportunities

    EPA Science Inventory

    Background. Each year, the US NHANES measures hundreds of chemical biomarkers in samples from thousands of study participants. These biomarker measurements are meant to track trends and identify subsets of the US population with elevated exposures. There is now interest in furth...

  15. Radiation Fog in the US Mid-Atlantic Region: Chemical Composition, Trends, and Gas-Liquid Partitioning

    NASA Astrophysics Data System (ADS)

    Straub, D.

    2016-12-01

    The chemical composition of radiation fog has been studied at a rural site in central Pennsylvania over an eight year period extending through 2015. Bulk fog samples were collected with an automated Caltech Heated Rod Cloud Collector (CHRCC) and analyzed for pH, inorganic ions, organic acids, total organic carbon (TOC), and total nitrogen (TN). Over the duration of the project, 146 samples were collected and used to document chemical composition, evaluate changes over time, and to investigate partitioning between the gas and aqueous phases. Ammonium, sulfate, calcium, and nitrate were the most abundant inorganic ions while acetate and formate were the dominant organic acids. Organic acids contributed about 15% to TOC. Inorganic nitrogen accounted for the majority of TN, with only 18% of TN attributed to organic nitrogen. Overall, organic matter contributed 52% to the total mass loading of the fog samples, a value that is higher than reported for other radiation fog studies. Statistically significant decreasing trends were observed for sulfate, ammonium, chloride, nitrate, and pH. These trends coincide with reductions in emissions from fossil fuel combustion that have been documented over this time period. Seasonal trends were also detected for nitrate, ammonium, potassium, phosphate, acetate and formate which appear to be related to the agricultural growing season. Based on simultaneous measurements of gas phase ammonia and ammonium in the fog samples, significant deviations from equilibrium were found. In low pH samples, ammonium concentrations were much lower than equilibrium predicts, while the opposite occurred in high pH samples. Modeling suggested that mass transfer limitations contributed to the departure from equilibrium. Similarly, predictions of bicarbonate concentrations based on equilibrium with gas phase carbon dioxide appears to underestimate the actual amount of bicarbonate present in samples collected during this study.

  16. Various fates of neuronal progenitor cells observed on several different chemical functional groups

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Wang, Ying; He, Jin; Wang, Xiu-Mei; Cui, Fu-Zhai; Xu, Quan-Yuan

    2011-12-01

    Neuronal progenitor cells cultured on gold-coated glass surfaces modified by different chemical functional groups, including hydroxyl (-OH), carboxyl (-COOH), amino (-NH2), bromo (-Br), mercapto (-SH), - Phenyl and methyl (-CH3), were studied here to investigate the influence of surface chemistry on the cells' adhesion, morphology, proliferation and functional gene expression. Focal adhesion staining indicated in the initial culture stage cells exhibited morphological changes in response to different chemical functional groups. Cells cultured on -NH2 grafted surface displayed focal adhesion plaque and flattened morphology and had the largest contact area. However, their counter parts on -CH3 grafted surface displayed no focal adhesion and rounded morphology and had the smallest contact area. After 6 days culture, the proliferation trend was as follows: -NH2 > -SH> -COOH> - Phenyl > - Br > -OH> -CH3. To determine the neural functional properties of the cells affected by surface chemistry, the expression of glutamate decarboxylase (GAD67), nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) were characterized. An increase of GAD67 expression was observed on -NH2, -COOH and -SH grafted surfaces, while no increase in NGF and BDNF expression was observed on any chemical surfaces. These results highlight the importance of surface chemistry in the fate determination of neuronal progenitor cells, and suggest that surface chemistry must be considered in the design of biomaterials for neural tissue engineering.

  17. Tropospheric temperature climatology and trends observed over the Middle East

    NASA Astrophysics Data System (ADS)

    Basha, Ghouse; Marpu, P. R.; Ouarda, T. B. M. J.

    2015-10-01

    In this study, we report for the first time, the upper air temperature climatology, and trends over the Middle East, which seem to be significantly affected by the changes associated with hot summer and low precipitation. Long term (1985-2012) radiosonde data from 12 stations are used to derive the mean temperature climatology and vertical trends. The study was performed by analyzing the data at different latitudes. The vertical profiles of air temperature show distinct behavior in terms of vertical and seasonal variability at different latitudes. The seasonal cycle of temperature at the 100 hPa, however, shows an opposite pattern compared to the 200 hPa levels. The temperature at 100 hPa shows a maximum during winter and minimum in summer. Spectral analysis shows that the annual cycle is dominant in comparison with the semiannual cycle. The time-series of temperature data was analyzed using the Bayesian change point analysis and cumulative sum method to investigate the changes in temperature trends. Temperature shows a clear change point during the year 1999 at all stations. Further, Modified Mann-Kendall test was applied to study the vertical trend, and analysis shows statistically significant lower tropospheric warming and cooling in upper troposphere after the year 1999. In general, the magnitude of the trend decreases with altitude in the troposphere. In all the latitude bands in lower troposphere, significant warming is observed, whereas at higher altitudes cooling is noticed based on 28 years temperature observations over the Middle East.

  18. Observationally derived rise in methane surface forcing mediated by water vapour trends

    NASA Astrophysics Data System (ADS)

    Feldman, D. R.; Collins, W. D.; Biraud, S. C.; Risser, M. D.; Turner, D. D.; Gero, P. J.; Tadić, J.; Helmig, D.; Xie, S.; Mlawer, E. J.; Shippert, T. R.; Torn, M. S.

    2018-04-01

    Atmospheric methane (CH4) mixing ratios exhibited a plateau between 1995 and 2006 and have subsequently been increasing. While there are a number of competing explanations for the temporal evolution of this greenhouse gas, these prominent features in the temporal trajectory of atmospheric CH4 are expected to perturb the surface energy balance through radiative forcing, largely due to the infrared radiative absorption features of CH4. However, to date this has been determined strictly through radiative transfer calculations. Here, we present a quantified observation of the time series of clear-sky radiative forcing by CH4 at the surface from 2002 to 2012 at a single site derived from spectroscopic measurements along with line-by-line calculations using ancillary data. There was no significant trend in CH4 forcing between 2002 and 2006, but since then, the trend in forcing was 0.026 ± 0.006 (99.7% CI) W m2 yr-1. The seasonal-cycle amplitude and secular trends in observed forcing are influenced by a corresponding seasonal cycle and trend in atmospheric CH4. However, we find that we must account for the overlapping absorption effects of atmospheric water vapour (H2O) and CH4 to explain the observations fully. Thus, the determination of CH4 radiative forcing requires accurate observations of both the spatiotemporal distribution of CH4 and the vertically resolved trends in H2O.

  19. Global Distribution and Trends of Tropospheric Ozone: An Observation-Based Review

    NASA Technical Reports Server (NTRS)

    Cooper, O. R.; Parrish, D. D.; Ziemke, J.; Cupeiro, M.; Galbally, I. E.; Gilge, S.; Horowitz, L.; Jensen, N. R.; Lamarque, J.-F.; Naik, V.; hide

    2014-01-01

    Tropospheric ozone plays a major role in Earth's atmospheric chemistry processes and also acts as an air pollutant and greenhouse gas. Due to its short lifetime, and dependence on sunlight and precursor emissions from natural and anthropogenic sources, tropospheric ozone's abundance is highly variable in space and time on seasonal, interannual and decadal time-scales. Recent, and sometimes rapid, changes in observed ozone mixing ratios and ozone precursor emissions inspired us to produce this up-to-date overview of tropospheric ozone's global distribution and trends. Much of the text is a synthesis of in situ and remotely sensed ozone observations reported in the peer-reviewed literature, but we also include some new and extended analyses using well-known and referenced datasets to draw connections between ozone trends and distributions in different regions of the world. In addition, we provide a brief evaluation of the accuracy of rural or remote surface ozone trends calculated by three state-of-the-science chemistry-climate models, the tools used by scientists to fill the gaps in our knowledge of global tropospheric ozone distribution and trends.

  20. Ozone time scale decomposition and trend assessment from surface observations

    NASA Astrophysics Data System (ADS)

    Boleti, Eirini; Hueglin, Christoph; Takahama, Satoshi

    2017-04-01

    Emissions of ozone precursors have been regulated in Europe since around 1990 with control measures primarily targeting to industries and traffic. In order to understand how these measures have affected air quality, it is now important to investigate concentrations of tropospheric ozone in different types of environments, based on their NOx burden, and in different geographic regions. In this study, we analyze high quality data sets for Switzerland (NABEL network) and whole Europe (AirBase) for the last 25 years to calculate long-term trends of ozone concentrations. A sophisticated time scale decomposition method, called the Ensemble Empirical Mode Decomposition (EEMD) (Huang,1998;Wu,2009), is used for decomposition of the different time scales of the variation of ozone, namely the long-term trend, seasonal and short-term variability. This allows subtraction of the seasonal pattern of ozone from the observations and estimation of long-term changes of ozone concentrations with lower uncertainty ranges compared to typical methodologies used. We observe that, despite the implementation of regulations, for most of the measurement sites ozone daily mean values have been increasing until around mid-2000s. Afterwards, we observe a decline or a leveling off in the concentrations; certainly a late effect of limitations in ozone precursor emissions. On the other hand, the peak ozone concentrations have been decreasing for almost all regions. The evolution in the trend exhibits some differences between the different types of measurement. In addition, ozone is known to be strongly affected by meteorology. In the applied approach, some of the meteorological effects are already captured by the seasonal signal and already removed in the de-seasonalized ozone time series. For adjustment of the influence of meteorology on the higher frequency ozone variation, a statistical approach based on Generalized Additive Models (GAM) (Hastie,1990;Wood,2006), which corrects for meteorological

  1. Observing climate change trends in ocean biogeochemistry: when and where.

    PubMed

    Henson, Stephanie A; Beaulieu, Claudie; Lampitt, Richard

    2016-04-01

    Understanding the influence of anthropogenic forcing on the marine biosphere is a high priority. Climate change-driven trends need to be accurately assessed and detected in a timely manner. As part of the effort towards detection of long-term trends, a network of ocean observatories and time series stations provide high quality data for a number of key parameters, such as pH, oxygen concentration or primary production (PP). Here, we use an ensemble of global coupled climate models to assess the temporal and spatial scales over which observations of eight biogeochemically relevant variables must be made to robustly detect a long-term trend. We find that, as a global average, continuous time series are required for between 14 (pH) and 32 (PP) years to distinguish a climate change trend from natural variability. Regional differences are extensive, with low latitudes and the Arctic generally needing shorter time series (<~30 years) to detect trends than other areas. In addition, we quantify the 'footprint' of existing and planned time series stations, that is the area over which a station is representative of a broader region. Footprints are generally largest for pH and sea surface temperature, but nevertheless the existing network of observatories only represents 9-15% of the global ocean surface. Our results present a quantitative framework for assessing the adequacy of current and future ocean observing networks for detection and monitoring of climate change-driven responses in the marine ecosystem. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  2. Trends in simulated chemical composition of global and regional population-weighted fine particulate matter over the recent 25 years

    NASA Astrophysics Data System (ADS)

    Li, C.; Martin, R.; van Donkelaar, A.; Boys, B.; Hammer, M. S.; Xu, J.; Marais, E. A.; Reff, A.; Strum, M.; Ridley, D. A.; Crippa, M.; Zhang, Q.

    2017-12-01

    We interpret in situ and satellite observations with a chemical transport model (GEOS-Chem) to understand global trends in population-weighted mean chemical composition of fine particulate matter (PM2.5) over 1989-2013. Simulated PM2.5 composition concentrations at 2˚ × 2.5˚ resolution are downscaled to 0.1˚ × 0.1˚ with satellite-based estimates of PM2.5 to better represent population exposure. Trends in simulated and observed population-weighted mean PM2.5 composition over 1989-2013 exhibit a high degree of consistency for (in situ vs. downscaled simulation) PM2.5 (-2.4 vs. -2.4 % yr-1), secondary inorganic aerosols (-4.3 vs. -4.1% yr-1), organic aerosols (OA, -3.6 vs. -3.0 % yr-1) and black carbon (-4.3 vs. -3.9 % yr-1) over North America, as well as sulfate (-4.7 vs. -5.8 % yr-1) over Europe. The downscaled simulation also has overlapping 95% confidence intervals with satellite-derived trends in population-weighted mean PM2.5 for 20 of the 21 Global Burden of Disease Study (GBD) regions over 1998-2013. Over 1989-2013, most (79%) of the simulated increase in global population-weighted mean PM2.5 of 0.28 μg m-3yr-1 is explained by significantly (p < 0.05) increasing OA (0.10 μg m-3yr-1), nitrate (0.05 μg m-3yr-1), sulfate (0.04 μg m-3yr-1) and ammonium (0.03 μg m-3yr-1). These species predominantly drive trends in population-weighted mean PM2.5 over populous regions of South Asia (0.94 μg m-3yr-1), East Asia (0.66 μg m-3yr-1), Western Europe (-0.47 μg m-3yr-1) and North America (-0.32 μg m-3yr-1), primarily due to changes in anthropogenic emissions. Mineral dust from deserts and OA over open burning regions usually cause weak, insignificant trends in population-weighted mean PM2.5, despite strong inter-annual variation. Global trends in area-weighted mean PM2.5 differ significantly from population-weighted trends in both the magnitude and sign, indicating the importance of population weighting for relevance to human exposure studies. This study

  3. An Overview of OCTAV-UTLS (Observed Composition Trends and Variability in the UTLS), a SPARC Emerging Activity

    NASA Astrophysics Data System (ADS)

    Petropavlovskikh, I. V.; Manney, G. L.; Hoor, P. M.; Bourassa, A. E.; Braathen, G.; Chang, K. L.; Hegglin, M. I.; Kramarova, N. A.; Kunkel, D.; Lawrence, Z. D.; Leblanc, T.; Livesey, N. J.; Millan Valle, L. F.; Stiller, G. P.; Tegtmeier, S.; Thouret, V.; Voigt, C.; Walker, K. A.

    2017-12-01

    The distribution of tracers in the upper troposphere and lower stratosphere (UTLS) shows large spatial and temporal variability because of interactions of transport, chemical, and mixing processes near the tropopause, as well as variations in the location of the tropopause itself. This strongly affects quantitative estimates of the impact of radiatively active substances, including ozone and water vapour, on surface temperatures, and complicates diagnosis of dynamical processes such as stratosphere troposphere exchange (STE). The Stratosphere-troposphere Processes And their Role in Climate (SPARC) emerging activity OCTAV-UTLS (Observed Composition Trends and Variability in the UTLS) aims to reduce the uncertainties in trend estimates by accounting for these dynamically induced sources of variability. Achieving these goals by using existing UTLS trace gas observations from aircraft, ground-based, balloon and satellite platforms requires a consistent analysis of these different data with respect to the tropopause or the jets. As a central task for OCTAV-UTLS, we are developing and applying common metrics, calculated using the same reanalysis datasets, to compare UTLS data using geophysically-based coordinate systems including tropopause and upper tropospheric jet relative coordinates. In addition to assessing present day measurement capabilities, OCTAV-UTLS will assess gaps in current geographical / temporal sampling of the UTLS that limit our ability to determine atmospheric composition variability and trends. This talk will provide an overview of the OCTAV-UTLS activity and some examples of initial calculations of geophysically-based coordinates and comparisons of remapped data.

  4. Trend Estimates of AERONET-Observed and Model-Simulated AOTs Between 1993 and 2013

    NASA Technical Reports Server (NTRS)

    Yoon, J.; Pozzer, A.; Chang, D. Y.; Lelieveld, J.; Kim, J.; Kim, M.; Lee, Y. G.; Koo, J.-H.; Lee, J.; Moon, K. J.

    2015-01-01

    Recently, temporal changes in Aerosol Optical Thickness (AOT) have been investigated based on model simulations, satellite and ground-based observations. Most AOT trend studies used monthly or annual arithmetic means that discard details of the generally right-skewed AOT distributions. Potentially, such results can be biased by extreme values (including outliers). This study additionally uses percentiles (i.e., the lowest 5%, 25%, 50%, 75% and 95% of the monthly cumulative distributions fitted to Aerosol Robotic Network (AERONET)-observed and ECHAM/MESSy Atmospheric Chemistry (EMAC)-model simulated AOTs) that are less affected by outliers caused by measurement error, cloud contamination and occasional extreme aerosol events. Since the limited statistical representativeness of monthly percentiles and means can lead to bias, this study adopts the number of observations as a weighting factor, which improves the statistical robustness of trend estimates. By analyzing the aerosol composition of AERONET-observed and EMAC-simulated AOTs in selected regions of interest, we distinguish the dominant aerosol types and investigate the causes of regional AOT trends. The simulated and observed trends are generally consistent with a high correlation coefficient (R = 0.89) and small bias (slope+/-2(sigma) = 0.75 +/- 0.19). A significant decrease in EMAC-decomposed AOTs by water-soluble compounds and black carbon is found over the USA and the EU due to environmental regulation. In particular, a clear reversal in the AERONET AOT trend percentiles is found over the USA, probably related to the AOT diurnal cycle and the frequency of wildfires. In most of the selected regions of interest, EMAC-simulated trends are mainly attributed to the significant changes of the dominant aerosols; e.g., significant decrease in sea salt and water soluble compounds over Central America, increase in dust over Northern Africa and Middle East, and decrease in black carbon and organic carbon over

  5. Trend analysis of evapotranspiration over India: Observed from long-term satellite measurements

    NASA Astrophysics Data System (ADS)

    Goroshi, Sheshakumar; Pradhan, Rohit; Singh, Raghavendra P.; Singh, K. K.; Parihar, Jai Singh

    2017-12-01

    Owing to the lack of consistent spatial time series data on actual evapotranspiration ( ET), very few studies have been conducted on the long-term trend and variability in ET at a national scale over the Indian subcontinent. The present study uses biome specific ET data derived from NOAA satellite's advanced very high resolution radiometer to investigate the trends and variability in ET over India from 1983 to 2006. Trend analysis using the non-parametric Mann-Kendall test showed that the domain average ET decreased during the period at a rate of 0.22 mm year^{-1}. A strong decreasing trend (m = -1.75 mm year^{-1}, F = 17.41, P 0.01) was observed in forest regions. Seasonal analyses indicated a decreasing trend during southwest summer monsoon (m= -0.320 mm season^{-1} year^{-1}) and post-monsoon period (m= -0.188 mm season^{-1 } year^{-1}). In contrast, an increasing trend was observed during northeast winter monsoon (m = 0.156 mm season^{-1 } year^{-1}) and pre-monsoon (m = 0.068 mm season^{-1 } year^{-1}) periods. Despite an overall net decline in the country, a considerable increase ( 4 mm year^{-1}) was observed over arid and semi-arid regions. Grid level correlation with various climatic parameters exhibited a strong positive correlation (r >0.5) of ET with soil moisture and precipitation over semi-arid and arid regions, whereas a negative correlation (r -0.5) occurred with temperature and insolation in dry regions of western India. The results of this analysis are useful for understanding regional ET dynamics and its relationship with various climatic parameters over India. Future studies on the effects of ET changes on the hydrological cycle, carbon cycle, and energy partitioning are needed to account for the feedbacks to the climate.

  6. Site-occupancy distribution modeling to correct population-trend estimates derived from opportunistic observations

    USGS Publications Warehouse

    Kery, M.; Royle, J. Andrew; Schmid, Hans; Schaub, M.; Volet, B.; Hafliger, G.; Zbinden, N.

    2010-01-01

    Species' assessments must frequently be derived from opportunistic observations made by volunteers (i.e., citizen scientists). Interpretation of the resulting data to estimate population trends is plagued with problems, including teasing apart genuine population trends from variations in observation effort. We devised a way to correct for annual variation in effort when estimating trends in occupancy (species distribution) from faunal or floral databases of opportunistic observations. First, for all surveyed sites, detection histories (i.e., strings of detection-nondetection records) are generated. Within-season replicate surveys provide information on the detectability of an occupied site. Detectability directly represents observation effort; hence, estimating detectablity means correcting for observation effort. Second, site-occupancy models are applied directly to the detection-history data set (i.e., without aggregation by site and year) to estimate detectability and species distribution (occupancy, i.e., the true proportion of sites where a species occurs). Site-occupancy models also provide unbiased estimators of components of distributional change (i.e., colonization and extinction rates). We illustrate our method with data from a large citizen-science project in Switzerland in which field ornithologists record opportunistic observations. We analyzed data collected on four species: the widespread Kingfisher (Alcedo atthis. ) and Sparrowhawk (Accipiter nisus. ) and the scarce Rock Thrush (Monticola saxatilis. ) and Wallcreeper (Tichodroma muraria. ). Our method requires that all observed species are recorded. Detectability was <1 and varied over the years. Simulations suggested some robustness, but we advocate recording complete species lists (checklists), rather than recording individual records of single species. The representation of observation effort with its effect on detectability provides a solution to the problem of differences in effort encountered

  7. Interpreting space-based trends in carbon monoxide with multiple models

    DOE PAGES

    Strode, Sarah A.; Worden, Helen M.; Damon, Megan; ...

    2016-06-10

    Here, we use a series of chemical transport model and chemistry climate model simulations to investigate the observed negative trends in MOPITT CO over several regions of the world, and to examine the consistency of time-dependent emission inventories with observations. We also found that simulations driven by the MACCity inventory, used for the Chemistry Climate Modeling Initiative (CCMI), reproduce the negative trends in the CO column observed by MOPITT for 2000–2010 over the eastern United States and Europe. However, the simulations have positive trends over eastern China, in contrast to the negative trends observed by MOPITT. The model bias inmore » CO, after applying MOPITT averaging kernels, contributes to the model–observation discrepancy in the trend over eastern China. This demonstrates that biases in a model's average concentrations can influence the interpretation of the temporal trend compared to satellite observations. The total ozone column plays a role in determining the simulated tropospheric CO trends. A large positive anomaly in the simulated total ozone column in 2010 leads to a negative anomaly in OH and hence a positive anomaly in CO, contributing to the positive trend in simulated CO. Our results demonstrate that accurately simulating variability in the ozone column is important for simulating and interpreting trends in CO.« less

  8. Interpreting space-based trends in carbon monoxide with multiple models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strode, Sarah A.; Worden, Helen M.; Damon, Megan

    Here, we use a series of chemical transport model and chemistry climate model simulations to investigate the observed negative trends in MOPITT CO over several regions of the world, and to examine the consistency of time-dependent emission inventories with observations. We also found that simulations driven by the MACCity inventory, used for the Chemistry Climate Modeling Initiative (CCMI), reproduce the negative trends in the CO column observed by MOPITT for 2000–2010 over the eastern United States and Europe. However, the simulations have positive trends over eastern China, in contrast to the negative trends observed by MOPITT. The model bias inmore » CO, after applying MOPITT averaging kernels, contributes to the model–observation discrepancy in the trend over eastern China. This demonstrates that biases in a model's average concentrations can influence the interpretation of the temporal trend compared to satellite observations. The total ozone column plays a role in determining the simulated tropospheric CO trends. A large positive anomaly in the simulated total ozone column in 2010 leads to a negative anomaly in OH and hence a positive anomaly in CO, contributing to the positive trend in simulated CO. Our results demonstrate that accurately simulating variability in the ozone column is important for simulating and interpreting trends in CO.« less

  9. Interpreting Space-Based Trends in Carbon Monoxide with Multiple Models

    NASA Technical Reports Server (NTRS)

    Strode, Sarah A.; Worden, Helen M.; Damon, Megan; Douglass, Anne R.; Duncan, Bryan N.; Emmons, Louisa K.; Lamarque, Jean-Francois; Manyin, Michael; Oman, Luke D.; Rodriguez, Jose M.; hide

    2016-01-01

    We use a series of chemical transport model and chemistry climate model simulations to investigate the observed negative trends in MOPITT CO over several regions of the world, and to examine the consistency of timedependent emission inventories with observations. We find that simulations driven by the MACCity inventory, used for the Chemistry Climate Modeling Initiative (CCMI), reproduce the negative trends in the CO column observed by MOPITT for 2000-2010 over the eastern United States and Europe. However, the simulations have positive trends over eastern China, in contrast to the negative trends observed by MOPITT. The model bias in CO, after applying MOPITT averaging kernels, contributes to the model-observation discrepancy in the trend over eastern China. This demonstrates that biases in a model's average concentrations can influence the interpretation of the temporal trend compared to satellite observations. The total ozone column plays a role in determining the simulated tropospheric CO trends. A large positive anomaly in the simulated total ozone column in 2010 leads to a negative anomaly in OH and hence a positive anomaly in CO, contributing to the positive trend in simulated CO. These results demonstrate that accurately simulating variability in the ozone column is important for simulating and interpreting trends in CO.

  10. Observed Trends in West Coast Atmospheric River Temperatures

    NASA Astrophysics Data System (ADS)

    Gonzales, K. R.; Swain, D. L.; Barnes, E. A.; Diffenbaugh, N. S.

    2017-12-01

    Understanding the changing characteristics of atmospheric rivers (ARs) in a warming climate is critical in light of their importance in generating precipitation and creating the potential for flood and geophysical hazards. Numerous changes to the characteristics of ARs under the influence of a changing climate have been documented or hypothesized; one simple hypothesis is that AR precipitation will occur at increasingly warm temperatures, potentially altering the critical rain/snow balance in snowpack-dependent watersheds and causing precipitation at higher elevations to fall as rain rather than snow. Not only would warmer, primarily rain-producing ARs greatly affect snow accumulation, but they might also increase the intensity of runoff, the potential for flooding, and the occurrence of rain-on-snow events. Since the West Coast of North America relies heavily on ARs as a source of precipitation and snowpack accumulation, these regions may be profoundly affected by changes in AR temperatures and associated impacts. Using a catalog of ARs encompassing 1979-2014 and ERA-Interim reanalysis, we assess whether detectable trends exist in cool season AR temperatures over the Pacific Coast states of California, Oregon, and Washington. We define AR temperature by the mean temperature of the air mass between 1000 hPa and 750 hPa, and compare AR temperature trends to background temperature trends over the same period. We find overall AR warming over this period and particularly robust warming in March ARs coincident with an apparent poleward shift in March AR frequency. Further analysis suggests that warmer ARs have higher rates of warming than cooler ARs. AR temperature trends generally scale with background temperature trends, although some regions exhibit a near one-to-one relationship while others are largely uncorrelated. The observed warming of ARs making landfall on the West Coast may have potentially significant implications for rain vs. snow at higher elevations, the

  11. Temporal trends of selected agricultural chemicals in Iowa's groundwater, 1982-1995: Are things getting better?

    USGS Publications Warehouse

    Kolpin, D.W.; Sneck-Fahrer, D.; Hallberg, G.R.; Libra, R.D.

    1997-01-01

    Since 1982, the Iowa Groundwater Monitoring (IGWM) Program has been used to sample untreated groundwater from Iowa municipal wells for selected agricultural chemicals. This long-term database was used to determine if concentrations of select agricultural chemicals in groundwater have changed with time. Nitrate, alachlor [2-chloro-2′-6′-diethyl-N-(methoxymethyl)-acetanilide], atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), cyanazine [2-[[4-chloro-6-(ethylamino)-1,3,5-triazin-2-yl]amino]-2-methylpropionitrile)], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] were selected for this temporal analysis of the data. Conclusive temporal changes in frequency of detection and median chemical concentrations were found only for atrazine (decrease) and metolachlor (increase). The greatest temporal chemical changes occurred in the shallowest wells and in alluvial aquifers—both relating to groups of wells generally having the youngest groundwater age. The temporal patterns found for atrazine and metolachlor are consistent with their patterns of chemical use and/or application rates and are suggestive of a causal relation. Only continued data collection, however, will indicate if the trends in chemical concentrations described here represent long-term temporal patterns or only short-term changes in groundwater. No definitive answers could be made in regards to the question of overall improvements in groundwater quality with respect to agricultural chemical contamination and time, due to the inherent problems with the simplistic measurement of overall severity (summation of alachlor + atrazine + cyanazine + metolachlor concentrations) examined for this study. To adequately determine if there is an actual decreasing trend in the overall severity of contamination (improving groundwater quality), the collection of additional water-chemistry data and the investigation of other measures of severity are needed.

  12. Variability, trends, and teleconnections of observed precipitation over Pakistan

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad Farooq; Athar, H.

    2017-10-01

    The precipitation variability, trends, and teleconnections are studied over six administrative regions of Pakistan (Gilgit-Baltistan or GB, Azad Jammu and Kashmir or AJK, Khyber Pakhtoonkhawa or KPK, Punjab, Sindh, and Balochistan) on multiple timescales for the period of recent 38 years (1976-2013) using precipitation data of 42 stations and circulation indices datasets (Indian Ocean Dipole [IOD], North Atlantic Oscillation [NAO], Arctic Oscillation [AO], El Niño Southern Oscillation [ENSO], Pacific Decadal Oscillation [PDO], Atlantic Multidecadal Oscillation [AMO], and Quasi-Biennial Oscillation [QBO]). The summer monsoon season received the highest precipitation, amounting to 45%, whereas the winter and pre-monsoon (post-monsoon) seasons contributed 30 and 20% (5%), respectively, of the annual total precipitation. Positive percentile changes were observed in GB, KPK, Punjab, and Balochistan regions during pre-monsoon season and in Balochistan region during post-monsoon season in second half as compared to first half of 38-year period. The Mann-Kendall test revealed increasing trends for the period of 1995-2013 as compared to period of 1976-1994 for entire Pakistan during monsoon season and on annual timescale. A significant influence of ENSO was observed in all the four seasons in Balochistan, KPK, Punjab, and AJK regions during monsoon and post-monsoon seasons. This study not only offers an understanding of precipitation variability linkages with large-scale circulations and trends, but also it contributes as a resource document for policy makers to take measures for adaptation and mitigation of climate change and its impacts with special focus on precipitation over different administrative regions of Pakistan.

  13. NOx emission trends over Chinese cities estimated from OMI observations during 2005 to 2015.

    PubMed

    Liu, Fei; Beirle, Steffen; Zhang, Qiang; van der A, Ronald J; Zheng, Bo; Tong, Dan; He, Kebin

    2017-01-01

    Satellite NO 2 observations have been widely used to evaluate emission changes. To determine trends in NO x emission over China, we used a method independent of chemical transport models to quantify the NO x emissions from 48 cities and 7 power plants over China, on the basis of Ozone Monitoring Instrument (OMI) NO 2 observations during 2005 to 2015. We found that NO x emissions over 48 Chinese cities increased by 52% from 2005 to 2011 and decreased by 21% from 2011 to 2015. The decrease since 2011 could be mainly attributed to emission control measures in power sector; while cities with different dominant emission sources (i.e. power, industrial and transportation sectors) showed variable emission decline timelines that corresponded to the schedules for emission control in different sectors. The time series of the derived NO x emissions was consistent with the bottom-up emission inventories for all power plants (r=0.8 on average), but not for some cities (r=0.4 on average). The lack of consistency observed for cities was most probably due to the high uncertainty of bottom-up urban emissions used in this study, which were derived from downscaling the regional-based emission data to cities by using spatial distribution proxies.

  14. NOx emission trends over Chinese cities estimated from OMI observations during 2005 to 2015

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Beirle, Steffen; Zhang, Qiang; van der A, Ronald J.; Zheng, Bo; Tong, Dan; He, Kebin

    2017-08-01

    Satellite nitrogen dioxide (NO2) observations have been widely used to evaluate emission changes. To determine trends in nitrogen oxides (NOx) emission over China, we used a method independent of chemical transport models to quantify the NOx emissions from 48 cities and seven power plants over China, on the basis of Ozone Monitoring Instrument (OMI) NO2 observations from 2005 to 2015. We found that NOx emissions over 48 Chinese cities increased by 52 % from 2005 to 2011 and decreased by 21 % from 2011 to 2015. The decrease since 2011 could be mainly attributed to emission control measures in power sector; while cities with different dominant emission sources (i.e., power, industrial, and transportation sectors) showed variable emission decline timelines that corresponded to the schedules for emission control in different sectors. The time series of the derived NOx emissions was consistent with the bottom-up emission inventories for all power plants (r = 0. 8 on average), but not for some cities (r = 0. 4 on average). The lack of consistency observed for cities was most probably due to the high uncertainty of bottom-up urban emissions used in this study, which were derived from downscaling the regional-based emission data to city level by using spatial distribution proxies.

  15. Climate change and observed climate trends in the fort cobb experimental watershed.

    PubMed

    Garbrecht, J D; Zhang, X C; Steiner, J L

    2014-07-01

    Recurring droughts in the Southern Great Plains of the United States are stressing the landscape, increasing uncertainty and risk in agricultural production, and impeding optimal agronomic management of crop, pasture, and grazing systems. The distinct possibility that the severity of recent droughts may be related to a greenhouse-gas induced climate change introduces new challenges for water resources managers because the intensification of droughts could represent a permanent feature of the future climate. Climate records of the Fort Cobb watershed in central Oklahoma were analyzed to determine if recent decade-long trends in precipitation and air temperature were consistent with climate change projections for central Oklahoma. The historical precipitation record did not reveal any compelling evidence that the recent 20-yr-long decline in precipitation was related to climate change. Also, precipitation projections by global circulation models (GCMs) displayed a flat pattern through the end of the 21st century. Neither observed nor projected precipitation displayed a multidecadal monotonic rising or declining trend consistent with an ongoing warming climate. The recent trend in observed annual precipitation was probably a decade-scale variation not directly related to the warming climate. On the other hand, the observed monotonic warming trend of 0.34°C decade that started around 1978 is consistent with GCM projections of increasing temperature for central Oklahoma. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Trend estimates of AERONET-observed and model-simulated AOT percentiles between 1993 and 2013

    NASA Astrophysics Data System (ADS)

    Yoon, Jongmin; Pozzer, Andrea; Chang, Dong Yeong; Lelieveld, Jos

    2016-04-01

    Recent Aerosol Optical thickness (AOT) trend studies used monthly or annual arithmetic means that discard details of the generally right-skewed AOT distributions. Potentially, such results can be biased by extreme values (including outliers). This study additionally uses percentiles (i.e., the lowest 5%, 25%, 50%, 75% and 95% of the monthly cumulative distributions fitted to Aerosol Robotic Network (AERONET)-observed and ECHAM/MESSy Atmospheric Chemistry (EMAC)-model simulated AOTs) that are less affected by outliers caused by measurement error, cloud contamination and occasional extreme aerosol events. Since the limited statistical representativeness of monthly percentiles and means can lead to bias, this study adopts the number of observations as a weighting factor, which improves the statistical robustness of trend estimates. By analyzing the aerosol composition of AERONET-observed and EMAC-simulated AOTs in selected regions of interest, we distinguish the dominant aerosol types and investigate the causes of regional AOT trends. The simulated and observed trends are generally consistent with a high correlation coefficient (R = 0.89) and small bias (slope±2σ = 0.75 ± 0.19). A significant decrease in EMAC-decomposed AOTs by water-soluble compounds and black carbon is found over the USA and the EU due to environmental regulation. In particular, a clear reversal in the AERONET AOT trend percentiles is found over the USA, probably related to the AOT diurnal cycle and the frequency of wildfires.

  17. Qualitative comparison of air temperature trends based on ncar/ncep reanalysis, model simulations and aerological observations data

    NASA Astrophysics Data System (ADS)

    Rubinstein, K. G.; Khan, V. M.; Sterin, A. M.

    In the present study we discuss two points. The first one is related with applicability of reanalysis data to investigating long-term climate variability. We present results of comparison of long term air temperature trends for the troposphere and the low stratosphere calculated using monthly averaged NCAR/NCEP reanalysis data on one hand and direct rawinsond observations from 443 stations on the other. The trends and other statistical characteristics are calculated for two overlapping time periods, namely 1964 through 1998, and 1979 through 1998. These two intervals were chosen in order to examine the influence of satellite observations on the reanalysis data, given that most satellite data have appeared after 1979. Vertical profiles of air temperature trends are also analyzed using the two types of data for different seasons. A special criterion is applied to evaluate the degree of coincidence by sign between the air temperatures trends derived from the two types of data. Vertical sections of the linear trend averaged over the 10-degrees zones for the both hemispheres are analyzed. It is shown that the two types of data exhibit good coincidence in the terms of the trend sign for the low and middle troposphere and low stratosphere over the areas well covered by the rawinsond observation net. Significant differences of the air temperature trend values are observed near the land surface and in the tropopause layer. The absolute value of the cooling rate of the tropical low stratosphere based on the rawinsond data is larger then that based on the reanalysis data. The presence of a positive trend in the low troposphere in the belt from ˜ 40N to ˜ 70N is evident in the two data sets. A comparative analysis of the trends for the both periods of observation shows that introducing satellite information in the reanalysis data resulted in an increase of the number of stations where the signs of the trend derived from the two sets of data coincide, especially in the

  18. Global long-term ozone trends derived from different observed and modelled data sets

    NASA Astrophysics Data System (ADS)

    Coldewey-Egbers, M.; Loyola, D.; Zimmer, W.; van Roozendael, M.; Lerot, C.; Dameris, M.; Garny, H.; Braesicke, P.; Koukouli, M.; Balis, D.

    2012-04-01

    The long-term behaviour of stratospheric ozone amounts during the past three decades is investigated on a global scale using different observed and modelled data sets. Three European satellite sensors GOME/ERS-2, SCIAMACHY/ENVISAT, and GOME-2/METOP are combined and a merged global monthly mean total ozone product has been prepared using an inter-satellite calibration approach. The data set covers the 16-years period from June 1995 to June 2011 and it exhibits an excellent long-term stability, which is required for such trend studies. A multiple linear least-squares regression algorithm using different explanatory variables is applied to the time series and statistically significant positive trends are detected in the northern mid latitudes and subtropics. Global trends are also estimated using a second satellite-based Merged Ozone Data set (MOD) provided by NASA. For few selected geographical regions ozone trends are additionally calculated using well-maintained measurements of individual Dobson/Brewer ground-based instruments. A reasonable agreement in the spatial patterns of the trends is found amongst the European satellite, the NASA satellite, and the ground-based observations. Furthermore, two long-term simulations obtained with the Chemistry-Climate Models E39C-A provided by German Aerospace Center and UMUKCA-UCAM provided by University of Cambridge are analysed.

  19. Radiation fog chemical composition and its temporal trend over an eight year period

    NASA Astrophysics Data System (ADS)

    Straub, Derek J.

    2017-01-01

    Radiation fog samples have been collected at a rural site in Central Pennsylvania from 2007 through 2015 in order to document chemical composition, assess concentration changes over time, and to provide insight into emission sources that influence the region. The collection of samples over multiple years makes this one of the few long duration radiation fog studies that have been completed. During the course of the campaign, 146 samples were obtained and analyzed for pH, major inorganic ions, low molecular weight organic acids, total organic carbon (TOC) and total nitrogen (TN). Ammonium (median concentration = 209 μN), sulfate (69 μN), calcium (51 μN), and nitrate (31 μN) were the most abundant inorganic ions, although these were present at much lower concentrations than for radiation fog studies conducted in other locations. Organic acids, of which formate (20 μM) and acetate (21 μM) were the most abundant, were closer in magnitude to measurements made during previous studies. Organic acids accounted for 15% of TOC, which had a median concentration of 6.6 mgC l-1. The median concentration of TN was 3.6 mgN l-1, 18% of which was determined to be organic nitrogen. Statistically significant decreasing trends from 2007 to 2015 were noted for sulfate, ammonium, chloride, and nitrate. For the same period, an increase in pH was observed. Seasonal trends were identified for a number of species as well. The partitioning of ammonia between the gas and aqueous phases was also investigated and found to deviate significantly from equilibrium.

  20. A joint modelling exercise designed to assess the respective impact of emission changes and meteorological variability on the observed air quality trends in major urban hotspots.

    NASA Astrophysics Data System (ADS)

    Colette, Augustin; Bessagnet, Bertrand; Dangiola, Ariela; D'Isidoro, Massimo; Gauss, Michael; Granier, Claire; Hodnebrog, Øivind; Jakobs, Hermann; Kanakidou, Maria; Khokhar, Fahim; Law, Kathy; Maurizi, Alberto; Meleux, Frederik; Memmesheimer, Michael; Nyiri, Agnes; Rouil, Laurence; Stordal, Frode; Tampieri, Francesco

    2010-05-01

    With the growth of urban agglomerations, assessing the drivers of variability of air quality in and around the main anthropogenic emission hotspots has become a major societal concern as well as a scientific challenge. These drivers include emission changes and meteorological variability; both of them can be investigated by means of numerical modelling of trends over the past few years. A collaborative effort has been developed in the framework of the CityZen European project to address this question. Several chemistry and transport models (CTMs) are deployed in this activity: four regional models (BOLCHEM, CHIMERE, EMEP and EURAD) and three global models (CTM2, MOZART, and TM4). The period from 1998 to 2007 has been selected for the historic reconstruction. The focus for the present preliminary presentation is Europe. A consistent set of emissions is used by all partners (EMEP for the European domain and IPCC-AR5 beyond) while a variety of meteorological forcing is used to gain robustness in the ensemble spread amongst models. The results of this experiment will be investigated to address the following questions: - Is the envelope of models able to reproduce the observed trends of the key chemical constituents? - How the variability amongst models changes in time and space and what does it tell us about the processes driving the observed trends? - Did chemical regimes and aerosol formation processes changed in selected hotspots? Answering the above questions will contribute to fulfil the ultimate goal of the present study: distinguishing the respective contribution of meteorological variability and emissions changes on air quality trends in major anthropogenic emissions hotspots.

  1. A Model Assessment of Satellite Observed Trends in Polar Sea Ice Extents

    NASA Technical Reports Server (NTRS)

    Vinnikov, Konstantin Y.; Cavalieri, Donald J.; Parkinson, Claire L.

    2005-01-01

    For more than three decades now, satellite passive microwave observations have been used to monitor polar sea ice. Here we utilize sea ice extent trends determined from primarily satellite data for both the Northern and Southern Hemispheres for the period 1972(73)-2004 and compare them with results from simulations by eleven climate models. In the Northern Hemisphere, observations show a statistically significant decrease of sea ice extent and an acceleration of sea ice retreat during the past three decades. However, from the modeled natural variability of sea ice extents in control simulations, we conclude that the acceleration is not statistically significant and should not be extrapolated into the future. Observations and model simulations show that the time scale of climate variability in sea ice extent in the Southern Hemisphere is much larger than in the Northern Hemisphere and that the Southern Hemisphere sea ice extent trends are not statistically significant.

  2. Observed and Modeled Trends in Southern Ocean Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2003-01-01

    Conceptual models and global climate model (GCM) simulations have both indicated the likelihood of an enhanced sensitivity to climate change in the polar regions, derived from the positive feedbacks brought about by the polar abundance of snow and ice surfaces. Some models further indicate that the changes in the polar regions can have a significant impact globally. For instance, 37% of the temperature sensitivity to a doubling of atmospheric CO2 in simulations with the GCM of the Goddard Institute for Space Studies (GISS) is attributable exclusively to inclusion of sea ice variations in the model calculations. Both sea ice thickness and sea ice extent decrease markedly in the doubled CO, case, thereby allowing the ice feedbacks to occur. Stand-alone sea ice models have shown Southern Ocean hemispherically averaged winter ice-edge retreats of 1.4 deg latitude for each 1 K increase in atmospheric temperatures. Observations, however, show a much more varied Southern Ocean ice cover, both spatially and temporally, than many of the modeled expectations. In fact, the satellite passive-microwave record of Southern Ocean sea ice since late 1978 has revealed overall increases rather than decreases in ice extents, with ice extent trends on the order of 11,000 sq km/year. When broken down spatially, the positive trends are strongest in the Ross Sea, while the trends are negative in the Bellingshausen/Amundsen Seas. Greater spatial detail can be obtained by examining trends in the length of the sea ice season, and those trends show a coherent picture of shortening sea ice seasons throughout almost the entire Bellingshausen and Amundsen Seas to the west of the Antarctic Peninsula and in the far western Weddell Sea immediately to the east of the Peninsula, with lengthening sea ice seasons around much of the rest of the continent. This pattern corresponds well with the spatial pattern of temperature trends, as the Peninsula region is the one region in the Antarctic with a strong

  3. Total ozone trends over the USA during 1979-1991 from Dobson spectrophotometer observations

    NASA Technical Reports Server (NTRS)

    Komhyr, Walter D.; Grass, Robert D.; Koenig, Gloria L.; Quincy, Dorothy M.; Evans, Robert D.; Leonard, R. Kent

    1994-01-01

    Ozone trends for 1979-1991, determined from Dobson spectrophotometer observations made at eight stations in the United States, are augmented with trend data from four foreign cooperative stations operated by NOAA/CMDL. Results are based on provisional data archived routinely throughout the years at the World Ozone Data Center in Toronto, Canada, with calibration corrections applied to some of the data. Trends through 1990 exhibit values of minus 0.3 percent to minus 0.5 percent yr(exp -1) at mid-to-high latitudes in the northern hemisphere. With the addition of 1991 data, however, the trends become less negative, indicating that ozone increased in many parts of the world during 1991. Stations located within the plus or minus 20 deg N-S latitude band exhibit no ozone trends. Early 1992 data show decreased ozone values at some of the stations. At South Pole, Antarctica, October ozone values have remained low during the past 3 years.

  4. A comparison of ozone trends from SME and SBUV satellite observations and model calculations

    NASA Astrophysics Data System (ADS)

    Rusch, D. W.; Clancy, R. T.

    1988-08-01

    Data on monthly ozone abundance trends near the stratopause, observed by the Ultraviolet Spectrometer (UVS) on the SME and by the Solar Backscatter Ultraviolet Instrument (SBUV) on NIMBUS-7 are presented for June, September, and January of the years 1982-1986. Globally averaged trends determined from the SME data (-0.5 + or - 1.3 percent/yr) were found to fall within model calculations by Rusch and Clancy (1988); the SBUV trends, on the other hand, were found to exceed maximum predicted ozone decreases by a factor of 3 or more. Detailed comparison of the two data sets indicated that an absolute offset of 3 percent/yr accounts for much of the difference between the two trends; the offset is considered to be due to incomplete characterization of the SBUV calibration drift. Both the UVS and SBUV data exhibited similar seasonal and latitudinal variations in ozone trends, which were reproduced by photochemical model calculations that included latitude-dependent NMC temperature trends over the 1982-1986 period.

  5. A comparison of ozone trends from SME and SBUV satellite observations and model calculations

    NASA Technical Reports Server (NTRS)

    Rusch, D. W.; Clancy, R. T.

    1988-01-01

    Data on monthly ozone abundance trends near the stratopause, observed by the Ultraviolet Spectrometer (UVS) on the SME and by the Solar Backscatter Ultraviolet Instrument (SBUV) on NIMBUS-7 are presented for June, September, and January of the years 1982-1986. Globally averaged trends determined from the SME data (-0.5 + or - 1.3 percent/yr) were found to fall within model calculations by Rusch and Clancy (1988); the SBUV trends, on the other hand, were found to exceed maximum predicted ozone decreases by a factor of 3 or more. Detailed comparison of the two data sets indicated that an absolute offset of 3 percent/yr accounts for much of the difference between the two trends; the offset is considered to be due to incomplete characterization of the SBUV calibration drift. Both the UVS and SBUV data exhibited similar seasonal and latitudinal variations in ozone trends, which were reproduced by photochemical model calculations that included latitude-dependent NMC temperature trends over the 1982-1986 period.

  6. Temporal trends in nitrate and selected pesticides in Mid-Atlantic ground water.

    PubMed

    Debrewer, Linda M; Ator, Scott W; Denver, Judith M

    2008-01-01

    Evaluating long-term temporal trends in regional ground-water quality is complicated by variable hydrogeologic conditions and typically slow flow, and such trends have rarely been directly measured. Ground-water samples were collected over near-decadal and annual intervals from unconfined aquifers in agricultural areas of the Mid-Atlantic region, including fractured carbonate rocks in the Great Valley, Potomac River Basin, and unconsolidated sediments on the Delmarva Peninsula. Concentrations of nitrate and selected pesticides and degradates were compared among sampling events and to apparent recharge dates. Observed temporal trends are related to changes in land use and chemical applications, and to hydrogeology and climate. Insignificant differences in nitrate concentrations in the Great Valley between 1993 and 2002 are consistent with relatively steady fertilizer application during respective recharge periods and are likely related to drought conditions in the later sampling period. Detecting trends in Great Valley ground water is complicated by long open boreholes characteristic of wells sampled in this setting which facilitate significant ground-water mixing. Decreasing atrazine and prometon concentrations, however, reflect reported changes in usage. On the Delmarva Peninsula between 1988 and 2001, median nitrate concentrations increased 2 mg per liter in aerobic ground water, reflecting increasing fertilizer applications. Correlations between selected pesticide compounds and apparent recharge date are similarly related to changing land use and chemical application. Observed trends in the two settings demonstrate the importance of considering hydrogeology and recharge date along with changing land and chemical uses when interpreting trends in regional ground-water quality.

  7. Trend in Air Quality of Kathmandu Valley: A Satellite, Observation and Modelling Perspective

    NASA Astrophysics Data System (ADS)

    Mahapatra, P. S.; Praveen, P. S.; Adhikary, B.; Panday, A. K.; Putero, D.; Bonasoni, P.

    2016-12-01

    Kathmandu (floor area of 340 km2) in Nepal is considered to be a `hot spot' of urban air pollution in South Asia. Its structure as a flat basin surrounded by tall mountains provides a unique case study for analyzing pollution trapped by topography. Only a very small number of cities with similar features have been studied extensively including Mexico and Santiago-de-Chile. This study presents the trend in satellite derived Aerosol Optical Depth (AOD) from MODIS AQUA and TERRA (3x3km, Level 2) over Kathmandu from 2000 to 2015. Trend analysis of AOD shows 35% increase during the study period. Determination of the background pollution would reveal the contribution of only Kathmandu Valley for the observation period. For this, AOD at 1340m altitude outside Kathmandu, but nearby areas were considered as background. This analysis was further supported by investigating AOD at different heights around Kathmandu as well as determining AOD from CALIPSO vertical profiles. These analysis suggest that background AOD contributed 30% in winter and 60% in summer to Kathmandu Valley's observed AOD. Thereafter the background AOD was subtracted from total Kathmandu AOD to determine contribution of only Kathmandu Valley's AOD. Trend analysis of only Kathmandu Valley AOD (subtracting background AOD) suggested an increase of 50% during the study period. Further analysis of Kathmandu's visibility and AOD suggest profound role of background AOD on decreasing visibility. In-situ Black Carbon (BC) mass concentration measurements (BC being used as a proxy for surface observations) at two sites within Kathmandu valley have been analyzed. Kathmandu valley lacks long term trends of ambient air quality measurement data. Therefore, surface observations would be coupled with satellite measurements for understanding the urban air pollution scenario. Modelling studies to estimate the contribution of background pollution to Kathmandu's own pollution as well as the weekend effect on air quality will

  8. Large-Scale Overlays and Trends: Visually Mining, Panning and Zooming the Observable Universe.

    PubMed

    Luciani, Timothy Basil; Cherinka, Brian; Oliphant, Daniel; Myers, Sean; Wood-Vasey, W Michael; Labrinidis, Alexandros; Marai, G Elisabeta

    2014-07-01

    We introduce a web-based computing infrastructure to assist the visual integration, mining and interactive navigation of large-scale astronomy observations. Following an analysis of the application domain, we design a client-server architecture to fetch distributed image data and to partition local data into a spatial index structure that allows prefix-matching of spatial objects. In conjunction with hardware-accelerated pixel-based overlays and an online cross-registration pipeline, this approach allows the fetching, displaying, panning and zooming of gigabit panoramas of the sky in real time. To further facilitate the integration and mining of spatial and non-spatial data, we introduce interactive trend images-compact visual representations for identifying outlier objects and for studying trends within large collections of spatial objects of a given class. In a demonstration, images from three sky surveys (SDSS, FIRST and simulated LSST results) are cross-registered and integrated as overlays, allowing cross-spectrum analysis of astronomy observations. Trend images are interactively generated from catalog data and used to visually mine astronomy observations of similar type. The front-end of the infrastructure uses the web technologies WebGL and HTML5 to enable cross-platform, web-based functionality. Our approach attains interactive rendering framerates; its power and flexibility enables it to serve the needs of the astronomy community. Evaluation on three case studies, as well as feedback from domain experts emphasize the benefits of this visual approach to the observational astronomy field; and its potential benefits to large scale geospatial visualization in general.

  9. Temporal trends in nitrate and selected pesticides in mid-atlantic ground water

    USGS Publications Warehouse

    Debrewer, L.M.; Ator, S.W.; Denver, J.M.

    2008-01-01

    Evaluating long-term temporal trends in regional ground-water quality is complicated by variable hydrogeologic conditions and typically slow flow, and such trends have rarely been directly measured. Ground-water samples were collected over near-decadal and annual intervals from unconfined aquifers in agricultural areas of the Mid-Atlantic region, including fractured carbonate rocks in the Great Valley, Potomac River Basin, and unconsolidated sediments on the Delmarva Peninsula. Concentrations of nitrate and selected pesticides and degradates were compared among sampling events and to apparent recharge dates. Observed temporal trends are related to changes in land use and chemical applications, and to hydrogeology and climate. Insignificant differences in nitrate concentrations in the Great Valley between 1993 and 2002 are consistent with relatively steady fertilizer application during respective recharge periods and are likely related to drought conditions in the later sampling period. Detecting trends in Great Valley ground water is complicated by long open boreholes characteristic of wells sampled in this setting which facilitate significant ground-water mixing. Decreasing atrazine and prometon concentrations, however, reflect reported changes in usage. On the Delmarva Peninsula between 1988 and 2001, median nitrate concentrations increased 2 mg per liter in aerobic ground water, reflecting increasing fertilizer applications. Correlations between selected pesticide compounds and apparent recharge date are similarly related to changing land use and chemical application. Observed trends in the two settings demonstrate the importance of considering hydrogeology and recharge date along with, changing land and chemical uses when interpreting trends in regional ground-water quality. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  10. Trends of particulate matter (PM2.5) and chemical composition at a regional background site in the Western Mediterranean over the last nine years (2002-2010)

    NASA Astrophysics Data System (ADS)

    Cusack, M.; Alastuey, A.; Pérez, N.; Pey, J.; Querol, X.

    2012-04-01

    The time variability and long term trends of PM2.5 (particulate matter of diameter <2.5 μm) at various regional background (RB) sites across Europe are studied and interpreted in this work. Long-term trends of PM2.5 concentrations are relatively scarce across Europe, with few studies outlining the changes measured in PM2.5 concentrations over a significant period of time. To this end, data on mean annual levels of PM2.5 measured at Montseny (MSY, North East Spain) and various RB sites in Spain and Europe are evaluated and compared, and subsequently analysed for statistically significant trends. The MSY site registered higher average PM2.5 levels than those measured at a selection of other RB sites across Spain, Portugal, Germany and Scandinavia, but lower than those measured in Switzerland, Italy and Austria. Reductions in PM2.5 were observed across all stations in Spain and Europe to varying degrees. MSY underwent a statistically significant reduction since measurements began, indicating a year-on-year gradual decrease (-3.7 μg m-3, calculated from the final year of data compared to the mean). Similar trends were observed in other RB sites across Spain (-1.9 μg m-3). Reductions recorded in PM2.5 across Europe were varied, with many experiencing gradual, year-on-year decreases (-1.8 μg m-3). These reductions have been attributed to various causes: the introduction and implementation of pollution abatement strategies in EU member states, the effect of the current economic crisis on emissions of PM2.5 and the influence of anomalous meteorology observed during the winters of 2009 and 2010. The North Atlantic Oscillation (NAO), a large scale meteorological phenomenon most prevalent during winter, was observed to influence the frequency of Saharan dust intrusions across the Iberian Peninsula. Chemical composition of PM2.5 at MSY is characterised by high levels of organic matter (OM) and sulphate, followed by crustal material, nitrate and ammonia. Sea Spray and

  11. Precipitation climatology over India: validation with observations and reanalysis datasets and spatial trends

    NASA Astrophysics Data System (ADS)

    Kishore, P.; Jyothi, S.; Basha, Ghouse; Rao, S. V. B.; Rajeevan, M.; Velicogna, Isabella; Sutterley, Tyler C.

    2016-01-01

    Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial-temporal analyses of rainfall have been studied by using 107 (1901-2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and

  12. Trends of particulate matter (PM2.5) and chemical composition at a regional background site in the Western Mediterranean over the last nine years (2002-2010)

    NASA Astrophysics Data System (ADS)

    Cusack, M.; Alastuey, A.; Pérez, N.; Pey, J.; Querol, X.

    2012-09-01

    The time variability and long term trends of PM2.5 (particulate matter of diameter < 2.5 μm) at various regional background (RB) sites across Europe are studied and interpreted in this work. Data on mean annual levels of PM2.5 measured at Montseny (MSY, North East Spain) and various RB sites in Spain and Europe are evaluated and compared, and subsequently analysed for statistically significant trends. The MSY site registered higher average PM2.5 levels than those measured at a selection of other RB sites across Spain, Portugal, Germany and Scandinavia by percentage compared to the mean of all the stations in these countries, but lower than those measured in Switzerland, Italy and Austria. Reductions in PM2.5 were observed across all stations in Spain and Europe to varying degrees (7-49%). MSY underwent a statistically significant reduction since measurements began, indicating a year-on-year gradual decrease (-3.7 μg m-3, calculated from the final year of data compared to the mean). Similar trends were observed in other RB sites across Spain (-1.9 μg m-3). Reductions recorded in PM2.5 across Europe were varied, with many experiencing gradual, year-on-year decreases (-1.8 μg m-3). These reductions have been attributed to various causes: the introduction and implementation of pollution abatement strategies in EU member states, the effect of the current economic crisis on emissions of PM2.5 and the influence of meteorology observed during the winters of 2009 and 2010. In addition, the North Atlantic Oscillation (NAO), a large scale meteorological phenomenon most prevalent during winter, was observed to influence the frequency of Saharan dust intrusions across the Iberian Peninsula. Chemical composition of PM2.5 at MSY is characterised by high levels of organic matter (OM) and sulphate, followed by crustal material, nitrate and ammonia. Sea Spray and elemental carbon (EC) comprised a minor part of the total PM2.5 mass. Statistical trend analysis was performed on the

  13. Ultrastructural observations of chemical peeling for skin rejuvenation (ultrastructural changes of the skin due to chemical peeling).

    PubMed

    Omi, Tokuya; Sato, Shigeru; Numano, Kayoko; Kawana, Seiji

    2010-02-01

    Chemical peeling of the skin is commonly used as a means to treat photoaging, but the mechanism underlying its efficacy has not yet been fully clarified. We recently conducted chemical peeling of the skin with glycolic acid and lactic acid and observed it at the ultrastructural level. No changes in the horny layer or the upper epidermal layer were observed but there was dissociation and vacuolation between the basal cells and increases in vimentin filaments within fibroblasts and endothelial cells were seen. These findings suggest that chemical peeling of the skin with this type of agent directly induces collagen formation within the dermis and thus directly stimulates remodeling of the dermis.

  14. Observed and modelled “chemical weather” during ESCOMPTE

    NASA Astrophysics Data System (ADS)

    Dufour, A.; Amodei, M.; Ancellet, G.; Peuch, V.-H.

    2005-03-01

    The new MOdèle de Chimie Atmosphérique à Grande Echelle (MOCAGE) three-dimensional multiscale chemistry and transport model (CTM) has been applied to study heavy pollution episodes observed during the ESCOMPTE experiment. The model considers the troposphere and lower stratosphere, and allows the possibility of zooming from the planetary scale down to the regional scale over limited area subdomains. Like this, it generates its own time-dependent chemical boundary conditions in the vertical and in the horizontal. This paper focuses on the evaluation and quantification of uncertainties related to chemical and transport modelling during two intensive observing periods, IOP2 and IOP4 (June 20-26 and July 10-14, 2001, respectively). Simulations are compared to the database of four-dimensional observations, which includes ground-based sites and aircraft measurements, radiosoundings, and quasi-continuous measurements of ozone by LIDARs. Thereby, the observed and modelled day-to-day variabilities in air composition both at the surface and in the vertical have been assessed. Then, three sensitivity studies are conducted concerning boundary conditions, accuracy of the emission dataset, and representation of chemistry. Firstly, to go further in the analysis of chemical boundary conditions, results from the standard grid nesting set-up and altered configurations, relying on climatologies, are compared. Along with other recent studies, this work advocates the systematic coupling of limited-area models with global CTMs, even for regional air quality studies or forecasts. Next, we evaluate the benefits of using the detailed high-resolution emissions inventory of ESCOMPTE: improvements are noticeable both on ozone reactivity and on the concentrations of various species of the ozone photochemical cycle especially primary ones. Finally, we provide some insights on the comparison of two simulations differing only by the parameterisation of chemistry and using two state

  15. Observations and modeling of air quality trends over 1990-2010 across the Northern Hemisphere: China, the United States and Europe

    NASA Astrophysics Data System (ADS)

    Xing, J.; Mathur, R.; Pleim, J.; Hogrefe, C.; Gan, C.-M.; Wong, D. C.; Wei, C.; Gilliam, R.; Pouliot, G.

    2015-03-01

    Trends in air quality across the Northern Hemisphere over a 21-year period (1990-2010) were simulated using the Community Multiscale Air Quality (CMAQ) multiscale chemical transport model driven by meteorology from Weather Research and Forecasting (WRF) simulations and internally consistent historical emission inventories obtained from EDGAR. Thorough comparison with several ground observation networks mostly over Europe and North America was conducted to evaluate the model performance as well as the ability of CMAQ to reproduce the observed trends in air quality over the past 2 decades in three regions: eastern China, the continental United States and Europe. The model successfully reproduced the observed decreasing trends in SO2, NO2, 8 h O3 maxima, SO42- and elemental carbon (EC) in the US and Europe. However, the model fails to reproduce the decreasing trends in NO3- in the US, potentially pointing to uncertainties of NH3 emissions. The model failed to capture the 6-year trends of SO2 and NO2 in CN-API (China - Air Pollution Index) from 2005 to 2010, but reproduced the observed pattern of O3 trends shown in three World Data Centre for Greenhouse Gases (WDCGG) sites over eastern Asia. Due to the coarse spatial resolution employed in these calculations, predicted SO2 and NO2 concentrations are underestimated relative to all urban networks, i.e., US-AQS (US - Air Quality System; normalized mean bias (NMB) = -38% and -48%), EU-AIRBASE (European Air quality data Base; NMB = -18 and -54%) and CN-API (NMB = -36 and -68%). Conversely, at the rural network EU-EMEP (European Monitoring and Evaluation Programme), SO2 is overestimated (NMB from 4 to 150%) while NO2 is simulated well (NMB within ±15%) in all seasons. Correlations between simulated and observed O3 wintertime daily 8 h maxima (DM8) are poor compared to other seasons for all networks. Better correlation between simulated and observed SO42- was found compared to that for SO2. Underestimation of summer SO42- in

  16. NATIONAL STATUS AND TRENDS PROGRAM

    EPA Science Inventory

    Since 1984, the National Status and Trends (NS&T) Program has monitored, on a national scale, spatial and temporal trends of chemical contamination and biological responses to that contamination. Temporal trends are being monitored through the Mussel Watch project that analyzes m...

  17. Detecting potential anomalies in projections of rainfall trends and patterns using human observations

    NASA Astrophysics Data System (ADS)

    Kohfeld, K. E.; Savo, V.; Sillmann, J.; Morton, C.; Lepofsky, D.

    2016-12-01

    Shifting precipitation patterns are a well-documented consequence of climate change, but their spatial variability is particularly difficult to assess. While the accuracy of global models has increased, specific regional changes in precipitation regimes are not well captured by these models. Typically, researchers who wish to detect trends and patterns in climatic variables, such as precipitation, use instrumental observations. In our study, we combined observations of rainfall by subsistence-oriented communities with several metrics of rainfall estimated from global instrumental records for comparable time periods (1955 - 2005). This comparison was aimed at identifying: 1) which rainfall metrics best match human observations of changes in precipitation; 2) areas where local communities observe changes not detected by global models. The collated observations ( 3800) made by subsistence-oriented communities covered 129 countries ( 1830 localities). For comparable time periods, we saw a substantial correspondence between instrumental records and human observations (66-77%) at the same locations, regardless of whether we considered trends in general rainfall, drought, or extreme rainfall. We observed a clustering of mismatches in two specific regions, possibly indicating some climatic phenomena not completely captured by the currently available global models. Many human observations also indicated an increased unpredictability in the start, end, duration, and continuity of the rainy seasons, all of which may hamper the performance of subsistence activities. We suggest that future instrumental metrics should capture this unpredictability of rainfall. This information would be important for thousands of subsistence-oriented communities in planning, coping, and adapting to climate change.

  18. Observed trends of soil fauna in the Antarctic Dry Valleys: early signs of shifts predicted under climate change.

    PubMed

    Andriuzzi, W S; Adams, B J; Barrett, J E; Virginia, R A; Wall, D H

    2018-02-01

    Long-term observations of ecological communities are necessary for generating and testing predictions of ecosystem responses to climate change. We investigated temporal trends and spatial patterns of soil fauna along similar environmental gradients in three sites of the McMurdo Dry Valleys, Antarctica, spanning two distinct climatic phases: a decadal cooling trend from the early 1990s through the austral summer of February 2001, followed by a shift to the current trend of warming summers and more frequent discrete warming events. After February 2001, we observed a decline in the dominant species (the nematode Scottnema lindsayae) and increased abundance and expanded distribution of less common taxa (rotifers, tardigrades, and other nematode species). Such diverging responses have resulted in slightly greater evenness and spatial homogeneity of taxa. However, total abundance of soil fauna appears to be declining, as positive trends of the less common species so far have not compensated for the declining numbers of the dominant species. Interannual variation in the proportion of juveniles in the dominant species was consistent across sites, whereas trends in abundance varied more. Structural equation modeling supports the hypothesis that the observed biological trends arose from dissimilar responses by dominant and less common species to pulses of water availability resulting from enhanced ice melt. No direct effects of mean summer temperature were found, but there is evidence of indirect effects via its weak but significant positive relationship with soil moisture. Our findings show that combining an understanding of species responses to environmental change with long-term observations in the field can provide a context for validating and refining predictions of ecological trends in the abundance and diversity of soil fauna. © 2018 by the Ecological Society of America.

  19. A Comparison of Observed and Simulated 1990 – 2010 U.S. Ozone Trends

    EPA Science Inventory

    In this study, we analyze ozone concentrations from long-term (1990 – 2010) WRF-CMAQ simulations driven by year specific meteorology and emissions. These simulations allow us to compare observed and simulated ozone trends in order to evaluate the model’s ability to pr...

  20. Trend analysis of tropospheric NO2 column density over East Asia during 2000-2010: multi-satellite observations and model simulations with the updated REAS emission inventory

    NASA Astrophysics Data System (ADS)

    Itahashi, S.; Uno, I.; Irie, H.; Kurokawa, J.; Ohara, T.

    2013-04-01

    Satellite observations of the tropospheric NO2 vertical column density (VCD) are closely correlated to surface NOx emissions and can thus be used to estimate the latter. In this study, the NO2 VCDs simulated by a regional chemical transport model with data from the updated Regional Emission inventory in ASia (REAS) version 2.1 were validated by comparison with multi-satellite observations (GOME, SCIAMACHY, GOME-2, and OMI) between 2000 and 2010. Rapid growth in NO2 VCD driven by expansion of anthropogenic NOx emissions was revealed above the central eastern China region, except during the economic downturn. In contrast, slightly decreasing trends were captured above Japan. The modeled NO2 VCDs using the updated REAS emissions reasonably reproduced the annual trends observed by multi-satellites, suggesting that the NOx emissions growth rate estimated by the updated inventory is robust. On the basis of the close linear relationship of modeled NO2 VCD, observed NO2 VCD, and anthropogenic NOx emissions, the NOx emissions in 2009 and 2010 were estimated. It was estimated that the NOx emissions from anthropogenic sources in China beyond doubled between 2000 and 2010, reflecting the strong growth of anthropogenic emissions in China with the rapid recovery from the economic downturn during late 2008 and mid-2009.

  1. Observed Trend in Surface Wind Speed Over the Conterminous USA and CMIP5 Simulations

    NASA Technical Reports Server (NTRS)

    Hashimoto, Hirofumi; Nemani, Ramakrishna R.

    2016-01-01

    There has been no spatial surface wind map even over the conterminous USA due to the difficulty of spatial interpolation of wind field. As a result, the reanalysis data were often used to analyze the statistics of spatial pattern in surface wind speed. Unfortunately, no consistent trend in wind field was found among the available reanalysis data, and that obstructed the further analysis or projection of spatial pattern of wind speed. In this study, we developed the methodology to interpolate the observed wind speed data at weather stations using random forest algorithm. We produced the 1-km daily climate variables over the conterminous USA from 1979 to 2015. The validation using Ameriflux daily data showed that R2 is 0.59. Existing studies have found the negative trend over the Eastern US, and our study also showed same results. However, our new datasets also revealed the significant increasing trend over the southwest US especially from April to June. The trend in the southwestern US represented change or seasonal shift in North American Monsoon. Global analysis of CMIP5 data projected the decrease trend in mid-latitude, while increase trend in tropical region over the land. Most likely because of the low resolution in GCM, CMIP5 data failed to simulate the increase trend in the southwest US, even though it was qualitatively predicted that pole ward shift of anticyclone help the North American Monsoon.

  2. Trends in chemical ecology revealed with a personal computer program for searching data bases of scientific references and abstracts.

    PubMed

    Byers, J A

    1992-09-01

    A compiled program, JCE-REFS.EXE (coded in the QuickBASIC language), for use on IBM-compatible personal computers is described. The program converts a DOS text file of current B-I-T-S (BIOSIS Information Transfer System) or BIOSIS Previews references into a DOS file of citations, including abstracts, in a general style used by scientific journals. The latter file can be imported directly into a word processor or the program can convert the file into a random access data base of the references. The program can search the data base for up to 40 text strings with Boolean logic. Selected references in the data base can be exported as a DOS text file of citations. Using the search facility, articles in theJournal of Chemical Ecology from 1975 to 1991 were searched for certain key words in regard to semiochemicals, taxa, methods, chemical classes, and biological terms to determine trends in usage over the period. Positive trends were statistically significant in the use of the words: semiochemical, allomone, allelochemic, deterrent, repellent, plants, angiosperms, dicots, wind tunnel, olfactometer, electrophysiology, mass spectrometry, ketone, evolution, physiology, herbivore, defense, and receptor. Significant negative trends were found for: pheromone, vertebrates, mammals, Coleoptera, Scolytidae,Dendroctonus, lactone, isomer, and calling.

  3. Decadal Record of Satellite Carbon Monoxide Observations

    NASA Astrophysics Data System (ADS)

    Worden, Helen; Deeter, Merritt; Frankenberg, Christian; George, Maya; Nichitiu, Florian; Worden, John; Aben, Ilse; Bowman, Kevin; Clerbaux, Cathy; Coheur, Pierre-Francois; de Laat, Jos; Warner, Juying; Drummond, James; Edwards, David; Gille, John; Hurtmans, Daniel; Ming, Luo; Martinez-Alonso, Sara; Massie, Steven; Pfister, Gabriele

    2013-04-01

    Atmospheric carbon monoxide (CO) distributions are controlled by anthropogenic emissions, biomass burning, chemical production, transport and oxidation by reaction with the hydroxyl radical (OH). Quantifying trends in CO is therefore important for understanding changes related to all of these contributions. Here we present a comprehensive record of satellite observations from 2000 through 2011 of total column CO using the available measurements from nadir-viewing thermal infrared instruments: MOPITT, AIRS, TES and IASI. We examine trends for CO in the Northern and Southern hemispheres along with regional trends for E. China, E. USA, Europe and India. Measurement and sampling methods for each of the instruments are discussed, and we show diagnostics for systematic errors in MOPITT trends. We find that all the satellite observations are consistent with a modest decreasing trend around -1%/year in total column CO over the Northern hemisphere for this time period. Decreasing trends in total CO column are observed for the United States, Europe and E. China with more than 2σ significance. For India, the trend is also decreasing, but smaller in magnitude and less significant. Decreasing trends in surface CO have also been observed from measurements in the U.S. and Europe. Although less information is available for surface CO in China, there is a decreasing trend reported for Beijing. Some of the interannual variability in the observations can be explained by global fire emissions, and there may be some evidence of the global financial crisis in late 2008 to early 2009. But the overall decrease needs further study to understand the implications for changes in anthropogenic emissions.

  4. Observed temperature trends in the Indian Ocean over 1960-1999 and associated mechanisms

    NASA Astrophysics Data System (ADS)

    Alory, Gaël; Wijffels, Susan; Meyers, Gary

    2007-01-01

    The linear trends in oceanic temperature from 1960 to 1999 are estimated using the new Indian Ocean Thermal Archive (IOTA), a compilation of historical temperature profiles. Widespread surface warming is found, as in other data sets, and reproduced in IPCC climate model simulations for the 20th century. This warming is particularly large in the subtropics, and extends down to 800 m around 40-50°S. Models suggest the deep-reaching subtropical warming is related to a 0.5° southward shift of the subtropical gyre driven by a strengthening of the westerly winds, and associated with an upward trend in the Southern Annular Mode index. In the tropics, IOTA shows a subsurface cooling corresponding to a shoaling of the thermocline and increasing vertical stratification. Most models suggest this trend in the tropical Indian thermocline is likely associated with the observed weakening of the Pacific trade winds and transmitted to the Indian Ocean by the Indonesian throughflow.

  5. Total ozone trends from 1979 to 2016 derived from five merged observational datasets - the emergence into ozone recovery

    NASA Astrophysics Data System (ADS)

    Weber, Mark; Coldewey-Egbers, Melanie; Fioletov, Vitali E.; Frith, Stacey M.; Wild, Jeannette D.; Burrows, John P.; Long, Craig S.; Loyola, Diego

    2018-02-01

    We report on updated trends using different merged datasets from satellite and ground-based observations for the period from 1979 to 2016. Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. Merged datasets used here include NASA MOD v8.6 and National Oceanic and Atmospheric Administration (NOAA) merge v8.6, both based on data from the series of Solar Backscatter UltraViolet (SBUV) and SBUV-2 satellite instruments (1978-present) as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone (GTO) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (1995-present), mainly comprising satellite data from GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2A. The fifth dataset consists of the monthly mean zonal mean data from ground-based measurements collected at World Ozone and UV Data Center (WOUDC). The addition of four more years of data since the last World Meteorological Organization (WMO) ozone assessment (2013-2016) shows that for most datasets and regions the trends since the stratospheric halogen reached its maximum (˜ 1996 globally and ˜ 2000 in polar regions) are mostly not significantly different from zero. However, for some latitudes, in particular the Southern Hemisphere extratropics and Northern Hemisphere subtropics, several datasets show small positive trends of slightly below +1 % decade-1 that are barely statistically significant at the 2σ uncertainty level. In the tropics, only two datasets show significant trends of +0.5 to +0.8 % decade-1, while the others show near-zero trends. Positive trends since 2000 have been observed over Antarctica in September, but near-zero trends are found in October as well as in March over the Arctic. Uncertainties due to possible drifts between the datasets, from the merging procedure used to combine satellite datasets and related to the low sampling of ground-based data, are not accounted for in the trend

  6. Observations and modeling of air quality trends over 1990-2010 across the northern hemisphere: China, the United States and Europe

    EPA Science Inventory

    Trends in air quality across the Northern Hemisphere over a 21-year period (1990–2010) were simulated using the Community Multiscale Air Quality (CMAQ) multiscale chemical transport model driven by meteorology from Weather Research and Forecasting WRF) simulations and internally ...

  7. Observations of resistance through minimum inhibitory concentrations trends for respiratory specimens of commonly isolated organisms.

    PubMed

    Gillard, Christopher J; Al-Dahir, Sara; Brakta, Fatima

    2016-03-01

    The objective of this study was to determine minimum inhibitory concentration (MIC) trends among common bacterial organisms found in respiratory isolates in the trauma intensive care unit setting. In this retrospective observational study, MIC data was reviewed over a three year period from January 2009 to December 2011 for the three most frequently identified organisms isolated from respiratory specimens in a trauma intensive care unit along with corresponding hospital data. The most frequently isolated bacterial species identified were Staphylococcus aureus (229 isolates), Pseudomonas aeruginosa (129 isolates), and Acinetobacter species (87 isolates) in the analysis within our institution from 2009-2011. There was considerable variability among the MIC trends for the analyzed organisms. For Pseudomonas isolates, observed sensitivities were as high as 100% for antibiotics ciprofloxacin and imipenem in 2009, but decreased over the next two years in 2010 and 2011. There was considerable variability among the MIC trends for Acinetobacter over the three year period for the antibiotics tested. The MIC data for most Staphylococcus aureus isolates over the three years were sensitive to vancomycin with little change in the observed MIC data. The data reported is observational and indicates the need for future studies to establish a valid relationship of the MIC data over time in our institution particularly among our gram negative organisms, to monitor patterns of antimicrobial resistance. Copyright © 2016 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  8. Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations

    NASA Astrophysics Data System (ADS)

    Yoon, J.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Vountas, M.; Burrows, J. P.

    2012-06-01

    Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. aerosol optical thickness (AOT) and Ångström exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440-870 nm) using AErosol RObotic NETwork (AERONET) level 2.0 spectral observations. Additionally, temporal trends of coarse- and fine-mode dominant AOTs (CdAOT and FdAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström exponent difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation (σt) and (2) number of observations per month (nt). Temporal increase of FdAOTs (440 nm) prevails over newly industrializing countries in East Asia (weighted trends; +6.23% yr-1 at Beijing) and active agricultural burning regions in South Africa (+1.89% yr-1 at Mongu). On the other hand, insignificant or negative trends for FdAOTs are detected over Western Europe (+0.25% yr-1 at Avignon and -2.29% yr-1 at Ispra) and North America (-0.52% yr-1 for GSFC and -0.01% yr-1 at MD_Science_Center). Over desert regions, both increase and decrease of CdAOTs (+3.37% yr-1 at Solar_Village and -1.18% yr-1 at Ouagadougou) are observed depending on meteorological conditions.

  9. Chemical Environment Effects on K[beta]/K[alpha] Intensity Ratio: An X-Ray Fluorescence Experiment on Periodic Trends

    ERIC Educational Resources Information Center

    Durham, Chaney R.; Chase, Jeffery M.; Nivens, Delana A.; Baird, William H.; Padgett, Clifford W.

    2011-01-01

    X-ray fluorescence (XRF) data from an energy-dispersive XRF instrument were used to investigate the chlorine K[alpha] and K[beta] peaks in several group 1 salts. The ratio of the peak intensity is sensitive to the local chemical environment of the chlorine atoms studied in this experiment and it shows a periodic trend for these salts. (Contains 1…

  10. Total Ozone Trends from 1979 to 2016 Derived from Five Merged Observational Datasets - The Emergence into Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Weber, Mark; Coldewey-Egbers, Melanie; Fioletov, Vitali E.; Frith, Stacey M.; Wild, Jeannette D.; Burrows, John P.; Loyola, Diego

    2018-01-01

    We report on updated trends using different merged datasets from satellite and ground-based observations for the period from 1979 to 2016. Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. Merged datasets used here include NASA MOD v8.6 and National Oceanic and Atmospheric Administration (NOAA) merge v8.6, both based on data from the series of Solar Backscatter UltraViolet (SBUV) and SBUV-2 satellite instruments (1978–present) as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone (GTO) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (1995-present), mainly comprising satellite data from GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2A. The fifth dataset consists of the monthly mean zonal mean data from ground-based measurements collected at World Ozone and UV Data Center (WOUDC). The addition of four more years of data since the last World Meteorological Organization (WMO) ozone assessment (2013-2016) shows that for most datasets and regions the trends since the stratospheric halogen reached its maximum (approximately 1996 globally and approximately 2000 in polar regions) are mostly not significantly different from zero. However, for some latitudes, in particular the Southern Hemisphere extratropics and Northern Hemisphere subtropics, several datasets show small positive trends of slightly below +1 percent decade(exp. -1) that are barely statistically significant at the 2 Sigma uncertainty level. In the tropics, only two datasets show significant trends of +0.5 to +0.8 percent(exp.-1), while the others show near-zero trends. Positive trends since 2000 have been observed over Antarctica in September, but near-zero trends are found in October as well as in March over the Arctic. Uncertainties due to possible drifts between the datasets, from the merging procedure used to combine satellite datasets and related to the low sampling of

  11. Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960-2014

    NASA Astrophysics Data System (ADS)

    Fang, Xuewei; Luo, Siqiong; Lyu, Shihua

    2018-01-01

    Soil temperature, an important indicator of climate change, has rarely explored due to scarce observations, especially in the Tibetan Plateau (TP) area. In this study, changes observed in five meteorological variables obtained from the TP between 1960 and 2014 were investigated using two non-parametric methods, the modified Mann-Kendall test and Sen's slope estimator method. Analysis of annual series from 1960 to 2014 has shown that surface (0 cm), shallow (5-20 cm), deep (40-320 cm) soil temperatures (ST), mean air temperature (AT), and precipitation (P) increased with rates of 0.47 °C/decade, 0.36 °C/decade, 0.36 °C/decade, 0.35 °C/decade, and 7.36 mm/decade, respectively, while maximum frozen soil depth (MFD) as well as snow cover depth (MSD) decreased with rates of 5.58 and 0.07 cm/decade. Trends were significant at 99 or 95% confidence level for the variables, with the exception of P and MSD. More impressive rate of the ST at each level than the AT indicates the clear response of soil to climate warming on a regional scale. Monthly changes observed in surface ST in the past decades were consistent with those of AT, indicating a central place of AT in the soil warming. In addition, with the exception of MFD, regional scale increasing trend of P as well as the decreasing MSD also shed light on the mechanisms driving soil trends. Significant negative-dominated correlation coefficients (α = 0.05) between ST and MSD indicate the decreasing MSD trends in TP were attributable to increasing ST, especially in surface layer. Owing to the frozen ground, the relationship between ST and P is complicated in the area. Higher P also induced higher ST, while the inhibition of freeze and thaw process on the ST in summer. With the increasing AT, P accompanied with the decreasing MFD, MSD should be the major factors induced the conspicuous soil warming of the TP in the past decades.

  12. Chemical Aspects of Astrophysically Observed Extraterrestrial Methanol, Hydrocarbon Derivatives, and Ions.

    PubMed

    Olah, George A; Mathew, Thomas; Prakash, G K Surya; Rasul, Golam

    2016-02-10

    Astrophysically observed extraterrestrial molecular matter contains, besides hydrogen and water, methane and methanol as the most abundant species. Feasible pathways and chemical aspects of their formation as well as of derived hydrocarbon homologues and their ions (carbocations and carbanions) are discussed on the basis of observed similarities with our studied terrestrial chemistry. The preferred pathway for converting extraterrestrial methane according to Ali et al. is based on CH5(+) and Olah's related nonclassical carbonium ion chemistry. On the basis of the observed higher reactivity of methanol compared with methane in various chemical reactions, a feasible new pathway is proposed for the conversion of extraterrestrial methanol to hydrocarbons, their derivatives, and carbocations together with a possible connection with methonium ion-based chemistry.

  13. Chemical Trends in Solid Alkali Pertechnetates.

    PubMed

    Weaver, Jamie; Soderquist, Chuck Z; Washton, Nancy M; Lipton, Andrew S; Gassman, Paul L; Lukens, Wayne W; Kruger, Albert A; Wall, Nathalie A; McCloy, John S

    2017-03-06

    Insight into the solid-state chemistry of pure technetium-99 ( 99 Tc) oxides is required in the development of a robust immobilization and disposal system for nuclear waste stemming from the radiopharmaceutical industry, from the production of nuclear weapons, and from spent nuclear fuel. However, because of its radiotoxicity and the subsequent requirement of special facilities and handling procedures for research, only a few studies have been completed, many of which are over 20 years old. In this study, we report the synthesis of pure alkali pertechnetates (sodium, potassium, rubidium, and cesium) and analysis of these compounds by Raman spectroscopy, X-ray absorption spectroscopy (XANES and EXAFS), solid-state nuclear magnetic resonance (static and magic angle spinning), and neutron diffraction. The structures and spectral signatures of these compounds will aid in refining the understanding of 99 Tc incorporation into and release from nuclear waste glasses. NaTcO 4 shows aspects of the relatively higher electronegativity of the Na atom, resulting in large distortions of the pertechnetate tetrahedron and deshielding of the 99 Tc nucleus relative to the aqueous TcO 4 - . At the other extreme, the large Cs and Rb atoms interact only weakly with the pertechnetate, have closer to perfect tetrahedral symmetry at the Tc atom, and have very similar vibrational spectra, even though the crystal structure of CsTcO 4 is orthorhombic while that of RbTcO 4 is tetragonal. Further trends are observed in the cell volume and quadrupolar coupling constant.

  14. U.S. NO₂ trends (2005–2013): EPA air quality system (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI)

    DOE PAGES

    Lamsal, Lok N.; Duncan, Bryan N.; Yoshida, Yasuko; ...

    2015-06-01

    Emissions of nitrogen oxides (NO x) and, subsequently, atmospheric levels of nitrogen dioxide (NO₂) have decreased over the U.S. due to a combination of environmental policies and technological change. Consequently, NO₂ levels have decreased by 30–40% in the last decade. We quantify NO₂ trends (2005–2013) over the U.S. using surface measurements from the U.S. Environmental Protection Agency (EPA) Air Quality System (AQS) and an improved tropospheric NO₂ vertical column density (VCD) data product from the Ozone Monitoring Instrument (OMI) on the Aura satellite.We demonstrate that the current OMI NO₂ algorithm is of sufficient maturity to allow a favorable correspondence ofmore » trends and variations in OMI and AQS data. Our trend model accounts for the non-linear dependence of NO₂ concentration on emissions associated with the seasonal variation of the chemical lifetime, including the change in the amplitude of the seasonal cycle associated with the significant change in NO x emissions that occurred over the last decade. The direct relationship between observations and emissions becomes more robust when one accounts for these non-linear dependencies. We improve the OMI NO₂ standard retrieval algorithm and, subsequently, the data product by using monthly vertical concentration profiles, a required algorithm input, from a high-resolution chemistry and transport model (CTM) simulation with varying emissions (2005-2013). The impact of neglecting the time-dependence of the profiles leads to errors in trend estimation, particularly in regions where emissions have changed substantially. For example, trends calculated from retrievals based on time-dependent profiles offer 18% more instances of significant trends and up to 15% larger total NO₂ reduction versus the results based on profiles for 2005. Using a CTM, we explore the theoretical relation of the trends estimated from NO₂ VCDs to those estimated from ground-level concentrations. The model

  15. U.S. NO₂ trends (2005–2013): EPA air quality system (AQS) data versus improved observations from the Ozone Monitoring Instrument (OMI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamsal, Lok N.; Duncan, Bryan N.; Yoshida, Yasuko

    Emissions of nitrogen oxides (NO x) and, subsequently, atmospheric levels of nitrogen dioxide (NO₂) have decreased over the U.S. due to a combination of environmental policies and technological change. Consequently, NO₂ levels have decreased by 30–40% in the last decade. We quantify NO₂ trends (2005–2013) over the U.S. using surface measurements from the U.S. Environmental Protection Agency (EPA) Air Quality System (AQS) and an improved tropospheric NO₂ vertical column density (VCD) data product from the Ozone Monitoring Instrument (OMI) on the Aura satellite.We demonstrate that the current OMI NO₂ algorithm is of sufficient maturity to allow a favorable correspondence ofmore » trends and variations in OMI and AQS data. Our trend model accounts for the non-linear dependence of NO₂ concentration on emissions associated with the seasonal variation of the chemical lifetime, including the change in the amplitude of the seasonal cycle associated with the significant change in NO x emissions that occurred over the last decade. The direct relationship between observations and emissions becomes more robust when one accounts for these non-linear dependencies. We improve the OMI NO₂ standard retrieval algorithm and, subsequently, the data product by using monthly vertical concentration profiles, a required algorithm input, from a high-resolution chemistry and transport model (CTM) simulation with varying emissions (2005-2013). The impact of neglecting the time-dependence of the profiles leads to errors in trend estimation, particularly in regions where emissions have changed substantially. For example, trends calculated from retrievals based on time-dependent profiles offer 18% more instances of significant trends and up to 15% larger total NO₂ reduction versus the results based on profiles for 2005. Using a CTM, we explore the theoretical relation of the trends estimated from NO₂ VCDs to those estimated from ground-level concentrations. The model

  16. Current trends in Natural Gas Flaring Observed from Space with VIIRS

    NASA Astrophysics Data System (ADS)

    Zhizhin, M. N.; Elvidge, C.; Baugh, K.

    2017-12-01

    The five-year survey of natural gas flaring in 2012-2016 has been completed with nighttime Visible Infrared Imaging Radiometer Suite (VIIRS) data. The survey identifies flaring site locations, annual duty cycle, and provides an estimate of the flared gas volumes in methane equivalents. VIIRS is particularly well-.suited for detecting and measuring the radiant emissions from gas flares through the collection of shortwave and near-infrared data at night, recording the peak radiant emissions from flares. The total flared gas volume is estimated at 140 +/-30 billion cubic meters (BCM) per year, corresponding to 3.5% of global natural gas production. While Russia leads in terms of flared gas volume (>20 BCM), the U.S. has the largest number of flares (8,199 of 19,057 worldwide). The two countries have opposite trends in flaring: while for the U.S. the peak was reached in 2015, for Russia it was the minimum. On the regional scale in the U.S., Texas has the maximum number of flares (3749), with North Dakota, the second highest, having one half of this number (2,003). The number of flares for most of the states has decreased in the last 3 years following the trend in oil prices. The presentation will compare the global estimates, and regional trends observed in the U.S. regions. Preliminary estimates for global gas flaring in 2017 will be presented

  17. Analysis of reference evapotranspiration (ET0) trends under climate change in Bangladesh using observed and CMIP5 data sets

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Atiqur; Yunsheng, Lou; Sultana, Nahid; Ongoma, Victor

    2018-03-01

    ET0 is an important hydro-meteorological phenomenon, which is influenced by changing climate like other climatic parameters. This study investigates the present and future trends of ET0 in Bangladesh using 39 years' historical and downscaled CMIP5 daily climatic data for the twenty-first century. Statistical Downscaling Model (SDSM) was used to downscale the climate data required to calculate ET0. Penman-Monteith formula was applied in ET0 calculation for both the historical and modelled data. To analyse ET0 trends and trend changing patterns, modified Mann-Kendall and Sequential Mann-Kendall tests were, respectively, done. Spatial variations of ET0 trends are presented by inverse distance weighting interpolation using ArcGIS 10.2.2. Results show that RCP8.5 (2061-2099) will experience the highest amount of ET0 totals in comparison to the historical and all other scenarios in the same time span of 39 years. Though significant positive trends were observed in the mid and last months of year from month-wise trend analysis of representative concentration pathways, significant negative trends were also found for some months using historical data in similar analysis. From long-term annual trend analysis, it was found that major part of the country represents decreasing trends using historical data, but increasing trends were observed for modelled data. Theil-Sen estimations of ET0 trends in the study depict a good consistency with the Mann-Kendall test results. The findings of the study would contribute in irrigation water management and planning of the country and also in furthering the climate change study using modelled data in the context of Bangladesh.

  18. Natural and Anthropogenic Aerosol Trends from Satellite and Surface Observations and Model Simulations over the North Atlantic Ocean from 2002 to 2012

    NASA Technical Reports Server (NTRS)

    Jongeward, Andrew R.; Li, Zhanqing; He, Hao; Xiong, Xiaoxiong

    2016-01-01

    Aerosols contribute to Earths radiative budget both directly and indirectly, and large uncertainties remain in quantifying aerosol effects on climate. Variability in aerosol distribution and properties, as might result from changing emissions and transport processes, must be characterized. In this study, variations in aerosol loading across the eastern seaboard of theUnited States and theNorthAtlanticOcean during 2002 to 2012 are analyzed to examine the impacts of anthropogenic emission control measures using monthly mean data from MODIS, AERONET, and IMPROVE observations and Goddard Chemistry Aerosol Radiation and Transport (GOCART) model simulation.MODIS observes a statistically significant negative trend in aerosol optical depth (AOD) over the midlatitudes (-0.030 decade(sup-1)). Correlation analyses with surface AOD from AERONET sites in the upwind region combined with trend analysis from GOCART component AOD confirm that the observed decrease in the midlatitudes is chiefly associated with anthropogenic aerosols that exhibit significant negative trends from the eastern U.S. coast extending over the western North Atlantic. Additional analysis of IMPROVE surface PM(sub 2.5) observations demonstrates statistically significant negative trends in the anthropogenic components with decreasing mass concentrations over the eastern United States. Finally, a seasonal analysis of observational datasets is performed. The negative trend seen by MODIS is strongest during spring (MAM) and summer (JJA) months. This is supported by AERONET seasonal trends and is identified from IMPROVE seasonal trends as resulting from ammonium sulfate decreases during these seasons.

  19. Trends in Condom Use and Risk Behaviours after Sexual Exposure to HIV: A Seven-Year Observational Study

    PubMed Central

    Casalino, Enrique; Choquet, Christophe; Leleu, Agathe; Hellmann, Romain; Wargon, Mathias; Juillien, Gaelle; Yazdanpanah, Yazdan; Bouvet, Elisabeth

    2014-01-01

    Objective We aimed to determine the trends in numbers and percentages of sexually exposed persons to HIV (SE) consulting an ED for post-exposure prophylaxis (PEP), as well as predictors of condom use. Study Design We conducted a prospective-observational study. Methods We included all SE attendances in our Emergency Department (ED) during a seven-year study-period (2006–2012). Trends were analyzed using time-series analysis. Logistic Regression was used to define indicators of condom use. Results We enrolled 1851 SE: 45.7% reported intercourse without condom-use and 12.2% with an HIV-infected partner. Significant (p<0.01) rising trends were observed in the overall number of SE visits (+75%), notably among men having sex with men (MSM) (+126%). There were rising trends in the number and percentage of those reporting intercourse without condom-use in the entire population +91% (p<0.001) and +1% (p>0.05), in MSM +228% (p<0.001) and +49% (p<0.001), in Heterosexuals +68% (p<0.001) and +10% (p = 0.08). Among MSM, significant rising trends were found in those reporting high-risk behaviours: anal receptive (+450% and +76%) and anal insertive (+l33% and +70%) intercourses. In a multivariate logistic regression analysis, heterosexuals, vaginal intercourse, visit during the night-shift and short time delay between SE and ED visit, were significantly associated with condom-use. Conclusion We report an increasing trend in the number of SE, mainly among MSM, and rising trends in high-risk behaviours and unprotected sexual intercourses among MSM. Our results indicate that SE should be considered as a high-risk population for HIV and sexually transmitted diseases. PMID:25157477

  20. Observed trends in ground-level O3 in Monterrey, Mexico, during 1993-2014: comparison with Mexico City and Guadalajara

    NASA Astrophysics Data System (ADS)

    Hernández Paniagua, Iván Y.; Clemitshaw, Kevin C.; Mendoza, Alberto

    2017-07-01

    Here, we present an assessment of long-term trends in O3 and odd oxygen (O3 + NO2) at the industrial Monterrey metropolitan area (MMA) in NE Mexico. Diurnal amplitudes in Ox (AVd) are used as a proxy for net O3 production, which is influenced by the NO2 photolysis rate. No significant differences in the AVd are observed between weekends and weekdays, although the largest AVd values are observed at sites downwind of industrial areas. The highest O3 mixing ratios are observed in spring, with minimum values in winter. The largest annual variations in O3 are typically observed downwind of the MMA, with the lowest variations generally recorded in highly populated areas and close to industrial areas. A wind sector analysis of mixing ratios of O3 precursors revealed that the dominant sources of emissions are located in the industrial regions within the MMA and surrounding area. Significant increasing trends in O3 in spring, summer, and autumn are observed depending on site location, with trends in annual averages ranging between 0.19 and 0.33 ppb yr-1. Overall, from 1993 to 2014, within the MMA, O3 has increased at an average rate of 0.22 ppb yr-1 (p < 0. 01), which is in marked contrast with the decline of 1.15 ppb yr-1 (p < 0. 001) observed in the Mexico City metropolitan area (MCMA) for the same period. No clear trend is observed from 1996 to 2014 within the Guadalajara metropolitan area (GMA).

  1. Trend analysis of the Aerosol Optical Thickness and Ångström Exponent derived from the global AERONET spectral observations

    NASA Astrophysics Data System (ADS)

    Yoon, J.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Vountas, M.; Burrows, J. P.

    2011-08-01

    Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. Aerosol Optical Thickness (AOT) and Ångström Exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440-870 nm) using AErosol RObotic NETwork (AERONET) spectral observations. Additionally, temporal trends of Coarse- and Fine-mode dominant AOTs (CAOT and FAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström Exponent Difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation and (2) Number of Observations (NO) per month. Temporal increase of FAOTs prevails over regions dominated by emerging economy or slash-burn agriculture in East Asia and South Africa. On the other hand, insignificant or negative trends for FAOTs are detected over Western Europe and North America. Over desert regions, both increase and decrease of CAOTs are observed depending on meteorological conditions.

  2. AIRS Water Vapor and Cloud Products Validate and Explain Recent Negative Global and Tropical OLR Trends Observed by CERES

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena

    2010-01-01

    This paper compares spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS retrieved surface and atmospheric geophysical parameters over the time period September 2002 February 2010. This time period is marked by a substantial decreasing OLR trend on the order of -0.1 W/m2/yr averaged over the globe. There are very large spatial variations of these trends however, with local values ranging from -2.6 W/m2/yr to +3.0 W/m2/yr in the tropics. The spatial patterns of the AIRS and CERES trends are in essentially perfect agreement with each other, as are the anomaly time series averaged over different spatial regions. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate. The agreement of anomalies and trends of OLR as observed by CERES and computed from AIRS derived products also indirectly validates the anomalies and trends of the AIRS derived products as well. We used the anomalies and trends of AIRS derived water vapor and cloud products to explain why global OLR has had a large negative trend over the time period September 2002 through February 2010. Tropical OLR began to decrease significantly at the onset of a strong La Nina in mid-2007. AIRS products show that cloudiness and mid-tropospheric water vapor began to increase in the region 5degN - 20degS latitude extending eastward from 150degW - 30 E longitude at that time, with a corresponding very large drop in OLR in this region. Late 2009 is characterized by a strong El-Nino, with a corresponding change in sign of observed anomalies of mid-tropospheric water vapor, cloud cover, and OLR in this region, as we] l as that of OLR anomalies in the tropics and globally. Monthly mean anomalies of OLR, water vapor and cloud cover over this region are all shown to be highly correlated in time with those of an El Nino

  3. Tropical climate trends inferred from coral δ18O: a comparison of CMIP5 forward-model results with paleoclimatic observations

    NASA Astrophysics Data System (ADS)

    Thompson, D. M.; Evans, M. N.; Cole, J. E.; Ault, T. R.; Emile-Geay, J.

    2011-12-01

    The response of the tropical Pacific Ocean to anthropogenic climate change remains highly uncertain, in part because of the disagreement among 20th-century trends derived from observations and coupled general circulation models (CGCMs). We use a model of reef coral oxygen isotopic composition (δ18O) to compare the observational coral network with synthetic corals ('pseudocorals') modeled from CGCM sea-surface temperature (SST) and sea-surface salinity (SSS). When driven with historical data, we found that a linear temperature and salinity driven model for δ18Ocoral was able to capture the spatial and temporal pattern of ENSO and the linear trend observed in 23 Indo-Pacific coral records between 1958 and 1990. However, we found that none of the pseudocoral networks obtained from a subset of 20th-century AR4 CGCM runs reproduced the magnitude of the secular trend, the change in mean state, or the change in ENSO-related variance observed in the coral network from 1890 to 1990 (Thompson et al., 2011). We believe differences between corals and AR4 CGCM simulated pseudocorals arose from uncertainties in the observed coral network or linear bivariate coral model, undersensitivity of AR4 CGCMs to radiative forcing during the 20th century, and/or biases in the simulated AR4 CGCM SSS fields. Here we apply the same approach to an extended temperature and salinity reanalysis product (SODA v2.2.4, 1871-2008) and CMIP 5 historical simulations to further address 20th-century tropical climate trends and assess remaining uncertainties in both the proxies and models. We explore whether model improvements in the tropical Pacific have led to a stronger agreement between simulated and observed tropical climate trends. [Thompson, D. M., T. R. Ault, M. N. Evans, J. E. Cole, and J. Emile-Geay (2011), Comparison of observed and simulated tropical climate trends using a forward model of coral δ18O, Geophys. Res. Lett., 38, L14706, doi:10.1029/2011GL048224.

  4. The Relative Importance of Random Error and Observation Frequency in Detecting Trends in Upper Tropospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Vermeesch, Kevin C.; Oman, Luke D.; Weatherhead, Elizabeth C.

    2011-01-01

    Recent published work assessed the amount of time to detect trends in atmospheric water vapor over the coming century. We address the same question and conclude that under the most optimistic scenarios and assuming perfect data (i.e., observations with no measurement uncertainty) the time to detect trends will be at least 12 years at approximately 200 hPa in the upper troposphere. Our times to detect trends are therefore shorter than those recently reported and this difference is affected by data sources used, method of processing the data, geographic location and pressure level in the atmosphere where the analyses were performed. We then consider the question of how instrumental uncertainty plays into the assessment of time to detect trends. We conclude that due to the high natural variability in atmospheric water vapor, the amount of time to detect trends in the upper troposphere is relatively insensitive to instrumental random uncertainty and that it is much more important to increase the frequency of measurement than to decrease the random error in the measurement. This is put in the context of international networks such as the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) and the Network for the Detection of Atmospheric Composition Change (NDACC) that are tasked with developing time series of climate quality water vapor data.

  5. The relative importance of random error and observation frequency in detecting trends in upper tropospheric water vapor

    NASA Astrophysics Data System (ADS)

    Whiteman, David N.; Vermeesch, Kevin C.; Oman, Luke D.; Weatherhead, Elizabeth C.

    2011-11-01

    Recent published work assessed the amount of time to detect trends in atmospheric water vapor over the coming century. We address the same question and conclude that under the most optimistic scenarios and assuming perfect data (i.e., observations with no measurement uncertainty) the time to detect trends will be at least 12 years at approximately 200 hPa in the upper troposphere. Our times to detect trends are therefore shorter than those recently reported and this difference is affected by data sources used, method of processing the data, geographic location and pressure level in the atmosphere where the analyses were performed. We then consider the question of how instrumental uncertainty plays into the assessment of time to detect trends. We conclude that due to the high natural variability in atmospheric water vapor, the amount of time to detect trends in the upper troposphere is relatively insensitive to instrumental random uncertainty and that it is much more important to increase the frequency of measurement than to decrease the random error in the measurement. This is put in the context of international networks such as the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) and the Network for the Detection of Atmospheric Composition Change (NDACC) that are tasked with developing time series of climate quality water vapor data.

  6. Towards retrievals of aerosol chemical composition from satellite observations by POLDER/PARASOL polarimeter

    NASA Astrophysics Data System (ADS)

    Li, L.; Dubovik, O.; Derimian, Y.; Lapyonok, T.; Schuster, G. L.; Ducos, F.

    2016-12-01

    The information about composition of aerosols has a great importance for monitoring and understanding of climate and environment dynamics. Such information can be obtained using situ measurements or chemical transport models. However, in situ sampling has limited spatial and temporal coverage, while estimations have large uncertainties. The present work enables the monitoring of aerosol chemical species from space-borne observations, providing observationally-based results with spatial and temporal coverage. Following the ideas of Schuster et al.(2005, 2009, 2016), we retrieve chemical composition directly from remote sensing measurements without intermediate retrieval of the refractive index (in contrast with Schuster's approach). This approach is expected to reduce the influence of modeling uncertainties, and to provide additional constraints in situations where remote sensing observations do not have enough spectral sensitivity to refractive index. One of principal difficulties is the identification of an adequate model for linking refractive index to chemical composition. Therefore, the initial effort of this work has focused on identifying an optimal "chemical composition to refractive index" conversion model. With that purpose, we first tested the retrieval approach using a simplified volume-weighting model and updated by the Maxwell Garnett mixing model. This concept was incorporated into the GRASP algorithm designed to retrieve an extended set of atmospheric parameters from remote sensing observations. Then a series of sensitivity tests using synthetic data of POLDER/PARASOL were conducted, and followed by inversion of real PARASOL observations. The sensitivity tests showed that these two models allow the retrieval to distinguish amongst the assumed chemical species. Results obtained from real PARASOL data demonstrated good agreement with the optical characteristics provided by AERONET (e.g., r2 of AOT 0.9). The obtained patterns of chemical component

  7. Climatic and chemical drivers of trends in DOC in northern surface waters in Europa and North America

    NASA Astrophysics Data System (ADS)

    de Wit, Heleen A.; Monteith, Don T.; Stoddard, John L.

    2016-04-01

    Concentrations of DOC in boreal surface waters have increased to levels that create challenges for water treatment plants, and that potentially impact lake habitat through increased anoxia and thermal mixing, and productivity. Aquatic transport of DOC from land to oceans is likely to increase, even if runoff patterns would remain stable. Reduced acid deposition appears to be a dominant driver behind the increase in DOC concentrations, through increasing organic matter solubility. We hypothesize that the higher solubility of organic matter makes DOC more susceptible to climate change. Here, we present trends in DOC from circa 500 lakes and streams in subarctic, boreal and temperate headwater catchments in Europe (UK, Fennoscandia, Czech Republic, Slovakia) and North America (Northeastern US, Ontario, Atlantic Canada) from 1990 until 2012; an extension of the trend analysis presented in Monteith et al. (2007). The water chemical data stem from national monitoring networks, assembled by the ICP Waters network. Sampling frequencies vary from 1 to 52 samples per year. Climate data were obtained from Climate Research Unit in the UK. Trends were calculated using the Mann-Kendall test and the Sen-slope estimator. We test 1) if DOC responds to changes in the rate of decline in acid deposition, and 2) if trends in temperature and precipitation affect trends and variability in DOC. Positive trends dominate: the median (±2.5% quartile) of the absolute and relative DOC trends is +0.06 (+0.36 to -0.02) mg C L-1 yr-1 and +1.4 (+4.7 to -0.9) % yr-1, respectively. Overall, the trends do not level off when comparing 1990-2004, and 1998-2012, except in the UK and Atlantic Canada. These two regions are strongly impacted by seasalt deposition but may also experience stronger warming than elsewhere. The response of DOC to changes in SO4 (expressed as trend ratios) is stronger in 1998-2012 than in 1990-2004. We will explore whether this changing relates to increasing dominance of

  8. Studies of Trace Gas Chemical Cycles Using Observations, Inverse Methods and Global Chemical Transport Models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    2001-01-01

    For interpreting observational data, and in particular for use in inverse methods, accurate and realistic chemical transport models are essential. Toward this end we have, in recent years, helped develop and utilize a number of three-dimensional models including the Model for Atmospheric Transport and Chemistry (MATCH).

  9. Insight into global trends in aerosol composition from 2005 to 2015 inferred from the OMI Ultraviolet Aerosol Index

    NASA Astrophysics Data System (ADS)

    Hammer, Melanie S.; Martin, Randall V.; Li, Chi; Torres, Omar; Manning, Max; Boys, Brian L.

    2018-06-01

    Observations of aerosol scattering and absorption offer valuable information about aerosol composition. We apply a simulation of the Ultraviolet Aerosol Index (UVAI), a method of detecting aerosol absorption from satellite observations, to interpret UVAI values observed by the Ozone Monitoring Instrument (OMI) from 2005 to 2015 to understand global trends in aerosol composition. We conduct our simulation using the vector radiative transfer model VLIDORT with aerosol fields from the global chemical transport model GEOS-Chem. We examine the 2005-2015 trends in individual aerosol species from GEOS-Chem and apply these trends to the UVAI simulation to calculate the change in simulated UVAI due to the trends in individual aerosol species. We find that global trends in the UVAI are largely explained by trends in absorption by mineral dust, absorption by brown carbon, and scattering by secondary inorganic aerosol. Trends in absorption by mineral dust dominate the simulated UVAI trends over North Africa, the Middle East, East Asia, and Australia. The UVAI simulation resolves observed negative UVAI trends well over Australia, but underestimates positive UVAI trends over North Africa and Central Asia near the Aral Sea and underestimates negative UVAI trends over East Asia. We find evidence of an increasing dust source from the desiccating Aral Sea that may not be well represented by the current generation of models. Trends in absorption by brown carbon dominate the simulated UVAI trends over biomass burning regions. The UVAI simulation reproduces observed negative trends over central South America and West Africa, but underestimates observed UVAI trends over boreal forests. Trends in scattering by secondary inorganic aerosol dominate the simulated UVAI trends over the eastern United States and eastern India. The UVAI simulation slightly overestimates the observed positive UVAI trends over the eastern United States and underestimates the observed negative UVAI trends over

  10. Chemical Trends in Solid Alkali Pertechnetates

    DOE PAGES

    Weaver, Jamie; Soderquist, Chuck Z.; Washton, Nancy M.; ...

    2017-02-21

    Insight into the solid-state chemistry of pure technetium-99 ( 99Tc) oxides is required in the development of a robust immobilization and disposal system for nuclear waste stemming from the radiopharmaceutical industry, from the production of nuclear weapons, and from spent nuclear fuel. However, because of its radiotoxicity and the subsequent requirement of special facilities and handling procedures for research, only a few studies have been completed, many of which are over 20 years old. In this study, we report the synthesis of pure alkali pertechnetates (sodium, potassium, rubidium, and cesium) and analysis of these compounds by Raman spectroscopy, X-ray absorptionmore » spectroscopy (XANES and EXAFS), solid-state nuclear magnetic resonance (static and magic angle spinning), and neutron diffraction. The structures and spectral signatures of these compounds will aid in refining the understanding of 99Tc incorporation into and release from nuclear waste glasses. NaTcO 4 shows aspects of the relatively higher electronegativity of the Na atom, resulting in large distortions of the pertechnetate tetrahedron and deshielding of the 99Tc nucleus relative to the aqueous TcO 4 –. At the other extreme, the large Cs and Rb atoms interact only weakly with the pertechnetate, have closer to perfect tetrahedral symmetry at the Tc atom, and have very similar vibrational spectra, even though the crystal structure of CsTcO 4 is orthorhombic while that of RbTcO 4 is tetragonal. Further trends are observed in the cell volume and quadrupolar coupling constant.« less

  11. Multiscale modeling of multi-decadal trends in air pollutant concentrations and their radiative properties: the role of models in an integrated observing system

    NASA Astrophysics Data System (ADS)

    Mathur, R.; Xing, J.; Szykman, J.; Gan, C. M.; Hogrefe, C.; Pleim, J. E.

    2015-12-01

    Air Pollution simulation models must address the increasing complexity arising from new model applications that treat multi-pollutant interactions across varying space and time scales. Setting and attaining lower ambient air quality standards requires an improved understanding and quantification of source attribution amongst the multiple anthropogenic and natural sources, on time scales ranging from episodic to annual and spatial scales ranging from urban to continental. Changing emission patterns over the developing regions of the world are likely to exacerbate the impacts of long-range pollutant transport on background pollutant levels, which may then impact the attainment of local air quality standards. Thus, strategies for reduction of pollution levels of surface air over a region are complicated not only by the interplay of local emissions sources and several complex physical, chemical, dynamical processes in the atmosphere, but also hemispheric background levels of pollutants. Additionally, as short-lived climate forcers, aerosols and ozone exert regionally heterogeneous radiative forcing and influence regional climate trends. EPA's coupled WRF-CMAQ modeling system is applied over a domain encompassing the northern hemisphere for the period spanning 1990-2010. This period has witnessed significant reductions in anthropogenic emissions in North America and Europe as a result of implementation of control measures and dramatic increases across Asia associated with economic and population growth, resulting in contrasting trends in air pollutant distributions and transport patterns across the northern hemisphere. Model results (trends in pollutant concentrations, optical and radiative characteristics) across the northern hemisphere are analyzed in conjunction with surface, aloft and remote sensing measurements to contrast the differing trends in air pollution and aerosol-radiation interactions in these regions over the past two decades. Given the future LEO (Trop

  12. Space-time patterns of trends in stratospheric constituents derived from UARS measurements

    NASA Astrophysics Data System (ADS)

    Randel, William J.; Wu, Fei; Russell, James M.; Waters, Joe

    1999-02-01

    The spatial and temporal behavior of low-frequency changes (trends) in stratospheric constituents measured by instruments on the Upper Atmosphere Research Satellite (UARS) during 1991-98 is investigated. The data include CH4, H2O, HF, HCl, O3, and NO2 from the Halogen Occultation Experiment (HALOE), and O3, ClO, and HNO3 from the Microwave Limb Sounder (MLS). Time series of global anomalies are analyzed by linear regression and empirical orthogonal function analysis. Each of the constituents show significant linear trends over at least some region of the stratosphere, and the spatial patterns exhibit coupling between the different species. Several of the constituents (namely CH4, H2O, HF, HCl, O3, and NO2) exhibit a temporal change in trend rates, with strong changes prior to 1996 and weaker (or reversed) trends thereafter. Positive trends are observed in upper stratospheric ClO, with a percentage rate during 1993-97 consistent with stratospheric HCl increases and with tropospheric chlorine emission rates. Significant negative trends in ozone in the tropical middle stratosphere are found in both HALOE and MLS data during 1993-97, together with positive trends in the tropics near 25 km. These trends are very different from the decadal-scale ozone trends observed since 1979, and this demonstrates the variability of trends calculated over short time periods. Positive trends in NO2 are found in the tropical middle stratosphere, and spatial coincidence to the observed ozone decreases suggests the ozone is responding to the NO2 increase. Significant negative trends in HNO3 are found in the lower stratosphere of both hemispheres. These coupled signatures offer a fingerprint of chemical evolution in the stratosphere for the UARS time frame.

  13. AIRS Water Vapor and Cloud Products Validate and Explain Recent Negative Global and Tropical OLR Trends Observed by CERES

    NASA Astrophysics Data System (ADS)

    Susskind, J.; Molnar, G. I.; Iredell, L. F.; Sounder Research Team

    2010-12-01

    Joel Susskind, Gyula Molnar, and Lena Iredell NASA GSFC Sounder Research Team Abstract This paper compares spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS retrieved surface and atmospheric geophysical parameters over the time period September 2002 - February 2010. This time period is marked by a substantial decreasing OLR trend on the order of -0.1 W/m2/yr averaged over the globe. There are very large spatial variations of these trends however, with local values ranging from -2.6 W/m2/yr to +3.0 W/m2/yr in the tropics. The spatial patterns of the AIRS and CERES trends are in essentially perfect agreement with each other, as are the anomaly time series averaged over different spatial regions. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate. The agreement of anomalies and trends of OLR as observed by CERES and computed from AIRS derived products also indirectly validates the anomalies and trends of the AIRS derived products as well. We used the anomalies and trends of AIRS derived water vapor and cloud products to explain why global OLR has had a large negative trend over the time period September 2002 through February 2010. Tropical OLR began to decrease significantly at the onset of a strong La Niña in mid-2007. AIRS products show that cloudiness and mid-tropospheric water vapor began to increase in the region 5°N - 20°S latitude extending eastward from 150°W - 30°E longitude at that time, with a corresponding very large drop in OLR in this region. Late 2009 is characterized by a strong El-Niño, with a corresponding change in sign of observed anomalies of mid-tropospheric water vapor, cloud cover, and OLR in this region, as well as that of OLR anomalies in the tropics and globally. Monthly mean anomalies of OLR, water vapor and cloud cover

  14. Chemical trends in the Galactic halo from APOGEE data

    NASA Astrophysics Data System (ADS)

    Fernández-Alvar, E.; Carigi, L.; Allende Prieto, C.; Hayden, M. R.; Beers, T. C.; Fernández-Trincado, J. G.; Meza, A.; Schultheis, M.; Santiago, B. X.; Queiroz, A. B.; Anders, F.; da Costa, L. N.; Chiappini, C.

    2017-02-01

    The galaxy formation process in the Λ cold dark matter scenario can be constrained from the analysis of stars in the Milky Way's halo system. We examine the variation of chemical abundances in distant halo stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE), as a function of distance from the Galactic Centre (r) and iron abundance ([M/H]), in the range 5 ≲ r ≲ 30 kpc and -2.5 < [M/H] < 0.0. We perform a statistical analysis of the abundance ratios derived by the APOGEE pipeline (ASPCAP) and distances calculated by several approaches. Our analysis reveals signatures of a different chemical enrichment between the inner and outer regions of the halo, with a transition at about 15 kpc. The derived metallicity distribution function exhibits two peaks, at [M/H] ˜ -1.5 and ˜-2.1, consistent with previously reported halo metallicity distributions. We obtain a difference of ˜0.1 dex for α-element-to-iron ratios for stars at r > 15 kpc and [M/H] > -1.1 (larger in the case of O, Mg, and S) with respect to the nearest halo stars. This result confirms previous claims for low-α stars found at larger distances. Chemical differences in elements with other nucleosynthetic origins (Ni, K, Na, and Al) are also detected. C and N do not provide reliable information about the interstellar medium from which stars formed because our sample comprises red giant branch and asymptotic giant branch stars and can experience mixing of material to their surfaces.

  15. Tropospheric ozone long term trend observed by lidar and ECC ozonesondes at Observatoire de Haute Provence, Southern France.

    NASA Astrophysics Data System (ADS)

    Ancellet, G.; Gaudel, A.; Godin-Beekmann, S.

    2016-12-01

    Tropospheric ozone vertical profile measurements have been carried out at OHP (Observatoire de Haute Provence, 44°N, 6.7°E, 690 m) since 1991 using both UV DIAL (DIfferential Absorption Lidar) and ECC (Electrochemical Concentration Cell) ozonesondes. For the first time, ECC and lidar data measured at the same site, have been compared over a 24 year period. The comparison conducted reveals a bias between both measurement types (ECC - lidar) of the order of 0.6 ppbv. The measurements of both instruments have been however combined to decrease the impact of short-term atmospheric variability on the trend estimate. Air mass trajectories have been calculated for all the ozone observations available at OHP including ECMWF potential vorticity (PV) and humidity chnage along the trajectories. The interannual ozone variability shows a negligible trend in the mid troposphere, but a 0.36 ppbv/year significant positive ozone trend in the upper troposphere. The trends will be discussed using the variability of the meteorological parameters. Data clustering using PV and air mass trajectories is useful to identify the role of Stratosphere-Tropopshere Exchanges and long range transport of pollutants in the observed long term trends. In the lower troposphere, the interannual variability shows contrasted trends with an ozone decrease between 1998 and 2008, consistent with the NOx emission decrease, but a new period of ozone increase since 2008 which is not very well understood.

  16. Study of storm surge trends in typhoon-prone coastal areas based on observations and surge-wave coupled simulations

    NASA Astrophysics Data System (ADS)

    Feng, Xingru; Li, Mingjie; Yin, Baoshu; Yang, Dezhou; Yang, Hongwei

    2018-06-01

    This is a study of the storm surge trends in some of the typhoon-prone coastal areas of China. An unstructured-grid, storm surge-wave-tide coupled model was established for the coastal areas of Zhejiang, Fujian and Guangdong provinces. The coupled model has a high resolution in coastal areas, and the simulated results compared well with the in situ observations and satellite altimeter data. The typhoon-induced storm surges along the coast of the study areas were simulated based on the established coupled model for the past 20 years (1997-2016). The simulated results were used to analyze the trends of the storm surges in the study area. The extreme storm surge trends along the central coast of Fujian Province reached up to 0.06 m/y, significant at the 90% confidence level. The duration of the storm surges greater than 1.0 and 0.7 m had an increasing trend along the coastal area of northern Fujian Province, significant at confidence levels of 70%-91%. The simulated trends of the extreme storm surges were also validated by observations from two tide gauge stations. Further studies show that the correlation coefficient (RTE) between the duration of the storm surge greater than 1 m and the annual ENSO index can reach as high as 0.62, significant at the 99% confidence level. This occurred in a location where the storm surge trend was not significant. For the areas with significant increasing storm surge trends, RTE was small and not significant. This study identified the storm surge trends for the full complex coastline of the study area. These results are useful both for coastal management by the government and for coastal engineering design.

  17. An Intensified Arctic Water Cycle? Trend Analysis of the Arctic System Freshwater Cycle: Observations and Expectations

    NASA Astrophysics Data System (ADS)

    Rawlins, M. A.; Adam, J. C.; Vorosmarty, C. J.; Serreze, M. C.; Hinzman, L. D.; Holland, M.; Shiklomanov, A.

    2007-12-01

    It is expected that a warming climate will be attended by an intensification of the global hydrological cycle. While there are signs of positive trends in several hydrological quantities emerging at the global scale, the scope, character, and quantitative significance of these changes are not well established. In particular, long-term increases in river discharge across Arctic Eurasia are assumed to represent such an intensification and have received considerable attention. Yet, no change in long-term annual precipitation across the region can be related with the discharge trend. Given linkages and feedbacks between the arctic and global climate systems, a more complete understanding of observed changes across northern high latitudes is needed. We present a working definition of an accelerated or intensified hydrological cycle and a synthesis of long-term (nominally 50 years) trends in observed freshwater stocks and fluxes across the arctic land-atmosphere-ocean system. Trend and significance measures from observed data are described alongside expectations of intensification based on GCM simulations of contemporary and future climate. Our domain of interest includes the terrestrial arctic drainage (including all of Alaska and drainage to Hudson Bay), the Arctic Ocean, and the atmosphere over the land and ocean domains. For the terrestrial Arctic, time series of spatial averages which are derived from station data and atmospheric reanalysis are available. Reconstructed data sets are used for quantities such as Arctic Ocean ice and liquid freshwater transports. Study goals include a comprehensive survey of past changes in freshwater across the pan-arctic and a set of benchmarks for expected changes based on an ensemble of GCM simulations, and identification of potential mechanistic linkages which may be examined with contemporary remote sensing data sets.

  18. Assessing the Impact of Different Measurement Time Intervals on Observed Long-Term Wind Speed Trends

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, C.; Vicente-Serrano, S. M.; McVicar, T.; Jerez, S.; Revuelto, J.; López Moreno, J. I.

    2014-12-01

    During the last two decades climate studies have reported a tendency toward a decline in measured near-surface wind speed in some regions of Europe, North America, Asia and Australia. This weakening in observed wind speed has been recently termed "global stilling", showing a worldwide average trend of -0.140 m s-1 dec-1 during last 50-years. The precise cause of the "global stilling" remains largely uncertain and has been hypothetically attributed to several factors, mainly related to: (i) an increasing surface roughness (i.e. forest growth, land use changes, and urbanization); (ii) a slowdown in large-scale atmospheric circulation; (iii) instrumental drifts and technological improvements, maintenance, and shifts in measurements sites and calibration issues; (iv) sunlight dimming due to air pollution; and (v) astronomical changes. This study proposed a novel investigation aimed at analyzing how different measurement time intervals used to calculate a wind speed series can affect the sign and magnitude of long-term wind speed trends. For instance, National Weather Services across the globe estimate daily average wind speed using different time intervals and formulae that may affect the trend results. Firstly, we carried out a comprehensive review of wind studies reporting the sign and magnitude of wind speed trend and the sampling intervals used. Secondly, we analyzed near-surface wind speed trends recorded at 59 land-based stations across Spain comparing monthly mean wind speed series obtained from: (a) daily mean wind speed data averaged from standard 10-min mean observations at 0000, 0700, 1300 and 1800 UTC; and (b) average wind speed of 24 hourly measurements (i.e., wind run measurements) from 0000 to 2400 UTC. Thirdly and finally, we quantified the impact of anemometer drift (i.e. bearing malfunction) by presenting preliminary results (1-year of paired measurements) from a comparison of one new anemometer sensor against one malfunctioned anenometer sensor due

  19. Intraregional links between the trends in air pollutants observed at the EANET network sites for 2000-2014

    NASA Astrophysics Data System (ADS)

    Gromov, Sergey A.; Trifonova-Yakovleva, Alisa; Gromov, Sergey S.

    2016-04-01

    Recent changes in economic development tendencies and environmental protection policies in the East Asian countries raise hopes for improvement of regional air quality in this vast region populated by more than 3 billion people. To recognize anticipated changes in atmospheric pollutants levels, deposition rates and impact on the environment, the Acid Deposition Monitoring Network in East Asia (EANET, http://www.eanet.asia/) is regularly operating region-wide since 2000 in 13 countries. The network provides continuous monitoring data on the air quality and precipitation (including gas-phase and particulate chemistry) at 55 monitoring sites, including 20 remote and 14 rural sites. Observation of soil and inland water environments are performed at more than 30 monitoring sites [1]. In this study we focus on 1) the data quality assessment and preparation and 2) analysis of temporal trends of compositions observed at selected 26 non-urban EANET stations. Speciation includes gas-phase (SO2, HNO3, HCl, NH3) and particulate matter (SO42-, NO3-, Cl-, NH4+, Na+, K+, Mg2+, Ca2+) abundances analysed in samples collected using filterpack technique with sampling duration/frequency of one-two weeks. Data quality assessment (distribution test and manual inspection) allowed us to remove/repair random and operator errors. Wrong sample timing was found for 0.37% (severe) and 34% (mild inconsistency) of the total of 7630 samples regarded. Erroneous data flagging (e.g. missing or below the detection limit) was repaired for 9.3%, respectively. Some 1.8% of severely affected data were corrected (where possible) or removed. Thus refined 15-year dataset is made available for the scientific community. For convenience, we also provide data in netCDF format (per station or in an assembly). Based on this refined dataset, we performed trend analysis using several statistical approaches including quantile regression which provides robust results against outliers and better understanding of trend

  20. Climate Trends in the Arctic as Observed from Space

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Hall, Dorothy K.

    2014-01-01

    The Arctic is a region in transformation. Warming in the region has been amplified, as expected from ice-albedo feedback effects, with the rate of warming observed to be approx. 0.60+/-0.07 C/decade in the Arctic (>64degN) compared to approx. 0.17 C/decade globally during the last three decades. This increase in surface temperature is manifested in all components of the cryosphere. In particular, the sea ice extent has been declining at the rate of approx. 3.8%/decade, whereas the perennial ice (represented by summer ice minimum) is declining at a much greater rate of approx.11.5%/decade. Spring snow cover has also been observed to be declining by -2.12%/decade for the period 1967-2012. The Greenland ice sheet has been losing mass at the rate of approx. 34.0Gt/year (sea level equivalence of 0.09 mm/year) during the period from 1992 to 2011, but for the period 2002-2011, a higher rate of mass loss of approx. 215 Gt/year has been observed. Also, the mass of glaciers worldwide declined at the rate of 226 Gt/year from 1971 to 2009 and 275 Gt/year from 1993 to 2009. Increases in permafrost temperature have also been measured in many parts of the Northern Hemisphere while a thickening of the active layer that overlies permafrost and a thinning of seasonally frozen ground has also been reported. To gain insight into these changes, comparative analysis with trends in clouds, albedo, and the Arctic Oscillation is also presented.

  1. Attribution of Trends and Variability in Surface Ozone over the United States

    NASA Technical Reports Server (NTRS)

    Strode, Sarah; Cooper, Owen; Damo, Megan; Logan, Jennifer; Rodriquez, Jose; Strahan, Susan; Witte, Jacquie

    2013-01-01

    Concentrations of tropospheric ozone, a greenhouse gas and air pollutant, are impacted by changes in precursor emissions as well meteorology and influx from the stratosphere. Observations show a decreasing trend in summertime surface ozone at rural stations in the eastern United States, while some western stations show increasing trends, particularly in springtime. We use the Global Modeling Initiative (GMI) global chemical transport model to investigate the roles of precursor emission changes, meteorological variability, and stratosphere-troposphere exchange (STE) in explaining observed trends in surface ozone from rural sites in the United States from 1991-2010. The model's interannual variability shows significant correlations with observations from many of the surface sites. We also compare the simulated ozone to ozonesonde data for several locations with sufficiently long records. We compare a simulation with time-dependent precursor emissions, including emission reductions over the United States and Europe and increases over Asia, to a simulation with fixed emissions to quantify the impact of changing emissions on the surface trends. The simulation with varying emissions reproduces much of the east-west difference in summertime ozone over the U.S., although it generally underestimates the negative trend in the East. In contrast, the fixed-emission simulation shows increasing ozone at both eastern and western sites. We will discuss possible causes of this behavior, including long-range transport and STE.

  2. Evaluation of NASA's MERRA Precipitation Product in Reproducing the Observed Trend and Distribution of Extreme Precipitation Events in the United States

    NASA Technical Reports Server (NTRS)

    Ashouri, Hamed; Sorooshian, Soroosh; Hsu, Kuo-Lin; Bosilovich, Michael G.; Lee, Jaechoul; Wehner, Michael F.; Collow, Allison

    2016-01-01

    This study evaluates the performance of NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are developed to model the trends and changes in the patterns of extreme precipitation events over the contiguous United States during 1979-2010. The Climate Prediction Center (CPC) U.S.Unified gridded observation data are used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States are experiencing positive and negative trends in annual maxima, respectively. The continental-scale patterns of change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months. MERRA tends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are identified: 1) MERRA shows a spurious negative trend in Nebraska and Kansas, which is most likely related to the changes in the satellite observing system over time that has apparently affected the water cycle in the central United States, and 2) the patterns of positive trend over the Gulf Coast states and along the East Coast seem to be correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation extremes indicates that

  3. Observed rainfall trends and precipitation uncertainty in the vicinity of the Mediterranean, Middle East and North Africa

    NASA Astrophysics Data System (ADS)

    Zittis, G.

    2017-11-01

    The present study investigates the century-long and more recent rainfall trends over the greater region of Middle East and North Africa (MENA). Five up-to-date gridded observational datasets are employed. Besides mean annual values, trends of six indices of drought and extreme precipitation are also considered in the analysis. Most important findings include the significant negative trends over the Maghreb, Levant, Arabian Peninsula, and Sahel regions that are evident since the beginning of the twentieth century and are more or less extended to today. On the other hand, for some Mediterranean regions such as the Balkans and the Anatolian Plateau, precipitation records during the most recent decades indicate a significant increasing trend and a recovering from the dry conditions that occurred during the mid-1970s and mid-1980s. The fact that over parts of the study region the selected datasets were found to have substantial differences in terms of mean climate, trends, and interannual variability, motivated the more thorough investigation of the precipitation observational uncertainty. Several aspects, such as annual and monthly mean climatologies and also discrepancies in the monthly time-series distribution, are discussed using common methods in the field of climatology but also more sophisticated, nonparametric approaches such as the Kruskal-Wallis and Dunn's tests. Results indicate that in the best case, the data sources are found to have statistically significant differences in the distribution of monthly precipitation for about 50% of the study region extent. This percentage is increased up to 70% when particular datasets are compared. Indicatively, the range between the tested rainfall datasets is found to be more than 20% of their mean annual values for most of the extent of MENA, while locally, for the hyper-arid regions, this percentage is increased up to 100%. Precipitation observational uncertainty is also profound for parts of southern Europe. Outlier

  4. Chemical and Environmental Exposures | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  5. Trends in Surface Level Ozone Observations from Human-health Relevant Metrics: Results from the Tropospheric Ozone Assessment Report (TOAR)

    NASA Astrophysics Data System (ADS)

    Fleming, Z. L.; von Schneidemesser, E.; Doherty, R. M.; Malley, C.; Cooper, O. R.; Pinto, J. P.; Colette, A.; Xu, X.; Simpson, D.; Schultz, M.; Hamad, S.; Moola, R.; Solberg, S.; Feng, Z.

    2017-12-01

    Ozone is an air pollutant formed in the atmosphere from precursor species (NOx, VOCs, CH4, CO) that is detrimental to human health and ecosystems. The global Tropospheric Ozone Assessment Report (TOAR) initiative has assembled a global database of surface ozone observations and generated ozone exposure metrics at thousands of measurement sites around the world. This talk will present results from the assessment focused on those indicators most relevant to human health. Specifically, the trends in ozone, comparing different time periods and patterns across regions and among metrics will be addressed. In addition, the fraction of population exposed to high ozone levels and how this has changed between 2000 and 2014 will also be discussed. The core time period analyzed for trends was 2000-2014, selected to include a greater number of sites in East Asia. Negative trends were most commonly observed at many US and some European sites, whereas many sites in East Asia showed positive trends, while sites in Japan showed more of a mix of positive and negative trends. More than half of the sites showed a common direction and significance in the trends for all five human-health relevant metrics. The peak ozone metrics indicate a reduction in exposure to peak levels of ozone related to photochemical episodes in Europe and the US. A considerable number of European countries and states within the US have shown a decrease in population-weighted ozone over time. The 2000-2014 results will be augmented and compared to the trend analysis for additional time periods that cover a greater number of years, but by necessity are based on fewer sites. Trends are found to be statistically significant at a larger fraction of sites with longer time series, compared to the shorter (2000-2014) time series.

  6. Satellite Observations of NO2 Trend over Romania

    PubMed Central

    Voiculescu, Mirela; Georgescu, Lucian

    2013-01-01

    Satellite-based measurements of atmospheric trace gases loading give a realistic image of atmospheric pollution at global, regional, and urban level. The aim of this paper is to investigate the trend of atmospheric NO2 content over Romania for the period 1996–2010 for several regions which are generally characterized by different pollutant loadings, resulting from GOME-1, SCIAMACHY, OMI, and GOME-2 instruments. Satellite results are then compared with ground-based in situ measurements made in industrial and relatively clean areas of one major city in Romania. This twofold approach will help in estimating whether the trend of NO2 obtained by means of data satellite retrievals can be connected with the evolution of national industry and transportation. PMID:24453819

  7. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model.

    PubMed

    Nielsen, J Eric; Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M; Douglass, Anne R; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D; Putman, William; Strahan, Susan E; Wargan, Krzysztof

    2017-12-01

    NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.

  8. Chemical Mechanisms and Their Applications in the Goddard Earth Observing System (GEOS) Earth System Model

    PubMed Central

    Pawson, Steven; Molod, Andrea; Auer, Benjamin; da Silva, Arlindo M.; Douglass, Anne R.; Duncan, Bryan; Liang, Qing; Manyin, Michael; Oman, Luke D.; Putman, William; Strahan, Susan E.; Wargan, Krzysztof

    2017-01-01

    Abstract NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near‐real‐time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)‐based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided. PMID:29497478

  9. Updated Trends in Materials' Outgassing Technology

    NASA Technical Reports Server (NTRS)

    Rosecrans, Glenn; Mlucciacciaro, Anthony

    2010-01-01

    This slide presentation reviews the trends in materials' outgassing. The work utilized a database of reports to identify common outgassing chemical species from flight hardware, spacecraft, and ground support equipment (GSE). This work updates an earlier work that reported on chemical analysis from 1970-1978.

  10. Assessment of atmospheric acidified pollutants trends observed by EANET in North-East Asia in the first decade of XXI century

    NASA Astrophysics Data System (ADS)

    Gromov, Sergey A.; Trifonova-Yakovleva, Alisa; Gromov, Sergey S.

    2015-04-01

    Owing to rapid development and subsequent enormous increase in energy consumption/fossil fuel use, anthropogenic emissions of sulphur and nitrogen oxides in China and other Asian countries surpass those in North America and Europe since mid-1990s. Consequently, regional air pollution has become an issue for the most of developing countries in North-East Asia. Since 1998, the Acid Deposition Monitoring Network in East Asia (EANET, http://www.eanet.asia/) provides constant monitoring of the air quality and precipitation (including gaseous and particulate phase chemistry) in 13 countries of the region. The measurements are conducted at 45 rural and remote stations using both filter pack sampling techniques and automatic monitoring equipment. In this study we present a comprehensive trend analysis of the long-term (last 15 years) air pollution monitoring data from selected EANET monitoring sites. Using several statistical approaches, we estimate the quality of the data and perform distribution tests, single out special events (detect outliers) and calculate an ensemble of trends (monthly, seasonal, long-term and quartile) and their statistical significance for a suite of observed compounds. Based on this analysis, we further estimate the statistics and overall significance of the observed temporal dynamics for each pollutant. Ultimately we derive more than 20 trend estimates for a total of up to 12 gas-phase and particulate compounds for each station. Our calculations ascertain that about half of the trends (either negative or positive) observed at the EANET stations in Russia, Korea and Japan are significant. Whilst an increase in SO2, HCl, Cl-, NO3 (except for the stations in Russia) concentrations is distinct, small or insignificant trends are reckoned for HNO3-. A marked decrease in K+ content is seen at all regarded stations. We commonly find station-wise correlation for the trends of the remaining compounds, and for several species we conclude a general spatial

  11. Evaluation of NASA’s MERRA Precipitation Product in Reproducing the Observed Trend and Distribution of Extreme Precipitation Events in the United States

    DOE PAGES

    Ashouri, Hamed; Sorooshian, Soroosh; Hsu, Kuo-Lin; ...

    2016-02-03

    This study evaluates the performance of NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are developed to model the trends and changes in the patterns of extreme precipitation events over the contiguous United States during 1979-2010. The Climate Prediction Center (CPC)U.S.Unified gridded observation data are used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States are experiencing positive and negative trends in annual maxima, respectively. The continental-scalemore » patterns of change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months. MERRAtends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are identified: 1)MERRAshows a spurious negative trend in Nebraska andKansas, which ismost likely related to the changes in the satellite observing system over time that has apparently affected the water cycle in the central United States, and 2) the patterns of positive trend over theGulf Coast states and along the East Coast seem to be correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation extremes indicates

  12. Climate variability and trends in biogenic emissions imprinted on satellite observations of formaldehyde from SCIAMACHY and OMI sounders

    NASA Astrophysics Data System (ADS)

    Stavrakou, Trissevgeni; Müller, Jean-François; Bauwens, Maite; De Smedt, Isabelle; Van Roozendael, Michel

    2017-04-01

    Biogenic hydrocarbon emissions (BVOC) respond to temperature, photosynthetically active radiation, leaf area index, as well as to factors like leaf age, soil moisture, and ambient CO2 concentrations. Isoprene is the principal contributor to BVOC emissions and accounts for about half of the estimated total emissions on the global scale, whereas monoterpenes are also significant over boreal ecosystems. Due to their large emissions, their major role in the tropospheric ozone formation and contribution to secondary organic aerosols, BVOCs are highly relevant to both air quality and climate. Their oxidation in the atmosphere leads to the formation of formaldehyde (HCHO) at high yields. Satellite observations of HCHO abundances can therefore inform us on the spatial and temporal variability of the underlying sources and on their emission trends. The main objective of this study is to investigate the interannual variability and trends of observed HCHO columns during the growing season, when BVOC emissions are dominant, and interpret them in terms of BVOC emission flux variability. To this aim, we use the MEGAN-MOHYCAN model driven by the ECMWF ERA-interim meteorology to calculate bottom-up BVOC fluxes on the global scale (Müller et al. 2008, Stavrakou et al. 2014) over 2003-2015, and satellite HCHO observations from SCIAMACHY (2003-2011) and OMI (2005-2015) instruments (De Smedt et al. 2008, 2015). We focus on mid- and high-latitude regions of the Northern Hemisphere in summertime, as well as tropical regions taking care to exclude biomass burning events which also lead to HCHO column enhancements. We find generally a very strong temporal correlation (>0.7) between the simulated BVOC emissions and the observed HCHO columns over temperate and boreal ecosystems. Positive BVOC emission trends associated to warming climate are found in almost all regions and are well corroborated by the observations. Furthermore, using OMI HCHO observations over 2005-2015 as constraints in

  13. Students' Understanding of Analogy after a Core (Chemical Observations, Representations, Experimentation) Learning Cycle, General Chemistry Experiment

    ERIC Educational Resources Information Center

    Avargil, Shirly; Bruce, Mitchell R. M.; Amar, Franc¸ois G.; Bruce, Alice E.

    2015-01-01

    Students' understanding about analogy was investigated after a CORE learning cycle general chemistry experiment. CORE (Chemical Observations, Representations, Experimentation) is a new three-phase learning cycle that involves (phase 1) guiding students through chemical observations while they consider a series of open-ended questions, (phase 2)…

  14. Modeling the Chemical Effect of Tropopause-penetrating Convection using NEXRAD Observations

    NASA Astrophysics Data System (ADS)

    Clapp, C.; Anderson, J. G.

    2017-12-01

    Water vapor in the upper troposphere and lower stratosphere (UTLS) from the tropics to the poles is important both radiatively and chemically. Chemically, water vapor is the dominant source of OH in the lower stratosphere, and increases in water vapor concentrations promote stratospheric ozone loss by raising the reactivity of several key heterogeneous reactions as well as by promoting the growth of reactive surface area. We examine the chemical impact of the convective contribution of boundary layer air to stratospheric chemistry over the mid-latitude United States. Using NEXRAD observations of tropopause penetrating events during the summers of 2004 through 2013 (with approximately 3300 events reaching 390K in potential temperature per year), we calculate the loss of stratospheric ozone due to an average event and the seasonal impact.

  15. An intercomparison of multidecadal observational and reanalysis data sets for global total ozone trends and variability analysis

    NASA Astrophysics Data System (ADS)

    Bai, Kaixu; Chang, Ni-Bin; Shi, Runhe; Yu, Huijia; Gao, Wei

    2017-07-01

    A four-step adaptive ozone trend estimation scheme is proposed by integrating multivariate linear regression (MLR) and ensemble empirical mode decomposition (EEMD) to analyze the long-term variability of total column ozone from a set of four observational and reanalysis total ozone data sets, including the rarely explored ERA-Interim total ozone reanalysis, from 1979 to 2009. Consistency among the four data sets was first assessed, indicating a mean relative difference of 1% and root-mean-square error around 2% on average, with respect to collocated ground-based total ozone observations. Nevertheless, large drifts with significant spatiotemporal inhomogeneity were diagnosed in ERA-Interim after 1995. To emphasize long-term trends, natural ozone variations associated with the solar cycle, quasi-biennial oscillation, volcanic aerosols, and El Niño-Southern Oscillation were modeled with MLR and then removed from each total ozone record, respectively, before performing EEMD analyses. The resulting rates of change estimated from the proposed scheme captured the long-term ozone variability well, with an inflection time of 2000 clearly detected. The positive rates of change after 2000 suggest that the ozone layer seems to be on a healing path, but the results are still inadequate to conclude an actual recovery of the ozone layer, and more observational evidence is needed. Further investigations suggest that biases embedded in total ozone records may significantly impact ozone trend estimations by resulting in large uncertainty or even negative rates of change after 2000.

  16. QUALITY ASSURANCE PROGRAM FOR WET DEPOSITION SAMPLING AND CHEMICAL ANALYSES FOR THE NATIONAL TRENDS NETWORK.

    USGS Publications Warehouse

    Schroder, LeRoy J.; Malo, Bernard A.; ,

    1985-01-01

    The purpose of the National Trends Network is to delineate the major inorganic constituents in the wet deposition in the United States. The approach chosen to monitor the Nation's wet deposition is to install approximately 150 automatic sampling devices with at least one collector in each state. Samples are collected at one week intervals, removed from collectors, and transported to an analytical laboratory for chemical analysis. The quality assurance program has divided wet deposition monitoring into 5 parts: (1) Sampling site selection, (2) sampling device, (3) sample container, (4) sample handling, and (5) laboratory analysis. Each of these five components is being examined using existing designs or new designs. Each existing or proposed sampling site is visited and a criteria audit is performed.

  17. Working group on future trends

    USGS Publications Warehouse

    ,; O'Shea, Thomas J.; Reeves, Randall R.; Long, Alison Kirk

    1999-01-01

    This working group did not divide into subgroups, and its report consists of a unified document in a format somewhat different than those of the other working groups. The group considered four major topics: (1) projected "new" contaminants of future concern; (2) future trends with contaminants currently known to be issues for marine mammals; (3) future needs to improve and insure consistency of sample collection and analyses; and (4) future management needs.The problems of persistent organic pollutants will remain well into the foreseeable future. A general decline in levels of persistent organic pollutants in the marine environment is not anticipated. there is every likelihood that the environmental trends of halogenated organic compounds, such as polybromated diphenyl ethers and chlorinated paraffins, will parallel production trends, as demonstrated with well known chemical contaminants such as PCBs (polychlorinated biphenyls) and DDT (dichlorodiphenyltrichloroethane). While the environmental levels of some compounds may be slowly declining, many are still within the ranges where subtle toxic effects are to be anticipated. Trends in contaminants must be placed in a regional context, and rates and directions of change are often region-specific. For example, in the Southern Hemisphere the concentrations of PCBs appear to be increasing. The rates of change of many contaminants in the Southern hemisphere are poorly known, and this region may be at future risk.Much of the research on contaminants and marine mammals has focused on the problem of persistent organochloride chemicals such as PCBs and DDT, which are a continuing and global problem. Potential problems caused by other persistent, toxic, and bioaccumulative substances (PTBSs) cannot currently be addressed due to the lack of basic information on their production, use, exposure, and effects (Environmental Protection Agency 1998). It is currently estimated that there are roughly 2400 lipophilic and persistent

  18. Examining Long-Term Trends in Mobile Source Related Pollutants through Analysis of Emissions, Observations and Model Simulations

    EPA Science Inventory

    Anthropogenic emissions from a variety of sectors including mobile sources have decreased substantially over the past decades despite continued growth in population and economic activity. In this study, we analyze 1990-2010 trends in emission inventories, ambient observations and...

  19. Observed Recent Trends in Tropical Cyclone Rainfall Over Major Ocean Basins

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Zhou, Y. P.

    2011-01-01

    In this study, we use Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Climatology Project (GPCP) rainfall data together with historical storm track records to examine the trend of tropical cyclone (TC) rainfall in major ocean basins during recent decades (1980-2007). We find that accumulated total rainfall along storm tracks for all tropical cyclones shows a weak positive trend over the whole tropics. However, total rainfall associated with weak storms, and intense storms (Category 4-5) both show significant positive trends, while total rainfall associated with intermediate storms (Category1-3) show a significant negative trend. Storm intensity defined as total rain produced per unit storm also shows increasing trend for all storm types. Basin-wide, from the first half (1980-1993) to the second half (1994-2007) of the data period, the North Atlantic shows the pronounced increase in TC number and TC rainfall while the Northeast Pacific shows a significant decrease in all storm types. Except for the Northeast Pacific, all other major basins (North Atlantic, Northwest Pacific, Southern Oceans, and Northern Indian Ocean) show a significant increase in total number and rainfall amount in Category 4-5 storms. Overall, trends in TC rainfall in different ocean basins are consistent with long-term changes in the ambient large-scale environment, including SST, vertical wind shear, sea level pressure, mid-tropospheric humidity, and Maximum Potential Intensity (MPI). Notably the pronounced positive (negative) trend of TC rainfall in the North Atlantic (Northeast Pacific) appears to be related to the most (least) rapid increase in SST and MPI, and the largest decrease (increase) in vertical wind shear in the region, relative to other ocean basins.

  20. Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran

    NASA Astrophysics Data System (ADS)

    Arhami, Mohammad; Hosseini, Vahid; Zare Shahne, Maryam; Bigdeli, Mostafa; Lai, Alexandra; Schauer, James J.

    2017-03-01

    Frequent air pollution episodes have been reported for Tehran, Iran, mainly because of critically high levels of fine particulate matter (PM2.5). The composition and sources of these particles are poorly known, so this study aims to identify the major components and heavy metals in PM2.5 along with their seasonal trends and associated sources. 24-hour PM2.5 samples were collected at a main residential station every 6 days for a full year from February 2014 to February 2015. The samples were analyzed for ions, organic carbon (including water-soluble and insoluble portions), elemental carbon (EC), and all detectable elements. The dominant mass components, which were determined by means of chemical mass closure, were organic matter (35%), dust (25%), non-sea salt sulfate (11%), EC (9%), ammonium (5%), and nitrate (2%). Organic matter and EC together comprised 44% of fine PM on average (increased to >70% in the colder season), which reflects the significance of anthropogenic urban sources (i.e. vehicles). The contributions of different components varied considerably throughout the year, particularly the dust component that varied from 7% in the cold season to 56% in the hot and dry season. Principal component analyses were applied, resulting in 5 major source factors that explained 85% of the variance in fine PM. Factor 1, representing soil dust, explained 53%; Factor 2 denotes heavy metals mainly found in industrial sources and accounted for 18%; and rest of factors, mainly representing combustion sources, explained 14% of the variation. The levels of major heavy metals were further evaluated, and their trends showed considerable increases during cold seasons. The results of this study provide useful insight to fine PM in Tehran, which could help in identifying their health effects and sources, and also adopting effective control strategies.

  1. Climate trends in the Arctic as observed from space

    PubMed Central

    Comiso, Josefino C; Hall, Dorothy K

    2014-01-01

    The Arctic is a region in transformation. Warming in the region has been amplified, as expected from ice-albedo feedback effects, with the rate of warming observed to be ∼0.60 ± 0.07°C/decade in the Arctic (>64°N) compared to ∼0.17°C/decade globally during the last three decades. This increase in surface temperature is manifested in all components of the cryosphere. In particular, the sea ice extent has been declining at the rate of ∼3.8%/decade, whereas the perennial ice (represented by summer ice minimum) is declining at a much greater rate of ∼11.5%/decade. Spring snow cover has also been observed to be declining by −2.12%/decade for the period 1967–2012. The Greenland ice sheet has been losing mass at the rate of ∼34.0 Gt/year (sea level equivalence of 0.09 mm/year) during the period from 1992 to 2011, but for the period 2002–2011, a higher rate of mass loss of ∼215 Gt/year has been observed. Also, the mass of glaciers worldwide declined at the rate of 226 Gt/year from 1971 to 2009 and 275 Gt/year from 1993 to 2009. Increases in permafrost temperature have also been measured in many parts of the Northern Hemisphere while a thickening of the active layer that overlies permafrost and a thinning of seasonally frozen ground has also been reported. To gain insight into these changes, comparative analysis with trends in clouds, albedo, and the Arctic Oscillation is also presented. How to cite this article:WIREs Clim Change 2014, 5:389�409. doi: 10.1002/wcc.277 PMID:25810765

  2. Climate trends in the Arctic as observed from space.

    PubMed

    Comiso, Josefino C; Hall, Dorothy K

    2014-05-01

    The Arctic is a region in transformation. Warming in the region has been amplified, as expected from ice-albedo feedback effects, with the rate of warming observed to be ∼0.60 ± 0.07°C/decade in the Arctic (>64°N) compared to ∼0.17°C/decade globally during the last three decades. This increase in surface temperature is manifested in all components of the cryosphere. In particular, the sea ice extent has been declining at the rate of ∼3.8%/decade, whereas the perennial ice (represented by summer ice minimum) is declining at a much greater rate of ∼11.5%/decade. Spring snow cover has also been observed to be declining by -2.12%/decade for the period 1967-2012. The Greenland ice sheet has been losing mass at the rate of ∼34.0 Gt/year (sea level equivalence of 0.09 mm/year) during the period from 1992 to 2011, but for the period 2002-2011, a higher rate of mass loss of ∼215 Gt/year has been observed. Also, the mass of glaciers worldwide declined at the rate of 226 Gt/year from 1971 to 2009 and 275 Gt/year from 1993 to 2009. Increases in permafrost temperature have also been measured in many parts of the Northern Hemisphere while a thickening of the active layer that overlies permafrost and a thinning of seasonally frozen ground has also been reported. To gain insight into these changes, comparative analysis with trends in clouds, albedo, and the Arctic Oscillation is also presented. How to cite this article: WIREs Clim Change 2014, 5:389�409. doi: 10.1002/wcc.277.

  3. Evolved stars and the origin of abundance trends in planet hosts

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Villaver, E.

    2016-04-01

    Galaxy. The sample of giants contains stars that are more massive and younger than their main-sequence counterparts. This leads to a sample of stars that are possibly less contaminated by stars that were not born in the solar neighbourhood, leading to no chemical differences between planet and non-planet hosts. The sample of main-sequence stars may contain more stars from the outer disc (specially the non-planet host sample) which might lead to the differences observed in the chemical trends. Based on observations made with the Mercator Telescope; on observations made with the Nordic Optical Telescope; on observations made with the Italian Telescopio Nazionale Galileo; on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto; and on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 072.C-0488(E), 080.D-0347(A), 081.D-0870(A), 087.C-0831(A), and 183.C-0972(A).Tables B.1-B.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A98

  4. ACE-FTS and MIPAS observations of phosgene (COCl2) and comparisons with SLIMCAT chemical transport model calculations

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy; Chipperfield, Martyn; Moore, David; Boone, Christopher; Bernath, Peter; Hossaini, Ryan

    2017-04-01

    The majority of chlorine in the atmosphere has arisen from anthropogenic emissions of 'organic' species such as chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). Due to their long lifetimes, many of these species reach the stratosphere where they break down, liberating chlorine which catalyses the destruction of ozone. The principal degradation products of Cl-containing organic species are carbonyl chloride (phosgene, COCl2), carbonyl chloride fluoride (COClF), and hydrogen chloride (HCl). Of these, phosgene is probably the most notorious, having been used as a chemical weapon in World War I. In the lower stratosphere, where the phosgene mixing ratios peak, the principal sources are the photolysis of carbon tetrachloride (CCl4) and, to a lesser extent, methyl chloroform (CH3CCl3). Smaller contributions arise from very short-lived substances such as CH2Cl2, CHCl3 and C2Cl4. Due to the success of the Montreal Protocol in phasing out the use of CCl4 and CH3CCl3, the abundance of phosgene continues to fall. Observing and understanding phosgene in the stratosphere helps us better understand the chlorine budget, and particularly the atmospheric removal of CCl4, which has attracted particular interest recently on account of the inconsistency between observations of its abundance and estimated sources and sinks. This work presents global distributions and trends of COCl2 using data from two satellite limb instruments: the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS), and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). The ACE-FTS instrument, on board the SCISAT satellite, has been recording solar occultation spectra through the Earth's atmosphere since 2004 and continues to take measurements with only minor loss in performance. ACE-FTS time series are available for a range of chlorine 'source' gases, including CCl3F (CFC-11), CCl2F2 (CFC-12), CHF2Cl (HCFC-22) and CCl4, and the chlorine 'product' gases COCl2

  5. NASA trend analysis procedures

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This publication is primarily intended for use by NASA personnel engaged in managing or implementing trend analysis programs. 'Trend analysis' refers to the observation of current activity in the context of the past in order to infer the expected level of future activity. NASA trend analysis was divided into 5 categories: problem, performance, supportability, programmatic, and reliability. Problem trend analysis uncovers multiple occurrences of historical hardware or software problems or failures in order to focus future corrective action. Performance trend analysis observes changing levels of real-time or historical flight vehicle performance parameters such as temperatures, pressures, and flow rates as compared to specification or 'safe' limits. Supportability trend analysis assesses the adequacy of the spaceflight logistics system; example indicators are repair-turn-around time and parts stockage levels. Programmatic trend analysis uses quantitative indicators to evaluate the 'health' of NASA programs of all types. Finally, reliability trend analysis attempts to evaluate the growth of system reliability based on a decreasing rate of occurrence of hardware problems over time. Procedures for conducting all five types of trend analysis are provided in this publication, prepared through the joint efforts of the NASA Trend Analysis Working Group.

  6. Galactic chemical evolution in hierarchical formation models

    NASA Astrophysics Data System (ADS)

    Arrigoni, Matias

    2010-10-01

    The chemical properties and abundance ratios of galaxies provide important information about their formation histories. Galactic chemical evolution has been modelled in detail within the monolithic collapse scenario. These models have successfully described the abundance distributions in our Galaxy and other spiral discs, as well as the trends of metallicity and abundance ratios observed in early-type galaxies. In the last three decades, however, the paradigm of hierarchical assembly in a Cold Dark Matter (CDM) cosmology has revised the picture of how structure in the Universe forms and evolves. In this scenario, galaxies form when gas radiatively cools and condenses inside dark matter haloes, which themselves follow dissipationless gravitational collapse. The CDM picture has been successful at predicting many observed properties of galaxies (for example, the luminosity and stellar mass function of galaxies, color-magnitude or star formation rate vs. stellar mass distributions, relative numbers of early and late-type galaxies, gas fractions and size distributions of spiral galaxies, and the global star formation history), though many potential problems and open questions remain. It is therefore interesting to see whether chemical evolution models, when implemented within this modern cosmological context, are able to correctly predict the observed chemical properties of galaxies. With the advent of more powerfull telescopes and detectors, precise observations of chemical abundances and abundance ratios in various phases (stellar, ISM, ICM) offer the opportunity to obtain strong constraints on galaxy formation histories and the physics that shapes them. However, in order to take advantage of these observations, it is necessary to implement detailed modeling of chemical evolution into a modern cosmological model of hierarchical assembly.

  7. Recent Trends and Advances in Sedimentology.

    ERIC Educational Resources Information Center

    Suttner, Lee J.

    1979-01-01

    Briefly surveys recent trends and developments in sedimentology. Includes Clastic sedimentary petrology, petrology of argillaceous rocks, terrigenous depositional environments, and chemical sedimentology. (MA)

  8. Extending water vapor trend observations over Boulder into the tropopause region: Trend uncertainties and resulting radiative forcing.

    PubMed

    Kunz, A; Müller, R; Homonnai, V; Jánosi, I M; Hurst, D; Rap, A; Forster, P M; Rohrer, F; Spelten, N; Riese, M

    2013-10-16

    Thirty years of balloon-borne measurements over Boulder (40°N, 105°W) are used to investigate the water vapor trend in the tropopause region. This analysis extends previously published trends, usually focusing on altitudes greater than 16 km, to lower altitudes. Two new concepts are applied: (1) Trends are presented in a thermal tropopause (TP) relative coordinate system from -2 km below to 10 km above the TP, and (2) sonde profiles are selected according to TP height. Tropical (TP z > 14 km), extratropical (TP z < 12 km), and transitional air mass types (12 km < TP z < 14 km) reveal three different water vapor reservoirs. The analysis based on these concepts reduces the dynamically induced water vapor variability at the TP and principally favors refined water vapor trend studies in the upper troposphere and lower stratosphere. Nonetheless, this study shows how uncertain trends are at altitudes -2 to +4 km around the TP. This uncertainty in turn has an influence on the uncertainty and interpretation of water vapor radiative effects at the TP, which are locally estimated for the 30 year period to be of uncertain sign. The much discussed decrease in water vapor at the beginning of 2001 is not detectable between -2 and 2 km around the TP. On lower stratospheric isentropes, the water vapor change at the beginning of 2001 is more intense for extratropical than for tropical air mass types. This suggests a possible link with changing dynamics above the jet stream such as changes in the shallow branch of the Brewer-Dobson circulation.

  9. The Tc Trend In The Zetta Reticuli System: N Spectra - N Trends.

    NASA Astrophysics Data System (ADS)

    Adibekyan, V.; Figueira, P.; Delgado Mena, E.; Sousa, S. G.; Santos, N. C.; González Hernández; , I.; Israelian, G.

    2017-10-01

    It is suggested that the chemical abundance trend with the condensation temperature, Tc , can be a signature of rocky planet formation or accretion. Recently, a strong Tc trend was reported in the Zetta Reticuli binary system (Saffe et al., 2016), where ζ2 Ret Ret shows a deficit of refractory elements relative to its companion (ζ1 Ret). This depletion was explained by the presence of a debris disk around ζ2 Ret. Later, Adibekyan et al. (2016b) confirmed the significance of the trend, however, casted doubts on the interpretation proposed. Using three individual highest quality spectra for each star, they found that the Tc trends depend on the individual spectra (three spectra of each star were used) used in the analaysis. In the current work we re-evaluated the presence and variability of the Tc trend in this system using a larger number of individual spectra. In total, 62 spectra of ζ2 Ret and 31 spectra of ζ1 Ret was used. Our results confirm the word of caution issued by Adibekyan et al. (2016b) that nonphysical factors can be at the root of the T c trends for the cases of individual spectra.

  10. The Trend-in-trend Research Design for Causal Inference.

    PubMed

    Ji, Xinyao; Small, Dylan S; Leonard, Charles E; Hennessy, Sean

    2017-07-01

    Cohort studies can be biased by unmeasured confounding. We propose a hybrid ecologic-epidemiologic design called the trend-in-trend design, which requires a strong time trend in exposure, but is unbiased unless there are unmeasured factors affecting outcome for which there are time trends in prevalence that are correlated with time trends in exposure across strata with different exposure trends. Thus, the conditions under which the trend-in-trend study is biased are a subset of those under which a cohort study is biased. The trend-in-trend design first divides the study population into strata based on the cumulative probability of exposure given covariates, which effectively stratifies on time trend in exposure, provided there is a trend. Next, a covariates-free maximum likelihood model estimates the odds ratio (OR) using data on exposure prevalence and outcome frequency within cumulative probability of exposure strata, across multiple periods. In simulations, the trend-in-trend design produced ORs with negligible bias in the presence of unmeasured confounding. In empiric applications, trend-in-trend reproduced the known positive association between rofecoxib and myocardial infarction (observed OR: 1.2, 95% confidence interval: 1.1, 1.4), and known null associations between rofecoxib and severe hypoglycemia (OR = 1.1 [0.92, 1.3]) and nonvertebral fracture (OR = 0.84 [0.64, 1.1]). The trend-in-trend method may be useful in settings where there is a strong time trend in exposure, such as a newly approved drug or other medical intervention. See video abstract at, http://links.lww.com/EDE/B178.

  11. Regional trend analysis of surface ozone observations from monitoring networks in eastern North America, Europe and East Asia

    NASA Astrophysics Data System (ADS)

    Chang, K. L.; Petropavlovskikh, I. V.; Cooper, O. R.; Schultz, M.; Wang, T.

    2017-12-01

    Surface ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. The Tropospheric Ozone Assessment Report (TOAR) is designed to provide the research community with an up-to-date observation-based overview of tropospheric ozone's global distribution and trends. The TOAR Surface Ozone Database contains ozone metrics at thousands of monitoring sites around the world, densely clustered across mid-latitude North America, western Europe and East Asia. Calculating regional ozone trends across these locations is challenging due to the uneven spacing of the monitoring sites across urban and rural areas. To meet this challenge we conducted a spatial and temporal trend analysis of several TOAR ozone metrics across these three regions for summertime (April-September) 2000-2014, using the generalized additive mixed model (GAMM). Our analysis indicates that East Asia has the greatest human and plant exposure to ozone pollution among investigating regions, with increasing ozone levels through 2014. The results also show that ozone mixing ratios continue to decline significantly over eastern North America and Europe, however, there is less evidence for decreases of daytime average ozone at urban sites. The present-day spatial coverage of ozone monitors in East Asia (South Korea and Japan) and eastern North America is adequate for estimating regional trends by simply taking the average of the individual trends at each site. However the European network is more sparsely populated across its northern and eastern regions and therefore a simple average of the individual trends at each site does not yield an accurate regional trend. This analysis demonstrates that the GAMM technique can be used to assess the regional representativeness of existing monitoring networks, indicating those networks for which a regional trend can be obtained by simply averaging the trends of all individual sites and those networks that require a more

  12. Accessing Recent Trend of Land Surface Temperature from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Leptoukh, Gregory G.; Romanov, Peter

    2011-01-01

    Land surface temperature (Ts) is an important element to measure the state of terrestrial ecosystems and to study surface energy budgets. In support of the land cover/land use change-related international program MAIRS (Monsoon Asia Integrated Regional Study), we have collected global monthly Ts measured by MODIS since the beginning of the missions. The MODIS Ts time series have approximately 11 years of data from Terra since 2000 and approximately 9 years of data from Aqua since 2002, which makes possible to study the recent climate, such as trend. In this study, monthly climatology from two platforms are calculated and compared with that from AIRS. The spatial patterns of Ts trends are accessed, focusing on the Eurasia region. Furthermore, MODIS Ts trends are compared with those from AIRS and NASA's atmospheric assimilation model, MERRA (Modern Era Retrospective-analysis for Research and Applications). The preliminary results indicate that the recent 8-year Ts trend shows an oscillation-type spatial variation over Eurasia. The pattern is consistent for data from MODIS, AIRS, and MERRA, with the positive center over Eastern Europe, and the negative center over Central Siberia. The calculated climatology and anomaly of MODIS Ts will be integrated into the online visualization system, Giovanni, at NASA GES DISC for easy use by scientists and general public.

  13. Comparison of global observations and trends of total precipitable water derived from microwave radiometers and COSMIC radio occultation from 2006 to 2013

    NASA Astrophysics Data System (ADS)

    Ho, Shu-Peng; Peng, Liang; Mears, Carl; Anthes, Richard A.

    2018-01-01

    We compare atmospheric total precipitable water (TPW) derived from the SSM/I (Special Sensor Microwave Imager) and SSMIS (Special Sensor Microwave Imager/Sounder) radiometers and WindSat to collocated TPW estimates derived from COSMIC (Constellation System for Meteorology, Ionosphere, and Climate) radio occultation (RO) under clear and cloudy conditions over the oceans from June 2006 to December 2013. Results show that the mean microwave (MW) radiometer - COSMIC TPW differences range from 0.06 to 0.18 mm for clear skies, from 0.79 to 0.96 mm for cloudy skies, from 0.46 to 0.49 mm for cloudy but non-precipitating conditions, and from 1.64 to 1.88 mm for precipitating conditions. Because RO measurements are not significantly affected by clouds and precipitation, the biases mainly result from MW retrieval uncertainties under cloudy and precipitating conditions. All COSMIC and MW radiometers detect a positive TPW trend over these 8 years. The trend using all COSMIC observations collocated with MW pixels for this data set is 1.79 mm decade-1, with a 95 % confidence interval of (0.96, 2.63), which is in close agreement with the trend estimated by the collocated MW observations (1.78 mm decade-1 with a 95 % confidence interval of 0.94, 2.62). The sample of MW and RO pairs used in this study is highly biased toward middle latitudes (40-60° N and 40-65° S), and thus these trends are not representative of global average trends. However, they are representative of the latitudes of extratropical storm tracks and the trend values are approximately 4 to 6 times the global average trends, which are approximately 0.3 mm decade-1. In addition, the close agreement of these two trends from independent observations, which represent an increase in TPW in our data set of about 6.9 %, are a strong indication of the positive water vapor-temperature feedback on a warming planet in regions where precipitation from extratropical storms is already large.

  14. Observations of Europe wide Trends in background and peak O3, CO and NO2 levels

    NASA Astrophysics Data System (ADS)

    Fleming, Z. L.; Monks, P. S.; Brunsdon, C.; Henne, S.; Buchmann, B.; Konovalov, I.; Beekman, M.

    2009-04-01

    The GEOMON (Global Earth Observation and MONitoring) project has produced a harmonised data set of trace gases from various ground-based measurement stations. These stations belong to a variety of regional, national and European air quality networks (e.g. EMEP, GAW). Investigations into instrumental calibration and data quality have been carried out in order to make comparison between the sites as accurate as possible for a long time-scale trend analysis. Ozone seasonal cycles at the various sites have been compared, showing characteristic cycles according to latitude, elevation, vicinity to coastal areas and pollution sources and population nearby. A de-trending of this seasonal cycle revealed long-term variations in ozone and a considerable difference between background and peak ozone trends between sites. National, European and international legislation has aimed at reducing CO and NO2 and correspondingly, reduce O3 levels over the last 20 years but the trends are not as clear cut and reveal that there is not a homogeneous reduction in these species across Europe. Splitting the data into seasonal periods and also into lower and upper concentration percentiles shows us more clearly how the species vary across Europe. There is a tendency for peak ozone levels to decrease, whilst the background levels have mostly increased. Averages, lower and upper percentiles of these species at the GEOMON stations are shown on European maps and the distribution of annual ozone trends is evaluated. Comparisons with models that estimate the lower and upper percentiles of ozone during summer overestimate ozone levels but not uniformly across Europe.

  15. Assessing the Controversy between Altimetry, Radiometry, and Scatterometry: Satellite Observation Requirements for Trends in Extreme Winds and Waves

    NASA Astrophysics Data System (ADS)

    Keefer, J.; Bourassa, M. A.

    2014-12-01

    A recent study (Young et al. 2011) investigated recent global trends in mean and extreme (90th- and 99th-percentile) wind speed and wave height. Wentz and Ricciardulli (2011) have criticized the study, citing the methodology solely employing data collected from a series of altimetry missions and lack of adequate verification of the results. An earlier study (Wentz et al. 2007) had differing results using data from microwave radiometers and scatterometers. This study serves as a response to these studies, employing a similar methodology but with a different set of data. Data collected from the QuikSCAT and ADEOS-2 SeaWinds scatterometers, SSMI(S), and TOPEX/POSEIDON and JASON-1 altimetry missions are used to calculate trends in the mean, 90th-, and 99th-percentile wind speed and wave height over the period 1999—2009. Linear regression analyses from the satellite missions are verified against regression analyses of data from the ERA-Interim reanalysis dataset. Temporal sampling presents the most critical consideration in the study. The scatterometers have a much greater independent temporal sampling (about 1.5 observations per day per satellite) than the altimeters (about 1 observation per 10 days). With this consideration, the satellite data are also used to sample the wind speeds in the ERA-Interim dataset. That portion of the study indicates the sampling requirements needed to accurately estimate the trends in the ERA-Interim reanalysis. Wentz, F.J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233-235. Wentz, F.J. and L. Ricciardulli, 2011: Comment on "Global trends in wind speed and wave height." Science, 334, 905. Young, I.R., S. Zieger, and A.V. Babanin, 2011a: Global trends in wind speed and wave height. Science, 332, 451-455.

  16. Chemical Exposures - Prevention Summary Table | Cancer Trends Progress Report

    Cancer.gov

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  17. Meteorologically-adjusted trend analysis of surface observed ozone at three monitoring sites in Delhi, India: 2007-2011

    NASA Astrophysics Data System (ADS)

    Biswas, J.; Farooqui, Z.; Guttikunda, S. K.

    2012-12-01

    It is well known that meteorological parameters have significant impact on surface ozone concentrations. Therefore it is important to remove the effects of meteorology on ozone concentrations to correctly estimate long-term trends in ozone levels due to the alterations in precursor emissions. This is important for the development of effectual control strategies. In this study surface observed ozone trends in New Delhi are analyzed using Komogorov-Zurbenko (KZ) filter, US EPA ozone adjustment due to weather approach and the classification and regression tree method. The statistical models are applied to the ozone data at three observational sites in New Delhi metropolitan areas, 1) Income Tax Office (ITO) 2) Sirifort and 3) Delhi College of Engineering (DCE). The ITO site is located adjacent to a traffic crossing, Sirifort is an urban site and the DCE site is located in a residential area. The ITO site is also influenced by local industrial emissions. DCE has higher ozone levels than the other two sites. It was found that ITO has lowest ozone concentrations amongst the three sites due to ozone titrating due to industrial and on-road mobile NOx emissions. The statistical methods employed can assess ozone trends at these sites with a high degree of confidence and the results can be used to gauge the effectiveness of control strategies on surface ozone levels in New Delhi.

  18. The hydrologic bench-mark program; a standard to evaluate time-series trends in selected water-quality constituents for streams in Georgia

    USGS Publications Warehouse

    Buell, G.R.; Grams, S.C.

    1985-01-01

    Significant temporal trends in monthly pH, specific conductance, total alkalinity, hardness, total nitrite-plus-nitrite nitrogen, and total phosphorus measurements at five stream sites in Georgia were identified using a rank correlation technique, the seasonal Kendall test and slope estimator. These sites include a U.S. Geological Survey Hydrologic Bench-Mark site, Falling Creek near Juliette, and four periodic water-quality monitoring sites. Comparison of raw data trends with streamflow-residual trends and, where applicable, with chemical-discharge trends (instantaneous fluxes) shws that some of these trends are responses to factors other than changing streamflow. Percentages of forested, agricultural, and urban cover with each basin did not change much during the periods of water-quality record, and therefore these non-flow-related trends are not obviously related to changes in land cover or land use. Flow-residual water-quality trends at the Hydrologic Bench-Mark site and at the Chattooga River site probably indicate basin reponses to changes in the chemical quality of atmospheric deposition. These two basins are predominantly forested and have received little recent human use. Observed trends at the other three sites probably indicate basin responses to various land uses and water uses associated with agricultural and urban land or to changes in specific uses. (USGS)

  19. Response of drinking-water reservoir ecosystems to decreased acidic atmospheric deposition in SE Germany: trends of chemical reversal.

    PubMed

    Ulrich, Kai-Uwe; Paul, Lothar; Meybohm, Andreas

    2006-05-01

    This study evaluates chemical trends of seven acidified reservoirs and 22 tributaries in the Erzgebirge from 1993 to 2003. About 85% of these waters showed significantly (p < 0.05) declining concentrations of protons (-69%), nitrate (-41%), sulfate (-27%), and reactive aluminum (-50% on average). This reversal is attributed to the intense reduction of industrial SO2 and NOx emissions from formerly high levels, which declined by 99% and 82% in the German-Czech border region between 1993 and 1999. The deposition rates of protons and sulfur decreased by 70-90%. Since 1993, the dry deposition of total inorganic nitrogen diminished to a minor degree, but the wet deposition remained unchanged. The surface waters reflect a substantial decrease in Al exchange processes, a release of sulfur previously stored in soils, and an uptake of nitrate by forest vegetation. The latter effect may be supported by soil protection liming which contributed to the chemical reversal in almost 20% of the study waters.

  20. Advancements in medium and high resolution Earth observation for land-surface imaging: Evolutions, future trends and contributions to sustainable development

    NASA Astrophysics Data System (ADS)

    Ouma, Yashon O.

    2016-01-01

    Technologies for imaging the surface of the Earth, through satellite based Earth observations (EO) have enormously evolved over the past 50 years. The trends are likely to evolve further as the user community increases and their awareness and demands for EO data also increases. In this review paper, a development trend on EO imaging systems is presented with the objective of deriving the evolving patterns for the EO user community. From the review and analysis of medium-to-high resolution EO-based land-surface sensor missions, it is observed that there is a predictive pattern in the EO evolution trends such that every 10-15 years, more sophisticated EO imaging systems with application specific capabilities are seen to emerge. Such new systems, as determined in this review, are likely to comprise of agile and small payload-mass EO land surface imaging satellites with the ability for high velocity data transmission and huge volumes of spatial, spectral, temporal and radiometric resolution data. This availability of data will magnify the phenomenon of ;Big Data; in Earth observation. Because of the ;Big Data; issue, new computing and processing platforms such as telegeoprocessing and grid-computing are expected to be incorporated in EO data processing and distribution networks. In general, it is observed that the demand for EO is growing exponentially as the application and cost-benefits are being recognized in support of resource management.

  1. Artificial plasma experiments. Chemical release observations associated with the CRRES program

    NASA Technical Reports Server (NTRS)

    Mende, Stephen B.

    1994-01-01

    This report submitted is the final report and covers work performed under the contract for the period Apr. 12, 1985 - Dec. 23, 1993. The CRRES program investigated earth plasma environment by active experiments in which metal vapors were injected into the upper atmosphere and magnetosphere. The vapor clouds perturb the ambient ionospheric / magnetospheric environment and the effects could be monitored by passive observing instruments. Our part of the CRRES program, the Artificial Plasma Experiment program, was a ground based and aircraft based investigation to observe artificial chemical releases by optical techniques.

  2. Temporal trend of the snow-related variables in Sierra Nevada in the last years: An analysis combining Earth Observation and hydrological modelling

    NASA Astrophysics Data System (ADS)

    Pérez-Luque, Antonio J.; Herrero, Javier; Bonet, Francisco J.; Pérez-Pérez, Ramón

    2016-04-01

    Climate change is causing declines in snow-cover extent and duration in European mountain ranges. This is especially important in Mediterranean mountain ranges where the observed trends towards precipitation and higher temperatures can provoke problems of water scarcity. In this work, we analyzed temporal trends (2000 to 2014) of snow-related variables obtained from satellite and modelling data in Sierra Nevada, a Mediterranean high-mountain range located in Southern Spain, at 37°N. Snow cover indicators (snow-cover duration, snow-cover onset dates and snow-cover melting dates) were obtained by processing images of MOD10A2 MODIS product using an automated workflow. Precipitation data were obtained using WiMMed, a complete and fully distributed hydrological model that is used to map the annual rainfall and snowfall with a resolution of 30x30 m over the whole study area. It uses expert algorithms to interpolate precipitation and temperature at an hourly scale, and simulates partition of precipitation into snowfall with several methods. For each snow-related indicator (snow-covers and snowfall), a trend analysis was applied at the MODIS pixel scale during the study period (2000-2014). We applied Mann-Kendall test and Theil-Sen slope estimation in each of the pixels comprising Sierra Nevada. The trend analysis assesses the intensity, magnitude and degree of statistical significance during the period analysed. The spatial pattern of these trends was explored according to elevation ranges. Finally, we explored the relationship between trends of snow-cover related indicators and precipitation trends. Our results show that snow-cover has undergone significant changes in the last 14 years. 80 % of the pixels covering Sierra Nevada showed a negative trend in the duration of snow-cover. We also observed a delay in the snow-cover onset date (68.03 % pixels showing a positive trend in the snow-cover onset date) and an advance in the melt date (80.72 % of pixels followed a

  3. Chemical trend of exchange coupling in diluted magnetic II-VI semiconductors: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Chanier, T.; Virot, F.; Hayn, R.

    2009-05-01

    We have calculated the chemical trend of magnetic exchange parameters ( Jdd , Nα , and Nβ ) of Zn-based II-VI semiconductors ZnA ( A=O , S, Se, and Te) doped with Co or Mn. We show that a proper treatment of electron correlations by the local spin-density approximation (LSDA)+U method leads to good agreement between experimental and theoretical values of the nearest-neighbor exchange coupling Jdd between localized 3d spins in contrast to the LSDA method. The exchange couplings between localized spins and doped electrons in the conduction band Nα are in good agreement with experiment as well. But the values for Nβ (coupling to doped holes in the valence band) indicate a crossover from weak coupling (for A=Te and Se) to strong coupling (for A=O ) and a localized hole state in ZnO:Mn. This hole localization explains the apparent discrepancy between photoemission and magneto-optical data for ZnO:Mn.

  4. Chemical trends of Schottky barrier behavior on monolayer hexagonal B, Al, and Ga nitrides

    NASA Astrophysics Data System (ADS)

    Lu, Haichang; Guo, Yuzheng; Robertson, John

    2016-08-01

    The Schottky Barrier Heights (SBH) of metal layers on top of monolayer hexagonal X-nitrides (X = B, Al, Ga, and h-XN) are calculated using supercells and density functional theory so as to understand the chemical trends of contact formation on graphene and the 2D layered semiconductors such as the transition metal dichalcogenides. The Fermi level pinning factor S of SBHs on h-BN is calculated to be nearly 1, indicating no pinning. For h-AlN and h-GaN, the calculated pinning factor is about 0.63, less than for h-BN. We attribute this to the formation of stronger, chemisorptive bonds between the nitrides and the contact metal layer. Generally, the h-BN layer remains in a planar sp2 geometry and has weak physisorptive bonds to the metals, whereas h-AlN and h-GaN buckle out of their planar geometry which enables them to form the chemisorptive bonds to the metals.

  5. Chemical variations observed on Aeolis Mons in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Frydenvang, Jens; Gasda, Patrick J.; Thompson, Lucy; Hurowitz, Joel; Grotzinger, John P.; Blaney, Diana L.; Gellert, Ralf; Wiens, Roger; Vasavada, Ashwin R.; MSL Science Team

    2016-10-01

    The extraordinarily extensive exposure of hematite-, clay-, sulfate-bearing stratigraphic layers in the lower part of Aeolis Mons was the primary reason Gale Crater was selected as the landing site for the Mars Science Laboratory rover, Curiosity. 753 martian solar days (sols) after the Curiosity rover landed in Gale Crater in August 2012, and after driving more than 9 km, the Curiosity rover arrived at the first exposure of the Murray formation, the basal layer of Aeolis Mons. The Murray formation is a thinly laminated lacustrine mudstone showing stratification down to the millimeter scale. This supports the idea that the stratigraphic layers of Aeolis Mons are sedimentary, and likely deposited in a series of long-lived lakes extending into the early Hesperian time, as recently described by Grotzinger et al. (Science, vol. 350, 2015). The chemical variations observed throughout the Murray formation by the ChemCam and APXS instruments in the 600+ sols since first arriving at Aeolis Mons will be presented. While Murray remains thinly laminated throughout the 30+ vertical meters of stratigraphy explored, large chemical variations are observed. The most extreme variations arise from likely co-located detrital and diagenetic silica enrichments in Murray. Remarkably, an associated diagenetic silica enrichment is also observed in the unconformably overlying eolian sandstone of the Stimson formation in that location. The detrital enrichment provides evidence of how the source region chemistry varied as the sedimentary layers of Aeolis Mons were deposited. Conversely, the diagenetic enrichment observed across both the Murray and Stimson formations provides compelling evidence for the presence of subsurface fluids in Gale Crater, thousands to millions of years after the crater lakes disappeared. This evidence of liquid water greatly extends the timescale in which Gale Crater might have been habitable.

  6. Tropically driven and externally forced patterns of Antarctic sea ice change: reconciling observed and modeled trends

    NASA Astrophysics Data System (ADS)

    Schneider, David P.; Deser, Clara

    2018-06-01

    Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea ice extent during 1979-2013. The ice extent has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea ice trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea ice change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional ice extent due to enhanced ice motion and sea surface cooling. However, the overall sea ice trend in every ensemble member of both experiments is characterized by ice loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive ice loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea ice expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.

  7. Tropically driven and externally forced patterns of Antarctic sea ice change: reconciling observed and modeled trends

    NASA Astrophysics Data System (ADS)

    Schneider, David P.; Deser, Clara

    2017-09-01

    Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea ice extent during 1979-2013. The ice extent has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea ice trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea ice change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional ice extent due to enhanced ice motion and sea surface cooling. However, the overall sea ice trend in every ensemble member of both experiments is characterized by ice loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive ice loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea ice expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.

  8. North Atlantic Oscillation modulates total ozone winter trends

    NASA Astrophysics Data System (ADS)

    Appenzeller, Christof; Weiss, Andrea K.; Staehelin, Johannes

    2000-04-01

    The North Atlantic Oscillation (NAO) is modulating the Earth's ozone shield such that the calculated anthropogenic total ozone decrease is enhanced over Europe whereas over the North Atlantic region it is reduced (for the last 30 years). Including the NAO in a statistical model suggests a more uniform chemical winter trend compared to the strong longitudinal variation reported earlier. At Arosa (Switzerland) the trend is reduced to -2.4% per decade compared to -3.2% and at Reykjavik (Iceland) it is enhanced to -3.8% compared to 0%. The revised trend is slightly below the predictions by 2D chemical models. Decadal ozone variability is linked to variations in the dynamical structure of the atmosphere, as reflected in the tropopause pressure. The latter varies in concert with the NAO index with a distinct geographical pattern.

  9. Chemical Sensing in Process Analysis.

    ERIC Educational Resources Information Center

    Hirschfeld, T.; And Others

    1984-01-01

    Discusses: (1) rationale for chemical sensors in process analysis; (2) existing types of process chemical sensors; (3) sensor limitations, considering lessons of chemometrics; (4) trends in process control sensors; and (5) future prospects. (JN)

  10. Unexpected trend in the compositional maturity of second-cycle sand

    USGS Publications Warehouse

    Solano-Acosta, W.; Dutta, P.K.

    2005-01-01

    It is generally accepted that recycling of sandstone generates relatively more mature sand than its parent sandstone. Such maturity is accomplished mainly through chemical weathering as the chemically unstable minerals are eliminated. Because chemical weathering is ubiquitous on the Earth's surface, maturity due to recycling is expected in most geological settings. However, contrary to one's expectation, second-cycle Holocene sand, exclusively derived from sandy facies of the first-cycle Pennsylvanian-Permian Cutler Formation, is actually less mature than its first-cycle parent near Gateway, Colorado. Both the Cutler sandstone and Holocene sand were the products of similar geological processes that controlled their respective composition. In spite of such similarities, a significant difference in composition is observed. We propose that the unexpected immaturity in second-cycle Holocene sand may be due to mechanical disintegration of coarse-grained feldspar and feldspar-rich rock fragments into relatively smaller fractions. Results presented in this paper are the first quantitative estimation of recycling of parent sandstone into daughter sand, and the first observed reverse maturity trend in second-cycle sand. These unexpected results suggest the need for further research to quantitatively understand the recycling process. ?? 2005 Elsevier B.V. All rights reserved.

  11. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule.

    PubMed

    Kazuma, Emiko; Jung, Jaehoon; Ueba, Hiromu; Trenary, Michael; Kim, Yousoo

    2018-05-04

    Plasmon-induced chemical reactions of molecules adsorbed on metal nanostructures are attracting increased attention for photocatalytic reactions. However, the mechanism remains controversial because of the difficulty of direct observation of the chemical reactions in the plasmonic field, which is strongly localized near the metal surface. We used a scanning tunneling microscope (STM) to achieve real-space and real-time observation of a plasmon-induced chemical reaction at the single-molecule level. A single dimethyl disulfide molecule on silver and copper surfaces was dissociated by the optically excited plasmon at the STM junction. The STM study combined with theoretical calculations shows that this plasmon-induced chemical reaction occurred by a direct intramolecular excitation mechanism. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. A Discussion of Upper Stratospheric Ozone Asymmetry and Ozone Trend Changes

    NASA Technical Reports Server (NTRS)

    Li, Jinlong; Cunnold, Derek M.; Wang, Hsiang-Jui; Yang, Eun-Su; Newchurch, Mike J.

    2002-01-01

    Analyses from SAGE I/II version 6.0 data exhibit upper stratospheric ozone trends which are not significantly different from those in version 5.96 data. Trend calculations show larger downward trends at mid-high latitudes in the Southern Hemisphere than in the Northern Hemisphere, particularly in 1980s. There are also indications of decreasing downward trends with time from 1979 to 1999. We have used a chemical box model and the UARS measurements of long lived gases, CH4, H2O, NO(x), and temperature to show that, with a constant Cl(sub y) trend, a hemispheric ozone trend asymmetry of 1%/decade at 45 deg. around 43 km is expected due to the hemispheric differences of temperature and CH4 during late winter/early. Also ozone trends should have been approximately 1%/decade more negative from 1979-1989 than from 1989-1999 because of the chemical feedbacks. The model results further indicate that both the reported decrease in CH4 and the increase in H2O in HALOE measurements will result in a larger downward ozone trend and a decrease in the hemispheric ozone trend asymmetry.

  13. Pyroxenes as recorders of lunar basalt petrogenesis - Chemical trends due to crystal-liquid interaction.

    NASA Technical Reports Server (NTRS)

    Bence, A. E.; Papike, J. J.

    1972-01-01

    Review of the crystallization histories suggested by the chemical, crystallographic, morphological, and paragenetic relationships observed in pyroxenes from basalts collected on the Apollo 11, 12, 14, 15, and Luna 16 missions. Although the final stages of lunar basalt crystallization appear to be rapid near-surface events, the initial stages are shown to vary considerably among the different basalt types.

  14. Trends in Biomedical Education.

    ERIC Educational Resources Information Center

    Peppas, Nicholas A.; Mallinson, Richard G.

    1982-01-01

    An analysis of trends in biomedical education within chemical education is presented. Data used for the analysis included: type/level of course, subjects taught, and textbook preferences. Results among others of the 1980 survey indicate that 28 out of 79 schools responding offer at least one course in biomedical engineering. (JN)

  15. Employment in the U.S. Chemical Industry. Chemical Work Force Tops 1.1 Million.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1990

    1990-01-01

    The annual census of industrial employment, production workers, women, the workweek, scientists and engineers, chemical employment, wages, and productivity in the chemical industry is presented. Trends in the numbers of workers, productivity, and unit labor costs are illustrated in graphs. (CW)

  16. Multi-year levels and trends of non-methane hydrocarbon concentrations observed in ambient air in France

    NASA Astrophysics Data System (ADS)

    Waked, Antoine; Sauvage, Stéphane; Borbon, Agnès; Gauduin, Julie; Pallares, Cyril; Vagnot, Marie-Pierre; Léonardis, Thierry; Locoge, Nadine

    2016-09-01

    Measurements of 31 non-methane hydrocarbons (NMHCs) were carried out at three urban (Paris, 2003-2014, Strasbourg, 2002-2014 and Lyon, 2007-2014) sites in France over the period of a decade. A trend analysis was applied by means of the Mann-Kendall non-parametric test to annual and seasonal mean concentrations in order to point out changes in specific emission sources and to assess the impact of emission controls and reduction strategies. The trends were compared to those from three rural sites (Peyrusse-Vieille, 2002-2013, Tardière, 2003-2013 and Donon, 1997-2007). The results obtained showed a significant yearly decrease in pollutant concentrations over the study period and for the majority of species in the range of -1 to -7% in accordance with the decrease of NMHC emissions in France (-5 to -9%). Concentrations of long-lived species such as ethane and propane which are recognized as tracers of distant sources and natural gas remained constant. Compounds associated with combustion processes such as acetylene, propene, ethylene and benzene showed a significant decline in the range of -2% to -5% yr-1. These trends are consistent with those recently described at urban and background sites in the northern mid-latitudes and with emission inventories. C7-C9 aromatics such as toluene and xylenes as well as C4-C5 alkanes such as isopentane and isobutane also showed a significant decrease in the range of -3% to -7% yr-1. The decreasing trends in terms of % yr-1 observed at these French urban sites were typically higher for acetylene, ethylene and benzene than those reported for French rural sites of the national observatory of Measurement and Evaluation in Rural areas of trans-boundary Air pollution (MERA). The study also highlighted the difficult choice of a long term sampling site representative of the general trends of pollutant concentrations.

  17. Trends in the occurrence of MTBE in drinking water in the Northeast United States

    USGS Publications Warehouse

    Moran, M.J.

    2007-01-01

    Public water systems in Connecticut, Maine, Maryland, New Hampshire, New Jersey, and Rhode Island sampled treated drinking water from 1993-2006 and analyzed the samples for MTBE. The US Geological Survey examined trends in the occurrence of MTBE in drinking water derived from ground water in these States for two near-decadal time steps; 1993-1999 and 2000-2006. MTBE was detected in 14% of drinking water samples collected in all States from 1993-1999 and in 19% of drinking water samples collected from the same systems from 2000-2006 and this difference was statistically significant. Trends in the occurrence of MTBE in each State by individual year indicated significant positive trends in Maryland and New Hampshire. Significant, increasing trends in MTBE concentrations were observed in Maryland and Rhode Island by individual year. This is an abstract of a paper presented at the 2007 Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Assessment and Remediation Conference (Houston, TX 11/5-6/2007).

  18. Trends in aerosol abundances and distributions

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Mccormick, M. P.; Clancy, R. T.; Curran, R.; Deluisi, J.; Hamill, P.; Kent, G.; Rosen, J. M.; Toon, O. B.; Yue, G.

    1989-01-01

    The properties of aerosols that reside in the upper atmosphere are described. Special emphasis is given to the influence these aerosols have on ozone observation systems, mainly through radiative effects, and on ambient ozone concentrations, mainly through chemical effects. It has long been appreciated that stratospheric particles can interfere with the remote sensing of ozone distribution. The mechanism and magnitude of this interference are evaluated. Separate sections deal with the optical properties of upper atmospheric aerosols, long-term trends in stratospheric aerosols, perturbations of the stratospheric aerosol layer by volcanic eruptions, and estimates of the impacts that such particles have on remotely measured ozone concentrations. Another section is devoted to a discussion of the polar stratospheric clouds (PSC's). These unique clouds, recently discovered by satellite observation, are now thought to be intimately connected with the Antarctic ozone hole. Accordingly, interest in PSC's has grown considerably in recent years. This chapter describes what we know about the morphology, physical chemistry, and microphysics of PSC's.

  19. Trends in stratospheric NO2

    NASA Astrophysics Data System (ADS)

    Gruzdev, A. N.

    2009-04-01

    Data of spectrometric ground-based measurements of stratospheric column NO2 contents at stations within the Network for the Detection of Atmospheric Composition Change (NDACC) are analyzed for linear trends. The trend analysis takes into account the NO2 seasonal variation, effects of the 11-year solar and geomagnetic activity cycles, effects of the quasi-biennial oscillation and the El Nino - Southern Oscillation, and the effects of the El Chichon and Pinatubo eruptions. The latitudinal distributions of the annual and seasonal trends in NO2 have been obtained. The annual trends are mostly positive in the southern hemisphere middle and low latitudes and negative in the European sector of the northern hemisphere middle latitudes. In the high and polar latitudes of the two hemispheres, the annual estimates of trends are mostly statistically insignificant. However, a positive NO2 trend is observed at 78°S in the Antarctic, while positive and negative trends are observed in the northern hemisphere high latitudes. The maximum positive and negative trends are about 10% per decade by module. Seasonal estimates of the trends differ generally from the annual estimates. At stations of Zvenigorod, Jungfraujoch (northern hemisphere middle latitudes), Lauder, and Macquarie Island (southern hemisphere middle latitudes) the signs of the NO2 trends do not depend on season, although the trend values vary with season. At other stations, trend values, their statistical significance, and even their signs can vary with season. Nitrogen oxides affects the photochemical balance of stratospheric ozone directly and indirectly, influencing the effectiveness of ozone destruction in the chlorine cycle. The observed significant trends in stratospheric NO2 should result in noticeable perturbations of the rates of ozone destruction in the nitrogen cycle. The sensitivities of photochemical balance of stratospheric ozone to long-term changes in stratospheric NO2 and chlorine are estimated using a

  20. Random forest meteorological normalisation models for Swiss PM10 trend analysis

    NASA Astrophysics Data System (ADS)

    Grange, Stuart K.; Carslaw, David C.; Lewis, Alastair C.; Boleti, Eirini; Hueglin, Christoph

    2018-05-01

    Meteorological normalisation is a technique which accounts for changes in meteorology over time in an air quality time series. Controlling for such changes helps support robust trend analysis because there is more certainty that the observed trends are due to changes in emissions or chemistry, not changes in meteorology. Predictive random forest models (RF; a decision tree machine learning technique) were grown for 31 air quality monitoring sites in Switzerland using surface meteorological, synoptic scale, boundary layer height, and time variables to explain daily PM10 concentrations. The RF models were used to calculate meteorologically normalised trends which were formally tested and evaluated using the Theil-Sen estimator. Between 1997 and 2016, significantly decreasing normalised PM10 trends ranged between -0.09 and -1.16 µg m-3 yr-1 with urban traffic sites experiencing the greatest mean decrease in PM10 concentrations at -0.77 µg m-3 yr-1. Similar magnitudes have been reported for normalised PM10 trends for earlier time periods in Switzerland which indicates PM10 concentrations are continuing to decrease at similar rates as in the past. The ability for RF models to be interpreted was leveraged using partial dependence plots to explain the observed trends and relevant physical and chemical processes influencing PM10 concentrations. Notably, two regimes were suggested by the models which cause elevated PM10 concentrations in Switzerland: one related to poor dispersion conditions and a second resulting from high rates of secondary PM generation in deep, photochemically active boundary layers. The RF meteorological normalisation process was found to be robust, user friendly and simple to implement, and readily interpretable which suggests the technique could be useful in many air quality exploratory data analysis situations.

  1. Unit Price Scaling Trends for Chemical Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Wei; Sathre, Roger; William R. Morrow, III

    2015-08-01

    To facilitate early-stage life-cycle techno-economic modeling of emerging technologies, here we identify scaling relations between unit price and sales quantity for a variety of chemical products of three categories - metal salts, organic compounds, and solvents. We collect price quotations for lab-scale and bulk purchases of chemicals from both U.S. and Chinese suppliers. We apply a log-log linear regression model to estimate the price discount effect. Using the median discount factor of each category, one can infer bulk prices of products for which only lab-scale prices are available. We conduct out-of-sample tests showing that most of the price proxies deviatemore » from their actual reference prices by a factor less than ten. We also apply the bootstrap method to determine if a sample median discount factor should be accepted for price approximation. We find that appropriate discount factors for metal salts and for solvents are both -0.56, while that for organic compounds is -0.67 and is less representative due to greater extent of product heterogeneity within this category.« less

  2. Spectroscopic Observation of Chemical Interaction Between Impact-induced Vapor Clouds and the Ambient Atmosphere

    NASA Technical Reports Server (NTRS)

    Sugita, S.; Heineck, J. T.; Schultz, P. H.

    2000-01-01

    Chemical reactions within impact-induced vapor clouds were observed in laboratory experiments using a spectroscopic method. The results indicate that projectile-derived carbon-rich vapor reacts intensively with atmospheric nitrogen.

  3. Four Chemical Trends Will Shape the Next Decade's Directions in Perfluoroalkyl and Polyfluoroalkyl Substances Research.

    PubMed

    Kotthoff, Matthias; Bücking, Mark

    2018-01-01

    Per- and polyfluoroalkyl substances (PFAS) represent a versatile group of ubiquitously occurring chemicals of increasing regulatory concern. The past years lead to an ever expanding portfolio of detected anthropogenic PFAS in numerous products encountered in daily life. Yet no clear picture of the full range of individual substance that comprise PFAS is available and this challenges analytical and engineering sciences. Authorities struggle to cope with uncertainties in managing risk of harm posed by PFAS. This is a result of an incomplete understanding of the range of compounds that they comprise in differing products. There are analytical uncertainties identifying PFAS and estimating the concentrations of the total PFAS load individual molecules remain unknown. There are four major trends from the chemical perspective that will shape PFAS research for the next decade. Mobility: A wide and dynamic distribution of short chain PFAS due to their high polarity, persistency and volatility.Substitution of regulated substances: The ban or restrictions of individual molecules will lead to a replacement with substitutes of similar concern.Increase in structural diversity of existing PFAS molecules: Introduction of e.g., hydrogens and chlorine atoms instead of fluorine, as well as branching and cross-linking lead to a high versatility of unknown target molecules.Unknown "Dark Matter": The amount, identity, formation pathways, and transformation dynamics of polymers and PFAS precursors are largely unknown. These directions require optimized analytical setups, especially multi-methods, and semi-specific tools to determine PFAS-sum parameters in any relevant matrix.

  4. Singular vector-based targeted observations of chemical constituents: description and first application of the EURAD-IM-SVA v1.0

    NASA Astrophysics Data System (ADS)

    Goris, N.; Elbern, H.

    2015-12-01

    Measurements of the large-dimensional chemical state of the atmosphere provide only sparse snapshots of the state of the system due to their typically insufficient temporal and spatial density. In order to optimize the measurement configurations despite those limitations, the present work describes the identification of sensitive states of the chemical system as optimal target areas for adaptive observations. For this purpose, the technique of singular vector analysis (SVA), which has proven effective for targeted observations in numerical weather prediction, is implemented in the EURAD-IM (EURopean Air pollution and Dispersion - Inverse Model) chemical transport model, yielding the EURAD-IM-SVA v1.0. Besides initial values, emissions are investigated as critical simulation controlling targeting variables. For both variants, singular vectors are applied to determine the optimal placement for observations and moreover to quantify which chemical compounds have to be observed with preference. Based on measurements of the airship based ZEPTER-2 campaign, the EURAD-IM-SVA v1.0 has been evaluated by conducting a comprehensive set of model runs involving different initial states and simulation lengths. For the sake of brevity, we concentrate our attention on the following chemical compounds, O3, NO, NO2, HCHO, CO, HONO, and OH, and focus on their influence on selected O3 profiles. Our analysis shows that the optimal placement for observations of chemical species is not entirely determined by mere transport and mixing processes. Rather, a combination of initial chemical concentrations, chemical conversions, and meteorological processes determines the influence of chemical compounds and regions. We furthermore demonstrate that the optimal placement of observations of emission strengths is highly dependent on the location of emission sources and that the benefit of including emissions as target variables outperforms the value of initial value optimization with growing

  5. Relativistic Spin-Orbit Heavy Atom on the Light Atom NMR Chemical Shifts: General Trends Across the Periodic Table Explained.

    PubMed

    Vícha, Jan; Komorovsky, Stanislav; Repisky, Michal; Marek, Radek; Straka, Michal

    2018-06-12

    The importance of relativistic effects on the NMR parameters in heavy-atom (HA) compounds, particularly the SO-HALA (Spin-Orbit Heavy Atom on the Light Atom) effect on NMR chemical shifts, has been known for about 40 years. Yet, a general correlation between the electronic structure and SO-HALA effect has been missing. By analyzing 1 H NMR chemical shifts of the sixth-period hydrides (Cs-At), we discovered general electronic-structure principles and mechanisms that dictate the size and sign of the SO-HALA NMR chemical shifts. In brief, partially occupied HA valence shells induce relativistic shielding at the light atom (LA) nuclei, while empty HA valence shells induce relativistic deshielding. In particular, the LA nucleus is relativistically shielded in 5d 2 -5d 8 and 6p 4 HA hydrides and deshielded in 4f 0 , 5d 0 , 6s 0 , and 6p 0 HA hydrides. This general and intuitive concept explains periodic trends in the 1 H NMR chemical shifts along the sixth-period hydrides (Cs-At) studied in this work. We present substantial evidence that the introduced principles have a general validity across the periodic table and can be extended to nonhydride LAs. The decades-old question of why compounds with occupied frontier π molecular orbitals (MOs) cause SO-HALA shielding at the LA nuclei, while the frontier σ MOs cause deshielding is answered. We further derive connection between the SO-HALA NMR chemical shifts and Spin-Orbit-induced Electron Deformation Density (SO-EDD), a property that can be obtained easily from differential electron densities and can be represented graphically. SO-EDD provides an intuitive understanding of the SO-HALA effect in terms of the depletion/concentration of the electron density at LA nuclei caused by spin-orbit coupling due to HA in the presence of a magnetic field. Using an analogy between the SO-EDD concept and arguments from classic NMR theory, the complex question of the SO-HALA NMR chemical shifts becomes easily understandable for a wide

  6. Biomonitoring of Environmental Status and Trends (BEST) Program: selected methods for monitoring chemical contaminants and their effects in aquatic ecosystems

    USGS Publications Warehouse

    Schmitt, Christopher J.; Dethloff, Gail M.

    2000-01-01

    This document describes the suite of biological methods of the U.S. Geological Survey- Biomonitoring of Environmental Status and Trends program for monitoring chemical contaminants and their effects on fish. The methods, which were selected by panels of experts, are being field-tested in rivers of the Mississippi River, Columbia River, and Rio Grande basins. General health biomarkers include a health assessment index based on gross observation; histopathological examination of selected organs and tissues; condition factor; and the heptosomatic and splenosomatic indices. Immune system indicators are plasma lysozyme activity and measures of splenic macrophage aggregates. Reproductive biomarkers include plasma concentrations of sex steroid hormones (17b-estradiol and 11-ketotestosterone) and vitellogenin, gonadal histopathology (including reproductive stage and, in females, gonadal atresia), and the gonadosomatic index. Indicators of exposure to polycyclic aromatic and polyhalogenated hydrocarbons are the H4IIE rat hepatoma cell bioassay (performed on solvent extracts of composite fish samples) and hepatic ethoxyresorufin-O-deethylase activity. Stable nitrogen isotope ratios are used to assess the trophic position of the fish and their exposure to sewage and other animal wastes. For each indicator we describe endpoint(s) and methods, and discuss the indicator?s value and limitations for contaminant monitoring and assessment.

  7. Global Trends in Chlorophyll Concentration Observed with the Satellite Ocean Colour Data Record

    NASA Astrophysics Data System (ADS)

    Melin, F.; Vantrepotte, V.; Chuprin, A.; Grant, M.; Jackson, T.; Sathyendranath, S.

    2016-08-01

    To detect climate change signals in the data records derived from remote sensing of ocean colour, combining data from multiple missions is required, which implies that the existence of inter-mission differences be adequately addressed prior to undertaking trend studies. Trend distributions associated with merged products are compared with those obtained from single-mission data sets in order to evaluate their suitability for climate studies. Merged products originally developed for operational applications such as near-real time distribution (GlobColour) do not appear to be proper climate data records, showing large parts of the ocean with trends significantly different from trends obtained with SeaWiFS, MODIS or MERIS. On the other hand, results obtained from the Climate Change Initiative (CCI) data are encouraging, showing a good consistency with single-mission products.

  8. Investigating the Influence of Anthropogenic Forcing on Observed Mean and Extreme Sea Level Pressure Trends over the Mediterranean Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkhordarian, Armineh

    We investigate whether the observed mean sea level pressure (SLP) trends over the Mediterranean region in the period from 1975 to 2004 are significantly consistent with what 17 models projected as response of SLP to anthropogenic forcing (greenhouse gases and sulphate aerosols, GS). Obtained results indicate that the observed trends in mean SLP cannot be explained by natural (internal) variability. Externally forced changes are detectable in all seasons, except spring. The large-scale component (spatial mean) of the GS signal is detectable in all the 17 models in winter and in 12 of the 17 models in summer. However, the small-scalemore » component (spatial anomalies about the spatial mean) of GS signal is only detectable in winter within 11 of the 17 models. We also show that GS signal has a detectable influence on observed decreasing (increasing) tendency in the frequencies of extremely low (high) SLP days in winter and that these changes cannot be explained by internal climate variability. While the detection of GS forcing is robust in winter and summer, there are striking inconsistencies in autumn, where analysis points to the presence of an external forcing, which is not GS forcing.« less

  9. Investigating the Influence of Anthropogenic Forcing on Observed Mean and Extreme Sea Level Pressure Trends over the Mediterranean Region

    DOE PAGES

    Barkhordarian, Armineh

    2012-01-01

    We investigate whether the observed mean sea level pressure (SLP) trends over the Mediterranean region in the period from 1975 to 2004 are significantly consistent with what 17 models projected as response of SLP to anthropogenic forcing (greenhouse gases and sulphate aerosols, GS). Obtained results indicate that the observed trends in mean SLP cannot be explained by natural (internal) variability. Externally forced changes are detectable in all seasons, except spring. The large-scale component (spatial mean) of the GS signal is detectable in all the 17 models in winter and in 12 of the 17 models in summer. However, the small-scalemore » component (spatial anomalies about the spatial mean) of GS signal is only detectable in winter within 11 of the 17 models. We also show that GS signal has a detectable influence on observed decreasing (increasing) tendency in the frequencies of extremely low (high) SLP days in winter and that these changes cannot be explained by internal climate variability. While the detection of GS forcing is robust in winter and summer, there are striking inconsistencies in autumn, where analysis points to the presence of an external forcing, which is not GS forcing.« less

  10. Fluorine in the solar neighborhood: Chemical evolution models

    NASA Astrophysics Data System (ADS)

    Spitoni, E.; Matteucci, F.; Jönsson, H.; Ryde, N.; Romano, D.

    2018-04-01

    Context. In light of new observational data related to fluorine abundances in solar neighborhood stars, we present chemical evolution models testing various fluorine nucleosynthesis prescriptions with the aim to best fit those new data. Aim. We consider chemical evolution models in the solar neighborhood testing various nucleosynthesis prescriptions for fluorine production with the aim of reproducing the observed abundance ratios [F/O] versus [O/H] and [F/Fe] versus [Fe/H]. We study in detail the effects of various stellar yields on fluorine production. Methods: We adopted two chemical evolution models: the classical two-infall model, which follows the chemical evolution of halo-thick disk and thin disk phases; and the one-infall model, which is designed only for thin disk evolution. We tested the effects on the predicted fluorine abundance ratios of various nucleosynthesis yield sources, that is, asymptotic giant branch (AGB) stars, Wolf-Rayet (W-R) stars, Type II and Type Ia supernovae, and novae. Results: The fluorine production is dominated by AGB stars but the W-R stars are required to reproduce the trend of the observed data in the solar neighborhood with our chemical evolution models. In particular, the best model both for the two-infall and one-infall cases requires an increase by a factor of 2 of the W-R yields. We also show that the novae, even if their yields are still uncertain, could help to better reproduce the secondary behavior of F in the [F/O] versus [O/H] relation. Conclusions: The inclusion of the fluorine production by W-R stars seems to be essential to reproduce the new observed ratio [F/O] versus [O/H] in the solar neighborhood. Moreover, the inclusion of novae helps to reproduce the observed fluorine secondary behavior substantially.

  11. A Lagrangian analysis of mid-latitude stratospheric ozone variability and long-term trends.

    NASA Astrophysics Data System (ADS)

    Koch, G.; Wernli, H.; Staehelin, J.; Peter, T.

    2002-05-01

    A systematic Lagrangian investigation is performed of wintertime high-resolution stratospheric ozone soundings at Payerne, Switzerland, from January 1970 to March 2001. For every ozone sounding, 10-day backward trajectories have been calculated on 16 isentropic levels using NCEP reanalysis data. Both the minimum/maximum latitude and potential vorticity (PV) averaged along the trajectories are used as indicators of the air parcels' ``origin''. The importance of transport for the understandin g of single ozone profiles is confirmed by a statistical analysis which shows that negative/positive ozone deviations gener ally coincide with transport from regions with climatologically low/high ozone values. The stable relationship between PV and ozone for the 32 year period indicates either no direct chemical impact or no temporal change of this impact. In the upper layer the PV-ozone relationship changes significantly after 1987 and a separate trend analysis for air masses transported from the polar, midlatitude and subtropical regions shows negative ozone trends in all three categories (with a maximum for the polar region). This is not direct evidence for, but would be in agreement with, an increased chemical ozone depletion in the Arctic since the late 1980s. The reasons for the negative trend in the mid-stratospheric air masses with subtropical origin that are in qualitative agreement with recent satellite observations are presently unknown.

  12. Stratospheric temperature trends: History of our evolving understanding

    NASA Astrophysics Data System (ADS)

    Seidel, D. J.; Gillett, N. P.; Lanzante, J.; Shine, K. P.; Thorne, P.

    2010-12-01

    Changes in greenhouse gas and stratospheric ozone concentrations are known to force long-term trends in stratospheric temperature. Therefore, national and international assessments of climate change and stratospheric ozone depletion over the past several decades have included discussion of observed and projected stratospheric temperature trends. Similarly, tropospheric temperature trends have figured prominently in the climate change literature; they have been the subject of considerable controversy. Although many of the same modeling and observational tools have been applied, and there are many common scientific issues in both regions of the atmosphere, stratospheric temperatures have not captured the imagination of the public, the popular press and public policy community. We present an historical review of our evolving understanding of stratospheric temperature trends, including both observational and modeling perspectives, from the 1970’s to present. Comparisons and contrasts will be drawn between the stratospheric and tropospheric temperature trend literature, including observing systems, dataset development for trend estimates, modeling approaches, and associated uncertainties. Recent developments will be highlighted.

  13. A TIME-TRENDS STUDY OF THE OCCURRENCES AND ...

    EPA Pesticide Factsheets

    Polychlorinated dibenzo-p-dioxins (CDDs), polychlorinated dibenzofurans (CDFs) and certain non- and mono-ortho substituted polychlorinated biphenyls (cp-PCBs) are a general class of chlorinated aromatic compounds that are considered as dioxin-like. Because these chemicals are highly toxic, are resistant to physical, chemical and biological degradation and transformation processes, are highly lipophilic and bioaccumulate into ecological and agricultural food chains, attention has been directed to the identification of anthropogenic source activities with the objective of reducing the overall environmental burden. In this regard, certain fundamental questions arise as to environmental trends over time in terms of environmental concentrations and fluxes to environmental sinks. When did these chemicals initially appear in the general environment and are they related to anthropogenic activities? What has been the chronology of environmental burden from the recent time to decades in the past in terms of environmental concentrations and fluxes to the sink? Is there evidence of any trends in environmental burden with time? To address these fundamental questions, the United States Environmental Protection Agency (USEPA) in collaboration with the United States Department of Energy (USDOE) has completed a time-trends study of the occurrences and levels of CDDs, CDFs and cp-PCBs in the U.S. environment using dateable sediment deposits obtained from 11 freshwater lake

  14. Job Prospects for Chemical Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1985-01-01

    After several lean years, chemical engineering (a popular discipline among women) is witnessing a higher job demand for new graduates. Companies show a trend toward specialty chemicals with resultant needs for more engineering talent. Other opportunities in the field include agriculture and food processing, environmental control, biotechnology,…

  15. Trends, interannual variability, and seasonal cycle of atmospheric methane over the western Pacific observed using voluntary observing ships

    NASA Astrophysics Data System (ADS)

    Terao, Y.; Kim, H.; Mukai, H.; Nojiri, Y.; Machida, T.; Tohjima, Y.; Saeki, T.; Maksyutov, S.

    2012-12-01

    We present an analysis of trends, interannual variability (IAV), and seasonal cycle of atmospheric methane (CH4) over the western Pacific between 55N and 35S from 1994 to 2011. Observations were made by the National Institute for Environmental Studies (NIES), Center for Global Environmental Research (CGER), using voluntary observation ships sailing between Japan and Australia/New Zealand and between Japan and North America, sampling background maritime air quasi-monthly with high resolution in latitude. We found remarkable phenomena in IAV of CH4 in the northern tropics over the western Pacific: 1) the high growth rate of 20 ppb/yr in mid-1997 ahead of the global increase in 1998, 2) the suppression of CH4 growth in 2007, 3) significantly smaller amplitude of seasonal cycle in 1999-2000 and in 2008. Results from the simulation and meteorological analysis indicated that the IAV in atmospheric circulation associated with the El Nino and La Nina significantly contributed to these events. Our observations were made at sites located relatively close to the large CH4 sources of East and Southeast Asia, which resulted in the high sensitivity of measured CH4 mixing ratios in the northern tropics to changes in atmospheric transport and emissions from East and Southeast Asia. We will show the results from inverse analysis using our ship measurements as well as other global dataset. The CH4 data set we presented here would be valuable in accurately and quantitatively estimating the global CH4 budget.

  16. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites

    NASA Astrophysics Data System (ADS)

    Belward, Alan S.; Skøien, Jon O.

    2015-05-01

    This paper presents a compendium of satellites under civilian and/or commercial control with the potential to gather global land-cover observations. From this we show that a growing number of sovereign states are acquiring capacity for space based land-cover observations and show how geopolitical patterns of ownership are changing. We discuss how the number of satellites flying at any time has progressed as a function of increased launch rates and mission longevity, and how the spatial resolutions of the data they collect has evolved. The first such satellite was launched by the USA in 1972. Since then government and/or private entities in 33 other sovereign states and geopolitical groups have chosen to finance such missions and 197 individual satellites with a global land-cover observing capacity have been successfully launched. Of these 98 were still operating at the end of 2013. Since the 1970s the number of such missions failing within 3 years of launch has dropped from around 60% to less than 20%, the average operational life of a mission has almost tripled, increasing from 3.3 years in the 1970s to 8.6 years (and still lengthening), the average number of satellites launched per-year/per-decade has increased from 2 to 12 and spatial resolution increased from around 80 m to less than 1 m multispectral and less than half a meter for panchromatic; synthetic aperture radar resolution has also fallen, from 25 m in the 1970s to 1 m post 2007. More people in more countries have access to data from global land-cover observing spaceborne missions at a greater range of spatial resolutions than ever before. We provide a compendium of such missions, analyze the changes and shows how innovation, the need for secure data-supply, national pride, falling costs and technological advances may underpin the trends we document.

  17. Do contemporary (1980-2015) emissions determine the elemental carbon deposition trend at Holtedahlfonna glacier, Svalbard?

    NASA Astrophysics Data System (ADS)

    Ruppel, Meri M.; Soares, Joana; Gallet, Jean-Charles; Isaksson, Elisabeth; Martma, Tõnu; Svensson, Jonas; Kohler, Jack; Pedersen, Christina A.; Manninen, Sirkku; Korhola, Atte; Ström, Johan

    2017-10-01

    The climate impact of black carbon (BC) is notably amplified in the Arctic by its deposition, which causes albedo decrease and subsequent earlier snow and ice spring melt. To comprehensively assess the climate impact of BC in the Arctic, information on both atmospheric BC concentrations and deposition is essential. Currently, Arctic BC deposition data are very scarce, while atmospheric BC concentrations have been shown to generally decrease since the 1990s. However, a 300-year Svalbard ice core showed a distinct increase in EC (elemental carbon, proxy for BC) deposition from 1970 to 2004 contradicting atmospheric measurements and modelling studies. Here, our objective was to decipher whether this increase has continued in the 21st century and to investigate the drivers of the observed EC deposition trends. For this, a shallow firn core was collected from the same Svalbard glacier, and a regional-to-meso-scale chemical transport model (SILAM) was run from 1980 to 2015. The ice and firn core data indicate peaking EC deposition values at the end of the 1990s and lower values thereafter. The modelled BC deposition results generally support the observed glacier EC variations. However, the ice and firn core results clearly deviate from both measured and modelled atmospheric BC concentration trends, and the modelled BC deposition trend shows variations seemingly independent from BC emission or atmospheric BC concentration trends. Furthermore, according to the model ca. 99 % BC mass is wet-deposited at this Svalbard glacier, indicating that meteorological processes such as precipitation and scavenging efficiency have most likely a stronger influence on the BC deposition trend than BC emission or atmospheric concentration trends. BC emission source sectors contribute differently to the modelled atmospheric BC concentrations and BC deposition, which further supports our conclusion that different processes affect atmospheric BC concentration and deposition trends

  18. Unconventional Constraints on Nitrogen Chemistry using DC3 Observations and Trajectory-based Chemical Modeling

    NASA Astrophysics Data System (ADS)

    Shu, Q.; Henderson, B. H.

    2017-12-01

    Chemical transport models underestimate nitrogen dioxide observations in the upper troposphere (UT). Previous research in the UT succeeded in combining model predictions with field campaign measurements to demonstrate that the nitric acid formation rate (HO + NO2 → HNO3 (R1)) is overestimated by 22% (Henderson et al., 2012). A subsequent publication (Seltzer et al., 2015) demonstrated that single chemical constraint alters ozone and aerosol formation/composition. This work attempts to replicate previous chemical constraints with newer observations and a different modeling framework. We apply the previously successful constraint framework to Deep Convection Clouds and Chemistry (DC3). DC3 is a more recent field campaign where simulated nitrogen imbalances still exist. Freshly convected air parcels, identified in the DC3 dataset, as initial coordinates to initiate Lagrangian trajectories. Along each trajectory, we simulate the air parcel chemical state. Samples along the trajectories will form ensembles that represent possible realizations of UT air parcels. We then apply Bayesian inference to constrain nitrogen chemistry and compare results to the existing literature. Our anticipated results will confirm overestimation of HNO3 formation rate in previous work and provide further constraints on other nitrogen reaction rate coefficients that affect terminal products from NOx. We will particularly focus on organic nitrate chemistry that laboratory literature has yet to fully address. The results will provide useful insights into nitrogen chemistry that affects climate and human health.

  19. Four chemical trends will shape the next decade's directions in Perfluoroalkyl and Polyfluoroalkyl substances research

    NASA Astrophysics Data System (ADS)

    Kotthoff, Matthias; Bücking, Mark

    2018-04-01

    Per- and polyfluoroalkyl substances (PFAS) represent a versatile group of ubiquitously occurring chemicals of increasing regulatory concern. The past years lead to an ever expanding portfolio of detected anthropogenic PFAS in numerous products encountered in daily life. Yet no clear picture of the full range of individual substance that comprise PFAS is available and this challenges analytical and engineering sciences. Authorities struggle to cope with uncertainties in managing risk of harm posed by PFAS.This is a result of an incomplete understanding of the range of compounds that they comprise in differing products. There are analytical uncertainties identifying PFAS and estimating the concentrations of the total PFAS loadindividual molecules remain unknown. There are four major trends from the chemical perspective that will shape PFAS research for the next decade. 1.Mobility: A wide and dynamic distribution of short chain PFAS due to their high polarity, persistency and volatility. 2.Substitution of regulated substances: The ban or restrictions of individual molecules will lead to a replacement with substitutes of similar concern. 3.Increase in structural diversity of existing PFAS molecules: Introduction of e.g. hydrogens and chlorine atoms instead of fluorine, as well as branching and cross-linking lead to a high versatility of unknown target molecules. 4. Unknown “Dark Matter”: The amount, identity, formation pathways, and transformation dynamics of polymers and PFAS precursors are largely unknown. These directions require optimized analytical setups, especially multi-methods, and semi-specific tools to determine PFAS-sum parameters in any relevant matrix.

  20. Four Chemical Trends Will Shape the Next Decade's Directions in Perfluoroalkyl and Polyfluoroalkyl Substances Research

    PubMed Central

    Kotthoff, Matthias; Bücking, Mark

    2018-01-01

    Per- and polyfluoroalkyl substances (PFAS) represent a versatile group of ubiquitously occurring chemicals of increasing regulatory concern. The past years lead to an ever expanding portfolio of detected anthropogenic PFAS in numerous products encountered in daily life. Yet no clear picture of the full range of individual substance that comprise PFAS is available and this challenges analytical and engineering sciences. Authorities struggle to cope with uncertainties in managing risk of harm posed by PFAS. This is a result of an incomplete understanding of the range of compounds that they comprise in differing products. There are analytical uncertainties identifying PFAS and estimating the concentrations of the total PFAS load individual molecules remain unknown. There are four major trends from the chemical perspective that will shape PFAS research for the next decade. Mobility: A wide and dynamic distribution of short chain PFAS due to their high polarity, persistency and volatility.Substitution of regulated substances: The ban or restrictions of individual molecules will lead to a replacement with substitutes of similar concern.Increase in structural diversity of existing PFAS molecules: Introduction of e.g., hydrogens and chlorine atoms instead of fluorine, as well as branching and cross-linking lead to a high versatility of unknown target molecules.Unknown “Dark Matter”: The amount, identity, formation pathways, and transformation dynamics of polymers and PFAS precursors are largely unknown. These directions require optimized analytical setups, especially multi-methods, and semi-specific tools to determine PFAS-sum parameters in any relevant matrix. PMID:29675408

  1. TREND ANALYSIS OF WATER QUALITY MONITORING DATA FOR COBB COUNTY, GEORGIA

    EPA Science Inventory

    The Cobb County Water Protection Division Water Quality Laboratory has conducted quarterly chemical monitoring from 1995-2005. Here we analyze these data for temporal trends in 20 Piedmont streams in the Chattahoochee and Etowah river basins. We found trends through time at mos...

  2. Trends of ozone total columns and vertical distribution from FTIR observations at 8 NDACC stations around the globe

    NASA Astrophysics Data System (ADS)

    Vigouroux, C.; Blumenstock, T.; Coffey, M.; Errera, Q.; García, O.; Jones, N. B.; Hannigan, J. W.; Hase, F.; Liley, B.; Mahieu, E.; Mellqvist, J.; Notholt, J.; Palm, M.; Persson, G.; Schneider, M.; Servais, C.; Smale, D.; Thölix, L.; De Mazière, M.

    2014-09-01

    Ground-based Fourier transform infrared (FTIR) measurements of solar absorption spectra can provide ozone total columns with a precision of 2%, but also independent partial column amounts in about four vertical layers, one in the troposphere and three in the stratosphere up to about 45 km, with a precision of 5-6%. We use eight of the Network for the Detection of Atmospheric Compososition Change (NDACC) stations having a long-term time series of FTIR ozone measurements to study the total and vertical ozone trends and variability, namely: Ny-Alesund (79° N), Thule (77° N), Kiruna (68° N), Harestua (60° N), Jungfraujoch (47° N), Izaña (28° N), Wollongong (34° S) and Lauder (45° S). The length of the FTIR time-series varies by station, but is typically from about 1995 to present. We applied to the monthly means of the ozone total and four partial columns a stepwise multiple regression model including the following proxies: solar cycle, Quasi-Biennial Oscillation (QBO), El Niño-Southern Oscillation (ENSO), Arctic and Antarctic Oscillation (AO/AAO), tropopause pressure (TP), equivalent latitude (EL), Eliassen-Palm flux (EPF), and volume of polar stratospheric clouds (VPSC). At the Arctic stations, the trends are found mostly negative in the troposphere and lower stratosphere, very mixed in the middle stratosphere, positive in the upper stratosphere due to a large increase in the 1995-2003 period, and non-significant when considering the total columns. The trends for mid-latitude and subtropical stations are all non-significant, except at Lauder in the troposphere and upper stratosphere, and at Wollongong for the total columns and the lower and middle stratospheric columns; at Jungfraujoch, the upper stratospheric trend is close to significance (+0.9 ± 1.0 % decade-1). Therefore, some signs of the onset of ozone mid-latitude recovery are observed only in the Southern Hemisphere, while a few more years seems to be needed to observe it at the northern mid

  3. Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe

    NASA Astrophysics Data System (ADS)

    Vigouroux, C.; Blumenstock, T.; Coffey, M.; Errera, Q.; García, O.; Jones, N. B.; Hannigan, J. W.; Hase, F.; Liley, B.; Mahieu, E.; Mellqvist, J.; Notholt, J.; Palm, M.; Persson, G.; Schneider, M.; Servais, C.; Smale, D.; Thölix, L.; De Mazière, M.

    2015-03-01

    Ground-based Fourier transform infrared (FTIR) measurements of solar absorption spectra can provide ozone total columns with a precision of 2% but also independent partial column amounts in about four vertical layers, one in the troposphere and three in the stratosphere up to about 45km, with a precision of 5-6%. We use eight of the Network for the Detection of Atmospheric Composition Change (NDACC) stations having a long-term time series of FTIR ozone measurements to study the total and vertical ozone trends and variability, namely, Ny-Ålesund (79° N), Thule (77° N), Kiruna (68° N), Harestua (60° N), Jungfraujoch (47° N), Izaña (28° N), Wollongong (34° S) and Lauder (45° S). The length of the FTIR time series varies by station but is typically from about 1995 to present. We applied to the monthly means of the ozone total and four partial columns a stepwise multiple regression model including the following proxies: solar cycle, quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO), Arctic and Antarctic Oscillation (AO/AAO), tropopause pressure (TP), equivalent latitude (EL), Eliassen-Palm flux (EPF), and volume of polar stratospheric clouds (VPSC). At the Arctic stations, the trends are found mostly negative in the troposphere and lower stratosphere, very mixed in the middle stratosphere, positive in the upper stratosphere due to a large increase in the 1995-2003 period, and non-significant when considering the total columns. The trends for mid-latitude and subtropical stations are all non-significant, except at Lauder in the troposphere and upper stratosphere and at Wollongong for the total columns and the lower and middle stratospheric columns where they are found positive. At Jungfraujoch, the upper stratospheric trend is close to significance (+0.9 ± 1.0% decade-1). Therefore, some signs of the onset of ozone mid-latitude recovery are observed only in the Southern Hemisphere, while a few more years seem to be needed to observe it at

  4. Urinary Concentrations of Parabens and Other Antimicrobial Chemicals and Their Association with Couples’ Fecundity

    PubMed Central

    Smarr, Melissa M.; Sundaram, Rajeshwari; Honda, Masato; Kannan, Kurunthachalam; Louis, Germaine M. Buck

    2016-01-01

    Background: Human exposure to parabens and other antimicrobial chemicals is continual and pervasive. The hormone-disrupting properties of these environmental chemicals may adversely affect human reproduction. Objective: We aimed to prospectively assess couples’ urinary concentrations of antimicrobial chemicals in the context of fecundity, measured as time to pregnancy (TTP). Methods: In a prospective cohort of 501 couples, we examined preconception urinary chemical concentrations of parabens, triclosan and triclorcarban in relation to TTP; chemical concentrations were modeled both continuously and in quartiles. Cox’s proportional odds models for discrete survival time were used to estimate fecundability odds ratios (FORs) and 95% confidence intervals (CIs) adjusting for a priori–defined confounders. In light of TTP being a couple-dependent outcome, both partner and couple-based exposure models were analyzed. In all models, FOR estimates < 1.0 denote diminished fecundity (longer TTP). Results: Overall, 347 (69%) couples became pregnant. The highest quartile of female urinary methyl paraben (MP) concentrations relative to the lowest reflected a 34% reduction in fecundity (aFOR = 0.66; 95% CI: 0.45, 0.97) and remained so when accounting for couples’ concentrations (aFOR = 0.63; 95% CI: 0.41, 0.96). Similar associations were observed between ethyl paraben (EP) and couple fecundity for both partner and couple-based models (p-trend = 0.02 and p-trend = 0.05, respectively). No associations were observed with couple fecundity when chemicals were modeled continuously. Conclusions: Higher quartiles of preconception urinary concentrations of MP and EP among female partners were associated with reduced couple fecundity in partner-specific and couple-based exposure models. Citation: Smarr MM, Sundaram R, Honda M, Kannan K, Buck Louis GM. 2016. Urinary concentrations of parabens and other antimicrobial chemicals and their association with couples’ fecundity. Environ

  5. NC-AFM observation of atomic scale structure of rutile-type TiO2(110) surface prepared by wet chemical process.

    PubMed

    Namai, Yoshimichi; Matsuoka, Osamu

    2006-04-06

    We succeeded in observing the atomic scale structure of a rutile-type TiO2(110) single-crystal surface prepared by the wet chemical method of chemical etching in an acid solution and surface annealing in air. Ultrahigh vacuum noncontact atomic force microscopy (UHV-NC-AFM) was used for observing the atomic scale structures of the surface. The UHV-NC-AFM measurements at 450 K, which is above a desorption temperature of molecularly adsorbed water on the TiO2(110) surface, enabled us to observe the atomic scale structure of the TiO2(110) surface prepared by the wet chemical method. In the UHV-NC-AFM measurements at room temperature (RT), however, the atomic scale structure of the TiO2(110) surface was not observed. The TiO2(110) surface may be covered with molecularly adsorbed water after the surface was prepared by the wet chemical method. The structure of the TiO2(110) surface that was prepared by the wet chemical method was consistent with the (1 x 1) bulk-terminated model of the TiO2(110) surface.

  6. Report of the International Ozone Trends Panel 1988, volume 2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Chapters on the following topics are presented: trends in stratospheric temperature; theory and observations- model simulations of the period 1955-1985; trends in source gases; trends in stratospheric minor constituents; trends in aerosol abundances and distribution; and observations and theories related to antarctic ozone.

  7. Climatic trends over Ethiopia: regional signals and drivers

    USGS Publications Warehouse

    Jury, Mark R.; Funk, Christopher C.

    2013-01-01

    This study analyses observed and projected climatic trends over Ethiopia, through analysis of temperature and rainfall records and related meteorological fields. The observed datasets include gridded station records and reanalysis products; while projected trends are analysed from coupled model simulations drawn from the IPCC 4th Assessment. Upward trends in air temperature of + 0.03 °C year−1 and downward trends in rainfall of − 0.4 mm month−1 year−1 have been observed over Ethiopia's southwestern region in the period 1948-2006. These trends are projected to continue to 2050 according to the Geophysical Fluid Dynamics Lab model using the A1B scenario. Large scale forcing derives from the West Indian Ocean where significant warming and increased rainfall are found. Anticyclonic circulations have strengthened over northern and southern Africa, limiting moisture transport from the Gulf of Guinea and Congo. Changes in the regional Walker and Hadley circulations modulate the observed and projected climatic trends. Comparing past and future patterns, the key features spread westward from Ethiopia across the Sahel and serve as an early warning of potential impacts.

  8. Air Pollution Instrumentation: A Trend toward Physical Methods

    ERIC Educational Resources Information Center

    Maugh, Thomas H., II

    1972-01-01

    Reviews reasons for the trend from wet chemical'' analytic techniques for measuring air pollutants toward physical methods based upon chemiluminescence, electrochemical transduction, flame ionization coupled with gas chromotography, and spectroscopy. (AL)

  9. Recent trends and important developments in propolis research

    PubMed Central

    2005-01-01

    The newest developments in propolis pharmacological research are summarized. The problem regarding biological studies, caused by the chemical variability of propolis, is discussed. The most important trends and developments in recent propolis research are outlined: biological studies performed with chemically characterized samples, bioassay-guided studies of active principles and comparative biological studies of propolis of different origin and chemical composition. These types of studies are extremely valuable with respect to propolis standardization and practical applications in therapy. They will allow scientists to connect a particular chemical propolis type to a specific type of biological activity and formulate recommendations for practitioners. PMID:15841275

  10. Results from the NOAA National Status and Trends Program on distribution and effects of chemical contamination in the coastal and estuarine United States.

    PubMed

    O'Connor, T P; Ehler, C N

    1991-04-01

    The NOAA National Status and Trends (NS&T) Program has been monitoring chemical contamination in fish livers, and surface sediments since 1984 and in molluscan tissue and sediments since 1986. Data from fine-grained sediment at 175 sites are used to describe the spatial distribution of contamination throughout the coastal and estuarine United States. Highest levels are generally found in, and considered representative of, urban areas. It should be noted, however, that these levels are not as high as have been found near discharge pipes or in isolated industrial areas through other monitoring efforts. Dramatic biological responses, such as liver tumors in fish or apparently toxic contaminant levels in sediment, are found infrequently. Subtle biological changes, especially those that affect reproductive ability, are being sought. Data from three annual collections of mollusks have been used to identify early signals of temporal trends in contamination at NS&T sites.

  11. A Study of Chemical Composition of δ Scuti-Type Stars Based on the Observations with the BTA and RTT-150

    NASA Astrophysics Data System (ADS)

    Galeev, A. I.; Berdnikova, V. M.; Ivanova, D. V.; Kudryavtsev, D. O.; Shimanskaya, N. N.; Shimansky, V. V.; Balashova, M. O.

    2017-06-01

    The results of a study of a sample of δ Scuti-type stars obtained from the observations with the BTA and RTT-150 are presented. Based on photometric data, we measured and analyzed the fundamental parameters of all the studied stars. For eight stars (for two of them for the first time), the fundamental parameters of the atmospheres (Teff, log g, [Fe/H]) and the chemical composition for 29 elements in the LTE-approximation are received using spectroscopic observations. The chemical composition analysis demonstrates both the solar abundances of chemical elements and the anomalies of chemical composition typical of Am stars in the studied sample of δ Scuti-type stars.

  12. Mediterranean sea water budget long-term trend inferred from salinity observations

    NASA Astrophysics Data System (ADS)

    Skliris, N.; Zika, J. D.; Herold, L.; Josey, S. A.; Marsh, R.

    2018-01-01

    Changes in the Mediterranean water cycle since 1950 are investigated using salinity and reanalysis based air-sea freshwater flux datasets. Salinity observations indicate a strong basin-scale multi-decadal salinification, particularly in the intermediate and deep layers. Evaporation, precipitation and river runoff variations are all shown to contribute to a very strong increase in net evaporation of order 20-30%. While large temporal uncertainties and discrepancies are found between E-P multi-decadal trend patterns in the reanalysis datasets, a more robust and spatially coherent structure of multi-decadal change is obtained for the salinity field. Salinity change implies an increase in net evaporation of 8 to 12% over 1950-2010, which is considerably lower than that suggested by air-sea freshwater flux products, but still largely exceeding estimates of global water cycle amplification. A new method based on water mass transformation theory is used to link changes in net evaporation over the Mediterranean Sea with changes in the volumetric distribution of salinity. The water mass transformation distribution in salinity coordinates suggests that the Mediterranean basin salinification is driven by changes in the regional water cycle rather than changes in salt transports at the straits.

  13. Project update: evaluating the community health legacy of WWI chemical weapons testing.

    PubMed

    Fox, Mary A

    2014-10-01

    The Spring Valley community of Washington, District of Columbia, was built on the site of a World War I chemical weapons lab where testing activities had distributed arsenic to surface soil and waste disposal had resulted in localized subsurface contamination. In previous work, findings were suggestive of potential site-related health issues, although no evidence of cancer clustering was found. In follow-up, we updated the community health assessment and explored time trends for several arsenic-related cancers. Health indicators continue to be very good in Spring Valley. For all major causes of mortality, Spring Valley rates were lower than United States (US) rates with most substantially lower (20-80 %); rates for heart diseases, Alzheimer's, and essential hypertension and related kidney disease were only slightly lower than US rates (3-8 %). Incidence and mortality rates for the selected cancers in the Spring Valley area were lower than US rates. Small non-statistically significant increasing time trends were observed in Spring Valley for incidence of two arsenic-related cancers: bladder and lung and bronchus. A moderate statistically significant increasing rate trend was observed for lung and bronchus cancer mortality in Spring Valley (p < 0.01). Lung and bronchus cancer mortality rates were also increasing in the Chevy Chase community, the local comparison area closely matched to Spring Valley on important demographic variables, suggesting that the observed increases may not be site-related. A full profile of common cancer site rates and trends for both study areas was suggested to better understand the rate trend findings but no epidemiological study was recommended.

  14. Modeling the Dynamic Change of Air Quality and its Response to Emission Trends

    NASA Astrophysics Data System (ADS)

    Zhou, Wei

    This thesis focuses on evaluating atmospheric chemistry and transport models' capability in simulating the chemistry and dynamics of power plant plumes, evaluating their strengths and weaknesses in predicting air quality trends at regional scales, and exploring air quality trends in an urban area. First, the Community Mutlti-scale Air Quality (CMAQ) model is applied to simulate the physical and chemical evolution of power plant plumes (PPPs) during the second Texas Air Quality Study (TexAQS) in 2006. SO2 and NOy were observed to be rapidly removed from PPPs on cloudy days but not on cloud-free days, indicating efficient aqueous processing of these compounds in clouds, while the model fails to capture the rapid loss of SO2 and NOy in some plumes on the cloudy day. Adjustments to cloud liquid water content (QC) and the default metal concentrations in the cloud module could explain some of the SO 2 loss while NOy in the model was insensitive to QC. Second, CMAQ is applied to simulate the ozone (O3) change after the NO x SIP Call and mobile emission controls in the eastern U.S. from 2002 to 2006. Observed downward changes in 8-hour O3 concentrations in the NOx SIP Call region were under-predicted by 26%--66%. The under-prediction in O3 improvements could be alleviated by 5%--31% by constraining NOx emissions in each year based on observed NOx concentrations while temperature biases or uncertainties in chemical reactions had minor impact on simulated O3 trends. Third, changes in ozone production in the Houston area is assessed with airborne measurements from TexAQS 2000 and 2006. Simultaneous declines in nitrogen oxides (NOx=NO+NO2) and highly reactive Volatile Organic Compounds (HRVOCs) were observed in the Houston Ship Channel (HSC). The reduction in HRVOCs led to the decline in total radical concentration by 20-50%. Rapid ozone production rates in the Houston area declined by 40-50% from 2000 to 2006, to which the reduction in NOx and HRVOCs had the similar

  15. United States forest disturbance trends observed with landsat time series

    Treesearch

    Jeffrey G. Masek; Samuel N. Goward; Robert E. Kennedy; Warren B. Cohen; Gretchen G. Moisen; Karen Schleweiss; Chengquan Huang

    2013-01-01

    Disturbance events strongly affect the composition, structure, and function of forest ecosystems; however, existing US land management inventories were not designed to monitor disturbance. To begin addressing this gap, the North American Forest Dynamics (NAFD) project has examined a geographic sample of 50 Landsat satellite image time series to assess trends in forest...

  16. Trends in active pharmaceutical ingredient salt selection based on analysis of the Orange Book database.

    PubMed

    Paulekuhn, G Steffen; Dressman, Jennifer B; Saal, Christoph

    2007-12-27

    The Orange Book database published by the U.S. Drug and Food Administration (FDA) was analyzed for the frequency of occurrence of different counterions used for the formation of pharmaceutical salts. The data obtained from the present analysis of the Orange Book are compared to reviews of the Cambridge Structural Database (CSD) and of the Martindale "The Extra Pharmacopoeia". As well as showing overall distributions of counterion usage, results are broken down into 5-year increments to identify trends in counterion selection. Chloride ions continue to be the most frequently utilized anionic counterions for the formation of salts as active pharmaceutical ingredients (APIs), while sodium ions are most widely utilized for the formation of salts starting from acidic molecules. A strong trend toward a wider variety of counterions over the past decade is observed. This trend can be explained by a stronger need to improve physical chemical properties of research and development compounds.

  17. Inference of Surface Chemical and Physical Properties Using Mid-Infrared (MIR) Spectral Observations

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.

    2016-01-01

    Reflected or emitted energy from solid surfaces in the solar system can provide insight into thermo-physical and chemical properties of the surface materials. Measurements have been obtained from instruments located on Earth-based telescopes and carried on several space missions. The characteristic spectral features commonly observed in Mid-Infrared (MIR) spectra of minerals will be reviewed, along with methods used for compositional interpretations of MIR emission spectra. The influence of surface grain size, and space weathering processes on MIR emissivity spectra will also be discussed. Methods used for estimating surface temperature, emissivity, and thermal inertias from MIR spectral observations will be reviewed.

  18. Trends in detectable viral load by calendar year in the Australian HIV observational database.

    PubMed

    Law, Matthew G; Woolley, Ian; Templeton, David J; Roth, Norm; Chuah, John; Mulhall, Brian; Canavan, Peter; McManus, Hamish; Cooper, David A; Petoumenos, Kathy

    2011-02-23

    Recent papers have suggested that expanded combination antiretroviral treatment (cART) through lower viral load may be a strategy to reduce HIV transmission at a population level. We assessed calendar trends in detectable viral load in patients recruited to the Australian HIV Observational Database who were receiving cART. Patients were included in analyses if they had started cART (defined as three or more antiretrovirals) and had at least one viral load assessment after 1 January 1997. We analyzed detectable viral load (>400 copies/ml) in the first and second six months of each calendar year while receiving cART. Repeated measures logistic regression methods were used to account for within and between patient variability. Rates of detectable viral load were predicted allowing for patients lost to follow up. Analyses were based on 2439 patients and 31,339 viral load assessments between 1 January 1997 and 31 March 2009. Observed detectable viral load in patients receiving cART declined to 5.3% in the first half of 2009. Predicted detectable viral load based on multivariate models, allowing for patient loss to follow up, also declined over time, but at higher levels, to 13.8% in 2009. Predicted detectable viral load in Australian HIV Observational Database patients receiving cART declined over calendar time, albeit at higher levels than observed. However, over this period, HIV diagnoses and estimated HIV incidence increased in Australia.

  19. Spring Blooms Observed with Biochemical Profiling Floats from a Chemical and Biological Perspective

    NASA Astrophysics Data System (ADS)

    Plant, J. N.; Johnson, K. S.; Sakamoto, C.; Jannasch, H. W.; Coletti, L. J.; Elrod, V.

    2015-12-01

    Recently there has been renewed interest in the mechanisms which control the seasonal increases in plankton biomass (spring blooms). Changes in physical and chemical forcing (light, wind, heat and nutrients) may increase the specific growth rate of phytoplankton. These changes may also shift the predator - prey relationships within the food web structure, which can alter the balance between plankton growth and loss rates. Biogeochemical profiling floats provide a means to observe the seasonal evolution of spring blooms from a physical, chemical and biological perspective in near real time. Floats equipped with optical sensors to measure nitrate, oxygen, chlorophyll fluorescence, and optical backscatter now have a presence in many ocean regions including the North Pacific, Subarctic Pacific, North Atlantic, South Atlantic and the Southern Ocean. Data from these regions are used to compare and contrast the evolution of spring blooms. The evolution of the bloom is examined using both chemical (oxygen, nitrate) and biooptical (phytoplankton from chlorophyll fluorescence and particulate organic carbon from optical backscatter) sensors under vastly different environmental conditions.

  20. Uses of NHANES biomarker data for chemical risk ...

    EPA Pesticide Factsheets

    Background. Each year, the US NHANES measures hundreds of chemical biomarkers in samples from thousands of study participants. These biomarker measurements are meant to track trends and identify subsets of the US population with elevated exposures. There is now interest in further utilizing the NHANES data to inform chemical risk assessments. Objectives. This article highlights: 1) the extent to which NHANES chemical biomarker data have been evaluated, 2) groups of chemicals that have been studied, 3) data analysis approaches, and 4) opportunities for using these data to inform chemical risk assessments.Methods. A literature search (1999-2013) was performed to identify publications in which NHANES data were reported. Manual curation identified only the subset of publications that clearly utilized chemical biomarker data. This subset was evaluated for chemical groupings, data analysis approaches, and overall trends.Results. A small percentage of yearly NHANES-related publications reported on chemical biomarkers (8% yearly average). Of eleven chemical groups, metals/metalloids were most frequently evaluated (49%), followed by pesticides (9%) and environmental phenols (7%). Studies of multiple chemical groups were also common (8%). Publications linking chemical biomarkers to health metrics have increased dramatically in recent years. New studies are addressing challenges related to NHANES data interpretation in health risk contexts.Conclusions. This articl

  1. The nucleosynthetic origins and chemical evolution of phosphorus in the early universe

    NASA Astrophysics Data System (ADS)

    Frebel, Anna

    2013-10-01

    Relatively little is known about the chemical evolution of the element phosphorus, despite its relatively large abundance in the Sun and its importance for biological life. The goal of this archive proposal is to establish the chemical evolution trend of phosphorus, extending our knowledge from solar metallicity to stars with less than 1/1000th the solar metallicity.Previous studies have used weak near-infrared P I lines to establish phosphorus abundance trends from -1.0 < [Fe/H] < 0. We have identified a strong P I doublet in the UV at 2136 Angstroms, which is present in the spectra of 22 stars available in the HST archives. Our study will {1} improve on the limited observations of the abundance trend at high metallicity and extend it to metallicities lower by 2 dex and {2} determine whether [P/Fe] flattens out towards lower metallicities {like the alpha-elements Mg, Si, Ca, and Ti} or whether it continues to increase {like Co and Zn}. Our results will provide the first tight constraints on the nucleosynthesis of phosphorus and its production sites in the early Universe.We request one semester of funding to support a graduate student to lead the spectral analysis work, one month of summer salary, and miscellaneous travel and publication costs.

  2. 2010-2015 methane trends over Canada, the United States, and Mexico observed by the GOSAT satellite: contributions from different source sectors

    NASA Astrophysics Data System (ADS)

    Sheng, J. X.; Jacob, D.; Turner, A. J.; Maasakkers, J. D.; Benmergui, J. S.; Bloom, A. A.; Arndt, C.; Gautam, R.; Zavala Araiza, D.; Hamburg, S.; Boesch, H.; Parker, R.

    2017-12-01

    We use six years (2010-2015) of methane column data from the GOSAT satellite to examine trends in atmospheric methane over North America and infer trends in emissions. Local methane enhancements above background are diagnosed in the GOSAT data on a 0.5°x0.5° grid by estimating the local background as the low (10th-25th) quantile of the deseasonalized frequency distributions of the data for individual years. Trends in methane enhancements on the 0.5°x0.5° grid are then aggregated nationally and for individual source sectors, using information from state-of-science bottom-up inventories, to increase statistical power. We infer that US methane emissions increased by 1.9% a-1 over the six-year period, with contributions from both oil/gas systems (possibly unconventional gas production) and from livestock in the Midwest (possibly swine production). Mexican emissions show a decrease that can be attributed to a decreasing cattle population. Canadian emissions show interannual variability driven by wetlands emissions and correlated with wetland areal extent. The US emission trends inferred from the GOSAT data are within the constraint provided by surface observations from the North American Carbon Program network.

  3. Urban and peri-urban precipitation and air temperature trends in mega cities of the world using multiple trend analysis methods

    NASA Astrophysics Data System (ADS)

    Ajaaj, Aws A.; Mishra, Ashok K.; Khan, Abdul A.

    2018-04-01

    Urbanization plays an important role in altering local to regional climate. In this study, the trends in precipitation and the air temperature were investigated for urban and peri-urban areas of 18 mega cities selected from six continents (representing a wide range of climatic patterns). Multiple statistical tests were used to examine long-term trends in annual and seasonal precipitation and air temperature for the selected cities. The urban and peri-urban areas were classified based on the percentage of land imperviousness. Through this study, it was evident that removal of the lag-k serial correlation caused a reduction of approximately 20 to 30% in significant trend observability for temperature and precipitation data. This observation suggests that appropriate trend analysis methodology for climate studies is necessary. Additionally, about 70% of the urban areas showed higher positive air temperature trends, compared with peri-urban areas. There were not clear trend signatures (i.e., mix of increase or decrease) when comparing urban vs peri-urban precipitation in each selected city. Overall, cities located in dry areas, for example, in Africa, southern parts of North America, and Eastern Asia, showed a decrease in annual and seasonal precipitation, while wetter conditions were favorable for cities located in wet regions such as, southeastern South America, eastern North America, and northern Europe. A positive relationship was observed between decadal trends of annual/seasonal air temperature and precipitation for all urban and peri-urban areas, with a higher rate being observed for urban areas.

  4. Carbon monoxide observations from ground stations in France and Europe and long trends in the free troposphere

    NASA Astrophysics Data System (ADS)

    Chevalier, A.; Gheusi, F.; Attié, J.-L.; Delmas, R.; Zbinden, R.; Athier, G.; Cousin, J.-M.

    2008-02-01

    Continuous CO measurements performed at 3 high-altitude stations in France are analyzed for the first time. Data are provided by the new PAES (Pollution Atmospherique à l'Echelle Synoptique) network since 2002 for the Puy de Dôme and 2004 for the Pic du Midi and the Donon. CO measurements of 5 another European stations have been analysed to put the PAES stations in an European perspective. The January 2002-April 2005 CO mean levels of surface stations capture the stratification revealed by climatological CO profiles from the airborne observation system MOZAIC (Measurement of OZone and water vapour by Airbus In-service Aircraft). The deviation between the free tropospheric reference MOZAIC and surface data above 2000 m is less than 10% and this deviation can be explained in term of spatial variability, as evidenced by MOPITT CO retrievals at 700 hPa. This suggests that, averaged at a seasonal time scale (4 months), surface data at stations above 2000 m are representative of background CO concentration. This paper focuses then on trends since the 1980s-1990s. The comparison between old (1982-1983) and recent CO mixing ratio (2005) at the Pic du Midi leads to a 10% decrease, consistent with the continuous data series at Zugspitze (ZSP) from 1991 to 2004. This decrease was found to be mainly due to a negative trend of January-April mean levels. The decrease in CO sources over France and Europe appears to be responsible for that trend. The stable values of June-September mean levels suggest that the summertime oxidizing capacity of the atmosphere related to OH radicals is important enough to counterbalance any CO inputs into the troposphere. Our study shows a recent change in CO evolution since 2000 over Western Europe, with a slowed down decrease in CO concentration. Studying specifically the interactions between CO, CH4 and OH turns out to be needed, however, to find definitive explanations to those observations.

  5. Examining the impact of introducing ICD-MM on observed trends in maternal mortality rates in the UK 2003-13.

    PubMed

    Knight, Marian; Nair, Manisha; Brocklehurst, Peter; Kenyon, Sara; Neilson, James; Shakespeare, Judy; Tuffnell, Derek; Kurinczuk, Jennifer J

    2016-07-20

    The causes of maternal death are now classified internationally according to ICD-MM. One significant change with the introduction of ICD-MM in 2012 was the reclassification of maternal suicide from the indirect group to the direct group. This has led to concerns about the impact of this reclassification on calculated mortality rates. The aim of this analysis was to examine the trends in maternal deaths in the UK over the past 10 years, and to investigate the impact of reclassification using ICD-MM on the observed rates. Data about all maternal deaths between 2003-13 in the UK were included in this analysis. Data about maternal deaths occurring prior to 2009 were obtained from previously published reports. The deaths of women from 2009-13 during or after pregnancy were identified through the MBRRACE-UK Confidential Enquiry into Maternal Deaths. The underlying causes of maternal death were reclassified from a disease-based system to ICD-MM. Maternal mortality rates with 95 % confidence intervals were calculated using national data on the number of maternities as the denominator. Rate ratios with 95 % CI were calculated to compare the change in rates of maternal death as per ICD-MM relative to the old classification system. There was a decrease in the maternal death rate between 2003-05 and 2011-13 (rate ratio (RR) 0.65; 95 % CI 0.54-0.77 comparing 2003-5 with 2011-13; p = 0.005 for trend over time). The direct maternal death rate calculated using the old classification decreased with a RR of 0.47 (95 % CI 0.34-0.63) when comparing 2011-13 with 2003-05; p = 0.005 for trend over time. Reclassification using ICD-MM made little material difference to the observed trend in direct maternal death rates, RR = 0.51 (95 % CI 0.39-0.68) when comparing 2003-5 with 2011-13; p = 0.005 for trend over time. The impact of reclassifying maternal deaths according to ICD-MM in the UK was minimal. However, such reclassification raises awareness of maternal suicides

  6. Chemical Source Inversion using Assimilated Constituent Observations in an Idealized Two-dimensional System

    NASA Technical Reports Server (NTRS)

    Tangborn, Andrew; Cooper, Robert; Pawson, Steven; Sun, Zhibin

    2009-01-01

    We present a source inversion technique for chemical constituents that uses assimilated constituent observations rather than directly using the observations. The method is tested with a simple model problem, which is a two-dimensional Fourier-Galerkin transport model combined with a Kalman filter for data assimilation. Inversion is carried out using a Green's function method and observations are simulated from a true state with added Gaussian noise. The forecast state uses the same spectral spectral model, but differs by an unbiased Gaussian model error, and emissions models with constant errors. The numerical experiments employ both simulated in situ and satellite observation networks. Source inversion was carried out by either direct use of synthetically generated observations with added noise, or by first assimilating the observations and using the analyses to extract observations. We have conducted 20 identical twin experiments for each set of source and observation configurations, and find that in the limiting cases of a very few localized observations, or an extremely large observation network there is little advantage to carrying out assimilation first. However, in intermediate observation densities, there decreases in source inversion error standard deviation using the Kalman filter algorithm followed by Green's function inversion by 50% to 95%.

  7. Ozone trends and their relationship to characteristic weather patterns.

    PubMed

    Austin, Elena; Zanobetti, Antonella; Coull, Brent; Schwartz, Joel; Gold, Diane R; Koutrakis, Petros

    2015-01-01

    Local trends in ozone concentration may differ by meteorological conditions. Furthermore, the trends occurring at the extremes of the Ozone distribution are often not reported even though these may be very different than the trend observed at the mean or median and they may be more relevant to health outcomes. Classify days of observation over a 16-year period into broad categories that capture salient daily local weather characteristics. Determine the rate of change in mean and median O3 concentrations within these different categories to assess how concentration trends are impacted by daily weather. Further examine if trends vary for observations in the extremes of the O3 distribution. We used k-means clustering to categorize days of observation based on the maximum daily temperature, standard deviation of daily temperature, mean daily ground level wind speed, mean daily water vapor pressure and mean daily sea-level barometric pressure. The five cluster solution was determined to be the appropriate one based on cluster diagnostics and cluster interpretability. Trends in cluster frequency and pollution trends within clusters were modeled using Poisson regression with penalized splines as well as quantile regression. There were five characteristic groupings identified. The frequency of days with large standard deviations in hourly temperature decreased over the observation period, whereas the frequency of warmer days with smaller deviations in temperature increased. O3 trends were significantly different within the different weather groupings. Furthermore, the rate of O3 change for the 95th percentile and 5th percentile was significantly different than the rate of change of the median for several of the weather categories.We found that O3 trends vary between different characteristic local weather patterns. O3 trends were significantly different between the different weather groupings suggesting an important interaction between changes in prevailing weather

  8. Chemical water shutoff profile research status and development trends

    NASA Astrophysics Data System (ADS)

    Xu, L. T.

    2017-08-01

    Excess water production is now a common problem encountered in almost every water flooding mature oilfield. The exploitation of oil field is faced with great challenge because of the decrease of oil field production. For the development of high water cut rare the status quo chemical water shutoff profile control technology is an important solution to solve this problem. Oilfield chemical water shutoff has important application prospects. This paper analyzes the water shutoff profile control and water shutoff profile control agent currently oilfield applications, moreover the use and development of blocking agent profile technology is to improve reservoir recovery and propose solutions. With the constant increase in water cut, profile technology should be simple, efficient, practical and profile control agent of development should be economic, environmental, and long period

  9. Satellite observations of stratospheric hydrogen fluoride and comparisons with SLIMCAT calculations

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy J.; Chipperfield, Martyn P.; Boone, Christopher D.; Dhomse, Sandip S.; Bernath, Peter F.; Froidevaux, Lucien; Anderson, John; Russell, James, III

    2016-08-01

    The vast majority of emissions of fluorine-containing molecules are anthropogenic in nature, e.g. chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs). Many of these fluorine-containing species deplete stratospheric ozone and are regulated by the Montreal Protocol. Once in the atmosphere they slowly degrade, ultimately leading to the formation of hydrogen fluoride (HF), the dominant reservoir of stratospheric fluorine due to its extreme stability. Monitoring the growth of stratospheric HF is therefore an important marker for the success of the Montreal Protocol. We report the comparison of global distributions and trends of HF measured in the Earth's atmosphere by the satellite remote-sensing instruments ACE-FTS (Atmospheric Chemistry Experiment Fourier transform spectrometer), which has been recording atmospheric spectra since 2004, and HALOE (HALogen Occultation Experiment), which recorded atmospheric spectra between 1991 and 2005, with the output of SLIMCAT, a state-of-the-art three-dimensional chemical transport model. In general the agreement between observation and model is good, although the ACE-FTS measurements are biased high by ˜ 10 % relative to HALOE. The observed global HF trends reveal a substantial slowing down in the rate of increase of HF since the 1990s: 4.97 ± 0.12 % year-1 (1991-1997; HALOE), 1.12 ± 0.08 % year-1 (1998-2005; HALOE), and 0.52 ± 0.03 % year-1 (2004-2012; ACE-FTS). In comparison, SLIMCAT calculates trends of 4.01, 1.10, and 0.48 % year-1, respectively, for the same periods; the agreement is very good for all but the earlier of the two HALOE periods. Furthermore, the observations reveal variations in the HF trends with latitude and altitude; for example, between 2004 and 2012 HF actually decreased in the Southern Hemisphere below ˜ 35 km. An additional SLIMCAT simulation with repeating meteorology for the year 2000 produces much cleaner trends in HF with minimal variations with latitude

  10. ζ2 Reticuli, its debris disk, and its lonely stellar companion ζ1 Ret. Different Tc trends for different spectra

    NASA Astrophysics Data System (ADS)

    Adibekyan, V.; Delgado-Mena, E.; Figueira, P.; Sousa, S. G.; Santos, N. C.; Faria, J. P.; González Hernández, J. I.; Israelian, G.; Harutyunyan, G.; Suárez-Andrés, L.; Hakobyan, A. A.

    2016-06-01

    Context. Several studies have reported a correlation between the chemical abundances of stars and condensation temperature (known as Tc trend). Very recently, a strong Tc trend was reported for the ζ Reticuli binary system, which consists of two solar analogs. The observed trend in ζ2 Ret relative to its companion was explained by the presence of a debris disk around ζ2 Ret. Aims: Our goal is to re-evaluate the presence and variability of the Tc trend in the ζ Reticuli system and to understand the impact of the presence of the debris disk on a star. Methods: We used very high-quality spectra of the two stars retrieved from the HARPS archive to derive very precise stellar parameters and chemical abundances. We derived the stellar parameters with the classical (nondifferential) method, while we applied a differential line-by-line analysis to achieve the highest possible precision in abundances, which are fundamental to explore for very tiny differences in the abundances between the stars. Results: We confirm that the abundance difference between ζ2 Ret and ζ1 Ret shows a significant (~2σ) correlation with Tc. However, we also find that the Tc trends depend on the individual spectrum used (even if always of very high quality). In particular, we find significant but varying differences in the abundances of the same star from different individual high-quality spectra. Conclusions: Our results for the ζ Reticuli system show, for example, that nonphysical factors, such as the quality of spectra employed and errors that are not accounted for, can be at the root of the Tc trends for the case of individual spectra. Based on data obtained from the ESO Science Archive Facility under request number vadibekyan204818, vadibekyan204820, and vadibekyan185979.The tables with EWs of the lines and chemical abundances are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A34

  11. Scientific Manpower: Volume Compiles Data, Maps Trends.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1985

    1985-01-01

    Presents highlights from "The Technological Marketplace: Supply and Demand for Scientists and Engineers," a report which provides a synthesis of data found in 50 other reports. In addition, these data are analyzed and trends pointed out for such fields as chemistry, chemical engineering, and other science/engineering fields. (JN)

  12. Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells.

    PubMed

    Zuo, Lijian; Chen, Qi; De Marco, Nicholas; Hsieh, Yao-Tsung; Chen, Huajun; Sun, Pengyu; Chang, Sheng-Yung; Zhao, Hongxiang; Dong, Shiqi; Yang, Yang

    2017-01-11

    The ionic nature of perovskite photovoltaic materials makes it easy to form various chemical interactions with different functional groups. Here, we demonstrate that interfacial chemical interactions are a critical factor in determining the optoelectronic properties of perovskite solar cells. By depositing different self-assembled monolayers (SAMs), we introduce different functional groups onto the SnO 2 surface to form various chemical interactions with the perovskite layer. It is observed that the perovskite solar cell device performance shows an opposite trend to that of the energy level alignment theory, which shows that chemical interactions are the predominant factor governing the interfacial optoelectronic properties. Further analysis verifies that proper interfacial interactions can significantly reduce trap state density and facilitate the interfacial charge transfer. Through use of the 4-pyridinecarboxylic acid SAM, the resulting perovskite solar cell exhibits striking improvements to the reach the highest efficiency of 18.8%, which constitutes an ∼10% enhancement compared to those without SAMs. Our work highlights the importance of chemical interactions at perovskite/electrode interfaces and paves the way for further optimizing performances of perovskite solar cells.

  13. A Monte Carlo Uncertainty Analysis of Ozone Trend Predictions in a Two Dimensional Model. Revision

    NASA Technical Reports Server (NTRS)

    Considine, D. B.; Stolarski, R. S.; Hollandsworth, S. M.; Jackman, C. H.; Fleming, E. L.

    1998-01-01

    We use Monte Carlo analysis to estimate the uncertainty in predictions of total O3 trends between 1979 and 1995 made by the Goddard Space Flight Center (GSFC) two-dimensional (2D) model of stratospheric photochemistry and dynamics. The uncertainty is caused by gas-phase chemical reaction rates, photolysis coefficients, and heterogeneous reaction parameters which are model inputs. The uncertainty represents a lower bound to the total model uncertainty assuming the input parameter uncertainties are characterized correctly. Each of the Monte Carlo runs was initialized in 1970 and integrated for 26 model years through the end of 1995. This was repeated 419 times using input parameter sets generated by Latin Hypercube Sampling. The standard deviation (a) of the Monte Carlo ensemble of total 03 trend predictions is used to quantify the model uncertainty. The 34% difference between the model trend in globally and annually averaged total O3 using nominal inputs and atmospheric trends calculated from Nimbus 7 and Meteor 3 total ozone mapping spectrometer (TOMS) version 7 data is less than the 46% calculated 1 (sigma), model uncertainty, so there is no significant difference between the modeled and observed trends. In the northern hemisphere midlatitude spring the modeled and observed total 03 trends differ by more than 1(sigma) but less than 2(sigma), which we refer to as marginal significance. We perform a multiple linear regression analysis of the runs which suggests that only a few of the model reactions contribute significantly to the variance in the model predictions. The lack of significance in these comparisons suggests that they are of questionable use as guides for continuing model development. Large model/measurement differences which are many multiples of the input parameter uncertainty are seen in the meridional gradients of the trend and the peak-to-peak variations in the trends over an annual cycle. These discrepancies unambiguously indicate model formulation

  14. Climatological assessment of spatiotemporal trends in observational monthly snowfall totals and extremes over the Canadian Great Lakes Basin

    NASA Astrophysics Data System (ADS)

    Baijnath, Janine; Duguay, Claude; Sushama, Laxmi; Huziy, Oleksandr

    2017-04-01

    The Laurentian Great Lakes Basin (GLB) is susceptible to snowfall events that derive from extratropical cyclones and heavy lake effect snowfall (HLES). The former is generated by quasigeostropic forcing from positive temperature or vorticity advection associated with low-pressure centres. HLES is produced by planetary boundary layer (PBL) convection that is initiated as a result of cold and dry continental air mass advecting over relatively warm lakes and generating turbulent moisture and heat fluxes into the PBL. HLES events can have disastrous impacts on local communities such as the November 2014 Buffalo storm that caused 13 fatalities. Albeit the many HLES studies, most are focused on specific case study events with a discernible under examination of climatological HLES trend analyses for the Canadian GLB. The research objectives are to first determine the historical, climatological trends in monthly snowfall totals and to examine potential surface and atmospheric variables driving the resultant changes in HLES. The second aims to analyze the historical extremes in snowfall by assessing the intensity, frequency, and duration of snowfall within the domain of interest. Spatiotemporal snowfall and precipitation trends are computed for the 1982 to 2015 period using Daymet (Version 3) monthly gridded observational datasets from the Oak Ridge National Laboratory. The North American Regional Reanalysis (NARR), NOAA Optimum Interpolation Sea Surface Temperature (OISST), and the Canadian Ice Service (CIS) datasets are also used for evaluating trends in HLES driving variables such as air temperature, lake surface temperature (LST), ice cover concentration, omega, and vertical temperature gradient (VTGlst-850). Climatological trends in monthly snowfall totals show a significant decrease along the Ontario snowbelt of Lake Superior, Lake Huron and Georgian Bay at the 90 percent confidence level. These results are attributed to significant warming in LST, significant

  15. Electron Emission Observations from As-Grown and Vacuum-Coated Chemical Vapor Deposited Diamond

    NASA Technical Reports Server (NTRS)

    Lamouri, A.; Wang, Yaxin; Mearini, G. T.; Krainsky, I. L.; Dayton, J. A., Jr.; Mueller,W.

    1996-01-01

    Field emission has been observed from chemical vapor deposited diamond grown on Mo and Si substrates. Emission was observed at fields as low as 20 kV/cm. The samples were tested in the as-grown form, and after coating with thin films of Au, CsI, and Ni. The emission current was typically maximum at the onset of the applied field, but was unstable, and decreased rapidly with time from the as-grown films. Thin Au layers, approximately 15 nm thick, vacuum deposited onto the diamond samples significantly improved the stability of the emission current at values approximately equal to those from uncoated samples at the onset of the applied field. Thin layers of CsI, approximately 5 nm thick, were also observed to improve the stability of the emission current but at values less than those from the uncoated samples at the onset of the applied field. While Au and CsI improved the stability of the emission, Ni was observed to have no effect.

  16. Biocatalysis for Biobased Chemicals

    PubMed Central

    de Regil, Rubén; Sandoval, Georgina

    2013-01-01

    The design and development of greener processes that are safe and friendly is an irreversible trend that is driven by sustainable and economic issues. The use of Biocatalysis as part of a manufacturing process fits well in this trend as enzymes are themselves biodegradable, require mild conditions to work and are highly specific and well suited to carry out complex reactions in a simple way. The growth of computational capabilities in the last decades has allowed Biocatalysis to develop sophisticated tools to understand better enzymatic phenomena and to have the power to control not only process conditions but also the enzyme’s own nature. Nowadays, Biocatalysis is behind some important products in the pharmaceutical, cosmetic, food and bulk chemicals industry. In this review we want to present some of the most representative examples of industrial chemicals produced in vitro through enzymatic catalysis. PMID:24970192

  17. Observing Decadal Trends in Atmospheric Feedbacks and Climate Change with Zeus and CLARREO

    NASA Astrophysics Data System (ADS)

    Revercomb, H. E.; Best, F. A.; Knuteson, R. O.; Tobin, D. C.; Taylor, J. K.; Gero, P.; Adler, D. P.; Pettersen, C.; Mulligan, M.; Tobin, D. C.

    2012-12-01

    New technologies for observing decadal trends in atmospheric feedbacks and climate change from space have been recently demonstrated via a NASA Instrument Incubator Program (IIP) project of our group and the Anderson Group of Harvard University. Using these new technologies, a mission named Zeus has been proposed to the first NASA Earth Venture Instruments opportunity (EVI-1). Zeus would provide a low cost mechanism to initiate a new era in high spectral resolution IR climate Benchmark and Intercalibration observations, the basis for which has been established by definition of the CLARREO mission in the 2007 NRC "Decadal Survey" and by the Science Definition Team established by NASA LaRC to further the full blown CLARREO mission. Zeus EVI is a low-cost, low-risk, and high-value EVI mission that will deploy an Absolute Radiance Interferometer (ARI) instrument to measure absolute spectrally resolved infrared radiance over much of the Earth-emitted spectrum with ultra-high accuracy (<0.1 K 3-sigma brightness temperature). Zeus makes use of broad spectral coverage (3.7-50 microns) and high spectral resolution (<1 cm-1) to provide benchmark products for climate trending with much higher information content than traditional spectrally-integrated measurements. While ARI requirements for accuracy and spectral properties are demanding, the overall instrument is relatively simple and low-cost because of the limited requirements on spatial sampling (25-100 km nadir-only footprints spaced at < 250 km) and on noise performance (climate products are created by combining many samples). The orbit chosen for Zeus must provide coverage immune to time-of-day sampling errors. Because of its relatively high rate of precession, an attractive baseline option for Zeus EVI is the 51.6 degrees inclination orbit of the International Space Station (ISS). For Zeus deployment on the ISS, higher latitude climate benchmark information will be obtained from operational sounders intercalibrated by

  18. NAEP Trends: Main NAEP vs. Long-Term Trend

    ERIC Educational Resources Information Center

    Beaton, Albert E.; Chromy, James R.

    2010-01-01

    The objectives of this research are to (a) compare the trend lines after some adjustments for level and scale only and determine if and how they differ; (b) describe the methodology of each assessment and identify similarities and differences; and (c) attempt to explain any observed differences based on comparable subsets or on special analysis.…

  19. Observational and Modeling Studies of Radiative, Chemical, and Dynamical Interactions in the Earth''s Atmosphere

    NASA Technical Reports Server (NTRS)

    Salby, Murry

    1998-01-01

    A 3-dimensional model was developed to support mechanistic studies. The model solves the global primitive equations in isentropic coordinates, which directly characterize diabatic processes forcing the Brewer-Dobson circulation of the middle atmosphere. It's numerical formulation is based on Hough harmonics, which partition horizontal motion into its rotational and divergent components. These computational features, along with others, enable 3D integrations to be performed practically on RISC computer architecture, on which they can be iterated to support mechanistic studies. The model conserves potential vorticity quite accurately under adiabatic conditions. Forced by observed tropospheric structure, in which integrations are anchored, the model generates a diabatic circulation that is consistent with satellite observations of tracer behavior and diabatic cooling rates. The model includes a basic but fairly complete treatment of gas-phase photochemistry that represents some 20 chemical species and 50 governing reactions with diurnally-varying shortwave absorption. The model thus provides a reliable framework to study transport and underlying diabatic processes, which can then be compared against chemical and dynamical structure observed and in GCM integrations. Integrations with the Langley GCM were performed to diagnose feedback between simulated convection and the tropical circulation. These were studied in relation to tropospheric properties controlling moisture convergence and environmental conditions supporting deep convection, for comparison against mechanistic integrations of wave CISK that successfully reproduce the Madden-Julian Oscillation (MJO) of the tropical circulation. These comparisons were aimed at identifying and ultimately improving aspects of the convective simulation, with the objective of recovering a successful simulation of the MJO in the Langley GCM, behavior that should be important to budgets of upper-tropospheric water vapor and

  20. The energetic and chemical fingerprints of persistent soil organic carbon

    NASA Astrophysics Data System (ADS)

    Barré, Pierre; Plante, Alain F.; Cécillon, Lauric; Lutfalla, Suzanne; Baudin, François; Bernard, Sylvain; Christensen, Bent T.; Fernandez, Jose M.; Houot, Sabine; Kätterer, Thomas; Macdonald, Andy; van Oort, Folkert; Le Guillou, Corentin; Chenu, Claire

    2016-04-01

    A better understanding of soil organic carbon (SOC) persistence is needed to better predict SOC vulnerability to global change. The absence of convincing physical or chemical procedures to define, characterize or isolate relatively labile versus persistent SOC pools makes the study of persistent SOC difficult. Long-term bare fallow (LTBF) experiments, in which C inputs have been stopped for several decades, provide a unique opportunity to study persistent SOC without the inherent artefacts induced by extraction procedures, the hypothesis being that SOC is gradually enriched in persistent C with time as labile components decompose. We determined the evolution of thermal and chemical characteristics of bulk SOC in five LTBF experiments across Europe: Askov (DK), Grignon (FR), Rothamsted (UK), Ultuna (SW) and Versailles (FR), using a multi-technique approach involving Rock-Eval pyrolysis, thermogravimetry and differential scanning calorimetry (TG-DSC), mid-infrared diffuse reflectance spectroscopy (DRIFT-MIRS), and Near Edge X-Ray Absorption Fine Structure (NEXAFS). Results of Rock-Eval and TG analyses showed that the temperature needed to combust the SOC increased with bare fallow duration at all sites. Conversely, SOC energy density (in mJ mg-1 C) measured by DSC decreased with bare fallow duration. Rock-Eval pyrolysis results showed that hydrogen index (HI) tended to decrease with bare fallow duration whereas the oxygen index (OI) did not show consistent trends across sites. NEXAFS signals presented little differences and were dominated by carboxyl peak. Nonetheless, NEXAFS results showed a trend of increasing carboxyl groups and decreasing ketone and amide groups with bare fallow duration. Due to the mineral matrix, only a reduced part of the DRIFT-MIRS signals has been used. We observed that the bulk chemistry of aliphatic SOC (CH3 vs. CH2 functional groups) showed different trends for the different sites. Our results showed that in spite of the heterogeneity of

  1. Nitrogen Dioxide long term trends at mid and high latitudes by means of ground based observations

    NASA Astrophysics Data System (ADS)

    Bortoli, D.; Petritoli, A.; Giovanelli, G.; Kostadinov, I.; Ravegnani, F.

    2003-04-01

    The interactions between mid- and high latitudes atmospheric changes are going to be one of the main issue for the future of stratospheric and tropospheric chemistry research. A more detailed study of the ozone trends as well as a wider comprehension of the interactions with lower and higher latitudes are maybe the main arguments to which scientist should address their works in order to build-up a more detailed picture of what scenarios we have to face in the near future. GASCODs type spectrometers (Gas Analyzer Spectrometer Correlating Optical Differences) are installed at the "Ottavio Vittori" research station (44.11N, 10.42E, 2165 m asl) since June 1993, at the Italian Antarctic Station (74.69S, 164.12E) since December 1995 and at the STIL-BAS station (42.42N, 25.63E) since 1999. The instruments measure zenith scattered solar radiation between 407 and 464 nm. Nitrogen dioxide total column is retrieved with DOAS methodology. The seasonal trend of NO2 vc values is reported and it shows the expected behaviour: maximum values during the summer period while the minimum occur in the winter season in both the hemispheres. A typical behaviour of the AMPM ratio at high latitudes is highlight. A Fourier analysis is proposed as a tool to investigate the long-term components of nitrogen dioxide stratospheric amount. Results are presented and the NO2 trend is evidenced and commented. ACKNOWLEDGMENTS: The author Daniele Bortoli was financially supported by the Subprograma Ciência e Tecnologia do 3° Quadro Comunitário de Apoio. The National Antarctic Research Program (PNRA) and the Quantification and Interpretation of Long-Term UV-Vis Observations of the Stratosphere (QUILT) project supported this research.

  2. Projecting Trends in Public Policy.

    ERIC Educational Resources Information Center

    Nagel, Stuart S.

    Looking back over the past 40 years, one can observe at least seven trends in public policy substance and in the study of public policy: (1) There is a trend toward higher goals for society in economic, social, political, and science policy. (2) Major changes in almost all fields of public policy have resulted in increased benefits for the less…

  3. Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model

    NASA Astrophysics Data System (ADS)

    Kim, P. S.; Jacob, D. J.; Fisher, J. A.; Travis, K.; Yu, K.; Zhu, L.; Yantosca, R. M.; Sulprizio, M. P.; Jimenez, J. L.; Campuzano-Jost, P.; Froyd, K. D.; Liao, J.; Hair, J. W.; Fenn, M. A.; Butler, C. F.; Wagner, N. L.; Gordon, T. D.; Welti, A.; Wennberg, P. O.; Crounse, J. D.; St. Clair, J. M.; Teng, A. P.; Millet, D. B.; Schwarz, J. P.; Markovic, M. Z.; Perring, A. E.

    2015-09-01

    We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC4RS), and satellite (MODIS, MISR) observations over the southeast US during the summer-fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 × 25 km2 resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM2.5 (mass concentration of PM finer than 2.5 μm aerodynamic diameter) and AOD over the southeast US. OA is simulated successfully with a simple parameterization, assuming irreversible uptake of low-volatility products of hydrocarbon oxidation. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 25 % in the cloud convective layer at 1.5-3 km, and 15 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH4+]/(2[SO42-] + [NO3-]) is only 0.5-0.7 mol mol-1 in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by OA. This would explain the long-term decline of ammonium aerosol in the southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 8-28 % (consistently biased low). The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from August to October. These declines

  4. Sources, seasonality, and trends of Southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model

    NASA Astrophysics Data System (ADS)

    Kim, P. S.; Jacob, D. J.; Fisher, J. A.; Travis, K.; Yu, K.; Zhu, L.; Yantosca, R. M.; Sulprizio, M. P.; Jimenez, J. L.; Campuzano-Jost, P.; Froyd, K. D.; Liao, J.; Hair, J. W.; Fenn, M. A.; Butler, C. F.; Wagner, N. L.; Gordon, T. D.; Welti, A.; Wennberg, P. O.; Crounse, J. D.; St. Clair, J. M.; Teng, A. P.; Millet, D. B.; Schwarz, J. P.; Markovic, M. Z.; Perring, A. E.

    2015-07-01

    We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC4RS), and satellite (MODIS, MISR) observations over the Southeast US during the summer-fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 km × 25 km resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM2.5 (mass concentration of PM finer than 2.5 μm aerodynamic diameter) and AOD over the Southeast US. GEOS-Chem simulation of sulfate requires a missing oxidant, taken here to be stabilized Criegee intermediates, but which could alternatively reflect an unaccounted for heterogeneous process. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 20 % in the cloud convective layer at 1.5-3 km, and 20 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH4+]/(2[SO42-] + [NO3-])) is only 0.5-0.7 mol mol-1 in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by organic aerosol. This would explain the long-term decline of ammonium aerosol in the Southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the Southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the Southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 21 %. The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from

  5. Forest Dragon-3: Decadal Trends of Northeastern Forests in China from Earth Observation Synergy

    NASA Astrophysics Data System (ADS)

    Schmullius, C.; Balling, J.; Schratz, P.; Thiel, C.; Santoro, M.; Wegmuller, U.; Li, Z.; Yong, P.

    2016-08-01

    In Forest DRAGON 3, synergy of Earth Observation products to derive information of decadal trends of forest in northeast China was investigated. Following up the results of Forest-DRAGON 1 and 2, Growing Stock Volume (GSV) products from different years were investigated to derive information on vegetational in north- east China. The BIOMASAR maps of 2005 and 2010, produced within the previous DRAGON projects, set the base for all analyses. We took a closer look at scale problems regarding GSV derivation, which are introduced by differing landcover within one pixel, to investigate differences throughout pixel classes with varying landcover class percentages. We developed an approach to select pixels containing forest only with the aim of undertaking a detailed analysis on retrieved GSV values for such pixels for the years 2005 and 2010. Using existing land cover products at different scales, the plausibility of changes in the BIOMASAR maps were checked.

  6. Contrasting trends in light pollution across Europe based on satellite observed night time lights.

    PubMed

    Bennie, Jonathan; Davies, Thomas W; Duffy, James P; Inger, Richard; Gaston, Kevin J

    2014-01-21

    Since the 1970s nighttime satellite images of the Earth from space have provided a striking illustration of the extent of artificial light. Meanwhile, growing awareness of adverse impacts of artificial light at night on scientific astronomy, human health, ecological processes and aesthetic enjoyment of the night sky has led to recognition of light pollution as a significant global environmental issue. Links between economic activity, population growth and artificial light are well documented in rapidly developing regions. Applying a novel method to analysis of satellite images of European nighttime lights over 15 years, we show that while the continental trend is towards increasing brightness, some economically developed regions show more complex patterns with large areas decreasing in observed brightness over this period. This highlights that opportunities exist to constrain and even reduce the environmental impact of artificial light pollution while delivering cost and energy-saving benefits.

  7. Understanding the Seasonal Greenness Trends and Controls in South Asia Using Satellite Based Observations

    NASA Astrophysics Data System (ADS)

    Sarmah, S.; Jia, G.; Zhang, A.; Singha, M.

    2017-12-01

    South Asia (SA) is one of the most remarkable regions in changing vegetation greenness along with its major expansion of agricultural activity, especially irrigated farming. However, SA is predicted to be a vulnerable agricultural regions to future climate changes. The influence of monsoon climate on the seasonal trends and anomalies of vegetation greenness are not well understood in the region which can provide valuable information about climate-ecosystem interaction. This study analyzed the spatio-temporal patterns of seasonal vegetation trends and variability using satellite vegetation indices (VI) including AVHRR Normalized Difference Vegetation Index (NDVI) (1982-2013) and MODIS Enhanced Vegetation Index (EVI) (2000-2013) in summer monsoon (SM) (June-Sept) and winter monsoon (WM) (Dec-Apr) seasons among irrigated cropland (IC), rainfed cropland (RC) and natural vegetation (NV). Seasonal VI variations with climatic factors (precipitation and temperature) and LULC changes have been investigated to identify the forcings behind the vegetation trends and variability. We found that major greening occurred in the last three decades due to the increase in IC productivity noticeably in WM, however, recent (2000-2013) greening trends were lower than the previous decades (1982-1999) in both the IC and RC indicating the stresses on them. The browning trends, mainly concentrated in NV areas were prominent during WM and rigorous since 2000, confirmed from the moderate resolution EVI and LULC datasets. Winter time maximal temperature had been increasing tremendously whereas precipitation trend was not significant over SA. Both the climate variability and LULC changes had integrated effects on the vegetation changes in NV areas specifically in hilly regions. However, LULC impact was intensified since 2000, mostly in north east India. This study also revealed a distinct seasonal variation in spatial distribution of correlation between VI's and climate anomalies over SA

  8. Positron Computed Tomography: Current State, Clinical Results and Future Trends

    DOE R&D Accomplishments Database

    Schelbert, H. R.; Phelps, M. E.; Kuhl, D. E.

    1980-09-01

    An overview is presented of positron computed tomography: its advantages over single photon emission tomography, its use in metabolic studies of the heart and chemical investigation of the brain, and future trends. (ACR)

  9. Toxic materials, fishing, and environmental variation: simulated effects on striped bass population trends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodyear, C.P.

    1985-01-01

    Decreased survival of larval striped bass Morone saxatilis resulting from toxic chemicals in the environment and decreased survival of adults caused by fishing both are suspected as agents contributing to the decline in the Chesapeake Bay stock since the mid-1970s. The relative power of each type of mortality to cause population declines was evaluated with simulation techniques. Equivalent levels of added mortality induced qualitatively identical and quantitatively similar trends in population simulations for all conditions examined except if strong density-dependent mortality preceded the contaminant toxicity. In this case the contaminant effect caused a greater reduction in yield, but the populationmore » did not tend toward extinction. The results indicate that the observed downward trend in the Chesapeake Bay population can be halted or reversed by a reduction in fishing mortality, even if contaminant toxicity is the proximate cause for the decline. 28 references, 1 figure, 1 table.« less

  10. Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective

    PubMed Central

    Kumar, Vinod; Goel, Rajeev; Chawla, Raman; Silambarasan, M.; Sharma, Rakesh Kumar

    2010-01-01

    Chemical, biological, radiological, and nuclear (CBRN) decontamination is the removal of CBRN material from equipment or humans. The objective of the decontamination is to reduce radiation burden, salvage equipment, and materials, remove loose CBRN contaminants, and fix the remaining in place in preparation for protective storage or permanent disposal work activities. Decontamination may be carried out using chemical, electrochemical, and mechanical means. Like materials, humans may also be contaminated with CBRN contamination. Changes in cellular function can occur at lower radiation doses and exposure to chemicals. At high dose, cell death may take place. Therefore, decontamination of humans at the time of emergency while generating bare minimum waste is an enormous task requiring dedication of large number of personnel and large amount of time. General principles of CBRN decontamination are discussed in this review with emphasis on radiodecontamination. PMID:21829318

  11. Temporal trends in dioxins (polychlorinated dibenzo-p-dioxin and dibenzofurans) and dioxin-like polychlorinated biphenyls in Baltic herring (Clupea harengus).

    PubMed

    Miller, Aroha; Hedman, Jenny E; Nyberg, Elisabeth; Haglund, Peter; Cousins, Ian T; Wiberg, Karin; Bignert, Anders

    2013-08-15

    Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyl (dl-PCBs) concentrations in Baltic herring (Clupea harengus) have been relatively stable since the mid to late 1990s. It is unclear why concentrations in Baltic herring are not following the observed decreases in other environmental matrices. Here, changes in long-term temporal trends in Baltic herring were examined. A number of biological variables were examined alongside the temporal trends to investigate whether fish biology e.g., growth (length, weight, age), lipid content, reproductive phase or fishing date may provide an explanation for the temporal trends observed. Significant (p<0.05) decreasing trends were observed for PCDD/F toxic equivalents (TEQPCDD/F) at three of the four sites (lipid weight (lw) and wet weight (ww), Swedish west coast lw only); however, other TEQ values e.g., TEQPCDD, TEQPCDF, TEQdl-PCB, TEQPCDD/F+dl-PCB were inconsistent, decreasing at some sites but not others. In the most recent 10 years of data, fewer significant decreases were seen overall. Over the examined time period, significant decreases (Bothnian Bay, p<0.01, southern Baltic Proper, p<0.02) and increases (Swedish west coast, p<0.02) in lipid content, growth dilution or lack thereof, and significant changes in age were observed. However herring were not randomly selected which biases this result. Continual efforts to decrease PCDD/F and dl-PCB emissions and to locate/reduce hotspots are necessary, while bearing in mind that herring biology may be impeding faster decreases of these chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Observing the metal-poor solar neighbourhood: a comparison of galactic chemical evolution predictions*†

    NASA Astrophysics Data System (ADS)

    Mishenina, T.; Pignatari, M.; Côté, B.; Thielemann, F.-K.; Soubiran, C.; Basak, N.; Gorbaneva, T.; Korotin, S. A.; Kovtyukh, V. V.; Wehmeyer, B.; Bisterzo, S.; Travaglio, C.; Gibson, B. K.; Jordan, C.; Paul, A.; Ritter, C.; Herwig, F.; NuGrid Collaboration

    2017-08-01

    Atmospheric parameters and chemical compositions for 10 stars with metallicities in the region of -2.2 < [Fe/H] < -0.6 were precisely determined using high-resolution, high signal-to-noise, spectra. For each star, the abundances, for 14-27 elements, were derived using both local thermodynamic equilibrium (LTE) and non-LTE (NLTE) approaches. In particular, differences by assuming LTE or NLTE are about 0.10 dex; depending on [Fe/H], Teff, gravity and element lines used in the analysis. We find that the O abundance has the largest error, ranging from 0.10 and 0.2 dex. The best measured elements are Cr, Fe, and Mn; with errors between 0.03 and 0.11 dex. The stars in our sample were included in previous different observational work. We provide a consistent data analysis. The data dispersion introduced in the literature by different techniques and assumptions used by the different authors is within the observational errors, excepting for HD103095. We compare these results with stellar observations from different data sets and a number of theoretical galactic chemical evolution (GCE) simulations. We find a large scatter in the GCE results, used to study the origin of the elements. Within this scatter as found in previous GCE simulations, we cannot reproduce the evolution of the elemental ratios [Sc/Fe], [Ti/Fe], and [V/Fe] at different metallicities. The stellar yields from core-collapse supernovae are likely primarily responsible for this discrepancy. Possible solutions and open problems are discussed.

  13. The contribution of changes in P release and CO2 consumption by chemical weathering to the historical trend in land carbon uptake

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.; Fredriksen, G.; McCalley, C. K.; Sparks, J. P.; Thomas, S. A.

    2011-12-01

    The atmospheric carbon dioxide (CO2) concentration has increased to a level unprecedented in the last 2 million years, and the concentration is projected to increase further with a rate unseen in geological past. The increase in CO2 cause a rise in surface temperatures and changes in the hydrological cycle through the redistribution of rainfall patterns. All of these changes will impact the weathering of rocks, which in turn affect atmospheric CO2 concentrations via two different pathways. On the one hand, CO2 is consumed by the dissolution reaction of the exposed minerals. And on the other hand, biological CO2 fixation is affected due to changes in phosphorus release from minerals, as biological activity is constrained by phosphorus availability at large scales. The traditional view is that both effects are negligible on a centennial time scale, but recent work on catchment scale challenge this view in favor of a potential high sensitivity of weathering to ongoing climate and land use changes. To globally quantify the contribution of CO2 fixation associated with weathering on the historical trend in terrestrial CO2 uptake, we applied a model of chemical weathering and phosphorus release under climate reconstructions from four Earth System Models. The simulations indicate that changes in weathering could have contributed considerably to the trend in terrestrial CO2 uptake since the pre-industrial revolution, with warming being the main driver of change. The increase in biological CO2 fixation is of comparable magnitude as the increase in CO2 consumption by chemical weathering. Our simulations support the previous findings on catchment scale that weathering can change significantly on a centennial time scale. This finding has implications for 21st century climate projections, which ignore changes in weathering, as well as for long-term airborne fraction of CO2 emissions, whose calculation usually neglects changes in phosphorus availability.

  14. The contribution of changes in P release and CO2 consumption by chemical weathering to the historical trend in land carbon uptake

    NASA Astrophysics Data System (ADS)

    Goll, D. S.; Moosdorf, N.; Brovkin, V.; Hartmann, J.

    2013-12-01

    The atmospheric carbon dioxide (CO2) concentration has increased to a level unprecedented in the last 2 million years, and the concentration is projected to increase further with a rate unseen in geological past. The increase in CO2 cause a rise in surface temperatures and changes in the hydrological cycle through the redistribution of rainfall patterns. All of these changes will impact the weathering of rocks, which in turn affect atmospheric CO2 concentrations via two different pathways. On the one hand, CO2 is consumed by the dissolution reaction of the exposed minerals. And on the other hand, biological CO2 fixation is affected due to changes in phosphorus release from minerals, as biological activity is constrained by phosphorus availability at large scales. The traditional view is that both effects are negligible on a centennial time scale, but recent work on catchment scale challenge this view in favor of a potential high sensitivity of weathering to ongoing climate and land use changes. To globally quantify the contribution of CO2 fixation associated with weathering on the historical trend in terrestrial CO2 uptake, we applied a model of chemical weathering and phosphorus release under climate reconstructions from four Earth System Models. The simulations indicate that changes in weathering could have contributed considerably to the trend in terrestrial CO2 uptake since the pre-industrial revolution, with warming being the main driver of change. The increase in biological CO2 fixation is of comparable magnitude as the increase in CO2 consumption by chemical weathering. Our simulations support the previous findings on catchment scale that weathering can change significantly on a centennial time scale. This finding has implications for 21st century climate projections, which ignore changes in weathering, as well as for long-term airborne fraction of CO2 emissions, whose calculation usually neglects changes in phosphorus availability.

  15. The long term trend of carbon dioxide and solar-induced chlorophyll fluorescence over selected sites using GOSAT target observation data

    NASA Astrophysics Data System (ADS)

    Kataoka, F.; Higuchi, R.; Kuze, A.; Shiomi, K.

    2017-12-01

    The Greenhouse gases Observing SATellite (GOSAT) is designed to measure the concentration of major greenhouse gases from space. GOSAT carry the Fourier-Transform Spectrometer, which have three shortwave infrared (SWIR) bands and one thermal infrared (TIR) band. The SWIR bands correspond to the O2A band (0.76 mm), weak-CO2 (1.6 mm) and strong-CO2 (2.0 mm). The SWIR bands observe the backscattered sunlight from surface and retrieve the column-averaged dry air mole fraction of carbon dioxide and methane. The 0.76 mm band can also detect the solar-induced chlorophyll fluorescence (SIF) using high spectral-resolution spectra in O2A band and solar absorption feature (Fraunhofer lines). GOSAT have operated more than 8 years and targeted various kinds of land-cover area (forest, grass, desert, etc.). The long term CO2 and SIF data set potential to address the rate of CO2 uptake through plant photosynthesis. In this work, we evaluated a trend and seasonal fluctuation components of CO2 and SIF using the liner and trigonometric functions fitting. We analyzed the amplitude and phase of the CO2 and SIF seasonal variation and anomalies over selected sites. Spatial distribution from target observation dataset which consist of 16 point per site using an agile pointing system over megacity is presented together with wind data. The data is available from the GOSAT trend viewer at http://www.eorc.jaxa.jp/GOSAT/CO2_monitor/.

  16. Characterizing the Asian Tropopause Aerosol Layer (ATAL) Using Satellite Observations, Balloon Measurements and a Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Fairlie, T. D.; Vernier, J.-P.; Liu, H.; Deshler, T.; Natarajan, M.; Bedka, K.; Wegner, T.; Baker, N.; Gadhavi, H.; Ratnam, M. V.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with the ASM anticyclone. The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instruments, aircraft, and satellite observations, together with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical, and optical properties of aerosols in the ATAL. In particular, we show balloon-data from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, which includes in situ backscatter measurements from COBALD instruments, and the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous components to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that ATAL aerosols originate primary from south Asian sources, in contrast with some earlier studies.

  17. Trends in first-line antiretroviral therapy in Asia: results from the TREAT Asia HIV observational database.

    PubMed

    Boettiger, David Charles; Kerr, Stephen; Ditangco, Rossana; Merati, Tuti Parwati; Pham, Thuy Thi Thanh; Chaiwarith, Romanee; Kiertiburanakul, Sasisopin; Li, Chung Ki Patrick; Kumarasamy, Nagalingeswaran; Vonthanak, Saphonn; Lee, Christopher; Van Kinh, Nguyen; Pujari, Sanjay; Wong, Wing Wai; Kamarulzaman, Adeeba; Zhang, Fujie; Yunihastuti, Evy; Choi, Jun Yong; Oka, Shinichi; Ng, Oon Tek; Kantipong, Pacharee; Mustafa, Mahiran; Ratanasuwan, Winai; Sohn, Annette; Law, Matthew

    2014-01-01

    Antiretroviral therapy (ART) has evolved rapidly since its beginnings. This analysis describes trends in first-line ART use in Asia and their impact on treatment outcomes. Patients in the TREAT Asia HIV Observational Database receiving first-line ART for ≥ 6 months were included. Predictors of treatment failure and treatment modification were assessed. Data from 4662 eligible patients was analysed. Patients started ART in 2003-2006 (n = 1419), 2007-2010 (n = 2690) and 2011-2013 (n = 553). During the observation period, tenofovir, zidovudine and abacavir use largely replaced stavudine. Stavudine was prescribed to 5.8% of ART starters in 2012/13. Efavirenz use increased at the expense of nevirapine, although both continue to be used extensively (47.5% and 34.5% of patients in 2012/13, respectively). Protease inhibitor use dropped after 2004. The rate of treatment failure or modification declined over time (22.1 [95%CI 20.7-23.5] events per 100 patient/years in 2003-2006, 15.8 [14.9-16.8] in 2007-2010, and 11.6 [9.4-14.2] in 2011-2013). Adjustment for ART regimen had little impact on the temporal decline in treatment failure rates but substantially attenuated the temporal decline in rates of modification due to adverse event. In the final multivariate model, treatment modification due to adverse event was significantly predicted by earlier period of ART initiation (hazard ratio 0.52 [95%CI 0.33-0.81], p = 0.004 for 2011-2013 versus 2003-2006), older age (1.56 [1.19-2.04], p = 0.001 for ≥ 50 years versus <30 years), female sex (1.29 [1.11-1.50], p = 0.001 versus male), positive hepatitis C status (1.33 [1.06-1.66], p = 0.013 versus negative), and ART regimen (11.36 [6.28-20.54], p<0.001 for stavudine-based regimens versus tenofovir-based). The observed trends in first-line ART use in Asia reflect changes in drug availability, global treatment recommendations and prescriber preferences over the past decade. These changes have contributed to a declining rate of

  18. Advances and recent trends in heterogeneous photo(electro)-catalysis for solar fuels and chemicals.

    PubMed

    Highfield, James

    2015-04-15

    In the context of a future renewable energy system based on hydrogen storage as energy-dense liquid alcohols co-synthesized from recycled CO2, this article reviews advances in photocatalysis and photoelectrocatalysis that exploit solar (photonic) primary energy in relevant endergonic processes, viz., H2 generation by water splitting, bio-oxygenate photoreforming, and artificial photosynthesis (CO2 reduction). Attainment of the efficiency (>10%) mandated for viable techno-economics (USD 2.00-4.00 per kg H2) and implementation on a global scale hinges on the development of photo(electro)catalysts and co-catalysts composed of earth-abundant elements offering visible-light-driven charge separation and surface redox chemistry in high quantum yield, while retaining the chemical and photo-stability typical of titanium dioxide, a ubiquitous oxide semiconductor and performance "benchmark". The dye-sensitized TiO2 solar cell and multi-junction Si are key "voltage-biasing" components in hybrid photovoltaic/photoelectrochemical (PV/PEC) devices that currently lead the field in performance. Prospects and limitations of visible-absorbing particulates, e.g., nanotextured crystalline α-Fe2O3, g-C3N4, and TiO2 sensitized by C/N-based dopants, multilayer composites, and plasmonic metals, are also considered. An interesting trend in water splitting is towards hydrogen peroxide as a solar fuel and value-added green reagent. Fundamental and technical hurdles impeding the advance towards pre-commercial solar fuels demonstration units are considered.

  19. Early-life chemical exposures and risk of metabolic syndrome.

    PubMed

    De Long, Nicole E; Holloway, Alison C

    2017-01-01

    The global prevalence of obesity has been increasing at a staggering pace, with few indications of any decline, and is now one of the major public health challenges worldwide. While obesity and metabolic syndrome (MetS) have historically thought to be largely driven by increased caloric intake and lack of exercise, this is insufficient to account for the observed changes in disease trends. There is now increasing evidence to suggest that exposure to synthetic chemicals in our environment may also play a key role in the etiology and pathophysiology of metabolic diseases. Importantly, exposures occurring in early life (in utero and early childhood) may have a more profound effect on life-long risk of obesity and MetS. This narrative review explores the evidence linking early-life exposure to a suite of chemicals that are common contaminants associated with food production (pesticides; imidacloprid, chlorpyrifos, and glyphosate) and processing (acrylamide), in addition to chemicals ubiquitously found in our household goods (brominated flame retardants) and drinking water (heavy metals) and changes in key pathways important for the development of MetS and obesity.

  20. Improved Understanding of the Modeled QBO Using MLS Observations and MERRA Reanalysis

    NASA Technical Reports Server (NTRS)

    Oman, Luke David; Douglass, Anne Ritger; Hurwitz, Maggie M.; Garfinkel, Chaim I.

    2013-01-01

    The Quasi-Biennial Oscillation (QBO) dominates the variability of the tropical stratosphere on interannual time scales. The QBO has been shown to extend its influence into the chemical composition of this region through dynamical mechanisms. We have started our analysis using the realistic QBO internally generated by the Goddard Earth Observing System Version 5 (GEOS-5) general circulation model coupled to a comprehensive stratospheric and tropospheric chemical mechanism forced with observed sea surface temperatures over the past 33 years. We will show targeted comparisons with observations from NASAs Aura satellite Microwave Limb Sounder (MLS) and the Modern Era Retrospective-Analysis for Research and Applications (MERRA) reanalysis to provide insight into the simulation of the primary and secondary circulations associated with the QBO. Using frequency spectrum analysis and multiple linear regression we can illuminate the resulting circulations and deduce the strengths and weaknesses in their modeled representation. Inclusion of the QBO in our simulation improves the representation of the subtropical barriers and overall tropical variability. The QBO impact on tropical upwelling is important to quantify when calculating trends in sub-decadal scale datasets.

  1. Testing Silica Fume-Based Concrete Composites under Chemical and Microbiological Sulfate Attacks

    PubMed Central

    Estokova, Adriana; Kovalcikova, Martina; Luptakova, Alena; Prascakova, Maria

    2016-01-01

    Current design practices based on descriptive approaches to concrete specification may not be appropriate for the management of aggressive environments. In this study, the durability of cement-based materials with and without the addition of silica fume, subjected to conditions that leach calcium and silicon, were investigated. Chemical corrosion was simulated by employing various H2SO4 and MgSO4 solutions, and biological corrosion was simulated using Acidithiobacillus sp. bacterial inoculation, leading to disrupted and damaged surfaces; the samples’ mass changes were studied following both chemical and biological attacks. Different leaching trends were observed via X-ray fluorescence when comparing chemical with biological leaching. Lower leaching rates were found for concrete samples fortified with silica fume than those without silica fume. X-ray diffraction and scanning electron microscopy confirmed a massive sulfate precipitate formation on the concrete surface due to bacterial exposure. PMID:28773452

  2. Long-term downward trend in total solar irradiance.

    PubMed

    Willson, R C; Hudson, H S; Frohlich, C; Brusa, R W

    1986-11-28

    The first 5 years (from 1980 to 1985) of total solar irradiance observations by the first Active Cavity Radiometer Irradiance Monitor (ACRIM I) experiment on board the Solar Maximum Mission spacecraft show a clearly defined downward trend of -0.019% per year. The existence of this trend has been confirmed by the internal self-calibrations of ACRIM I, by independent measurements from sounding rockets and balloons, and by observations from the Nimbus-7 spacecraft. The trend appears to be due to unpredicted variations of solar luminosity on time scales of years, and it may be related to solar cycle magnetic activity.

  3. A survey of chemical information systems

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Shaikh, Aneesa Bashir

    1985-01-01

    A survey of the features, functions, and characteristics of a fairly wide variety of chemical information storage and retrieval systems currently in operation is given. The types of systems (together with an identification of the specific systems) addressed within this survey are as follows: patents and bibliographies (Derwent's Patent System; IFI Comprehensive Database; PULSAR); pharmacology and toxicology (Chemfile; PAGODE; CBF; HEEDA; NAPRALERT; MAACS); the chemical information system (CAS Chemical Registry System; SANSS; MSSS; CSEARCH; GINA; NMRLIT; CRYST; XTAL; PDSM; CAISF; RTECS Search System; AQUATOX; WDROP; OHMTADS; MLAB; Chemlab); spectra (OCETH; ASTM); crystals (CRYSRC); and physical properties (DETHERM). Summary characteristics and current trends in chemical information systems development are also examined.

  4. Identifying water-quality trends in the Trinity River, Texas, USA, 1969-1992, using sediment cores from Lake Livingston

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.

    1996-01-01

    Chemical analyses were done on cores of bottom sediment from three locations in Lake Livingston, a reservoir on the Trinity River in east Texas to identify trends in water quality in the Trinity River using the chemical record preserved in bottom sediments trapped by the reservoir. Sediment cores spanned the period from 1969, when the reservoir was impounded, to 1992, when the cores were collected. Chemical concentrations in reservoir sediment samples were compared to concentrations for 14 streambed sediment samples from the Trinity River Basin and to reported concentrations for soils in the eastern United States and shale. These comparisons indicate that sediments deposited in Lake Livingston are representative of the environmental setting of Lake Livingston within the Trinity River Basin. Vertical changes in concentrations within sediment cores indicate temporal trends of decreasing concentrations of lead, sodium, barium, and total DDT (DDT plus its metabolites DDD and DDE) in the Trinity River. Possible increasing temporal trends are indicated for chlordane and dieldrin. Each sediment-derived trend is related to trends in water quality in the Trinity River or known changes in environmental factors in its drainage basin or both.

  5. Properties of the circumgalactic medium in simulations compared to observations

    NASA Astrophysics Data System (ADS)

    Machado, R. E. G.; Tissera, P. B.; Lima Neto, G. B.; Sodré, L.

    2018-01-01

    Context. Galaxies are surrounded by extended gaseous halos that store significant fractions of chemical elements. These are syntethized by the stellar populations and later ejected into the circumgalactic medium (CGM) by different mechanism, of which supernova feedback is considered one of the most relevant. Aims: We aim to explore the properties of this metal reservoir surrounding star-forming galaxies in a cosmological context aiming to investigate the chemical loop between galaxies and their CGM, and the ability of the subgrid models to reproduce observational results. Methods: Using cosmological hydrodynamical simulations, we have analysed the gas-phase chemical contents of galaxies with stellar masses in the range 109-1011 M⊙. We estimated the fractions of metals stored in the different CGM phases, and the predicted O VI and Si III column densities within the virial radius. Results: We find roughly 107 M⊙ of oxygen in the CGM of simulated galaxies having M⋆ 1010 M⊙, in fair agreement with the lower limits imposed by observations. The Moxy is found to correlate with M⋆, at odds with current observational trends but in agreement with other numerical results. The estimated profiles of O VI column density reveal a substantial shortage of that ion, whereas Si III, which probes the cool phase, is overpredicted. Nevertheless, the radial dependences of both ions follow the respective observed profiles. The analysis of the relative contributions of both ions from the hot, warm and cool phases suggests that the warm gas (105 K < T < 106 K) should be more abundant in order to bridge the mismatch with the observations, or alternatively, that more metals should be stored in this gas-phase. These discrepancies provide important information to improve the subgrid physics models. Our findings show clearly the importance of tracking more than one chemical element and the difficulty of simultaneously satisfying the observables that trace the circumgalactic gas at

  6. Chemical trends for acceptor impurities in GaN

    NASA Astrophysics Data System (ADS)

    Neugebauer, Jörg; Van de Walle, Chris G.

    1999-03-01

    We present a comprehensive investigation of acceptor impurities in GaN, based on first-principles total-energy calculations. Two main factors are identified that determine acceptor incorporation: the strength of chemical bonding between the acceptor and its neighbors (which can be assessed by comparison with existing compounds) and the atomic size match between the acceptor and the host atom for which it substitutes. None of the candidates (Li, Na, K, Be, Zn, and Ca) exhibits characteristics which surpass those of Mg in all respects. Only Be emerges as a potential alternative dopant, although it may suffer from compensation by Be interstitial donors.

  7. Satellite observations of stratospheric hydrogen fluoride and comparisons with SLIMCAT calculations

    NASA Astrophysics Data System (ADS)

    Harrison, J. J.; Chipperfield, M. P.; Boone, C. D.; Dhomse, S. S.; Bernath, P. F.; Froidevaux, L.; Anderson, J.; Russell, J., III

    2015-12-01

    The vast majority of emissions of fluorine-containing molecules are anthropogenic in nature, e.g. chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs). Many of these fluorine-containing species deplete stratospheric ozone, and are regulated by the Montreal Protocol. Once in the atmosphere they slowly degrade, ultimately leading to the formation of HF, the dominant reservoir of stratospheric fluorine due to its extreme stability. Monitoring the growth of stratospheric HF is therefore an important marker for the success of the Montreal Protocol. We report the comparison of global distributions and trends of HF measured in the Earth's atmosphere by the satellite remote-sensing instruments ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer), which has been recording atmospheric spectra since 2004, and HALOE (HALogen Occultation Experiment), which recorded atmospheric spectra between 1991 and 2005, with the output of SLIMCAT, a state-of-the-art three-dimensional chemical transport model. In general the agreement between observation and model is good, although the ACE-FTS measurements are biased high by ∼ 10 % relative to HALOE. The observed global HF trends reveal a substantial slowing down in the rate of increase of HF since the 1990s: 4.97 ± 0.12 % year-1 (1991-1997; HALOE), 1.12 ± 0.08 % year-1 (1998-2005; HALOE), and 0.52 ± 0.03 % year-1 (2004-2012; ACE-FTS). In comparison, SLIMCAT calculates trends of 4.01, 1.10, and 0.48 % year-1, respectively, for the same periods; the agreement is very good for all but the earlier of the two HALOE periods. Furthermore, the observations reveal variations in the HF trends with latitude and altitude, for example between 2004 and 2012 HF actually decreased in the Southern Hemisphere below ∼ 35 km. SLIMCAT calculations broadly agree with these observations, most notably between 2004 and 2012. Such variations are attributed to variability in stratospheric dynamics

  8. Observations of, and sources of the spatial and temporal variability of ozone in the middle atmosphere on climatological time scales (OZMAP) and equatorial dynamics: Seasonal variations of ozone trends

    NASA Technical Reports Server (NTRS)

    Entzian, G.; Grasnick, K. H.; Taubenheim, J.

    1989-01-01

    The long term trends (least square linear regression with time) of ozone content at seven European, seven North American, three Japanese and two tropical stations during 21 years (1964 to 1984) are analyzed. In all regions negative trends are observed during the 1970s, but are partly compensated by limited periods of positive trends during the late 1960s and late 1970s. Solely the North American ozone data show negative trends in all 10 year periods. When the long term ozone trends are evaluated for each month of the year separately, a seasonal variation is revealed, which in Europe and North America has largest negative trends in late winter and spring. While in Europe the negative trends in winter/spring are partly compensated by positive trends in summer, in North America the summer values reach only zero, retaining the significant negative trend in annual mean values. In contrast to the antarctic ozone hole, the spring reduction of ozone in Europe and in North America is associated with stratospheric temperatures increasing in the analyzed period and therefore is consistent with the major natural ozone production and loss processes.

  9. Generalized trends in the formation energies of perovskite oxides.

    PubMed

    Zeng, ZhenHua; Calle-Vallejo, Federico; Mogensen, Mogens B; Rossmeisl, Jan

    2013-05-28

    Generalized trends in the formation energies of several families of perovskite oxides (ABO3) and plausible explanations to their existence are provided in this study through a combination of DFT calculations, solid-state physics analyses and simple physical/chemical descriptors. The studied elements at the A site of perovskites comprise rare-earth, alkaline-earth and alkaline metals, whereas 3d and 5d metals were studied at the B site. We also include ReO3-type compounds, which have the same crystal structure of cubic ABO3 perovskites except without A-site elements. From the observations we extract the following four conclusions for the perovskites studied in the present paper: for a given cation at the B site, (I) perovskites with cations of identical oxidation state at the A site possess close formation energies; and (II) perovskites with cations of different oxidation states at the A site usually have quite different but ordered formation energies. On the other hand, for a given A-site cation, (III) the formation energies of perovskites vary linearly with respect to the atomic number of the elements at the B site within the same period of the periodic table, and the slopes depend systematically on the oxidation state of the A-site cation; and (IV) the trends in formation energies of perovskites with elements from different periods at the B site depend on the oxidation state of A-site cations. Since the energetics of perovskites is shown to be the superposition of the individual contributions of their constituent oxides, the trends can be rationalized in terms of A-O and B-O interactions in the ionic crystal. These findings reveal the existence of general systematic trends in the formation energies of perovskites and provide further insight into the role of ion-ion interactions in the properties of ternary compounds.

  10. Chemical Abundances of Hydrostatic and Explosive Alpha-elements in Sagittarius Stream Stars

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Sheffield, Allyson A.; Cunha, Katia; Smith, Verne V.

    2018-05-01

    We analyze chemical abundances of stars in the Sagittarius (Sgr) tidal stream using high-resolution Gemini+GRACES spectra of 42 members of the highest surface-brightness portions of both the trailing and leading arms. Targets were chosen using a 2MASS+WISE color–color selection, combined with the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) radial velocities. In this Letter, we analyze [Fe/H] and α-elements produced by both hydrostatic (O, Mg) and explosive (Si, Ca, Ti) nucleosynthetic processes. The average [Fe/H] for our Sgr stream stars is lower than that for stars in the Sgr core, and stars in the trailing and leading arms show systematic differences in [Fe/H]. Both hydrostatic and explosive elements are depleted relative to Milky Way (MW) disk and halo stars, with a larger gap between the MW trend and Sgr stars for the hydrostatic elements. Chemical abundances of Sgr stream stars show similar patterns to those measured in the core of the Sgr dSph. We explore the ratio of hydrostatic to explosive α-elements [α h/ex] (which we refer to as the “HEx ratio”). Our observed HEx ratio trends for Sgr debris are deficient relative to MW stars. Via simple chemical evolution modeling, we show that these HEx ratio patterns are consistent with a Sgr IMF that lacks the most massive stars. This study provides a link between the chemical properties in the intact Sgr core and the significant portion of the Sgr system’s luminosity that is estimated to currently reside in the streams.

  11. Stratospheric processes: Observations and interpretation

    NASA Technical Reports Server (NTRS)

    Brune, William H.; Cox, R. Anthony; Turco, Richard; Brasseur, Guy P.; Matthews, W. Andrew; Zhou, Xiuji; Douglass, Anne; Zander, Rudi J.; Prendez, Margarita; Rodriguez, Jose M.

    1991-01-01

    Explaining the observed ozone trends discussed in an earlier update and predicting future trends requires an understanding of the stratospheric processes that affect ozone. Stratospheric processes occur on both large and small spatial scales and over both long and short periods of time. Because these diverse processes interact with each other, only in rare cases can individual processes be studied by direct observation. Generally the cause and effect relationships for ozone changes were established by comparisons between observations and model simulations. Increasingly, these comparisons rely on the developing, observed relationships among trace gases and dynamical quantities to initialize and constrain the simulations. The goal of this discussion of stratospheric processes is to describe the causes for the observed ozone trends as they are currently understood. At present, we understand with considerable confidence the stratospheric processes responsible for the Antarctic ozone hole but are only beginning to understand the causes of the ozone trends at middle latitudes. Even though the causes of the ozone trends at middle latitudes were not clearly determined, it is likely that they, just as those over Antarctica, involved chlorine and bromine chemistry that was enhanced by heterogeneous processes. This discussion generally presents only an update of the observations that have occurred for stratospheric processes since the last assessment (World Meteorological Organization (WMO), 1990), and is not a complete review of all the new information about stratospheric processes. It begins with an update of the previous assessment of polar stratospheres (WMO, 1990), followed by a discussion on the possible causes for the ozone trends at middle latitudes and on the effects of bromine and of volcanoes.

  12. O3 variability/trends in the troposphere from IASI observations in 2008-2017

    NASA Astrophysics Data System (ADS)

    Wespes, C.; Hurtmans, D.; Clerbaux, C.; Pierre-Francois, C.

    2017-12-01

    In this study, we describe the recent changes in the tropospheric ozone (O3) columns (TOCs) measured by the Infrared Atmospheric Sounding Interferometer (IASI) onboard the Metop satellites during the first ten years of the IASI operation (2008-2017). The instrument provides a unique dataset of vertically-resolved O3 profiles with a twice daily global coverage and a fairly good vertical resolution allowing us to monitor the year-to-year variability in the troposphere. The retrievals are performed using the FORLI software, a fast radiative transfer model based on the optimal estimation method, set up for near real time and large scale processing of IASI data. We differentiate trend characteristics from the seasonal and non-seasonal O3 variations captured by IASI in the troposphere by applying appropriate annual and seasonal multivariate regression models, which include important geophysical drivers of O3 variation (e.g. quasi biennial oscillations - QBO, El Niño/Southern Oscillation - ENSO, North Atlantic Oscillation-NAO) and a linear trend term, on time series of spatially gridded averaged O3. The performances of the regression models (annual vs seasonal) are first investigated. Given the large contribution of the interannual variability, we will then describe the effects of the main contributing O3 proxies (e.g. positive - or negatives - ENSO indexes measured during moderate to intense El Niño - or La Niña - episodes in the tropics) in addition to the adjusted O3 trend patterns. A special focus will be given over the Northern Hemisphere which is characterized by decreasing O3 precursor emissions (mainly over Europe and the US). FORLI O3-CO correlations patterns will also be discussed to evaluate the continental influence on the tropospheric O3 trends.

  13. On the trends of Fukui potential and hardness potential derivatives in isolated atoms vs. atoms in molecules.

    PubMed

    Bhattacharjee, Rituparna; Roy, Ram Kinkar

    2014-10-28

    In the present study, trends of electronic contribution to molecular electrostatic potential [Vel(r¯)(r=0)], Fukui potential [v(+)f|(r=0) and v(-)f|(r=0)] and hardness potential derivatives [Δ(+)h(k) and Δ(-)h(k)] for isolated atoms as well as atoms in molecules are investigated. The generated numerical values of these three reactivity descriptors in these two electronically different situations are critically analyzed through the relevant formalism. Values of Vel(r¯) (when r → 0, i.e., on the nucleus) are higher for atoms in molecules than that of isolated atoms. In contrast, higher values of v(+)|(r=0) and v(-)|(r=0) are observed for isolated atoms compared to the values for atoms in a molecule. However, no such regular trend is observed for the Δ(+)h(k) and Δ(-)h(k) values, which is attributed to the uncertainty in the Fukui function values of atoms in molecules. The sum of Fukui potential and the sum of hardness potential derivatives in molecules are also critically analyzed, which shows the efficacy of orbital relaxation effects in quantifying the values of these parameters. The chemical consequence of the observed trends of these descriptors in interpreting electron delocalization, electronic relaxation and non-negativity of atomic Fukui function indices is also touched upon. Several commonly used molecules containing carbon as well as heteroatoms are chosen to make the investigation more insightful.

  14. Southern Hemisphere extratropical circulation: Recent trends and natural variability

    NASA Astrophysics Data System (ADS)

    Thomas, Jordan L.; Waugh, Darryn W.; Gnanadesikan, Anand

    2015-07-01

    Changes in the Southern Annular Mode (SAM), Southern Hemisphere (SH) westerly jet location, and magnitude are linked with changes in ocean circulation along with ocean heat and carbon uptake. Recent trends have been observed in these fields but not much is known about the natural variability. Here we aim to quantify the natural variability of the SH extratropical circulation by using Coupled Model Intercomparison Project Phase 5 (CMIP5) preindustrial control model runs and compare with the observed trends in SAM, jet magnitude, and jet location. We show that trends in SAM are due partly to external forcing but are not outside the natural variability as described by these models. Trends in jet location and magnitude, however, lie outside the unforced natural variability but can be explained by a combination of natural variability and the ensemble mean forced trend. These results indicate that trends in these three diagnostics cannot be used interchangeably.

  15. Observations of nitrogen isotope fractionation in deeply embedded protostars

    NASA Astrophysics Data System (ADS)

    Wampfler, S. F.; Jørgensen, J. K.; Bizzarro, M.; Bisschop, S. E.

    2014-12-01

    Context. The terrestrial planets, comets, and meteorites are significantly enriched in 15N compared to the Sun and Jupiter. While the solar and jovian nitrogen isotope ratio is believed to represent the composition of the protosolar nebula, a still unidentified process has caused 15N-enrichment in the solids. Several mechanisms have been proposed to explain the variations, including chemical fractionation. However, observational results that constrain the fractionation models are scarce. While there is evidence of 15N-enrichment in prestellar cores, it is unclear how the signature evolves into the protostellar phases. Aims: The aim of this study is to measure the 14N/15N ratio around three nearby, embedded low- to intermediate-mass protostars. Methods: Isotopologues of HCN and HNC were used to probe the 14N/15N ratio. A selection of J = 3-2 and 4-3 transitions of H13CN, HC15N, HN13C, and H15NC was observed with the Atacama Pathfinder EXperiment telescope (APEX). The 14N/15N ratios were derived from the integrated intensities assuming a standard 12C/13C ratio. The assumption of optically thin emission was verified using radiative transfer modeling and hyperfine structure fitting. Results: Two sources, IRAS 16293A and R CrA IRS7B, show 15N-enrichment by a factor of ~1.5-2.5 in both HCN and HNC with respect to the solar composition. IRAS 16293A falls in the range of typical prestellar core values. Solar composition cannot be excluded for the third source, OMC-3 MMS6. Furthermore, there are indications of a trend toward increasing 14N/15N ratios with increasing outer envelope temperature. Conclusions: The enhanced 15N abundances in HCN and HNC found in two Class 0 sources (14N /15N ~ 160-290) and the tentative trend toward a temperature-dependent 14N/15N ratio are consistent with the chemical fractionation scenario, but 14N/15N ratios from additional tracers are indispensable for testing the models. Spatially resolved observations are needed to distinguish between

  16. Trends in mortality from 1965 to 2008 across the English north-south divide: comparative observational study

    PubMed Central

    Muller, Sara; Buchan, Iain E

    2011-01-01

    Objective To compare all cause mortality between the north and south of England over four decades. Design Population wide comparative observational study of mortality. Setting Five northernmost and four southernmost English government office regions. Population All residents in each year from 1965 to 2008. Main outcome measures Death rate ratios of north over south England by age band and sex, and northern excess mortality (percentage of excess deaths in north compared with south, adjusted for age and sex and examined for annual trends, using Poisson regression). Results During 1965 to 2008 the northern excess mortality remained substantial, at an average of 13.8% (95% confidence interval 13.7% to 13.9%). This geographical inequality was significantly larger for males than for females (14.9%, 14.7% to 15.0% v 12.7%, 12.6% to 12.9%, P<0.001). The inequality decreased significantly but temporarily for both sexes from the early 80s to the late 90s, followed by a steep significant increase from 2000 to 2008. Inequality varied with age, being higher for ages 0-9 years and 40-74 years and lower for ages 10-39 years and over 75 years. Time trends also varied with age. The strongest trend over time by age group was the increase among the 20-34 age group, from no significant northern excess mortality in 1965-95 to 22.2% (18.7% to 26.0%) in 1996-2008. Overall, the north experienced a fifth more premature (<75 years) deaths than the south, which was significant: a pattern that changed only by a slight increase between 1965 and 2008. Conclusion Inequalities in all cause mortality in the north-south divide were severe and persistent over the four decades from 1965 to 2008. Males were affected more than females, and the variation across age groups was substantial. The increase in this inequality from 2000 to 2008 was notable and occurred despite the public policy emphasis in England over this period on reducing inequalities in health. PMID:21325004

  17. Trends in mortality from 1965 to 2008 across the English north-south divide: comparative observational study.

    PubMed

    Hacking, John M; Muller, Sara; Buchan, Iain E

    2011-02-15

    To compare all cause mortality between the north and south of England over four decades. Population wide comparative observational study of mortality. Five northernmost and four southernmost English government office regions. All residents in each year from 1965 to 2008. Death rate ratios of north over south England by age band and sex, and northern excess mortality (percentage of excess deaths in north compared with south, adjusted for age and sex and examined for annual trends, using Poisson regression). During 1965 to 2008 the northern excess mortality remained substantial, at an average of 13.8% (95% confidence interval 13.7% to 13.9%). This geographical inequality was significantly larger for males than for females (14.9%, 14.7% to 15.0% v 12.7%, 12.6% to 12.9%, P<0.001). The inequality decreased significantly but temporarily for both sexes from the early 80s to the late 90s, followed by a steep significant increase from 2000 to 2008. Inequality varied with age, being higher for ages 0-9 years and 40-74 years and lower for ages 10-39 years and over 75 years. Time trends also varied with age. The strongest trend over time by age group was the increase among the 20-34 age group, from no significant northern excess mortality in 1965-95 to 22.2% (18.7% to 26.0%) in 1996-2008. Overall, the north experienced a fifth more premature (<75 years) deaths than the south, which was significant: a pattern that changed only by a slight increase between 1965 and 2008. Inequalities in all cause mortality in the north-south divide were severe and persistent over the four decades from 1965 to 2008. Males were affected more than females, and the variation across age groups was substantial. The increase in this inequality from 2000 to 2008 was notable and occurred despite the public policy emphasis in England over this period on reducing inequalities in health.

  18. Are GRACE-era terrestrial water trends driven by anthropogenic climate change?

    DOE PAGES

    Fasullo, J. T.; Lawrence, D. M.; Swenson, S. C.

    2016-01-01

    To provide context for observed trends in terrestrial water storage (TWS) during GRACE (2003–2014), trends and variability in the CESM1-CAM5 Large Ensemble (LE) are examined. Motivated in part by the anomalous nature of climate variability during GRACE, the characteristics of both forced change and internal modes are quantified and their influences on observations are estimated. Trends during the GRACE era in the LE are dominated by internal variability rather than by the forced response, with TWS anomalies in much of the Americas, eastern Australia, Africa, and southwestern Eurasia largely attributable to the negative phases of the Pacific Decadal Oscillation (PDO)more » and Atlantic Multidecadal Oscillation (AMO). While similarities between observed trends and the model-inferred forced response also exist, it is inappropriate to attribute such trends mainly to anthropogenic forcing. For several key river basins, trends in the mean state and interannual variability and the time at which the forced response exceeds background variability are also estimated while aspects of global mean TWS, including changes in its annual amplitude and decadal trends, are quantified. Lastly, the findings highlight the challenge of detecting anthropogenic climate change in temporally finite satellite datasets and underscore the benefit of utilizing models in the interpretation of the observed record.« less

  19. Are GRACE-era terrestrial water trends driven by anthropogenic climate change?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasullo, J. T.; Lawrence, D. M.; Swenson, S. C.

    To provide context for observed trends in terrestrial water storage (TWS) during GRACE (2003–2014), trends and variability in the CESM1-CAM5 Large Ensemble (LE) are examined. Motivated in part by the anomalous nature of climate variability during GRACE, the characteristics of both forced change and internal modes are quantified and their influences on observations are estimated. Trends during the GRACE era in the LE are dominated by internal variability rather than by the forced response, with TWS anomalies in much of the Americas, eastern Australia, Africa, and southwestern Eurasia largely attributable to the negative phases of the Pacific Decadal Oscillation (PDO)more » and Atlantic Multidecadal Oscillation (AMO). While similarities between observed trends and the model-inferred forced response also exist, it is inappropriate to attribute such trends mainly to anthropogenic forcing. For several key river basins, trends in the mean state and interannual variability and the time at which the forced response exceeds background variability are also estimated while aspects of global mean TWS, including changes in its annual amplitude and decadal trends, are quantified. Lastly, the findings highlight the challenge of detecting anthropogenic climate change in temporally finite satellite datasets and underscore the benefit of utilizing models in the interpretation of the observed record.« less

  20. Aerosol chemical composition at Cabauw, The Netherlands as observed in two intensive periods in May 2008 and March 2009

    NASA Astrophysics Data System (ADS)

    Mensah, A. A.; Holzinger, R.; Otjes, R.; Trimborn, A.; Mentel, Th. F.; ten Brink, H.; Henzing, B.; Kiendler-Scharr, A.

    2012-05-01

    Observations of aerosol chemical composition in Cabauw, the Netherlands, are presented for two intensive measurement periods in May 2008 and March 2009. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and is compared to observations from aerosol size distribution measurements as well as composition measurements with a Monitor for AeRosol and GAses (MARGA) based instrument and a Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometer (TD-PTR-MS). An overview of the data is presented and the data quality is discussed. In May 2008 enhanced pollution was observed with organics contributing 40% to the PM1 mass. In contrast the observed average mass loading was lower in March 2009 and a dominance of ammonium nitrate (42%) was observed. The semi-volatile nature of ammonium nitrate is evident in the diurnal cycles with maximum concentrations observed in the morning hours in May 2008 and little diurnal variation observed in March 2009. Size dependent composition data from AMS measurements are presented and show a dominance of organics in the size range below 200 nm. A higher O:C ratio of the organics is observed for May 2008 than for March 2009. Together with the time series of individual tracer ions this shows the dominance of OOA over HOA in May 2008.

  1. Influence of a priori profiles on trend calculations from Umkehr data

    NASA Astrophysics Data System (ADS)

    Mateer, C. L.; Dütsch, H. U.; Staehelin, J.; Deluisi, J. J.

    1996-07-01

    Although the new (1992) ozone profile retrieval algorithm for Umkehr measurements provides much better agreement with ozone sounding results than the old (1964) algorithm, considerable discrepancies remain with respect to ozone trends at different levels in the atmosphere. These discrepancies have been found by the comparison of long-term trends obtained from the Umkehr measurements at Arosa and the ozone balloon soundings at Payerne (Switzerland). It is investigated here whether these obvious discrepancies can be removed by using time-dependent a priori profiles. This procedure is successful only in the lowest part of the atmosphere, below about 19 km. To further explore this problem, synthetic Umkehr observations are calculated from the ozonesonde profiles. Trends are calculated for both the synthetic and actual Umkehr observations. The difference pattern between these Umkehr observation trends is compared with the difference in ozone profile retrieval trends from the synthetic and actual observations. The distinctive difference patterns strongly indicate an inherent disagreement between the Umkehr observations and the ozonesonde profiles. The application of corrections for stratospheric aerosol effects to the Umkehr profiles reduces, but does not eliminate, a discrepancy above 32 km. It is concluded that the discrepancies are due to the constant mixing ratio assumption used in computing the residual ozone above balloon burst level and to the fair-weather bias of Umkehr observations (there are Umkehr observations at Arosa on fewer than 20% of the sonde observation days at Payerne). This sampling difference influences the results for the lower stratosphere. The study furthermore indicates that the ozone trends derived from Umkehr measurements for altitudes above about 32 km are robust for time-dependent changes in the a priori profiles at lower altitudes. Based on the results of this study, we conclude with revised recommendations as to which atmospheric layers

  2. Relationship Between Sea Surface Temperature and Surface Heat Balance Trends in the Tropical Oceans: The Crucial Role of Surface Wind Trends

    NASA Astrophysics Data System (ADS)

    Cook, K. H.; Vizy, E. K.; Sun, X.

    2016-12-01

    Multiple atmospheric and ocean reanalyses are analyzed for 1980-2015 to understand annual-mean adjustments of the surface heat balance over the tropical oceans as the climate warms. Linear trends are examined, with statistical significance evaluated. While surface heat budgets and sea surface temperatures are mutually adjusted fields, insights into the physical processes of this adjustment and the implications for temperature trends can be identified. Two second-generation reanalyses, ERA-Interim and JRA-55, agree well on the distributions and magnitudes of trends in the net heat flux from the atmosphere to the ocean. Trends in the net longwave and sensible heat fluxes are generally small, and trends in solar radiation absorbed are only influential regionally and vary among the reanalyses. The largest contribution is from latent heat flux trends. Contributions to these trends associated with surface temperature (thermal-driving), 10-m wind (dynamical-driving) and specific humidity (hydrological-driving) trends are estimated. The dynamically-driven latent heat flux dominates and explains much of the regionality of the multi-decadal heat flux trends. However, trends in the net surface heat flux alone do not match the observed SSTs trends well, indicating that the redistribution of heat within the ocean mixed layer is also important. Ocean mixed layer heat budgets in various ocean reanalyses are examined to understand this redistribution, and we again identify a crucial role for changes in the surface wind. Acceleration of the tropical easterlies is associated with strengthening of the equatorial undercurrents in both the tropical Pacific and Atlantic. In the Pacific, where the EUC is also shoaling, the result is enhanced warm-water advection into the central Pacific. This advective warming is superimposed on cooling due to enhanced evaporation and equatorial upwelling, which are also associated with wind trends, to determine the observed pattern of SST trends.

  3. Global trends

    NASA Technical Reports Server (NTRS)

    Megie, G.; Chanin, M.-L.; Ehhalt, D.; Fraser, P.; Frederick, J. F.; Gille, J. C.; Mccormick, M. P.; Schoebert, M.; Bishop, L.; Bojkov, R. D.

    1990-01-01

    Measuring trends in ozone, and most other geophysical variables, requires that a small systematic change with time be determined from signals that have large periodic and aperiodic variations. Their time scales range from the day-to-day changes due to atmospheric motions through seasonal and annual variations to 11 year cycles resulting from changes in the sun UV output. Because of the magnitude of all of these variations is not well known and highly variable, it is necessary to measure over more than one period of the variations to remove their effects. This means that at least 2 or more times the 11 year sunspot cycle. Thus, the first requirement is for a long term data record. The second related requirement is that the record be consistent. A third requirement is for reasonable global sampling, to ensure that the effects are representative of the entire Earth. The various observational methods relevant to trend detection are reviewed to characterize their quality and time and space coverage. Available data are then examined for long term trends or recent changes in ozone total content and vertical distribution, as well as related parameters such as stratospheric temperature, source gases and aerosols.

  4. The association of the original OSHA chemical hazard communication standard with reductions in acute work injuries/illnesses in private industry and the industrial releases of chemical carcinogens.

    PubMed

    Oleinick, Arthur

    2014-02-01

    OSHA predicted the original chemical Hazard Communication Standard (HCS) would cumulatively reduce the lost workday acute injury/illness rate for exposure events by 20% over 20 years and reduce exposure to chemical carcinogens. JoinPoint trend software identified changes in the rate of change of BLS rates for days away from work for acute injuries/illnesses during 1992-2009 for manufacturing and nonmanufacturing industries for both chemical, noxious or allergenic injury exposure events and All other exposure events. The annual percent change in the rates was used to adjust observed numbers of cases to estimate their association with the standard. A case-control study of EPA's Toxic Release Inventory 1988-2009 data compared carcinogen and non-carcinogens' releases. The study estimates that the HCS was associated with a reduction in the number of acute injuries/illnesses due to chemical injury exposure events over the background rate in the range 107,569-459,395 (Hudson method/modified BIC model) depending on whether the HCS is treated as a marginal or sole factor in the decrease. Carcinogen releases have declined at a substantially faster rate than control non-carcinogens. The previous HCS standard was associated with significant reductions in chemical event acute injuries/illnesses and chemical carcinogen exposures. © 2013 Wiley Periodicals, Inc.

  5. Is solar correction for long-term trend studies stable?

    NASA Astrophysics Data System (ADS)

    Laštovička, Jan

    2017-04-01

    When calculating long-term trends in the ionosphere, the effect of the 11-year solar cycle (i.e. of solar activity) must be removed from data, because it is much stronger than the long-term trend. When a data series is analyzed for trend, usual approach is first to calculate from all data their dependence on solar activity and create an observational model of dependence on solar activity. Then the model data are subtracted from observations and trend is computed from residuals. This means that it is assumed that the solar activity dependence is stable over the whole data series period of time. But what happens if it is not the case? As an ionospheric parameter we consider foE from two European stations with the best long data series of parameters of the ionospheric E layer, Slough/Chilton and Juliusruh over 1975-2014 (40 years). Noon-time medians (10-14 LT) are analyzed. The trend pattern after removing solar influence with one correction for the whole period is complex. For yearly average values for both stations first foE is slightly decreasing in 1975-1990, then the trend levels off or a very little increase occurs in 1990-2005, and finally in 2006-2014 a remarkable decrease is observed. This does not seem to be physically plausible. However, when the solar correction is calculated separately for the three above periods, we obtain a smooth slightly negative trend which changes after the mid-1990 into no trend in coincidence with change of ozone trend. While solar corrections for the first two periods are similar (even though not equal), the solar activity dependence of foE in the third period (lower solar activity) is clearly different. Also foF2 trend revealed some effect of unstable solar correction. Thus the stability of solar correction should be carefully tested when calculating ionospheric trends. This could perhaps explain some of differences between the past published trend results.

  6. Emerging trends in global freshwater availability.

    PubMed

    Rodell, M; Famiglietti, J S; Wiese, D N; Reager, J T; Beaudoing, H K; Landerer, F W; Lo, M-H

    2018-05-01

    Freshwater availability is changing worldwide. Here we quantify 34 trends in terrestrial water storage observed by the Gravity Recovery and Climate Experiment (GRACE) satellites during 2002-2016 and categorize their drivers as natural interannual variability, unsustainable groundwater consumption, climate change or combinations thereof. Several of these trends had been lacking thorough investigation and attribution, including massive changes in northwestern China and the Okavango Delta. Others are consistent with climate model predictions. This observation-based assessment of how the world's water landscape is responding to human impacts and climate variations provides a blueprint for evaluating and predicting emerging threats to water and food security.

  7. Observed SWE trends and climate analysis for Northwest Pacific North America: validation for future projection of SWE using the CRCM and VIC

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; Bronaugh, D.; Rodenhuis, D.

    2008-12-01

    Observational databases of snow water equivalent (SWE) have been collected from Alaska, western US states and the Canadian provinces of British Columbia, Alberta, Saskatchewan, and territories of NWT, and the Yukon. These databases were initially validated to remove inconsistencies and errors in the station records, dates or the geographic co-ordinates of the station. The cleaned data was then analysed for historical (1950 to 2006) trend using emerging techniques for trend detection based on (first of the month) estimates for January to June. Analysis of SWE showed spatial variability in the count of records across the six month time period, and this study illustrated differences between Canadian and US (or the north and south) collection. Two different data sets (one gridded and one station) were then used to analyse April 1st records, for which there was the greatest spatial spread of station records for analysis with climate information. Initial results show spatial variability (in both magnitude and direction of trend) for trend results, and climate correlations and principal components indicate different drivers of change in SWE across the western US, Canada and north to Alaska. These results will be used to validate future predictions of SWE that are being undertaken using the Canadian Regional Climate Model (CRCM) and the Variable Infiltration Capacity (VIC) hydrologic model for Western Northern America (CRCM) and British Columbia (VIC).

  8. 27 Years of Satellite Ozone Data: Merging of Data Records from Multiple Instruments to Observe Global Trends and Recovery

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.

    2007-01-01

    Satellite measurements provide a unique global view of the stratospheric ozone layer. The perspective from satellites allowed for the early mapping of the extent of the phenomenon that became known as the ozone hole. The use of the satellite data for global trends outside of the ozone hole confronts the problem of the possible drift of the calibration of the instrument. The TOMS and SBUV instruments on Nimbus 7 lasted for more than a decade. During that time, the diffuser plate used to reflect sunlight into the measurement degraded (darkened) and the instruments each had a number of events that made calibration determination difficult. Initially the TOMS data were used for global trends by adjusting the overall calibration to agree with a set of ground-based measurement stations. But this was unsatisfactory because the record was not independent of those ground measurements and problems were found in many of the ground stations by using TOMS as a transfer standard. After many years of dedicated work, the TOMS/SBUV team learned how to correct for instrument drift, remove the interfering effects of aerosols, and establish instrument-to-instrument calibrations resulting in a long-term record that can be used for accurate trend and recovery determination. The global view of the satellites allows for determination not only of temporal change in ozone, but spatial fingerprints that allow more confidence in assigning cause to observed changes.

  9. Trend analysis of Arctic sea ice extent

    NASA Astrophysics Data System (ADS)

    Silva, M. E.; Barbosa, S. M.; Antunes, Luís; Rocha, Conceição

    2009-04-01

    The extent of Arctic sea ice is a fundamental parameter of Arctic climate variability. In the context of climate change, the area covered by ice in the Arctic is a particularly useful indicator of recent changes in the Arctic environment. Climate models are in near universal agreement that Arctic sea ice extent will decline through the 21st century as a consequence of global warming and many studies predict a ice free Arctic as soon as 2012. Time series of satellite passive microwave observations allow to assess the temporal changes in the extent of Arctic sea ice. Much of the analysis of the ice extent time series, as in most climate studies from observational data, have been focussed on the computation of deterministic linear trends by ordinary least squares. However, many different processes, including deterministic, unit root and long-range dependent processes can engender trend like features in a time series. Several parametric tests have been developed, mainly in econometrics, to discriminate between stationarity (no trend), deterministic trend and stochastic trends. Here, these tests are applied in the trend analysis of the sea ice extent time series available at National Snow and Ice Data Center. The parametric stationary tests, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and the KPSS, do not support an overall deterministic trend in the time series of Arctic sea ice extent. Therefore, alternative parametrizations such as long-range dependence should be considered for characterising long-term Arctic sea ice variability.

  10. CHEMICAL PROCESSES AND MODELING IN ECOSYSTEMS

    EPA Science Inventory

    Trends in regulatory strategies require EPA to understand better chemical behavior in natural and impacted ecosystems and in biological systems to carry out the increasingly complex array of exposure and risk assessments needed to develop scientifically defensible regulations (GP...

  11. REPORTING NEEDS FOR STUDIES OF ENVIRONMENTAL CHEMICALS IN HUMAN MILK

    EPA Science Inventory

    Studies of environmental chemicals in human milk have been carried out in many countries, but few have been conducted in the U.S. These studies are useful for monitoring populations trends in exposure to chemiclas, for research in the determinants of environmental chemicals in m...

  12. Trends in First-Line Antiretroviral Therapy in Asia: Results from the TREAT Asia HIV Observational Database

    PubMed Central

    Boettiger, David Charles; Kerr, Stephen; Ditangco, Rossana; Merati, Tuti Parwati; Pham, Thuy Thi Thanh; Chaiwarith, Romanee; Kiertiburanakul, Sasisopin; Li, Chung Ki Patrick; Kumarasamy, Nagalingeswaran; Vonthanak, Saphonn; Lee, Christopher; Van Kinh, Nguyen; Pujari, Sanjay; Wong, Wing Wai; Kamarulzaman, Adeeba; Zhang, Fujie; Yunihastuti, Evy; Choi, Jun Yong; Oka, Shinichi; Ng, Oon Tek; Kantipong, Pacharee; Mustafa, Mahiran; Ratanasuwan, Winai; Sohn, Annette; Law, Matthew

    2014-01-01

    Background Antiretroviral therapy (ART) has evolved rapidly since its beginnings. This analysis describes trends in first-line ART use in Asia and their impact on treatment outcomes. Methods Patients in the TREAT Asia HIV Observational Database receiving first-line ART for ≥6 months were included. Predictors of treatment failure and treatment modification were assessed. Results Data from 4662 eligible patients was analysed. Patients started ART in 2003–2006 (n = 1419), 2007–2010 (n = 2690) and 2011–2013 (n = 553). During the observation period, tenofovir, zidovudine and abacavir use largely replaced stavudine. Stavudine was prescribed to 5.8% of ART starters in 2012/13. Efavirenz use increased at the expense of nevirapine, although both continue to be used extensively (47.5% and 34.5% of patients in 2012/13, respectively). Protease inhibitor use dropped after 2004. The rate of treatment failure or modification declined over time (22.1 [95%CI 20.7–23.5] events per 100 patient/years in 2003–2006, 15.8 [14.9–16.8] in 2007–2010, and 11.6 [9.4–14.2] in 2011–2013). Adjustment for ART regimen had little impact on the temporal decline in treatment failure rates but substantially attenuated the temporal decline in rates of modification due to adverse event. In the final multivariate model, treatment modification due to adverse event was significantly predicted by earlier period of ART initiation (hazard ratio 0.52 [95%CI 0.33–0.81], p = 0.004 for 2011–2013 versus 2003–2006), older age (1.56 [1.19–2.04], p = 0.001 for ≥50 years versus <30years), female sex (1.29 [1.11–1.50], p = 0.001 versus male), positive hepatitis C status (1.33 [1.06–1.66], p = 0.013 versus negative), and ART regimen (11.36 [6.28–20.54], p<0.001 for stavudine-based regimens versus tenofovir-based). Conclusions The observed trends in first-line ART use in Asia reflect changes in drug availability, global treatment recommendations and

  13. Seasonal trend of fog water chemical composition in the Po Valley.

    PubMed

    Fuzzi, S; Facchini, M C; Orsi, G; Ferri, D

    1992-01-01

    Fog frequency in the Po Valley, Northern Italy, can be as high as 30% of the time in the fall-winter season. High pollutant concentrations have been measured in fog water samples collected in this area over the past few years. The combined effects of high fog occurrence and high pollutant loading of the fog droplets can determine, in this area, appreciable chemical deposition rates. An automated station for fog water collection was developed, and deployed at the field station of S. Pietro Capofiume, in the eastern part of the Po Valley for an extended period: from the beginning of November 1989 to the end of April 1990. Time-resolved sampling of fog droplets was carried out during all fog events occurring in this period, and chemical analyses were performed on the collected samples. Statistical information on fog occurrence and fog water chemical composition is reported in this paper, and a tentative seasonal deposition budget is calculated for H+, NH4+, NO3- and SO4(2-) ions. The problems connected with fog droplet sampling in sub-freezing conditions are also addressed in the paper.

  14. Zika pandemic online trends, incidence and health risk communication: a time trend study.

    PubMed

    Adebayo, Gbenga; Neumark, Yehuda; Gesser-Edelsburg, Anat; Abu Ahmad, Wiessam; Levine, Hagai

    2017-01-01

    We aimed to describe the online search trends of Zika and examine their association with Zika incidence, assess the content of Zika-related press releases issued by leading health authorities and examine the association between online trends and press release timing. Using Google Trends, the 1 May 2015 to 30 May 2016 online trends of Zika and associated search terms were studied globally and in the five countries with the highest numbers of suspected cases. Correlations were then examined between online trends and Zika incidence in these countries. All Zika-related press releases issued by WHO/Pan America Health Organization (PAHO) and Centers for Disease Control and Prevention (CDC) during the study period were assessed for transparency, uncertainty and audience segmentation. Witte's Extended Parallel Process Model was applied to assess self-efficacy, response efficacy, susceptibility and severity. AutoRegressive Integrated Moving Average with an eXogenous predictor variable (ARIMAX) (p,d,q) regression modelling was used to quantify the association between online trends and the timing of press releases. Globally, Zika online search trends were low until the beginning of 2016, when interest rose steeply. Strong correlations (r=0.748-0.922; p<0.001) were observed between online trends and the number of suspected Zika cases in four of the five countries studied. Compared with press releases issued by WHO/PAHO, CDC press releases were significantly more likely to provide contact details and links to other resources, include figures/graphs, be risk-advisory in nature and be more readable and briefer. ARIMAX modelling results indicate that online trends preceded by 1 week press releases by WHO (stationary-R 2 =0.345; p<0.001) and CDC (stationary-R 2 =0.318; p=0.014). These results suggest that online trends can aid in pandemic surveillance. Identification of shortcomings in the content and timing of Zika press releases can help guide health communication efforts in

  15. Zika pandemic online trends, incidence and health risk communication: a time trend study

    PubMed Central

    Neumark, Yehuda; Gesser-Edelsburg, Anat; Abu Ahmad, Wiessam

    2017-01-01

    Objectives We aimed to describe the online search trends of Zika and examine their association with Zika incidence, assess the content of Zika-related press releases issued by leading health authorities and examine the association between online trends and press release timing. Design Using Google Trends, the 1 May 2015 to 30 May 2016 online trends of Zika and associated search terms were studied globally and in the five countries with the highest numbers of suspected cases. Correlations were then examined between online trends and Zika incidence in these countries. All Zika-related press releases issued by WHO/Pan America Health Organization (PAHO) and Centers for Disease Control and Prevention (CDC) during the study period were assessed for transparency, uncertainty and audience segmentation. Witte's Extended Parallel Process Model was applied to assess self-efficacy, response efficacy, susceptibility and severity. AutoRegressive Integrated Moving Average with an eXogenous predictor variable (ARIMAX) (p,d,q) regression modelling was used to quantify the association between online trends and the timing of press releases. Results Globally, Zika online search trends were low until the beginning of 2016, when interest rose steeply. Strong correlations (r=0.748–0.922; p<0.001) were observed between online trends and the number of suspected Zika cases in four of the five countries studied. Compared with press releases issued by WHO/PAHO, CDC press releases were significantly more likely to provide contact details and links to other resources, include figures/graphs, be risk-advisory in nature and be more readable and briefer. ARIMAX modelling results indicate that online trends preceded by 1 week press releases by WHO (stationary-R2=0.345; p<0.001) and CDC (stationary-R2=0.318; p=0.014). Conclusions These results suggest that online trends can aid in pandemic surveillance. Identification of shortcomings in the content and timing of Zika press releases can help

  16. Monitoring of the Physical and Chemical Properties of a Gasoline Engine Oil during Its Usage

    PubMed Central

    Rahimi, Behnam; Semnani, Abolfazl; Nezamzadeh-Ejhieh, Alireza; Shakoori Langeroodi, Hamid; Hakim Davood, Massoud

    2012-01-01

    Physicochemical properties of a mineral-based gasoline engine oil have been monitored at 0, 500, 1000, 2000, 3500, 6000, 8500, and 11500 kilometer of operation. Tracing has been performed by inductively coupled plasma and some other techniques. At each series of measurements, the concentrations of twenty four elements as well as physical properties such as: viscosity at 40 and 100°C; viscosity index; flash point; pour point; specific gravity; color; total acid and base numbers; water content have been determined. The results are indicative of the decreasing trend in concentration of additive elements and increasing in concentration for wear elements. Different trends have been observed for various physical properties. The possible reasons for variations in physical and chemical properties have been discussed. PMID:22567569

  17. The Spatiotemporal Structure of 20th Century Climate Variations in Observations and Reanalyses. Part 1; Long-term Trend

    NASA Technical Reports Server (NTRS)

    Chen, Junye; DelGenio, Anthony D.; Carlson, Barbara e.; Bosilovich, Michael G.

    2007-01-01

    The dominant interannual El Nino-Southern Oscillation phenomenon (ENSO) and the short length of climate observation records make it difficult to study long-term climate variations in the spatiotemporal domain. Based on the fact that the ENS0 signal spreads to remote regions and induces delayed climate variation through atmospheric teleconnections, we develop an ENSO-removal method through which the ENS0 signal can be approximately removed at the grid box level from the spatiotemporal field of a climate parameter. After this signal is removed, long-term climate variations, namely, the global warming trend (GW) and the Pacific pan-decadal variability (PDV), are isolated at middle and low latitudes in the climate parameter fields from observed and reanalyses datasets. Except for known GW characteristics, the warming that occurs in the Pacific basin (approximately 0.4K in the 2oth century) is much weaker than in surrounding regions and the other two ocean basins (approximately 0.8K). The modest warming in the Pacific basin is likely due to its dynamic nature on the interannual and decadal time scales and/or the leakage of upper ocean water through the Indonesian Throughflow. Based on NCEP/NCAR and ERA-40 reanalyses, a comprehensive atmospheric structure associated with GW is given. Significant discrepancies exist between the two datasets, especially in the tightly coupled dynamic and water vapor fields. The dynamic field based on NCEP/NCAR reanalysis, which shows a change in the Walker Circulation, is consistent with the GW change in the surface temperature field. However, intensification in the Hadley Circulation is associated with GW trend in the ERA-40 reanalysis.

  18. The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs. Implications for stellar and Galactic chemical evolution

    NASA Astrophysics Data System (ADS)

    Smiljanic, R.; Romano, D.; Bragaglia, A.; Donati, P.; Magrini, L.; Friel, E.; Jacobson, H.; Randich, S.; Ventura, P.; Lind, K.; Bergemann, M.; Nordlander, T.; Morel, T.; Pancino, E.; Tautvaišienė, G.; Adibekyan, V.; Tosi, M.; Vallenari, A.; Gilmore, G.; Bensby, T.; François, P.; Koposov, S.; Lanzafame, A. C.; Recio-Blanco, A.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Franciosini, E.; Heiter, U.; Hill, V.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2016-05-01

    Context. Stellar evolution models predict that internal mixing should cause some sodium overabundance at the surface of red giants more massive than ~1.5-2.0 M⊙. The surface aluminium abundance should not be affected. Nevertheless, observational results disagree about the presence and/or the degree of Na and Al overabundances. In addition, Galactic chemical evolution models adopting different stellar yields lead to very different predictions for the behavior of [Na/Fe] and [Al/Fe] versus [Fe/H]. Overall, the observed trends of these abundances with metallicity are not well reproduced. Aims: We readdress both issues, using new Na and Al abundances determined within the Gaia-ESO Survey. Our aim is to obtain better observational constraints on the behavior of these elements using two samples: I) more than 600 dwarfs of the solar neighborhood and of open clusters and II) low- and intermediate-mass clump giants in six open clusters. Methods: Abundances were determined using high-resolution UVES spectra. The individual Na abundances were corrected for nonlocal thermodynamic equilibrium effects. For the Al abundances, the order of magnitude of the corrections was estimated for a few representative cases. For giants, the abundance trends with stellar mass are compared to stellar evolution models. For dwarfs, the abundance trends with metallicity and age are compared to detailed chemical evolution models. Results: Abundances of Na in stars with mass below ~2.0 M⊙, and of Al in stars below ~3.0 M⊙, seem to be unaffected by internal mixing processes. For more massive stars, the Na overabundance increases with stellar mass. This trend agrees well with predictions of stellar evolutionary models. For Al, our only cluster with giants more massive than 3.0 M⊙, NGC 6705, is Al enriched. However, this might be related to the environment where the cluster was formed. Chemical evolution models that well fit the observed [Na/Fe] vs. [Fe/H] trend in solar neighborhood dwarfs

  19. Interstellar matrices: the chemical composition and evolution of interstellar ices as observed by ISO.

    PubMed

    d'Hendecourt, L; Dartois, E

    2001-03-15

    Matrix isolation techniques have been developed in the early sixties as a tool for studying the spectroscopic properties of out of equilibrium species (atoms, radicals, ions, reactive molecules), embedded in rare gas inert matrices at low temperatures. Cold interstellar grains surfaces are able to condense out gas phase molecules, routinely observed by radioastronomy. These grain 'mantles' can be considered as 'interstellar matrices'. However, these matrices are not clean and unreactive. They are made principally of dirty ices whose composition must be determined carefully to assess the importance of the solid state chemistry that takes place in the Interstellar Medium. Infrared spectroscopy, both in astronomy and in the laboratory, is the unique tool to determine the chemical composition of these ices. Astronomical spectra can directly be compared with laboratory ones obtained using classical matrix isolation techniques. Furthermore, dedicated experiments may be undertaken to further improve the understanding of the basic physico-chemical processes that take place in cosmic ices.

  20. The Role of Spirituality in Recovery from Chemical Dependency.

    ERIC Educational Resources Information Center

    Johnsen, Eric

    1993-01-01

    Examined role of spirituality in process of recovery from chemical dependency among 50 participants in 28-day recovery program. Results indicated trend toward use of prayer or meditation by those abstaining from use of mind-altering chemicals. Findings suggest that associations between recovery and use of prayer or meditation is important. (NB)

  1. seawaveQ: an R package providing a model and utilities for analyzing trends in chemical concentrations in streams with a seasonal wave (seawave) and adjustment for streamflow (Q) and other ancillary variables

    USGS Publications Warehouse

    Ryberg, Karen R.; Vecchia, Aldo V.

    2013-01-01

    The seawaveQ R package fits a parametric regression model (seawaveQ) to pesticide concentration data from streamwater samples to assess variability and trends. The model incorporates the strong seasonality and high degree of censoring common in pesticide data and users can incorporate numerous ancillary variables, such as streamflow anomalies. The model is fitted to pesticide data using maximum likelihood methods for censored data and is robust in terms of pesticide, stream location, and degree of censoring of the concentration data. This R package standardizes this methodology for trend analysis, documents the code, and provides help and tutorial information, as well as providing additional utility functions for plotting pesticide and other chemical concentration data.

  2. Transport and Chemical Production of Ozone in the East Asian Pacific Rim Region: -Modeling Study Based on Observation-

    NASA Astrophysics Data System (ADS)

    Akimoto, H.; Li, J.; Wang, Z.; Yamaji, K.; Pochanart, P.; Ohara, T.; Uno, I.; Gao, C.; Wang, X.; Tanimoto, H.; Kurokawa, J.

    2007-12-01

    Form satellite observational data, east-central China covering the North China Plain (NCP) and Yanzi Delta (YZD) has been identified as the most widely spread source area of air pollutants in the East Asian Pacific region. In order to quantify transport and chemical production of ozone in this region, both of observational and modeling studies in both of source and outflow region are necessary. In the present study, we investigated the budgets of ozone over East Asia by using regional chemical transport models (NAQPMS and CMAQ) based on observations at newly founded three mountain sites (Mt. Tai, Hua and Huang) in east-central China, and several sites from EANET and regional WMO/GAW. The observations show that a striking pattern of two sharp high ozone peaks in May-June and September-October at the three mountain sites. The budget analysis by the model confirms that maximum of net photochemical ozone production reaches 31.8, 15.1 and 11.4 ppb/day at Mt. Tai, Hua and Huang, respectively. The net chemical production dominates the formation of ozone maximum at Mt. Tai and Hua in June, and the importing transport also plays a comparable importance at Mt. Huang. In the outflow region at Oki, Japan, transport of ozone produced by East Asian emissions accounts up to 21 ppb in summer but less than 3 ppb in winter agreeing with the model analysis. The contribution of ozone due to East Asian emission is the largest (53.6%) in July-August, and somewhat smaller in May-June (34.0%) and September-October (30.7%) on the transect between Japan and the Asian continent.

  3. The Impact of Modeling Assumptions in Galactic Chemical Evolution Models

    NASA Astrophysics Data System (ADS)

    Côté, Benoit; O'Shea, Brian W.; Ritter, Christian; Herwig, Falk; Venn, Kim A.

    2017-02-01

    We use the OMEGA galactic chemical evolution code to investigate how the assumptions used for the treatment of galactic inflows and outflows impact numerical predictions. The goal is to determine how our capacity to reproduce the chemical evolution trends of a galaxy is affected by the choice of implementation used to include those physical processes. In pursuit of this goal, we experiment with three different prescriptions for galactic inflows and outflows and use OMEGA within a Markov Chain Monte Carlo code to recover the set of input parameters that best reproduces the chemical evolution of nine elements in the dwarf spheroidal galaxy Sculptor. This provides a consistent framework for comparing the best-fit solutions generated by our different models. Despite their different degrees of intended physical realism, we found that all three prescriptions can reproduce in an almost identical way the stellar abundance trends observed in Sculptor. This result supports the similar conclusions originally claimed by Romano & Starkenburg for Sculptor. While the three models have the same capacity to fit the data, the best values recovered for the parameters controlling the number of SNe Ia and the strength of galactic outflows, are substantially different and in fact mutually exclusive from one model to another. For the purpose of understanding how a galaxy evolves, we conclude that only reproducing the evolution of a limited number of elements is insufficient and can lead to misleading conclusions. More elements or additional constraints such as the Galaxy’s star-formation efficiency and the gas fraction are needed in order to break the degeneracy between the different modeling assumptions. Our results show that the successes and failures of chemical evolution models are predominantly driven by the input stellar yields, rather than by the complexity of the Galaxy model itself. Simple models such as OMEGA are therefore sufficient to test and validate stellar yields. OMEGA

  4. Upper ocean O2 trends: 1958-2015

    NASA Astrophysics Data System (ADS)

    Ito, Takamitsu; Minobe, Shoshiro; Long, Matthew C.; Deutsch, Curtis

    2017-05-01

    Historic observations of dissolved oxygen (O2) in the ocean are analyzed to quantify multidecadal trends and variability from 1958 to 2015. Additional quality control is applied, and the resultant oxygen anomaly field is used to quantify upper ocean O2 trends at global and hemispheric scales. A widespread negative O2 trend is beginning to emerge from the envelope of interannual variability. Ocean reanalysis data are used to evaluate relationships with changes in ocean heat content (OHC) and oxygen solubility (O2,sat). Global O2 decline is evident after the 1980s, accompanied by an increase in global OHC. The global upper ocean O2 inventory (0-1000 m) changed at the rate of -243 ± 124 T mol O2 per decade. Further, the O2 inventory is negatively correlated with the OHC (r = -0.86; 0-1000 m) and the regression coefficient of O2 to OHC is approximately -8.2 ± 0.66 nmol O2 J-1, on the same order of magnitude as the simulated O2-heat relationship typically found in ocean climate models. Variability and trends in the observed upper ocean O2 concentration are dominated by the apparent oxygen utilization component with relatively small contributions from O2,sat. This indicates that changing ocean circulation, mixing, and/or biochemical processes, rather than the direct thermally induced solubility effects, are the primary drivers for the observed O2 changes. The spatial patterns of the multidecadal trend include regions of enhanced ocean deoxygenation including the subpolar North Pacific, eastern boundary upwelling systems, and tropical oxygen minimum zones. Further studies are warranted to understand and attribute the global O2 trends and their regional expressions.

  5. Trends in the application of high-resolution mass spectrometry for human biomonitoring: An analytical primer to studying the environmental chemical space of the human exposome.

    PubMed

    Andra, Syam S; Austin, Christine; Patel, Dhavalkumar; Dolios, Georgia; Awawda, Mahmoud; Arora, Manish

    2017-03-01

    Global profiling of xenobiotics in human matrices in an untargeted mode is gaining attention for studying the environmental chemical space of the human exposome. Defined as the study of a comprehensive inclusion of environmental influences and associated biological responses, human exposome science is currently evolving out of the metabolomics science. In analogy to the latter, the development and applications of high resolution mass spectrometry (HRMS) has shown potential and promise to greatly expand our ability to capture the broad spectrum of environmental chemicals in exposome studies. HRMS can perform both untargeted and targeted analysis because of its capability of full- and/or tandem-mass spectrum acquisition at high mass accuracy with good sensitivity. The collected data from target, suspect and non-target screening can be used not only for the identification of environmental chemical contaminants in human matrices prospectively but also retrospectively. This review covers recent trends and advances in this field. We focus on advances and applications of HRMS in human biomonitoring studies, and data acquisition and mining. The acquired insights provide stepping stones to improve understanding of the human exposome by applying HRMS, and the challenges and prospects for future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Seasonal behavior and long-term trends of tropospheric ozone, its precursors and chemical conditions over Iran: A view from space

    NASA Astrophysics Data System (ADS)

    Choi, Yunsoo; Souri, Amir Hossein

    2015-04-01

    To identify spatial and temporal variations over the Iranian region, this study analyzed tropospheric formaldehyde (HCHO) and nitrogen dioxide (NO2) columns from Ozone Monitoring Instrument (OMI), carbon monoxide (CO) columns from the Measurement of Pollution in the Troposphere (MOPITT), and tropospheric column O3 (TCO) from OMI/MLS (Microwave Limb Sounder) satellites from 2005 to 2012. The study discovered high levels of HCHO (∼12 × 1015 molec./cm2) from plant isoprene emissions in the air above parts of the northern forest of Iran during the summer and from the oxidation of HCHO precursors emitted from petrochemical industrial facilities and biomass burning in South West Iran. This study showed that maximum NO2 levels (∼18 × 1015 molec./cm2) were concentrated in urban cities, indicating the predominance of anthropogenic sources. The results indicate that maximum concentrations were found in the winter, mainly because of weaker local winds and higher heating fuel consumption, in addition to lower hydroxyl radicals (OH). The high CO concentrations (∼2 × 1018 molec./cm2) in the early spring were inferred to mainly originate from a strong continental air mass from anthropogenic CO "hotspots" including regions around Caspian Sea, Europe, and North America, although the external sources of CO were partly suppressed by the Arabian anticyclone and topographic barriers. Variations in the TCO were seen to peak during the summer (∼40 DU), due to intensive solar radiation and stratospheric sources. This study also examined long-term trends in TCO and its precursors over a period of eight years in five urban cities in Iran. To perform the analysis, we estimated seasonal changes and inter-seasonal variations using least-squares harmonic estimation (LS-HE), which reduced uncertainty in the trend by 5-15%. The results showed significant increases in the levels of HCHO (∼0.08 ± 0.06 × 1015 molec./cm2 yr-1), NO2 (∼0.08 ± 0.02 × 1015 molec./cm2 yr-1), and peak

  7. Measurement of volatile organic chemicals at selected sites in California

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Salas, L.; Viezee, W.; Sitton, B.; Ferek, R.

    1992-01-01

    Urban air concentrations of 24 selected volatile organic chemicals that may be potentially hazardous to human health and environment were measured during field experiments conducted at two California locations, at Houston, and at Denver. Chemicals measured included chlorofluorocarbons, halomethanes, haloethanes, halopropanes, chloroethylenes, and aromatic hydrocarbons. With emphasis on California sites, data from these studies are analyzed and interpreted with respect to variabilities in ambient air concentrations, diurnal changes, relation to prevailing meteorology, sources and trends. Except in a few instances, mean concentrations are typically between 0 and 5 ppb. Significant variabilities in atmospheric concentrations associated with intense sources and adverse meteorological conditions are shown to exist. In addition to short-term variability, there is evidence of systematic diurnal and seasonal trends. In some instances it is possible to detect declining trends resulting from the effectiveness of control strategies.

  8. Learning From Leaders: Life-span Trends in Olympians and Supercentenarians

    PubMed Central

    Berthelot, Geoffroy; Marck, Adrien; Noirez, Philippe; Latouche, Aurélien; Toussaint, Jean-François

    2015-01-01

    Life-span trends progression has worldwide practical implications as it may affect the sustainability of modern societies. We aimed to describe the secular life-span trends of populations with a propensity to live longer—Olympians and supercentenarians—under two hypotheses: an ongoing life-span extension versus a biologic “probabilistic barrier” limiting further progression. In a study of life-span densities (total number of life durations per birth date), we analyzed 19,012 Olympians and 1,205 supercentenarians deceased between 1900 and 2013. Among most Olympians, we observed a trend toward increased life duration. This trend, however, decelerates at advanced ages leveling off with the upper values with a perennial gap between Olympians and supercentenarians during the whole observation period. Similar tendencies are observed among supercentenarians, and over the last years, a plateau attests to a stable longevity pattern among the longest-lived humans. The common trends between Olympians and supercentenarians indicate similar mortality pressures over both populations that increase with age, scenario better explained by a biologic “barrier” forecast. PMID:25143003

  9. Observations of Bromine Chloride (BrCl) at an Arctic Coastal Site

    NASA Astrophysics Data System (ADS)

    McNamara, S. M.; Garner, N.; Wang, S.; Raso, A. R. W.; Thanekar, S.; Fuentes, J. D.; Shepson, P. B.; Pratt, K.

    2017-12-01

    Chlorine and bromine chemistry in the Arctic boundary layer have significant impacts on tropospheric ozone depletion and the fates of atmospheric pollutants such as methane, a greenhouse gas, and mercury. However, there is sparse understanding of halogen production and removal pathways due to a lack of observations. Here, we report chemical ionization mass spectrometry measurements of bromine chloride (BrCl) observed at Utqiaġvik (Barrow), AK during March-May 2016. Over the course of the three-month study, two distinct BrCl diurnal trends were identified, and production mechanisms were explored using 0-dimensional modeling, constrained by a suite of reactive halogen measurements. The findings in this work highlight coupled chlorine and bromine chemistry, as well as halogen activation pathways in the Arctic.

  10. Observation-based trends in ambient ozone in the Czech Republic over the past two decades

    NASA Astrophysics Data System (ADS)

    Hůnová, Iva; Bäumelt, Vít

    2018-01-01

    We present the trends in ambient ozone concentrations based on high quality data measured continuously at 26 long-term monitoring sites (9 urban, 17 rural including 10 mountain stations) in the Czech Republic in 1994-2015. We considered annual and summer medians, the 10th and 98th percentiles, maximum daily 8-h running mean concentrations and exposure index AOT40F. For all indicators taken into account except for the 10th percentile, our results showed a similar pattern with significant decreasing trends for about one half of the examined sites. We obtained similar results for all types of sites. The most pronounced decrease in O3 concentrations was recorded at mountain sites. Namely, at the Šerlich mountain site, with an overall decrease per year in annual median by 0.43 ppb, summer median by 1.17 ppb, maximal daily 8-h average by 0.45 ppb, the 10th percentile by 0.62 ppb. The peak concentrations indicated by the 98th percentile and AOT40F decreased most at urban site České Budějovice by 0.75 ppb and 0.84 ppb h per year, respectively. For sites exhibiting significant decreasing trends, an overall decrease per year in annual median was 0.22 ppb, in summer median 0.41 ppb, in the 10th percentile 0.23 ppb, in the 98th percentile 0.53 ppb, and in AOT40F 0.51 ppb h. A significant increasing trend was detected only in the 10th percentile at just three sites, with the highest increase of 0.19 ppb per year recorded at the rural site Sněžník. Moreover, a consistent decrease in limit value exceedances was detected, with by far the highest violation recorded in the meteorologically exceptional year of 2003. Out of the 26 sites under review, seven have not recorded a significant decreasing trend in O3 in any of the considered statistics. The lack of trends in O3 at these seven sites is likely associated with changing time patterns in local NO and NO2 emissions: in particular, with the increasing ratio in NO2/NOx. There is an obvious geographical pattern in recorded O3

  11. Gender trends in dental leadership and academics: a twenty-two-year observation.

    PubMed

    Yuan, Judy Chia-Chun; Lee, Damian J; Kongkiatkamon, Suchada; Ross, Sasha; Prasad, Soni; Koerber, Anne; Sukotjo, Cortino

    2010-04-01

    The purpose of this study was to examine gender disparities in dental leadership and academics in the United States. Nine journals that represent the dental specialties and high published impact factors were selected to analyze the percentage of female dentists' first and senior authorship for the years 1986, 1990, 1995, 2000, 2005, and 2008. Data on appointment status and female deanship were collected from the American Dental Association (ADA) survey, and the trends were studied. The proportion of female presidents in ADA-recognized specialty organizations was also calculated. Overall, the increase in first female authorship was not statistically significant, but the increase of last female authorship was statistically significant in a linear trend over the years. The percentage of tenured female faculty members and female deans in U.S. dental schools increased by factors of 1.7 and 9, respectively, during the study period. However, female involvement in professional organizations was limited. Findings from this study indicate that female participation in authorship and leadership has increased over time. Nevertheless, females are still a minority in dental academics and leadership.

  12. Recent Trends in Quantum Chemical Modeling of Enzymatic Reactions.

    PubMed

    Himo, Fahmi

    2017-05-24

    The quantum chemical cluster approach is a powerful method for investigating enzymatic reactions. Over the past two decades, a large number of highly diverse systems have been studied and a great wealth of mechanistic insight has been developed using this technique. This Perspective reviews the current status of the methodology. The latest technical developments are highlighted, and challenges are discussed. Some recent applications are presented to illustrate the capabilities and progress of this approach, and likely future directions are outlined.

  13. [Population trends and behavioral observations of wintering common cranes (Grus grus) in Yancheng Nature Reserve].

    PubMed

    Li, Zhong-Qiu; Wang, Zhi; Ge, Chen

    2013-10-01

    To understand the population status and behavioural features of wintering common cranes in the Yancheng Nature Reserve, two transects were established and population trends were monitored every month over five recent winters from 2008 to 2013. Wintering behaviours were also observed in order to explore the possible effects of family size and age on time budgets. Results indicated that the populations were stable with a range of 303 to 707 individuals. Negative effects of coastal developments were not found on the wintering population of common cranes, which might be related to their diets and preference for artificial wetland habitats. We found a significant effect of age on time budgets, with juveniles spending more time feeding and less time alerting, which might be related to the needs of body development and skill learning. Family size did not affect the time budgets of the cranes, which indicated that adults did not increase vigilance investment even when raising a larger family.

  14. Long-term sea level trends: Natural or anthropogenic?

    NASA Astrophysics Data System (ADS)

    Becker, M.; Karpytchev, M.; Lennartz-Sassinek, S.

    2014-08-01

    Detection and attribution of human influence on sea level rise are important topics that have not yet been explored in depth. We question whether the sea level changes (SLC) over the past century were natural in origin. SLC exhibit power law long-term correlations. By estimating Hurst exponent through Detrended Fluctuation Analysis and by applying statistics of Lennartz and Bunde, we search the lower bounds of statistically significant external sea level trends in longest tidal records worldwide. We provide statistical evidences that the observed SLC, at global and regional scales, is beyond its natural internal variability. The minimum anthropogenic sea level trend (MASLT) contributes to the observed sea level rise more than 50% in New York, Baltimore, San Diego, Marseille, and Mumbai. A MASLT is about 1 mm/yr in global sea level reconstructions that is more than half of the total observed sea level trend during the XXth century.

  15. A spurious warming trend in the NMME equatorial Pacific SST hindcasts

    NASA Astrophysics Data System (ADS)

    Shin, Chul-Su; Huang, Bohua

    2017-06-01

    Using seasonal hindcasts of six different models participating in the North American Multimodel Ensemble project, the trend of the predicted sea surface temperature (SST) in the tropical Pacific for 1982-2014 at each lead month and its temporal evolution with respect to the lead month are investigated for all individual models. Since the coupled models are initialized with the observed ocean, atmosphere, land states from observation-based reanalysis, some of them using their own data assimilation process, one would expect that the observed SST trend is reasonably well captured in their seasonal predictions. However, although the observed SST features a weak-cooling trend for the 33-year period with La Niña-like spatial pattern in the tropical central-eastern Pacific all year round, it is demonstrated that all models having a time-dependent realistic concentration of greenhouse gases (GHG) display a warming trend in the equatorial Pacific that amplifies as the lead-time increases. In addition, these models' behaviors are nearly independent of the starting month of the hindcasts although the growth rates of the trend vary with the lead month. This key characteristic of the forecasted SST trend in the equatorial Pacific is also identified in the NCAR CCSM3 hindcasts that have the GHG concentration for a fixed year. This suggests that a global warming forcing may not play a significant role in generating the spurious warming trend of the coupled models' SST hindcasts in the tropical Pacific. This model SST trend in the tropical central-eastern Pacific, which is opposite to the observed one, causes a developing El Niño-like warming bias in the forecasted SST with its peak in boreal winter. Its implications for seasonal prediction are discussed.

  16. EXTREMELY METAL-POOR STARS AND A HIERARCHICAL CHEMICAL EVOLUTION MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komiya, Yutaka

    2011-07-20

    Early phases of the chemical evolution of the Galaxy and formation history of extremely metal-poor (EMP) stars are investigated using hierarchical galaxy formation models. We build a merger tree of the Galaxy according to the extended Press-Schechter theory. We follow the chemical evolution along the tree and compare the model results to the metallicity distribution function and abundance ratio distribution of the Milky Way halo. We adopt three different initial mass functions (IMFs). In a previous study, we argued that the typical mass, M{sub md}, of EMP stars should be high, M{sub md} {approx} 10 M{sub sun}, based on studiesmore » of binary origin carbon-rich EMP stars. In this study, we show that only the high-mass IMF can explain an observed small number of EMP stars. For relative element abundances, the high-mass IMF and the Salpeter IMF predict similar distributions. We also investigate dependence on nucleosynthetic yields of supernovae (SNe). The theoretical SN yields by Kobayashi et al. and Chieffi and Limongi show reasonable agreement with observations for {alpha}-elements. Our model predicts a significant scatter of element abundances at [Fe/H] < -3. We adopted the stellar yields derived in the work of Francois et al., which produce the best agreement between the observational data and the one-zone chemical evolution model. Their yields well reproduce a trend of the averaged abundances of EMP stars but predict much larger scatter than do the observations. The model with hypernovae predicts Zn abundance, in agreement with the observations, but other models predict lower [Zn/Fe]. Ejecta from the hypernovae with large explosion energy is mixed in large mass and decreases the scatter of the element abundances.« less

  17. Physico-chemical properties and extrusion behaviour of selected common bean varieties.

    PubMed

    Natabirwa, Hedwig; Muyonga, John H; Nakimbugwe, Dorothy; Lungaho, Mercy

    2018-03-01

    Extrusion processing offers the possibility of processing common beans industrially into highly nutritious and functional products. However, there is limited information on properties of extrudates from different bean varieties and their association with raw material characteristics and extrusion conditions. In this study, physico-chemical properties of raw and extruded Bishaz, K131, NABE19, Roba1 and RWR2245 common beans were determined. The relationships between bean characteristics and extrusion conditions on the extrudate properties were analysed. Extrudate physico-chemical and pasting properties varied significantly (P < 0.05) among bean varieties. Expansion ratio and water solubility decreased, while bulk density, water absorption, peak and breakdown viscosities increased as feed moisture increased. Protein exhibited significant positive correlation (P < 0.05) with water solubility index, and negative correlations (P < 0.05) with water absorption, bulk density and pasting viscosities. Iron and dietary fibre showed positive correlation while total ash exhibited negative correlation with peak viscosity, final viscosity and setback. Similar trends were observed in principal component analysis. Extrudate physico-chemical properties were found to be associated with beans protein, starch, iron, zinc and fibre contents. Therefore, bean chemical composition may serve as an indicator for beans extrusion behaviour and could be useful in selection of beans for extrusion. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Temperature and ice layer trends in the summer middle atmosphere

    NASA Astrophysics Data System (ADS)

    Lübken, F.-J.; Berger, U.

    2012-04-01

    We present results from our LIMA model (Leibniz Institute Middle Atmosphere Model) which nicely reproduces mean conditions of the summer mesopause region and also mean characteristics of ice layers known as noctilucent clouds. LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere. We study temperature trends in the mesosphere at middle and polar latitudes and compared with temperature trends from satellites, lidar, and phase height observations. For the first time large observed temperature trends in the summer mesosphere can be reproduced and explained by a model. As will be shown, stratospheric ozone has a major impact on temperature trends in the summer mesosphere. The temperature trend is not uniform in time: it is moderate from 1961 (the beginning of our record) until the beginning of the 1980s. Thereafter, temperatures decrease much stronger until the mid 1990s. Thereafter, temperatures are nearly constant or even increase with time. As will be shown, trends in ozone and carbon dioxide explain most of this behavior. Ice layers in the summer mesosphere are very sensitive to background conditions and are therefore considered to be appropriate tracers for long term variations in the middle atmosphere. We use LIMA background conditions to determine ice layer characteristics in the mesopause region. We compare our results with measurements, for example with albedos from the SBUV satellites, and show that we can nicely reproduce observed trends. It turns out that temperature trends are positive (negative) in the upper (lower) part of the ice layer regime. This complicates an interpretation of NLC long term variations in terms of temperature trends.

  19. Assessment of Precipitation Trends over Europe by Comparing ERA-20C with a New Homogenized Observational GPCC Dataset

    NASA Astrophysics Data System (ADS)

    Rustemeier, E.; Ziese, M.; Meyer-Christoffer, A.; Finger, P.; Schneider, U.; Becker, A.

    2015-12-01

    Reliable data is essential for robust climate analysis. The ERA-20C reanalysis was developed during the projects ERA-CLIM and ERA-CLIM2. These projects focus on multi-decadal reanalyses of the global climate system. To ensure data quality and provide end users with information about uncertainties in these products, the 4th work package of ERA_CLIM2 deals with the quality assessment of the products including quality control and error estimation.In doing so, the monthly totals of the ERA-20C reanalysis are compared to two corresponding Global Precipitation Climatology Centre (GPCC) products; the Full Data Reanalysis Version 7 and the new HOMogenized PRecipitation Analysis of European in-situ data (HOMPRA Europe).ERA-20C reanalysis was produced based on ECMWFs IFS version Cy38r1 with a spatial resolution of about 125 km. It covers the time period 1900 to 2010. Only surface observations are assimilated namely marine winds and pressure. This allows the comparison with independent, not assimilated data. The GPCC Full Data Reanalysis Version 7 comprises monthly land-surface precipitation from approximately 75,000 rain-gauges covering the time period 1901-2013. For this paper, the version with 1° resolution is utilized. For trend analysis, a monthly European subset of the ERA-20C reanalysis is investigated spanning the years 1951-2005. The European subset will be compared to a new homogenized GPCC data set HOMPRA Europe. The latter is based on a collective of 5373 homogenized monthly rain gauge time series, carefully chosen from the GPCC archive of precipitation data.For the spatial and temporal evaluation of ERA-20C, global scores on monthly, seasonal and annual time scales are calculated. These include contingency table scores, correlation, along with spatial scores such as the fractional skill score. Unsurprisingly regions with strongest deviations are those of data scarcity, mountainous regions with their luv and lee effects, and monsoon regions. They all exhibit

  20. Variation of atmospheric CO, δ13C, and δ18O at high northern latitude during 2004-2009: Observations and model simulations

    NASA Astrophysics Data System (ADS)

    Park, Keyhong; Wang, Zhihui; Emmons, Louisa K.; Mak, John E.

    2015-10-01

    Atmospheric CO mixing ratios and stable isotope ratios (δ13C and δ18O) were measured at a high northern latitude site (Westman Islands, Iceland) from January 2004 to March 2010 in order to investigate recent multiyear trends of the sources of atmospheric carbon monoxide in the extratropical Northern Hemisphere. During this period, we observed a decrease of about 2% per year in CO mixing ratios with little significant interannual variability. The seasonal cycles for δ13C and δ18O in CO are similar to that in the CO mixing ratio, and there is a pronounced interannual variation in their seasonal extremes occurring in summer and fall, which is driven by changes in the relative contribution of different sources. Some of the sources of CO are anthropogenic in character (e.g., fossil fuel and biofuel combustion and agricultural waste burning), and some are primarily natural (e.g., oxidation atmospheric methane and other hydrocarbons and wildfires), and distinction among the various major sources can, more or less, be distinguished by the stable isotopic composition of CO. We compare our observations with simulations from a 3-D global chemical transport model (MOZART-4, Model for Ozone and Related Chemical Tracers, version 4). Our results indicate the observed trend of anthropogenic CO emissions is mostly responsible for the observed variation in δ13C and δ18O of CO during 2004-2009. Especially, the δ18O enriched sources such as fossil fuel and biofuel sources are controlling the variation. The modeling results indicate decreasing trends in the fossil fuel and biofuel source contributions at Iceland of -0.61 ± 0.26 ppbv/yr and -0.38 ± 0.10 ppbv/yr, respectively, during the observation period.

  1. A climate trend analysis of Kenya-August 2010

    USGS Publications Warehouse

    Funk, Christopher C.

    2010-01-01

    Introduction This brief report draws from a multi-year effort by the United States Agency for International Development's Famine Early Warning System Network (FEWS NET) to monitor and map rainfall and temperature trends over the last 50 years (1960-2009) in Kenya. Observations from seventy rainfall gauges and seventeen air temperature stations were analyzed for the long rains period, corresponding to March through June (MAMJ). The data were quality controlled, converted into 1960-2009 trend estimates, and interpolated using a rigorous geo-statistical technique (kriging). Kriging produces standard error estimates, and these can be used to assess the relative spatial accuracy of the identified trends. Dividing the trends by the associated errors allows us to identify the relative certainty of our estimates (Funk and others, 2005; Verdin and others, 2005; Brown and Funk, 2008; Funk and Verdin, 2009). Assuming that the same observed trends persist, regardless of whether or not these changes are due to anthropogenic or natural cyclical causes, these results can be extended to 2025, providing critical, and heretofore missing information about the types and locations of adaptation efforts that may be required to improve food security.

  2. Catalytic chemical vapor deposition synthesis and electron microscopy observation of coiled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Xie, Jining; Mukhopadyay, K.; Yadev, J.; Varadan, V. K.

    2003-10-01

    Coiled carbon nanotubes exhibit excellent mechanical and electrical properties because of the combination of coil morphology and properties of nanotubes. They could have potential novel applications in nanocomposites and nano-electronic devices as well as nano-electromechanical systems. In this work, synthesis of regularly coiled carbon nanotubes is presented. It involves pyrolysis of hydrocarbon gas over metal/support catalyst by both thermal filament and microwave catalytic chemical vapor deposition methods. Scanning electron microscopy and transmission electron microscopy were performed to observe the coil morphology and nanostructure of coiled nanotubes. The growth mechanism and structural and electrical properties of coiled carbon nanotubes are also discussed.

  3. River-ice break-up/freeze-up: a review of climatic drivers, historical trends and future predictions

    NASA Astrophysics Data System (ADS)

    Prowse, T. D.; Bonsal, B. R.; Duguay, C. R.; Lacroix, M. P.

    2007-10-01

    River ice plays a fundamental role in biological, chemical and physical processes that control freshwater regimes of the cold regions. Moreover, it can have enormous economic implications for river-based developments. All such activities and processes can be modified significantly by any changes to river-ice thickness, composition or event timing and severity. This paper briefly reviews some of the major hydraulic, mechanical and thermodynamic processes controlling river-ice events and how these are influenced by variations in climate. A regional and temporal synthesis is also made of the observed historical trends in river-ice break-up/freeze-up occurrence from the Eurasian and North American cold regions. This involves assessment of several hydroclimatic variables that have influenced past trends and variability in river-ice break-up/freeze-up dates including air-temperature indicators (e.g. seasonal temperature, 0°C isotherm dates and various degree-days) and large-scale atmospheric circulation patterns or teleconnections. Implications of future climate change on the timing and severity of river-ice events are presented and discussed in relation to the historical trends. Attention is drawn to the increasing trends towards the occurrence of mid-winter break-up events that can produce especially severe flood conditions but prove to be the most difficult type of event to model and predict.

  4. Analysis options for estimating status and trends in long-term monitoring

    USGS Publications Warehouse

    Bart, Jonathan; Beyer, Hawthorne L.

    2012-01-01

    This chapter describes methods for estimating long-term trends in ecological parameters. Other chapters in this volume discuss more advanced methods for analyzing monitoring data, but these methods may be relatively inaccessible to some readers. Therefore, this chapter provides an introduction to trend analysis for managers and biologists while also discussing general issues relevant to trend assessment in any long-term monitoring program. For simplicity, we focus on temporal trends in population size across years. We refer to the survey results for each year as the “annual means” (e.g. mean per transect, per plot, per time period). The methods apply with little or no modification, however, to formal estimates of population size, other temporal units (e.g. a month), to spatial or other dimensions such as elevation or a north–south gradient, and to other quantities such as chemical or geological parameters. The chapter primarily discusses methods for estimating population-wide parameters rather than studying variation in trend within the population, which can be examined using methods presented in other chapters (e.g. Chapters 7, 12, 20). We begin by reviewing key concepts related to trend analysis. We then describe how to evaluate potential bias in trend estimates. An overview of the statistical models used to quantify trends is then presented. We conclude by showing ways to estimate trends using simple methods that can be implemented with spreadsheets.

  5. TREND ANALYSIS OF WATER QUALITY MONITORING DATA FOR COBB COUNTY, GEORGIA

    EPA Science Inventory

    The Cobb County Water Protection Division Water Quality Laboratory has conducted quarterly chemical monitoring from 1995-2005. Here we analyze these data for temporal trends at 45 sites in 10 Piedmont streams in the Chattahoochee and Etowah river basins. The strongest overall tre...

  6. Temporal trends in water-quality constituent concentrations and annual loads of chemical constituents in Michigan watersheds, 1998–2013

    USGS Publications Warehouse

    Hoard, Christopher J.; Fogarty, Lisa R.; Duris, Joseph W.

    2018-02-21

    In 1998, the Michigan Department of Environmental Quality and the U.S. Geological Survey began the Water Chemistry Monitoring Program for select streams in the State of Michigan. Objectives of this program were to provide assistance with (1) statewide water-quality assessments, (2) the National Pollutant Discharge Elimination System permitting process, and (3) water-resource management decisions. As part of this program, water-quality data collected from 1998 to 2013 were analyzed to identify potential trends for select constituents that were sampled. Sixteen water-quality constituents were analyzed at 32 stations throughout Michigan. Trend analysis on the various water-quality data was done using either the uncensored Seasonal Kendall test or through Tobit regression. In total, 79 trends were detected in the constituents analyzed for 32 river stations sampled for the study period—53 downward trends and 26 upward trends were detected. The most prevalent trend detected throughout the State was for ammonia, with 11 downward trends and 1 upward trend estimated.In addition to trends, constituent loads were estimated for 31 stations from 2002 to 2013 for stations that were sampled 12 times per year. Loads were computed using the Autobeale load computation program, which used the Beale ratio estimator approach to estimate an annual load. Constituent loads were the largest in large watershed streams with the highest annual flows such as the Saginaw and Grand Rivers. Likewise, constituent loads were the smallest in smaller tributaries that were sampled as part of this program such as the Boardman and Thunder Bay Rivers.

  7. Trends in College Spending: 2001-2011. A Delta Data Update

    ERIC Educational Resources Information Center

    Desrochers, Donna M.; Hurlburt, Steven

    2014-01-01

    This "Trends in College Spending" update presents national-level estimates for the "Delta Cost Project" data metrics during the period 2001-11. To accelerate the release of more current trend data, however, this update includes only a brief summary of the financial patterns and trends observed during the decade 2001-11, with…

  8. Low-Computation Strategies for Extracting CO2 Emission Trends from Surface-Level Mixing Ratio Observations

    NASA Astrophysics Data System (ADS)

    Shusterman, A.; Kim, J.; Lieschke, K.; Newman, C.; Cohen, R. C.

    2017-12-01

    Global momentum is building for drastic, regulated reductions in greenhouse gas emissions over the coming decade. With this increasing regulation comes a clear need for increasingly sophisticated monitoring, reporting, and verification (MRV) strategies capable of enforcing and optimizing emissions-related policy, particularly as it applies to urban areas. Remote sensing and/or activity-based emission inventories can offer MRV insights for entire sectors or regions, but are not yet sophisticated enough to resolve unexpected trends in specific emitters. Urban surface monitors can offer the desired proximity to individual greenhouse gas sources, but due to the densely-packed nature of typical urban landscapes, surface observations are rarely representative of a single source. Most previous efforts to decompose these complex signals into their contributing emission processes have involved inverse atmospheric modeling techniques, which are computationally intensive and believed to depend heavily on poorly understood a priori estimates of error covariance. Here we present a number of transparent, low-computation approaches for extracting source-specific emissions estimates from signals with a variety of nearfield influences. Using observations from the first several years of the BErkeley Atmospheric CO2 Observation Network (BEACO2N), we demonstrate how to exploit strategic pairings of monitoring "nodes," anomalous wind conditions, and well-understood temporal variations to hone in on specific CO2 sources of interest. When evaluated against conventional, activity-based bottom-up emission inventories, these strategies are seen to generate quantitatively rigorous emission estimates. With continued application as the BEACO2N data set grows in time and space, these approaches offer a promising avenue for optimizing greenhouse gas mitigation strategies into the future.

  9. Why the stratospheric zonal and meridional wind changes trend in the mid -1990s?

    NASA Astrophysics Data System (ADS)

    Krizan, P.

    2016-12-01

    This poster tries to explain the reasons for trend change of the stratospheric zonal and meridional wind in the mid-1990s. In the areas of negative (positive) wind speed trend before 1995 the positive (negative) trend is observed after this point Similar change is observed also for total ozone where we observe negative trend before 1995 and positive one after. We use MERRA reanalysis data especially monthly mean of geopotential from January to March. We suppose the position and strength of polar vortex and Aleutian high plays here very important role..

  10. Learning From Leaders: Life-span Trends in Olympians and Supercentenarians.

    PubMed

    Antero-Jacquemin, Juliana da Silva; Berthelot, Geoffroy; Marck, Adrien; Noirez, Philippe; Latouche, Aurélien; Toussaint, Jean-François

    2015-08-01

    Life-span trends progression has worldwide practical implications as it may affect the sustainability of modern societies. We aimed to describe the secular life-span trends of populations with a propensity to live longer-Olympians and supercentenarians-under two hypotheses: an ongoing life-span extension versus a biologic "probabilistic barrier" limiting further progression. In a study of life-span densities (total number of life durations per birth date), we analyzed 19,012 Olympians and 1,205 supercentenarians deceased between 1900 and 2013. Among most Olympians, we observed a trend toward increased life duration. This trend, however, decelerates at advanced ages leveling off with the upper values with a perennial gap between Olympians and supercentenarians during the whole observation period. Similar tendencies are observed among supercentenarians, and over the last years, a plateau attests to a stable longevity pattern among the longest-lived humans. The common trends between Olympians and supercentenarians indicate similar mortality pressures over both populations that increase with age, scenario better explained by a biologic "barrier" forecast. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America.

  11. Rater Drift and Time Trends in Classroom Observations

    ERIC Educational Resources Information Center

    Casabianca, Jodi M.; Lockwood, J. R.

    2013-01-01

    Classroom observation protocols, in which observers rate multiple dimensions of teaching according to established protocols (either live in the classroom, or post-hoc from lesson videos), are increasingly being used in both research and policy contexts. However, scores generated from these protocols have many sources of error. Day to day variation…

  12. Chemical Loss of Polar Ozone: Present Understanding and Remaining Uncertainties

    NASA Technical Reports Server (NTRS)

    Salawitch, Ross; Canty, Tim; Cunnold, Derek; Dorf, Marcel; Frieler, Katja; Godin-Beekman, Sophie; Newchurch, Michael; Pfeilsticker, Klaus; Rex, Markus; Stimpfle, Rick; hide

    2005-01-01

    Not long after the discovery of the Antarctic ozone hole, it was established that halogen compounds, supplied to the atmosphere mainly by anthropogenic activities, are the primary driver of polar ozone loss. We will briefly review the chemical mechanisms that cause polar ozone loss and the early evidence showing the key role played by anthropogenic halogens. Recently, stratospheric halogen loading has leveled off, due to adherence to the Montreal Protocol and its amendments that has essentially banned CFCs (chlorofluorocarbons) and other halocarbons. We will describe recent reports of the first stage of recovery of the Antarctic ozone hole (e.g., a statistically significant slowing of the downward trend), associated with the leveling off of stratospheric halogens. Despite this degree of understanding, we will discuss the tendency of photochemical models to underestimate the observed rate of polar ozone loss and a hypothesis that has recently been put forth that might resolve this discrepancy. Finally, we will briefly discuss chemical loss of Arctic ozone, which

  13. Detection of carbon monoxide trends in the presence of interannual variability

    NASA Astrophysics Data System (ADS)

    Strode, Sarah A.; Pawson, Steven

    2013-11-01

    in fossil fuel emissions are a major driver of changes in atmospheric CO, but detection of trends in CO from anthropogenic sources is complicated by the presence of large interannual variability (IAV) in biomass burning. We use a multiyear model simulation of CO with year-specific biomass burning to predict the number of years needed to detect the impact of changes in Asian anthropogenic emissions on downwind regions. Our study includes two cases for changing anthropogenic emissions: a stepwise change of 15% and a linear trend of 3% yr-1. We first examine how well the model reproduces the observed IAV of CO over the North Pacific, since this variability impacts the time needed to detect significant anthropogenic trends. The modeled IAV over the North Pacific correlates well with that seen from the Measurements of Pollution in the Troposphere (MOPITT) instrument but underestimates the magnitude of the variability. The model predicts that a 3% yr-1 trend in Asian anthropogenic emissions would lead to a statistically significant trend in CO surface concentration in the western United States within 12 years, and accounting for Siberian boreal biomass-burning emissions greatly reduces the number of years needed for trend detection. Combining the modeled trend with the observed MOPITT variability at 500 hPa, we estimate that the 3% yr-1 trend could be detectable in satellite observations over Asia in approximately a decade. Our predicted timescales for trend detection highlight the importance of long-term measurements of CO from satellites.

  14. Trends in the Information Industry.

    ERIC Educational Resources Information Center

    Hogan, Thomas H.

    1987-01-01

    The current president of the American Society for Information Science shares his observations about the information industry, identifying positive and negative trends, and discusses the role ASIS can play in the continuing growth of the industry. (Author/CLB)

  15. Regional transport modelling for nitrate trend assessment and forecasting in a chalk aquifer.

    PubMed

    Orban, Philippe; Brouyère, Serge; Batlle-Aguilar, Jordi; Couturier, Julie; Goderniaux, Pascal; Leroy, Mathieu; Maloszewski, Piotr; Dassargues, Alain

    2010-10-21

    Regional degradation of groundwater resources by nitrate has become one of the main challenges for water managers worldwide. Regulations have been defined to reverse observed nitrate trends in groundwater bodies, such as the Water Framework Directive and the Groundwater Daughter Directive in the European Union. In such a context, one of the main challenges remains to develop efficient approaches for groundwater quality assessment at regional scale, including quantitative numerical modelling, as a decision support for groundwater management. A new approach combining the use of environmental tracers and the innovative 'Hybrid Finite Element Mixing Cell' (HFEMC) modelling technique is developed to study and forecast the groundwater quality at the regional scale, with an application to a regional chalk aquifer in the Geer basin in Belgium. Tritium data and nitrate time series are used to produce a conceptual model for regional groundwater flow and contaminant transport in the combined unsaturated and saturated zones of the chalk aquifer. This shows that the spatial distribution of the contamination in the Geer basin is essentially linked to the hydrodynamic conditions prevailing in the basin, more precisely to groundwater age and mixing and not to the spatial patterns of land use or local hydrodispersive processes. A three-dimensional regional scale groundwater flow and solute transport model is developed. It is able to reproduce the spatial patterns of tritium and nitrate and the observed nitrate trends in the chalk aquifer and it is used to predict the evolution of nitrate concentrations in the basin. The modelling application shows that the global inertia of groundwater quality is strong in the basin and trend reversal is not expected to occur before the 2015 deadline fixed by the European Water Framework Directive. The expected time required for trend reversal ranges between 5 and more than 50 years, depending on the location in the basin and the expected reduction

  16. Regional acidification trends in Florida shellfish estuaries: A 20+ year look at pH, oxygen, temperature, and salinity

    USGS Publications Warehouse

    Robbins, Lisa L.; Lisle, John T.

    2018-01-01

    Increasing global CO2 and local land use changes coupled with increased nutrient pollution are threatening estuaries worldwide. Local changes of estuarine chemistry have been documented, but regional associations and trends comparing multiple estuaries latitudinally have not been evaluated. Rapid climate change has impacted the annual and decadal chemical trends in estuaries, with local ecosystem processes enhancing or mitigating the responses. Here, we compare pH, dissolved oxygen, temperature, and salinity data from 10 Florida shellfish estuaries and hundreds of shellfish bed stations. Over 80,000 measurements, spanning from 1980 to 2008, taken on Atlantic Ocean and West Florida coast showed significant regional trends of consistent pH decreases in 8 out of the 10 estuaries, with an average rate of decrease on the Gulf of Mexico side estuaries of Florida of 7.3 × 10−4 pH units year−1, and average decrease on the Atlantic Coast estuaries of 5.0 × 10−4 pH units year−1. The rates are approximately 2–3.4 times slower than observed in pH decreases associated with ocean acidification in the Atlantic and Pacific. Other significant trends observed include decreasing dissolved oxygen in 9 out of the 10 estuaries, increasing salinity in 6 out of the 10, and temperature increases in 3 out of the 10 estuaries. The data provide a synoptic regional view of Florida estuary trends which reflect the complexity of changing climate and coastal ocean acidification superimposed on local conditions. These data provide context for understanding, and interpreting the past and predicting future of regional water quality health of shellfish and other organisms of commercial and ecological significance along Florida’s coasts.

  17. Compositional trends in aeolian dust along a transect across the southwestern United States

    USGS Publications Warehouse

    Goldstein, H.L.; Reynolds, R.L.; Reheis, M.C.; Yount, J.C.; Neff, J.C.

    2008-01-01

    Aeolian dust strongly influences ecology and landscape geochemistry over large areas that span several desert ecosystems of the southwestern United States. This study evaluates spatial and temporal variations and trends of the physical and chemical properties of dust in the southwestern United States by examining dust deposited in natural depressions on high isolated surfaces along a transect from the Mojave Desert to the central Colorado Plateau. Aeolian dust is recognized in these depressions on the basis of textural, chemical, isotopic, and mineralogical characteristics and comparisons of those characteristics to the underlying bedrock units. Spatial and temporal trends suggest that although local dust sources are important to the accumulated material in these depressions, Mojave Desert dust sources may also contribute. Depth trends in the depressions suggest that Mojave sources may have contributed more dust to the Colorado Plateau recently than in the past. These interpretations point to the important roles of far-traveled aeolian dust for landscape geochemistry and imply future changes to soil geochemistry under changing conditions in far-distant dust source areas. Copyright 2008 by the American Geophysical Union.

  18. Exploring the Link Between Streamflow Trends and Climate Change in Indiana, USA

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Kam, J.; Thurner, K.; Merwade, V.

    2007-12-01

    Streamflow trends in Indiana are evaluated for 85 USGS streamflow gaging stations that have continuous unregulated streamflow records varying from 10 to 80 years. The trends are analyzed by using the non-parametric Mann-Kendall test with prior trend-free pre-whitening to remove serial correlation in the data. Bootstrap method is used to establish field significance of the results. Trends are computed for 12 streamflow statistics to include low-, medium- (median and mean flow), and high-flow conditions on annual and seasonal time step. The analysis is done for six study periods, ranging from 10 years to more than 65 years, all ending in 2003. The trends in annual average streamflow, for 50 years study period, are compared with annual average precipitation trends from 14 National Climatic Data Center (NCDC) stations in Indiana, that have 50 years of continuous daily record. The results show field significant positive trends in annual low and medium streamflow statistics at majority of gaging stations for study periods that include 40 or more years of records. In seasonal analysis, all flow statistics in summer and fall (low flow seasons), and only low flow statistics in winter and spring (high flow seasons) are showing positive trends. No field significant trends in annual and seasonal flow statistics are observed for study periods that include 25 or fewer years of records, except for northern Indiana where localized negative trends are observed in 10 and 15 years study periods. Further, stream flow trends are found to be highly correlated with precipitation trends on annual time step. No apparent climate change signal is observed in Indiana stream flow records.

  19. Eastern Boundary Upwelling Ecosystems: Review and Observing Needs

    NASA Astrophysics Data System (ADS)

    Chavez, F.; Garçon, V. C.; Dewitte, B.; Montes, I.

    2015-12-01

    Eastern Boundary Upwelling Systems (EBUS) cover less than 3% of the world ocean surface but play a significant role in the climate system, and contribute disproportionately to ocean biological productivity with up to 40% of the reported global fish catch. Coupled with the vast coastal human populations, these regions play key socio-economic roles. Human pressure on these productive ecosystems and their services is increasing, requiring new and evolving scientific approaches to collect information and use it in management. Here we review and compare the physical, chemical and biological characteristics of the four major EBUS: Benguela, California, Northwest Africa and Peru/Chile. Long-term trends and climate variability are emphasized. Technologies and systems for observing and understanding the changing marine ecosystems of EBUS are discussed.

  20. Stratospheric Temperature Changes: Observations and Model Simulations

    NASA Technical Reports Server (NTRS)

    Ramaswamy, V.; Chanin, M.-L.; Angell, J.; Barnett, J.; Gaffen, D.; Gelman, M.; Keckhut, P.; Koshelkov, Y.; Labitzke, K.; Lin, J.-J. R.

    1999-01-01

    This paper reviews observations of stratospheric temperatures that have been made over a period of several decades. Those observed temperatures have been used to assess variations and trends in stratospheric temperatures. A wide range of observation datasets have been used, comprising measurements by radiosonde (1940s to the present), satellite (1979 - present), lidar (1979 - present) and rocketsonde (periods varying with location, but most terminating by about the mid-1990s). In addition, trends have also been assessed from meteorological analyses, based on radiosonde and/or satellite data, and products based on assimilating observations into a general circulation model. Radiosonde and satellite data indicate a cooling trend of the annual-mean lower stratosphere since about 1980. Over the period 1979-1994, the trend is 0.6K/decade. For the period prior to 1980, the radiosonde data exhibit a substantially weaker long-term cooling trend. In the northern hemisphere, the cooling trend is about 0.75K/decade in the lower stratosphere, with a reduction in the cooling in mid-stratosphere (near 35 km), and increased cooling in the upper stratosphere (approximately 2 K per decade at 50 km). Model simulations indicate that the depletion of lower stratospheric ozone is the dominant factor in the observed lower stratospheric cooling. In the middle and upper stratosphere both the well-mixed greenhouse gases (such as CO) and ozone changes contribute in an important manner to the cooling.

  1. Evolution of chemical composition of fogwater in winter in Chengdu, China.

    PubMed

    Yin, Hongling; Ye, Zhixiang; Yang, Yingchun; Yuan, Wei; Qiu, Changyan; Yuan, Huawei; Wang, Min; Li, Shiping; Zou, Changwu

    2013-09-01

    Two sampling sites representing the urban and suburban area of Chengdu, China were sampled and analyzed for selected chemicals to characterize the evolution of the chemical composition of fogwater. A trend of total organic carbon (TOC) > total nitrogen (TN) > total inorganic carbon (TIC) was observed for both sites. Variation of inorganic ions indicated that inorganic pollutants were not accumulated in the fog. Concentrations of n-alkanes (C11-C37) at the urban site ranged from 7.58 to 27.75 ng/mL while at the suburban site concentrations were 2.57-21.55 ng/mL. The highest concentration of n-alkanes was observed in the mature period of fog (393.12 ng/mL) which was more than ten times that in the fog formation period (27.83 ng/mL) and the fog dissipation period (14.87 ng/mL). Concentrations of Sigma15PAHs were in the range of 7.27-38.52 ng/mL at the urban site and 2.59-22.69 ng/mL at the suburban site. Contents of PAHs in the mature period of fog (27.15 ng/mL) > fog dissipation period (11.59 ng/mL) > fog formation period (6.42 ng/mL). Concentrations of dicarboxylic acids (C5-C9) ranged from 10.92 to 40.78 ng/mL, with glutaric acid (C5) as the dominant dicarboxylic acid. These data provide strong indications of the accumulation of certain organic chemicals of environmental concern in fog and fog water, and provide additional insights about processes in urban and suburban air acting on organic chemicals with similar physical chemical properties.

  2. Measurements of in situ chemical ozone (oxidant) production rates

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Faloon, Kate; Najera, Juan; Bloss, William

    2013-04-01

    Tropospheric ozone is a major air pollutant, harmful to human health, agricultural crops and vegetation, the main precursor to the atmospheric oxidants which initiate the degradation of most reactive gases emitted to the atmosphere, and an important greenhouse gas in its own right. The capacity to understand and predict tropospheric ozone levels is a key goal for atmospheric science - but one which is challenging, as ozone is formed in the atmosphere from the complex oxidation of VOCs in the presence of NOx and sunlight, on a timescale such that in situ chemical processes, deposition and transport all affect ozone levels. Known uncertainties in emissions, chemistry, dynamics and deposition affect the accuracy of predictions of current and future ozone levels, and hinder development of optimal air quality policies to mitigate against ozone exposure. Recently new approaches to directly measure the local chemical ozone production rate, bypassing the many uncertainties in emissions and chemical schemes, have been developed (Cazorla & Brune, AMT 2010). Here, we describe the development of an analogous Ozone Production Rate (OPR) approach: Air is sampled into parallel reactors, within which ozone formation either occurs as in the ambient atmosphere, or is suppressed. Comparisons of ozone levels exiting a pair of such reactors determines the net chemical oxidant production rate, after correction for perturbation of the NOx-O3 photochemical steady state, and when operated under conditions such that wall effects are minimised. We report preliminary measurements of local chemical ozone production made during the UK NERC ClearfLo (Clean Air for London) campaign at an urban background location in London in January and July 2012. The OPR system was used to measure the local chemical oxidant formation rate, which is compared with observed trends in O3 and NOx and the prevailing meteorology, and with the predictions of a detailed zero-dimensional atmospheric chemistry model

  3. Rapid chemical evolution of tropospheric volcanic emissions from Redoubt Volcano, Alaska, based on observations of ozone and halogen-containing gases

    NASA Astrophysics Data System (ADS)

    Kelly, Peter J.; Kern, Christoph; Roberts, Tjarda J.; Lopez, Taryn; Werner, Cynthia; Aiuppa, Alessandro

    2013-06-01

    We report results from an observational and modeling study of reactive chemistry in the tropospheric plume emitted by Redoubt Volcano, Alaska. Our measurements include the first observations of Br and I degassing from an Alaskan volcano, the first study of O3 evolution in a volcanic plume, as well as the first detection of BrO in the plume of a passively degassing Alaskan volcano. This study also represents the first detailed spatially-resolved comparison of measured and modeled O3 depletion in a volcanic plume. The composition of the plume was measured on June 20, 2010 using base-treated filter packs (for F, Cl, Br, I, and S) at the crater rim and by an instrumented fixed-wing aircraft on June 21 and August 19, 2010. The aircraft was used to track the chemical evolution of the plume up to ~ 30 km downwind (2 h plume travel time) from the volcano and was equipped to make in situ observations of O3, water vapor, CO2, SO2, and H2S during both flights plus remote spectroscopic observations of SO2 and BrO on the August 19th flight. The airborne data from June 21 reveal rapid chemical O3 destruction in the plume as well as the strong influence chemical heterogeneity in background air had on plume composition. Spectroscopic retrievals from airborne traverses made under the plume on August 19 show that BrO was present ~ 6 km downwind (20 min plume travel time) and in situ measurements revealed several ppbv of O3 loss near the center of the plume at a similar location downwind. Simulations with the PlumeChem model reproduce the timing and magnitude of the observed O3 deficits and suggest that autocatalytic release of reactive bromine and in-plume formation of BrO were primarily responsible for the observed O3 destruction in the plume. The measurements are therefore in general agreement with recent model studies of reactive halogen formation in volcanic plumes, but also show that field studies must pay close attention to variations in the composition of ambient air

  4. Rapid chemical evolution of tropospheric volcanic emissions from Redoubt Volcano, Alaska, based on observations of ozone and halogen-containing gases

    USGS Publications Warehouse

    Werner, Cynthia A.; Kelly, Peter; Kern, Christoph; Roberts, T.J.; Aluppe, A.

    2013-01-01

    We report results from an observational and modeling study of reactive chemistry in the tropospheric plume emitted by Redoubt Volcano, Alaska. Our measurements include the first observations of Br and I degassing from an Alaskan volcano, the first study of O3 evolution in a volcanic plume, as well as the first detection of BrO in the plume of a passively degassing Alaskan volcano. This study also represents the first detailed spatially-resolved comparison of measured and modeled O3 depletion in a volcanic plume. The composition of the plume was measured on June 20, 2010 using base-treated filter packs (for F, Cl, Br, I, and S) at the crater rim and by an instrumented fixed-wing aircraft on June 21 and August 19, 2010. The aircraft was used to track the chemical evolution of the plume up to ~ 30 km downwind (2 h plume travel time) from the volcano and was equipped to make in situ observations of O3, water vapor, CO2, SO2, and H2S during both flights plus remote spectroscopic observations of SO2 and BrO on the August 19th flight. The airborne data from June 21 reveal rapid chemical O3 destruction in the plume as well as the strong influence chemical heterogeneity in background air had on plume composition. Spectroscopic retrievals from airborne traverses made under the plume on August 19 show that BrO was present ~ 6 km downwind (20 min plume travel time) and in situ measurements revealed several ppbv of O3 loss near the center of the plume at a similar location downwind. Simulations with the PlumeChem model reproduce the timing and magnitude of the observed O3 deficits and suggest that autocatalytic release of reactive bromine and in-plume formation of BrO were primarily responsible for the observed O3 destruction in the plume. The measurements are therefore in general agreement with recent model studies of reactive halogen formation in volcanic plumes, but also show that field studies must pay close attention to variations in the composition of

  5. How well do CMIP5 climate simulations replicate historical trends and patterns of droughts?

    DOE PAGES

    Nasrollahi, Nasrin; AghaKouchak, Amir; Cheng, Linyin; ...

    2015-04-26

    Assessing the uncertainties and understanding the deficiencies of climate models are fundamental to developing adaptation strategies. The objective of this study is to understand how well Coupled Model Intercomparison-Phase 5 (CMIP5) climate model simulations replicate ground-based observations of continental drought areas and their trends. The CMIP5 multimodel ensemble encompasses the Climatic Research Unit (CRU) ground-based observations of area under drought at all time steps. However, most model members overestimate the areas under extreme drought, particularly in the Southern Hemisphere (SH). Furthermore, the results show that the time series of observations and CMIP5 simulations of areas under drought exhibit more variabilitymore » in the SH than in the Northern Hemisphere (NH). The trend analysis of areas under drought reveals that the observational data exhibit a significant positive trend at the significance level of 0.05 over all land areas. The observed trend is reproduced by about three-fourths of the CMIP5 models when considering total land areas in drought. While models are generally consistent with observations at a global (or hemispheric) scale, most models do not agree with observed regional drying and wetting trends. Over many regions, at most 40% of the CMIP5 models are in agreement with the trends of CRU observations. The drying/wetting trends calculated using the 3 months Standardized Precipitation Index (SPI) values show better agreement with the corresponding CRU values than with the observed annual mean precipitation rates. As a result, pixel-scale evaluation of CMIP5 models indicates that no single model demonstrates an overall superior performance relative to the other models.« less

  6. Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City

    NASA Astrophysics Data System (ADS)

    Zavala, M.; Lei, W.; Molina, M. J.; Molina, L. T.

    2009-01-01

    The emission characteristics of mobile sources in the Mexico City Metropolitan Area (MCMA) have changed significantly over the past few decades in response to emission control policies, advancements in vehicle technologies and improvements in fuel quality, among others. Along with these changes, concurrent non-linear changes in photochemical levels and criteria pollutants have been observed, providing a unique opportunity to understand the effects of perturbations of mobile emission levels on the photochemistry in the region using observational and modeling approaches. The observed historical trends of ozone (O3), carbon monoxide (CO) and nitrogen oxides (NOx) suggest that ozone production in the MCMA has changed from a low to a high VOC-sensitive regime over a period of 20 years. Comparison of the historical emission trends of CO, NOx and hydrocarbons derived from mobile-source emission studies in the MCMA from 1991 to 2006 with the trends of the concentrations of CO, NOx, and the CO/NOx ratio during peak traffic hours also indicates that fuel-based fleet average emission factors have significantly decreased for CO and VOCs during this period whereas NOx emission factors do not show any strong trend, effectively reducing the ambient VOC/NOx ratio. This study presents the results of model analyses on the sensitivity of the observed ozone levels to the estimated historical changes in its precursors. The model sensitivity analyses used a well-validated base case simulation of a high pollution episode in the MCMA with the mathematical Decoupled Direct Method (DDM) and the standard Brute Force Method (BFM) in the 3-D CAMx chemical transport model. The model reproduces adequately the observed historical trends and current photochemical levels. Comparison of the BFM and the DDM sensitivity techniques indicates that the model yields ozone values that increase linearly with NOx emission reductions and decrease linearly with VOC emission reductions only up to 30% from the

  7. Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City

    NASA Astrophysics Data System (ADS)

    Zavala, M.; Lei, W. F.; Molina, M. J.; Molina, L. T.

    2008-08-01

    The emission characteristics of mobile sources in the Mexico City Metropolitan Area (MCMA) have changed significantly over the past few decades in response to emission control policies, advancements in vehicle technologies and improvements in fuel quality, among others. Along with these changes, concurrent non-linear changes in photochemical levels and criteria pollutants have been observed, providing a unique opportunity to understand the effects of perturbations of mobile emission levels on the photochemistry in the region using observational and modeling approaches. The observed historical trends of ozone (O3), carbon monoxide (CO) and nitrogen oxides (NOx) suggest that ozone production in the MCMA has changed from a low to a high VOC-sensitive regime over a period of 20 years. Comparison of the historical emission trends of CO, NOx and hydrocarbons derived from mobile-source emission studies in the MCMA from 1991 to 2006 with the trends of the concentrations of CO, NOx, and the CO/NOx ratio during peak traffic hours also indicates that fuel-based fleet average emission factors have significantly decreased for CO and VOCs during this period whereas NOx emission factors do not show any strong trend, effectively reducing the ambient VOC/NOx ratio. This study presents the results of model analyses on the sensitivity of the observed ozone levels to the estimated historical changes in its precursors. The model sensitivity analyses used a well-validated base case simulation of a high pollution episode in the MCMA with the mathematical Decoupled Direct Method (DDM) and the standard Brute Force Method (BFM) in the 3-D CAMx chemical transport model. The model reproduces adequately the observed historical trends and current photochemical levels. Comparison of the BFM and the DDM sensitivity techniques indicates that the model yields ozone values that increase linearly with NOx emission reductions and decrease linearly with VOC emission reductions only up to 30% from the

  8. Effect of censoring trace-level water-quality data on trend-detection capability

    USGS Publications Warehouse

    Gilliom, R.J.; Hirsch, R.M.; Gilroy, E.J.

    1984-01-01

    Monte Carlo experiments were used to evaluate whether trace-level water-quality data that are routinely censored (not reported) contain valuable information for trend detection. Measurements are commonly censored if they fall below a level associated with some minimum acceptable level of reliability (detection limit). Trace-level organic data were simulated with best- and worst-case estimates of measurement uncertainty, various concentrations and degrees of linear trend, and different censoring rules. The resulting classes of data were subjected to a nonparametric statistical test for trend. For all classes of data evaluated, trends were most effectively detected in uncensored data as compared to censored data even when the data censored were highly unreliable. Thus, censoring data at any concentration level may eliminate valuable information. Whether or not valuable information for trend analysis is, in fact, eliminated by censoring of actual rather than simulated data depends on whether the analytical process is in statistical control and bias is predictable for a particular type of chemical analyses.

  9. Observations of chemical releases from high flying aircraft. [investigation of barium and lithium vapor releases in the thermosphere

    NASA Technical Reports Server (NTRS)

    Bedinger, J. F.; Constantinides, E.

    1973-01-01

    Barium and lithium vapors were released from sounding rockets in the thermosphere and observed from aboard the NASA Convair 990 at an altitude of 40,000 ft. The purpose of the releases was to (1) check out observational and operational procedures associated with the large high altitude barium release from a Scout rocket (BIC); (2) develop an all-weather technique for observing chemical releases; (3) evaluate methods of observing daytime releases, and (4) investigate the possibilities of observations from a manned satellite. The initial analysis indicates that the previous limitations on the usage of the vapor release method have been removed by the use of the aircraft and innovative photographic techniques. Methods of analysis and applications to the investigation of the thermosphere are discussed.

  10. Long-term trend of foE in European higher middle latitudes

    NASA Astrophysics Data System (ADS)

    Laštovička, Jan

    2016-04-01

    Long-term changes and trends have been observed in the whole ionosphere below its maximum. As concerns the E region, historical global data (Bremer, 2008) provide predominantly slightly positive trend, even though some stations provide a negative trend. Here we use data of two European stations with the best long data series of parameters of the ionospheric E layer, Slough/Chilton and Juliusruh over 1975-2014 (40 years). Noon-time medians (10-14 LT) are analyzed. The trend pattern after removing solar influence is complex. For yearly average values for Chilton first foE is decreasing in 1975-1990 by about 0.1 MHz, then the trend levels off or a little increase occurs in 1990-2004, and finally in 2004-2014 again a decrease is observed (again by about 0.1 MHz but over shorter period). Juliusruh yields a similar pattern. Similar analysis is also done for some months to check seasonal dependence of trends. The stability of relation between solar activity and foE is tested to clarify potential role of this factor in apparent trend of foE.

  11. On the chemical composition of L-chondrites

    NASA Technical Reports Server (NTRS)

    Neal, C. W.; Dodd, R. T.; Jarosewich, E.; Lipschutz, M. E.

    1980-01-01

    Radiochemical neutron activation analysis of Ag, As, Au, Bi, Co, Cs, Ga, In, Rb, Sb, Te, Tl, and Zn and major element data in 14 L4-6 and 3 LL5 chondrites indicates that the L group is unusually variable and may represent at least 2 subgroups differing in formation history. Chemical trends in the S/Fe rich subgroup support textural evidence indicating late loss of a shock formed Fe-Ni-S melt; the S/Fe poor subgroup seemingly reflects nebular fractionation only. Highly mobile In and Zn apparently reflect shock induced loss from L chondrites. However, contrasting chemical trends in several L chondrite sample sets indicate that these meteorites constitute a more irregular sampling of, or more heterogeneous parent material than do carbonaceous or enstatite chondrites. Data for 15 chondrites suggest higher formation temperatures and/or degrees of shock than for LL5 chondrites.

  12. Chemical reactivity parameters (HSAB) applied to magma evolution and ore formation

    NASA Astrophysics Data System (ADS)

    Vigneresse, Jean-Louis

    2012-11-01

    Magmas are commonly described through the usual content of 10 major oxides. This requires a complex dimensional plot. Concepts of hard-soft acid-base (HSAB) interactions allow estimating chemical reactivity of elements, such as electronegativity, i.e. the chemical potential changed of sign, hardness and electrophilicity. For complex system, those values result from equalization methods, i.e. the equalization of the respective chemical potentials, or from ab-initio computations through density functional theory (DFT). They help to characterize silicate magmas by a single value describing their reactivity. Principles of minimum electrophilicity (mEP), maximum hardness (MHP) and minimum polarizability (mPP) indicate trends towards regions of higher stability. Those parameters are plotted within a fitness landscape diagram, highlighting toward which principle reactions trend. Major oxides, main minerals and magmas determine the respective fields in which evolve natural rocks. Three poles are identified, represented by silica and alkalis, whereas oxidation forms the third trend. Mantle-derived rocks show a large variation in electrophilicity compared to hardness. They present all characters of a closed chemical system, being simply described by the free Gibbs energy. Conversely, rocks contaminated within the continental crust show a large variation in hardness between a silica pole and an alkaline, defining two separate trends. The trends show the character of an open chemical system, requiring a Grand Potential description (i.e. taking into account the difference in chemical potential). The terms open and closed systems refer to thermodynamical description, implying contamination for the crust and recycling for the mantle. The specific role of alkalis contrasts with other cations, pointing to their behavior in modifying silicate polymer structures. A second application deals with the reactivity of the melt and its fluid phase. It leads to a better understanding on the

  13. Observations and theories related to Antarctic ozone changes

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; Watson, R. T.; Cox, Richard A.; Kolb, C.; Mahlman, J.; Mcelroy, M.; Plumb, A.; Ramanathan, V.; Schoeberl, M.; Solomon, S.

    1989-01-01

    In 1985, there was a report of a large, sudden, and unanticipated decrease in the abundance of springtime Antarctic ozone over the last decade. By 1987, ozone decreases of more than 50 percent in the total column, and 95 percent locally between 15 and 20 km, had been observed. The scientific community quickly rose to the challenge of explaining this remarkable discovery; theoreticians soon developed a series of chemical and dynamical hypotheses to explain the ozone loss. Three basic theories were proposed to explain the springtime ozone hole. (1) The ozone hole is caused by the increasing atmospheric loadings of manmade chemicals containing chlorine (chlorofluorocarbons (CFC's) and bromine (halons)). These chemicals efficiently destroy ozone in the lower stratosphere in the Antarctic because of the special geophysical conditions, of an isolated air mass (polar vortex) with very cold temperatures, that exist there. (2) The circulation of the atmosphere in spring has changed from being predominantly downward over Antarctica to upward. This would mean that ozone poor air from the troposphere, instead of ozone rich air from the upper stratosphere, would be transported into the lower Antarctic stratosphere. (3) The abundance of the oxides of nitrogen in the lower Antarctic stratosphere is periodically enhanced by solar activity. Nitrogen oxides are produced in the upper mesosphere and thermosphere and then transported downward into the lower stratosphere in Antarctica, resulting in the chemical destruction of ozone. The climatology and trends of ozone, temperature, and polar stratospheric clouds are discussed. Also, the transport and chemical theories for the Antarctic ozone hole are presented.

  14. Trends in characteristics of daily rainfall in Northern Iberia: Is the NAO signal behind the observed variability?

    NASA Astrophysics Data System (ADS)

    Saez de Cámara, E.; Gangoiti, G.; Alonso, L.; Iza, J.

    2012-04-01

    A trend analysis of intensity and frequency of daily precipitation over Northern Iberia (NIB), with a primary focus on extreme events, is presented. It is based on 14 NOAA-NCDC daily records covering the last 35 years (1973-2007) plus two centenarian databases sited in eastern NIB: San Sebastián (1929-2007) (daily resolution) and Bilbao (1857-2007) (monthly resolution). It is the first time that this interfacial region between the Atlantic and the Mediterranean has been studied with such a density of monitoring stations. Spatial and temporal characteristics and changes in rainfall's distribution have been analyzed using the suite of indices developed and recommended by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI). They include annual and seasonal accumulated precipitation, number of dry and rainy days, and mean precipitation per rainy day, among others. The observed trends have been tested for statistical significance using the Mann-Kendall's non-parametric test. Additionally, links between the North Atlantic Oscillation (NAO) and the precipitation in the aforementioned region have been explored. The analysis shows a significant tendency towards less intensive rainy days for the whole region together with a decreasing trend in the number of wet days for the Central NIB. The consequence is a decline of total rainfall, statistically significant in Central and Eastern NIB. The evolution to drier conditions may be seen in both annual and seasonal indices. Conversely, strong regional differences have been found in the response to the NAO signal: whereas the rainfall decrease in the Western NIB might be associated to the dominance of a positive mode of the NAO during the last decades, the lack of correlation between the NAO signal and the observed precipitation in the stations with significant decreases rises an important argument against a direct association. Using the global gridded 6-hourly NCEP-DOE Reanalysis 2 data (1979-2010) we

  15. In-situ observation of the chemical erosion of graphite in the scrape-off-layer of TEXTOR

    NASA Astrophysics Data System (ADS)

    Philipps, V.; Vietzke, E.; Erdweg, M.

    1989-04-01

    A sniffer probe system has been used to investigate the chemical erosion during interaction of the TEXTOR scrape-off plasma with a pyrolytic graphite plate at temperatures up to 1400 °C. Floating potential conditions as well as 200 V bias has been applied at plasma ion fluxes of about 10 18ions/cm 2 sec.Methane formation was found to be 8 × 10 -3 CH 4/H and 1.5 × 10 -2 CD 4/D + for room temperature graphite and floating potential increasing by a factor of two at temperature around 500 °C. Biasing the graphite decreases the methane yield at room temperature and increase it in the maximum temperature range. CO formation due to chemical interaction of oxygen ions with the graphite reaches ratios between 3 and 6 × 10 -2 CO/D(H) near the limiter edge under normal TEXTOR scrape-off conditions and exceeds the chemical hydro-(deu-tero-carbon formation significantly. The results are discussed in view of the present status of hydro-(deutero-)carbon formation on graphite and carbon impurity observations made in fusion experiments.

  16. Systems Toxicology of Male Reproductive Development: Profiling 774 Chemicals for Molecular Targets and Adverse Outcomes

    EPA Pesticide Factsheets

    Background: Trends in male reproductive health have been reported for increased rates of testicular germ cell tumors, low semen quality, cryptorchidism, and hypospadias, which have been associated with prenatal environmental chemical exposure based on human and animal studies.Objective: In the present study we aimed to identify significant correlations between environmental chemicals, molecular targets, and adverse outcomes across a broad chemical landscape with emphasis on developmental toxicity of the male reproductive system.Methods: We used U.S. EPA??s animal study database (ToxRefDB) and a comprehensive literature analysis to identify 774 chemicals that have been evaluated for adverse effects on male reproductive parameters, and then used U.S. EPA??s in vitro high-throughput screening (HTS) database (ToxCastDB) to profile their bioactivity across approximately 800 molecular and cellular features. Results: A phenotypic hierarchy of testicular atrophy, sperm effects, tumors, and malformations, a composite resembling the human testicular dysgenesis syndrome (TDS) hypothesis, was observed in 281 chemicals. A subset of 54 chemicals with male developmental consequences had in vitro bioactivity on molecular targets that could be condensed into 156 gene annotations in a bipartite network. Conclusion: Computational modeling of available in vivo and in vitro data for chemicals that produce adverse effects on male reproductive end points revealed a phenotypic hierarch

  17. Trends in hazardous trace metal concentrations in aerosols collected in Beijing, China from 2001 to 2006.

    PubMed

    Okuda, Tomoaki; Katsuno, Masayuki; Naoi, Daisuke; Nakao, Shunsuke; Tanaka, Shigeru; He, Kebin; Ma, Yongliang; Lei, Yu; Jia, Yingtao

    2008-06-01

    Daily observations of hazardous trace metal concentrations in aerosols in Beijing, China were made in the period from 2001 to 2006. We considered coal combustion as a major source of some anthropogenic metals by achieving a correlation analysis and by investigating enrichment factors and relative composition of metals. A possible extra source of some specific metals, such as Cu and Sb, was brake abrasion particles, however, we did not think the transport-related particle was a major source for the hazardous anthropogenic metals even though they could originate from vehicle exhaust and brake/tire abrasion particles. A time-trend model was used to describe temporal variations of chemical constituent concentrations during the five-year period. Several crustal elements, such as Al, Ti, V, Cr, Mn, Fe, and Co, did not show clear increases, with annual rates of change of -15.2% to 3.6%. On the other hand, serious increasing trends were noted from several hazardous trace metals. Cu, Zn, As, Cd, and Pb, which are derived mainly from anthropogenic sources, such as coal combustion, showed higher annual rate of change (4.9-19.8%, p<0.001) according to the regression model. In particular, the Cd and Pb concentrations increased remarkably. We hypothesize that the trend towards increasing concentrations of metals in the air reflects a change that has occurred in the process of burning coal, whereby the use of higher temperatures for coal combustion has resulted in increased emissions of these metals. The increasing use of low-rank coal may also explain the observed trends. In addition, nonferrous metal smelters are considered as a potential, albeit minor, reason for the increasing atmospheric concentrations of anthropogenic hazardous metals in Beijing city.

  18. General Trends of Dihedral Conformational Transitions in a Globular Protein

    PubMed Central

    Miao, Yinglong; Baudry, Jerome; Smith, Jeremy C.; McCammon, J. Andrew

    2017-01-01

    Dihedral conformational transitions are analyzed systematically in a model globular protein, cytochrome P450cam, to examine their structural and chemical dependences through combined conventional molecular dynamics (cMD), accelerated molecular dynamics (aMD) and Adaptive Biasing Force (ABF) simulations. The aMD simulations are performed at two acceleration levels, using dihedral and dual boost, respectively. In comparison with cMD, aMD samples protein dihedral transitions ~2 times faster on average using dihedral boost, and ~3.5 times faster using dual boost. In the protein backbone, significantly higher dihedral transition rates are observed in the Bend, Coil and Turn flexible regions, followed by the β bridge and β sheet, and then the helices. Moreover, protein sidechains of greater length exhibit higher transition rates on average in the aMD-enhanced sampling. Sidechains of the same length (particularly Nχ = 2) exhibit decreasing transition rates with residues when going from hydrophobic to polar, then charged and aromatic chemical types. The reduction of dihedral transition rates is found to be correlated with increasing energy barriers as identified through ABF free energy calculations. These general trends of dihedral conformational transitions provide important insights into the hierarchical dynamics and complex free energy landscapes of functional proteins. PMID:26799251

  19. General trends of dihedral conformational transitions in a globular protein.

    PubMed

    Miao, Yinglong; Baudry, Jerome; Smith, Jeremy C; McCammon, J Andrew

    2016-04-01

    Dihedral conformational transitions are analyzed systematically in a model globular protein, cytochrome P450cam, to examine their structural and chemical dependences through combined conventional molecular dynamics (cMD), accelerated molecular dynamics (aMD) and adaptive biasing force (ABF) simulations. The aMD simulations are performed at two acceleration levels, using dihedral and dual boost, respectively. In comparison with cMD, aMD samples protein dihedral transitions approximately two times faster on average using dihedral boost, and ∼ 3.5 times faster using dual boost. In the protein backbone, significantly higher dihedral transition rates are observed in the bend, coil, and turn flexible regions, followed by the β bridge and β sheet, and then the helices. Moreover, protein side chains of greater length exhibit higher transition rates on average in the aMD-enhanced sampling. Side chains of the same length (particularly Nχ = 2) exhibit decreasing transition rates with residues when going from hydrophobic to polar, then charged and aromatic chemical types. The reduction of dihedral transition rates is found to be correlated with increasing energy barriers as identified through ABF free energy calculations. These general trends of dihedral conformational transitions provide important insights into the hierarchical dynamics and complex free energy landscapes of functional proteins. © 2016 Wiley Periodicals, Inc.

  20. General trends of dihedral conformational transitions in a globular protein

    DOE PAGES

    Miao, Yinglong; Baudry, Jerome; Smith, Jeremy C.; ...

    2016-02-15

    In this paper, dihedral conformational transitions are analyzed systematically in a model globular protein, cytochrome P450cam, to examine their structural and chemical dependences through combined conventional molecular dynamics (cMD), accelerated molecular dynamics (aMD) and adaptive biasing force (ABF) simulations. The aMD simulations are performed at two acceleration levels, using dihedral and dual boost, respectively. In comparison with cMD, aMD samples protein dihedral transitions approximately two times faster on average using dihedral boost, and ~3.5 times faster using dual boost. In the protein backbone, significantly higher dihedral transition rates are observed in the bend, coil, and turn flexible regions, followed bymore » the β bridge and β sheet, and then the helices. Moreover, protein side chains of greater length exhibit higher transition rates on average in the aMD-enhanced sampling. Side chains of the same length (particularly Nχ = 2) exhibit decreasing transition rates with residues when going from hydrophobic to polar, then charged and aromatic chemical types. The reduction of dihedral transition rates is found to be correlated with increasing energy barriers as identified through ABF free energy calculations. In conclusion, these general trends of dihedral conformational transitions provide important insights into the hierarchical dynamics and complex free energy landscapes of functional proteins.« less

  1. Estimation of Biota Sediment Accumulation Factor (BSAF) from Paired Observations of Chemical Concentrations in Biota and Sediment (Final Report)

    EPA Science Inventory

    In March 2009, EPA's Ecological Risk Assessment Support Center (ERASC) released the final report entitled, Estimation of Biota Sediment Accumulation Factor (BSAF) from Paired Observations of Chemical Concentrations in Biota and Sediment. This report was written in response...

  2. Tree demography dominates long-term growth trends inferred from tree rings.

    PubMed

    Brienen, Roel J W; Gloor, Manuel; Ziv, Guy

    2017-02-01

    Understanding responses of forests to increasing CO 2 and temperature is an important challenge, but no easy task. Tree rings are increasingly used to study such responses. In a recent study, van der Sleen et al. (2014) Nature Geoscience, 8, 4 used tree rings from 12 tropical tree species and find that despite increases in intrinsic water use efficiency, no growth stimulation is observed. This challenges the idea that increasing CO 2 would stimulate growth. Unfortunately, tree ring analysis can be plagued by biases, resulting in spurious growth trends. While their study evaluated several biases, it does not account for all. In particular, one bias may have seriously affected their results. Several of the species have recruitment patterns, which are not uniform, but clustered around one specific year. This results in spurious negative growth trends if growth rates are calculated in fixed size classes, as 'fast-growing' trees reach the sampling diameter earlier compared to slow growers and thus fast growth rates tend to have earlier calendar dates. We assessed the effect of this 'nonuniform age bias' on observed growth trends and find that van der Sleen's conclusions of a lack of growth stimulation do not hold. Growth trends are - at least partially - driven by underlying recruitment or age distributions. Species with more clustered age distributions show more negative growth trends, and simulations to estimate the effect of species' age distributions show growth trends close to those observed. Re-evaluation of the growth data and correction for the bias result in significant positive growth trends of 1-2% per decade for the full period, and 3-7% since 1950. These observations, however, should be taken cautiously as multiple biases affect these trend estimates. In all, our results highlight that tree ring studies of long-term growth trends can be strongly influenced by biases if demographic processes are not carefully accounted for. © 2016 The Authors. Global

  3. Vegetation trends in a young conifer plantation after grazing, grubbing, and chemical release

    Treesearch

    Philip M. McDonald; Gary O. Fiddler; Peter W. Meyer

    1996-01-01

    A 3-year-old Jeffrey pine (Pinus jeffreyi Grev. & Balf.) plantation in northern California was released by grazing with sheep for 5 years, manual grubbing for 3 years, and applying a herbicide 1 year. These treatments plus an untreated control provided an opportunity to evaluate density and developmental trends for the pine, shrub, and grass...

  4. Chemical differentiation, thermal evolution, and catastrophic overturn on Venus: Predictions and geologic observations

    NASA Technical Reports Server (NTRS)

    Head, James W.; Parmentier, E. M.; Hess, P. C.

    1993-01-01

    Observations from Magellan show that: (1) the surface of Venus is generally geologically young, (2) there is no evidence for widespread recent crustal spreading or subduction, (3) the crater population permits the hypothesis that the surface is in production, and (4) relatively few impact craters appear to be embayed by volcanic deposits suggesting that the volcanic flux has drastically decreased as a function of time. These observations have led to consideration of hypotheses suggesting that the geological history of Venus may have changed dramatically as a function of time due to general thermal evolution, and/or thermal and chemical evolution of a depleted mantle layer, perhaps punctuated by catastrophic overturn of upper layers or episodic plate tectonics. We have previously examined the geological implications of some of these models, and here we review the predictions associated with two periods of Venus history. Stationary thick lithosphere and depleted mantle layer, and development of regional to global development of regional to global instabilities, and compare these predictions to the geological characteristics of Venus revealed by Magellan.

  5. External Influences on Modeled and Observed Cloud Trends

    NASA Technical Reports Server (NTRS)

    Marvel, Kate; Zelinka, Mark; Klein, Stephen A.; Bonfils, Celine; Caldwell, Peter; Doutriaux, Charles; Santer, Benjamin D.; Taylor, Karl E.

    2015-01-01

    Understanding the cloud response to external forcing is a major challenge for climate science. This crucial goal is complicated by intermodel differences in simulating present and future cloud cover and by observational uncertainty. This is the first formal detection and attribution study of cloud changes over the satellite era. Presented herein are CMIP5 (Coupled Model Intercomparison Project - Phase 5) model-derived fingerprints of externally forced changes to three cloud properties: the latitudes at which the zonally averaged total cloud fraction (CLT) is maximized or minimized, the zonal average CLT at these latitudes, and the height of high clouds at these latitudes. By considering simultaneous changes in all three properties, the authors define a coherent multivariate fingerprint of cloud response to external forcing and use models from phase 5 of CMIP (CMIP5) to calculate the average time to detect these changes. It is found that given perfect satellite cloud observations beginning in 1983, the models indicate that a detectable multivariate signal should have already emerged. A search is then made for signals of external forcing in two observational datasets: ISCCP (International Satellite Cloud Climatology Project) and PATMOS-x (Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmospheres - Extended). The datasets are both found to show a poleward migration of the zonal CLT pattern that is incompatible with forced CMIP5 models. Nevertheless, a detectable multivariate signal is predicted by models over the PATMOS-x time period and is indeed present in the dataset. Despite persistent observational uncertainties, these results present a strong case for continued efforts to improve these existing satellite observations, in addition to planning for new missions.

  6. Water-quality trends in the nation's rivers

    USGS Publications Warehouse

    Smith, R.A.; Alexander, R.B.; Wolman, M.G.

    1987-01-01

    Water-quality records from two nationwide sampling networks now permit nationally consistent analysis of long-term water-quality trends at more than 300 locations on major U.S. rivers. Observed trends in 24 measures of water quality for the period from 1974 to 1981 provide new insight into changes in stream quality that occurred during a time of major changes in both terrestrial and atmospheric influences on surface waters. Particularly noteworthy are widespread decreases in fecal bacteria and lead concentrations and widespread increases in nitrate, chloride, arsenic, and cadmium concentrations. Recorded increases in municipal waste treatment, use of salt on highways, and nitrogen fertilizer application, along with decreases in leaded gasoline consumption and regionally variable trends in coal production and combustion during the period appear to be reflected in water-quality changes.Water-quality records from two nationwide sampling networks now permit nationally consistent analysis of long-term water-quality trends at more than 300 locations on major U. S. rivers. Observed trends in 24 measures of water quality for the period from 1974 to 1981 provide new insight into changes in stream quality that occurred during a time of major changes in both terrestrial and atmospheric influences on surface waters. Particularly noteworthy are widespread decreases in fecal bacteria and lead concentrations and widespread increases in nitrate, chloride, arsenic, and cadmium concentrations. Recorded increases in municipal waste treatment, use of salt on highways, and nitrogen fertilizer application, along with decreases in leaded gasoline consumption and regionally variable trends in coal production and combustion during the period appear to be reflected in water-quality changes.

  7. Flux observations of isoprene oxidation products above a South East US forest point to chemical conversions on leaf canopy surface

    NASA Astrophysics Data System (ADS)

    Misztal, P. K.; Su, L.; Park, J.; Holzinger, R.; Nguyen, T.; Teng, A.; St Clair, J. M.; Wennberg, P. O.; Crounse, J.; Seco, R.; Karl, T.; Kaser, L.; Hansel, A.; Canaval, E.; Keutsch, F. N.; Mak, J. E.; Guenther, A. B.; Goldstein, A. H.; Mentler, B.; Lepesant, B.; Schnitzler, J. P.; Partoll, E.

    2016-12-01

    Isoprene is globally the dominant biogenic VOC (BVOC) emitted by the biosphere. Isoprene rapidly reacts with hydroxyl radicals in the atmosphere, forming oxidized carbonaceous gases some of which further react to form secondary organic aerosol. Isoprene oxidation proceeds simultaneously via NO and HO2 oxidation pathways with relative proportions depending mainly on the amount of available NOx (NO +NO2). Recent SOA modeling of HO2 oxidation of isoprene peroxides and epoxides reveal different SOA yields but few field studies are available to investigate these processes. Understanding of the fundamental chemical and physical processes controlling the fate of isoprene oxidation products is needed to improve SOA modeling under highly variable NOx concentrations and with the branching ratio between HO2 and NO pathways changing as a function of time of day. Plants are an important sink for many atmospheric chemicals formed in the atmosphere but the role of canopy surfaces is not typically accounted for when modeling atmospheric chemistry. Based on simultaneous flux measurements of isoprene carbonyls (MVK+MAC) by proton transfer reaction mass spectrometry and isoprene hydroxy hydroperoxides and epoxy diols (ISOPOOH+IEPOX) by tandem chemical ionization mass spectrometry, we show that the relative proportions of concentrations of these first-order isoprene products exhibit different diurnal patterns, dependent on NOx. Furthermore, a different diurnal flux pattern observed for first order products of NO and HO2 reactions reveals the occurrence of peroxide conversions to carbonyls at the canopy surface resulting in observed positive net emission flux of MVK+MAC in the afternoon. We hypothesize that the plant canopy provides an active surface which can catalyze chemical conversion. This hypothesis is supported by observation of consistent flux patterns at multiple different sites in the US and by a controlled ISOPOOH fumigation experiment of a plant in an enclosure chamber. In

  8. Long-term observations of the background aerosol at Cabauw, The Netherlands.

    PubMed

    Mamali, D; Mikkilä, J; Henzing, B; Spoor, R; Ehn, M; Petäjä, T; Russchenberg, H; Biskos, G

    2018-06-01

    Long-term measurements of PM 2.5 mass concentrations and aerosol particle size distributions from 2008 to 2015, as well as hygroscopicity measurements conducted over one year (2008-2009) at Cabauw, The Netherlands, are compiled here in order to provide a comprehensive dataset for understanding the trends and annual variabilities of the atmospheric aerosol in the region. PM 2.5 concentrations have a mean value of 14.4μgm -3 with standard deviation 2.1μgm -3 , and exhibit an overall decreasing trend of -0.74μgm -3 year -1 . The highest values are observed in winter and spring and are associated with a shallower boundary layer and lower precipitation, respectively, compared to the rest of the seasons. Number concentrations of particles smaller than 500nm have a mean of 9.2×10 3 particles cm -3 and standard deviation 4.9×10 3 particles cm -3 , exhibiting an increasing trend between 2008 and 2011 and a decreasing trend from 2013 to 2015. The particle number concentrations exhibit highest values in spring and summer (despite the increased precipitation) due to the high occurrence of nucleation-mode particles, which most likely are formed elsewhere and are transported to the observation station. Particle hygroscopicity measurements show that, independently of the air mass origin, the particles are mostly externally mixed with the more hydrophobic mode having a mean hygroscopic parameter κ of 0.1 while for the more hydrophilic mode κ is 0.35. The hygroscopicity of the smaller particles investigated in this work (i.e., particles having diameters of 35nm) appears to increase during the course of the nucleation events, reflecting a change in the chemical composition of the particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Health Inequalities: Trends, Progress, and Policy

    PubMed Central

    Bleich, Sara N.; Jarlenski, Marian P.; Bell, Caryn N.; LaVeist, Thomas A.

    2013-01-01

    Health inequalities, which have been well documented for decades, have more recently become policy targets in developed countries. This review describes time trends in health inequalities (by sex, race/ethnicity, and socioeconomic status), commitments to reduce health inequalities, and progress made to eliminate health inequalities in the United States, United Kingdom, and other OECD countries. Time-trend data in the United States indicate a narrowing of the gap between the best- and worst-off groups in some health indicators, such as life expectancy, but a widening of the gap in others, such as diabetes prevalence. Similarly, time-trend data in the United Kingdom indicate a narrowing of the gap between the best- and worst-off groups in some indicators, such as hypertension prevalence, whereas the gap between social classes has increased for life expectancy. More research and better methods are needed to measure precisely the relationships between stated policy goals and observed trends in health inequalities. PMID:22224876

  10. Are there trends towards drier hydrological conditions in Central America?

    NASA Astrophysics Data System (ADS)

    Hidalgo, H. G.

    2013-12-01

    A summary of hydrological projections at the end of the century from 30 General Circulation Models (GCMs) is presented; and several hydrometeorological parameters are analyzed to validate if there are hydroclimatological trends during the observational period (1982-2005) consistent with the GCMs results. At the end of the century the median of 30 GCM simulations projects a drier future for Tegucigalpa and San Jose, with a marked increment in evapotranspiration in the first half of the rainy season along with reductions of soil moisture. With respect to the observations (1982-2005): 1) the Normalized Difference Vegetation Index showed negative trends in the North Pacific coast of Costa Rica, the border of Honduras and Nicaragua, and especially in southern Mexico (except the Yucatan Peninsula). Positive trends were found in the several parts of Central America, 2) the Palmer Drought Severity Index showed strong and consistent trends from Nicaragua to the North of Central America and southern Mexico (not including Yucatan), consistent with the direction of GCM projections; 3) negative precipitation trends in satellite data were found in Nicaragua, with strong trends in its Caribbean coast; 4) NCEP/NCAR Reanalysis precipitation showed strong negative trends in northern Central America, the Central Valley, the Dry Pacific of Costa Rica and the South-Pacific coast of Nicaragua, all consistent with the direction of GCM projections; and 5) station data showed no significant trends however, and 6) Reanalysis' temperature showed positive trends in southern Mexico (not including Yucatan) and negative trends in El Salvador. It can be concluded that several trends in drought indexes and precipitation are consistent with the future projected by the GCMs; that is, with some exceptions some of the trends were validated towards a drier future for the region, especially in the northern part.

  11. Emerging Trends in the Discovery of Natural Product Antibacterials

    PubMed Central

    Bologa, Cristian G.; Ursu, Oleg; Oprea, Tudor; Melançon, Charles E.; Tegos, George P.

    2013-01-01

    This article highlights current trends and advances in exploiting natural sources for the deployment of novel and potent anti-infective countermeasures. The key challenge is to therapeutically target microbial pathogens exhibiting a variety of puzzling and evolutionary complex resistance mechanisms. Special emphasis is given to the strengths, weaknesses, and opportunities in the natural product antimicrobial drug discovery arena, and to emerging applications driven by advances in bioinformatics, chemical biology, and synthetic biology in concert with exploiting the microbial phenotype. These orchestrated efforts have identified a critical mass of lead natural antimicrobials chemical scaffolds and discovery technologies with high probability of successful implementation against emerging microbial pathogens. PMID:23890825

  12. Assessment of Quercus flowering trends in NW Spain

    NASA Astrophysics Data System (ADS)

    Jato, V.; Rodríguez-Rajo, F. J.; Fernandez-González, M.; Aira, M. J.

    2015-05-01

    This paper sought to chart airborne Quercus pollen counts over the last 20 years in the region of Galicia (NW Spain) with a view to detecting the possible influence of climate change on the Quercus airborne pollen season (APS). Pollen data from Ourense, Santiago de Compostela, Vigo and Lugo were used. The Quercus airborne pollen season was characterized in terms of the following parameters: pollen season start and end dates, peak pollen count, pollen season length and pollen index. Several methods, dates and threshold temperatures for determining the chill and heat requirements needed to trigger flowering were applied. A diverse APS onset timing sequence was observed for the four cities as Quercus flowers few days in advance in Vigo. The variations observed could be related to differences in the meteorological conditions or the thermal requirements needed for flowering. Thermal requirements differed depending on local climate conditions in the study cities: the lowest values for chilling accumulation were recorded in Vigo and the highest in Lugo, whereas the lowest heat accumulation was achieved in Vigo. Differences in APS trends between cities may reflect variations in weather-related trends. A significant trend towards rising Quercus pollen indices and higher maximum daily mean pollen counts was observed in Ourense, linked to the more marked temperature increase across southern Galicia. A non-uniform trend towards increased temperatures was noted over the study period, particularly in late summer and early autumn in all four study cities. Additionally, an increase in spring temperatures was observed in south-western Galicia.

  13. Understanding the Trends of Atmospheric Methane in the Past Decade

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Logan, J. A.; McElroy, M. B.; Duncan, B. N.; Yantosca, R. M.

    2002-05-01

    Methane (CH4) is the second most important anthropogenic greenhouse gas after carbon dioxide. After steady growth that resulted in an increase in atmospheric CH4 concentration by a factor of 2.5 over the past three centuries, the growth rate slowed in the 1980s; superimposed on the recent trend is significant interannual variability. In this study, various sources of information are utilized to quantify the contributions of individual CH4 sources and sinks to the trends of CH4 in the past decade. The GEOS-CHEM global three-dimensional chemical transport model with assimilated meteorology is used to test a number of hypotheses regarding recent trends in emissions. The model is evaluated with observations from the NOAA CMDL network. The model accounts for interannual variations in meteorology and concentrations of OH radical. In the baseline simulation, emissions are scaled to yearly country-by-country socioeconomic and other data: livestock populations and rice harvest areas are taken from the U.N. Food and Agriculture Organization; statistics on natural gas consumption and flaring from the Carbon Dioxide Information Analysis Center are used; data on coal production from British Petroleum are used; and precipitation rate and soil temperature from NCEP reanalyses are used to calculate natural wetland emissions, the sensitivities for which are based on the results obtained by Walter et al. [2001a,b]. The absolute strength for each of the sources in the base year of 1988 is chosen so that the budget satisfies mass balance constraints for total CH4 as well as individual isotopomers while producing good agreement with 1988 observed CH4 at various sites. Preliminary results indicate that the model simulates well the horizontal and vertical distribution, seasonal cycle, and long-term trend of CH4, capturing over 70% of the variance in the observed time series between 1988 and 1998 at many sites. However, an overestimate of the growth rate in the Northern Hemisphere as well

  14. Trends of brominated diphenyl ethers in fresh and archived Great Lakes fish (1979-2005)

    USGS Publications Warehouse

    Batterman, Stuart; Chernyak, Sergei; Gwynn, Erica; Cantonwine, David; Jia, Chunrong; Begnoche, Linda J.; Hickey, James P.

    2007-01-01

    While few environmental measurements of brominated diphenyl ethers (BDEs) were completed prior to the mid-1990s, analysis of appropriately archived samples might enable the determination of contaminant trends back to the introduction of these chemicals. In this paper, we first investigate the stability of BDEs in archived frozen and extracted fish samples, and then characterize trends of these chemicals in rainbow smelt (Osmerus mordax) and lake trout (Salvelinus namaycush) in each of the Great Lakes between 1979 and 2005. We focus on the four most common congeners (BDE-47, 100, 99 and 153) and use a change-point analysis to detect shifts in trends. Analyses of archived fish samples yielded precise BDE concentration measurements with only small losses (0.8% per year in frozen fish tissues, 2.2% per year in refrigerated extracts). Trends in fish from all Great Lakes showed large increases in BDE concentrations that started in the early to mid-1980s with fairly consistent doubling times (generally 2–4 years except in Lake Erie smelt where levels increased very slowly), though concentrations and trends show differences by congener, fish species and lake. The most recent data show that accumulation rates are slowing, and concentrations of penta- and hexa-congeners in trout from Lakes Ontario and Michigan and smelt from Lake Ontario started to decrease in the mid-1990s. Trends in smelt and trout are evolving somewhat differently, and trout concentrations in the five lakes are now ranked as Michigan > Superior = Ontario > Huron = Erie, and smelt concentrations as Michigan > Ontario > Huron > Superior > Erie. The analysis of properly archived samples permits the reconstruction of historical trends, congener distributions, biomagnification and other information that can aid the understanding and management of these contaminants.

  15. Gas-grain chemical models of star-forming molecular clouds as constrained by ISO and SWAS observations

    NASA Astrophysics Data System (ADS)

    Charnley, S. B.; Rodgers, S. D.; Ehrenfreund, P.

    2001-11-01

    We have investigated the gaseous and solid state molecular composition of dense interstellar material that periodically experiences processing in the shock waves associated with ongoing star formation. Our motivation is to confront these models with the stringent abundance constraints on CO2, H2O and O2, in both gas and solid phases, that have been set by ISO and SWAS. We also compare our results with the chemical composition of dark molecular clouds as determined by ground-based telescopes. Beginning with the simplest possible model needed to study molecular cloud gas-grain chemistry, we only include additional processes where they are clearly required to satisfy one or more of the ISO-SWAS constraints. When CO, N2 and atoms of N, C and S are efficiently desorbed from grains, a chemical quasi-steady-state develops after about one million years. We find that accretion of CO2 and H2O cannot explain the [CO2/H2O]ice ISO observations; as with previous models, accretion and reaction of oxygen atoms are necessary although a high O atom abundance can still be derived from the CO that remains in the gas. The observational constraints on solid and gaseous molecular oxygen are both met in this model. However, we find that we cannot explain the lowest H2O abundances seen by SWAS or the highest atomic carbon abundances found in molecular clouds; additional chemical processes are required and possible candidates are given. One prediction of models of this type is that there should be some regions of molecular clouds which contain high gas phase abundances of H2O, O2 and NO. A further consequence, we find, is that interstellar grain mantles could be rich in NH2OH and NO2. The search for these regions, as well as NH2OH and NO2 in ices and in hot cores, is an important further test of this scenario. The model can give good agreement with observations of simple molecules in dark molecular clouds such as TMC-1 and L134N. Despite the fact that S atoms are assumed to be continously

  16. Spatial and Temporal Trends of Persistent Organic Chemicals with Emphasis on Brominated Flame Retardants

    EPA Science Inventory

    Rapid growth in chemical and agrochemical industries during the past century have resulted in the release of large numbers of persistent organic chemicals (POCs) into the environment. Since POCs are prevalent in air, water, soil and tissue of organisms throughout the world and r...

  17. The effects of the initial mass function on the chemical evolution of elliptical galaxies

    NASA Astrophysics Data System (ADS)

    De Masi, Carlo; Matteucci, F.; Vincenzo, F.

    2018-03-01

    We describe the use of our chemical evolution model to reproduce the abundance patterns observed in a catalogue of elliptical galaxies from the Sloan Digital Sky Survey Data Release 4. The model assumes ellipticals form by fast gas accretion, and suffer a strong burst of star formation followed by a galactic wind, which quenches star formation. Models with fixed initial mass function (IMF) failed in simultaneously reproducing the observed trends with the galactic mass. So, we tested a varying IMF; contrary to the diffused claim that the IMF should become bottom heavier in more massive galaxies, we find a better agreement with data by assuming an inverse trend, where the IMF goes from being bottom heavy in less massive galaxies to top heavy in more massive ones. This naturally produces a downsizing in star formation, favouring massive stars in largest galaxies. Finally, we tested the use of the integrated Galactic IMF, obtained by averaging the canonical IMF over the mass distribution function of the clusters where star formation is assumed to take place. We combined two prescriptions, valid for different SFR regimes, to obtain the Integrated Initial Mass Function values along the whole evolution of the galaxies in our models. Predicted abundance trends reproduce the observed slopes, but they have an offset relative to the data. We conclude that bottom-heavier IMFs do not reproduce the properties of the most massive ellipticals, at variance with previous suggestions. On the other hand, an IMF varying with galactic mass from bottom heavier to top heavier should be preferred.

  18. Observed and modeled seasonal trends in dissolved and particulate Cu, Fe, Mn, and Zn in a mining-impacted stream.

    PubMed

    Butler, Barbara A; Ranville, James F; Ross, Philippe E

    2008-06-01

    North Fork Clear Creek (NFCC) in Colorado, an acid-mine drainage (AMD) impacted stream, was chosen to examine the distribution of dissolved and particulate Cu, Fe, Mn, and Zn in the water column, with respect to seasonal hydrologic controls. NFCC is a high-gradient stream with discharge directly related to snowmelt and strong seasonal storms. Additionally, conditions in the stream cause rapid precipitation of large amounts of hydrous iron oxides (HFO) that sequester metals. Because AMD-impacted systems are complex, geochemical modeling may assist with predictions and/or confirmations of processes occurring in these environments. This research used Visual-MINTEQ to determine if field data collected over a two and one-half year study would be well represented by modeling with a currently existing model, while limiting the number of processes modeled and without modifications to the existing model's parameters. Observed distributions between dissolved and particulate phases in the water column varied greatly among the metals, with average dissolved fractions being >90% for Mn, approximately 75% for Zn, approximately 30% for Cu, and <10% for Fe. A strong seasonal trend was observed for the metals predominantly in the dissolved phase (Mn and Zn), with increasing concentrations during base-flow conditions and decreasing concentrations during spring-runoff. This trend was less obvious for Cu and Fe. Within hydrologic seasons, storm events significantly influenced in-stream metals concentrations. The most simplified modeling, using solely sorption to HFO, gave predicted percentage particulate Cu results for most samples to within a factor of two of the measured values, but modeling data were biased toward over-prediction. About one-half of the percentage particulate Zn data comparisons fell within a factor of two, with the remaining data being under-predicted. Slightly more complex modeling, which included dissolved organic carbon (DOC) as a solution phase ligand

  19. Spatial variability and trends of seasonal snowmelt processes over Antarctic sea ice observed by satellite scatterometers

    NASA Astrophysics Data System (ADS)

    Arndt, S.; Haas, C.

    2017-12-01

    1992 to 2014. The subsequent regression analysis showed that no significant temporal trend in the retrieved snowmelt onset dates can be observed, but strong inter-annual variability. This absence of any notable changes in snowmelt behavior is in line with the small observed temporal changes of the Antarctic sea ice cover and atmospheric warming

  20. Mediterranean Ocean Colour Chlorophyll trend

    NASA Astrophysics Data System (ADS)

    rinaldi, eleonora; colella, simone; santoleri, rosalia

    2014-05-01

    Monitoring chlorophyll (Chl) concentration, seen as a proxy for phytoplankton biomass, is an efficient tool in order to understand the response of marine ecosystem to human pressures. This is particularly important along the coastal regions, in which the strong anthropization and the irrational exploitation of resources represent a persistent threat to the biodiversity. The aim of this work is to assess the effectiveness and feasibility of using Ocean Color (OC) data to monitor the environmental changes in Mediterranean Sea and to develop a method for detecting trend from OC data that can constitute a new indicator of the water quality within the EU Marine Strategy Framework Directive implementation. In this study the Mediterranean merged Case1-Case2 chlorophyll product, produced by CNR-ISAC and distributed in the framework of MyOcean, is analyzed. This product is obtained by using two different bio-optical algorithms for open ocean (Case1) and coastal turbid (Case2) waters; this improves the quality of the Chl satellite estimates, especially near the coast. In order to verify the real capability of the this product for estimating Chl trend and for selecting the most appropriated statistical test to detect trend in the Mediterranean Sea, a comparison between OC and in situ data are carried out. In-situ Chl data are part of the European Environment Information and Observation Network (Eionet) of the European Environmental Agency (EEA). Four different statistical approaches to estimate trend have been selected and used to compare trend values obtained with in-situ and OC data. Results show that the best agreement between in-situ and OC trend is achieved using the Mann- Kendall test. The Mediterranean trend map obtained applying this test to the de-seasonalized OC time series shows that, in accordance with the results of many authors, the case 1 waters of Mediterranean sea are characterized by a negative trend. However, the most intense trend signals, both negative

  1. Assessing temporal trends and source regions of per- and polyfluoroalkyl substances (PFASs) in air under the Arctic Monitoring and Assessment Programme (AMAP)

    NASA Astrophysics Data System (ADS)

    Wong, Fiona; Shoeib, Mahiba; Katsoyiannis, Athanasios; Eckhardt, Sabine; Stohl, Andreas; Bohlin-Nizzetto, Pernilla; Li, Henrik; Fellin, Phil; Su, Yushan; Hung, Hayley

    2018-01-01

    Long-term Arctic air monitoring of per- and polyfluoroalkyl substances (PFASs) is essential in assessing their long-range transport and for evaluating the effectiveness of chemical control initiatives. We report for the first time temporal trends of neutral and ionic PFASs in air from three arctic stations: Alert (Canada, 2006-2014); Zeppelin (Svalbard, Norway, 2006-2014) and Andøya (Norway, 2010-2014). The most abundant PFASs were the perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorobutanoic acid (PFBA), and fluorotelomer alcohols (FTOHs). All of these chemicals exhibited increasing trends at Alert with doubling times (t2) of 3.7 years (y) for PFOA, 2.9 y for PFOS, 2.5 y for PFBA, 5.0 y for 8:2 FTOH and 7.0 y for 10:2 FTOH. In contrast, declining or non-changing trends, were observed for PFOA and PFOS at Zeppelin (PFOA, half-life, t1/2 = 7.2 y; PFOS t1/2 = 67 y), and Andøya (PFOA t1/2 = 1.9 y; PFOS t1/2 = 11 y). The differences in air concentrations and in time trends between the three sites may reflect the differences in regional regulations and source regions. We investigate the source region for particle associated compounds using the Lagrangian particle dispersion model FLEXPART. Model results showed that PFOA and PFOS are impacted by air masses originating from the ocean or land. For instance, PFOA at Alert and PFOS at Zeppelin were dominated by oceanic air masses whereas, PFOS at Alert and PFOA at Zeppelin were influenced by air masses transported from land.

  2. Survey Exploring Views of Scientists on Current Trends in Chemistry Education

    ERIC Educational Resources Information Center

    Vamvakeros, Xenofon; Pavlatou, Evangelia A.; Spyrellis, Nicolas

    2010-01-01

    A survey exploring the views of scientists, chemists and chemical engineers, on current trends in Chemistry Education was conducted in Greece. Their opinions were investigated using a questionnaire focusing on curricula (the content and process of chemistry teaching and learning), as well as on the respondents' general educational beliefs and…

  3. Speciation and chemical evolution of nitrogen oxides in aircraft exhaust near airports.

    PubMed

    Wood, Ezra C; Herndon, Scott C; Timko, Michael T; Yelvington, Paul E; Miake-Lye, Richard C

    2008-03-15

    Measurements of nitrogen oxides from a variety of commercial aircraft engines as part of the JETS-APEX2 and APEX3 campaigns show that NOx (NOx [triple bond] NO + NO2) is emitted primarily in the form of NO2 at idle thrust and NO at high thrust. A chemical kinetics combustion model reproduces the observed NO2 and NOx trends with engine power and sheds light on the relevant chemical mechanisms. Experimental evidence is presented of rapid conversion of NO to NO2 in the exhaust plume from engines at low thrust. The rapid conversion and the high NO2/NOx emission ratios observed are unrelated to ozone chemistry. NO2 emissions from a CFM56-3B1 engine account for approximately 25% of the NOx emitted below 3000 feet (916 m) and 50% of NOx emitted below 500 feet (153 m) during a standard ICAO (International Civil Aviation Organization) landing-takeoff cycle. Nitrous acid (HONO) accounts for 0.5% to 7% of NOy emissions from aircraft exhaust depending on thrust and engine type. Implications for photochemistry near airports resulting from aircraft emissions are discussed.

  4. Long-term trends in stratospheric ozone, temperature, and water vapor over the Indian region

    NASA Astrophysics Data System (ADS)

    Thankamani Akhil Raj, Sivan; Venkat Ratnam, Madineni; Narayana Rao, Daggumati; Venkata Krishna Murthy, Boddam

    2018-01-01

    We have investigated the long-term trends in and variabilities of stratospheric ozone, water vapor and temperature over the Indian monsoon region using the long-term data constructed from multi-satellite (Upper Atmosphere Research Satellite (UARS MLS and HALOE, 1993-2005), Aura Microwave Limb Sounder (MLS, 2004-2015), Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, 2002-2015) on board TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics)) observations covering the period 1993-2015. We have selected two locations, namely, Trivandrum (8.4° N, 76.9° E) and New Delhi (28° N, 77° E), covering northern and southern parts of the Indian region. We also used observations from another station, Gadanki (13.5° N, 79.2° E), for comparison. A decreasing trend in ozone associated with NOx chemistry in the tropical middle stratosphere is found, and the trend turned to positive in the upper stratosphere. Temperature shows a cooling trend in the stratosphere, with a maximum around 37 km over Trivandrum (-1.71 ± 0.49 K decade-1) and New Delhi (-1.15 ± 0.55 K decade-1). The observed cooling trend in the stratosphere over Trivandrum and New Delhi is consistent with Gadanki lidar observations during 1998-2011. The water vapor shows a decreasing trend in the lower stratosphere and an increasing trend in the middle and upper stratosphere. A good correlation between N2O and O3 is found in the middle stratosphere (˜ 10 hPa) and poor correlation in the lower stratosphere. There is not much regional difference in the water vapor and temperature trends. However, upper stratospheric ozone trends over Trivandrum and New Delhi are different. The trend analysis carried out by varying the initial year has shown significant changes in the estimated trend.

  5. Seeing Chemistry through Sound: A Submersible Audible Light Sensor for Observing Chemical Reactions for Students Who Are Blind or Visually Impaired

    ERIC Educational Resources Information Center

    Supalo, Cary A.; Kreuter, Rodney A.; Musser, Aaron; Han, Josh; Briody, Erika; McArtor, Chip; Gregory, Kyle; Mallouk, Thomas E.

    2006-01-01

    In order to enable students who are blind and visually impaired to observe chemical changes in solutions, a hand-held device was designed to output light intensity as an audible tone. The submersible audible light sensor (SALS) creates an audio signal by which one can observe reactions in a solution in real time, using standard laboratory…

  6. Discussion on the Development of Green Chemistry and Chemical Engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshen

    2017-11-01

    Chemical industry plays a vital role in the development process of national economy. However, in view of the special nature of the chemical industry, a large number of poisonous and harmful substances pose a great threat to the ecological environment and human health in the entire process of raw material acquisition, production, transportation, product manufacturing, and the final practical application. Therefore, it is a general trend to promote the development of chemistry and chemical engineering towards a greener environment. This article will focus on some basic problems occurred in the development process of green chemistry and chemical engineering.

  7. Methane Activation by 5 d Transition Metals: Energetics, Mechanisms, and Periodic Trends.

    PubMed

    Armentrout, Peter B

    2017-01-01

    Although it has been known for almost three decades that several 5d transition-metal cations will activate methane at room temperature, a more detailed examination of these reactions across the periodic table has only recently been completed. In this Minireview, we compare and contrast studies of the kinetic energy dependence of these reactions as studied using guided-ion-beam tandem mass spectrometry. Thermochemistry for the various products observed (MH + , MH 2 + , MC + , MCH + , MCH 2 + , and MCH 3 + ) are collected and periodic trends evaluated and discussed. The mechanisms for the reactions as elucidated by synergistic quantum chemical calculations are also reviewed. Recent spectroscopic evidence for the structures of the MCH 2 + dehydrogenation products are discussed as well. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of Recent Sea Surface Temperature Trends on the Arctic Stratospheric Vortex

    NASA Technical Reports Server (NTRS)

    Garfinkel, Chaim I.; Oman, Luke; Hurwitz, Margaret

    2015-01-01

    The springtime Arctic polar vortex has cooled significantly over the satellite era, with consequences for ozone concentrations in the springtime transition season. The causes of this cooling trend are deduced by using comprehensive chemistry-climate model experiments. Approximately half of the satellite era early springtime cooling trend in the Arctic lower stratosphere was caused by changing sea surface temperatures (SSTs). An ensemble of experiments forced only by changing SSTs is compared to an ensemble of experiments in which both the observed SSTs and chemically- and radiatively-active trace species are changing. By comparing the two ensembles, it is shown that warming of Indian Ocean, North Pacific, and North Atlantic SSTs, and cooling of the tropical Pacific, have strongly contributed to recent polar stratospheric cooling in late winter and early spring, and to a weak polar stratospheric warming in early winter. When concentrations of ozone-depleting substances and greenhouse gases are fixed, polar ozone concentrations show a small but robust decline due to changing SSTs. Ozone changes are magnified in the presence of changing gas concentrations. The stratospheric changes can be understood by examining the tropospheric height and heat flux anomalies generated by the anomalous SSTs. Finally, recent SST changes have contributed to a decrease in the frequency of late winter stratospheric sudden warmings.

  9. Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble

    NASA Astrophysics Data System (ADS)

    Stahl, K.; Tallaksen, L. M.; Hannaford, J.; van Lanen, H. A. J.

    2012-07-01

    An overall appraisal of runoff changes at the European scale has been hindered by "white space" on maps of observed trends due to a paucity of readily-available streamflow data. This study tested whether this white space can be filled using estimates of trends derived from model simulations of European runoff. The simulations stem from an ensemble of eight global hydrological models that were forced with the same climate input for the period 1963-2000. The derived trends were validated for 293 grid cells across the European domain with observation-based trend estimates. The ensemble mean overall provided the best representation of trends in the observations. Maps of trends in annual runoff based on the ensemble mean demonstrated a pronounced continental dipole pattern of positive trends in western and northern Europe and negative trends in southern and parts of eastern Europe, which has not previously been demonstrated and discussed in comparable detail. Overall, positive trends in annual streamflow appear to reflect the marked wetting trends of the winter months, whereas negative annual trends result primarily from a widespread decrease in streamflow in spring and summer months, consistent with a decrease in summer low flow in large parts of Europe. High flow appears to have increased in rain-dominated hydrological regimes, whereas an inconsistent or decreasing signal was found in snow-dominated regimes. The different models agreed on the predominant continental-scale pattern of trends, but in some areas disagreed on the magnitude and even the direction of trends, particularly in transition zones between regions with increasing and decreasing runoff trends, in complex terrain with a high spatial variability, and in snow-dominated regimes. Model estimates appeared most reliable in reproducing observed trends in annual runoff, winter runoff, and 7-day high flow. Modelled trends in runoff during the summer months, spring (for snow influenced regions) and autumn, and

  10. Is there any trend change in wind speed in the mid- 1990s in the stratosphere?

    NASA Astrophysics Data System (ADS)

    Krizan, Peter

    2017-04-01

    This poster tries to explain the reasons for trend change of the stratospheric wind speed in the mid-1990s. In the areas of negative (positive) wind speed trend before 1995 the positive (negative) trend is observed after this point Similar change is observed also for total ozone where we observe negative trend before 1995 and positive one after. We use MERRA reanalysis monthly means of the geopotential height from January to March. We suppose the position and strength of polar vortex and Aleutian high plays here very important role.

  11. Level and temporal trend of perfluoroalkyl acids in Greenlandic Inuit.

    PubMed

    Long, Manhai; Bossi, Rossana; Bonefeld-Jørgensen, Eva C

    2012-03-19

    Perfluoroalkyl acids (PFAAs) have been detected in human blood, breast milk and umbilical cord blood across the globe. PFAAs do accumulate in the marine food chain in Arctic regions. In Greenland, increasing PFAA concentrations were observed during 1982-2006 in ringed seals and polar bears. However, until now, no data have been reported for PFAAs in Greenlandic Inuit. This study assesses the level and temporal trend of serum PFAAs in Greenlandic Inuit. Cross-section and temporal time trend survey. Serum PFAA levels were determined in 284 Inuit from different Greenlandic districts using liquid chromatography-tandem mass spectrometry with electrospray ionization. The temporal time trend of serum PFAAs in Nuuk Inuit during 1998-2005 and the correlation between serum PFAAs and legacy persistent organic pollutants (POPs) were explored. Serum PFAA levels were higher in Nuuk Inuit than in non-Nuuk Inuit. Within the same district, higher PFAA levels were observed for males. An age-dependent, increasing trend of serum PFAA levels in the period from 1998-2005 was observed for Nuuk Inuit. For the pooled gender data, no significant association between PFAAs and legacy POPs was observed for Nuuk Inuit while for non-Nuuk Inuit this correlation was significant. No correlation between PFAAs and legacy POPs was found for male Inuit, whereas significant correlation was observed both for pooled female Inuit and for non-Nuuk Inuit females. We suggest that sources other than seafood intake might contribute to the observed higher PFAA levels in Nuuk Inuit compared to the pooled non-Nuuk Inuit.

  12. Instructional Time Trends. Education Trends

    ERIC Educational Resources Information Center

    Woods, Julie Rowland

    2015-01-01

    For more than 30 years, Education Commission of the States has tracked instructional time and frequently receives requests for information about policies and trends. In this Education Trends report, Education Commission of the States addresses some of the more frequent questions, including the impact of instructional time on achievement, variation…

  13. Enabling Technologies for the Future of Chemical Synthesis.

    PubMed

    Fitzpatrick, Daniel E; Battilocchio, Claudio; Ley, Steven V

    2016-03-23

    Technology is evolving at breakneck pace, changing the way we communicate, travel, find out information, and live our lives. Yet chemistry as a science has been slower to adapt to this rapidly shifting world. In this Outlook we use highlights from recent literature reports to describe how progresses in enabling technologies are altering this trend, permitting chemists to incorporate new advances into their work at all levels of the chemistry development cycle. We discuss the benefits and challenges that have arisen, impacts on academic-industry relationships, and future trends in the area of chemical synthesis.

  14. Chemical Reaction Engineering: Current Status and Future Directions.

    ERIC Educational Resources Information Center

    Dudukovic, M. P.

    1987-01-01

    Describes Chemical Reaction Engineering (CRE) as the discipline that quantifies the interplay of transport phenomena and kinetics in relating reactor performance to operating conditions and input variables. Addresses the current status of CRE in both academic and industrial settings and outlines future trends. (TW)

  15. Groundwater-level trends and forecasts, and salinity trends, in the Azraq, Dead Sea, Hammad, Jordan Side Valleys, Yarmouk, and Zarqa groundwater basins, Jordan

    USGS Publications Warehouse

    Goode, Daniel J.; Senior, Lisa A.; Subah, Ali; Jaber, Ayman

    2013-01-01

    Changes in groundwater levels and salinity in six groundwater basins in Jordan were characterized by using linear trends fit to well-monitoring data collected from 1960 to early 2011. On the basis of data for 117 wells, groundwater levels in the six basins were declining, on average about -1 meter per year (m/yr), in 2010. The highest average rate of decline, -1.9 m/yr, occurred in the Jordan Side Valleys basin, and on average no decline occurred in the Hammad basin. The highest rate of decline for an individual well was -9 m/yr. Aquifer saturated thickness, a measure of water storage, was forecast for year 2030 by using linear extrapolation of the groundwater-level trend in 2010. From 30 to 40 percent of the saturated thickness, on average, was forecast to be depleted by 2030. Five percent of the wells evaluated were forecast to have zero saturated thickness by 2030. Electrical conductivity was used as a surrogate for salinity (total dissolved solids). Salinity trends in groundwater were much more variable and less linear than groundwater-level trends. The long-term linear salinity trend at most of the 205 wells evaluated was not increasing, although salinity trends are increasing in some areas. The salinity in about 58 percent of the wells in the Amman-Zarqa basin was substantially increasing, and the salinity in Hammad basin showed a long-term increasing trend. Salinity increases were not always observed in areas with groundwater-level declines. The highest rates of salinity increase were observed in regional discharge areas near groundwater pumping centers.

  16. 0.1 Trend analysis of δ18O composition of precipitation in Germany: Combining Mann-Kendall trend test and ARIMA models to correct for higher order serial correlation

    NASA Astrophysics Data System (ADS)

    Klaus, Julian; Pan Chun, Kwok; Stumpp, Christine

    2015-04-01

    Spatio-temporal dynamics of stable oxygen (18O) and hydrogen (2H) isotopes in precipitation can be used as proxies for changing hydro-meteorological and regional and global climate patterns. While spatial patterns and distributions gained much attention in recent years the temporal trends in stable isotope time series are rarely investigated and our understanding of them is still limited. These might be a result of a lack of proper trend detection tools and effort for exploring trend processes. Here we make use of an extensive data set of stable isotope in German precipitation. In this study we investigate temporal trends of δ18O in precipitation at 17 observation station in Germany between 1978 and 2009. For that we test different approaches for proper trend detection, accounting for first and higher order serial correlation. We test if significant trends in the isotope time series based on different models can be observed. We apply the Mann-Kendall trend tests on the isotope series, using general multiplicative seasonal autoregressive integrate moving average (ARIMA) models which account for first and higher order serial correlations. With the approach we can also account for the effects of temperature, precipitation amount on the trend. Further we investigate the role of geographic parameters on isotope trends. To benchmark our proposed approach, the ARIMA results are compared to a trend-free prewhiting (TFPW) procedure, the state of the art method for removing the first order autocorrelation in environmental trend studies. Moreover, we explore whether higher order serial correlations in isotope series affects our trend results. The results show that three out of the 17 stations have significant changes when higher order autocorrelation are adjusted, and four stations show a significant trend when temperature and precipitation effects are considered. Significant trends in the isotope time series are generally observed at low elevation stations (≤315 m a

  17. Global trends in satellite-based emergency mapping

    USGS Publications Warehouse

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-01-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  18. Stratospheric effects on trends of mesospheric ice clouds (Invited)

    NASA Astrophysics Data System (ADS)

    Luebken, F.; Baumgarten, G.; Berger, U.

    2009-12-01

    Ice layers in the summer mesosphere at middle and polar latitudes appear as `noctilucent clouds' (NLC) and `polar mesosphere clouds'(PMC) when observed by optical methods from the ground or from satellites, respectively. A newly developed model of the atmosphere called LIMA (Leibniz Institute Middle Atmosphere Model) nicely reproduces the mean conditions of the summer mesopause region and is used to study the ice layer morphology (LIMA/ice). LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere and ice cloud morphology. Since ice layer formation is very sensitive to the thermal structure of the mesopause region the morphology of NLC and PMC is frequently discussed in terms of long term variations. Model runs of LIMA/ice are now available for 1961 until 2008. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (approximately 0.01-0.02 K/y). Trace gas concentrations are kept constant in LIMA except for water vapor which is modified by variable solar radiation. Still, long term trends in temperatures and ice layer parameters are observed, consistent with observations. We present results regarding inter-annual variability of upper mesosphere temperatures, water vapor, and ice clouds, and also long term variations. We compare our model results with satellite borne and lidar observations including some record high NLC parameters measured in the summer season of 2009. The latitudinal dependence of trends and ice layer parameters is discussed, including a NH/SH comparison. We will present an explanation of the trends in the background atmosphere and ice layer parameters.

  19. Chemical element concentrations in four lichens on a transect entering Voyageurs National Park

    USGS Publications Warehouse

    Bennett, J.; Wetmore, C.M.

    1997-01-01

    A three factor transect study was conducted to test the hypothesis that chemical elements from air emissions in the vicinity of International Falls, Minnesota could not be detected in lichens along a 24 km transect reaching into Voyageurs National Park. It was hypothesized that element concentrations in lichens would decline exponentially downwind and would reach background values at a distance before the park boundary. Four species (Cladina rangiferina, Evernia mesomorpha, Hypogymnia physodes, and Parmelia sulcata) were sampled at ten sites for 3 years and 17 chemical elements were measured. The most notable result was a curvilinear geographic trend for many elements, which decreased from International Falls and then increased towards the park. This trend was significant for many anthropogenic elements, including S, Hg, Cd, and Cr, and for all four species. This type of distribution pattern has been observed in Hypogymnia physodes in other studies downwind of a steel mill and an oil refinery. Cladina, a ground-dwelling lichen, generally had lower tissue concentrations of the elements than the three epiphytic species. Tissue concentrations over the 3 years of sampling declined an average of 12%. Sufficient evidence exists to conclude that lichen tissue element concentrations in the vicinity of International Falls may be related to local air emissions, and that an exponential decline of element concentrations downwind of the sources does not apply to this situation.

  20. Bacteriocins: Recent Trends and Potential Applications.

    PubMed

    Bali, Vandana; Panesar, Parmjit S; Bera, Manab B; Kennedy, John F

    2016-01-01

    In the modern era, there is great need for food preservation in both developing and developed countries due to increasing demand for extending shelf life and prevention of spoilage of food material. With the emergence of new pathogens and ability of micro-organisms to undergo changes, exploration of new avenues for the food preservation has gained importance. Moreover, awareness among consumers regarding harmful effects of chemical preservatives has been increased. Globally, altogether there is increasing demand by consumers for chemical-free and minimal processed food products. Potential of bacteriocin and its application in reducing the microbiological spoilages and in the preservation of food is long been recognized. Bacteriocins are normally specific to closely related species without disrupting the growth of other microbial populations. A number of applications of bacteriocin have been reported for humans, live stock, aquaculture etc. This review is focused on recent trends and applications of bacteriocins in different areas in addition to their biopreservative potential.

  1. Timescales for determining temperature and dissolved oxygen trends in the Long Island Sound (LIS) estuary

    NASA Astrophysics Data System (ADS)

    Staniec, Allison; Vlahos, Penny

    2017-12-01

    Long-term time series represent a critical part of the oceanographic community's efforts to discern natural and anthropogenically forced variations in the environment. They provide regular measurements of climate relevant indicators including temperature, oxygen concentrations, and salinity. When evaluating time series, it is essential to isolate long-term trends from autocorrelation in data and noise due to natural variability. Herein we apply a statistical approach, well-established in atmospheric time series, to key parameters in the U.S. east coast's Long Island Sound estuary (LIS). Analysis shows that the LIS time series (established in the early 1990s) is sufficiently long to detect significant trends in physical-chemical parameters including temperature (T) and dissolved oxygen (DO). Over the last two decades, overall (combined surface and deep) LIS T has increased at an average rate of 0.08 ± 0.03 °C yr-1 while overall DO has dropped at an average rate of 0.03 ± 0.01 mg L-1yr-1 since 1994 at the 95% confidence level. This trend is notably faster than the global open ocean T trend (0.01 °C yr-1), as might be expected for a shallower estuarine system. T and DO trends were always significant for the existing time series using four month data increments. Rates of change of DO and T in LIS are strongly correlated and the rate of decrease of DO concentrations is consistent with the expected reduced solubility of DO at these higher temperatures. Thus, changes in T alone, across decadal timescales can account for between 33 and 100% of the observed decrease in DO. This has significant implications for other dissolved gases and the long-term management of LIS hypoxia.

  2. Early warning of changing drinking water quality by trend analysis.

    PubMed

    Tomperi, Jani; Juuso, Esko; Leiviskä, Kauko

    2016-06-01

    Monitoring and control of water treatment plants play an essential role in ensuring high quality drinking water and avoiding health-related problems or economic losses. The most common quality variables, which can be used also for assessing the efficiency of the water treatment process, are turbidity and residual levels of coagulation and disinfection chemicals. In the present study, the trend indices are developed from scaled measurements to detect warning signs of changes in the quality variables of drinking water and some operating condition variables that strongly affect water quality. The scaling is based on monotonically increasing nonlinear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. Deviation indices are used to assess the severity of situations. The study shows the potential of the described trend analysis as a predictive monitoring tool, as it provides an advantage over the traditional manual inspection of variables by detecting changes in water quality and giving early warnings.

  3. Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology

    NASA Technical Reports Server (NTRS)

    Forkel, Matthias; Carvalhais, Nuno; Verbesselt, Jan; Mahecha, Miguel D.; Neigh, Christopher S.R.; Reichstein, Markus

    2013-01-01

    Changing trends in ecosystem productivity can be quantified using satellite observations of Normalized Difference Vegetation Index (NDVI). However, the estimation of trends from NDVI time series differs substantially depending on analyzed satellite dataset, the corresponding spatiotemporal resolution, and the applied statistical method. Here we compare the performance of a wide range of trend estimation methods and demonstrate that performance decreases with increasing inter-annual variability in the NDVI time series. Trend slope estimates based on annual aggregated time series or based on a seasonal-trend model show better performances than methods that remove the seasonal cycle of the time series. A breakpoint detection analysis reveals that an overestimation of breakpoints in NDVI trends can result in wrong or even opposite trend estimates. Based on our results, we give practical recommendations for the application of trend methods on long-term NDVI time series. Particularly, we apply and compare different methods on NDVI time series in Alaska, where both greening and browning trends have been previously observed. Here, the multi-method uncertainty of NDVI trends is quantified through the application of the different trend estimation methods. Our results indicate that greening NDVI trends in Alaska are more spatially and temporally prevalent than browning trends. We also show that detected breakpoints in NDVI trends tend to coincide with large fires. Overall, our analyses demonstrate that seasonal trend methods need to be improved against inter-annual variability to quantify changing trends in ecosystem productivity with higher accuracy.

  4. Analysis of the Arctic system for freshwater cycle intensification: Observations and expectations

    USGS Publications Warehouse

    Rawlins, M.A.; Steele, M.; Holland, M.M.; Adam, J.C.; Cherry, J.E.; Francis, J.A.; Groisman, P.Y.; Hinzman, L.D.; Huntington, T.G.; Kane, D.L.; Kimball, J.S.; Kwok, R.; Lammers, R.B.; Lee, C.M.; Lettenmaier, D.P.; McDonald, K.C.; Podest, E.; Pundsack, J.W.; Rudels, B.; Serreze, Mark C.; Shiklomanov, A.; Skagseth, O.; Troy, T.J.; Vorosmarty, C.J.; Wensnahan, M.; Wood, E.F.; Woodgate, R.; Yang, D.; Zhang, K.; Zhang, T.

    2010-01-01

    Hydrologic cycle intensification is an expected manifestation of a warming climate. Although positive trends in several global average quantities have been reported, no previous studies have documented broad intensification across elements of the Arctic freshwater cycle (FWC). In this study, the authors examine the character and quantitative significance of changes in annual precipitation, evapotranspiration, and river discharge across the terrestrial pan-Arctic over the past several decades from observations and a suite of coupled general circulation models (GCMs). Trends in freshwater flux and storage derived from observations across the Arctic Ocean and surrounding seas are also described. With few exceptions, precipitation, evapotranspiration, and river discharge fluxes from observations and the GCMs exhibit positive trends. Significant positive trends above the 90% confidence level, however, are not present for all of the observations. Greater confidence in the GCM trends arises through lower interannual variability relative to trend magnitude. Put another way, intrinsic variability in the observations tends to limit confidence in trend robustness. Ocean fluxes are less certain, primarily because of the lack of long-term observations. Where available, salinity and volume flux data suggest some decrease in saltwater inflow to the Barents Sea (i.e., a decrease in freshwater outflow) in recent decades. A decline in freshwater storage across the central Arctic Ocean and suggestions that large-scale circulation plays a dominant role in freshwater trends raise questions as to whether Arctic Ocean freshwater flows are intensifying. Although oceanic fluxes of freshwater are highly variable and consistent trends are difficult to verify, the other components of the Arctic FWC do show consistent positive trends over recent decades. The broad-scale increases provide evidence that the Arctic FWC is experiencing intensification. Efforts that aim to develop an adequate

  5. Latitudinal and interhemispheric variation of stratospheric effects on mesospheric ice layer trends

    NASA Astrophysics Data System (ADS)

    Lübken, F.-J.; Berger, U.

    2011-02-01

    Latitudinal and interhemispheric differences of model results on trends in mesospheric ice layers and background conditions are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. Water vapor increases at noctilucent cloud (NLC) heights and decreases above due to increased freeze drying caused by temperature trends. There is no tendency for ice clouds in the Northern Hemisphere for extending farther southward with time. Trends of NLC albedo are similar to satellite measurements, but only if a time period longer than observations is considered. Ice cloud trends get smaller if albedo thresholds relevant to satellite instruments are applied, in particular at high polar latitudes. This implies that weak and moderate NLC is favored when background conditions improve for NLC formation, whereas strong NLC benefits less. Trends of ice cloud parameters are generally smaller in the Southern Hemisphere (SH) compared to the Northern Hemisphere (NH), consistent with observations. Trends in background conditions have counteracting effects on NLC: temperature trends would suggest stronger ice increase in the SH, and water vapor trends would suggest a weaker increase. Larger trends in NLC brightness or occurrence rates are not necessarily associated with larger (more negative) temperature trends. They can also be caused by larger trends of water vapor caused by larger freeze drying, which in turn can be caused by generally lower temperatures and/or more background water. Trends of NLC brightness and occurrence rates decrease with decreasing latitude in both hemispheres. The latitudinal variation of these trends is primarily determined by induced water vapor trends. Trends in NLC altitudes are generally small. Stratospheric temperature trends vary

  6. Filling the white space on maps of European runoff trends: estimates from a multi-model ensemble

    NASA Astrophysics Data System (ADS)

    Stahl, K.; Tallaksen, L. M.; Hannaford, J.; van Lanen, H. A. J.

    2012-02-01

    An overall appraisal of runoff changes at the European scale has been hindered by "white space" on maps of observed trends due to a paucity of readily-available streamflow data. This study tested whether this white space can be filled using estimates of trends derived from model simulations of European runoff. The simulations stem from an ensemble of eight global hydrological models that were forced with the same climate input for the period 1963-2000. A validation of the derived trends for 293 grid cells across the European domain with observation-based trend estimates, allowed an assessment of the uncertainty of the modelled trends. The models agreed on the predominant continental scale patterns of trends, but disagreed on magnitudes and even on trend directions at the transition between regions with increasing and decreasing runoff trends, in complex terrain with a high spatial variability, and in snow-dominated regimes. Model estimates appeared most reliable in reproducing trends in annual runoff, winter runoff, and 7-day high flow. Modelled trends in runoff during the summer months, spring (for snow influenced regions) and autumn, and trends in summer low flow, were more variable and should be viewed with caution due to higher uncertainty. The ensemble mean overall provided the best representation of the trends in the observations. Maps of trends in annual runoff based on the ensemble mean demonstrated a pronounced continental dipole pattern of positive trends in western and northern Europe and negative trends in southern and parts of Eastern Europe, which has not previously been demonstrated and discussed in comparable detail.

  7. The evolution of AAOE observed constituents with the polar vortex

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Lait, Leslie R.; Newman, P. A.; Martin, R.; Loewenstein, M.; Podolske, J. R.; Anderson, J.; Proffitt, M. H.

    1988-01-01

    One of the difficulties in determining constituent trends from the ER-2 flight data is the large amount of day to day variability generated by the motion of the polar vortex. To reduce this variability, the observations have been transformed into the conservative (Lagrangian) reference frames consisting of the coordinate pairs, potential temperature (PT) and potential vorticity (PV), or PT and N2O. The requirement of only two independent coordinates rests on the assumption that constituent distributions and their chemical processes are nearly zonal in that coordinate system. Flight data is used everywhere for these transformation except for potential vorticity. Potential vorticity is determined from level flight segments, and NMC PV values during flight dives and takeoffs are combined with flight data in a smooth fashion.

  8. Level and temporal trend of perfluoroalkyl acids in Greenlandic Inuit

    PubMed Central

    Long, Manhai; Bossi, Rossana; Bonefeld-Jørgensen, Eva C.

    2012-01-01

    Objectives Perfluoroalkyl acids (PFAAs) have been detected in human blood, breast milk and umbilical cord blood across the globe. PFAAs do accumulate in the marine food chain in Arctic regions. In Greenland, increasing PFAA concentrations were observed during 1982–2006 in ringed seals and polar bears. However, until now, no data have been reported for PFAAs in Greenlandic Inuit. This study assesses the level and temporal trend of serum PFAAs in Greenlandic Inuit. Study design Cross-section and temporal time trend survey. Methods Serum PFAA levels were determined in 284 Inuit from different Greenlandic districts using liquid chromatography-tandem mass spectrometry with electrospray ionization. The temporal time trend of serum PFAAs in Nuuk Inuit during 1998–2005 and the correlation between serum PFAAs and legacy persistent organic pollutants (POPs) were explored. Results Serum PFAA levels were higher in Nuuk Inuit than in non-Nuuk Inuit. Within the same district, higher PFAA levels were observed for males. An age-dependent, increasing trend of serum PFAA levels in the period from 1998–2005 was observed for Nuuk Inuit. For the pooled gender data, no significant association between PFAAs and legacy POPs was observed for Nuuk Inuit while for non-Nuuk Inuit this correlation was significant. No correlation between PFAAs and legacy POPs was found for male Inuit, whereas significant correlation was observed both for pooled female Inuit and for non-Nuuk Inuit females. Conclusions We suggest that sources other than seafood intake might contribute to the observed higher PFAA levels in Nuuk Inuit compared to the pooled non-Nuuk Inuit.1 PMID:22456049

  9. The influence of landscape position on lake chemical responses to drought in northern Wisconsin

    USGS Publications Warehouse

    Webster, K.E.; Kratz, T.K.; Bowser, C.J.; Magnuson, J.J.; Rose, W.J.

    1996-01-01

    Climatic shifts to drier conditions during drought alter the hydrologic pathways of water and solute flow to aquatic ecosystems. We examined differences in drought-induced trends in the semiconservative cations, Ca+Mg, in seven northern Wisconsin lakes. These spanned the range of hydrologic settings in the region, including hydraulically mounded, groundwater flowthrough, and groundwater-discharge lakes. Parallel increases in concentration across the seven lakes during drought were attributable to evapoconcentration. However, we observed divergent trends for mass, which better reflects altered solute flux by accounting for changes in lake volume. Ca+Mg mass increased in three groundwater-dominated lakes as precipitation inputs were low and groundwater discharging from longer flowpaths became proportionately more important. In contrast, decreases in Ca+Mg mass for two precipitation-dominated lakes reflected diminished inputs of solute-rich groundwater. Landscape position, defined by the spatial position of a lake within a hydrologic flow system, accounted for the divergence in chemical responses to drought.

  10. New trends in beer flavour compound analysis.

    PubMed

    Andrés-Iglesias, Cristina; Montero, Olimpio; Sancho, Daniel; Blanco, Carlos A

    2015-06-01

    As the beer market is steadily expanding, it is important for the brewing industry to offer consumers a product with the best organoleptic characteristics, flavour being one of the key characteristics of beer. New trends in instrumental methods of beer flavour analysis are described. In addition to successfully applied methods in beer analysis such as chromatography, spectroscopy, nuclear magnetic resonance, mass spectrometry or electronic nose and tongue techniques, among others, sample extraction and preparation such as derivatization or microextraction methods are also reviewed. © 2014 Society of Chemical Industry.

  11. Regional nutrient trends in streams and rivers of the United States, 1993-2003

    USGS Publications Warehouse

    Sprague, Lori A.; Lorenz, David L.

    2009-01-01

    Trends in flow-adjusted concentrations (indicators of anthropogenic changes) and observed concentrations (indicators of natural and anthropogenic changes) of total phosphorus and total nitrogen from 1993 to 2003 were evaluated in the eastern, central, and western United States by adapting the Regional Kendall trend test to account for seasonality and spatial correlation. The only significant regional trend was an increase in flow-adjusted concentrations of total phosphorus in the central United States, which corresponded to increases in phosphorus inputs from fertilizer in the region, particularly west of the Mississippi River. A similar upward regional trend in observed total phosphorus concentrations in the central United States was not found, likely because precipitation and runoff decreased during drought conditions in the region, offsetting the increased source loading on the land surface. A greater number of regional trends would have been significant if spatial correlation had been disregarded, indicating the importance of spatial correlation modifications in regional trend assessments when sites are not spatially independent.

  12. Effects of physical and chemical heterogeneity on water-quality samples obtained from wells

    USGS Publications Warehouse

    Reilly, Thomas E.; Gibs, Jacob

    1993-01-01

    Factors that affect the mass of chemical constituents entering a well include the distributions of flow rate and chemical concentrations along and near the screened or open section of the well. Assuming a layered porous medium (with each layer being characterized by a uniform hydraulic conductivity and chemical concentration), a knowledge of the flow from each layer along the screened zone and of the chemical concentrations in each layer enables the total mass entering the well to be determined. Analyses of hypothetical systems and a site at Galloway, NJ, provide insight into the temporal variation of water-quality data observed when withdrawing water from screened wells in heterogeneous ground-water systems.The analyses of hypothetical systems quantitatively indicate the cause-and-effect relations that cause temporal variability in water samples obtained from wells. Chemical constituents that have relatively uniform concentrations with depth may not show variations in concentrations in the water discharged from a well after the well is purged (evacuation of standing water in the well casing). However, chemical constituents that do not have uniform concentrations near the screened interval of the well may show variations in concentrations in the well discharge water after purging because of the physics of ground-water flow in the vicinity of the screen.Water-quality samples were obtained through time over a 30 minute period from a site at Galloway, NJ. The water samples were analyzed for aromatic hydrocarbons, and the data for benzene, toluene, and meta+para xylene were evaluated for temporal variations. Samples were taken from seven discrete zones, and the flow-weighted concentrations of benzene, toluene, and meta+para xylene all indicate an increase in concentration over time during pumping. These observed trends in time were reproduced numerically based on the estimated concentration distribution in the aquifer and the flow rates from each zone.The results of

  13. Systems metabolic engineering for chemicals and materials.

    PubMed

    Lee, Jeong Wook; Kim, Tae Yong; Jang, Yu-Sin; Choi, Sol; Lee, Sang Yup

    2011-08-01

    Metabolic engineering has contributed significantly to the enhanced production of various value-added and commodity chemicals and materials from renewable resources in the past two decades. Recently, metabolic engineering has been upgraded to the systems level (thus, systems metabolic engineering) by the integrated use of global technologies of systems biology, fine design capabilities of synthetic biology, and rational-random mutagenesis through evolutionary engineering. By systems metabolic engineering, production of natural and unnatural chemicals and materials can be better optimized in a multiplexed way on a genome scale, with reduced time and effort. Here, we review the recent trends in systems metabolic engineering for the production of chemicals and materials by presenting general strategies and showcasing representative examples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Protein-protected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience

    PubMed Central

    Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; Baksi, Ananya; Pradeep, Thalappil

    2012-01-01

    Noble metal quantum clusters (NMQCs) are the missing link between isolated noble metal atoms and nanoparticles. NMQCs are sub-nanometer core sized clusters composed of a group of atoms, most often luminescent in the visible region, and possess intriguing photo-physical and chemical properties. A trend is observed in the use of ligands, ranging from phosphines to functional proteins, for the synthesis of NMQCs in the liquid phase. In this review, we briefly overview recent advancements in the synthesis of protein protected NMQCs with special emphasis on their structural and photo-physical properties. In view of the protein protection, coupled with direct synthesis and easy functionalization, this hybrid QC-protein system is expected to have numerous optical and bioimaging applications in the future, pointers in this direction are visible in the literature. PMID:22312454

  15. Observed trends in the global jet stream characteristics during the second half of the 20th century

    NASA Astrophysics Data System (ADS)

    Pena-Ortiz, Cristina; Gallego, David; Ribera, Pedro; Ordonez, Paulina; Alvarez-Castro, Maria Del Carmen

    2013-04-01

    In this paper, we propose a new method based on the detection of jet cores with the aim to describe the climatological features of the jet streams and to estimate their trends in latitude, altitude, and velocity in the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) and 20th Century reanalysis data sets. Due to the fact that the detection method uses a single grid point to define the position of jet cores, our results reveal a greater latitudinal definition allowing a more accurate picture of the split flow configurations and double jet structures. To the best of our knowledge, these results provide the first multiseasonal and global trend analysis of jet streams based on a daily-resolution 3-D detection algorithm. Trends have been analyzed over 1958-2008 and during the post-satellite period, 1979-2008. We found that, in general, trends in jet velocities and latitudes have been faster for the Southern Hemisphere jets and especially for the southern polar front jet which has experienced the fastest velocity increase and poleward shift over 1979-2008 during the austral summer and autumn. Results presented here show an acceleration and a poleward shift of the northern and southern winter subtropical jets over 1979-2008 that occur at a faster rate and over larger zonally extended regions during this latter period than during 1958-2008.

  16. Characterization of human brown adipose tissue by chemical-shift water-fat MRI.

    PubMed

    Hu, Houchun H; Perkins, Thomas G; Chia, Jonathan M; Gilsanz, Vicente

    2013-01-01

    The purpose of this study was to characterize human brown adipose tissue (BAT) with chemical-shift water-fat MRI and to determine whether trends and differences in fat-signal fractions and T2(*) relaxation times between BAT and white adipose tissue (WAT) are consistently observed postmortem and in vivo in infants, adolescents, and adults. A postmortem body and eight patients were studied. A six-echo spoiled gradient-echo chemical-shift water-fat MRI sequence was performed at 3 T to jointly quantify fat-signal fraction and T2(*) in interscapular-supraclavicular BAT and subcutaneous WAT. To confirm BAT identity, biopsy and histology served as the reference in the postmortem study and PET/CT was used in five of the eight patients who required examination for medical care. Fat-signal fractions and T2(*) times were lower in BAT than in WAT in the postmortem example and in seven of eight patients. With the exception of one case, nominal comparisons between brown and white adipose tissues were statistically significant (p < 0.05). Between subjects, a large range of fat-signal fraction values was observed in BAT but not in WAT. We have shown that fat-signal fractions and T2(*) values jointly derived from chemical-shift water-fat MRI are lower in BAT than in WAT likely because of differences in cellular structures, triglyceride content, and vascularization. The two metrics can serve as complementary biomarkers in the detection of BAT.

  17. Global trends in satellite-based emergency mapping.

    PubMed

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-07-15

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective. Copyright © 2016, American Association for the Advancement of Science.

  18. Secular trends in growth.

    PubMed

    Fudvoye, Julie; Parent, Anne-Simone

    2017-06-01

    Human adult height has been increasing world-wide for a century and a half. The rate of increase depends on time and place of measurement. Final height appears to have reached a plateau in Northern European countries but it is still increasing in southern European countries as well as Japan. While mean birth length has not changed recently in industrialized countries, the secular trend finally observed in adult height mostly originates during the first 2 years of life. Secular trend in growth is a marker of public health and provides insights into the interaction between growth and environment. It has been shown to be affected by income, social status, infections and nutrition. While genetic factors cannot explain such rapid changes in average population height, epigenetic factors could be the link between growth and environment. Copyright © 2017. Published by Elsevier Masson SAS.

  19. Detection of magnetic fields in chemically peculiar stars observed with the K2 space mission

    NASA Astrophysics Data System (ADS)

    Buysschaert, B.; Neiner, C.; Martin, A. J.; Aerts, C.; Bowman, D. M.; Oksala, M. E.; Van Reeth, T.

    2018-05-01

    We report the results of an observational study aimed at searching for magnetic pulsating hot stars suitable for magneto-asteroseismology. A sample of sixteen chemically peculiar stars was selected and analysed using both high-resolution spectropolarimetry with ESPaDOnS and K2 high-precision space photometry. For all stars, we derive the effective temperature, surface gravity, rotational and non-rotational line broadening from our spectropolarimetric data. High-quality K2 light curves were obtained for thirteen of the sixteen stars and revealed rotational modulation, providing accurate rotation periods. Two stars show evidence for roAp pulsations, and one star shows signatures of internal gravity waves or unresolved g-mode pulsations. We confirm the presence of a large-scale magnetic field for eleven of the studied stars, of which nine are first detections. Further, we report one marginal detection and four non-detections. Two of the stars with a non-detected magnetic field show rotational modulation due to surface abundance inhomogeneities in the K2 light curve, and we confirm that the other two are chemically peculiar. Thus, these five stars likely host a weak (undetected) large-scale magnetic field.

  20. Chemical characteristics and source apportionment of indoor and outdoor fine particles observed in an urban environment in Korea

    NASA Astrophysics Data System (ADS)

    Heo, J.; Yi, S. M.

    2016-12-01

    Paired indoor-outdoor fine particulate matter (PM2.5) samples were collected at subway stations, underground shopping centers, and schools in Seoul metropolitan over a 4-year period between 2004 and 2007. Relationships between indoor and outdoor PM2.5 chemical species were determined and source contributions to indoor and outdoor PM2.5 mass were estimated using a positive matrix factorization (PMF) model. The PM2.5 samples were analyzed for major chemical components including organic carbon and elemental carbon, ions, and metals, and the results were used in the PMF model. The levels of the PM2.5 mass and its chemical components observed at the indoor sites were higher than those at the outdoor sites. Indoor levels of ions (i.e. sulfate, nitrate, ammonium), elemental carbon, and several metals (i.e. Fe, Zn, and Cu) were found to be significantly affected by outdoor sources. Very high indoor-to-outdoor mass ratio of these chemical components, in particular, were observed, representing the significant impacts of outdoor sources on indoor levels of them. Seven sources (secondary sulfate, secondary nitrate, mobile, biomass burning, roadway emissions, dust, and sea salt) were resolved by the PMF model at both of the indoor and outdoor sites. The secondary inorganic aerosol (i.e. secondary sulfate and nitrate) and the mobile sources were major contributors to the indoor and outdoor PM2.5, accounting for 47% and 27% of the outdoor PM2.5 and 40% and 25% of the indoor PM2.5, respectively. Furthermore, the contributions of the secondary inorganic aerosol and the mobile sources to the indoor PM2.5 were very comparable to its corresponding contributions to the outdoor PM2.5 levels. The spatial and temporal characteristics of each of sources resolved by the PMF model across the sites were examined using summary statistics, correlation analysis, and coefficient of variation and divergence analysis and the detailed results will be discussed in the presentation.

  1. 21st Century Trends in the Potential for Ozone Depletion

    NASA Astrophysics Data System (ADS)

    Hurwitz, M. M.; Newman, P. A.

    2009-05-01

    We find robust trends in the area where Antarctic stratospheric temperatures are below the threshold for polar stratospheric cloud (PSC) formation in Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) simulations of the 21st century. In late winter (September-October-November), cold area trends are consistent with the respective trends in equivalent effective stratospheric chlorine (EESC), i.e. negative cold area trends in 'realistic future' simulations where EESC decreases and the ozone layer recovers. In the early winter (April through June), regardless of EESC scenario, we find an increasing cold area trend in all simulations; multiple linear regression analysis shows that this early winter cooling trend is associated with the predicted increase in greenhouse gas concentrations in the future. We compare the seasonality of the potential for Antarctic ozone depletion in two versions of the GEOS CCM and assess the impact of the above-mentioned cold area trends on polar stratospheric chemistry.

  2. Statistical compilation of NAPAP chemical erosion observations

    USGS Publications Warehouse

    Mossotti, Victor G.; Eldeeb, A. Raouf; Reddy, Michael M.; Fries, Terry L.; Coombs, Mary Jane; Schmiermund, Ron L.; Sherwood, Susan I.

    2001-01-01

    In the mid 1980s, the National Acid Precipitation Assessment Program (NAPAP), in cooperation with the National Park Service (NPS) and the U.S. Geological Survey (USGS), initiated a Materials Research Program (MRP) that included a series of field and laboratory studies with the broad objective of providing scientific information on acid rain effects on calcareous building stone. Among the several effects investigated, the chemical dissolution of limestone and marble by rainfall was given particular attention because of the pervasive appearance of erosion effects on cultural materials situated outdoors. In order to track the chemical erosion of stone objects in the field and in the laboratory, the Ca 2+ ion concentration was monitored in the runoff solution from a variety of test objects located both outdoors and under more controlled conditions in the laboratory. This report provides a graphical and statistical overview of the Ca 2+ chemistry in the runoff solutions from (1) five urban and rural sites (DC, NY, NJ, NC, and OH) established by the MRP for materials studies over the period 1984 to 1989, (2) subevent study at the New York MRP site, (3) in situ study of limestone and marble monuments at Gettysburg, (4) laboratory experiments on calcite dissolution conducted by Baedecker, (5) laboratory simulations by Schmiermund, and (6) laboratory investigation of the surface reactivity of calcareous stone conducted by Fries and Mossotti. The graphical representations provided a means for identifying erroneous data that can randomly appear in a database when field operations are semi-automated; a purged database suitable for the evaluation of quantitative models of stone erosion is appended to this report. An analysis of the sources of statistical variability in the data revealed that the rate of stone erosion is weakly dependent on the type of calcareous stone, the ambient temperature, and the H + concentration delivered in the incident rain. The analysis also showed

  3. THE DUAL ORIGIN OF STELLAR HALOS. II. CHEMICAL ABUNDANCES AS TRACERS OF FORMATION HISTORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotov, Adi; Hogg, David W.; Willman, Beth

    2010-09-20

    Fully cosmological, high-resolution N-body+smooth particle hydrodynamic simulations are used to investigate the chemical abundance trends of stars in simulated stellar halos as a function of their origin. These simulations employ a physically motivated supernova feedback recipe, as well as metal enrichment, metal cooling, and metal diffusion. As presented in an earlier paper, the simulated galaxies in this study are surrounded by stellar halos whose inner regions contain both stars accreted from satellite galaxies and stars formed in situ in the central regions of the main galaxies and later displaced by mergers into their inner halos. The abundance patterns ([Fe/H] andmore » [O/Fe]) of halo stars located within 10 kpc of a solar-like observer are analyzed. We find that for galaxies which have not experienced a recent major merger, in situ stars at the high [Fe/H] end of the metallicity distribution function are more [{alpha}/Fe]-rich than accreted stars at similar [Fe/H]. This dichotomy in the [O/Fe] of halo stars at a given [Fe/H] results from the different potential wells within which in situ and accreted halo stars form. These results qualitatively match recent observations of local Milky Way halo stars. It may thus be possible for observers to uncover the relative contribution of different physical processes to the formation of stellar halos by observing such trends in the halo populations of the Milky Way and other local L{sup *} galaxies.« less

  4. Water quality in Indiana: trends in concentrations of selected nutrients, metals, and ions in streams, 2000-10

    USGS Publications Warehouse

    Risch, Martin R.; Bunch, Aubrey R.; Vecchia, Aldo V.; Martin, Jeffrey D.; Baker, Nancy T.

    2014-01-01

    Statistically significant trends were identified that included 167 downward trends and 83 upward trends. The Kankakee River Basin had the most significant upward trends while the most significant downward trends were in the Whitewater River Basin, the Lake Michigan Basin, and the Patoka River Basin. For most constituents, a majority of sites had significant downward trends. Two streams in the Lake Michigan Basin have shown substantial decreases in most constituents. The West Fork White River near Indianapolis, Indiana, showed increases in nitrate and phosphorus and the Kankakee River Basin showed increases in copper, zinc, chloride, sulfate, and hardness. Upward trends in nutrients were identified at a few sites, but most nutrient trends were downward. Upward trends in metals corresponded with relatively small concentration increases while downward trends involved considerably larger concentration changes. Downward trends in chloride, sulfate, and suspended solids were observed statewide, but upward trends in hardness were observed in the northern half of Indiana.

  5. Observable Signatures of Wind-driven Chemistry with a Fully Consistent Three-dimensional Radiative Hydrodynamics Model of HD 209458b

    NASA Astrophysics Data System (ADS)

    Drummond, B.; Mayne, N. J.; Manners, J.; Carter, A. L.; Boutle, I. A.; Baraffe, I.; Hébrard, É.; Tremblin, P.; Sing, D. K.; Amundsen, D. S.; Acreman, D.

    2018-03-01

    We present a study of the effect of wind-driven advection on the chemical composition of hot-Jupiter atmospheres using a fully consistent 3D hydrodynamics, chemistry, and radiative transfer code, the Met Office Unified Model (UM). Chemical modeling of exoplanet atmospheres has primarily been restricted to 1D models that cannot account for 3D dynamical processes. In this work, we couple a chemical relaxation scheme to the UM to account for the chemical interconversion of methane and carbon monoxide. This is done consistently with the radiative transfer meaning that departures from chemical equilibrium are included in the heating rates (and emission) and hence complete the feedback between the dynamics, thermal structure, and chemical composition. In this Letter, we simulate the well studied atmosphere of HD 209458b. We find that the combined effect of horizontal and vertical advection leads to an increase in the methane abundance by several orders of magnitude, which is directly opposite to the trend found in previous works. Our results demonstrate the need to include 3D effects when considering the chemistry of hot-Jupiter atmospheres. We calculate transmission and emission spectra, as well as the emission phase curve, from our simulations. We conclude that gas-phase nonequilibrium chemistry is unlikely to explain the model–observation discrepancy in the 4.5 μm Spitzer/IRAC channel. However, we highlight other spectral regions, observable with the James Webb Space Telescope, where signatures of wind-driven chemistry are more prominant.

  6. Spatially resolved chemical analysis of cicada wings using laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS).

    PubMed

    Román, Jessica K; Walsh, Callee M; Oh, Junho; Dana, Catherine E; Hong, Sungmin; Jo, Kyoo D; Alleyne, Marianne; Miljkovic, Nenad; Cropek, Donald M

    2018-03-01

    Laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS) is an emerging bioanalytical tool for direct imaging and analysis of biological tissues. Performing ionization in an ambient environment, this technique requires little sample preparation and no additional matrix, and can be performed on natural, uneven surfaces. When combined with optical microscopy, the investigation of biological samples by LAESI allows for spatially resolved compositional analysis. We demonstrate here the applicability of LAESI-IMS for the chemical analysis of thin, desiccated biological samples, specifically Neotibicen pruinosus cicada wings. Positive-ion LAESI-IMS accurate ion-map data was acquired from several wing cells and superimposed onto optical images allowing for compositional comparisons across areas of the wing. Various putative chemical identifications were made indicating the presence of hydrocarbons, lipids/esters, amines/amides, and sulfonated/phosphorylated compounds. With the spatial resolution capability, surprising chemical distribution patterns were observed across the cicada wing, which may assist in correlating trends in surface properties with chemical distribution. Observed ions were either (1) equally dispersed across the wing, (2) more concentrated closer to the body of the insect (proximal end), or (3) more concentrated toward the tip of the wing (distal end). These findings demonstrate LAESI-IMS as a tool for the acquisition of spatially resolved chemical information from fragile, dried insect wings. This LAESI-IMS technique has important implications for the study of functional biomaterials, where understanding the correlation between chemical composition, physical structure, and biological function is critical. Graphical abstract Positive-ion laser-ablation electrospray ionization mass spectrometry coupled with optical imaging provides a powerful tool for the spatially resolved chemical analysis of cicada wings.

  7. Mediterranean Ocean Colour Chlorophyll Trends.

    PubMed

    Colella, Simone; Falcini, Federico; Rinaldi, Eleonora; Sammartino, Michela; Santoleri, Rosalia

    2016-01-01

    In being at the base of the marine food web, phytoplankton is particularly important for marine ecosystem functioning (e.g., biodiversity). Strong anthropization, over-exploitation of natural resources, and climate change affect the natural amount of phytoplankton and, therefore, represent a continuous threat to the biodiversity in marine waters. In particular, a concerning risks for coastal waters is the increase in nutrient inputs of terrestrial/anthropogenic origin that can lead to undesirable modifications of phytoplankton concentration (i.e., eutrophication). Monitoring chlorophyll (Chl) concentration, which is a proxy of phytoplankton biomass, is an efficient tool for recording and understanding the response of the marine ecosystem to human pressures and thus for detecting eutrophication. Here, we compute Chl trends over the Mediterranean Sea by using satellite data, also highlighting the fact that remote sensing may represent an efficient and reliable solution to synoptically control the "good environmental status" (i.e., the Marine Directive to achieve Good Environmental Status of EU marine waters by 2020) and to assess the application of international regulations and environmental directives. Our methodology includes the use of an ad hoc regional (i.e., Mediterranean) algorithm for Chl concentration retrieval, also accounting for the difference between offshore (i.e., Case I) and coastal (i.e., Case II) waters. We apply the Mann-Kendall test and the Sens's method for trend estimation to the Chl concentration de-seasonalized monthly time series, as obtained from the X-11 technique. We also provide a preliminary analysis of some particular trends by evaluating their associated inter-annual variability. The high spatial resolution of our approach allows a clear identification of intense trends in those coastal waters that are affected by river outflows. We do not attempt to attribute the observed trends to specific anthropogenic events. However, the trends

  8. Enabling Technologies for the Future of Chemical Synthesis

    PubMed Central

    2016-01-01

    Technology is evolving at breakneck pace, changing the way we communicate, travel, find out information, and live our lives. Yet chemistry as a science has been slower to adapt to this rapidly shifting world. In this Outlook we use highlights from recent literature reports to describe how progresses in enabling technologies are altering this trend, permitting chemists to incorporate new advances into their work at all levels of the chemistry development cycle. We discuss the benefits and challenges that have arisen, impacts on academic–industry relationships, and future trends in the area of chemical synthesis. PMID:27163040

  9. Nitrogen Dioxide Trend over the United States: the View from the Ground, the View from Space

    NASA Technical Reports Server (NTRS)

    Lamsal, Lok N.; Duncan, Bryan N.; Yoshida, Yasuko; Krotkov, Nickolay A.

    2014-01-01

    Emissions of nitrogen oxides (NOx) are decreasing over the US due to environmental policies and technological change. We use observations of tropospheric nitrogen dioxide (NO2) columns from the Ozone Monitoring Instrument (OMI) satellite instrument and surface NO2 in-situ measurements from the air quality system (AQS) to quantify the trends, and to establish the relationship between the trends in tropospheric column and surface concentration. Both observations show substantial downward trends from 2005 to 2013, with an average reduction of 35 percent according to OMI and 38 percent according to AQS. The annual reduction rates are largest in 2005-2009: -6.2 percent per year and -7 percent per year observed by OMI and AQS, respectively. We examine various factors affecting the estimated trend in OMI NO2 columns and in-situ NO2 observations. An improved understanding of trend offers valuable insights about effectiveness of emission reduction regulations on state and federal level.

  10. Efficient use of shrimp waste: present and future trends.

    PubMed

    Kandra, Prameela; Challa, Murali Mohan; Jyothi, Hemalatha Kalangi Padma

    2012-01-01

    The production of shrimp waste from shrimp processing industries has undergone a dramatic increase in recent years. Continued production of this biomaterial without corresponding development of utilizing technology has resulted in waste collection, disposal, and pollution problems. Currently used chemical process releases toxic chemicals such as HCl, acetic acid, and NaOH into aquatic ecosystem as byproducts which will spoil the aquatic flora and fauna. Environmental protection regulations have become stricter. Now, there is a need to treat and utilize the waste in most efficient manner. The shrimp waste contains several bioactive compounds such as chitin, pigments, amino acids, and fatty acids. These bioactive compounds have a wide range of applications including medical, therapies, cosmetics, paper, pulp and textile industries, biotechnology, and food applications. This current review article present the utilization of shrimp waste as well as an alternative technology to replace hazardous chemical method that address the future trends in total utilization of shrimp waste for recovery of bioactive compounds.

  11. A view of the H-band light-element chemical patterns in globular clusters under the AGB self-enrichment scenario

    NASA Astrophysics Data System (ADS)

    Dell'Agli, F.; García-Hernández, D. A.; Ventura, P.; Mészáros, Sz; Masseron, T.; Fernández-Trincado, J. G.; Tang, B.; Shetrone, M.; Zamora, O.; Lucatello, S.

    2018-04-01

    We discuss the self-enrichment scenario by asymptotic giant branch (AGB) stars for the formation of multiple populations in globular clusters (GCs) by analysing data set of giant stars observed in nine Galactic GCs, covering a wide range of metallicities and for which the simultaneous measurements of C, N, O, Mg, Al, and Si are available. To this aim, we calculated six sets of AGB models, with the same chemical composition as the stars belonging to the first generation of each GC. We find that the AGB yields can reproduce the set of observations available, not only in terms of the degree of contamination shown by stars in each GC but, more important, also the observed trend with metallicity, which agrees well with the predictions from AGB evolution modelling. While further observational evidences are required to definitively fix the main actors in the pollution of the interstellar medium from which new generation of stars formed in GCs, the present results confirm that the gas ejected by stars of mass in the range 4 M_{⊙} ≤ M ≤ 8 M_{⊙} during the AGB phase share the same chemical patterns traced by stars in GCs.

  12. A worldwide analysis of trends in water-balance evapotranspiration

    NASA Astrophysics Data System (ADS)

    Ukkola, A. M.; Prentice, I. C.

    2013-05-01

    Climate change is expected to alter the global hydrological cycle, with inevitable consequences for freshwater availability to people and ecosystems. But the attribution of recent trends in the terrestrial water balance remains disputed. This study attempts to account statistically for both trends and interannual variability in water-balance evapotranspiration (ET), estimated from the annual observed streamflow in 109 river basins during "water years" 1961-1999 and two gridded precipitation datasets. The basins were chosen based on the availability of streamflow time-series data in the Dai et al. (2009) synthesis. They were divided into water-limited "dry" and energy-limited "wet" basins following the Budyko framework. We investigated the potential roles of precipitation, aerosol-corrected solar radiation, land-use change, wind speed, air temperature, and atmospheric CO2. Both trends and variability in ET show strong control by precipitation. There is some additional control of ET trends by vegetation processes, but little evidence for control by other factors. Interannual variability in ET was overwhelmingly dominated by precipitation, which accounted on average for 52-54% of the variation in wet basins (ranging from 0 to 99%) and 84-85% in dry basins (ranging from 13 to 100%). Precipitation accounted for 39-42% of ET trends in wet basins and 69-79% in dry basins. Cropland expansion increased ET in dry basins. Net atmospheric CO2 effects on transpiration, estimated using the Land-surface Processes and eXchanges (LPX) model, did not contribute to observed trends in ET because declining stomatal conductance was counteracted by slightly but significantly increasing foliage cover.

  13. A worldwide analysis of trends in water-balance evapotranspiration

    NASA Astrophysics Data System (ADS)

    Ukkola, A. M.; Prentice, I. C.

    2013-10-01

    Climate change is expected to alter the global hydrological cycle, with inevitable consequences for freshwater availability to people and ecosystems. But the attribution of recent trends in the terrestrial water balance remains disputed. This study attempts to account statistically for both trends and interannual variability in water-balance evapotranspiration (ET), estimated from the annual observed streamflow in 109 river basins during "water years" 1961-1999 and two gridded precipitation data sets. The basins were chosen based on the availability of streamflow time-series data in the Dai et al. (2009) synthesis. They were divided into water-limited "dry" and energy-limited "wet" basins following the Budyko framework. We investigated the potential roles of precipitation, aerosol-corrected solar radiation, land use change, wind speed, air temperature, and atmospheric CO2. Both trends and variability in ET show strong control by precipitation. There is some additional control of ET trends by vegetation processes, but little evidence for control by other factors. Interannual variability in ET was overwhelmingly dominated by precipitation, which accounted on average for 54-55% of the variation in wet basins (ranging from 0 to 100%) and 94-95% in dry basins (ranging from 69 to 100%). Precipitation accounted for 45-46% of ET trends in wet basins and 80-84% in dry basins. Net atmospheric CO2 effects on transpiration, estimated using the Land-surface Processes and eXchanges (LPX) model, did not contribute to observed trends in ET because declining stomatal conductance was counteracted by slightly but significantly increasing foliage cover.

  14. Long-term trends of atmospheric organochlorine pollutants and polycyclic aromatic hydrocarbons over the southeastern Tibetan Plateau.

    PubMed

    Wang, Chuanfei; Wang, Xiaoping; Gong, Ping; Yao, Tandong

    2018-05-15

    Long-term monitoring in remote regions is essential for revealing pollution trends at the global scale but relevant studies remain limited. In the present study, a six-year continuous monitoring of atmospheric persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) was carried out at Lulang in the southeastern Tibetan Plateau (TP). Average concentrations of hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), dichlorodiphenyltrichloroethanes (DDTs), polychlorinated biphenyls (PCBs) and PAHs were 13.5, 8.9, 41.7, 1.8pg/m 3 and 6.2ng/m 3 , respectively. Obvious seasonality was found for all the target compounds. HCHs, DDTs and PCBs had their highest concentrations in summer (monsoon season) and lowest in winter, which is consistent with the fluctuation of the Indian monsoon. Meanwhile, HCB and 5-6-ring PAHs showed opposite variations, possibly induced by local sources and the westerly flow in winter. Declining trends were observed for most of the chemicals, except o,p'-DDE, HCB and PCBs. A declining trend in the α/γ-HCH ratio indicated a shift from technical HCHs to lindane. An increasing trend in the o,p'/p,p'-DDT ratio suggested a likely shift from technical DDTs to dicofol. For PAHs, the contribution from high-temperature combustion has increased recently. The half-lives of α-HCH, γ-HCH, o,p'-DDT, p,p'-DDT were 6.1, 108, 77.6 and 14.2years, respectively. The half-lives of γ-HCH, o,p'-DDT and p,p'-DDT were higher than those in the Arctic, indicating these compounds will persist in the TP for a longer period. The temporal trends in atmospheric POPs were possibly induced by emissions in India and likely driven by wind speed in Lulang. This study contributes toward a better understanding of the behavior and transport of POPs in the TP region. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Understanding trends in blood pressure and their associations with body mass index in Chinese children, from 1985 to 2010: a cross-sectional observational study.

    PubMed

    Dong, Bin; Wang, Zhiqiang; Song, Yi; Wang, Hai-Jun; Ma, Jun

    2015-09-11

    Understanding trends in blood pressure (BP) in childhood is crucial to addressing and reducing the burden of adulthood hypertension and associated mortality in the future. In view of growing obesity in Chinese children, we sought to investigate the trends in BP and the influence of body mass index (BMI) on them. We included 1,010,153 children aged 8-17 years, with completed records from a large national successive cross-sectional survey, the Chinese National Survey on Students' Constitution and Health, between 1985 and 2010. BP was measured according to the recommendation of the National High Blood Pressure Education Program Working Group, and the elevated BP was based on sex-, age- and height-specific 95th centile of the recommendation. The adjusted mean systolic BP in boys and girls decreased by 3.9 and 5.6 mm Hg between 1985 and 2005, and increased by 1.3 and 1.0 mm Hg between 2005 and 2010, respectively. Corresponding adjusted prevalence of elevated systolic BP in boys and girls declined from 5.1% and 5.5% to 3.5% and 2.5% between 1985 and 2005, and increased to 4.9% and 3.5% in 2010, respectively. Adjusted mean BMI of boys and girls in 2010 was 2.0 and 1.2 kg/m(2) higher than those in 1985, respectively. The prevalence of obesity rose from 0% to 3.4% in boys and 0.9% in girls. Further adjusting for BMI did not change these trends in systolic BP. A similar pattern was also observed in diastolic BP. After declining for 20 years, BP levels in Chinese children started to climb upwards. These trends in BP cannot be fully explained by BMI. The investigation of other determinants of BP may provide additional opportunity to curb the current upward BP trend in Chinese children. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Short and long term chemical and isotopic variations of Lake Trasimeno (Italy)

    NASA Astrophysics Data System (ADS)

    Frondini, Francesco; Dragoni, Walter; Chiodini, Giovanni; Caliro, Stefano; Cardellini, Carlo; Donnini, Marco; Morgantini, Nicola

    2016-04-01

    Lake Trasimeno, located in Umbria (central Italy), is a shallow lake of a remarkable naturalistic interest and a significant resource for the economy of the region (Ludovisi and Gaino, 2010; Dragoni, 2004). The Lake Trasimeno has an average area of about 124 km2 with a maximum depth of approximately 5.5 m, has no natural outlet and the volume of water stored is strictly linked to rainfall. In order to limit water level variations in 1898 an efficient outlet was built. At present the water exits from the Lake only when the level reaches a fixed threshold above the outlet channel, so during periods with low precipitation the evaporation becomes the most relevant output from the lake. For instance, between 1989 and 2013 the outlet did not work, and the maximum depth of the lake was reduced to little more than three meters. In the framework of climate change, it is important to understand the changes that could affect Lake Trasimeno in the near future. To this aim it is necessary to individuate the long term trends of the hydrologic, chemical and physical characteristics of the Trasimeno water and distinguish them from the short term variations. At the present it is available a long record of hydrologic data allowing reliable studies on quantitative variations at Lake Trasimeno (Dragoni et al., 2015; Dragoni et al., 2012; Ludovisi and Gaino, 2010), but the definition of the chemical and isotopic trends of lake water it is still a problematic task. On the basis of new chemical and isotopic data, collected from 2006 to 2015, it is possible to observe (i) short term and/or very short (seasonal) variations in temperature, salinity and saturation state with respect to carbonate minerals and a long term trends in isotopic composition of water and total load of mobile species (Cl, Na). The short term variations readily respond to the precipitation regime and are strongly related to lake level; the long term trend is probably related to the progressive increase of near

  17. Sea-Level Trend Uncertainty With Pacific Climatic Variability and Temporally-Correlated Noise

    NASA Astrophysics Data System (ADS)

    Royston, Sam; Watson, Christopher S.; Legrésy, Benoît; King, Matt A.; Church, John A.; Bos, Machiel S.

    2018-03-01

    Recent studies have identified climatic drivers of the east-west see-saw of Pacific Ocean satellite altimetry era sea level trends and a number of sea-level trend and acceleration assessments attempt to account for this. We investigate the effect of Pacific climate variability, together with temporally-correlated noise, on linear trend error estimates and determine new time-of-emergence (ToE) estimates across the Indian and Pacific Oceans. Sea-level trend studies often advocate the use of auto-regressive (AR) noise models to adequately assess formal uncertainties, yet sea level often exhibits colored but non-AR(1) noise. Standard error estimates are over- or under-estimated by an AR(1) model for much of the Indo-Pacific sea level. Allowing for PDO and ENSO variability in the trend estimate only reduces standard errors across the tropics and we find noise characteristics are largely unaffected. Of importance for trend and acceleration detection studies, formal error estimates remain on average up to 1.6 times those from an AR(1) model for long-duration tide gauge data. There is an even chance that the observed trend from the satellite altimetry era exceeds the noise in patches of the tropical Pacific and Indian Oceans and the south-west and north-east Pacific gyres. By including climate indices in the trend analysis, the time it takes for the observed linear sea-level trend to emerge from the noise reduces by up to 2 decades.

  18. Molecular dynamics averaging of Xe chemical shifts in liquids.

    PubMed

    Jameson, Cynthia J; Sears, Devin N; Murad, Sohail

    2004-11-15

    The Xe nuclear magnetic resonance chemical shift differences that afford the discrimination between various biological environments are of current interest for biosensor applications and medical diagnostic purposes. In many such environments the Xe signal appears close to that in water. We calculate average Xe chemical shifts (relative to the free Xe atom) in solution in eleven liquids: water, isobutane, perfluoro-isobutane, n-butane, n-pentane, neopentane, perfluoroneopentane, n-hexane, n-octane, n-perfluorooctane, and perfluorooctyl bromide. The latter is a liquid used for intravenous Xe delivery. We calculate quantum mechanically the Xe shielding response in Xe-molecule van der Waals complexes, from which calculations we develop Xe (atomic site) interpolating functions that reproduce the ab initio Xe shielding response in the complex. By assuming additivity, these Xe-site shielding functions can be used to calculate the shielding for any configuration of such molecules around Xe. The averaging over configurations is done via molecular dynamics (MD). The simulations were carried out using a MD technique that one of us had developed previously for the simulation of Henry's constants of gases dissolved in liquids. It is based on separating a gaseous compartment in the MD system from the solvent using a semipermeable membrane that is permeable only to the gas molecules. We reproduce the experimental trends in the Xe chemical shifts in n-alkanes with increasing number of carbons and the large chemical shift difference between Xe in water and in perfluorooctyl bromide. We also reproduce the trend for a given solvent of decreasing Xe chemical shift with increasing temperature. We predict chemical shift differences between Xe in alkanes vs their perfluoro counterparts.

  19. Reduction, partial evaporation, and spattering - Possible chemical and physical processes in fluid drop chondrule formation

    NASA Technical Reports Server (NTRS)

    King, E. A.

    1983-01-01

    The major chemical differences between fluid drop chondrules and their probable parent materials may have resulted from the loss of volatiles such as S, H2O, Fe, and volatile siderophile elements by partial evaporation during the chondrule-forming process. Vertical access solar furnace experiments in vacuum and hydrogen have demonstrated such chemical fractionation trends using standard rock samples. The formation of immiscible iron droplets and spherules by in situ reduction of iron from silicate melt and the subsequent evaporation of the iron have been observed directly. During the time that the main sample bead is molten, many small spatter spherules are thrown off the main bead, thereby producing many additional chondrule-like melt spherules that cool rapidly and generate a population of spherules with size frequency distribution characteristics that closely approximate some populations of fluid drop chondrules in chondrites. It is possible that spatter-produced fluid drop chondrules dominate the meteoritic fluid drop chondrule populations. Such meteoritic chondrule populations should be chemically related by various relative amounts of iron and other volatile loss by vapor fractionation.

  20. Projection of landfill stabilization period by time series analysis of leachate quality and transformation trends of VOCs.

    PubMed

    Sizirici, Banu; Tansel, Berrin

    2010-01-01

    The purpose of this study was to evaluate suitability of using the time series analysis for selected leachate quantity and quality parameters to forecast the duration of post closure period of a closed landfill. Selected leachate quality parameters (i.e., sodium, chloride, iron, bicarbonate, total dissolved solids (TDS), and ammonium as N) and volatile organic compounds (VOCs) (i.e., vinyl chloride, 1,4-dichlorobenzene, chlorobenzene, benzene, toluene, ethyl benzene, xylenes, total BTEX) were analyzed by the time series multiplicative decomposition model to estimate the projected levels of the parameters. These parameters were selected based on their detection levels and consistency of detection in leachate samples. In addition, VOCs detected in leachate and their chemical transformations were considered in view of the decomposition stage of the landfill. Projected leachate quality trends were analyzed and compared with the maximum contaminant level (MCL) for the respective parameters. Conditions that lead to specific trends (i.e., increasing, decreasing, or steady) and interactions of leachate quality parameters were evaluated. Decreasing trends were projected for leachate quantity, concentrations of sodium, chloride, TDS, ammonia as N, vinyl chloride, 1,4-dichlorobenzene, benzene, toluene, ethyl benzene, xylenes, and total BTEX. Increasing trends were projected for concentrations of iron, bicarbonate, and chlorobenzene. Anaerobic conditions in landfill provide favorable conditions for corrosion of iron resulting in higher concentrations over time. Bicarbonate formation as a byproduct of bacterial respiration during waste decomposition and the lime rock cap system of the landfill contribute to the increasing levels of bicarbonate in leachate. Chlorobenzene is produced during anaerobic biodegradation of 1,4-dichlorobenzene, hence, the increasing trend of chlorobenzene may be due to the declining trend of 1,4-dichlorobenzene. The time series multiplicative

  1. Implications of Barium Abundances for the Chemical Enrichment of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Duggan, Gina; Kirby, Evan N.

    2018-06-01

    There are many candidate sites of the r-process: core-collapse supernovae (including rare magnetorotational core-collapse supernovae), neutron star mergers (NSMs), and neutron star/black hole mergers. The chemical enrichment of galaxies—specifically dwarf galaxies—helps distinguish between these sources based on the continual build-up of r-process elements. The existence of several nearby dwarf galaxies allows us to measure robust chemical abundances for galaxies with different star formation histories. Dwarf galaxies are especially useful because simple chemical evolution models can be used to determine the sources of r-process material. We have measured the r-process element barium with Keck/DEIMOS medium-resolution spectroscopy. We will present the largest sample of barium abundances (more than 200 stars) in dwarf galaxies ever assembled. We measure [Ba/Fe] as a function of [Fe/H] in this sample and compare with existing [alpha/Fe] measurements. We have found that a large contribution of barium needs to occur at timescales similar to Type Ia supernovae in order to recreate our observed abundances, namely the flat or slightly rising trend of [Ba/Fe] vs. [Fe/H]. We conclude that neutron star mergers are the main contribution of r-process enrichment in dwarf galaxies.

  2. Chemical characterization of the early evolutionary phases of high-mass star-forming regions

    NASA Astrophysics Data System (ADS)

    Gerner, Thomas

    2014-10-01

    The formation of high-mass stars is a very complex process and up to date no comprehensive theory about it exists. This thesis studies the early stages of high-mass star-forming regions and employs astrochemistry as a tool to probe their different physical conditions. We split the evolutionary sequence into four observationally motivated stages that are based on a classification proposed in the literature. The sequence is characterized by an increase of the temperatures and densities that strongly influences the chemistry in the different stages. We observed a sample of 59 high-mass star-forming regions that cover the whole sequence and statistically characterized the chemical compositions of the different stages. We determined average column densities of 18 different molecular species and found generally increasing abundances with stage. We fitted them for each stage with a 1D model, such that the result of the best fit to the previous stage was used as new input for the following. This is a unique approach and allowed us to infer physical properties like the temperature and density structure and yielded a typical chemical lifetime for the high-mass star-formation process of 1e5 years. The 18 analyzed molecular species also included four deuterated molecules whose chemistry is particularly sensitive to thermal history and thus is a promising tool to infer chemical ages. We found decreasing trends of the D/H ratios with evolutionary stage for 3 of the 4 molecular species and that the D/H ratio depends more on the fraction of warm and cold gas than on the total amount of gas. That indicates different chemical pathways for the different molecules and confirms the potential use of deuterated species as chemical age indicators. In addition, we mapped a low-mass star forming region in order to study the cosmic ray ionization rate, which is an important parameter in chemical models. While in chemical models it is commonly fixed, we found that it ! strongly varies with

  3. Revealing Fact or Fiction in Spitzer Exoplanet Phase Curve Trends

    NASA Astrophysics Data System (ADS)

    Bean, Jacob; Parmentier, Vivien; Mansfield, Megan; Cowan, Nicolas; Kempton, Eliza; Desert, Jean-Michel; Swain, Mark; Dang, Lisa; Bell, Taylor; Keating, Dylan; Zellem, Robert; Fortney, Jonathan; Line, Michael; Kreidberg, Laura; Stevenson, Kevin

    2018-05-01

    The constraints on energy transport in exoplanet atmospheres from phase curve observations is sure to be one of Spitzer's enduring legacies. However, with phase curves for 17 planets now observed we find that the previously observed trends are not coming into sharper focus. Instead, these trends in hot spot offset and day-night flux contrast vs. the fundamental planetary parameters expected to control the energy transport (e.g., irradiation and rotational period) are becoming more uncertain due to the recent discovery of outliers. At the same time, there is a growing understanding that a number of factors like magnetic fields, aerosols, and molecular chemistry could be confounding the search for these correlations. We propose a final phase curve program to advance our understanding of energy transport in transiting exoplanet atmospheres and to cement Spitzer's legacy on this topic. This program tackles the outstanding questions in this area with a comprehensive, two-pronged approach: (1) a survey of an additional 10 high signal-to-noise planets that span a broad parameter space and (2) a search for magnetic field-induced variability in the planet HAT-P-7b. The expanded survey will bring additional statistical power to the search for trends and will enable us to determine if the recently-detected outliers are indeed oddities or are instead actually representative of the intrinsic sample diversity. The variability search will test the hypothesis that the atmospheric dynamics of the partially ionized atmospheres of close-in planets are influenced by magnetic fields, which could explain the observed scatter around the existing trends. All observations will be performed at 4.5 microns, which is the consensus best channel for these measurements. The dataset from this program will provide vital context for JWST observations and will not be superseded until ARIEL flies more than a decade from now.

  4. Temporal trends in the acidity of precipitation and surface waters of New York

    USGS Publications Warehouse

    Peters, Norman E.; Schroeder, Roy A.; Troutman, David E.

    1982-01-01

    Statistical analyses of precipitation data from a nine-station monitoring network indicate little change in pH from 1965-78 within New York State as a whole but suggest that pH of bulk precipitation has decreased in the western part of the State by approximately 0.2 pH units since 1965 and increased in the eastern part by a similar amount. This trend is equivalent to an annual change in hydrogen-ion concentration of 0.2 microequivalents per liter. An average annual increase in precipitation quantity of 2 to 3 percent since 1965 has resulted in an increased acid load in the western and central parts of the State. During 1965-78, sulfate concentration in precipitation decreased an average of 1-4 percent annually. In general, no trend in nitrate was detected. Calculated trends in hydrogen-ion concentration do not correlate with measured trends of sulfate and nitrate, which suggests variable neutralization of hydrogen ion, possibly by particles from dry deposition. Neutralization has produced an increase of about 0.3 pH units in nonurban areas and 0.7 pH units in urban areas. Statistical analyses of chemical data from several streams throughout New York suggest that sulfate concentrations decreased an average of 1 to 4 percent per year. This decrease is comparable to the sulfate decrease in precipitation during the same period. In most areas of the State, chemical contributions from urbanization and farming, as well as the neutralizing effect of carbonate soils, conceal whatever effects acid precipitation may have on pH of streams.

  5. Persistent collective trend in stock markets

    NASA Astrophysics Data System (ADS)

    Balogh, Emeric; Simonsen, Ingve; Nagy, Bálint Zs.; Néda, Zoltán

    2010-12-01

    Empirical evidence is given for a significant difference in the collective trend of the share prices during the stock index rising and falling periods. Data on the Dow Jones Industrial Average and its stock components are studied between 1991 and 2008. Pearson-type correlations are computed between the stocks and averaged over stock pairs and time. The results indicate a general trend: whenever the stock index is falling the stock prices are changing in a more correlated manner than in case the stock index is ascending. A thorough statistical analysis of the data shows that the observed difference is significant, suggesting a constant fear factor among stockholders.

  6. Spatial trends in Pearson Type III statistical parameters

    USGS Publications Warehouse

    Lichty, R.W.; Karlinger, M.R.

    1995-01-01

    Spatial trends in the statistical parameters (mean, standard deviation, and skewness coefficient) of a Pearson Type III distribution of the logarithms of annual flood peaks for small rural basins (less than 90 km2) are delineated using a climate factor CT, (T=2-, 25-, and 100-yr recurrence intervals), which quantifies the effects of long-term climatic data (rainfall and pan evaporation) on observed T-yr floods. Maps showing trends in average parameter values demonstrate the geographically varying influence of climate on the magnitude of Pearson Type III statistical parameters. The spatial trends in variability of the parameter values characterize the sensitivity of statistical parameters to the interaction of basin-runoff characteristics (hydrology) and climate. -from Authors

  7. Trend analysis of the long-term Swiss ozone measurements

    NASA Technical Reports Server (NTRS)

    Staehelin, Johannes; Bader, Juerg; Gelpke, Verena

    1994-01-01

    Trend analyses, assuming a linear trend which started at 1970, were performed from total ozone measurements from Arosa (Switzerland, 1926-1991). Decreases in monthly mean values were statistically significant for October through April showing decreases of about 2.0-4 percent per decade. For the period 1947-91, total ozone trends were further investigated using a multiple regression model. Temperature of a mountain peak in Switzerland (Mt. Santis), the F10.7 solar flux series, the QBO series (quasi biennial oscillation), and the southern oscillation index (SOI) were included as explanatory variables. Trends in the monthly mean values were statistically significant for December through April. The same multiple regression model was applied to investigate the ozone trends at various altitudes using the ozone balloon soundings from Payerne (1967-1989) and the Umkehr measurements from Arosa (1947-1989). The results show four different vertical trend regimes: On a relative scale changes were largest in the troposphere (increase of about 10 percent per decade). On an absolute scale the largest trends were obtained in the lower stratosphere (decrease of approximately 6 per decade at an altitude of about 18 to 22 km). No significant trends were observed at approximately 30 km, whereas stratospheric ozone decreased in the upper stratosphere.

  8. Clinical observations on the use of honcrivine in the chemical debridement of wounds.

    PubMed

    Efem, S E E

    2009-12-01

    Chronic and non healing wounds, necrotic wounds and contused and devitalized wounds require debridement to rid the wounds of all these impediments that encourage bacterial growth and multiplications with consequent impairment of wound healing. Whereas there are several methods of wound debridement with their peculiar indications, merits and demerits, the ideal method of debridement is yet to be discovered. The aim of this study is to investigate clinically the ability of honcrivine (honey plus acriflavine 0.1%) to chemically debride various wounds in routine clinical practice. One hundred and eighty nine consecutive patients managed by the author between June 1995 and June 2005 were included in this study. They were 125 males and 64 females and their ages ranged between 6 and 78 years. Initially swab was taken for bacterial culture from each wound before being cleaned with normal saline, then dressed daily with gauze soaked in honcrivine. Bacterial culture was repeated fortnightly. Antibiotics were administered as dictated by culture and sensitivity report. Wound debridement progressed rapidly and impressively with necrotic and devitalized tissues as well as tenacious pus and fibrin deposits being replaced with healthy granulation tissue. Patients age, sex and bacterial burden did not influence the rate of debridement, rather wound age and necrotic burden were inversely proportional to the debridement rate. Honcrivine did not provoke any inflammatory response nor was any allergic reaction observed. It is one of the oldest remedies known to mankind and is still useful and versatile today as it was 2000 years ago. It is a very effective chemical wound debridant.

  9. Tc Trends and Terrestrial Planet Formation: The Case of Zeta Reticuli

    NASA Astrophysics Data System (ADS)

    Adibekyan, Vardan; Delgado-Mena, Elisa; Figueira, Pedro; Sousa, Sergio; Santos, Nuno; Faria, Joao; González Hernández, Jonay; Israelian, Garik; Harutyunyan, Gohar; Suárez-Andrés, Lucia; Hakobyan, Artur

    2016-11-01

    During the last decade astronomers have been trying to search for chemical signatures of terrestrial planet formation in the atmospheres of the hosting stars. Several studies suggested that the chemical abundance trend with the condensation temperature, Tc, is a signature of rocky planet formation. In particular, it was suggested that the Sun shows 'peculiar' chemical abundances due to the presence of the terrestrial planets in our solar-system. However, the rocky material accretion or the trap of rocky materials in terrestrial planets is not the only explanation for the chemical 'peculiarity' of the Sun, or other Sun-like stars with planets. In this talk I madea very brief review of this topic, and presented our last results for the particular case of Zeta Reticuli binary system: A very interesting and well-known system (known in science fiction and ufology as the world of Grey Aliens, or Reticulans) where one of the components hosts an exo-Kuiper belt, and the other component is a 'single', 'lonely' star.

  10. Variability in solar radiation and temperature explains observed patterns and trends in tree growth rates across four tropical forests.

    PubMed

    Dong, Shirley Xiaobi; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Supardi, M N Nur; Kassim, Abd Rahman; Tan, Sylvester; Moorcroft, Paul R

    2012-10-07

    The response of tropical forests to global climate variability and change remains poorly understood. Results from long-term studies of permanent forest plots have reported different, and in some cases opposing trends in tropical forest dynamics. In this study, we examined changes in tree growth rates at four long-term permanent tropical forest research plots in relation to variation in solar radiation, temperature and precipitation. Temporal variation in the stand-level growth rates measured at five-year intervals was found to be positively correlated with variation in incoming solar radiation and negatively related to temporal variation in night-time temperatures. Taken alone, neither solar radiation variability nor the effects of night-time temperatures can account for the observed temporal variation in tree growth rates across sites, but when considered together, these two climate variables account for most of the observed temporal variability in tree growth rates. Further analysis indicates that the stand-level response is primarily driven by the responses of smaller-sized trees (less than 20 cm in diameter). The combined temperature and radiation responses identified in this study provide a potential explanation for the conflicting patterns in tree growth rates found in previous studies.

  11. Longitudinal trends in use and costs of targeted therapies for common cancers in Taiwan: a retrospective observational study

    PubMed Central

    Hsu, Jason C; Lu, Christine Y

    2016-01-01

    Objectives Some targeted therapies have improved survival and overall quality of cancer care generally, but these increasingly expensive medicines have led to increases in pharmaceutical expenditure. This study examined trends in use and expenditures of antineoplastic agents in Taiwan, and estimated market shares by prescription volume and costs of targeted therapies over time. We also determined which cancer types accounted for the highest use of targeted therapies. Design This is a retrospective observational study focusing on the utilisation of targeted therapies for treatment of cancer. Setting The monthly claims data for antineoplastic agents were retrieved from Taiwan's National Health Insurance Research Database (2009–2012). Main outcome measures We calculated market shares by prescription volume and costs for each class of antineoplastic agent by cancer type. Using a time series design with Autoregressive Integrated Moving Average (ARIMA) models, we estimated trends in use and costs of targeted therapies. Results Among all antineoplastic agents, use of targeted therapies grew from 6.24% in 2009 to 12.29% in 2012, but their costs rose from 26.16% to 41.57% in that time. Monoclonal antibodies and protein kinase inhibitors contributed the most (respectively, 23.84% and 16.12% of costs for antineoplastic agents in 2012). During 2009–2012, lung (44.64% of use; 28.26% of costs), female breast (16.49% of use; 27.18% of costs) and colorectal (12.11% of use; 13.16% of costs) cancers accounted for the highest use of targeted therapies. Conclusions In Taiwan, targeted therapies are increasingly used for different cancers, representing a substantial economic burden. It is important to establish mechanisms to monitor their use and outcomes. PMID:27266775

  12. Temporal trends of Persistent Organic Pollutants (POPs) in arctic air: 20 years of monitoring under the Arctic Monitoring and Assessment Programme (AMAP).

    PubMed

    Hung, Hayley; Katsoyiannis, Athanasios A; Brorström-Lundén, Eva; Olafsdottir, Kristin; Aas, Wenche; Breivik, Knut; Bohlin-Nizzetto, Pernilla; Sigurdsson, Arni; Hakola, Hannele; Bossi, Rossana; Skov, Henrik; Sverko, Ed; Barresi, Enzo; Fellin, Phil; Wilson, Simon

    2016-10-01

    Temporal trends of Persistent Organic Pollutants (POPs) measured in Arctic air are essential in understanding long-range transport to remote regions and to evaluate the effectiveness of national and international chemical control initiatives, such as the Stockholm Convention (SC) on POPs. Long-term air monitoring of POPs is conducted under the Arctic Monitoring and Assessment Programme (AMAP) at four Arctic stations: Alert, Canada; Stórhöfði, Iceland; Zeppelin, Svalbard; and Pallas, Finland, since the 1990s using high volume air samplers. Temporal trends observed for POPs in Arctic air are summarized in this study. Most POPs listed for control under the SC, e.g. polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs) and chlordanes, are declining slowly in Arctic air, reflecting the reduction of primary emissions during the last two decades and increasing importance of secondary emissions. Slow declining trends also signifies their persistence and slow degradation under the Arctic environment, such that they are still detectable after being banned for decades in many countries. Some POPs, e.g. hexachlorobenzene (HCB) and lighter PCBs, showed increasing trends at specific locations, which may be attributable to warming in the region and continued primary emissions at source. Polybrominated diphenyl ethers (PBDEs) do not decline in air at Canada's Alert station but are declining in European Arctic air, which may be due to influence of local sources at Alert and the much higher historical usage of PBDEs in North America. Arctic air samples are screened for chemicals of emerging concern to provide information regarding their environmental persistence (P) and long-range transport potential (LRTP), which are important criteria for classification as a POP under SC. The AMAP network provides consistent and comparable air monitoring data of POPs for trend development and acts as a bridge between national monitoring programs and SC's Global Monitoring

  13. Population trends of binary near-Earth asteroids based on radar and lightcurves observations

    NASA Astrophysics Data System (ADS)

    Brozovic, Marina; Benner, Lance A. M.; Naidu, Shantanu P.; Taylor, Patrick A.; Busch, Michael W.; Margot, Jean-Luc; Nolan, Michael C.; Howell, Ellen S.; Springmann, Alessondra; Giorgini, Jon D.; Shepard, Michael K.; Magri, Christopher; Richardson, James E.; Rivera-Valentin, Edgard G.; Rodriguez-Ford, Linda A.; Zambrano Marin, Luisa Fernanda

    2016-10-01

    The Arecibo and Goldstone planetary radars are invaluable instruments for the discovery and characterization of binary and triple asteroids in the near-Earth asteroid (NEA) population. To date, 41 out of 56 known binaries and triples (~73% of the objects) have been discovered by radar and 49 of these multiple systems have been detected by radar. Their absolute magnitudes range from 12.4 for (1866) Sisyphus to 22.6 for 2015 TD144 and have a mean and rms dispersion of 18.1+-2.0. There is a pronounced decrease in the abundance of binaries for absolute magnitudes H>20. One of the smallest binaries, 1994 CJ1, with an absolute magnitude H=21.4, is also the most accessible binary for a spacecraft rendezvous. Among 365 NEAs with H<22 (corresponding to diameters larger than ~ 140 m) detected by radar since 1999, ~13% have at least one companion. Two triple systems are known, (15391) 2001 SN263 and (136617) 1994 CC, but this is probably an underestimate due to low signal to noise ratios (SNRs) for many of the binary radar detections. Taxonomic classes have been reported for 41 out of 56 currently known multiple systems and some trends are starting to emerge: at least 50% of multiple asteroid systems are S, Sq, Q, or Sk, and at least 20% are optically dark (C, B, P, or U). Thirteen V-class NEAs have been observed by radar and six of them are binaries. Curiously, a comparable number of E-class objects have been detected by radar, but none is known to be a binary.

  14. Northern Hemisphere winter storm track trends since 1959 derived from multiple reanalysis datasets

    NASA Astrophysics Data System (ADS)

    Chang, Edmund K. M.; Yau, Albert M. W.

    2016-09-01

    In this study, a comprehensive comparison of Northern Hemisphere winter storm track trend since 1959 derived from multiple reanalysis datasets and rawinsonde observations has been conducted. In addition, trends in terms of variance and cyclone track statistics have been compared. Previous studies, based largely on the National Center for Environmental Prediction-National Center for Atmospheric Research Reanalysis (NNR), have suggested that both the Pacific and Atlantic storm tracks have significantly intensified between the 1950s and 1990s. Comparison with trends derived from rawinsonde observations suggest that the trends derived from NNR are significantly biased high, while those from the European Center for Medium Range Weather Forecasts 40-year Reanalysis and the Japanese 55-year Reanalysis are much less biased but still too high. Those from the two twentieth century reanalysis datasets are most consistent with observations but may exhibit slight biases of opposite signs. Between 1959 and 2010, Pacific storm track activity has likely increased by 10 % or more, while Atlantic storm track activity has likely increased by <10 %. Our analysis suggests that trends in Pacific and Atlantic basin wide storm track activity prior to the 1950s derived from the two twentieth century reanalysis datasets are unlikely to be reliable due to changes in density of surface observations. Nevertheless, these datasets may provide useful information on interannual variability, especially over the Atlantic.

  15. Icehouse Effect: A Polar Autumn and Winter Cooling Trend

    NASA Technical Reports Server (NTRS)

    Wetzel, Peter J.

    1999-01-01

    The icehouse effect is a hypothesized polar climate trend toward cooling (or lack of warming) in response to greenhouse warming of adjacent lower latitudes. When greenhouse warmed air from lower latitudes moves over ice and snow, it generates a stronger, more stable, cappino, inversion than in a parallel case without greenhouse warming. Because the degree of decoupling between vertically adjacent air masses is directly dependent on the strength of the inversion, the capping inversion acts somewhat analogously to the walls and roof of the icehouse of generations past. What is inside the icehouse, namely the cold polar atmospheric boundary layer (ABL) air, is preserved by the "insulation" or decoupling, provided by the warm air aloft. Observations over the Arctic Ocean have shown an unexpected lack of any detectable surface warming trend over the past 40 years. This finding strongly contradicts climate model predictions that polar regions should show the strongest effect of greenhouse warming. It also stands in contrast to the consensus reached by the Intergovernmental Panel on Climate Change (IPCC), that human caused greenhouse warming is now detectable globally. One might ask: Are these Arctic observations wrong? Or, if right, is there a plausible physical explanation for them? The published observations mentioned above used about 50,000 soundings over the Arctic Ocean. Here I present a novel analysis of ALL available Arctic rawinsonde data north of 65N--a total of more than 1.1 million soundings. The analysis confirms the previously published result: There is indeed a slight climate-cooling trend in the vast majority of the data. Importantly, there are also select conditions (very strong and very weak stability of the ABL) which show a consistent, strong Arctic warming trend. It is the juxtaposition of these warming and cooling trends which defines a unique "icehouse signature" for which an explanation can be sought.

  16. Influence of ingredients and chemical components on the quality of Chinese steamed bread.

    PubMed

    Zhu, Fan

    2014-11-15

    Chinese steamed bread (CSB) is a staple food in China since ancient time. The basic ingredients include wheat flour, yeast/sourdough, and water. Current consumer trends urge the production of CSB on a large scale as well as the formulation of healthier CSB with specific nutritional benefits. This requires a better definition of the relationship between the properties of ingredients/chemical components and CSB quality. This review summarises the recent advances in understanding the roles of basic and optional ingredients and their chemical components in the appearance, textural, sensory, and shelf-life properties of CSB, and provides suggestions for further research to match the current trends. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. SMA OBSERVATIONS OF THE W3(OH) COMPLEX: PHYSICAL AND CHEMICAL DIFFERENTIATION BETWEEN W3(H{sub 2}O) AND W3(OH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Sheng-Li; Schilke, Peter; Sánchez-Monge, Álvaro

    2015-04-10

    We report on the Submillimeter Array (SMA) observations of molecular lines at 270 GHz toward the W3(OH) and W3(H{sub 2}O) complex. Although previous observations already resolved the W3(H{sub 2}O) into two or three sub-components, the physical and chemical properties of the two sources are not well constrained. Our SMA observations clearly resolved the W3(OH) and W3(H{sub 2}O) continuum cores. Taking advantage of the line fitting tool XCLASS, we identified and modeled a rich molecular spectrum in this complex, including multiple CH{sub 3}CN and CH{sub 3}OH transitions in both cores. HDO, C{sub 2}H{sub 5}CN, O{sup 13}CS, and vibrationally excited lines ofmore » HCN, CH{sub 3}CN, and CH{sub 3}OCHO were only detected in W3(H{sub 2}O). We calculate gas temperatures and column densities for both cores. The results show that W3(H{sub 2}O) has higher gas temperatures and larger column densities than W3(OH) as previously observed, suggesting physical and chemical differences between the two cores. We compare the molecular abundances in W3(H{sub 2}O) to those in the Sgr B2(N) hot core, the Orion KL hot core, and the Orion Compact Ridge, and discuss the chemical origin of specific species. An east–west velocity gradient is seen in W3(H{sub 2}O), and the extension is consistent with the bipolar outflow orientation traced by water masers and radio jets. A north–south velocity gradient across W3(OH) is also observed. However, with current observations we cannot be assured whether the velocity gradients are caused by rotation, outflow, or radial velocity differences of the sub-components of W3(OH)« less

  18. Outcomes of Global Environmentalism: Longitudinal and Cross-National Trends in Chemical Fertilizer and Pesticide Use

    ERIC Educational Resources Information Center

    Shorette, Kristen

    2012-01-01

    Previous research identifies changing world cultural norms as the impetus for a worldwide trend promoting environmentalism. However, the extent to which countries comply with the norms promoted and codified by environmental organizations and treaties has been less rigorously tested. Suspected noncompliance is generally explained as "decoupling"…

  19. Land use/land cover change effects on temperature trends at U.S. Climate Normals stations

    USGS Publications Warehouse

    Hale, R.C.; Gallo, K.P.; Owen, T.W.; Loveland, Thomas R.

    2006-01-01

    Alterations in land use/land cover (LULC) in areas near meteorological observation stations can influence the measurement of climatological variables such as temperature. Urbanization near climate stations has been the focus of considerable research attention, however conversions between non-urban LULC classes may also have an impact. In this study, trends of minimum, maximum, and average temperature at 366 U.S. Climate Normals stations are analyzed based on changes in LULC defined by the U.S. Land Cover Trends Project. Results indicate relatively few significant temperature trends before periods of greatest LULC change, and these are generally evenly divided between warming and cooling trends. In contrast, after the period of greatest LULC change was observed, 95% of the stations that exhibited significant trends (minimum, maximum, or mean temperature) displayed warming trends. Copyriht 2006 by the American Geophysical Union.

  20. The recent warming trend in North Greenland

    USGS Publications Warehouse

    Orsi, Anais J.; Kawamura, Kenji; Masson-Delmotte, Valerie; Fettweis, Xavier; Box, Jason E.; Dahl-Jensen, Dorthe; Clow, Gary D.; Landais, Amaelle; Severinghaus, Jeffrey P.

    2017-01-01

    The Arctic is among the fastest warming regions on Earth, but it is also one with limited spatial coverage of multidecadal instrumental surface air temperature measurements. Consequently, atmospheric reanalyses are relatively unconstrained in this region, resulting in a large spread of estimated 30 year recent warming trends, which limits their use to investigate the mechanisms responsible for this trend. Here we present a surface temperature reconstruction over 1982–2011 at NEEM (North Greenland Eemian Ice Drilling Project, 51°W, 77°N), in North Greenland, based on the inversion of borehole temperature and inert gas isotope data. We find that NEEM has warmed by 2.7 ± 0.33°C over the past 30 years, from the long-term 1900–1970 average of −28.55 ± 0.29°C. The warming trend is principally caused by an increase in downward longwave heat flux. Atmospheric reanalyses underestimate this trend by 17%, underlining the need for more in situ observations to validate reanalyses.

  1. The paradox of cooling streams in a warming world: Regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States

    USGS Publications Warehouse

    Arismendi, Ivan; Johnson, Sherri; Dunham, Jason B.; Haggerty, Roy; Hockman-Wert, David

    2012-01-01

    Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream temperature. Here, we examined the evidence for this using long-term stream temperature data from minimally and highly human-impacted sites located across the Pacific continental United States. Based on hypothesized climate impacts, we predicted that we should find warming trends in the maximum, mean and minimum temperatures, as well as increasing variability over time. These predictions were not fully realized. Warming trends were most prevalent in a small subset of locations with longer time series beginning in the 1950s. More recent series of observations (1987-2009) exhibited fewer warming trends and more cooling trends in both minimally and highly human-influenced systems. Trends in variability were much less evident, regardless of the length of time series. Based on these findings, we conclude that our perspective of climate impacts on stream temperatures is clouded considerably by a lack of long-termdata on minimally impacted streams, and biased spatio-temporal representation of existing time series. Overall our results highlight the need to develop more mechanistic, process-based understanding of linkages between climate change, other human impacts and stream temperature, and to deploy sensor networks that will provide better information on trends in stream temperatures in the future.

  2. Extreme cyclone events in the Arctic: Wintertime variability and trends

    NASA Astrophysics Data System (ADS)

    Rinke, A.; Maturilli, M.; Graham, R. M.; Matthes, H.; Handorf, D.; Cohen, L.; Hudson, S. R.; Moore, J. C.

    2017-09-01

    Typically 20-40 extreme cyclone events (sometimes called ‘weather bombs’) occur in the Arctic North Atlantic per winter season, with an increasing trend of 6 events/decade over 1979-2015, according to 6 hourly station data from Ny-Ålesund. This increased frequency of extreme cyclones is consistent with observed significant winter warming, indicating that the meridional heat and moisture transport they bring is a factor in rising temperatures in the region. The winter trend in extreme cyclones is dominated by a positive monthly trend of about 3-4 events/decade in November-December, due mainly to an increasing persistence of extreme cyclone events. A negative trend in January opposes this, while there is no significant trend in February. We relate the regional patterns of the trend in extreme cyclones to anomalously low sea-ice conditions in recent years, together with associated large-scale atmospheric circulation changes such as ‘blockinglike’ circulation patterns (e.g. Scandinavian blocking in December and Ural blocking during January-February).

  3. Long-Term Vegetation Trends Detected In Northern Canada Using Landsat Image Stacks

    NASA Astrophysics Data System (ADS)

    Fraser, R.; Olthof, I.; Carrière, M.; Deschamps, A.; Pouliot, D.

    2011-12-01

    Evidence of recent productivity increases in arctic vegetation comes from a variety of sources. At local scales, long-term plot measurements in North America are beginning to record increases in vascular plant cover and biomass. At landscape scales, expansion and densification of shrubs has been observed using repeat oblique photographs. Finally, continental-scale increases in vegetation "greenness" have been documented based on analysis of coarse resolution (≥ 1 km) NOAA-AVHRR satellite imagery. In this study we investigated intermediate, regional-level changes occurring in tundra vegetation since 1984 using the Landsat TM and ETM+ satellite image archive. Four study areas averaging 13,619 km2 were located over widely distributed national parks in northern Canada (Ivvavik, Sirmilik, Torngat Mountains, and Wapusk). Time-series image stacks of 16-41 growing-season Landsat scenes from overlapping WRS-2 frames were acquired spanning periods of 17-25 years. Each pixel's unique temporal database of clear-sky values was then analyzed for trends in four indices (NDVI, Tasseled Cap Brightness, Greenness and Wetness) using robust linear regression. The trends were further related to changes in the fractional cover of functional vegetation types using regression tree models trained with plot data and high resolution (≤ 10 m) satellite imagery. We found all four study areas to have a larger proportion of significant (p<0.05) positive greenness trends (range 6.1-25.5%) by comparison to negative trends (range 0.3-4.1%). For the three study areas where regression tree models could be derived, consistent trends of increasing shrub or vascular fractional cover and decreasing bare cover were predicted. The Landsat-based observations were associated with warming trends in each park over the analysis periods. Many of the major changes observed could be corroborated using published studies or field observations.

  4. Surface ozone and carbon monoxide levels observed at Oki, Japan: regional air pollution trends in East Asia.

    PubMed

    Sikder, Helena Akhter; Suthawaree, Jeeranut; Kato, Shungo; Kajii, Yoshizumi

    2011-03-01

    Simultaneous ground-based measurements of ozone and carbon monoxide were performed at Oki, Japan, from January 2001 to September 2002 in order to investigate the O(3) and CO characteristics and their distributions. The observations revealed that O(3) and CO concentrations were maximum in springtime and minimum in the summer. The monthly averaged concentrations of O(3) and CO were 60 and 234 ppb in spring and 23 and 106 ppb in summer, respectively. Based on direction, 5-day isentropic backward trajectory analysis was carried out to determine the transport path of air masses, preceding their arrival at Oki. Comparison between classified results from present work and results from the year 1994-1996 was carried out. The O(3) and CO concentration results of classified air masses in our analysis show similar concentration trends to previous findings; highest in the WNW/W, lowest in N/NE and medium levels in NW. Moreover, O(3) levels are higher and CO levels are lower in the present study in all categories. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Water in Star-forming Regions with Herschel (WISH): recent results and trends

    NASA Astrophysics Data System (ADS)

    van Dishoeck, E. F.

    2012-03-01

    Water is a key molecule in the physics and chemistry of star- and planet-forming regions. In the `Water in Star-forming Regions with Herschel' (WISH) Key Program, we have obtained a comprehensive set of water data toward a large sample of well-characterized protostars, covering a wide range of masses and luminosities --from the lowest to the highest mass protostars--, as well as evolutionary stages --from pre-stellar cores to disks. Lines of both ortho- and para-H_2O and their isotopologues, as well as chemically related hydrides, are observed with the HIFI and PACS instruments. The data elucidate the physical processes responsible for the warm gas, probe dynamical processes associated with forming stars and planets (outflow, infall, expansion), test basic chemical processes and reveal the chemical evolution of water and the oxygen-reservoir into planet-forming disks. In this brief talk a few recent WISH highlights will be presented, including determinations of the water abundance in each of the different physical components (inner and outer envelope, outflow) and constraints on the ortho/para ratio. Special attention will be given to trends found across the sample, especially the similarity in profiles from low to high-mass protostars and the evolution of the gas-phase water abundance from prestellar cores to disks. More details can be found at http://www.strw.leidenuniv.nl/WISH, whereas overviews are given in van Dishoeck et al. (2011, PASP 123, 138), Kristensen & van Dishoeck (2011, Astronomische Nachrichten 332, 475) and Bergin & van Dishoeck (2012, Phil. Trans. Royal Soc. A).

  6. Water resources of Monroe County, New York, water years 1997-99, with emphasis on water quality in the Irondequoit Creek basin—Atmospheric deposition, ground water, streamflow, trends in water quality, and chemical loads to Irondequoit Bay

    USGS Publications Warehouse

    Sherwood, Donald A.

    2003-01-01

    Irondequoit Creek drains 169 square miles in the eastern part of Monroe County. Over time, nutrients transported by Irondequoit Creek to Irondequoit Bay on Lake Ontario have contributed to the eutrophication of the bay. Sewage-treatment-plant effluent, a major source of nutrients to the creek and its tributaries, was eliminated from the basin in 1979 by diversion to a regional wastewater-treatment facility, but sediment and contaminants from nonpoint sources continue to enter the creek and Irondequoit Bay.This report, the fourth in a series of reports that present interpretive analyses of the hydrologic data collected in Monroe County since 1984, interprets data from four surface-water monitoring sites in the Irondequoit Creek basin—Irondequoit Creek at Railroad Mills, East Branch Allen Creek at Pittsford, Allen Creek near Rochester, and Irondequoit Creek at Blossom Road. It also interprets data from three sites in the the Genesee River basin—Oatka Creek at Garbutt, Honeoye Creek at Honeoye Falls, and Black Creek at Churchville—as well as the Genesee River at Charlotte Pump Station, and also from a site on Northrup Creek at North Greece. The Northrup Creek site drains a 23.5-square-mile basin in western Monroe County, and provides information on surface-water quality in streams west of the Genesee River and on loads of nutrients delivered to Long Pond, a small eutrophic embayment of Lake Ontario. The report also includes water-level and water-quality data from nine observation wells in Ellison Park, and atmospheric-deposition data from a collection site at Mendon Ponds County Park.Average annual loads of some chemical constituents in atmospheric deposition for 1997–99 differed considerably from those for the long-term period 1984–96. Ammonia and potassium loads for 1997-99 were 144 and 118 percent greater, respectively, than for the previous period. Sodium and ammonia + organic nitrogen loads were 87 and 60 percent greater, respectively. Average annual

  7. Emissions and transport of NOx over East Asia diagnosed by satellite and in-situ observations and chemical transport model results

    NASA Astrophysics Data System (ADS)

    Lee, H.; Kim, S.; Brioude, J.; Cooper, O. R.; Frost, G. J.; Trainer, M.; Kim, C.

    2012-12-01

    Nitrogen dioxide (NO2) columns observed from space have been useful in detecting the increase of NOx emissions over East Asia in accordance with rapid growth in its economy. In addition to emissions, transport can be an important factor to determine the observed satellite NO2 columns in this region. Satellite tropospheric NO2 columns showed maximum in winter and minimum in summer over the high emission areas in China, as lifetime of NO2 decreases with increase of sunlight. However, secondary peaks in the satellite NO2 columns were found in spring in both Korea and Japan, which may be influenced by transport of NOx within East Asia. Surface in-situ observations confirm the findings from the satellite measurements. The large-scale distribution of satellite NO2 columns over East Asia and the Pacific Ocean showed that the locations of NO2 column maxima coincided with wind convergence zones that change with seasons. In spring, the convergence zone is located over 30-40°N, leading to the most efficient transport of the emissions from southern China to downwind areas including Korea, Japan, and western coastal regions of the United States. We employed a Lagrangian particle dispersion model to identify the sources of the observed springtime maximum NO2. In order to understand chemical processing during the transport and quantify the roles of emissions and transport in local NOx budgets, we will also present the results from a regional chemical transport model.

  8. TOPoS. IV. Chemical abundances from high-resolution observations of seven extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Caffau, E.; Spite, M.; Spite, F.; Sbordone, L.; Monaco, L.; François, P.; Plez, B.; Molaro, P.; Gallagher, A. J.; Cayrel, R.; Christlieb, N.; Klessen, R. S.; Koch, A.; Ludwig, H.-G.; Steffen, M.; Zaggia, S.; Abate, C.

    2018-04-01

    Context. Extremely metal-poor (EMP) stars provide us with indirect information on the first generations of massive stars. The TOPoS survey has been designed to increase the census of these stars and to provide a chemical inventory that is as detailed as possible. Aims: Seven of the most iron-poor stars have been observed with the UVES spectrograph at the ESO VLT Kueyen 8.2 m telescope to refine their chemical composition. Methods: We analysed the spectra based on 1D LTE model atmospheres, but also used 3D hydrodynamical simulations of stellar atmospheres. Results: We measured carbon in six of the seven stars: all are carbon-enhanced and belong to the low-carbon band, defined in the TOPoS II paper. We measured lithium (A(Li) = 1.9) in the most iron-poor star (SDSS J1035+0641, [Fe/H] <-5.2). We were also able to measure Li in three stars at [Fe/H] -4.0, two of which lie on the Spite plateau. We confirm that SDSS J1349+1407 is extremely rich in Mg, but not in Ca. It is also very rich in Na. Several of our stars are characterised by low α-to-iron ratios. Conclusions: The lack of high-carbon band stars at low metallicity can be understood in terms of evolutionary timescales of binary systems. The detection of Li in SDSS J1035+0641 places a strong constraint on theories that aim at solving the cosmological lithium problem. The Li abundance of the two warmer stars at [Fe/H] -4.0 places them on the Spite plateau, while the third, cooler star, lies below. We argue that this suggests that the temperature at which Li depletion begins increases with decreasing [Fe/H]. SDSS J1349+1407 may belong to a class of Mg-rich EMP stars. We cannot assess if there is a scatter in α-to-iron ratios among the EMP stars or if there are several discrete populations. However, the existence of stars with low α-to-iron ratios is supported by our observations. Based on observations obtained at ESO Paranal Observatory, Programmes 189.D-0165,090.D-0306, 093.D-0136, and 096.D-0468.

  9. Polybrominated diphenyl ethers in U.S. sewage sludges and biosolids: temporal and geographical trends and uptake by corn following land application.

    PubMed

    Hale, Robert C; La Guardia, Mark J; Harvey, Ellen; Chen, Da; Mainor, Thomas M; Luellen, Drew R; Hundal, Lakhwinder S

    2012-02-21

    Polybrominated diphenyl ethers (PBDEs) have been used extensively to flame-retard polymers and textiles. These persistent chemicals enter wastewater streams following manufacture, use, and disposal, concentrating in the settled solids during treatment. Land application of stabilized sewage sludge (known as biosolids) can contribute PBDEs to terrestrial systems. Monitoring sludge/biosolids contaminant burdens may be valuable in revealing trends in societal chemical usage and environmental release. In archived Chicago area sludges/biosolids from 1975 to 2008, penta-BDE concentrations increased and then plateaued after about 2000. Penta-BDE manufacture in the United States ended in December 2004. Deca-BDE concentrations in biosolids rose from 1995 to 2008, doubling on a 5-year interval. Evaluation of U.S. Environmental Protection Agency Targeted National Sewage Sludge Survey data from 2006 to 2007 revealed highest penta-BDE biosolids levels from western and lowest from northeastern wastewater treatment plants (2120 and 1530 μg/kg, respectively), consistent with patterns reported in some recent indoor dust and human blood studies. No significant regional trends were observed for deca-BDE concentrations. Congener patterns in contemporary Chicago biosolids support the contention that BDE-209 can be dehalogenated to less brominated congeners. Biosolids application on agricultural fields increased PBDE soil concentrations. However, corn grown thereon did not exhibit measurable PBDE uptake; perhaps due to low bioavailability of the biosolids-associated flame retardants.

  10. The Summertime Warming Trends in Surface Water Temperature of the Great Lakes

    NASA Astrophysics Data System (ADS)

    Sugiyama, N.; Kravtsov, S.; Roebber, P.

    2014-12-01

    Over the past 30 years, the Laurentian Great Lakes have exhibited summertime warming trends in surface water temperature which were greater than those in surface air temperature of the surrounding land, by as much as an order of magnitude over some of the regions. For the years 1995-2012, Lake Superior exhibited the most dramatic warming trend in July-mean temperature, of 0.27±0.15 deg. C yr-1, based on the NOAA's GLSEA satellite observations. Shallower lakes, such as Lake Erie, exhibited smaller warming trends. In addition, within each lake, the warming was also the greatest in the regions of larger water depth; for example, some regions of Lake Superior deeper than 200m exhibited surface-water July-mean warming trends which exceeded 0.3 deg. C yr-1. We used a three-column lake model based on the one developed by Hostetler and Barnstein (1990) coupled with a two-layer atmospheric energy balance model to explore the physics behind these warming trends. We found that, as suggested by Austin and Colman (2007), the ice-albedo feedback plays an important role in amplifying the overlake warming trends. Our particular emphasis was on the question of whether the ice-albedo feedback alone is enough to account for lacustrine amplification of surface warming observed over the Great Lakes region. We found that the answer to this question depends on a number of model parameters, including the diffusion and light attenuation coefficients, which greatly affect the model's skill in reproducing the observed ice coverage of the deep lakes.

  11. Pesticide trends in major rivers of the United States, 1992-2010

    USGS Publications Warehouse

    Ryberg, Karen R.; Vecchia, Aldo V.; Gilliom, Robert J.; Martin, Jeffrey D.

    2014-01-01

    agricultural and urban applications—simazine, tebuthiuron, Dacthal, pendimethalin, chlorpyrifos, malathion, diazinon, fipronil, carbofuran, and carbaryl—had concentration trends that were mostly explained by a combination of agricultural-use trends and concentration trends in urban streams that were evaluated in a separate companion study. The importance of the urban stream trends for explaining concentration trends in major rivers indicates the significance of nonagricultural uses of some pesticides to concentrations in major rivers despite the much smaller area of urban land use compared to agriculture. Deethylatrazine, a degradate of atrazine, was the only pesticide compound assessed that had frequent occurrences during 1997–2006 and 2001–10 of concentration trends in the opposite direction of use trends (atrazine use). The nested analysis for the Mississippi River indicates that most trends observed in the largest rivers—multiple Mississippi River sites, the Ohio River, and the Missouri River—are consistent with streamflow contributions and concentration trends observed at tributary sites. Streamflow (incorporated into the trend model and shown in the nested basin analysis), trends in agricultural use of pesticides (quantified in this report), and urban use of pesticides (represented by concentration trends in a companion study of urban streams) are all important influences on pesticide concentrations in streams and rivers. Consideration of these influences is vital to understanding trends in pesticide concentrations.

  12. Trends of pH decrease in the Mediterranean Sea through high frequency observational data: indication of ocean acidification in the basin

    NASA Astrophysics Data System (ADS)

    Flecha, Susana; Pérez, Fiz F.; García-Lafuente, Jesús; Sammartino, Simone; Ríos, Aida. F.; Huertas, I. Emma

    2015-11-01

    A significant fraction of anthropogenic carbon dioxide (CO2) released to the atmosphere is absorbed by the oceans, leading to a range of chemical changes and causing ocean acidification (OA). Assessing the impact of OA on marine ecosystems requires the accurate detection of the rate of seawater pH change. This work reports the results of nearly 3 years of continuous pH measurements in the Mediterranean Sea at the Strait of Gibraltar GIFT time series station. We document a remarkable decreasing annual trend of -0.0044 ± 0.00006 in the Mediterranean pH, which can be interpreted as an indicator of acidification in the basin based on high frequency records. Modeling pH data of the Mediterranean outflow allowed to discriminate between the pH values of its two main constituent water masses, the Levantine Intermediate Water (LIW) and the Western Mediterranean Deep Water (WMDW). Both water masses also exhibited a decline in pH with time, particularly the WMDW, which can be related to their different biogeochemical nature and processes occurring during transit time from formation sites to the Strait of Gibraltar.

  13. A Wavelet Based Suboptimal Kalman Filter for Assimilation of Stratospheric Chemical Tracer Observations

    NASA Technical Reports Server (NTRS)

    Auger, Ludovic; Tangborn, Andrew; Atlas, Robert (Technical Monitor)

    2002-01-01

    A suboptimal Kalman filter system which evolves error covariances in terms of a truncated set of wavelet coefficients has been developed for the assimilation of chemical tracer observations of CH4. The truncation is carried out in such a way that the resolution of the error covariance, is reduced only in the zonal direction, where gradients are smaller. Assimilation experiments which last 24 days, and used different degrees of truncation were carried out. These reduced the covariance, by 90, 97 and 99 % and the computational cost of covariance propagation by 80, 93 and 96 % respectively. The difference in both error covariance and the tracer field between the truncated and full systems over this period were found to be not growing in the first case, and a growing relatively slowly in the later two cases. The largest errors in the tracer fields were found to occur in regions of largest zonal gradients in the tracer field.

  14. Identification and analysis of recent temporal temperature trends for Dehradun, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Piyoosh, Atul Kant; Ghosh, Sanjay Kumar

    2018-05-01

    Maximum and minimum temperatures (T max and T min) are indicators of changes in climate. In this study, observed and gridded T max and T min data of Dehradun are analyzed for the period 1901-2014. Observed data obtained from India Meteorological Department and National Institute of Hydrology, whereas gridded data from Climatic Research Unit (CRU) were used. Efficacy of elevation-corrected CRU data was checked by cross validation using data of various stations at different elevations. In both the observed and gridded data, major change points were detected using Cumulative Sum chart. For T max, change points occur in the years 1974 and 1997, while, for T min, in 1959 and 1986. Statistical significance of trends was tested in three sub-periods based on change points using Mann-Kendall (MK) test, Sen's slope estimator, and linear regression (LR) method. It has been found that both the T max and T min have a sequence of rising, falling, and rising trends in sub-periods. Out of three different methods used for trend tests, MK and SS have indicated similar results, while LR method has also shown similar results for most of the cases. Root-mean-square error for actual and anomaly time series of CRU data was found to be within one standard deviation of observed data which indicates that the CRU data are very close to the observed data. The trends exhibited by CRU data were also found to be similar to the observed data. Thus, CRU temperature data may be quite useful for various studies in the regions of scarcity of observational data.

  15. Constraining East Antarctic mass trends using a Bayesian inference approach

    NASA Astrophysics Data System (ADS)

    Martin-Español, Alba; Bamber, Jonathan L.

    2016-04-01

    East Antarctica is an order of magnitude larger than its western neighbour and the Greenland ice sheet. It has the greatest potential to contribute to sea level rise of any source, including non-glacial contributors. It is, however, the most challenging ice mass to constrain because of a range of factors including the relative paucity of in-situ observations and the poor signal to noise ratio of Earth Observation data such as satellite altimetry and gravimetry. A recent study using satellite radar and laser altimetry (Zwally et al. 2015) concluded that the East Antarctic Ice Sheet (EAIS) had been accumulating mass at a rate of 136±28 Gt/yr for the period 2003-08. Here, we use a Bayesian hierarchical model, which has been tested on, and applied to, the whole of Antarctica, to investigate the impact of different assumptions regarding the origin of elevation changes of the EAIS. We combined GRACE, satellite laser and radar altimeter data and GPS measurements to solve simultaneously for surface processes (primarily surface mass balance, SMB), ice dynamics and glacio-isostatic adjustment over the period 2003-13. The hierarchical model partitions mass trends between SMB and ice dynamics based on physical principles and measures of statistical likelihood. Without imposing the division between these processes, the model apportions about a third of the mass trend to ice dynamics, +18 Gt/yr, and two thirds, +39 Gt/yr, to SMB. The total mass trend for that period for the EAIS was 57±20 Gt/yr. Over the period 2003-08, we obtain an ice dynamic trend of 12 Gt/yr and a SMB trend of 15 Gt/yr, with a total mass trend of 27 Gt/yr. We then imposed the condition that the surface mass balance is tightly constrained by the regional climate model RACMO2.3 and allowed height changes due to ice dynamics to occur in areas of low surface velocities (<10 m/yr) , such as those in the interior of East Antarctica (a similar condition as used in Zwally 2015). The model must find a solution that

  16. Trends in concentrations and use of agricultural herbicides for Corn Belt rivers, 1996-2006

    USGS Publications Warehouse

    Vecchia, Aldo V.; Gilliom, Robert J.; Sullivan, Daniel J.; Lorenz, David L.; Martin, Jeffrey D.

    2009-01-01

    Trends in the concentrations and agricultural use of four herbicides (atrazine, acetochlor, metolachlor, and alachlor) were evaluated for major rivers of the Corn Belt for two partially overlapping time periods: 1996-2002 and 2000-2006. Trends were analyzed for 11 sites on the mainstems and selected tributaries in the Ohio, Upper Mississippi, and Missouri River Basins. Concentration trends were determined using a parametric regression model designed for analyzing seasonal variability, flow-related variability, and trends in pesticide concentrations(SEAWAVE-Q).TheSEAWAVE-Qmodel accounts for the effect of changing flow conditions in order to separate changes caused by hydrologic conditions from changes caused by other factors, such as pesticide use. Most of the trends in atrazine and acetochlor concentrations for both time periods were relatively small and nonsignificant, but metolachlor and alachlor were dominated by varying magnitudes of concentration downtrends. Overall, with trends expressed as a percent change per year, trends in herbicide concentrations were consistent with trends in agricultural use; 84 of 88 comparisons for different sites, herbicides, and time periods showed no significant difference between concentration trends and agricultural use trends. Results indicate that decreasing use appears to have been the primary cause for the concentration downtrends during 1996-2006 and that, while there is some evidence that nonuse management factors may have reduced concentrations in some rivers, reliably evaluating the influence of these factors on pesticides in large streams and rivers will require improved, basin-specific information on both management practices and use over time. ?? 2009 American Chemical Society.

  17. Current status and historical trends of organochlorine pesticides in the ecosystem of Deep Bay, South China

    NASA Astrophysics Data System (ADS)

    Qiu, Yao-Wen; Zhang, Gan; Guo, Ling-Li; Cheng, Hai-Rong; Wang, Wen-Xiong; Li, Xiang-Dong; Wai, Onyx W. H.

    2009-11-01

    To characterize the current status and historical trends in organochlorine pesticides (OCPs) contamination in Deep Bay, an important water body between Hong Kong and mainland China with a Ramsar mangrove wetland (Maipo), samples from seawater, suspended particulate matter (SPM), surface sediment, sediment core and fish were collected to determine the OCPs concentrations. Sediment core dating was accomplished using the 210Pb method. The average concentrations of DDTs, HCHs and chlordanes in water were 1.96, 0.71, 0.81 ng l -1, while in SPM were 36.5, 2.5, 35.7 ng g -1 dry weight, in surface sediment were 20.2, 0.50, 2.4 ng g -1 dry weight, and in fish were 125.4, 0.43, 13.1 ng g -1 wet weight, respectively. DDTs concentrations in various matrices of Deep Bay were intermediate compared with those in other areas. Temporal trends of the targeted OCPs levels in sediment core generally increased from 1948 to 2004, with the highest levels in top or sub-surface sediment. Both DDT composition and historical trends indicated an ongoing fresh DDT input. A positive relationship between the bioconcentration factor (BCF) of target chemicals and the corresponding octanol-water partition coefficient ( Kow), and between the biota-sediment accumulation factors (BSAF) and the Kow were observed in the Bay. The risk assessment indicated that there were potential ecological and human health risks for the target OCPs in Deep Bay.

  18. Present-day distribution and trends of global tropospheric ozone from satellite observations: Results from the Tropospheric Ozone Assessment Report (TOAR)

    NASA Astrophysics Data System (ADS)

    Gaudel, A.; Cooper, O. R.; Barret, B.; Boynard, A.; Clerbaux, C.; Pierre-Francois, C.; Huang, G.; Hurtmans, D.; Kerridge, B. J.; Latter, B.; Le Flochmoen, E.; Liu, X.; Neu, J. L.; Siddans, R.; Wespes, C.; Worden, H. M.; Ziemke, J. R.

    2017-12-01

    Tropospheric ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. Since 1990 a large portion of the anthropogenic emissions that react in the atmosphere to produce ozone have shifted from North America and Europe to Asia. This rapid shift, coupled with limited ozone monitoring in developing nations, has left scientists unable to answer the most basic questions: Is ozone continuing to decline in nations with strong emission controls? To what extent is ozone increasing in the developing world? IGAC's Tropospheric Ozone Assessment Report (TOAR) has been designed to answer these questions and this presentation will show the results from the TOAR-Climate initiative, focusing on the present-day distribution and trends of global tropospheric ozone from satellite observations. Five satellite products based on OMI (2 products using two different retrieval methods) and IASI (also 2 products using two different retrieval methods) and the OMI/MLS combined product were intercompared. An important result is the close agreement among the five products regarding the quantification of the total mass of all tropospheric ozone, the so called tropospheric ozone burden (TOB). The mean estimate for TOB between 60° N and 60° S is 296 Tg, with all products agreeing within ± 4%. However, on a regional basis the five satellite products have notable differences and there is no agreement in terms of ozone trends over the past decade. Continuing work is exploring the causes of these differences.

  19. The dimensionality of stellar chemical space using spectra from the Apache Point Observatory Galactic Evolution Experiment

    NASA Astrophysics Data System (ADS)

    Price-Jones, Natalie; Bovy, Jo

    2018-03-01

    Chemical tagging of stars based on their similar compositions can offer new insights about the star formation and dynamical history of the Milky Way. We investigate the feasibility of identifying groups of stars in chemical space by forgoing the use of model derived abundances in favour of direct analysis of spectra. This facilitates the propagation of measurement uncertainties and does not pre-suppose knowledge of which elements are important for distinguishing stars in chemical space. We use ˜16 000 red giant and red clump H-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and perform polynomial fits to remove trends not due to abundance-ratio variations. Using expectation maximized principal component analysis, we find principal components with high signal in the wavelength regions most important for distinguishing between stars. Different subsamples of red giant and red clump stars are all consistent with needing about 10 principal components to accurately model the spectra above the level of the measurement uncertainties. The dimensionality of stellar chemical space that can be investigated in the H band is therefore ≲10. For APOGEE observations with typical signal-to-noise ratios of 100, the number of chemical space cells within which stars cannot be distinguished is approximately 1010±2 × (5 ± 2)n - 10 with n the number of principal components. This high dimensionality and the fine-grained sampling of chemical space are a promising first step towards chemical tagging based on spectra alone.

  20. Gas-phase chemical characteristics of Asian emission plumes observed during ITCT 2K2 over the eastern North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Nowak, J. B.; Parrish, D. D.; Neuman, J. A.; Holloway, J. S.; Cooper, O. R.; Ryerson, T. B.; Nicks, D. K.; Flocke, F.; Roberts, J. M.; Atlas, E.; de Gouw, J. A.; Donnelly, S.; Dunlea, E.; Hübler, G.; Huey, L. G.; Schauffler, S.; Tanner, D. J.; Warneke, C.; Fehsenfeld, F. C.

    2004-12-01

    The gas-phase chemical characteristics of emission plumes transported from Asia across the Pacific Ocean observed during the Intercontinental Transport and Chemical Transformation experiment in 2002 (ITCT 2K2) are described. Plumes measured in the troposphere from an aircraft were separated from the background air in data analysis using 1-s measurements of carbon monoxide (CO), total reactive nitrogen (NOy), and other gas-phase species along with back trajectory analysis. On the basis of these measurements, Asian transport plumes with CO mixing ratios greater than 150 ppbv were observed on seven flights. Correlations between 1-s observations of CO, ozone (O3), and NOy are used to characterize the plumes. The NOy/CO ratios were similar in each plume and significantly lower than those derived from estimated Asian emission ratios, indicating substantial removal of soluble NOy species during transport. Observations of nitric oxide (NO), nitrogen dioxide (NO2), nitric acid (HNO3), peroxyacetyl nitrate (PAN), peroxypropionyl nitrate (PPN), and alkyl nitrates are used with the NOy measurements to further distinguish the transport plumes by their NOy partitioning. NOy was primarily in the form of PAN in plumes that were transported in cold high-latitude and high-altitude regions, whereas in plumes transported in warmer, lower latitude and altitude regions, NOy was mainly HNO3. Additional gas-phase species enhanced in these plumes include sulfuric acid, methanol, acetone, propane, and ethane. The O3/CO ratio varied among the plumes and was affected by the mixing of anthropogenic and stratospheric influences. The complexity of this mixing prevents the determination of the relative contribution of anthropogenic and stratospheric influences to the observed O3 levels.

  1. Vertical structure of stratospheric water vapour trends derived from merged satellite data

    PubMed Central

    Hegglin, M. I.; Plummer, D. A.; Shepherd, T. G.; Scinocca, J. F.; Anderson, J.; Froidevaux, L.; Funke, B.; Hurst, D.; Rozanov, A.; Urban, J.; von Clarmann, T.; Walker, K. A.; Wang, H. J.; Tegtmeier, S.; Weigel, K.

    2017-01-01

    Stratospheric water vapour is a powerful greenhouse gas. The longest available record from balloon observations over Boulder, Colorado, USA shows increases in stratospheric water vapour concentrations that cannot be fully explained by observed changes in the main drivers, tropical tropopause temperatures and methane. Satellite observations could help resolve the issue, but constructing a reliable long-term data record from individual short satellite records is challenging. Here we present an approach to merge satellite data sets with the help of a chemistry-climate model nudged to observed meteorology. We use the models' water vapour as a transfer function between data sets that overcomes issues arising from instrument drift and short overlap periods. In the lower stratosphere, our water vapour record extends back to 1988 and water vapour concentrations largely follow tropical tropopause temperatures. Lower and mid-stratospheric long-term trends are negative, and the trends from Boulder are shown not to be globally representative. In the upper stratosphere, our record extends back to 1986 and shows positive long-term trends. The altitudinal differences in the trends are explained by methane oxidation together with a strengthened lower-stratospheric and a weakened upper-stratospheric circulation inferred by this analysis. Our results call into question previous estimates of surface radiative forcing based on presumed global long-term increases in water vapour concentrations in the lower stratosphere. PMID:29263751

  2. Variation trend of snowfall in the Kamikochi region of the Japanese Alps

    NASA Astrophysics Data System (ADS)

    Suzuki, K.

    2017-12-01

    The Japanese Alps experience exceptionally heavy snowfall, extreme even by global standards, and in spring and summer the melting snow becomes a valuable water resource. The snow effectively acts as a natural dam when it accumulates in watersheds during winter. However, there have been no observations of the amount of snow in high-altitude regions of Japan. Therefore, we cannot discuss the effect of global warming on the change in the amount of snow in these regions based on direct observation data. We were, however, able to obtain climatic and hydrologic data for high-altitude sites in the Japanese Alps, and discuss the variations in these conditions in the Kamikochi region (altitude 1490 m-3190 m) of the Japanese Alps over a 68-year period using these observed data. No long-term trends are observed in the annual mean, maximum, or minimum temperatures at Taisho-ike from 1945 to 2012; the total annual precipitation shows a statistically significant decreasing trend. The annual total snowfall at Taisho-ike from 1969 to 2012 shows a statistically significant increasing trend. The annual total runoff of the Azusa River from 1945 to 2012 shows a statistically significant increasing trend, as does the snowmelt runoff to the river (which occurs from May to July). We can thus conclude that the annual snowfall in the Azusa River catchment has increased in recent years.

  3. Vertical structure of stratospheric water vapour trends derived from merged satellite data.

    PubMed

    Hegglin, M I; Plummer, D A; Shepherd, T G; Scinocca, J F; Anderson, J; Froidevaux, L; Funke, B; Hurst, D; Rozanov, A; Urban, J; von Clarmann, T; Walker, K A; Wang, H J; Tegtmeier, S; Weigel, K

    2014-01-01

    Stratospheric water vapour is a powerful greenhouse gas. The longest available record from balloon observations over Boulder, Colorado, USA shows increases in stratospheric water vapour concentrations that cannot be fully explained by observed changes in the main drivers, tropical tropopause temperatures and methane. Satellite observations could help resolve the issue, but constructing a reliable long-term data record from individual short satellite records is challenging. Here we present an approach to merge satellite data sets with the help of a chemistry-climate model nudged to observed meteorology. We use the models' water vapour as a transfer function between data sets that overcomes issues arising from instrument drift and short overlap periods. In the lower stratosphere, our water vapour record extends back to 1988 and water vapour concentrations largely follow tropical tropopause temperatures. Lower and mid-stratospheric long-term trends are negative, and the trends from Boulder are shown not to be globally representative. In the upper stratosphere, our record extends back to 1986 and shows positive long-term trends. The altitudinal differences in the trends are explained by methane oxidation together with a strengthened lower-stratospheric and a weakened upper-stratospheric circulation inferred by this analysis. Our results call into question previous estimates of surface radiative forcing based on presumed global long-term increases in water vapour concentrations in the lower stratosphere.

  4. Australian trampoline injury patterns and trends.

    PubMed

    Ashby, Karen; Pointer, Sophie; Eager, David; Day, Lesley

    2015-10-01

    To examine national trampoline injury patterns and trends in the context of improved product safety standards and trampoline design modifications. Review of National Hospital Morbidity data. There were an average 1,737 trampoline injuries reported nationally each year from 2002 to 2011. Both injury frequency and rate grew. Statistically significant rate increases were observed among all age groups, although both are highest among children aged 5-9 years. From 2008/09 there is a possible decreasing trend among the 5-9 age group. Falls predominate and 81% of falls result in fracture. Non-fall injuries increased annually as a proportion of all hospitalised injury although they did not comprise more than 2.4% in any one year. History provides no evidence of an observable effect of voluntary Australian Standards for trampoline safety on population rates for trampoline injury. The major design modification--netted enclosures--could contribute to the risk of injury by leading parents to falsely believe that a netted enclosure eradicates the risk of injury. © 2015 Public Health Association of Australia.

  5. Chemical composition, dietary fibre, tannins and minerals of grain amaranth genotypes.

    PubMed

    Mustafa, Arif F; Seguin, Philippe; Gélinas, Bruce

    2011-11-01

    The objective of this study was to determine the chemical composition of 28 white and coloured grain amaranth (Amaranthus spp.) genotypes. Neutral detergent fibre (NDF) concentration was greater while strach concentration was lower for coloured seeds genotypes than white seeds genotypes. Total dietary fibre followed a similar trend to that observed for NDF. Total tannin concentrations ranged between 20.7 and 0 g/kg with total and hydrolysed tannin concentrations being higher for white than for coloured seeds genotypes. Coloured seeds genotypes contained higher Mg and Ca concentrations than white seeds genotypes. However, seed colour had no influence on K, Na and P concentrations. Copper and Fe were the most variable micro-minerals in the evaluated genotypes with no significant effect of seed colour on the concentration of either mineral.

  6. Eurodelta-Trends, a Multi-Model Experiment of Air Quality Hindcast in Europe over 1990-2010. Experiment Design and Key Findings

    NASA Astrophysics Data System (ADS)

    Colette, A.; Ciarelli, G.; Otero, N.; Theobald, M.; Solberg, S.; Andersson, C.; Couvidat, F.; Manders-Groot, A.; Mar, K. A.; Mircea, M.; Pay, M. T.; Raffort, V.; Tsyro, S.; Cuvelier, K.; Adani, M.; Bessagnet, B.; Bergstrom, R.; Briganti, G.; Cappelletti, A.; D'isidoro, M.; Fagerli, H.; Ojha, N.; Roustan, Y.; Vivanco, M. G.

    2017-12-01

    The Eurodelta-Trends multi-model chemistry-transport experiment has been designed to better understand the evolution of air pollution and its drivers for the period 1990-2010 in Europe. The main objective of the experiment is to assess the efficiency of air pollutant emissions mitigation measures in improving regional scale air quality. The experiment is designed in three tiers with increasing degree of computational demand in order to facilitate the participation of as many modelling teams as possible. The basic experiment consists of simulations for the years 1990, 2000 and 2010. Sensitivity analysis for the same three years using various combinations of (i) anthropogenic emissions, (ii) chemical boundary conditions and (iii) meteorology complements it. The most demanding tier consists in two complete time series from 1990 to 2010, simulated using either time varying emissions for corresponding years or constant emissions. Eight chemistry-transport models have contributed with calculation results to at least one experiment tier, and six models have completed the 21-year trend simulations. The modelling results are publicly available for further use by the scientific community. We assess the skill of the models in capturing observed air pollution trends for the 1990-2010 time period. The average particulate matter relative trends are well captured by the models, even if they display the usual lower bias in reproducing absolute levels. Ozone trends are also well reproduced, yet slightly overestimated in the 1990s. The attribution study emphasizes the efficiency of mitigation measures in reducing air pollution over Europe, although a strong impact of long range transport is pointed out for ozone trends. Meteorological variability is also an important factor in some regions of Europe. The results of the first health and ecosystem impact studies impacts building upon a regional scale multi-model ensemble over a 20yr time period will also be presented.

  7. Temporal and geographic patterns in population trends of brown-headed cowbirds

    USGS Publications Warehouse

    Peterjohn, B.G.; Sauer, J.R.; Schwarz, S.

    2000-01-01

    The temporal and geographic patterns in the population trends of Brown-headed Cowbirds are summarized from the North American Breeding Bird Survey. During 1966-1992, the survey-wide population declined significantly, a result of declining populations in the Eastern BBS Region, southern Great Plains, and the Pacific coast states. Increasing populations were most evident in the northern Great Plains. Cowbird populations were generally stable or increasing during 1966-1976, but their trends became more negative after 1976. The trends in cowbird populations were generally directly correlated with the trends of both host and nonhost species, suggesting that large-scale factors such as changing weather patterns, land use practices, or habitat availability were responsible for the observed temporal and geographic patterns in the trends of cowbirds and their hosts.

  8. Chemical sputtering by H{sub 2}{sup +} and H{sub 3}{sup +} ions during silicon deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landheer, K., E-mail: c.landheer@uu.nl; Poulios, I.; Rath, J. K.

    2016-08-07

    We investigated chemical sputtering of silicon films by H{sub y}{sup +} ions (with y being 2 and 3) in an asymmetric VHF Plasma Enhanced Chemical Vapor Deposition (PECVD) discharge in detail. In experiments with discharges created with pure H{sub 2} inlet flows, we observed that more Si was etched from the powered than from the grounded electrode, and this resulted in a net deposition on the grounded electrode. With experimental input data from a power density series of discharges with pure H{sub 2} inlet flows, we were able to model this process with a chemical sputtering mechanism. The obtained chemicalmore » sputtering yields were (0.3–0.4) ± 0.1 Si atom per bombarding H{sub y}{sup +} ion at the grounded electrode and at the powered electrode the yield ranged from (0.4 to 0.65) ± 0.1. Subsequently, we investigated the role of chemical sputtering during PECVD deposition with a series of silane fractions S{sub F} (S{sub F}(%) = [SiH{sub 4}]/[H{sub 2}]*100) ranging from S{sub F} = 0% to 20%. We experimentally observed that the SiH{sub y}{sup +} flux is not proportional to S{sub F} but decreasing from S{sub F} = 3.4% to 20%. This counterintuitive SiH{sub y}{sup +} flux trend was partly explained by an increasing chemical sputtering rate with decreasing S{sub F} and partly by the reaction between H{sub 3}{sup +} and SiH{sub 4} that forms SiH{sub 3}{sup +}.« less

  9. Desorption kinetics of hydrophobic organic chemicals from sediment to water: a review of data and models.

    PubMed

    Birdwell, Justin; Cook, Robert L; Thibodeaux, Louis J

    2007-03-01

    Resuspension of contaminated sediment can lead to the release of toxic compounds to surface waters where they are more bioavailable and mobile. Because the timeframe of particle resettling during such events is shorter than that needed to reach equilibrium, a kinetic approach is required for modeling the release process. Due to the current inability of common theoretical approaches to predict site-specific release rates, empirical algorithms incorporating the phenomenological assumption of biphasic, or fast and slow, release dominate the descriptions of nonpolar organic chemical release in the literature. Two first-order rate constants and one fraction are sufficient to characterize practically all of the data sets studied. These rate constants were compared to theoretical model parameters and functionalities, including chemical properties of the contaminants and physical properties of the sorbents, to determine if the trends incorporated into the hindered diffusion model are consistent with the parameters used in curve fitting. The results did not correspond to the parameter dependence of the hindered diffusion model. No trend in desorption rate constants, for either fast or slow release, was observed to be dependent on K(OC) or aqueous solubility for six and seven orders of magnitude, respectively. The same was observed for aqueous diffusivity and sediment fraction organic carbon. The distribution of kinetic rate constant values was approximately log-normal, ranging from 0.1 to 50 d(-1) for the fast release (average approximately 5 d(-1)) and 0.0001 to 0.1 d(-1) for the slow release (average approximately 0.03 d(-1)). The implications of these findings with regard to laboratory studies, theoretical desorption process mechanisms, and water quality modeling needs are presented and discussed.

  10. Trends of Thyroid Cancer in Israel: 1980–2012

    PubMed Central

    Keinan-Boker, Lital; Silverman, Barbara G.

    2016-01-01

    Objectives: Thyroid cancer incidence is increasing worldwide, while mortality from thyroid cancer is stable or decreasing. Consequently, survival rates are rising. We describe time trends in the incidence, mortality, and 5-year survival of thyroid cancer in Israel in 1980–2012, in light of the global trends. Methods: Israel National Cancer Registry database provided information regarding thyroid cancer incidence and vital status, which enabled computation of survival rates. The Central Bureau of Statistics database provided information on thyroid cancer mortality. Incidence and mortality rates were age-adjusted and presented by population group (Jews/Arabs) and gender. Relative 5-year survival rates which account for the general population survival in the corresponding time period were presented by population group and gender. Joinpoint analyses were used to assess incidence trends over time. Results: In 1980–2012 significant increases in the incidence of thyroid cancer were observed, with an annual percent change (APC) range of 3.98–6.93, driven almost entirely by papillary carcinoma (APCs 5.75–8.86), while rates of other types of thyroid cancer remained stable or decreased. Furthermore, higher rates of early detection were noted. In 1980–2012, a modest reduction in thyroid cancer mortality was observed in Jewish women (APC −1.07) with no substantial change in Jewish men. The 5-year relative survival after thyroid cancer diagnosis has increased to ≥90% in both population groups and both genders. Conclusions: The Israeli secular trends of thyroid cancer incidence (increasing), mortality (mostly stable), and survival (modestly increasing) closely follow reported global trends. PMID:26886958

  11. 15 years of zebrafish chemical screening

    PubMed Central

    Rennekamp, Andrew J.; Peterson, Randall T.

    2015-01-01

    In 2000, the first chemical screen using living zebrafish in a multi-well plate was reported. Since then, more than 60 additional screens have been published describing whole-organism drug and pathway discovery projects in zebrafish. To investigate the scope of the work reported in the last 14 years and to identify trends in the field, we analyzed the discovery strategies of 64 primary research articles from the literature. We found that zebrafish screens have expanded beyond the use of developmental phenotypes to include behavioral, cardiac, metabolic, proliferative and regenerative endpoints. Additionally, many creative strategies have been used to uncover the mechanisms of action of new small molecules including chemical phenocopy, genetic phenocopy, mutant rescue, and spatial localization strategies. PMID:25461724

  12. Wet-bulb, dew point, and air temperature trends in Spain

    NASA Astrophysics Data System (ADS)

    Moratiel, R.; Soriano, B.; Centeno, A.; Spano, D.; Snyder, R. L.

    2017-10-01

    This study analyses trends of mean ( T m), maximum ( T x), minimum ( T n), dew point ( T d), and wet-bulb temperatures ( T w) on an annual, seasonal, and monthly time scale over Spain during the period 1981-2010. The main purpose was to determine how temperature and humidity changes are impacting on T w, which is probably a better measure of climate change than temperature alone. In this study, 43 weather stations were used to detect data trends using the nonparametric Mann-Kendall test and the Sen method to estimate the slope of trends. Significant linear trends observed for T m, T x, and T n versus year were 56, 58, and 47 % of the weather stations, respectively, with temperature ranges between 0.2 and 0.4 °C per decade. The months with bigger trends were April, May, June, and July with the highest trend for T x. The spatial behaviour of T d and T w was variable, with various locations showing trends from -0.6 to +0.3 °C per decade for T d and from -0.4 to +0.5 °C per decade for T w. Both T d and T w showed negative trends for July, August, September, November, and December. Comparing the trends versus time of each variable versus each of the other variables exhibited poor relationships, which means you cannot predict the trend of one variable from the trend of another variable. The trend of T x was not related to the trend of T n. The trends of T x, T m, and T n versus time were unrelated to the trends versus time of either T d or T w. The trend of T w showed a high coefficient of determination with the trend of T d with an annual value of R 2 = 0.86. Therefore, the T w trend is more related to changes in humidity than temperature.

  13. The influence of internal climate variability on heatwave frequency trends

    NASA Astrophysics Data System (ADS)

    E Perkins-Kirkpatrick, S.; Fischer, E. M.; Angélil, O.; Gibson, P. B.

    2017-04-01

    Understanding what drives changes in heatwaves is imperative for all systems impacted by extreme heat. We examine short- (13 yr) and long-term (56 yr) heatwave frequency trends in a 21-member ensemble of a global climate model (Community Earth System Model; CESM), where each member is driven by identical anthropogenic forcings. To estimate changes dominantly due to internal climate variability, trends were calculated in the corresponding pre-industrial control run. We find that short-term trends in heatwave frequency are not robust indicators of long-term change. Additionally, we find that a lack of a long-term trend is possible, although improbable, under historical anthropogenic forcing over many regions. All long-term trends become unprecedented against internal variability when commencing in 2015 or later, and corresponding short-term trends by 2030, while the length of trend required to represent regional long-term changes is dependent on a given realization. Lastly, within ten years of a short-term decline, 95% of regional heatwave frequency trends have reverted to increases. This suggests that observed short-term changes of decreasing heatwave frequency could recover to increasing trends within the next decade. The results of this study are specific to CESM and the ‘business as usual’ scenario, and may differ under other representations of internal variability, or be less striking when a scenario with lower anthropogenic forcing is employed.

  14. Secular trends in hip fractures worldwide: opposing trends East versus West.

    PubMed

    Ballane, Ghada; Cauley, Jane A; Luckey, Marjorie M; Fuleihan, Ghada El-Hajj

    2014-08-01

    Despite wide variations in hip rates fractures worldwide, reasons for such differences are not clear. Furthermore, secular trends in the age-specific hip fracture rates are changing the world map of this devastating disease, with the highest rise projected to occur in developing countries. The aim of our investigation is to systematically characterize secular trends in hip fractures worldwide, examine new data for various ethnic groups in the United States, evidence for divergent temporal patterns, and investigate potential contributing factors for the observed change in their epidemiology. All studies retrieved through a complex Medline Ovid search between 1966 and 2013 were examined. For each selected study, we calculated the percent annual change in age-standardized hip fracture rates de-novo. Although occurring at different time points, trend breaks in hip fracture incidence occurred in most Western countries and Oceania. After a steep rise in age-adjusted rates in these regions, a decrease became evident sometimes between the mid-seventies and nineties, depending on the country. Conversely, the data is scarce in Asia and South America, with evidence for a continuous rise in hip fracture rates, with the exception of Hong-Kong and Taiwan that seem to follow Western trends. The etiologies of these secular patterns in both the developed and the developing countries have not been fully elucidated, but the impact of urbanization is at least one plausible explanation. Data presented here show close parallels between rising rates of urbanization and hip fractures across disparate geographic locations and cultures. Once the proportion of the urban population stabilized, hip fracture rates also stabilize or begin to decrease perhaps due to the influence of other factors such as birth cohort effects, changes in bone mineral density and BMI, osteoporosis medication use and/or lifestyle interventions such as smoking cessation, improvement in nutritional status and fall

  15. Aerosol optical depth trend over the Middle East

    NASA Astrophysics Data System (ADS)

    Klingmueller, Klaus; Pozzer, Andrea; Metzger, Swen; Abdelkader, Mohamed; Stenchikov, Georgiy; Lelieveld, Jos

    2016-04-01

    We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the Moderate-resolution Imaging Spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a previously identified positive AOD trend over large parts of the Middle East during the period 2001 to 2012. By relating the annual AOD to precipitation, soil moisture and surface wind, being the main factors controlling the dust cycle, we identify regions where these attributes are significantly correlated to the AOD over Saudi Arabia, Iraq and Iran. The Fertile Crescent turns out to be of prime importance for the AOD trend over these countries. Using multiple linear regression we show that AOD trend and interannual variability can be attributed to the above mentioned dust cycle parameters, confirming that the AOD increase is predominantly driven by dust. In particular, the positive AOD trend relates to a negative soil moisture trend. This suggests that increasing temperature and decreasing relative humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD; consequently an AOD increase is expected due to climate change. Based on simulations using the ECHAM/MESSy atmospheric chemistry-climate model (EMAC), we interpret the correlations identified in the observational data in terms of causal relationships.

  16. Long-term trend of satellite-observed significant wave height and impact on ecosystem in the East/Japan Sea

    NASA Astrophysics Data System (ADS)

    Woo, Hye-Jin; Park, Kyung-Ae

    2017-09-01

    Significant wave height (SWH) data of nine satellite altimeters were validated with in-situ SWH measurements from buoy stations in the East/Japan Sea (EJS) and the Northwest Pacific Ocean. The spatial and temporal variability of extreme SWHs was investigated by defining the 90th, 95th, and 99th percentiles based on percentile analysis. The annual mean of extreme SWHs was dramatically increased by 3.45 m in the EJS, which is significantly higher than the normal mean of about 1.44 m. The spatial distributions of SWHs showed significantly higher values in the eastern region of the EJS than those in the western part. Characteristic seasonality was found from the time-series SWHs with high SWHs (>2.5 m) in winter but low values (<1 m) in summer. The trends of the normal and extreme (99th percentile) SWHs in the EJS had a positive value of 0.0056 m year-1 and 0.0125 m year-1, respectively. The long-term trend demonstrated that higher SWH values were more extreme with time during the past decades. The predominant spatial distinctions between the coastal regions in the marginal seas of the Northwest Pacific Ocean and open ocean regions were presented. In spring, both normal and extreme SWHs showed substantially increasing trends in the EJS. Finally, we first presented the impact of the long-term trend of extreme SWHs on the marine ecosystem through vertical mixing enhancement in the upper ocean of the EJS.

  17. Electron emission from chemical vapor deposited diamond and amorphous carbon films observed with a simple field emission device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Z.; Brown, I.G.; Ager, J.W. III

    Electron emission from chemical vapor deposited (CVD) diamond and amorphous carbon (a-C) films was observed with a simple field emission device (FED). Both diamond and a-C films were prepared with microwave plasma-enhanced CVD techniques. Electron emission in the field strength range +10 to {minus}10 MVm{sup {minus}1} was studied, and the field emission source was confirmed by a diode characteristic of the {ital I}-{ital V} curve, a straight line in the Fowler--Nordheim (F-N) plot, and direct observation of light emission from a fluorescent screen. The turn-on field strength was {similar_to}5 MVm{sup {minus}1}, which was similar for both kinds of carbon films.more » The highest current density for diamond films, observed at a field strength of 10 MVm{sup {minus}1}, was {similar_to}15 {mu}A cm{sup {minus}2}. Diamond films yielded a higher emission current than a-C films. The reasons for the observed field emission are discussed.« less

  18. Magnetic resonance imaging using chemical exchange saturation transfer

    NASA Astrophysics Data System (ADS)

    Park, Jaeseok

    2012-10-01

    Magnetic resonance imaging (MRI) has been widely used as a valuable diagnostic imaging modality that exploits water content and water relaxation properties to provide both structural and functional information with high resolution. Chemical exchange saturation transfer (CEST) in MRI has been recently introduced as a new mechanism of image contrast, wherein exchangeable protons from mobile proteins and peptides are indirectly detected through saturation transfer and are not observable using conventional MRI. It has been demonstrated that CEST MRI can detect important tissue metabolites and byproducts such as glucose, glycogen, and lactate. Additionally, CEST MRI is sensitive to pH or temperature and can calibrate microenvironment dependent on pH or temperature. In this work, we provide an overview on recent trends in CEST MRI, introducing general principles of CEST mechanism, quantitative description of proton transfer process between water pool and exchangeable solute pool in the presence or absence of conventional magnetization transfer effect, and its applications

  19. Chandra Observations and Models of the Mixed Morphology Supernova Remnant W44: Global Trends

    NASA Technical Reports Server (NTRS)

    Shelton, R. L.; Kuntz, K. D.; Petre, R.

    2004-01-01

    We report on the Chandra observations of the archetypical mixed morphology (or thermal composite) supernova remnant, W44. As with other mixed morphology remnants, W44's projected center is bright in thermal X-rays. It has an obvious radio shell, but no discernable X-ray shell. In addition, X-ray bright knots dot W44's image. The spectral analysis of the Chandra data show that the remnant s hot, bright projected center is metal-rich and that the bright knots are regions of comparatively elevated elemental abundances. Neon is among the affected elements, suggesting that ejecta contributes to the abundance trends. Furthermore, some of the emitting iron atoms appear to be underionized with respect to the other ions, providing the first potential X-ray evidence for dust destruction in a supernova remnant. We use the Chandra data to test the following explanations for W44's X-ray bright center: 1.) entropy mixing due to bulk mixing or thermal conduction, 2.) evaporation of swept up clouds, and 3.) a metallicity gradient, possibly due to dust destruction and ejecta enrichment. In these tests, we assume that the remnant has evolved beyond the adiabatic evolutionary stage, which explains the X-ray dimness of the shell. The entropy mixed model spectrum was tested against the Chandra spectrum for the remnant's projected center and found to be a good match. The evaporating clouds model was constrained by the finding that the ionization parameters of the bright knots are similar to those of the surrounding regions. While both the entropy mixed and the evaporating clouds models are known to predict centrally bright X-ray morphologies, their predictions fall short of the observed brightness gradient. The resulting brightness gap can be largely filled in by emission from the extra metals in and near the remnant's projected center. The preponderance of evidence (including that drawn from other studies) suggests that W44's remarkable morphology can be attributed to dust destruction

  20. Trends in seasonal warm anomalies across the contiguous United States: Contributions from natural climate variability

    Treesearch

    Lejiang Yu; Shiyuan Zhong; Warren E. Heilman; Xindi Bian

    2018-01-01

    Many studies have shown the importance of anthropogenic greenhouse gas emissions in contributing to observed upward trends in the occurrences of temperature extremes over the U.S. However, few studies have investigated the contributions of internal variability in the climate system to these observed trends. Here we use daily maximum temperature time series from the...