Sample records for observed column density

  1. The relation between the column density structures and the magnetic field orientation in the Vela C molecular complex

    NASA Astrophysics Data System (ADS)

    Soler, J. D.; Ade, P. A. R.; Angilè, F. E.; Ashton, P.; Benton, S. J.; Devlin, M. J.; Dober, B.; Fissel, L. M.; Fukui, Y.; Galitzki, N.; Gandilo, N. N.; Hennebelle, P.; Klein, J.; Li, Z.-Y.; Korotkov, A. L.; Martin, P. G.; Matthews, T. G.; Moncelsi, L.; Netterfield, C. B.; Novak, G.; Pascale, E.; Poidevin, F.; Santos, F. P.; Savini, G.; Scott, D.; Shariff, J. A.; Thomas, N. E.; Tucker, C. E.; Tucker, G. S.; Ward-Thompson, D.

    2017-07-01

    We statistically evaluated the relative orientation between gas column density structures, inferred from Herschel submillimetre observations, and the magnetic field projected on the plane of sky, inferred from polarized thermal emission of Galactic dust observed by the Balloon-borne Large-Aperture Submillimetre Telescope for Polarimetry (BLASTPol) at 250, 350, and 500 μm, towards the Vela C molecular complex. First, we find very good agreement between the polarization orientations in the three wavelength-bands, suggesting that, at the considered common angular resolution of 3.´0 that corresponds to a physical scale of approximately 0.61 pc, the inferred magnetic field orientation is not significantly affected by temperature or dust grain alignment effects. Second, we find that the relative orientation between gas column density structures and the magnetic field changes progressively with increasing gas column density, from mostly parallel or having no preferred orientation at low column densities to mostly perpendicular at the highest column densities. This observation is in agreement with previous studies by the Planck collaboration towards more nearby molecular clouds. Finally, we find a correspondencebetween (a) the trends in relative orientation between the column density structures and the projected magnetic field; and (b) the shape of the column density probability distribution functions (PDFs). In the sub-regions of Vela C dominated by one clear filamentary structure, or "ridges", where the high-column density tails of the PDFs are flatter, we find a sharp transition from preferentially parallel or having no preferred relative orientation at low column densities to preferentially perpendicular at highest column densities. In the sub-regions of Vela C dominated by several filamentary structures with multiple orientations, or "nests", where the maximum values of the column density are smaller than in the ridge-like sub-regions and the high-column density tails of the PDFs are steeper, such a transition is also present, but it is clearly less sharp than in the ridge-like sub-regions. Both of these results suggest that the magnetic field is dynamically important for the formation of density structures in this region.

  2. On the Origin of the High Column Density Turnover in the HI Column Density Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.

    We study the high column density regime of the HI column density distribution function and argue that there are two distinct features: a turnover at NHI ~ 10^21 cm^-2 which is present at both z=0 and z ~ 3, and a lack of systems above NHI ~ 10^22 cm^-2 at z=0. Using observations of the column density distribution, we argue that the HI-H2 transition does not cause the turnover at NHI ~ 10^21 cm^-2, but can plausibly explain the turnover at NHI > 10^22 cm^-2. We compute the HI column density distribution of individual galaxies in the THINGS sample andmore » show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the HI map or to averaging in radial shells. Our results indicate that the similarity of HI column density distributions at z=3 and z=0 is due to the similarity of the maximum HI surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within GMCs cannot affect the DLA column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ~ kpc scales with those estimated from quasar spectra which probe sub-pc scales due to the steep power spectrum of HI column density fluctuations observed in nearby galaxies.« less

  3. MAVEN/IUVS Apoapse Observations of the Martian FUV Dayglow

    NASA Astrophysics Data System (ADS)

    Correira, J.; Evans, J. S.; Stevens, M. H.; Schneider, N. M.; Stewart, I. F.; Deighan, J.; Jain, S.; Chaffin, M.; Crismani, M. M. J.; McClintock, B.; Holsclaw, G.; Lefèvre, F.; Lo, D.; Stiepen, A.; Clarke, J. T.; Mahaffy, P. R.; Bougher, S. W.; Bell, J. M.; Jakosky, B. M.

    2015-12-01

    We present FUV data (115 - 190 nm) from MAVEN/IUVS apoapse mode observations for the Oct 2014 through Feb 2015 time period. During apoapse mode the highly elliptical orbit of MAVEN allows for up to four apoapse disk images by IUVS per day. Maps of FUV feature intensities and intensity ratios as well as derived CO/CO2 and O/CO2 column density ratios will be shown. Column density ratios are derived from lookup tables created using the Atmospheric Ultraviolet Radiance Integrated Code [Strickland et al., 1999] in conjunction with observed intensity ratios. Column density ratios provide a measure of composition changes in the Martian atmosphere. Due to MAVEN's orbital geometry the observations from this time period focus on the southern hemisphere. The broad view provided by apoapse observations allows for the investigation of spatial and temporal variations (both long term and local time) of the atmospheric composition (via the column density ratios). IUVS FUV intensities and derived column density ratios will also be compared with model results from Mars Global Ionosphere/Thermosphere Model (MGITM) and the Mars Climate Database (MCD).

  4. Understanding star formation in molecular clouds. I. Effects of line-of-sight contamination on the column density structure

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Ossenkopf, V.; Csengeri, T.; Klessen, R. S.; Federrath, C.; Tremblin, P.; Girichidis, P.; Bontemps, S.; André, Ph.

    2015-03-01

    Column-density maps of molecular clouds are one of the most important observables in the context of molecular cloud- and star-formation (SF) studies. With the Herschel satellite it is now possible to precisely determine the column density from dust emission, which is the best tracer of the bulk of material in molecular clouds. However, line-of-sight (LOS) contamination from fore- or background clouds can lead to overestimating the dust emission of molecular clouds, in particular for distant clouds. This implies values that are too high for column density and mass, which can potentially lead to an incorrect physical interpretation of the column density probability distribution function (PDF). In this paper, we use observations and simulations to demonstrate how LOS contamination affects the PDF. We apply a first-order approximation (removing a constant level) to the molecular clouds of Auriga and Maddalena (low-mass star-forming), and Carina and NGC 3603 (both high-mass SF regions). In perfect agreement with the simulations, we find that the PDFs become broader, the peak shifts to lower column densities, and the power-law tail of the PDF for higher column densities flattens after correction. All corrected PDFs have a lognormal part for low column densities with a peak at Av ~ 2 mag, a deviation point (DP) from the lognormal at Av(DP) ~ 4-5 mag, and a power-law tail for higher column densities. Assuming an equivalent spherical density distribution ρ ∝ r- α, the slopes of the power-law tails correspond to αPDF = 1.8, 1.75, and 2.5 for Auriga, Carina, and NGC 3603. These numbers agree within the uncertainties with the values of α ≈ 1.5,1.8, and 2.5 determined from the slope γ (with α = 1-γ) obtained from the radial column density profiles (N ∝ rγ). While α ~ 1.5-2 is consistent with a structure dominated by collapse (local free-fall collapse of individual cores and clumps and global collapse), the higher value of α > 2 for NGC 3603 requires a physical process that leads to additional compression (e.g., expanding ionization fronts). From the small sample of our study, we find that clouds forming only low-mass stars and those also forming high-mass stars have slightly different values for their average column density (1.8 × 1021 cm-2 vs. 3.0 × 1021 cm-2), and they display differences in the overall column density structure. Massive clouds assemble more gas in smaller cloud volumes than low-mass SF ones. However, for both cloud types, the transition of the PDF from lognormal shape into power-law tail is found at the same column density (at Av ~ 4-5 mag). Low-mass and high-mass SF clouds then have the same low column density distribution, most likely dominated by supersonic turbulence. At higher column densities, collapse and external pressure can form the power-law tail. The relative importance of the twoprocesses can vary between clouds and thus lead to the observed differences in PDF and column density structure. Appendices are available in electronic form at http://www.aanda.orgHerschel maps as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A79

  5. Observations of circumstellar carbon monoxide and evidence for multiple ejections in red giants

    NASA Technical Reports Server (NTRS)

    Bernat, A. P.

    1981-01-01

    Observations of the fundamental 4.6 micron band of CO in nine red giants are presented. A common feature is multiple absorption lines which are identified as products of separate components or shells. Column densities are derived; the relative values should be free of the uncertainties inherent in determining the absolute scale. These column densities are well fitted by single excitation temperatures for each absorption component; these excitation temperatures are identified with the local kinetic temperatures. There is no correlation of CO column density with either gas or dust column density nor of the expansion velocity of the component with its distance from the star. The evidence is reviewed, and it is concluded that mass loss from red giants is most likely episodic in nature.

  6. Interstellar C2, CH, and CN in translucent molecular clouds

    NASA Technical Reports Server (NTRS)

    Black, John H.; Van Dishoeck, Ewine F.

    1989-01-01

    Optical absorption-line techniques have been applied to the study of a number of translucent molecular clouds in which the total column densities are large enough that substantial molecular abundances can be maintained. Results are presented for a survey of absorption lines of interstellar C2, CH, and CN. Detections of CN through the A 2Pi-X 2Sigma(+) (1,O) and (2,O) bands of the red system are reported and compared with observations of the violet system for one line of sight. The population distributions in C2 provide diagnostic information on temperature and density. The measured column densities of the three species can be used to test details of the theory of molecule formation in clouds where photoprocesses still play a significant role. The C2 and CH column densities are strongly correlated with each other and probably also with the H2 column density. In contrast, the CN column densities are found to vary greatly from cloud to cloud. The observations are discussed with reference to detailed theoretical models.

  7. The Effect of AGN Heating on the Low-redshift Lyα Forest

    NASA Astrophysics Data System (ADS)

    Gurvich, Alex; Burkhart, Blakesley; Bird, Simeon

    2017-02-01

    We investigate the effects of AGN heating and the ultraviolet background on the low-redshift Lyα forest column density distribution (CDD) using the Illustris simulation. We show that Illustris reproduces observations at z = 0.1 in the column density range {10}12.5{--}{10}13.5 cm-2, relevant for the “photon underproduction crisis.” We attribute this to the inclusion of AGN feedback, which changes the gas distribution so as to mimic the effect of extra photons, as well as the use of the Faucher-Giguère ultraviolet background, which is more ionizing at z = 0.1 than the Haardt & Madau background previously considered. We show that the difference between simulations run with smoothed particle hydrodynamics and simulations using a moving mesh is small in this column density range but can be more significant at larger column densities. We further consider the effect of supernova feedback, Voigt profile fitting, and finite resolution, all of which we show to have little influence on the CDD. Finally, we identify a discrepancy between our simulations and observations at column densities {10}14{--}{10}16 cm-2, where Illustris produces too few absorbers, which suggests the AGN feedback model should be further refined. Since the “photon underproduction crisis” primarily affects lower column density systems, we conclude that AGN feedback and standard ionizing background models can resolve the crisis.

  8. Analysis of Mexico City urban air pollution using nitrogen dioxide column density measurements from UV/Visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia Payne, D. G.; Grutter, M.; Melamed, M. L.

    2010-12-01

    The differential optical absorption spectroscopy method (DOAS) was used to get column densities of nitrogen dioxide (NO2) from the analysis of zenith sky UV/visible spectra. Since the optical path length provides critical information in interpreting NO2 column densities, in conjunction with NO2 column densities, the oxygen dimer (O4) column density was retrieved to give insight into the optical path length. We report observations of year round NO2 and O4 column densities (from august 2009 to september 2010) from which the mean seasonal levels and the daily evolution, as well as the occurrence of elevated pollution episodes are examined. Surface nitric oxide (NO) and NO2 from the local monitoring network, as well as wind data and the vertical aerosol density from continuous Lidar measurements are used in the analysis to investigate specific events in the context of local emissions from vehicular traffic, photochemical production and transport from industrial emissions. The NO2 column density measurements will enhance the understanding Mexico City urban air pollution. Recent research has begun to unravel the complexity of the air pollution problem in Mexico City and its effects not only locally but on a regional and global scale as well.

  9. Impact of NO2 horizontal heterogeneity on tropospheric NO2 vertical columns retrieved from satellite, multi-axis differential optical absorption spectroscopy, and in situ measurements

    NASA Astrophysics Data System (ADS)

    Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.

    2013-01-01

    Tropospheric NO2 vertical column densities were retrieved for the first time in Toronto, Canada using three methods of differing spatial scales. Remotely-sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities derived using a pair of chemiluminescence monitors situated 0.01 and 0.5 km above ground level. The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson R ranging from 0.68 to 0.79), but the in situ vertical column densities were 27% to 55% greater than the remotely-sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely-sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely-sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each of the methods.

  10. Fine structure of Galactic foreground ISM towards high-redshift AGN - utilizing Herschel PACS and SPIRE data

    NASA Astrophysics Data System (ADS)

    Perger, K.; Pinter, S.; Frey, S.; Tóth, L. V.

    2018-05-01

    One of the most certain ways to determine star formation rate in galaxies is based on far infrared (FIR) measurements. To decide the origin of the observed FIR emission, subtracting the Galactic foreground is a crucial step. We utilized Herschel photometric data to determine the hydrogen column densities in three galactic latitude regions, at b = 27°, 50° and -80°. We applied a pixel-by-pixel fit to the spectral energy distribution (SED) for the images aquired from parallel PACS-SPIRE observations in all three sky areas. We determined the column densities with resolutions 45'' and 6', and compared the results with values estimated from the IRAS dust maps. Column densities at 27° and 50° galactic latitudes determined from the Herschel data are in a good agreement with the literature values. However, at the highest galactic latitude we found that the column densities from the Herschel data exceed those derived from the IRAS dust map.

  11. Multi-wavelength campaign on NGC 7469. II. Column densities and variability in the X-ray spectrum

    NASA Astrophysics Data System (ADS)

    Peretz, U.; Behar, E.; Kriss, G. A.; Kaastra, J.; Arav, N.; Bianchi, S.; Branduardi-Raymont, G.; Cappi, M.; Costantini, E.; De Marco, B.; Di Gesu, L.; Ebrero, J.; Kaspi, S.; Mehdipour, M.; Middei, R.; Paltani, S.; Petrucci, P. O.; Ponti, G.; Ursini, F.

    2018-01-01

    We have investigated the ionic column density variability of the ionized outflows associated with NGC 7469, to estimate their location and power. This could allow a better understanding of galactic feedback of AGNs to their host galaxies. Analysis of seven XMM-Newton grating observations from 2015 is reported. We used an individual-ion spectral fitting approach, and compared different epochs to accurately determine variability on timescales of years, months, and days. We find no significant column density variability in a ten-year period implying that the outflow is far from the ionizing source. The implied lower bound on the ionization equilibrium time, ten years, constrains the lower limit on the distance to be at least 12 pc, and up to 31 pc, much less but consistent with the 1 kpc wide starburst ring. The ionization distribution of column density is reconstructed from measured column densities, nicely matching results of two 2004 observations, with one large high ionization parameter (ξ) component at 2 < log ξ< 3.5, and one at 0.5 < log ξ< 1 in cgs units. The strong dependence of the expression for kinetic power, ∝ 1 /ξ, hampers tight constraints on the feedback mechanism of outflows with a large range in ionization parameter, which is often observed and indicates a non-conical outflow. The kinetic power of the outflow is estimated here to be within 0.4 and 60% of the Eddington luminosity, depending on the ion used to estimate ξ.

  12. The shapes of column density PDFs. The importance of the last closed contour

    NASA Astrophysics Data System (ADS)

    Alves, João; Lombardi, Marco; Lada, Charles J.

    2017-10-01

    The probability distribution function of column density (PDF) has become the tool of choice for cloud structure analysis and star formation studies. Its simplicity is attractive, and the PDF could offer access to cloud physical parameters otherwise difficult to measure, but there has been some confusion in the literature on the definition of its completeness limit and shape at the low column density end. In this letter we use the natural definition of the completeness limit of a column density PDF, the last closed column density contour inside a surveyed region, and apply it to a set of large-scale maps of nearby molecular clouds. We conclude that there is no observational evidence for log-normal PDFs in these objects. We find that all studied molecular clouds have PDFs well described by power laws, including the diffuse cloud Polaris. Our results call for a new physical interpretation of the shape of the column density PDFs. We find that the slope of a cloud PDF is invariant to distance but not to the spatial arrangement of cloud material, and as such it is still a useful tool for investigating cloud structure.

  13. Visualization and simulation of density driven convection in porous media using magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Montague, James A.; Pinder, George F.; Gonyea, Jay V.; Hipko, Scott; Watts, Richard

    2018-05-01

    Magnetic resonance imaging is used to observe solute transport in a 40 cm long, 26 cm diameter sand column that contained a central core of low permeability silica surrounded by higher permeability well-sorted sand. Low concentrations (2.9 g/L) of Magnevist, a gadolinium based contrast agent, produce density driven convection within the column when it starts in an unstable state. The unstable state, for this experiment, exists when higher density contrast agent is present above the lower density water. We implement a numerical model in OpenFOAM to reproduce the observed fluid flow and transport from a density difference of 0.3%. The experimental results demonstrate the usefulness of magnetic resonance imaging in observing three-dimensional gravity-driven convective-dispersive transport behaviors in medium scale experiments.

  14. Observational discrimination between modes of shock propagation in interstellar clouds: Predictions of CH+ and SH+ column densities in diffuse clouds

    NASA Technical Reports Server (NTRS)

    Flower, D. R.; Desforets, G. P.; Roueff, E.; Hartquist, T. W.

    1986-01-01

    Considerable effort in recent years has been devoted to the study of shocks in the diffuse interstellar medium. This work has been motivated partly by the observations of rotationally excited states of H2, and partly by the realization that species such as CH(+), OH and H2O might be formed preferentially in hot, post-shock gas. The problem of CH(+) and the difficulties encountered when trying to explain the high column densities, observed along lines of sight to certain hot stars, have been reviewed earlier. The importance of a transverse magnetic field on the structure of an interstellar shock was also demonstrated earlier. Transverse magnetic fields above a critical strength give rise to an acceleration zone or precursor, in which the parameters on the flow vary continuously. Chemical reactions, which change the degree of ionization of the gas, also modify the structure of the shock considerably. Recent work has shown that large column densities of CH(+) can be produced in magnetohydrodynamic shock models. Shock speeds U sub s approx. = 10 km/s and initial magnetic field strengths of a few micro G are sufficient to produce ion-neutral drift velocities which can drive the endothermic C(+)(H2,H)CH(+) reaction. It was also shown that single-fluid hydrodynamic models do not generate sufficiently large column densities of CH(+) unless unacceptably high shock velocities (u sub s approx. 20 km/s) are assumed in the models. Thus, the observed column densities of CH(+) provide a constraint on the mode of shock propagation in diffuse clouds. More precisely, they determine a lower limit to the ion-neutral drift velocity.

  15. Visualization and simulation of density driven convection in porous media using magnetic resonance imaging.

    PubMed

    Montague, James A; Pinder, George F; Gonyea, Jay V; Hipko, Scott; Watts, Richard

    2018-05-01

    Magnetic resonance imaging is used to observe solute transport in a 40cm long, 26cm diameter sand column that contained a central core of low permeability silica surrounded by higher permeability well-sorted sand. Low concentrations (2.9g/L) of Magnevist, a gadolinium based contrast agent, produce density driven convection within the column when it starts in an unstable state. The unstable state, for this experiment, exists when higher density contrast agent is present above the lower density water. We implement a numerical model in OpenFOAM to reproduce the observed fluid flow and transport from a density difference of 0.3%. The experimental results demonstrate the usefulness of magnetic resonance imaging in observing three-dimensional gravity-driven convective-dispersive transport behaviors in medium scale experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Interstellar C IV and Si IV column densities toward early-type stars

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Kondo, Y.; Mccluskey, G. E.

    1980-01-01

    Equivalent widths and deduced column densities of Si IV and C IV are examined for 18 early-type close binaries, and physical processes responsible for the origin of these ions in the interstellar medium are investigated. The available C IV/Si IV column density ratios typically lie within a narrow range from 0.8 to 4.5, and there is evidence that the column density of C IV is higher than that of N V along most lines of sight, suggesting that C IV is not formed in the same hot region as O VI. In addition, the existence of regions with a narrowly defined new temperature range around 50,000 deg K is indicated. The detection of the semitorrid gas of Bruhweiler, Kondo, and McCluskey (1978, 1979) is substantiated, and the relation of this gas to the observations of coronal gas in the galactic halo is discussed.

  17. Pressure, temperature and density drops along supercritical fluid chromatography columns. I. Experimental results for neat carbon dioxide and columns packed with 3- and 5-micron particles.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2012-08-10

    The pressure drop and temperature drop on columns packed with 3- and 5-micron particles were measured using neat CO(2) at a flow rate of 5 mL/min, at temperatures from 20°C to 100°C, and outlet pressures from 80 to 300 bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath either bare or covered with foam insulation. The results show that the pressure drop depends on the outlet pressure, the operating temperature, and the thermal environment. A temperature drop was observed for all conditions studied. The temperature drop was relatively small (less than 3°C) for combinations of low temperature and high pressure. Larger temperature drops and density drops occurred at higher temperatures and low to moderate pressures. Covering the column with thermal insulation resulted in larger temperature drops and corresponding smaller density drops. At 20°C the temperature drop was never more than a few degrees. The largest temperature drops occurred for both columns when insulated at 80°C and 80 bar, reaching a maximum value of 21°C for the 5-micron column, and 26°C for the 3-micron column. For an adiabatic column, the temperature drop depends on the pressure drop, the thermal expansion coefficient, and the density and the heat capacity of the mobile phase fluid, and can be described by a simple mathematical relationship. For a fixed operating temperature and outlet pressure, the temperature drop increases monotonically with the pressure drop. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Carbon X-ray absorption in the local ISM: fingerprints in X-ray Novae spectra

    NASA Astrophysics Data System (ADS)

    Gatuzz, Efraín; Ness, J.-U.; Gorczyca, T. W.; Hasoglu, M. F.; Kallman, Timothy R.; García, Javier A.

    2018-06-01

    We present a study of the C K-edge using high-resolution LETGS Chandra spectra of four novae during their super-soft-source (SSS) phase. We identified absorption lines due to C II Kα, C III Kα and C III Kβ resonances. We used these astronomical observations to perform a benchmarking of the atomic data, which involves wavelength shifts of the resonances and photoionization cross-sections. We used improved atomic data to estimate the C II and C III column densities. The absence of physical shifts for the absorption lines, the consistence of the column densities between multiple observations and the high temperature required for the SSS nova atmosphere modeling support our conclusion about an ISM origin of the respective absorption lines. Assuming a collisional ionization equilibrium plasma the maximum temperature derived from the ratio of C II/C III column densities of the absorbers correspond to Tmax < 3.05 × 104 K.

  19. Comparison of tropospheric NO2 vertical columns in an urban environment using satellite, multi-axis differential optical absorption spectroscopy, and in situ measurements

    NASA Astrophysics Data System (ADS)

    Mendolia, D.; D'Souza, R. J. C.; Evans, G. J.; Brook, J.

    2013-10-01

    Tropospheric NO2 vertical column densities have been retrieved and compared for the first time in Toronto, Canada, using three methods of differing spatial scales. Remotely sensed NO2 vertical column densities, retrieved from multi-axis differential optical absorption spectroscopy and satellite remote sensing, were evaluated by comparison with in situ vertical column densities estimated using a pair of chemiluminescence monitors situated 0.01 and 0.5 km a.g.l. (above ground level). The chemiluminescence measurements were corrected for the influence of NOz, which reduced the NO2 concentrations at 0.01 and 0.5 km by an average of 8 ± 1% and 12 ± 1%, respectively. The average absolute decrease in the chemiluminescence NO2 measurement as a result of this correction was less than 1 ppb. The monthly averaged ratio of the NO2 concentration at 0.5 to 0.01 km varied seasonally, and exhibited a negative linear dependence on the monthly average temperature, with Pearson's R = 0.83. During the coldest month, February, this ratio was 0.52 ± 0.04, while during the warmest month, July, this ratio was 0.34 ± 0.04, illustrating that NO2 is not well mixed within 0.5 km above ground level. Good correlation was observed between the remotely sensed and in situ NO2 vertical column densities (Pearson's R value ranging from 0.72 to 0.81), but the in situ vertical column densities were 52 to 58% greater than the remotely sensed columns. These results indicate that NO2 horizontal heterogeneity strongly impacted the magnitude of the remotely sensed columns. The in situ columns reflected an urban environment with major traffic sources, while the remotely sensed NO2 vertical column densities were representative of the region, which included spatial heterogeneity introduced by residential neighbourhoods and Lake Ontario. Despite the difference in absolute values, the reasonable correlation between the vertical column densities determined by three distinct methods increased confidence in the validity of the values provided by each measurement technique.

  20. Cloudy Skies over AGN: Observations with Simbol-X

    NASA Astrophysics Data System (ADS)

    Salvati, M.; Risaliti, G.

    2009-05-01

    Recent time-resolved spectroscopic X-ray studies of bright obscured AGN show that column density variability on time scales of hours/days may be common, at least for sources with NH>1023 cm-2. This opens new oppurtunities in the analysis of the structure of the circumnuclear medium and of the X-ray source: resolving the variations due to single clouds covering/uncovering the X-ray source provides tight constraints on the source size, the clouds' size and distance, and their average number, density and column density. We show how Simbol-X will provide a breakthrough in this field, thanks to its broad band coverage, allowing (a) to precisely disentangle the continuum and NH variations, and (2) to extend the NH variability analysis to column densities >1023 cm-2.

  1. X-Ray Wind Tomography of IGR J17252-3616

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonios; Walter, Roland

    2010-07-01

    IGR J17252-3616, a highly absorbed High Mass X-ray Binary (HMXB) with Hydrogen column density NH~(2-4)×1023 cm-2, has been observed with XMM-Newton for about one month. Observations were scheduled in order to cover the orbital-phase space as much as possible. IGR J17252-3616 shows a varying column density NH and Fe Kα line when fit with simple phenomenological models. A refined orbital solution can be derived. Spectral timing analysis allows derivation of the wind properties of the massive star.

  2. Temperature as a third dimension in column-density mapping of dusty astrophysical structures associated with star formation

    NASA Astrophysics Data System (ADS)

    Marsh, K. A.; Whitworth, A. P.; Lomax, O.

    2015-12-01

    We present point process mapping (PPMAP), a Bayesian procedure that uses images of dust continuum emission at multiple wavelengths to produce resolution-enhanced image cubes of differential column density as a function of dust temperature and position. PPMAP is based on the generic `point process formalism, whereby the system of interest (in this case, a dusty astrophysical structure such as a filament or pre-stellar core) is represented by a collection of points in a suitably defined state space. It can be applied to a variety of observational data, such as Herschel images, provided only that the image intensity is delivered by optically thin dust in thermal equilibrium. PPMAP takes full account of the instrumental point-spread functions and does not require all images to be degraded to the same resolution. We present the results of testing using simulated data for a pre-stellar core and a fractal turbulent cloud, and demonstrate its performance with real data from the Herschel infrared Galactic Plane Survey (Hi-GAL). Specifically, we analyse observations of a large filamentary structure in the CMa OB1 giant molecular cloud. Histograms of differential column density indicate that the warm material (T ≳ 13 K) is distributed lognormally, consistent with turbulence, but the column densities of the cooler material are distributed as a high-density tail, consistent with the effects of self-gravity. The results illustrate the potential of PPMAP to aid in distinguishing between different physical components along the line of sight in star-forming clouds, and aid the interpretation of the associated Probability distribution functions (PDFs) of column density.

  3. The dependence of gamma-ray burst X-ray column densities on the model for Galactic hydrogen

    NASA Astrophysics Data System (ADS)

    Arcodia, R.; Campana, S.; Salvaterra, R.

    2016-05-01

    We study the X-ray absorption of a complete sample of 99 bright Swift gamma-ray bursts (GRBs). In recent years, a strong correlation has been found between the intrinsic X-ray absorbing column density (NH(z)) and the redshift. This absorption excess in high-z GRBs is now thought to be due to the overlooked contribution of the absorption along the intergalactic medium (IGM), by means of both intervening objects and the diffuse warm-hot intergalactic medium along the line of sight. In this work we neglect the absorption along the IGM, because our purpose is to study the eventual effect of a radical change in the Galactic absorption model on the NH(z) distribution. Therefore, we derive the intrinsic absorbing column densities using two different Galactic absorption models: the Leiden Argentine Bonn HI survey and the more recent model that includes molecular hydrogen. We find that if, on the one hand, the new Galactic model considerably affects the single column density values, on the other hand, there is no drastic change in the distribution as a whole. It becomes clear that the contribution of Galactic column densities alone, no matter how improved, is not sufficient to change the observed general trend and it has to be considered as a second order correction. The cosmological increase of NH(z) as a function of redshift persists and, to explain the observed distribution, it is necessary to include the contribution of both the diffuse intergalactic medium and the intervening systems along the line of sight of the GRBs.

  4. Global distribution of the He+ column density observed by Extreme Ultra Violet Imager on the International Space Station

    NASA Astrophysics Data System (ADS)

    Hozumi, Yuta; Saito, Akinori; Yoshikawa, Ichiro; Yamazaki, Atsushi; Murakami, Go; Yoshioka, Kazuo; Chen, Chia-Hung

    2017-07-01

    The global distribution of He+ in the topside ionosphere was investigated using data of the He+ resonant scattering emission at 30.4 nm obtained by the Extreme Ultra Violet Imager (EUVI) onboard the International Space Station. The optical observation by EUVI from the low-Earth orbit provides He+ column density data above the altitude of 400 km, presenting a unique opportunity to study the He+ distribution with a different perspective from that of past studies using data from in situ measurements. We analyzed data taken in 2013 and elucidated, for the first time, the seasonal, longitudinal, and latitudinal variations of the He+ column density in the dusk sector. It was found that the He+ column density in the winter hemisphere was about twice that in the summer hemisphere. In the December solstice season, the magnitude of this hemispheric asymmetry was large (small) in the longitudinal sector where the geomagnetic declination is eastward (westward). In the June solstice season, this relationship between the He+ distribution and the geomagnetic declination is reversed. In the equinox seasons, the He+ column densities in the two hemispheres are comparable at most longitudes. The seasonal and longitudinal dependence of the hemispheric asymmetry of the He+ distribution was attributed to the geomagnetic meridional neutral wind in the F region ionosphere. The neutral wind effect on the He+ distribution was examined with an empirical neutral wind model, and it was confirmed that the transport of ions in the topside ionosphere is predominantly affected by the F region neutral wind and the geomagnetic configuration.

  5. Observation of helicon wave with m = 0 antenna in a weakly magnetized inductively coupled plasma source

    NASA Astrophysics Data System (ADS)

    Ellingboe, Bert; Sirse, Nishant; Moloney, Rachel; McCarthy, John

    2015-09-01

    Bounded whistler wave, called ``helicon wave,'' is known to produce high-density plasmas and has been exploited as a high density plasma source for many applications, including electric propulsion for spacecraft. In a helicon plasma source, an antenna wrapped around the magnetized plasma column launches a low frequency wave, ωce/2 >ωhelicon >ωce/100, in the plasma which is responsible for maintaining high density plasma. Several antenna designs have been proposed in order to match efficiently the wave modes. In our experiment, helicon wave mode is observed using an m = 0 antenna. A floating B dot probe, compensated to the capacitively coupled E field, is employed to measure axial-wave-field-profiles (z, r, and θ components) in the plasma at multiple radial positions as a function of rf power and pressure. The Bθ component of the rf-field is observed to be unaffected as the wave propagates in the axial direction. Power coupling between the antenna and the plasma column is identified and agrees with the E, H, and wave coupling regimes previously seen in M =1 antenna systems. That is, the Bz component of the rf-field is observed at low plasma density as the Bz component from the antenna penetrates the plasma. The Bz component becomes very small at medium density due to shielding at the centre of the plasma column; however, with increasing density, a sudden ``jump'' occurs in the Bz component above which a standing wave under the antenna with a propagating wave away from the antenna are observed.

  6. Non-detection of HC11N towards TMC-1: constraining the chemistry of large carbon-chain molecules

    NASA Astrophysics Data System (ADS)

    Loomis, Ryan A.; Shingledecker, Christopher N.; Langston, Glen; McGuire, Brett A.; Dollhopf, Niklaus M.; Burkhardt, Andrew M.; Corby, Joanna; Booth, Shawn T.; Carroll, P. Brandon; Turner, Barry; Remijan, Anthony J.

    2016-12-01

    Bell et al. reported the first detection of the cyanopolyyne HC11N towards the cold dark cloud TMC-1; no subsequent detections have been reported towards any source. Additional observations of cyanopolyynes and other carbon-chain molecules towards TMC-1 have shown a log-linear trend between molecule size and column density, and in an effort to further explore the underlying chemical processes driving this trend, we have analysed Green Bank Telescope observations of HC9N and HC11N towards TMC-1. Although we find an HC9N column density consistent with previous values, HC11N is not detected and we derive an upper limit column density significantly below that reported in Bell et al. Using a state-of-the-art chemical model, we have investigated possible explanations of non-linearity in the column density trend. Despite updating the chemical model to better account for ion-dipole interactions, we are not able to explain the non-detection of HC11N, and we interpret this as evidence of previously unknown carbon-chain chemistry. We propose that cyclization reactions may be responsible for the depleted HC11N abundance, and that products of these cyclization reactions should be investigated as candidate interstellar molecules.

  7. Gravity or turbulence? IV. Collapsing cores in out-of-virial disguise

    NASA Astrophysics Data System (ADS)

    Ballesteros-Paredes, Javier; Vázquez-Semadeni, Enrique; Palau, Aina; Klessen, Ralf S.

    2018-06-01

    We study the dynamical state of massive cores by using a simple analytical model, an observational sample, and numerical simulations of collapsing massive cores. From the analytical model, we find that cores increase their column density and velocity dispersion as they collapse, resulting in a time evolution path in the Larson velocity dispersion-size diagram from large sizes and small velocity dispersions to small sizes and large velocity dispersions, while they tend to equipartition between gravity and kinetic energy. From the observational sample, we find that: (a) cores with substantially different column densities in the sample do not follow a Larson-like linewidth-size relation. Instead, cores with higher column densities tend to be located in the upper-left corner of the Larson velocity dispersion σv, 3D-size R diagram, a result explained in the hierarchical and chaotic collapse scenario. (b) Cores appear to have overvirial values. Finally, our numerical simulations reproduce the behavior predicted by the analytical model and depicted in the observational sample: collapsing cores evolve towards larger velocity dispersions and smaller sizes as they collapse and increase their column density. More importantly, however, they exhibit overvirial states. This apparent excess is due to the assumption that the gravitational energy is given by the energy of an isolated homogeneous sphere. However, such excess disappears when the gravitational energy is correctly calculated from the actual spatial mass distribution. We conclude that the observed energy budget of cores is consistent with their non-thermal motions being driven by their self-gravity and in the process of dynamical collapse.

  8. The abundance, distribution, and physical nature of highly ionized oxygen O VI, O VII, and O VIII in IllustrisTNG

    NASA Astrophysics Data System (ADS)

    Nelson, Dylan; Kauffmann, Guinevere; Pillepich, Annalisa; Genel, Shy; Springel, Volker; Pakmor, Rüdiger; Hernquist, Lars; Weinberger, Rainer; Torrey, Paul; Vogelsberger, Mark; Marinacci, Federico

    2018-06-01

    We explore the abundance, spatial distribution, and physical properties of the O VI, O VII, and O VIII ions of oxygen in circumgalactic and intergalactic media (the CGM, IGM, and WHIM). We use the TNG100 and TNG300 large volume cosmological magnetohydrodynamical simulations. Modelling the ionization states of simulated oxygen, we find good agreement with observations of the low-redshift O VI column density distribution function (CDDF), and present its evolution for all three ions from z = 0 to z = 4. Producing mock quasar absorption line spectral surveys, we show that the IllustrisTNG simulations are fully consistent with constraints on the O VI content of the CGM from COS-haloes and other low-redshift observations, producing columns as high as observed. We measure the total amount of mass and average column densities of each ion using hundreds of thousands of simulated galaxies spanning 10^{11} < {M}_halo/ M⊙<1015 corresponding to 109 < M⋆/ M⊙<1012 in stellar mass. Stacked radial profiles of O VI are computed in 3D number density and 2D projected column density, decomposing into 1-halo and 2-halo terms. Relating halo O VI to properties of the central galaxy, we find a correlation between the (g - r) colour of a galaxy and the total amount of O VI in its CGM. In comparison to the COS-Haloes finding, this leads to a dichotomy of columns around star-forming versus passive galaxies at fixed stellar (or halo) mass. We demonstrate that this correlation is a direct result of black hole feedback associated with quenching and represents a causal consequence of galactic-scale baryonic feedback impacting the physical state of the circumgalactic medium.

  9. Large-Scale Structure of the Molecular Gas in Taurus Revealed by High Spatial Dynamic Range Spectral Line Mapping

    NASA Technical Reports Server (NTRS)

    Goldsmith, Paul F.

    2008-01-01

    Viewgraph topics include: optical image of Taurus; dust extinction in IR has provided a new tool for probing cloud morphology; observations of the gas can contribute critical information on gas temperature, gas column density and distribution, mass, and kinematics; the Taurus molecular cloud complex; average spectra in each mask region; mas 2 data; dealing with mask 1 data; behavior of mask 1 pixels; distribution of CO column densities; conversion to H2 column density; variable CO/H2 ratio with values much less than 10(exp -4) at low N indicated by UV results; histogram of N(H2) distribution; H2 column density distribution in Taurus; cumulative distribution of mass and area; lower CO fractional abundance in mask 0 and 1 regions greatly increases mass determined in the analysis; masses determined with variable X(CO) and including diffuse regions agrees well with the found from L(CO); distribution of young stars as a function of molecular column density; star formation efficiency; star formation rate and gas depletion; and enlarged images of some of the regions with numerous young stars. Additional slides examine the origin of the Taurus molecular cloud, evolution from HI gas, kinematics as a clue to its origin, and its relationship to star formation.

  10. Two new hot white dwarfs in a region of exceptionally low hi density

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Wesemael, F.; Holberg, J. B.; Werner, K.; Buckley, D. A. H.; Stobie, R. S.; Fontaine, G.; Rosen, S. R.; Demers, S.; Lamontagne, R.

    1993-01-01

    We report the discovery of two hot white dwarfs which have the lowest line-of-sight neutral hydrogen column densities yet measured. The stars were found independently by the ROSAT EUV, Montreal-Cambridge-Tololo, and Edinburgh-Cape surveys. Follow-up observations made using the Voyager 2 ultraviolet spectrometer reveal strong continua shortward of the 912A Lyman limit from which we deduce that the neutral hydrogen column densities are 1.3 x 10(exp 17) and 2.0 x 10(exp 17) atoms/sq cm.

  11. Seasonal variability of the hydrogen exosphere of Mars

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.

    2017-05-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission measures both the upstream solar wind and collisional products from energetic neutral hydrogen atoms that precipitate into the upper atmosphere after their initial formation by charge exchange with exospheric hydrogen. By computing the ratio between the densities of these populations, we derive a robust measurement of the column density of exospheric hydrogen upstream of the Martian bow shock. By comparing with Chamberlain-type model exospheres, we place new constraints on the structure and escape rates of exospheric hydrogen, derived from observations sensitive to a different and potentially complementary column from most scattered sunlight observations. Our observations provide quantitative estimates of the hydrogen exosphere with nearly complete temporal coverage, revealing order of magnitude seasonal changes in column density and a peak slightly after perihelion, approximately at southern summer solstice. The timing of this peak suggests either a lag in the response of the Martian atmosphere to solar inputs or a seasonal effect driven by lower atmosphere dynamics. The high degree of seasonal variability implied by our observations suggests that the Martian atmosphere and the thermal escape of light elements depend sensitively on solar inputs.

  12. The early stages of massive star formation: tracing the physical and chemical conditions in hot cores

    NASA Astrophysics Data System (ADS)

    Calcutt, Hannah

    2015-04-01

    Molecules are essential to the formation of stars, by allowing radiation to escape the cloud and cooling to occur. Over 180 molecules have been detected in interstellar environments, ranging from comets to interstellar clouds. Their spectra are useful probes of the conditions in which these molecules form. Comparison of rest frequencies to observed frequencies can provide information about the velocity of gas and indicate physical structures. The density, temperature, and excitation conditions of gas can be determined directly from the spectra of molecules. Furthermore, by taking a chemical inventory of a particular object, one can gain an understanding of the chemical processes occurring within a cloud. The class of molecules known as complex molecules (>6 atoms), are of particular interest when probing the conditions in massive starforming environments, as they are observed to trace a more compact region than smaller molecules. This thesis details the work of my PhD, to explore how complex molecules can be used to trace the physical and chemical conditions in hot cores (HCs), one of the earliest stages of massive star formation. This work combines both the observations and chemical modelling of several different massive star-forming regions. We identify molecular transitions observed in the spectra of these regions, and calculate column densities and rotation temperatures of these molecules (Chapters 2 and 3). In Chapter 4, we chemically model the HCs, and perform a comparison between observational column densities and chemical modelling column densities. In Chapter 5, we look at the abundance ratio of three isomers, acetic acid, glycolaldehyde, and methyl formate, to ascertain whether this ratio can be used as an indicator of HC evolution. Finally, we explore the chemistry of the HC IRAS 17233-3606, to identify emission features in the spectra, and determine column densities and rotation temperatures of the detected molecules.

  13. The structure of the ISM in the Zone of Avoidance by high-resolution multi-wavelength observations

    NASA Astrophysics Data System (ADS)

    Tóth, L. V.; Doi, Y.; Pinter, S.; Kovács, T.; Zahorecz, S.; Bagoly, Z.; Balázs, L. G.; Horvath, I.; Racz, I. I.; Onishi, T.

    2018-05-01

    We estimate the column density of the Galactic foreground interstellar medium (GFISM) in the direction of extragalactic sources. All-sky AKARI FIS infrared sky survey data might be used to trace the GFISM with a resolution of 2 arcminutes. The AKARI based GFISM hydrogen column density estimates are compared with similar quantities based on HI 21cm measurements of various resolution and of Planck results. High spatial resolution observations of the GFISM may be important recalculating the physical parameters of gamma-ray burst (GRB) host galaxies using the updated foreground parameters.

  14. Diurnal variation of stratospheric chlorine monoxide - A critical test of chlorine chemistry in the ozone layer

    NASA Technical Reports Server (NTRS)

    Solomon, P. M.; De Zafra, R.; Parrish, A.; Barrett, J. W.

    1984-01-01

    Ground-based observations of a mm-wave spectral line at 278 GHz have yielded stratospheric chlorine monoxide column density diurnal variation records which indicate that the mixing ratio and column density of this compound above 30 km are about 20 percent lower than model predictions based on 2.1 parts/billion of total stratospheric chlorine. The observed day-to-night variation is, however, in good agreement with recent model predictions, both confirming the existence of a nighttime reservoir for chlorine and verifying the predicted general rate of its storage and retrieval.

  15. Deuterium Abundance Toward G191-B2B: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission

    NASA Technical Reports Server (NTRS)

    Lemoine, M.; Vidal-Madjar, A.; Hebrard, G.; Desert, J.-M.; Ferlet, R.; LecavelierdesEtangs, A.; Howk, J. C.; Andre, M.; Blair, W. P.; Friedman, S. D.; hide

    2002-01-01

    High-resolution spectra of the hot white dwarf G191-B2B covering the wavelength region 905-1187A were obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). This data was used in conjunction with existing high-resolution Hubble Space Telescope STIS observations to evaluate the total H(sub I), D(sub I), O(sub I) and N(sub I) column densities along the line of sight. Previous determinations of N(D(sub I)) based upon GHRS (Goddard High Resolution Spectrograph) and STIS (Space Telescope Imaging Spectrograph) observations were controversial due to the saturated strength of the D(sub I) Lyman alpha line. In the present analysis the column density of D(sub I) has been measured using only the unsaturated Lyman beta and Lyman gamma lines observed by FUSE. A careful inspection of possible systematic uncertainties tied to the modeling of the stellar continuum or to the uncertainties in the FUSE instrumental character series has been performed. The column densities derived are: log N(D(sub I)) = 13.40+/-0.07, log N(O(sub I)) = 14.86+/-0.07, and log N(N(sub I)) = 13.87+/-0.07 quoted with 2sigma, uncertainties. The measurement of the H(sub I) column density by profile fitting of the Lyman alpha line has been found to be unsecure. If additional weak hot interstellar components are added to the three detected clouds along the line of sight, the H(sub I)) column density can be reduced quite significantly, even though the signal-to-noise ratio and spectral resolution at Lyman alpha are excellent. The new estimate of N(H(sub I)) toward G191-B2B reads: logN(H (sub I)) = 18.18+/-0.18 (2sigma uncertainty), so that the average (D/H) ratio on the line of sight is: (D/H)= 1.66(+0.9/-0.6) x 10(exp -5) (2sigma uncertainty).

  16. Evolution of column density distributions within Orion A⋆

    NASA Astrophysics Data System (ADS)

    Stutz, A. M.; Kainulainen, J.

    2015-05-01

    We compare the structure of star-forming molecular clouds in different regions of Orion A to determine how the column density probability distribution function (N-PDF) varies with environmental conditions such as the fraction of young protostars. A correlation between the N-PDF slope and Class 0 protostar fraction has been previously observed in a low-mass star-formation region (Perseus); here we test whether a similar correlation is observed in a high-mass star-forming region. We used Herschel PACS and SPIRE cold dust emission observations to derive a column density map of Orion A. We used the Herschel Orion Protostar Survey catalog to accurately identify and classify the Orion A young stellar object content, including the cold and relatively short-lived Class 0 protostars (with a lifetime of ~0.14 Myr). We divided Orion A into eight independent regions of 0.25 square degrees (13.5 pc2); in each region we fit the N-PDF distribution with a power law, and we measured the fraction of Class 0 protostars. We used a maximum-likelihood method to measure the N-PDF power-law index without binning the column density data. We find that the Class 0 fraction is higher in regions with flatter column density distributions. We tested the effects of incompleteness, extinction-driven misclassification of Class 0 sources, resolution, and adopted pixel-scales. We show that these effects cannot account for the observed trend. Our observations demonstrate an association between the slope of the power-law N-PDF and the Class 0 fractions within Orion A. Various interpretations are discussed, including timescales based on the Class 0 protostar fraction assuming a constant star-formation rate. The observed relation suggests that the N-PDF can be related to an evolutionary state of the gas. If universal, such a relation permits evaluating the evolutionary state from the N-PDF power-law index at much greater distances than those accessible with protostar counts. Appendices are available in electronic form at http://www.aanda.orgThe N(H) map as a FITS file is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/L6

  17. The H I-to-H2 Transition in a Turbulent Medium

    NASA Astrophysics Data System (ADS)

    Bialy, Shmuel; Burkhart, Blakesley; Sternberg, Amiel

    2017-07-01

    We study the effect of density fluctuations induced by turbulence on the H I/H2 structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H I/H2 balance calculations. We derive atomic-to-molecular density profiles and the H I column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H I/H2 density profiles are strongly perturbed in turbulent gas, the mean H I column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends on (a) the radiation intensity-to-mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H I PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H I in the Perseus molecular cloud. We show that a narrow observed H I PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.

  18. Antibody-immobilized column for quick cell separation based on cell rolling.

    PubMed

    Mahara, Atsushi; Yamaoka, Tetsuji

    2010-01-01

    Cell separation using methodological standards that ensure high purity is a very important step in cell transplantation for regenerative medicine and for stem cell research. A separation protocol using magnetic beads has been widely used for cell separation to isolate negative and positive cells. However, not only the surface marker pattern, e.g., negative or positive, but also the density of a cell depends on its developmental stage and differentiation ability. Rapid and label-free separation procedures based on surface marker density are the focus of our interest. In this study, we have successfully developed an antiCD34 antibody-immobilized cell-rolling column, that can separate cells depending on the CD34 density of the cell surfaces. Various conditions for the cell-rolling column were optimized including graft copolymerization, and adjustment of the column tilt angle, and medium flow rate. Using CD34-positive and -negative cell lines, the cell separation potential of the column was established. We observed a difference in the rolling velocities between CD34-positive and CD34-negative cells on antibody-immobilized microfluidic device. Cell separation was achieved by tilting the surface 20 degrees and the increasing medium flow. Surface marker characteristics of the isolated cells in each fraction were analyzed using a cell-sorting system, and it was found that populations containing high density of CD34 were eluted in the delayed fractions. These results demonstrate that cells with a given surface marker density can be continuously separated using the cell rolling column.

  19. Observational Tracers of Hot and Cold Gas in Isolated Galaxy Simulations

    NASA Astrophysics Data System (ADS)

    Brzycki, Bryan; Silvia, Devin

    2018-01-01

    We present results from an analysis comparing simulations of isolated spiral galaxies with recent observations of the circumgalactic medium (CGM). As the interface containing inflows and outflows between the interstellar and intergalactic media, the CGM plays an important role in the composition and evolution of galaxies. Using a set of isolated galaxy simulations over different initial conditions and star formation and feedback parameters, we investigate the evolution of CGM gas. Specifically, in light of recent observational studies, we compute the radial column density profiles and covering fractions of various observable ion species (H I, C IV, O VI, Mg II, Si III) for each simulated galaxy. Taking uniformly random sightlines through the CGM of each simulated galaxy, we find the abundance of gas absorbers and analyze their contribution to the overall column density along each sightline. By identifying the prevalence of high column density absorbers, we seek to characterize the distribution and evolution of observable ion species in the CGM. We also highlight a subset of our isolated galaxy simulations that produce and maintain a stable precipitating CGM that fuels high rates of sustained star formation. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  20. The Mass and Absorption Columns of Galactic Gaseous Halos

    NASA Astrophysics Data System (ADS)

    Qu, Zhijie; Bregman, Joel N.

    2018-01-01

    The gaseous halo surrounding the galaxy is a reservoir for the gas on the galaxy disk, supplying materials for the star formation. We developed a gaseous halo model connecting the galactic disk and the gaseous halo by assuming the star formation rate is equal to the radiative cooling rate. Besides the single-phase collisional gaseous halo, we also consider the photoionization effect and a time-independent cooling model that assumes the mass cooling rate is constant over all temperatures. The photoionization dominates the low mass galaxy and the outskirts of the massive galaxy due to the low-temperature or low-density nature. The multi-phase cooling model dominates the denser region within the cooling radius, where the efficient radiative cooling must be included. Applying these two improvements, our model can reproduce the most of observed high ionization state ions (i.e., O VI, O VII, Ne VIII and Mg X). Our models show that the O VI column density is almost a constant of around 10^14 cm^-2 over a wide stellar mass from M_\\star ~10^8 M_Sun to 10^11 M_Sun, which is constant with current observations. This model also implies the O VI is photoionized for the galaxy with a halo mass <~ 3 * 10^11 M_Sun, while for more massive galaxies, the O VI is from the cooling-down medium from higher temperature materials (collisional ionized). As higher ionization states, Mg X and Ne VIII are also consistent with observations with the column density of 10^13.5 - 10^14.0 cm^-2, however, the absorber-galaxy pair sample is few to constrain the connection with the galaxy. Based on our calculation, such a gaseous halo cannot close the census of baryonic materials in the galaxy, which shows the same tendency as the baryonic fraction function of the EAGLE simulation. Finally, our model predicts plateaus of the Ne VIII and the Mg X column densities above the sub-L^* galaxy, and the possibly detectable O VII and O VIII column densities for low-mass galaxies, which help to determine the required detection limit for the future observations and missions.

  1. Long-term study of longitudinal dependence in primary particle precipitation in the north Jovian aurora

    NASA Technical Reports Server (NTRS)

    Livengood, T. A.; Strobel, D. F.; Moos, H. W.

    1990-01-01

    The wavelength-dependent absorption apparent in IUE spectra of the north Jovian aurora is analyzed to determine the column density of hydrocarbons above the altitude of the FUV auroral emission. Both the magnetotail and torus auroral zone models are considered in estimating zenith angles, with very similar results obtained for both models. It is found that the hydrocarbon column density above the FUV emission displays a consistent dependence on magnetic longitude, with the peak density occurring approximately coincident with the peak in the observed auroral intensity. Two distinct scenarios for the longitude dependence of the column density are discussed. In one, the Jovian upper atmosphere is longitudinally homogeneous, and the variation in optical depth is due to a variation in penetration, and thus energy, of the primary particles. In the other, the energy of the primaries is longitudinally homogeneous, and it is aeronomic properties which change, probably due to auroral heating.

  2. An analysis of OH excited state absorption lines in DR 21 and K3-50

    NASA Astrophysics Data System (ADS)

    Jones, K. N.; Doel, R. C.; Field, D.; Gray, M. D.; Walker, R. N. F.

    1992-10-01

    We present an analysis of the OH absorption line zones observed toward the compact H II regions DR 21 and K3-50. Using as parameters the kinetic and dust temperatures, the H2 number density and the ratio of OH-H2 number densities to the velocity gradient, the model quantitatively reproduces the absorption line data for the six main line transitions in 2 Pi3/2 J = 5/2, 7/2, and 9/2. Observed upper limits for the absorption or emission in the satellite lines of 2 Pi3/2 J = 5/2 are crucial in constraining the range of derived parameters. Physical conditions derived for DR 21 show that the kinetic temperature centers around 140 K, the H2 number density around 10 exp 7/cu cm, and that the OH column density in the excited state absorption zone lies between 1 x 10 exp 15/sq cm and 2 x 10 exp 15/sq cm. Including contributions from a J = 3/2 absorption zone, the total OH column density is more than a factor of 2 lower than estimates based upon LTE (Walmsley et al., 1986). The OH absorption zone in K3-50 tends toward higher density and displays a larger column density, while the kinetic temperature is similar. For both sources, the dust temperature is found to be significantly lower than the kinetic temperature.

  3. Molecular column densities in selected model atmospheres. [chemical analysis of carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Beebe, R. F.; Sneden, C.

    1974-01-01

    From an examination of predicted column densities, the following conclusions were drawn: (1) The SiO ought to be visible in carbon stars which were generated from triple alpha burning, but absent from carbon stars generated from the CNO bi-cycle. (2) Variation in the observed relative strengths of TiO and ZrO is indicative of real differences in the ratio Ti/Zr. (3) The TiO/ZrO ratio shows a small variation as C/O and effective temperature is changed. (4) Column density of silicon dicarbide (SiC2) is sensitive to abundance, temperature, and gravity; hence all relationships between the strength of SiC2 and other stellar parameters will show appreciable scatter. There is however, a substantial luminosity effect present in the SiC2 column densities. (5) Unexpectedly, SiC2 is anti-correlated with C2. (6) The presence of SiC2 in a carbon star eliminates the possibility of these stars having temperatures greater than or equal to 3000 K, or being produced through the CNO bi-cycle.

  4. Retrieval of tropospheric HCHO in El Salvador using ground based DOAS

    NASA Astrophysics Data System (ADS)

    Abarca, W.; Gamez, K.; Rudamas, C.

    2017-12-01

    Formaldehyde (HCHO) is the most abundant carbonyl in the atmosphere, being an intermediate product in the oxidation of most volatile organic compounds (VOCs). HCHO is carcinogenic, and highly water soluble [1]. HCHO can originate from biomass burning and fossil fuel combustion and has been observed from satellite and ground-based sensors by using the Differential Optical Absorption Spectroscopy (DOAS) technique [2].DOAS products can be used for air quality monitoring, validation of chemical transport models, validation of satellite tropospheric column density retrievals, among others [3]. In this study, we report on column density levels of HCHO measured by ground based Multi-Axis -DOAS in different locations of El Salvador in March, 2015. We have not observed large differences of the HCHO column density values at different viewing directions. This result points out a reasonably polluted and hazy atmosphere in the measuring sites, as reported by other authors [4]. Average values ranging from 1016 to 1017 molecules / cm2 has been obtained. The contribution of vehicular traffic and biomass burning to the column density levels in these sites of El Salvador will be discussed. [1] A. R. Garcia et al., Atmos. Chem. Phys. 6, 4545 (2006) [2] E. Peters et al., Atmos. Chem. Phys. 12, 11179 (2012) [3] T. Vlemmix, et al. Atmos. Meas. Tech., 8, 941-963, 2015 [4] A. Heckel et al., Atmos. Chem. Phys. 5, (2005)

  5. Stochastic Accumulation by Cortical Columns May Explain the Scalar Property of Multistable Perception

    NASA Astrophysics Data System (ADS)

    Cao, Robin; Braun, Jochen; Mattia, Maurizio

    2014-08-01

    The timing of certain mental events is thought to reflect random walks performed by underlying neural dynamics. One class of such events—stochastic reversals of multistable perceptions—exhibits a unique scalar property: even though timing densities vary widely, higher moments stay in particular proportions to the mean. We show that stochastic accumulation of activity in a finite number of idealized cortical columns—realizing a generalized Ehrenfest urn model—may explain these observations. Modeling stochastic reversals as the first-passage time of a threshold number of active columns, we obtain higher moments of the first-passage time density. We derive analytical expressions for noninteracting columns and generalize the results to interacting columns in simulations. The scalar property of multistable perception is reproduced by a dynamic regime with a fixed, low threshold, in which the activation of a few additional columns suffices for a reversal.

  6. Rocket-borne observation of singly ionized carbon 158 micron emission from the diffuse interstellar medium

    NASA Astrophysics Data System (ADS)

    Bock, James Joseph

    1994-01-01

    We report an observation of 158 micron line emission from singly ionized carbon from the diffuse interstellar medium at high galactic latitude. The integrated line intensity is measured in a 36 arcmin field-of-view along a triangular scan path in a 5 deg x 20 deg region in Ursa Major using a rocket-borne, liquid helium cooled spectrophotometer. The scan includes high latitude infrared cirrus, molecular clouds, a bright external galaxy, M82, and the HI Hole, which is a region of uniquely low neutral hydrogen column density. Emission from (CII) is observed in all regions and, in the absence of appreciable CO emission, is well correlated with neutral hydrogen column density. We observe a (CII) gas cooling rate which varies from (3.25 +/- 0.8 to 1.18 +/- 0.4) x 10-26 ergs-1 H-atom-1, in good agreement with recent observations of UV absorption lines at high galactic latitude. Regions with CO emission have enhanced (CII) line emission over that expected from the correlation with neutral hydrogen column density. The line-to-continuum ratio varies from I(CII)/lambda Ilambda = 0.002 to 0.008 in comparison with the all sky average of 0.0082 reported by FIRAS, which is heavily weighted towards the Galactic plane. The far-infrared continuum intensity, measured at 134 microns, 154 microns, and 186 microns, correlates with the 100 micron brightness measured by IRAS, and in regions excluding molecular clouds, with HI column density. The far-infrared brightness correlated with HI column density is fit by a thermal spectrum with a temperature T = 16.4 (+2.3/-1.8) K assuming an index of emissivity n = 2. The residual brightness after subtracting the emission correlated with neutral hydrogen column density yields an upper limit to the far-infrared extra-galactic background radiation of lambda Ilambda (154 microns) less than 2.6 x 10-12 W cm-2 sr-1. The observation of M82 confirms the laboratory calibration of the instrument. Unique instrumentation was developed to realize the instrument. A high sensitivity detection system consisting of stressed Ge:Ga photoconductors coupled to charge integrating amplifiers is described. We developed a compact, miniature He-4 refrigerator suitable for spaceborne operation. A silicon-gap Fabry-Perot filter, designed for use in high-throughput, compact optical systems, was developed. The performance of a far-infrared low-pass filter stack with high out-of-band rejection is reported. We tested the performance of a telescope baffle system with high-off axis rejection in a combination of ground-based and rocket-borne experiments. A submillimeter-black coating suitable for use in spaceborne telescopes is described. We report the laboratory testing of the instrument and the performance during the flight, and discuss the scientific implications of the observations.

  7. Rapid ionization of the environment of SN 1987A

    NASA Technical Reports Server (NTRS)

    Raga, A. C.

    1987-01-01

    It has been suggested by some authors that IUE observations of the supernova SN 1987A show the presence of a strong component of the interstellar C IV 1550 and Si IV 1393 absorption lines at a velocity that approximately corresponds to the velocity of the LMC. It is possible that this component might come from originally neutral (or at least not very highly ionized) gas which has been photoionized by the initially very strong ionizing radiation field of the supernova. Theoretical considerations of this scenario lead to the study of fast (with velocities of about c) ionization fronts. It is shown that for reasonable model parameters it is possible to obtain considerably large C IV column densities, in agreement with the IUE observations. On the other hand, the models do not so easily predict the large Si IV column densities that are also obtained from the IUE observations. It is found that only models in which the interstellar medium surrounding SN 1987A is initially composed of already ionized hydrogen and helium predict substantial Si IV column densities. This result provides an interesting prediction of the ionization state of the environment of the presupernova star.

  8. Optical observations of nearby interstellar gas

    NASA Astrophysics Data System (ADS)

    Frisch, P. C.; York, D. G.

    1984-11-01

    Observations indicated that a cloud with a heliocentric velocity of approximately -28 km/s and a hydrogen column density that possibly could be on the order of, or greater than, 5 x 10 to the 19 power/square cm is located within the nearest 50 to 80 parsecs in the direction of Ophiuchus. This is a surprisingly large column density of material for this distance range. The patchy nature of the absorption from the cloud indicates that it may not be a feature with uniform properties, but rather one with small scale structure which includes local enhancements in the column density. This cloud is probably associated with the interstellar cloud at about the same velocity in front of the 20 parsec distant star alpha Oph (Frisch 1981, Crutcher 1982), and the weak interstellar polarization found in stars as near as 35 parsecs in this general region (Tinbergen 1982). These data also indicate that some portion of the -14 km/s cloud also must lie within the 100 parsec region. Similar observations of both Na1 and Ca2 interstellar absorption features were performed in other lines of sight. Similar interstellar absorption features were found in a dozen stars between 20 and 100 parsecs of the Sun.

  9. Optical Observations of Nearby Interstellar Gas

    NASA Technical Reports Server (NTRS)

    Frisch, P. C.; York, D. G.

    1984-01-01

    Observations indicated that a cloud with a heliocentric velocity of approximately -28 km/s and a hydrogen column density that possibly could be on the order of, or greater than, 5 x 10 to the 19 power/square cm is located within the nearest 50 to 80 parsecs in the direction of Ophiuchus. This is a surprisingly large column density of material for this distance range. The patchy nature of the absorption from the cloud indicates that it may not be a feature with uniform properties, but rather one with small scale structure which includes local enhancements in the column density. This cloud is probably associated with the interstellar cloud at about the same velocity in front of the 20 parsec distant star alpha Oph (Frisch 1981, Crutcher 1982), and the weak interstellar polarization found in stars as near as 35 parsecs in this general region (Tinbergen 1982). These data also indicate that some portion of the -14 km/s cloud also must lie within the 100 parsec region. Similar observations of both Na1 and Ca2 interstellar absorption features were performed in other lines of sight. Similar interstellar absorption features were found in a dozen stars between 20 and 100 parsecs of the Sun.

  10. HIDEEP - an extragalactic blind survey for very low column-density neutral hydrogen

    NASA Astrophysics Data System (ADS)

    Minchin, R. F.; Disney, M. J.; Boyce, P. J.; de Blok, W. J. G.; Parker, Q. A.; Banks, G. D.; Freeman, K. C.; Garcia, D. A.; Gibson, B. K.; Grossi, M.; Haynes, R. F.; Knezek, P. M.; Lang, R. H.; Malin, D. F.; Price, R. M.; Stewart, I. M.; Wright, A. E.

    2003-12-01

    We have carried out an extremely long integration time (9000 s beam-1) 21-cm blind survey of 60 deg2 in Centaurus using the Parkes multibeam system. We find that the noise continues to fall as throughout, enabling us to reach an HI column-density limit of 4.2 × 1018 cm-2 for galaxies with a velocity width of 200 km s-1 in the central 32 deg2 region, making this the deepest survey to date in terms of column density sensitivity. The HI data are complemented by very deep optical observations from digital stacking of multi-exposure UK Schmidt Telescope R-band films, which reach an isophotal level of 26.5 R mag arcsec-2 (~=27.5 B mag arcsec-2). 173 HI sources have been found, 96 of which have been uniquely identified with optical counterparts in the overlap area. There is not a single source without an optical counterpart. Although we have not measured the column densities directly, we have inferred them from the optical sizes of their counterparts. All appear to have a column density of NHI= 1020.65+/-0.38. This is at least an order of magnitude above our sensitivity limit, with a scatter only marginally larger than the errors on NHI. This needs explaining. If confirmed it means that HI surveys will only find low surface brightness (LSB) galaxies with high MHI/LB. Gas-rich LSB galaxies with lower HI mass to light ratios do not exist. The paucity of low column-density galaxies also implies that no significant population will be missed by the all-sky HI surveys being carried out at Parkes and Jodrell Bank.

  11. Understanding star formation in molecular clouds. II. Signatures of gravitational collapse of IRDCs

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Csengeri, T.; Klessen, R. S.; Tremblin, P.; Ossenkopf, V.; Peretto, N.; Simon, R.; Bontemps, S.; Federrath, C.

    2015-06-01

    We analyse column density and temperature maps derived from Herschel dust continuum observations of a sample of prominent, massive infrared dark clouds (IRDCs) i.e. G11.11-0.12, G18.82-0.28, G28.37+0.07, and G28.53-0.25. We disentangle the velocity structure of the clouds using 13CO 1→0 and 12CO 3→2 data, showing that these IRDCs are the densest regions in massive giant molecular clouds (GMCs) and not isolated features. The probability distribution function (PDF) of column densities for all clouds have a power-law distribution over all (high) column densities, regardless of the evolutionary stage of the cloud: G11.11-0.12, G18.82-0.28, and G28.37+0.07 contain (proto)-stars, while G28.53-0.25 shows no signs of star formation. This is in contrast to the purely log-normal PDFs reported for near and/or mid-IR extinction maps. We only find a log-normal distribution for lower column densities, if we perform PDFs of the column density maps of the whole GMC in which the IRDCs are embedded. By comparing the PDF slope and the radial column density profile of three of our clouds, we attribute the power law to the effect of large-scale gravitational collapse and to local free-fall collapse of pre- and protostellar cores for the highest column densities. A significant impact on the cloud properties from radiative feedback is unlikely because the clouds are mostly devoid of star formation. Independent from the PDF analysis, we find infall signatures in the spectral profiles of 12CO for G28.37+0.07 and G11.11-0.12, supporting the scenario of gravitational collapse. Our results are in line with earlier interpretations that see massive IRDCs as the densest regions within GMCs, which may be the progenitors of massive stars or clusters. At least some of the IRDCs are probably the same features as ridges (high column density regions with N> 1023 cm-2 over small areas), which were defined for nearby IR-bright GMCs. Because IRDCs are only confined to the densest (gravity dominated) cloud regions, the PDF constructed from this kind of a clipped image does not represent the (turbulence dominated) low column density regime of the cloud. The column density maps (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A29

  12. The H i-to-H{sub 2} Transition in a Turbulent Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bialy, Shmuel; Sternberg, Amiel; Burkhart, Blakesley, E-mail: shmuelbi@mail.tau.ac.il

    2017-07-10

    We study the effect of density fluctuations induced by turbulence on the H i/H{sub 2} structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H i/H{sub 2} balance calculations. We derive atomic-to-molecular density profiles and the H i column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H i/H{sub 2} density profiles are strongly perturbed in turbulent gas, the mean H i column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends onmore » (a) the radiation intensity–to–mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H i PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H i in the Perseus molecular cloud. We show that a narrow observed H i PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.« less

  13. The structure and statistics of interstellar turbulence

    NASA Astrophysics Data System (ADS)

    Kritsuk, A. G.; Ustyugov, S. D.; Norman, M. L.

    2017-06-01

    We explore the structure and statistics of multiphase, magnetized ISM turbulence in the local Milky Way by means of driven periodic box numerical MHD simulations. Using the higher order-accurate piecewise-parabolic method on a local stencil (PPML), we carry out a small parameter survey varying the mean magnetic field strength and density while fixing the rms velocity to observed values. We quantify numerous characteristics of the transient and steady-state turbulence, including its thermodynamics and phase structure, kinetic and magnetic energy power spectra, structure functions, and distribution functions of density, column density, pressure, and magnetic field strength. The simulations reproduce many observables of the local ISM, including molecular clouds, such as the ratio of turbulent to mean magnetic field at 100 pc scale, the mass and volume fractions of thermally stable Hi, the lognormal distribution of column densities, the mass-weighted distribution of thermal pressure, and the linewidth-size relationship for molecular clouds. Our models predict the shape of magnetic field probability density functions (PDFs), which are strongly non-Gaussian, and the relative alignment of magnetic field and density structures. Finally, our models show how the observed low rates of star formation per free-fall time are controlled by the multiphase thermodynamics and large-scale turbulence.

  14. The relationship between the galactic matter distribution, cosmic ray dynamics, and gamma ray production

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C. E.; Thompson, D. J.

    1976-01-01

    Theoretical considerations and analysis of the results of gamma ray astronomy suggest that the galactic cosmic rays are dynamically coupled to the interstellar matter through the magnetic fields, and hence the cosmic ray density should be enhanced where the matter density is greatest on the scale of galactic arms. This concept has been explored in a galactic model using recent 21 cm radio observations of the neutral hydrogen and 2.6 mm observations of carbon monoxide, which is considered to be a tracer of molecular hydrogen. The model assumes: (1) cosmic rays are galactic and not universal; (2) on the scale of galactic arms, the cosmic ray column (surface) density is proportional to the total interstellar gas column density; (3) the cosmic ray scale height is significantly larger than the scale height of the matter; and (4) ours is a spiral galaxy characterized by an arm to interarm density ratio of about 3:1.

  15. A RELATION BETWEEN THE WARM NEUTRAL AND IONIZED MEDIA OBSERVED IN THE CANADIAN GALACTIC PLANE SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foster, T.; Kothes, R.; Brown, J. C., E-mail: Tyler.Foster@nrc-cnrc.gc.ca

    2013-08-10

    We report on a comparison between 21 cm rotation measure (RM) and the optically thin atomic hydrogen column density (N{sub H{sub I}}({tau} {yields} 0)) measured toward unresolved extragalactic sources in the Galactic plane of the northern sky. H I column densities integrated to the Galactic edge are measured immediately surrounding each of nearly 2000 sources in 1 arcmin 21 cm line data, and are compared to RMs observed from polarized emission of each source. RM data are binned in column density bins 4 Multiplication-Sign 10{sup 20} cm{sup -2} wide, and one observes a strong relationship between the number of hydrogenmore » atoms in a 1 cm{sup 2} column through the plane and the mean RM along the same line of sight and path length. The relationship is linear over one order of magnitude (from 0.8 to 14 Multiplication-Sign 10{sup 21} atoms cm{sup -2}) of column densities, with a constant RM/N{sub H{sub I}}{approx} -23.2 {+-} 2.3 rad m{sup -2}/10{sup 21} atoms cm{sup -2}, and a positive RM of 45.0 {+-} 13.8 rad m{sup -2} in the presence of no atomic hydrogen. This slope is used to calculate a mean volume-averaged magnetic field in the second quadrant of (B{sub Parallel-To }) {approx}1.0 {+-} 0.1 {mu}G directed away from the Sun, assuming an ionization fraction of 8% (consistent with the warm-neutral medium; WNM). The remarkable consistency between this field and (B) = 1.2 {mu}G found with the same RM sources and a Galactic model of dispersion measures (DMs) suggests that electrons in the partially ionized WNM are mainly responsible for pulsar DMs, and thus the partially ionized WNM is the dominant form of the magneto-ionic interstellar medium.« less

  16. The Far-Infrared Spectrum of Arp 220

    NASA Technical Reports Server (NTRS)

    Gonzalez-Alfonso, Eduardo; Smith, Howard A.; Fischer, Jacqueline; Cernicharo, Jose

    2004-01-01

    ISO/LWS grating observations of the ultraluminous infrared galaxy Arp 220 shows absorption in molecular lines of OH, H 2 0 , CH, NH, and "3, well as in the [0 I] 63 pm line and emission in the [C 111 158 pm line. We have modeled the continuum and the emission/absorption of all observed features by means of a non-local radiative transfer code. The continuum from 25 to 1300 pm is modeled AS A WARM (106 K) NUCLEAR REGION THAT IS OPTICALLY THICK IN THE FAR-INFRARED, attenuated by an extended region (size 2") that is heated mainly through absorption of nuclear infrared radiation. The molecular absorption in the nuclear region is characterized by high excitation due to the high infrared radiation density. The OH column densities are high toward the nucleus and the extended region (about 2 x 10 sup 17 cm sup-2). The H2O column density is also high toward the nucleus (2 - 10 x 1017 cm-2) and lower in the extended region. The column densities in a halo that accounts for the absorption by the lowest lying levels are similar to what are found in the diffuse clouds toward the star forming regions in the Sgr B2 molecular cloud complex near the Galactic Center. Most notable are the high column densities found for NH and NH3 toward the nucleus, with values of about 1.5 x 10supl6 cmsup-2 and about 3 x 10supl6 cmsup-2, respectively, whereas the NH2 column density is lower than about 2 x 10sup15 cmsup-2. A combination of PDRs in the extended region and hot cores with enhanced H20 photodissociation and a possible shock contribution in the nuclei may explain the relative column densities of OH and H20, whereas the nitrogen chemistry may be strongly affected by cosmic ray ionization. The [C II] 158 pm line is well reproduced by our models and its "deficit" relative to the CII/FIR ratio in normal and starburst galaxies is suggested to be mainly a consequence of the dominant non-PDR component of far- infrared radiation, ALTHOUGH OUR MODELS ALONE CANNOT RULE OUT EXTINCTION EFFECTS IN THE NUCLEI.

  17. The Far-Infrared Spectrum of Arp 220

    NASA Technical Reports Server (NTRS)

    Gonzalez-Alfonso, Eduardo; Smith, Howard A.; Fischer, Jacqueline; Cernicharo, Jose

    2005-01-01

    ISO/LWS grating observations of the ultraluminous infrared galaxy Arp 220 shows absorption in molecular lines of OH, H(sub 2)O, CH, NH, and NH(sub 3), as well as in the [O I] 63 micron line and emission in the [C II] 158 micron line. We have modeled the continuum and the emission/absorption of all observed features by means of a non-local radiative transfer code. The continuum from 25 to 1300 microns is modeled as a warm (106 K) nuclear region that is optically thick in the far-infrared, attenuated by an extended region (size 2") that is heated mainly through absorption of nuclear infrared radiation. The molecular absorption in the nuclear region is characterized by high excitation due to the high infrared radiation density. The OH column densities are high toward the nucleus (2 - 6 x 10(exp 17) cm(exp -2)) and the extended region (approximately 2 x 10(exp 17) cm(exp -2)). The H(sub 2)O column density is also high toward the nucleus (2 - 10 x 10(exp 17) cm(exp -2)) and lower in the extended region. The column densities in a halo that accounts for the absorption by the lowest lying levels are similar to what are found in the diffuse clouds toward the star forming regions in the Sgr B2 molecular cloud complex near the Galactic Center. Most notable are the high column densities found for NH and NH(sub 3) toward the nucleus, with values of approximately 1.5 x 10(exp 16) cm(exp -2) and approximately 3 x 10(exp 16) cm(exp -2), respectively, whereas the NH(sub 2) column density is lower than approximately 2 x 10(exp 15) cm(exp -2). A combination of PDRs in the extended region and hot cores with enhanced H(sub 2)O photodissociation and a possible shock contribution in the nuclei may explain the relative column densities of OH and H(sub 2)O, whereas the nitrogen chemistry may be strongly affected by cosmic ray ionization. The [C II] 158 micron line is well reproduced by our models and its deficit relative to the CII/FIR ratio in normal and starburst galaxies is suggested to be mainly a consequence of the dominant non-PDR component of far-infrared radiation, although our models alone cannot rule out extinction effects in the nuclei.

  18. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2014-01-03

    The pressure, temperature and density drops along SFC columns eluted with a CO2/methanol mobile phase were measured and compared with theoretical values. For columns packed with 3- and 5-μm particles the pressure and temperature drops were measured using a mobile phase of 95% CO2 and 5% methanol at a flow rate of 5mL/min, at temperatures from 20 to 100°C, and outlet pressures from 80 to 300bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath, either bare or covered with foam insulation. The experimental measurements were compared to theoretical results obtained by numerical simulation. For the convective air condition at outlet pressures above 100bar the average difference between the experimental and calculated temperature drops and pressure drops were 0.1°C and 0.7% for the bare 3-μm column, respectively, and were 0.6°C and 4.1% for the insulated column. The observed temperature drops for the insulated columns are consistent with those predicted by the Joule-Thomson coefficients for isenthalpic expansion. The dependence of the temperature and the pressure drops on the Joule-Thomson coefficient and kinematic viscosity are described for carbon dioxide mobile phases containing up to 20% methanol. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Single fiber lignin distributions based on the density gradient column method

    Treesearch

    Brian Boyer; Alan W. Rudie

    2007-01-01

    The density gradient column method was used to determine the effects of uniform and non-uniform pulping processes on variation in individual fiber lignin concentrations of the resulting pulps. A density gradient column uses solvents of different densities and a mixing process to produce a column of liquid with a smooth transition from higher density at the bottom to...

  20. CO Column Density and Extinction in the Chamaeleon II--III Dark-Cloud Complex

    NASA Astrophysics Data System (ADS)

    Hayakawa, Takahiro; Cambrésy, Laurent; Onishi, Toshikazu; Mizuno, Akira; Fukui, Yasuo

    2001-12-01

    We carried out 13CO (J = 1 -- 0) and C18O (J = 1 -- 0) observations of the Chamaeleon II--III dark-cloud complex with the NANTEN radio telescope. The column densities of both molecular isotopes were derived assuming LTE. The AV values were obtained by scaling the AV values that were derived using an adaptive-grid star-count method applied to the DENIS J-band data. We established the AV--CO isotope column-density relations in Cha II and III, and compared them with those in Cha I. The slopes of the AV--13CO relations for Cha II and III are steeper than that for Cha I. Those of the AV -- C18O relations are similar among the three clouds. The total column density ratio, N(13O) / N(C18O, in Cha I tends to be small compared with those in Cha II or Cha III; the ratios range from ~ 5 to ~ 25 at low extinction in Cha II and III, but at most ~ 10 in Cha I. We suggest that the increase of N(13CO) due to the 13CO formation process causes cloud-to-cloud variations in the AV -- N(13CO) correlation.

  1. Analysis of record-breaking low ozone values during the 1997 winter over NDSC Station Lauder, New Zealand

    NASA Technical Reports Server (NTRS)

    Brinksma, E. J.; Meijer, Y. J.; Connor, B. J.; Manney, G. L.; Bergwerff, J. B.; Bodeker, G. E.; Boyd, I. S.; Liley, J. B.; Hogervorst, W.; Hovenier, J. W.; hide

    1998-01-01

    During early August 1997, the ozone column density measured over Lauder was unusually low, with a minimum value of 222 Dobson Units (DU) at August 10. These observations are striking since in August, during the Austral winter, the ozone column density should be heading towards its yearly maximum; The August mean ozone column density measured over Lauder between 1987 and 1996 was 348(+/-28) DU, the lowest monthly average in these ten years was 255 DU. Regular altitude profile measurements of ozone, performed at Network for the Detection of Stratospheric Change (NDSC) station Lauder, make it possible to do a detailed, altitude-resolved, study of the low ozone observations. The measurements show ozone poor air in two altitude regions of the stratosphere: A 'high region', extending from the 600 K to the 1050 K isentrope (25 to 34 km), and a 'low region', below about 550 K (22 km). High resolution reverse trajectory maps of potential vorticity (PV) and ozone mixing ratio, based on the assumption of passive advection by the large-scale three-dimensional winds, show that in the 'high region' the ozone poor air was part of the polar vortex, which was centered off the pole and extended over Lauder for several days, while in the 'low region' the ozone poor air was mixed in from low latitudes. A rapid recovery of the ozone column density, by more than 110 DU within 24 hours, was observed when in the low region an ozone rich filament of the polar vortex moved over Lauder, while in the high region the (ozone poor) high part of the vortex moved away.

  2. Using Cassini UVIS Data to Constrain Enceladus' Libration State

    NASA Technical Reports Server (NTRS)

    Hurford, Terry A.; Helfenstein, P.; Hansen, C.

    2010-01-01

    Given the non-spherical shape of Enceladus, the satellite may experience gravitational torques that will cause it to physically librate as it orbits Saturn. Physical libration would produce a diurnal oscillation in the longitude of Enceladus' tidal bulge, which could have a profound effect on the diurnal stresses experienced by the surface of the satellite. Although Cassini ISS has placed an observational upper limit on Enceladus' libration amplitude, stall amplitude librations may have geologically significant consequences. For example, a physical libration will affect heat production along the tiger stripes as produced by tidal shear heating and a previous study has explored possible libration states that provided better matches to Cassini CIRS observations of heat along the tiger stripes. Cassini UVIS stellar occultations provided measurements of the column density of the Enceladus plume at two different points in Enceladus' orbit and find comparable column density values. This column density may be a reflection of the amount of the tiger stripe rifts in tension and able to vent volatiles and a physical libration will also affect the fraction of tiger stripe in tension at different points in the orbit. We have modeled the expected fraction of tiger stripes in tension under different libration conditions. Without libration the amount of tiger stripe rifts in tension at both paints in the orbit would not be comparable and therefore may not allow comparable amounts of volatiles to escape. However, we identify libration conditions that do allow comparable amounts of the tiger stripes to be in tension at each point in the orbit, which might lead to comparable column densities. The librations identified coincide with possible librations states identified in the earlier study, which used Cassini CIRS observations.

  3. X-ray wind tomography of IGR J17252-3616

    NASA Astrophysics Data System (ADS)

    Manousakis, Antonios; Walter, Roland

    IGR J17252-3616 is an heavily absorbed and eclipsing High Mass X-ray Binary with an ab-sorbing hydrogen column density >1023 cm-2 . We have observed it with XMM-Newton to understand the geometry of the absorbing material. Observations were scheduled in order to cover as many orbital phases as possible. Timing analysis is constraining the orbital solution and the physical parameters of the system. Spectral analysis reveals remarkable variations of the absorbing column density and of the Iron Kα fluorescence line around the eclipse. These variations allow to map the geometry of the absorbing and reflection material. Very large accretion structures could be imaged for the first time.

  4. The Zone of Avoidance as an X-ray absorber - the role of the galactic foreground modelling Swift XRT spectra

    NASA Astrophysics Data System (ADS)

    Racz, I. I.; Bagoly, Z.; Tóth, L. V.; Balázs, L. G.; Horvath, I.; Zahorecz, S.

    2018-05-01

    Gamma-ray bursts (GRBs) are the most powerful explosive events in the Universe. The prompt gamma emission is followed by an X-ray afterglow that is also detected for over nine hundred GRBs by the Swift BAT and XRT detectors. The X-ray afterglow spectrum bears essential information about the burst, and the surrounding interstellar medium (ISM). Since the radiation travels through the line of sight intergalactic medium and the ISM in the Milky Way, the observed emission is influenced by extragalactic and galactic components. The column density of the Galactic foreground ranges several orders of magnitudes, due to both the large scale distribution of ISM and its small scale structures. We examined the effect of local HI column density on the penetrating X-ray emission, as the first step towards a precise modeling of the measured X-ray spectra. We fitted the X-ray spectra using the Xspec software, and checked how the shape of the initially power low spectrum changes with varying input Galactic HI column density. The total absorbing HI column is a sum of the intrinsic and Galactic component. We also investigated the model results for the intrinsic component varying the Galactic foreground. We found that such variations may alter the intrinsic hydrogen column density up to twenty-five percent. We will briefly discuss its consequences.

  5. A Deep Herschel/PACS Observation of CO(40-39) in NGC 1068: A Search for the Molecular Torus

    NASA Astrophysics Data System (ADS)

    Janssen, A. W.; Bruderer, S.; Sturm, E.; Contursi, A.; Davies, R.; Hailey-Dunsheath, S.; Poglitsch, A.; Genzel, R.; Graciá-Carpio, J.; Lutz, D.; Tacconi, L.; Fischer, J.; González-Alfonso, E.; Sternberg, A.; Veilleux, S.; Verma, A.; Burtscher, L.

    2015-10-01

    Emission from high-J CO lines in galaxies has long been proposed as a tracer of X-ray dominated regions (XDRs) produced by active galactic nuclei (AGNs). Of particular interest is the question of whether the obscuring torus, which is required by AGN unification models, can be observed via high-J CO cooling lines. Here we report on the analysis of a deep Herschel/PACS observation of an extremely high-J CO transition (40-39) in the Seyfert 2 galaxy NGC 1068. The line was not detected, with a derived 3σ upper limit of 2× {10}-17 {{W}} {{{m}}}-2. We apply an XDR model in order to investigate whether the upper limit constrains the properties of a molecular torus in NGC 1068. The XDR model predicts the CO spectral line energy distributions for various gas densities and illuminating X-ray fluxes. In our model, the CO(40-39) upper limit is matched by gas with densities of ˜ {10}6-{10}7 {{cm}}-3, located at 1.6-5 pc from the AGN, with column densities of at least {10}25 {{cm}}-2. At such high column densities, however, dust absorbs most of the CO(40-39) line emission at λ =65.69 μ {{m}}. Therefore, even if NGC 1068 has a molecular torus that radiates in the CO(40-39) line, the dust can attenuate the line emission to below the PACS detection limit. The upper limit is thus consistent with the existence of a molecular torus in NGC 1068. In general, we expect that the CO(40-39) is observable in only a few AGN nuclei (if at all), because of the required high gas column density, and absorption by dust.

  6. A {sup 13}CO SURVEY OF INTERMEDIATE-MASS STAR-FORMING REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundquist, Michael J.; Kobulnicky, Henry A.; Kerton, Charles R.

    2015-06-10

    We have conducted a {sup 13}CO survey of a sample of 128 infrared color-selected intermediate-mass star-forming region (IM SFR) candidates. We utilized the Onsala 20 m telescope to observe {sup 13}CO (1–0) toward 67 northern IM SFRs, used the 12 m Atacama Pathfinder Experiment telescope to observe {sup 13}CO (2–1) toward 22 southern IM SFRs, and incorporated an additional 39 sources from the Boston University Five College Radio Astronomy Observatory Galactic Ring Survey which observed {sup 13}CO (1–0). We detect {sup 13}CO (1–0) in 58 of the 67 northern sources and {sup 13}CO (2–1) in 20 of the 22 southernmore » sources. The mean molecular column densities and {sup 13}CO linewidths in the inner Galaxy are higher by factors of 3.4 and 1.5, respectively, than the outer Galaxy. We attribute this difference to molecular clouds in the inner Galaxy being more massive and hosting star forming regions with higher luminosities on average than the outer Galaxy. IM SFRs have mean a molecular column density of 7.89 × 10{sup 21} cm{sup −2}, a factor of 3.1 lower than that for a sample of high-mass regions, and have a mean {sup 13}CO linewidth of 1.84 km s{sup −1}, a factor of 1.5 lower than that for high-mass regions. We demonstrate a correlation between {sup 13}CO linewidth and infrared luminosity as well as between molecular column density and infrared luminosity for the entire sample of intermediate-mass and high-mass regions. IM SFRs appear to form in distinctly lower-density environments with mean linewidths and beam-averaged column densities a factor of several lower than high-mass star-forming regions.« less

  7. Temperature Dependence of the Rate Constant for the CH3 Recombination Reaction: A Loss Process in Outer Planet Atmospheres

    NASA Technical Reports Server (NTRS)

    Cody, R. J.; Payne, W. A.; Thorn, R. P., Jr.; Romani, P. N.; Stief, L. J.; Nesbitt, F. L.; Iannone, M. A.; Tardy, D. C.

    2002-01-01

    The methyl free radical (CH3) has been observed in the atmospheres of Saturn and Neptune by the ISO satellite. There are discrepancies between the column densities for the CH3 radical derived from the ISO observations and the column densities derived from atmospheric photochemical models. For Neptune the model column density is 1.5 times that derived from ISO. For Saturn the model is 6 times that from ISO. The recombination of methyl radicals is the major loss process for methyl in these atmospheres. The serious disagreement between observed and calculated levels of CH3 has led to suggestions that the atmospheric models greatly underestimated the loss of CH3 due to poor knowledge of the rate of the reaction (1) CH3 + CH3 + M goes to C2H6 + M at the low temperatures and pressures of these atmospheric systems. Although the reaction CH3 + CH3 + M goes to C2H6 + M has been extensively studied both theoretically and experimentally, the laboratory conditions have been, with only a few exceptions, higher temperatures (T greater than 298K), higher pressures (P greater than or equal to 10 Torr - 13.3 mbar) or M=Ar rather than H2 or He as the bath gas.

  8. Ground-based measurement of column-averaged mixing ratios of methane and carbon dioxide in the Sichuan Basin of China by a desktop optical spectrum analyzer

    NASA Astrophysics Data System (ADS)

    Qin, Xiu-Chun; Nakayama, Tomoki; Matsumi, Yutaka; Kawasaki, Masahiro; Ono, Akiko; Hayashida, Sachiko; Imasu, Ryoichi; Lei, Li-Ping; Murata, Isao; Kuroki, Takahiro; Ohashi, Masafumi

    2018-01-01

    Remote sensing of the atmospheric greenhouse gases, methane (CH4) and carbon dioxide (CO2), contributes to the understanding of global warming and climate change. A portable ground-based instrument consisting of a commercially available desktop optical spectrum analyzer and a small sun tracker has been applied to measure the column densities of atmospheric CH4 and CO2 at Yanting observation station in a mountainous paddy field of the Sichuan Basin from September to November 2013. The column-averaged dry-air molar mixing ratios, XCH4/XCO2, are compared with those retrieved by satellite observations in the Sichuan Basin and by ground-based network observations in the same latitude zone as the Yanting observation station.

  9. Desorption and Bioavailability of PAHs in Contaminated Soil Subjected to Long-Term In Situ Biostimulation

    PubMed Central

    Richardson, Stephen D.; Aitken, Michael D.

    2011-01-01

    The distribution and potential bioavailability of polycyclic aromatic hydrocarbons (PAHs) in soil from a former manufactured-gas plant (MGP) site were examined before and after long-term biostimulation under simulated in situ conditions. Treated soil was collected from the oxygenated zones of two continuous-flow columns, one subjected to biostimulation and the other serving as a control, and separated into low- and high-density fractions. In the original soil, over 50% of the total PAH mass was associated with lower-density particles, which comprised < 2% of the total soil mass. However, desorbable fractions of PAHs were much lower in the low-density material than in the high-density material. After over 500 d of biostimulation, significant removal of total PAHs occurred in both the high- and low-density materials (77% and 53%, respectively), with three- and four-ring PAHs accounting for the majority of the observed mass loss. Total PAHs that desorbed over a 28-d period were substantially lower in treated soil from the biostimulated column than in the original soil for both the high-density material (23 versus 63%) and low-density material (5 versus 20%). The fast-desorbing fractions quantified by a two-site desorption model ranged from 0.1 to 0.5 for most PAHs in the original soil but were essentially zero in the biostimulated soil. The fast-desorbing fractions in the original soil underestimated the extent of PAH biodegradation observed in the biostimulated column, and thus was not a good predictor of PAH bioavailability after long-term, simulated in situ biostimulation. PMID:21932296

  10. A logNHI = 22.6 Damped Lyα Absorber in a Dark Gamma-Ray Burst: The Environment of GRB 050401

    NASA Astrophysics Data System (ADS)

    Watson, D.; Fynbo, J. P. U.; Ledoux, C.; Vreeswijk, P.; Hjorth, J.; Smette, A.; Andersen, A. C.; Aoki, K.; Augusteijn, T.; Beardmore, A. P.; Bersier, D.; Castro Cerón, J. M.; D'Avanzo, P.; Diaz-Fraile, D.; Gorosabel, J.; Hirst, P.; Jakobsson, P.; Jensen, B. L.; Kawai, N.; Kosugi, G.; Laursen, P.; Levan, A.; Masegosa, J.; Näränen, J.; Page, K. L.; Pedersen, K.; Pozanenko, A.; Reeves, J. N.; Rumyantsev, V.; Shahbaz, T.; Sharapov, D.; Sollerman, J.; Starling, R. L. C.; Tanvir, N.; Torstensson, K.; Wiersema, K.

    2006-12-01

    The optical afterglow spectrum of GRB 050401 (at z=2.8992+/-0.0004) shows the presence of a damped Lyα absorber (DLA), with logNHI=22.6+/-0.3. This is the highest column density ever observed in a DLA and is about 5 times larger than the strongest DLA detected so far in any QSO spectrum. From the optical spectrum, we also find a very large Zn column density, implying an abundance of [Zn/H]=-1.0+/-0.4. These large columns are supported by the early X-ray spectrum from Swift XRT, which shows a column density (in excess of Galactic) of logNH=22.21+0.06-0.08 assuming solar abundances (at z=2.9). The comparison of this X-ray column density, which is dominated by absorption due to α-chain elements, and the H I column density derived from the Lyα absorption line allows us to derive a metallicity for the absorbing matter of [α/H]=-0.4+/-0.3. The optical spectrum is reddened and can be well reproduced with a power law with SMC extinction, where AV=0.62+/-0.06. But the total optical extinction can also be constrained independent of the shape of the extinction curve: from the optical to X-ray spectral energy distribution, we find 0.5<~AV<~4.5. However, even this upper limit, independent of the shape of the extinction curve, is still well below the dust column that is inferred from the X-ray column density, i.e., AV=9.1+1.4-1.5. This discrepancy might be explained by a small dust content with high metallicity (low dust-to-metals ratio). ``Gray'' extinction cannot explain the discrepancy, since we are comparing the metallicity to a measurement of the total extinction (without reference to the reddening). Little dust with high metallicity may be produced by sublimation of dust grains or may naturally exist in systems younger than a few hundred megayears. Based in part on observations made at the European Southern Observatory, Paranal, Chile under program 075.D-0270, with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, with the Wide Field Camera (WFCAM) on the United Kingdom Infrared Telescope, which is operated by the Joint Astronomy Centre on behalf of the UK Particle Physics and Astronomy Research Council, and on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  11. Temporal and spatial distribution of metallic species in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Correira, John Thomas

    2009-06-01

    Every day the Earth is bombarded by approximately 100 tons of meteoric material. Much of this material is completely ablated on atmospheric entry, resulting in a layer of atomic metals in the upper atmosphere between 70 km - 150 km. These neutral atoms are ionized by solar radiation and charge exchange. Metal ions have a long lifetime against recombination loss, allowing them to be redistributed globally by electromagnetic forces, especially when lifted to altitudes >150 km. UV radiances from the Global Ozone Monitoring Experiment (GOME) spectrometer are used to determine long-term dayside variations of the total vertical column density below 795 km of the meteoric metal species Mg and Mg + in the upper atmosphere. A retrieval algorithm developed to determine magnesium column densities was applied to all available data from the years 1996-2001. Long term results show middle latitude dayside Mg + peaks in vertical content during the summer, while neutral Mg demonstrates a much more subtle maximum in summer. Atmospheric metal concentrations do not correlate strongly solar activity. An analysis of spatial variations shows geospatial distributions are patchy, with local regions of increased column density. To study short term variations and the role of meteor showers a time dependent mass flux rate is calculated using published estimates of meteor stream mass densities and activity profiles. An average daily mass flux rate is also calculated and used as a baseline against which shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal column densities. There appears to be little correlation between modeled meteor shower mass flux rates and changes in the observed neutral magnesium and Mg + metal column densities.

  12. Survey Observations to Study Chemical Evolution from High-mass Starless Cores to High-mass Protostellar Objects. I. HC3N and HC5N

    NASA Astrophysics Data System (ADS)

    Taniguchi, Kotomi; Saito, Masao; Sridharan, T. K.; Minamidani, Tetsuhiro

    2018-02-01

    We carried out survey observations of HC3N and HC5N in the 42‑45 GHz band toward 17 high-mass starless cores (HMSCs) and 35 high-mass protostellar objects (HMPOs) with the Nobeyama 45 m radio telescope. We have detected HC3N from 15 HMSCs and 28 HMPOs, and HC5N from 5 HMSCs and 14 HMPOs, respectively. The average values of the column density of HC3N are found to be (5.7+/- 0.7) × {10}12 and (1.03+/- 0.12)×{10}13 cm‑2 in HMSCs and HMPOs, respectively. The average values of the fractional abundance of HC3N are derived to be (6.6+/- 0.8)× {10}-11 and (3.6+/- 0.5)× {10}-11 in HMSCs and HMPOs, respectively. We find that the fractional abundance of HC3N decreases from HMSCs to HMPOs using the Kolmogorov–Smirnov test. On the other hand, its average value of the column density slightly increases from HMSCs to HMPOs. This may imply that HC3N is newly formed in dense gas in HMPO regions. We also investigate the relationship between the column density of HC3N in HMPOs and the luminosity-to-mass ratio (L/M), a physical evolutional indicator. The column density of HC3N tends to decrease with the increase of the L/M ratio, which suggests that HC3N is destroyed by the stellar activities.

  13. Wide-field SCUBA-2 observations of NGC 2264: submillimetre clumps and filaments

    NASA Astrophysics Data System (ADS)

    Buckle, J. V.; Richer, J. S.

    2015-10-01

    We present wide-field observations of the NGC 2264 molecular cloud in the dust continuum at 850 and 450 μm using SCUBA-2 on the James Clerk Maxwell Telescope. Using 12CO 3 → 2 molecular line data, we determine that emission from CO contaminates the 850 μm emission at levels ˜30 per cent in localized regions associated with high-velocity molecular outflows. Much higher contamination levels of 60 per cent are seen in shocked regions near the massive star S Mon. If not removed, the levels of CO contamination would contribute an extra 13 per cent to the dust mass in NGC 2264. We use the FELLWALKER routine to decompose the dust into clumpy structures, and a Hessian-based routine to decompose the dust into filamentary structures. The filaments can be described as a hub-filament structure, with lower column density filaments radiating from the NGC 2264 C protocluster hub. Above mean filament column densities of 2.4 × 1022 cm-2, star formation proceeds with the formation of two or more protostars. Below these column densities, filaments are starless, or contain only a single protostar.

  14. Glyoxal Vertical Column Retrievals from the GOME-2/METOP-A European Spaceborne Sensor and Comparisons with the IMAGESv2 CT Model

    NASA Astrophysics Data System (ADS)

    Lerot, C.; Stavrakou, T.; de Smedt, I.; Muller, J. J.; van Roozendael, M.

    2010-12-01

    Glyoxal is mostly formed in our atmosphere as an intermediate product in the oxidation of non-methane volatile organic compounds (NMVOC). To a lesser extent, it is also directly emitted from biomass burning events and from fossil- and bio-fuel combustion processes. Several studies have estimated its atmospheric lifetime to 2-3 hours, which makes of glyoxal a good indicator for short-lived NMVOC emissions. Glyoxal is also known to be a precursor for secondary organic aerosols and could help to reduce the gap between observations and models for organic aerosol abundances. The three absorption bands of glyoxal in the visible region allow applying the DOAS (Differential Optical Absorption Spectroscopy) technique to retrieve its vertical column densities from the nadir backscattered light measurements performed by the GOME-2 satellite sensor. This instrument has been launched in October 2006 on board of the METOP-A platform and is characterized by a spatial resolution of 80 km x 40 km and by a large scan-width (1920 km) leading to a global coverage reached in 1.5 day. The GOME-2 glyoxal retrieval algorithm developed at BIRA-IASB accounts for the liquid water absorption and provides geophysically sound column measurements not only over lands but also over oceanic regions where spectral interferences between glyoxal and liquid water have been shown to be significant. The a-priori glyoxal vertical distribution required for the slant to vertical column conversion is provided by the global chemical transport model IMAGESv2. The highest glyoxal vertical column densities are mainly observed in continental tropical regions, while the mid-latitude columns strongly depend on the season with maximum values during warm months. An anthropogenic signature is also observed in highly populated regions of Asia. Comparisons with glyoxal columns simulated with IMAGESv2 in different regions of the world generally point to a missing glyoxal source in current models. As already reported from previous analysis with the SCIAMACHY instrument, significant glyoxal columns are also observed over tropical oceans, which remains unexplained so far.

  15. Star formation towards the Galactic H II region RCW 120. Herschel observations of compact sources

    NASA Astrophysics Data System (ADS)

    Figueira, M.; Zavagno, A.; Deharveng, L.; Russeil, D.; Anderson, L. D.; Men'shchikov, A.; Schneider, N.; Hill, T.; Motte, F.; Mège, P.; LeLeu, G.; Roussel, H.; Bernard, J.-P.; Traficante, A.; Paradis, D.; Tigé, J.; André, P.; Bontemps, S.; Abergel, A.

    2017-04-01

    Context. The expansion of H II regions can trigger the formation of stars. An overdensity of young stellar objects is observed at the edges of H II regions but the mechanisms that give rise to this phenomenon are not clearly identified. Moreover, it is difficult to establish a causal link between H II -region expansion and the star formation observed at the edges of these regions. A clear age gradient observed in the spatial distribution of young sources in the surrounding might be a strong argument in favor of triggering. Aims: We aim to characterize the star formation observed at the edges of H II regions by studying the properties of young stars that form there. We aim to detect young sources, derive their properties and their evolution stage in order to discuss the possible causal link between the first-generation massive stars that form the H II region and the young sources observed at their edges. Methods: We have observed the Galactic H II region RCW 120 with Herschel PACS and SPIRE photometers at 70, 100, 160, 250, 350 and 500 μm. We produced temperature and H2 column density maps and use the getsources algorithm to detect compact sources and measure their fluxes at Herschel wavelengths. We have complemented these fluxes with existing infrared data. Fitting their spectral energy distributions with a modified blackbody model, we derived their envelope dust temperature and envelope mass. We computed their bolometric luminosities and discuss their evolutionary stages. Results: The overall temperatures of the region (without background subtraction) range from 15 K to 24 K. The warmest regions are observed towards the ionized gas. The coldest regions are observed outside the ionized gas and follow the emission of the cold material previously detected at 870 μm and 1.3 mm. The H2 column density map reveals the distribution of the cold medium to be organized in filaments and highly structured. Column densities range from 7 × 1021 cm-2 up to 9 × 1023 cm-2 without background subtraction. The cold regions observed outside the ionized gas are the densest and host star formation when the column density exceeds 2 × 1022 cm-2. The most reliable 35 compact sources are discussed. Using existing CO data and morphological arguments we show that these sources are likely to be associated with the RCW 120 region. These sources' volume densities range from 2 × 105 cm-3 to 108 cm-3. Five sources have envelope masses larger than 50 M⊙ and are all observed in high column density regions (>7 × 1022 cm-2). We find that the evolutionary stage of the sources primarily depends on the density of their hosting condensation and is not correlated with the distance to the ionizing star. Conclusions: The Herschel data, with their unique sampling of the far infrared domain, have allowed us to characterize the properties of compact sources observed towards RCW 120 for the first time. We have also been able to determine the envelope temperature, envelope mass and evolutionary stage of these sources. Using these properties we have shown that the density of the condensations that host star formation is a key parameter of the star-formation history, irrespective of their projected distance to the ionizing stars. Table A.1 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A93Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  16. Internal waves interacting with particles in suspension

    NASA Astrophysics Data System (ADS)

    Micard, Diane

    2016-04-01

    Internal waves are produced as a consequence of the dynamic balance between buoy- ancy and gravity forces when a particle of fluid is vertically displaced in a stable stratified environment. Geophysical systems such as ocean and atmosphere are naturally stratified and therefore suitable for internal waves to propagate. Furthermore, these two environ- ments stock a vast amount of particles in suspension, which present a large spectrum of physical properties (size, density, shape), and can be organic, mineral or pollutant agents. Therefore, it is reasonable to expect that internal waves will have an active effect over the dynamics of these particles. In order to study the interaction of internal waves and suspended particles, an ide- alized experimental setup has been implemented. A linear stratification is produced in a 80×40×17 cm3 tank, in which two dimensional plane waves are created thanks to the inno- vative wave generator GOAL. In addition, a particle injector has been developed to produce a vertical column of particles within the fluid, displaying the same two-dimensional sym- metry as the waves. The particle injector allows to control the volumic fraction of particles and the size of the column. The presence of internal waves passing through the column of particles allowed to observe two main effects: The column oscillates around an equilibrium position (which is observed in both, the contours an the interior of the column), and the column is displaced as a whole. The column is displaced depending on the characteristics of the column, the gradient of the density, and the intensity and frequency of the wave. When displaced, the particles within the column are sucked towards the source of waves. The direction of the displacement of the column is explained by computing the effect of the Lagrangian drift generated by the wave over the time the particles stay in the wave beam before settling.

  17. The ATLASGAL survey: distribution of cold dust in the Galactic plane. Combination with Planck data

    NASA Astrophysics Data System (ADS)

    Csengeri, T.; Weiss, A.; Wyrowski, F.; Menten, K. M.; Urquhart, J. S.; Leurini, S.; Schuller, F.; Beuther, H.; Bontemps, S.; Bronfman, L.; Henning, Th.; Schneider, N.

    2016-01-01

    Context. Sensitive ground-based submillimeter surveys, such as ATLASGAL, provide a global view on the distribution of cold dense gas in the Galactic plane at up to two-times better angular-resolution compared to recent space-based surveys with Herschel. However, a drawback of ground-based continuum observations is that they intrinsically filter emission, at angular scales larger than a fraction of the field-of-view of the array, when subtracting the sky noise in the data processing. The lost information on the distribution of diffuse emission can be, however, recovered from space-based, all-sky surveys with Planck. Aims: Here we aim to demonstrate how this information can be used to complement ground-based bolometer data and present reprocessed maps of the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) survey. Methods: We use the maps at 353 GHz from the Planck/HFI instrument, which performed a high sensitivity all-sky survey at a frequency close to that of the APEX/LABOCA array, which is centred on 345 GHz. Complementing the ground-based observations with information on larger angular scales, the resulting maps reveal the distribution of cold dust in the inner Galaxy with a larger spatial dynamic range. We visually describe the observed features and assess the global properties of dust distribution. Results: Adding information from large angular scales helps to better identify the global properties of the cold Galactic interstellar medium. To illustrate this, we provide mass estimates from the dust towards the W43 star-forming region and estimate a column density contrast of at least a factor of five between a low intensity halo and the star-forming ridge. We also show examples of elongated structures extending over angular scales of 0.5°, which we refer to as thin giant filaments. Corresponding to > 30 pc structures in projection at a distance of 3 kpc, these dust lanes are very extended and show large aspect ratios. We assess the fraction of dense gas by determining the contribution of the APEX/LABOCA maps to the combined maps, and estimate 2-5% for the dense gas fraction (corresponding to Av> 7 mag) on average in the Galactic plane. We also show probability distribution functions of the column density (N-PDF), which reveal the typically observed log-normal distribution for low column density and exhibit an excess at high column densities. As a reference for extragalactic studies, we show the line-of-sight integrated N-PDF of the inner Galaxy, and derive a contribution of this excess to the total column density of ~ 2.2%, corresponding to NH2 = 2.92 × 1022 cm-2. Taking the total flux density observed in the maps, we provide an independent estimate of the mass of molecular gas in the inner Galaxy of ~ 1 × 109 M⊙, which is consistent with previous estimates using CO emission. From the mass and dense gas fraction (fDG), we estimate a Galactic SFR of Ṁ = 1.3 M⊙ yr-1. Conclusions: Retrieving the extended emission helps to better identify massive giant filaments which are elongated and confined structures. We show that the log-normal distribution of low column density gas is ubiquitous in the inner Galaxy. While the distribution of diffuse gas is relatively homogenous in the inner Galaxy, the central molecular zone (CMZ) stands out with a higher dense gas fraction despite its low star formation efficiency.Altogether our findings explain well the observed low star formation efficiency of the Milky Way by the low fDG in the Galactic ISM. In contrast, the high fDG observed towards the CMZ, despite its low star formation activity, suggests that, in that particular region of our Galaxy, high density gas is not the bottleneck for star formation.

  18. The Multi-Layer Variable Absorbers in NGC 1365 Revealed by XMM-Newton and NuSTAR

    NASA Technical Reports Server (NTRS)

    Rivers, E.; Risaliti, G.; Walton, D. J.; Harrison, F.; Arevalo, P.; Baur, F. E.; Boggs, S. E.; Brenneman, L. W.; Brightman, M.; Zhang, W. W.

    2015-01-01

    Between 2012 July and 2013 February, NuSTAR and XMM-Newton performed four long-look joint observations of the type 1.8 Seyfert, NGC 1365. We have analyzed the variable absorption seen in these observations in order to characterize the geometry of the absorbing material. Two of the observations caught NGC 1365 in an unusually low absorption state, revealing complexity in the multi-layer absorber that had previously been hidden. We find the need for three distinct zones of neutral absorption in addition to the two zones of ionized absorption and the Compton-thick torus previously seen in this source. The most prominent absorber is likely associated with broad-line region clouds with column densities of around approximately 10 (sup 23) per square centimeter and a highly clumpy nature as evidenced by an occultation event in 2013 February. We also find evidence of a patchy absorber with a variable column around approximately 10 (sup 22) per square centimeter and a line-of-sight covering fraction of 0.3-0.9, which responds directly to the intrinsic source flux, possibly due to a wind geometry. A full-covering, constant absorber with a low column density of approximately 1 by 10 (sup 22) per square centimeter is also present, though the location of this low density haze is unknown.

  19. Helical patterns of magnetization and magnetic charge density in iron whiskers

    NASA Astrophysics Data System (ADS)

    Templeton, Terry L.; Hanham, Scott D.; Arrott, Anthony S.

    2018-05-01

    Studies with the (1 1 1) axis along the long axis of an iron whisker, 40 years ago, showed two phenomena that have remained unexplained: 1) In low fields, there are six peaks in the ac susceptibility, separated by 0.2 mT; 2) Bitter patterns showed striped domain patterns. Multipole columns of magnetic charge density distort to form helical patterns of the magnetization, accounting for the peaks in the susceptibility from the propagation of edge solitons along the intersections of the six sides of a (1 1 1) whisker. The stripes follow the helices. We report micromagnetic simulations in cylinders with various geometries for the cross-sections from rectangular, to hexagonal, to circular, with wide ranges of sizes and lengths, and different anisotropies, including (0 0 1) whiskers and the hypothetical case of no anisotropy. The helical patterns have been there in previous studies, but overlooked. The surface swirls and body helices are connected, but have their own individual behaviors. The magnetization patterns are more easily understood when viewed observing the scalar divergences of the magnetization as isosurfaces of magnetic charge density. The plus and minus charge densities form columns that interact with unlike charges attracting, but not annihilating as they are paid for by a decrease in exchange energy. Just as they start to form the helix, the columns are multipoles. If one could stretch the columns, the self-energy of the charges in a column would be diminished while making the attractive interactions of the unlike charges larger. The columns elongate by becoming helical. The visualization of 3-D magnetic charge distributions aids in the understanding of magnetization in soft magnetic materials.

  20. Medium-resolution far-ultraviolet spectroscopy of PKS 2155-304

    NASA Technical Reports Server (NTRS)

    Appenzeller, I.; Mandel, H.; Krautter, J.; Bowyer, S.; Hurwitz, M.; Grewing, M.; Kramer, G.; Kappelmann, N.

    1995-01-01

    Using the Berkeley spectrometer of the Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer (ORFEUS) we observed the 87-117 nm UV spectrum of the BL Lac object PKS 2155-304 with about 0.5 A resolution. In addition to the expected interstellar lines we detected higher quantum number counterparts of the intergalactic Lyman alpha lines discovered earlier with IUE and the Hubble Space Telescope (HST) in the direction of PKS 2155-304. The Lyman discontinuities indicate for three of the redshifted clouds a combined H I column density of 2-5 x 10(exp 16)/sq cm, while the column density for another cloud appears to be well below 5 x 10(exp 15)/sq cm. No siginificant O VI absorption in the galactic halo toward PKS 2155-304 could be detected from our data. Assuming that saturation effects are negligible for these weak features, we obtain for the O VI column density toward PKS 2155-304 a 3 sigma upper limit of 2.7 x 10(exp 14)/sq cm.

  1. Effects of solvent density on retention in gas-liquid chromatography. I. Alkanes solutes in polyethylene glycol stationary phases.

    PubMed

    González, F R; Pérez-Parajón, J; García-Domínguez, J A

    2002-04-12

    Gas-liquid chromatographic columns were prepared coating silica capillaries with poly(oxyethylene) polymers of different molecular mass distributions, in the range of low number-average molar masses, where the density still varies significantly. A novel, high-temperature, rapid evaporation method was developed and applied to the static coating of the low-molecular-mass stationary phases. The analysis of alkanes retention data from these columns reveals that the dependence of the partition coefficient with the solvent macroscopic density is mainly due to a variation of entropy. Enthalpies of solute transfer contribute poorly to the observed variations of retention. Since the alkanes solubility diminishes with the increasing solvent density, and this variation is weakly dependent with temperature, it is concluded that the decrease of free-volume in the liquid is responsible for this behavior.

  2. OBSERVATIONAL PROPERTIES OF ROTATIONALLY EXCITED MOLECULAR HYDROGEN IN TRANSLUCENT LINES OF SIGHT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Adam G.; Sonneborn, George; Snow, Theodore P.

    2010-03-10

    The Far Ultraviolet Spectroscopic Explorer (FUSE) has allowed precise determinations of the column densities of molecular hydrogen (H{sub 2}) in Galactic lines of sight with a wide range of pathlengths and extinction properties. However, survey studies of lines of sight with greater extinction have been mostly restricted to the low-J states (lower total angular momentum) in which most molecular hydrogen is observed. This paper presents a survey of column densities for the molecular hydrogen in states of greater rotational excitation (J >= 2) in Galactic lines of sight with log N(H{sub 2}) {approx}> 20. This study is comprehensive through themore » highest excited state detectable in each line of sight. J = 5 is observed in every line of sight, and we detect J = 7 in four lines of sight, J = 8 in one line of sight, and vibrationally excited H{sub 2} in two lines of sight. We compared the apparent b-values and velocity offsets of the higher-J states relative to the dominant low-J states and we found no evidence of any trends that might provide insight into the formation of higher-J H{sub 2}, although these results are the most affected by the limits of the FUSE resolution. We also derive excitation temperatures based on the column densities of the different states. We confirm that at least two distinct temperatures are necessary to adequately describe these lines of sight, and that more temperatures are probably necessary. Total H{sub 2} column density is known to be correlated with other molecules; we explore if correlations vary as a function of J for several molecules, most importantly CH and CH{sup +}. Finally, we briefly discuss interpretations of selected lines of sight by comparing them to models computed using the Meudon PDR code.« less

  3. Planck intermediate results: XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; ...

    2016-02-09

    Within ten nearby (d < 450 pc) Gould belt molecular clouds we evaluate in this paper statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, N H. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10' FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions rangemore » from N H≈ 10 21 to10 23 cm -2, and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called “histogram of relative orientations”. Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing N H, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvénic or sub-Alfvénic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. Finally, we compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution.« less

  4. The absorption spectrum of the QSO PKS 2126-158 (z_em =3.27) at high resolution

    NASA Astrophysics Data System (ADS)

    D'Odorico, V.; Cristiani, S.; D'Odorico, S.; Fontana, A.; Giallongo, E.

    1998-01-01

    Spectra of the z_em = 3.268 quasar PKS 2126-158 have been obtained in the range lambda lambda 4300-6620 Angstroms with a resolution Rsmallimeq27000 and an average signal-to-noise ratio s/nsmallimeq 25 per resolution element. The list of the identified absorption lines is given together with their fitted column densities and Doppler widths. The modal value of the Doppler parameter distribution for the Lyalpha lines is smallimeq 25 km s(-1) . The column density distribution can be described by a power-law dn / dN ~ N(-beta ) with beta smallimeq 1.5. 12 metal systems have been identified, two of which were previously unknown. In order to make the column densities of the intervening systems compatible with realistic assumptions about the cloud sizes and the silicon to carbon overabundance, it is necessary to assume a jump beyond the He II edge in the spectrum of the UV ionizing background at z smallim 3 a factor 10 larger than the standard predictions for the integrated quasar contribution. An enlarged sample of C IV absorptions (71 doublets) has been used to analyze the statistical properties of this class of absorbers strictly related to galaxies. The column density distribution is well described by a single power-law, with beta =1.64 and the Doppler parameter distribution shows a modal value b_CIV smallimeq 14 km s(-1) . The two point correlation function has been computed in the velocity space for the individual components of C IV features. A significant signal is obtained for scales smaller than 200- 300 km s(-1) , xi (30< Delta v < 90 km\\ s(-1) ) = 33 +/- 3. A trend of decreasing clustering amplitude with decreasing column density is apparent, analogously to what has been observed for Lyalpha lines. Based on observations collected at the European Southern Observatory, La Silla, Chile (ESO No. 2-013-49K). Table 2 is only available in electronic from via anonymous ftp 130.79.128.5 or http://cdsweb.u-strasbg.fr/Abstract.html

  5. First detection of hydrogen in the β Pictoris gas disk

    NASA Astrophysics Data System (ADS)

    Wilson, P. A.; Lecavelier des Etangs, A.; Vidal-Madjar, A.; Bourrier, V.; Hébrard, G.; Kiefer, F.; Beust, H.; Ferlet, R.; Lagrange, A.-M.

    2017-03-01

    The young and nearby star β Pictoris (β Pic) is surrounded by a debris disk composed of dust and gas known to host a myriad evaporating exocomets, planetesimals and at least one planet. At an edge-on inclination, as seen from Earth, this system is ideal for debris disk studies providing an excellent opportunity to use absorption spectroscopy to study the planet forming environment. Using the Cosmic Origins Spectrograph (COS) instrument on the Hubble Space Telescope (HST) we observe the most abundant element in the disk, hydrogen, through the H I Lyman α (Ly-α) line. We present a new technique to decrease the contamination of the Ly-α line by geocoronal airglow in COS spectra. This Airglow Virtual Motion (AVM) technique allows us to shift the Ly-α line of the astrophysical target away from the contaminating airglow emission revealing more of the astrophysical line profile. This new AVM technique, together with subtraction of an airglow emission map, allows us to analyse the shape of the β Pic Ly-α emission line profile and from it, calculate the column density of neutral hydrogen surrounding β Pic. The column density of hydrogen in the β Pic stable gas disk at the stellar radial velocity is measured to be log (NH/ 1 cm2) ≪ 18.5. The Ly-α emission line profile is found to be asymmetric and we propose that this is caused by H I falling in towards the star with a bulk radial velocity of 41 ± 6 km s-1 relative to β Pic and a column density of log (NH/ 1 cm2) = 18.6 ± 0.1. The high column density of hydrogen relative to the hydrogen content of CI chondrite meteorites indicates that the bulk of the hydrogen gas does not come from the dust in the disk. This column density reveals a hydrogen abundance much lower than solar, which excludes the possibility that the detected hydrogen could be a remnant of the protoplanetary disk or gas expelled by the star. We hypothesise that the hydrogen gas observed falling towards the star arises from the dissociation of water originating from evaporating exocomets.

  6. The interstellar N2 abundance towards HD 124314 from far-ultraviolet observations.

    PubMed

    Knauth, David C; Andersson, B-G; McCandliss, Stephan R; Moos, H Warren

    2004-06-10

    The abundance of interstellar molecular nitrogen (N2) is of considerable importance: models of steady-state gas-phase interstellar chemistry, together with millimetre-wavelength observations of interstellar N2H+ in dense molecular clouds predict that N2 should be the most abundant nitrogen-bearing molecule in the interstellar medium. Previous attempts to detect N2 absorption in the far-ultraviolet or infrared (ice features) have hitherto been unsuccessful. Here we report the detection of interstellar N2 at far-ultraviolet wavelengths towards the moderately reddened star HD 124314 in the constellation of Centaurus. The N2 column density is larger than expected from models of diffuse clouds and significantly smaller than expected for dense molecular clouds. Moreover, the N2 abundance does not explain the observed variations in the abundance of atomic nitrogen (N I) towards high-column-density sightlines, implying that the models of nitrogen chemistry in the interstellar medium are incomplete.

  7. Modelling dust polarization observations of molecular clouds through MHD simulations

    NASA Astrophysics Data System (ADS)

    King, Patrick K.; Fissel, Laura M.; Chen, Che-Yu; Li, Zhi-Yun

    2018-03-01

    The BLASTPol observations of Vela C have provided the most detailed characterization of the polarization fraction p and dispersion in polarization angles S for a molecular cloud. We compare the observed distributions of p and S with those obtained in synthetic observations of simulations of molecular clouds, assuming homogeneous grain alignment. We find that the orientation of the mean magnetic field relative to the observer has a significant effect on the p and S distributions. These distributions for Vela C are most consistent with synthetic observations where the mean magnetic field is close to the line of sight. Our results point to apparent magnetic disorder in the Vela C molecular cloud, although it can be due to either an inclination effect (i.e. observing close to the mean field direction) or significant field tangling from strong turbulence/low magnetization. The joint correlations of p with column density and of S with column density for the synthetic observations generally agree poorly with the Vela C joint correlations, suggesting that understanding these correlations requires a more sophisticated treatment of grain alignment physics.

  8. Simultaneous Ultraviolet and X-Ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I. Physical Conditions in the Ultraviolet Absorbers

    NASA Astrophysics Data System (ADS)

    Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.; Turner, T. J.; Yaqoob, T.

    2003-09-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-Ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2-1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km s-1) and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectroscopic Explorer and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with proposal 9279.

  9. Cosmic distribution of highly ionized metals and their physical conditions in the EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Rahmati, Alireza; Schaye, Joop; Crain, Robert A.; Oppenheimer, Benjamin D.; Schaller, Matthieu; Theuns, Tom

    2016-06-01

    We study the distribution and evolution of highly ionized intergalactic metals in the Evolution and Assembly of Galaxies and their Environment (EAGLE) cosmological, hydrodynamical simulations. EAGLE has been shown to reproduce a wide range of galaxy properties while its subgrid feedback was calibrated without considering gas properties. We compare the predictions for the column density distribution functions (CDDFs) and cosmic densities of Si IV, C IV, N V, O VI and Ne VIII absorbers with observations at redshift z = 0 to ˜6 and find reasonable agreement, although there are some differences. We show that the typical physical densities of the absorbing gas increase with column density and redshift, but decrease with the ionization energy of the absorbing ion. The typical metallicity increases with both column density and time. The fraction of collisionally ionized metal absorbers increases with time and ionization energy. While our results show little sensitivity to the presence or absence of AGN feedback, increasing/decreasing the efficiency of stellar feedback by a factor of 2 substantially decreases/increases the CDDFs and the cosmic densities of the metal ions. We show that the impact of the efficiency of stellar feedback on the CDDFs and cosmic densities is largely due to its effect on the metal production rate. However, the temperatures of the metal absorbers, particularly those of strong O VI, are directly sensitive to the strength of the feedback.

  10. The energetics and mass structure of regions of star formation: S201

    NASA Technical Reports Server (NTRS)

    Thronson, H. A., Jr.; Smith, H. A.; Lada, C. J.; Glaccum, W.; Harper, D. A.; Loewenstein, R. F.; Smith, J.

    1984-01-01

    Theoretical predictions about dust and gas in star forming regions are tested by observing a 4 arcmin region surrounding the radio continuum source in 5201. The object was mapped in two far infrared wavelengths and found to show significant extended emission. Under the assumption that the molecular gas is heated solely via thermal coupling with the dust, the volume density was mapped in 5201. The ratios of infrared optical depth to CO column density were calculated for a number of positions in the source. Near the center of the cloud the values are found to be in good agreement with other determinations for regions with lower column density. In addition, the observations suggest significant molecular destruction in the outer parts of the object. Current models of gas heating were used to calculate a strong limit for the radius of the far infrared emitting grains, equal to or less than 0.15 micron. Grains of about this size are required by the observation of high temperature (T equal to or greater than 20 K) gas in many sources.

  11. Galactic cold cores. IX. Column density structures and radiative-transfer modelling

    NASA Astrophysics Data System (ADS)

    Juvela, M.; Malinen, J.; Montillaud, J.; Pelkonen, V.-M.; Ristorcelli, I.; Tóth, L. V.

    2018-06-01

    Context. The Galactic Cold Cores (GCC) project has made Herschel photometric observations of interstellar clouds where Planck detected compact sources of cold dust emission. The fields are in different environments and stages of star formation. Aims: Our aim is to characterise the structure of the clumps and their parent clouds, and to study the connections between the environment and the formation of gravitationally bound objects. We also examine the accuracy to which the structure of dense clumps can be determined from sub-millimetre data. Methods: We use standard statistical methods to characterise the GCC fields. Individual clumps are extracted using column density thresholding. Based on sub-millimetre measurements, we construct a three-dimensional radiative transfer (RT) model for each field. These are used to estimate the relative radiation field intensities, to probe the clump stability, and to examine the uncertainty of column density estimates. We examine the structural parameters of the clumps, including their radial column density profiles. Results: In the GCC fields, the structure noise follows the relations previously established at larger scales and in lower-density clouds. The fractal dimension has no significant dependence on column density and the values DP = 1.25 ± 0.07 are only slightly lower than in typical molecular clouds. The column density probability density functions (PDFs) exhibit large variations, for example, in the case of externally compressed clouds. At scales r > 0.1 pc, the radial column density distributions of the clouds follow an average relation of N r-1. In spite of a great variety of clump morphologies (and a typical aspect ratio of 1.5), clumps tend to follow a similar N r-1 relation below r 0.1 pc. RT calculations indicate only factor 2.5 variation in the local radiation field intensity. The fraction of gravitationally bound clumps increases significantly in regions with AV > 5 mag but most bound objects appear to be pressure-confined. Conclusions: The host clouds of the cold clumps in the GCC sample have statistical properties similar to general molecular clouds. The gravitational stability, peak column density, and clump orientation are connected to the cloud background while most other statistical clump properties (e.g. DP and radial profiles) are insensitive to the environment. The study of clump morphology should be continued with a comparison with numerical simulations. Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific consortium led and funded by Denmark.Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  12. Probing the local environment of the supernova remnant HESS J1731-347 with CO and CS observations

    NASA Astrophysics Data System (ADS)

    Maxted, N.; Burton, M.; Braiding, C.; Rowell, G.; Sano, H.; Voisin, F.; Capasso, M.; Pühlhofer, G.; Fukui, Y.

    2018-02-01

    The shell-type supernova remnant HESS J1731 - 347 emits TeV gamma-rays, and is a key object for the study of the cosmic ray acceleration potential of supernova remnants. We use 0.5-1 arcmin Mopra CO/CS(1-0) data in conjunction with H I data to calculate column densities towards the HESS J1731 - 347 region. We trace gas within at least four Galactic arms, typically tracing total (atomic+molecular) line-of-sight H column densities of 2-3× 1022 cm-2. Assuming standard X-factor values and that most of the H I/CO emission seen towards HESS J1731 - 347 is on the near-side of the Galaxy, X-ray absorption column densities are consistent with H I+CO-derived column densities foreground to, but not beyond, the Scutum-Crux Galactic arm, suggesting a kinematic distance of ˜3.2 kpc for HESS J1731 - 347. At this kinematic distance, we also find dense, infrared-dark gas traced by CS(1-0) emission coincident with the north of HESS J1731 - 347, the nearby H II region G353.43-0.37 and the nearby unidentified gamma-ray source HESS J1729 - 345. This dense gas lends weight to the idea that HESS J1729 - 345 and HESS J1731 - 347 are connected, perhaps via escaping cosmic-rays.

  13. Intra-pixel variability in satellite tropospheric NO2 column densities derived from simultaneous space-borne and airborne observations over the South African Highveld

    NASA Astrophysics Data System (ADS)

    Broccardo, Stephen; Heue, Klaus-Peter; Walter, David; Meyer, Christian; Kokhanovsky, Alexander; van der A, Ronald; Piketh, Stuart; Langerman, Kristy; Platt, Ulrich

    2018-05-01

    Aircraft measurements of NO2 using an imaging differential optical absorption spectrometer (iDOAS) instrument over the South African Highveld region in August 2007 are presented and compared to satellite measurements from OMI and SCIAMACHY. In situ aerosol and trace-gas vertical profile measurements, along with aerosol optical thickness and single-scattering albedo measurements from the Aerosol Robotic Network (AERONET), are used to devise scenarios for a radiative transfer modelling sensitivity study. Uncertainty in the air-mass factor due to variations in the aerosol and NO2 profile shape is constrained and used to calculate vertical column densities (VCDs), which are compared to co-located satellite measurements. The lower spatial resolution of the satellites cannot resolve the detailed plume structures revealed in the aircraft measurements. The airborne DOAS in general measured steeper horizontal gradients and higher peak NO2 vertical column density. Aircraft measurements close to major sources, spatially averaged to the satellite resolution, indicate NO2 column densities more than twice those measured by the satellite. The agreement between the high-resolution aircraft instrument and the satellite instrument improves with distance from the source, this is attributed to horizontal and vertical dispersion of NO2 in the boundary layer. Despite the low spatial resolution, satellite images reveal point sources and plumes that retain their structure for several hundred kilometres downwind.

  14. Physical properties of Southern infrared dark clouds

    NASA Astrophysics Data System (ADS)

    Vasyunina, T.; Linz, H.; Henning, Th.; Stecklum, B.; Klose, S.; Nyman, L.-Å.

    2009-05-01

    Context: What are the mechanisms by which massive stars form? What are the initial conditions for these processes? It is commonly assumed that cold and dense Infrared Dark Clouds (IRDCs) represent the birth-sites of massive stars. Therefore, these clouds have been receiving an increasing amount of attention, and their analysis offers the opportunity to tackle the afore mentioned questions. Aims: To enlarge the sample of well-characterised IRDCs in the southern hemisphere, where ALMA will play a major role in the near future, we have developed a program to study the gas and dust of southern infrared dark clouds. The present paper attempts to characterize the continuum properties of this sample of IRDCs. Methods: We cross-correlated 1.2 mm continuum data from SIMBA bolometer array mounted on SEST telescope with Spitzer/GLIMPSE images to establish the connection between emission sources at millimeter wavelengths and the IRDCs that we observe at 8 μm in absorption against the bright PAH background. Analysing the dust emission and extinction enables us to determine the masses and column densities, which are important quantities in characterizing the initial conditions of massive star formation. We also evaluated the limitations of the emission and extinction methods. Results: The morphology of the 1.2 mm continuum emission is in all cases in close agreement with the mid-infrared extinction. The total masses of the IRDCs were found to range from 150 to 1150 M_⊙ (emission data) and from 300 to 1750 M_⊙ (extinction data). We derived peak column densities of between 0.9 and 4.6 × 1022 cm-2 (emission data) and 2.1 and 5.4 × 1022 cm-2 (extinction data). We demonstrate that the extinction method is unreliable at very high extinction values (and column densities) beyond AV values of roughly 75 mag according to the Weingartner & Draine (2001) extinction relation RV = 5.5 model B (around 200 mag when following the common Mathis (1990, ApJ, 548, 296) extinction calibration). By taking the spatial resolution effects into account and restoring the column densities derived from the dust emission to a linear resolution of 0.01 pc, peak column densities of 3-19 × 1023 cm-2 are obtained, which are much higher than typical values for low-mass cores. Conclusions: Taking into account the spatial resolution effects, the derived column densities are beyond the column density threshold of 3.0 × 1023 cm-2 required by theoretical considerations for massive star formation. We conclude that the values of column densities derived for the selected IRDC sample imply that these objects are excellent candidates for objects in the earliest stages of massive star formation.

  15. A New, Large-scale Map of Interstellar Reddening Derived from H I Emission

    NASA Astrophysics Data System (ADS)

    Lenz, Daniel; Hensley, Brandon S.; Doré, Olivier

    2017-09-01

    We present a new map of interstellar reddening, covering the 39% of the sky with low H I column densities ({N}{{H}{{I}}}< 4× {10}20 cm-2 or E(B-V)≈ 45 mmag) at 16\\buildrel{ \\prime}\\over{.} 1 resolution, based on all-sky observations of Galactic H I emission by the HI4PI Survey. In this low-column-density regime, we derive a characteristic value of {N}{{H}{{I}}}/E(B-V)=8.8 × {10}21 {{cm}}2 {{mag}}-1 for gas with | {v}{LSR}| < 90 km s-1 and find no significant reddening associated with gas at higher velocities. We compare our H I-based reddening map with the Schlegel et al. (SFD) reddening map and find them consistent to within a scatter of ≃ 5 mmag. Further, the differences between our map and the SFD map are in excellent agreement with the low-resolution (4\\buildrel{\\circ}\\over{.} 5) corrections to the SFD map derived by Peek and Graves based on observed reddening toward passive galaxies. We therefore argue that our H I-based map provides the most accurate interstellar reddening estimates in the low-column-density regime to date. Our reddening map is made publicly available at doi.org/10.7910/DVN/AFJNWJ.

  16. Electric discharge synthesis of HCN in simulated Jovian atmospheres

    NASA Technical Reports Server (NTRS)

    Stribling, Roscoe; Miller, Stanley L.

    1987-01-01

    Corona discharge is presently considered as a possible source of the HCN detected in the Jovian atmosphere at 2.2 x 10 to the -7th moles/sq cm column density, for the cases of gas mixtures containing H2, CH4, and NH3, with H2/CH4 ratios from 4.4 to 1585. A 3:1 ratio of corona discharge to lightning energy similar to that of the earth is applied to Jupiter. Depending on the lightning energy available on Jupiter and the eddy diffusion coefficients in the synthesis region, HCN column densities generated by corona discharge could account for about 10 percent of the HCN observed.

  17. I(CO)/N(H2) conversions and molecular gas abundances in spiral and irregular galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip; Black, John H.

    1988-01-01

    Observations of emission in the J = 1-0 rotational transition of interstellar CO are used to obtain column densities and masses of hydrogen. By taking into account the effects of variations in molecular cloud parameters on conversion factors between integrated CO intensity and molecular hydrogen column density, it is shown that conversion factors are very sensitive to the kinetic temperature of the emitting gas. Results indicate that the gas temperatures in systems with high star formation rates can be quite high, and it is suggested that use of a standard conversion factor will lead to systematic overestimation of the amount of molecular gas.

  18. Ground-Based Observation of Mercury's Sodium at Haleakala Observatory in 2013–2017

    NASA Astrophysics Data System (ADS)

    Kameda, S.; Kagitani, M.

    2018-05-01

    In this study, daily variation in Mercury's sodium exosphere was observed at the Haleakala Observatory in Hawaii. We confirmed the seasonal variation of the column density of sodium atoms over the dawn side differs from that over the dusk side.

  19. Tracking the complex absorption in NGC 2110 with two Suzaku observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard

    2014-05-10

    We present spectral analysis of two Suzaku observations of the Seyfert 2 galaxy, NGC 2110. This source has been known to show complex, variable absorption which we study in depth by analyzing these two observations set 7 yr apart and by comparing them to previously analyzed observations with the XMM-Newton and Chandra observatories. We find that there is a relatively stable, full-covering absorber with a column density of ∼3× 10{sup 22} cm{sup –2}, with an additional patchy absorber that is likely variable in both column density and covering fraction over timescales of years, consistent with clouds in a patchy torusmore » or in the broad line region. We model a soft emission line complex, likely arising from ionized plasma and consistent with previous studies. We find no evidence for reflection from an accretion disk in this source with contribution from neither relativistically broadened Fe Kα line emission, nor from a Compton reflection hump.« less

  20. Highly ionized atoms in cooling gas

    NASA Technical Reports Server (NTRS)

    Edgar, R. J.; Chevalier, R. A.

    1986-01-01

    The ionization of low density gas cooling from a high temperature was calculated. The evolution during the cooling is assumed to be isochoric, isobaric, or a combination of these cases. The calculations are used to predict the column densities and ultraviolet line luminosities of highly ionized atoms in cooling gas. In a model for cooling of a hot galactic corona, it is shown that the observed value of N(N V) can be produced in the cooling gas, while the predicted value of N(Si IV) falls short of the observed value by a factor of about 5. The same model predicts fluxes of ultraviolet emission lines that are a factor of 10 lower than the claimed detections of Feldman, Brune, and Henry. Predictions are made for ultraviolet lines in cooling flows in early-type galaxies and clusters of galaxies. It is shown that the column densities of interest vary over a fairly narrow range, while the emission line luminosities are simply proportional to the mass inflow rate.

  1. Highly ionized atoms in cooling gas. [in model for cooling of hot Galactic corona

    NASA Technical Reports Server (NTRS)

    Edgar, Richard J.; Chevalier, Roger A.

    1986-01-01

    The ionization of low density gas cooling from a high temperature was calculated. The evolution during the cooling is assumed to be isochoric, isobaric, or a combination of these cases. The calculations are used to predict the column densities and ultraviolet line luminosities of highly ionized atoms in cooling gas. In a model for cooling of a hot galactic corona, it is shown that the observed value of N(N V) can be produced in the cooling gas, while the predicted value of N(Si IV) falls short of the observed value by a factor of about 5. The same model predicts fluxes of ultraviolet emission lines that are a factor of 10 lower than the claimed detections of Feldman, Bruna, and Henry. Predictions are made for ultraviolet lines in cooling flows in early-type galaxies and clusters of galaxies. It is shown that the column densities of interest vary over a fairly narrow range, while the emission line luminosities are simply proportional to the mass inflow rate.

  2. Pillars and globules at the edges of H ii regions. Confronting Herschel observations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Tremblin, P.; Minier, V.; Schneider, N.; Audit, E.; Hill, T.; Didelon, P.; Peretto, N.; Arzoumanian, D.; Motte, F.; Zavagno, A.; Bontemps, S.; Anderson, L. D.; André, Ph.; Bernard, J. P.; Csengeri, T.; Di Francesco, J.; Elia, D.; Hennemann, M.; Könyves, V.; Marston, A. P.; Nguyen Luong, Q.; Rivera-Ingraham, A.; Roussel, H.; Sousbie, T.; Spinoglio, L.; White, G. J.; Williams, J.

    2013-12-01

    Context. Herschel far-infrared imaging observations have revealed the density structure of the interface between H ii regions and molecular clouds in great detail. In particular, pillars and globules are present in many high-mass star-forming regions, such as the Eagle nebula (M 16) and the Rosette molecular cloud, and understanding their origin will help characterize triggered star formation. Aims: The formation mechanisms of these structures are still being debated. The initial morphology of the molecular cloud and its turbulent state are key parameters since they generate deformations and curvatures of the shell during the expansion of the H ii region. Recent numerical simulations have shown how pillars can arise from the collapse of the shell in on itself and how globules can be formed from the interplay of the turbulent molecular cloud and the ionization from massive stars. The goal here is to test this scenario through recent observations of two massive star-forming regions, M 16 and the Rosette molecular cloud. Methods: First, the column density structure of the interface between molecular clouds and associated H ii regions was characterized using column density maps obtained from far-infrared imaging of the Herschel HOBYS key programme. Then, the DisPerSe algorithm was used on these maps to detect the compressed layers around the ionized gas and pillars in different evolutionary states. Column density profiles were constructed. Finally, their velocity structure was investigated using CO data, and all observational signatures were tested against some distinct diagnostics established from simulations. Results: The column density profiles have revealed the importance of compression at the edge of the ionized gas. The velocity properties of the structures, i.e. pillars and globules, are very close to what we predict from the numerical simulations. We have identified a good candidate of a nascent pillar in the Rosette molecular cloud that presents the velocity pattern of the shell collapsing on itself, induced by a high local curvature. Globules have a bulk velocity dispersion that indicates the importance of the initial turbulence in their formation, as proposed from numerical simulations. Altogether, this study re-enforces the picture of pillar formation by shell collapse and globule formation by the ionization of highly turbulent clouds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  3. Scaling of Turbulence and Transport with ρ* in LAPD

    NASA Astrophysics Data System (ADS)

    Guice, Daniel; Carter, Troy; Rossi, Giovanni

    2014-10-01

    The plasma column size of the Large Plasma Device (LAPD) is varied in order to investigate the variation of turbulence and transport with ρ* =ρs / a . The data set includes plasmas produced by the standard BaO plasma source (straight field plasma radius a 30 cm) as well as the new higher density, higher temperature LaB6 plasma source (straight field plasma radius a 10 cm). The size of the plasma column is scaled in order to observe a Bohm to Gyro-Bohm diffusion transition. The main plasma column magnetic field is held fixed while the field in the cathode region is changed in order to map the cathode to different plasma column scales in the main chamber. Past experiments in the LAPD have shown a change in the observed diffusion but no transition to Gyro-Bohm diffusion. Results will be presented from an ongoing campaign to push the LAPD into the Gyro-Bohm diffusion regime.

  4. Observations of chlorine monoxide over Scott Base, Antarctica, during the ozone hole, 1996-2005

    USGS Publications Warehouse

    Connor, Brian; Solomon, Philip; Barrett, James; Mooney, Thomas; Parrish, Alan

    2007-01-01

    We report observations of chlorine monoxide, ClO, in the lower stratosphere, made from Scott Base (77.85º S, 166.77º E) in springtime during each year, 1996-2005. The ClO amounts in the atmosphere are retrieved from remote measurements of microwave emission spectra. ClO column densities of up to about 2.5 × 1015 cm-2 are recorded during September, when chlorine is present in chemically active forms due to reactions on the surface of Polar Stratospheric Cloud (PSC) particles. Maximum mixing ratios of ClO are approximately 2 ppbv. The annual average of ClO column density during the activation period is anticorrelated with similar averages of ozone column measured at nearby Arrival Heights, with correlation coefficient of –0.81, and with averages of ozone mass integrated over the entire polar region, with similar correlation coefficients. There was a substantial decrease in ClO amounts during 2002-2004. There has been no systematic change in the timing of chlorine deactivation attributable to secular change in the Antarctic vortex

  5. Intercomparison of daytime stratospheric NO2 satellite retrievals and model simulations

    NASA Astrophysics Data System (ADS)

    Belmonte Rivas, M.; Veefkind, P.; Boersma, F.; Levelt, P.; Eskes, H.; Gille, J.

    2014-01-01

    This paper evaluates the agreement between stratospheric NO2 retrievals from infrared limb sounders (MIPAS and HIRDLS) and solar UV/VIS backscatter sensors (OMI, SCIAMACHY limb and nadir) over the 2005-2007 period and across the seasons. The observational agreement is contrasted with the representation of NO2 profiles in 3-D chemical transport models such as the Whole Atmosphere Community Climate Model (SD-WACCM) and TM4. A conclusion central to this work is that the definition of a reference for stratospheric NO2 columns formed by consistent agreement among SCIAMACHY, MIPAS and HIRDLS limb records (all of which agree to within 0.25 × 1015 molecules cm-2 or better than 10%) allows us to draw attention to relative errors in other datasets, e.g.: (1) the WACCM model overestimates NO2 densities in the extratropical lower stratosphere, particularly over northern latitudes by up to 35% relative to limb observations, and (2) there are remarkable discrepancies between stratospheric NO2 column estimates from limb and nadir techniques, with a characteristic seasonal and latitude dependent pattern. We find that SCIAMACHY nadir and OMI stratospheric columns show overall biases of -0.6 × 1015 molecules cm-2 (-20%) and +0.6 × 10 15 molecules cm-2 (+20%) relative to limb observations. It is highlighted that biases in nadir stratospheric columns are not expected to affect tropospheric retrievals significantly, and that they can be attributed to errors in the total slant column density, either related to algorithmic or instrumental effects. In order to obtain accurate and long time series of stratospheric NO2, a critical evaluation of the currently used Differential Optical Absorption Spectroscopy (DOAS) approaches to nadir retrievals becomes essential, as well as their agreement to limb and ground-based observations, particularly now that limb techniques are giving way to nadir observations as the next generation of climate and air quality monitoring instruments pushes forth.

  6. The kinetic temperature in the interior of the Xi Ophiuchi cloud from Copernicus observations of interstellar C2

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.

    1978-01-01

    Satellite observations of transitions of C2 at 2312 Angstroms in the spectrum of Xi Ophiuchi were carried out to evaluate the kinetic temperature of the interior cloud. A column density of 1.22 x 10 to the 12th per sq cm is derived from an absorption feature at the 4 sigma level of significance at the position of the R(0) line. This would imply a rotational temperature of not more than 22 K, with a more probable value of less than 16 K. Since total column density (3.2 x 10 to the 12th per sq cm) is found to be lower by a factor of approximately 4 than that which had been previously reported, substantial photo-dissociation of C2 is assumed.

  7. COMPARING SPATIAL DISTRIBUTIONS OF SOLAR PROMINENCE MASS DERIVED FROM CORONAL ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Holly; Kilper, Gary; Kucera, Therese

    2011-01-20

    In a previous study, Gilbert et al. derived the column density and total mass of solar prominences using a new technique, which measures how much coronal radiation in the Fe XII (195 A) spectral band is absorbed by prominence material, while considering the effects of both foreground and background radiation. In the present work, we apply this method to a sample of prominence observations in three different wavelength regimes: one in which only H{sup 0} is ionized (504 A < {lambda} < 911 A), a second where both H{sup 0} and He{sup 0} are ionized (228 A < {lambda}

  8. Constraints on hydrodynamical subgrid models from quasar absorption line studies of the simulated circumgalactic medium

    NASA Astrophysics Data System (ADS)

    Hummels, Cameron B.; Bryan, Greg L.; Smith, Britton D.; Turk, Matthew J.

    2013-04-01

    Cosmological hydrodynamical simulations of galaxy evolution are increasingly able to produce realistic galaxies, but the largest hurdle remaining is in constructing subgrid models that accurately describe the behaviour of stellar feedback. As an alternate way to test and calibrate such models, we propose to focus on the circumgalactic medium (CGM). To do so, we generate a suite of adaptive mesh refinement simulations for a Milky-Way-massed galaxy run to z = 0, systematically varying the feedback implementation. We then post-process the simulation data to compute the absorbing column density for a wide range of common atomic absorbers throughout the galactic halo, including H I, Mg II, Si II, Si III, Si IV, C IV, N V, O VI and O VII. The radial profiles of these atomic column densities are compared against several quasar absorption line studies to determine if one feedback prescription is favoured. We find that although our models match some of the observations (specifically those ions with lower ionization strengths), it is particularly difficult to match O VI observations. There is some indication that the models with increased feedback intensity are better matches. We demonstrate that sufficient metals exist in these haloes to reproduce the observed column density distribution in principle, but the simulated CGM lacks significant multiphase substructure and is generally too hot. Furthermore, we demonstrate the failings of inflow-only models (without energetic feedback) at populating the CGM with adequate metals to match observations even in the presence of multiphase structure. Additionally, we briefly investigate the evolution of the CGM from z = 3 to present. Overall, we find that quasar absorption line observations of the gas around galaxies provide a new and important constraint on feedback models.

  9. Structure and stability in TMC-1: Analysis of NH3 molecular line and Herschel continuum data

    NASA Astrophysics Data System (ADS)

    Fehér, O.; Tóth, L. V.; Ward-Thompson, D.; Kirk, J.; Kraus, A.; Pelkonen, V.-M.; Pintér, S.; Zahorecz, S.

    2016-05-01

    Aims: We examined the velocity, density, and temperature structure of Taurus molecular cloud-1 (TMC-1), a filamentary cloud in a nearby quiescent star forming area, to understand its morphology and evolution. Methods: We observed high signal-to-noise (S/N), high velocity resolution NH3(1,1), and (2, 2) emission on an extended map. By fitting multiple hyperfine-split line profiles to the NH3(1, 1) spectra, we derived the velocity distribution of the line components and calculated gas parameters on several positions. Herschel SPIRE far-infrared continuum observations were reduced and used to calculate the physical parameters of the Planck Galactic Cold Clumps (PGCCs) in the region, including the two in TMC-1. The morphology of TMC-1 was investigated with several types of clustering methods in the parameter space consisting of position, velocity, and column density. Results: Our Herschel-based column density map shows a main ridge with two local maxima and a separated peak to the south-west. The H2 column densities and dust colour temperatures are in the range of 0.5-3.3 × 1022 cm-2 and 10.5-12 K, respectively. The NH3 column densities and H2 volume densities are in the range of 2.8-14.2 × 1014 cm-2 and 0.4-2.8 × 104 cm-3. Kinetic temperatures are typically very low with a minimum of 9 K at the maximum NH3 and H2 column density region. The kinetic temperature maximum was found at the protostar IRAS 04381+2540 with a value of 13.7 K. The kinetic temperatures vary similarly to the colour temperatures in spite of the fact that densities are lower than the critical density for coupling between the gas and dust phase. The k-means clustering method separated four sub-filaments in TMC-1 with masses of 32.5, 19.6, 28.9, and 45.9 M⊙ and low turbulent velocity dispersion in the range of 0.13-0.2 km s-1. Conclusions: The main ridge of TMC-1 is composed of four sub-filaments that are close to gravitational equilibrium. We label these TMC-1F1 through F4. The sub-filaments TMC-1F1, TMC-1F2, and TMC-1F4 are very elongated, dense, and cold. TMC-1F3 is a little less elongated and somewhat warmer, and probably heated by the Class I protostar, IRAS 04381+2540, which is embedded in it. TMC-1F3 is approximately 0.1 pc behind TMC1-F1. Because of its structure, TMC-1 is a good target to test filament evolution scenarios.

  10. Formaldehyde Column Density Measurements as a Suitable Pathway to Estimate Near-Surface Ozone Tendencies from Space

    NASA Technical Reports Server (NTRS)

    Schroeder, Jason R.; Crawford, James H.; Fried, Alan; Walega, James; Weinheimer, Andrew; Wisthaler, Armin; Mueller, Markus; Mikoviny, Tomas; Chen, Gao; Shook, Michael; hide

    2016-01-01

    In support of future satellite missions that aim to address the current shortcomings in measuring air quality from space, NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign was designed to enable exploration of relationships between column measurements of trace species relevant to air quality at high spatial and temporal resolution. In the DISCOVER-AQ data set, a modest correlation (r2 = 0.45) between ozone (O3) and formaldehyde (CH2O) column densities was observed. Further analysis revealed regional variability in the O3-CH2O relationship, with Maryland having a strong relationship when data were viewed temporally and Houston having a strong relationship when data were viewed spatially. These differences in regional behavior are attributed to differences in volatile organic compound (VOC) emissions. In Maryland, biogenic VOCs were responsible for approx.28% of CH2O formation within the boundary layer column, causing CH2O to, in general, increase monotonically throughout the day. In Houston, persistent anthropogenic emissions dominated the local hydrocarbon environment, and no discernable diurnal trend in CH2O was observed. Box model simulations suggested that ambient CH2O mixing ratios have a weak diurnal trend (+/-20% throughout the day) due to photochemical effects, and that larger diurnal trends are associated with changes in hydrocarbon precursors. Finally, mathematical relationships were developed from first principles and were able to replicate the different behaviors seen in Maryland and Houston. While studies would be necessary to validate these results and determine the regional applicability of the O3-CH2O relationship, the results presented here provide compelling insight into the ability of future satellite missions to aid in monitoring near-surface air quality.

  11. Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer. 2.3

    NASA Technical Reports Server (NTRS)

    Kriss, G. A.; Shull, J. M.; Oegerle, W.; Zheng, W.; Davidsen, A. F.; Songaila, A.; Tumlinson, J.; Cowie, L. L.; Dehavreng, J.-M.; Friedman, S. D.

    2001-01-01

    The neutral hydrogen and the ionized helium absorption in the spectra of high-redshift quasi-stellar objects (QSOs) are unique probes of structure in the universe at epochs intermediate between the earliest density fluctuations seen in the cosmic background radiation and the distribution of galaxies visible today. We present Far-Ultraviolet Spectroscopic Explorer (FUSE) observations of the line of sight to the QSO HE2347-4342 in the 1000-1187 angstrom band at a resolving power of 15,000. Above redshift z = 2.7, the IGM is largely opaque in He II Ly-alpha (304 angstroms). At lower redshifts, the optical depth gradually decreases to a mean value tau = 1 at z = 2.4. We resolve the He II Ly-alpha absorption as a discrete forest of absorption lines in the z = 2.3 - 2.7 redshift range. Approximately 50% of these spectral features have H I counterparts with column densities N(sub HI) > 10(exp 12.3)/sq cm visible in a Keck spectrum. These account for most of the observed opacity in He II Ly-alpha. The remainder have N(sub HI) < 10(exp 12.3)/sq cm, below the threshold for current observations. A short extrapolation of the power-law distribution of H I column densities to lower values can account for these new absorbers. The He II to H I column density ratio eta averages approximately 80, consistent with photoionization of the IGM by a hard ionizing spectrum resulting from the integrated light of quasars at high redshift, but there is considerable scatter. Values of eta > 100 in many locations indicate that there may be localized contributions from starbursts or heavily filtered QSO radiation.

  12. On the link between column density distribution and density scaling relation in star formation regions

    NASA Astrophysics Data System (ADS)

    Veltchev, Todor; Donkov, Sava; Stanchev, Orlin

    2017-07-01

    We present a method to derive the density scaling relation ∝ L^{-α} in regions of star formation or in their turbulent vicinities from straightforward binning of the column-density distribution (N-pdf). The outcome of the method is studied for three types of N-pdf: power law (7/5≤α≤5/3), lognormal (0.7≲α≲1.4) and combination of lognormals. In the last case, the method of Stanchev et al. (2015) was also applied for comparison and a very weak (or close to zero) correlation was found. We conclude that the considered `binning approach' reflects rather the local morphology of the N-pdf with no reference to the physical conditions in a considered region. The rough consistency of the derived slopes with the widely adopted Larson's (1981) value α˜1.1 is suggested to support claims that the density-size relation in molecular clouds is indeed an artifact of the observed N-pdf.

  13. Quantitative measurements of vaporization, burst ionization, and emission characteristics of shaped charge barium releases

    NASA Technical Reports Server (NTRS)

    Hoch, Edward L.; Hallinan, Thomas J.; Stenbaek-Nielsen, Hans C.

    1994-01-01

    Intensity-calibrated color video recordings of three barium-shaped charge injections in the ionopshere were used to determine the initial ionization, the column density corresponding to unity optical depth, and the yield of vaporized barium in the fast jet. It was found that the initial ionization at the burst was less than 1% and that 0% burst ionization was consistent with the observations. Owing to the Doppler shift, the column density for optical thickness in the neutral barium varies somewhat according to the velocity distribution. For the cases examined here, the column density was 2-5 x 10(exp 10) atoms/sq cm. This value, which occurred 12 to 15 s after release, should be approximately valid for most shaped charge experiments. The yield was near 30% (15% in the fast jet) for two of the releases and was somewhat lower in the third, which also had a lower peak velocity. This study also demonstrated the applicability of the computer simulation code developed for chemical releases by Stenbaek-Nielsen and provided experimental verification of the Doppler-corrected emission rates calculated b Stenbaek-Nielsen (1989).

  14. "Ring rain" on Saturn's ionosphere: densities and temperatures from 2011 observations and re-detection in 2013 observations

    NASA Astrophysics Data System (ADS)

    O'Donoghue, J.; Moore, L.; Melin, H.; Connerney, J. E. P.; Oliversen, R. J.

    2017-12-01

    In ground-based observations using the 10 meter W. M. Keck telescope in 2011, we discovered that the "ring rain" which falls on Saturn from the rings (along magnetic field lines) leaves an imprint on the upper-atmospheric H3+ ion. H3+ emissions were brightest where water products are expected to fall. Through subsequent modeling of the upper atmosphere, it became clear that an influx of water products (e.g. H2O+, O+, etc.) would act to soak up electrons - something that would otherwise destroy H3+ through recombination - and lead to a higher H3+ density and therefore emission. Here we present the first re-detections of the imprint of "ring rain" on Saturn's ionospheric H3+ from ground-based Keck telescope data from 2013. Observed intensities at low-latitudes decreased by an order of magnitude from 2011 to 2013, likely due to a decrease in upper atmospheric temperature by 100 K. A new analysis of 2011 observations revealed temperatures and densities as a function of latitude on Saturn for the first time. Where water influx is expected, H3+ column densities are high (as models predicted) and temperatures are low. While the latter was unexpected, the effect of ring rain on electron densities is stronger at lower altitudes. Therefore, as ring rain enhances density at lower altitudes where the temperature is lower, it should result in the emitting column of H3+ having a lower average temperature. These results come at a critical time as the Cassini spacecraft completes all orbits between planet and rings, with the opportunity to sample the forces and material fluxes related to ring rain.

  15. High resolution mapping of NO2 column densities along the western shore of Lake Michigan and the Los Angeles Basin during May/June 2017

    NASA Astrophysics Data System (ADS)

    Judd, L. M.; Al-Saadi, J. A.; Janz, S. J.; Kowalewski, M. G.; Szykman, J.; Swap, R.; Abuhassan, N.; Cede, A.; Valin, L.; Williams, D.; Stanier, C. O.

    2017-12-01

    The airborne Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) UV/VIS mapping spectrometer was used to make measurements for the Lake Michigan Ozone Study (LMOS) along the western shore of Lake Michigan and for the Student Airborne Research Program (SARP) in the Los Angeles Basin during May and June 2017. This instrument has the capability of retrieving NO2 column densities at sub-urban spatial scales (nominally 250 m x 250 m) and is being used as a testbed for future geostationary air quality retrievals. LMOS was a multi-agency collaborative observational effort to better understand ozone pollution along Lake Michigan's western shore, where coastal monitors exceed current ozone standards. With 21 science flights during the 5-week campaign period, GeoTASO acquired data for constraining emissions along the western coast of Lake Michigan and observed how these emissions dispersed and influenced the local air quality. During SARP flights, GeoTASO was used to map the Los Angeles Basin five times over two days, observing NO2 Differential Slant Column densities (DSCs) ranging from over 50x1015 molecules cm-2 down to GeoTASO's detection limit ( 1.5x1015 molecules cm-2 at 250 m x 250 m). This work presents the spatial distribution of preliminary NO2 DSCs observations over both research areas, and shows how this it changed at hourly to multi-day timescales under varying meteorological conditions. Both LMOS and SARP included coincident column NO2 measurements from networks of ground-based Pandora spectrometers specifically set up for these campaigns, and a comparison of coincident observations will be shown. Consistent features were observed throughout these flights, including continual emission `hot-spots' and the redistribution of NO2 plumes by land-water circulations. One goal of this work is to investigate how the fine spatial features observed (e.g. power plant plumes) will be depicted in satellite observations at coarser spatial resolutions. These results will help the community understand how to interpret space-based observations in areas subject to large NO2 spatial heterogeneity, as well as what we can expect to detect with future geostationary air quality sensors over a range of pollution environments.

  16. THE PHOTON UNDERPRODUCTION CRISIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollmeier, Juna A.; Weinberg, David H.; McEwen, Joseph

    We examine the statistics of the low-redshift Lyα forest from smoothed particle hydrodynamic simulations in light of recent improvements in the estimated evolution of the cosmic ultraviolet background (UVB) and recent observations from the Cosmic Origins Spectrograph (COS). We find that the value of the metagalactic photoionization rate (Γ{sub HI}) required by our simulations to match the observed properties of the low-redshift Lyα forest is a factor of five larger than the value predicted by state-of-the art models for the evolution of this quantity. This mismatch in Γ{sub HI} results in the mean flux decrement of the Lyα forest beingmore » overpredicted by at least a factor of two (a 10σ discrepancy with observations) and a column density distribution of Lyα forest absorbers systematically and significantly elevated compared to observations over nearly two decades in column density. We examine potential resolutions to this mismatch and find that either conventional sources of ionizing photons (galaxies and quasars) must contribute considerably more than current observational estimates or our theoretical understanding of the low-redshift universe is in need of substantial revision.« less

  17. Simultaneous UV and X-ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I. Evidence for Dust in the UV Absorbers

    NASA Astrophysics Data System (ADS)

    Kraemer, S. B.; Crenshaw, D. M.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K.; George, I. M.; Turner, T. J.; Yaqoob, T.; Dunn, J. P.

    2002-12-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, obtained with the Space Telescope Imaging Spectrograph at high spectral resolution (λ /Δ λ = 30,000 - 46,000), simultaneously with Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner high-ionization narrow-line region (NLR). Assuming the NLR is fully covered, we find nonunity covering factors in the cores of several components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous C IV and N V columns for component 1 (at -1040 km s-1), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim (based on nonsimultaneous observations of N V and C IV). We find that dust-free models of the absorbers severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include dust (and thereby heavily deplete carbon) are successful in matching all of the observed ionic columns, and result in substantially lower ionization parameters and total column densities compared to dust-free models. Interestingly, these models yield the exact amount of dust needed to produce the observed reddening of the inner NLR, assuming a Galactic dust to gas ratio. The models produce little O VII and O VIII, indicating that none of the dusty UV absorbers is associated with a classic X-ray warm absorber.

  18. The O VI Mystery: Mismatch between X-Ray and UV Column Densities

    NASA Astrophysics Data System (ADS)

    Mathur, S.; Nicastro, F.; Gupta, A.; Krongold, Y.; McLaughlin, B. M.; Brickhouse, N.; Pradhan, A.

    2017-12-01

    The UV spectra of Galactic and extragalactic sightlines often show O VI absorption lines at a range of redshifts, and from a variety of sources from the Galactic circumgalactic medium to active galactic nuclei (AGN) outflows. Inner shell O VI absorption is also observed in X-ray spectra (at λ =22.03 Å), but the column density inferred from the X-ray line was consistently larger than that from the UV line. Here we present a solution to this discrepancy for the z = 0 systems. The O II Kβ line {}4{S}0\\to {(}3D)3{p}4P at 562.40 eV (≡22.04 Å) is blended with the O VI Kα line in X-ray spectra. We estimate the strength of this O II line in two different ways, and show that in most cases the O II line accounts for the entire blended line. The small amount of O VI equivalent width present in some cases has column density entirely consistent with the UV value. This solution to the O VI discrepancy, however, does not apply to high column-density systems like AGN outflows. We discuss other possible causes to explain their UV/X-ray mismatch. The O VI and O II lines will be resolved by gratings on board the proposed mission Arcus and the concept mission Lynx, and would allow the detection of weak O VI lines not just at z = 0, but also at higher redshift.

  19. Indirect observation of unobservable interstellar molecules

    NASA Technical Reports Server (NTRS)

    Herbst, E.; Green, S.; Thaddeus, P.; Klemperer, W.

    1977-01-01

    It is suggested that the abundances of neutral non-polar interstellar molecules unobservable by radio astronomy can be systematically determined by radio observation of the protonated ions. As an example, observed N2H(+) column densities are analyzed to infer molecular nitrogen abundances in dense interstellar clouds. The chemistries and expected densities of the protonated ions of O2, C2, CO2, C2H2 and CH4 are then discussed. Microwave transition frequencies fo HCO2(+) and C2H3(+) are estimated, and a preliminary astronomical search for HCO2(+) is described.

  20. The Einstein objective grating spectrometer survey of galactic binary X-ray sources

    NASA Technical Reports Server (NTRS)

    Vrtilek, S. D.; Mcclintock, J. E.; Seward, F. D.; Kahn, S. M.; Wargelin, B. J.

    1991-01-01

    The results of observations of 22 bright Galactic X-ray point sources are presented, and the most reliable measurements to date of X-ray column densities to these sources are derived. The results are consistent with the idea that some of the objects have a component of column density intrinsic to the source in addition to an interstellar component. The K-edge absorption due to oxygen is clearly detected in 10 of the sources and the Fe L and Ne K edges are detected in a few. The spectra probably reflect emission originating in a collisionally excited region combined with emission from a photoionized region excited directly by the central source.

  1. THE GAS/DUST RATIO OF CIRCUMSTELLAR DISKS: TESTING MODELS OF PLANETESIMAL FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horne, David; Gibb, Erika; Rettig, Terrence W.

    2012-07-20

    We present high-resolution, near-infrared NIRSPEC observations of CO absorption toward six class II T Tauri stars: AA Tau, DG Tau, IQ Tau, RY Tau, CW Tau, and Haro 6-5b. {sup 12}CO overtone absorption lines originating from the circumstellar disk of each object were used to calculate line-of-sight gas column densities toward each source. We measured the gas/dust ratio as a function of disk inclination, utilizing measured visual extinctions and inclinations for each star. The majority of our sources show further evidence for a correlation between the gas/dust column density ratio and disk inclination similar to that found by Rettig etmore » al.« less

  2. Impact of spatial proxies on the representation of bottom-up emission inventories: A satellite-based analysis

    NASA Astrophysics Data System (ADS)

    Geng, Guannan; Zhang, Qiang; Martin, Randall V.; Lin, Jintai; Huo, Hong; Zheng, Bo; Wang, Siwen; He, Kebin

    2017-03-01

    Spatial proxies used in bottom-up emission inventories to derive the spatial distributions of emissions are usually empirical and involve additional levels of uncertainty. Although uncertainties in current emission inventories have been discussed extensively, uncertainties resulting from improper spatial proxies have rarely been evaluated. In this work, we investigate the impact of spatial proxies on the representation of gridded emissions by comparing six gridded NOx emission datasets over China developed from the same magnitude of emissions and different spatial proxies. GEOS-Chem-modeled tropospheric NO2 vertical columns simulated from different gridded emission inventories are compared with satellite-based columns. The results show that differences between modeled and satellite-based NO2 vertical columns are sensitive to the spatial proxies used in the gridded emission inventories. The total population density is less suitable for allocating NOx emissions than nighttime light data because population density tends to allocate more emissions to rural areas. Determining the exact locations of large emission sources could significantly strengthen the correlation between modeled and observed NO2 vertical columns. Using vehicle population and an updated road network for the on-road transport sector could substantially enhance urban emissions and improve the model performance. When further applying industrial gross domestic product (IGDP) values for the industrial sector, modeled NO2 vertical columns could better capture pollution hotspots in urban areas and exhibit the best performance of the six cases compared to satellite-based NO2 vertical columns (slope = 1.01 and R2 = 0. 85). This analysis provides a framework for information from satellite observations to inform bottom-up inventory development. In the future, more effort should be devoted to the representation of spatial proxies to improve spatial patterns in bottom-up emission inventories.

  3. Simultaneous UV and X-ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I: Physical Conditions in the UV Absorbers

    NASA Technical Reports Server (NTRS)

    Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K. C.; Brinkman, A. C.; Dunn, J. P.; George, I. M.; Liedahl, D. A.; Paerels, F. B. S.

    2003-01-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, which we obtained with the Space Telescope Imaging Spectrograph at high spectral resolution, in conjunction with simultaneous Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner, high-ionization narrow-line region (NLR). We find nonunity covering factors in the cores of several kinematic components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9 over the full-covering case; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous N V and C IV columns for component 1 (at -1040 km/s), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim based on nonsimultaneous observations. We find that models of the absorbers based on solar abundances severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include either enhanced nitrogen (twice solar) or dust, with strong depletion of carbon in either case, are successful in matching all of the observed ionic columns. These models result in substantially lower ionization parameters and total column densities compared to dust-free solar-abundance models, and produce little O VII or O VIII, indicating that none of the UV absorbers are X-ray warm absorbers.

  4. A parametric study of Io’s thermophysical surface properties and subsequent numerical atmospheric simulations based on the best fit parameters

    NASA Astrophysics Data System (ADS)

    Walker, Andrew C.; Moore, Chris H.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2012-07-01

    Io’s sublimation atmosphere is inextricably linked to the SO2 surface frost temperature distribution which is poorly constrained by observations. We constrain Io’s surface thermal distribution by a parametric study of its thermophysical properties in an attempt to better model the morphology of Io’s sublimation atmosphere. Io’s surface thermal distribution is represented by three thermal units: sulfur dioxide (SO2) frosts/ices, non-frosts (probably sulfur allotropes and/or pyroclastic dusts), and hot spots. The hot spots included in our thermal model are static high temperature surfaces with areas and temperatures based on Keck infrared observations. Elsewhere, over frosts and non-frosts, our thermal model solves the one-dimensional heat conduction equation in depth into Io’s surface and includes the effects of eclipse by Jupiter, radiation from Jupiter, and latent heat of sublimation and condensation. The best fit parameters for the SO2 frost and non-frost units are found by using a least-squares method and fitting to observations of the Hubble Space Telescope’s Space Telescope Imaging Spectrograph (HST STIS) mid- to near-UV reflectance spectra and Galileo PPR brightness temperature. The thermophysical parameters are the frost Bond albedo, αF, and thermal inertia, ΓF, as well as the non-frost surface Bond albedo, αNF, and thermal inertia, ΓNF. The best fit parameters are found to be αF ≈ 0.55 ± 0.02 and ΓF ≈ 200 ± 50 J m-2 K-1 s-1/2 for the SO2 frost surface and αNF ≈ 0.49 ± 0.02 and ΓNF ≈ 20 ± 10 J m-2 K-1 s-1/2 for the non-frost surface. These surface thermophysical parameters are then used as boundary conditions in global atmospheric simulations of Io’s sublimation-driven atmosphere using the direct simulation Monte Carlo (DSMC) method. These simulations are unsteady, three-dimensional, parallelized across 360 processors, and include the following physical effects: inhomogeneous surface frosts, plasma heating, and a temperature-dependent residence time on the non-frost surface. The DSMC simulations show that the sub-jovian hemisphere is significantly affected by the daily solar eclipse. The simulated SO2 surface frost temperature is found to drop only ∼5 K during eclipse due to the high thermal inertia of SO2 surface frosts but the SO2 gas column density falls by a factor of 20 compared to the pre-eclipse column due to the exponential dependence of the SO2 vapor pressure on the SO2 surface frost temperature. Supersonic winds exist prior to eclipse but become subsonic during eclipse because the collapse of the atmosphere significantly decreases the day-to-night pressure gradient that drives the winds. Prior to eclipse, the supersonic winds condense on and near the cold nightside and form a highly non-equilibrium oblique shock near the dawn terminator. In eclipse, no shock exists since the gas is subsonic and the shock only reestablishes itself an hour or more after egress from eclipse. Furthermore, the excess gas that condenses on the non-frost surface during eclipse leads to an enhancement of the atmosphere near dawn. The dawn atmospheric enhancement drives winds that oppose those that are driven away from the peak pressure region above the warmest area of the SO2 frost surface. These opposing winds meet and are collisional enough to form stagnation point flow. The simulations are compared to Lyman-α observations in an attempt to explain the asymmetry between the dayside atmospheres of the anti-jovian and sub-jovian hemispheres. Lyman-α observations indicate that the anti-jovian hemisphere has higher column densities than the sub-jovian hemisphere and also has a larger latitudinal extent. A composite “average dayside atmosphere” is formed from a collisionless simulation of Io’s atmosphere throughout an entire orbit. This composite “average dayside” atmosphere without the effect of global winds indicates that the sub-jovian hemisphere has lower average column densities than the anti-jovian hemisphere (with the strongest effect at the sub-jovian point) due primarily to the diurnally averaged effect of eclipse. This is in qualitative agreement with the sub-jovian/anti-jovian asymmetry in the Lyman-α observations which were alternatively explained by the bias of volcanic centers on the anti-jovian hemisphere. Lastly, the column densities in the simulated average dayside atmosphere agree with those inferred from Lyman-α observations despite the thermophysical parameters being constrained by mid- to near UV observations which show much higher instantaneous SO2 gas column densities. This may resolve the apparent discrepancy between the lower “average dayside” column densities observed in the Lyman-α and the higher instantaneous column densities observed in the mid- to near UV.

  5. The structure of galactic HI in directions of low total column density

    NASA Technical Reports Server (NTRS)

    Lockman, F. J.; Jahoda, K.; Mccammon, D.

    1985-01-01

    A detailed 21 cm study of areas of that have the smallest known amount of HI in the northern sky was performed. These observations were corrected for stray radiation. The region of main interest, around alpha = 10(h)45(m), delta = 57 deg 20', has a minimium N(HI) of 4.5 x 10 to the 19th power/sq cm. Spectra taken at 21' resolution over a field 4 x 3 deg in this direction show up to four HI line components. Two, near 0 and -50 km/s, are ubiquitous. There is also a narrow component at -10 km/s attributable to a diffuse cloud covering half of the field, and scattered patches of HI at v -100 km/s. the low and intermediate velocity components have a broad line width and are so smoothly distributed across the region that it is unlikely that they contain significant unresolved angular structure. Eight other low column density directions were also observed. Their spectra typically have several components, but the total column density is always 7 x 10 to the 19th power/sq cm and changes smoothly along a 2 deg strip. Half of the directions show narrow lines arising from weak diffuse HI clouds that contain 0.5 to 3.0 x 10 to the 19th power/sq cm.

  6. Constraints on the OH-to-H Abundance Ratio in Infrared-bright Galaxies Derived from the Strength of the OH 35 μm Absorption Feature

    NASA Astrophysics Data System (ADS)

    Stone, Myra; Veilleux, Sylvain; González-Alfonso, Eduardo; Spoon, Henrik; Sturm, Eckhard

    2018-02-01

    We analyze Spitzer/InfraRed Spectrograph (IRS) observations of the OH 35 μm feature in 15 nearby (z ≲ 0.06) (ultra-)luminous infrared galaxies (U/LIRGs). All objects exhibit OH 35 μm purely in absorption, as expected. The small optical depth of this transition makes the strength of this feature a good indicator of the true OH column density. The measured OH 35 μm equivalent widths imply an average OH column density and a 1-σ standard deviation to the mean of {N}{OH}=1.31+/- 0.22× {10}17 cm‑2. This number is then compared with the hydrogen column density for a typical optical depth at 35 μm of ∼0.5 and gas-to-dust ratio of 125 to derive an OH-to-H abundance ratio of {X}{OH}=1.01+/- 0.15× {10}-6. This abundance ratio is formally a lower limit. It is consistent with the values generally assumed in the literature. The OH 35 μm line profiles predicted from published radiative transfer models constrained by observations of OH 65, 79, 84, and 119 μm in 5 objects (Mrk 231, Mrk 273, IRAS F05189-2524, IRAS F08572+3915, and IRAS F20551-4250) are also found to be consistent with the IRS OH 35 μm spectra.

  7. Scaled Eagle Nebula Experiments on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pound, Marc W.

    We performed scaled laboratory experiments at the National Ignition Facility laser to assess models for the creation of pillar structures in star-forming clouds of molecular hydrogen, in particular the famous Pillars of the Eagle Nebula. Because pillars typically point towards nearby bright ultraviolet stars, sustained directional illumination appears to be critical to pillar formation. The experiments mock up illumination from a cluster of ultraviolet-emitting stars, using a novel long duration (30--60 ns), directional, laser-driven x-ray source consisting of multiple radiation cavities illuminated in series. Our pillar models are assessed using the morphology of the Eagle Pillars observed with the Hubblemore » Space Telescope, and measurements of column density and velocity in Eagle Pillar II obtained at the BIMA and CARMA millimeter wave facilities. In the first experiments we assess a shielding model for pillar formation. The experimental data suggest that a shielding pillar can match the observed morphology of Eagle Pillar II, and the observed Pillar II column density and velocity, if augmented by late time cometary growth.« less

  8. VizieR Online Data Catalog: Silicon depletion in the interstellar medium (Haris+, 2016)

    NASA Astrophysics Data System (ADS)

    Haris, U.; Parvathi, V. S.; Gudennavar, S. B.; Bubbly, S. G.; Murthy, J.; Sofia, U. J.

    2018-03-01

    Gudennavar et al. (2012, J/ApJS/199/8) compiled absorption line data for 3008 stars of which 131 sight lines included silicon column densities that were taken over 30 years of observations (Table 1). Most of the silicon lines (84) in our sample have come from van Steenberg & Shull (1988ApJS...67..225V) who used archival observations from the International Ultraviolet Explorer (IUE) to derive column densities to a number of different species. Most of the other observations (36) were made using the Goddard High Resolution Spectrograph (Spitzer & Fitzpatrick 1995ApJ...445..196S; Savage & Sembach 1996ARA&A..34..279S; Redfield & Linsky 2004ApJ...602..776R) or the Space Telescope Imaging Spectrograph (Sonnentrucker et al. 2003ApJ...596..350S; Gnacinski & Krogulec 2006AcA....56..373G; Miller et al. 2007ApJ...659..441M) with higher resolution and better signal-to-noise. (3 data files).

  9. Radiative transfer within seagrass canopies: impact on carbon budgets and light requirements

    NASA Astrophysics Data System (ADS)

    Zimmerman, Richard C.; Mobley, Curtis D.

    1997-02-01

    Seagrasses are ecologically important but extremely vulnerable to anthropogenic modifications of the coastal zone that affect light availability within these unique ecosystems. Strongly pigmented seagrass leaves can extend for more than 1 m above the substrate and biomass is distributed unevenly throughout the canopy. in this study, light attenuation in a 7 m water column that contained a seagrass canopy extending 1.5 m above the bottom was calculated by the radiative transfer model Hydrolight using the spectral absorbance of eelgrass leaves and a non-uniform vertical distribution of biomass. Runs were performed in clear and turbid water columns, over san d and mud substrates, and with shoot densities ranging from 25 to 200 m-2 using solar angles for both winter and summer solstices. The flux of photosynthetically active irradiance (EPAR) reaching the top of the seagrass canopy was twice as high in summer compared to winter, and in clear water compared to turbid water. Sediment type had a measurable effect on EPAR only within the bottom third of the canopy. Light penetration within the canopy was inversely proportional to shoot density. Introduction of daylength and a sinusoidal distribution of EPAR throughout the day greatly increased the importance of solar elevation on daily integrated production relative to water column turbidity and sediment type. Shoot-specific productivity decreased and the position of maximum shoot productivity within the canopy shallowed as shoot density increased. Positive net photosynthesis for entire shoots was possible only when plant density was lower than 100 shoots m-2 in winter; values consistent with field observations. Although very simplistic with regard to inherent optical properties of real seagrass leaves, this model was able to generate estimates of maximum sustainable shoot density that were fully testable by, and wholly consistent with, field observations.

  10. GRB070125: The First Long-Duration Gamma-Ray Burst in a Halo Environment

    NASA Technical Reports Server (NTRS)

    Bradley, Cenko S.; Fox, Derek B.; Penprase, Brian E.; Kulkarni, Shri R.; Price, Paul A.; Berger, Edo; Kulkarni, Shri R.; Harrison, Fiona A.; Gal-Yam, Avishay; Ofek, Eran O.; hide

    2007-01-01

    We present the discovery and high signal-to-noise spectroscopic observations of the optical afterglow of the long-duration gamma-ray burst GRB070125. Unlike all previously observed long-duration afterglows in the redshift range 0.5 < z < 2.0, we find no strong (rest-frame equivalent width W > 1.0 A) absorption features in the wavelength range 4000 - 10000 A. The sole significant feature is a weak doublet we identify as Mg 11 2796 (W = 0.18 +/- 0.02 A), 2803 (W = 0.08 +0I.-01 ) at z = 1.5477 +/- 0.0001. The low observed Mg II and inferred H I column densities are typically observed in galactic halos, far away from the bulk of massive star formation. Deep ground-based imaging reveals no host directly underneath the afterglow to a limit of R > 25.4 mag. Either of the two nearest blue galaxies could host GRB070125; the large offset (d >= 27 kpc) would naturally explain the low column density. To remain consistent with the large local (i.e. parsec scale) circum-burst density inferred from broadband afterglow observations, we speculate GRB070125 may have occurred far away from the disk of its host in a compact star-forming cluster. Such distant stellar clusters, typically formed by dynamical galaxy interactions, have been observed in the nearby universe, and should be more prevalent at z>l where galaxy mergers occur more frequently.

  11. GEOMETRY-INDEPENDENT DETERMINATION OF RADIAL DENSITY DISTRIBUTIONS IN MOLECULAR CLOUD CORES AND OTHER ASTRONOMICAL OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krčo, Marko; Goldsmith, Paul F., E-mail: marko@astro.cornell.edu

    2016-05-01

    We present a geometry-independent method for determining the shapes of radial volume density profiles of astronomical objects whose geometries are unknown, based on a single column density map. Such profiles are often critical to understand the physics and chemistry of molecular cloud cores, in which star formation takes place. The method presented here does not assume any geometry for the object being studied, thus removing a significant source of bias. Instead, it exploits contour self-similarity in column density maps, which appears to be common in data for astronomical objects. Our method may be applied to many types of astronomical objectsmore » and observable quantities so long as they satisfy a limited set of conditions, which we describe in detail. We derive the method analytically, test it numerically, and illustrate its utility using 2MASS-derived dust extinction in molecular cloud cores. While not having made an extensive comparison of different density profiles, we find that the overall radial density distribution within molecular cloud cores is adequately described by an attenuated power law.« less

  12. Interstellar abundances and depletions inferred from observations of neutral atoms

    NASA Technical Reports Server (NTRS)

    Snow, T. P.

    1984-01-01

    Data on neutral atomic species are analyzed for the purpose of inferring relative elemental abundances and depletions in diffuse cloud cores, where it is assumed that densities are enhanced in comparison with mean densities over integrated lines of sight. Column densities of neutral atoms are compared to yield relative column densities of singly ionized species, which are assumed dominant in cloud cores. This paper incorporates a survey of literature data on neutral atomic abundances with the result that no systematic enhancement in the depletions of calcium or iron in cloud cores is found, except for zeta Ophiuchi. This may imply that depletions are not influenced by density, but other data argue against this interpretation. It is concluded either that in general all elements are depleted together in dense regions so that their relative abundances remain constant, or that typical diffuse clouds do not have significant cores, but instead are reasonably homogeneous. The data show a probable correlation between cloud-core depletion and hydrogen-molecular fraction, supporting the assumption that overall depletions are a function of density.

  13. Abundances of Deuterium, Oxygen and Nitrogen in the Local Interstellar Medium: Overview of First Results from the Far Ultraviolet Spectroscopic Explorer Mission

    NASA Technical Reports Server (NTRS)

    Moos, H. W.; Sembach, K. R.; Vidal-Madjar, A.; York, D. G.; Friedman, S. D.; Hebrard, G.; Kruk, J. W.; Lehner, N.; Lemoine, M.; Sonneborn, G.; hide

    2002-01-01

    Observations obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) have been used to determine the column densities of D I, O I, and N I along seven sight lines that probe the local interstellar medium (LISM) at distances from 37 pc to 179 pc. Five of the sight lines are within the Local Bubble and two penetrate the surrounding H I wall. Reliable values of N(H I) were determined for five of the sight lines from HST data, IUE data, and published EUVE measurements. The weighted mean of DI/H I for these five sight lines is (1.52 +/- 0.08) x l0(exp -5)(1 sigma uncertainty in the mean). It is likely that the D I/H I ratio in the Local Bubble has a single value. The D I/O I ratio for the five sight lines within the Local Bubble is (3.76 +/- 0.20) x 10(esp -2). It is likely that O I column densities can serve as a proxy for H I in the Local Bubble. The weighted mean for O I/ H I for the seven FUSE sight lines is (3.03 +/- 0.21) x 10(esp -4), comparable to the weighted mean (3.43 +/- 0.15) x 10(exp -4) reported for 13 sight lines probing larger distances and higher column densities. The FUSE weighted mean of N I/ H I for five sight lines is half that reported by Meyer et al. for seven sight lines with larger distances and higher column densities. This result combined with the variability of O I/ N I (six sight lines) indicates that at the low column densities found in the LISM, nitrogen ionization balance is important. Thus, unlike O I, N I cannot be used as a proxy for H I or as a metallicity indicator in the LISM.

  14. Discovery of X-ray emission associated with the Gum Nebula

    NASA Technical Reports Server (NTRS)

    Leahy, D. A.; Nousek, J.; Garmire, G.

    1992-01-01

    The Gum Nebula was observed by the A-2 LED proportional counters on the HEAO-1 satellite as part of the all-sky survey. The first detection of X-ray emission associated with the Gum Nebula is reported. Soft X-ray spectra were constructed from the A-2 LED PHA data. Single temperature Raymond-Smith models were fitted to the observed spectra to yield temperature, column density and emission measure. The temperature is 6 x 10 exp 5 K, the column density 4 x 10 exp 20/sq cm, and the emission measure 5 cm exp-6 pc. The X-ray and optical properties of the Gum Nebula are consistent with a supernova remnant in the shell stage of evolution, which was the product of an energetic (3 x 10 exp 51 ergs) supernova explosion which occurred about 2 x 10 exp 6 yr ago.

  15. Small scale H I structure and the soft X-ray background

    NASA Technical Reports Server (NTRS)

    Jahoda, K.; Mccammon, D.; Lockman, F. J.

    1986-01-01

    The observed anticorrelation between diffuse soft X-ray flux and H I column density has been explained as absorption of soft X-rays produced in a hot galactic halo, assuming that the neutral interstellar material is sufficiently clumped to reduce the soft X-ray absorption cross section by a factor of two to three. A 21 cm emission line study of H I column density variations at intermediate and high galactic latitudes to 10' spatial resolution has been done. The results confirm conclusions from preliminary work at coarser resolution, and in combination with other data appear to rule out the hypothesis that clumping of neutral interstellar matter on any angular scale significantly reduces X-ray absorption cross sections in the 0.13 - 0.28 keV energy range. It is concluded therefore that the observed anticorrelation is not primarily a consequence of absorption of soft X-rays produced in a hot galactic halo.

  16. Trace gas retrievals from Airborne Compact Atmospheric Mapper (ACAM) observations during the 2011 DISCOVER-AQ flight campaign

    NASA Astrophysics Data System (ADS)

    Liu, X.; Kowalewski, M. G.; Janz, S. J.; Bhartia, P. K.; Chance, K.; Krotkov, N. A.; Pickering, K. E.; Crawford, J. H.

    2011-12-01

    The DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) mission has just finished its first flight campaign in the Baltimore-Washington D.C. area in July 2011. The ACAM, flown on board the NASA UC-12 aircraft, includes two spectrographs covering the spectral region 304-900 nm and a high-definition video camera, and is expected to provide column measurements of several important air quality trace gases and aerosols for the DISCOVER-AQ mission. The quick look results for NO2 have been shown to very useful in capturing the strong spatiotemporal variability of NO2. Preliminary fitting of UV/Visible spectra has shown that ACAM measurements have adequate signal to noise ratio to measure the trace gases O2, NO2, HCHO, and maybe SO2 and CHOCHO, at individual pixel resolution, although a great deal of effort is needed to improve the instrument calibration and derive proper reference spectrum for retrieving absolute trace gas column densities. In this study, we present analysis of ACAM instrument calibration including slit function, wavelength registration, and radiometric calibration for both nadir-viewing and zenith-sky measurements. Based on this analysis, an irradiance reference spectrum at ACAM resolution will be derived from a high-resolution reference spectrum with additional correction to account for instrument calibration. Using the derived reference spectrum and/or the measured zenith sky measurements, we will perform non-linear least squares fitting to investigate the retrievals of slant column densities of these trace gases from ACAM measurements, and also use an optimal estimation based algorithm including full radiative transfer calculations to derive the vertical column densities of these trace gases. The initial results will be compared with available in-situ and ground-based measurements taken during the DISCOVER-AQ campaign.

  17. The Swift Burst Alert Telescope Detected Seyfert 1 Galaxies: X-Ray Broadband Properties and Warm Absorbers

    NASA Technical Reports Server (NTRS)

    Winter, Lisa M.; Veilleux, Sylvain; McKernan, Barry; Kallman, T.

    2012-01-01

    We present results from an analysis of the broadband, 0.3-195 keV, X-ray spectra of 48 Seyfert 1-1.5 sources detected in the very hard X-rays with the Swift Burst Alert Telescope (BAT). This sample is selected in an all-sky survey conducted in the 14-195 keV band. Therefore, our sources are largely unbiased toward both obscuration and host galaxy properties. Our detailed and uniform model fits to Suzaku/BAT and XMM-Newton/BAT spectra include the neutral absorption, direct power-law, reflected emission, soft excess, warm absorption, and narrow Fe I K[alpha] emission properties for the entire sample. We significantly detect O VII and O VIII edges in 52% of our sample. The strength of these detections is strongly correlated with the neutral column density measured in the spectrum. Among the strongest detections, X-ray grating and UV observations, where available, indicate outflowing material. The ionized column densities of sources with O VII and O VIII detections are clustered in a narrow range with Nwarm [approx] 1021 cm-2, while sources without strong detections have column densities of ionized gas an order of magnitude lower. Therefore, we note that sources without strong detections likely have warm ionized outflows present but at low column densities that are not easily probed with current X-ray observations. Sources with strong complex absorption have a strong soft excess, which may or may not be due to difficulties in modeling the complex spectra of these sources. Still, the detection of a flat [Gamma] [approx] 1 and a strong soft excess may allow us to infer the presence of strong absorption in low signal-to-noise active galactic nucleus spectra. Additionally, we include a useful correction from the Swift BAT luminosity to bolometric luminosity, based on a comparison of our spectral fitting results with published spectral energy distribution fits from 33 of our sources.

  18. Topology in Synthetic Column Density Maps for Interstellar Turbulence

    NASA Astrophysics Data System (ADS)

    Putko, Joseph; Burkhart, B. K.; Lazarian, A.

    2013-01-01

    We show how the topology tool known as the genus statistic can be utilized to characterize magnetohydrodyanmic (MHD) turbulence in the ISM. The genus is measured with respect to a given density threshold and varying the threshold produces a genus curve, which can suggest an overall ‘‘meatball,’’ neutral, or ‘‘Swiss cheese’’ topology through its integral. We use synthetic column density maps made from three-dimensional 5123 compressible MHD isothermal simulations performed for different sonic and Alfvénic Mach numbers (Ms and MA respectively). We study eight different Ms values each with one sub- and one super-Alfvénic counterpart. We consider sight-lines both parallel (x) and perpendicular (y and z) to the mean magnetic field. We find that the genus integral shows a dependence on both Mach numbers, and this is still the case even after adding beam smoothing and Gaussian noise to the maps to mimic observational data. The genus integral increases with higher Ms values (but saturates after about Ms = 4) for all lines of sight. This is consistent with greater values of Ms resulting in stronger shocks, which results in a clumpier topology. We observe a larger genus integral for the sub-Alfvénic cases along the perpendicular lines of sight due to increased compression from the field lines and enhanced anisotropy. Application of the genus integral to column density maps should allow astronomers to infer the Mach numbers and thus learn about the environments of interstellar turbulence. This work was supported by the National Science Foundation’s REU program through NSF Award AST-1004881.

  19. Thermospheric Mass Density Specification: Synthesis of Observations and Models

    DTIC Science & Technology

    2013-10-21

    Simulation Experiments (OSSEs) of the column-integrated ratio of atomic oxygen and molecular nitrogen. Note that OSSEs assimilate, for a given...realistic observing system, synthetically generated observational data often sampled from model simulation results, in place of actually observed values...and molecular oxygen mass mixing ratio). Note that in the TIEGCM the molecular nitrogen mass mixing ratio is specified so that the sum of mixing

  20. Galaxy gas as obscurer - I. GRBs x-ray galaxies and find an NH3∝ M_{star} relation

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes; Schulze, Steve; Bauer, Franz E.

    2017-02-01

    An important constraint for galaxy evolution models is how much gas resides in galaxies, in particular, at the peak of star formation z = 1-3. We attempt a novel approach by letting long-duration gamma ray bursts (LGRBs) x-ray their host galaxies and deliver column densities to us. This requires a good understanding of the obscurer and biases introduced by incomplete follow-up observations. We analyse the X-ray afterglow of all 844 Swift LGRBs to date for their column density NH. To derive the population properties, we propagate all uncertainties in a consistent Bayesian methodology. The NH distribution covers the 1020-23 cm-2 range and shows no evolutionary effect. Higher obscurations, e.g. Compton-thick columns, could have been detected but are not observed. The NH distribution is consistent with sources randomly populating a ellipsoidal gas cloud of major axis {N^{major}H }=10^{23}cm^{-2} with 0.22 dex intrinsic scatter between objects. The unbiased SHOALS survey of afterglows and hosts allows us to constrain the relation between Spitzer-derived stellar masses and X-ray derived column densities NH. We find a well-constrained power-law relation of NH = 1021.7 cm-2 × (M⋆/109.5 M⊙)1/3, with 0.5 dex intrinsic scatter between objects. The Milky Way and the Magellanic clouds also follow this relation. From the geometry of the obscurer, its stellar mass dependence and comparison with local galaxies, we conclude that LGRBs are primarily obscured by galaxy-scale gas. Ray tracing of simulated Illustris galaxies reveals a relation of the same normalization, but a steeper stellar-mass dependence and mild redshift evolution. Our new approach provides valuable insight into the gas residing in high-redshift galaxies.

  1. Shadows and Dust: Mid-Infrared Extinction Mapping of the Initial Conditions of Massive Star and Star Cluster Formation

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan

    We describe a research plan to develop and extend the mid-infrared (MIR) extinction mapping technique presented by Butler & Tan (2009), who studied Infrared Dark Clouds (IRDCs) using Spitzer Space Telescope Infrared Array Camera (IRAC) 8 micron images. This method has the ability to probe the detailed spatial structure of very high column density regions, i.e. the gas clouds thought to represent the initial conditions for massive star and star cluster formation. We will analyze the data Spitzer obtained at other wavelengths, i.e. the IRAC bands at 3.6, 4.5 and 5.8 microns, and the Multiband Imaging Photometer (MIPS) bands, especially at 24 microns. This will allow us to measure the dust extinction law across the MIR and search for evidence of dust grain evolution, e.g. grain growth and ice mantle formation, as a function of gas density and column density. We will also study the detailed structure of the extinction features, including individual cores that may form single stars or close binaries, especially focusing on those cores that may form massive stars. By studying independent dark cores in a given IRDC, we will be able to test if they have a common minimum observed intensity, which we will then attribute to the foreground. This is a new method that should allow us to more accurately map distant, high column density IRDCs, probing more extreme regimes of star formation. We will combine MIR extinction mapping, which works best at high column densities, with near- IR mapping based on 2MASS images of star fields, which is most useful at lower columns that probe the extended giant molecular cloud structure. This information is crucial to help understand the formation process of IRDCs, which may be the rate limiting step for global galactic star formation rates. We will use our new extinction mapping methods to analyze large samples of IRDCs and thus search the Galaxy for the most extreme examples of high column density cores and assess the global star formation efficiency in dense gas. We will estimate the ability of future NASA missions, such as JWST, to carry out MIR extinction mapping science. We will develop the results of this research into an E/PO presentation to be included in the various public outreach events organized and courses taught by the PI.

  2. The quasar proximity effect in an equivalent-width-limited sample of the Lyman-alpha forest

    NASA Technical Reports Server (NTRS)

    Chernomordik, Viktor V.; Ozernoy, Leonid M.

    1993-01-01

    We have obtained a simple analytical approximation to the relationship between a rest-frame equivalent-width distribution for Ly-alpha forest absorption lines, N(W), and an H I column density distribution of the observed cloud number, N(N). Assuming a simple power-law form for N(N) proportional to N exp (1-beta), it is shown that beta = 1.4 turns out to agree fairly well with the observed form of N(W) in a broad range of column densities. We present a theoretical analysis of how the 'proximity effect' influences a W-limited sample of Ly-alpha forest lines. It is shown that this influence is considerably smaller than has been found before for a N-limited sample, for which an approximate value of beta was assumed rather than derived as has been done, for a W-limited sample, in the present paper. As a result, available observational data appear to be still consistent with the conjecture that the observed population of QSOs is the major source of the UV background at redshifts z about 2-4.

  3. A study of the physics and chemistry of TMC-1

    NASA Technical Reports Server (NTRS)

    Pratap, P.; Dickens, J. E.; Snell, R. L.; Miralles, M. P.; Bergin, E. A.; Irvine, W. M.; Schloerb, F. P.

    1997-01-01

    We present a comprehensive study of the physical and chemical conditions along the TMC-1 ridge. Temperatures were estimated from observations of CH3CCH, NH3, and CO. Densities were obtained from a multitransition study of HC3N. The values of the density and temperature allow column densities for 13 molecular species to be estimated from statistical equilibrium calculations, using observations of rarer isotopomers where possible, to minimize opacity effects. The most striking abundance variations relative to HCO+ along the ridge were seen for HC3N, CH3CCH, and SO, while smaller variations were seen in CS, C2H, and HCN. On the other hand, the NH3, HNC, and N2H+ abundances relative to HCO+ were determined to be constant, indicating that the so-called NH3 peak in TMC-1 is probably a peak in the ammonia column density rather than a relative abundance peak. In contrast, the well-studied cyanopolyyne peak is most likely due to an enhancement in the abundance of long-chain carbon species. Comparisons of the derived abundances to the results of time-dependent chemical models show good overall agreement for chemical timescales around 10(5) yr. We find that the observed abundance gradients can be explained either by a small variation in the chemical timescale from 1.2 x 10(5) to 1.8 x 10(5) yr or by a factor of 2 change in the density along the ridge. Alternatively, a variation in the C/O ratio from 0.4 to 0.5 along the ridge produces an abundance gradient similar to that observed.

  4. Interstellar magnesium abundances

    NASA Technical Reports Server (NTRS)

    Murray, M. J.; Dufton, P. L.; Hibbert, A.; York, D. G.

    1984-01-01

    An improved evaluation of the Mg II 1240 A doublet oscillator strength is used in conjunction with recently published Copernicus observations to derive accurate Mg II column densities toward 74 stars. These imply an average of 40 percent of interstellar magnesium is in the gaseous phase. Magnesium depletion is examined as a function of various interstellar extinction and density parameters, and the results are briefly discussed in terms of current depletion theories.

  5. Self-organized Sr leads to solid state twinning in nano-scaled eutectic Si phase

    PubMed Central

    Albu, M.; Pal, A.; Gspan, C.; Picu, R. C.; Hofer, F.; Kothleitner, G.

    2016-01-01

    A new mechanism for twin nucleation in the eutectic Al-Si alloy with trace Sr impurities is proposed. Observations made by sub-angstrom resolution scanning transmission electron microscopy and X-ray probing proved the presence of <110> Sr columns located preferentially at twin boundaries. Density functional theory simulations indicate that Sr atoms bind in the Si lattice only along the <110> direction, with preferential positions at first and second nearest neighbors for interstitial and substitutional Sr, respectively. Density functional theory total energy calculations confirm that twin nucleation at Sr columns is energetically favorable. Hence, twins may nucleate in Si precipitates after solidification, which provides a different perspective to the currently accepted mechanism which suggests twin formation during precipitate growth. PMID:27527789

  6. Self-organized Sr leads to solid state twinning in nano-scaled eutectic Si phase

    NASA Astrophysics Data System (ADS)

    Albu, M.; Pal, A.; Gspan, C.; Picu, R. C.; Hofer, F.; Kothleitner, G.

    2016-08-01

    A new mechanism for twin nucleation in the eutectic Al-Si alloy with trace Sr impurities is proposed. Observations made by sub-angstrom resolution scanning transmission electron microscopy and X-ray probing proved the presence of <110> Sr columns located preferentially at twin boundaries. Density functional theory simulations indicate that Sr atoms bind in the Si lattice only along the <110> direction, with preferential positions at first and second nearest neighbors for interstitial and substitutional Sr, respectively. Density functional theory total energy calculations confirm that twin nucleation at Sr columns is energetically favorable. Hence, twins may nucleate in Si precipitates after solidification, which provides a different perspective to the currently accepted mechanism which suggests twin formation during precipitate growth.

  7. Simulating the effect of high column density absorbers on the one-dimensional Lyman α forest flux power spectrum

    NASA Astrophysics Data System (ADS)

    Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris

    2018-03-01

    We measure the effect of high column density absorbing systems of neutral hydrogen (H I) on the one-dimensional (1D) Lyman α forest flux power spectrum using cosmological hydrodynamical simulations from the Illustris project. High column density absorbers (which we define to be those with H I column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}) cause broadened absorption lines with characteristic damping wings. These damping wings bias the 1D Lyman α forest flux power spectrum by causing absorption in quasar spectra away from the location of the absorber itself. We investigate the effect of high column density absorbers on the Lyman α forest using hydrodynamical simulations for the first time. We provide templates as a function of column density and redshift, allowing the flexibility to accurately model residual contamination, i.e. if an analysis selectively clips out the largest damping wings. This flexibility will improve cosmological parameter estimation, for example, allowing more accurate measurement of the shape of the power spectrum, with implications for cosmological models containing massive neutrinos or a running of the spectral index. We provide fitting functions to reproduce these results so that they can be incorporated straightforwardly into a data analysis pipeline.

  8. A survey with Copernicus of interstellar O VI absorption

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.; Meloy, D. A.

    1974-01-01

    The presence of broad, shallow absorptions caused by O VI ions were revealed from UV spectra observations recorded by the Copernicus satellite for thirty-two stars. A table lists survey data on the stars observed for which values of the O VI column densities or their upper limits are extracted. Interstellar rather than circumstellar origin is evident from observation of the lack of correspondence between radical velocities of the stars and those of the O VI profiles. The presence of a low-density high-temperature phase of interstellar gas produced by supernova explosions is suggested.

  9. Ionization compression impact on dense gas distribution and star formation. Probability density functions around H II regions as seen by Herschel

    NASA Astrophysics Data System (ADS)

    Tremblin, P.; Schneider, N.; Minier, V.; Didelon, P.; Hill, T.; Anderson, L. D.; Motte, F.; Zavagno, A.; André, Ph.; Arzoumanian, D.; Audit, E.; Benedettini, M.; Bontemps, S.; Csengeri, T.; Di Francesco, J.; Giannini, T.; Hennemann, M.; Nguyen Luong, Q.; Marston, A. P.; Peretto, N.; Rivera-Ingraham, A.; Russeil, D.; Rygl, K. L. J.; Spinoglio, L.; White, G. J.

    2014-04-01

    Aims: Ionization feedback should impact the probability distribution function (PDF) of the column density of cold dust around the ionized gas. We aim to quantify this effect and discuss its potential link to the core and initial mass function (CMF/IMF). Methods: We used Herschel column density maps of several regions observed within the HOBYS key program in a systematic way: M 16, the Rosette and Vela C molecular clouds, and the RCW 120 H ii region. We computed the PDFs in concentric disks around the main ionizing sources, determined their properties, and discuss the effect of ionization pressure on the distribution of the column density. Results: We fitted the column density PDFs of all clouds with two lognormal distributions, since they present a "double-peak" or an enlarged shape in the PDF. Our interpretation is that the lowest part of the column density distribution describes the turbulent molecular gas, while the second peak corresponds to a compression zone induced by the expansion of the ionized gas into the turbulent molecular cloud. Such a double peak is not visible for all clouds associated with ionization fronts, but it depends on the relative importance of ionization pressure and turbulent ram pressure. A power-law tail is present for higher column densities, which are generally ascribed to the effect of gravity. The condensations at the edge of the ionized gas have a steep compressed radial profile, sometimes recognizable in the flattening of the power-law tail. This could lead to an unambiguous criterion that is able to disentangle triggered star formation from pre-existing star formation. Conclusions: In the context of the gravo-turbulent scenario for the origin of the CMF/IMF, the double-peaked or enlarged shape of the PDF may affect the formation of objects at both the low-mass and the high-mass ends of the CMF/IMF. In particular, a broader PDF is required by the gravo-turbulent scenario to fit the IMF properly with a reasonable initial Mach number for the molecular cloud. Since other physical processes (e.g., the equation of state and the variations among the core properties) have already been said to broaden the PDF, the relative importance of the different effects remains an open question. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  10. Intercomparison of daytime stratospheric NO2 satellite retrievals and model simulations

    NASA Astrophysics Data System (ADS)

    Belmonte Rivas, M.; Veefkind, P.; Boersma, F.; Levelt, P.; Eskes, H.; Gille, J.

    2014-07-01

    This paper evaluates the agreement between stratospheric NO2 retrievals from infrared limb sounders (Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and High Resolution Dynamics Limb Sounder (HIRDLS)) and solar UV/VIS backscatter sensors (Ozone Monitoring Instrument (OMI), Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) limb and nadir) over the 2005-2007 period and across the seasons. The observational agreement is contrasted with the representation of NO2 profiles in 3-D chemical transport models such as the Whole Atmosphere Community Climate Model (WACCM) and TM4. A conclusion central to this work is that the definition of a reference for stratospheric NO2 columns formed by consistent agreement among SCIAMACHY, MIPAS and HIRDLS limb records (all of which agree to within 0.25 × 1015 molecules cm-2 or better than 10%) allows us to draw attention to relative errors in other data sets, e.g., (1) WACCM overestimates NO2 densities in the extratropical lower stratosphere, particularly in the springtime and over northern latitudes by up to 35% relative to limb observations, and (2) there are remarkable discrepancies between stratospheric NO2 column estimates from limb and nadir techniques, with a characteristic seasonally and latitudinally dependent pattern. We find that SCIAMACHY nadir and OMI stratospheric columns show overall biases of -0.5 × 1015 molecules cm-2 (-20%) and +0.6 × 1015 molecules cm-2 (+20%) relative to limb observations, respectively. It is argued that additive biases in nadir stratospheric columns are not expected to affect tropospheric retrievals significantly, and that they can be attributed to errors in the total slant column density, related either to algorithmic or instrumental effects. In order to obtain accurate and long-term time series of stratospheric NO2, an effort towards the harmonization of currently used differential optical absorption spectroscopy (DOAS) approaches to nadir retrievals becomes essential, as well as their agreement to limb and ground-based observations, particularly now that limb techniques are giving way to nadir observations as the next generation of climate and air quality monitoring instruments pushes forth.

  11. Density Gradient Columns for Chemical Displays.

    ERIC Educational Resources Information Center

    Guenther, William B.

    1986-01-01

    Procedures for preparing density gradient columns for chemical displays are presented. They include displays illustrating acid-base reactions, metal ion equilibria, and liquid density. The lifetime of these metastable displays is surprising, some lasting for months in display cabinets. (JN)

  12. Stability and Structure of Star-Shape Granules

    NASA Astrophysics Data System (ADS)

    Zhao, Yuchen; Bares, Jonathan; Zheng, Matthew; Dierichs, Karola; Menges, Achim; Behringer, Robert

    2015-11-01

    Columns are made of convex non-cohesive grains like sand collapse after being released from initial positions. On the other hand, various architectures built by concave grains can maintain stability. We explore why these structures are stable, and how stable they can be. We performed experiments by randomly pouring identical star-shape particles into hollow cylinders left on glass and a rough base, and observed stable granular columns after lifting the cylinders. Particles have six 9 mm arms, which extend symmetrically in the xyz directions. Both the probability of creating a stable column and mechanical stability aspects have been investigated. We define r as the weight fraction of particles that fall out of the column after removing confinement. r gradually increases as the column height increases, or the column diameter decreases. We also explored different experiment conditions such as vibration of columns with confinement, or large basal friction. We also consider different stability measures such as the maximum inclination angle or maximum weight a column can support. In order to understand structure leading to stability, 3D CT scan reconstructions of columns have been done and coordination number and packing density will be discussed. We acknowledge supports from W.M.Keck Foundation and Research Triangle MRSEC.

  13. Isoelectric focusing of red blood cells in a density gradient stabilized column

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.; Miller, T. Y.

    1980-01-01

    The effects of Ficoll and cell application pH on red blood cell electrophoretic mobility and focusing pH were investigated by focusing cells in a density gradient stabilized column. Sample loading, cell dispersion, column conductivity, resolution of separation, and the effect of Ampholines were examined.

  14. Improvement and validation of trace gas retrieval from ACAM aircraft observation

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, X.; Kowalewski, M. G.; Janz, S. J.; Gonzalez Abad, G.; Pickering, K. E.; Chance, K.; Lamsal, L. N.

    2014-12-01

    The ACAM (Airborne Compact Atmospheric Mapper) instrument, flown on board the NASA UC-12 aircraft during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaigns, was designed to provide remote sensing observations of tropospheric and boundary layer pollutants and help understand some of the most important pollutants that directly affect the health of the population. In this study, slant column densities (SCD) of trace gases (O3, NO2, HCHO) are retrieved from ACAM measurements during the Baltimore-Washington D.C. 2011 campaign by the Basic Optical Absorption Spectroscopy (BOAS) trace gas fitting algorithm using a nonlinear least-squares (NLLS) inversion technique, and then are converted to vertical column densities (VCDs) using the Air Mass Factors (AMF) calculated with the VLIDORT (Vector Linearized Discrete Ordinate Radiative Transfer) model and CMAQ (Community Multi-scale Air Quality) model simulations of trace gas profiles. For surface treatment in the AMF, we use high-resolution MODIS climatological BRDF product (Bidirectional Reflectance Distribution Function) at 470 nm for NO2, and use high-resolution surface albedo derived by combining MODIS and OMI albedo databases for HCHO and O3. We validate ACAM results with coincident ground-based PANDORA, aircraft (P3B) spiral and satellite (OMI) measurements and find out generally good agreement especially for NO2 and O3

  15. Simultaneous retrieval of atmospheric CO2 and light path modification from space-based spectroscopic observations of greenhouse gases: methodology and application to GOSAT measurements over TCCON sites.

    PubMed

    Oshchepkov, Sergey; Bril, Andrey; Yokota, Tatsuya; Yoshida, Yukio; Blumenstock, Thomas; Deutscher, Nicholas M; Dohe, Susanne; Macatangay, Ronald; Morino, Isamu; Notholt, Justus; Rettinger, Markus; Petri, Christof; Schneider, Matthias; Sussman, Ralf; Uchino, Osamu; Velazco, Voltaire; Wunch, Debra; Belikov, Dmitry

    2013-02-20

    This paper presents an improved photon path length probability density function method that permits simultaneous retrievals of column-average greenhouse gas mole fractions and light path modifications through the atmosphere when processing high-resolution radiance spectra acquired from space. We primarily describe the methodology and retrieval setup and then apply them to the processing of spectra measured by the Greenhouse gases Observing SATellite (GOSAT). We have demonstrated substantial improvements of the data processing with simultaneous carbon dioxide and light path retrievals and reasonable agreement of the satellite-based retrievals against ground-based Fourier transform spectrometer measurements provided by the Total Carbon Column Observing Network (TCCON).

  16. Cosmic-rays, gas, and dust in nearby anticentre clouds. II. Interstellar phase transitions and the dark neutral medium

    NASA Astrophysics Data System (ADS)

    Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.

    2018-03-01

    Aim. H I 21-cm and 12CO 2.6-mm line emissions trace the atomic and molecular gas phases, respectively, but they miss most of the opaque H I and diffuse H2 present in the dark neutral medium (DNM) at the transition between the H I-bright and CO-bright regions. Jointly probing H I, CO, and DNM gas, we aim to constrain the threshold of the H I-H2 transition in visual extinction, AV, and in total hydrogen column densities, NHtot. We also aim to measure gas mass fractions in the different phases and to test their relation to cloud properties. Methods: We have used dust optical depth measurements at 353 GHz, γ-ray maps at GeV energies, and H I and CO line data to trace the gas column densities and map the DNM in nearby clouds toward the Galactic anticentre and Chamaeleon regions. We have selected a subset of 15 individual clouds, from diffuse to star-forming structures, in order to study the different phases across each cloud and to probe changes from cloud to cloud. Results: The atomic fraction of the total hydrogen column density is observed to decrease in the (0.6-1) × 1021 cm-2 range in NHtot (AV ≈ 0.4 mag) because of the formation of H2 molecules. The onset of detectable CO intensities varies by only a factor of 4 from cloud to cloud, between 0.6 × 1021 cm-2 and 2.5 × 1021 cm-2 in total gas column density. We observe larger H2 column densities than linearly inferred from the CO intensities at AV > 3 mag because of the large CO optical thickness; the additional H2 mass in this regime represents on average 20% of the CO-inferred molecular mass. In the DNM envelopes, we find that the fraction of diffuse CO-dark H2 in the molecular column densities decreases with increasing AV in a cloud. For a half molecular DNM, the fraction decreases from more than 80% at 0.4 mag to less than 20% beyond 2 mag. In mass, the DNM fraction varies with the cloud properties. Clouds with low peak CO intensities exhibit large CO-dark H2 fractions in molecular mass, in particular the diffuse clouds lying at high altitude above the Galactic plane. The mass present in the DNM envelopes appears to scale with the molecular mass seen in CO as MHDNM = 62 ± 7 MH2CO0.51 ± 0.02 across two decades in mass. Conclusions: The phase transitions in these clouds show both common trends and environmental differences. These findings will help support the theoretical modelling of H2 formation and the precise tracing of H2 in the interstellar medium.

  17. Signatures of Hot Molecular Hydrogen Absorption from Protoplanetary Disks. I. Non-thermal Populations

    NASA Astrophysics Data System (ADS)

    Hoadley, Keri; France, Kevin; Arulanantham, Nicole; Loyd, R. O. Parke; Kruczek, Nicholas

    2017-09-01

    The environment around protoplanetary disks (PPDs) regulates processes that drive the chemical and structural evolution of circumstellar material. We perform a detailed empirical survey of warm molecular hydrogen (H2) absorption observed against H I-Lyα (Lyα: λ1215.67) emission profiles for 22 PPDs, using archival Hubble Space Telescope ultraviolet (UV) spectra to identify H2 absorption signatures and quantify the column densities of H2 ground states in each sightline. We compare thermal equilibrium models of H2 to the observed H2 rovibrational level distributions. We find that, for the majority of targets, there is a clear deviation in high-energy states (T exc ≳ 20,000 K) away from thermal equilibrium populations (T(H2) ≳ 3500 K). We create a metric to estimate the total column density of non-thermal H2 (N(H2)nLTE) and find that the total column densities of thermal (N(H2)) and N(H2)nLTE correlate for transition disks and targets with detectable C IV-pumped H2 fluorescence. We compare N(H2) and N(H2)nLTE to circumstellar observables and find that N(H2)nLTE correlates with X-ray and far-UV luminosities, but no correlations are observed with the luminosities of discrete emission features (e.g., Lyα, C IV). Additionally, N(H2) and N(H2)nLTE are too low to account for the H2 fluorescence observed in PPDs, so we speculate that this H2 may instead be associated with a diffuse, hot, atomic halo surrounding the planet-forming disk. We create a simple photon-pumping model for each target to test this hypothesis and find that Lyα efficiently pumps H2 levels with T exc ≥ 10,000 K out of thermal equilibrium.

  18. The quest for H_3^+ at Neptune: deep burn observations with NASA IRTF iSHELL

    NASA Astrophysics Data System (ADS)

    Melin, H.; Fletcher, L. N.; Stallard, T. S.; Johnson, R. E.; O'Donoghue, J.; Moore, L.; Donnelly, P. T.

    2018-03-01

    Emission from the molecular ion H_3^+ is a powerful diagnostic of the upper atmosphere of Jupiter, Saturn, and Uranus, but it remains undetected at Neptune. In search of this emission, we present near-infrared spectral observations of Neptune between 3.93 and 4.00 μm taken with the newly commissioned iSHELL instrument on the NASA Infrared Telescope Facility in Hawaii, obtained 2017 August 17-20. We spent 15.4 h integrating across the disc of the planet, yet were unable to unambiguously identify any H_3^+ line emissions. Assuming a temperature of 550 K, we derive an upper limit on the column integrated density of 1.0^{+1.2}_{-0.8}× 10^{13} m-2, which is an improvement of 30 per cent on the best previous observational constraint. This result means that models are overestimating the density by at least a factor of 5, highlighting the need for renewed modelling efforts. A potential solution is strong vertical mixing of polyatomic neutral species from Neptune's upper stratosphere to the thermosphere, reacting with H_3^+, thus greatly reducing the column integrated H_3^+ densities. This upper limit also provide constraints on future attempts at detecting H_3^+ using the James Webb Space Telescope.

  19. Excitation of the molecular gas in the nuclear region of M 82

    NASA Astrophysics Data System (ADS)

    Loenen, A. F.; van der Werf, P. P.; Güsten, R.; Meijerink, R.; Israel, F. P.; Requena-Torres, M. A.; García-Burillo, S.; Harris, A. I.; Klein, T.; Kramer, C.; Lord, S.; Martín-Pintado, J.; Röllig, M.; Stutzki, J.; Szczerba, R.; Weiß, A.; Philipp-May, S.; Yorke, H.; Caux, E.; Delforge, B.; Helmich, F.; Lorenzani, A.; Morris, P.; Philips, T. G.; Risacher, C.; Tielens, A. G. G. M.

    2010-10-01

    We present high-resolution HIFI spectroscopy of the nucleus of the archetypical starburst galaxy M 82. Six 12CO lines, 2 13CO lines and 4 fine-structure lines have been detected. Besides showing the effects of the overall velocity structure of the nuclear region, the line profiles also indicate the presence of multiple components with different optical depths, temperatures, and densities in the observing beam. The data have been interpreted using a grid of PDR models. It is found that the majority of the molecular gas is in low density (n = 103.5 cm-3) clouds, with column densities of NH = 1021.5 cm-2 and a relatively low UV radiation field (G0 = 102). The remaining gas is predominantly found in clouds with higher densities (n = 105 cm-3) and radiation fields (G0 = 102.75), but somewhat lower column densities (NH = 1021.2 cm-2). The highest J CO lines are dominated by a small (1% relative surface filling) component, with an even higher density (n = 106 cm-3) and UV field (G0 = 103.25). These results show the strength of multi-component modelling for interpretating the integrated properties of galaxies.

  20. Improve observation-based ground-level ozone spatial distribution by compositing satellite and surface observations: A simulation experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhong; Wang, Yuhang; Crawford, James; Cheng, Ye; Li, Jianfeng

    2018-05-01

    Obtaining the full spatial coverage of daily surface ozone fields is challenging because of the sparsity of the surface monitoring network and the difficulty in direct satellite retrievals of surface ozone. We propose an indirect satellite retrieval framework to utilize the information from satellite-measured column densities of tropospheric NO2 and CH2O, which are sensitive to the lower troposphere, to derive surface ozone fields. The method is applicable to upcoming geostationary satellites with high-quality NO2 and CH2O measurements. To prove the concept, we conduct a simulation experiment using a 3-D chemical transport model for July 2011 over the eastern US. The results show that a second order regression using both NO2 and CH2O column densities can be an effective predictor for daily maximum 8-h average ozone. Furthermore, this indirect retrieval approach is shown to be complementary to spatial interpolation of surface observations, especially in regions where the surface sites are sparse. Combining column observations of NO2 and CH2O with surface site measurements leads to an improved representation of surface ozone over simple kriging, increasing the R2 value from 0.53 to 0.64 at a surface site distance of 252 km. The improvements are even more significant with larger surface site distances. The simulation experiment suggests that the indirect satellite retrieval technique can potentially be a useful tool to derive the full spatial coverage of daily surface ozone fields if satellite observation uncertainty is moderate.

  1. Observations of nonlinear and nonuniform kink dynamics in a laboratory flux rope

    NASA Astrophysics Data System (ADS)

    Sears, J.; Intrator, T.; Feng, Y.; Swan, H.; Gao, K.; Chapdelaine, L.

    2013-12-01

    A plasma column with axial magnetic field and current has helically twisted field lines. When current density in the column exceeds the kink instability threshold this magnetic configuration becomes unstable. Flux ropes in the solar wind and some solar prominences exhibit this topology, with their dynamics strongly and nonlinearly coupled to the ratio of axial current to magnetic field. The current-driven kink mode is ubiquitous in laboratory plasmas and well suited to laboratory study. In the Reconnection Scaling Experiment (RSX), nonlinear stability properties beyond the simple perturbative kink model are observed and readily diagnosed. We use a plasma gun to generate a single plasma column 0.50 m in length, in which we then drive an axial plasma current at the limit of marginal kink stability. With plasma current maintained at this threshold, we observe a deformation to a new dynamic equilibrium with finite gyration amplitude, where the currents and magnetic fields that support the force balance have surprising axial structure. Three dimensional measurements of magnetic field, plasma density, plasma potential, and ion flow velocity in the deformed plasma column show variation in the axial direction of the instability parameter and in the terms of the momentum equation. Likewise the pitch of the kink is measured to be nonuniform over the column length. In addition there is a return current antiparallel to the driven plasma current at distances up to 0.30 m from the gun that also modifies the force balance. These axial inhomogeneities, which are not considered in the model of an ideal kink, may be the terms that allow the deformed equilibrium of the RSX plasma to exist. Supported by DOE Office of Fusion Energy Sciences under LANS contract DE-AC52-06NA25369, NASA Geospace NNHIOA044I, Basic. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Simultaneous X-ray and Far-Ultraviolet Spectra of AGN with ASCA and HUT

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.

    1997-01-01

    We obtained ASCA spectra of the Seyfert 1 galaxy NGC 3516 in March 1995. Simultaneous far-UV observations were obtained with the Hopkins Ultraviolet Telescope on the Astro-2 shuttle mission. The ASCA spectrum shows a lightly absorbed power law of energy index 0.78. The low energy absorbing column is significantly less than previously seen. Prominent 0 VII and 0 VIII absorption edges are visible, but, consistent with the much lower total absorbing column, no Fe K absorption edge is detectable. A weak, narrow Fe K(alpha) emission line from cold material is present as well as a broad Fe K(alpha) line. These features are similar to those reported in other Seyfert 1 galaxies. A single warm absorber model provides only an imperfect description of the low energy absorption. In addition to a highly ionized absorber with ionization parameter U = 1.66 and a total column density of 1.4 x 10(exp 22)/sq cm, adding a lower ionization absorber with U = 0.32 and a total column of 6.9 x 10(exp 21)/sq cm significantly improves the fit. The contribution of resonant line scattering to our warm absorber models limits the Doppler parameter to less than 160 km/s at 90% confidence. Turbulence at the sound speed of the photoionized gas provides the best fit. None of the warm absorber models fit to the X-ray spectrum can match the observed equivalent widths of all the UV absorption lines. Accounting for the X-ray and UV absorption simultaneously requires an absorbing region with a broad range of ionization parameters and column densities.

  3. Organic Chemistry of Low-Mass Star-Forming Cores. I. 7 mm Spectroscopy of Chamaeleon MMSl

    NASA Technical Reports Server (NTRS)

    Cordiner, Martn A.; Charnley, Steven B.; Wirtstroem, Eva S.; Smith, Robert G.

    2012-01-01

    Observations are presented of emission lines from organic molecules at frequencies 32-50 GHz in the vicinity of Chamaeleon MMS1. This chemically rich dense cloud core harbors an extremely young, very low luminosity protostellar object and is a candidate first hydrostatic core. Column densities are derived and emission maps are presented for species including polyynes, cyanopolyynes, sulphuretted carbon chains, and methanol. The polyyne emission peak lies about 5000 AU from the protostar, whereas methanol peaks about 15,000 AU away. Averaged over the telescope beam, the molecular hydrogen number density is calculated to be 10(exp 6) / cubic cm and the gas kinetic temperature is in the range 5-7 K. The abundances of long carbon chains are very large and are indicative of a nonequilibrium carbon chemistry; C6H and HC7N column densities are 5.9(sup +2.9) (sub -1.3) x 10(exp 11) /cubic cm and 3.3 (sup +8.0)(sub -1.5) x 10(exp 12)/sq cm, respectively, which are similar to the values found in the most carbon-chain-rich protostars and prestellar cores known, and are unusually large for star-forming gas. Column density upper limits were obtained for the carbon chain anions C4H(-) and C6H(-), with anion-to-neutral ratios [C4H(-)]/[C4H] < 0.02% and [C6H(-l)]/[C6H] < 10%, consistent with previous observations in interstellar clouds and low-mass protostars. Deuterated HC,3 and c-C3H2 were detected. The [DC3N]/[HC,N] ratio of approximately 4% is consistent with the value typically found in cold interstellar gas.

  4. Gravity, turbulence and the scaling ``laws'' in molecular clouds

    NASA Astrophysics Data System (ADS)

    Ballesteros-Paredes, Javier

    The so-called Larson (1981) scaling laws found empirically in molecular clouds have been generally interpreted as evidence that the clouds are turbulent and fractal. In the present contribution we discussed how recent observations and models of cloud formation suggest that: (a) these relations are the result of strong observational biases due to the cloud definition itself: since the filling factor of the dense structures is small, by thresholding the column density the computed mean density between clouds is nearly constant, and nearly the same as the threshold (Ballesteros-Paredes et al. 2012). (b) When accounting for column density variations, the velocity dispersion-size relation does not appears anymore. Instead, dense cores populate the upper-left corner of the δ v-R diagram (Ballesteros-Paredes et al. 2011a). (c) Instead of a δ v-R relation, a more appropriate relation seems to be δ v 2 / R = 2 GMΣ, which suggest that clouds are in collapse, rather than supported by turbulence (Ballesteros-Paredes et al. 2011a). (d) These results, along with the shapes of the star formation histories (Hartmann, Ballesteros-Paredes & Heitsch 2012), line profiles of collapsing clouds in numerical simulations (Heitsch, Ballesteros-Paredes & Hartmann 2009), core-to-core velocity dispersions (Heitsch, Ballesteros-Paredes & Hartmann 2009), time-evolution of the column density PDFs (Ballesteros-Paredes et al. 2011b), etc., strongly suggest that the actual source of the non-thermal motions is gravitational collapse of the clouds, so that the turbulent, chaotic component of the motions is only a by-product of the collapse, with no significant ``support" role for the clouds. This result calls into question if the scale-free nature of the motions has a turbulent, origin (Ballesteros-Paredes et al. 2011a; Ballesteros-Paredes et al. 2011b, Ballesteros-Paredes et al. 2012).

  5. Measurements of atmospheric ethene by solar absorption FTIR spectrometry

    NASA Astrophysics Data System (ADS)

    Toon, Geoffrey C.; Blavier, Jean-Francois L.; Sung, Keeyoon

    2018-04-01

    Atmospheric ethene (C2H4; ethylene) amounts have been retrieved from high-resolution solar absorption spectra measured by the Jet Propulsion Laboratory (JPL) MkIV interferometer. Data recorded from 1985 to 2016 from a dozen ground-based sites have been analyzed, mostly between 30 and 67° N. At clean-air sites such as Alaska, Sweden, New Mexico, or the mountains of California, the ethene columns were always less than 1 × 1015 molec cm-2 and therefore undetectable. In urban sites such as JPL, California, ethene was measurable with column amounts of 20 × 1015 molec cm-2 observed in the 1990s. Despite the increasing population and traffic in southern California, a factor 3 decrease in ethene column density is observed over JPL over the past 25 years, accompanied by a decrease in CO. This is likely due to southern California's increasingly stringent vehicle exhaust regulations and tighter enforcement over this period.

  6. The column density distribution of hard X-ray radio galaxies

    NASA Astrophysics Data System (ADS)

    Panessa, F.; Bassani, L.; Landi, R.; Bazzano, A.; Dallacasa, D.; La Franca, F.; Malizia, A.; Venturi, T.; Ubertini, P.

    2016-09-01

    In order to investigate the role of absorption in active galactic nuclei (AGN) with jets, we have studied the column density distribution of a hard X-ray selected sample of radio galaxies, derived from the INTEGRAL/Imager on Board the Integral Satellite (IBIS) and Swift/The Burst Alert Telescope (BAT) AGN catalogues (˜7-10 per cent of the total AGN population). The 64 radio galaxies have a typical FR II radio morphology and are characterized by high 20-100 keV luminosities (from 1042 to 1046 erg s-1) and high Eddington ratios (log LBol/LEdd typically larger than ˜0.01). The observed fraction of absorbed AGN (NH > 1022 cm-2) is around 40 per cent among the total sample, and ˜75 per cent among type 2 AGN. The majority of obscured AGN are narrow-line objects, while unobscured AGN are broad-line objects, obeying to the zeroth-order predictions of unified models. A significant anti-correlation between the radio core dominance parameter and the X-ray column density is found. The observed fraction of Compton thick AGN is ˜2-3 per cent, in comparison with the 5-7 per cent found in radio-quiet hard X-ray selected AGN. We have estimated the absorption and Compton thick fractions in a hard X-ray sample containing both radio galaxies and non-radio galaxies and therefore affected by the same selection biases. No statistical significant difference was found in the absorption properties of radio galaxies and non-radio galaxies sample. In particular, the Compton thick objects are likely missing in both samples and the fraction of obscured radio galaxies appears to decrease with luminosity as observed in hard X-ray non-radio galaxies.

  7. Improved MEGAN predictions of biogenic isoprene in the contiguous United States

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Schade, Gunnar; Estes, Mark; Ying, Qi

    2017-01-01

    Isoprene emitted from biogenic sources significantly contributes to ozone and secondary organic aerosol formation in the troposphere. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) has been widely used to estimate isoprene emissions from local to global scales. However, previous studies have shown that MEGAN significantly over-predicts isoprene emissions in the contiguous United States (US). In this study, ambient isoprene concentrations in the US were simulated by the Community Multiscale Air Quality (CMAQ) model (v5.0.1) using biogenic emissions estimated by MEGAN v2.10 with several different gridded isoprene emission factor (EF) fields. Best isoprene predictions were obtained with the EF field based on the Biogenic Emissions Landcover Database v4 (BELD4) from US EPA for its Biogenic Emission Inventory System (BEIS) model v3.61 (MEGAN-BEIS361). A seven-month simulation (April to October 2011) of isoprene emissions with MEGAN-BEIS361 and ambient concentrations using CMAQ shows that observed spatial and temporal variations (both diurnal and seasonal) of isoprene concentrations can be well predicted at most non-urban monitors using isoprene emission estimation from the MEGAN-BEIS361 without significant biases. The predicted monthly average vertical column density of formaldehyde (HCHO), a reactive volatile organic compound with significant contributions from isoprene oxidation, generally agree with the spatial distribution of HCHO column density derived using satellite data collected by the Ozone Monitoring Instrument (OMI), although summer month vertical column densities in the southeast US were overestimated, which suggests that isoprene emission might still be overestimated in that region. The agreement between observation and prediction may be further improved if more accurate PAR values, such as those derived from satellite-based observations, were used in modeling the biogenic emissions.

  8. Testing the variability of the proton-to-electron mass ratio from observations of methanol in the dark cloud core L1498

    NASA Astrophysics Data System (ADS)

    Daprà, M.; Henkel, C.; Levshakov, S. A.; Menten, K. M.; Muller, S.; Bethlem, H. L.; Leurini, S.; Lapinov, A. V.; Ubachs, W.

    2017-12-01

    The dependence of the proton-to-electron mass ratio, μ, on the local matter density was investigated using methanol emission in the dense dark cloud core L1498. Towards two different positions in L1498, five methanol transitions were detected and an extra line was tentatively detected at a lower confidence level in one of the positions. The observed centroid frequencies were then compared with their rest-frame frequencies derived from least-squares fitting to a large data set. Systematic effects, as the underlying methanol hyperfine structure and the Doppler tracking of the telescope, were investigated and their effects were included in the total error budget. The comparison between the observations and the rest-frame frequencies constrains potential μ variation at the level of Δμ/μ < 6 × 10-8, at a 3σ confidence level. For the dark cloud, we determine a total CH3OH (A+E) beam averaged column density of ∼3-4 × 1012 cm-2 (within roughly a factor of two), an E- to A-type methanol column density ratio of N(A-CH3OH)/N(E-CH3OH) ∼1.00 ± 0.15, a density of n(H2) = 3 × 105 cm-3 (again within a factor of two) and a kinetic temperature of Tkin = 6 ± 1 K. In a kinetic model including the line intensities observed for the methanol lines, the n(H2) density is higher and the temperature is lower than that derived in previous studies based on different molecular species; the intensity of the 10 → 1-1 E line strength is not well reproduced.

  9. Size-density relations in dark clouds: Non-LTE effects

    NASA Technical Reports Server (NTRS)

    Maloney, P.

    1986-01-01

    One of the major goals of molecular astronomy has been to understand the physics and dynamics of dense interstellar clouds. Because the interpretation of observations of giant molecular clouds is complicated by their very complex structure and the dynamical effects of star formation, a number of studies have concentrated on dark clouds. Leung, Kutner and Mead (1982) (hereafter LKM) and Myers (1983), in studies of CO and NH3 emission, concluded that dark clouds exhibit significant correlations between linewidth and cloud radius of the form delta v varies as R(0.5) and between mean density and radius of the form n varies as R(-1), as originally suggested by Larson (1981). This result suggests that these objects are in virial equilibrium. However, the mean densities inferred from the CO data of LKM are based on an local thermodynamic equilibrium (LTE) analysis of their 13CO data. At the very low mean densities inferred by LKM for the larger clouds in their samples, the assumption of LTE becomes very questionable. As most of the range in R in the density-size correlation comes from the clouds observed in CO, it seems worthwhile to examine how non-LTE effects will influence the derived densities. One way to assess the validity of LTE-derived densities is to construct cloud models and then to interpret them in the same way as the observed data. Microturbulent models of inhomogeneous clouds of varying central concentration with the linewidth-size and mean density-size relations found by Myers show sub-thermal excitation of the 13CO line in the larger clouds, with the result that LTE analysis considerbly underestimates the actual column density. A more general approach which doesn't require detailed modeling of the clouds is to consider whether the observed T sub R*(13CO)/T sub R*(12CO) ratios in the clouds studied by LKM are in the range where the LTE-derived optical depths (and hence column densities) can be seriously in error due to sub-thermal excitation of the 13CO molecule.

  10. The theory of QSO absorption line systems and their relationship to the galaxies

    NASA Technical Reports Server (NTRS)

    Charlton, Jane

    1993-01-01

    The fundamental goal of this effort is to paint a picture of what the Ly-alpha forest clouds are and how they are distributed in space. Progress during the first phase of this program involved development of the 'Cheshire Cat Model' of Ly-alpha clouds in which systems over a large range of column densities are produced by disks with somewhat smaller column densities than those of normal galaxies. A prediction of the slab model of Ly-alpha clouds was confirmed by a new observational result, and the comparison of models to the new data allowed an estimate of the pressure of the intergalactic medium. This result should be forthcoming in pre-print form within the next month. The various results will now be described in more detail.

  11. Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities at surface monitoring sites

    NASA Astrophysics Data System (ADS)

    Kobayashi, N.; Inoue, G.; Kawasaki, M.; Yoshioka, H.; Minomura, M.; Murata, I.; Nagahama, T.; Matsumi, Y.; Tanaka, T.; Morino, I.; Ibuki, T.

    2010-08-01

    Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities were developed in two independent systems: one utilizing a grating-based desktop optical spectrum analyzer (OSA) with a resolution enough to resolve rotational lines of CO2 and CH4 in the regions of 1565-1585 and 1674-1682 nm, respectively; the other is an application of an optical fiber Fabry-Perot interferometer (FFPI) to obtain the CO2 column density. Direct sunlight was collimated via a small telescope installed on a portable sun tracker and then transmitted through an optical fiber into the OSA or the FFPI for optical analysis. The near infrared spectra of the OSA were retrieved by a least squares spectral fitting algorithm. The CO2 and CH4 column densities deduced were in excellent agreement with those measured by a Fourier transform spectrometer with high resolution. The rovibronic lines in the wavelength region of 1570-1575 nm were analyzed by the FFPI. The I0 and I values in the Beer-Lambert law equation to obtain CO2 column density were deduced by modulating temperature of the FFPI, which offered column CO2 with the statistical error less than 0.2% for six hours measurement.

  12. Atomic Physics with the Goddard High Resolution Spectrograph on the Hubble Space Telescope. III; Oscillator Strengths for Neutral Carbon

    NASA Technical Reports Server (NTRS)

    Zsargo, J.; Federman, S. R.; Cardelli, Jason A.

    1997-01-01

    High quality spectra of interstellar absorption from C I toward beta(sup 1) S(sub co), rho O(sub ph) A, and chi O(sub ph) were obtained with the Goddard High Resolution Spectrograph on HST. Many weak lines were detected within the observed wavelength intervals: 1150-1200 A for beta(sup 1) S(sub co) and 1250-1290 A for rho O(sub ph) A and chi O(sub ph). Curve-of-growth analyses were performed in order to extract accurate column densities and Doppler parameters from lines with precise laboratory-based f-values. These column densities and b-values were used to obtain a self-consistent set of f-values for all the observed C I lines. A particularly important constraint was the need to reproduce data for more than one line of sight. For about 50% of the lines, the derived f-values differ appreciably from the values quoted by Morton.

  13. Mapping Diffuse HI Content in MHONGOOSE Galaxies NGC 1744 and NGC 7424

    NASA Astrophysics Data System (ADS)

    Sardone, Amy; Pisano, Daniel J.; Pingel, Nickolas

    2017-01-01

    The universe contains an abundance of neutral atomic hydrogen, or HI. This HI holds the key to knowing how stars are born, how galaxies form and develop, and how dark matter halos accrete gas from the cosmic web. One of the most crucial questions regarding galaxy formation today is how galaxies accrete their gas and how accretion processes affect subsequent star formation. We are trying to answer these questions by mapping the HI content in a four square degree region around galaxies NGC 1744 and NGC 7424, galaxies to be observed as part of the MHONGOOSE survey. NGC 1744 has already been observed extensively with the VLA, so we will be able to quantify the differences in emission. To do this our GBT maps must be sensitive to column densities on the order of ~1018 cm-2. With such low column densities, we will be able to search for features of the cosmic web in the form of tidal interactions and cosmic web filaments with its relation to star-forming galaxies.

  14. LIFS atomic hydrogen density measurements at the URAGAN-3M facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, E.D.; Zhmurin, P.N.; Letuchii, A.N.

    1994-12-31

    Molecular and atomic hydrogen behavior within a plasma column of the URAGAN-3M facility was numerically simulated for a low density regime ({bar n}{sub e} {approx_equal} 2 x 10{sup 12} cm{sup {minus}3}). Local density of hydrogen atoms in the axial region was measured by Laser-Induced Fluorescence Spectroscopy technique. A good agreement of the measurements and simulations was observed. In the regime under investigation the results of hydrogen density spectroscopic measurements were found to be greatly affected by dissociative population of hydrogen atom excited states. 2 refs., 3 figs.

  15. The Orion Fingers: H2 Temperatures and Excitation in an Explosive Outflow

    NASA Astrophysics Data System (ADS)

    Youngblood, Allison; France, Kevin; Ginsburg, Adam; Hoadley, Keri; Bally, John

    2018-04-01

    We measure H2 temperatures and column densities across the Orion Becklin-Neugebauer/Kleinmann-Low (BN/KL) explosive outflow from a set of 13 near-infrared (IR) H2 rovibrational emission lines observed with the TripleSpec spectrograph on Apache Point Observatory’s 3.5 m telescope. We find that most of the region is well characterized by a single temperature (∼2000–2500 K), which may be influenced by the limited range of upper-energy levels (6000–20,000 K) probed by our data set. The H2 column density maps indicate that warm H2 comprises 10‑5–10‑3 of the total H2 column density near the center of the outflow. Combining column density measurements for co-spatial H2 and CO at T = 2500 K, we measure a CO/H2 fractional abundance of 2 × 10‑3 and discuss possible reasons why this value is in excess of the canonical 10‑4 value, including dust attenuation, incorrect assumptions on co-spatiality of the H2 and CO emission, and chemical processing in an extreme environment. We model the radiative transfer of H2 in this region with ultraviolet (UV) pumping models to look for signatures of H2 fluorescence from H I Lyα pumping. Dissociative (J-type) shocks and nebular emission from the foreground Orion H II region are considered as possible Lyα sources. From our radiative transfer models, we predict that signatures of Lyα pumping should be detectable in near-IR line ratios given a sufficiently strong source, but such a source is not present in the BN/KL outflow. The data are consistent with shocks as the H2 heating source.

  16. The Mean Metal-line Absorption Spectrum of Damped Ly α Systems in BOSS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mas-Ribas, Lluís; Miralda-Escudé, Jordi; Pérez-Ràfols, Ignasi

    We study the mean absorption spectrum of the Damped Ly α (DLA) population at z ∼ 2.6 by stacking normalized, rest-frame-shifted spectra of ∼27,000 DLA systems from the DR12 of the Baryon Oscillation Spectroscopic Survey (BOSS)/SDSS-III. We measure the equivalent widths of 50 individual metal absorption lines in five intervals of DLA hydrogen column density, five intervals of DLA redshift, and overall mean equivalent widths for an additional 13 absorption features from groups of strongly blended lines. The mean equivalent width of low-ionization lines increases with N {sub H} {sub i}, whereas for high-ionization lines the increase is much weaker.more » The mean metal line equivalent widths decrease by a factor ∼1.1–1.5 from z ∼ 2.1 to z ∼ 3.5, with small or no differences between low- and high-ionization species. We develop a theoretical model, inspired by the presence of multiple absorption components observed in high-resolution spectra, to infer mean metal column densities from the equivalent widths of partially saturated metal lines. We apply this model to 14 low-ionization species and to Al iii, S iii, Si iii, C iv, Si iv, N v, and O vi. We use an approximate derivation for separating the equivalent width contributions of several lines to blended absorption features, and infer mean equivalent widths and column densities from lines of the additional species N i, Zn ii, C ii*, Fe iii, and S iv. Several of these mean column densities of metal lines in DLAs are obtained for the first time; their values generally agree with measurements of individual DLAs from high-resolution, high signal-to-noise ratio spectra when they are available.« less

  17. How well does CO emission measure the H2 mass of MCs?

    NASA Astrophysics Data System (ADS)

    Szűcs, László; Glover, Simon C. O.; Klessen, Ralf S.

    2016-07-01

    We present numerical simulations of molecular clouds (MCs) with self-consistent CO gas-phase and isotope chemistry in various environments. The simulations are post-processed with a line radiative transfer code to obtain 12CO and 13CO emission maps for the J = 1 → 0 rotational transition. The emission maps are analysed with commonly used observational methods, I.e. the 13CO column density measurement, the virial mass estimate and the so-called XCO (also CO-to-H2) conversion factor, and then the inferred quantities (I.e. mass and column density) are compared to the physical values. We generally find that most methods examined here recover the CO-emitting H2 gas mass of MCs within a factor of 2 uncertainty if the metallicity is not too low. The exception is the 13CO column density method. It is affected by chemical and optical depth issues, and it measures both the true H2 column density distribution and the molecular mass poorly. The virial mass estimate seems to work the best in the considered metallicity and radiation field strength range, even when the overall virial parameter of the cloud is above the equilibrium value. This is explained by a systematically lower virial parameter (I.e. closer to equilibrium) in the CO-emitting regions; in CO emission, clouds might seem (sub-)virial, even when, in fact, they are expanding or being dispersed. A single CO-to-H2 conversion factor appears to be a robust choice over relatively wide ranges of cloud conditions, unless the metallicity is low. The methods which try to take the metallicity dependence of the conversion factor into account tend to systematically overestimate the true cloud masses.

  18. D/H Toward BD+28 4211: First FUSE Results

    NASA Technical Reports Server (NTRS)

    Sonneborne, George; Andre, M.; Oliveira, C.; Friedman, S. D.; Howk, J. C.; Kruk, J. W.; Moos, H. W.; Oegerle, W. R.; Sembach, K. R.; Chayer, P.; hide

    2001-01-01

    The atomic deuterium-to-hydrogen abundance ratio has been evaluated for the sight line toward the hot O subdwarf BD+28(sup circ) 4211. High signal-to-noise ratio (S/N is approx. 100) observations covering the wavelength range 905 to 1187 angstroms at a wavelength resolving power of lambda/Delta/lambda at approx. 20,000 were obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. BD+28(sup circ) 4211 is approx. 00 pc away with a total H I column density of approx. 10(exp 19)/sq cm, much higher than is typically found in the local interstellar medium (ISM). The deuterium column density was measured by analyzing several D I Lyman series transitions (Lyman delta, C, epsilon, eta, theta, iota with curve of growth and profile fitting techniques, after determining which lines were free of interference from other interstellar species and narrow stellar features. The neutral hydrogen column density was measured by an analysis of the Lyman-alpha profile using HST/Space Telescope Imaging Spectrograph (STIS) and Goddard High Resolution Spectrograph (GHRS) spectra. The stellar spectrum of BD+28(sup circ) 4211 was modelled to assist in determining the sensitivity of H I (Ly-alpha) and D I to the continuum placement and to identify stellar transitions. The D I and H I column densities, their uncertainties, and potential sources of systematic error will be presented. This work is based on data obtained for the FUSE Guaranteed Time Team by the NASA-CNES-CSA FUSE mission operated by the Johns Hopkins University. Financial support to U. S. participants has been provided in part by NASA contract NAS5-32985.

  19. Investigating the physics and environment of Lyman limit systems in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Erkal, Denis

    2015-07-01

    In this work, I investigate the properties of Lyman limit systems (LLSs) using state-of-the-art zoom-in cosmological galaxy formation simulations with on the fly radiative transfer, which includes both the cosmic UV background (UVB) and local stellar sources. I compare the simulation results to observations of the incidence frequency of LLSs and the H I column density distribution function over the redshift range z = 2-5 and find good agreement. I explore the connection between LLSs and their host haloes and find that LLSs reside in haloes with a wide range of halo masses with a nearly constant covering fraction within a virial radius. Over the range z = 2-5, I find that more than half of the LLSs reside in haloes with M < 1010 h-1 M⊙, indicating that absorption line studies of LLSs can probe these low-mass galaxies which H2-based star formation models predict to have very little star formation. I study the physical state of individual LLSs and test a simple model which encapsulates many of their properties. I confirm that LLSs have a characteristic absorption length given by the Jeans length and that they are in photoionization equilibrium at low column densities. Finally, I investigate the self-shielding of LLSs to the UVB and explore how the non-sphericity of LLSs affects the photoionization rate at a given N_{H I}. I find that at z ≈ 3, LLSs have an optical depth of unity at a column density of ˜1018 cm-2 and that this is the column density which characterizes the onset of self-shielding.

  20. The Nature of the Torus in the Heavily Obscured AGN Markarian 3: an X-Ray Study

    NASA Technical Reports Server (NTRS)

    Guainazzi, M.; Risaliti, G.; Awaki, H.; Arevalo, P.; Bauer, F. E.; Bianchi, S.; Boggs, S.E; Brandt, W. N.; Brightman, M.; Christensen, F. E.; hide

    2016-01-01

    In this paper, we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy, Markarian 3, carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMMNewton. The hard X-ray spectrum of Markarian 3 is variable on all the time-scales probed by our campaign, down to a few days. The observed continuum variability is due to an intrinsically variable primary continuum seen in transmission through a large, but still Compton-thin column density (N(sub H) approx. 0.8-1.1 x 10(exp 24)/sq cm). If arranged in a spherical-toroidal geometry, the Compton scattering matter has an opening angle approx. 66deg, and is seen at a grazing angle through its upper rim (inclination angle approx. 70deg). We report a possible occultation event during the 2014 campaign. If the torus is constituted by a system of clouds sharing the same column density, this event allows us to constrain their number (17 +/- 5) and individual column density, [approx. (4.9 +/- 1.5) x 10(exp 22)/ sq cm]. The comparison of IR and X-ray spectroscopic results with state-of-the art torus models suggests that at least two-thirds of the X-ray obscuring gas volume might be located within the dust sublimation radius. We report also the discovery of an ionized absorber, characterized by variable resonant absorption lines due to He- and H-like iron. This discovery lends support to the idea that moderate column density absorbers could be due to clouds evaporated at the outer surface of the torus, possibly accelerated by the radiation pressure due to the central AGN emission leaking through the patchy absorber.

  1. Saturn Ring Rain: New Observations and Estimates of Water Influx

    NASA Astrophysics Data System (ADS)

    Moore, L.; O'Donoghue, J.; Mueller-Wodarg, I.; Galand, M.; Mendillo, M.

    2014-04-01

    We estimate the maximum rates of water influx from Saturn's rings based on ionospheric model reproductions of derived H3+ column densities. On 17 April 2011 over two hours of near-infrared spectral data were obtained of Saturn using the Near InfraRed Spectrograph (NIRSPEC) instrument on the 10-m Keck II telescope. Two bright H3+ rotationalvibrational emission lines were visible nearly from pole to pole, allowing low-latitude ionospheric emissions to be studied for the first time, and revealing significant latitudinal structure, with local extrema in one hemisphere being mirrored at magnetically conjugate latitudes in the opposite hemisphere. In addition, those minima and maxima mapped to latitudes of increased or decreased density, respectively, in Saturn's rings, implying a direct ringatmosphere connection in which charged water group particles from the rings are guided by magnetic field lines as they "rain" down upon the atmosphere. Water products act to quench the local ionosphere, and therefore modify the H3+ densities and their observed emissions. Using the Saturn Thermosphere Ionosphere Model (STIM), a 3-D model of Saturn's upper atmosphere, we derive the maximum rates of water influx required from the rings in order to reproduce the H3+ column densities observed on 17 April 2011. We estimate the globally averaged maximum ringderived water influx to be (1.6-12)x105 cm-2 sec-1, which represents a maximum total global influx of water from Saturn's rings to its atmosphere of (1.0-6.8)x1026 sec-1. We will also present the initial findings of Keck ring rain observing campaigns from April 2013 and May 2014.

  2. Observational data needs useful for modeling the coma

    NASA Technical Reports Server (NTRS)

    Huebner, W. F.; Giguere, P. T.

    1981-01-01

    A computer model of comet comae is described; results from assumed composition of frozen gases are summarized and compared to coma observations. Restrictions on relative abundance of some frozen constituents are illustrated. Modeling, when tightly coupled to observational data, can be important for comprehensive analysis of observations, for predicting undetected molecular species and for improved understanding of coma and nucleus. To accomplish this, total gas production rates and relative elemental abundances of H:C:N:O:S are needed as a function of heliocentric distance of the comet. Also needed are relative column densitites and column density profiles with well defined diaphragm range and pointing position on the coma. Production rates are less desirable since they are model dependent. Total number (or upper limits) of molecules in the coma and analysis of unidentified spectral lines are needed also.

  3. Methane Flux Estimation from Point Sources using GOSAT Target Observation: Detection Limit and Improvements with Next Generation Instruments

    NASA Astrophysics Data System (ADS)

    Kuze, A.; Suto, H.; Kataoka, F.; Shiomi, K.; Kondo, Y.; Crisp, D.; Butz, A.

    2017-12-01

    Atmospheric methane (CH4) has an important role in global radiative forcing of climate but its emission estimates have larger uncertainties than carbon dioxide (CO2). The area of anthropogenic emission sources is usually much smaller than 100 km2. The Thermal And Near infrared Sensor for carbon Observation Fourier-Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT) has measured CO2 and CH4 column density using sun light reflected from the earth's surface. It has an agile pointing system and its footprint can cover 87-km2 with a single detector. By specifying pointing angles and observation time for every orbit, TANSO-FTS can target various CH4 point sources together with reference points every 3 day over years. We selected a reference point that represents CH4 background density before or after targeting a point source. By combining satellite-measured enhancement of the CH4 column density and surface measured wind data or estimates from the Weather Research and Forecasting (WRF) model, we estimated CH4emission amounts. Here, we picked up two sites in the US West Coast, where clear sky frequency is high and a series of data are available. The natural gas leak at Aliso Canyon showed a large enhancement and its decrease with time since the initial blowout. We present time series of flux estimation assuming the source is single point without influx. The observation of the cattle feedlot in Chino, California has weather station within the TANSO-FTS footprint. The wind speed is monitored continuously and the wind direction is stable at the time of GOSAT overpass. The large TANSO-FTS footprint and strong wind decreases enhancement below noise level. Weak wind shows enhancements in CH4, but the velocity data have large uncertainties. We show the detection limit of single samples and how to reduce uncertainty using time series of satellite data. We will propose that the next generation instruments for accurate anthropogenic CO2 and CH4 flux estimation have improve spatial resolution (˜1km2 ) to further enhance column density changes. We also propose adding imaging capability to monitor plume orientation. We will present laboratory model results and a sampling pattern optimization study that combines local emission source and global survey observations.

  4. Characterisation of RPLC columns packed with porous sub-2 microm particles.

    PubMed

    Petersson, Patrik; Euerby, Melvin R

    2007-08-01

    Eight commercially available sub-2 microm octadecyl silane columns (C18 columns) have been characterised by the Tanaka protocol. The columns can be grouped into two groups that display large differences in selectivity and peak shape due to differences in hydrophobicity, degree of surface coverage and silanol activity. Measurements of particle size distributions were made using automated microscopy and electrical sensing zone measurements. Only a weak correlation could be found between efficiency and particle size. Large differences in column backpressure were observed. These differences are not related to particle size distribution. A more likely explanation is differences in packing density. In order to take full advantage of 100-150 mm columns packed with sub-2 microm particles, it is often necessary to employ not only an elevated pressure but also an elevated temperature. A comparison between columns packed with sub-2, 3 and 5 microm versions of the same packing indicates potential method transferability problems for several of the columns due to selectivity differences. Currently, the best alternative for fast high-resolution LC is the use of sub-2 microm particles in combination with elevated pressure and temperature. However, as shown in this study additional efforts are needed to improve transferability as well as column performance.

  5. Spectro-imaging observations of Jupiter's 2-μm auroral emission. I. H 3+ distribution and temperature

    NASA Astrophysics Data System (ADS)

    Raynaud, E.; Lellouch, E.; Maillard, J.-P.; Gladstone, G. R.; Waite, J. H.; Bézard, B.; Drossart, P.; Fouchet, T.

    2004-09-01

    We report on spectro-imaging infrared observations of Jupiter's auroral zones, acquired in October 1999 and October 2000 with the FTS/BEAR instrument at the Canada-France-Hawaii Telescope. The use of narrow-band filters at 2.09 and 2.12 μm, combined with high spectral resolution (0.2 cm -1), allowed us to map emission from the H 2S1(1) quadrupole line and from several H 3+ lines. The H 2 and H 3+ emission appears to be morphologically different, especially in the north, where the latter notably exhibits a "hot spot" near 150°-170° System III longitude. This hot spot coincides in position with the region of increased and variable hydrocarbon, FUV and X-ray emission, but is not seen in the more uniform H 2S1(1) emission. We also present the first images of the H 2 emission in the southern polar region. The spectra include a total of 14 H 3+ lines, including two hot lines from the 3 ν2- ν2 band, detected on Jupiter for the first time. They can be used to determine H 3+ column densities, rotational ( Trot) and vibrational ( Tvib) temperatures. We find the mean Tvib of the v2=3 state to be lower (960±50 K) than the mean Trot in v2=2 (1170±75 K), indicating an underpopulation of the v2=3 level with respect to local thermodynamical equilibrium. Rotational temperatures and associated column densities are generally higher and lower, respectively, than inferred previously from ν2 observations. This is a likely consequence of a large positive temperature gradient in the sub-microbar auroral atmosphere. While the signal-to-noise is not sufficient to take full advantage of the 2-D capabilities of the observations, the search for correlations between line intensities, Tvib and column densities, indicates that variations in line intensities are mostly due to correlated variations in the H 3+ column densities. The thermostatic role played by H 3+ at ionospheric levels may provide an explanation. The exception is the northern "hot spot," which exhibits a Tvib about 250 K higher than other regions. A partial explanation might invoke a homopause elevation in this region, but a fully consistent scenario is not yet available. The different distributions of the H 2 and H 3+ emission are equally difficult to explain.

  6. Star formation in massive Milky Way molecular clouds: Building a bridge to distant galaxies

    NASA Astrophysics Data System (ADS)

    Willis, Sarah Elizabeth

    The Kennicutt-Schmidt relation is an empirical power-law linking the surface density of the star formation rate (SigmaSFR) to the surface density of gas (Sigmagas ) averaged over the observed face of a starforming galaxy Kennicutt (1998). The original presentation used observations of CO to measure gas density and H alpha emission to measure the population of hot, massive young stars (and infer the star formation rate). Observations of Sigma SFR from a census of young stellar objects in nearby molecular clouds in our Galaxy are up to 17 times higher than the extragalactic relation would predict given their Sigmagas. These clouds primarily form low-mass stars that are essentially invisible to star formation rate tracers. A sample of six giant molecular cloud (GMC) complexes with signposts of massive star formation was identified in our galaxy. The regions selected have a range of total luminosity and morphology. Deep ground-based observations in the near-infrared with NEWFIRM and IRAC observations with the Spitzer Space Telescope were used to conduct a census of the young stellar content associated with each of these clouds. The star formation rates from the stellar census in each of these regions was compared with the star formation rates measured by extragalactic star formation rate tracers based on monochromatic mid-infrared luminosities. Far-infrared Herschel observations from 160 through 500 mum were used to determine the column density and temperature in each region. The region NGC 6334 served as a test case to compare the Herschel column density measurements with the measurements for near-infrared extinction. The combination of the column density maps and the stellar census lets us examine SigmaSFR vs. Sigma gas for the massive GMCs. These regions are consistent with the results for the low-mass molecular clouds, indicating Sigma SFR levels that are higher than predicted based on Sigma gas. The overall Sigmagas levels are higher for the massive star forming regions, indicating that they have a higher fraction of dense gas than the clouds that are forming primarily low mass stars. There is still significant spread at a given average gas density, indicating that the star formation history and dense gas fraction play important roles in determining an individual molecular cloud's place in a Sigma SFR vs. Sigmagas diagram. Zooming in, SigmaSFR vs. Sigma gas was examined within the individual clouds, revealing a decrease relative to the spread that is observed for the average over whole clouds. The dependence of SigmaSFR on Sigma gas increases significantly above AV ˜ 5 - 10 which is consistent with previous measurements of a threshold for star formation around AV = 8 or Sigma gas = 0.04 g cm-2. NGC 6334 was found to be consistent with a threshold for massive star formation at Sigmagas = 1 g cm-2.

  7. Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alina, D.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gouveia Dal Pino, E. M.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Magalhães, A. M.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Poidevin, F.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Zacchei, A.; Zonca, A.

    2015-04-01

    This paper presents an overview of the polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1° resolution, taking into account noise bias and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is high (pmax = 19.8%), in particular in some regions of moderate hydrogen column density (NH < 2 × 1021 cm-2). The polarization fraction displays a large scatter at NH below a few 1021 cm-2. There is a general decrease in the dust polarization fraction with increasing column density above NH ≃ 1 × 1021 cm-2 and in particular a sharp drop above NH ≃ 1.5 × 1022 cm-2. We characterize the spatial structure of the polarization angle using the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results suggest that, at the resolution of 1°, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match observed in other regions shows, however, that dust, cosmic-ray electrons, and thermal electrons generally sample different parts of the line of sight. Appendices are available in electronic form at http://www.aanda.org

  8. Spatial variance and assessment of nitrogen dioxide pollution in major cities of Pakistan along N5-Highway.

    PubMed

    Shabbir, Yasir; Khokhar, Muhammad Fahim; Shaiganfar, Reza; Wagner, Thomas

    2016-05-01

    This paper discusses the findings of the first car MAX-DOAS (multi-axis differential optical absorption spectroscopy) field campaign (300km long) along the National Highway-05 (N5-Highway) of Pakistan conducted on 13 and 14 November, 2012. The main objective of the field campaign was to assess the spatial distribution of tropospheric nitrogen dioxide (NO2) columns and corresponding concentrations along the N5-Highway from Islamabad to Lahore. Source identification of NO2 revealed that the concentrations were higher within major cities along the highway. The highest NO2 vertical column densities (NO2 VCDs) were found around two major cities of Rawalpindi and Lahore. This study also presents a comparison of NO2 VCDs measured by the ozone monitoring instrument (OMI) and car MAX-DOAS observations. The comparison revealed similar spatial distribution of the NO2 columns with both car MAX-DOAS and satellite observations, but the car MAX-DOAS observations show much more spatial details. Maximum NO2 VCD retrieved from car MAX-DOAS observations was up to an order of magnitude larger than the OMI observations in urban areas. Copyright © 2015. Published by Elsevier B.V.

  9. Relationship Between Column-Density and Surface Mixing Ratio: Statistical Analysis of O3 and NO2 Data from the July 2011 Maryland DISCOVER-AQ Mission

    NASA Technical Reports Server (NTRS)

    Flynn, Clare; Pickering, Kenneth E.; Crawford, James H.; Lamsol, Lok; Krotkov, Nickolay; Herman, Jay; Weinheimer, Andrew; Chen, Gao; Liu, Xiong; Szykman, James; hide

    2014-01-01

    To investigate the ability of column (or partial column) information to represent surface air quality, results of linear regression analyses between surface mixing ratio data and column abundances for O3 and NO2 are presented for the July 2011 Maryland deployment of the DISCOVER-AQ mission. Data collected by the P-3B aircraft, ground-based Pandora spectrometers, Aura/OMI satellite instrument, and simulations for July 2011 from the CMAQ air quality model during this deployment provide a large and varied data set, allowing this problem to be approached from multiple perspectives. O3 columns typically exhibited a statistically significant and high degree of correlation with surface data (R(sup 2) > 0.64) in the P- 3B data set, a moderate degree of correlation (0.16 < R(sup 2) < 0.64) in the CMAQ data set, and a low degree of correlation (R(sup 2) < 0.16) in the Pandora and OMI data sets. NO2 columns typically exhibited a low to moderate degree of correlation with surface data in each data set. The results of linear regression analyses for O3 exhibited smaller errors relative to the observations than NO2 regressions. These results suggest that O3 partial column observations from future satellite instruments with sufficient sensitivity to the lower troposphere can be meaningful for surface air quality analysis.

  10. 2MASS wide-field extinction maps. V. Corona Australis

    NASA Astrophysics Data System (ADS)

    Alves, João; Lombardi, Marco; Lada, Charles J.

    2014-05-01

    We present a near-infrared extinction map of a large region (~870 deg2) covering the isolated Corona Australis complex of molecular clouds. We reach a 1-σ error of 0.02 mag in the K-band extinction with a resolution of 3 arcmin over the entire map. We find that the Corona Australis cloud is about three times as large as revealed by previous CO and dust emission surveys. The cloud consists of a 45 pc long complex of filamentary structure from the well known star forming Western-end (the head, N ≥ 1023 cm-2) to the diffuse Eastern-end (the tail, N ≤ 1021 cm-2). Remarkably, about two thirds of the complex both in size and mass lie beneath AV ~ 1 mag. We find that the probability density function (PDF) of the cloud cannot be described by a single log-normal function. Similar to prior studies, we found a significant excess at high column densities, but a log-normal + power-law tail fit does not work well at low column densities. We show that at low column densities near the peak of the observed PDF, both the amplitude and shape of the PDF are dominated by noise in the extinction measurements making it impractical to derive the intrinsic cloud PDF below AK < 0.15 mag. Above AK ~ 0.15 mag, essentially the molecular component of the cloud, the PDF appears to be best described by a power-law with index -3, but could also described as the tail of a broad and relatively low amplitude, log-normal PDF that peaks at very low column densities. FITS files of the extinction maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/565/A18

  11. Is a scaling factor required to obtain closure between measured and modelled O4 absorptions? - A case study for two days during the MADCAT campaign

    NASA Astrophysics Data System (ADS)

    Wagner, Thomas

    2017-04-01

    Measurements of the oxygen dimer O4 are often used in remote sensing applications to infer information on the atmospheric light path distribution. Such information is interesting in itself, but can also be used to retrieve properties of clouds and aerosols, e.g. from ground based Multi-AXis-Differential Optical Absorption Spectroscopy (MAX-DOAS) observations. In recent years, a scaling factor (between about 0.7 and 1) was applied by several groups to the retrieved O4 slant column densities in order to obtain meaningful aerosol profiles from MAX-DOAS observations. However, other groups did not report the need for such a scaling factor. Up to now, this discrepancy is neither understood nor resolved. Here we compare measured and modelled O4 slant column densities for two days during the MADCAT campaign (http://joseba.mpch-mainz.mpg.de/mad_cat.htm). Clouds were mostly absent during both days, and the aerosol profiles are constrained by simultaneous sun photometer and ceilometer measurements. One important difference between both days is the amount of aerosol in the lowest atmospheric layer. Our comparison study addresses several important steps of the O4 data analysis, such as the spectral retrieval and the radiative transfer simulations. We also investigate the effects of temperature and pressure variations on the calculation of the O4 vertical column density. Preliminary results are are not conclusive but indicate that a scaling factor is needed to bring measurements and simulations into agreement at least for one of the two selected days.

  12. Seasonal and spatial variation of topside He+ column density obtained from Extreme Ultra Violet Imager onboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Hozumi, Y.; Saito, A.; Murakami, G.; Yamazaki, A.; Yoshikawa, I.

    2016-12-01

    The seasonal, longitudinal and latitudinal variations of He+ distribution in the topside ionosphere in 2013 are elucidated with data of He+ resonant scattering obtained by Extreme Ultra Violet Imager (EUVI) onboard the International Space Station (ISS). EUVI provides a data set of the column density of He+ above the ISS orbit altitude. The data set provides a unique opportunity to study He+ distribution in the topside ionosphere from a different perspective of past studies using in-situ measurement data. During the solstice seasons, an enhancement of He+ column density in the winter hemisphere is observed. The magnitude of this hemispheric asymmetry shows a longitudinal variability. Around the June solstice, the hemispheric asymmetry was greater in the longitude sector where the geomagnetic declination angle is negative and smaller in the longitude sector where the geomagnetic declination angle is positive. Around the December solstice, on the other hand, this longitudinal variation of the asymmetry magnitude had opposite tendency. The hemispheric asymmetry of the effective neutral wind well explains this behavior of He+. The field-aligned component of neutral wind in the F-region is varied in longitude under the presence of finite geomagnetic declination angle and large zonal wind. In the equinox seasons, two longitudinal maxima were observed at around 140ºE and 30ºE. The longitudinal variation of the effective neutral wind is a candidate of these two maxima of He+ concentration. These results suggest that the transport of ions in the topside ionosphere is strongly affected by the F-region neutral wind.

  13. Empirical mass-loss rates for 25 O and early B stars, derived from Copernicus observations

    NASA Technical Reports Server (NTRS)

    Gathier, R.; Lamers, H. J. G. L. M.; Snow, T. P.

    1981-01-01

    Ultraviolet line profiles are fitted with theoretical line profiles in the cases of 25 stars covering a spectral type range from O4 to B1, including all luminosity classes. Ion column densities are compared for the determination of wind ionization, and it is found that the O VI/N V ratio is dependent on the mean density of the wind and not on effective temperature value, while the Si IV/N V ratio is temperature-dependent. The column densities are used to derive a mass-loss rate parameter that is empirically correlated against the mass-loss rate by means of standard stars with well-determined rates from IR or radio data. The empirical mass-loss rates obtained are compared with those derived by others and found to vary by as much as a factor of 10, which is shown to be due to uncertainties or errors in the ionization fractions of models used for wind ionization balance prediction.

  14. H I-to-H2 Transition Layers in the Star-forming Region W43

    NASA Astrophysics Data System (ADS)

    Bialy, Shmuel; Bihr, Simon; Beuther, Henrik; Henning, Thomas; Sternberg, Amiel

    2017-02-01

    The process of atomic-to-molecular (H I-to-H2) gas conversion is fundamental for molecular-cloud formation and star formation. 21 cm observations of the star-forming region W43 revealed extremely high H I column densities, of 120-180 {M}⊙ {{pc}}-2, a factor of 10-20 larger than predicted by H I-to-H2 transition theories. We analyze the observed H I with a theoretical model of the H I-to-H2 transition, and show that the discrepancy between theory and observation cannot be explained by the intense radiation in W43, nor be explained by variations of the assumed volume density or H2 formation rate coefficient. We show that the large observed H I columns are naturally explained by several (9-22) H I-to-H2 transition layers, superimposed along the sightlines of W43. We discuss other possible interpretations such as a non-steady-state scenario and inefficient dust absorption. The case of W43 suggests that H I thresholds reported in extragalactic observations are probably not associated with a single H I-to-H2 transition, but are rather a result of several transition layers (clouds) along the sightlines, beam-diluted with diffuse intercloud gas.

  15. COS Observations of Molecular H2 at z = 0.248

    NASA Astrophysics Data System (ADS)

    Kruse, Ethan; Tumlinson, J.; Thom, C.; Sembach, K.

    2011-01-01

    We present HST/COS observations of a QSO sightline through the halo of two merging galaxies at z = 0.25 at impact parameter 90 kpc. This sightline presents the first example of strong H2 absorption features in our large COS survey of galaxy halo gas at low redshift (COS-Halos, Tumlinson et al.). COS spectra reveal a sub-DLA at z = 0.2478 which splits into two components separated by 70 km/s. One component appears to contain more high-ionization states and less neutral H I while the other favors neutral atoms and contains a strong H2 signature (J = 0-3) along with the majority of the H I. Aside from H2 we detect O I, N I and N II, Si II and Si III, and C II. We find a total H2 column density of N(H2) = 16.89 and an H2 fraction of f_{H2} = 0.0034. Fitting the unblended H2 lines from 0-0 to 15-0 to a curve of growth we find a best fit with b = 11.8 km s-1. Due to the full saturation of all Lyman lines, we are unable to separate the H I column density into the two components and therefore cannot get a direct metallicity for either cloud. However through Cloudy modelling we are able to estimate a H I column density and ionization correction in each component and therefore obtain an approximate metallicity through O I absorption. This system shows similar features to a portion of the Magellanic Stream studied by Sembach et al. 2006. Both sightlines have comparable H I and H2 columns, H2 excitation temperatures, and similar metallicities, suggesting this sightline could be a distant counterpart to the Magellanic Stream, perhaps stripped from an unseen companion galaxy to the two merger partners.

  16. A sample of [C II] clouds tracing dense clouds in weak FUV fields observed by Herschel

    NASA Astrophysics Data System (ADS)

    Pineda, J. L.; Velusamy, T.; Langer, W. D.; Goldsmith, P. F.; Li, D.; Yorke, H. W.

    2010-10-01

    The [C ii] fine-structure line at 158 μm is an excellent tracer of the warm diffuse gas in the ISM and the interfaces between molecular clouds and their surrounding atomic and ionized envelopes. Here we present the initial results from Galactic observations of terahertz C+ (GOT C+), a Herschel key project devoted to studying the [C ii] emission in the Galactic plane using the HIFI instrument. We used the [C ii] emission, together with observations of CO, as a probe to understand the effects of newly formed stars on their interstellar environment and characterize the physical and chemical state of the star-forming gas. We collected data along 16 lines-of-sight passing near star-forming regions in the inner Galaxy near longitudes 330° and 20°. We identified fifty-eight [C ii] components that are associated with high-column density molecular clouds as traced by 13CO emission. We combined [C ii], 12CO, and 13CO observations to derive the physical conditions of the [C ii]-emitting regions in our sample of high-column density clouds based on comparing results from a grid of photon dominated region (PDR) models. From this unbiased sample, our results suggest that most of the [C ii] emission originates in clouds with H2 volume densities between 103.5 and 105.5 cm-3 and weak FUV strength (χ0 = 1-10). We find two regions where our analysis suggest high densities >105 cm-3 and strong FUV fields (χ0 = 104-106), likely associated with massive star formation. We suggest that [C ii] emission in conjunction with CO isotopes is a good tool for differentiating regions of massive star formation (high densities/strong FUV fields) and regions that are distant from massive stars (lower densities/weaker FUV fields) along the line-of-sight. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  17. Increasing phytoplankton-available phosphorus and inhibition of macrophyte on phytoplankton bloom.

    PubMed

    Dai, Yanran; Wu, Juan; Ma, Xiaohang; Zhong, Fei; Cui, Naxin; Cheng, Shuiping

    2017-02-01

    We assembled mesocosms to address the coherent mechanisms that an increasing phosphorus (P) concentration in water columns coupled with the phytoplankton bloom and identify the performance gap of regulating phytoplankton growth between two macrophyte species, Ceratophyllum demersum L. and Vallisneria spiralis L. Intense alkaline phosphatase activities (APA) were observed in the unplanted control, with their predominant part, phytoplankton APA (accounting for up to 44.7% of the total APA), and another large share, bacterial APA. These correspond with the large average concentration of total phosphorus (TP), total dissolved phosphorus (TDP) and soluble reactive (SRP) as well as high phytoplankton density in the water column. The consistency among P concentrations, phytoplankton density and APA, together with the positive impact of phytoplankton density on total APA revealed by the structural equation modelling (SEM), indicates that facilitated APA levels in water is an essential strategy for phytoplankton to enhance the available P. Furthermore, a positive interaction between phytoplankton APA and bacteria APA was detected, suggesting a potential collaboration between phytoplankton and bacteria to boost available P content in the water column. Both macrophyte species had a prominent performance on regulating phytoplankton proliferation. The phytoplankton density and quantum yield in C. demersum systems were all significantly lower (33.8% and 24.0%) than those in V. spiralis systems. Additionally, a greater decoupling effect of C. demersum on the relationship between P, APA, phytoplankton density, bacteria dynamic and quantum yield was revealed by SEM. These results imply that the preferred tactic of different species could lead to the performance gap. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Hydrodynamic flow in capillary-channel fiber columns for liquid chromatography.

    PubMed

    Stanelle, Rayman D; Sander, Lane C; Marcus, R Kenneth

    2005-12-23

    The flow characteristics of capillary-channel polymer (C-CP) fiber liquid chromatographic (LC) columns have been investigated. The C-CP fibers are manufactured with eight longitudinal grooves (capillary channels) extending the length of the fibers. Three C-CP fiber examples were studied, with fiber dimensions ranging from approximately 35 microm to 65 microm, and capillary-channel dimensions ranging from approximately 6 microm to 35 microm. The influence of fiber packing density and column inner diameter on peak asymmetry, peak width, and run-to-run reproducibility have been studied for stainless steel LC columns packed with polyester (PET) and polypropylene (PP) C-CP fibers. The van Deemter A-term was evaluated as a function of fiber packing density (approximately 0.3 g/cm(3)-0.75 g/cm(3)) for columns of 4.6 mm inner diameter (i.d.) and at constant packing densities for 1.5 mm, 3.2 mm, 4.6 mm, and 7.7 mm i.d. columns. Although column diameter had little influence on the eluting peak widths, peak asymmetry increased with increasing column diameter. The A-terms for the C-CP fiber packed columns are somewhat larger than current commercial, microparticulate-packed columns, and means for improvement are discussed. Applications in the area of protein (macromolecule) separations appear the most promising at this stage of the system development.

  19. Water Absorption in Galactic Translucent Clouds: Conditions and History of the Gas Derived from Herschel/HIFI PRISMAS Observations

    NASA Astrophysics Data System (ADS)

    Flagey, N.; Goldsmith, P. F.; Lis, D. C.; Gerin, M.; Neufeld, D.; Sonnentrucker, P.; De Luca, M.; Godard, B.; Goicoechea, J. R.; Monje, R.; Phillips, T. G.

    2013-01-01

    We present Herschel/HIFI observations of the three ground state transitions of H2O (556, 1669, and 1113 GHz) and H218O (547, 1655, and 1101 GHz)—as well as the first few excited transitions of H2O (987, 752, and 1661 GHz)—toward six high-mass star-forming regions, obtained as part of the PRISMAS (PRobing InterStellar Molecules with Absorption line Studies) Guaranteed Time Key Program. Water vapor associated with the translucent clouds in Galactic arms is detected in absorption along every line of sight in all the ground state transitions. The continuum sources all exhibit broad water features in emission in the excited and ground state transitions. Strong absorption features associated with the source are also observed at all frequencies except 752 GHz. We model the background continuum and line emission to infer the optical depth of each translucent cloud along the lines of sight. We derive the column density of H2O or H218O for the lower energy level of each transition observed. The total column density of water in translucent clouds is usually about a few 1013 cm-2. We find that the abundance of water relative to hydrogen nuclei is 1 × 10-8 in agreement with models for oxygen chemistry in which high cosmic ray ionization rates are assumed. Relative to molecular hydrogen, the abundance of water is remarkably constant through the Galactic plane with X(H2O) =5 × 10-8, which makes water a good traced of H2 in translucent clouds. Observations of the excited transitions of H2O enable us to constrain the abundance of water in excited levels to be at most 15%, implying that the excitation temperature, T ex, in the ground state transitions is below 10 K. Further analysis of the column densities derived from the two ortho ground state transitions indicates that T ex ~= 5 K and that the density n(H2) in the translucent clouds is below 104 cm-3. We derive the water ortho-to-para ratio for each absorption feature along the line of sight and find that most of the clouds show ratios consistent with the value of 3 expected in thermodynamic equilibrium in the high-temperature limit. However, two clouds with large column densities exhibit a ratio that is significantly below 3. This may argue that the history of water molecules includes a cold phase, either when the molecules were formed on cold grains in the well-shielded, low-temperature regions of the clouds, or when they later become at least partially thermalized with the cold gas (~25 K) in those regions; evidently, they have not yet fully thermalized with the warmer (~50 K) translucent portions of the clouds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  20. Column-like EED extending from equatorial topside ionosphere toward plasmasphere retrieved from IGS and LEO/GPS observations with 3-D CT inversion

    NASA Astrophysics Data System (ADS)

    Xiao, R.; Ma, S. Y.; Xu, J. S.; Xiong, C.; Luehr, H.; Jakowski, N.

    2010-05-01

    The electron density distributions in the equatorial ionosphere are retrieved from GPS observations of joint ground-based IGS and onboard CHAMP/GRACE satellites during November 2004 super-storm by 3-D tomography technique. For LEO satellite-based GPS receiving, both the occultation TEC data and that along the radio propagation paths above the LEO are used and assimilated into the huge IGS TEC dataset. The electron density images are reconstructed for different sectors of America, Asia and Europe and produced for every hour. The retrieved electron densities are validated by satellite in situ measurements of CHAMP Langmuir probe and GRACE Ka-band SST (low-low satellite-to-satellite tracking) derived electron density averaged between the two satellites, as well as by numerical simulations. It reveals some very interesting storm-time structures of Ne distributions, such as top-hat-like F2-3 double layer and column-like enhanced electron densities (CEED). The CEED are found during the main phase of the storm near the minimum of Dst and in the longitudinal sector centered at 157E. They extend from the topside ionosphere toward to plasmasphere, reaching at least about 2000 km as high. The footprints of the CEED stand on the two peaks of the EIA. The forming mechanism of CEED and its relationship with SED and plasmaspheric plumes are worthy of further study. This work is supported by NSFC (No.40674078).

  1. Multiwavelength studies of the gas and dust disc of IRAS 04158+2805

    NASA Astrophysics Data System (ADS)

    Glauser, A. M.; Ménard, F.; Pinte, C.; Duchêne, G.; Güdel, M.; Monin, J.-L.; Padgett, D. L.

    2008-07-01

    We present a study of the circumstellar environment of IRAS 04158+2805 based on multi-wavelength observations and models. Images in the optical and near-infrared, a polarisation map in the optical, and mid-infrared spectra were obtained with VLT-FORS1, CFHT-IR, and Spitzer-IRS. Additionally we used an X-ray spectrum observed with Chandra. We interpret the observations in terms of a central star surrounded by an axisymmetric circumstellar disc, but without an envelope, to test the validity of this simple geometry. We estimate the structural properties of the disc and its gas and dust content. We modelled the dust disc with a 3D continuum radiative transfer code, MCFOST, based on a Monte-Carlo method that provides synthetic scattered light images and polarisation maps, as well as spectral energy distributions. We find that the disc images and spectral energy distribution narrowly constrain many of the disc model parameters, such as a total dust mass of 1.0-1.75×10-4 M_⊙ and an inclination of 62°-63°. The maximum grain size required to fit all available data is of the order of 1.6-2.8 μm although the upper end of this range is loosely constrained. The observed optical polarisation map is reproduced well by the same disc model, suggesting that the geometry we find is adequate and the optical properties are representative of the visible dust content. We compare the inferred dust column density to the gas column density derived from the X-ray spectrum and find a gas-to-dust ratio along the line of sight that is consistent with the ISM value. To our knowledge, this measurement is the first to directly compare dust and gas column densities in a protoplanetary disc. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based also on data collected at ESO/VLT during observation program 68-C.0171.

  2. Temperatures and Altitudes of Jupiter's Ultraviolet Aurora Inferred from GHRS Observations with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Kim, Y. H.; Fox, J. L.; Caldwell, John J.

    1997-07-01

    We observed the jovian UV auroral regions with the Goddard high resolution spectrograph (GHRS) on board the Hubble Space Telescope (HST) on Apr. 29, May 2, and June 10, 1995. Observations of target areas were made in pairs in the two wavelength ranges 1257-1293 Å and 1587-1621 Å. Spectra in the long wavelength range are dominated by emissions of the H2Lyman band system and show well separated rotational features, which we have used to determine the temperatures of the auroral emission regions. Spectra in the short wavelength range are mostly due to emission in the H2Lyman and Werner band systems, but their intensities are reduced by hydrocarbon absorption. The brightest spectral pair was observed toward an area with longitude 155° and jovicentric latitude 58° when the central meridian longitudes (CMLs) were 191° and 203°. This area was found to be bright in our previous HST observations in 1993 and in HST faint object camera images. Assuming that electron impact excitation is the major source of the jovian aurora, we estimate total emission rates in the Lyman band system of about 270 and 46 kR for the long and short wavelength spectra of the pair, respectively. The attenuation of emission rate in the short wavelength spectrum implies a methane column density of about 3 × 1016cm-2, and a temperature of about 450 K is inferred from the long wavelength spectrum of the brightest pair. For all six pairs of observed spectra, we estimate methane column densities in the range (1-7) × 1016cm-2, which, when compared to a standard mid-latitude model, corresponds to a pressure range from a few μbar to a few tens of μbar. The temperatures derived are in the range 400-850 K with a possible tendency toward lower temperatures for higher methane column densities. This tendency and the uncertainty in the temperatures derived may indicate that the temperatures increases rapidly with altitude around the methane homopause in the auroral regions.

  3. CO AND H{sub 2} ABSORPTION IN THE AA TAURI CIRCUMSTELLAR DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    France, Kevin; Burgh, Eric B.; Schindhelm, Eric

    2012-01-01

    The direct study of molecular gas in inner protoplanetary disks is complicated by uncertainties in the spatial distribution of the gas, the time variability of the source, and the comparison of observations across a wide range of wavelengths. Some of these challenges can be mitigated with far-ultraviolet spectroscopy. Using new observations obtained with the Hubble Space Telescope Cosmic Origins Spectrograph, we measure column densities and rovibrational temperatures for CO and H{sub 2} observed on the line of sight through the AA Tauri circumstellar disk. CO A - X absorption bands are observed against the far-UV continuum. The CO absorption ismore » characterized by log{sub 10}(N({sup 12}CO)) = 17.5 {+-} 0.5 cm{sup -2} and T{sub rot}(CO) = 500{sup +500}{sub -200} K, although this rotational temperature may underestimate the local kinetic temperature of the CO-bearing gas. We also detect {sup 13}CO in absorption with an isotopic ratio of {approx}20. We do not observe H{sub 2} absorption against the continuum; however, hot H{sub 2} (v > 0) is detected in absorption against the Ly{alpha} emission line. We measure the column densities in eight individual rovibrational states, determining a total log{sub 10}(N(H{sub 2})) = 17.9{sup +0.6}{sub -0.3} cm{sup -2} with a thermal temperature of T(H{sub 2}) = 2500{sup +800}{sub -700} K. The high temperature of the molecules, the relatively small H{sub 2} column density, and the high inclination of the AA Tauri disk suggest that the absorbing gas resides in an inner disk atmosphere. If the H{sub 2} and CO are cospatial within a molecular layer {approx}0.6 AU thick, this region is characterized by {approx} 10{sup 5} cm{sup -3} with an observed (CO/H{sub 2}) ratio of {approx}0.4. We also find evidence for a departure from a purely thermal H{sub 2} distribution, suggesting that excitation by continuum photons and H{sub 2} formation may be altering the level populations in the molecular gas.« less

  4. OT2_pgolds01_6: Herschel [NII] Observations to Define the Source of [CII] Emission

    NASA Astrophysics Data System (ADS)

    Goldsmith, P.

    2011-09-01

    The 158 micron line of ionized carbon is the strongest single long-wavelength emission feature from the interstellar medium and is the most important coolant of gas in which hydrogen is in atomic form. It is a key determinant of the evolution of these largely atomic regions into denser, cooler molecular clouds in which new stars are formed, and is widely used as a tracer of star formation in the Milky Way and other galaxies. There is, however, an ongoing, serious controversy about the origin of the [CII] emission, which has been asserted to come from the extended low-density warm interstellar medium, but has more generally been associated with the primarily molecular photon dominated regions (PDRs) intimately associated with massive, young stars. We propose a combined HIFI and PACS study of the two far-infrared [NII] fine structure lines in order to resolve the important question of the fraction of CII emission that arises in ionized gas. Specifically, we will (1) utilize the fact that due to its ionization potential NII is found only in HII regions, and with PACS 122 and 205 micron observations, determine electron densities in a sample of such regions in the Galactic plane; (2) utilize available data on radio free-free and H-alpha emission to determine the NII column densities and from this the CII column densities in the HII regions; (3) use the electron densities to determine the fraction of CII emission arising in the ionized interstellar medium. These observations will be carried out at 150 of the positions in the Galactic plane observed in [CII] by the GOT-C+ project. We will also carry out HIFI observations of 10 selected positions in the 205 micron line to determine spectral characteristics of the NII emission line, which with CII, CI, and CO profiles already in hand will serve as a further discriminant among the proposed sources of CII emission.

  5. Groundbased Observations of sodium at Mercury during the First MESSENGER Flyby

    NASA Astrophysics Data System (ADS)

    Potter, A. E.; Killen, R. M.; Mouawad, N.

    2008-09-01

    Abstract Groundbased observations of the sodium exospheric emission at Mercury taken at the McMathPierce Solar Telescope at Kitt Peak, Arizona, were conducted during the period of January 1018, 2008. During these observations, we mapped the distribution of sodium D2 emission over the planet. The procedure for mapping sodium using an image slicer and tiptilt image stabilization has been described by Potter et al. [1]. The emission maps were used to construct maps of sodium column density. Herein we discuss the temporal and spatial variability of the sodium emission on the observed side of planet. Maps of surface reflectance in the continuum near the sodium D2 line (left ) and column abundance of sodium in the exosphere (right) are shown for January 12, 13 and 14, in Figures 1, 2, and 3, respectively. The maximum column density was in the range 1.15 to 1.40 x 1011 atoms/cm2 during this period. The sodium distribution is uneven, with higher values of column density at high southern and northern E P S C EPSC Abstracts, Vol. 3, EPSC2008-A-00311, 2008 European Planetary Science Congress, Author(s) 2008 latitudes. This may be the effect of solar radiation acceleration [2] which was near its maximum value, ranging from 164 to 171 cm/sec2, or 0.44 to 0.46 of surface gravity. As a consequence of high radiation pressure, sodium atoms are driven to high latitudes. However, the distribution for January 12 shows a considerable excess in high southern latitudes, suggesting a source of sodium at those latitudes. This dataset brackets observations taken with the Ultraviolet and Visible Spectrometer (UVVS) on the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) instrument [3] onboard the MESSENGER spacecraft [4] during the first flyby of the planet, January 14, 2008. An analogy between both data sets will be discussed. References [1] Potter, A.E., Plymate C., Keller C., Killen R.M., and Morgan T.H. (2006) Adv. Space Res. 38, 599603. [2] Potter, A.E., R. M. Killen, M. Sarantos. (2006) Icarus, 181, 112. [3] McClintock, W. E., and Lankton, M.R. (2007) Space Sci. Rev. 131, 481522. [4] Solomon, S. C., et al. (2001) Planet. Space Sci. 49, 14451465. Acknowledgements: The National Solar Observatory is funded by the National Science Foundation. Groundbased observations were funded by the NASA Planetary Astronomy Program. MESSENGER is a NASA Discovery mission.

  6. Separation of carbon nanotubes into chirally enriched fractions

    DOEpatents

    Doorn, Stephen K [Los Alamos, NM; Niyogi, Sandip [Los Alamos, NM

    2012-04-10

    A mixture of single-walled carbon nanotubes ("SWNTs") is separated into fractions of enriched chirality by preparing an aqueous suspension of a mixture of SWNTs and a surfactant, injecting a portion of the suspension on a column of separation medium having a density gradient, and centrifuging the column. In some embodiments, salt is added prior to centrifugation. In other embodiments, the centrifugation is performed at a temperature below room temperature. Fractions separate as colored bands in the column. The diameter of the separated SWNTs decreases with increasing density along the gradient of the column. The colored bands can be withdrawn separately from the column.

  7. Outskirts of Distant Galaxies in Absorption

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen

    QSO absorption spectroscopy provides a sensitive probe of both the neutral medium and diffuse ionized gas in the distant Universe. It extends 21 cm maps of gaseous structures around low-redshift galaxies both to lower gas column densities and to higher redshifts. Combining galaxy surveys with absorption-line observations of gas around galaxies enables comprehensive studies of baryon cycles in galaxy outskirts over cosmic time. This chapter presents a review of the empirical understanding of the cosmic neutral gas reservoir from studies of damped Lyα absorbers (DLAs). It describes the constraints on the star formation relation and chemical enrichment history in the outskirts of distant galaxies from DLA studies. A brief discussion of available constraints on the ionized circumgalactic gas from studies of lower column density Lyα absorbers and associated ionic absorption transitions is presented at the end.

  8. The Gaussian Plasma Lens in Astrophysics: Refraction

    NASA Astrophysics Data System (ADS)

    Clegg, Andrew W.; Fey, Alan L.; Lazio, T. Joseph W.

    1998-03-01

    We present the geometrical optics for refraction of a distant background radio source by an interstellar plasma lens, with specific application to a lens with a Gaussian profile of free-electron column density. The refractive properties of the lens are specified completely by a dimensionless parameter α, which is a function of the wavelength of observation, the free-electron column density through the lens, the lens-observer distance, and the diameter of the lens transverse to the line of sight. A lens passing between the observer and a background source, due to the relative motions of the observer, lens, and source, produces modulations in the light curve of the background source. Because plasma lenses are diverging, the light curve displays a minimum in the background source's flux density, formed when the lens is on-axis, surrounded by enhancements above the nominal (unlensed) flux density. The exact form of the light curve depends only upon the parameter α and the relative angular sizes of the source and lens as seen by the observer. Other effects due to lensing include the following: (1) the formation of caustic surfaces, upon which the apparent brightness of the background source becomes very large; (2) the possible creation of multiple images of the background source; and (3) angular position wander of the background source. If caustics are formed, the separation of the outer caustics can be used to constrain α, while the separation of the inner caustics can constrain the size of the lens. We apply our analysis to two sources, which have undergone extreme scattering events: (1) 0954+658, a source for which we can identify multiple caustics in its light curve, and (2) 1741-038, for which polarization observations were obtained during and after the scattering event. We find general agreement between modeled and observed light curves at 2.25 GHz, but poor agreement at 8.1 GHz. The discrepancies between the modeled and observed light curves may result from some combination of substructure within the lens, an anisotropic lens shape, a lens which only grazes the source rather than passing completely over it, or unresolved substructure within the extragalactic sources. Our analysis also allows us to place constraints on the physical characteristics of the lens. The inferred properties of the lens responsible for the scattering event toward 0954+658 (1741-038) are that it was 0.38 AU (0.065 AU) in diameter with a peak column density of 0.24 pc cm-3 (10-4 pc cm-3), an electron density within the lens of 105 cm-3 (300 cm-3), and a mass of 6.5 × 10-14 M⊙ (10-18 M⊙). The angular position wander caused by the lens was 250 mas (0.4 mas) at 2.25 GHz. In the case of 1741-038, we can place an upper limit of only 100 mG on the magnetic field within the lens.

  9. Dynamical Timescale of Pre-collapse Evolution Inferred from Chemical Distribution in the Taurus Molecular Cloud-1 (TMC-1) Filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yunhee; Lee, Jeong-Eun; Bourke, Tyler L.

    We present observations and analyses of the low-mass star-forming region, Taurus Molecular Cloud-1 (TMC-1). CS ( J = 2–1)/N{sub 2}H{sup +} ( J = 1–0) and C{sup 17}O ( J = 2–1)/C{sup 18}O ( J = 2–1) were observed with the Five College Radio Astronomy Observatory and the Seoul Radio Astronomy Observatory, respectively. In addition, Spitzer infrared data and 1.2 mm continuum data observed with Max-Planck Millimetre Bolometer are used. We also perform chemical modeling to investigate the relative molecular distributions of the TMC-1 filament. Based on Spitzer observations, there is no young stellar object along the TMC-1 filament, while five Classmore » II and one Class I young stellar objects are identified outside the filament. The comparison between column densities calculated from dust continuum and C{sup 17}O 2–1 line emission shows that CO is depleted much more significantly in the ammonia peak than in the cyanopolyyne peak, while the column densities calculated from the dust continuum are similar at the two peaks. N{sub 2}H{sup +} is not depleted much in either peak. According to our chemical calculation, the differential chemical distribution in the two peaks can be explained by different timescales required to reach the same density, i.e., by different dynamical processes.« less

  10. First measurement of H I 21 cm emission from a GRB host galaxy indicates a post-merger system

    NASA Astrophysics Data System (ADS)

    Arabsalmani, Maryam; Roychowdhury, Sambit; Zwaan, Martin A.; Kanekar, Nissim; Michałowski, Michał J.

    2015-11-01

    We report the detection and mapping of atomic hydrogen in H I 21 cm emission from ESO 184-G82, the host galaxy of the gamma-ray burst 980425. This is the first instance where H I in emission has been detected from a galaxy hosting a gamma-ray burst (GRB). ESO 184-G82 is an isolated galaxy and contains a Wolf-Rayet region close to the location of the GRB and the associated supernova, SN 1998bw. This is one of the most luminous H II regions identified in the local Universe, with a very high inferred density of star formation. The H I 21 cm observations reveal a high H I mass for the galaxy, twice as large as the stellar mass. The spatial and velocity distribution of the H I 21 cm emission reveals a disturbed rotating gas disc, which suggests that the galaxy has undergone a recent minor merger that disrupted its rotation. We find that the Wolf-Rayet region and the GRB are both located in the highest H I column density region of the galaxy. We speculate that the merger event has resulted in shock compression of the gas, triggering extreme star formation activity, and resulting in the formation of both the Wolf-Rayet region and the GRB. The high H I column density environment of the GRB is consistent with the high H I column densities seen in absorption in the host galaxies of high-redshift GRBs.

  11. Density-driven transport of gas phase chemicals in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Fen, Chiu-Shia; Sun, Yong-tai; Cheng, Yuen; Chen, Yuanchin; Yang, Whaiwan; Pan, Changtai

    2018-01-01

    Variations of gas phase density are responsible for advective and diffusive transports of organic vapors in unsaturated soils. Laboratory experiments were conducted to explore dense gas transport (sulfur hexafluoride, SF6) from different source densities through a nitrogen gas-dry soil column. Gas pressures and SF6 densities at transient state were measured along the soil column for three transport configurations (horizontal, vertically upward and vertically downward transport). These measurements and others reported in the literature were compared with simulation results obtained from two models based on different diffusion approaches: the dusty gas model (DGM) equations and a Fickian-type molar fraction-based diffusion expression. The results show that the DGM and Fickian-based models predicted similar dense gas density profiles which matched the measured data well for horizontal transport of dense gas at low to high source densities, despite the pressure variations predicted in the soil column were opposite to the measurements. The pressure evolutions predicted by both models were in trend similar to the measured ones for vertical transport of dense gas. However, differences between the dense gas densities predicted by the DGM and Fickian-based models were discernible for vertically upward transport of dense gas even at low source densities, as the DGM-based predictions matched the measured data better than the Fickian results did. For vertically downward transport, the dense gas densities predicted by both models were not greatly different from our experimental measurements, but substantially greater than the observations obtained from the literature, especially at high source densities. Further research will be necessary for exploring factors affecting downward transport of dense gas in soil columns. Use of the measured data to compute flux components of SF6 showed that the magnitudes of diffusive flux component based on the Fickian-type diffusion expressions in terms of molar concentration, molar fraction and mass density fraction gradient were almost the same. However, they were greater than the result computed with the mass fraction gradient for > 24% and the DGM-based result for more than one time. As a consequence, the DGM-based total flux of SF6 was in magnitude greatly less than the Fickian result not only for horizontal transport (diffusion-dominating) but also for vertical transport (advection and diffusion) of dense gas. Particularly, the Fickian-based total flux was more than two times in magnitude as much as the DGM result for vertically upward transport of dense gas.

  12. Herschel/HIFI spectral line survey of the Orion Bar. Temperature and density differentiation near the PDR surface

    NASA Astrophysics Data System (ADS)

    Nagy, Z.; Choi, Y.; Ossenkopf-Okada, V.; van der Tak, F. F. S.; Bergin, E. A.; Gerin, M.; Joblin, C.; Röllig, M.; Simon, R.; Stutzki, J.

    2017-03-01

    Context. Photon dominated regions (PDRs) are interfaces between the mainly ionized and mainly molecular material around young massive stars. Analysis of the physical and chemical structure of such regions traces the impact of far-ultraviolet radiation of young massive stars on their environment. Aims: We present results on the physical and chemical structure of the prototypical high UV-illumination edge-on Orion Bar PDR from an unbiased spectral line survey with a wide spectral coverage which includes lines of many important gas coolants such as [Cii], [Ci], and CO and other key molecules such as H2CO, H2O, HCN, HCO+, and SO. Methods: A spectral scan from 480-1250 GHz and 1410-1910 GHz at 1.1 MHz resolution was obtained by the HIFI instrument on board the Herschel Space Observatory. We obtained physical parameters for the observed molecules. For molecules with multiple transitions we used rotational diagrams to obtain excitation temperatures and column densities. For species with a single detected transition we used an optically thin LTE approximation. In the case of species with available collisional rates, we also performed a non-LTE analysis to obtain kinetic temperatures, H2 volume densities, and column densities. Results: About 120 lines corresponding to 29 molecules (including isotopologues) have been detected in the Herschel/HIFI line survey, including 11 transitions of CO, 7 transitions of 13CO, 6 transitions of C18O, 10 transitions of H2CO, and 6 transitions of H2O. The rotational temperatures are in the range between 22 and 146 K and the column densities are in the range between 1.8 × 1012 cm-2 and 4.5 × 1017 cm-2. For species with at least three detected transitions and available collisional excitation rates we derived a best fit kinetic temperature and H2 volume density. Most species trace kinetic temperatures in the range between 100 and 150 K and H2 volume densities in the range between 105 and 106 cm-3. The species with temperatures and/or densities outside this range include the H2CO transitions tracing a very high temperature (315 K) and density (1.4 × 106 cm-3) component and SO corresponding to the lowest temperature (56 K) measured as a part of this line survey. Conclusions: The observed lines/species reveal a range of physical conditions (gas density/temperature) involving structures at high density/high pressure, making the traditional clump/interclump picture of the Orion Bar obsolete.

  13. Highly-ionized metals as probes of the circumburst gas in the natal regions of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Heintz, K. E.; Watson, D.; Jakobsson, P.; Fynbo, J. P. U.; Bolmer, J.; Arabsalmani, M.; Cano, Z.; Covino, S.; D'Elia, V.; Gomboc, A.; Japelj, J.; Kaper, L.; Krogager, J.-K.; Pugliese, G.; Sánchez-Ramírez, R.; Selsing, J.; Sparre, M.; Tanvir, N. R.; Thöne, C. C.; de Ugarte Postigo, A.; Vergani, S. D.

    2018-06-01

    We present here a survey of high-ionization absorption lines in the afterglow spectra of long-duration gamma-ray bursts (GRBs) obtained with the VLT/X-shooter spectrograph. Our main goal is to investigate the circumburst medium in the natal regions of GRBs. Our primary focus is on the N V λλ 1238,1242 line transitions, but we also discuss other high-ionization lines such as O VI, C IV and Si IV. We find no correlation between the column density of N V and the neutral gas properties such as metallicity, H I column density and dust depletion, however the relative velocity of N V, typically a blueshift with respect to the neutral gas, is found to be correlated with the column density of H I. This may be explained if the N V gas is part of an H II region hosting the GRB, where the region's expansion is confined by dense, neutral gas in the GRB's host galaxy. We find tentative evidence (at 2σ significance) that the X-ray derived column density, NH, X, may be correlated with the column density of N V, which would indicate that both measurements are sensitive to the column density of the gas located in the vicinity of the GRB. We investigate the scenario where N V (and also O VI) is produced by recombination after the corresponding atoms have been stripped entirely of their electrons by the initial prompt emission, in contrast to previous models where highly-ionized gas is produced by photoionization from the GRB afterglow.

  14. Recent Swift XRT Observations of GX 339-4

    NASA Astrophysics Data System (ADS)

    Kong, A. K. H.

    2008-06-01

    Following the discovery of the unusual optical and X-ray flaring activity in GX 339-4 (ATel #1586), we analyzed the two recent Swift XRT observations of the source taken on 2008 June 20 and 24. GX 339-4 is clearly detected in both observations. The first observation is 1985 sec long and the spectrum can be fit with an absorbed power-law model with a hydrogen column density of (4.1+/-1.1)e21 cm^-2 and a photon index of 1.45+/-0.15.

  15. Mapping low-frequency carbon radio recombination lines towards Cassiopeia A at 340, 148, 54, and 43 MHz

    NASA Astrophysics Data System (ADS)

    Salas, P.; Oonk, J. B. R.; van Weeren, R. J.; Wolfire, M. G.; Emig, K. L.; Toribio, M. C.; Röttgering, H. J. A.; Tielens, A. G. G. M.

    2018-04-01

    Quantitative understanding of the interstellar medium requires knowledge of its physical conditions. Low-frequency carbon radio recombination lines (CRRLs) trace cold interstellar gas and can be used to determine its physical conditions (e.g. electron temperature and density). In this work, we present spatially resolved observations of the low-frequency (≤390 MHz) CRRLs centred around C268α, C357α, C494α, and C539α towards Cassiopeia A on scales of ≤1.2 pc. We compare the spatial distribution of CRRLs with other interstellar medium tracers. This comparison reveals a spatial offset between the peak of the CRRLs and other tracers, which is very characteristic for photodissociation regions and that we take as evidence for CRRLs being preferentially detected from the surfaces of molecular clouds. Using the CRRLs, we constrain the gas electron temperature and density. These constraints on the gas conditions suggest variations of less than a factor of 2 in pressure over ˜1 pc scales, and an average hydrogen density of 200-470 cm-3. From the electron temperature and density maps, we also constrain the ionized carbon emission measure, column density, and path length. Based on these, the hydrogen column density is larger than 1022 cm-2, with a peak of ˜4 × 1022 cm-2 towards the south of Cassiopeia A. Towards the southern peak, the line-of-sight length is ˜40 pc over a ˜2 pc wide structure, which implies that the gas is a thin surface layer on a large (molecular) cloud that is only partially intersected by Cassiopeia A. These observations highlight the utility of CRRLs as tracers of low-density extended H I and CO-dark gas halo's around molecular clouds.

  16. Do lab-derived distribution coefficient values of pesticides match distribution coefficient values determined from column and field-scale experiments? A critical analysis of relevant literature.

    PubMed

    Vereecken, H; Vanderborght, J; Kasteel, R; Spiteller, M; Schäffer, A; Close, M

    2011-01-01

    In this study, we analyzed sorption parameters for pesticides that were derived from batch and column or batch and field experiments. The batch experiments analyzed in this study were run with the same pesticide and soil as in the column and field experiments. We analyzed the relationship between the pore water velocity of the column and field experiments, solute residence times, and sorption parameters, such as the organic carbon normalized distribution coefficient ( ) and the mass exchange coefficient in kinetic models, as well as the predictability of sorption parameters from basic soil properties. The batch/column analysis included 38 studies with a total of 139 observations. The batch/field analysis included five studies, resulting in a dataset of 24 observations. For the batch/column data, power law relationships between pore water velocity, residence time, and sorption constants were derived. The unexplained variability in these equations was reduced, taking into account the saturation status and the packing status (disturbed-undisturbed) of the soil sample. A new regression equation was derived that allows estimating the values derived from column experiments using organic matter and bulk density with an value of 0.56. Regression analysis of the batch/column data showed that the relationship between batch- and column-derived values depends on the saturation status and packing of the soil column. Analysis of the batch/field data showed that as the batch-derived value becomes larger, field-derived values tend to be lower than the corresponding batch-derived values, and vice versa. The present dataset also showed that the variability in the ratio of batch- to column-derived value increases with increasing pore water velocity, with a maximum value approaching 3.5. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  17. DETECTION OF A HYDROGEN CORONA IN HST Ly α IMAGES OF EUROPA IN TRANSIT OF JUPITER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Lorenz; Ivchenko, Nickolay; Schlatter, Nicola

    We report far-ultraviolet observations of Europa in transit of Jupiter obtained with the Space Telescope Imaging Spectrograph of the Hubble Space Telescope on six occasions between 2014 December and 2015 March. Absorption of Jupiter’s bright hydrogen Ly α dayglow is detected in a region several moon radii above the limb in all observations. The observed extended absorption provides the first detection of an atomic hydrogen corona around Europa. Molecular constituents in Europa’s global sputtered atmosphere are shown to be optically thin to Ly α . The observations are consistent with a radially escaping H corona with maximum densities at themore » surface in the range of (1.5–2.2) × 10{sup 3} cm{sup −3}, confirming the abundances predicted by Monte Carlo simulations. In addition, we search for anomalies around the limb of Europa from absorption by localized high H{sub 2}O abundances from active plumes. No significant local absorption features are detected. We find that an H{sub 2}O plume with line-of-sight column density in the order of 10{sup 16} cm{sup −2}, as inferred by Roth et al. would not be detectable based on the statistical fluctuations of the transit measurements, and hence is not excluded or further constrained. The presence of plumes with line-of-sight column densities of >2 × 10{sup 17} cm{sup −2} can be excluded at a 3- σ level during five of our six observations.« less

  18. Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission

    NASA Astrophysics Data System (ADS)

    Shelton, Robin L.

    The hot Local Bubble surrounding the solar neighborhood has been primarily studied through observations of its soft X-ray emission. The measurements were obtained by attributing all of the observed local soft X-rays to the bubble. However, mounting evidence shows that the heliosphere also produces diffuse X-rays. The source is solar wind ions that have received an electron from another atom. The presence of this alternate explanation for locally produced diffuse X-rays calls into question the existence and character of the Local Bubble. This article addresses these questions. It reviews the literature on solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts for roughly half of the observed local 1/4 keV X-rays found at low latitudes. This article also makes predictions for the heliospheric O VI column density and intensity, finding them to be smaller than the observational error bars. Evidence for the continued belief that the Local Bubble contains hot gas includes the remaining local 1/4 keV intensity, the observed local O VI column density, and the need to fill the local region with some sort of plasma. If the true Local Bubble is half as bright as previously thought, then its electron density and thermal pressure are 1/sqrt{2} as great as previously thought, and its energy requirements and emission measure are 1/2 as great as previously thought. These adjustments can be accommodated easily, and, in fact, bring the Local Bubble's pressure more in line with that of the adjacent material. Suggestions for future work are made.

  19. Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission

    NASA Astrophysics Data System (ADS)

    Shelton, Robin L.

    2009-03-01

    The hot Local Bubble surrounding the solar neighborhood has been primarily studied through observations of its soft X-ray emission. The measurements were obtained by attributing all of the observed local soft X-rays to the bubble. However, mounting evidence shows that the heliosphere also produces diffuse X-rays. The source is solar wind ions that have received an electron from another atom. The presence of this alternate explanation for locally produced diffuse X-rays calls into question the existence and character of the Local Bubble. This article addresses these questions. It reviews the literature on solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts for roughly half of the observed local 1/4 keV X-rays found at low latitudes. This article also makes predictions for the heliospheric O VI column density and intensity, finding them to be smaller than the observational error bars. Evidence for the continued belief that the Local Bubble contains hot gas includes the remaining local 1/4 keV intensity, the observed local O VI column density, and the need to fill the local region with some sort of plasma. If the true Local Bubble is half as bright as previously thought, then its electron density and thermal pressure are 1/sqrt{2} as great as previously thought, and its energy requirements and emission measure are 1/2 as great as previously thought. These adjustments can be accommodated easily, and, in fact, bring the Local Bubble’s pressure more in line with that of the adjacent material. Suggestions for future work are made.

  20. Copernicus observations of interstellar absorption at Lyman alpha

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.

    1975-01-01

    Column densities NH of atomic hydrogen have been derived for 40 OB stars from spectral scans at Lyman alpha obtained by the Copernicus (OAO-3) satellite. The stars are all between 60 and 1100 pc away with a range of mean densities n sub H of 0.01 to 2.5 atoms cm-3. The gas to color-excess ratio in clouds varies from 1 to 3 times the mean outside of clouds. The presence of molecular hydrogen correlates with E(B-V), but the best tracer for H2 is atomic hydrogen. The mean density of the gas for all 40 stars is much smaller than the mean of 0.7 atoms cm-3 obtained from 21-cm observations, because the brightest stars with less than average amounts of matter in the line of sight were selected for observation.

  1. Comparing the statistics of interstellar turbulence in simulations and observations. Solenoidal versus compressive turbulence forcing

    NASA Astrophysics Data System (ADS)

    Federrath, C.; Roman-Duval, J.; Klessen, R. S.; Schmidt, W.; Mac Low, M.-M.

    2010-03-01

    Context. Density and velocity fluctuations on virtually all scales observed with modern telescopes show that molecular clouds (MCs) are turbulent. The forcing and structural characteristics of this turbulence are, however, still poorly understood. Aims: To shed light on this subject, we study two limiting cases of turbulence forcing in numerical experiments: solenoidal (divergence-free) forcing and compressive (curl-free) forcing, and compare our results to observations. Methods: We solve the equations of hydrodynamics on grids with up to 10243 cells for purely solenoidal and purely compressive forcing. Eleven lower-resolution models with different forcing mixtures are also analysed. Results: Using Fourier spectra and Δ-variance, we find velocity dispersion-size relations consistent with observations and independent numerical simulations, irrespective of the type of forcing. However, compressive forcing yields stronger compression at the same rms Mach number than solenoidal forcing, resulting in a three times larger standard deviation of volumetric and column density probability distributions (PDFs). We compare our results to different characterisations of several observed regions, and find evidence of different forcing functions. Column density PDFs in the Perseus MC suggest the presence of a mainly compressive forcing agent within a shell, driven by a massive star. Although the PDFs are close to log-normal, they have non-Gaussian skewness and kurtosis caused by intermittency. Centroid velocity increments measured in the Polaris Flare on intermediate scales agree with solenoidal forcing on that scale. However, Δ-variance analysis of the column density in the Polaris Flare suggests that turbulence is driven on large scales, with a significant compressive component on the forcing scale. This indicates that, although likely driven with mostly compressive modes on large scales, turbulence can behave like solenoidal turbulence on smaller scales. Principal component analysis of G216-2.5 and most of the Rosette MC agree with solenoidal forcing, but the interior of an ionised shell within the Rosette MC displays clear signatures of compressive forcing. Conclusions: The strong dependence of the density PDF on the type of forcing must be taken into account in any theory using the PDF to predict properties of star formation. We supply a quantitative description of this dependence. We find that different observed regions show evidence of different mixtures of compressive and solenoidal forcing, with more compressive forcing occurring primarily in swept-up shells. Finally, we emphasise the role of the sonic scale for protostellar core formation, because core formation close to the sonic scale would naturally explain the observed subsonic velocity dispersions of protostellar cores. A movie is only available in electronic form at http://www.aanda.org

  2. Determination of the line shapes of atomic nitrogen resonance lines by magnetic scans

    NASA Technical Reports Server (NTRS)

    Lawrence, G. M.; Stone, E. J.; Kley, D.

    1976-01-01

    A technique is given for calibrating an atomic nitrogen resonance lamp for use in determining column densities of atoms in specific states. A discharge lamp emitting the NI multiplets at 1200 A and 1493 A is studied by obtaining absorption by atoms in a magnetic field (0-2.5 T). This magnetic scanning technique enables the determination of the absorbing atom column density, and an empirical curve of growth is obtained because the atomic f-value is known. Thus, the calibrated lamp can be used in the determination of atomic column densities.

  3. C+/H2 gas in star-forming clouds and galaxies

    NASA Astrophysics Data System (ADS)

    Nordon, Raanan; Sternberg, Amiel

    2016-11-01

    We present analytic theory for the total column density of singly ionized carbon (C+) in the optically thick photon dominated regions (PDRs) of far-UV irradiated (star-forming) molecular clouds. We derive a simple formula for the C+ column as a function of the cloud (hydrogen) density, the far-UV field intensity, and metallicity, encompassing the wide range of galaxy conditions. When assuming the typical relation between UV and density in the cold neutral medium, the C+ column becomes a function of the metallicity alone. We verify our analysis with detailed numerical PDR models. For optically thick gas, most of the C+ column is mixed with hydrogen that is primarily molecular (H2), and this `C+/H2' gas layer accounts for almost all of the `CO-dark' molecular gas in PDRs. The C+/H2 column density is limited by dust shielding and is inversely proportional to the metallicity down to ˜0.1 solar. At lower metallicities, H2 line blocking dominates and the C+/H2 column saturates. Applying our theory to CO surveys in low-redshift spirals, we estimate the fraction of C+/H2 gas out of the total molecular gas to be typically ˜0.4. At redshifts 1 < z < 3 in massive disc galaxies the C+/H2 gas represents a very small fraction of the total molecular gas (≲ 0.16). This small fraction at high redshifts is due to the high gas surface densities when compared to local galaxies.

  4. VizieR Online Data Catalog: Gamma Ray Bursts detected by Swift (2004-2015) (Buchner+, 2017)

    NASA Astrophysics Data System (ADS)

    Buchner, J.; Schulze, S.; Bauer, F.

    2016-04-01

    Gamma Ray Bursts (GRB) typically show intrinsic LOS column densities of 1021-23cm2. We performed a thorough statistical analysis of all available X-ray spectra of Swift-detected GRBs. In the associated paper we use sub-samples to analyse the population properties of LGRB and concluded that the obscuration is due to large-scale gas inside the GRB host galaxy, due to the shape of the column density distribution and its correlation with host stellar mass. This catalogue presents X-ray spectral analysis of all Swift-detected GRBs. It includes information about the GRB (ID, Swift Trigger ID, duration, RA/Dec in J2000, galactic coordinates, Milky Way column density). Those properties are taken from the http://www.swift.ac.uk/ and http://gcn.gsfc.nasa.gov/ websites. We removed prompt emission and flares, leaving only a certain time interval for spectral extraction. We use two models to analyse X-ray spectra: TBABS and SPHERE. Both include updated abundances and cross-sections as compared to previous works. The latter includes the effects of Compton-scattering and FeKa fluorescence relevant at high column densities. Columns list the posterior mean, standard deviation, 10% and 90% quantiles. Note that the column densities are converted to hydrogen assuming local ISM abundances, but are derived primarily from photo-electric absorption of e.g. Fe and O, and therefore primarily measure metal gas. (2 data files).

  5. Narrow Quasar Absorption Lines and the History of the Universe

    NASA Astrophysics Data System (ADS)

    Liebscher, Dierck-Ekkehard

    In order to get an estimation of the parameters of the cosmological model the statistics of narrow absorption lines in quasar spectra is evaluated. To this end a phenomenological model of the evolution of the corresponding absorbers in density, size, number and dimension is presented and compared with the observed evolution in the spectral density of the lines and their column density seen in the equivalent width. In spite of the wide range of possible models, the Einstein-deSitter model is shown to be unlikely because of the implied fast evolution in mass.

  6. Uncertainty and variability in laboratory derived sorption parameters of sediments from a uranium in situ recovery site

    NASA Astrophysics Data System (ADS)

    Dangelmayr, Martin A.; Reimus, Paul W.; Johnson, Raymond H.; Clay, James T.; Stone, James J.

    2018-06-01

    This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO3 and 360 mg/l CaCO3) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO3 over columns fed with 160 mg/l CaCO3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental methodology may play a bigger role in column sorption behavior than actual sediment heterogeneity. Our results demonstrate the necessity for ISR sites to remove residual pCO2 and equilibrate restoration water with background geochemistry to reduce uranium mobility. In addition, the observed variability between fitted parameters on the same sediments highlights the need to provide standardized guidelines and methodology for regulators and industry when the GC SCM approach is used for ISR risk assessments.

  7. Uncertainty and variability in laboratory derived sorption parameters of sediments from a uranium in situ recovery site.

    PubMed

    Dangelmayr, Martin A; Reimus, Paul W; Johnson, Raymond H; Clay, James T; Stone, James J

    2018-06-01

    This research assesses the ability of a GC SCM to simulate uranium transport under variable geochemical conditions typically encountered at uranium in-situ recovery (ISR) sites. Sediment was taken from a monitoring well at the SRH site at depths 192 and 193 m below ground and characterized by XRD, XRF, TOC, and BET. Duplicate column studies on the different sediment depths, were flushed with synthesized restoration waters at two different alkalinities (160 mg/l CaCO 3 and 360 mg/l CaCO 3 ) to study the effect of alkalinity on uranium mobility. Uranium breakthrough occurred 25% - 30% earlier in columns with 360 mg/l CaCO 3 over columns fed with 160 mg/l CaCO 3 influent water. A parameter estimation program (PEST) was coupled to PHREEQC to derive site densities from experimental data. Significant parameter fittings were produced for all models, demonstrating that the GC SCM approach can model the impact of carbonate on uranium in flow systems. Derived site densities for the two sediment depths were between 141 and 178 μmol-sites/kg-soil, demonstrating similar sorption capacities despite heterogeneity in sediment mineralogy. Model sensitivity to alkalinity and pH was shown to be moderate compared to fitted site densities, when calcite saturation was allowed to equilibrate. Calcite kinetics emerged as a potential source of error when fitting parameters in flow conditions. Fitted results were compared to data from previous batch and column studies completed on sediments from the Smith-Ranch Highland (SRH) site, to assess variability in derived parameters. Parameters from batch experiments were lower by a factor of 1.1 to 3.4 compared to column studies completed on the same sediments. The difference was attributed to errors in solid-solution ratios and the impact of calcite dissolution in batch experiments. Column studies conducted at two different laboratories showed almost an order of magnitude difference in fitted site densities suggesting that experimental methodology may play a bigger role in column sorption behavior than actual sediment heterogeneity. Our results demonstrate the necessity for ISR sites to remove residual pCO2 and equilibrate restoration water with background geochemistry to reduce uranium mobility. In addition, the observed variability between fitted parameters on the same sediments highlights the need to provide standardized guidelines and methodology for regulators and industry when the GC SCM approach is used for ISR risk assessments. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Evolution of HI from Z=5 to the present

    NASA Technical Reports Server (NTRS)

    Storrie-Lombardi, L. J.

    2002-01-01

    Studies of damped Lya systems provide us with a good measure of the evolution of the HI column density distribution function and the contribution to the comoving mass density in neutral gas out to redshifts of z = 5 . The column density distribution function at high redshift steepens for the highest column density HI absorbers, though the contribution to the comoving mass density of neutral gas remains fiat from 2 < z < 5 . Results from studies at z < 2 are finding substantial numbers of damped absorbers identified from MgII absorption, compared to previous blind surveys. These results indicate that the contribution to the comoving mass density in neutral gas may be constant from z 0 to z 5. Details of recent work in the redshift range z < 2 work is covered elsewhere in this volume (see D. Nestor). We review here recent results for the redshift range 2 < z < 5.

  9. Intersstellar absorption lines between 2000 and 3000 A in nearby stars observed with BUSS. [Balloon Borne Ultraviolet Spectrophotometer

    NASA Technical Reports Server (NTRS)

    De Boer, K. S.; Lenhart, H.; Van Der Hucht, K. A.; Kamperman, T. M.; Kondo, Y.

    1986-01-01

    Spectra obtained between 2000 and 3000 A with the Balloon Borne Ultraviolet Spectrophotometer (BUSS) payload were examined for interstellar absorption lines. In bright stars, with spectral types between O9V and F5V, such lines were measured of Mg I, Mg II, Cr II, Mn II, Fe II and Zn II, with Cr II and Zn II data of especially high quality. Column densities were derived and interstellar abundances were determined for the above species. It was found that metal depletion increases with increasing E(B-V); Fe was most affected and Zn showed a small depletion for E(B-V) greater than 0.3 towards Sco-Oph. The metal column densities, derived for Alpha-And, Kappa-Dra, Alpha-Com, Alpha-Aql, and 29 Cyg were used to infer N(H I). It was shown that the ratio of Mg I to Na I is instrumental in determining the ionization structure along each line of sight. The spectra of Aql stars confirms the presence of large gas densities near Alpha-Oph. Moreover, data indicated that the Rho-Oph N(H I) value needs to be altered to 35 x 10 to the 20th/sq cm, based on observed ion ratios and analysis of the Copernicus L-alpha profile.

  10. Signatures of Hot Molecular Hydrogen Absorption from Protoplanetary Disks. I. Non-thermal Populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoadley, Keri; France, Kevin; Arulanantham, Nicole

    2017-09-01

    The environment around protoplanetary disks (PPDs) regulates processes that drive the chemical and structural evolution of circumstellar material. We perform a detailed empirical survey of warm molecular hydrogen (H{sub 2}) absorption observed against H i-Ly α (Ly α : λ 1215.67) emission profiles for 22 PPDs, using archival Hubble Space Telescope ultraviolet (UV) spectra to identify H{sub 2} absorption signatures and quantify the column densities of H{sub 2} ground states in each sightline. We compare thermal equilibrium models of H{sub 2} to the observed H{sub 2} rovibrational level distributions. We find that, for the majority of targets, there is amore » clear deviation in high-energy states ( T {sub exc} ≳ 20,000 K) away from thermal equilibrium populations ( T (H{sub 2}) ≳ 3500 K). We create a metric to estimate the total column density of non-thermal H{sub 2} ( N (H{sub 2}){sub nLTE}) and find that the total column densities of thermal ( N (H{sub 2})) and N (H{sub 2}){sub nLTE} correlate for transition disks and targets with detectable C iv-pumped H{sub 2} fluorescence. We compare N (H{sub 2}) and N (H{sub 2}){sub nLTE} to circumstellar observables and find that N (H{sub 2}){sub nLTE} correlates with X-ray and far-UV luminosities, but no correlations are observed with the luminosities of discrete emission features (e.g., Ly α , C iv). Additionally, N (H{sub 2}) and N (H{sub 2}){sub nLTE} are too low to account for the H{sub 2} fluorescence observed in PPDs, so we speculate that this H{sub 2} may instead be associated with a diffuse, hot, atomic halo surrounding the planet-forming disk. We create a simple photon-pumping model for each target to test this hypothesis and find that Ly α efficiently pumps H{sub 2} levels with T {sub exc} ≥ 10,000 K out of thermal equilibrium.« less

  11. Density gradient electrophoresis of cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Giranda, V.; Todd, P. W.

    1985-01-01

    Ground based confirmation of the electrophoretic heterogeneity of human embryonic kidney cell cultures, the general characterization of their electrophoretic migration, and observations on the general properties of cultures derived from electrophoretic subpopulations were studied. Cell migration in a density gradient electrophoresis column and cell electrophoretic mobility was determined. The mobility and heterogeneity of cultured human embryonic kidney cells with those of fixed rat erythrocytes as model test particle was compared. Electrophoretically separated cell subpopulations with respect to size, viability, and culture characteristics were examined.

  12. Effects of Io ejecta on Europa

    NASA Astrophysics Data System (ADS)

    Eviatar, A.; Siscoe, G. L.; Johnson, T. V.; Matson, D. L.

    1981-07-01

    The effects of plasma ejected from Io on the nature and evolution of the surface of Europa and on the relative importance of the roles played by the two satellites in the Jupiter magnetosphere are examined. Observations of an ultraviolet absorption feature on the trailing side of Europa are interpreted as due to an equilibrium column density of SO2 in a steady-state model of the implantation of iogenic ions into the surface of Europa and their subsequent sputtering. The observed sulfur column density of 2 x 10 to the 16th/sq cm implies a slow loss of material from Europa, mainly water ice, and indicates that the spectrum of particles sputtered is soft. Considerations of the comparative roles of corotating and energetic heavy ions are shown to suggest that the implantation and sputtering is primarily the result of the proton and light ion component of the plasma. The weakness of Europa as a plasma source resulting from the soft sputtered particle spectrum thus leads to the dominance of Io in contributing to the magnetospheric plasma.

  13. Extreme ultraviolet observations of HZ 43 and the local H/He ratio with the Hopkins Ultraviolet Telescope

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Davidsen, Arthur F.; Long, Knox S.; Feldman, Paul D.

    1993-01-01

    We present a spectrum of the hot DA white dwarf HZ 43 in the EUV, near the 504-A ionization edge of neutral helium, obtained with the Hopkins Ultraviolet Telescope (HUT) during the 1990 December Astro-1 mission. The interstellar column densities derived from this spectrum rule out the anomalous interstellar absorption model proposed by Heise et al.(1991), which required a greater column density of neutral helium than neutral hydrogen toward HZ 43 in order to explain the low EUV flux from HZ 43 reported by EXOSAT. Instead, we find the interstellar neutral H/He ratio toward HZ 43 to be consistent with the canonical cosmic abundance ratio of 10 or with the 11.6 +/- 1.0 ratio measured by HUT along the line of sight toward another DA white dwarf, G191-B2B. The HUT observations suggest that either there is a substantial calibration error in the EXOSAT spectroscopy of HZ 43, or otherwise undetected metals in the nominally pure hydrogen HZ 43 atmosphere suppress its flux between 150 and 300 A, or both.

  14. High-resolution ultraviolet observations of interstellar lines toward Zeta Persei observed with the balloon-borne ultraviolet stellar spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, T.P.; Lamers, H.J.G.L.M.; Joseph, C.L.

    1987-10-01

    The balloon-borne ultraviolet stellar spectrometer payload has been used to obtain high-resolution data on interstellar absorption lines toward Zeta Per. The only lines clearly present in the 2150-2450 region were several Fe II features, which show double structure. The two velocity components were sufficiently well separated that it was possible to construct separate curves of growth to derive the Fe II column densities for the individual components. These column densities and the component velocity separation were then used to compute a realistic two-component curve of growth for the line of sight to Zeta Per, which was then used to reanalyzemore » existing ultraviolet data from Copernicus. The results were generally similar to an earlier two-component analysis of the Copernicus data, with the important exception that the silicon depletion increased from near zero to about 1 dex. This makes the Zeta Per depletion pattern quite similar to those derived for other reddened lines of sight, supporting the viewpoint that the general diffuse interstellar medium has a nearly constant pattern of depletions. 31 references.« less

  15. Influence of different irrigation levels on the root water uptake and the physiology of root-chicory

    NASA Astrophysics Data System (ADS)

    Vandoorne, B.; Dekoninck, N.; Lutts, S.; Capelle, B.; Javaux, M.

    2009-04-01

    In the context of global warming and given recent heat waves observed in Western Europe, the relationship between the soil water status and the plant health has recently received more attention, especially for cash crops like chicory. In this study we particularly investigated the impact of soil water status on the chicory root water uptake and density and made a link with physiological and yield parameters. During five months, we imposed different irrigation levels to 10 plants of chicory (Cichorium intybus var. sativum) growing in greenhouses. Each seed, coming from an autogamous selection in this allogamous species, was sown in a column of 1.42m height and 0.4m diameter filled with yellow sand and irrigated from the bottom with Hoagland solution. On those 10 columns, we measured the distribution of soil moisture with TDR (8 columns) and ERT (2 columns) probes. Lateral windows also allowed us to follow the root growth. The column weights were also monitored in order to quantify the plant transpiration. During the experiment, several physiological indices were also followed like the gas exchange (CO2 and transpiration), the chlorophyll fluorescence, the stomatal conductance, the plastochron, and the Leaf Area Index (LAI). At the end of the experiment, the complete root length density and the water content profiles were measured. We had also a look to the osmotic potential, the pigments content and the isotopic discrimination of carbon in the leaves, which gives information about the level of stress. At a biochemical point of view, we measured the content in enzymes involves in inulin metabolism and sugars synthesis. We observed that the plants suffering from a slight water stress developed better. A simple1-D model was built which describes the root growth in function of the irrigation level and of the soil and atmospheric boundary conditions.

  16. Sinking velocities of phytoplankton measured on a stable density gradient by laser scanning

    PubMed Central

    Walsby, Anthony E; Holland, Daryl P

    2005-01-01

    Two particular difficulties in measuring the sinking velocities of phytoplankton cells are preventing convection within the sedimenting medium and determining the changing depth of the cells. These problems are overcome by using a density-stabilized sedimentation column scanned by a laser. For freshwater species, a suspension of phytoplankton is layered over a vertical density gradient of Percoll solution; as the cells sink down the column their relative concentration is measured by the forward scattering of light from a laser beam that repeatedly scans up and down the column. The Percoll gradient stabilizes the column, preventing vertical mixing by convection, radiation or perturbation of density by the descending cells. Measurements were made on suspensions of 15 μm polystyrene microspheres with a density of 1050 kg m−3; the mean velocity was 6.28 μm s−1, within 1.5% of that calculated by the Stokes equation, 6.36 μm s−1. Measurements made on the filamentous cyanobacterium Planktothrix rubescens gave mean velocities within the theoretical range of values based on the range of size, shape, orientation and density of the particles in a modified Stokes equation. Measurements on marine phytoplankton may require density gradients prepared with other substances. PMID:16849271

  17. Why P/OF should look for evidences of over-dense structures in solar flare hard X-ray sources

    NASA Technical Reports Server (NTRS)

    Neidig, D. F.; Kane, S. R.; Love, J. J.; Cliver, E. W.

    1986-01-01

    White-light and hard X-ray (HXR) observations of two white-light flares (WLFs) show that if the radiative losses in the optical continuum are powered by fast electrons directly heating the WLF source, then the column density constraints imposed by the finite range of the electrons requires that the WLF consist of an over-dense region in the chromosphere, with density exceeding 10 to the 14th power/cu cm. Thus, we recommend that P/OF search for evidences of over-dense structures in HXR images obtained simultaneously with optical observations of flares.

  18. The Fourth Flight of CHESS: Analysis of Interstellar H2 on the γ Ara Sightline

    NASA Astrophysics Data System (ADS)

    Kruczek, Nick E.; France, Kevin; Nell, Nicholas; Fleming, Brian

    2018-06-01

    In this talk, we describe the scientific motivation and technical development of the Colorado High-resolution Echelle Stellar Spectrograph (CHESS) sounding rocket, focusing on the preliminary science results for the fourth launch of the payload (CHESS-4). CHESS is a far ultraviolet rocket-borne instrument designed to study the atomic-to-molecular transitions within translucent cloud regions in the interstellar medium. CHESS-4 launched on 13 April 2018 aboard NASA/CU sounding rocket mission 36.333 UG. The target for this flight was γ Ara, a B1I star that is known to display a variable and equatorially enhanced stellar wind. We present flight results of interstellar molecular hydrogen excitation, including initial measurements of the column density and temperature, on the sightline. These results are compared to previous values that were calculated using the damping wings of low-J H2 absorption features in Copernicus spectra. We also present analogous flight data for the sightline toward β Sco, finding that the derived column density of the J” = 1 rotational level differs by a factor of ~2 when compared to the previous observations. We discuss the discrepancies between the two measurements and show that the source of the difference is likely due to the opacity of higher rotational levels contributing to the J” = 1 absorption wing, increasing the inferred column density in the previous work.

  19. Structure and properties of the egg mass of the ommastrephid squid Todarodes pacificus

    PubMed Central

    Puneeta, Pandey; Yamamoto, Jun; Adachi, Kohsuke; Kato, Yoshiki; Sakurai, Yasunori

    2017-01-01

    The Japanese flying squid, Todarodes pacificus, is thought to spawn neutrally buoyant egg masses that retain a specific location in the water column by floating at the interface between water layers of slightly different densities. It is important to understand the physical process that determines the vertical distribution of the egg masses to predict their horizontal drift in relation to embryo survival and subsequent recruitment. Here, mesocosm experiments were conducted in a 300 m3 tank by creating a thermally stratified (17–22°C) water column to obtain egg masses. A cage net methodology was developed to sustain egg masses for detailed observation. We measured the density of the egg masses of T. pacificus, and used this information to infer the vertical distribution patterns of the egg masses at the spawning grounds (Tsushima Strait, Japan). When measured separately, the density of the outer jelly of each egg mass was 2.7 σ units higher than that of the surrounding water. The outer jelly and the specific gravity of embedded individual eggs (~1.10) cause the egg masses to have very slight negative buoyancy relative to the water in which they are formed. Analysis of the vertical profile of the spawning ground showed that water density (σθ) increased sharply at ~30 m depth; thus, egg masses might settle above the pycnocline layer. In conclusion, we suggest that T. pacificus egg masses might retain their location in the water column by floating at the interface between water layers of slightly different densities, which happen to be above the pycnocline layer (actual depth varies seasonally/annually) in the Tsushima Strait between Korea and Japan. PMID:28767686

  20. Structure and properties of the egg mass of the ommastrephid squid Todarodes pacificus.

    PubMed

    Puneeta, Pandey; Vijai, Dharmamony; Yamamoto, Jun; Adachi, Kohsuke; Kato, Yoshiki; Sakurai, Yasunori

    2017-01-01

    The Japanese flying squid, Todarodes pacificus, is thought to spawn neutrally buoyant egg masses that retain a specific location in the water column by floating at the interface between water layers of slightly different densities. It is important to understand the physical process that determines the vertical distribution of the egg masses to predict their horizontal drift in relation to embryo survival and subsequent recruitment. Here, mesocosm experiments were conducted in a 300 m3 tank by creating a thermally stratified (17-22°C) water column to obtain egg masses. A cage net methodology was developed to sustain egg masses for detailed observation. We measured the density of the egg masses of T. pacificus, and used this information to infer the vertical distribution patterns of the egg masses at the spawning grounds (Tsushima Strait, Japan). When measured separately, the density of the outer jelly of each egg mass was 2.7 σ units higher than that of the surrounding water. The outer jelly and the specific gravity of embedded individual eggs (~1.10) cause the egg masses to have very slight negative buoyancy relative to the water in which they are formed. Analysis of the vertical profile of the spawning ground showed that water density (σθ) increased sharply at ~30 m depth; thus, egg masses might settle above the pycnocline layer. In conclusion, we suggest that T. pacificus egg masses might retain their location in the water column by floating at the interface between water layers of slightly different densities, which happen to be above the pycnocline layer (actual depth varies seasonally/annually) in the Tsushima Strait between Korea and Japan.

  1. CHIMPS: the 13CO/C18O (J = 3 → 2) Heterodyne Inner Milky Way Plane Survey

    NASA Astrophysics Data System (ADS)

    Rigby, A. J.; Moore, T. J. T.; Plume, R.; Eden, D. J.; Urquhart, J. S.; Thompson, M. A.; Mottram, J. C.; Brunt, C. M.; Butner, H. M.; Dempsey, J. T.; Gibson, S. J.; Hatchell, J.; Jenness, T.; Kuno, N.; Longmore, S. N.; Morgan, L. K.; Polychroni, D.; Thomas, H.; White, G. J.; Zhu, M.

    2016-03-01

    We present the 13CO/C18O (J = 3 → 2) Heterodyne Inner Milky Way Plane Survey (CHIMPS) which has been carried out using the Heterodyne Array Receiver Program on the 15 m James Clerk Maxwell Telescope (JCMT) in Hawaii. The high-resolution spectral survey currently covers |b| ≤ 0.5° and 28° ≲ l ≲ 46°, with an angular resolution of 15 arcsec in 0.5 km s-1 velocity channels. The spectra have a median rms of ˜0.6 K at this resolution, and for optically thin gas at an excitation temperature of 10 K, this sensitivity corresponds to column densities of NH2 ˜ 3 × 1020 cm-2 and NH2 ˜ 4 × 1021 cm-2 for 13CO and C18O, respectively. The molecular gas that CHIMPS traces is at higher column densities and is also more optically thin than in other publicly available CO surveys due to its rarer isotopologues, and thus more representative of the three-dimensional structure of the clouds. The critical density of the J = 3 → 2 transition of CO is ≳104 cm-3 at temperatures of ≤20 K, and so the higher density gas associated with star formation is well traced. These data complement other existing Galactic plane surveys, especially the JCMT Galactic Plane Survey which has similar spatial resolution and column density sensitivity, and the Herschel infrared Galactic Plane Survey. In this paper, we discuss the observations, data reduction and characteristics of the survey, presenting integrated-emission maps for the region covered. Position-velocity diagrams allow comparison with Galactic structure models of the Milky Way, and while we find good agreement with a particular four-arm model, there are some significant deviations.

  2. Molecules in celestial objects. III - Study of CO in interstellar diffuse clouds

    NASA Technical Reports Server (NTRS)

    Tarafdar, S. P.; Krishna Swamy, K. S.

    1982-01-01

    The absorption lines corresponding to the A-X transition of CO have been looked for in the IUE spectra of 14 stars with varying values of the colour excess, E(B-V) and found to be present in the spectra of nine stars with E(B-V) at least 0.28. The column density of CO has been determined towards these nine stars and its upper limit towards the rest of the stars. The curve of growth analysis has been found to show that the contribution to CO absorption is possibly from a single interstellar cloud for stars with E(B-V) less than 0.4 and from more than one cloud for stars with E(B-V) greater than 0.4. The observed column density of CO as a function of E(B-V) has been found to be in good agreement with that expected from the theory of ion-molecular chemistry.

  3. Unveiling Obscured AGN with X-ray Spectral Analysis

    NASA Astrophysics Data System (ADS)

    LaMassa, Stephanie M.; Yaqoob, Tahir; Ptak, Andrew; Jia, Jianjun; Heckman, Timothy M.; Gandhi, Poshak; Urry, C. Megan

    2014-06-01

    With the recent advent of physically motivated, self-consistent X-ray models, the circumnuclear medium enshrouding AGN can now be investigated in unprecedented detail. We applied these models to 19 SDSS [OIII] 5007 Angstrom selected Type 2 AGN, where 9 are local Seyfert 2 galaxies and 10 are more luminous and distant Type 2 quasars. For the first time in a sample of AGN, we constrained both the line-of-sight and global column densities, finding that over half (11/19) are heavily obscured or Compton-thick (NH > 10^23 cm^-2). Four objects have different global from line-of-sight column densities. When correcting the observed X-ray luminosities for obscuration, the L_x/L_[OIII] ratio for these Type 2 AGN is essentially identical to the Seyfert 1 (i.e., unabsorbed AGN) value, which is consistent with both parameters cleanly probing AGN emission.

  4. A multifrequency study of star formation in the blue compact dwarf galaxy IZw 36

    NASA Technical Reports Server (NTRS)

    Viallefond, F.; Thuan, T. X.

    1983-01-01

    Radio, near IR, optical, and UV observations of I Zw 36 = Mrk 209 = Haro 29 are reported. The H I distribution shows a core-halo structure, the core containing half of the mass and showing systematic motions; the halo is diffuse and contains several H I clumps. The visible star formation region is associated with the core but is shifted slightly with respect to the H I peak column density; and the virial mass is 5 to 7 times the H I mass. Star formation models with an initial mass function of slope 1.5 (the Salpeter value being 1.35) and a burst age or duration of a few million years fit well the optical spectrophotometric measurements. The data also suggest that the column density of molecular hydrogen in I Zw 36 is 6 + or - 3 times that of the neutral hydrogen, about the right amount to account for the virial mass.

  5. Protamine ratio and the level of histone retention in sperm selected from a density gradient preparation.

    PubMed

    Hammoud, S; Liu, L; Carrell, D T

    2009-04-01

    Fertile males express two forms of sperm nuclear proteins, protamine 1 (P1) and protamine 2 (P2), in roughly equal quantities, whereas some infertile men have been shown to have a reduction in protamine content and an increase in the level of histones retained in mature sperm. In this study, we assessed histone and protamine levels in spermatozoa isolated from different layers of a density gradient centrifugation column to evaluate the nuclear protein content of the sperm population selected. Protamine levels were measured using acid gel electrophoresis and immunofluorescence, and the percentage of cells retaining histones was evaluated using aniline staining and immunofluorescence. Our data suggests that there is an inverse correlation between P1/P2 ratio and the level of histone expression in the different layers of the density gradient. Paradoxically, the 90% layer had a lower P1/P2 ratio, which corresponded with an increase in histone expression. It is concluded that although the sperm population selected in the 90% layer of the density gradient columns had a lower P1/P2 ratio, it was yet similar to the P1/P2 ratio observed in previously screened fertile donors.

  6. Cloud Structure of Galactic OB Cluster-forming Regions from Combining Ground- and Space-based Bolometric Observations

    NASA Astrophysics Data System (ADS)

    Lin, Yuxin; Liu, Hauyu Baobab; Li, Di; Zhang, Zhi-Yu; Ginsburg, Adam; Pineda, Jaime E.; Qian, Lei; Galván-Madrid, Roberto; McLeod, Anna Faye; Rosolowsky, Erik; Dale, James E.; Immer, Katharina; Koch, Eric; Longmore, Steve; Walker, Daniel; Testi, Leonardo

    2016-09-01

    We have developed an iterative procedure to systematically combine the millimeter and submillimeter images of OB cluster-forming molecular clouds, which were taken by ground-based (CSO, JCMT, APEX, and IRAM-30 m) and space telescopes (Herschel and Planck). For the seven luminous (L\\gt {10}6 L ⊙) Galactic OB cluster-forming molecular clouds selected for our analyses, namely W49A, W43-Main, W43-South, W33, G10.6-0.4, G10.2-0.3, and G10.3-0.1, we have performed single-component, modified blackbody fits to each pixel of the combined (sub)millimeter images, and the Herschel PACS and SPIRE images at shorter wavelengths. The ˜10″ resolution dust column density and temperature maps of these sources revealed dramatically different morphologies, indicating very different modes of OB cluster-formation, or parent molecular cloud structures in different evolutionary stages. The molecular clouds W49A, W33, and G10.6-0.4 show centrally concentrated massive molecular clumps that are connected with approximately radially orientated molecular gas filaments. The W43-Main and W43-South molecular cloud complexes, which are located at the intersection of the Galactic near 3 kpc (or Scutum) arm and the Galactic bar, show a widely scattered distribution of dense molecular clumps/cores over the observed ˜10 pc spatial scale. The relatively evolved sources G10.2-0.3 and G10.3-0.1 appear to be affected by stellar feedback, and show a complicated cloud morphology embedded with abundant dense molecular clumps/cores. We find that with the high angular resolution we achieved, our visual classification of cloud morphology can be linked to the systematically derived statistical quantities (I.e., the enclosed mass profile, the column density probability distribution function (N-PDF), the two-point correlation function of column density, and the probability distribution function of clump/core separations). In particular, the massive molecular gas clumps located at the center of G10.6-0.4 and W49A, which contribute to a considerable fraction of their overall cloud masses, may be special OB cluster-forming environments as a direct consequence of global cloud collapse. These centralized massive molecular gas clumps also uniquely occupy much higher column densities than what is determined by the overall fit of power-law N-PDF. We have made efforts to archive the derived statistical quantities of individual target sources, to permit comparisons with theoretical frameworks, numerical simulations, and other observations in the future.

  7. Deriving Surface NO2 Mixing Ratios from DISCOVER-AQ ACAM Observations: A Method to Assess Surface NO2 Spatial Variability

    NASA Astrophysics Data System (ADS)

    Silverman, M. L.; Szykman, J.; Chen, G.; Crawford, J. H.; Janz, S. J.; Kowalewski, M. G.; Lamsal, L. N.; Long, R.

    2015-12-01

    Studies have shown that satellite NO2 columns are closely related to ground level NO2 concentrations, particularly over polluted areas. This provides a means to assess surface level NO2 spatial variability over a broader area than what can be monitored from ground stations. The characterization of surface level NO2 variability is important to understand air quality in urban areas, emissions, health impacts, photochemistry, and to evaluate the performance of chemical transport models. Using data from the NASA DISCOVER-AQ campaign in Baltimore/Washington we calculate NO2 mixing ratios from the Airborne Compact Atmospheric Mapper (ACAM), through four different methods to derive surface concentration from column measurements. High spectral resolution lidar (HSRL) mixed layer heights, vertical P3B profiles, and CMAQ vertical profiles are used to scale ACAM vertical column densities. The derived NO2 mixing ratios are compared to EPA ground measurements taken at Padonia and Edgewood. We find similar results from scaling with HSRL mixed layer heights and normalized P3B vertical profiles. The HSRL mixed layer heights are then used to scale ACAM vertical column densities across the DISCOVER-AQ flight pattern to assess spatial variability of NO2 over the area. This work will help define the measurement requirements for future satellite instruments.

  8. Trend analysis of tropospheric NO2 column density over East Asia during 2000-2010: multi-satellite observations and model simulations with the updated REAS emission inventory

    NASA Astrophysics Data System (ADS)

    Itahashi, S.; Uno, I.; Irie, H.; Kurokawa, J.; Ohara, T.

    2013-04-01

    Satellite observations of the tropospheric NO2 vertical column density (VCD) are closely correlated to surface NOx emissions and can thus be used to estimate the latter. In this study, the NO2 VCDs simulated by a regional chemical transport model with data from the updated Regional Emission inventory in ASia (REAS) version 2.1 were validated by comparison with multi-satellite observations (GOME, SCIAMACHY, GOME-2, and OMI) between 2000 and 2010. Rapid growth in NO2 VCD driven by expansion of anthropogenic NOx emissions was revealed above the central eastern China region, except during the economic downturn. In contrast, slightly decreasing trends were captured above Japan. The modeled NO2 VCDs using the updated REAS emissions reasonably reproduced the annual trends observed by multi-satellites, suggesting that the NOx emissions growth rate estimated by the updated inventory is robust. On the basis of the close linear relationship of modeled NO2 VCD, observed NO2 VCD, and anthropogenic NOx emissions, the NOx emissions in 2009 and 2010 were estimated. It was estimated that the NOx emissions from anthropogenic sources in China beyond doubled between 2000 and 2010, reflecting the strong growth of anthropogenic emissions in China with the rapid recovery from the economic downturn during late 2008 and mid-2009.

  9. Early-stage young stellar objects in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Oliveira, J. M.; van Loon, J. Th.; Sloan, G. C.; Sewiło, M.; Kraemer, K. E.; Wood, P. R.; Indebetouw, R.; Filipović, M. D.; Crawford, E. J.; Wong, G. F.; Hora, J. L.; Meixner, M.; Robitaille, T. P.; Shiao, B.; Simon, J. D.

    2013-02-01

    We present new observations of 34 young stellar object (YSO) candidates in the Small Magellanic Cloud (SMC). The photometric selection required sources to be bright at 24 and 70 μm (to exclude evolved stars and galaxies). The anchor of the analysis is a set of Spitzer Infrared Spectrograph (IRS) spectra, supplemented by ground-based 3-5 μm spectra, Spitzer Infrared Array Camera and Multiband Imaging Photometer for Spitzer photometry, near-infrared (IR) imaging and photometry, optical spectroscopy and radio data. The sources' spectral energy distributions and spectral indices are consistent with embedded YSOs; prominent silicate absorption is observed in the spectra of at least 10 sources, silicate emission is observed towards four sources. Polycyclic aromatic hydrocarbon (PAH) emission is detected towards all but two sources. Based on band ratios (in particular the strength of the 11.3-μm and the weakness of the 8.6-μm bands) PAH emission towards SMC YSOs is dominated by predominantly small neutral grains. Ice absorption is observed towards 14 sources in the SMC. The comparison of H2O and CO2 ice column densities for SMC, Large Magellanic Cloud and Galactic samples suggests that there is a significant H2O column density threshold for the detection of CO2 ice. This supports the scenario proposed by Oliveira et al., where the reduced shielding in metal-poor environments depletes the H2O column density in the outer regions of the YSO envelopes. No CO ice is detected towards the SMC sources. Emission due to pure rotational 0-0 transitions of molecular hydrogen is detected towards the majority of SMC sources, allowing us to estimate rotational temperatures and H2 column densities. All but one source are spectroscopically confirmed as SMC YSOs. Based on the presence of ice absorption, silicate emission or absorption and PAH emission, the sources are classified and placed in an evolutionary sequence. Of the 33 YSOs identified in the SMC, 30 sources populate different stages of massive stellar evolution. The presence of ice- and/or silicate-absorption features indicates sources in the early embedded stages; as a source evolves, a compact H ii region starts to emerge, and at the later stages the source's IR spectrum is completely dominated by PAH and fine-structure emission. The remaining three sources are classified as intermediate-mass YSOs with a thick dusty disc and a tenuous envelope still present. We propose one of the SMC sources is a D-type symbiotic system, based on the presence of Raman, H and He emission lines in the optical spectrum, and silicate emission in the IRS spectrum. This would be the first dust-rich symbiotic system identified in the SMC.

  10. Surface Snow Density of East Antarctica Derived from In-Situ Observations

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Zhang, S.; Du, W.; Chen, J.; Xie, H.; Tong, X.; Li, R.

    2018-04-01

    Models based on physical principles or semi-empirical parameterizations have used to compute the firn density, which is essential for the study of surface processes in the Antarctic ice sheet. However, parameterization of surface snow density is often challenged by the description of detailed local characterization. In this study we propose to generate a surface density map for East Antarctica from all the filed observations that are available. Considering that the observations are non-uniformly distributed around East Antarctica, obtained by different methods, and temporally inhomogeneous, the field observations are used to establish an initial density map with a grid size of 30 × 30 km2 in which the observations are averaged at a temporal scale of five years. We then construct an observation matrix with its columns as the map grids and rows as the temporal scale. If a site has an unknown density value for a period, we will set it to 0 in the matrix. In order to construct the main spatial and temple information of surface snow density matrix we adopt Empirical Orthogonal Function (EOF) method to decompose the observation matrix and only take first several lower-order modes, because these modes already contain most information of the observation matrix. However, there are a lot of zeros in the matrix and we solve it by using matrix completion algorithm, and then we derive the time series of surface snow density at each observation site. Finally, we can obtain the surface snow density by multiplying the modes interpolated by kriging with the corresponding amplitude of the modes. Comparative analysis have done between our surface snow density map and model results. The above details will be introduced in the paper.

  11. Occurrence of turbulent flow conditions in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2014-09-26

    Having similar densities as liquids but with viscosities up to 20 times lower (higher diffusion coefficients), supercritical CO2 is the ideal (co-)solvent for fast and/or highly efficient separations without mass-transfer limitations or excessive column pressure drops. Whereas in liquid chromatography the flow remains laminar in both the packed bed and tubing, except in extreme cases (e.g. in a 75 μm tubing, pure acetonitrile at 5 ml/min), a supercritical fluid can experience a transition from laminar to turbulent flow in more typical operation modes. Due to the significant lower viscosity, this transition for example already occurs at 1.3 ml/min for neat CO2 when using connection tubing with an ID of 127 μm. By calculating the Darcy friction factor, which can be plotted versus the Reynolds number in a so-called Moody chart, typically used in fluid dynamics, higher values are found for stainless steel than PEEK tubing, in agreement with their expected higher surface roughness. As a result turbulent effects are more pronounced when using stainless steel tubing. The higher than expected extra-column pressure drop limits the kinetic performance of supercritical fluid chromatography and complicates the optimization of tubing ID, which is based on a trade-off between extra-column band broadening and pressure drop. One of the most important practical consequences is the non-linear increase in extra-column pressure drop over the tubing downstream of the column which leads to an unexpected increase in average column pressure and mobile phase density, and thus decrease in retention. For close eluting components with a significantly different dependence of retention on density, the selectivity can significantly be affected by this increase in average pressure. In addition, the occurrence of turbulent flow is also observed in the detector cell and connection tubing. This results in a noise-increase by a factor of four when going from laminar to turbulent flow (e.g. going from 0.5 to 2.5 ml/min for neat CO2). Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Non-Axisymmetric Line Driven Disc Winds II - Full Velocity Gradient

    NASA Astrophysics Data System (ADS)

    Dyda, Sergei; Proga, Daniel

    2018-05-01

    We study non-axisymetric features of 3D line driven winds in the Sobolev approximation, where the optical depth is calculated using the full velocity gradient. We find that non-axisymmetric density features, so called clumps, form primarily at the base of the wind on super-Sobolev length scales. The density of clumps differs by a factor of ˜3 from the azimuthal average, the magnitude of their velocity dispersion is comparable to the flow velocity and they produce ˜20% variations in the column density. Clumps may be observable because differences in density produce enhancements in emission and absorption profiles or through their velocity dispersion which enhances line broadening.

  13. Trans-ethyl methyl ether, the struggle for the detection of a complex molecule in hot cores

    NASA Astrophysics Data System (ADS)

    Fuchs, G. W.; Fuchs, U.; Giesen, T. F.; Wyrowski, F.

    Many large and complex molecules of prebiotic importance have been found as constituents of interstellar clouds but their detection remains difficult and sometimes doubtful (Snyder et al. 2005). The complex spectrum of trans-ethyl methyl ether (EME) has been investigated in the laboratory (Fuchs et al. 2003) up to 350 GHz and is now known with high frequency precision, see Figure 1. In this work we present an extensive search for EME towards G34.26, NGC6334(I), Orion KL, SgrB2(N) and W51e2 in the 1 to 3 mm wavelength region. These sources have previously been shown to have a rich chemistry of complex molecules. The IRAM 30m telescope at Pico Veleta, Spain and the SEST 15m radio telescope in La Silla, Chile have been used for the observations. We looked at 5 - 11 frequency bands where EME has strong transitions. All sources were examined using long integration times up to 220 min (on+off), elevations greater 40◦ and under good weather conditions. For our analysis of the data we used the method of rotational-temperature-diagrams but also the myXCLASS (written by Peter Schilke) extension program to the GILDAS (Grenoble Image and Line Data Analysis Software) software which enabled us to simulate spectra of several molecules including their linewidth and intensities at the same time, see Figure 2. With this program a consistency check of molecular abundances and overall composition is possible even in dense spectra with many overlapping lines. The effect of the source size on the measured intensities has been considered and cross checks with other important molecules such as methanol, ethanol and di-methyl ether have been performed. Charnley et al. (2001) assigned one line in W51 e1/e2 and one line in Orion KL at 160.1 GHz, as well as a line in SgrB2(N) at 79.6 GHz to trans-ethyl methyl ether. From their isolated measurements, the column density of EME was estimated to be in the range 1014-1015 cm-2 in Sgr B2(N) corresponding to a fractional abundance of 10-10-10-9 and in the W51 region they estimate a fractional abundance of 10-10. However, our observations cannot confirm the tentative detection of EME in Orion KL within their given column density limits. There is evidence for the existence of the trans-ethyl methyl ether towards W51e2 with a column density of N=2×1014 cm-2 based on the detection of 14 lines which coincide with EME transition frequencies. We present new upper limits of 7-8×1013 cm-2 for the column densities of EME toward Orion KL, G34.26, NGC6334(I) and estimate the column density of SgrB2(N) to be of the same order. The W51e2 observations are discussed in more detail.

  14. Physical conditions in molecular clouds

    NASA Technical Reports Server (NTRS)

    Evans, Neal J., II

    1989-01-01

    Recent developments have complicated the picture of the physical conditions in molecular clouds. The discoveries of widespread emission from high-J lines of CD and 12-micron IRAS emission have revealed the presence of considerably hotter gas and dust near the surfaces of molecular clouds. These components can complicate interpretation of the bulk of the cloud gas. Commonly assumed relations between column density or mean density and cloud size are called into question by conflicting results and by consideration of selection effects. Analysis of density and density structure through molecular excitation has shown that very high densities exist in star formation regions, but unresolved structure and possible chemical effects complicate the interpretation. High resolution far-IR and submillimeter observations offer a complementary approach and are beginning to test theoretical predictions of density gradients in clouds.

  15. A study of extreme-ultraviolet emission from cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Polidan, Ronald S.; Mauche, Christopher W.; Wade, Richard A.

    1990-01-01

    Voyager far- and extreme UV spectrophotometric observations of five cataclysmic variables (the dwarf novae SS Cyg and VW Hyi and the novalike variables V3885 Sgr, RW Sex, and IX Vel) are combined with neutral hydrogen column densities derived from the curve-of-growth analysis of interstellar absorption lines in high-resolution IUE spectra to place upper limits on the emitted flux in the 600-700 A EUV band. The Voyager observations of VW Hyi were obtained during both normal and superoutbursts. Detailed accretion disk model calculations show that most of the 600-700 A flux in these systems should originate in the inner accretion disk rather than in the boundary layer. For VW Hyi, the low neutral hydrogen column and excellent Voyager superoutburst data place the observed upper limit to the 600-700 A flux well below the expected EUV flux from the model calculations.

  16. Boundary layers in cataclysmic variables: The HEAO-1 X-ray constraints

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.

    1983-01-01

    The predictions of the boundary layer model for the X-ray emission from novae are summarized. A discrepancy between observations and theory in the X-ray observations is found. Constraints on the nature of the boundary layers in novae, based on the lack of detections of novae in the HEAO-1 soft X-ray survey are provided. Temperature and column densities for optically thick boundary layers in novae are estimated.

  17. Correlations in the three-dimensional Lyman-alpha forest contaminated by high column density absorbers

    NASA Astrophysics Data System (ADS)

    Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris

    2018-05-01

    Correlations measured in three dimensions in the Lyman-alpha forest are contaminated by the presence of the damping wings of high column density (HCD) absorbing systems of neutral hydrogen (H I; having column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}), which extend significantly beyond the redshift-space location of the absorber. We measure this effect as a function of the column density of the HCD absorbers and redshift by measuring three-dimensional (3D) flux power spectra in cosmological hydrodynamical simulations from the Illustris project. Survey pipelines exclude regions containing the largest damping wings. We find that, even after this procedure, there is a scale-dependent correction to the 3D Lyman-alpha forest flux power spectrum from residual contamination. We model this residual using a simple physical model of the HCD absorbers as linearly biased tracers of the matter density distribution, convolved with their Voigt profiles and integrated over the column density distribution function. We recommend the use of this model over existing models used in data analysis, which approximate the damping wings as top-hats and so miss shape information in the extended wings. The simple `linear Voigt model' is statistically consistent with our simulation results for a mock residual contamination up to small scales (|k| < 1 h Mpc^{-1}). It does not account for the effect of the highest column density absorbers on the smallest scales (e.g. |k| > 0.4 h Mpc^{-1} for small damped Lyman-alpha absorbers; HCD absorbers with N(H I) ˜ 10^{21} atoms cm^{-2}). However, these systems are in any case preferentially removed from survey data. Our model is appropriate for an accurate analysis of the baryon acoustic oscillations feature. It is additionally essential for reconstructing the full shape of the 3D flux power spectrum.

  18. Extreme degree of ionization in homogenous micro-capillary plasma columns heated by ultrafast current pulses.

    PubMed

    Avaria, G; Grisham, M; Li, J; Tomasel, F G; Shlyaptsev, V N; Busquet, M; Woolston, M; Rocca, J J

    2015-03-06

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520-μm-diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3  GA cm^{-2} greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe^{28+}, while xenon impurities in hydrogen discharges reach Xe^{30+}. The unique characteristics of these hot, ∼300:1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

  19. NuSTAR Observations of Water Megamaser AGN

    NASA Technical Reports Server (NTRS)

    Masini, A.; Comastri, A.; Balokvic, M.; Zaw, I.; Puccetti, S.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Zhang, William W.

    2016-01-01

    Aims. We study the connection between the masing disk and obscuring torus in Seyfert 2 galaxies. Methods. We present a uniform X-ray spectral analysis of the high energy properties of 14 nearby megamaser active galactic nuclei observed by NuSTAR. We use a simple analytical model to localize the maser disk and understand its connection with the torus by combining NuSTAR spectral parameters with the available physical quantities from VLBI mapping.Results. Most of the sources that we analyzed are heavily obscured, showing a column density in excess of approx.10(exp 23) cm(exp -2); in particular, 79% are Compton-thick [NH is greater than 1.5 x 10(exp 24) cm(exp -2)]. When using column densities measured by NuSTAR with the assumption that the torus is the extension of the maser disk, and further assuming a reasonable density profile, we can predict the torus dimensions. They are found to be consistent with mid-IR interferometry parsec-scale observations of Circinus and NGC 1068. In this picture, the maser disk is intimately connected to the inner part of the torus. It is probably made of a large number of molecular clouds that connect the torus and the outer part of the accretion disk, giving rise to a thin disk rotating in most cases in Keplerian or sub-Keplerian motion. This toy model explains the established close connection between water megamaser emission and nuclear obscuration as a geometric effect.

  20. VizieR Online Data Catalog: MSX high-contrast IRDCs with NH3 (Chira+,

    NASA Astrophysics Data System (ADS)

    Chira, R.-A.; Beuther, H.; Linz, H.; Walmsley, C. M.; Menten, K. M.; Bonfman, L.

    2013-02-01

    Based on MSX data, a catalogue of more than 10,000 candidate IRDCs was compiled. From this catalogue we selected a complete sample of northern hemisphere high-contrast IRDCs with Galactic longitudes >=19.27° (and nine exceptions with Galactic longitudes <19°). The sample was observed in ammonia (1,1) and (2,2) inversion transitions with the Effelsberg 100-m telescope. NH3 parameters are derived for 109 sample sources. For each source galactic coordinates, brightness temperatures, line width FWHMs and optical depths of (1,1) and (2,2) inversion lines and LSR velocity of (1,1) inversion line are given. Furthermore, we derived the rotation and kinetic temperatures, ammonia column densities, kinematic distances and virial masses using the NH3 data. In addition, notes about whether the sources being associated with Spitzer sources or not are given. Using ATLASGAL data, the 870 micron flux densities gas masses, virial parameters, H2 column densities and NH3 abundances are given. In addition, we listed the sample sources where no ammonia which did not fulfil our selection criteria. (4 data files).

  1. Interstellar absorption along the line of sight to Sigma Scorpii using Copernicus observations

    NASA Technical Reports Server (NTRS)

    Allen, M. M.; Snow, T. P.; Jenkins, E. B.

    1990-01-01

    From Copernicus observations of Sigma Sco, 57 individual lines of 11 elements plus the molecular species H2 and CO were identified. By using a profile-fitting technique, rather than curves of growth, it was possible to obtain column densities and Doppler b values for up to four separate components along this line of sight. Electron density in the major H I component was derived from the photoionization equilibrium of sulfur, obtaining, n(e) of about 0.3/cu cm. The neutral hydrogen density in the same component was also derived using fine-structure excitation of O I. An H II component is also present in which the electron density was n(e) about 20/cu cm. As a by-product of this analysis, previously undetermined oscillator strengths for two Mn II lines were obtained: for 1162.-017 A, f about 0.023 and for 1164.211 A, f about 0.0086.

  2. A study of the region of massive star formation L379IRS1 in radio lines of methanol and other molecules

    NASA Astrophysics Data System (ADS)

    Kalenskii, S. V.; Shchurov, M. A.

    2016-04-01

    The results of spectral observations of the region of massive star formation L379IRS1 (IRAS18265-1517) are presented. The observations were carried out with the 30-m Pico Veleta radio telescope (Spain) at seven frequencies in the 1-mm, 2-mm, and 3-mm wavelength bands. Lines of 24 molecules were detected, from simple diatomic or triatomic species to complex eight- or nine-atom compounds such as CH3OCHO or CH3OCH3. Rotation diagrams constructed from methanol andmethyl cyanide lines were used to determine the temperature of the quiescent gas in this region, which is about 40-50 K. In addition to this warm gas, there is a hot component that is revealed through high-energy lines of methanol and methyl cyanide, molecular lines arising in hot regions, and the presence of H2O masers and Class II methanol masers at 6.7 GHz, which are also related to hot gas. One of the hot regions is probably a compact hot core, which is located near the southern submillimeter peak and is related to a group of methanol masers at 6.7 GHz. High-excitation lines at other positions may be associated with other hot cores or hot post-shock gas in the lobes of bipolar outflows. The rotation diagrams can be use to determine the column densities and abundances of methanol (10-9) and methyl cyanide (about 10-11) in the quiescent gas. The column densities of A- and E-methanol in L379IRS1 are essentually the same. The column densities of other observedmolecules were calculated assuming that the ratios of the molecular level abundances correspond to a temperature of 40 K. The molecular composition of the quiescent gas is close to that in another region of massive star formation, DR21(OH). The only appreciable difference is that the column density of SO2 in L379IRS1 is at least a factor of 20 lower than the value in DR21(OH). The SO2/CS and SO2/OCS abundance ratios, which can be used as chemical clocks, are lower in L379IRS1 than in DR21(OH), suggesting that L379IRS1 is probably younger than DR21(OH).

  3. Atomic Oxygen Abundance in Molecular Clouds: Absorption Toward Sagittarius B2

    NASA Technical Reports Server (NTRS)

    Lis, D. C.; Keene, Jocelyn; Phillips, T. G.; Schilke, P.; Werner, M. W.; Zmuidzinas, J.

    2001-01-01

    We have obtained high-resolution (approximately 35 km/s) spectra toward the molecular cloud Sgr B2 at 63 micrometers, the wavelength of the ground-state fine-structure line of atomic oxygen (O(I)), using the ISO-LWS instrument. Four separate velocity components are seen in the deconvolved spectrum, in absorption against the dust continuum emission of Sgr B2. Three of these components, corresponding to foreground clouds, are used to study the O(I) content of the cool molecular gas along the line of sight. In principle, the atomic oxygen that produces a particular velocity component could exist in any, or all, of three physically distinct regions: inside a dense molecular cloud, in the UV illuminated surface layer (PDR) of a cloud, and in an atomic (H(I)) gas halo. For each of the three foreground clouds, we estimate, and subtract from the observed O(I) column density, the oxygen content of the H(I) halo gas, by scaling from a published high-resolution 21 cm spectrum. We find that the remaining O(I) column density is correlated with the observed (13)CO column density. From the slope of this correlation, an average [O(I)]/[(13)CO] ratio of 270 +/- 120 (3-sigma) is derived, which corresponds to [O(I)]/[(13)CO] = 9 for a CO to (13)CO abundance ratio of 30. Assuming a (13)CO abundance of 1x10(exp -6) with respect to H nuclei, we derive an atomic oxygen abundance of 2.7x10(exp -4) in the dense gas phase, corresponding to a 15% oxygen depletion compared to the diffuse ISM in our Galactic neighborhood. The presence of multiple, spectrally resolved velocity components in the Sgr B2 absorption spectrum allows, for the first time, a direct determination of the PDR contribution to the O(I) column density. The PDR regions should contain O(I) but not (13)CO, and would thus be expected to produce an offset in the O(I)-(13)CO correlation. Our data do not show such an offset, suggesting that within our beam O(I) is spatially coexistent with the molecular gas, as traced by (13)CO. This may be a result of the inhomogeneous nature of the clouds.

  4. A survey of local interstellar hydrogen from OAO-2 observations of Lyman alpha absorption

    NASA Technical Reports Server (NTRS)

    Savage, B. D.; Jenkins, E. B.

    1972-01-01

    The Wisconsin far ultraviolet spectrometer aboard OAO-2 observed the wavelength region near 1216 A for 69 stars of spectral type B2 or earlier. From the strength of the observed interstellar L sub alpha absorption, atomic hydrogen column densities were derived over distances averaging 300 pc away from the sun. The OAO data were compared to synthetic ultraviolet spectra, originally derived from earlier higher resolution rocket observations, which were computer processed to simulate the effects of absorption by different amounts of hydrogen followed by the instrumental blending.

  5. Stellar wind measurements for Colliding Wind Binaries using X-ray observations

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko

    2017-11-01

    We report the results of the stellar wind measurement for two colliding wind binaries. The X-ray spectrum is the best measurement tool for the hot postshock gas. By monitoring the changing of the the X-ray luminosity and column density along with the orbital phases, we derive the mass-loss rates of these stars.

  6. Damped and sub-damped Lyman-α absorbers in z > 4 QSOs

    NASA Astrophysics Data System (ADS)

    Guimarães, R.; Petitjean, P.; de Carvalho, R. R.; Djorgovski, S. G.; Noterdaeme, P.; Castro, S.; Poppe, P. C. Da R.; Aghaee, A.

    2009-12-01

    We present the results of a survey of damped (DLA, log~N(H i)>20.3) and sub-damped Lyman-α systems (19.5 2.55 along the lines-of-sight to 77 quasars with emission redshifts in the range 419.5 were detected of which 40 systems are damped Lyman-α systems for an absorption length of Δ X = 378. About half of the lines of sight of this homogeneous survey have never been investigated for DLAs. We study the evolution with redshift of the cosmological density of the neutral gas and find, consistent with previous studies at similar resolution, that ΩDLA, H_I decreases at z>3.5. The overall cosmological evolution of Ω_HI shows a peak around this redshift. The H i column density distribution for log N(H i)≥20.3 is fitted, consistent with previous surveys, with a single power-law of index α ˜ -1.8 ±0.25. This power-law overpredicts data at the high-end and a second, much steeper, power-law (or a gamma function) is needed. There is a flattening of the function at lower H i column densities with an index of α ˜ -1.4 for the column density range log N(H i)=19.5-21. The fraction of H i mass in sub-DLAs is of the order of 30%. The H i column density distribution does not evolve strongly from z˜ 2.5 to z˜ 4.5. The observations reported here were obtained with the W. M. Keck Observatory, which is operated by the California Association for Research in Astronomy, a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. Tables 1, 2 and Appendices are only available in electronic form at http://www.aanda.org

  7. CO-dark molecular gas at high redshift: very large H2 content and high pressure in a low-metallicity damped Lyman alpha system

    NASA Astrophysics Data System (ADS)

    Balashev, S. A.; Noterdaeme, P.; Rahmani, H.; Klimenko, V. V.; Ledoux, C.; Petitjean, P.; Srianand, R.; Ivanchik, A. V.; Varshalovich, D. A.

    2017-09-01

    We present a detailed analysis of an H2-rich, extremely strong intervening damped Ly α absorption system (DLA) at zabs = 2.786 towards the quasar J 0843+0221, observed with the Ultraviolet and Visual Echelle Spectrograph on the Very Large Telescope. The total column density of molecular (resp. atomic) hydrogen is log N(H2) = 21.21 ± 0.02 (resp. log N(H I) = 21.82 ± 0.11), making it to be the first case in quasar absorption line studies with H2 column density as high as what is seen in 13CO-selected clouds in the Milky Way. We find that this system has one of the lowest metallicity detected among H2-bearing DLAs, with [Zn/H] = -1.52^{+0.08}_{-0.10}. This can be the reason for the marked differences compared to systems with similar H2 column densities in the local Universe: (I) the kinetic temperature, T ˜ 120 K, derived from the J = 0, 1 H2 rotational levels is at least twice higher than expected; (II) there is little dust extinction with AV < 0.1; (III) no CO molecules are detected, putting a constraint on the XCO factor XCO > 2 × 1023 cm-2/(km s-1 K), in the very low metallicity gas. Low CO and high H2 contents indicate that this system represents 'CO-dark/faint' gas. We investigate the physical conditions in the H2-bearing gas using the fine-structure levels of C I, C II, Si II and the rotational levels of HD and H2. We find the number density to be about n ˜ 260-380 cm-3, implying a high thermal pressure of 3-5 × 104 cm-3 K. We further identify a trend of increasing pressure with increasing total hydrogen column density. This independently supports the suggestion that extremely strong DLAs (with log N(H) ˜22) probe high-z galaxies at low impact parameters.

  8. Observations of the minor species Al and Fe in Mercury's exosphere

    NASA Astrophysics Data System (ADS)

    Bida, Thomas A.; Killen, Rosemary M.

    2017-06-01

    We report here on the first observational evidence of Al and Fe in the exosphere of Mercury, based on measurements of resolved emission lines of these metals with Keck-1/HIRES. Al emission was observed on two separate runs, in 2008 and 2013, with tangent column densities of 3.1 ± 1.0 and 4.0 ± 1.5 × 107 Al atoms cm-2 at altitudes of 1185 and 1870 km (1.5 and 1.75 RM). The Al radiative intensity was seen to increase where the slit crossed the planetary penumbral shadow, and then decrease monotonically with altitude. Fe emission has been observed once, in 2009, indicating an extended source. We also present observed 3-σ Ca+ upper limits near Mercury's equatorial anti-solar limb, from which an abundance limit of 4.0 × 106 cm-2 at 1650 km altitude is derived for the Ca ion. A simple model for zenith column abundances of the neutral species yields 1.9-5.2 × 107 Al cm-2, and 8.2 × 108 Fe cm-2. The observations appear to be consistent with production of these species by impact vaporization, with a large fraction of the Al ejecta in molecular form, and that for Fe in mixed atomic and molecular forms. The scale height of the Al gas is consistent with a kinetic temperature of 6100-8000 K. The apparent high temperature and low density of the Al gas would suggest that it may be produced by dissociation of molecules.

  9. Experimental investigation on temperature distribution of foamed concrete filled steel tube column under standard fire

    NASA Astrophysics Data System (ADS)

    Kado, B.; Mohammad, S.; Lee, Y. H.; Shek, P. N.; Kadir, M. A. A.

    2018-04-01

    Standard fire test was carried out on 3 hollow steel tube and 6 foamed concrete filled steel tube columns. Temperature distribution on the columns was investigated. 1500 kg/m3 and 1800 kg/m3 foamed concrete density at 15%, 20% and 25% load level are the parameters considered. The columns investigated were 2400 mm long, 139.7 mm outer diameter and 6 mm steel tube thickness. The result shows that foamed concrete filled steel tube columns has the highest fire resistance of 43 minutes at 15% load level and low critical temperature of 671 ºC at 25% load level using 1500 kg/m3 foamed concrete density. Fire resistance of foamed concrete filled column increases with lower foamed concrete strength. Foamed concrete can be used to provide more fire resistance to hollow steel column or to replace normal weight concrete in concrete filled columns. Since filling hollow steel with foamed concrete produce column with high fire resistance than unfilled hollow steel column. Therefore normal weight concrete can be substituted with foamed concrete in concrete filled column, it will reduces the self-weight of the structure because of its light weight at the same time providing the desired fire resistance.

  10. Constraining the H2 column density distribution at z ˜ 3 from composite DLA spectra

    NASA Astrophysics Data System (ADS)

    Balashev, S. A.; Noterdaeme, P.

    2018-07-01

    We present the detection of the average H2 absorption signal in the overall population of neutral gas absorption systems at z˜ 3 using composite absorption spectra built from the Sloan Digital Sky Survey-III damped Lyman α catalogue. We present a new technique to directly measure the H2 column density distribution function f_H_2(N) from the average H2 absorption signal. Assuming a power-law column density distribution, we obtain a slope β = -1.29 ± 0.06(stat) ± 0.10 (sys) and an incidence rate of strong H2 absorptions [with N(H2) ≳ 1018 cm-2] to be 4.0 ± 0.5(stat) ± 1.0 (sys) per cent in H I absorption systems with N(H I) ≥1020 cm-2. Assuming the same inflexion point where f_H_2(N) steepens as at z = 0, we estimate that the cosmological density of H2 in the column density range log N(H_2) (cm^{-2})= 18{-}22 is {˜ } 15 per cent of the total. We find one order of magnitude higher H2 incident rate in a sub-sample of extremely strong damped Lyman α absorption systems (DLAs) [log N(H I) (cm^{-2}) ≥ 21.7], which, together with the derived shape of f_H_2(N), suggests that the typical H I-H2 transition column density in DLAs is log N(H)(cm-2) ≳ 22.3 in agreement with theoretical expectations for the average (low) metallicity of DLAs at high-z.

  11. Constraining the H2 column density distribution at z˜3 from composite DLA spectra

    NASA Astrophysics Data System (ADS)

    Balashev, S. A.; Noterdaeme, P.

    2018-04-01

    We present the detection of the average H2 absorption signal in the overall population of neutral gas absorption systems at z ˜ 3 using composite absorption spectra built from the Sloan Digital Sky Survey-III damped Lyman-α catalogue. We present a new technique to directly measure the H2 column density distribution function f_H_2(N) from the average H2 absorption signal. Assuming a power-law column density distribution, we obtain a slope β = -1.29 ± 0.06(stat) ± 0.10 (sys) and an incidence rate of strong H2 absorptions (with N(H2) ≳ 1018 cm-2) to be 4.0 ± 0.5(stat) ± 1.0 (sys) % in H I absorption systems with N(H I)≥1020 cm-2. Assuming the same inflexion point where f_H_2(N) steepens as at z = 0, we estimate that the cosmological density of H2 in the column density range log N(H_2) (cm^{-2})= 18-22 is ˜15% of the total. We find one order of magnitude higher H2 incident rate in a sub-sample of extremely strong DLAs (log N(H I) (cm^{-2}) ≥ 21.7), which, together with the the derived shape of f_H_2(N), suggests that the typical H I-H2 transition column density in DLAs is log N(H)(cm-2) ≳ 22.3 in agreement with theoretical expectations for the average (low) metallicity of DLAs at high-z.

  12. Efficiency gain limits of the parallel segmented inlet and outlet flow concept in analytical liquid chromatography columns suffering from radial transcolumn packing density gradients.

    PubMed

    Broeckhoven, Ken; Desmet, Gert

    2012-10-05

    The maximal gain in efficiency that can be expected from the use of the segmented column end fittings that were recently introduced to alleviate the effect of transcolumn packing density gradients has been quantified and generalized using numerical computations of the band broadening process. It was found that, for an unretained compound in a column with a parabolic packing density gradient, the use of a segmented inlet or a segmented outlet allows to eliminate about 60-100% of the plate height contribution (H(tc)) originating from a parabolic transcolumn velocity gradient in a d(c)=4.6 mm column. In a d(c)=2.1 mm column, these percentages change from 10 to 100%. Using a combined segmented in- and outlet, H(tc) can be reduced by about 90-100% (d(c)=4.6 mm column) or 20-100% (d(c)=2.1 mm column). The strong variation of these gain percentages is due to fact that they depend very strongly on the column length and the flow rate. Dimensionless graphs have been established that allow to directly quantify the effect for each specific case. It was also found that, in agreement with one's physical intuition, trans-column velocity profiles that are more flat in the central region benefit more from the concept than sharp, parabolic-like profiles. The gain margins furthermore tend to become smaller with increasing retention and increasing diffusion coefficient. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. The structure of the Cepheus E protostellar outflow: The jet, the bowshock, and the cavity

    NASA Astrophysics Data System (ADS)

    Lefloch, B.; Gusdorf, A.; Codella, C.; Eislöffel, J.; Neri, R.; Gómez-Ruiz, A. I.; Güsten, R.; Leurini, S.; Risacher, C.; Benedettini, M.

    2015-09-01

    Context. Protostellar outflows are a crucial ingredient of the star-formation process. However, the physical conditions in the warm outflowing gas are still poorly known. Aims: We present a multi-transition, high spectral resolution CO study of the outflow of the intermediate-mass Class 0 protostar Cep E-mm. The goal is to determine the structure of the outflow and to constrain the physical conditions of the various components in order to understand the origin of the mass-loss phenomenon. Methods: We have observed the J = 12-11, J = 13-12, and J = 16-15 CO lines at high spectral resolution with SOFIA/GREAT and the J = 5-4, J = 9-8, and J = 14-13 CO lines with HIFI/Herschel towards the position of the terminal bowshock HH377 in the southern outflow lobe. These observations were complemented with maps of CO transitions obtained with the IRAM 30 m telescope (J = 1-0, 2-1), the Plateau de Bure interferometer (J = 2-1), and the James Clerk Maxwell Telescope (J = 3-2, 4-3). Results: We identify three main components in the protostellar outflow: the jet, the cavity, and the bowshock, with a typical size of 1.7″ × 21″, 4.5″, and 22″ × 10″, respectively. In the jet, the emission from the low-J CO lines is dominated by a gas layer at Tkin = 80-100 K, column density N(CO) = 9 × 1016 cm-2, and density n(H2) = (0.5-1) × 105 cm-3; the emission of the high-J CO lines arises from a warmer (Tkin = 400-750 K), denser (n(H2) = (0.5-1) × 106 cm-3), lower column density (N(CO) = 1.5 × 1016 cm-2) gas component. Similarly, in the outflow cavity, two components are detected: the emission of the low-J lines is dominated by a gas layer of column density N(CO) = 7 × 1017 cm-2 at Tkin = 55-85 K and density in the range (1-8) × 105 cm-3; the emission of the high-J lines is dominated by a hot, denser gas layer with Tkin = 500-1500K, n(H2) = (1-5) × 106 cm-3, and N(CO) = 6 × 1016 cm-2. A temperature gradient as a function of the velocity is found in the high-excitation gas component. In the terminal bowshock HH377, we detect gas of moderate excitation, with a temperature in the range Tkin ≈ 400-500 K, density n(H2) ≃ (1 -2) × 106 cm-3 and column density N(CO) = 1017 cm-2. The amounts of momentum carried away in the jet and in the entrained ambient medium are similar. Comparison with time-dependent shock models shows that the hot gas emission in the jet is well accounted for by a magnetized shock with an age of 220-740 yr propagating at 20-30 km s-1 in a medium of density n(H2) = (0.5-1) × 105 cm-3, consistent with that of the bulk material. Conclusions: The Cep E protostellar outflow appears to be a convincing case of jet bowshock driven outflow. Our observations trace the recent impact of the protostellar jet into the ambient cloud, produing a non-stationary magnetized shock, which drives the formation of an outflow cavity. Appendices are available in electronic form at http://www.aanda.org

  14. OMI satellite observed formaldehyde column from 2006 to 2015 over Xishuangbanna, southwest China, and validation using ground based zenith-sky DOAS.

    PubMed

    Liu, Rui; Feng, Tao; Wang, Shanshan; Shi, Chanzhen; Guo, Yanlin; Nan, Jialiang; Deng, Yun; Zhou, Bin

    2018-02-01

    Formaldehyde (HCHO) provides a proxy to reveal the isoprene and biogenic volatile organic compounds emission which plays important roles in atmospheric chemical process and climate change. The ground-based observation with zenith-sky DOAS is carried out in order to validate the HCHO columns from OMI. It has a good correlation of 0.71678 between the HCHO columns from two sources. Then we use the OMI HCHO columns from January 2006 to December 2015 to indicate the interannual variation and spatial distribution in Xishuangbanna. The HCHO concentration peaks appeared in March or April for each year significantly corresponding to the intensive fire counts at the same time, which illustrate that the high HCHO columns are strongly influenced by the biomass burning in spring. Temperature and precipitation are also the important influence factors in the seasonal variation when there is nearly no biomass burning. The spatial patterns over the past ten years strengthen the deduction from the temporal variation and show the relationship with land cover and land use, elevation and population density. It is concluded that the biogenic activity plays a role in controlling the background level of HCHO in Xishuangbanna, while biomass burning is the main driving force of high HCHO concentration. And forests are greater contributor to HCHO rather than rubber trees which cover over 20% of the land in the region. Moreover, uncertainties from HCHO slant column retrieval and AMFs calculation are discussed in detail. Copyright © 2017. Published by Elsevier B.V.

  15. Extreme ultraviolet observations of G191-B2B and the local interstellar medium with the Hopkins Ultraviolet Telescope

    NASA Technical Reports Server (NTRS)

    Kimble, Randy A.; Davidsen, Arthur F.; Blair, William P.; Bowers, Charles W.; Van Dyke Dixon, W.; Durrance, Samuel T.; Feldman, Paul D.; Ferguson, Henry C.; Henry, Richard C.; Kriss, Gerard A.

    1993-01-01

    During the Astro-l mission in 1990 December, the Hopkins Ultraviolet Telescope (HUT) was used to observe the extreme ultraviolet spectrum (415-912 A) of the hot DA white dwarf GI91-B2B. Absorption by neutral helium shortward of the 504 A He I absorption edge is clearly detected in the raw spectrum. Model fits to the observed spectrum require interstellar neutral helium and neutral hydrogen column densities of 1.45 +/- 0.065 x 10 exp 17/sq cm and 1.69 +/- 0.12 x 10 exp 18/sq cm, respectively. Comparison of the neutral columns yields a direct assessment of the ionization state of the local interstellar cloud surrounding the Sun. The neutral hydrogen to helium ratio of 11.6 +/- 1.0 observed by HUT strongly contradicts the widespread view that hydrogen is much more ionized than helium in the local interstellar medium, a view which has motivated some exotic theoretical explanations for the supposed high ionization.

  16. Linking Spectral Induced Polarization (SIP) and Subsurface Microbial Processes: Results from Sand Column Incubation Experiments.

    PubMed

    Mellage, Adrian; Smeaton, Christina M; Furman, Alex; Atekwana, Estella A; Rezanezhad, Fereidoun; Van Cappellen, Philippe

    2018-02-20

    Geophysical techniques, such as spectral induced polarization (SIP), offer potentially powerful approaches for in situ monitoring of subsurface biogeochemistry. The successful implementation of these techniques as monitoring tools for reactive transport phenomena, however, requires the deconvolution of multiple contributions to measured signals. Here, we present SIP spectra and complementary biogeochemical data obtained in saturated columns packed with alternating layers of ferrihydrite-coated and pure quartz sand, and inoculated with Shewanella oneidensis supplemented with lactate and nitrate. A biomass-explicit diffusion-reaction model is fitted to the experimental biogeochemical data. Overall, the results highlight that (1) the temporal response of the measured imaginary conductivity peaks parallels the microbial growth and decay dynamics in the columns, and (2) SIP is sensitive to changes in microbial abundance and cell surface charging properties, even at relatively low cell densities (<10 8 cells mL -1 ). Relaxation times (τ) derived using the Cole-Cole model vary with the dominant electron accepting process, nitrate or ferric iron reduction. The observed range of τ values, 0.012-0.107 s, yields effective polarization diameters in the range 1-3 μm, that is, 2 orders of magnitude smaller than the smallest quartz grains in the columns, suggesting that polarization of the bacterial cells controls the observed chargeability and relaxation dynamics in the experiments.

  17. Maximizing performance in supercritical fluid chromatography using low-density mobile phases.

    PubMed

    Gritti, Fabrice; Fogwill, Michael; Gilar, Martin; Jarrell, Joseph A

    2016-10-14

    The performance of a 3.0mm×150mm column packed with 1.8μm fully porous HSS-SB-C 18 particles was investigated in supercritical fluid chromatography (SFC) with low-density, highly expansible carbon dioxide. These conditions are selected for the analysis of semi-volatile compounds. Elevated temperatures (>100°C) were then combined with low column back pressures (<100bar). In this work, the inlet temperature of pure carbon dioxide was set at 107°C, the active back pressure regulator (ABPR) pressure was fixed at 100bar, and the flow rate was set at 2.1mL/min at 12°C (liquefied carbon dioxide) and at an inlet column pressure close to 300bar. Nine n-alkylbenzenes (from benzene to octadecylbenzene) were injected under linear (no sample overload) conditions. The severe steepness of the temperature gradients across the column diameter were predicted from a simplified heat transfer model. Such conditions dramatically lower the column performance by affecting the symmetry of the peak shape. In order to cope with this problem, three different approaches were experimentally tested. They include (1) the decoupling and the proper selection of the inlet eluent temperature with respect to the oven temperature, (2) the partial thermal insulation of the column using polyethylene aerogel, and (3) the application of a high vacuum (10 -5 Torr provided by a turbo-molecular pump) in a housing chamber surrounding the whole column body. The results reveal that (1) the column efficiency can be maximized by properly selecting the difference between the eluent and the oven temperatures, (2) the mere wrapping of the column with an excellent insulating material is insufficient to fully eliminate heat exchanges by conduction and the undesirable radial density gradients across the column i.d., and (3) the complete thermal insulation of the SFC column under high vacuum allows to maximize the column efficiency by maintaining the integrity of the peak shape. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, R.H.; Dingman, J.C.; Cronin, D.B.

    1998-05-01

    Very little information is available concerning the effect of acid gas loading on the physical properties of amine-treating solutions flowing through the absorption and regeneration columns used in gas processing. The densities and viscosities of partially carbonated monoethanolamine (MEA), diethanolamine (DEA), and N-methyldiethanolamine (MDEA) solutions were measured at 298 K. With increasing carbon dioxide loadings, significant increases in both density and viscosity were observed. These results were combined with literature data to produce correlations for alkanolamine solution density and viscosity as a function of amine concentration, carbon dioxide loading, and temperature. The resulting single-amine correlations were used to predict themore » densities and viscosities of DEA + MDEA and MEA + MDEA blends. Predictions are compared with data measured for these blends.« less

  19. Copernicus observations of interstellar matter toward the Orion OB1 association. I - Epsilon and Pi-5 Orionis

    NASA Technical Reports Server (NTRS)

    Shull, J. M.

    1979-01-01

    Copernicus UV data on interstellar lines toward Epsilon Ori and Pi-5 Ori are analyzed to study abundances and physical conditions in both low- and intermediate-velocity components. Clouds at -8 and +5 km/s (LSR) toward Epsilon Ori show typical depletions of Fe, Ti, Mg, and Si in dense (H number density about 100 per cu cm) gas. Low-column-density intermediate-velocity clouds toward both stars, with low densities (hydrogen number density less than 1 per cu cm) and near-cosmic Si abundances, are consistent with a widespread pattern of high-velocity gas over a 15-deg area surrounding the Orion region. Such activity may be attributed to the repeated action of supernovae in a patchy low-density region of interstellar gas.

  20. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  1. Links between soil properties and steady-state solute transport through cultivated topsoil at the field scale

    NASA Astrophysics Data System (ADS)

    Koestel, J. K.; Norgaard, T.; Luong, N. M.; Vendelboe, A. L.; Moldrup, P.; Jarvis, N. J.; Lamandé, M.; Iversen, B. V.; Wollesen de Jonge, L.

    2013-02-01

    It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables, and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field site in Silstrup (Denmark) at a sampling distance of approximately 15 m (with a few exceptions), covering an area of approximately 1 ha (60 m × 165 m). For 64 of the 65 investigated soil columns, we observed BTC shapes indicating a strong preferential transport. The strength of preferential transport was positively correlated with the bulk density and the degree of water saturation. The latter suggests that preferential macropore transport was the dominating transport process. Increased bulk densities were presumably related with a decrease in near-saturated hydraulic conductivities and as a consequence to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column scale have to be upscaled when applied to the field scale or larger.

  2. Evidence for Particle Inward Transport, Theoretical prediction and Importance for Reacting Plasmas

    NASA Astrophysics Data System (ADS)

    Sharky, N.; Coppi, B.; Mazzotta, C.

    2017-10-01

    The fact that particle transport cannot be described by a diffusion equation but by one that would include an inflow term, involving transport in the direction of the density gradient, was evidenced by experiments on magnetically confined plasmas in which the central plasma density was observed to increase as a result of gas injection at the edge of the plasma column. The validity of the proposed equation has been repeatedly confirmed over the years and limitations for the occurrence of particle inflow in a variety of experimental conditions have been uncovered. The direct experimental observation of the inward propagating particle cloud leading to a profile peaking is described and the effects of different degrees of density peaking in fusion burning plasmas are analyzed. Sponsored in part by the U.S. DoE.

  3. The temperature of large dust grains in molecular clouds

    NASA Technical Reports Server (NTRS)

    Clark, F. O.; Laureijs, R. J.; Prusti, T.

    1991-01-01

    The temperature of the large dust grains is calculated from three molecular clouds ranging in visual extinction from 2.5 to 8 mag, by comparing maps of either extinction derived from star counts or gas column density derived from molecular observations to I(100). Both techniques show the dust temperature declining into clouds. The two techniques do not agree in absolute scale.

  4. The X-ray monitoring of the long-period colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Sugawara, Y.; Maeda, Y.; Tsuboi, Y.

    2017-10-01

    We present the first results from XMM-Newton and Swift observations of two long-period colliding wind binaries WR19 and WR125 around periastron passages. Mass-loss is one of the most important and uncertain parameters in the evolution of a massive star. The X-ray spectrum off the colliding wind binary is the best measure of conditions in the hot postshock gas. By monitoring the changing of the X-ray luminosity and column density along with the orbital phases, we derive the mass-loss rates of these stars. It is known that WR19 (WC5+O9; P=10.1 yr) and WR125 (WC7+O9; P> 24.3 yr) are the dust-making binaries. Each periastron is expected to come in 2016-2017. Since 2016, we carry out on-going monitoring campaigns of WR19 and WR125 with XMM-Newton and Swift. On these observations, the X-rays from WR19 and WR125 were detected for the first time. In the case of WR19, as periastron approached, the column density increased, which indicates that the emission from the wind-wind collision plasma was absorbed by the dense Wolf-Rayet wind.

  5. The Properties of the local Interstellar Medium and the Interaction of the Stellar Winds of epsilon Indi and lambda Andromedae with the Interstellar Environment

    NASA Technical Reports Server (NTRS)

    Wood, Brian E.; Alexander, William R.; Linsky, Jeffrey L.

    1996-01-01

    We present new observations of the Ly alpha lines of Epsilon Indi (K5 5) and A Andromedae (G8 4-3 + ?) These data were obtained by the Goddard High Resolution Spectrograph (GHRS) on the Hubble Space Telescope. Analysis of the interstellar H 1 and D 1 absorption lines reveals that the velocities and temperatures inferred from the H 1 lines are inconsistent with the parameters inferred from the D 1 lines, unless the H 1 absorption is assumed to be produced by two absorption components. One absorption component is produced by interstellar material. For both lines of sight observed, the velocity of this component is consistent with the velocity predicted by the local flow vector. For the Epsilon Indi data, the large velocity separation between the stellar emission and the interstellar absorption allows us to measure the H 1 column density independent of the shape of the intrinsic stellar Ly alpha profile. This approach permits us to quote an accurate column density and to assess its uncertainty with far more confidence than in previous analyses, for which the errors were dominated by uncertainties in the assumed stellar profiles.

  6. Low-velocity Shocks Traced by Extended SiO Emission along the W43 Ridges: Witnessing the Formation of Young Massive Clusters

    NASA Astrophysics Data System (ADS)

    Nguyen-Lu'o'ng, Q.; Motte, F.; Carlhoff, P.; Louvet, F.; Lesaffre, P.; Schilke, P.; Hill, T.; Hennemann, M.; Gusdorf, A.; Didelon, P.; Schneider, N.; Bontemps, S.; Duarte-Cabral, A.; Menten, K. M.; Martin, P. G.; Wyrowski, F.; Bendo, G.; Roussel, H.; Bernard, J.-P.; Bronfman, L.; Henning, T.; Kramer, C.; Heitsch, F.

    2013-10-01

    The formation of high-mass stars is tightly linked to that of their parental clouds. Here, we focus on the high-density parts of W43, a molecular cloud undergoing an efficient event of star formation. Using a column density image derived from Herschel continuum maps, we identify two high-density filamentary clouds, called the W43-MM1 and W43-MM2 ridges. Both have gas masses of 2.1 × 104 M ⊙ and 3.5 × 104 M ⊙ above >10^{23}\\, {{cm}^{-2}} and within areas of ~6 and ~14 pc2, respectively. The W43-MM1 and W43-MM2 ridges are structures that are coherent in velocity and gravitationally bound, despite their large velocity dispersion measured by the N2H+ (1-0) lines of the W43-HERO IRAM large program. Another intriguing result is that these ridges harbor widespread (~10 pc2) bright SiO (2-1) emission, which we interpret to be the result of low-velocity shocks (<=10 km s-1). We measure a significant relationship between the SiO (2-1) luminosity and velocity extent and show that it distinguishes our observations from the high-velocity shocks associated with outflows. We use state-of-the-art shock models to demonstrate that a small percentage (10%) of Si atoms in low-velocity shocks, observed initially in gas phase or in grain mantles, can explain the observed SiO column density in the W43 ridges. The spatial and velocity overlaps between the ridges of high-density gas and the shocked SiO gas suggest that ridges could be forming via colliding flows driven by gravity and accompanied by low-velocity shocks. This mechanism may be the initial conditions for the formation of young massive clusters.

  7. STELLARATOR INJECTOR

    DOEpatents

    Post, R.F.

    1962-09-01

    A method and means are described for injecting energetic neutral atoms or molecular ions into dense magnetically collimated plasma columns of stellarators and the like in such a manner that the atoms or ions are able to significantly penetrate the column before being ionized by collision with the plasma constituent particles. Penetration of the plasma column by the neutral atoms or molecular ions is facilitated by superposition of two closely spaced magnetic mirrors on the plasma confinement field. The mirrors are moved apart to magnetically sweep plasma from a region between the mirrors and establish a relatively low plasma density therein. By virture of the low density, neutral atoms or molecular ions injected into the region significantly penetrate the plasma column before being ionized. Thereafter, the mirrors are diminished to permit the injected material to admix with the plasma in the remainder of the column. (AEC)

  8. The sodium and potassium atmosphere of the moon and its interaction with the surface

    NASA Technical Reports Server (NTRS)

    Sprague, A. L.; Kozlowski, R. W. H.; Hunten, D. M.; Wells, W. K.; Grosse, F. A.

    1992-01-01

    Results are presented from Apollo satellite observations (from May 1988 to July 1991) of sodium and potassium in the lunar atmosphere. The observations of Na and K show a wide range of scale heights, single-component temperatures, and surface number densities, while the column abundances remain within a factor of 3. The observed trends can be explained using a model of competing release mechanisms with different dependences on solar zenith angle and resulting two-component atmospheres. The theory is applied to the budget of atomic oxygen.

  9. Study of scattering cross section of a plasma column using Green's function volume integral equation method

    NASA Astrophysics Data System (ADS)

    Soltanmoradi, Elmira; Shokri, Babak

    2017-05-01

    In this article, the electromagnetic wave scattering from plasma columns with inhomogeneous electron density distribution is studied by the Green's function volume integral equation method. Due to the ready production of such plasmas in the laboratories and their practical application in various technological fields, this study tries to find the effects of plasma parameters such as the electron density, radius, and pressure on the scattering cross-section of a plasma column. Moreover, the incident wave frequency influence of the scattering pattern is demonstrated. Furthermore, the scattering cross-section of a plasma column with an inhomogeneous collision frequency profile is calculated and the effect of this inhomogeneity is discussed first in this article. These results are especially used to determine the appropriate conditions for radar cross-section reduction purposes. It is shown that the radar cross-section of a plasma column reduces more for a larger collision frequency, for a relatively lower plasma frequency, and also for a smaller radius. Furthermore, it is found that the effect of the electron density on the scattering cross-section is more obvious in comparison with the effect of other plasma parameters. Also, the plasma column with homogenous collision frequency can be used as a better shielding in contrast to its inhomogeneous counterpart.

  10. Herschel observations of extraordinary sources: Analysis of the HIFI 1.2 THz wide spectral survey toward orion KL. I. method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crockett, Nathan R.; Bergin, Edwin A.; Neill, Justin L.

    2014-06-01

    We present a comprehensive analysis of a broadband spectral line survey of the Orion Kleinmann-Low nebula (Orion KL), one of the most chemically rich regions in the Galaxy, using the HIFI instrument on board the Herschel Space Observatory. This survey spans a frequency range from 480 to 1907 GHz at a resolution of 1.1 MHz. These observations thus encompass the largest spectral coverage ever obtained toward this high-mass star-forming region in the submillimeter with high spectral resolution and include frequencies >1 THz, where the Earth's atmosphere prevents observations from the ground. In all, we detect emission from 39 molecules (79more » isotopologues). Combining this data set with ground-based millimeter spectroscopy obtained with the IRAM 30 m telescope, we model the molecular emission from the millimeter to the far-IR using the XCLASS program, which assumes local thermodynamic equilibrium (LTE). Several molecules are also modeled with the MADEX non-LTE code. Because of the wide frequency coverage, our models are constrained by transitions over an unprecedented range in excitation energy. A reduced χ{sup 2} analysis indicates that models for most species reproduce the observed emission well. In particular, most complex organics are well fit by LTE implying gas densities are high (>10{sup 6} cm{sup –3}) and excitation temperatures and column densities are well constrained. Molecular abundances are computed using H{sub 2} column densities also derived from the HIFI survey. The distribution of rotation temperatures, T {sub rot}, for molecules detected toward the hot core is significantly wider than the compact ridge, plateau, and extended ridge T {sub rot} distributions, indicating the hot core has the most complex thermal structure.« less

  11. Water-Column Stratification Observed along an AUV-Tracked Isotherm

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Messié, M.; Ryan, J. P.; Kieft, B.; Stanway, M. J.; Hobson, B.; O'Reilly, T. C.; Raanan, B. Y.; Smith, J. M.; Chavez, F.

    2016-02-01

    Studies of marine physical, chemical and microbiological processes benefit from observing in a Lagrangian frame of reference, i.e. drifting with ambient water. Because these processes can be organized relative to specific density or temperature ranges, maintaining observing platforms within targeted environmental ranges is an important observing strategy. We have developed a novel method to enable a Tethys-class long-range autonomous underwater vehicle (AUV) (which has a propeller and a buoyancy engine) to track a target isotherm in buoyancy-controlled drift mode. In this mode, the vehicle shuts off its propeller and autonomously detects the isotherm and stays with it by actively controlling the vehicle's buoyancy. In the June 2015 CANON (Controlled, Agile, and Novel Observing Network) Experiment in Monterey Bay, California, AUV Makai tracked a target isotherm for 13 hours to study the coastal upwelling system. The tracked isotherm started from 33 m depth, shoaled to 10 m, and then deepened to 29 m. The thickness of the tracked isotherm layer (within 0.3°C error from the target temperature) increased over this duration, reflecting weakened stratification around the isotherm. During Makai's isotherm tracking, another long-range AUV, Daphne, acoustically tracked Makai on a circular yo-yo trajectory, measuring water-column profiles in Makai's vicinity. A wave glider also acoustically tracked Makai, providing sea surface measurements on the track. The presented method is a new approach for studying water-column stratification, but requires careful analysis of the temporal and spatial variations mingled in the vehicles' measurements. We will present a synthesis of the water column's stratification in relation to the upwelling conditions, based on the in situ measurements by the mobile platforms, as well as remote sensing and mooring data.

  12. Effect of small-scale turbulence on feeding rates of larval cod and haddock in stratified water on Georges Bank

    NASA Astrophysics Data System (ADS)

    Gregory Lough, R.; Mountain, David G.

    A set of vertically stratified MOCNESS tows made on the southern flank of Georges Bank in spring 1981 and 1983 was analyzed to examine the relationship between larval cod and haddock feeding success and turbulent dissipation in a stratified water column. Observed feeding ratios (mean no. prey larval gut -1) for three size classes of larvae were compared with estimated ingestion rates using the Rothschild and Osborn ( Journal of Plankton Research, 10, 1988, 465-474) predator-prey encounter rate model. Simulation of contact rates requires parameter estimates of larval fish and their prey cruising speeds, density of prey, and turbulent velocity of the water column. Turbulent dissipation was estimated from a formulation by James ( Estuarine and Coastal Marine Science, 5, 1977, 339-353) incorporating both a wind a tidal component. Larval ingestion rates were based on swallowing probabilities derived from calm-water laboratory observations. Model-predicted turbulence profiles generally showed that dissipation rates were low to moderate (10 -11-10 -7 W kg -1). Turbulence was minimal at or below the pycnocline (≈ 25 m) with higher values(1-2 orders of magnitude) near the surface due to wind mixing and at depth due to shear in the tidal current near bottom. In a stratified water column during the day, first-feeding larvae (5-6 mm) were located mostly within or above the pycnocline coincident with their copepod prey (nauplii and copepodites). The 7-8 mm larvae were most abundant within the pycnocline, whereas the 9-10 mm larvae were found within and below the pycnocline. Feeding ratios were relatively low in early morning following darkness when the wind speed was low, but increased by a factor of 2-13 by noon and evening when the wind speed doubled. Comparison of depth-specific feeding ratios with estimated ingestion rates, derived from turbulence-affected contact rates, generally were reasonable after allowing for an average gut evacuation time (4 h), and in many cases the observed and estimated values had similar profiles. However, differences in vertical profiles may be attributed to differential digestion time, pursuit behavior affected by high turbulence, vertical migration of the larger larvae, an optimum light level for feeding, smaller-scale prey patchiness, and the gross estimates of turbulence. Response-surface estimation of averaged feeding ratios as a function of averaged prey density (0-50 m) with a minimum water-column turbulence value predicted that 5-6 mm larvae have a maximum feeding response at the highest prey densities (> 30 prey 1 -1) and lower turbulence estimates (<10 -10 W kg -1). The 7-8 mm and 9-10 mm larvae also have a maximum feeding response at high prey densities and low turbulence, but it extends to lower prey densities (> 10 prey 1 -1) as turbulence increases to intermidiate levels, clearly showing an interaction effect. In general, maximum feeding ratios occur at low to intermediate levels of turbulence where average prey density is greater than 10-20 prey 1 -1.

  13. Coupled Leidenfrost states as a monodisperse granular clock

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Yang, Mingcheng; Chen, Ke; Hou, Meiying; To, Kiwing

    2016-08-01

    Using an event-driven molecular dynamics simulation, we show that simple monodisperse granular beads confined in coupled columns may oscillate as a different type of granular clock. To trigger this oscillation, the system needs to be driven against gravity into a density-inverted state, with a high-density clustering phase supported from below by a gaslike low-density phase (Leidenfrost effect) in each column. Our analysis reveals that the density-inverted structure and the relaxation dynamics between the phases can amplify any small asymmetry between the columns, and lead to a giant oscillation. The oscillation occurs only for an intermediate range of the coupling strength, and the corresponding phase diagram can be universally described with a characteristic height of the density-inverted structure. A minimal two-phase model is proposed and a linear stability analysis shows that the triggering mechanism of the oscillation can be explained as a switchable two-parameter Andronov-Hopf bifurcation. Numerical solutions of the model also reproduce similar oscillatory dynamics to the simulation results.

  14. Saturn’s Ring Rain: Initial Estimates of Ring Mass Loss Rates

    NASA Astrophysics Data System (ADS)

    Moore, Luke; O'Donoghue, J.; Mueller-Wodarg, I.; Mendillo, M.

    2013-10-01

    We estimate rates of mass loss from Saturn’s rings based on ionospheric model reproductions of derived H3+ column densities. On 17 April 2011 over two hours of near-infrared spectral data were obtained of Saturn using the Near InfraRed Spectrograph (NIRSPEC) instrument on the 10-m Keck II telescope. The intensity of two bright H3+ rotational-vibrational emission lines was visible from nearly pole to pole, allowing low-latitude ionospheric emissions to be studied for the first time, and revealing significant latitudinal structure, with local extrema in one hemisphere being mirrored at magnetically conjugate latitudes in the opposite hemisphere. Even more striking, those minima and maxima mapped to latitudes of increased or increased density in Saturn’s rings, implying a direct ring-atmosphere connection in which charged water group particles from the rings are guided by magnetic field lines as they “rain” down upon the atmosphere. Water products act to quench the local ionosphere, and therefore modify the observed H3+ densities. Using the Saturn Thermosphere Ionosphere Model (STIM), a 3-D model of Saturn’s upper atmosphere, we derive the rates of water influx required from the rings in order to reproduce the observed H3+ column densities. As a unique pair of conjugate latitudes map to a specific radial distance in the ring plane, the derived water influxes can equivalently be described as rates of ring mass erosion as a function of radial distance in the ring plane, and therefore also allow for an improved estimate of the lifetime of Saturn’s rings.

  15. Global Investigation of the Mg Atom and ion Layers using SCIAMACHY/Envisat Observations between 70 km and 150 km Altitude and WACCM-MG Model Results

    NASA Technical Reports Server (NTRS)

    Langowski, M.; vonSavigny, C.; Burrows, J. P.; Feng, W.; Plane, J. M. C.; Marsh, D. R.; Janches, Diego; Sinnhuber, M.; Aikin, A. C.

    2014-01-01

    Mg and Mg+ concentration fields in the upper mesosphere/lower thermosphere (UMLT) region are retrieved from SCIAMACHY/Envisat limb measurements of Mg and Mg+ dayglow emissions using a 2-D tomographic retrieval approach. The time series of monthly means of Mg and Mg+ for number density as well as vertical column density in different latitudinal regions are shown. Data from the limb mesosphere-thermosphere mode of SCIAMACHY/Envisat are used, which covers the 50 km to 150 km altitude region with a vertical sampling of 3.3 km and a highest latitude of 82 deg. The high latitudes are not covered in the winter months, because there is no dayglow emission during polar night. The measurements were performed every 14 days from mid-2008 until April 2012. Mg profiles show a peak at around 90 km altitude with a density between 750 cm(exp-3) and 2000 cm(exp-3). Mg does not show strong seasonal variation at mid-latitudes. The Mg+ peak occurs 5-15 km above the neutral Mg peak at 95-105 km. Furthermore, the ions show a significant seasonal cycle with a summer maximum in both hemispheres at mid- and high-latitudes. The strongest seasonal variations of the ions are observed at mid-latitudes between 20-40 deg and densities at the peak altitude range from 500 cm(exp-3) to 6000 cm(exp-3). The peak altitude of the ions shows a latitudinal dependence with a maximum at mid-latitudes that is up to 10 km higher than the peak altitude at the equator. The SCIAMACHY measurements are compared to other measurements and WACCM model results. In contrast to the SCIAMACHY results, the WACCM results show a strong seasonal variability for Mg with a winter maximum, which is not observable by SCIAMACHY, and globally higher peak densities. Although the peak densities do not agree the vertical column densities agree, since SCIAMACHY results show a wider vertical profile. The agreement of SCIAMACHY and WACCM results is much better for Mg+, showing the same seasonality and similar peak densities. However, there are the following minor differences: there is no latitudinal dependence of the peak altitude for WACCM and the density maximum, passing the equatorial region during equinox conditions, is not reduced as for SCIAMACHY.

  16. Planck intermediate results: XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust

    DOE PAGES

    Adam, R.; Ade, P. A. R.; Aghanim, N.; ...

    2016-02-09

    The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in themore » Stokes Q and/or U maps. In this paper, we focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 10 20 to 10 22 cm -2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. Finally, we discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.« less

  17. Planck intermediate results. XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wiesemeyer, H.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in the Stokes Q and/or U maps. We focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 1020 to 1022 cm-2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. We discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.

  18. Planck intermediate results: XXXII. The relative orientation between the magnetic field and structures traced by interstellar dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, R.; Ade, P. A. R.; Aghanim, N.

    The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in themore » Stokes Q and/or U maps. In this paper, we focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 10 20 to 10 22 cm -2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. Finally, we discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.« less

  19. Satellite Investigation of Atmospheric Metal Deposition During Meteor Showers

    NASA Astrophysics Data System (ADS)

    Correira, J.; Aikin, A. C.; Grebowsky, J. M.

    2008-12-01

    Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the magnesium column densities and any connection to possible enhanced mass deposition during a meteor shower. We derive a time dependent mass flux rate due to meteor showers using published estimates of mass density and activity profiles of meteor showers. An average daily mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal column densities from the years 1996 - 2001.There appears to be little correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.

  20. Effects of Coulomb collisions on cyclotron maser and plasma wave growth in magnetic loops

    NASA Technical Reports Server (NTRS)

    Hamilton, Russell J.; Petrosian, Vahe

    1990-01-01

    The evolution of nonthermal electrons accelerated in magnetic loops is determined by solving the kinetic equation, including magnetic field convergence and Coulomb collisions in order to determine the effects of these interactions on the induced cyclotron maser and plasma wave growth. It is found that the growth rates are larger and the possibility of cyclotron maser action is stronger for smaller loop column density, for larger magnetic field convergence, for a more isotropic injected electron pitch angle distribution, and for more impulsive acceleration. For modest values of the column density in the coronal portion of a flaring loop, the growth rates of instabilities are significantly reduced, and the reduction is much larger for the cyclotron modes than for the plasma wave modes. The rapid decrease in the growth rates with increasing loop column density suggests that, in flare loops when such phenomena occur, the densities are lower than commonly accepted.

  1. Boundary layers in cataclysmic variables - The HEAO 1 X-ray constraints

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.

    1984-01-01

    The predictions of the boundary layer model for the X-ray emission from novae are summarized. A discrepancy between observations and theory in the X-ray observations is found. Constraints on the nature of the boundary layers in novae, based on the lack of detections of novae in the HEAO-1 soft X-ray survey are provided. Temperature and column densities for optically thick boundary layers in novae are estimated. Previously announced in STAR as N84-13046

  2. Ca II and Na I absorption in the QSO S4 0248 + 430 due to an intervening galaxy

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.; Junkkarinen, Vesa T.; Cohen, Ross D.; Burbidge, E. Margaret

    1990-01-01

    Observations of the QSO S4 0248 + 430 and a nearby anonymous galaxy are presented. Two absorption components are found in both Ca II H and K and Na I D1 and D2 at z(a) = 0.0515, 0.0523. Column densities of log N(Ca II) = 13.29, 13.50, and log N(Na I) = 13.79, 14.18 are found for z(a) = 0.0515, 0.0523 absorption systems, respectively. The column density ratios imply considerable calcium depletion and disk-type absorbing gas. At least one and possibly both absorption components are produced by high-velocity gas. A broadband image of the field shows an asymmetrical armlike feature or possible tidal tail covering and extending past the position of the QSO. The presence of this extended feature and the apparent difference between the absorption velocities and galaxy rotation velocity suggest that the absorbing gas is not ordinary disk gas, but rather is a result of tidal disruption.

  3. Non-destructive measurement of soil liquefaction density change by crosshole radar tomography, Treasure Island, California

    USGS Publications Warehouse

    Kayen, Robert E.; Barnhardt, Walter A.; Ashford, Scott; Rollins, Kyle

    2000-01-01

    A ground penetrating radar (GPR) experiment at the Treasure Island Test Site [TILT] was performed to non-destructively image the soil column for changes in density prior to, and following, a liquefaction event. The intervening liquefaction was achieved by controlled blasting. A geotechnical borehole radar technique was used to acquire high-resolution 2-D radar velocity data. This method of non-destructive site characterization uses radar trans-illumination surveys through the soil column and tomographic data manipulation techniques to construct radar velocity tomograms, from which averaged void ratios can be derived at 0.25 - 0.5m pixel footprints. Tomograms of void ratio were constructed through the relation between soil porosity and dielectric constant. Both pre- and post-blast tomograms were collected and indicate that liquefaction related densification occurred at the site. Volumetric strains estimated from the tomograms correlate well with the observed settlement at the site. The 2-D imagery of void ratio can serve as high-resolution data layers for numerical site response analysis.

  4. Shocks in Dense Clouds in the Vela Supernova Remnant: FUSE

    NASA Technical Reports Server (NTRS)

    Nichols, Joy; Sonneborn, George (Technical Monitor)

    2002-01-01

    We have obtained 8 LWRS FUSE spectra to study a recently identified interaction of the Vela supernova remnant with a dense cloud region along its western edge. The goal is to quantify the temperature, ionization, density, and abundance characteristics associated with this shock/dense cloud interface by means of UV absorption line studies. Our detection of high-velocity absorption line C I at +90 to +130 km/s with IUE toward a narrow region interior to the Vela SNR strongly suggests the Vela supernova remnant is interacting with a dense ISM or molecular cloud. The shock/dense cloud interface is suggested by (1) the rarity of detection of high-velocity C I seen in IUE spectra, (2) its very limited spatial distribution in the remnant, and (3) a marked decrease in X-ray emission in the region immediately west of the position of these stars where one also finds a 100 micron emission ridge in IRAS images. We have investigated the shock physics and general properties of this interaction region through a focussed UV absorption line study using FUSE spectra. We have FUSE data on OVI absorption lines observed toward 8 stars behind the Vela supernova remnant (SNR). We compare the OVI observations with IUE observations of CIV absorption toward the same stars. Most of the stars, which are all B stars, have complex continua making the extraction of absorption lines difficult. Three of the stars, HD 72088, HD 72089 and HD 72350, however, are rapid rotators (v sin i less than 100 km/s) making the derivation of absorption column densities much easier. We have measured OVI and CIV column densities for the "main component" (i.e. the low velocity component) for these stars. In addition, by removing the H2 line at 1032.35A (121.6 km/s relative to OVI), we find high velocity components of OVI at approximately 150 km/s that we attribute to the shock in the Vela SNR. The column density ratios and magnitudes are compared to both steady shock models and results of hydrodynamical SNR modeling. We find that the models require the shock to be relatively slow (approximately 100 - 170 km/s) to match the FUSE data. We discuss the implications of our results for models of the evolution of the Vela SNR.

  5. A Population of Faint Extended Line Emitters and the Host Galaxies of Optically Thick QSO Absorption Systems

    NASA Astrophysics Data System (ADS)

    Rauch, Michael; Haehnelt, Martin; Bunker, Andrew; Becker, George; Marleau, Francine; Graham, James; Cristiani, Stefano; Jarvis, Matt; Lacey, Cedric; Morris, Simon; Peroux, Celine; Röttgering, Huub; Theuns, Tom

    2008-07-01

    We have conducted a long-slit search for low surface brightness Lyα emitters at redshift 2.67 < z < 3.75. A 92 hr long exposure with the ESO VLT FORS2 instrument down to a 1 σ surface brightness detection limit of 8 × 10-20 erg cm-2 s-1 arcsec-2 per arcsec2 aperture yielded a sample of 27 single line emitters with fluxes of a few × 10-18 erg s-1 cm-2. We present arguments that most objects are indeed Lyα. The large comoving number density, 3 × 10-2 h370 Mpc-3, the large covering factor, dN/dz ~ 0.2-1, and the often extended Lyα emission suggest that the emitters can be identified with the elusive host population of damped Lyα systems (DLAS) and high column density Lyman limit systems (LLS). A small inferred star formation rate, perhaps supplemented by cooling radiation, appears to energetically dominate the Lyα emission, and is consistent with the low metallicity, low dust content, and theoretically inferred low masses of DLAS, and with the relative lack of success of earlier searches for their optical counterparts. Some of the line profiles show evidence for radiative transfer in galactic outflows. Stacking surface brightness profiles, we find emission out to at least 4''. The centrally concentrated emission of most objects appears to light up the outskirts of the emitters (where LLS arise) down to a column density where the conversion from UV to Lyα photon becomes inefficient. DLAS, high column density LLS, and the emitter population discovered in this survey appear to be different observational manifestations of the same low-mass, protogalactic building blocks of present-day L* galaxies. Based partly on observations made with ESO Telescopes at the Paranal Observatories under Program ID LP173.A-0440, and partly on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil) and CONICET (Argentina).

  6. Chemistry in dynamically evolving clouds

    NASA Technical Reports Server (NTRS)

    Tarafdar, S. P.; Prasad, S. S.; Huntress, W. T., Jr.; Villere, K. R.; Black, D. C.

    1985-01-01

    A unified model of chemical and dynamical evolution of isolated, initially diffuse and quiescent interstellar clouds is presented. The model uses a semiempirically derived dependence of the observed cloud temperatures on the visual extinction and density. Even low-mass, low-density, diffuse clouds can collapse in this model, because the inward pressure gradient force assists gravitational contraction. In contrast, previous isothermal collapse models required the low-mass diffuse clouds to be unrealistically cold before gravitational contraction could start. Theoretically predicted dependences of the column densities of various atoms and molecules, such as C and CO, on visual extinction in diffuse clouds are in accord with observations. Similarly, the predicted dependences of the fractional abundances of various chemical species (e.g., CO, H2CO, HCN, HCO(+)) on the total hydrogen density in the core of the dense clouds also agree with observations reported to date in the literature. Compared with previous models of interstellar chemistry, the present model has the potential to explain the wide spectrum of chemical and physical properties of both diffuse and dense clouds with a common formalism employing only a few simple initial conditions.

  7. Global variability of cloud condensation nuclei concentrations

    NASA Astrophysics Data System (ADS)

    Makkonen, Risto; Krüger, Olaf

    2017-04-01

    Atmospheric aerosols can influence cloud optical and dynamical processes by acting as cloud condensation nuclei (CCN). Globally, these indirect aerosol effects are significant to the radiative budget as well as a source of high uncertainty in anthropogenic radiative forcing. While historically many global climate models have fixed CCN concentrations to a certain level, most state-of-the-art models calculate aerosol-cloud interactions with sophisticated methodologies based on interactively simulated aerosol size distributions. However, due to scarcity of atmospheric observations simulated global CCN concentrations remain poorly constrained. Here we assess global CCN variability with a climate model, and attribute potential trends during 2000-2010 to changes in emissions and meteorological fields. Here we have used ECHAM5.5-HAM2 with model M7 microphysical aerosol model. The model has been upgraded with a secondary organic aerosol (SOA) scheme including ELVOCs. Dust and sea salt emissions are calculated online, based on wind speed and hydrology. Each experiment is 11 years, analysed after a 6-month spin-up period. The MODIS CCN product (Terra platform) is used to evaluate model performance throughout 2000-2010. While optical remote observation of CCN column includes several deficiencies, the products serves as a proxy for changes during the simulation period. In our analysis we utilize the observed and simulated vertical column integrated CCN concentration, and limit our analysis only over marine regions. Simulated annual CCN column densities reach 2ṡ108 cm-2 near strong source regions in central Africa, Arabian Sea, Bay of Bengal and China sea. The spatial concentration gradient in CCN(0.2%) is steep, and column densities drop to <50% a few hundred kilometers away from the coasts. While the spatial distribution of CCN at 0.2% supersaturation is closer to that of MODIS proxy, as opposed to 1.0% supersaturation, the overall column integrated CCN are too low. Still, we can compare the relative response of CCN to emission and meteorological variability. Most evident pattern of high temporal correlation is found over North Atlantic ocean, extending throughout Europe and up to Gulf of Mexico. All of these regions show a generally decreasing trend throughout the decade in control simulations and MODIS CCN, and the simulations including the emission trends clearly improve the simulations with climatological emissions. In regions where the observed intra-annual cycle correlates well with sea-spray emissions, the long-term annual correlation usually remains poor. This could indicate that the model is unable to capture the natural variability in marine aerosol emissions.

  8. DISCOVER-AQ: An Overview and Initial Comparisons of NO2 with OMI Observations

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth; Crawford, James; Krotkov, Nickolay; Bucsela, Eric; Lamsal, Lok; Celarier, Edward; Herman, Jay; Janz, Scott; Cohen, Ron; Weinheimer, Andrew

    2011-01-01

    The first deployment of the Earth Venture -1 DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project was conducted during July 2011 in the Baltimore-Washington region. Two aircraft (a P-3B for in-situ sampling and a King Air for remote sensing) were used along with an extensive array of surface-based in-situ and remote sensing instrumentation. Fourteen flight days were accomplished by both aircraft and over 250 profiles of trace gases and aerosols were performed by the P-3B over surface air quality monitoring stations, which were specially outfitted with sunphotometers and Pandora UV/Vis spectrometers. The King Air flew with the High Spectral Resolution Lidar for aerosols and the ACAM UV/Vis spectrometer for trace gases. This suite of observations allows linkage of surface air quality with the vertical distributions of gases and aerosols, with remotely-sensed column amounts observed from the surface and from the King Air, and with satellite observations from Aura (OMI and TES), GOME-2, MODIS and GOES. The DISCOVER-AQ data will allow determination of under what conditions satellite retrievals are indicative of surface air quality, and they will be useful in planning new satellites. In addition to an overview of the project, a preliminary comparison of tropospheric column NO2 densities from the integration of in-situ P-3B observations, from the Pandoras and ACAM, and from the new Goddard OMI NO2 algorithm will be presented.

  9. Herschel observations of the Galactic H II region RCW 79

    NASA Astrophysics Data System (ADS)

    Liu, Hong-Li; Figueira, Miguel; Zavagno, Annie; Hill, Tracey; Schneider, Nicola; Men'shchikov, Alexander; Russeil, Delphine; Motte, Frédérique; Tigé, Jérémy; Deharveng, Lise; Anderson, Loren D.; Li, Jin-Zeng; Wu, Yuefang; Yuan, Jing-Hua; Huang, Maohai

    2017-06-01

    Context. Triggered star formation around H II regions could be an important process. The Galactic H II region RCW 79 is a prototypical object for triggered high-mass star formation. Aims: We aim to obtain a census of the young stellar population observed at the edges of the H II region and to determine the properties of the young sources in order to characterize the star formation processes that take place at the edges of this ionized region. Methods: We take advantage of Herschel data from the surveys HOBYS, "Evolution of Interstellar Dust", and Hi-Gal to extract compact sources. We use the algorithm getsources. We complement the Herschel data with archival 2MASS, Spitzer, and WISE data to determine the physical parameters of the sources (e.g., envelope mass, dust temperature, and luminosity) by fitting the spectral energy distribution. Results: We created the dust temperature and column density maps along with the column density probability distribution function (PDF) for the entire RCW 79 region. We obtained a sample of 50 compact sources in this region, 96% of which are situated in the ionization-compressed layer of cold and dense gas that is characterized by the column density PDF with a double-peaked lognormal distribution. The 50 sources have sizes of 0.1-0.4 pc with a typical value of 0.2 pc, temperatures of 11-26 K, envelope masses of 6-760 M⊙, densities of 0.1-44 × 105 cm-3, and luminosities of 19-12 712 L⊙. The sources are classified into 16 class 0, 19 intermediate, and 15 class I objects. Their distribution follows the evolutionary tracks in the diagram of bolometric luminosity versus envelope mass (Lbol-Menv) well. A mass threshold of 140 M⊙, determined from the Lbol-Menv diagram, yields 12 candidate massive dense cores that may form high-mass stars. The core formation efficiency (CFE) for the 8 massive condensations shows an increasing trend of the CFE with density. This suggests that the denser the condensation, the higher the fraction of its mass transformation into dense cores, as previously observed in other high-mass star-forming regions. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Final reduced data and maps used in the paper (FITS format) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/602/A95

  10. Physical conditions in CaFe interstellar clouds

    NASA Astrophysics Data System (ADS)

    Gnaciński, P.; Krogulec, M.

    2008-01-01

    Interstellar clouds that exhibit strong Ca I and Fe I lines are called CaFe clouds. Ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. We find that the chemical composition of CaFe clouds is solar and that there is no depletion into dust grains. CaFe clouds have high electron densities, n_e≈1 cm-3, that lead to high column densities of neutral Ca and Fe.

  11. Numerical modeling of the elution peak profiles of retained solutes in supercritical fluid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaczmarski, Krzysztof; Guiochon, Georges A

    2011-01-01

    In supercritical fluid chromatography (SFC), the significant expansion of the mobile phase along the column causes the formation of axial and radial gradients of temperature. Due to these gradients, the mobile phase density, its viscosity, its velocity, its diffusion coefficients, etc. are not constant throughout the column. This results in a nonuniform flow velocity distribution, itself causing a loss of column efficiency in certain cases, even at low flow rates, as they do in HPLC. At high flow rates, an important deformation of the elution profiles of the sample components may occur. The model previously used to account satisfactorily formore » the retention of an unsorbed solute in SFC is applied to the modeling of the elution peak profiles of retained compounds. The numerical solution of the combined heat and mass balance equations provides the temperature and the pressure profiles inside the column and values of the retention time and the band profiles of retained compounds that are in excellent agreement with independent experimental data for large value of mobile phase reduced density. At low reduced densities, the band profiles can strongly depend on the column axial distribution of porosity.« less

  12. Thermalization of Interstellar CO

    NASA Astrophysics Data System (ADS)

    Oka, Takeshi; Xiao, Han; Lynch, Phillip

    2009-06-01

    Unlike radio emission of CO, infrared absorption of CO give column densities in each rotational level directly when weak transitions like overtone bands or ^{13}CO or C^{18}O isotope bands are used. This allows more straightforward determination of temperature (T) and density (n) of the environment than the large velocity gradient (LVG) model used to determine them from antenna temperatures of radio emission. In order to facilitate such determination, we have solved the steady state linear simultaneous equations for thermalization of CO and calculated population ratios of rotational levels as a function of T and n as we did for H_3^+. We thus get two-dimensional graph of column density ratios, for example, N(J=1)/N(J=0) and N(J=2)/N(J=0) as a function of T and n or variation of it when other population ratios are used. As for H_3^+ we can invert the graph to obtain graphs of T versus n as functions of population ratios which is more convenient to apply to observed data. We use rate constants of collision-induced transitions between CO and ortho- and para-H_2 theoretically calculated by Fowler and Wernli et al. which have been compiled and extended by Schöier et al. As the first approximation, only spontaneous emissions are considered and other radiative effects such as induced emission and absorption are ignored. The results are applied to CO column densities observed toward the Galactic center, that is, CO in the three spiral arms, 3-kpc (Norma), 4.5-kpc (Scutum), and local arms (Sagittarius), and in the Central Molecular Zone. T. Oka and E. Epp, ApJ, 613, 349 (2004) M. Goto, Usuda, Nagata, Geballe, McCall, Indriolo, Suto, Henning, Morong, and Oka, ApJ, 688, 306 (2008) D. R. Fowler, J. Phys. B: At. Mol. Opt. Phys. 34, 2731 (2001) M. Wernli, P. Valiron, A. Faure, L. Wiesenfeld, P. Jankowski, and K. Szalewicz, A & A, 446, 367 (2006) F. L. Schöier, F. F. S. van der Tak, E. F. van Dishoeck, and J. H. Black, A & A, 432, 369 (2005)

  13. High power fast wave experiments in LAPD: interaction with density fluctuations and status/plans for ICRH

    NASA Astrophysics Data System (ADS)

    Carter, Troy; Martin, Michael; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Vincena, Stephen; Tripathi, Shreekrishna; van Eester, Dirk; Crombe, Kristel

    2016-10-01

    The LArge Plasma Device (LAPD) at UCLA is a 17 m long, up to 60 cm diameter magnetized plasma column with typical plasma parameters ne 1012 -1013 cm-3, Te 1 - 10 eV, and B 1 kG. A new high-power ( 200 kW) RF system and antenna has been developed for LAPD, enabling the generation of large amplitude fast waves in LAPD. Interaction between the fast waves and density fluctuations is observed, resulting in modulation of the coupled RF power. Two classes of RF-induced density fluctuations are observed. First, a coherent (10 kHz) oscillation is observed spatially near the antenna in response to the initial RF turn-on transient. Second, broadband density fluctuations are enhanced when the RF power is above a threshold a threshold. Strong modulation of the fast wave magnetic fluctuations is observed along with broadening of the primary RF spectral line. Ultimately, high power fast waves will be used for ion heating in LAPD through minority species fundamental heating or second harmonic minority or majority heating. Initial experimental results from heating experiments will be presented along with a discussion of future plans. BaPSF supported by NSF and DOE.

  14. Vertically migrating swimmers generate aggregation-scale eddies in a stratified column.

    PubMed

    Houghton, Isabel A; Koseff, Jeffrey R; Monismith, Stephen G; Dabiri, John O

    2018-04-01

    Biologically generated turbulence has been proposed as an important contributor to nutrient transport and ocean mixing 1-3 . However, to produce non-negligible transport and mixing, such turbulence must produce eddies at scales comparable to the length scales of stratification in the ocean. It has previously been argued that biologically generated turbulence is limited to the scale of the individual animals involved 4 , which would make turbulence created by highly abundant centimetre-scale zooplankton such as krill irrelevant to ocean mixing. Their small size notwithstanding, zooplankton form dense aggregations tens of metres in vertical extent as they undergo diurnal vertical migration over hundreds of metres 3,5,6 . This behaviour potentially introduces additional length scales-such as the scale of the aggregation-that are of relevance to animal interactions with the surrounding water column. Here we show that the collective vertical migration of centimetre-scale swimmers-as represented by the brine shrimp Artemia salina-generates aggregation-scale eddies that mix a stable density stratification, resulting in an effective turbulent diffusivity up to three orders of magnitude larger than the molecular diffusivity of salt. These observed large-scale mixing eddies are the result of flow in the wakes of the individual organisms coalescing to form a large-scale downward jet during upward swimming, even in the presence of a strong density stratification relative to typical values observed in the ocean. The results illustrate the potential for marine zooplankton to considerably alter the physical and biogeochemical structure of the water column, with potentially widespread effects owing to their high abundance in climatically important regions of the ocean 7 .

  15. Observations of the Minor Species Al and Fe in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2016-01-01

    We report here on the first observational evidence of Al and Fe in the exosphere of Mercury, based on measurements of resolved emission lines of these metals with Keck-1/HIRES. Al emission was observed on two separate runs, in 2008 and 2013, with tangent column densities of 3.1 +/- 1.0 and 4.0 +/-1.5 x 10(exp 7) Al atoms cm(exp - 2) at altitudes of 1185 and 1870 km (1.5 and 1.75 R(sub M). The Al radiative intensity was seen to increase where the slit crossed the planetary penumbral shadow, and then decrease monotonically with altitude. Fe emission has been observed once, in 2009, indicating an extended source. We also present observed 3- Sigma Ca(+) upper limits near Mercury's equatorial anti-solar limb, from which an abundance limit of 4.0 x 10(exp 6) cm(exp -2) at 1650 km altitude is derived for the Ca ion. A simple model for zenith column abundances of the neutral species yields 1.9 -5.2 x 10(exp 7) Al cm(exp -2) , and 8.2 x 10(exp 8) Fe cm(exp -2) . The observations appear to be consistent with production of these species by impact vaporization, with a large fraction of the Al ejecta in molecular form, and that for Fe in mixed atomic and molecular forms. The scale height of the Al gas is consistent with a kinetic temperature of 6100-8000 K. The apparent high temperature and low density of the Al gas would suggest that it may be produced by dissociation of molecules.

  16. Interstellar absorption along the line of sight to Sigma Scorpii using Copernicus observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, M.M.; Snow, T.P.; Jenkins, E.B.

    1990-05-01

    From Copernicus observations of Sigma Sco, 57 individual lines of 11 elements plus the molecular species H2 and CO were identified. By using a profile-fitting technique, rather than curves of growth, it was possible to obtain column densities and Doppler b values for up to four separate components along this line of sight. Electron density in the major H I component was derived from the photoionization equilibrium of sulfur, obtaining, n(e) of about 0.3/cu cm. The neutral hydrogen density in the same component was also derived using fine-structure excitation of O I. An H II component is also present inmore » which the electron density was n(e) about 20/cu cm. As a by-product of this analysis, previously undetermined oscillator strengths for two Mn II lines were obtained: for 1162.-017 A, f about 0.023 and for 1164.211 A, f about 0.0086. 58 refs.« less

  17. Observational difference between gamma and X-ray properties of optically dark and bright GRBs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balazs, L. G.; Horvath, I.; Bagoly, Zs.

    2008-05-22

    Using the discriminant analysis of the multivariate statistical analysis we compared the distribution of the physical quantities of the optically dark and bright GRBs, detected by the BAT and XRT on board of the Swift Satellite. We found that the GRBs having detected optical transients (OT) have systematically higher peak fluxes and lower HI column densities than those without OT.

  18. CO abundance variations in the Orion Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Ripple, F.; Heyer, M. H.; Gutermuth, R.; Snell, R. L.; Brunt, C. M.

    2013-05-01

    Infrared stellar photometry from the Two Micron All-Sky Survey (2MASS) and spectral line imaging observations of 12CO and 13CO J = 1-0 line emission from the Five College Radio Astronomy Observatory (FCRAO) 14-m telescope are analysed to assess the variation of the CO abundance with physical conditions throughout the Orion A and Orion B molecular clouds. Three distinct Av regimes are identified in which the ratio between the 13CO column density and visual extinction changes corresponding to the photon-dominated envelope, the strongly self-shielded interior, and the cold, dense volumes of the clouds. Within the strongly self-shielded interior of the Orion A cloud, the 13CO abundance varies by 100 per cent with a peak value located near regions of enhanced star formation activity. The effect of CO depletion on to the ice mantles of dust grains is limited to regions with Av > 10 mag and gas temperatures less than ˜20 K as predicted by chemical models that consider thermal evaporation to desorb molecules from grain surfaces. Values of the molecular mass of each cloud are independently derived from the distributions of Av and 13CO column densities with a constant 13CO-to-H2 abundance over various extinction ranges. Within the strongly self-shielded interior of the cloud (Av> 3 mag), 13CO provides a reliable tracer of H2 mass with the exception of the cold, dense volumes where depletion is important. However, owing to its reduced abundance, 13CO does not trace the H2 mass that resides in the extended cloud envelope, which comprises 40-50 per cent of the molecular mass of each cloud. The implied CO luminosity to mass ratios, M/LCO, are 3.2 and 2.9 for Orion A and Orion B, respectively, which are comparable to the value (2.9), derived from γ-ray observations of the Orion region. Our results emphasize the need to consider local conditions when applying CO observations to derive H2 column densities.

  19. Plasma flow in peripheral region of detached plasma in linear plasma device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Y., E-mail: hayashi-yuki13@ees.nagoya-u.ac.jp; Ohno, N.; Kajita, S.

    2016-01-15

    A plasma flow structure is investigated using a Mach probe under detached plasma condition in a linear plasma device NAGDIS-II. A reverse flow along the magnetic field is observed in a steady-state at far-peripheral region of the plasma column in the upstream side from the recombination front. These experimental results indicate that plasma near the recombination front should strongly diffuse across the magnetic field, and it should be transported along the magnetic field in the reverse flow direction. Furthermore, bursty plasma density fluctuations associated with intermittent convective plasma transport are observed in the far-peripheral region of the plasma column inmore » both upstream and downstream sides from the recombination front. Such a nondiffusive transport can contribute to the intermittent reverse plasma flow, and the experimental results indicate that intermittent transports are frequently produced near the recombination front.« less

  20. The unusual persistence of an ozone hole over a southern mid-latitude station during the Antarctic spring 2009: a multi-instrument study

    NASA Astrophysics Data System (ADS)

    Wolfram, E. A.; Salvador, J.; Orte, F.; D'Elia, R.; Godin-Beekmann, S.; Kuttippurath, J.; Pazmiño, A.; Goutail, F.; Casiccia, C.; Zamorano, F.; Paes Leme, N.; Quel, E. J.

    2012-10-01

    Record-low ozone column densities (with a minimum of 212 DU) persisted over three weeks at the Río Gallegos NDACC (Network for the Detection of Atmospheric Composition Change) station (51.5° S, 69.3° W) in November 2009. Total ozone remained two standard deviations below the climatological mean for five consecutive days during this period. The statistical analysis of 30 years of satellite data from the Multi Sensor Reanalysis (MSR) database for Río Gallegos revealed that such a long-lasting low-ozone episode is a rare occurrence. The event is examined using height-resolved ozone lidar measurements at Río Gallegos, and observations from satellite and ground-based instruments. The computed relative difference between the measured total ozone and the climatological monthly mean shows reductions varying between 10 and 30% with an average decrease of 25%. The mean absolute difference of total ozone column with respect to climatological monthly mean ozone column is around 75 DU. Extreme values of the UV index (UVI) were measured at the ground for this period, with the daily maximum UVI of around 13 on 15 and 28 November. The high-resolution MIMOSA-CHIM (Modélisation Isentrope du transport Méso-échelle de l'Ozone Stratosphérique par Advection) model was used to interpret the ozone depletion event. An ozone decrease of about 2 ppmv was observed in mid-November at the 550 K isentropic level (~22 km). The position of Río Gallegos relative to the polar vortex was classified using equivalent latitude maps. During the second week of November, the vortex was over the station at all isentropic levels, but after 20 November and until the end of the month, only the 10 lower levels in the stratosphere were affected by vortex overpasses with ozone poor air masses. A rapid recovery of the ozone column density was observed later, due to an ozone rich filament moving over Río Gallegos between 18 and 24 km in the first two weeks of December 2009.

  1. Warm H2O and OH Disk Emission in V1331 Cyg

    NASA Astrophysics Data System (ADS)

    Doppmann, Greg W.; Najita, Joan R.; Carr, John S.; Graham, James R.

    2011-09-01

    We present high-resolution (R = 24, 000) L-band spectra of the young intermediate-mass star V1331 Cyg obtained with NIRSPEC on the Keck II telescope. The spectra show strong, rich emission from water and OH that likely arises from the warm surface region of the circumstellar disk. We explore the use of the new BT2 water line list in fitting the spectra, and we find that it does a much better job than the well-known HITRAN water line list in the observed wavelength range and for the warm temperatures probed by our data. By comparing the observed spectra with synthetic disk emission models, we find that the water and OH emission lines have similar widths (FWHM ~= 18 km s-1). If the line widths are set by disk rotation, the OH and water emission lines probe a similar range of disk radii in this source. The water and OH emission are consistent with thermal emission for both components at a temperature ~1500 K. The column densities of the emitting water and OH are large, ~1021 cm-2 and ~1020 cm-2, respectively. Such a high column density of water is more than adequate to shield the disk midplane from external UV irradiation in the event of complete dust settling out of the disk atmosphere, enabling chemical synthesis to continue in the midplane despite a harsh external UV environment. The large OH-to-water ratio is similar to expectations for UV irradiated disks, although the large OH column density is less easily accounted for. Data presented herein were obtained at the W. M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency's scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  2. A Hot Gaseous Galaxy Halo Candidate with Mg X Absorption

    NASA Astrophysics Data System (ADS)

    Qu, Zhijie; Bregman, Joel N.

    2016-12-01

    The hot gas in galaxy halos may account for a significant fraction of missing baryons in galaxies, and some of these gases can be traced by high ionization absorption systems in QSO UV spectra. Using high S/N Hubble Space Telescope/Cosmic Origins Spectrograph spectra, we discovered a high ionization state system at z = 1.1912 in the sightline toward LBQS 1435-0134, and two-component absorption lines are matched for Mg x, Ne viii, Ne VI, O VI, Ne v, O v, Ne IV, O IV, N IV, O III, and H I. Mg x, detected for the first time (5.8σ), is a particularly direct tracer of hot galactic halos, as its peak ion fraction occurs near 106.1 K, about the temperature of a virialized hot galaxy halo of mass ˜ 0.5{M}* . With Mg x and Ne viii, a photoionization model cannot reproduce the observed column densities with path lengths of galaxy halos. For collisional ionization models, one or two-temperature models do not produce acceptable fits, but a three-temperature model or a power-law model can produce the observed results. In the power-law model, {dN}/{dT}={10}4.4+/- 2.2-[Z/X]{T}1.55+/- 0.41 with temperatures in the range of {10}4.39+/- 0.13 {{K}}\\lt T\\lt {10}6.04+/- 0.05 {{K}}, the total hydrogen column density is 8.2× {10}19(0.3 {Z}⊙ /Z) {{cm}}-2 and the positive power-law index indicates most of the mass is at the high temperature end. We suggest that this absorption system is a hot volume-filled galaxy halo rather than interaction layers between the hot halo and cool clouds. The temperature dependence of the column density is likely due to the local mixture of multiple phase gases.

  3. Deep K-band Observations of TMC-1 with the Green Bank Telescope: Detection of HC7O, Nondetection of HC11N, and a Search for New Organic Molecules

    NASA Astrophysics Data System (ADS)

    Cordiner, M. A.; Charnley, S. B.; Kisiel, Z.; McGuire, B. A.; Kuan, Y.-J.

    2017-12-01

    The 100 m Robert C. Byrd Green Bank Telescope K-band (KFPA) receiver was used to perform a high-sensitivity search for rotational emission lines from complex organic molecules in the cold interstellar medium toward TMC-1 (cyanopolyyne peak), focussing on the identification of new carbon-chain-bearing species as well as molecules of possible prebiotic relevance. We report a detection of the carbon-chain oxide species HC7O and derive a column density of (7.8+/- 0.9)× {10}11 cm-2. This species is theorized to form as a result of associative electron detachment reactions between oxygen atoms and C7H-, and/or reaction of C6H2 + with CO (followed by dissociative electron recombination). Upper limits are given for the related HC6O, C6O, and C7O molecules. In addition, we obtained the first detections of emission from individual 13C isotopologues of HC7N, and derive abundance ratios HC7N/HCCC13CCCCN = 110 ± 16 and HC7N/HCCCC13CCCN = 96 ± 11, indicative of significant 13C depletion in this species relative to the local interstellar elemental 12C/13C ratio of 60-70. The observed spectral region covered two transitions of HC11N, but emission from this species was not detected, and the corresponding column density upper limit is 7.4× {10}10 {{cm}}-2 (at 95% confidence). This is significantly lower than the value of 2.8× {10}11 {{cm}}-2 previously claimed by Bell et al. and confirms the recent nondetection of HC11N in TMC-1 by Loomis et al. Upper limits were also obtained for the column densities of malononitrile and the nitrogen heterocycles quinoline, isoquinoline, and pyrimidine.

  4. Feeding and Feedback in the Powerful Radio Galaxy 3C 120

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Mushotzky, R. F.; Reynolds, C. S.; Kallman, T.; Reeves, J. N.; Braito, V.; Ueda, Y.; Leutenegger, M. A.; Williams, B. J.; Stawarz, L.; hide

    2017-01-01

    We present a spectral analysis of a 200-kilosecond observation of the broad-line radio galaxy 3C 120, performed with the high-energy transmission grating spectrometer on board the Chandra X-Ray Observatory. We find (i) a neutral absorption component intrinsic to the source with a column density of log N (sub H) equals 20.67 plus or minus 0.05 square centimeters; (ii) no evidence for a warm absorber (WA) with an upper limit on the column density of just log N (sub H) less than 19.7 square centimeters, assuming the typical ionization parameter log xi approximately equal to 2.5 ergs per second per centimeter; the WA may instead be replaced by (iii) a hot emitting gas with a temperature kT approximately equal to 0.7 kiloelectronvolts observed as soft X-ray emission from ionized Fe L-shell lines, which may originate from a kiloparsec-scale shocked bubble inflated by the active galactic nucleus (AGN) wind or jet with a shock velocity of about 1000 kilometers per second determined by the emission line width; (iv) a neutral Fe K alpha line and accompanying emission lines indicative of a Compton-thick cold reflector with a low reflection fraction R approximately equal to 0.2, suggesting a large opening angle of the torus; (v) a highly ionized Fe XXV emission feature indicative of photoionized gas with an ionization parameter log xi equal to 3.75 (sup plus 0.38) (sub minus 0.27) ergs per second per centimeter and a column density of log N (sub H) greater than 22 square centimeters localized within approximately 2 pc from the X-ray source; and (vi) possible signatures of a highly ionized disk wind. Together with previous evidence for intense molecular line emission, these results indicate that 3C 120 is likely a late-state merger undergoing strong AGN feedback.

  5. Ground-penetrating radar evidence of refrozen meltwater in the firn column of Larsen C Ice Shelf

    NASA Astrophysics Data System (ADS)

    Hubbard, B. P.; Booth, A. D.; Sevestre, H.; Kulessa, B.; Bevan, S. L.; Luckman, A. J.; Kuipers Munneke, P.; Buzzard, S. C.; Ashmore, D. W.; O'Leary, M.

    2017-12-01

    Firn densification, which has been strongly implicated in ice shelf collapse, can occur rapidly by the percolation and refreezing of surface meltwater. This process reduces the permeability of the firn column, potentially establishing a positive feedback between densification and the occurrence of surface meltwater ponds, and may ultimately facilitate fracturing associated with shelf collapse. Meltwater ponds on Larsen C's Cabinet (CI) and Whirlwind (WI) inlets form where foehn winds reach and influence the shelf surface. While associated zones of refrozen meltwater are strongly evidenced in borehole optical televiewing (OPTV) and seismic refraction data, the sparsity of these observations limits insight into the dimensions of these zones. Here, we present highlights from an 800-km archive of ground-penetrating radar (GPR) profiles acquired by the MIDAS project on CI and WI during November-December 2015. In the upstream reaches of CI and WI, stratified firn layers are abruptly truncated by zones of diminished GPR reflectivity. These initiate 5 m beneath the surface and extend to a depth of 30 m. Volumes appear to exceed 6 km3 (CI) and 1 km3 (WI); these are underestimates, established only where there is GPR control. The horizontal distribution of these zones correlates with the pattern of reduced backscatter in SAR images, supporting their association with meltwater ponds. GPR reflectivity models, derived from OPTV density trends, suggest reduced GPR wavespeeds (as do GPR velocity analyses) and dielectric contrasts consistent with homogenised and densified firn. A firn density model supports the ability of meltwater ponds to form periodically in Cabinet Inlet and subsequently homogenise the density of the firn column. Our observations suggest that ice shelves affected by surface melt and ponding can contain spatially extensive bodies of ice that are warmer and denser than assumed so far, with significant implications for ice shelf flow and fracturing.

  6. Analytical methods for measuring the parameters of interstellar gas using methanol observations

    NASA Astrophysics Data System (ADS)

    Kalenskii, S. V.; Kurtz, S.

    2016-08-01

    The excitation of methanol in the absence of external radiation is analyzed, and LTE methods for probing interstellar gas considered. It is shown that rotation diagrams correctly estimate the gas kinetic temperature only if they are constructed using lines whose upper levels are located in the same K-ladders, such as the J 0- J -1 E lines at 157 GHz, the J 1- J 0 E lines at 165 GHz, and the J 2- J 1 E lines at 25 GHz. The gas density must be no less than 107 cm-3. Rotation diagrams constructed from lines with different K values for their upper levels (e.g., 2 K -1 K at 96 GHz, 3 K -2 K at 145 GHz, 5 K -4 K at 241 GHz) significantly underestimate the temperature, but enable estimation of the density. In addition, diagrams based on the 2 K -1 K lines can be used to estimate the methanol column density within a factor of about two to five. It is suggested that rotation diagrams should be used in the following manner. First, two rotation diagrams should be constructed, one from the lines at 96, 145, or 241 GHz, and another from the lines at 157, 165, or 25 GHz. The former diagram is used to estimate the gas density. If the density is about 107 cm-3 or higher, the latter diagram reproduces the temperature fairly well. If the density is around 106 cm-3, the temperature obtained from the latter diagram should be multiplied by a factor of 1.5-2. If the density is about 105 cm-3 or lower, then the latter diagram yields a temperature that is lower than the kinetic temperature by a factor of three or more, and should be used only as a lower limit for the kinetic temperature. The errors in the methanol column density determined from the integrated intensity of a single line can be more than an order of magnitude, even when the gas temperature is well known. However, if the J 0-( J - 1)0 E lines, as well as the J 1-( J - 1)1 A + or A - lines are used, the relative error in the column density is no more than a factor of a few.

  7. Ultra high pressure liquid chromatography. Column permeability and changes of the eluent properties.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2008-04-11

    The behavior of four similar liquid chromatography columns (2.1mm i.d. x 30, 50, 100, and 150 mm, all packed with fine particles, average d(p) approximately 1.7 microm, of bridged ethylsiloxane/silica hybrid-C(18), named BEH-C(18)) was studied in wide ranges of temperature and pressure. The pressure and the temperature dependencies of the viscosity and the density of the eluent (pure acetonitrile) along the columns were also derived, using the column permeabilities and applying the Kozeny-Carman and the heat balance equations. The heat lost through the external surface area of the chromatographic column was directly derived from the wall temperature of the stainless steel tube measured with a precision of +/-0.2 degrees C in still air and +/-0.1 degrees C in the oven compartment. The variations of the density and viscosity of pure acetonitrile as a function of the temperature and pressure was derived from empirical correlations based on precise experimental data acquired between 298 and 373 K and at pressures up to 1.5 kbar. The measurements were made with the Acquity UPLC chromatograph that can deliver a maximum flow rate of 2 mL/min and apply a maximum column inlet pressure of 1038 bar. The average Kozeny-Carman permeability constant of the columns was 144+/-3.5%. The temperature hence the viscosity and the density profiles of the eluent along the column deviate significantly from linear behavior under high-pressure gradients. For a 1000 bar pressure drop, we measured DeltaT=25-30 K, (Deltaeta/eta) approximately 100%, and (Deltarho/rho) approximately 10%. These results show that the radial temperature profiles are never fully developed within 1% for any of the columns, even under still-air conditions. This represents a practical advantage regarding the apparent column efficiency at high flow rates, since the impact of the differential analyte velocity between the column center and the column wall is not maximum. The interpretation of the peak profiles recorded in UPLC is discussed.

  8. The atmospheric abundance of SO2 on Io

    NASA Technical Reports Server (NTRS)

    Ballester, Gilda E.; Strobel, Darrell F.; Moos, H. Warren; Feldman, Paul D.

    1990-01-01

    The IUE satellite has obtained near-UV spectra of Io with sufficient resolution to ascertain the east, or leading and west, or trailing hemispheres' dayside atmosphere SO2 abundance. The derived geometric albedos are compared with various model albedos that might result from proposed SO2 atmospheres, as well as from localized, sublimation- or volcanism-generated atmospheres. A homogeneous-layer alternative atmosphere is introduced whose upper limit on the average SO2 column density for both hemispheres implies that a collisionally thick SO2 atmosphere of intermediate density may have been present on Io's dayside during the present observations.

  9. ALMA reveals a warm and compact starburst around a heavily obscured supermassive black hole at z = 4.75

    NASA Astrophysics Data System (ADS)

    Gilli, R.; Norman, C.; Vignali, C.; Vanzella, E.; Calura, F.; Pozzi, F.; Massardi, M.; Mignano, A.; Casasola, V.; Daddi, E.; Elbaz, D.; Dickinson, M.; Iwasawa, K.; Maiolino, R.; Brusa, M.; Vito, F.; Fritz, J.; Feltre, A.; Cresci, G.; Mignoli, M.; Comastri, A.; Zamorani, G.

    2014-02-01

    We report ALMA Cycle 0 observations at 1.3 mm of LESS J033229.4-275619 (XID403), an ultraluminous infrared galaxy at z = 4.75 in the Chandra Deep Field South hosting a Compton-thick QSO. The source is not resolved in our data at a resolution of ~0.75 arcsec, placing an upper-limit of 2.5 kpc to the half-light radius of the continuum emission from heated-dust. After deconvolving for the beam size, however, we found a ~3σ indication of an intrinsic source size of 0.27 ± 0.08 arcsec (Gaussian FWHM), which would correspond to rhalf ~ 0.9 ± 0.3 kpc. We build the far-infrared SED of XID403 by combining datapoints from both ALMA and Herschel and fit it with a modified blackbody spectrum. For the first time, we measure the dust temperature Td = 58.5 ± 5.3 K in this system, which is comparable to what has been observed in other high-z submillimeter galaxies. The measured star formation rate is SFR = 1020 ± 150 M⊙ yr-1, in agreement with previous estimates at lower S/N. Based on the measured SFR and source size, we constrain the SFR surface density to be ΣSFR > 26M⊙ yr-1 kpc-2 (~200M⊙ yr-1 kpc-2 for rhalf ~ 0.9 kpc). The compactness of this starburst is comparable to what has been observed in other local and high-z starburst galaxies. If the gas mass measured from previous [CII] and CO(2-1) observations at low resolution is confined within the same dust region, assuming rhalf ~ 0.9 ± 0.3 kpc, this would produce a column density of NH ~ 0.3-1.1 × 1024 cm-2 towards the central SMBH, similar to the column density of ≈1.4 × 1024 cm-2 measured from the X-rays. Then, in principle, if both gas and dust were confined on sub-kpc scales, this would be sufficient to produce the observed X-ray column density without any need of a pc-scale absorber (e.g. the torus postulated by Unified Models). We speculate that the high compactness of star formation, together with the presence of a powerful AGN, likely produce an outflowing wind. This would be consistent with the ~350 km s-1 velocity shift observed between the Lyα emission and the submm lines ([CII], CO(2-1), [NII]) and with the highly-ionized Fe emission line at ~6.9 keV rest-frame tentatively observed in the X-ray spectrum. Finally, our observations show that, besides the mass, star formation rate and gas depletion timescale, XID403 has also the right size to be one of the progenitors of the compact quiescent massive galaxies seen at z ~ 3.

  10. Physical properties of CO-dark molecular gas traced by C+

    NASA Astrophysics Data System (ADS)

    Tang, Ningyu; Li, Di; Heiles, Carl; Wang, Shen; Pan, Zhichen; Wang, Jun-Jie

    2016-09-01

    Context. Neither Hi nor CO emission can reveal a significant quantity of so-called dark gas in the interstellar medium (ISM). It is considered that CO-dark molecular gas (DMG), the molecular gas with no or weak CO emission, dominates dark gas. Determination of physical properties of DMG is critical for understanding ISM evolution. Previous studies of DMG in the Galactic plane are based on assumptions of excitation temperature and volume density. Independent measurements of temperature and volume density are necessary. Aims: We intend to characterize physical properties of DMG in the Galactic plane based on C+ data from the Herschel open time key program, namely Galactic Observations of Terahertz C+ (GOT C+) and Hi narrow self-absorption (HINSA) data from international Hi 21 cm Galactic plane surveys. Methods: We identified DMG clouds with HINSA features by comparing Hi, C+, and CO spectra. We derived the Hi excitation temperature and Hi column density through spectral analysis of HINSA features. The Hi volume density was determined by utilizing the on-the-sky dimension of the cold foreground Hi cloud under the assumption of axial symmetry. The column and volume density of H2 were derived through excitation analysis of C+ emission. The derived parameters were then compared with a chemical evolutionary model. Results: We identified 36 DMG clouds with HINSA features. Based on uncertainty analysis, optical depth of HiτHi of 1 is a reasonable value for most clouds. With the assumption of τHi = 1, these clouds were characterized by excitation temperatures in a range of 20 K to 92 K with a median value of 55 K and volume densities in the range of 6.2 × 101 cm-3 to 1.2 × 103 cm-3 with a median value of 2.3 × 102 cm-3. The fraction of DMG column density in the cloud (fDMG) decreases with increasing excitation temperature following an empirical relation fDMG =-2.1 × 10-3Tex,(τHi = 1) + 1.0. The relation between fDMG and total hydrogen column density NH is given by fDMG = 1.0-3.7 × 1020/NH. We divided the clouds into a high extinction group and low extinction group with the dividing threshold being total hydrogen column density NH of 5.0 × 1021 cm-2 (AV = 2.7 mag). The values of fDMG in the low extinction group (AV ≤ 2.7 mag) are consistent with the results of the time-dependent, chemical evolutionary model at the age of ~10 Myr. Our empirical relation cannot be explained by the chemical evolutionary model for clouds in the high extinction group (AV > 2.7 mag). Compared to clouds in the low extinction group (AV ≤ 2.7 mag), clouds in the high extinction group (AV > 2.7 mag) have comparable volume densities but excitation temperatures that are 1.5 times lower. Moreover, CO abundances in clouds of the high extinction group (AV > 2.7 mag) are 6.6 × 102 times smaller than the canonical value in the Milky Way. Conclusions: The molecular gas seems to be the dominate component in these clouds. The high percentage of DMG in clouds of the high extinction group (AV > 2.7 mag) may support the idea that molecular clouds are forming from pre-existing molecular gas, I.e., a cold gas with a high H2 content but that contains a little or no CO content.

  11. Large scale IRAM 30 m CO-observations in the giant molecular cloud complex W43

    NASA Astrophysics Data System (ADS)

    Carlhoff, P.; Nguyen Luong, Q.; Schilke, P.; Motte, F.; Schneider, N.; Beuther, H.; Bontemps, S.; Heitsch, F.; Hill, T.; Kramer, C.; Ossenkopf, V.; Schuller, F.; Simon, R.; Wyrowski, F.

    2013-12-01

    We aim to fully describe the distribution and location of dense molecular clouds in the giant molecular cloud complex W43. It was previously identified as one of the most massive star-forming regions in our Galaxy. To trace the moderately dense molecular clouds in the W43 region, we initiated W43-HERO, a large program using the IRAM 30 m telescope, which covers a wide dynamic range of scales from 0.3 to 140 pc. We obtained on-the-fly-maps in 13CO (2-1) and C18O (2-1) with a high spectral resolution of 0.1 km s-1 and a spatial resolution of 12''. These maps cover an area of ~1.5 square degrees and include the two main clouds of W43 and the lower density gas surrounding them. A comparison to Galactic models and previous distance calculations confirms the location of W43 near the tangential point of the Scutum arm at approximately 6 kpc from the Sun. The resulting intensity cubes of the observed region are separated into subcubes, which are centered on single clouds and then analyzed in detail. The optical depth, excitation temperature, and H2 column density maps are derived out of the 13CO and C18O data. These results are then compared to those derived from Herschel dust maps. The mass of a typical cloud is several 104 M⊙ while the total mass in the dense molecular gas (>102 cm-3) in W43 is found to be ~1.9 × 106 M⊙. Probability distribution functions obtained from column density maps derived from molecular line data and Herschel imaging show a log-normal distribution for low column densities and a power-law tail for high densities. A flatter slope for the molecular line data probability distribution function may imply that those selectively show the gravitationally collapsing gas. Appendices are available in electronic form at http://www.aanda.orgThe final datacubes (13CO and C18O) for the entire survey are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A24

  12. Quantifying the imprint of mesoscale and synoptic-scale atmospheric transport on total column carbon dioxide measurements

    NASA Astrophysics Data System (ADS)

    Torres, A. D.; Keppel-Aleks, G.; Doney, S. C.; Feng, S.; Lauvaux, T.; Fendrock, M. A.; Rheuben, J.

    2017-12-01

    Remote sensing instruments provide an unprecedented density of observations of the atmospheric CO2 column average mole fraction (denoted as XCO2), which can be used to constrain regional scale carbon fluxes. Inferring fluxes from XCO2 observations is challenging, as measurements and inversion methods are sensitive to not only the imprint local and large-scale fluxes, but also mesoscale and synoptic-scale atmospheric transport. Quantifying the fine-scale variability in XCO2 from mesoscale and synoptic-scale atmospheric transport will likely improve overall error estimates from flux inversions by improving estimates of representation errors that occur when XCO2 observations are compared to modeled XCO2 in relatively coarse transport models. Here, we utilize various statistical methods to quantify the imprint of atmospheric transport on XCO2 observations. We compare spatial variations along Orbiting Carbon Observatory (OCO-2) satellite tracks to temporal variations observed by the Total Column Carbon Observing Network (TCCON). We observe a coherent seasonal cycle of both within-day temporal and fine-scale spatial variability (of order 10 km) of XCO2 from these two datasets, suggestive of the imprint of mesoscale systems. To account for other potential sources of error in XCO2 retrieval, we compare observed temporal and spatial variations of XCO2 to high-resolution output from the Weather Research and Forecasting (WRF) model run at 9 km resolution. In both simulations and observations, the Northern hemisphere mid-latitude XCO2 showed peak variability during the growing season when atmospheric gradients are largest. These results are qualitatively consistent with our expectations of seasonal variations of the imprint of synoptic and mesoscale atmospheric transport on XCO2 observations; suggesting that these statistical methods could be sensitive to the imprint of atmospheric transport on XCO2 observations.

  13. Importance of Local and Regional Scales in Shaping Mycobacterial Abundance in Freshwater Lakes.

    PubMed

    Roguet, Adélaïde; Therial, Claire; Catherine, Arnaud; Bressy, Adèle; Varrault, Gilles; Bouhdamane, Lila; Tran, Viet; Lemaire, Bruno J; Vincon-Leite, Brigitte; Saad, Mohamed; Moulin, Laurent; Lucas, Françoise S

    2018-05-01

    Biogeographical studies considering the entire bacterial community may underestimate mechanisms of bacterial assemblages at lower taxonomic levels. In this context, the study aimed to identify factors affecting the spatial and temporal dynamic of the Mycobacterium, a genus widespread in aquatic ecosystems. Nontuberculous mycobacteria (NTM) density variations were quantified in the water column of freshwater lakes at the regional scale (annual monitoring of 49 lakes in the Paris area) and at the local scale (2-year monthly monitoring in Créteil Lake) by real-time quantitative PCR targeting the atpE gene. At the regional scale, mycobacteria densities in water samples ranged from 6.7 × 10 3 to 1.9 × 10 8 genome units per liter. Density variations were primarily explained by water pH, labile iron, and dispersal processes through the connection of the lakes to a river. In Créteil Lake, no spatial variation of mycobacterial densities was noticed over the 2-year monthly survey, except after large rainfall events. Indeed, storm sewer effluents locally and temporarily increased NTM densities in the water column. The temporal dynamic of the NTM densities in Créteil Lake was associated with suspended solid concentrations. No clear seasonal variation was noticed despite a shift in NTM densities observed over the 2012-2013 winter. Temporal NTM densities fluctuations were well predicted by the neutral community model, suggesting a random balance between loss and gain of mycobacterial taxa within Créteil Lake. This study highlights the importance of considering multiple spatial scales for understanding the spatio-temporal dynamic of bacterial populations in natural environments.

  14. Modeling molecular hydrogen emission in M dwarf exoplanetary systems

    NASA Astrophysics Data System (ADS)

    Evonosky, William; France, Kevin; Kruczek, Nick E.; Youngblood, Allison; Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanet host Stars (MUSCLES)

    2017-01-01

    Exoplanets orbiting low-mass stars are prime candidates for atmospheric characterization due to their astronomical abundance and short orbital periods. These planets orbit stars that are often more active than main sequence solar-type stars. They are exposed to differing levels of ultraviolet radiation which can cause traditional “biosignature” gases to be generated abiotically, potentially causing false-positive identifications of life. We modeled the recently discovered molecular hydrogen emission in the ultraviolet spectra (1350 - 1650 Å) as arising from the stellar surface, excited by radiation generated in the upper chromosphere. The model was compared with observed hydrogen emission from the “Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanet host Stars” (MUSCLES) survey by conducting a grid search and implementing a chi-squared minimization routine. We considered only progressions from the [1, 4] and [1, 7] first excited electronic levels. Our modeling procedure varied the atomic hydrogen column density (in the chromosphere) as well as the photospheric molecular hydrogen column density and temperature. The model required as an input a reconstructed intrinsic Lyman α profile which served as the pumping radiation for the molecular hydrogen. We found that an atomic hydrogen column density of log10N(H I) = 14.13 ± 0.16 cm-2 represents a breaking point above which there is not enough Lyman α flux available to excite a significant molecular hydrogen population into the [1, 7] state. We also present H2 temperatures which may suggest that star spots on low mass stars persist longer, and encompass more area than star spots on solar-type stars.

  15. Modeling Molecular Hydrogen Emission in M-Dwarf Exoplanetary Systems

    NASA Astrophysics Data System (ADS)

    Evonosky, W. R.; France, K.; Kruczek, N.; Youngblood, A.

    2016-12-01

    Exoplanets orbiting low-mass stars are prime candidates for atmospheric characterization due to their astronomical abundance and short orbital periods. These planets orbit stars that are often more active than main sequence solar-type stars. They are exposed to differing levels of ultraviolet radiation which can cause traditional "biosignature" gases to be generated abiotically, potentially causing false-positive identifications of life. We modeled the recently discovered molecular hydrogen emission in the ultraviolet spectra (1350 - 1650 Å) as arising from the stellar surface, excited by radiation generated in the upper chromosphere. The model was compared with observed hydrogen emission from the "Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanet host Stars" (MUSCLES) survey by conducting a grid search and implementing a chi-squared minimization routine. We considered only progressions from the [1, 4] and [1, 7] first excited electronic levels. Our modeling procedure varied the atomic hydrogen column density (in the chromosphere) as well as the photospheric molecular hydrogen column density and temperature. The model required as an input a reconstructed intrinsic Lyman α profile which served as the pumping radiation for the molecular hydrogen. We found that an atomic hydrogen column density of log10N(H I) = 14.13 ± 0.16 cm-2 represents a breaking point above which there is not enough Lyman α flux available to excite a significant molecular hydrogen population into the [1, 7] state. We also present H2 temperatures which may suggest that star spots on low mass stars persist longer, and encompass more area than star spots on solar-type stars.

  16. Long Carbon Chains in the Warm Carbon-chain-chemistry Source L1527: First Detection of C7H in Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi

    2017-09-01

    Long carbon-chain molecules were searched for toward the low-mass star-forming region L1527, which is a prototypical source of warm carbon-chain chemistry (WCCC), using the 100 m Green Bank Telescope. Long carbon-chain molecules, C7H (2Π1/2), C6H (2Π3/2 and 2Π1/2), CH3C4H, and C6H2 (cumulene carbene, CCCCCCH2), and cyclic species of C3H and C3H2O were detected. In particular, C7H was detected for the first time in molecular clouds. The column density of C7H is determined to be 6 × 1010 cm-2. The column densities of the carbon-chain molecules including CH3C4H and C6H in L1527 relative to those in the starless dark cloud Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP) tend to be systematically lower for long carbon-chain lengths. However, the column densities of C7H and C6H2 do not follow this trend and are found to be relatively abundant in L1527. This result implies that these long carbon-chain molecules are remnants of the cold starless phase. The results—that both the remnants and WCCC products are observed toward L1527—are consistent with the suggestion that the protostar can also be born in the parent core at a relatively early stage in the chemical evolution.

  17. Dense clumps of ionized gas near Pi Scorpii, as revealed by the fine-structure excitation of N II

    NASA Technical Reports Server (NTRS)

    Bertoldi, Frank; Jenkins, Edward B.

    1992-01-01

    The column density and the emission of the ionized gas along the line of sight toward the B1 V + B2 V binary star Pi Sco are measured on the basis of the fine-structure absorption lines of the ground state N II. It is found that the bulk of this ionized gas must be clumped on a length scale of 0.025 pc, which is far smaller than the observed size of the diffuse H II region surrounding Pi Sco of about 6 pc. The observed column density of S III toward Pi Sco yields an upper limit on the distance of the absorbing, clumped gas from the star of less than about 0.02 pc, assuming that both the N II and S III absorption arise from the same gas. The possibility that the ionized gas originates from a photoevaporating circumstellar disk directly surrounding Pi Sco is excluded, since such a disk would have an unusual size of order 0.025 pc and would have had to survive for the estimated age of Pi Sco of 5-8 Myr. The derived mean density of the clumped gas is of order 40/cu cm, so that the gas is at a pressure that far exceeds the mean pressure in the H II region. It is concluded that the ionized gas could originate from evaporation flows off a cluster of compact neutral objects that evaporate due to the ionizing radiation of Pi Sco.

  18. Fluorescent H2 Emission Lines from the Reflection Nebula NGC 7023 Observed with IGRINS

    NASA Astrophysics Data System (ADS)

    Le, Huynh Anh N.; Pak, Soojong; Kaplan, Kyle; Mace, Gregory; Lee, Sungho; Pavel, Michael; Jeong, Ueejeong; Oh, Heeyoung; Lee, Hye-In; Chun, Moo-Young; Yuk, In-Soo; Pyo, Tae-Soo; Hwang, Narae; Kim, Kang-Min; Park, Chan; Sok Oh, Jae; Yu, Young Sam; Park, Byeong-Gon; Minh, Young Chol; Jaffe, Daniel T.

    2017-05-01

    We have analyzed the temperature, velocity, and density of H2 gas in NGC 7023 with a high-resolution near-infrared spectrum of the northwestern filament of the reflection nebula. By observing NGC 7023 in the H and K bands at R ≃ 45,000 with the Immersion GRating INfrared Spectrograph, we detected 68 H2 emission lines within the 1″ × 15″ slit. The diagnostic ratio of 2-1 S(1)/1-0 S(1) is 0.41-0.56. In addition, the estimated ortho-to-para ratio (OPR) is 1.63-1.82, indicating that the H2 emission transitions in the observed region arise mostly from gas excited by UV fluorescence. Gradients in the temperature, velocity, and OPR within the observed area imply motion of the photodissociation region (PDR) relative to the molecular cloud. In addition, we derive the column density of H2 from the observed emission lines and compare these results with PDR models in the literature covering a range of densities and incident UV field intensities. The notable difference between PDR model predictions and the observed data, in high rotational J levels of ν = 1, is that the predicted formation temperature for newly formed H2 should be lower than that of the model predictions. To investigate the density distribution, we combine pixels in 1″ × 1″ areas and derive the density distribution at the 0.002 pc scale. The derived gradient of density suggests that NGC 7023 has a clumpy structure, including a high clump density of ˜105 cm-3 with a size smaller than ˜5 × 10-3 pc embedded in lower-density regions of 103-104 cm-3.

  19. Relationship between the column density distribution and evolutionary class of molecular clouds as viewed by ATLASGAL

    NASA Astrophysics Data System (ADS)

    Abreu-Vicente, J.; Kainulainen, J.; Stutz, A.; Henning, Th.; Beuther, H.

    2015-09-01

    We present the first study of the relationship between the column density distribution of molecular clouds within nearby Galactic spiral arms and their evolutionary status as measured from their stellar content. We analyze a sample of 195 molecular clouds located at distances below 5.5 kpc, identified from the ATLASGAL 870 μm data. We define three evolutionary classes within this sample: starless clumps, star-forming clouds with associated young stellar objects, and clouds associated with H ii regions. We find that the N(H2) probability density functions (N-PDFs) of these three classes of objects are clearly different: the N-PDFs of starless clumps are narrowest and close to log-normal in shape, while star-forming clouds and H ii regions exhibit a power-law shape over a wide range of column densities and log-normal-like components only at low column densities. We use the N-PDFs to estimate the evolutionary time-scales of the three classes of objects based on a simple analytic model from literature. Finally, we show that the integral of the N-PDFs, the dense gas mass fraction, depends on the total mass of the regions as measured by ATLASGAL: more massive clouds contain greater relative amounts of dense gas across all evolutionary classes. Appendices are available in electronic form at http://www.aanda.org

  20. A search for interstellar pyrrole - Evidence that rings are less abundant than chains

    NASA Technical Reports Server (NTRS)

    Myers, P. C.; Thaddeus, P.; Linke, R. A.

    1980-01-01

    Searches for three transitions of pyrrole (C4H5N) give maximum column density = 3-10 x 10 to the 13th per sq cm in Sgr B2. This limit is more than 10 times lower than previous ring molecule limits, and is slightly lower than column densities of known interstellar molecules with from four to six heavy atoms.

  1. Controlled irrigation of a structured packing as a method for increasing the efficiency of liquid mixture separation in the distillation column

    NASA Astrophysics Data System (ADS)

    Pavlenko, A. N.; Zhukov, V. E.; Pecherkin, N. I.; Nazarov, A. D.; Li, X.; Li, H.; Gao, X.; Sui, H.

    2017-09-01

    The use of modern structured packing in the distillation columns allows much more even distribution of the liquid film over the packing surface, but it does not completely solve the problem of uniform distribution of flow parameters over the entire height of the packing. Negative stratification of vapor along the packing height caused by different densities of vapor mixture components and higher temperature in the lower part of the column leads to formation of large-scale maldistributions of temperature and mixture composition over the column cross-section even under the conditions of uniform irrigation of packing with liquid. In these experiments, the idea of compensatory action of liquid distributor on the large-scale maldistribution of mixture composition over the column cross-section was implemented. The experiments were carried out in the distillation column with the diameter of 0.9 m on 10 layers of the Mellapak 350Y packing with the total height of 2.1 m. The mixture of R-21 and R-114 was used as the working mixture. To irrigate the packing, the liquid distributorr with 126 independently controlled solenoid valves overlapping the holes with the diameter of 5 mm, specially designed by the authors, was used. Response of the column to the action of liquid distributor was observed in real time according to the indications of 3 groups of thermometers mounted in 3 different cross-sections of the column. The experiments showed that the minimal correction of the drip point pattern in the controlled liquid distributor can significantly affect the pattern of flow parameter distribution over the cross-section and height of the mass transfer surface and increase separation efficiency of the column within 20%.

  2. The anatomy of the Orion B giant molecular cloud: A local template for studies of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Pety, Jérôme; Guzmán, Viviana V.; Orkisz, Jan H.; Liszt, Harvey S.; Gerin, Maryvonne; Bron, Emeric; Bardeau, Sébastien; Goicoechea, Javier R.; Gratier, Pierre; Le Petit, Franck; Levrier, François; Öberg, Karin I.; Roueff, Evelyne; Sievers, Albrecht

    2017-01-01

    Context. Molecular lines and line ratios are commonly used to infer properties of extra-galactic star forming regions. The new generation of millimeter receivers almost turns every observation into a line survey. Full exploitation of this technical advancement in extra-galactic study requires detailed bench-marking of available line diagnostics. Aims: We aim to develop the Orion B giant molecular cloud (GMC) as a local template for interpreting extra-galactic molecular line observations. Methods: We use the wide-band receiver at the IRAM-30 m to spatially and spectrally resolve the Orion B GMC. The observations cover almost 1 square degree at 26'' resolution with a bandwidth of 32 GHz from 84 to 116 GHz in only two tunings. Among the mapped spectral lines are the , , C18O, C17O, HCN, HNC, , C2H, HCO+, N2H+(1-0), and , , SiO, c - C3H2, CH3OH (2-1) transitions. Results: We introduce the molecular anatomy of the Orion B GMC, including relationships between line intensities and gas column density or far-UV radiation fields, and correlations between selected line and line ratios. We also obtain a dust-traced gas mass that is less than approximately one third the CO-traced mass, using the standard XCO conversion factor. The presence of over-luminous CO can be traced back to the dependence of the CO intensity on UV illumination. As a matter of fact, while most lines show some dependence on the UV radiation field, CN and C2H are the most sensitive. Moreover, dense cloud cores are almost exclusively traced by N2H+. Other traditional high-density tracers, such as HCN(1-0), are also easily detected in extended translucent regions at a typical density of 500 H2 cm-3. In general, we find no straightforward relationship between line critical density and the fraction of the line luminosity coming from dense gas regions. Conclusions: Our initial findings demonstrate that the relationships between line (ratio) intensities and environment in GMCs are more complicated than often assumed. Sensitivity (I.e., the molecular column density), excitation, and, above all, chemistry contribute to the observed line intensity distributions, and they must be considered together when developing the next generation of extra-galactic molecular line diagnostics of mass, density, temperature, and radiation field.

  3. Radio and X-Ray Observations of SN 2006jd: Another Strongly Interacting Type IIn Supernova

    NASA Technical Reports Server (NTRS)

    Chandra, Poonam; Chevalier, Roger A.; Chugai, Nikolai; Fransson, Claes; Irwin, Christopher M.; Soderberg, Alicia M.; Chakraborti, Sayan; Immler, Stefan

    2012-01-01

    We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope and Expanded Very Large Array at X-ray wavelengths with Chandra, XMM-Newton and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density approximately 10(exp 6) per cubic meter at a radius r approximately 2 x 10(exp 16) centimeter, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r2 because of the slow evolution of the unabsorbed emission.

  4. The ISO Long Wavelength Spectrometer line spectrum of VY Canis Majoris and other oxygen-rich evolved stars

    NASA Astrophysics Data System (ADS)

    Polehampton, E. T.; Menten, K. M.; van der Tak, F. F. S.; White, G. J.

    2010-02-01

    Context. The far-infrared spectra of circumstellar envelopes around various oxygen-rich stars were observed using the ISO Long Wavelength Spectrometer (LWS). These have been shown to be spectrally rich, particularly in water lines, indicating a high H2O abundance. Aims: We have examined high signal-to-noise ISO LWS observations of the luminous supergiant star, VY CMa, with the aim of identifying all of the spectral lines. By paying particular attention to water lines, we aim to separate the lines due to other species, in particular, to prepare for forthcoming observations that will cover the same spectral range using Herschel PACS and at higher spectral resolution using Herschel HIFI and SOFIA. Methods: We have developed a fitting method to account for blended water lines using a simple weighting scheme to distribute the flux. We have used this fit to separate lines due to other species which cannot be assigned to water. We have applied this approach to several other stars which we compare with VY CMa. Results: We present line fluxes for the unblended H2O and CO lines, and present detections of several possible ν2=1 vibrationally excited water lines. We also identify blended lines of OH, one unblended and several blended lines of NH3, and one possible detection of H3O+. Conclusions: The spectrum of VY CMa shows a detection of emission from virtually every water line up to 2000 K above the ground state, as well as many additional higher energy and some vibrationally excited lines. A simple rotation diagram analysis shows large scatter (probably due to some optically thick lines). The fit gives a rotational temperature of 670+210-130 K, and lower limit on the water column density of (7.0±1.2) × 1019 cm-2. We estimate a CO column density ~100 times lower, showing that water is the dominant oxygen carrier. The other stars that we examined have similar rotation temperatures, but their H2O column densities are an order of magnitude lower (as are the mass loss rates). Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) with the participation of ISAS and NASA.Current address: Space Science Department, Rutherford Appleton Laboratory, UK

  5. Planck intermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alina, D.; Alves, M. I. R.; Aniano, G.; Armitage-Caplan, C.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fanciullo, L.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Sandri, M.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Zonca, A.

    2015-04-01

    Polarized emission observed by Planck HFI at 353 GHz towards a sample of nearby fields is presented, focusing on the statistics of polarization fractions p and angles ψ. The polarization fractions and column densities in these nearby fields are representative of the range of values obtained over the whole sky. We find that: (i) the largest polarization fractions are reached in the most diffuse fields; (ii) the maximum polarization fraction pmax decreases with column density NH in the more opaque fields with NH> 1021 cm-2; and (iii) the polarization fraction along a given line of sight is correlated with the local spatial coherence of the polarization angle. These observations are compared to polarized emission maps computed in simulations of anisotropic magnetohydrodynamical turbulence in which we assume a uniform intrinsic polarization fraction of the dust grains. We find that an estimate of this parameter may be recovered from the maximum polarization fraction pmax in diffuse regions where the magnetic field is ordered on large scales and perpendicular to the line of sight. This emphasizes the impact of anisotropies of the magnetic field on the emerging polarization signal. The decrease of the maximum polarization fraction with column density in nearby molecular clouds is well reproduced in the simulations, indicating that it is essentially due to the turbulent structure of the magnetic field: an accumulation of variously polarized structures along the line of sight leads to such an anti-correlation. In the simulations, polarization fractions are also found to anti-correlate with the angle dispersion function 𝒮. However, the dispersion of the polarization angle for a given polarization fraction is found to be larger in the simulations than in the observations, suggesting a shortcoming in the physical content of these numerical models. In summary, we find that the turbulent structure of the magnetic field is able to reproduce the main statistical properties of the dust polarization as observed in a variety of nearby clouds, dense cores excluded, and that the large-scale field orientation with respect to the line of sight plays a major role in the quantitative analysis of these statistical properties. Appendices are available in electronic form at http://www.aanda.org

  6. Volcanoes in the Classroom: Simulating an Eruption Column

    NASA Astrophysics Data System (ADS)

    Harpp, K. S.; Geist, D. J.; Koleszar, A. M.

    2005-12-01

    Few students have the opportunity to witness volcanic eruptions first hand. Analog models of eruptive processes provide ways for students to apply basic physical principles when field observations are not feasible. We describe a safe simulation of violent volcanic explosions, one that can be carried out simply and easily as a demonstration for specialized volcanology classes, introductory classes, and science outreach programs. Volcanic eruptions are fundamentally gas-driven phenomena. Depressurization of volatiles dissolved in magma during ascent is the driving force behind most explosive eruptions. We have developed a demonstration whereby the instructor can initiate a gas-driven eruption, which produces a dramatic but safe explosion and eruptive column. First, one pours liquid nitrogen into a weighted, plastic soda bottle, which is then sealed and placed into a trashcan filled with water. As the liquid nitrogen boils, the pressure inside the bottle increases until the seal fails, resulting in an explosion. The expansive force propels a column of water vertically, to 10 or more meters. Students can operate the demonstration themselves and carry out a sequence of self-designed variations, changing the vent size and viscosity of the "magma", for instance. They can also vary the material used as "tephra", studying the effects of projectile density, column height, and wind direction on tephra distribution. The physical measurements that students collect, such as column height and tephra radius, can be used as the basis for problem sets that explore the dynamics of eruption columns. Possible calculations include ejection velocity, the pressure needed to propel the water column, and average vesicularity of the "magma". Students can then compare their results to observations from real volcanic eruptions. We find this to be an exceedingly effective demonstration of gas-driven liquid explosions and one that is safe if done properly. [NOTE: Please do NOT attempt this demonstration without full, detailed instructions and safety precautions, see website resource below].

  7. Infrared observations and laboratory simulations of interstellar CH_4_ and SO_2_.

    NASA Astrophysics Data System (ADS)

    Boogert, A. C. A.; Schutte, W. A.; Helmich, F. P.; Tielens, A. G. G. M.; Wooden, D. H.

    1997-02-01

    Interstellar CH_4_ may consume a fair amount of the carbon budget in dense molecular clouds, but probably less than CO, CH_3_OH, and CO_2_. However, it can only be observed at wavelength regions in the infrared that are heavily affected by the earth atmosphere. With new space and airborne missions (e.g. ISO, SOFIA) in mind we have studied the near infrared absorption spectra of solid and gaseous CH_4_. We obtained laboratory spectra of the ν_4_ deformation mode (1302cm^-1^, 7.68μm) of solid CH_4_ in astrophysically relevant mixtures. We found that the peak position and width of this absorption band vary strongly as a function of molecular environment, compared to temperature and particle shape effects. Hence, observations of this feature will provide a powerful probe of the molecular composition of interstellar ices. Also the gas phase CH_4_ ro-vibrational spectrum of the same band has been calculated. Using observed physical conditions around the protostar W 33A, we show that unresolved gaseous CH_4_ lines are detectable (at the 2-5% level) at a resolution R>1000, when the column density N>=10^16^ cm^-2^. An astrophysically relevant molecule with a very strong transition in the same wavelength regime, is SO_2_. We studied the ν _3_ asymmetric stretching mode (1319 cm^-1^, 7.58 μm) of solid SO_2_ in several mixtures, revealing that the peak position, width and detailed profile of this band are very sensitive to the molecular environment. Besides probing the composition of ice mantles, observations of solid SO_2_ will provide important information on the sulfur budget locked up in grain mantles, which is currently poorly known. We compare the laboratory and calculated spectra of CH_4_ and SO_2_ with previously published ground based spectra and new airborne observations of young stellar objects in the 7-8μm region. W 33A, NGC 7538 : IRS1 and IRS9 show a feature near 7.68μm that is consistent with absorption by solid CH_4_ or the Q-branch of gaseous CH_4_. The column density of solid CH_4_ would be 0.3-4% of solid H_2_O, indicating that solid CH_4_ consumes 0.5+/-0.3% of the cosmic carbon abundance. A gaseous origin would imply a column density of at least this amount, being highly dependent on the assumed temperature of the absorbing gas. A second absorption feature is detected toward W 33A and NGC 7538 : IRS1 at 7.58 μm. The peak position and width of this feature are consistent with the ν_3_ mode of solid SO_2_ in a matrix of solid CH_3_OH or pure SO_2_. The derived column density is 0.1-1% of solid H_2_O, indicating that solid SO_2_ locks up 0.6-6% of the cosmic sulfur abundance. This study shows that 7-8μm spectroscopy of dense molecular clouds, using new airborne and space-based platforms, will provide valuable information on the composition of icy grain mantles and molecular cloud chemistry.

  8. Inverse Modeling of Texas NOx Emissions Using Space-Based and Ground-Based NO2 Observations

    NASA Technical Reports Server (NTRS)

    Tang, Wei; Cohan, D.; Lamsal, L. N.; Xiao, X.; Zhou, W.

    2013-01-01

    Inverse modeling of nitrogen oxide (NOx) emissions using satellite-based NO2 observations has become more prevalent in recent years, but has rarely been applied to regulatory modeling at regional scales. In this study, OMI satellite observations of NO2 column densities are used to conduct inverse modeling of NOx emission inventories for two Texas State Implementation Plan (SIP) modeling episodes. Addition of lightning, aircraft, and soil NOx emissions to the regulatory inventory narrowed but did not close the gap between modeled and satellite observed NO2 over rural regions. Satellitebased top-down emission inventories are created with the regional Comprehensive Air Quality Model with extensions (CAMx) using two techniques: the direct scaling method and discrete Kalman filter (DKF) with Decoupled Direct Method (DDM) sensitivity analysis. The simulations with satellite-inverted inventories are compared to the modeling results using the a priori inventory as well as an inventory created by a ground-level NO2 based DKF inversion. The DKF inversions yield conflicting results: the satellite based inversion scales up the a priori NOx emissions in most regions by factors of 1.02 to 1.84, leading to 3-55% increase in modeled NO2 column densities and 1-7 ppb increase in ground 8 h ozone concentrations, while the ground-based inversion indicates the a priori NOx emissions should be scaled by factors of 0.34 to 0.57 in each region. However, none of the inversions improve the model performance in simulating aircraft-observed NO2 or ground-level ozone (O3) concentrations.

  9. Inverse modeling of Texas NOx emissions using space-based and ground-based NO2 observations

    NASA Astrophysics Data System (ADS)

    Tang, W.; Cohan, D. S.; Lamsal, L. N.; Xiao, X.; Zhou, W.

    2013-11-01

    Inverse modeling of nitrogen oxide (NOx) emissions using satellite-based NO2 observations has become more prevalent in recent years, but has rarely been applied to regulatory modeling at regional scales. In this study, OMI satellite observations of NO2 column densities are used to conduct inverse modeling of NOx emission inventories for two Texas State Implementation Plan (SIP) modeling episodes. Addition of lightning, aircraft, and soil NOx emissions to the regulatory inventory narrowed but did not close the gap between modeled and satellite-observed NO2 over rural regions. Satellite-based top-down emission inventories are created with the regional Comprehensive Air Quality Model with extensions (CAMx) using two techniques: the direct scaling method and discrete Kalman filter (DKF) with decoupled direct method (DDM) sensitivity analysis. The simulations with satellite-inverted inventories are compared to the modeling results using the a priori inventory as well as an inventory created by a ground-level NO2-based DKF inversion. The DKF inversions yield conflicting results: the satellite-based inversion scales up the a priori NOx emissions in most regions by factors of 1.02 to 1.84, leading to 3-55% increase in modeled NO2 column densities and 1-7 ppb increase in ground 8 h ozone concentrations, while the ground-based inversion indicates the a priori NOx emissions should be scaled by factors of 0.34 to 0.57 in each region. However, none of the inversions improve the model performance in simulating aircraft-observed NO2 or ground-level ozone (O3) concentrations.

  10. Inverse modeling of Texas NOx emissions using space-based and ground-based NO2 observations

    NASA Astrophysics Data System (ADS)

    Tang, W.; Cohan, D.; Lamsal, L. N.; Xiao, X.; Zhou, W.

    2013-07-01

    Inverse modeling of nitrogen oxide (NOx) emissions using satellite-based NO2 observations has become more prevalent in recent years, but has rarely been applied to regulatory modeling at regional scales. In this study, OMI satellite observations of NO2 column densities are used to conduct inverse modeling of NOx emission inventories for two Texas State Implementation Plan (SIP) modeling episodes. Addition of lightning, aircraft, and soil NOx emissions to the regulatory inventory narrowed but did not close the gap between modeled and satellite observed NO2 over rural regions. Satellite-based top-down emission inventories are created with the regional Comprehensive Air Quality Model with extensions (CAMx) using two techniques: the direct scaling method and discrete Kalman filter (DKF) with Decoupled Direct Method (DDM) sensitivity analysis. The simulations with satellite-inverted inventories are compared to the modeling results using the a priori inventory as well as an inventory created by a ground-level NO2 based DKF inversion. The DKF inversions yield conflicting results: the satellite-based inversion scales up the a priori NOx emissions in most regions by factors of 1.02 to 1.84, leading to 3-55% increase in modeled NO2 column densities and 1-7 ppb increase in ground 8 h ozone concentrations, while the ground-based inversion indicates the a priori NOx emissions should be scaled by factors of 0.34 to 0.57 in each region. However, none of the inversions improve the model performance in simulating aircraft-observed NO2 or ground-level ozone (O3) concentrations.

  11. 40 CFR 98.398 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GREENHOUSE GAS REPORTING Suppliers of Petroleum Products § 98.398 Definitions. All terms used in this subpart... MM-1 Table MM-1 to Subpart MM of Part 98—Default Factors for Petroleum Products and Natural Gas Liquids 1 2 Products Column A: density(metric tons/bbl) Column B:carbon share (% of mass) Column C...

  12. Observations of temperature rise during electron cyclotron heating application in Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Biewer, T. M.; Bigelow, T.; Caneses, J. F.; Diem, S. J.; Rapp, J.; Reinke, M.; Kafle, N.; Ray, H. B.; Showers, M.

    2017-10-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at ORNL utilizes a variety of power systems to generate and deliver a high heat flux plasma (1 MW/m2 for these discharges) onto the surface of material targets. In the experiments described here, up to 120 kW of 13.56 MHz ``helicon'' waves are combined with 20 kW of 28 GHz microwaves to produce Deuterium plasma discharges. The 28 GHz waves are launched in a region of the device where the magnetic field is axially varying near 0.8 T, resulting in the presence of a 2nd harmonic electron cyclotron heating (ECH) resonance layer that transects the plasma column. The electron density and temperature profiles are measured using a Thomson scattering (TS) diagnostic, and indicate that the electron density is radially peaked. In the core of the plasma column the electron density is higher than the cut-off density (0.9x1019 m-3) for ECH waves to propagate and O-X-B mode conversion into electron Bernstien waves (EBW) is expected. TS measurements indicate electron temperature increases during 28 GHz wave application, rising (from 5 eV to 20 eV) as the neutral Deuterium pressure is reduced below 1 mTorr. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  13. Atmospheric blocking as a traffic jam in the jet stream

    NASA Astrophysics Data System (ADS)

    Nakamura, N.; Huang, S. Y.

    2017-12-01

    It is demonstrated using the ERA-Interim product that synoptic to intraseasonal variabilities of extratropical circulation in the boreal storm track regions are strongly affected by the zonal convergence of the column-integrated eastward flux of local wave activity (LWA). In particular, from the multi-year daily samples of LWA fluxes, we find that the wintertime zonal LWA flux in the jet exit regions tends to maximize for an intermediate value of column-averaged LWA. This is because an increasing LWA decelerates the zonal flow, eventually weakening the eastward advection of LWA. From theory we argue that large wave events on the decreasing side of the flux curve with increasing LWA cannot be maintained as a stable steady state. Consistent with this argument, observed states corresponding to that side of flux curve often exhibit local wave breaking and blocking events. A close parallelism exists for the traffic flow problem, in which the traffic flux (traffic density times traffic speed) is often observed to maximize for an intermediate value of traffic density. This is because the traffic speed is controlled not only by the imposed speed limit but also by the traffic density — an increasingly heavy traffic slows down the flow naturally and eventually decreases the flux. Once the flux starts to decrease with an increasing traffic density, a traffic jam kicks in suddenly (Lighthill and Whitham 1955, Richards 1956). The above idea is demonstrated by a simple conceptual model based on the equivalent barotropic PV contour design (Nakamura and Huang 2017, JAS), which predicts a threshold of blocking onset. The idea also suggests that the LWA that gives the `flux capacity,' i.e., the maximum LWA flux at a given location, is a useful predictor of local wave breaking/block formation.

  14. An A-train climatology of extratropical cyclone clouds and precipitation

    NASA Astrophysics Data System (ADS)

    Naud, C. M.; Booth, J.; Del Genio, A. D.; van den Heever, S. C.; Posselt, D. J.

    2016-12-01

    It is demonstrated using the ERA-Interim product that synoptic to intraseasonal variabilities of extratropical circulation in the boreal storm track regions are strongly affected by the zonal convergence of the column-integrated eastward flux of local wave activity (LWA). In particular, from the multi-year daily samples of LWA fluxes, we find that the wintertime zonal LWA flux in the jet exit regions tends to maximize for an intermediate value of column-averaged LWA. This is because an increasing LWA decelerates the zonal flow, eventually weakening the eastward advection of LWA. From theory we argue that large wave events on the decreasing side of the flux curve with increasing LWA cannot be maintained as a stable steady state. Consistent with this argument, observed states corresponding to that side of flux curve often exhibit local wave breaking and blocking events. A close parallelism exists for the traffic flow problem, in which the traffic flux (traffic density times traffic speed) is often observed to maximize for an intermediate value of traffic density. This is because the traffic speed is controlled not only by the imposed speed limit but also by the traffic density — an increasingly heavy traffic slows down the flow naturally and eventually decreases the flux. Once the flux starts to decrease with an increasing traffic density, a traffic jam kicks in suddenly (Lighthill and Whitham 1955, Richards 1956). The above idea is demonstrated by a simple conceptual model based on the equivalent barotropic PV contour design (Nakamura and Huang 2017, JAS), which predicts a threshold of blocking onset. The idea also suggests that the LWA that gives the `flux capacity,' i.e., the maximum LWA flux at a given location, is a useful predictor of local wave breaking/block formation.

  15. CHANGE OF MAGNETIC FIELD-GAS ALIGNMENT AT THE GRAVITY-DRIVEN ALFVÉNIC TRANSITION IN MOLECULAR CLOUDS: IMPLICATIONS FOR DUST POLARIZATION OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Che-Yu; King, Patrick K.; Li, Zhi-Yun

    Diffuse striations in molecular clouds are preferentially aligned with local magnetic fields, whereas dense filaments tend to be perpendicular to them. When and why this transition occurs remain uncertain. To explore the physics behind this transition, we compute the histogram of relative orientation (HRO) between the density gradient and the magnetic field in three-dimensional magnetohydrodynamic (MHD) simulations of prestellar core formation in shock-compressed regions within giant molecular clouds. We find that, in the magnetically dominated (sub-Alfvénic) post-shock region, the gas structure is preferentially aligned with the local magnetic field. For overdense sub-regions with super-Alfvénic gas, their elongation becomes preferentially perpendicularmore » to the local magnetic field. The transition occurs when self-gravitating gas gains enough kinetic energy from the gravitational acceleration to overcome the magnetic support against the cross-field contraction, which results in a power-law increase of the field strength with density. Similar results can be drawn from HROs in projected two-dimensional maps with integrated column densities and synthetic polarized dust emission. We quantitatively analyze our simulated polarization properties, and interpret the reduced polarization fraction at high column densities as the result of increased distortion of magnetic field directions in trans- or super-Alfvénic gas. Furthermore, we introduce measures of the inclination and tangledness of the magnetic field along the line of sight as the controlling factors of the polarization fraction. Observations of the polarization fraction and angle dispersion can therefore be utilized in studying local magnetic field morphology in star-forming regions.« less

  16. Metal concentrations in the upper atmosphere during meteor showers

    NASA Astrophysics Data System (ADS)

    Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.

    2010-02-01

    Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.

  17. Metal concentrations in the upper atmosphere during meteor showers

    NASA Astrophysics Data System (ADS)

    Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.

    2009-09-01

    Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a meteor shower. Time-dependent mass influx rates are derived for all the major meteor showers using published estimates of mass density and temporal profiles of meteor showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.

  18. A polarized fast radio burst at low Galactic latitude

    NASA Astrophysics Data System (ADS)

    Petroff, E.; Burke-Spolaor, S.; Keane, E. F.; McLaughlin, M. A.; Miller, R.; Andreoni, I.; Bailes, M.; Barr, E. D.; Bernard, S. R.; Bhandari, S.; Bhat, N. D. R.; Burgay, M.; Caleb, M.; Champion, D.; Chandra, P.; Cooke, J.; Dhillon, V. S.; Farnes, J. S.; Hardy, L. K.; Jaroenjittichai, P.; Johnston, S.; Kasliwal, M.; Kramer, M.; Littlefair, S. P.; Macquart, J. P.; Mickaliger, M.; Possenti, A.; Pritchard, T.; Ravi, V.; Rest, A.; Rowlinson, A.; Sawangwit, U.; Stappers, B.; Sullivan, M.; Tiburzi, C.; van Straten, W.; ANTARES Collaboration; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Roensch, K.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; van Elewyck, V.; Vivolo, D.; Vizzoca, A.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Tjus, J. Becker; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'c.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; Reyes, R. De Los; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schulz, A.; Schüssler, F.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; Walt, D. J. Van Der; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2017-08-01

    We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 ± 0.8 pc cm-3, a pulse duration of 2.8^{+1.2}_{-0.5} ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7^{+0.2}_{-0.1} Jy. The FRB originated at a Galactic longitude and latitude of 24.66°, 5.28° and 25° away from the Galactic Center. The burst was found to be 43 ± 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m-2 (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, γ-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.

  19. Arcsecond Resolution Mapping of Sulfur Dioxide Emission in the Circumstellar Envelope of VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Fu, Roger R.; Moullet, Arielle; Patel, Nimesh A.; Biersteker, John; Derose, Kimberly L.; Young, Kenneth H.

    2012-02-01

    We report Submillimeter Array observations of SO2 emission in the circumstellar envelope (CSE) of the red supergiant VY Canis Majoris, with an angular resolution of ≈1''. SO2 emission appears in three distinct outflow regions surrounding the central continuum peak emission that is spatially unresolved. No bipolar structure is noted in the sources. A fourth source of SO2 is identified as a spherical wind centered at the systemic velocity. We estimate the SO2 column density and rotational temperature assuming local thermal equilibrium (LTE) as well as perform non-LTE radiative transfer analysis using RADEX. Column densities of SO2 are found to be ~1016 cm-2 in the outflows and in the spherical wind. Comparison with existing maps of the two parent species OH and SO shows the SO2 distribution to be consistent with that of OH. The abundance ratio f_{SO_{2}}/f_{SO} is greater than unity for all radii larger than 3 × 1016 cm. SO2 is distributed in fragmented clumps compared to SO, PN, and SiS molecules. These observations lend support to specific models of circumstellar chemistry that predict f_{SO_{2}}/f_{SO}>1 and may suggest the role of localized effects such as shocks in the production of SO2 in the CSE.

  20. Ratios of molecular hydrogen line intensities in shocked gas - Evidence for cooling zones

    NASA Technical Reports Server (NTRS)

    Brand, P. W. J. L.; Moorhouse, A.; Bird, M.; Burton, M. G.; Geballe, T. R.

    1988-01-01

    Column densities of molecular hydrogen have been calculated from 19 infrared vibration-rotation and pure rotational line intensities measured at peak 1 of the Orion molecular outflow. The run of column density with energy level is similar to a simple coolng zone model of the line-emitting region, but is not well fitted by predictions of C-shock models current in the literature.

  1. International Space Station External Contamination Status

    NASA Technical Reports Server (NTRS)

    Mikatarian, Ron; Soares, Carlos

    2000-01-01

    PResentation slides examine external contamination requirements; International Space Station (ISS) external contamination sources; ISS external contamination sensitive surfaces; external contamination control; external contamination control for pre-launch verification; flight experiments and observations; the Space Shuttle Orbiter waste water dump, materials outgassing, active vacuum vents; example of molecular column density profile, modeling and analysis tools; sources of outgassing induced contamination analyzed to date, quiescent sources, observations on optical degradation due to induced external contamination in LEO; examples of typical contaminant and depth profiles; and status of the ISS system, material outgassing, thruster plumes, and optical degradation.

  2. Observations of SO in dark and molecular clouds

    NASA Technical Reports Server (NTRS)

    Rydbeck, O. E. H.; Hjalmarson, A.; Rydbeck, G.; Ellder, J.; Kollberg, E.; Irvine, W. M.

    1980-01-01

    The 1(0)-0(1) transition of SO at 30 GHz has been observed in several sources, including the first detection of sulfur monoxide in cold dark clouds without apparent internal energy sources. The SO transition appears to be an excellent tracer of structure in dark clouds, and the data support suggestions that self-absorption is important in determining emission profiles in such regions for large line-strength transitions. Column densities estimated from a comparison of the results for the two isotopic species indicate a high fractional abundance of SO in dark clouds.

  3. Cathode-constriction and column-constriction in high current vacuum arcs subjected to an axial magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Zaiqin; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua

    2018-04-01

    The influence of the applied axial magnetic field on the current density distribution in the arc column and electrodes is intensively studied. However, the previous results only provide a qualitative explanation, which cannot quantitatively explain a recent experimental data on anode current density. The objective of this paper is to quantitatively determine the current constriction subjected to an axial magnetic field in high-current vacuum arcs according to the recent experimental data. A magnetohydrodynamic model is adopted to describe the high current vacuum arcs. The vacuum arc is in a diffuse arc mode with an arc current ranged from 6 kArms to 14 kArms and an axial magnetic field ranged from 20 mT to 110 mT. By a comparison of the recent experimental work of current density distribution on the anode, the modelling results show that there are two types of current constriction. On one hand, the current on the cathode shows a constriction, and this constriction is termed as the cathode-constriction. On the other hand, the current constricts in the arc column region, and this constriction is termed as the column-constriction. The cathode boundary is of vital importance in a quantitative model. An improved cathode constriction boundary is proposed. Under the improved boundary, the simulation results are in good agreement with the recent experimental data on the anode current density distribution. It is demonstrated that the current density distribution at the anode is sensitive to that at the cathode, so that measurements of the anode current density can be used, in combination with the vacuum arc model, to infer the cathode current density distribution.

  4. Results of Detailed Modeling of the Narrow-Line Region of Seyfert Galaxies

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.

    1996-01-01

    We present model line profiles of [O II] lambda3727, [Ne III] lambda3869, [O I] lambda5007, [Fe VII] lambda6087, [Fe X] lambda6374, [O I] lambda6300, H(alpha) lambda6563, and [S 2] lambda6731. The profiles presented here illustrate explicitly the pronounced effects that collisional de-excitation, and that spatial variations in both the ionization parameter and cloud column density, have on Narrow-Line Region (NLR) model profiles. The above effects were included only qualitatively in a previous analytical treatment by Moore and Cohen. By making a direct correspondence between these model profiles and the analytical model profiles of Moore and Cohen, and by comparing with the observed profiles presented in a companion paper and also with those presented elsewhere in the literature, we strengthen some of the conclusions of Moore and Cohen. Most notably, we argue for constant ionization parameter, uniformly accelerated outflow of clouds that are individually stratified in ionization, and the interpretation of emission-line width correlations with ionization potential as a column density effect. For comparison with previous observational studies, such as our own in a companion paper, we also calculate profile parameters for some of the models, and we present and discuss the resulting line width correlations with critical density (n(sub cr)) and Ionization Potential (IP). Because the models we favor are those that produce extended profile wings as observed in high spectral resolution studies, the line width correlations of our favoured models are of particular interest. Line width correlations with n(sub cr) and/or IP result only if the width parameter is more sensitive to extended profile wings than is the Full Width at Half-Maximum (FWHM). Correlations between FWHM and n(sub cr) and/or IP result only after convolving the model profiles with a broad instrumental profile that simulates the lower spectral resolution used in early observational studies. The model in agreement with the greatest number of observational considerations has electron density decreasing outward from n(sub e) approx. equals 10(exp 6)/cu cm to n(sub e) approx. equals 10(exp 2)/cu cm and, due to collisional de-excitation effects in the lowest velocity clouds, it generates broad flat-topped profile peaks in the lines of lowest critical density (e.g., [O II] lambda3727 and [S II] lambda(lambda)6716, 6731). Because the observed profile peaks of both low and high critical density lines are often very similar, our favored model requires a contribution to NLR emission-line spectra from low-velocity, low-density, and low-ionization gas not included in the model NLR.

  5. Coma dust scattering concepts applied to the Rosetta mission

    NASA Astrophysics Data System (ADS)

    Fink, Uwe; Rinaldi, Giovanna

    2015-09-01

    This paper describes basic concepts, as well as providing a framework, for the interpretation of the light scattered by the dust in a cometary coma as observed by instruments on a spacecraft such as Rosetta. It is shown that the expected optical depths are small enough that single scattering can be applied. Each of the quantities that contribute to the scattered intensity is discussed in detail. Using optical constants of the likely coma dust constituents, olivine, pyroxene and carbon, the scattering properties of the dust are calculated. For the resulting observable scattering intensities several particle size distributions are considered, a simple power law, power laws with a small particle cut off and a log-normal distributions with various parameters. Within the context of a simple outflow model, the standard definition of Afρ for a circular observing aperture is expanded to an equivalent Afρ for an annulus and specific line-of-sight observation. The resulting equivalence between the observed intensity and Afρ is used to predict observable intensities for 67P/Churyumov-Gerasimenko at the spacecraft encounter near 3.3 AU and near perihelion at 1.3 AU. This is done by normalizing particle production rates of various size distributions to agree with observed ground based Afρ values. Various geometries for the column densities in a cometary coma are considered. The calculations for a simple outflow model are compared with more elaborate Direct Simulation Monte Carlo Calculation (DSMC) models to define the limits of applicability of the simpler analytical approach. Thus our analytical approach can be applied to the majority of the Rosetta coma observations, particularly beyond several nuclear radii where the dust is no longer in a collisional environment, without recourse to computer intensive DSMC calculations for specific cases. In addition to a spherically symmetric 1-dimensional approach we investigate column densities for the 2-dimensional DSMC model on the day and night side of the comet. Our calculations are also applied to estimates of the dust particle densities and flux which are useful for the in-situ experiments on Rosetta.

  6. Low density of neutral hydrogen and helium in the local interstellar medium: Extreme Ultraviolet Explorer photometry of the Lyman continuum of the hot white dwarfs MCT 0501-2858, MCT 0455-2812, HZ 43, and GD 153

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane; Dupuis, Jean; Bowyer, Stuart; Fontaine, Gilles; Wiercigroch, Alexandria; Jelinsky, Patrick; Wesemael, Francois; Malina, Roger

    1994-01-01

    The first comprehensive sky survey of the extreme ultraviolet (EUV) spectral range performed by the Extreme Ultraviolet Explorer (EUVE) has uncovered a handful of very bright sources at wavelengths longer than the He I 504 A photoionization edge. Among these objects are four white dwarfs with exceptionally low interstellar medium (ISM) column densities along the line of sight. Analysis of EUV photometry of the He-rich DO white dwarf MCT 0501-2858 and the H-rich DA white dwarf MCT 0455-2812 along one line of sight and of the DA white dwarfs HZ 43 and GD 153 near the north Galactic pole indicates that the overall minimum column density of the neutral material centered on the Sun is N(H I) = 0.5-1.0 x 10(exp 18)/sq cm. In the case of MCT 0501-2858, EUV photometric measurements provide a clear constraint to the effective temperature (60,000-70,000 K). Given these neutral hydrogen columns, the actual contribution to the density of neutral species from the immediate solar environment (the 'local fluff') would only cover a distance of approximately equals 2-3 pc (assuming an average density n(H I) = 0.1/cu cm) leaving these lines of sight almost entirely within the hot phase of the ISM. A preliminary examination of the complete EUVE long-wavelength survey indicates that these lines of sight are exceptional and set a minimum column density in the solar environment.

  7. The puzzling spectrum of HD 94509. Sounding out the extremes of Be shell star spectral morphology

    NASA Astrophysics Data System (ADS)

    Cowley, C. R.; Przybilla, N.; Hubrig, S.

    2015-06-01

    Context. The spectral features of HD 94509 are highly unusual, adding an extreme to the zoo of Be and shell stars. The shell dominates the spectrum, showing lines typical for spectral types mid-A to early-F, while the presence of a late/mid B-type central star is indicated by photospheric hydrogen line wings and helium lines. Numerous metallic absorption lines have broad wings but taper to narrow cores. They cannot be fit by Voigt profiles. Aims: We describe and illustrate unusual spectral features of this star, and make rough calculations to estimate physical conditions and abundances in the shell. Furthermore, the central star is characterized. Methods: We assume mean conditions for the shell. An electron density estimate is made from the Inglis-Teller formula. Excitation temperatures and column densities for Fe i and Fe ii are derived from curves of growth. The neutral H column density is estimated from high Paschen members. The column densities are compared with calculations made with the photoionization code Cloudy. Atmospheric parameters of the central star are constrained employing non-LTE spectrum synthesis. Results: Overall chemical abundances are close to solar. Column densities of the dominant ions of several elements, as well as excitation temperatures and the mean electron density are well accounted for by a simple model. Several features, including the degree of ionization, are less well described. Conclusions: HD 94509 is a Be star with a stable shell, close to the terminal-age main sequence. The dynamical state of the shell and the unusually shaped, but symmetric line profiles, require a separate study.

  8. Mini-columns for Conducting Breakthrough Experiments. Design and Construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas

    Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or K d values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.

  9. Biases in Long-term NO2 Averages Inferred from Satellite Observations Due to Cloud Selection Criteria

    NASA Technical Reports Server (NTRS)

    Geddes, Jeffrey A.; Murphy, Jennifer G.; O'Brien, Jason M.; Celarier, Edward A.

    2012-01-01

    Retrievals of atmospheric trace gas column densities from space are compromised by the presence of clouds, requiring most studies to exclude observations with significant cloud fractions in the instrument's field of view. Using NO2 observations at three ground stations representing urban, suburban, and rural environments, and tropospheric vertical column densities measured by the Ozone Monitoring Instrument (OMI) over each site, we show that the observations from space represent monthly averaged ground-level pollutant conditions well (R=0.86) under relatively cloud-free conditions. However, by analyzing the ground-level data and applying the OMI cloud fraction as a filter, we show there is a significant bias in long-term averaged NO2 as a result of removing the data during cloudy conditions. For the ground-based sites considered in this study, excluding observations on days when OMI-derived cloud fractions were greater than 0.2 causes 12:00-14:00 mean summer mixing ratios to be underestimated by 12%+/-6%, 20%+/-7%, and 40%+/-10% on average (+/-1 standard deviation) at the urban, suburban, and rural sites respectively. This bias was investigated in particular at the rural site, a region where pollutant transport is the main source of NO2, and where longterm observations of NOy were also available. Evidence of changing photochemical conditions and a correlation between clear skies and the transport of cleaner air masses play key roles in explaining the bias. The magnitude of a bias is expected to vary from site to site depending on meteorology and proximity to NOx sources, and decreases when longer averaging times of ground station data (e.g. 24-h) are used for the comparison.

  10. Measuring the Infrared Spectrum of the Transiting Extrasolar Planet HD 209458b

    NASA Astrophysics Data System (ADS)

    Richardson, L. Jeremy; Cho, James; Deming, Drake; Hansen, Brad; Harrington, Joseph; Menou, Kristen; Seager, Sara

    2005-06-01

    Researchers from two independent groups recently detected the first infrared signal from an extrasolar planet. Deming et. al. (2005a) detected the 24-micron flux density of HD 209458b using MIPS at secondary eclipse, and Charbonneau et. al. (2005) detected the infrared signal of TrES-1 using IRAC at 4.5 and 8 microns. These results have dramatically demonstrated the ability of Spitzer to characterize extrasolar planets. We propose to build on these observations with IRS spectroscopy of HD 209458b from 7.4 to 14.5 microns. By observing the system both during and outside of secondary eclipse, we will derive the planetary spectrum from the change in the shape of the continuum spectrum in combined light. These observations will lead directly to a measurement of the temperature gradient in the planetary atmosphere and the column density of water above the clouds, and we will search for variability due to atmospheric dynamics.

  11. Probing 67P/Churyumov-Gerasimenko's Electron Environment Through Ultraviolet Emission by Rosetta Alice Observations

    NASA Astrophysics Data System (ADS)

    Schindhelm, Eric; Noonan, John; Keeney, Brian A.; Broiles, Thomas; Bieler, Andre; A'Hearn, Michael F.; Bertaux, Jean-Loup; Feaga, Lori M.; Feldman, Paul D.; Parker, Joel Wm.; Steffl, Andrew Joseph; Stern, S. Alan; Weaver, Harold A.

    2016-10-01

    The Alice Far-Ultraviolet (FUV) Spectrograph onboard ESA's Rosetta spacecraft has observed the coma of comet 67P/Churyumov-Gerasimenko from far approach in summer 2014 until the end of mission in September 2016. We present an overall perspective of the bright FUV emission lines (HI 1026 Å, OI 1302/1305/1306 Å multiplet, OI] 1356 Å, CO 1510 (1-0) Å, and CI 1657 Å) above the sunward hemisphere, detailing their spatial extent and brightness as a function of time and the heliocentric distance of the comet. We compare our observed gas column densities derived using electron temperatures and densities from the Ion Electron Sensor (IES) with those derived using the Inner Coma Environment Simulator (ICES) models in periods when electron-impact excited emission dominates over solar fluorescence emission. The electron population is characterized with 2 three-dimensional kappa functions, one dense and warm, one rarefied and hot.

  12. Characterising the Structure of Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Wong, Graeme Francis

    The Interstellar Medium contains the building blocks of matter in our Galaxy and plays a vital role in the evolution of low mass star formation. The poorly studied molecular clouds of Lupus and Chamaeleon contain ongoing low mass star formation, and are in close proximity to our Solar System. While on the other hand the Carina molecular cloud, poorly observed in radio wavelength, is an active region of star formation and host some of the brightest stars known within our Galaxy. Using tracers like carbon monoxide, atomic neutral carbon, and ammonia, we are able to measure the temperature and density of the gas cloud. This information allows us to understand the initial conditions of the formation of low mass stars. Observations conducted with the 22-m Mopra radio telescope (located at the edge of the Warrumbungle Mountains near Coonabarabran), in the Carbon monoxide (CO) isotopologues 12 CO, 13 CO, C17O, and C18O (1-0) transitions, have mapped the Chamaeleon II cloud, an intermediate mass cloud within the Chamaeleon. Through the sub-arcminute maps, comparisons have been made to previous low resolution (2.5') maps which have been to resolve some of the dense clumps previously identified. Optical depth, column density, and excitation temperature derived from the CO maps, are consistent with previous results. A detailed comparison between identified C18O clumps have shown the different conditions occurring within the clumps, some of which contain or are located near a population of young stellar objects. The Northern region of the Carina Nebular Complex, was observed with NANTEN2, a 4-m radio telescope (located in the Chilean Atacama desert), in the 12CO (4-3) and [C I] 3P1-3P0 emission lines. Previous observations towards this region has either been at poor resolution or had limited coverage. The presented observations, strike a balance between the two; observing in sub-arcmin resolution (0.6') and with an area of 0.9° X 0.5° mapped. Excitation temperature of the 12CO (4-3) and column density of [C I] 3P1-3P0 have been derived. Discussions have been made of the complex morphology of the Northern Carina Nebular Complex region, compared to optical features, and supported the assertion of the HII region (Car I) expanding into the molecular cloud. The selected areas within the Lupus molecular clouds (regions I, III and IV) were observed with the DSS43 (also known as Tid-70m), the largest steerable single dish radio telescope (70-m) in the Southern Hemisphere located at Canberra Deep Space Communication Complex (CDSCC) near Canberra, in the ammonia transitions (1,1) and (2,2). Due to the observation modes and limited amount of time available for the Astronomical community, the targeted areas were mapped in a series of position-switching strips. Column density, kinetic and rotation temperatures were derived, which were compared and analysed to low-resolution maps towards the dense clumps. As Tid-70m had limited observing capabilities, this project has been able to improve the observation capabilities by implementing on-the-fly (OTF) mapping. With its size and unique capabilities, implementing OTF mapping will increase the efficiency of observations. Test observations were carried out towards the well known sources of Orion A, and Sagittarius A through the newly implemented OTF observing mode. Analysis and comparison of Orion A and Sagittarius A, shows consistency with the new maps produced.

  13. Pyroclast textural variation as an indicator of eruption column steadiness in andesitic Plinian eruptions at Mt. Ruapehu

    USGS Publications Warehouse

    Pardo, Natalia; Cronin, Shane J.; Wright, Heather M.N.; Schipper, C. Ian; Smith, Ian; Stewart, Bob

    2014-01-01

    Between 27 and 11 cal. ka BP, a transition is observed in Plinian eruptions at Mt. Ruapehu, indicating evolution from non-collapsing (steady and oscillatory) eruption columns to partially collapsing columns (both wet and dry). To determine the causes of these variations over this eruptive interval, we examined lapilli fall deposits from four eruptions representing the climactic phases of each column type. All eruptions involve andesite to basaltic andesite magmas containing plagioclase, clinopyroxene, orthopyroxene and magnetite phenocrysts. Differences occur in the dominant pumice texture, the degree of bulk chemistry and textural variability, the average microcrystallinity and the composition of groundmass glass. In order to investigate the role of ascent and degassing processes on column stability, vesicle textures were quantified by gas volume pycnometry (porosity), X-ray synchrotron and computed microtomography (μ-CT) imagery from representative clasts from each eruption. These data were linked to groundmass crystallinity and glass geochemistry. Pumice textures were classified into six types (foamy, sheared, fibrous, microvesicular, microsheared and dense) according to the vesicle content, size and shape and microlite content. Bulk porosities vary from 19 to 95 % among all textural types. Melt-referenced vesicle number density ranges between 1.8 × 102 and 8.9 × 102 mm−3, except in fibrous textures, where it spans from 0.3 × 102 to 53 × 102 mm−3. Vesicle-free magnetite number density varies within an order of magnitude from 0.4 × 102 to 4.5 × 102 mm−3 in samples with dacitic groundmass glass and between 0.0 and 2.3 × 102 mm−3 in samples with rhyolitic groundmass. The data indicate that columns that collapsed to produce pyroclastic flows contained pumice with the greatest variation in bulk composition (which overlaps with but extends to slightly more silicic compositions than other eruptive products); textures indicating heterogeneous bubble nucleation, progressively more complex growth history and shear-localization; and the highest degrees of microlite crystallization, most evolved melt compositions and lowest relative temperatures. These findings suggest that collapsing columns in Ruapehu have been produced when strain localization is prominent, early bubble nucleation occurs and variation in decompression rate across the conduit is greatest. This study shows that examination of pumice from steady phases that precede column collapse may be used to predict subsequent column behaviour.

  14. Column densities resulting from shuttle sublimator/evaporator operation. [optical density of nozzle flow containing water vapor

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1973-01-01

    The proposed disposal of H2O from the shuttle fuel cell operation by ejecting it in vapor form through a supersonic nozzle at the rate of 100 lb/day has been investigated from the point of view of the possible interference to astronomical experiments. If the nozzle is located at the tail and directed along the shuttle longitudinal axis, the resulting column density will be less than 10 to th 12th power molecules/sq cm at viewing angles larger than 48 deg above the longitudinal axis. The molecules in the trail will diffuse rapidly. The column density contribution from molecules expelled on the previous orbit is 1.3 x 10 to the 8th power molecules/sq cm. This contribution diminishes by the inverse square root of the number of orbits since the molecules were expelled. The molecular backscatter from atmospheric molecules is also calculated. If the plume is directed into the flight path, the column density along a perpendicular is found to be 1.5 x 10 to the 11th power molecules/sq cm. The return flux is estimated to be of the order of 10 to the 12th power molecules/sq cm/sec at the stagnation point. With reasonable care in design of experiments to protect them from the backscatter flux of water molecules, the expulsion of 100 lb/day does not appear to create an insurmountable difficulty for the shuttle experiments.

  15. Copernicus atmospheric service for stratospheric ozone: validation and intercomparison of four near real-time analyses, 2009-2012

    NASA Astrophysics Data System (ADS)

    Lefever, K.; van der A, R.; Baier, F.; Christophe, Y.; Errera, Q.; Eskes, H.; Flemming, J.; Inness, A.; Jones, L.; Lambert, J.-C.; Langerock, B.; Schultz, M. G.; Stein, O.; Wagner, A.; Chabrillat, S.

    2014-05-01

    This paper evaluates the performance of the stratospheric ozone analyses delivered in near real time by the MACC (Monitoring Atmospheric Composition and Climate) project during the 3 year period between September 2009 and September 2012. Ozone analyses produced by four different chemistry transport models and data assimilation techniques are examined: the ECMWF Integrated Forecast System (IFS) coupled to MOZART-3 (IFS-MOZART), the BIRA-IASB Belgian Assimilation System for Chemical ObsErvations (BASCOE), the DLR/RIU Synoptic Analysis of Chemical Constituents by Advanced Data Assimilation (SACADA), and the KNMI Data Assimilation Model based on Transport Model version 3 (TM3DAM). The assimilated satellite ozone retrievals differed for each system: SACADA and TM3DAM assimilated only total ozone observations, BASCOE assimilated profiles for ozone and some related species, while IFS-MOZART assimilated both types of ozone observations. The stratospheric ozone analyses are compared to independent ozone observations from ground-based instruments, ozone sondes and the ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) satellite instrument. All analyses show total column values which are generally in good agreement with groundbased observations (biases <5%) and a realistic seasonal cycle. The only exceptions are found for BASCOE which systematically underestimates total ozone in the Tropics with about 7-10% at Chengkung (Taiwan, 23.1° N/121.365° E), resulting from the fact that BASCOE does not include any tropospheric processes, and for SACADA which overestimates total ozone in the absence of UV observations for the assimilation. Due to the large weight given to column observations in the assimilation procedure, IFS-MOZART is able to reproduce total column observations very well, but alternating positive and negative biases compared to ozonesonde and ACE-FTS satellite data are found in the vertical as well as an overestimation of 30 to 60% in the polar lower stratosphere during ozone depletion events. The assimilation of near real-time (NRT) Microwave Limb Sounder (MLS) profiles which only go down to 68 hPa is not able to correct for the deficiency of the underlying MOZART model, which may be related to the applied meteorological fields. Biases of BASCOE compared to ozonesonde or ACE-FTS ozone profiles do not exceed 10% over the entire vertical stratospheric range, thanks to the good performance of the model in ozone hole conditions and the assimilation of offline MLS profiles going down to 215 hPa. TM3DAM provides very realistic total ozone columns, but is not designed to provide information on the vertical distribution of ozone. Compared to ozonesondes and ACE-FTS satellite data, SACADA performs best in the Arctic, but shows large biases (>50%) for ozone in the lower stratosphere in the Tropics and in the Antarctic, especially during ozone hole conditions. This study shows that ozone analyses with realistic total ozone column densities do not necessarily yield good agreement with the observed ozone profiles. It also shows the large benefit obtained from the assimilation of a single limb-scanning instrument (Aura MLS) with a high density of observations. Hence even state-of-the-art models of stratospheric chemistry still require the assimilation of limb observations for a correct representation of the vertical distribution of ozone in the stratosphere.

  16. Seasonal in situ observations of glyoxal and methylglyoxal over the temperate oceans of the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Lawson, S. J.; Selleck, P. W.; Galbally, I. E.; Keywood, M. D.; Harvey, M. J.; Lerot, C.; Helmig, D.; Ristovski, Z.

    2014-08-01

    Dicarbonyls glyoxal and methylglyoxal have been measured with 2,4-dinitrophenylhydrazine (2,4-DNPH) cartridges and high performance liquid chromatography (HPLC), optimised for dicarbonyl detection, in clean marine air over the temperate Southern Hemisphere (SH) oceans. Measurements of a range of dicarbonyl precursors (volatile organic compounds, VOCs) were made in parallel. These are the first in situ measurements of glyoxal and methylglyoxal over the remote temperate oceans. Six 24 h samples were collected in late summer (February-March) over the Chatham Rise in the South West Pacific Ocean during the Surface Ocean Aerosol Production (SOAP) voyage in 2012, while 34 24 h samples were collected at Cape Grim Baseline Air Pollution Station in late winter (August-September) 2011. Average glyoxal mixing ratios in clean marine air were 7 ppt at Cape Grim, and 24 ppt over Chatham Rise. Average methylglyoxal mixing ratios in clean marine air were 28 ppt at Cape Grim and 12 ppt over Chatham Rise. The mixing ratios of glyoxal at Cape Grim are the lowest observed over the remote oceans, while mixing ratios over Chatham Rise are in good agreement with other temperate and tropical observations, including concurrent MAX-DOAS observations. Methylglyoxal mixing ratios at both sites are comparable to the only other marine methylglyoxal observations available over the tropical Northern Hemisphere (NH) ocean. Ratios of glyoxal : methylglyoxal > 1 over Chatham Rise but < 1 at Cape Grim, suggesting different formation and/or loss processes or rates dominate at each site. Dicarbonyl precursor VOCs, including isoprene and monoterpenes, are used to calculate an upper estimate yield of glyoxal and methylglyoxal in the remote marine boundary layer and explain at most 1-3 ppt of dicarbonyls observed, corresponding to 11 and 17% of the observed glyoxal and 28 and 10% of the methylglyoxal at Chatham Rise and Cape Grim, respectively, highlighting a significant but as yet unknown production mechanism. Glyoxal surface observations from both sites were converted to vertical columns and compared to average vertical column densities (VCDs) from GOME-2 satellite retrievals. Both satellite columns and in situ observations are higher in summer than winter, however satellite vertical column densities exceeded the surface observations by more than 1.5 × 1014 molecules cm-2 at both sites. This discrepancy may be due to the incorrect assumption that all glyoxal observed by satellite is within the boundary layer, or may be due to challenges retrieving low VCDs of glyoxal over the oceans due to interferences by liquid water absorption, or use of an inappropriate normalisation reference value in the retrieval algorithm. This study provides much needed data to verify the presence of these short lived gases over the remote ocean and provide further evidence of an as yet unidentified source of both glyoxal and also methylglyoxal over the remote oceans.

  17. Seasonal in situ observations of glyoxal and methylglyoxal over the temperate oceans of the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Lawson, S. J.; Selleck, P. W.; Galbally, I. E.; Keywood, M. D.; Harvey, M. J.; Lerot, C.; Helmig, D.; Ristovski, Z.

    2015-01-01

    The dicarbonyls glyoxal and methylglyoxal have been measured with 2,4-dinitrophenylhydrazine (2,4-DNPH) cartridges and high-performance liquid chromatography (HPLC), optimised for dicarbonyl detection, in clean marine air over the temperate Southern Hemisphere (SH) oceans. Measurements of a range of dicarbonyl precursors (volatile organic compounds, VOCs) were made in parallel. These are the first in situ measurements of glyoxal and methylglyoxal over the remote temperate oceans. Six 24 h samples were collected in summer (February-March) over the Chatham Rise in the south-west Pacific Ocean during the Surface Ocean Aerosol Production (SOAP) voyage in 2012, while 34 24 h samples were collected at Cape Grim Baseline Air Pollution Station in the late winter (August-September) of 2011. Average glyoxal mixing ratios in clean marine air were 7 ppt at Cape Grim and 23 ppt over Chatham Rise. Average methylglyoxal mixing ratios in clean marine air were 28 ppt at Cape Grim and 10 ppt over Chatham Rise. The mixing ratios of glyoxal at Cape Grim are the lowest observed over the remote oceans, while mixing ratios over Chatham Rise are in good agreement with other temperate and tropical observations, including concurrent Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations. Methylglyoxal mixing ratios at both sites are comparable to the only other marine methylglyoxal observations available over the tropical Northern Hemisphere (NH) ocean. Ratios of glyoxal : methylglyoxal > 1 over Chatham Rise but < 1 at Cape Grim suggest that a different formation and/or loss processes or rates dominate at each site. Dicarbonyl precursor VOCs, including isoprene and monoterpenes, are used to calculate an upper-estimate yield of glyoxal and methylglyoxal in the remote marine boundary layer and explain at most 1-3 ppt of dicarbonyls observed, corresponding to 10% and 17% of the observed glyoxal and 29 and 10% of the methylglyoxal at Chatham Rise and Cape Grim, respectively, highlighting a significant but as yet unknown production mechanism. Surface-level glyoxal observations from both sites were converted to vertical columns and compared to average vertical column densities (VCDs) from GOME-2 satellite retrievals. Both satellite columns and in situ observations are higher in summer than winter; however, satellite vertical column densities exceeded the surface observations by more than 1.5 × 1014 molecules cm-2 at both sites. This discrepancy may be due to the incorrect assumption that all glyoxal observed by satellite is within the boundary layer, or it may be due to challenges retrieving low VCDs of glyoxal over the oceans due to interferences by liquid water absorption or the use of an inappropriate normalisation reference value in the retrieval algorithm. This study provides much-needed data to verify the presence of these short-lived gases over the remote ocean and provide further evidence of an as yet unidentified source of both glyoxal and also methylglyoxal over the remote oceans.

  18. Star-forming Filament Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, Philip C., E-mail: pmyers@cfa.harvard.edu

    2017-03-20

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zonemore » of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.« less

  19. Protein aggregation under high concentration/density state during chromatographic and ultrafiltration processes.

    PubMed

    Arakawa, Tsutomu; Ejima, Daisuke; Akuta, Teruo

    2017-02-01

    Local transient high protein concentration or high density condition can occur during processing of protein solutions. Typical examples are saturated binding of proteins during column chromatography and high protein concentration on the semi-permeable membrane during ultrafiltration. Both column chromatography and ultrafiltration are fundamental technologies, specially for production of pharmaceutical proteins. We summarize here our experiences related to such high concentration conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. VOLATILE-RICH CIRCUMSTELLAR GAS IN THE UNUSUAL 49 CETI DEBRIS DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberge, Aki; Grady, Carol A.; Welsh, Barry Y.

    2014-11-20

    We present Hubble Space Telescope Space Telescope Imaging Spectrograph far-UV spectra of the edge-on disk around 49 Ceti, one of the very few debris disks showing submillimeter CO emission. Many atomic absorption lines are present in the spectra, most of which arise from circumstellar gas lying along the line-of-sight to the central star. We determined the line-of-sight C I column density, estimated the total carbon column density, and set limits on the O I column density. Surprisingly, no line-of-sight CO absorption was seen. We discuss possible explanations for this non-detection, and present preliminary estimates of the carbon abundances in themore » line-of-sight gas. The C/Fe ratio is much greater than the solar value, suggesting that 49 Cet harbors a volatile-rich gas disk similar to that of β Pictoris.« less

  1. Analysis of interstellar fragmentation structure based on IRAS images

    NASA Technical Reports Server (NTRS)

    Scalo, John M.

    1989-01-01

    The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct a densely sampled column density map of a cloud complex which is both self-gravitating and not (yet?) stirred up much by star formation, a column density image of the Taurus region has been constructed from IRAS data. The primary drawback to using the IRAS data for this purpose is that it contains no velocity information, and the possible importance of projection effects must be kept in mind.

  2. X-ray line emission from the Puppis A supernova remnant - Oxygen lines

    NASA Technical Reports Server (NTRS)

    Winkler, P. F.; Clark, G. W.; Markert, T. H.; Petre, R.; Canizares, C. R.

    1981-01-01

    Six prominent X-ray emission lines of O VII and O VIII have been detected from a portion of the Puppis A supernova remnant in observations with the Einstein Observatory Focal Plane Crystal Spectrometer. The lines are sufficiently well resolved to serve as diagnostics of the emitting plasma. From the relative intensities of the lines, it is inferred that the population of O VIII is about 1.5 times that of O VII, and that electron collisions are the dominant excitation mechanism in the plasma. A locus of allowed electron temperatures and interstellar-absorption column densities is derived: 1.5 x 10 to the 6th K, and (2-6) x 10 to the 21st per sq cm. The data are consistent with either a thin plasma source in equilibrium at a temperature of 2.2 x 10 to the 6th K with a column density of 4 x 10 to the 21st per sq cm, or with a nonequilibrium source in which the electrons have been shock-heated to a higher temperature and oxygen is underionized.

  3. CN and HCN in the infrared spectrum of IRC + 10216

    NASA Technical Reports Server (NTRS)

    Wiedemann, G. R.; Deming, D.; Jennings, D. E.; Hinkle, Kenneth H.; Keady, John J.

    1991-01-01

    The abundance of HCN in the inner circumstellar shell of IRC + 10216 has been remeasured using the 12-micron nu2 band. The 12-micron lines are less saturated than HCN 3-micron lines previously detected in the spectrum of IRC + 10216. The observed 12-micron HCN line is formed in the circumstellar shell from about 4 to 12 R sub * in accord with a photospheric origin for HCN. The derived HCN abundance in the 4 to 12 R sub* region is 4 x 10 exp-5 and the column density is 7 x 10 exp 18/sq cm. The 5-micron CN vibration-rotation fundamental band was detected for the first time in an astronomical source. Using four CN lines, the CN column density was determined to be 2.6 x 10 exp 15/sq cm and the rotational temperature to be 8 +/-2 K. The peal radial abundance is 1 x 10 exp -5. The values for the temperature and abundance are in good agreement with microwave results and with the formation of CN from the photolysis of HCN.

  4. MAX-DOAS measurements of nitrogen dioxide at the high altitude sites Zugspitze (2964 m) and Pico Espejo (4765 m)

    NASA Astrophysics Data System (ADS)

    Schreier, Stefan F.; Richter, Andreas; Wittrock, Folkard; Burrows, John P.

    2015-04-01

    Spectral measurements at two mountain sites were performed with a MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) instrument from February to July 2003 (Zugspitze, Germany) and from March 2004 to November 2008 (Pico Espejo, Venezuela). Here, these measurements are used for the retrieval of slant column densities (SCDs) of nitrogen dioxide (NO2). While at the altitude of observations the NO2 levels are usually small, uplifting of anthropogenic emissions from the valley and in Venezuela also transport of emissions from biomass burning can lead to significant enhancements. Daily, weekly, and seasonal cycles of NO2 SCDs are shown for the two stations, linked to different meteorological conditions and compared between the two sites. In a next step, a preliminary approach to derive vertical column densities (VCDs) is presented. VCDs of NO2 from ground-based MAX-DOAS instruments provide useful information for the validation of satellite instruments such as SCIAMACHY, OMI, and GOME-2. Comparisons between ground-based and satellite-based NO2 VCDs are shown for selected periods.

  5. A survey of carbon monoxide emission in dark clouds. [cosmic dust

    NASA Technical Reports Server (NTRS)

    Dickman, R. L.

    1975-01-01

    Results are reported of a CO and (C-13)O survey of 68 dark clouds from the Lynds catalog. CO was detected in 63 of the 64 sources in which it was searched for, and the (C-13)O line was seen in 52 of 55 clouds. There is a rather narrow distribution of CO peak line radiation temperatures about a mean of 6 K; this may reflect the presence of a roughly uniform kinetic temperature of 9.5 K in the sources. Despite the probably subthermal excitation temperature of the (C-13)O transition observed, derived (C-13)O column densities are most likely good to within a factor of 2. Typical CO column densities for the clouds surveyed are 5 x 10 to the 17-th power per sq cm, assuming a terrestrial carbon isotope ratio. All 68 clouds have previously been studied by Dieter in 6-cm H2CO absorption; a comparison of line widths shows the (C-13)O lines to generally be wider than their formaldehyde counterparts. Possible explanations of this fact in terms of internal cloud motions are discussed.

  6. PROBING X-RAY ABSORPTION AND OPTICAL EXTINCTION IN THE INTERSTELLAR MEDIUM USING CHANDRA OBSERVATIONS OF SUPERNOVA REMNANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foight, Dillon R.; Slane, Patrick O.; Güver, Tolga

    We present a comprehensive study of interstellar X-ray extinction using the extensive Chandra supernova remnant (SNR) archive and use our results to refine the empirical relation between the hydrogen column density and optical extinction. In our analysis, we make use of the large, uniform data sample to assess various systematic uncertainties in the measurement of the interstellar X-ray absorption. Specifically, we address systematic uncertainties that originate from (i) the emission models used to fit SNR spectra; (ii) the spatial variations within individual remnants; (iii) the physical conditions of the remnant such as composition, temperature, and non-equilibrium regions; and (iv) themore » model used for the absorption of X-rays in the interstellar medium. Using a Bayesian framework to quantify these systematic uncertainties, and combining the resulting hydrogen column density measurements with the measurements of optical extinction toward the same remnants, we find the empirical relation N {sub H} = (2.87 ± 0.12) × 10{sup 21} A {sub V} cm{sup 2}, which is significantly higher than the previous measurements.« less

  7. Modeling of the Enceladus water vapor jets for interpreting UVIS star and solar occultation observations

    NASA Astrophysics Data System (ADS)

    Portyankina, Ganna; Esposito, Larry W.; Aye, Klaus-Michael; Hansen, Candice J.

    2015-11-01

    One of the most spectacular discoveries of the Cassini mission is jets emitting from the southern pole of Saturn’s moon Enceladus. The composition of the jets is water vapor and salty ice grains with traces of organic compounds. Jets, merging into a wide plume at a distance, are observed by multiple instruments on Cassini. Recent observations of the visible dust plume by the Cassini Imaging Science Subsystem (ISS) identified as many as 98 jet sources located along “tiger stripes” [Porco et al. 2014]. There is a recent controversy on the question if some of these jets are “optical illusion” caused by geometrical overlap of continuous source eruptions along the “tiger stripes” in the field of view of ISS [Spitale et al. 2015]. The Cassini’s Ultraviolet Imaging Spectrograph (UVIS) observed occultations of several stars and the Sun by the water vapor plume of Enceladus. During the solar occultation separate collimated gas jets were detected inside the background plume [Hansen et al., 2006 and 2011]. These observations directly provide data about water vapor column densities along the line of sight of the UVIS instrument and could help distinguish between the presence of only localized or also continuous sources. We use Monte Carlo simulations and Direct Simulation Monte Carlo (DSMC) to model the plume of Enceladus with multiple (or continuous) jet sources. The models account for molecular collisions, gravitational and Coriolis forces. The models result in the 3-D distribution of water vapor density and surface deposition patterns. Comparison between the simulation results and column densities derived from UVIS observations provide constraints on the physical characteristics of the plume and jets. The specific geometry of the UVIS observations helps to estimate the production rates and velocity distribution of the water molecules emitted by the individual jets.Hansen, C. J. et al., Science 311:1422-1425 (2006); Hansen, C. J. et al, GRL 38:L11202 (2011); Porco, C.C. et al. Astron. J. 148, 45 (2014); Spitale, J.N. et al. Nature 521, 57-60 (2015)

  8. Density Gradients in Chemistry Teaching

    ERIC Educational Resources Information Center

    Miller, P. J.

    1972-01-01

    Outlines experiments in which a density gradient might be used to advantage. A density gradient consists of a column of liquid, the composition and density of which varies along its length. The procedure can be used in analysis of solutions and mixtures and in density measures of solids. (Author/TS)

  9. Measurement of the methyl cyanide E/A ratio in TMC-1

    NASA Technical Reports Server (NTRS)

    Minh, Y. C.; Irvine, W. M.; Ohishi, M.; Ishikawa, S.; Saito, S.; Kaifu, N.

    1993-01-01

    We have observed the methyl cyanide (CH3CN) J = 2-1 K = 0 and 1 transitions toward the cyanopolyyne peak of TMC-1 and have derived an E/A (ortho/para)abundance ratio N(E)/N(A) = 0.75 +/- 0.10. The total methyl cyanide column density is N(total) = 5 x 10 exp 12/sq cm toward TMC-1, in agreement with earlier results from the J = 1-0 lines.

  10. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, M. M.; Morrell, Nidia; Hsiao, E. Y.

    High-dispersion observations of the Na I D λλ5890, 5896 and K I λλ7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Å in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Å is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with themore » progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to 'Blueshifted' profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 Å, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system.« less

  11. Lyα EMISSION FROM GREEN PEAS: THE ROLE OF CIRCUMGALACTIC GAS DENSITY, COVERING, AND KINEMATICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Alaina; Scarlata, Claudia; Martin, Crystal L.

    2015-08-10

    We report Hubble Space Telescope/Cosmic Origins Spectrograph observations of the Lyα emission and interstellar absorption lines in a sample of 10 star-forming galaxies at z ∼ 0.2. Selected on the basis of high equivalent width optical emission lines, the sample, dubbed “Green Peas,” make some of the best analogs for young galaxies in an early universe. We detect Lyα emission in all ten galaxies, and 9/10 show double-peaked line profiles suggestive of low H i column density. We measure Lyα/Hα flux ratios of 0.5–5.6, implying that 5%–60% of Lyα photons escape the galaxies. These data confirm previous findings that low-ionizationmore » metal absorption (LIS) lines are weaker when Lyα escape fraction and equivalent width are higher. However, contrary to previously favored interpretations of this trend, increased Lyα output cannot be the result of a varying H i covering: the Lyman absorption lines (Lyβ and higher) show a covering fraction near unity for gas with N{sub H} {sub i} ≳ 10{sup 16} cm{sup −2}. Moreover, we detect no correlation between Lyα escape and the outflow velocity of the LIS lines, suggesting that kinematic effects do not explain the range of Lyα/Hα flux ratios in these galaxies. In contrast, we detect a strong anticorrelation between the Lyα escape fraction and the velocity separation of the Lyα emission peaks, driven primarily by the velocity of the blue peak. As this velocity separation is sensitive to H i column density, we conclude that Lyα escape in these Green Peas is likely regulated by the H i column density rather than outflow velocity or H i covering fraction.« less

  12. Retrieval of CHOCHO from MAX-DOAS measurements in the Beijing area

    NASA Astrophysics Data System (ADS)

    Hendrick, Francois; Lerot, Christophe; Stavrakou, Trissevgeni; De Smedt, Isabelle; Fayt, Caroline; Gielen, Clio; Hermans, Christian; Müller, Jean-Francois; Pinardi, Gaia; Van Roozendael, Michel

    2015-04-01

    Glyoxal (CHOCHO) is one of the most important carbonyl compounds in the atmosphere. It is produced mainly by the oxidation of biogenic and anthropogenic non-methane volatile organic compounds (NMVOCs) which participate to the formation of tropospheric ozone and secondary organic aerosols. CHOCHO is also directly released by biomass burning and fossil fuel combustion. Measuring this species is therefore of major importance for air quality monitoring, especially given the scarcity of available CHOCHO observational data sets. In this presentation, CHOCHO vertical profiles and corresponding column densities are retrieved from MAX-DOAS measurements in the Beijing city center and at the suburban site of Xianghe located at 60km East of Beijing. The periods covered by the observations are June 2008-April 2009 in Beijing and March 2010-December 2014 in Xianghe. We first investigate the capability of the MAX-DOAS technique to measure this species in such highly-polluted environment. Then the diurnal and seasonal cycles of CHOCHO near-surface concentrations and vertical column densities as well as the corresponding CHOCHO/HCHO ratios are examined on a long-term basis at both locations. The CHOCHO/HCHO ratios are derived from MAX-DOAS HCHO vertical profiles retrieved in parallel to the CHOCHO profiles. These diurnal and seasonal cycles are further assessed using simulations from the 3D-CTM IMAGES and observations from the OMI and GOME-2 satellite nadir instruments. The impact of these results on our knowledge about the CHOCHO budget is discussed.

  13. Properties of Two-Variety Natural Luffa Sponge Columns as Potential Mattress Filling Materials

    PubMed Central

    Chen, Yuxia; Zhang, Kaiting; Yuan, Fangcheng; Zhang, Tingting; Weng, Beibei; Wu, Shanshan; Huang, Aiyue; Su, Na; Guo, Yong

    2018-01-01

    Luffa sponge (LS) is a resourceful material with fibro-vascular reticulated structure and extremely high porosity, which make it a potential candidate for manufacturing light mattress. In this study, two types of LS columns, namely high-density (HD) and low-density (LD) columns, were investigated as materials for filling the mattress. The results showed that the compressive strength of HD LS columns was significantly greater than that of LD LS columns. However, the densification strains of the two types of LS column were both in the range of 0.6 to 0.7. Besides, HD LS columns separately pressed to the smooth plateau region and the initial densification region exhibited a partial recovery of instant height when they were unloaded, and then both of them showed no more than 4.2% of height recovery after being allowed to rest at a constant temperature and humidity for 24 h. In contrast, when LD LS columns were compressed to the smooth plateau region, the height recovery was less than 1.62% compared to when they were pressed to the initial densification region, and that was more than 15.62%. Similar to other plant fibers used as mattress fillers, the two types of LS columns also showed good water absorption capacity—both of them could absorb water from as much as 2.07 to 3.45 times their own weight. At the same time, the two types of LS columns also showed good water desorption. The water desorption ratio of HD and LD LS columns separately reached 76.86 and 91.44%, respectively, after being let rest at a constant temperature and humidity for 13 h. PMID:29614744

  14. Mitigation of Liquefaction in Sandy Soils Using Stone Columns

    NASA Astrophysics Data System (ADS)

    Selcuk, Levent; Kayabalı, Kamil

    2010-05-01

    Soil liquefaction is one of the leading causes of earthquake-induced damage to structures. Soil improvement methods provide effective solutions to reduce the risk of soil liquefaction. Thus, soil ground treatments are applied using various techniques. However, except for a few ground treatment methods, they generally require a high cost and a lot of time. Especially in order to prevent the risk of soil liquefaction, stone columns conctructed by vibro-systems (vibro-compaction, vibro-replacement) are one of the traditional geotechnical methods. The construction of stone columns not only enhances the ability of clean sand to drain excess pore water during an earthquake, but also increases the relative density of the soil. Thus, this application prevents the development of the excess pore water pressure in sand during earthquakes and keeps the pore pressure ratio below a certain value. This paper presents the stone column methods used against soil liquefaction in detail. At this stage, (a) the performances of the stone columns were investigated in different spacing and diameters of columns during past earthquakes, (b) recent studies about design and field applications of stone columns were presented, and (c) a new design method considering the relative density of soil and the capacity of drenage of columns were explained in sandy soil. Furthermore, with this new method, earthquake performances of the stone columns constructed at different areas were investigated before the 1989 Loma Prieta and the 1994 Northbridge earthquakes, as case histories of field applications, and design charts were compiled for suitable spacing and diameters of stone columns with consideration to the different sandy soil parameters and earhquake conditions. Key Words: Soil improvement, stone column, excess pore water pressure

  15. On the use of harmonized HCHO and NO2 MAXDOAS measurements for the validation of GOME-2 and OMI satellite sensors

    NASA Astrophysics Data System (ADS)

    Pinardi, Gaia; Hendrick, François; Gielen, Clio; Van Roozendael, Michel; De Smedt, Isabelle; Lambert, Jean-Christopher; Granville, José; Compernolle, Steven; Richter, Andreas; Peters, Enno; Piters, Ankie; Wagner, Thomas; Wang, Yang; Drosoglou, Theano; Bais, Alkis; Wang, Shanshan; Saiz-Lopez, Alfonso

    2017-04-01

    During the last decade, the MAXDOAS technique has been increasingly recognized as a source of Fiducial Reference Measurements (FRM) suitable for the validation of satellite nadir observations of species relevant for climate and air quality like NO2 and HCHO. As part of the EU FP7 QA4ECV (Quality Assurance for Essential Climate Variables; see http://www.qa4ecv.eu/) project, efforts have been recently made to harmonize a network of a dozen of MAXDOAS spectrometers in view of their use to assess the quality of satellite climate data records generated within the same project. Harmonization tasks have addressed both retrieval steps involved in MAXDOAS retrievals, i.e. the DOAS spectral fit providing the differential slant column densities (DSCDs) and the conversion of the retrieved DSCDs into vertical profiles and/or vertical column densities (VCDs). In this work, we illustrate the successive harmonization steps and present the resulting QA4ECV MAXDOAS database v2. The approach adopted for the conversion of slant to vertical columns is based on a simplified look-up-table approach. The strength and limitation of this approach are discussed using reference data retrieved using an optimal estimation scheme. The QA4ECV MAXDOAS database is then used to validate satellite data sets of NO2 and HCHO columns derived from the Aura/OMI and MetOp/GOME-2 sensors. The methodology of comparison, which is also a subject of the QA4ECV project, is reviewed with respect to co-location criteria, impact of vertical and horizontal smoothing and representativeness of validation sites. We conclude by assessing the current strengths and limitations of the existing MAXDOAS datasets for NO2 and HCHO satellite validation.

  16. A straightforward method for measuring the range of apparent density of microplastics.

    PubMed

    Li, Lingyun; Li, Mengmeng; Deng, Hua; Cai, Li; Cai, Huiwen; Yan, Beizhan; Hu, Jun; Shi, Huahong

    2018-10-15

    Density of microplastics has been regarded as the primary property that affect the distribution and bioavailability of microplastics in the water column. For measuring the density of microplastis, we developed a simple and rapid method based on density gradient solutions. In this study, we tested four solvents to make the density gradient solutions, i.e., ethanol (0.8 g/cm 3 ), ultrapure water (1.0 g/cm 3 ), saturated NaI (1.8 g/cm 3 ) and ZnCl 2 (1.8 g/cm 3 ). Density of microplastics was measured via observing the float or sink status in the density gradient solutions. We found that density gradient solutions made from ZnCl 2 had a larger uncertainty in measuring density than that from NaI, most likely due to a higher surface tension of ZnCl 2 solution. Solutions made from ethanol, ultrapure water, and NaI showed consistent density results with listed densities of commercial products, indicating that these density gradient solutions were suitable for measuring microplastics with a density range of 0.8-1.8 g/cm 3 . Copyright © 2018 Elsevier B.V. All rights reserved.

  17. EFFECTS OF ULTRAVIOLET BACKGROUND AND LOCAL STELLAR RADIATION ON THE H I COLUMN DENSITY DISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagamine, Kentaro; Choi, Jun-Hwan; Yajima, Hidenobu, E-mail: kn@physics.unlv.ed

    We study the impact of ultraviolet background (UVB) radiation field and the local stellar radiation on the H I column density distribution f(N{sub H{sub I}}) of damped Ly{alpha} systems (DLAs) and sub-DLAs at z = 3 using cosmological smoothed particle hydrodynamics simulations. We find that, in the previous simulations with an optically thin approximation, the UVB was sinking into the H I cloud too deeply, and therefore we underestimated the f(N{sub H{sub I}}) at 19 < log N{sub H{sub I}} < 21.2 compared to the observations. If the UVB is shut off in the high-density regions with n{sub gas}>6 xmore » 10{sup -3} cm{sup -3}, then we reproduce the observed f(N{sub H{sub I}}) at z = 3 very well. We also investigate the effect of local stellar radiation by postprocessing our simulation with a radiative transfer code and find that the local stellar radiation does not change the f(N{sub H{sub I}}) very much. Our results show that the shape of f(N{sub H{sub I}}) is determined primarily by the UVB with a much weaker effect by the local stellar radiation and that the optically thin approximation often used in cosmological simulation is inadequate to properly treat the ionization structure of neutral gas in and out of DLAs. Our result also indicates that the DLA gas is closely related to the transition region from optically thick neutral gas to optically thin ionized gas within dark matter halos.« less

  18. Spectra of High-Ionization Seyfert 1 Galaxies: Implications for the Narrow-Line Region

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.; Marcy, Geoffrey W.

    1996-01-01

    We present line profiles and profile parameters for the Narrow-Line Regions (NLRs) of six Seyfert 1 galaxies with high-ionization lines: MCG 8-11-11, Mrk 79, Mrk 704, Mrk 841, NGC 4151, and NGC 5548. The sample was chosen primarily with the goal of obtaining high-quality [Fe VII] lambda6087 and, when possible, [Fe X] lambda6374 profiles to determine if these lines are more likely formed in a physically distinct 'coronal line region' or are formed throughout the NLR along with lines of lower critical density (n(sub cr)) and/or Ionization Potential (IP). We discuss correlations of velocity shift and width with n(sub cr) and IP. In some objects, lines of high IP and/or n(sub cr) are systematically broader than those of low IP/n(sub cr). Of particular interest, however, are objects that show no correlations of line width with either IP or n(sub cr). In these objects, lines of high and low IP/n(sub cr), are remarkably similar, which is difficult to reconcile with the classical picture of the NLR, in which lines of high and low IP/n(sub cr) are formed in physically distinct regions. We argue for similar spatial extents for the flux in lines with similar profiles. Here, as well as in a modeling-oriented companion paper, we develop further an idea suggested by Moore & Cohen that objects that do and do not show line width correlations with IP/n(sub cr) can both be explained in terms of a single NLR model with only a small difference in the cloud column density distinguishing the two types of object. Overall, our objects do not show correlations between the Full Width at Half-Maximum (FWHM) and IP and/or n(sub cr). The width must be defined by a parameter that is sensitive to extended profile wings in order for the correlations to result. We present models in which FWHM correlations with IP and/or n(sub cr) result only after simulating the lower spectral resolution used in previous observational studies. The models that simulate the higher spectral resolution of our observational study produce line width correlations only if the width is defined by a parameter that is more sensitive to extended profile wings than is the FWHM. Our sample of six objects is in effect augmented by incorporating the larger sample (16 objects) of Veilleux into some of our discussion. This paper focuses on new interpretations of NLR emission-line spectra and line profiles that stem directly from the observations. Paper 2 focuses on modeling and complements this paper by illustrating explicitly the effects that spatial variations in electron density, ionization parameter, and column density have on model profiles. By comparing model profiles with the observed profiles presented here, as well as with those presented by Veilleux, Paper 2 yields insight into how the electron density, ionization parameter, and column density likely vary throughout the NLR.

  19. VizieR Online Data Catalog: NIBLES. I. The Nancay HI survey (van Driel+, 2016)

    NASA Astrophysics Data System (ADS)

    van Driel, M.; Butcher, Z.; Schneider, S.; Lehnert, M.; Minchin, R.; Blyth, S.-L.; Chemin, L.; Hallet, N.; Joseph, T.; Kotze, P.; Kraan-Korteweg, R. C.; Olofsson, H.; Ramatsoku, M.

    2016-11-01

    HI 21cm line spectra of the 1870 clearly or marginally detected SDSS sources obtained for NIBLES at the Nancay Radio Telescope. Please note that these include the six detections with velocities below the 900 km/s lower limit for the NIBLES statistical sample, which are listed in Table A.5 (NIBLES sources 0347, 1572, 1734, 1897, 2259, and 2326). See Sect. 3 of the paper for further details on data acquisition and reduction. Data have been smoothed in velocity to 18 km/s resolution (see exact number in the spectrum headers). A fitted polynomial baseline was substracted from the observed spectra. Velocities (first column) are heliocentric in the optical convention in units of km/s and flux densities (second column) are in Janskys. (4 data files).

  20. Observations of local interstellar Mg I and Mg II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruhweiler, F.C.; Oegerle, W.; Weiler, E.

    1984-11-01

    Copernicus and IUE observations of 5 stars within 50 pc of the Sun were combined to study the ionization of magnesium in the Local Interstellar Medium (LISM). The high resolution Copernicus spectrometer was used to detect interstellar MG I 2852 in the spectra of alpha Gru, alpha Eri, and alpha Lyr, while placing upper limits on Mg I in the spectra of alpha CMa and alpha PsA. Observations of Mg II 2795, 2802 for these stars were also obtained with IUE and Copernicus. The column densities of Mg I and Mg II are used to place constraints on the temperaturemore » of the LISM.« less

  1. Observations of Local Interstellar Mg I and Mg II

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Oegerle, W.; Weiler, E.; Stencel, R. E.; Kondo, Y.

    1984-01-01

    Copernicus and IUE observations of 5 stars within 50 pc of the Sun were combined to study the ionization of magnesium in the local interstellar medium (LISM). The high resolution Copernicus spectrometer was used to detect interstellar MG I 2852 in the spectra of alpha Gru, alpha Eri, and alpha Lyr, while placing upper limits on Mg I in the spectra of alpha CMa and alpha PsA. Observations of Mg II 2795, 2802 for these stars were also obtained with IUE and Copernicus. The column densities of Mg I and Mg II are used to place constraints on the temperature of the LISM.

  2. The peripheral quantitative computed tomographic and densitometric analysis of skeletal tissue in male Wistar rats after chromium sulfate treatment.

    PubMed

    Bieńko, Marek; Radzki, Radosław Piotr; Wolski, Dariusz

    2017-09-21

    This study evaluates the effects of three different doses of chromium sulphate on bone density and the tomographic parameters of skeletal tissue of rats. The experiment was performed on 40 male Wistar rats which received, by gavage, during 90 days, a chromium sulphate in either a daily dose of 400, 600 or 800 µg/kg BW. At the end of experiment, the rats were scanned using the densitometry method (DXA) to determine the bone mineral density, bone mineral content of total skeleton and vertebral column (L2-L4) and parameters of body composition (Lean Mass and Fat Mass). The isolated femora were scanned using peripheral a quantitative computed tomography method (pQCT) for a separate analysis of the trabecular and cortical bone tissue. The ultimate strength, work to ultimate and the Young modulus of femora was also investigated by the three-point bending test. The negative impact of chromium was observed in relation to bone tissue. All doses significantly decreased total skeleton density and mineral content, and also had impact upon the isolated femora and vertebral column. Trabecular volumetric bone mineral density and trabecular bone mineral content measured by pQCT in distal femur metaphysis were significantly lower in the experimental groups than in the control. Higher doses of chromium also significantly decreased values of ultimate strength and Young modulus in the investigated femora. The results of the experiment demonstrate that chromium sulphate is dose dependent, and exerts a disadvantageous effect on the skeleton, as it decreases bone density and resistance.

  3. Tropospheric NO2 and HCHO columns derived from ground-based MAX-DOAS system in Guangzhou, China and comparison with satellite observations: First results within the EU FP7 project MarcoPolo

    NASA Astrophysics Data System (ADS)

    Drosoglou, Theano; Kouremeti, Natalia; Bais, Alkis; Zyrichidou, Irene; Li, Shu; Balis, Dimitris; Huang, Zhonghui

    2016-04-01

    A miniature MAX-DOAS system, Phaethon, has been developed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece, for ground-based monitoring of column densities of atmospheric gases. Simultaneous measurements with two Phaethon systems at the city centre of Thessaloniki and at a rural location about 30 km away have shown that Phaethon provides NO2 and HCHO tropospheric column measurements of acceptable accuracy under both low and high air-pollution levels. Currently three systems have been deployed in areas with different pollution patterns to support air quality and satellite validation studies. In the framework of the EU FP7 Monitoring and Assessment of Regional air quality in China using space Observations, Project Of Long-term sino-european co-Operation, MarcoPolo project, one of the Phaethon systems has been installed since April 2015 in the Guangzhou region in China. Tropospheric NO2 and HCHO columns derived at Guangzhou during the first 10 months of operation are compared with corresponding retrievals from OMI/Aura and GOME-2/Metop-A and /Metop-B satellite sensors. The area is characterized by humid subtropical monsoon climate and cloud-free conditions are rather rare from early March to mid-October. Despite this limitation and the short period of operation of Phaethon in Guangzhou, the agreement between ground-based and satellite observations is generally good for both NO2 and HCHO. It appears that GOME-2 sensors seem to underestimate the tropospheric NO2, possibly due to their large pixel size, whereas the comparison with OMI data is better, especially when a small cloud fraction (< 0.2) is used for cloud screening.

  4. Characterizing the plasma of the Rotating Wall Machine

    NASA Astrophysics Data System (ADS)

    Hannum, David A.

    The Rotating Wall Machine (RoWM) is a line-tied linear screw pinch built to study current-driven external kink modes. The plasma column is formed by an array of seven electrostatic washer guns which can also be biased to drive plasma current. The array allows independent control over the electron density ne and current density Jz profiles of the column. Internal measurements of the plasma have been made with singletip Langmuir and magnetic induction ("B-dot") probes for a range of bias currents (Ib = 0, 300, 500 A/gun). Streams from the individual guns are seen to merge at a distance of z ≈ 36 cm from the guns; the exact distance depends on the value of Ib. The density of the column is directly proportional to the Ohmic dissipation power, but the temperature stays at a low, uniform value (Te ≈ 3.5 eV) for each bias level. Electron densities are on the order of ne ˜10 20 m-3. The electron density expands radially (across the Bz guide field) as the plasma moves along the column, though the current density Jz mainly stays parallel to the field lines. The singletip Langmuir probe diagnostic is difficult to analyze for Ib = 500 A/gun plasmas and fails as Ib is raised beyond this level. Spectrographic analysis of the Halpha line indicates that the hydrogen plasmas are nearly fully ionized at each bias level. Azimuthal E x B rotation is axially and radially sheared; rotation slows as the plasma reaches the anode. Perpendicular diffusivity is consistent with the classical value, D⊥ ≈ 5 m2/sec, while parallel resistivity is seen to be twice the classical Spitzer value, 2 x 10-4 O m.

  5. Absorption features in the quasar HS 1603 + 3820 II. Distance to the absorber obtained from photoionisation modelling

    NASA Astrophysics Data System (ADS)

    Różańska, A.; Nikołajuk, M.; Czerny, B.; Dobrzycki, A.; Hryniewicz, K.; Bechtold, J.; Ebeling, H.

    2014-04-01

    We present the photoionisation modelling of the intrinsic absorber in the bright quasar HS 1603 + 3820. We constructed the broad-band spectral energy distribution using the optical/UV/X-ray observations from different instruments as inputs for the photoionisation calculations. The spectra from the Keck telescope show extremely high CIV to HI ratios, for the first absorber in system A, named A1. This value, together with high column density of CIV ion, place strong constraints on the photoionisation model. We used two photoionisation codes to derive the hydrogen number density at the cloud illuminated surface. By estimating bolometric luminosity of HS 1603 + 3820 using the typical formula for quasars, we calculated the distance to A1. We could find one photoionization solution, by assuming either a constant density cloud (which was modelled using CLOUDY), or a stratified cloud (which was modelled using TITAN), as well as the solar abundances. This model explained both the ionic column density of CIV and the high CIV to HI ratio. The location of A1 is 0.1 pc, and it is situated even closer to the nucleus than the possible location of the Broad Line Region in this object. The upper limit of the distance is sensitive to the adopted covering factor and the carbon abundance. Photoionisation modelling always prefers dense clouds with the number density n0 = 1010 - 1012 cm-3, which explains intrinsic absorption in HS 1603 + 3820. This number density is of the same order as that in the disk atmosphere at the implied distance of A1. Therefore, our results show that the disk wind that escapes from the outermost accretion disk atmosphere can build up dense absorber in quasars.

  6. The Temperature-Density Relation in the Intergalactic Medium at Redshift langzrang = 2.4

    NASA Astrophysics Data System (ADS)

    Rudie, Gwen C.; Steidel, Charles C.; Pettini, Max

    2012-10-01

    We present new measurements of the temperature-density (T-ρ) relation for neutral hydrogen in the 2.0 < z < 2.8 intergalactic medium (IGM) using a sample of ~6000 individual H I absorbers fitted with Voigt profiles constrained in all cases by multiple Lyman series transitions. We find model-independent evidence for a positive correlation between the column density of H I (N H I ) and the minimum observed velocity width of absorbers (b min). With minimal interpretation, this implies that the T-ρ relation in the IGM is not "inverted," contrary to many recent studies. Fitting b min as a function of N H I results in line-width-column-density dependence of the form b min = b 0(N H I /N H I,0)Γ-1 with a minimum line width at mean density (\\rho /\\bar{\\rho }= 1, N_H\\,\\mathsc{i, 0} = 10^{13.6} cm-2) of b 0 = 17.9 ± 0.2 km s-1 and a power-law index of (Γ - 1) = 0.15 ± 0.02. Using analytic arguments, these measurements imply an "equation of state" for the IGM at langzrang = 2.4 of the form T=T_0 \\left(\\rho /\\bar{\\rho }\\right)^{\\gamma -1} with a temperature at mean density of T 0 = [1.94 ± 0.05] × 104 K and a power-law index (γ - 1) = 0.46 ± 0.05. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and was made possible by the generous financial support of the W. M. Keck Foundation.

  7. Interstellar Deuterium, Nitrogen and Oxygen Towards HZ43A: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission

    NASA Technical Reports Server (NTRS)

    Kruk, J. W.; Howk, J. C.; Andre, M.; Moos, H. W.; Oegerle, William R.; Oliveira, C.; Sembach, K. R.; Chayer, P.; Linsky, J. L.; Wood, B. E.

    2002-01-01

    We present an analysis of interstellar absorption along the line of sight to the nearby white dwarf star HZ43A. The distance to this star is 68+/-13 pc, and the line of sight extends toward the north Galactic pole. Column densities of O(I), N(I), and N(II) were derived from spectra obtained by the Far Ultraviolet Spectroscopic Explorer (FUSE), the column density of D(I) was derived from a combination of our FUSE spectra and an archival HST GARDENS spectrum, and the column density of H(I) was derived from a combination of the GARDENS spectrum and values derived from EUVE data obtained from the literature. We find the following abundance ratios (with 2 sigma uncertainties): D(I)/H(I)=(1.66+/-0.28)x10(exp -5), O(I)/H(I)=(3.63+/-0.84)x10(exp -4), and N(I)/H(I)=(3.80+/-0.74)x10(exp -5). The N(II) column density was slightly greater than that of N(I), indicating that ionization corrections are important when deriving nitrogen abundances. Other interstellar species detected along the line of sight were C(II), C(III), O(VI), Si(II), Ar(I), Mg(II) and Fe(II); an upper limit was determined for N(III). No elements other than H(I) were detected in the stellar photosphere.

  8. Hot and cold gas toward young stellar objects

    NASA Technical Reports Server (NTRS)

    Mitchell, George F.; Maillard, Jean-Pierre; Allen, Mark; Beer, Reinhard; Belcourt, Kenneth

    1990-01-01

    High-resolution M band spectra are presented for the seven embedded IR sources W3 IRS 5, S140 IRS1, NGC 7538 IRS 1, NGC 7538 IRS 9, GL 2136, LkH-alpha 101, and MWC 349A, and the data are combined with previously published work for W33A and GL 2591. Cold CO is seen toward all nine sources, with temperatures from 11 K to 66 K. Column densities of cold CO are presented. Hot gas is seen toward eight of the nine objects with temperatures from 120 K to 1010 K. New lower limits to the hot gas density are obtained. The hot gas toward GL 2591, GL 2136, W3 IRS 5, and S140 IRS 1 is probably very near the central source and heated via gas-grain collisions. The optical depth in the silicate feature is strongly correlated with the (C-13)O column density, confirming that silicate optical depth is a useful measure of gas column density. The ratio of solid-to-gaseous CO is obtained for seven sources.

  9. Characteristic Structure of Star-forming Clouds

    NASA Astrophysics Data System (ADS)

    Myers, Philip C.

    2015-06-01

    This paper presents a new method to diagnose the star-forming potential of a molecular cloud region from the probability density function of its column density (N-pdf). This method provides expressions for the column density and mass profiles of a symmetric filament having the same N-pdf as a filamentary region. The central concentration of this characteristic filament can distinguish regions and can quantify their fertility for star formation. Profiles are calculated for N-pdfs which are pure lognormal, pure power law, or a combination. In relation to models of singular polytropic cylinders, characteristic filaments can be unbound, bound, or collapsing depending on their central concentration. Such filamentary models of the dynamical state of N-pdf gas are more relevant to star-forming regions than are spherical collapse models. The star formation fertility of a bound or collapsing filament is quantified by its mean mass accretion rate when in radial free fall. For a given mass per length, the fertility increases with the filament mean column density and with its initial concentration. In selected regions the fertility of their characteristic filaments increases with the level of star formation.

  10. First spectrum of an extra-solar object in the extreme ultraviolet The white dwarf HZ 43

    NASA Technical Reports Server (NTRS)

    Malina, R. F.; Bowyer, S.; Paresce, F.

    1979-01-01

    An EUV instrument is described which has been used to carry out a spectroscopic observation of the hot white dwarf HZ 43. The instrument consists of an EUV telescope and spectrometer housed in a sounding-rocket shell 44 cm in diameter and 176 cm in length. It is noted that HZ 43 was successfully observed for 200 sec and that the EUV spectrum was strongly detected from 170 to 400 A. A second-order image was detected beyond 400 A, and a decrement was observed at 200 A, which corresponds to photoelectric absorption of He II. The observed spectrum is shown to be inconsistent with a coronal model. It is concluded that the surface number density of helium relative to hydrogen must be in the range from 0.00001 to 0.0001 and that an upper limit of 4 x 10 to the 17th per sq cm can be placed on the column density of ionized helium in the intervening interstellar medium.

  11. Mobile MAX-DOAS observation of NO2 and comparison with OMI satellite data in the western coastal areas of the Korean peninsula.

    PubMed

    Chong, Jihyo; Kim, Young J; Gu, Myojeong; Wagner, Thomas; Song, Chul H

    2016-01-01

    Ground-based MAX-DOAS measurements have been used to retrieve column densities of atmospheric absorbers such as NO2, SO2, HCHO, and O3. In this study, mobile MAX-DOAS measurements were conducted to map the 2-D distributions of atmospheric NO2 in the western coastal areas of the Korean peninsula. A Mini-MAX-DOAS instrument was mounted on the rooftop of a mobile lab vehicle with a telescope mounted parallel to the driving direction, pointing forward. The measurements were conducted from 21 to 24 December 2010 along the western coastal areas from Gomso harbor (35.59N, 126.61E) to Gunsan harbor (35.98N, 126.67E). During mobile MAX-DOAS observations, high elevation angles were used to avoid shades from nearby obstacles. For the determination of the tropospheric vertical column density (VCD), the air mass factor (AMF) was retrieved by the so-called geometric approximation. The NO2 VCDs from 20 and 45 degree elevation angles were retrieved from mobile MAX-DOAS measurements. The tropospheric NO2 VCDs derived from mobile MAX-DOAS measurements were compared directly to those retrieved by the OMI satellite observations. Mobile MAX-DOAS VCD was in good agreement with OMI tropospheric VCD on most days. However, OMI tropospheric VCD was much higher than that of mobile MAX-DOAS on 23 December 2010. One probable reason for this difference is that OMI retrieval might overestimate NO2 VCD under haze conditions, when a pollution plume was transported over the measurement site. The mobile MAX-DOAS observations reveal much finer spatial patterns of NO2 distributions, which can provide useful information for the validation of satellite observation of atmospheric trace gases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A Search for H I Lyα Counterparts to Ultrafast X-Ray Outflows

    NASA Astrophysics Data System (ADS)

    Kriss, Gerard A.; Lee, Julia C.; Danehkar, Ashkbiz

    2018-06-01

    Prompted by the H I Lyα absorption associated with the X-ray ultrafast outflow at ‑17,300 km s‑1 in the quasar PG 1211+143, we have searched archival UV spectra at the expected locations of H I Lyα absorption for a large sample of ultrafast outflows identified in XMM-Newton and Suzaku observations. Sixteen of the X-ray outflows have predicted H I Lyα wavelengths falling within the bandpass of spectra from either the Far Ultraviolet Spectroscopic Explorer or the Hubble Space Telescope, although none of the archival observations were simultaneous with the X-ray observations in which ultrafast X-ray outflows (UFOs) were detected. In our spectra broad features with FWHM of 1000 km s‑1 have 2σ upper limits on the H I column density of generally ≲2 × 1013 cm‑2. Using grids of photoionization models covering a broad range of spectral energy distributions (SEDs), we find that producing Fe XXVI Lyα X-ray absorption with equivalent widths >30 eV and associated H I Lyα absorption with {N}{{H}{{I}}}< 2× {10}13 {cm}}-2 requires total absorbing column densities {N}{{H}}> 5× {10}22 {cm}}-2 and ionization parameters log ξ ≳ 3.7. Nevertheless, a wide range of SEDs would predict observable H I Lyα absorption if ionization parameters are only slightly below peak ionization fractions for Fe XXV and Fe XXVI. The lack of Lyα features in the archival UV spectra indicates that the UFOs have very high ionization parameters, that they have very hard UV-ionizing spectra, or that they were not present at the time of the UV spectral observations owing to variability.

  13. Estimating surface NO2 and SO2 mixing ratios from fast-response total column observations and potential application to geostationary missions.

    PubMed

    Knepp, T; Pippin, M; Crawford, J; Chen, G; Szykman, J; Long, R; Cowen, L; Cede, A; Abuhassan, N; Herman, J; Delgado, R; Compton, J; Berkoff, T; Fishman, J; Martins, D; Stauffer, R; Thompson, A M; Weinheimer, A; Knapp, D; Montzka, D; Lenschow, D; Neil, D

    Total-column nitrogen dioxide (NO 2 ) data collected by a ground-based sun-tracking spectrometer system (Pandora) and an photolytic-converter-based in-situ instrument collocated at NASA's Langley Research Center in Hampton, Virginia were analyzed to study the relationship between total-column and surface NO 2 measurements. The measurements span more than a year and cover all seasons. Surface mixing ratios are estimated via application of a planetary boundary-layer (PBL) height correction factor. This PBL correction factor effectively corrects for boundary-layer variability throughout the day, and accounts for up to ≈75 % of the variability between the NO 2 data sets. Previous studies have made monthly and seasonal comparisons of column/surface data, which has shown generally good agreement over these long average times. In the current analysis comparisons of column densities averaged over 90 s and 1 h are made. Applicability of this technique to sulfur dioxide (SO 2 ) is briefly explored. The SO 2 correlation is improved by excluding conditions where surface levels are considered background. The analysis is extended to data from the July 2011 DISCOVER-AQ mission over the greater Baltimore, MD area to examine the method's performance in more-polluted urban conditions where NO 2 concentrations are typically much higher.

  14. Stratospheric OClO and NO2 measured by groundbased UV/Vis-spectroscopy in Greenland in January and February 1990 and 1991

    NASA Technical Reports Server (NTRS)

    Roth, A.; Perner, D.

    1994-01-01

    Groundbased UV/Vis-spectroscopy of zenith scattered sunlight was performed at Sondre Stromfjord (Greenland) during Jan/Feb 1990 and Jan/Feb 1991. Considerable amounts of OClO were observed during both campaigns. Maximum OClO vertical column densities at 92 deg solar zenith angle (SZA) were 7.4 x 10(exp 13) molec/sq cm in 1990 and 5.7 x 10(exp 13) molec/sq cm in 1991 (chemical enhancement is included in the calculation of the air mass factor (AMF)). A threshold seems to exist for OClO detection: OClO was detected on every day when the potential vorticity at the 475 K level of potential temperature was higher than 35 x 10(exp -6)Km(exp 2)kg(exp -1)s(exp -1). NO2 vertical columns lower than 1 x 10(exp 15) molec/sq cm were frequently observed in both winters.

  15. Field Results from Three Campaigns to Validate the Performance of the Miniaturized Laser Heterodyne Radiometer (Mini-LHR) for Measuring Carbon Dioxide and Methane in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Miller, J. Houston; Clarke, Greg B.; Melroy, Hilary; Ott, Lesley; Steel, Emily Wilson

    2014-01-01

    In a collaboration between NASA GSFC and GWU, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrallyresolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. In the last year, the instrument was deployed for field measurements at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument has been observed. In the latest work the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. An overview of the measurement campaigns and the data retrieval algorithm for the calculation of column concentrations will be presented. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. For temperature, pressure, and humidity profiles with altitude we use the Modern-Era Retrospective Analysis for Research and Applications (MERRA) data. Spectral simulation is accomplished by integrating short-path segments along the trajectory using the SpecSyn spectral simulation suite developed at GW. Column concentrations are extracted by minimizing residuals between observed and modeled spectrum using the Nelder-Mead simplex algorithm. We will also present an assessment of uncertainty in the reported concentrations from assumptions made in the meteorological data, LHR instrument and tracker noise, and radio frequency bandwidth and describe additional future goals in instrument development and deployment target

  16. A search for thermospheric composition perturbations due to vertical winds

    NASA Astrophysics Data System (ADS)

    Krynicki, Matthew P.

    The thermosphere is generally in hydrostatic equilibrium, with winds blowing horizontally along stratified constant-pressure surfaces, driven by the dayside-to-nightside pressure gradient. A marked change in this paradigm resulted after Spencer et al. [1976] reported vertical wind measurements of 80 m·s-1 from analyses of AE-C satellite data. It is now established that the thermosphere routinely supports large-magnitude (˜30-150 m·s-1) vertical winds at auroral latitudes. These vertical winds represent significant departure from hydrostatic and diffusive equilibrium, altering locally---and potentially globally---the thermosphere's and ionosphere's composition, chemistry, thermodynamics and energy budget. Because of their localized nature, large-magnitude vertical wind effects are not entirely known. This thesis presents ground-based Fabry-Perot Spectrometer OI(630.0)-nm observations of upper-thermospheric vertical winds obtained at Inuvik, NT, Canada and Poker Flat, AK. The wind measurements are compared with vertical displacement estimates at ˜104 km2 horizontal spatial scales determined from a new modification to the electron transport code of Lummerzheim and Lilensten [1994] as applied to FUV-wavelength observations by POLAR spacecraft's Ultraviolet Imager [Torr et al. , 1995]. The modification, referred to as the column shift, simulates vertical wind effects such as neutral transport and disruption of diffusive equilibrium by vertically displacing the Hedin [1991] MSIS-90 [O2]/[N2] and [O]/([N2]+[O2]) mixing ratios and subsequently redistributing the O, O2, and N 2 densities used in the transport code. Column shift estimates are inferred from comparisons of UVI OI(135.6)-nm auroral observations to their corresponding modeled emission. The modeled OI(135.6)-nm brightness is determined from the modeled thermospheric response to electron precipitation and estimations of the energy flux and characteristic energy of the precipitation, which are inferred from UVI-observed Lyman-Birge-Hopfield N2 emissions in two wavelength ranges. Two-dimensional column shift maps identify the spatial morphology of thermospheric composition perturbations associated with auroral forms relative to the model thermosphere. Case-study examples and statistical analyses of the column shift data sets indicate that column shifts can be attributed to vertical winds. Unanticipated limitations associated with modeling of the OI(135.6)-nm auroral emission make absolute column shift estimates indeterminate. Insufficient knowledge of thermospheric air-parcel time histories hinders interpretations of point-to-point time series comparisons between column shifts and vertical winds.

  17. Squeezed between shells? The origin of the Lupus I molecular cloud. APEX/LABOCA, Herschel, and Planck observations

    NASA Astrophysics Data System (ADS)

    Gaczkowski, B.; Preibisch, T.; Stanke, T.; Krause, M. G. H.; Burkert, A.; Diehl, R.; Fierlinger, K.; Kroell, D.; Ngoumou, J.; Roccatagliata, V.

    2015-12-01

    Context. The Lupus I cloud is found between the Upper Scorpius (USco) and the Upper Centaurus-Lupus (UCL) subgroups of the Scorpius-Centaurus OB association, where the expanding USco H I shell appears to interact with a bubble currently driven by the winds of the remaining B-stars of UCL. Aims: We want to study how collisions of large-scale interstellar gas flows form and influence new dense clouds in the ISM. Methods: We performed LABOCA continuum sub-mm observations of Lupus I that provide for the first time a direct view of the densest, coldest cloud clumps and cores at high angular resolution. We complemented these data with Herschel and Planck data from which we constructed column density and temperature maps. From the Herschel and LABOCA column density maps we calculated probability density functions (PDFs) to characterize the density structure of the cloud. Results: The northern part of Lupus I is found to have, on average, lower densities, higher temperatures, and no active star formation. The center-south part harbors dozens of pre-stellar cores where density and temperature reach their maximum and minimum, respectively. Our analysis of the column density PDFs from the Herschel data show double-peak profiles for all parts of the cloud, which we attribute to an external compression. In those parts with active star formation, the PDF shows a power-law tail at high densities. The PDFs we calculated from our LABOCA data trace the denser parts of the cloud showing one peak and a power-law tail. With LABOCA we find 15 cores with masses between 0.07 and 1.71 M⊙ and a total mass of ≈8 M⊙. The total gas and dust mass of the cloud is ≈164 M⊙ and hence ~5% of the mass is in cores. From the Herschel and Planck data we find a total mass of ≈174 M⊙ and ≈171 M⊙, respectively. Conclusions: The position, orientation, and elongated shape of Lupus I, the double-peak PDFs and the population of pre-stellar and protostellar cores could be explained by the large-scale compression from the advancing USco H I shell and the UCL wind bubble. The Atacama Pathfinder Experiment (APEX) is a collaboration between the Max-Planck-Institut für Radioastronomie (MPIfR), the European Southern Observatory (ESO), and the Onsala Space Observatory (OSO).Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Final APEX cube and Herschel N and T maps as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A36

  18. Plume propagation direction determination with SO2 cameras

    NASA Astrophysics Data System (ADS)

    Klein, Angelika; Lübcke, Peter; Bobrowski, Nicole; Kuhn, Jonas; Platt, Ulrich

    2017-03-01

    SO2 cameras are becoming an established tool for measuring sulfur dioxide (SO2) fluxes in volcanic plumes with good precision and high temporal resolution. The primary result of SO2 camera measurements are time series of two-dimensional SO2 column density distributions (i.e. SO2 column density images). However, it is frequently overlooked that, in order to determine the correct SO2 fluxes, not only the SO2 column density, but also the distance between the camera and the volcanic plume, has to be precisely known. This is because cameras only measure angular extents of objects while flux measurements require knowledge of the spatial plume extent. The distance to the plume may vary within the image array (i.e. the field of view of the SO2 camera) since the plume propagation direction (i.e. the wind direction) might not be parallel to the image plane of the SO2 camera. If the wind direction and thus the camera-plume distance are not well known, this error propagates into the determined SO2 fluxes and can cause errors exceeding 50 %. This is a source of error which is independent of the frequently quoted (approximate) compensation of apparently higher SO2 column densities and apparently lower plume propagation velocities at non-perpendicular plume observation angles.Here, we propose a new method to estimate the propagation direction of the volcanic plume directly from SO2 camera image time series by analysing apparent flux gradients along the image plane. From the plume propagation direction and the known location of the SO2 source (i.e. volcanic vent) and camera position, the camera-plume distance can be determined. Besides being able to determine the plume propagation direction and thus the wind direction in the plume region directly from SO2 camera images, we additionally found that it is possible to detect changes of the propagation direction at a time resolution of the order of minutes. In addition to theoretical studies we applied our method to SO2 flux measurements at Mt Etna and demonstrate that we obtain considerably more precise (up to a factor of 2 error reduction) SO2 fluxes. We conclude that studies on SO2 flux variability become more reliable by excluding the possible influences of propagation direction variations.

  19. Raman-Scattering Line Profiles of the Symbiotic Star AG Peg

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Jae; Hyung, Siek

    2017-06-01

    The high dispersion Hα and Hβ line profiles of the Symbiotic star AG Peg consist of top double Gaussian and bottom components. We investigated the formation of the broad wings with Raman scattering mechanism. Adopting the same physical parameters from the photo-ionization study of Kim and Hyung (2008) for the white dwarf and the ionized gas shell, Monte Carlo simulations were carried out for a rotating accretion disk geometry of non-symmetrical latitude angles from -7° < θ < +7° to -16° < θ < +16°. The smaller latitude angle of the disk corresponds to the approaching side of the disk responsible for weak blue Gaussian profile, while the wider latitude angle corresponds to the other side of the disk responsible for the strong red Gaussian profile. We confirmed that the shell has the high gas density ˜ 109.85 cm-3 in the ionized zone of AG Peg derived in the previous photo-ionization model study. The simulation with various HI shell column densities (characterized by a thickness ΔD × gas number density nH) shows that the HI gas shell with a column density Hhi ≈ 3 - 5 × 1019 cm-2 fits the observed line profiles well. The estimated rotation speed of the accretion disk shell is in the range of 44 - 55 kms-1. We conclude that the kinematically incoherent structure involving the outflowing gas from the giant star caused an asymmetry of the disk and double Gaussian profiles found in AG Peg.

  20. 40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...

  1. 40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...

  2. 40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...

  3. 40 CFR Table Mm-2 to Subpart Mm of... - Default Factors for Biomass-Based Fuels and Biomass

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fuels and Biomass MM Table MM-2 to Subpart MM of Part 98 Protection of Environment ENVIRONMENTAL... Biomass-Based Fuels and Biomass Biomass-based fuel and biomass Column A:Density (metric tons/bbl) Column B: Carbon share(% of mass) Column C:Emission factor (metric tons CO2/bbl) Ethanol (100%) 0.1267 52.14 0.2422...

  4. Interstellar gas in the Gum Nebula

    NASA Technical Reports Server (NTRS)

    Wallerstein, G.; Jenkins, E. B.; Silk, J.

    1980-01-01

    A survey of the interstellar gas near the Gum Nebula by optical observation of 67 stars at Ca II, 42 stars at Na I, and 14 stars in the UV with the Copernicus satellite provided radial velocities and column densities for all resolved absorption components. Velocity dispersions for gas in the Gum Nebula are not significantly larger than in the general interstellar medium; the ionization structure is predominantly that of an H II region with moderately high ionization. Denser, more highly ionized clouds are concentrated toward the Gum Nebula; these clouds do not show the anomalously high ionization observed in the Vela remnant clouds.

  5. The XMM deep survey in the CDF-S. X. X-ray variability of bright sources

    NASA Astrophysics Data System (ADS)

    Falocco, S.; Paolillo, M.; Comastri, A.; Carrera, F. J.; Ranalli, P.; Iwasawa, K.; Georgantopoulos, I.; Vignali, C.; Gilli, R.

    2017-12-01

    Aims: We aim to study the variability properties of bright hard X-ray selected active galactic nuclei (AGN) in the redshift range between 0.3 and 1.6 detected in the Chandra Deep Field South (XMM-CDFS) by a long ( 3 Ms) XMM observation. Methods: Taking advantage of the good count statistics in the XMM CDFS, we search for flux and spectral variability using the hardness ratio (HR) techniques. We also investigate the spectral variability of different spectral components (photon index of the power law, column density of the local absorber, and reflection intensity). The spectra were merged in six epochs (defined as adjacent observations) and in high and low flux states to understand whether the flux transitions are accompanied by spectral changes. Results: The flux variability is significant in all the sources investigated. The HRs in general are not as variable as the fluxes, in line with previous results on deep fields. Only one source displays a variable HR, anti-correlated with the flux (source 337). The spectral analysis in the available epochs confirms the steeper when brighter trend consistent with Comptonisation models only in this source at 99% confidence level. Finding this trend in one out of seven unabsorbed sources is consistent, within the statistical limits, with the 15% of unabsorbed AGN in previous deep surveys. No significant variability in the column densities, nor in the Compton reflection component, has been detected across the epochs considered. The high and low states display in general different normalisations but consistent spectral properties. Conclusions: X-ray flux fluctuations are ubiquitous in AGN, though in some cases the data quality does not allow for their detection. In general, the significant flux variations are not associated with spectral variability: photon index and column densities are not significantly variable in nine out of the ten AGN over long timescales (from three to six and a half years). Photon index variability is found only in one source (which is steeper when brighter) out of seven unabsorbed AGN. The percentage of spectrally variable objects is consistent, within the limited statistics of sources studied here, with previous deep samples.

  6. Deep K-Band Observations of TMC-1 with the Green Bank Telescope: Detection of HC7O, Nondetection of HC11N, and a Search for New Organic Molecules

    NASA Technical Reports Server (NTRS)

    Cordiner, M. A.; Charnley, S. B.; Kisiel, Z.; McGuire, B. A.; Kuan, Y. -J.

    2017-01-01

    The 100-meter Robert C. Byrd Green Bank Telescope K-band (KFPA) receiver was used to perform a high-sensitivity search for rotational emission lines from complex organic molecules in the cold interstellar medium toward TMC-1 (Taurus Molecular Cloud - cyanopolyyne peak), focussing on the identification of new carbon-chain-bearing species as well as molecules of possible prebiotic relevance. We report a detection of the carbon-chain oxide species HC7O and derive a column density of (7.8 plus or minus 0.9) times 10 (sup 11) per square centimeter. This species is theorized to form as a result of associative electron detachment reactions between oxygen atoms and C7H minus, and/or reaction of C6H2 plus with CO (followed by dissociative electron recombination). Upper limits are given for the related HC6O, C6O, and C7O molecules. In addition, we obtained the fi�rst detections of emission from individual (sup 13) C isotopologues of HC7N, and derive abundance ratios HC7N/HCCCC (sup 13) CCCN equal to 110 plus or minus 16 and HC7N/HCCCC (sup 13) CCCN equal to 96 plus or minus 11, indicative of significant (sup 13) C depletion in this species relative to the local interstellar elemental (sup 12) C divided by (sup 13) C ratio of 60-70. The observed spectral region covered two transitions of HC11N, but emission from this species was not detected, and the corresponding column density upper limit is 7.4 times 10 (sup 10) per square centimeter (at 95 percent confidence). This is significantly lower than the value of 2.8 times 10 (sup 11) per square centimeter previously claimed by Bell et al. and con�rms the recent nondetection of HC11N in TMC-1 by Loomis et al. Upper limits were also obtained for the column densities of malononitrile and the nitrogen heterocycles quinoline, isoquinoline, and pyrimidine.

  7. The CO Transition from Diffuse Molecular Gas to Dense Clouds

    NASA Astrophysics Data System (ADS)

    Rice, Johnathan S.; Federman, Steven

    2017-06-01

    The atomic to molecular transitions occurring in diffuse interstellar gas surrounding molecular clouds are affected by the local physical conditions (density and temperature) and the radiation field penetrating the material. Our optical observations of CH, CH^{+}, and CN absorption from McDonald Observatory and the European Southern Observatory are useful tracers of this gas and provide the velocity structure needed for analyzing lower resolution ultraviolet observations of CO and H_{2} absorption from Far Ultraviolet Spectroscopic Explorer. We explore the changing environment between diffuse and dense gas by using the column densities and excitation temperatures from CO and H_{2} to determine the gas density. The resulting gas densities from this method are compared to densities inferred from other methods such as C_{2} and CN chemistry. The densities allow us to interpret the trends from the combined set of tracers. Groupings of sight lines, such as those toward h and χ Persei or Chameleon provide a chance for further characterization of the environment. The Chameleon region in particular helps illuminate CO-dark gas, which is not associated with emission from H I at 21 cm or from CO at 2.6 mm. Expanding this analysis to include emission data from the GOT C+ survey allows the further characterization of neutral diffuse gas, including CO-dark gas.

  8. Suspension of Drops of a Liquid in a Column of Water.

    ERIC Educational Resources Information Center

    Ahmad, Jamil

    1995-01-01

    Describes a demonstration which creates the illusion of violating Archimedes Principle. The procedure involves two liquids with identical densities and produces drops of one liquid suspended in the middle of a column of the second liquid. (DDR)

  9. GHGSat-D: Greenhouse gas plume imaging and quantification from space using a Fabry-Perot imaging spectrometer

    NASA Astrophysics Data System (ADS)

    McKeever, J.; Durak, B. O. A.; Gains, D.; Jervis, D.; Varon, D. J.; Germain, S.; Sloan, J. J.

    2017-12-01

    GHGSat, Inc. has launched the first satellite designed to detect and quantify greenhouse gas emissions from individual industrial sites. Our demonstration satellite GHGSat-D or "CLAIRE" was launched in June 2016. It weighs less than 15 kg and its primary instrument is a miniaturized Fabry-Perot imaging spectrometer with spectral resolution on the order of 0.1 nm. The spectral bandpass is 1635-1670 nm, giving the instrument access to absorption bands of both CO2 and CH4. Our system is based on targeted observations rather than global coverage, and our spatial imaging resolution is a key differentiator. Specifically, with a ground sampling distance of <50 m within a 12 km field of view, we are able to spatially resolve the increased column densities associated with individual emission plumes. For a given emission rate and wind speed the magnitude of the local excess column increases approximately linearly as pixel resolution decreases. Consequently, at GHGSat's resolution the total column can exceed local background by well over 10% for many industrial sites with strong but realistic emission rates. GHGSat uses a novel measurement and retrievals concept where the emitter site of interest is captured in a sequence of 150-200 overlapping two-dimensional images. The combined effect of the Fabry-Perot resonator and the scrolling scene gives a different spectral sampling of each surface location in every image. While our data processing toolchain does not produce a conventional hyperspectral dataset, it does yield a spectral decomposition of the spatially resolved signal that is compared to a model that includes atmospheric radiative transfer and the instrument's pixel-dependent spectral responsivity. Our presentation will describe the instrument design, concept of operations and retrievals approach. We will also present images and results from GHGSat-D at different processing levels, including high-resolution column density retrievals. An observation of the degassing flux of methane from the outlet of a recently impounded hydroelectric reservoir will be shown as an example. Finally we discuss some performance limitations of GHGSat-D and our plans to overcome them as we update the instrument design for the next satellites.

  10. ROSAT survey of emission from Be stars

    NASA Technical Reports Server (NTRS)

    Grady, Carol

    1993-01-01

    ROSAT pointed observations of bright, classical Be stars have demonstrated that detection of soft x-rays at a level expected for normal B stars of comparable T(sub eff) and luminosity is anti-correlated with the presence of episodes of enhanced mass ejection and formation of a dense, moderately ionized equatorial circumstellar disk. At epochs of lower than average disk column density, x-ray flaring has been detected in 2 Be stars, lambda Eri and pi Aqr.

  11. Sputtering of sodium on the planet Mercury

    NASA Technical Reports Server (NTRS)

    Mcgrath, M. A.; Johnson, R. E.; Lanzerotti, L. J.

    1986-01-01

    It is shown here that ion sputtering cannot account for the observed neutral sodium vapor column density on Mercury, but that it is an important loss mechanism for Na. Photons are likely to be the dominant stimulus, both directly through photodesorption and indirectly through thermal desorption of absorbed Na. It is concluded that the atmosphere produced is characterized by the planet's surface temperature, with the ion-sputtered Na contributing to a lesser, but more extended, component of the atmosphere.

  12. An application of an optimal statistic for characterizing relative orientations

    NASA Astrophysics Data System (ADS)

    Jow, Dylan L.; Hill, Ryley; Scott, Douglas; Soler, J. D.; Martin, P. G.; Devlin, M. J.; Fissel, L. M.; Poidevin, F.

    2018-02-01

    We present the projected Rayleigh statistic (PRS), a modification of the classic Rayleigh statistic, as a test for non-uniform relative orientation between two pseudo-vector fields. In the application here, this gives an effective way of investigating whether polarization pseudo-vectors (spin-2 quantities) are preferentially parallel or perpendicular to filaments in the interstellar medium. For example, there are other potential applications in astrophysics, e.g. when comparing small-scale orientations with larger scale shear patterns. We compare the efficiency of the PRS against histogram binning methods that have previously been used for characterizing the relative orientations of gas column density structures with the magnetic field projected on the plane of the sky. We examine data for the Vela C molecular cloud, where the column density is inferred from Herschel submillimetre observations, and the magnetic field from observations by the Balloon-borne Large-Aperture Submillimetre Telescope in the 250-, 350- and 500-μm wavelength bands. We find that the PRS has greater statistical power than approaches that bin the relative orientation angles, as it makes more efficient use of the information contained in the data. In particular, the use of the PRS to test for preferential alignment results in a higher statistical significance, in each of the four Vela C regions, with the greatest increase being by a factor 1.3 in the South-Nest region in the 250 - μ m band.

  13. A characteristic scale for cold gas

    NASA Astrophysics Data System (ADS)

    McCourt, Michael; Oh, S. Peng; O'Leary, Ryan; Madigan, Ann-Marie

    2018-02-01

    We find that clouds of optically thin, pressure-confined gas are prone to fragmentation as they cool below ∼106 K. This fragmentation follows the lengthscale ∼cstcool, ultimately reaching very small scales (∼0.1 pc/n), as they reach the temperature ∼104 K at which hydrogen recombines. While this lengthscale depends on the ambient pressure confining the clouds, we find that the column density through an individual fragment Ncloudlet ∼ 1017 cm-2 is essentially independent of environment; this column density represents a characteristic scale for atomic gas at 104 K. We therefore suggest that 'clouds' of cold, atomic gas may, in fact, have the structure of a mist or a fog, composed of tiny fragments dispersed throughout the ambient medium. We show that this scale emerges in hydrodynamic simulations, and that the corresponding increase in the surface area may imply rapid entrainment of cold gas. We also apply it to a number of observational puzzles, including the large covering fraction of diffuse gas in galaxy haloes, the broad-line widths seen in quasar and AGN spectra and the entrainment of cold gas in galactic winds. While our simulations make a number of assumptions and thus have associated uncertainties, we show that this characteristic scale is consistent with a number of observations, across a wide range of astrophysical environments. We discuss future steps for testing, improving and extending our model.

  14. Quasar outflows and AGN feedback in the extreme UV: HST/COS observations of HE 0238-1904

    NASA Astrophysics Data System (ADS)

    Arav, Nahum; Borguet, Benoit; Chamberlain, Carter; Edmonds, Doug; Danforth, Charles

    2013-12-01

    Spectroscopic observations of quasar outflows at rest-frame 500-1000 Å have immense diagnostic power. We present analyses of such data, where absorption troughs from O IV and O IV* allow us to obtain the distance of the outflows from the AGN and troughs from Ne VIII and Mg X reveal the warm absorber phase of the outflow. Their inferred column densities, combined with those of O VI, N IV and H I, yield two important results. (1) The outflow shows two ionization phases, where the high-ionization phase carries the bulk of the material. This is similar to the situation seen in X-ray warm absorber studies. Furthermore, the low-ionization phase is inferred to have a volume filling factor of 10-5-10-6. (2) We determine a distance of 3000 pc from the outflow to the central source using the O IV*/O IV column density ratio and the knowledge of the ionization parameter. Since this is a typical high-ionization outflow, we can determine robust values for the outflow's mass flux and kinetic luminosity of 40 M⊙ yr-1 and 1045 erg s-1, respectively, where the latter is roughly equal to 1 per cent of the bolometric luminosity. Such a large kinetic luminosity and mass flow rate measured in a typical high-ionization wind suggest that quasar outflows are a major contributor to AGN feedback mechanisms.

  15. HYDROGEN CHLORIDE IN DIFFUSE INTERSTELLAR CLOUDS ALONG THE LINE OF SIGHT TO W31C (G10.6-0.4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monje, R. R.; Lis, D. C.; Phillips, T. G.

    2013-04-10

    We report the detection of hydrogen chloride, HCl, in diffuse molecular clouds on the line of sight toward the star-forming region W31C (G10.6-0.4). The J = 1-0 lines of the two stable HCl isotopologues, H{sup 35}Cl and H{sup 37}Cl, are observed using the 1b receiver of the Heterodyne Instrument for the Far-Infrared (HIFI) on board the Herschel Space Observatory. The HCl line is detected in absorption, over a wide range of velocities associated with diffuse clouds along the line of sight to W31C. The analysis of the absorption strength yields a total HCl column density of a few 10{sup 13}more » cm{sup -2}, implying that HCl accounts for {approx}0.6% of the total gas-phase chlorine, which exceeds the theoretical model predictions by a factor of {approx}6. This result is comparable to those obtained from the chemically related species H{sub 2}Cl{sup +} and HCl{sup +}, for which large column densities have also been reported on the same line of sight. The source of discrepancy between models and observations is still unknown; however, the detection of these Cl-bearing molecules provides key constraints for the chlorine chemistry in the diffuse gas.« less

  16. Behind the dust curtain: the spectacular case of GRB 160623A

    NASA Astrophysics Data System (ADS)

    Pintore, F.; Tiengo, A.; Mereghetti, S.; Vianello, G.; Salvaterra, R.; Esposito, P.; Costantini, E.; Giuliani, A.; Bosnjak, Z.

    2017-12-01

    We report on the X-ray dust-scattering features observed around the afterglow of the gamma-ray burst GRB 160623A. With an XMM-Newton observation carried out ∼2 d after the burst, we found evidence of at least six rings, with angular size expanding between ∼2 and 9 arcmin, as expected for X-ray scattering of the prompt gamma-ray burst (GRB) emission by dust clouds in our Galaxy. From the expansion rate of the rings, we measured the distances of the dust layers with extraordinary precision: 528.1 ± 1.2, 679.2 ± 1.9, 789.0 ± 2.8, 952 ± 5, 1539 ± 20 and 5079 ± 64 pc. A spectral analysis of the ring spectra, based on an appropriate dust-scattering model (BARE-GR-B) and the estimated burst fluence, allowed us to derive the column density of the individual dust layers, which are in the range 7 × 1020-1.5 × 1022 cm-2. The farthest dust layer (i.e. the one responsible for the smallest ring) is also the one with the lowest column density and it is possibly very extended, indicating a diffuse dust region. The properties derived for the six dust layers (distance, thickness and optical depth) are generally in good agreement with independent information on the reddening along this line of sight and on the distribution of molecular and atomic gas.

  17. Changes of Dust Opacity with Density in the Orion A Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Roy, Arabindo; Martin, Peter G.; Polychroni, Danae; Bontemps, Sylvain; Abergel, Alain; André, Philippe; Arzoumanian, Doris; Di Francesco, James; Hill, Tracey; Konyves, Vera; Nguyen-Luong, Quang; Pezzuto, Stefano; Schneider, Nicola; Testi, Leonardo; White, Glenn

    2013-01-01

    We have studied the opacity of dust grains at submillimeter wavelengths by estimating the optical depth from imaging at 160, 250, 350, and 500 μm from the Herschel Gould Belt Survey and comparing this to a column density obtained from the Two Micron All Sky Survey derived color excess E(J - K s). Our main goal was to investigate the spatial variations of the opacity due to "big" grains over a variety of environmental conditions and thereby quantify how emission properties of the dust change with column (and volume) density. The central and southern areas of the Orion A molecular cloud examined here, with N H ranging from 1.5 × 1021 cm-2 to 50 × 1021 cm-2, are well suited to this approach. We fit the multi-frequency Herschel spectral energy distributions (SEDs) of each pixel with a modified blackbody to obtain the temperature, T, and optical depth, τ1200, at a fiducial frequency of 1200 GHz (250 μm). Using a calibration of N H/E(J - Ks ) for the interstellar medium (ISM) we obtained the opacity (dust emission cross-section per H nucleon), σe(1200), for every pixel. From a value ~1 × 10-25 cm2 H-1 at the lowest column densities that is typical of the high-latitude diffuse ISM, σe(1200) increases as N 0.28 H over the range studied. This is suggestive of grain evolution. Integrating the SEDs over frequency, we also calculated the specific power P (emission power per H) for the big grains. In low column density regions where dust clouds are optically thin to the interstellar radiation field (ISRF), P is typically 3.7 × 10-31 W H-1, again close to that in the high-latitude diffuse ISM. However, we find evidence for a decrease of P in high column density regions, which would be a natural outcome of attenuation of the ISRF that heats the grains, and for localized increases for dust illuminated by nearby stars or embedded protostars.

  18. Fluorescent H{sub 2} Emission Lines from the Reflection Nebula NGC 7023 Observed with IGRINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Huynh Anh N.; Pak, Soojong; Lee, Hye-In

    We have analyzed the temperature, velocity, and density of H{sub 2} gas in NGC 7023 with a high-resolution near-infrared spectrum of the northwestern filament of the reflection nebula. By observing NGC 7023 in the H and K bands at R ≃ 45,000 with the Immersion GRating INfrared Spectrograph, we detected 68 H{sub 2} emission lines within the 1″ × 15″ slit. The diagnostic ratio of 2-1 S(1)/1-0 S(1) is 0.41−0.56. In addition, the estimated ortho-to-para ratio (OPR) is 1.63−1.82, indicating that the H{sub 2} emission transitions in the observed region arise mostly from gas excited by UV fluorescence. Gradients inmore » the temperature, velocity, and OPR within the observed area imply motion of the photodissociation region (PDR) relative to the molecular cloud. In addition, we derive the column density of H{sub 2} from the observed emission lines and compare these results with PDR models in the literature covering a range of densities and incident UV field intensities. The notable difference between PDR model predictions and the observed data, in high rotational J levels of ν = 1, is that the predicted formation temperature for newly formed H{sub 2} should be lower than that of the model predictions. To investigate the density distribution, we combine pixels in 1″ × 1″ areas and derive the density distribution at the 0.002 pc scale. The derived gradient of density suggests that NGC 7023 has a clumpy structure, including a high clump density of ∼10{sup 5} cm{sup −3} with a size smaller than ∼5 × 10{sup −3} pc embedded in lower-density regions of 10{sup 3}–10{sup 4} cm{sup −3}.« less

  19. Americium, Cesium, and Plutonium Colloid-Facilitated Transport in a Groundwater/Bentonite/Fracture Fill Material System: Column Experiments and Model Results

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Boukhalfa, H.; Reimus, P. W.

    2014-12-01

    The objective of this study was to investigate and quantify the effects of desorption kinetics and colloid transport on radionuclides with different sorption affinities. We focused on quantifying transport mechanisms important for upscaling in time and distance. This will help determine the long-term fate and transport of radionuclides to aid in risk assessments. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model crystalline rock repository system because the system has been thoroughly studied and field experiments involving radionuclides have already been conducted. Working on this system provides a unique opportunity to compare lab experiments with field-scale observations. Weathered fracture fill material (FFM) and bentonite used as backfill at the GTS were characterized (e.g., BET, SEM/EDS, QXRD), and batch and breakthrough column experiments were conducted. Solutions were prepared in synthetic groundwaters that matched the natural water chemistry. FFM samples were crushed, rinsed, sieved (150-355 μm), and equilibrated with synthetic groundwater. Bentonite was crushed, sodium-saturated, equilibrated with synthetic groundwater, and settled to yield a stable suspension. Suspensions were equilibrated with Am, Cs, or Pu. All experiments were conducted with Teflon®materials to limit sorption to system components. After radionuclide/colloid injections reached stability, radionuclide-free solutions were injected to observe the desorption and release behavior. Aliquots of effluent were measured for pH, colloid concentration, and total and dissolved radionuclides. Unanalyzed effluent from the first column was then injected through a second column of fresh material. The process was repeated for a third column and the results of all three breakthrough curves were modeled with a multi-site/multi-rate MATLAB code to elucidate the sorption rate coefficients and binding site densities of the bentonite colloids and fracture fill material. Nearly 50% of the sorbed Am was exchanged from the colloids to the fracture filling material in each of the three columns; whereas, less Cs and Pu was desorbed with each pass through a new column. Using a two-site kinetic model allowed for interrogation of desorption rates and dominant transport parameters.

  20. On N. Park's Analytical solution for steady state density- and mixing regime—dependent solute transport in a vertical soil column

    NASA Astrophysics Data System (ADS)

    Thiele, Michael

    1998-04-01

    Recently, Park [1996] presented an analytical solution for stationary one-dimensional solute transport in a variable-density fluid flow through a vertical soil column. He used the widespread Bear-Scheidegger dispersion model describing solute mixing as a sum of molecular diffusion and velocity-proportional mechanical dispersion effects. His closed-form implicit concentration and pressure distributions thus allow for a discussion of the combined impact of molecular diffusion and mechanical dispersion in a variable-density environment. Whereas Park only considered the example of vanishing molecular diffusion in detail, both phenomena are taken into account simultaneously in the present study in order to elucidate their different influences on concentration distribution characteristics. The boundary value problem dealt with herein is based on an upward inflow of high-density fluid of constant solute concentration and corresponding outflow of a lower constant concentration fluid at the upper end of the column when dispersivity does not change along the flow path. The thickness of the transition zone between the two fluids appeared to strongly depend on the prevailing share of the molecular diffusion and mechanical dispersion mechanisms. The latter can be characterized by a molecular Peclet number Pe, which here is defined as the ratio of the column outflow velocity multiplied by a characteristic pore size and the molecular diffusion coefficient. For very small values of Pe, when molecular diffusion represents the exclusive mixing process, density differences have no impact on transition zone thicknesses. A relative density-;dependent thickness increases with flow velocities (increasing Pe values) very rapidly compared to the density-independent case, and after having passed a maximum decreases asymptotically to a constant value for the large Peclet number limit when mechanical dispersion is the only mixing mechanism. Hence the special transport problem analyzed gives further evidence for the importance of simultaneously considering molecular diffusion and mechanical dispersion in gravity-affected solute transport in porous media.

  1. Detection of the HC3NH+ and HCNH+ ions in the L1544 pre-stellar core

    NASA Astrophysics Data System (ADS)

    Quénard, D.; Vastel, C.; Ceccarelli, C.; Hily-Blant, P.; Lefloch, B.; Bachiller, R.

    2017-09-01

    The L1544 pre-stellar core was observed as part of the ASAI (Astrochemical Surveys At IRAM) Large Program. We report the first detection in a pre-stellar core of the HCNH+ and HC3NH+ ions. The high spectral resolution of the observations allows us to resolve the hyperfine structure of HCNH+. Local thermodynamic equilibrium (LTE) analysis leads to derive a column density equal to (2.0 ± 0.2) × 1013 cm-2 for HCNH+ and (1.5 ± 0.5) × 1011 cm-2 for HC3NH+. We also present non-LTE analysis of five transitions of HC3N, three transitions of H13CN and one transition of HN13C, all of them linked to the chemistry of HCNH+ and HC3NH+. We computed for HC3N, HCN and HNC a column density of (2.0 ± 0.4) × 1013 cm-2, (3.6 ± 0.9) × 1014 cm-2 and (3.0 ± 1.0) × 1014 cm-2, respectively. We used the gas-grain chemical code nautilus to predict the abundances of all these species across the pre-stellar core. Comparison of the observations with the model predictions suggests that the emission from HCNH+ and HC3NH+ originates in the external layer where non-thermal desorption of other species was previously observed. The observed abundance of both ionic species ([HCNH+] ≃ 3 × 10-10 and [HC3NH+] ≃ [1.5 - 3.0] × 10-12, with respect to H2) cannot be reproduced at the same time by the chemical modelling within the error bars of the observations only. We discuss the possible reasons for the discrepancy and suggest that the current chemical models are not fully accurate or complete. However, the modelled abundances are within a factor of 3, consistent with the observations, considering a late stage of the evolution of the pre-stellar core, compatible with previous observations.

  2. THE PHASE COHERENCE OF INTERSTELLAR DENSITY FLUCTUATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkhart, Blakesley; Lazarian, A.

    2016-08-10

    Studies of MHD turbulence often investigate the Fourier power spectrum to provide information on the nature of the turbulence cascade. However, the Fourier power spectrum only contains the Fourier amplitudes and rejects all information regarding the Fourier phases. Here, we investigate the utility of two statistical diagnostics for recovering information on Fourier phases in ISM column density maps: the averaged amplitudes of the bispectrum and the phase coherence index (PCI), a new phase technique for the ISM. We create three-dimensional density and two-dimensional column density maps using a set of simulations of isothermal ideal MHD turbulence with a wide rangemore » of sonic and Alfvénic Mach numbers. We find that the bispectrum averaged along different angles with respect to either the k {sub 1} or k {sub 2} axis is primarily sensitive to the sonic Mach number while averaging the bispectral amplitudes over different annuli is sensitive to both the sonic and Alfvénic Mach numbers. The PCI of density suggests that the most correlated phases occur in supersonic sub-Alfvénic turbulence and near the shock scale. This suggests that nonlinear interactions with correlated phases are strongest in shock-dominated regions, in agreement with findings from the solar wind. Our results suggest that the phase information contained in the bispectrum and PCI can be used to find the turbulence parameters in column density maps.« less

  3. Coordinated Hubble Space Telescope and Venus Express Observations of Venus' upper cloud deck

    NASA Astrophysics Data System (ADS)

    Jessup, Kandis Lea; Marcq, Emmanuel; Mills, Franklin; Mahieux, Arnaud; Limaye, Sanjay; Wilson, Colin; Allen, Mark; Bertaux, Jean-Loup; Markiewicz, Wojciech; Roman, Tony; Vandaele, Ann-Carine; Wilquet, Valerie; Yung, Yuk

    2015-09-01

    Hubble Space Telescope Imaging Spectrograph (HST/STIS) UV observations of Venus' upper cloud tops were obtained between 20N and 40S latitude on December 28, 2010; January 22, 2011 and January 27, 2011 in coordination with the Venus Express (VEx) mission. The high spectral (0.27 nm) and spatial (40-60 km/pixel) resolution HST/STIS data provide the first direct and simultaneous record of the latitude and local time distribution of Venus' 70-80 km SO and SO2 (SOx) gas density on Venus' morning quadrant. These data were obtained simultaneously with (a) VEx/SOIR occultation and/or ground-based James Clerk Maxwell Telescope sub-mm observations that record respectively, Venus' near-terminator SO2 and dayside SOx vertical profiles between ∼75 and 100 km; and (b) 0.36 μm VEx/VMC images of Venus' cloud-tops. Updating the (Marcq, E. et al. [2011]. Icarus 211, 58-69) radiative transfer model SO2 gas column densities of ∼2-10 μm-atm and ∼0.4-1.8 μm-atm are retrieved from the December 2010 and January 2011 HST observations, respectively on Venus' dayside (i.e., at solar zenith angles (SZA) < 60°); SO gas column densities of 0.1-0.11 μm-atm, 0.03-0.31 μm-atm and 0.01-0.13 μm-atm are also retrieved from the respective December 28, 2010, January 22, 2011 and January 27, 2011 HST observations. A decline in the observed low-latitude 0.24 and 0.36 μm cloud top brightness paralleled the declining SOx gas densities. On December 28, 2010 SO2 VMR values ∼280-290 ppb are retrieved between 74 and 81 km from the HST and SOIR data obtained near Venus' morning terminator (at SZAs equal to 70° and 90°, respectively); these values are 10× higher than the HST-retrieved January 2011 near terminator values. Thus, the cloud top SO2 gas abundance declined at all local times between the three HST observing dates. On all dates the average dayside SO2/SO ratio inferred from HST between 70 and 80 km is higher than that inferred from the sub-mm the JCMT data above 84 km confirming that SOx photolysis is more efficient at higher altitudes. The direct correlation of the SOx gases provides the first clear evidence that SOx photolysis is not the only source for Venus' 70-80 km sulfur reservoir. The cloud top SO2 gas density is dependent in part on the vertical transport of the gas from the lower atmosphere; and the 0.24 μm cloud top brightness levels are linked to the density of the sub-micron haze. Thus, the new results may suggest a correlation between Venus' cloud-top sub-micron haze density and the vertical transport rate. These new results must be considered in models designed to simulate and explore the relationship between Venus' sulfur chemistry cycle, H2SO4 cloud formation rate and climate evolution. Additionally, we present the first photochemical model that uniquely tracks the transition of the SO2 atmosphere from steady to non-steady state with increasing SZA, as function of altitude within Venus' mesosphere, showing the photochemical and dynamical basis for the factor of ∼2 enhancements in the SOx gas densities observed by HST near the terminator above that observed at smaller SZA. These results must also be considered when modeling the long-term evolution of Venus' atmospheric chemistry and dynamics.

  4. On the Appearance of Thresholds in the Dynamical Model of Star Formation

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    2018-02-01

    The Kennicutt–Schmidt (KS) relationship between the surface density of the star formation rate (SFR) and the gas surface density has three distinct power laws that may result from one model in which gas collapses at a fixed fraction of the dynamical rate. The power-law slope is 1 when the observed gas has a characteristic density for detection, 1.5 for total gas when the thickness is about constant as in the main disks of galaxies, and 2 for total gas when the thickness is regulated by self-gravity and the velocity dispersion is about constant, as in the outer parts of spirals, dwarf irregulars, and giant molecular clouds. The observed scaling of the star formation efficiency (SFR per unit CO) with the dense gas fraction (HCN/CO) is derived from the KS relationship when one tracer (HCN) is on the linear part and the other (CO) is on the 1.5 part. Observations of a threshold density or column density with a constant SFR per unit gas mass above the threshold are proposed to be selection effects, as are observations of star formation in only the dense parts of clouds. The model allows a derivation of all three KS relations using the probability distribution function of density with no thresholds for star formation. Failed galaxies and systems with sub-KS SFRs are predicted to have gas that is dominated by an equilibrium warm phase where the thermal Jeans length exceeds the Toomre length. A squared relation is predicted for molecular gas-dominated young galaxies.

  5. Heating rates in collisionally opaque alkali-metal atom traps: Role of secondary collisions

    NASA Astrophysics Data System (ADS)

    Beijerinck, H. C. W.

    2000-12-01

    Grazing collisions with background gas are the major cause of trap loss and trap heating in atom traps. To first order, these effects do not depend on the trap density. In collisionally opaque trapped atom clouds, however, scattered atoms with an energy E larger than the effective trap depth Eeff, which are destined to escape from the atom cloud, will have a finite probability for a secondary collision. This results in a contribution to the heating rate that depends on the column density of the trapped atoms, i.e., the product of density and characteristic size of the trap. For alkali-metal atom traps, secondary collisions are quite important due to the strong long-range interaction with like atoms. We derive a simple analytical expression for the secondary heating rate, showing a dependency proportional to E1/2eff. When extrapolating to a vanishing column density, only primary collisions with the background gas will contribute to the heating rate. This contribution is rather small, due to the weak long-range interaction of the usual background gas species in an ultrahigh-vacuum system-He, Ne, or Ar-with the trapped alkali-metal atoms. We conclude that the transition between trap-loss collisions and heating collisions is determined by a cutoff energy 200 μK<=Eeff<=400 μK, much smaller than the actual trap depth E in most magnetic traps. Atoms with an energy Eeff

  6. Comparison of the far-infrared and carbon monoxide emission in Heiles' Cloud 2 and B18

    NASA Technical Reports Server (NTRS)

    Snell, Ronald L.; Schloerb, F. Peter; Heyer, Mark H.

    1989-01-01

    A comparison is made of the far-IR emission detected by IRAS at 60 and 100 microns and the emission from C(-13)O in B18 and Heiles' Cloud 2. The results show that both these clouds have extended emission at the studied wavelengths and that this emission is correlated with the integrated intensity of (C-13)O emission. The dust temperature and optical depth, the gas column density, the mass of gas and dust, and the far-IR luminosity are derived and presented. The analysis shows that the dust optical depth is much better correlated with the gas column density than with the far-IR intensity. The dust temperature is found to be anticorrelated with the gas column density, suggesting that these clouds are externally heated by the interstellar radiation field. The far-IR luminosity-to-mass ratios for the clouds are substantially less than the average for the inner Galaxy.

  7. Free-tropospheric BrO investigations based on GOME

    NASA Astrophysics Data System (ADS)

    Post, P.; van Roozendael, M.; Backman, L.; Damski, J.; Thölix, L.; Fayt, C.; Taalas, P.

    2003-04-01

    Bromine compounds contribute significantly to the stratospheric ozone depletion. However measurements of most bromine compounds are sparse or non-existent, and experimental studies essentially rely on BrO observations. The differences between balloon and ground based measurements of stratospheric BrO columns and satellite total column measurements are too large to be explained by measurement uncertainties. Therefore, it has been assumed that there is a concentration of BrO in the free troposphere of about 1-3 ppt. In a previous work, we have calculated the tropospheric BrO abundance as the difference between total BrO and stratospheric BrO columns. The total vertical column densities of BrO are extracted from GOME measurements using IASB-BIRA algorithms. The stratospheric amount has been calculated using chemical transport models (CTM). Results from SLIMCAT and FinROSE simulations are used for this purpose. SLIMCAT is a widely used 3D CTM that has been tested against balloon measurements. FinROSE is a 3D CTM developed at FMI. We have tried several different tropospheric BrO profiles. Our results show that a profile with high BrO concentrations in the boundary layer usually gives unrealistically high tropospheric column values over areas of low albedo (like oceans). This suggests that the tropospheric BrO would be predominantly distributed in the free troposphere. In this work, attempts are made to identify the signature of a free tropospheric BrO content when comparing cloudy and non-cloudy scenes. The possible impact of orography on measured BrO columns is also investigated.

  8. Practical comparison of LC columns packed with different superficially porous particles for the separation of small molecules and medium size natural products.

    PubMed

    Yang, Peilin; McCabe, Terry; Pursch, Matthias

    2011-11-01

    Commercial C(18) columns packed with superficially porous particles of different sizes and shell thicknesses (Ascentis Express, Kinetex, and Poroshell 120) or sub-2-μm totally porous particles (Acquity BEH) were systematically compared using a small molecule mixture and a complex natural product mixture as text probes. Significant efficiency loss was observed on 2.1-mm id columns even with a low dispersion ultra-high pressure liquid chromatography system. The Kinetex 4.6-mm id column packed with 2.6-μm particles exhibited the best overall efficiency for small molecule separations and the Poroshell 120 column showed better performance for mid-size natural product analytes. The Kinetex 2.1-mm id column packed with 1.7-μm particles did not deliver the expected performance and the possible reasons besides extra column effect have been proved to be frictional heating effect and poor column packing quality. Different column retentivities and selectivities have been observed on the four C(18) columns of different brands for the natural product separation. Column batch-to-batch variability that has been previously observed on the Ascentis Express column was also observed on the Kinetex and Poroshell 120 column. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Metastable Structural Phases of Metals in Columns IVB to Vib, and Rows 4 TO 6 OF the Periodic Table

    NASA Astrophysics Data System (ADS)

    Nnolim, Neme; Tyson, Trevor

    2002-03-01

    Total energy calculations as a function of strain along the <001> direction have been carried out for the bcc metals V, Nb, Ta, Cr, Mo and W, and the hcp metals Ti, Zr and Hf, all in the block of the periodic table defined by columns IVB to VIB, and rows 4 to 6. Since strain along the <001> direction corresponds to variation of the c lattice constant with respect to the a lattice constant, the total energy per unit cell has being calculated as a function of the c/a ratio. The highly accurate FP-LAPW (Full Potential Linearized Augmented Plane Wave) band structure method in the DFT (Density Functional Theory) formalism has been used for the calculations. In all cases except for the hcp column IVB elements, Zr, Hf and Ti, a metastable state was predicted from the calculations. Electronic properties are computed for all structures and are correlated with electrical and mechanical properties of metastable phases that have been observed experimentally. Properties of metastable phases, which were predicted in this work but which as of yet have not been observed experimentally, have also been predicted. Special attention is paid to the phases of tantalum and calculated transport properties are used to show that the observed high resistivity of the beta phase of tantalum relative to the alpha bcc phase cannot be explained solely by simple tetragonal distortions of the bcc phase.

  10. Early Activity of Churyumov-Gerasimenko: ROSINA/RTOF Results

    NASA Astrophysics Data System (ADS)

    Wurz, P.; Altwegg, K.; Balsiger, H. R.; Gasc, S.; Galli, A.; Rubin, M.; Jäckel, A.; Le Roy, L.; Calmonte, U.; Tzou, C. Y.; Mall, U. A.; Korth, A.; Fiethe, B.; De Keyser, J. M.; Berthelier, J. J.; Rème, H.; Gombosi, T. I.; Fuselier, S.

    2014-12-01

    The European Space Agency's Rosetta spacecraft is now close to the comet 67P/Churyumov-Gerasimenko (67P/C-G). On board is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument suite. ROSINA consists of two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron-type Time-Of-Flight (RTOF), as well as the COmet Pressure Sensor (COPS). The first signal with ROSINA/RTOF of the gaseous environment of the comet was a significant increase in water density observed on DOY 218.1 of 2014 (at 3.5 AU) by RTOF above the gaseous envelope of the Rosetta spacecraft. A similar density increase is observed by COPS at the same time. A preliminary analysis shows that the water density is nH2O ≈ 1012 m-3 at 100 km distance from the comet (located at 3.5 AU from the Sun). This gives a density at the surface of nH2O ≈ 6.4·1015 m-3 and a vertical column density of water of NCH2O ≈ 6.5·1018 m-2. Assuming an active area of 4% we arrive at a production rate of QH2O ≈ 5.8·1024 mole s-1. These values are preliminary and will be refined by forthcoming observations. Other than water, no signal related to cometary activity could be observed above the molecular background from the spacecraft at present, e.g. cometary CO and CO2 are not observed in the RTOF data so far. This hints at a possible deficiency of carbon bearing compounds in the comet.

  11. Deuterium and Oxygen Toward Feige 110: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission

    NASA Technical Reports Server (NTRS)

    Friedman, S. D.; Howk, J. C.; Chayer, P.; Tripp, T. M.; Hebrard, G.; Andre, M.; Oliveira, C.; Jenkins, E. B.; Moos, H. W.; Oegerle, William R.

    2001-01-01

    We present measurements of the column densities of interstellar D I and O I made with the Far Ultraviolet Spectroscopic Explorer (FUSE), and of H I made with the International Ultraviolet Explorer (IUE) toward the sdOB star Feige 110 [(l,b) = (74.09 deg., - 59.07 deg.); d = 179(sup +265, sub -67) pc; Z = -154(sup +57, Sub -227 pc). Our determination of the D I column density made use of curve of growth fitting and profile fitting analyses, while our O I column density determination used only curve of growth techniques. The H I column density was estimated by fitting the damping wings of the interstellar Ly(lpha) profile. We find log N(D I) = 15.47 +/- 0.06, log N(O I) = 16.73 +/- 0.10, and log N(H I) = 20.14(sup +0.13, sub -0.20) (all errors 2(sigma)). This implies D/H = (2.14 +/- 0.82) x 10(esp -5), D/O = (5.50(sup + 1.64, sub -133)) x 10(exp -2), and O/H = (3.89 +/- 1.67) x 10(exp -4). Taken with the FUSE results reported in companion papers and previous measurements of the local interstellar medium, this suggests the possibility of spatial variability in D/H for sight lines exceeding approx. 100 pc. This result may constrain models which characterize the mixing time and length scales of material in the local interstellar medium.

  12. AN OCCULTATION EVENT IN CENTAURUS A AND THE CLUMPY TORUS MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard, E-mail: erivers@ucsd.edu

    2011-12-15

    We have analyzed 16 months of sustained monitoring observations of Centaurus A from the Rossi X-Ray Timing Explorer to search for changes in the absorbing column in the line of sight to the central nucleus. We present time-resolved spectroscopy which indicates that a discrete clump of material transited the line of sight to the central illuminating source over the course of {approx}170 days between 2010 August and 2011 February with a maximum increase in the column density of about 8.4 Multiplication-Sign 10{sup 22} cm{sup -2}. This is the best quality data of such an event that has ever been analyzedmore » with the shape of the ingress and egress clearly seen. Modeling the clump of material as roughly spherical with a linearly decreasing density profile and assuming a distance from the central nucleus commensurate with the dusty torus, we found that the clump would have a diameter of (1.4-2.4) Multiplication-Sign 10{sup 15} cm with a central number density of n{sub H} = (1.8-3.0) Multiplication-Sign 10{sup 7} cm{sup -3}. This is consistent with previous results for a similar (though possibly much longer) occultation event inferred in this source in 2003-2004 and supports models of the molecular torus as a clumpy medium.« less

  13. Top-down constraints of regional emissions for KORUS-AQ 2016 field campaign

    NASA Astrophysics Data System (ADS)

    Bae, M.; Yoo, C.; Kim, H. C.; Kim, B. U.; Kim, S.

    2017-12-01

    Accurate estimations of emission rates form local and international sources are essential in regional air quality simulations, especially in assessing the relative contributions from international emission sources. While bottom-up constructions of emission inventories provide detailed information on specific emission types, they are limited to cover regions with rapid change of anthropogenic emissions (e.g. China) or regions without enough socioeconomic information (e.g. North Korea). We utilized space-borne monitoring of major pollutant precursors to construct a realistic emission inputs for chemistry transport models during the KORUS-AQ 2016 field campaign. Base simulation was conducted using WRF, SMOKE, and CMAQ modeling frame using CREATE 2015 (Asian countries) and CAPSS 2013 (South Korea) emissions inventories. NOx, SO2 and VOC model emissions are adjusted using the column density comparisons ratios (between modeled and observed NO2, SO2 and HCHO column densities) and emission-to-density conversion ratio (from model). Brute force perturbation method was used to separate contributions from North Korea, China and South Korea for flight pathways during the field campaign. Backward-Tracking Model Analyzer (BMA), based on NOAA HYSPLIT trajectory and dispersion model, are also utilized to track histories of chemical processes and emission source apportionment. CMAQ simulations were conducted over East Asia (27-km) and over South and North Korea (9-km) during KORUS-AQ campaign (1st May to 10th June 2016).

  14. Observations of the Ca/+/ twilight airglow from intermediate layers of ionization

    NASA Technical Reports Server (NTRS)

    Tepley, C. A.; Meriwether, J. W., Jr.; Walker, J. C. G.; Mathews, J. D.

    1981-01-01

    Optical and incoherent scatter radar techniques are applied to detect the presence of Ca(+) in lower thermospheric intermediate layers over Arecibo. The Arecibo 430 MHz radar is used to measure electron densities, and the altitude distribution and density of the calcium ion is inferred from the variation of twilight resonant scattering with solar depression angle. Ca(+) and electron column densities are compared, and results indicate that the composition of low-altitude intermediate layers is 2% Ca(+), which is consistent with rocket mass spectrometer measurements. Fe(+) and Mg(+) ultraviolet resonance lines are not detected from the ground due to ozone absorbing all radiation short of 3000 A, and measurements of the neutral iron resonance line at 3860 A show that an atmospheric continuum may result in overestimations of emission rates at high solar depression angles.

  15. RXTE Observations of the Seyfert 2 Galaxy MrK 348

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Georgantopoulos, Ioannis; Warwick, Robert S.

    2000-01-01

    We present RXTE monitoring observations of the Seyfert 2 galaxy Mrk 348 spanning a 6 month period. The time-averaged spectrum in the 3-20 keV band shows many features characteristic of a Compton-thin Seyfert 2 galaxy, namely a hard underlying power-law continuum (Gamma approximately equal 1.8) with heavy soft X-ray absorption (N(sub H) approximately 10(exp 23)/sq cm) plus measurable iron K.alpha emission (equivalent width approximately 100 eV) and, at high energy, evidence for a reflection component (R approximately < 1). During the first half of the monitoring period the X-ray continuum flux from Mrk 348 remained relatively steady. However this was followed by a significant brightening of the source (by roughly a factor of 4) with the fastest change corresponding to a doubling of its X-ray flux on a timescale of about 20 days. The flux increase was accompanied by a marked softening of X-ray spectrum most likely attributable to a factor approximately 3 decline in the intrinsic line-of-sight column density. In contrast the iron K.alpha line and the reflection components showed no evidence of variability. These observations suggest a scenario in which the central X-ray source is surrounded by a patchy distribution of absorbing material located within about a light-week of the nucleus of Mrk 348. The random movement of individual clouds within the absorbing screen, across our line of sight, produces substantial temporal variations in the measured column density on timescales of weeks to months and gives rise to the observed X-ray spectral variability. However, as viewed from the nucleus the global coverage and typical thickness of the cloud layer remains relatively constant.

  16. Hard X-Ray Emission of the Luminous Infrared Galaxy NGC 6240 as Observed by Nustar

    NASA Technical Reports Server (NTRS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; hide

    2016-01-01

    We present a broadband (approx.0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by approx.1.5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (tau approx. = 1.2, NH approx. 1.5×10(exp 24)/sq cm. We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at approx..30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH < or = 2×10(exp 23)/sq cm over long (approx.3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  17. Hard X-ray emission of the luminous infrared galaxy NGC 6240 as observed by NuSTAR

    NASA Astrophysics Data System (ADS)

    Puccetti, S.; Comastri, A.; Bauer, F. E.; Brandt, W. N.; Fiore, F.; Harrison, F. A.; Luo, B.; Stern, D.; Urry, C. M.; Alexander, D. M.; Annuar, A.; Arévalo, P.; Baloković, M.; Boggs, S. E.; Brightman, M.; Christensen, F. E.; Craig, W. W.; Gandhi, P.; Hailey, C. J.; Koss, M. J.; La Massa, S.; Marinucci, A.; Ricci, C.; Walton, D. J.; Zappacosta, L.; Zhang, W.

    2016-01-01

    We present a broadband (~0.3-70 keV) spectral and temporal analysis of NuSTAR observations of the luminous infrared galaxy NGC 6240 combined with archival Chandra, XMM-Newton, and BeppoSAX data. NGC 6240 is a galaxy in a relatively early merger state with two distinct nuclei separated by ~1.̋5. Previous Chandra observations resolved the two nuclei and showed that they are both active and obscured by Compton-thick material. Although they cannot be resolved by NuSTAR, we were able to clearly detect, for the first time, both the primary and the reflection continuum components thanks to the unprecedented quality of the NuSTAR data at energies >10 keV. The NuSTAR hard X-ray spectrum is dominated by the primary continuum piercing through an absorbing column density which is mildly optically thick to Compton scattering (τ ≃ 1.2, NH ~ 1.5 × 1024 cm-2). We detect moderately hard X-ray (>10 keV) flux variability up to 20% on short (15-20 ks) timescales. The amplitude of the variability is largest at ~30 keV and is likely to originate from the primary continuum of the southern nucleus. Nevertheless, the mean hard X-ray flux on longer timescales (years) is relatively constant. Moreover, the two nuclei remain Compton-thick, although we find evidence of variability in the material along the line of sight with column densities NH ≤ 2 × 1023 cm-2 over long (~3-15 yr) timescales. The observed X-ray emission in the NuSTAR energy range is fully consistent with the sum of the best-fit models of the spatially resolved Chandra spectra of the two nuclei.

  18. The ratio of neutral hydrogen to neutral helium in the local interstellar medium

    NASA Astrophysics Data System (ADS)

    Green, James Carswell

    The results are described from a sounding rocket borne EUV spectrometer that was designed and built. This instrument operated from 400 to 1150A with a spectral resolution of approx. 15A. The instrument effective area was about 1 sq cm. The instrument was successfully launched, and observed the nearby DA white dwarf G191-B2B. From this observation, it was determined that the stellar effective temperature is 61,000 + or -4000 to 6000K, and the ratio of helium to hydrogen in the stellar photosphere is 1.0 + or -0.68 to 2.2 x 10-4. Additionally, the neutral column densities of helium and hydrogen were measured to the star. The neutral helium column density was determined from the first observation of the interstellar absorption edge at 504A. The ratio of neutral helium to neutral hydrogen constrains the mean ionization of the warm gas along the line of sight to G191-B2B. The fractional ionization of hydrogen (H II/H) is approx. less than 20 percent, unless significant helium ionization is present as well. The scenario where the fractional ionization of hydrogen is high (H II/H) approx. less than 40 percent and the helium is neutral is ruled out with 99 percent certainty. This result is consistent with some recent theoretical calculations. Using these results, a self-consistent model of the local interstellar medium along the line of sight to G191-B2B is developed. In addition, an unexpected emission feature at 584A was detected in this observation with a high level of significance. Possible sources of this emission are examined, including the companion K dwarf G191-B2A, and an emission nebula near or around G191-B2B.

  19. Coincidences between O VI and O VII Lines: Insights from High-resolution Simulations of the Warm-hot Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Cen, Renyue

    2012-07-01

    With high-resolution (0.46 h -1 kpc), large-scale, adaptive mesh-refinement Eulerian cosmological hydrodynamic simulations we compute properties of O VI and O VII absorbers from the warm-hot intergalactic medium (WHIM) at z = 0. Our new simulations are in broad agreement with previous simulations with ~40% of the intergalactic medium being in the WHIM. Our simulations are in agreement with observed properties of O VI absorbers with respect to the line incidence rate and Doppler-width-column-density relation. It is found that the amount of gas in the WHIM below and above 106 K is roughly equal. Strong O VI absorbers are found to be predominantly collisionally ionized. It is found that (61%, 57%, 39%) of O VI absorbers of log N(O VI) cm2 = (12.5-13, 13-14, > 14) have T < 105 K. Cross correlations between galaxies and strong [N(O VI) > 1014 cm-2] O VI absorbers on ~100-300 kpc scales are suggested as a potential differentiator between collisional ionization and photoionization models. Quantitative prediction is made for the presence of broad and shallow O VI lines that are largely missed by current observations but will be detectable by Cosmic Origins Spectrograph observations. The reported 3σ upper limit on the mean column density of coincidental O VII lines at the location of detected O VI lines by Yao et al. is above our predicted value by a factor of 2.5-4. The claimed observational detection of O VII lines by Nicastro et al., if true, is 2σ above what our simulations predict.

  20. A Close Relationship between Lyα and Mg II in Green Pea Galaxies

    NASA Astrophysics Data System (ADS)

    Henry, Alaina; Berg, Danielle A.; Scarlata, Claudia; Verhamme, Anne; Erb, Dawn

    2018-03-01

    The Mg II λλ2796, 2803 doublet is often used to measure interstellar medium absorption in galaxies, thereby serving as a diagnostic for feedback and outflows. However, the interpretation of Mg II remains confusing, due to resonant trapping and re-emission of the photons, analogous to Lyα. Therefore, in this paper, we present new MMT Blue Channel Spectrograph observations of Mg II for a sample of 10 Green Pea galaxies at z ∼ 0.2–0.3, where Lyα was previously observed with the Cosmic Origins Spectrograph on the Hubble Space Telescope. With strong, (mostly) double-peaked Lyα profiles, these galaxies allow us to observe Mg II in the limit of low H I column density. We find strong Mg II emission and little-to-no absorption. We use photoionization models to show that nebular Mg II from H II regions is non-negligible, and the ratios of Mg II λλ2796, 2803/[O III] λ5007 versus [O III] λ5007/[O II] λ3727 form a tight sequence. Using this relation, we predict intrinsic Mg II flux, and show that Mg II escape fractions range from 0 to 0.9. We find that the Mg II escape fraction correlates tightly with the Lyα escape fraction, and the Mg II line profiles show evidence for broader and more redshifted emission when the escape fractions are low. These trends are expected if the escape fractions and velocity profiles of Lyα and Mg II are shaped by resonant scattering in the same low column density gas. As a consequence of a close relation with Lyα, Mg II may serve as a useful diagnostic in the epoch of reionization, where Lyα and Lyman continuum photons are not easily observed.

  1. An Extreme, Blueshifted Iron Line in the Narrow Line Seyfert 1 PG 1402+261

    NASA Technical Reports Server (NTRS)

    Reeves, J. N.; Porquet, D.; Turner, T. J.

    2004-01-01

    We report on a short, XMM-Newton observation of the radio-quiet Narrow Line Seyfert 1 PG 1402+261. The EPIC X-ray spectrum of PG 1402+261 shows a strong excess of counts between 6 - 9 keV in the rest frame. This feature can be modeled by an unusually strong (equivalent width 2 keV) and very broad energy at 7.3 keV appears blue-shifted with respect to the iron Kalpha emission band between 6.4 - 6.97 keV, whilst the blue-wing of the line extends to 9 keV in the quasar rest frame. The line profile can be fitted by reflection from the inner accretion disk, but an inclination angle of greater than 60 degrees is required to model the extreme blue-wing of the line. Furthermore the extreme strength of the line requires a geometry whereby the hard X-ray emission from PG1402+261 above 2 keV is dominated by the pure-reflection component from the disk, whilst little or none of the direct hard power-law is observed. Alternatively the spectrum above 2 keV may instead be explained by an ionized absorber, if the column density is sufficiently high (NH greater than 3 x 10(exp 23) per square centimeter) and if the matter is ionized enough to produce a deep (tau approximately equal to 1) iron K-shell absorption edge at 9 keV. This absorber could originate in a large column density, high velocity outflow, perhaps similar to those which appear to be observed in several other high accretion rate AGN. Further observations, especially at higher spectral resolution, are required to distinguish between the accretion disk reflection or outflow scenarios.

  2. Photoionization of disk galaxies: An explanation of the sharp edges in the H I distribution

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Shull, J. Michael

    1994-01-01

    We have reproduced the observed radial truncation of the H I distribution in isolated spiral galaxies with a model in which extragalactic radiation photoionizes the gaseous disk. For a galactic mass distribution model that reproduces the observed rotation curves, including dark matter in the disk and halo, the vertical structure of the gas is determined self-consistently. The ionization structure and column densities of H and He ions are computed by solving the radiation transfer equation for both continuum and lines. Our model is similar to that of Maloney, and the H I structure differs by less than 10%. The radial structure of the column density of H I is found to be more sensitive to the extragalactic radiation field than to the distribution of mass. For this reason, considerable progress can be made in determining the extragalactic flux of ionizing photons, phi(sub ex), with more 21 cm observations of isolated galaxies. However, owing to the uncertainty of the radial distribution of total hydrogen at large radii, inferring the extragalactic flux by comparing the observed edges to photoionization models is somewhat subjective. We find 1 x 10(exp 4)/sq cm/s is less than or approximately phi(sub ex) is less than or approximately 5 x 10(exp 4)/sq cm/s, corresponding to 2.1 is less than or approximately iota(sub 0) is less than or approximately 10.5 x 10(exp -23) ergs/sq cm/s/Hz/sr for a 1/nu spectrum. Although somewhat higher, our inferred range of iota(sub 0) is consistent with the large range of values obtained by Kulkarni & Fall from the 'proximity effect' toward Quasi-Stellar Objects (QSOs) at approximately 0.5.

  3. ISO ammonia line absorption reveals a layer of hot gas veiling Sgr B2

    NASA Astrophysics Data System (ADS)

    Ceccarelli, C.; Baluteau, J.-P.; Walmsley, M.; Swinyard, B. M.; Caux, E.; Sidher, S. D.; Cox, P.; Gry, C.; Kessler, M.; Prusti, T.

    2002-02-01

    We report the first results of the unbiased spectral high resolution survey obtained towards Sgr B2 with the Long Wavelength Spectrometer on board ISO. The survey detected more than one hundreds lines from several molecules. Ammonia is the molecule with the largest number (21) of detected lines in the survey. We detected NH3 transitions from levels with energies from 45 to 500 cm-1. The detected transitions are from both para and ortho ammonia and metastable and non-metastable levels. All the ammonia lines are in absortion against the FIR continuum of Sgr B2. With such a large number of detected lines in such a large range of energy levels, we could very efficiently constrain the main parameters of the absorbing gas layer. The gas is at (700 +/- 100) K and has a density lower than 104 cm-3. The total NH3 column density in the layer is (3+/- 1) x 1016 cm-2, equally shared between ortho and para ammonia. Given the derived relatively high gas temperature and ammonia column density, our observations support the hypothesis previously proposed of a layer of shocked gas between us and Sgr B2. We also discuss previous observations of far infrared line absorption from other molecules, like H2O and HF, in the light of this hot absorbing layer. If the absorption is done by the hot absorbing layer rather than by the warm envelope surrounding Sgr B2, as was previously supposed in order to interpret the mentioned observations, the derived H2O and HF abundances are one order of magitude larger than previously estimated. Yet, the present H2O and HF observations do not allow one to disentangle the absorption from the hot layer against the warm envelope. Our conclusions are hence that care should be applied when interpreting the absorption observations in Sgr B2, as the hot layer clearly seen in the ammonia transitions may substantially contribute to the absorption. ISO is an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands and the United Kingdom) and with the participation of ISAS and NASA.

  4. Inversion and Application of Muon Tomography Data for Cave Exploration in Budapest, Hungary

    NASA Astrophysics Data System (ADS)

    Molnár, Gábor; Surányi, Gergely; Gábor Barnaföldi, Gergely; Oláh, László; Hamar, Gergö; Varga, Dezsö

    2016-04-01

    In this contribution we present a prospecting muon-tomograph and its application for cave exploration in Budapest, Hungary. The more than 50 years old basic idea behind muon tomography is the ability of muon particles, generated in the upper atmosphere to penetrate tens of meters into rocks with continuous attenuation before decay. This enables us placing a detector in a tunnel and measure muon fluxes from different directions and convert these fluxes to rock density data. The lightweight, 51x46x32 cm3 size, muon tomograph containing 5 detector layers was developed by Wigner Research Centre for Physics, Budapest, Hungary. A muon passing at least 4 of the 5 detector layers along one line are classified as unique muon detection. Its angular resolution is approximately 1 degree and it is effective up to 50 degrees off zenith. During the measurement campaign we installed the muon detector at seventeen locations along an abandoned, likely Cold War air raid shelter tunnel for 10-15 days at each location, collecting large set of events. The measured fluxes are converted to apparent density lengths (multiplication of rock densities by along path lengths) using an empirically tested relationship. For inverting measurements, a 3D block model of the subsurface was developed. It consisted of cuboids, with equal horizontal size, equal number in every line and in every row of the model. Additionally it consisted of blocks with different heights, equal number of blocks in every column. (Block height was constant in a column, but varied from column to column.) The heights of the blocks in a column were chosen, that top face of the uppermost blocks has an elevation defined by a Digital Elevation Model. Initially the density of every model blocks was set to a realistic value. We calculated the theoretical density length for every detector location and for a subset of flux measurement directions. We also calculated the partial derivatives of these theoretical density length values with respect to the densities of every model block. This is the Jacobian of the problem and these values were proportional to the path length in the respective block. A regularized least squares solution returns the corrections of the densities of the blocks. If the corrected density of a block is significantly smaller than the typical rock density of the subsurface, the block is dedicated as a cave. According to our results a supposed cave exists some 7 meters above the tunnel. This work has been supported by the Lendület Program of the Hungarian Academy of Sciences (LP2013-60) and the OTKA NK-106119 grant. Gergely Gábor Barnaföld and Dezsö Varga thank for the support of the Bolyai Fellowship of the Hungarian Academy of Sciences.

  5. SMA OBSERVATIONS OF THE W3(OH) COMPLEX: PHYSICAL AND CHEMICAL DIFFERENTIATION BETWEEN W3(H{sub 2}O) AND W3(OH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Sheng-Li; Schilke, Peter; Sánchez-Monge, Álvaro

    2015-04-10

    We report on the Submillimeter Array (SMA) observations of molecular lines at 270 GHz toward the W3(OH) and W3(H{sub 2}O) complex. Although previous observations already resolved the W3(H{sub 2}O) into two or three sub-components, the physical and chemical properties of the two sources are not well constrained. Our SMA observations clearly resolved the W3(OH) and W3(H{sub 2}O) continuum cores. Taking advantage of the line fitting tool XCLASS, we identified and modeled a rich molecular spectrum in this complex, including multiple CH{sub 3}CN and CH{sub 3}OH transitions in both cores. HDO, C{sub 2}H{sub 5}CN, O{sup 13}CS, and vibrationally excited lines ofmore » HCN, CH{sub 3}CN, and CH{sub 3}OCHO were only detected in W3(H{sub 2}O). We calculate gas temperatures and column densities for both cores. The results show that W3(H{sub 2}O) has higher gas temperatures and larger column densities than W3(OH) as previously observed, suggesting physical and chemical differences between the two cores. We compare the molecular abundances in W3(H{sub 2}O) to those in the Sgr B2(N) hot core, the Orion KL hot core, and the Orion Compact Ridge, and discuss the chemical origin of specific species. An east–west velocity gradient is seen in W3(H{sub 2}O), and the extension is consistent with the bipolar outflow orientation traced by water masers and radio jets. A north–south velocity gradient across W3(OH) is also observed. However, with current observations we cannot be assured whether the velocity gradients are caused by rotation, outflow, or radial velocity differences of the sub-components of W3(OH)« less

  6. Sh2-138: physical environment around a small cluster of massive stars

    NASA Astrophysics Data System (ADS)

    Baug, T.; Ojha, D. K.; Dewangan, L. K.; Ninan, J. P.; Bhatt, B. C.; Ghosh, S. K.; Mallick, K. K.

    2015-12-01

    We present a multiwavelength study of the Sh2-138, a Galactic compact H II region. The data comprise of optical and near-infrared (NIR) photometric and spectroscopic observations from the 2-m Himalayan Chandra Telescope, radio observations from the Giant Metrewave Radio Telescope (GMRT), and archival data covering radio through NIR wavelengths. A total of 10 Class I and 54 Class II young stellar objects (YSOs) are identified in a 4.6 arcmin×4.6 arcmin area of the Sh2-138 region. Five compact ionized clumps, with four lacking of any optical or NIR counterparts, are identified using the 1280 MHz radio map, and correspond to sources with spectral type earlier than B0.5. Free-free emission spectral energy distribution fitting of the central compact H II region yields an electron density of ˜2250 ± 400 cm-3. With the aid of a wide range of spectra, from 0.5-15 μm, the central brightest source - previously hypothesized to be the main ionizing source - is characterized as a Herbig Be type star. At large scale (15 arcmin ×15 arcmin), the Herschel images (70-500 μm) and the nearest neighbour analysis of YSOs suggest the formation of an isolated cluster at the junction of filaments. Furthermore, using a greybody fit to the dust spectrum, the cluster is found to be associated with the highest column density (˜3 × 1022 cm-2) and high temperature (˜35 K) regime, as well as with the radio continuum emission. The mass of the central clump seen in the column density map is estimated to be ˜3770 M⊙.

  7. Gamma-ray observations of the Orion Molecular Clouds with the Fermi Large Area Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Allafort, A.

    We report on the gamma-ray observations of giant molecular clouds Orion A and B with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray emission in the energy band between ~100 MeV and ~100 GeV is predicted to trace the gas mass distribution in the clouds through nuclear interactions between the Galactic cosmic rays (CRs) and interstellar gas. The gamma-ray production cross-section for the nuclear interaction is known to ~10% precision which makes the LAT a powerful tool to measure the gas mass column density distribution of molecular clouds for a known CR intensity. Wemore » present here such distributions for Orion A and B, and correlate them with those of the velocity-integrated CO intensity (W CO) at a 1° × 1° pixel level. The correlation is found to be linear over a W CO range of ~10-fold when divided in three regions, suggesting penetration of nuclear CRs to most of the cloud volumes. The W CO-to-mass conversion factor, X CO, is found to be ~2.3 × 10 20 cm -2(K km s –1) –1 for the high-longitude part of Orion A (l > 212°), ~1.7 times higher than ~1.3 × 10 20 found for the rest of Orion A and B. We interpret the apparent high X CO in the high-longitude region of Orion A in the light of recent works proposing a nonlinear relation between H2 and CO densities in the diffuse molecular gas. W CO decreases faster than the H 2 column density in the region making the gas "darker" to W CO.« less

  8. Gamma-Ray Observations of the Orion Molecular Clouds with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; hide

    2012-01-01

    We report on the gamma-ray observations of giant molecular clouds Orion A and B with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray emission in the energy band between approx 100 MeV and approx 100 GeV is predicted to trace the gas mass distribution in the clouds through nuclear interactions between the Galactic cosmic rays (CRs) and interstellar gas. The gamma-ray production cross-section for the nuclear interaction is known to approx 10% precision which makes the LAT a powerful tool to measure the gas mass column density distribution of molecular clouds for a known CR intensity. We present here such distributions for Orion A and B, and correlate them with those of the velocity-integrated CO intensity (W(sub CO)) at a 1 deg 1 deg pixel level. The correlation is found to be linear over a W(sub CO) range of approx 10-fold when divided in three regions, suggesting penetration of nuclear CRs to most of the cloud volumes. The W(sub CO)-to-mass conversion factor, X(sub CO), is found to be approx 2.3 10(exp 20) / sq cm (K km/s)(exp -1) for the high-longitude part of Orion A (l > 212 deg), approx 1.7 times higher than approx 1.3 10(exp 20) found for the rest of Orion A and B. We interpret the apparent high X(sub CO) in the high-longitude region of Orion A in the light of recent works proposing a nonlinear relation between H2 and CO densities in the diffuse molecular gas.W(sub CO) decreases faster than the H2 column density in the region making the gas "darker" to W(sub CO).

  9. The Arizona Radio Observatory CO Mapping Survey of Galactic Molecular Clouds. V. The Sh2-235 Cloud in CO J=2-1, 13CO J=2-1, and CO J=3-2

    NASA Astrophysics Data System (ADS)

    Bieging, John H.; Patel, Saahil; Peters, William L.; Toth, L. Viktor; Marton, Gábor; Zahorecz, Sarolta

    2016-09-01

    We present the results of a program to map the Sh2-235 molecular cloud complex in the CO and 13CO J = 2 - 1 transitions using the Heinrich Hertz Submillimeter Telescope. The map resolution is 38″ (FWHM), with an rms noise of 0.12 K brightness temperature, for a velocity resolution of 0.34 km s-1. With the same telescope, we also mapped the CO J = 3 - 2 line at a frequency of 345 GHz, using a 64 beam focal plane array of heterodyne mixers, achieving a typical rms noise of 0.5 K brightness temperature with a velocity resolution of 0.23 km s-1. The three spectral line data cubes are available for download. Much of the cloud appears to be slightly sub-thermally excited in the J = 3 level, except for in the vicinity of the warmest and highest column density areas, which are currently forming stars. Using the CO and 13CO J = 2 - 1 lines, we employ an LTE model to derive the gas column density over the entire mapped region. Examining a 125 pc2 region centered on the most active star formation in the vicinity of Sh2-235, we find that the young stellar object surface density scales as approximately the 1.6-power of the gas column density. The area distribution function of the gas is a steeply declining exponential function of gas column density. Comparison of the morphology of ionized and molecular gas suggests that the cloud is being substantially disrupted by expansion of the H II regions, which may be triggering current star formation.

  10. Resonant line transfer in a fog: using Lyman-alpha to probe tiny structures in atomic gas

    NASA Astrophysics Data System (ADS)

    Gronke, Max; Dijkstra, Mark; McCourt, Michael; Peng Oh, S.

    2017-11-01

    Motivated by observational and theoretical work that suggest very small-scale (≲ 1 pc) structure in the circumgalactic medium of galaxies and in other environments, we study Lyman-α (Lyα) radiative transfer in an extremely clumpy medium with many clouds of neutral gas along the line of sight. While previous studies have typically considered radiative transfer through sightlines intercepting ≲ 10 clumps, we explored the limit of a very large number of clumps per sightline (up to fc 1000). Our main finding is that, for covering factors greater than some critical threshold, a multiphase medium behaves similarly to a homogeneous medium in terms of the emergent Lyα spectrum. The value of this threshold depends on both the clump column density and the movement of the clumps. We estimated this threshold analytically and compare our findings to radiative transfer simulations with a range of covering factors, clump column densities, radii, and motions. Our results suggest that (I) the success in fitting observed Lyα spectra using homogeneous "shell models" (and the corresponding failure of multiphase models) hints at the presence of very small-scale structure in neutral gas, which is in agreement within a number of other observations; and (II) the recurrent problems of reproducing realistic line profiles from hydrodynamical simulations may be due to their inability to resolve small-scale structure, which causes simulations to underestimate the effective covering factor of neutral gas clouds. The movie associated to Fig. B.2 is available at http://www.aanda.org

  11. Feeding the fire: tracing the mass-loading of 107 K galactic outflows with O VI absorption

    NASA Astrophysics Data System (ADS)

    Chisholm, J.; Bordoloi, R.; Rigby, J. R.; Bayliss, M.

    2018-02-01

    Galactic outflows regulate the amount of gas galaxies convert into stars. However, it is difficult to measure the mass outflows remove because they span a large range of temperatures and phases. Here, we study the rest-frame ultraviolet spectrum of a lensed galaxy at z ˜ 2.9 with prominent interstellar absorption lines from O I, tracing neutral gas, up to O VI, tracing transitional phase gas. The O VI profile mimics weak low-ionization profiles at low velocities, and strong saturated profiles at high velocities. These trends indicate that O VI gas is co-spatial with the low-ionization gas. Further, at velocities blueward of -200 km s-1 the column density of the low-ionization outflow rapidly drops while the O VI column density rises, suggesting that O VI is created as the low-ionization gas is destroyed. Photoionization models do not reproduce the observed O VI, but adequately match the low-ionization gas, indicating that the phases have different formation mechanisms. Photoionized outflows are more massive than O VI outflows for most of the observed velocities, although the O VI mass outflow rate exceeds the photoionized outflow at velocities above the galaxy's escape velocity. Therefore, most gas capable of escaping the galaxy is in a hot outflow phase. We suggest that the O VI absorption is a temporary by-product of conduction transferring mass from the photoionized phase to an unobserved hot wind, and discuss how this mass-loading impacts the observed circum-galactic medium.

  12. Obscuration-dependent Evolution of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes; Georgakakis, Antonis; Nandra, Kirpal; Brightman, Murray; Menzel, Marie-Luise; Liu, Zhu; Hsu, Li-Ting; Salvato, Mara; Rangel, Cyprian; Aird, James; Merloni, Andrea; Ross, Nicholas

    2015-04-01

    We aim to constrain the evolution of active galactic nuclei (AGNs) as a function of obscuration using an X-ray-selected sample of ~2000 AGNs from a multi-tiered survey including the CDFS, AEGIS-XD, COSMOS, and XMM-XXL fields. The spectra of individual X-ray sources are analyzed using a Bayesian methodology with a physically realistic model to infer the posterior distribution of the hydrogen column density and intrinsic X-ray luminosity. We develop a novel non-parametric method that allows us to robustly infer the distribution of the AGN population in X-ray luminosity, redshift, and obscuring column density, relying only on minimal smoothness assumptions. Our analysis properly incorporates uncertainties from low count spectra, photometric redshift measurements, association incompleteness, and the limited sample size. We find that obscured AGNs with N H > 1022 cm-2 account for {77}+4-5% of the number density and luminosity density of the accretion supermassive black hole population with L X > 1043 erg s-1, averaged over cosmic time. Compton-thick AGNs account for approximately half the number and luminosity density of the obscured population, and {38}+8-7% of the total. We also find evidence that the evolution is obscuration dependent, with the strongest evolution around N H ≈ 1023 cm-2. We highlight this by measuring the obscured fraction in Compton-thin AGNs, which increases toward z ~ 3, where it is 25% higher than the local value. In contrast, the fraction of Compton-thick AGNs is consistent with being constant at ≈35%, independent of redshift and accretion luminosity. We discuss our findings in the context of existing models and conclude that the observed evolution is, to first order, a side effect of anti-hierarchical growth.

  13. Ginga observations of dipping low mass X ray binaries

    NASA Technical Reports Server (NTRS)

    Smale, Alan P.; Mukai, Koji; Williams, O. Rees; Jones, Mark H.; Parmar, Arvind N.; Corbet, Robin H. D.

    1989-01-01

    Ginga observations of several low mass X ray binaries displaying pronounced dips of variable depth and duration in their X ray light curves are analyzed. The periodic occultation of the central X ray source by azimuthal accretion disk structure is considered. A series of spectra selected by intensity from the dip data from XB1916-053, are presented. The effects of a rapidly changing column density upon the spectral fitting results are modeled. EXO0748-676 was observed in March 1989 for three days. The source was found to be in a bright state with a 1 to 20 keV flux of 8.8 x 10 (exp -10) erg/sqcms. The data include two eclipses, observed with high time resolution.

  14. Molecular clouds in galaxies with different Z - Fragmentation of diffuse clouds driven by opacity

    NASA Technical Reports Server (NTRS)

    Franco, Jose; Cox, Donald P.

    1986-01-01

    Molecular clouds are formed from diffuse interstellar clouds when the external ultraviolet radiation field is prevented from penetrating into the cloud. The opacity is provided mainly by dust grains and the required column density to the cloud center is larger than about 5 x 10 to the 20th (solar Z/Z)/sq cm. This high-opacity criterion could have a significant impact on the radial trends observed in spiral galaxies, and on the distinctions between spiral and dwarf irregular galaxies.

  15. A comparison of three regions of Puppis A

    NASA Technical Reports Server (NTRS)

    Fischbach, K. F.; Bateman, L. M.; Canizares, C. R.; Markert, T. H.; Saez, P. J.

    1990-01-01

    High resolution X-ray spectral observations of Puppis A were performed with the FPCS on the Einstein Observatory at three regions of the remnant: the shock front, the bright eastern knot, and the interior. Plasma diagnostics of lines from OVII and OVIII constrain the values of electron temperature, ionization timescale, and hydrogen column density. Results of the diagnostics for these three regions are compared. A nonequilibrium analysis of previously published fluxes of oxygen lines shows that the interior has not yet reached ionization equilibrium.

  16. Observation and modeling of deflagration-to-detonation transition (DDT) in low-density HMX

    NASA Astrophysics Data System (ADS)

    Tringe, Joseph W.; Vandersall, Kevin S.; Reaugh, John E.; Levie, Harold W.; Henson, Bryan F.; Smilowitz, Laura B.; Parker, Gary R.

    2017-01-01

    We employ simultaneous flash x-ray radiography and streak imaging, together with a multi-phase finite element model, to understand deflagration-to-detonation transition (DDT) phenomena in low-density (˜1.2 gm/cm3) powder of the explosive cyclotetramethylene-tetranitramine (HMX). HMX powder was lightly hand-tamped in a 12.7 mm diameter column, relatively lightly-confined in an optically-transparent polycarbonate cylinder with wall thickness 25.4 mm. We observe apparent compaction of the powder in advance of the detonation transition by the motion of small steel spheres pre-emplaced throughout the length of explosive. High-speed imaging along the explosive cylinder length provides a more temporally continuous record of the transition that is correlated with the high-resolution x-ray image record. Preliminary simulation of these experiments with the HERMES model implemented in the ALE3D code enables improved understanding of the explosive particle burning, compaction and detonation phenomena which are implied by the observed reaction rate and transition location within the cylinder.

  17. The dependence of C IV broad absorption line properties on accompanying Si IV and Al III absorption: relating quasar-wind ionization levels, kinematics, and column densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.

    2014-08-20

    We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for Cmore » IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.« less

  18. Missing matter in the vicinity of the sun

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.

    1986-01-01

    The Poisson and Vlasov equations are solved numerically for realistic Galaxy models which include multiple disk components, a Population II spheroid, and an unseen massive halo. The total amount of matter in the vicinity of the sun is determined by comparing the observed distributions of tracer stars, samples of F dwarfs, and K giants with the predictions of the Galaxy models. Results are obtained for a number of different assumed distributions of the unseen disk mass. For all the observed samples, typical models imply that about half of the mass in the solar vicinity must be in the form of unobserved matter. The volume density of unobserved material near the sun is about 0.1 solar mass/cu pc; the corresponding column density is about 30 solar mass/sq pc. This so far unseen material must be in a disk with an exponential scale height of less than 0.7 kpc.

  19. Copernicus observations of interstellar matter in the direction of HR 1099

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Weiler, E. J.

    1978-01-01

    Results are reported for high-resolution Copernicus U1 and V2 scans of the bright RS CVn spectroscopic binary HR 1099. The observations reveal strong UV emission lines at L-alpha and Mg II h and k from the stars as well as interstellar H I and D I L-alpha absorption lines and interstellar Mg II h and k absorption in the direction of the binary system. Column densities, bulk velocities, and temperatures are derived for the interstellar features. A comparison of the derived number density of interstellar H I with data for the nearby star Epsilon Eri indicates an inhomogeneous distribution of interstellar hydrogen along the line of sight. The range of values obtained for the D/H ratio is shown to be consistent with results of other studies. A depletion factor of at least 5 with respect to the solar abundance is estimated for the interstellar magnesium.

  20. Structure of massive star forming clumps from the Red MSX Source Survey

    NASA Astrophysics Data System (ADS)

    Figura, Charles C.; Urquhart, J. S.; Morgan, L.

    2014-01-01

    We present ammonia (1,1) and (2,2) emission maps of 61 high-mass star forming regions drawn from the Red MSX Source (RMS) Survey and observed with the Green Bank Telescope's K-Band Focal Plane Array. We use these observations to investigate the spatial distribution of the environmental conditions associated with this sample of embedded massive young stellar objects (MYSOs). Ammonia is an excellent high-density tracer of star-forming regions as its hyperfine structure allows relatively simple characterisation of the molecular environment. These maps are used to measure the column density, kinetic gas temperature distributions and velocity structure across these regions. We compare the distribution of these properties to that of the associated dust and mid-infrared emission traced by the ATLASGAL 870 micron emission maps and the Spitzer GLIMPSE IRAC images. We present a summary of these results and highlight some of more interesting finds.

  1. Unveiling the chemistry of interstellar CH. Spectroscopy of the 2 THz N = 2 ← 1 ground state line

    NASA Astrophysics Data System (ADS)

    Wiesemeyer, H.; Güsten, R.; Menten, K. M.; Durán, C. A.; Csengeri, T.; Jacob, A. M.; Simon, R.; Stutzki, J.; Wyrowski, F.

    2018-04-01

    Context. The methylidyne radical CH is commonly used as a proxy for molecular hydrogen in the cold, neutral phase of the interstellar medium. The optical spectroscopy of CH is limited by interstellar extinction, whereas far-infrared observations provide an integral view through the Galaxy. While the HF ground state absorption, another H2 proxy in diffuse gas, frequently suffers from saturation, CH remains transparent both in spiral-arm crossings and high-mass star forming regions, turning this light hydride into a universal surrogate for H2. However, in slow shocks and in regions dissipating turbulence its abundance is expected to be enhanced by an endothermic production path, and the idea of a "canonical" CH abundance needs to be addressed. Aim. The N = 2 ← 1 ground state transition of CH at λ149 μm has become accessible to high-resolution spectroscopy thanks to the German Receiver for Astronomy at Terahertz Frequencies (GREAT) aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). Its unsaturated absorption and the absence of emission from the star forming regions makes it an ideal candidate for the determination of column densities with a minimum of assumptions. Here we present an analysis of four sightlines towards distant Galactic star forming regions, whose hot cores emit a strong far-infrared dust continuum serving as background signal. Moreover, if combined with the sub-millimeter line of CH at λ560 μm , environments forming massive stars can be analyzed. For this we present a case study on the "proto-Trapezium" cluster W3 IRS5. Methods: While we confirm the global correlation between the column densities of HF and those of CH, both in arm and interarm regions, clear signposts of an over-abundance of CH are observed towards lower densities. However, a significant correlation between the column densities of CH and HF remains. A characterization of the hot cores in the W3 IRS5 proto-cluster and its envelope demonstrates that the sub-millimeter/far-infrared lines of CH reliably trace not only diffuse but also dense, molecular gas. Results: In diffuse gas, at lower densities a quiescent ion-neutral chemistry alone cannot account for the observed abundance of CH. Unlike the production of HF, for CH+ and CH, vortices forming in turbulent, diffuse gas may be the setting for an enhanced production path. However, CH remains a valuable tracer for molecular gas in environments reaching from diffuse clouds to sites of high-mass star formation. The reduced spectra (Fig. 2) are only and Table 2 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A37

  2. SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN AND HPLC

    EPA Science Inventory

    Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. sing a density programming and a 50-pm i.d. capillary column, a total of 18 group oligomers was separated. he effects of the operating parameters, such a...

  3. Lasp1 misexpression influences chondrocyte differentiation in the vertebral column.

    PubMed

    Hermann-Kleiter, Natascha; Ghaffari-Tabrizi, Nassim; Blumer, Michael J F; Schwarzer, Christoph; Mazur, Magdalena A; Artner, Isabella

    2009-01-01

    The mouse mutant wavy tail Tg(Col1a1-lacZ)304ng was created through transgene insertion and exhibits defects of the vertebral column. Homozygous mutant animals have compressed tail vertebrae and wedge-shaped intervertebral discs, resulting in a meandering tail. Delayed closure of lumbar neural arches and lack of processus spinosi have been observed; these defects become most prominent during the transition from cartilage to bone. The spina bifida was resistant to folic acid treatment, while retinoic acid administration caused severe skeletal defects in the mutant, but none in wild type control animals. The transgene integrated at chromosome 11 band D, in an area of high gene density. The insertion site was located between the transcription start sites of the Rpl23 and Lasp1 genes. LASP1 (an actin binding protein involved in cell migration and survival) was found to be produced in resting and hypertrophic chondrocytes in the vertebrae. In mutant vertebrae, temporal and spatial misexpression of Lasp1 was observed, indicating that alterations in Lasp1 transcription are most likely responsible for the observed phenotype. These data reveal a yet unappreciated role of Lasp1 in chondrocyte differentiation during cartilage to bone transition.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claud, C.; Ovarlez, J.; Chedin, A.

    The authors report on further analysis of a stratospheric cooling event observed by CHEOPS 3 during February 4-6, 1990 over Scandinavia. The CHEOPS 3 observational program provided a large set of data regarding atmospheric conditions in the Arctic polar region which are of use in addressing the question of ozone depletion in the northern hemisphere. A large temperature excursion was observed in this period by the CHEOPS data, and the authors have applied a new inversion to TOVS observations of this same period to attempt to confirm this observation. Such a large excursion would allow the formation of polar stratosphericmore » clouds. They were able to model the general cooling pattern seen by the CHEOPS 3 observations, but not the large temperature dip, and offer an alternative explanation of the accompanying dip in ozone column densities observed over Europe at this time.« less

  5. Characterization of methane emissions in Los Angeles with airborne hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Saad, K.; Tratt, D. M.; Buckland, K. N.; Roehl, C. M.; Wennberg, P. O.; Wunch, D.

    2017-12-01

    As urban areas develop regulations to limit atmospheric methane (CH4), accurate quantification of anthropogenic emissions will be critical for program development and evaluation. However, relating emissions derived from process-level metadata to those determined from assimilating atmospheric observations of CH4 concentrations into models is particularly difficult. Non-methane hydrocarbons (NMHCs) can help differentiate between thermogenic and biogenic CH4 emissions, as they are primarily co-emitted with the former; however, these trace gases are subject to the same limitations as CH4. Remotely-sensed hyperspectral imaging bridges these approaches by measuring emissions plumes directly with spatial coverage on the order of 10 km2 min-1. We identify the sources of and evaluate emissions plumes measured by airborne infrared hyperspectral imagers flown over the Los Angeles (LA) metropolitan area, which encompasses various CH4 sources, including petroleum and natural gas wells and facilities. We quantify total CH4 and NMHC emissions, as well as their relative column densities, at the point-source level to create fingerprints of source types. We aggregate these analyses to estimate the range of variability in chemical composition across source types. These CH4 and NMHC emissions factors are additionally compared to their tropospheric column abundances measured by the Total Carbon Column Observing Network (TCCON) Pasadena Fourier transform infrared spectrometer, which provides a footprint for the LA basin.

  6. An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines

    NASA Astrophysics Data System (ADS)

    Korista, Kirk; Baldwin, Jack; Ferland, Gary; Verner, Dima

    We present graphically the results of several thousand photoionization calculations of broad emission-line clouds in quasars, spanning 7 orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density-ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H) = 1023 cm-2. Results are similarly given for a small subset of emission lines for two other column densities (1022 and 1024 cm-2), five other incident continuum shapes, and a gas metallicity of 5 Z⊙. These graphs should prove useful in the analysis of quasar emission-line data and in the detailed modeling of quasar broad emission-line regions. The digital results of these emission-line grids and many more are available over the Internet.

  7. STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi, E-mail: matsu@hosei.ac.jp

    2015-03-10

    Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence ismore » weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.« less

  8. Evaluating the precision of passive sampling methods using PRCs in the water column.

    EPA Science Inventory

    To assess these models, four different thicknesses of low-density polyethylene (LDPE) passive samplers were co-deployed for 28 days in the water column at three sites in New Bedford Harbor, MA, USA. Each sampler was pre-loaded with six PCB performance reference compounds (PRCs) t...

  9. SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY SUPERCRITICAL FLUID CHROMATOGRAPHY

    EPA Science Inventory

    The application of supercritical fluid chromatography (SFC) to the analysis of T-MAZ ethoxylated sorbitan fatty acid esters is described. FC separation methods utilize a density programming technique and a 50 um I.D. capillary column. his work demonstrates that capillary column S...

  10. SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN SFC AND HPLC

    EPA Science Inventory

    Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. Using a density programming and a 50-μm i.d. capillary column, a total of 18 group oligomers was separated. The effects of the operating parameters, such...

  11. The relation between carbon monoxide emission and visual extinction in cloud L134

    NASA Technical Reports Server (NTRS)

    Tucker, K. D.; Dickman, R. L.; Encrenaz, P. J.; Kutner, M. L.

    1976-01-01

    Emission from the J = 1-0 transition of carbon monoxide has been mapped over an area of 40 by 55 arcmin in cloud L134, and visual extinctions over the entire cloud have been obtained by means of star counts. Line intensities of at least 2 K are observable down to an extinction level of about one magnitude. From observations of the J = 1-0 transition of the (C-13)O isotopic species at 18 locations in the cloud, a linear correlation is found between the local thermodynamic equilibrium (LTE) column densities of (C-13)O and magnitudes of visual extinction.

  12. Spatially resolved spectrophotometry of Comet P/Stephan-Oterma

    NASA Technical Reports Server (NTRS)

    Cochran, A. L.; Barker, E. S.

    1985-01-01

    Observations of Comet P/Stephan-Oterma were made with an Intensified Dissector Scanner spectrograph on the McDonald Observatory 2.7-m telescope during the period from July 1980 to February 1981. These spectra cover a range of heliocentric distances from 2.3 AU preperihelion to 1.8 AU postperihelion. A small aperture was used to map the spatial distributions of the gases in the coma. Column densities of the observed cometary emissions (CN, C3, CH, and C2) were calculated, and it is shown that Stephan-Oterma appeared nearly spherically symmetric. These date are used by Cochran (1985) to constrain chemical models of Stephan-Oterma.

  13. A Suzaku X-ray Observation of One Orbit of the Supergiant Fast X-ray Transient IGR J16479-4514

    NASA Technical Reports Server (NTRS)

    Sidoli, L.; Esposito, P.; Sguera, V.; Bodaghee, A.; Tomsick, J. A.; Pottschmidt, K.; Rodriguez, J.; Ramano, P.; Wilms, J.

    2013-01-01

    We report on a 250 ks long X-ray observation of the supergiant fast X-ray transient (SFXT) IGR J16479-4514 performed with Suzaku in 2012 February. During this observation, about 80% of the short orbital period (P(sub orb) approximates 3.32 days) was covered as continuously as possible for the first time. The source light curve displays variability of more than two orders of magnitude, starting with a very low emission state (10(exp -13) erg / sq cm/s; 1-10 keV) lasting the first 46 ks, consistent with being due to the X-ray eclipse by the supergiant companion. The transition to the uneclipsed X-ray emission is energy dependent. Outside the eclipse, the source spends most of the time at a level of 6-7X10)(exp-12) erg/sq. cm/s) punctuated by two structured faint flares with a duration of about 10 and 15 ks, respectively, reaching a peak flux of 3-4X10(exp -11) erg/sq. cm./S, separated by about 0.2 in orbital phase. Remarkably, the first faint flare occurs at a similar orbital phase of the bright flares previously observed in the system. This indicates the presence of a phase-locked large scale structure in the supergiant wind, driving a higher accretion rate onto the compact object. The average X-ray spectrum is hard and highly absorbed, with a column density, NH, of 10*exp 23)/sq cm, clearly in excess of the interstellar absorption. There is no evidence for variability of the absorbing column density, except that during the eclipse, where a less absorbed X-ray spectrum is observed. A narrow Fe K-alpha emission line at 6.4 keV is viewed along the whole orbit, with an intensity which correlates with the continuum emission above 7 keV. The scattered component visible during the X-ray eclipse allowed us to directly probe the wind density at the orbital separation, resulting in rho(sub w)=7X10(exp -14) g/cubic cm. Assuming a spherical geometry for the supergiant wind, the derived wind density translates into a ratio M(sub w)/v(sub infinity) = 7X10(exp -17) Solar M/km which, assuming terminal velocities in a large range 500-3000 km/s, implies an accretion luminosity two orders of magnitude higher than that observed. As a consequence, a mechanism should be at work reducing the mass accretion rate. Different possibilities are discussed.

  14. Assessing the potential of spectral induced polarization to detect in situ changes in iron reduction

    NASA Astrophysics Data System (ADS)

    Rosier, C. L.; Price, A.; Sharma, S.; Atekwana, E. A.

    2016-12-01

    The near surface geophysical technique Spectral Induced Polarization (SIP), provides promise as an effective method measuring in situ biofilm formation/development. Yet, potential mechanisms responsible for observed shifts in SIP response due to biofilm are not clearly understood. In order to address possible mechanisms we assessed the influence of Shewanella oneidensis (MR1) cell density (colony forming units; CFU), biofilm production (Bradford assay) and iron reduction metabolism (colorimetric assay) on SIP response. Laboratory measurements were collected over three months on columns packed with either iron-coated or iron-free sands and amended with artificial ground water and acetate in order to stimulate biofilm production and microbial iron reduction. Additionally, scanning electron microscopy (SEM) was used to confirm the presence of S. oneidensis cells and biofilm. Our results suggest that during early/initial stage (<30 days) of the iron-coated column incubations, both phase and imaginary conductivity response increased 4-fold as concentrations of reduced iron increased from 0-50 mM. In the later stages (>75 days) of column incubation, SIP measurements revealed that phase and imaginary conductivity responses decreased as the concentration of reduced iron decreased below 2.0 mM. In contrast, we observed only a moderate increase in phase and imaginary conductivity ( 30%) within iron-free columns as a result of increases in S. oneidensis cells (CFU 1.5 x 1011) and biofilm production (7.0 mg ml-1). SEM analysis confirmed the presence of biofilm and cells within both iron-coated and iron-free columns. We hypothesize that the production of microbial metabolic byproducts is a potential mechanism explaining large phase shits observed in previous studies ( 50 mrads) rather than the conductivity of cells or biofilm. Our findings provide support for the following: i) ratio of cells to biofilm production only moderately influences both phase and imaginary conductivity response and ii) largest phase and imaginary conductivity response resulted from microbial metabolism (i.e. iron reduction) and potentially biofilm trapping of conductive materials (i.e. cations).

  15. An XMM-Newton Observation of the Seyfert Galaxy 1H0419-577 in an Extreme Low State

    NASA Technical Reports Server (NTRS)

    Pounds, K. A.; Reeves, J. N.; Page, K. L.; O'Brien, P. T.

    2003-01-01

    Previous observations of the luminous Seyfert galaxy 1H 0419-577 have found its X-ray spectrum to range from that of a typical Seyfert 1 with 2-10 keV power law index Gamma approx. 1.9 to a much flatter power law of Gamma approx. 1.5 or less. We report here a new XMM-Newton observation which allows the low state spectrum to be studied in much greater detail than hitherto. We find a very hard spectrum (Gamma approx. 1.0) which exhibits broad features that can be modelled with the addition of an extreme relativistic Fe K emission line or with partial covering of the underlying continuum by a substantial column density of near-neutral gas. Both the EPIC and RGS data show evidence for strong line emission of OVII and OVIII requiring an extended region of low density photoionised gas in 1H 0419- 577. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicates the dominant spectral variability occurs via a steep power law component.

  16. An XMM-Newton Observation of the Seyfert 1 Galaxy 1H 0419-577 in an Extreme Low State

    NASA Technical Reports Server (NTRS)

    Pounds, K. A.; Reeves, J. N.; Page, K. L.; OBrien, P. T.

    2004-01-01

    Previous observations of the luminous Seyfert 1 galaxy 1H 0419-577 have found its X-ray spectrum to range from that of a typical Seyfert 1 with 2-10 keV power law index Gamma approx. 1.9 to a much flatter power law of Gamma approx. 1.5 or less. We report here a new XMM-Newton observation which allows the low state spectrum to be studied in much greater detail than hitherto. We find a very hard spectrum (Gamma approx. 1.0), which exhibits broad features that can be modelled myth the addition of an extreme relativistic Fe K emission line or with partial covering of the underlying continuum by a substantial column density of near-neutral gas. Both the EPIC and RGS data show evidence for strong line emission of OVII and OVIII requiring an extended region of low density photoionised gas in 1H 0419-577. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was 'X-ray bright' indicates the dominant spectral variability occurs via a steep power law component.

  17. Detections of Long Carbon Chains CH_{3}CCCCH, C_{6}H, LINEAR-C_{6}H_{2} and C_{7}H in the Low-Mass Star Forming Region L1527

    NASA Astrophysics Data System (ADS)

    Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi

    2017-06-01

    Carbon chains in the warm carbon chain chemistry (WCCC) region has been searched in the 42-44 GHz region by using Green Bank 100 m telescope. Long carbon chains C_{7}H, C_{6}H, CH_{3}CCCCH, and linear-C_{6}H_{2} and cyclic species C_{3}H and C_{3}H_{2}O have been detected in the low-mass star forming region L1527, performing the WCCC. C_{7}H was detected for the first time in molecular clouds. The column density of C_{7}H is derived to be 6.2 × 10^{10} cm^{-2} by using the detected J = 24.5-23.5 and 25.5-24.5 rotational lines. The ^{2}Π_{1/2} electronic state of C_{6}H, locating 21.6 K above the ^{2}Π_{3/2} electronic ground state, and the K_a = 0 line of the para species of linear-C_{6}H_{2} were also detected firstly in molecular clouds. The column densities of the ^{2}Π_{1/2} and ^{2}Π_{3/2} states of C_{6}H in L1527 were derived to be 1.6 × 10^{11} and 1.1 × 10^{12} cm^{-2}, respectively. The total column density of linear-C_{6}H_{2} is obtained to be 1.86 × 10^{11} cm^{-2}. While the abundance ratios of carbon chains in between L1527 and the starless dark cloud Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP) have a trend of decrease by extension of carbon-chain length, column densities of CH_{3}CCCCH and C_{6}H are on the trend. However, the column densities of linear-C_{6}H_{2}, and C_{7}H are as abundant as those of TMC-1 CP in spite of long carbon chain, i.e., they are not on the trend. The abundances of linear-C_{6}H_{2} and C_{7}H show that L1527 is rich for long carbon chains as well as TMC-1 CP.

  18. Temperatures of dust and gas in S 140

    NASA Astrophysics Data System (ADS)

    Koumpia, E.; Harvey, P. M.; Ossenkopf, V.; van der Tak, F. F. S.; Mookerjea, B.; Fuente, A.; Kramer, C.

    2015-08-01

    Context. In dense parts of interstellar clouds (≥105 cm-3), dust and gas are expected to be in thermal equilibrium, being coupled via collisions. However, previous studies have shown that in the presence of intense radiation fields, the temperatures of the dust and gas may remain decoupled even at higher densities. Aims: The objective of this work is to study in detail the temperatures of dust and gas in the photon-dominated region S 140, especially around the deeply embedded infrared sources IRS 1-3 and at the ionization front. Methods: We derive the dust temperature and column density by combining Herschel-PACS continuum observations with SOFIA observations at 37 μm and SCUBA data at 450 μm. We model these observations using simple greybody fits and the DUSTY radiative transfer code. For the gas analysis we use RADEX to model the CO 1-0, CO 2-1, 13CO 1-0 and C18O 1-0 emission lines mapped with the IRAM-30 m telescope over a 4' field. Around IRS 1-3, we use HIFI observations of single-points and cuts in CO 9-8, 13CO 10-9 and C18O 9-8 to constrain the amount of warm gas, using the best fitting dust model derived with DUSTY as input to the non-local radiative transfer model RATRAN. The velocity information in the lines allows us to separate the quiescent component from outflows when deriving the gas temperature and column density. Results: We find that the gas temperature around the infrared sources varies between ~35 and ~55 K. In contrast to expectation, the gas is systematically warmer than the dust by ~5-15 K despite the high gas density. In addition we observe an increase of the gas temperature from 30-35 K in the surrounding up to 40-45 K towards the ionization front, most likely due to the UV radiation from the external star. Furthermore, detailed models of the temperature structure close to IRS 1 which take the known density gradient into account show that the gas is warmer and/or denser than what we model. Finally, modelling of the dust emission from the sub-mm peak SMM 1 constrains its luminosity to a few ×102L⊙. Conclusions: We conclude that the gas heating in the S 140 region is very efficient even at high densities. The most likely explanation is deep UV penetration from the embedded sources in a clumpy medium and/or oblique shocks. Based on Herschel observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Final Herschel and IRAM data (cube) as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A68

  19. Observations of Far-Infrared Molecular Emission Lines from the Orion Molecular Cloud. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Viscuso, P. J.

    1986-01-01

    The Orion Nebula was the subject of intensive study for over one hundred years. Recently, several far infrared transitions among the low-lying levels of OH were observed toward IRc2. The OH is thought to be abundant, and plays an important role in the chemical evolution of shock and post-shock regions. The OH emission serves as a sensitive probe of the temperature and density for the shock-processed gas. A rigorous treatment of the radiative transfer of these measured transitions was performed using the escape probability formalism. From this analysis, the temperature of the OH-emitting region was determined to be on the order of 40K. This suggests that the gas is part of the post-shock gas that has cooled sufficiently, most likely by way of radiative cooling by CO. Such cooling from shock temperatures of several degrees can be accomplished in 100 years. A molecular hydrogen density of 3 million/cubic cm and an OH column density of 1.0 x 10 to the 17th /sq cm is found. The beam filling factor is determined to be 36%.

  20. Limb-Nadir Matching Using Non-Coincident NO2 Observations: Proof of Concept and the OMI-minus-OSIRIS Prototype Product

    NASA Technical Reports Server (NTRS)

    Adams, Cristen; Normand, Elise N.; Mclinden, Chris A.; Bourassa, Adam E.; Lloyd, Nicholas D.; Degenstein, Douglas A.; Krotkov, Nickolay A.; Rivas, Maria Belmonte; Boersma, K. Folkert; Eskes, Henk

    2016-01-01

    A variant of the limb-nadir matching technique for deriving tropospheric NO2 columns is presented in which the stratospheric component of the NO2 slant column density (SCD) measured by the Ozone Monitoring Instrument (OMI) is removed using non-coincident profiles from the Optical Spectrograph and InfraRed Imaging System (OSIRIS). In order to correct their mismatch in local time and the diurnal variation of stratospheric NO2, OSIRIS profiles, which were measured just after sunrise, were mapped to the local time of OMI observations using a photochemical boxmodel. Following the profile time adjustment, OSIRIS NO2 stratospheric vertical column densities (VCDs) were calculated. For profiles that did not reach down to the tropopause, VCDs were adjusted using the photochemical model. Using air mass factors from the OMI Standard Product (SP), a new tropospheric NO2 VCD product - referred to as OMI-minus-OSIRIS (OmO) - was generated through limb-nadir matching. To accomplish this, the OMI total SCDs were scaled using correction factors derived from the next-generation SCDs that improve upon the spectral fitting used for the current operational products. One year, 2008, of OmO was generated for 60 deg S to 60 deg N and a cursory evaluation was performed. The OmO product was found to capture the main features of tropospheric NO2, including a background value of about 0.3 x 10(exp 15) molecules per sq cm over the tropical Pacific and values comparable to the OMI operational products over anthropogenic source areas. While additional study is required, these results suggest that a limb-nadir matching approach is feasible for the removal of stratospheric NO2 measured by a polar orbiter from a nadir-viewing instrument in a geostationary orbit such as Tropospheric Emissions: Monitoring of Pollution (TEMPO) or Sentinel-4.

Top