Science.gov

Sample records for observed decadal variability

  1. Sub-decadal North Atlantic Oscillation variability in observations and the Kiel Climate Model

    NASA Astrophysics Data System (ADS)

    Reintges, Annika; Latif, Mojib; Park, Wonsun

    2016-07-01

    The North Atlantic Oscillation (NAO) is the dominant mode of winter climate variability in the North Atlantic sector. The corresponding index varies on a wide range of timescales, from days and months to decades and beyond. Sub-decadal NAO variability has been well documented, but the underlying mechanism is still under discussion. Other indices of North Atlantic sector climate variability such as indices of sea surface and surface air temperature or Arctic sea ice extent also exhibit pronounced sub-decadal variability. Here, we use sea surface temperature and sea level pressure observations, and the Kiel Climate Model to investigate the dynamics of the sub-decadal NAO variability. The sub-decadal NAO variability is suggested to originate from dynamical large-scale air-sea interactions. The adjustment of the Atlantic Meridional Overturning Circulation to previous surface heat flux variability provides the memory of the coupled mode. The results stress the role of coupled feedbacks in generating sub-decadal North Atlantic sector climate variability, which is important to multiyear climate predictability in that region.

  2. Observed, reconstructed, and simulated decadal variability of summer precipitation over eastern China

    NASA Astrophysics Data System (ADS)

    Zheng, Jingyun; Wu, Maowei; Ge, Quansheng; Hao, Zhixin; Zhang, Xuezhen

    2017-02-01

    Based on observations made during recent decades, reconstructed precipitation for the period A.D. 1736-2000, dry-wet index data for A.D. 500-2000, and a 1000-yr control simulation using the Community Earth System Model with fixed pre-industrial external forcing, the decadal variability of summer precipitation over eastern China is studied. Power spectrum analysis shows that the dominant cycles for the decadal variation of summer precipitation are: 22-24 and quasi-70 yr over the North China Plain; 32-36, 44-48, and quasi-70 yr in the Jiang-Huai area; and 32-36 and 44-48 yr in the Jiang-Nan area. Bandpass decomposition from observation, reconstruction, and simulation reveals that the variability of summer precipitation over the North China Plain, Jiang-Huai area, and Jiang-Nan area, at scales of 20-35, 35-50, and 50-80 yr, is not consistent across the entire millennium. We also find that the warm (cold) phase of the Pacific Decadal Oscillation generally corresponds to dry (wet) conditions over the North China Plain, but wet (dry) conditions in the Jiang-Nan area, from A.D. 1800, when the PDO became strengthened. However, such a correspondence does not exist throughout the entire last millennium. Data-model comparison suggests that these decadal oscillations and their temporal evolution over eastern China, including the decadal shifts in the spatial pattern of the precipitation anomaly observed in the late 1970s, early 1990s, and early 2000s, might result from internal variability of the climate system.

  3. Tides and Decadal Variability

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.

    2003-01-01

    This paper reviews the mechanisms by which oceanic tides and decadal variability in the oceans are connected. We distinguish between variability caused by tides and variability observed in the tides themselves. Both effects have been detected at some level. The most obvious connection with decadal timescales is through the 18.6-year precession of the moon's orbit plane. This precession gives rise to a small tide of the same period and to 18.6-year modulations in the phase and amplitudes of short-period tides. The 18.6-year "node tide" is very small, no more than 2 cm anywhere, and in sea level data it is dominated by the ocean's natural Variability. Some authors have naively attributed climate variations with periods near 19 years directly to the node tide, but the amplitude of the tide is too small for this mechanism to be operative. The more likely explanation (Loder and Garrett, JGR, 83, 1967-70, 1978) is that the 18.6-y modulations in short-period tides, especially h e principal tide M2, cause variations in ocean mixing, which is then observed in temperature and other climatic indicators. Tidally forced variability has also been proposed by some authors, either in response to occasional (and highly predictable) tidal extremes or as a nonlinear low-frequency oscillation caused by interactions between short-period tides. The former mechanism can produce only short-duration events hardly more significant than normal tidal ranges, but the latter mechanism can in principle induce low-frequency oscillations. The most recent proposal of this type is by Keeling and Whorf, who highlight the 1800-year spectral peak discovered by Bond et al. (1997). But the proposal appears contrived and should be considered, in the words of Munk et al. (2002), "as the most likely among unlikely candidates."

  4. Measurement Biases Explain Discrepancies between the Observed and Simulated Decadal Variability of Surface Incident Solar Radiation

    PubMed Central

    Wang, Kaicun

    2014-01-01

    Observations have reported a widespread dimming of surface incident solar radiation (Rs) from the 1950s to the 1980s and a brightening afterwards. However, none of the state-of-the-art earth system models, including those from the Coupled Model Intercomparison Project phase 5 (CMIP5), could successfully reproduce the dimming/brightening rates over China. We find that the decadal variability of observed Rs may have important errors due to instrument sensitivity drifting and instrument replacement. While sunshine duration (SunDu), which is a robust measurement related to Rs, is nearly free from these problems. We estimate Rs from SunDu with a method calibrated by the observed Rs at each station. SunDu-derived Rs declined over China by −2.8 (with a 95% confidence interval of −1.9 to −3.7) W m−2 per decade from 1960 to 1989, while the observed Rs declined by −8.5 (with a 95% confidence interval of −7.3 to −9.8) W m−2 per decade. The former trend was duplicated by some high-quality CMIP5 models, but none reproduced the latter trend. PMID:25142756

  5. Measurement biases explain discrepancies between the observed and simulated decadal variability of surface incident solar radiation.

    PubMed

    Wang, Kaicun

    2014-08-21

    Observations have reported a widespread dimming of surface incident solar radiation (Rs) from the 1950s to the 1980s and a brightening afterwards. However, none of the state-of-the-art earth system models, including those from the Coupled Model Intercomparison Project phase 5 (CMIP5), could successfully reproduce the dimming/brightening rates over China. We find that the decadal variability of observed Rs may have important errors due to instrument sensitivity drifting and instrument replacement. While sunshine duration (SunDu), which is a robust measurement related to Rs, is nearly free from these problems. We estimate Rs from SunDu with a method calibrated by the observed Rs at each station. SunDu-derived Rs declined over China by -2.8 (with a 95% confidence interval of -1.9 to -3.7) W m(-2) per decade from 1960 to 1989, while the observed Rs declined by -8.5 (with a 95% confidence interval of -7.3 to -9.8) W m(-2) per decade. The former trend was duplicated by some high-quality CMIP5 models, but none reproduced the latter trend.

  6. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations

    NASA Astrophysics Data System (ADS)

    McCarthy, Gerard D.; Haigh, Ivan D.; Hirschi, Joël J.-M.; Grist, Jeremy P.; Smeed, David A.

    2015-05-01

    Decadal variability is a notable feature of the Atlantic Ocean and the climate of the regions it influences. Prominently, this is manifested in the Atlantic Multidecadal Oscillation (AMO) in sea surface temperatures. Positive (negative) phases of the AMO coincide with warmer (colder) North Atlantic sea surface temperatures. The AMO is linked with decadal climate fluctuations, such as Indian and Sahel rainfall, European summer precipitation, Atlantic hurricanes and variations in global temperatures. It is widely believed that ocean circulation drives the phase changes of the AMO by controlling ocean heat content. However, there are no direct observations of ocean circulation of sufficient length to support this, leading to questions about whether the AMO is controlled from another source. Here we provide observational evidence of the widely hypothesized link between ocean circulation and the AMO. We take a new approach, using sea level along the east coast of the United States to estimate ocean circulation on decadal timescales. We show that ocean circulation responds to the first mode of Atlantic atmospheric forcing, the North Atlantic Oscillation, through circulation changes between the subtropical and subpolar gyres--the intergyre region. These circulation changes affect the decadal evolution of North Atlantic heat content and, consequently, the phases of the AMO. The Atlantic overturning circulation is declining and the AMO is moving to a negative phase. This may offer a brief respite from the persistent rise of global temperatures, but in the coupled system we describe, there are compensating effects. In this case, the negative AMO is associated with a continued acceleration of sea-level rise along the northeast coast of the United States.

  7. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations.

    PubMed

    McCarthy, Gerard D; Haigh, Ivan D; Hirschi, Joël J-M; Grist, Jeremy P; Smeed, David A

    2015-05-28

    Decadal variability is a notable feature of the Atlantic Ocean and the climate of the regions it influences. Prominently, this is manifested in the Atlantic Multidecadal Oscillation (AMO) in sea surface temperatures. Positive (negative) phases of the AMO coincide with warmer (colder) North Atlantic sea surface temperatures. The AMO is linked with decadal climate fluctuations, such as Indian and Sahel rainfall, European summer precipitation, Atlantic hurricanes and variations in global temperatures. It is widely believed that ocean circulation drives the phase changes of the AMO by controlling ocean heat content. However, there are no direct observations of ocean circulation of sufficient length to support this, leading to questions about whether the AMO is controlled from another source. Here we provide observational evidence of the widely hypothesized link between ocean circulation and the AMO. We take a new approach, using sea level along the east coast of the United States to estimate ocean circulation on decadal timescales. We show that ocean circulation responds to the first mode of Atlantic atmospheric forcing, the North Atlantic Oscillation, through circulation changes between the subtropical and subpolar gyres--the intergyre region. These circulation changes affect the decadal evolution of North Atlantic heat content and, consequently, the phases of the AMO. The Atlantic overturning circulation is declining and the AMO is moving to a negative phase. This may offer a brief respite from the persistent rise of global temperatures, but in the coupled system we describe, there are compensating effects. In this case, the negative AMO is associated with a continued acceleration of sea-level rise along the northeast coast of the United States.

  8. Decadal Variability of ENSO Predictability

    NASA Astrophysics Data System (ADS)

    Wang, Guomin; Hendon, Harry H.; McPhaden, Michael J.

    2013-04-01

    Seasonal prediction of climate depends primarily on the capability to predict ENSO and its teleconnections. Seasonal predictability of ENSO derives primarily from upper ocean initial conditions, so forecast skill is limited, in part, by the quality of the ocean initial conditions available to the forecast model. Here we report on variations of ENSO forecast skill with the BoM coupled ocean-atmosphere forecast model, for which we have generated hindcasts for the period 1960-2010. It is found despite the recent dramatic increase in ocean observations (primarily from ARGO), the forecast skill for predicting ENSO events, as measured by correlation skill for Nino3 SST index, is dramatically lower in the most recent decade (2001-2010) compared to the previous two decades (1981-2000), and lower even than the earlier two decades (1960-1979) when there was a dearth of ocean observations. We argue that the low skill in the recent decade reflects a recent reduction of ENSO predictability, and this reduced predictability is attributed to decadal changes in the coupled mean state. Post 1998, the coupled mean state has not favoured ENSO variability in the central-eastern Pacific (i.e. as measured by Nino3 SST variations), but rather has promoted ENSO variability further to the west (i.e., as measured by Nino4 SST variations). The underlying mechanisms for this change in ENSO behavior and the implications for decadal prediction of ENSO and its teleconnection to the monsoon will be discussed.

  9. On the variability of Pacific Ocean tides at seasonal to decadal time scales: Observed vs modelled

    NASA Astrophysics Data System (ADS)

    Devlin, Adam Thomas

    forward in time to the predicted sea level in 2100. Results suggest that stations with large positive combined A-TATs produce total water levels that are greater than those predicted by an increase in MSL alone, increasing the chances of high-water events. Part II examines the mechanisms behind the yearly (TAT) variability in the Western Tropical Pacific Ocean. Significant amplitude TATs are found at more than half of 26 gauges for each of the two strongest tidal constituents, K1 (diurnal) and M2 (semidiurnal). For the lesser constituents analyzed (O1 and S2), significant trends are observed at ten gauges. Part III analyzes the seasonal behavior of tides (STATs) at twenty tide gauges in the Southeast Asian waters, which exhibit variation by 10 -- 30% of mean tidal amplitudes. A barotropic ocean tide model that considers the seasonal effects of MSL, stratification, and geostrophic and Ekman velocity is used to explain the observed seasonal variability in tides due to variations in monsoon-influenced climate forcing, with successful results at about half of all gauges. The observed changes in tides are best explained by the influence of non-tidal velocities (geostrophic and Ekman), though the effect of changing stratification is also an important secondary causative mechanism. From the results of these surveys and investigations, it is concluded that short-term fluctuations in MSL and tidal properties at multiple time scales may be as important in determining the state of future water levels as the long-term trends. Global explanations for the observed tidal behavior have not been found in this study; however, significant regional explanations are found at the yearly time scale in the Solomon Sea, and at the seasonal time scale in Southeast Asia. It is likely that tidal sensitivity to annual and seasonal variations in MSL at other locations also are driven by locally specific processes, rather than factors with basin-wide coherence. (Abstract shortened by ProQuest.).

  10. Impacts of Climate Variability on Lake Evaporation: Lessons Learned From Nearly Two Decades of Observation

    NASA Astrophysics Data System (ADS)

    Lenters, J. D.; Holman, K. D.

    2006-12-01

    Variations in lake evaporation have a significant impact on the energy and water budgets of lakes. Understanding these variations and the role of climate is important for water resource management as well as predicting future changes in lake hydrology as a result of climate change. However, accurate monitoring of evaporation from water bodies requires significant investments of time and resources to support energy budget and/or eddy covariance instrumentation, maintenance, and data processing. Thus, long-term monitoring studies of this type are rare, despite their importance for water resource management. In this study, we present results from an updated 17-year energy budget analysis of Sparkling Lake in northern Wisconsin (USA). Earlier results from this study have shown that lake evaporation varies significantly, on a wide variety of timescales, and that the climatic drivers of evaporation depend strongly on the timescale of interest. A recent extension of the original 10-year dataset (1989-1998) has now provided us with a longer timeseries with which to investigate the impacts of climate variability and change on lake evaporation. We highlight some of the results of this recent analysis, including the relative roles of radiation, temperature, humidity, and wind speed in modulating the rate of evaporation from the lake surface. Particular attention is given to the interannual variability and long-term trends that are found to arise from the 17-year study, as well as the implications for water resources under future climate change.

  11. The role of clouds in driving North Atlantic multi-decadal climate variability in observations and models

    NASA Astrophysics Data System (ADS)

    Clement, A. C.; Bellomo, K.; Murphy, L.

    2013-12-01

    Large scale warming and cooling periods of the North Atlantic is known as the Atlantic Multidecadal Oscillation (AMO). The pattern of warming and cooling in the North Atlantic Ocean over the 20th century that has a characteristic spatial structure with maximum warming in the mid-latitudes and subtropics. This has been most often attributed to changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC), which in turn affects poleward heat transport. A recent modeling study by Booth et al. (2012), however, suggested that aerosols can explain both the spatial pattern and temporal history of Atlantic SST through indirect effects of aerosols on cloud cover; although this idea is controversial (Zhang et al., 2013). We have found observational evidence that changes in cloud amount can drive SST changes on multi-decadal timescale. We hypothesize that a positive local feedback between SST and cloud radiative effect amplifies SST and gives rise to the observed pattern of SST change. During cool North Atlantic periods, a southward shift of the ITCZ strengthens the trade winds in the tropical North Atlantic and increases low-level cloud cover, which acts to amplify the SST cooling in the North Atlantic. During warm periods in the North Atlantic, the opposite response occurs. We are testing whether the amplitude of this feedback is realistically simulated in the CMIP5 models, and whether inter-model differences in the amplitude of the feedback can explain differences in model simulations of Atlantic multi-decadal variability.

  12. Investigating decadal variability and trends in the Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Bonfils, C.; Santer, B.

    2009-04-01

    Climate indices are of great value to Earth scientists for their ability to characterize important climate features and distill complex spatio-temporal variability into more simple forms. The Pacific Decadal Oscillation (PDO), distinguished by its sudden cold-warm phase shifts, is mainly portrayed as a natural mode of variability, and has been shown to closely relate to the variability of many biological, atmospheric, physical and hydrologic systems. In this study, we investigate the possibility of a human signature on the PDO that is aliased to its definition. We use PDO time-series obtained from three observational datasets to take into account observational uncertainties as well as results derived from historical and future simulations performed with various CMIP3 climate models.

  13. Re-Examination of the Observed Decadal Variability of Earth Radiation Budget Using Altitude-Corrected ERBE/ERBS Nonscanner WFOV Data

    NASA Technical Reports Server (NTRS)

    Wong, Takmeng; Wielicki, Bruce A.; Lee, Robert B.; Smith, G. Louis; Bush, Kathryn A.

    2005-01-01

    This paper gives an update on the observed decadal variability of Earth Radiation Budget using the latest altitude-corrected Earth Radiation Budget Experiment (ERBE)/Earth Radiation Budget Satellite (ERBS) Nonscanner Wide Field of View (WFOV) instrument Edition3 dataset. The effects of the altitude correction are to modify the original reported decadal changes in tropical mean (20N to 20S) longwave (LW), shortwave (SW), and net radiation between the 1980s and the 1990s from 3.1/-2.4/-0.7 to 1.6/-3.0/1.4 Wm(sup -2) respectively. In addition, a small SW instrument drift over the 15-year period was discovered during the validation of the WFOV Edition3 dataset. A correction was developed and applied to the Edition3 dataset at the data user level to produce the WFOV Edition3_Rev1 dataset. With this final correction, the ERBS Nonscanner observed decadal changes in tropical mean LW, SW, and net radiation between the 1980s and the 1990s now stand at 0.7/-2.1/1.4 Wm(sup -2), respectively, which are similar to the observed decadal changes in the HIRS Pathfinder OLR and the ISCCP FD record; but disagree with the AVHRR Pathfinder ERB record. Furthermore, the observed interannual variability of near-global ERBS WFOV Edition3_Rev1 net radiation is found to be remarkably consistent with the latest ocean heat storage record for the overlapping time period of 1993 to 1999. Both data sets show variations of roughly 1.5 Wm(sup -2) in planetary net heat balance during the 1990s.

  14. Enceladus Plumes: Causes of Decadal Variability

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.; Ewald, Shawn P.

    2016-10-01

    The Enceladus plumes have decreased over the decade that Cassini has been observing them. This long-term variation is superposed on the much shorter-term variation tied to the position of Enceladus in its orbit around Saturn. The observations are ISS and VIMS images, which reveal the particles in the plumes but not the gas. The decadal variability largely consists of a 2-fold decline in the mass of plume material, but there is a hint of a recent turnaround. Here we offer three hypotheses, each with its strengths and weaknesses, to explain the long-term variability. The first is seasonal change, from summer to fall in the southern hemisphere. The loss of sunlight could increase the build-up of ice around the tiger stripes. The weakness is that the sunlight is likely to have a small effect, e.g., decreasing the sublimation rate of the ice by only ~1 cm/year. The second hypothesis is a statistical fluctuation in the number of active plumes, which tend to turn themselves off due to build-up of ice at the throat of the vent. The weakness is that the plumes are likely to fluctuate independently, and if there are ~100 plumes, their sum will only fluctuate by 10%. The third hypothesis is that the variation is part of a well-known decadal cycle of orbital eccentricity, which varies by ±2.5% around a mean of 0.0047. The peak eccentricity occurred in 2009-2010, and the minimum occurred in 2015. Since eccentricity controls the short-term orbital cycle variations, it could also control the longer-term decadal variations. The weakness is that the eccentricity variation is small, from 0.0046 to 0.0048. It is not certain that such a small variation could cause a 2-fold variation in the strength of the plumes. An independent study, still in its infancy, is the possibility that liquid water reaches the surface during part of the orbital cycle.

  15. Decadal Variability of Clouds and Comparison with Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Su, H.; Shen, T. J.; Jiang, J. H.; Yung, Y. L.

    2014-12-01

    An apparent climate regime shift occurred around 1998/1999, when the steady increase of global-mean surface temperature appeared to hit a hiatus. Coherent decadal variations are found in atmospheric circulation and hydrological cycles. Using 30-year cloud observations from the International Satellite Cloud Climatology Project, we examine the decadal variability of clouds and associated cloud radiative effects on surface warming. Empirical Orthogonal Function analysis is performed. After removing the seasonal cycle and ENSO signal in the 30-year data, we find that the leading EOF modes clearly represent a decadal variability in cloud fraction, well correlated with the indices of Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO). The cloud radiative effects associated with decadal variations of clouds suggest a positive cloud feedback, which would reinforce the global warming hiatus by a net cloud cooling after 1998/1999. Climate model simulations driven by observed sea surface temperature are compared with satellite observed cloud decadal variability. Copyright:

  16. Decadal variability in the Eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Köllner, Manuela; Klein, Birgit; Kieke, Dagmar; Klein, Holger; Rhein, Monika; Roessler, Achim; Denker, Claudia

    2016-04-01

    The strong warming and salinification of the Eastern North Atlantic starting in the mid 1990s has been attributed to a westward contraction of the subpolar gyre and stronger inflow of waters from the subtropical gyre. Temporal changes in the shape and strength of the two gyres have been related to the major mode of atmospheric variability in the Atlantic sector, the NAO. Hydrographic conditions along the Northwest European shelf are thus the result of different processes such as variations in transports, varying relative contributions of water masses from the two gyres and property trends in the source water masses. We examine the decadal variability in the eastern North Atlantic based on Argo data from 2000-2015 and have constructed time series for four water masses (Subpolar Mode Water (SPMW), Intermediate Water (IW), upper Labrador Sea Water (uLSW) and deep Labrador Sea Water (dLSW)) at selected locations along the Northwest European shelf. Data from the Rockall Trough and the Iceland Basin are chosen to represent advective pathways in the subpolar gyre at two major branches of the North Atlantic Current towards the Nordic Seas and the Arctic Ocean. Temporal variability of subtropical waters transported northward along the eastern boundary is studied at Goban Spur around 48°N. The Argo data are extended in time with long-term hydrographic observations such as the Extended Ellet Line data and other climatological sources in the region. For the study of transport fluctuations time series from the RACE (Regional circulation and Global change) program (2012-2015) and predecessor programs have been used. These programs have monitored the subpolar gyre in the western basin and provide time series of transports and hydrographic anomalies from moored instruments at the western flank of the Mid Atlantic Ridge (MAR). First results show that the temperatures and salinities remained at high levels for the upper waters (SPMW and IW) until 2010 and have been decreasing since

  17. Decadal variability in the oxygen inventory of North Atlantic subtropical underwater captured by sustained, long-term oceanographic time series observations

    NASA Astrophysics Data System (ADS)

    Montes, Enrique; Muller-Karger, Frank E.; Cianca, Andrés.; Lomas, Michael W.; Lorenzoni, Laura; Habtes, Sennai

    2016-03-01

    Historical observations of potential temperature (θ), salinity (S), and dissolved oxygen concentrations (O2) in the tropical and subtropical North Atlantic (0-500 m; 0-40°N, 10-90°W) were examined to understand decadal-scale changes in O2 in subtropical underwater (STUW). STUW is observed at four of the longest, sustained ocean biogeochemical and ecological time series stations, namely, the CArbon Retention In A Colored Ocean (CARIACO) Ocean Time Series Program (10.5°N, 64.7°W), the Bermuda Atlantic Time-series Study (BATS; 31.7°N, 64.2°W), Hydrostation "S" (32.1°N, 64.4°W), and the European Station for Time-series in the Ocean, Canary Islands (ESTOC; 29.2°N, 15.5°W). Observations over similar time periods at CARIACO (1996-2013), BATS (1988-2011), and Hydrostation S (1980-2013) show that STUW O2 has decreased approximately 0.71, 0.28, and 0.37 µmol kg-1 yr-1, respectively. No apparent change in STUW O2 was observed at ESTOC over the course of the time series (1994-2013). Ship observation data for the tropical and subtropical North Atlantic archived at NOAA National Oceanographic Data Center show that between 1980 and 2013, STUW O2 (upper ~300 m) declined 0.58 µmol kg-1 yr-1 in the southeastern Caribbean Sea (10-15°N, 60-70°W) and 0.68 µmol kg-1 yr-1 in the western subtropical North Atlantic (30-35°N, 60-65°W). A declining O2 trend was not observed in the eastern subtropical North Atlantic (25-30°N, 15-20°W) over the same period. Most of the observed O2 loss seems to result from shifts in ventilation associated with decreased wind-driven mixing and a slowing down of STUW formation rates, rather than changes in diffusive air-sea O2 gas exchange or changes in the biological oceanography of the North Atlantic. Variability of STUW O2 showed a significant relationship with the wintertime (January-March) Atlantic Multidecadal Oscillation index (AMO, R2 = 0.32). During negative wintertime AMO years trade winds are typically stronger between 10°N and 30

  18. Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades

    NASA Astrophysics Data System (ADS)

    Han, Weiqing; Meehl, Gerald A.; Hu, Aixue; Alexander, Michael A.; Yamagata, Toshio; Yuan, Dongliang; Ishii, Masayoshi; Pegion, Philip; Zheng, Jian; Hamlington, Benjamin D.; Quan, Xiao-Wei; Leben, Robert R.

    2014-09-01

    Previous studies have linked the rapid sea level rise (SLR) in the western tropical Pacific (WTP) since the early 1990s to the Pacific decadal climate modes, notably the Pacific Decadal Oscillation in the north Pacific or Interdecadal Pacific Oscillation (IPO) considering its basin wide signature. Here, the authors investigate the changing patterns of decadal (10-20 years) and multidecadal (>20 years) sea level variability (global mean SLR removed) in the Pacific associated with the IPO, by analyzing satellite and in situ observations, together with reconstructed and reanalysis products, and performing ocean and atmosphere model experiments. Robust intensification is detected for both decadal and multidecadal sea level variability in the WTP since the early 1990s. The IPO intensity, however, did not increase and thus cannot explain the faster SLR. The observed, accelerated WTP SLR results from the combined effects of Indian Ocean and WTP warming and central-eastern tropical Pacific cooling associated with the IPO cold transition. The warm Indian Ocean acts in concert with the warm WTP and cold central-eastern tropical Pacific to drive intensified easterlies and negative Ekman pumping velocity in western-central tropical Pacific, thereby enhancing the western tropical Pacific SLR. On decadal timescales, the intensified sea level variability since the late 1980s or early 1990s results from the "out of phase" relationship of sea surface temperature anomalies between the Indian and central-eastern tropical Pacific since 1985, which produces "in phase" effects on the WTP sea level variability.

  19. Taking the temperature of the world's lakes: Decadal variability and long-term trends in lake surface temperature from in situ and satellite observations

    NASA Astrophysics Data System (ADS)

    Lenters, John; Hook, Simon; Read, Jordan; Gray, Derek; Hampton, Stephanie; McIntyre, Peter; O'Reilly, Catherine; Schneider, Philipp; Sharma, Sapna; Contributors, Gltc

    2016-04-01

    Recent studies have shown significant warming of inland water bodies throughout the world. To better understand the patterns, mechanisms, and ecological implications of global lake warming, an initiative known as the "Global Lake Temperature Collaboration" (GLTC) was started in 2010, with the objective of compiling and analyzing lake temperature data from numerous satellite and in situ records dating back at least 20-30 years. The GLTC project has now assembled data from over 250 lakes, with some in situ records dating back more than 100 years. Here, we present an analysis of the long-term warming trends, decadal variability, and a direct comparison between in situ and remotely sensed summer lake surface temperatures from 1895-2009. The results show consistent trends of increasing summer-mean lake surface temperature across most but not all sites. Lakes with especially long records show accelerated warming in the most recent two to three decades, with almost half of the lakes warming at rates in excess of 0.5 °C per decade during the period 1985-2009, and a few even exceeding 1.0 °C per decade.

  20. Food Price Volatility and Decadal Climate Variability

    NASA Astrophysics Data System (ADS)

    Brown, M. E.

    2013-12-01

    The agriculture system is under pressure to increase production every year as global population expands and more people move from a diet mostly made up of grains, to one with more meat, dairy and processed foods. Weather shocks and large changes in international commodity prices in the last decade have increased pressure on local food prices. This paper will review several studies that link climate variability as measured with satellite remote sensing to food price dynamics in 36 developing countries where local monthly food price data is available. The focus of the research is to understand how weather and climate, as measured by variations in the growing season using satellite remote sensing, has affected agricultural production, food prices and access to food in agricultural societies. Economies are vulnerable to extreme weather at multiple levels. Subsistence small holders who hold livestock and consume much of the food they produce are vulnerable to food production variability. The broader society, however, is also vulnerable to extreme weather because of the secondary effects on market functioning, resource availability, and large-scale impacts on employment in trading, trucking and wage labor that are caused by weather-related shocks. Food price variability captures many of these broad impacts and can be used to diagnose weather-related vulnerability across multiple sectors. The paper will trace these connections using market-level data and analysis. The context of the analysis is the humanitarian aid community, using the guidance of the USAID Famine Early Warning Systems Network and the United Nation's World Food Program in their response to food security crises. These organizations have worked over the past three decades to provide baseline information on food production through satellite remote sensing data and agricultural yield models, as well as assessments of food access through a food price database. Econometric models and spatial analysis are used

  1. Advances in Understanding Decadal Climate Variability

    NASA Technical Reports Server (NTRS)

    Busalacchi, Antonio J.

    1999-01-01

    Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL-FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few ship-tracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.

  2. Advances in Understanding Decadal Climate Variability

    NASA Technical Reports Server (NTRS)

    Busalaacchi, Antonio J.

    1998-01-01

    Recently, a joint Brazil-France-U.S. program, known as PIRATA (Pilot Research moored Array in the Tropical Atlantic), was proposed to begin the deployment of moored measurement platforms in the tropical Atlantic in order to enhance the existing observational data base and subsequent understanding of the processes by which the ocean and atmosphere couple in key regions of the tropical Atlantic Ocean. Empirical studies have suggested that there are strong relationships between tropical Atlantic upper ocean variability, SST, ocean-atmosphere coupling and regional climate variability. During the early 1980's a coordinated set of surface wind, subsurface thermal structure, and subsurface current observations were obtained as part of the U.S.-France SEQUAL- FOCAL process experiment designed to observe the seasonal response of the tropical Atlantic Ocean to surface forcing. Since that time, however, the observational data base for the tropical Atlantic Ocean has disintegrated to a few shiptracks measuring ocean temperatures and a small collection of tide gauge stations measuring sea level. A more comprehensive set of observations, modeling and empirical studies is now in order to make progress on understanding the regional climate variability. The proposed PIRATA program will use mooring platforms similar to the tropical Pacific Ocean TAO array to measure surface fluxes of momentum and heat and the corresponding changes in the upper ocean thermal structure. It is anticipated that the oceanic data from this monitoring array will also be used in a predictive mode for initialization studies of regional coupled climate models. Of particular interest are zonal and meridional modes of ocean-atmosphere variability within the tropical Atlantic basin that have significant impacts on the regional climate of the bordering continents.

  3. Origin of Quasi-decadal North Atlantic Oscillation Variability

    NASA Astrophysics Data System (ADS)

    Reintges, Annika; Latif, Mojib; Park, Wonsun

    2015-04-01

    The North Atlantic Oscillation (NAO) is the leading mode of internal atmospheric variability in the North Atlantic sector. It depicts significant quasi-decadal variability that is well documented, but the underlying mechanism is still under discussion. Other quantities in the North Atlantic sector such as sea surface temperature (SST) exhibit variability on a similar timescale. Here we present results from a global climate model which simulates the quasi-decadal NAO and North Atlantic SST variability consistent with observations. The quasi-decadal NAO variability is suggested to originate from large-scale air-sea interactions, where the Atlantic Meridional Overturning Circulation (AMOC) basically sets the timescale. Wind-driven ocean circulation changes provide a fast positive feedback on North Atlantic SST through anomalous Ekman currents and the establishment of an "intergyre" gyre. A delayed negative feedback on SST is accomplished through surface heat flux-driven changes of the AMOC and associated heat transport. The results stress the importance of both wind-induced and thermohaline-induced changes in the ocean circulation for quasi-decadal climate variability in the North Atlantic sector.

  4. Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation.

    PubMed

    Biastoch, A; Böning, C W; Lutjeharms, J R E

    2008-11-27

    Predicting the evolution of climate over decadal timescales requires a quantitative understanding of the dynamics that govern the meridional overturning circulation (MOC). Comprehensive ocean measurement programmes aiming to monitor MOC variations have been established in the subtropical North Atlantic (RAPID, at latitude 26.5 degrees N, and MOVE, at latitude 16 degrees N) and show strong variability on intraseasonal to interannual timescales. Observational evidence of longer-term changes in MOC transport remains scarce, owing to infrequent sampling of transoceanic sections over past decades. Inferences based on long-term sea surface temperature records, however, supported by model simulations, suggest a variability with an amplitude of +/-1.5-3 Sv (1 Sv = 10(6) m(3) s(-1)) on decadal timescales in the subtropics. Such variability has been attributed to variations of deep water formation in the sub-arctic Atlantic, particularly the renewal rate of Labrador Sea Water. Here we present results from a model simulation that suggest an additional influence on decadal MOC variability having a Southern Hemisphere origin: dynamic signals originating in the Agulhas leakage region at the southern tip of Africa. These contribute a MOC signal in the tropical and subtropical North Atlantic that is of the same order of magnitude as the northern source. A complete rationalization of observed MOC changes therefore also requires consideration of signals arriving from the south.

  5. Decadal Variability of Surface Incident Solar Radiation over China

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun

    2015-04-01

    Observations have reported a widespread dimming of surface incident solar radiation (Rs) from the 1950s to the 1980s and a brightening afterwards. However, none of the state-of-the-art earth system models, including those from the Coupled Model Intercomparison Project phase 5 (CMIP5), could successfully reproduce the dimming/brightening rates over China. This study provides metadata and reference data to investigate the observed variability of Rs in China. From 1958 to 1990, diffuse solar radiation (Rsdif) and direct solar radiation (Rsdir) was measured separately in China, from which Rs was calculated a sum. However, pyranometers used to measure Rsdif had a strong sensitivity drift problem, which introduced a spurious decreasing trend to Rsdif and Rs measurements. The observed Rsdir did not suffer from such sensitivity drift problem. From 1990 to 1993, the old instruments were replaced and measuring stations were relocated in China, which introduced an abrupt increase in the observed Rs. After 1993, Rs was measured by solid black thermopile pyranometers. Comprehensive comparisons between observation-based and model-based Rs performed in this research have shown that sunshine duration (SunDu)-derived Rs is of high quality and provide accurate estimate of decadal variability of Rs over China. SunDu-derived Rs averaged over 105 stations in China decreased at -2.9 W m-2 per decade from 1961 to 1990 and remained stable afterward. This decadal variability has been confirmed by the observed Rsdir, independent studies on aerosols and diurnal temperature range, and can be reproduced by certain high-quality earth system models. However, neither satellite retrievals (the Global Energy and Water Exchanges Project Surface Radiation Budget (GEWEX SRB)) nor reanalyses (ERA-Interim and Modern-Era Retrospective analysis for Research and Applications (MERRA)) can accurately reproduce such decadal variability of Rs over China for their exclusion of annual variability of tropospheric

  6. Solar forcing synchronizes decadal North Atlantic climate variability.

    PubMed

    Thiéblemont, Rémi; Matthes, Katja; Omrani, Nour-Eddine; Kodera, Kunihiko; Hansen, Felicitas

    2015-09-15

    Quasi-decadal variability in solar irradiance has been suggested to exert a substantial effect on Earth's regional climate. In the North Atlantic sector, the 11-year solar signal has been proposed to project onto a pattern resembling the North Atlantic Oscillation (NAO), with a lag of a few years due to ocean-atmosphere interactions. The solar/NAO relationship is, however, highly misrepresented in climate model simulations with realistic observed forcings. In addition, its detection is particularly complicated since NAO quasi-decadal fluctuations can be intrinsically generated by the coupled ocean-atmosphere system. Here we compare two multi-decadal ocean-atmosphere chemistry-climate simulations with and without solar forcing variability. While the experiment including solar variability simulates a 1-2-year lagged solar/NAO relationship, comparison of both experiments suggests that the 11-year solar cycle synchronizes quasi-decadal NAO variability intrinsic to the model. The synchronization is consistent with the downward propagation of the solar signal from the stratosphere to the surface.

  7. Solar forcing synchronizes decadal North Atlantic climate variability

    PubMed Central

    Thiéblemont, Rémi; Matthes, Katja; Omrani, Nour-Eddine; Kodera, Kunihiko; Hansen, Felicitas

    2015-01-01

    Quasi-decadal variability in solar irradiance has been suggested to exert a substantial effect on Earth's regional climate. In the North Atlantic sector, the 11-year solar signal has been proposed to project onto a pattern resembling the North Atlantic Oscillation (NAO), with a lag of a few years due to ocean-atmosphere interactions. The solar/NAO relationship is, however, highly misrepresented in climate model simulations with realistic observed forcings. In addition, its detection is particularly complicated since NAO quasi-decadal fluctuations can be intrinsically generated by the coupled ocean-atmosphere system. Here we compare two multi-decadal ocean-atmosphere chemistry-climate simulations with and without solar forcing variability. While the experiment including solar variability simulates a 1–2-year lagged solar/NAO relationship, comparison of both experiments suggests that the 11-year solar cycle synchronizes quasi-decadal NAO variability intrinsic to the model. The synchronization is consistent with the downward propagation of the solar signal from the stratosphere to the surface. PMID:26369503

  8. Decadal Modulation of Global Surface Temperature By Internal Climate Variability

    NASA Astrophysics Data System (ADS)

    Dai, A.; Fyfe, J. C.; Xie, S. P.; Dai, X.

    2014-12-01

    Despite a steady increase in atmospheric greenhouse gases (GHGs), global-mean surface temperature (T) has shown no discernable warming since about 2000, in sharp contrast to model simulations which on average project strong warming. The recent slowdown in observed surface warming has been attributed to decadal cooling in the tropical Pacific, intensifying trade winds, changes in El Niño activity, increasing volcanic activity and decreasing solar irradiance. Earlier periods of arrested warming have been observed but received much less attention than the recent period, and their causes are poorly understood. Here we analyze observed and model-simulated global T fields to quantify the contributions of internal climate variability (ICV) to decadal changes in global-mean T since 1920. We show that the Inter-decadal Pacific Oscillation (IPO) has been associated with large T anomalies over both ocean and land since 1920. Combined with another leading mode of ICV, the IPO explains most of the difference between observed and model-simulated rates of decadal change in global-mean T since 1920, and particularly over the so-called "hiatus" period since about 2000. We conclude that ICV, mainly through the IPO, was largely responsible for the recent slowdown, as well as for earlier slowdowns and accelerations in global-mean T since 1920, with preferred spatial patterns different from GHG-induced warming. Recent history suggests that the IPO could reverse course and lead to accelerated global warming in the coming decades.

  9. Contribution of solar radiation to decadal temperature variability over land.

    PubMed

    Wang, Kaicun; Dickinson, Robert E

    2013-09-10

    Global air temperature has become the primary metric for judging global climate change. The variability of global temperature on a decadal timescale is still poorly understood. This paper examines further one suggested hypothesis, that variations in solar radiation reaching the surface (Rs) have caused much of the observed decadal temperature variability. Because Rs only heats air during the day, its variability is plausibly related to the variability of diurnal temperature range (daily maximum temperature minus its minimum). We show that the variability of diurnal temperature range is consistent with the variability of Rs at timescales from monthly to decadal. This paper uses long comprehensive datasets for diurnal temperature range to establish what has been the contribution of Rs to decadal temperature variability. It shows that Rs over land globally peaked in the 1930s, substantially decreased from the 1940s to the 1970s, and changed little after that. Reduction of Rs caused a reduction of more than 0.2 °C in mean temperature during May to October from the 1940s through the 1970s, and a reduction of nearly 0.2 °C in mean air temperature during November to April from the 1960s through the 1970s. This cooling accounts in part for the near-constant temperature from the 1930s into the 1970s. Since then, neither the rapid increase in temperature from the 1970s through the 1990s nor the slowdown of warming in the early twenty-first century appear to be significantly related to changes of Rs.

  10. Decadal and interannual variability of the Indian Ocean SST

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Lakshmi; Krishnamurthy, V.

    2016-01-01

    The variability of the Indian Ocean on interannual and decadal timescales is investigated in observations, coupled model simulation and model experiment. The Indian Ocean Dipole (IOD) mode was specifically analyzed using a data-adaptive method. This study reveals one decadal mode and two interannual modes in the sea surface temperature (SST) of the IOD. The decadal mode in the IOD is associated with the Pacific Decadal Oscillation (PDO) of the North Pacific SST. The two interannual modes are related to the biennial and canonical components of El Niño-Southern Oscillation (ENSO), consistent with previous studies. This study hypothesizes that the relation between the Indian Ocean and the North Pacific on decadal scale may be through the northerly winds from the western North Pacific. The long simulation of Community Climate System Model version 4 also indicates the presence of IOD modes associated with the decadal PDO and canonical ENSO modes. However, the model fails to simulate the biennial ENSO mode in the Indian Ocean. The relation between the Indian Ocean and North Pacific Ocean is further supported by the regionally de-coupled model experiment.

  11. Decadal modulation of global surface temperature by internal climate variability

    NASA Astrophysics Data System (ADS)

    Dai, Aiguo; Fyfe, John C.; Xie, Shang-Ping; Dai, Xingang

    2015-06-01

    Despite a steady increase in atmospheric greenhouse gases (GHGs), global-mean surface temperature (T) has shown no discernible warming since about 2000, in sharp contrast to model simulations, which on average project strong warming. The recent slowdown in observed surface warming has been attributed to decadal cooling in the tropical Pacific, intensifying trade winds, changes in El Niño activity, increasing volcanic activity and decreasing solar irradiance. Earlier periods of arrested warming have been observed but received much less attention than the recent period, and their causes are poorly understood. Here we analyse observed and model-simulated global T fields to quantify the contributions of internal climate variability (ICV) to decadal changes in global-mean T since 1920. We show that the Interdecadal Pacific Oscillation (IPO) has been associated with large T anomalies over both ocean and land. Combined with another leading mode of ICV, the IPO explains most of the difference between observed and model-simulated rates of decadal change in global-mean T since 1920, and particularly over the so-called `hiatus' period since about 2000. We conclude that ICV, mainly through the IPO, was largely responsible for the recent slowdown, as well as for earlier slowdowns and accelerations in global-mean T since 1920, with preferred spatial patterns different from those associated with GHG-induced warming or aerosol-induced cooling. Recent history suggests that the IPO could reverse course and lead to accelerated global warming in the coming decades.

  12. Anatomizing the Ocean's role in maintaining the pacific decadal variability

    NASA Astrophysics Data System (ADS)

    Yu, Jia-Yuh; Chang, Cheng-Wei

    2014-05-01

    The role of ocean dynamics in maintaining the Pacific Decadal Variability (PDV) was investigated based on simulation results from the Parallel Ocean Program (POP) ocean general circulation model developed at the Los Alamos National Laboratory (LANL). A long-term control simulation of the LANL-POP model forced by a reconstructed coupled wind stress field over the period 1949-2001 showed that the ocean model not only simulates a reasonable climatology, but also produces a climate variability pattern very similar to observed PDV. In the Equatorial Pacific (EP) region, the decadal warming is confined in the thin surface layer. Beneath the surface, a strong compensating cooling, accompanied by a basin-wide-scale overturning circulation in opposition to the mean flow, occurs in the thermocline layer. In the North Pacific (NP) region, the decadal variability nonetheless exhibits a relatively monotonous pattern, characterized by the dominance of anomalous cooling and eastward flows. A term balance analysis of the perturbation heat budget equation was conducted to highlight the ocean's role in maintaining the PDV-like variability over the EP and NP regions. The analyses showed that strong oceanic adjustment must occur in the equatorial thermocline in association with the anomalous overturning circulation in order to maintain the PDV-like variability, including a flattening of the equatorial thermocline slpoe and an enhancement of the upper ocean's stratification (stability), as the climate shifts from a colder regime toward a warmer one. On the other hand, the oceanic response in the extratropical region seems to be confined to the surface layer, without much participation from the subsurface oceanic dynamics.

  13. A decade plus of snow distribution observations in a mountain catchment: assessing variability, self-similarity, and the representativeness of an index site

    NASA Astrophysics Data System (ADS)

    Winstral, A. H.; Marks, D. G.

    2012-12-01

    This study presents an analysis of eleven years of manually sampled snow depth and SWE data at the drift-dominated Reynolds Mountain East catchment (0.36 km^2) in southwestern Idaho, U.S.A. The dataset includes eleven mid-winter surveys and ten surveys that targeted peak accumulation in the early spring. Depths were sampled on the same 30-meter grid covering the entire catchment in each survey. Densities were sampled at a coarser resolution using a depth-stratified random sampling scheme. In 19 of the 21 surveys, snow density increased with increasing depth until an upper limit was attained in the drifts. The coefficient of variation (CV) for mid-winter snow depths varied from 0.46 to 0.75 and was significantly related to seasonal wind speeds (p = 0.02). Energy inputs, correlated inversely to accumulation rates in this catchment, caused variability to increase as melt increased through the season. The CV for all three surveys that took place after peak accumulation exceeded 1.0. Inter-seasonal distributions were strongly correlated - correlation coefficients ranged from 0.70 to 0.97 with a mean of 0.84. An index site with similar site characteristics to NRCS Snotel sites gave reasonable approximations of average catchment SWE in drier years, however as snowfall increased this site increasingly over-estimated basin-wide SWE. Though others have found snow distributions to be reasonably approximated by two-parameter lognormal distributions, Kolmogorov-Smirnov goodness of fit tests rejected this hypothesis (p < 0.01) in 20 of the 21 observed distributions.

  14. Variability in Antarctic ozone loss in the last decade (2004-2013): high-resolution simulations compared to Aura MLS observations

    NASA Astrophysics Data System (ADS)

    Kuttippurath, J.; Godin-Beekmann, S.; Lefèvre, F.; Santee, M. L.; Froidevaux, L.; Hauchecorne, A.

    2015-09-01

    A detailed analysis of the polar ozone loss processes during 10 recent Antarctic winters is presented with high-resolution MIMOSA-CHIM (Modèle Isentrope du transport Méso-échelle de l'Ozone Stratosphérique par Advection avec CHIMie) model simulations and high-frequency polar vortex observations from the Aura microwave limb sounder (MLS) instrument. The high-frequency measurements and simulations help to characterize the winters and assist the interpretation of interannual variability better than either data or simulations alone. Our model results for the Antarctic winters of 2004-2013 show that chemical ozone loss starts in the edge region of the vortex at equivalent latitudes (EqLs) of 65-67° S in mid-June-July. The loss progresses with time at higher EqLs and intensifies during August-September over the range 400-600 K. The loss peaks in late September-early October, when all EqLs (65-83° S) show a similar loss and the maximum loss (> 2 ppmv - parts per million by volume) is found over a broad vertical range of 475-550 K. In the lower stratosphere, most winters show similar ozone loss and production rates. In general, at 500 K, the loss rates are about 2-3 ppbv sh-1 (parts per billion by volume per sunlit hour) in July and 4-5 ppbv sh-1 in August-mid-September, while they drop rapidly to 0 by mid-October. In the middle stratosphere, the loss rates are about 3-5 ppbv sh-1 in July-August and October at 675 K. On average, the MIMOSA-CHIM simulations show that the very cold winters of 2005 and 2006 exhibit a maximum loss of ~ 3.5 ppmv around 550 K or about 149-173 DU over 350-850 K, and the warmer winters of 2004, 2010, and 2012 show a loss of ~ 2.6 ppmv around 475-500 K or 131-154 DU over 350-850 K. The winters of 2007, 2008, and 2011 were moderately cold, and thus both ozone loss and peak loss altitudes are between these two ranges (3 ppmv around 500 K or 150 ± 10 DU). The modeled ozone loss values are in reasonably good agreement with those estimated from

  15. A Decade of Satellite Ocean Color Observations

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.

    2009-01-01

    After the successful Coastal Zone Color Scanner (CZCS, 1978-1986), demonstration that quantitative estimations of geophysical variables such as chlorophyll a and diffuse attenuation coefficient could be derived from top of the atmosphere radiances, a number of international missions with ocean color capabilities were launched beginning in the late 1990s. Most notable were those with global data acquisition capabilities, i.e., the Ocean Color and Temperature Sensor (OCTS 1996-1997), the Sea-viewing Wide Field-of-view Sensor (SeaWiFS, United States, 1997-present), two Moderate Resolution Imaging Spectroradiometers, (MODIS, United States, Terra/2000-present and Aqua/2002-present), the Global Imager (GLI, Japan, 2002-2003), and the Medium Resolution Imaging Spectrometer (MERIS, European Space Agency, 2002-present). These missions have provided data of exceptional quality and continuity, allowing for scientific inquiries into a wide variety of marine research topics not possible with the CZCS. This review focuses on the scientific advances made over the past decade using these data sets.

  16. Processes in Decadal Climate Variability and their Incorporation into a Decadal Climate Prediction System

    NASA Astrophysics Data System (ADS)

    Proemmel, K.; Cubasch, U.; Vamborg, F.

    2012-12-01

    The quality of decadal climate predictions rests fundamentally on the ability of the forecast models realistically to simulate climate and its variability, in particular at decadal timescales. The new German research project "MiKlip - Decadal Predictions" (http://www.fona-miklip.de/en/) aims to develop a system for climate predictions for up to a decade ahead that can then be applied by an operational agency such as the German Meteorological Service DWD. This climate prediction system is based on the MPI-M Earth System Model (MPI-ESM) from the Max Planck Institute for Meteorology in Germany. Different aspects of decadal climate predictions are considered in MiKlip like initialisation strategies, the predictive skill on the regional scale with focus on Europe and Africa and the systematic evaluation of the prediction system. Another part of MiKlip deals with the incorporation of those processes in climate models that are important for the realistic representation of decadal climate variability, and the understanding of the important processes in the numerical prediction system. Processes that have the potential to improve decadal climate predictions are related to e.g. Arctic sea ice, atmospheric chemistry, large volcanic eruptions, atmosphere-ocean coupling, stratosphere and land-atmosphere interaction. The work dealing with the processes can be categorized into assessing the effects of enhanced resolution and of advanced parameterizations and numerics, investigating mechanisms of decadal variability, improvement of existing system components and coupling of additional climate subsystems.

  17. Interannual and Decadal Variability of Summer Rainfall over South America

    NASA Technical Reports Server (NTRS)

    Zhou, Jiayu; Lau, K.-M.

    1999-01-01

    Using the CPC (Climate Prediction Center) Merged Analysis of Precipitation product along with the Goddard Earth Observing System reanalysis and the Climate Analysis Center sea surface temperature (SST) data, we conduct a diagnostic study of the interannual and decadal scale variability of summer rainfall over South America. Results show three leading modes of rainfall variation identified with interannual, decadal, and long-term trend variability. Together, these modes explain more than half the total variance. The first mode is highly correlated with El Nino/southern oscillation (ENSO), showing severe drought over Northeast Brazil and copious rainfall over the Ecuador coast and the area of Uruguay-Southern Brazil in El Nino years. This pattern is attributed to the large scale zonal shift of the Walker circulation and local Hadley cell anomaly induced by positive (negative) SST anomaly over the eastern (western) equatorial Pacific. In El Nino years, two convective belts indicated by upper tropospheric velocity potential trough and mid-tropospheric rising motion, which are somewhat symmetric about the equator, extend toward the northeast and the southeast into the tropical North and South Atlantic respectively. Sandwiched between the ascent is a region of descending motion over Northeast Brazil. The southern branch of the anomalous Hadley cell is dynamically linked to the increase of rainfall over Uruguay-Southern Brazil. The regional response of anomalous circulation shows a stronger South American summer monsoon and an enhanced (weakened) subtropical high over the South Atlantic (South Pacific) Ocean. The decadal variation displays a meridional shift of the Intertropical Convergence Zone (ITCZ), which is tie to the anomalous cross-equatorial SST gradient over the Atlantic and the eastern Pacific. In conjunction with this mode is a large scale mass swing between the polar regions and midlatitudes in both hemispheres. Over the South Atlantic and the South Pacific

  18. Decadal Record of Satellite Carbon Monoxide Observations

    NASA Astrophysics Data System (ADS)

    Worden, Helen; Deeter, Merritt; Frankenberg, Christian; George, Maya; Nichitiu, Florian; Worden, John; Aben, Ilse; Bowman, Kevin; Clerbaux, Cathy; Coheur, Pierre-Francois; de Laat, Jos; Warner, Juying; Drummond, James; Edwards, David; Gille, John; Hurtmans, Daniel; Ming, Luo; Martinez-Alonso, Sara; Massie, Steven; Pfister, Gabriele

    2013-04-01

    Atmospheric carbon monoxide (CO) distributions are controlled by anthropogenic emissions, biomass burning, chemical production, transport and oxidation by reaction with the hydroxyl radical (OH). Quantifying trends in CO is therefore important for understanding changes related to all of these contributions. Here we present a comprehensive record of satellite observations from 2000 through 2011 of total column CO using the available measurements from nadir-viewing thermal infrared instruments: MOPITT, AIRS, TES and IASI. We examine trends for CO in the Northern and Southern hemispheres along with regional trends for E. China, E. USA, Europe and India. Measurement and sampling methods for each of the instruments are discussed, and we show diagnostics for systematic errors in MOPITT trends. We find that all the satellite observations are consistent with a modest decreasing trend around -1%/year in total column CO over the Northern hemisphere for this time period. Decreasing trends in total CO column are observed for the United States, Europe and E. China with more than 2σ significance. For India, the trend is also decreasing, but smaller in magnitude and less significant. Decreasing trends in surface CO have also been observed from measurements in the U.S. and Europe. Although less information is available for surface CO in China, there is a decreasing trend reported for Beijing. Some of the interannual variability in the observations can be explained by global fire emissions, and there may be some evidence of the global financial crisis in late 2008 to early 2009. But the overall decrease needs further study to understand the implications for changes in anthropogenic emissions.

  19. Decadal Variability of West Coast Marine Stratus Clouds

    NASA Astrophysics Data System (ADS)

    Iacobellis, S.; Schwartz, R. E.; Gershunov, A.; Cayan, D. R.; Williams, P.

    2013-12-01

    Low frequency variability of West Coast summertime marine stratus clouds are investigated using six decades of observations at several coastal airport locations. The magnitude and direction of long-term trends in summertime marine stratus occurrence along the California coast depends strongly on the cloud base height threshold used to distinguish low clouds from higher clouds. In this study, marine stratus clouds are defined as having cloud base at or below 1000 meters. Using this threshold, a decreasing trend in marine stratus cloud frequency was found for Southern California during the 1950-2012 period. No significant trends were found in Northern California. When averaged over the summer season, the cloud data reveal that coastal stratus has substantial variation on multi-year time scales with typical changes of 10-15% from year to year and 5-7% from decade to decade. Low stratus cloud cover varies over long distances with coherent anomalies that extend from southern California to Oregon. The most important correlated modes of SST with cloud cover anomalies, via a canonical correlation analysis contains both local and remote SST linkages. The first mode is correlated with the PDO and also to Pacific atmospheric circulation patterns and coastal upwelling. There is also a linkage to sea surface temperature anomalies in the low latitude Pacific, suggesting that tropical-extratropical interactions may be involved in driving West Coast cloud cover.

  20. Foraminiferal radiocarbon record of northeast Pacific decadal subsurface variability

    NASA Astrophysics Data System (ADS)

    Roach, Lydia D.; Charles, Christopher D.; Field, David B.; Guilderson, Thomas P.

    2013-09-01

    The decadal dynamics of the subsurface North Pacific Ocean are largely inaccessible beyond sparse instrumental observations spanning the last 20 years. Here we present a ˜200 year long record of benthic foraminiferal radiocarbon (Δ14C), extracted at biennial resolution from the annually laminated sediments at the Santa Barbara Basin (SBB) depocenter (˜600 m). The close match between core top benthic foraminiferal Δ14C values and the Δ14C of seawater dissolved inorganic carbon (DIC) suggests that benthic foraminifera faithfully capture the bottom water radiocarbon concentrations, as opposed to that of the deeper (>0.5 cm) sediment porewater zone. The full time series of benthic foraminiferal Δ14C displays significant variability on decadal timescales, with excursions on the order of 40‰. These excursions are overprinted by a unidirectional trend over the late 20th century that likely reflects the sedimentary incorporation of bomb radiocarbon (via remineralized particulate organic carbon). We isolate this trend by means of a one-dimensional oxidation model, which considers the possible contribution of remineralized particles to the total ambient carbon pool. This oxidation model also considers the possible influence of carbon with a variety of sources (ages). Though variable oxidation of preaged carbon could exert a strong influence on benthic foraminiferal radiocarbon variability, the totality of evidence points to the vertical density structure along the Southern California Margin (SCM) as the primary driver of the SBB benthic foraminiferal Δ14C record. For example, intervals characterized by significantly lower Δ14C values correspond to periods of enhanced upwelling and subsurface equatorward flow along the SCM.

  1. The role of meltwater variability in modulating diurnal to inter-annual ice-sheet flow: New insights from a ~decade of high-temporal resolution GPS observations on the western Greenland margin

    NASA Astrophysics Data System (ADS)

    Stevens, L. A.; Behn, M. D.; Das, S. B.; Joughin, I.; van den Broeke, M.; Herring, T.; McGuire, J. J.

    2015-12-01

    Meltwater-driven processes across the ablation zone of the Greenland Ice Sheet are controlled by seasonal fluxes as well as shorter-term variability in surface melt. Few high-temporal resolution GPS observations of ice-sheet flow extend for longer than a couple years, limiting multiyear analyses of seasonal variability in ice-sheet flow. Using a small GPS network installed at ~1000-m above sea level (m a.s.l.) operating from 2006-2014, and supplemented with a larger array of 20 GPS stations installed from 2011­-2014, we observe nine years of ice-sheet surface motion on the western margin of the Greenland Ice Sheet. The GPS array spans a horizontal distance of 30 km across an elevation range of 700-1250 m a.s.l., and captures the ice-sheet's velocity response to the seasonal melt cycle. By combining the GPS array measurements with temperature, precipitation, and runoff estimates from the Regional Atmospheric Climate Model (RACMO), we examine the relationship between ice-sheet flow and surface melt variability both at the seasonal scale (i.e., during melt onset, summer melt season and melt cessation) as well as during transient high melt periods such as precipitation events, anomalously high melt episodes, and supraglacial lake drainages. We observe varying surface motion following early versus late summer extended melt events, with early-season extended melt events inducing longer sustained speed-up than late summer events. We also examine differences in the timing of melt onset and magnitude, comparing the anomalously high runoff observed across the ice sheet in 2010 and 2012 against the average to low runoff observed in the years comprising the remainder of the record. This nearly decadal record improves our understanding of the role of meltwater variability in modulating ice-sheet flow on diurnal to inter-annual timescales.

  2. Frontiers in Decadal Climate Variability: Proceedings of a Workshop

    SciTech Connect

    Purcell, Amanda

    2016-07-25

    A number of studies indicate an apparent slowdown in the overall rise in global average surface temperature between roughly 1998 and 2014. Most models did not predict such a slowdown--a fact that stimulated a lot of new research on variability of Earth's climate system. At a September 2015 workshop, leading scientists gathered to discuss current understanding of climate variability on decadal timescales (10 to 30 years) and whether and how prediction of it might be improved. Many researchers have focused their attention on the climate system itself, which is known to vary across seasons, decades, and other timescales. Several natural variables produce "ups and downs" in the climate system, which are superimposed on the long-term warming trend due to human influence. Understanding decadal climate variability is important not only for assessing global climate change but also for improving decision making related to infrastructure, water resources, agriculture, energy, and other realms. Like the well-studied El Nino and La Nina interannual variations, decadal climate variability is associated with specific regional patterns of temperature and precipitation, such as heat waves, cold spells, and droughts. Several participants shared research that assesses decadal predictive capability of current models.

  3. Decadal variability of Arctic sea ice in the Canada Basin

    NASA Astrophysics Data System (ADS)

    Connor, L. N.

    2015-12-01

    A series of spring Arctic flight campaigns surveying a region over the Canada Basin, from 2006 to 2015, has resulted in unique observations that reveal new details of sea ice leads and freeboard evolution, during a decade of significant interannual variability in the Arctic ice cover. The series began in 2006 with a joint NASA/NOAA airborne altimetry campaign over a 1300 km survey line northwest of the Canadian Archipelago extending into the northern Beaufort Sea. Operation IceBridge (OIB) took up this flight line again in 2009 and repeated it annually through 2012. Additional observations have been collected along a 1000+ km flight line, in the southern Canada Basin and eastern Beaufort Sea, between 2009 and 2015. Here we examine laser altimetry, snow radar data, and high-resolution visible imagery to better understand the frequency and distribution of leads and ice floes, the characteristics of first- and multi-year ice types in the survey region, and their impact on the derivation and accuracy of sea ice freeboard. We demonstrate a novel lead detection methodology that depends only upon laser altimeter measurements, and we quantify the impact of low lead frequencies on estimates of instantaneous sea surface height. The analysis reveals a variable springtime freeboard north of 78° N, significantly reduced after 2006, and a notable lead outbreak over the Canada Basin during 2010.

  4. A simple coupled model of tropical Atlantic decadal climate variability

    NASA Astrophysics Data System (ADS)

    Kushnir, Yochanan; Seager, Richard; Miller, Jennifer; Chiang, John C. H.

    2002-12-01

    A linear, zonally averaged model of the interaction between the tropical Atlantic (TA) atmosphere and ocean is presented. A balance between evaporation and meridional heat advection in the mixed layer determines the sea surface temperature tendency. The atmosphere is a fixed-depth, sub-cloud layer in which the specific humidity anomaly is determined by a steady-state balance between evaporation, meridional advection, and a parameterized humidity exchange with the free atmosphere. When the model is integrated, forced with observed surface wind anomalies from 1965 to the present, its simulation of the observed sea surface temperature (SST) is realistic and comparable to a simulation with a full ocean GCM. A statistical representation of surface winds and their relationship to the SST gradient across the equator is used to formulate and test a coupled model of their regional variability. Forced on both sides of the equator, in the trade-wind regions, with ``white-noise'' windspeed perturbations, the SST-wind relationship in the near-equatorial region feeds back positively on existing SST anomalies and gives rise to decadal variability.

  5. Decadal variability of precipitation over Western North America

    USGS Publications Warehouse

    Cayan, D.R.; Dettinger, M.D.; Diaz, Henry F.; Graham, N.E.

    1998-01-01

    Decadal (>7- yr period) variations of precipitation over western North America account for 20%-50% of the variance of annual precipitation. Spatially, the decadal variability is broken into several regional [O(1000 km)] components. These decadal variations are contributed by fluctuations in precipitation from seasons of the year that vary from region to region and that are not necessarily concentrated in the wettest season(s) alone. The precipitation variations are linked to various decadal atmospheric circulation and SST anomaly patterns where scales range from regional to global scales and that emphasize tropical or extratropical connections, depending upon which precipitation region is considered. Further, wet or dry decades are associated with changes in frequency of at least a few short-period circulation 'modes' such as the Pacific-North American pattern. Precipitation fluctuations over the southwestern United States and the Saskatchewan region of western Canada are associated with extensive shifts of sea level pressure and SST anomalies, suggesting that they are components of low-frequency precipitation variability from global-scale climate proceses. Consistent with the global scale of its pressure and SST connection, the Southwest decadal precipitation is aligned with opposing precipitation fluctuations in northern Africa.Decadal (>7-yr period) variations of precipitation over western North America account for 20%-50% of the variance of annual precipitation. Spatially, the decadal variability is broken into several regional [O(1000 km)] components. These decadal variations are contributed by fluctuations in precipitation from seasons of the year that vary from region to region and that are not necessarily concentrated in the wettest season(s) alone. The precipitation variations are linked to various decadal atmospheric circulation and SST anomaly patterns where scales range from regional to global scales and that emphasize tropical or extratropical

  6. Two Decades (almost) of Keck Observations of Io

    NASA Astrophysics Data System (ADS)

    De Pater, I.; Davies, A. G.; de Kleer, K.

    2015-12-01

    We have regularly observed Io with the 10-m Keck Telescope since 1998, initially using the speckle imaging technique, and switching to Adaptive Optics techniques when this became available in 2001. In this talk we will discuss several eruptions that we witnessed, and present 20-30 year timelines of thermal emission from Pele, Pillan, Janus Patera, Kanehekili Fluctus, and Loki Patera, updating timelines in recent publications [1, 2] with additional Keck adaptive optics data obtained between 2002 and 2015. These new timelines are the most comprehensive plots ever produced of the volcanic thermal emission variability for these or any other locations on Io, utilizing data from multiple ground- and space-based assets. Our continuing multi-decadal observing program forms the basis for charting the variability of Io's volcanic activity, of great importance for understanding the evolution of the Galilean satellite system, and with the expectation of new missions to the jovian system in the next decade. Acknowledgements: This research is in part supported by NSF grant AST-1313485 to UC Berkeley. AGD is supported by a grant from the NASA OPR Program. References: [1] Davies et al. (2012) Icarus, 221, 466-470. [2] Rathbun and Spencer (2010) Icarus, 209, 625-630.

  7. Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability

    NASA Astrophysics Data System (ADS)

    Menary, Matthew B.; Hodson, Daniel L. R.; Robson, Jon I.; Sutton, Rowan T.; Wood, Richard A.; Hunt, Jonathan A.

    2015-07-01

    Instrumental observations, paleoproxies, and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NASPG). However, a poorly sampled observational record and a diversity of model behaviors mean that the precise nature and mechanisms of this variability are unclear. Here we analyze an exceptionally large multimodel ensemble of 42 present-generation climate models to test whether NASPG mean state biases systematically affect the representation of decadal variability. Temperature and salinity biases in the Labrador Sea covary and influence whether density variability is controlled by temperature or salinity variations. Ocean horizontal resolution is a good predictor of the biases and the location of the dominant dynamical feedbacks within the NASPG. However, we find no link to the spectral characteristics of the variability. Our results suggest that the mean state and mechanisms of variability within the NASPG are not independent. This represents an important caveat for decadal predictions using anomaly assimilation methods.

  8. Decadal-Interdecadal SST Variability and Regional Climate Teleconnections

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Weng, H.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Dominant modes of decadal and interdecadal SST variability and their impacts on summertime rainfall variability over East Asia and the North America are studied. Two dominant modes of interdecadal SST variability, one associated with El Nino-like warming in the global oceans and one with an east-west seesaw variation in the equatorial Pacific have been identified. The first mode is associated in part with a long-term warming trend in the topical oceans and cooling over the northern Pacific. The second mode suggests an westward shift and strengthening of the Walker circulation from 1960s to the 1980s. Over East Asian, the first SST mode is correlated with reduced rainfall in northern China and excessive rainfall in central China. This SST mode is also associated with the tendency for increased rainfall over the midwest region, and reduced rainfall over the east Coast of the US. The results suggest a teleconnection pattern which links the occurrences of drought and floods over the Asian monsoon and the US summertime time climate. This teleconnection is likely to be associated with decadal variability of the East Asian jetstream, which are affected by strong land surface heating over the Siberian region, as well as El Nino-like SST forcings. The occurrences of major droughts and floods in the East Asian and US continent in recent decades are discussed in light of the above teleconnection patterns.

  9. Stochastic Modeling of Decadal Variability in Ocean Gyres

    NASA Astrophysics Data System (ADS)

    Kondrashov, Dmitri; Berloff, Pavel

    2015-04-01

    Decadal large-scale low-frequency variability of the ocean circulation due to its nonlinear dynamics remains a big challenge for theoretical understanding and practical ocean modeling. This paper presents a novel fully data-driven approach that addresses this challenge. We propose non-Markovian low-order methodology with stochastic closure and data-adaptive mode decomposition. The multilayer stochastic linear model is obtained from the coarse-grained eddy-resolving ocean model solution, and it reproduces with high accuracy the main statistical properties of the decadal variability. The proposed methodology does not depend on the governing fluid dynamics equations and geometry of the problem, and it can be extended to other ocean models and ultimately to the real data.

  10. Stochastic modeling of decadal variability in ocean gyres

    NASA Astrophysics Data System (ADS)

    Kondrashov, D.; Berloff, P.

    2015-03-01

    Decadal large-scale low-frequency variability of the ocean circulation due to its nonlinear dynamics remains a big challenge for theoretical understanding and practical ocean modeling. This paper presents a novel fully data driven approach that addresses this challenge. Proposed is non-Markovian low-order methodology with stochastic closure and use of mode decomposition by multichannel Singular Spectrum Analysis. The multilayer stochastic linear model is obtained from the coarse-grained eddy-resolving ocean model solution, and with high accuracy it reproduces the main statistical properties of the decadal variability. The proposed methodology does not depend on the governing fluid dynamics equations and geometry of the problem, and it can be extended to other ocean models and ultimately to the real data.

  11. Interannual to Decadal Variability of Ocean Evaporation as Viewed from Climate Reanalyses

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Bosilovich, Michael G.; Roberts, Jason B.; Wang, Hailan

    2015-01-01

    Questions we'll address: Given the uncoupled framework of "AMIP" (Atmosphere Model Inter-comparison Project) experiments, what can they tell us regarding evaporation variability? Do Reduced Observations Reanalyses (RedObs) using Surface Fluxes and Clouds (SFC) pressure (and wind) provide a more realistic picture of evaporation variability? What signals of interannual variability (e.g. El Nino/Southern Oscillation (ENSO)) and decadal variability (Interdecadal Pacific Oscillation (IPO)) are detectable with this hierarchy of evaporation estimates?

  12. Decadal variability of tropical tropopause temperature and its relationship to the Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Wang, Wuke; Matthes, Katja; Omrani, Nour-Eddine; Latif, Mojib

    2016-07-01

    Tropopause temperatures (TPTs) control the amount of stratospheric water vapour, which influences chemistry, radiation and circulation in the stratosphere, and is also an important driver of surface climate. Decadal variability and long-term trends in tropical TPTs as well as stratospheric water vapour are largely unknown. Here, we present for the first time evidence, from reanalysis and state-of-the-art climate model simulations, of a link between decadal variability in tropical TPTs and the Pacific Decadal Oscillation (PDO). The negative phase of the PDO is associated with anomalously cold sea surface temperatures (SSTs) in the tropical east and central Pacific, which enhance the zonal SST gradient across the equatorial Pacific. The latter drives a stronger Walker Circulation and a weaker Hadley Circulation, which leads to less convection and subsequently a warmer tropopause over the central equatorial Pacific. Over the North Pacific, positive sea level pressure anomalies occur, which damp vertical wave propagation into the stratosphere. This in turn slows the Brewer-Dobson circulation, and hence warms the tropical tropopause, enabling more water vapour to enter the stratosphere. The reverse chain of events holds for the positive phase of the PDO. Such ocean-troposphere-stratosphere interactions may provide an important feedback on the Earth’s global surface temperature.

  13. Decadal variability of tropical tropopause temperature and its relationship to the Pacific Decadal Oscillation

    PubMed Central

    Wang, Wuke; Matthes, Katja; Omrani, Nour-Eddine; Latif, Mojib

    2016-01-01

    Tropopause temperatures (TPTs) control the amount of stratospheric water vapour, which influences chemistry, radiation and circulation in the stratosphere, and is also an important driver of surface climate. Decadal variability and long-term trends in tropical TPTs as well as stratospheric water vapour are largely unknown. Here, we present for the first time evidence, from reanalysis and state-of-the-art climate model simulations, of a link between decadal variability in tropical TPTs and the Pacific Decadal Oscillation (PDO). The negative phase of the PDO is associated with anomalously cold sea surface temperatures (SSTs) in the tropical east and central Pacific, which enhance the zonal SST gradient across the equatorial Pacific. The latter drives a stronger Walker Circulation and a weaker Hadley Circulation, which leads to less convection and subsequently a warmer tropopause over the central equatorial Pacific. Over the North Pacific, positive sea level pressure anomalies occur, which damp vertical wave propagation into the stratosphere. This in turn slows the Brewer-Dobson circulation, and hence warms the tropical tropopause, enabling more water vapour to enter the stratosphere. The reverse chain of events holds for the positive phase of the PDO. Such ocean-troposphere-stratosphere interactions may provide an important feedback on the Earth’s global surface temperature. PMID:27404090

  14. Decadal variability of tropical tropopause temperature and its relationship to the Pacific Decadal Oscillation.

    PubMed

    Wang, Wuke; Matthes, Katja; Omrani, Nour-Eddine; Latif, Mojib

    2016-07-12

    Tropopause temperatures (TPTs) control the amount of stratospheric water vapour, which influences chemistry, radiation and circulation in the stratosphere, and is also an important driver of surface climate. Decadal variability and long-term trends in tropical TPTs as well as stratospheric water vapour are largely unknown. Here, we present for the first time evidence, from reanalysis and state-of-the-art climate model simulations, of a link between decadal variability in tropical TPTs and the Pacific Decadal Oscillation (PDO). The negative phase of the PDO is associated with anomalously cold sea surface temperatures (SSTs) in the tropical east and central Pacific, which enhance the zonal SST gradient across the equatorial Pacific. The latter drives a stronger Walker Circulation and a weaker Hadley Circulation, which leads to less convection and subsequently a warmer tropopause over the central equatorial Pacific. Over the North Pacific, positive sea level pressure anomalies occur, which damp vertical wave propagation into the stratosphere. This in turn slows the Brewer-Dobson circulation, and hence warms the tropical tropopause, enabling more water vapour to enter the stratosphere. The reverse chain of events holds for the positive phase of the PDO. Such ocean-troposphere-stratosphere interactions may provide an important feedback on the Earth's global surface temperature.

  15. Multi-decadal Variability of the Wind Power Output

    NASA Astrophysics Data System (ADS)

    Kirchner Bossi, Nicolas; García-Herrera, Ricardo; Prieto, Luis; Trigo, Ricardo M.

    2014-05-01

    The knowledge of the long-term wind power variability is essential to provide a realistic outlook on the power output during the lifetime of a planned wind power project. In this work, the Power Output (Po) of a market wind turbine is simulated with a daily resolution for the period 1871-2009 at two different locations in Spain, one at the Central Iberian Plateau and another at the Gibraltar Strait Area. This is attained through a statistical downscaling of the daily wind conditions. It implements a Greedy Algorithm as classificator of a geostrophic-based wind predictor, which is derived by considering the SLP daily field from the 56 ensemble members of the longest homogeneous reanalysis available (20CR, 1871-2009). For calibration and validation purposes we use 10 years of wind observations (the predictand) at both sites. As a result, a series of 139 annual wind speed Probability Density Functions (PDF) are obtained, with a good performance in terms of wind speed uncertainty reduction (average daily wind speed MAE=1.48 m/s). The obtained centennial series allow to investigate the multi-decadal variability of wind power from different points of view. Significant periodicities around the 25-yr frequency band, as well as long-term linear trends are detected at both locations. In addition, a negative correlation is found between annual Po at both locations, evidencing the differences in the dynamical mechanisms ruling them (and possible complementary behavior). Furthermore, the impact that the three leading large-scale circulation patterns over Iberia (NAO, EA and SCAND) exert over wind power output is evaluated. Results show distinct (and non-stationary) couplings to these forcings depending on the geographical position and season or month. Moreover, significant non-stationary correlations are observed with the slow varying Atlantic Multidecadal Oscillation (AMO) index for both case studies. Finally, an empirical relationship is explored between the annual Po and the

  16. Multi-decadal Variability of Heat Transport in the Arctic

    NASA Astrophysics Data System (ADS)

    Outten, S.; Ezau, I.

    2015-12-01

    The meridional transport of heat from the tropics to the poles, where it can be radiated out to space, is a vital component for maintaining the Earth's climate. Understanding the decadal to multi-decadal changes of these transports provides an insight into the natural variability of the climate system and into the flow of heat into the Arctic. Jacob Bjerknes proposed that the total energy transported by the climate system should remain approximately constant if the ocean heat storage and fluxes at the top-of-the-atmosphere were unchanging [Bjerknes, 1964]. Since heat is transported by the atmosphere and ocean, any large anomalies in the atmospheric heat transport should be balanced by opposing variations in the ocean heat transport, and vice versa; a process that has since been named Bjerknes Compensation. Bjerknes compensation has been identified in the 600-year control run of the Bergen Climate Model by examining the anomalies of the implied meridional heat transports in both the ocean and atmosphere (Figure 1). These anomalies show strong anti-correlation (r = -0.72, p ≤ 0.05), and a multi-decadal variability with a period of approximately 60-80 years. Spatial patterns associated with this multi-decadal variability highlight part of the underlying mechanism which occurs through changes in the sea-ice cover in the Arctic, which lead to strong ocean-atmosphere fluxes and the formation of a thermal low that changes the large scale flow over the Northern Hemisphere. The anomalies in atmospheric heat transport are not only found to be well correlated to the anomalies in Arctic sea-ice, but also to the strength of the sub-polar gyre, suggesting a possible feedback of the atmosphere to the ocean on multi-decadal timescales. Bjerknes Compensation has also been identified in the NorESM model, a member of the CMIP5 archive. Figure 1: Meridional heat transport anomalies at 67N in the atmosphere (solid) and ocean (dashed), for the 600 year control run of the

  17. Atmospheric Blocking and Atlantic Multi-Decadal Ocean Variability

    NASA Technical Reports Server (NTRS)

    Haekkinen, Sirpa; Rhines, Peter B.; Worthlen, Denise L.

    2011-01-01

    Based on the 20th century atmospheric reanalysis, winters with more frequent blocking, in a band of blocked latitudes from Greenland to Western Europe, are found to persist over several decades and correspond to a warm North Atlantic Ocean, in-phase with Atlantic multi-decadal ocean variability. Atmospheric blocking over the northern North Atlantic, which involves isolation of large regions of air from the westerly circulation for 5 days or more, influences fundamentally the ocean circulation and upper ocean properties by impacting wind patterns. Winters with clusters of more frequent blocking between Greenland and western Europe correspond to a warmer, more saline subpolar ocean. The correspondence between blocked westerly winds and warm ocean holds in recent decadal episodes (especially, 1996-2010). It also describes much longer-timescale Atlantic multidecadal ocean variability (AMV), including the extreme, pre-greenhouse-gas, northern warming of the 1930s-1960s. The space-time structure of the wind forcing associated with a blocked regime leads to weaker ocean gyres and weaker heat-exchange, both of which contribute to the warm phase of AMV.

  18. Societal Adaptation to Decadal Climate Variability in the United States

    NASA Astrophysics Data System (ADS)

    Rosenberg, Norman J.; Mehta, Vikram M.; Olsen, J. Rolf; von Storch, Hans; Varady, Robert G.; Hayes, Michael J.; Wilhite, Donald

    2007-10-01

    CRCES Workshop on Societal Impacts of Decadal Climate Variability in the United States, 26-28 April 2007, Waikoloa, Hawaii The search for evidence of decadal climatic variability (DCV) has a very long history. In the past decade, a research community has coalesced around a series of roughly biennial workshops that have emphasized description of past DCV events; their causes and their ``teleconnections'' responsible for droughts, floods, and warm and cold spells around the world; and recently, the predictability of DCV events. Researchers studying climate change put great emphasis on prospective impacts, but the DCV community has yet to do so. To begin rectifying this deficiency, a short but ambitious workshop was convened in Waikoloa, near Kona, Hawaii, from 26-28 April 2007. This workshop, sponsored by the Center for Research on the Changing Earth System (CRCES), NOAA, the U.S. Geological Survey, and the U.S. Army Corps of Engineers, brought together climatologists and sectoral specialists representing agriculture, water resources, economics, the insurance industry, and developing country interests.

  19. Atmospheric Blocking and Atlantic Multi-Decadal Ocean Variability

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.

    2011-01-01

    Atmospheric blocking over the northern North Atlantic involves isolation of large regions of air from the westerly circulation for 5-14 days or more. From a recent 20th century atmospheric reanalysis (1,2) winters with more frequent blocking persist over several decades and correspond to a warm North Atlantic Ocean, in-phase with Atlantic multi-decadal ocean variability (AMV). Ocean circulation is forced by wind-stress curl and related air/sea heat exchange, and we find that their space-time structure is associated with dominant blocking patterns: weaker ocean gyres and weaker heat exchange contribute to the warm phase of AMV. Increased blocking activity extending from Greenland to British Isles is evident when winter blocking days of the cold years (1900-1929) are subtracted from those of the warm years (1939-1968).

  20. Multi-decadal Variability of Indian Summer Monsoon in CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Sandeep, S.; Ravindran, A.

    2013-12-01

    The multi-decadal variability of Indian Summer Monsoon (ISM) Rainfall in the fifth phase Coupled Model Inter-comparison Project (CMIP5) climate model simulations is analyzed. Recent studies, suggest a slight weakening of the Indian precipitation as assessed from CMIP3 simulations. The ISM rainfall simulated by CMIP5 runs with all historical forcing (AF) also suggest a strong multi-decadal weakening trend in ISM precipitation during 1901 - 2005. Further, the decadal scale variability in ISM land precipitation in multi model ensemble of AF simulations is fairly comparable with the observed variability. However, these simulations show patterns of regional variability and trends within the monsoon domain. The CMIP5 ensembles with natural variability alone and those with only Green House Gas (GHG) forcing could not reproduce the observed variability in ISM precipitation. This suggests strong influence of anthropogenic aerosols on multi-decadal variability in ISM precipitation, which is consistent with previous findings. Further investigation revealed that the weakening of zonal winds in AF simulations, possibly due to aerosol induced weakening in land-ocean thermal contrast, resulted in reduced moisture transport from ocean to the land. The trends and variability of ISM in multi model ensemble of CMIP5 simulations will be discussed in detail.

  1. Surface Salinity Variability in the North Atlantic During Recent Decades

    NASA Technical Reports Server (NTRS)

    Haekkinen, Sirpa

    2001-01-01

    The sea surface salinity (SSS) variability in the North Atlantic is investigated using numerical model simulations for the last 50 years based on atmospheric forcing variability from Comprehensive Atmosphere Ocean Data Set (COADS) and National Center for Environmental Prediction / National Center for Atmospheric Research (NCEP/NCAR) Reanalysis. The largest interannual and longer term variability occurs in two regions: the Labrador Sea and the North Equatorial Countercurrent (NECC) region. In both regions the seasonality of the surface salinity variability is prominent with the maximum standard deviation occurring in the summer/fall period. In the Labrador Sea the summer SSS anomalies far exceed those of wintertime in amplitude. The interannual SSS variability in the subpolar gyre can be attributed to two factors: excess ice melt and heat flux (i.e. deep mixing) variations. On the other hand, heat flux variability can also lead to meridional overturning changes on decadal time scales such that weak overturning is manifested in fresh surface conditions in the subpolar gyre. The overturning changes also influence the NECC region SSS variability. Moreover, the subpolar freshening events are expected to occur during the negative phase of North Atlantic Oscillation which is associated with a weak wintertime surface heat loss in the subpolar gyre. No excess sea ice melt or precipitation is necessary for the formation of the fresh anomalies, because with the lack of wide-spread deep mixing, the fresh water that would be expected based on climatology, would accumulate at the surface. Thus, the fresh water 'conveyor' in the Atlantic operates via the overturning circulation such that deep mixing inserts fresh water while removing heat from the water column.

  2. Drivers of decadal variability in the Tasman Sea

    NASA Astrophysics Data System (ADS)

    Sloyan, Bernadette M.; O'Kane, Terence J.

    2015-05-01

    In this study, we compare optimally interpolated monthly time series Tasman Sea XBT data and a comprehensive set of ocean data assimilation models forced by atmospheric reanalysis to investigate the stability of the Tasman Sea thermocline and the transport variability of the East Australian Current (EAC), the Tasman Front, and EAC-extension. We find that anomalously weaker EAC transport at 25°S corresponds to an anomalously weaker Tasman Front and anomalously stronger EAC-extension. We further show that, post about 1980 and relative to the previous 30 years, the anomalously weaker EAC transport at 25°S is associated with large-scale changes in the Tasman Sea; specifically stronger stratification above the thermocline, larger thermocline temperature gradients, and enhanced energy conversion. Significant correlations are found between the Maria Island station Sea Surface Temperature (SST) variability and stratification, thermocline temperature gradient, and baroclinic energy conversion suggesting that nonlinear dynamical responses to variability in the basin-scale wind stress curl are important drivers of decadal variability in the Tasman Sea. We further show that the stability of the EAC is linked, via the South Caledonian Jet, to the stability of the pan-basin subtropical South Pacific Ocean "storm track."

  3. North Pacific Decadal Variability: Insights from a Biennial ENSO Environment

    NASA Technical Reports Server (NTRS)

    Achuthavarier, Deepthi; Schubert, Siegfried D.; Vikhliaev, Yury V.

    2016-01-01

    This study examines the mechanisms of the Pacific decadal oscillation (PDO) in the NASA GEOS-5 general circulation model (GCM). Similar to several other state-of-the-art GCMs, the El Niño-Southern Oscillation (ENSO) simulated by the GEOS-5 has a strong biennial periodicity. Since this is a model bias that precludes a strong role of ENSO, it provides a unique environment to assess the other leading mechanisms of North Pacific decadal variability. Despite the biennial ENSO periodicity, the model simulates a realistic PDO pattern in the North Pacific that is resolved as the first empirical orthogonal function (EOF) of winter mean sea surface temperature (SST). The spectrum of the PDO indicates no preferred periodicity. The SST anomalies associated with the PDO, particularly its basin wide structure, are primarily forced by the Aleutian low through Ekman transport. The slow geostrophic transport in association with the meridional adjustment of the subtropical gyre is limited to a narrow region in the Kuroshio-Oyashio extension, north of 40degN. The atmosphere's response to the PDO, while weak, projects onto the North Pacific Oscillation (NPO), a meridional dipole in sea level pressure. Both the lack of preferred periodicity and the weak atmospheric response indicate an air-sea coupled oscillation is an unlikely mechanism in this model. In agreement with recent studies, the NPO is correlated with the North Pacific Gyre Oscillation, which is another leading EOF of North Pacific SST variability. The results emphasize the role of atmospheric variability in the North Pacific SST modes, thereby bringing into question the potential for their predictability.

  4. North Pacific decadal variability: insights from a biennial ENSO environment

    NASA Astrophysics Data System (ADS)

    Achuthavarier, Deepthi; Schubert, Siegfried D.; Vikhliaev, Yury V.

    2016-10-01

    This study examines the mechanisms of the Pacific decadal oscillation (PDO) in the NASA GEOS-5 general circulation model (GCM). Similar to several other state-of-the-art GCMs, the El Niño-Southern Oscillation (ENSO) simulated by the GEOS-5 has a strong biennial periodicity. Since this is a model bias that precludes a strong role of ENSO, it provides a unique environment to assess the other leading mechanisms of North Pacific decadal variability. Despite the biennial ENSO periodicity, the model simulates a realistic PDO pattern in the North Pacific that is resolved as the first empirical orthogonal function (EOF) of winter mean sea surface temperature (SST). The spectrum of the PDO indicates no preferred periodicity. The SST anomalies associated with the PDO, particularly its basin wide structure, are primarily forced by the Aleutian low through Ekman transport. The slow geostrophic transport in association with the meridional adjustment of the subtropical gyre is limited to a narrow region in the Kuroshio-Oyashio extension, north of 40°N. The atmosphere's response to the PDO, while weak, projects onto the North Pacific Oscillation (NPO), a meridional dipole in sea level pressure. Both the lack of preferred periodicity and the weak atmospheric response indicate an air-sea coupled oscillation is an unlikely mechanism in this model. In agreement with recent studies, the NPO is correlated with the North Pacific Gyre Oscillation, which is another leading EOF of North Pacific SST variability. The results emphasize the role of atmospheric variability in the North Pacific SST modes, thereby bringing into question the potential for their predictability.

  5. Decadal variability in European wet and dry phases

    NASA Astrophysics Data System (ADS)

    Hänsel, Stephanie; Miketta, Wiebke; Matschullat, Jörg

    2013-04-01

    century - were noticed for Central Europe and the Mediterranean area. Besides those long-term trends exists a strong inter-decadal variability of the spatial coverage of dry and wet phases, respectively, within all sub-regions, indicating a relation of decile phase occurrence to long-term variations in atmospheric circulation. We explored the relationship between dry and wet phase occurrence and large-scale atmospheric circulation patterns, e.g., Hess-Brezowsky catalogue of circulation types (GWT), North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO) and found some links depending on the particular sub-region. Yet, the observed links cannot simply be reduced to simple cause-effect relationships.

  6. Decadal to multi-decadal scale variability of Indian summer monsoon rainfall in the coupled ocean-atmosphere-chemistry climate model SOCOL-MPIOM

    NASA Astrophysics Data System (ADS)

    Malik, Abdul; Brönnimann, Stefan; Stickler, Alexander; Raible, Christoph C.; Muthers, Stefan; Anet, Julien; Rozanov, Eugene; Schmutz, Werner

    2017-01-01

    The present study is an effort to deepen the understanding of Indian summer monsoon rainfall (ISMR) on decadal to multi-decadal timescales. We use ensemble simulations for the period AD 1600-2000 carried out by the coupled Atmosphere-Ocean-Chemistry-Climate Model (AOCCM) SOCOL-MPIOM. Firstly, the SOCOL-MPIOM is evaluated using observational and reanalyses datasets. The model is able to realistically simulate the ISMR as well as relevant patterns of sea surface temperature and atmospheric circulation. Further, the influence of Atlantic Multi-decadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and El Niño Southern Oscillation (ENSO) variability on ISMR is realistically simulated. Secondly, we investigate the impact of internal climate variability and external climate forcings on ISMR on decadal to multi-decadal timescales over the past 400 years. The results show that AMO, PDO, and Total Solar Irradiance (TSI) play a considerable role in controlling the wet and dry decades of ISMR. Resembling observational findings most of the dry decades of ISMR occur during a negative phase of AMO and a simultaneous positive phase of PDO. The observational and simulated datasets reveal that on decadal to multi-decadal timescales the ISMR has consistent negative correlation with PDO whereas its correlation with AMO and TSI is not stationary over time.

  7. Stochastically-forced Decadal Variability in Australian Rainfall

    NASA Astrophysics Data System (ADS)

    Taschetto, A.

    2015-12-01

    Iconic Australian dry and wet periods were driven by anomalous conditions in the tropical oceans, such as the worst short-term drought in the southeast in 1982 associated with the strong El Niño and the widespread "Big Wet" in 1974 linked with a La Niña event. The association with oceanic conditions makes droughts predictable to some extent. However, prediction can be difficult when there is no clear external forcing such as El Niños. Can dry spells be triggered and maintained with no ocean memory? In this study, we investigate the potential role of internal multi-century atmospheric variability in controlling the frequency, duration and intensity of long-term dry and wet spells over Australia. Two multi-century-scale simulations were performed with the NCAR CESM: (1) a fully-coupled simulation (CPLD) and (2) an atmospheric simulation forced by a seasonal SST climatology derived from the coupled experiment (ACGM). Results reveal that droughts and wet spells can indeed be generated by internal variability of the atmosphere. Those internally generated events are less severe than those forced by oceanic variability, however the duration of dry and wet spells longer than 3 years is comparable with and without the ocean memory. Large-scale ocean modes of variability seem to play an important role in producing continental-scale rainfall impacts over Australia. While the Pacific Decadal Oscillation plays an important role in generating droughts in the fully coupled model, perturbations of monsoonal winds seem to be the main trigger of dry spells in the AGCM case. Droughts in the mid-latitude regions such as Tasmania can be driven by perturbations in the Southern Annular Mode, not necessarily linked to oceanic conditions even in the fully-coupled model. The mechanisms behind internally-driven mega-droughts and mega-wets will be discussed.

  8. Mechanisms of the Internally Generated Decadal-to-Multidecadal Variability in the Atlantic

    NASA Astrophysics Data System (ADS)

    Chen, H.; Schneider, E. K.

    2011-12-01

    This study investigates the mechanisms of the internally generated decadal-to-multidecadal time scale SST variability in the Atlantic, including the North Atlantic Tripole variability, the Atlantic Multidecadal Variability and the Tropical Atlantic Variability, on the basis of a 300-year 1990 control simulation (CONTROL) made with CCSM3 and in an interactive ensemble version of CCSM3 (IE-CCSM3: 6 copies of AGCM coupled to the OGCM through the flux coupler). The structures, amplitudes and time scales of these three low frequency modes from CONTROL have properties similar to the observed variability, indicating that CCSM3 is appropriate for studying their mechanisms. These modes are closely related to the variability of the Atlantic Meridional Overturning Circulation (AMOC) on decadal time scales, suggesting that all of these types of variability may be manifestations of a single decadal "mode" of variability. To understand the low frequency modes and their interaction with each other, and the interaction among different oceanic regions, we isolate weather noise forcing from other mechanisms, including the coupled feedback, the gyre circulations, wave dynamics, and AMOC. The weather noise surface fluxes, including the net heat flux, wind stress and freshwater flux, are obtained from CONTROL by removing the SST forced surface fluxes, which are averaged from an ensemble of six AGCMs forced by the CONTROL SST. The IE-CCSM3 simulations in which the specified weather noise forcing is restricted to specific regions or in which the effects of the different specified surface fluxes are isolated are carried out to determine the contributions to the Atlantic decadal modes by region and by forcing type. Our results from the weather noise forced IE-CCSM3 simulations demonstrate that weather noise is responsible for most of decadal variability in the Atlantic and reveal the interactions between the three modes.

  9. Greenhouse warming, decadal variability, or El Nino? An attempt to understand the anomalous 1990s

    SciTech Connect

    Latif, M.; Eckert, C.; Kleeman, R.

    1997-09-01

    The dominant variability modes in the Tropics are investigated and contrasted with the anomalous situation observed during the last few years. The prime quantity analyzed is anomalous sea surface temperature (SST) in the region 30{degrees}S-60{degrees}N. Additionally, observed tropical surface wind stress fields were investigated. Further tropical atmospheric information was derived from a multidecadal run with an atmospheric general circulation model that was forced by the same SSTs. The tropical SST variability can be characterized by three modes: an interannual mode [the El Nino-Southern Oscillation (ENSO)], a decadal mode, and a trend or unresolved ultra-low-frequency variability. 48 refs., 20 figs.

  10. Evidence for Large Decadal Variability in the Tropical Mean Radiative Energy Budget

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Wong, Takmeng; Allan, Richard; Slingo, Anthony; Kiehl, Jeffrey T.; Soden, Brian J.; Gordon, C. T.; Miller, Alvin J.; Yang, Shi-Keng; Randall, David R.; Arnold, James E. (Technical Monitor)

    2001-01-01

    It is widely assumed that variations in the radiative energy budget at large time and space scales are very small. We present new evidence from a compilation of over two decades of accurate satellite data that the top-of-atmosphere (TOA) tropical radiative energy budget is much more dynamic and variable than previously thought. We demonstrate that the radiation budget changes are caused by changes In tropical mean cloudiness. The results of several current climate model simulations fall to predict this large observed variation In tropical energy budget. The missing variability in the models highlights the critical need to Improve cloud modeling in the tropics to support Improved prediction of tropical climate on Inter-annual and decadal time scales. We believe that these data are the first rigorous demonstration of decadal time scale changes In the Earth's tropical cloudiness, and that they represent a new and necessary test of climate models.

  11. Pacific decadal variability in the view of linear equatorial wave theory

    NASA Astrophysics Data System (ADS)

    Emile-Geay, J. B.; Cane, M. A.

    2006-12-01

    It has recently been proposed, within the framework of the linear shallow water equations, that tropical Pacific decadal variability can be accounted for by basin modes with eigenperiods of 10 to 20 years, amplifying a mid- latitude wind forcing with an essentially white spectrum (Cessi and Louazel 2001; Liu 2003). We question this idea here, using a different formalism of linear equatorial wave theory. We compute the Green's function for the wind forced response of a linear equatorial shallow water ocean, and use the results of Cane and Moore (1981) to obtain a compact, closed form expression for the motion of the equatorial thermocline, which applies to all frequencies lower than seasonal. At very low frequencies (decadal timescales), we recover the planetary geostrophic solution used by Cessi and Louazel (2001), as well as the equatorial wave solution of Liu (2003), and give a formal explanation for this convergence. Using this more general solution to explore more realistic wind forcings, we come to a different interpretation of the results. We find that the equatorial thermocline is inherently more sensitive to local than to remote wind forcing, and that planetary Rossby modes only weakly alter the spectral characteristics of the response. Tropical winds are able to generate a strong equatorial response with periods of 10 to 20 years, while midlatitude winds can only do so for periods longer than about 50 years. Since the decadal pattern of observed winds shows similar amplitude for tropical and midlatitude winds, we conclude that the latter are unlikely to be responsible for the observed decadal tropical Pacific SST variability. References : Cane, M. A., and Moore, D. W., 1981: A note on low-frequency equatorial basin modes. J. Phys. Oceanogr., 11(11), 1578 1584. Cessi, P., and Louazel, S., 2001: Decadal oceanic response to stochastic wind forcing. J. Phys. Oceanogr., 31, 3020 3029. Liu, Z., 2003: Tropical ocean decadal variability and resonance of planetary

  12. Estimating the limit of decadal-scale climate predictability using observational data

    NASA Astrophysics Data System (ADS)

    Ding, Ruiqiang; Li, Jianping; Zheng, Fei; Feng, Jie; Liu, Deqiang

    2016-03-01

    Current coupled atmosphere-ocean general circulation models can not simulate decadal variability well, and model errors would have a significant impact on the estimation of decadal predictability. In this study, the nonlinear local Lyapunov exponent method is adopted to estimate the limit of decadal predictability based on 9-year low-pass filtered sea surface temperature (SST) and sea level pressure (SLP) observations. The results show that the limit of decadal predictability of the SST field is relatively large in the North Atlantic, North Pacific, Southern Ocean, tropical Indian Ocean, and western North Pacific, exceeding 7 years at most locations in these regions. In contrast, the limit of the SST field is relatively small in the tropical central-eastern Pacific (4-6 years). Similar to the SST field, the SLP field has a relatively large limit of decadal predictability over the Antarctic, North Pacific, and tropical Indian Ocean (>6 years). In addition, a relatively large limit of decadal predictability of the SLP field also occurs over the land regions of Africa, India, and South America. Distributions of the limit of decadal predictability of both the SST and SLP fields are almost consistent with those of their intensity and persistence on decadal timescales. By examining the limit of decadal predictability of several major climate modes, we found that the limit of decadal predictability of the Pacific decadal oscillation (PDO) is about 9 years, slightly lower than that of the Atlantic multidecadal oscillation (AMO) (about 11 years). In contrast, the northern and southern annular modes have limits of decadal predictability of about 4 and 9 years, respectively. However, the above limits estimated using time-filtered data may overestimate the predictability of decadal variability due to the use of time filtering. Filtered noise with the same spectral characteristics as the PDO and AMO, has a predictability of about 3 years. Future work is required with a longer

  13. Estimating the limit of decadal-scale climate predictability using observational data

    NASA Astrophysics Data System (ADS)

    Ding, Ruiqiang; Li, Jianping

    2016-04-01

    Current coupled atmosphere-ocean general circulation models (CGCMs) can not simulate decadal variability well, and model errors would have a significant impact on the estimation of decadal predictability. In this study, the nonlinear local Lyapunov exponent (NLLE) method is adopted to estimate the limit of decadal predictability based on 9-yr low-pass filtered sea surface temperature (SST) and sea level pressure (SLP) observations. The results show that the limit of decadal predictability of the SST field is relatively large in the North Atlantic, North Pacific, Southern Ocean, tropical Indian Ocean, and western North Pacific, exceeding 7 years at most locations in these regions. In contrast, the limit of the SST field is relatively small in the tropical central-eastern Pacific (4-6 years). Similar to the SST field, the SLP field has a relatively large limit of decadal predictability over the Antarctic, North Pacific, and tropical Indian Ocean (>6 years). In addition, a relatively large limit of decadal predictability of the SLP field also occurs over the land regions of Africa, India, and South America. Distributions of the limit of decadal predictability of both the SST and SLP fields are almost consistent with those of their intensity and persistence on decadal timescales. By examining the limit of decadal predictability of several major climate modes, we found that the limit of decadal predictability of the Pacific Decadal Oscillation (PDO) is about 9 years, slightly lower than that of the Atlantic Multidecadal Oscillation (AMO) (about 11 years). In contrast, the Northern and Southern Annular Modes (NAM and SAM) have limits of decadal predictability of about 4 and 9 years, respectively. However, the above limits estimated using time-filtered data may overestimate the predictability of decadal variability due to the use of time filtering. Filtered noise with the same spectral characteristics as the PDO and AMO, has a predictability of about 3 years. Future work

  14. Interannual-to-Decadal Variability in the Bifurcation of the North Equatorial Current off the Philippines

    NASA Astrophysics Data System (ADS)

    Qiu, B.; Chen, S.

    2010-12-01

    Satellite altimeter sea surface height (SSH) data from the past 17 years are used to investigate the interannual-to-decadal changes in the bifurcation of the North Equatorial Current (NEC) along the Philippine coast. The NEC bifurcation latitude migrated quasi-decadally between 10N and 15N with northerly bifurcations observed in late 1992, 1997-98 and 2003-04, and southerly bifurcations in 1999-2000 and 2008-09. The observed NEC bifurcation latitude can be approximated well by the SSH anomalies in the 12-14N and 127-130E box east of the mean NEC bifurcation point. Using a 1.5-layer reduced-gravity model forced by the ECMWF reanalysis wind stress data, we find that the SSH anomalies in this box can be simulated favorably to serve as a proxy for the observed NEC bifurcation. With the availability of the long-term reanalysis wind stress data, this allows us to lengthen the NEC bifurcation time series back to 1962. Although quasi-decadal variability was prominent in the last two decades, the NEC bifurcation was dominated by changes with a 3~5-yr period during the 1980s and had low variance prior to the 1970s. These inter-decadal modulations in the characteristics of the NEC bifurcation reflect similar inter-decadal modulations in the wind forcing field over the western tropical North Pacific Ocean. Although the NEC bifurcation on the interannual and longer timescales is in general related to the Nino-3.4 index with a positive (negative) index corresponding to a northerly (southerly) bifurcation, the exact location of bifurcation is determined by wind forcing in the 12-14N band that contains variability not fully representable by the Nino-3.4 index.

  15. Evidence for multiple drivers of North Atlantic multi-decadal climate variability using CMIP5 models

    NASA Astrophysics Data System (ADS)

    Terray, L.

    2012-12-01

    Observed North Atlantic Ocean surface temperatures have changed in a non-monotonic and non-uniform fashion over the last century. While future North Atlantic decadal-to-multi-decadal climate change will be driven by a combination of internal variability and anthropogenic as well as natural forcings, the relative importance of these effects is still unclear for the 20th century [Ting et al., 2009; Knight 2009; Ottera et al. 2010; DelSole et al., 2011; Booth et al. 2012]. Here we assess the relative roles of greenhouses gases, anthropogenic aerosols, natural forcings and internal variability to the North Atlantic surface temperature decadal fluctuations using CMIP5 multi-model historical simulations driven by estimates of observed external forcings. While the latter are the main source of decadal variability in the tropics and subtropics, there is a large contribution from the unforced component to subpolar Atlantic variations. Reconstruction of forced response patterns suggests that anthropogenic forcings are the main causes of the accelerated warming of the last three decades while internal variability has a dominant contribution to the early 20th-century temperature multi-decadal swings and recent abrupt changes in the subpolar Atlantic. Significant inter-model spread with regard to the spatial response patterns to anthropogenic forcing leads to substantial uncertainty as to robust attribution statements for the mid-to-late 20th century North Atlantic warm and cold periods. Comparing internal variability from preindustrial simulations with that estimated from the observed residual after removing the best estimate of the total forced response leads to a consistency metric which allows to identify models with a biased forced response.; CMIP5 multi-model ratio (ρ_LF) of the externally forced -natural and anthropogenic- variance, σ_EF to the total variance, σ_T, of fluctuations with a period greater than 10 years. Stippling indicates regions where the null

  16. Tropospheric ozone trends at Mauna Loa Observatory tied to decadal climate variability

    NASA Astrophysics Data System (ADS)

    Lin, Meiyun; Horowitz, Larry W.; Oltmans, Samuel J.; Fiore, Arlene M.; Fan, Songmiao

    2014-02-01

    A potent greenhouse gas and biological irritant, tropospheric ozone is also the primary source of atmospheric hydroxyl radicals, which remove numerous hazardous trace gases from the atmosphere. Tropospheric ozone levels have increased in spring at remote sites in the mid-latitudes of the Northern Hemisphere over the past few decades; this increase has been attributed to a growth in Asian precursor emissions. In contrast, 40 years of continuous measurements at Mauna Loa Observatory in Hawaii reveal little change in tropospheric ozone levels during spring (March-April), but a rise in autumn (September-October). Here we examine the contribution of decadal shifts in atmospheric circulation patterns to decadal variability in tropospheric ozone levels at Mauna Loa using a suite of chemistry-climate model simulations. We show that the flow of ozone-rich air from Eurasia towards Hawaii during spring weakened in the 2000s as a result of La-Niña-like decadal cooling in the eastern equatorial Pacific Ocean. During autumn, in contrast, the flow of ozone-rich air from Eurasia to Hawaii strengthened in the mid-1990s onwards, coincident with the positive phase of the Pacific-North American pattern. We suggest that these shifts in atmospheric circulation patterns can reconcile observed trends in tropospheric ozone levels at Mauna Loa and the northern mid-latitudes in recent decades. We conclude that decadal variability in atmospheric circulation patterns needs to be considered when attributing observed changes in tropospheric ozone levels to human-induced trends in precursor emissions.

  17. Evidence for large decadal variability in the tropical mean radiative energy budget.

    PubMed

    Wielicki, Bruce A; Wong, Takmeng; Allan, Richard P; Slingo, Anthony; Kiehl, Jeffrey T; Soden, Brian J; Gordon, C T; Miller, Alvin J; Yang, Shi-Keng; Randall, David A; Robertson, Franklin; Susskind, Joel; Jacobowitz, Herbert

    2002-02-01

    It is widely assumed that variations in Earth's radiative energy budget at large time and space scales are small. We present new evidence from a compilation of over two decades of accurate satellite data that the top-of-atmosphere (TOA) tropical radiative energy budget is much more dynamic and variable than previously thought. Results indicate that the radiation budget changes are caused by changes in tropical mean cloudiness. The results of several current climate model simulations fail to predict this large observed variation in tropical energy budget. The missing variability in the models highlights the critical need to improve cloud modeling in the tropics so that prediction of tropical climate on interannual and decadal time scales can be improved.

  18. The leading modes of decadal SST variability in the Southern Ocean in CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Dommenget, Dietmar

    2016-09-01

    The leading modes of Sea Surface Temperature variability in the Southern Ocean on decadal and even larger time scales are analysed using Coupled Model Intercomparison Project 5 (CMIP5) model simulations and observations. The analysis is based on Empirical Orthogonal Function modes of the CMIP5 model super ensemble. We compare the modes from the CMIP5 super ensemble against several simple null hypotheses, such as isotropic diffusion (red noise) and a Slab Ocean model, to investigate the sources of decadal variability and the physical processes affecting the characteristics of the modes. The results show three main modes in the Southern Ocean: the first and most dominant mode on interannual to decadal time scales is an annular mode with largest amplitudes in the Pacific, which is strongly related to atmospheric forcing by the Southern Annular Mode and El Nino Southern Oscillation. The second mode is an almost basin wide monopole pattern, which has pronounced multi-decadal and longer time scales variability. It is firstly inducted by the Wave-3 patterns in the atmosphere and further developed via ocean dynamics. The third mode is a dipole pattern in the southern Pacific that has a pronounced peak in the power spectrum at multi-decadal time scales. All three leading modes found in the CMIP5 super model have distinct patterns and time scale behaviour that can not be explained by simple stochastic null hypothesis, thus all three leading modes are ocean-atmosphere coupled modes and are likely to be substantially influenced or driven by ocean dynamical processes.

  19. Regional circulation around New Caledonia from two decades of observations

    NASA Astrophysics Data System (ADS)

    Cravatte, Sophie; Kestenare, Elodie; Eldin, Gérard; Ganachaud, Alexandre; Lefèvre, Jérôme; Marin, Frédéric; Menkes, Christophe; Aucan, Jérôme

    2015-08-01

    The regional and near-coastal circulation around New Caledonia is investigated using a compilation of more than 20 years of observations. Velocity profiles acquired by Shipboard Acoustic Doppler Current Profiler (SADCP) during 109 research cruises and ship transits since 1991 are analyzed and compared with absolute geostrophic currents inferred from hydrographic profiles and Argo floats drifts. In addition, altimetric surface currents are used to explore the variability of the circulation at various timescales. By making the best use of the strength of these various observations, this study provides an unprecedented detailed picture of the mean circulation around New Caledonia and of its variability in the upper layers. New Caledonia, together with the Vanuatu Archipelago and the Fiji Islands, acts as a 750-km long obstacle to the westward South Equatorial Current (SEC) entering the Coral Sea. On average, the SEC bifurcates against New Caledonia's east coast into a northwestward boundary current, the East Caledonian Current, beginning east of the Loyalty Islands and extending to at least 1000 m depth, and into a weak southeastward current. The latter, the Vauban Current, flows into the Loyalty channel against the mean trade winds where it extends to at least 500 m depth. It is highly variable at intraseasonal timescales; it often reverses and its variability is mainly driven by incoming mesoscale eddies east and south of New Caledonia. West of the Island, the southeastward Alis Current of New Caledonia (ACNC) flows along the reef slope in the 0-150 m layer. It overlays a weaker northwestward current, creating an unusual coastal circulation reminiscent of the current system along the Australian west coast. The ACNC is a persistent feature of the observations, even if its transport is also strongly modulated by the presence of offshore eddies. This study highlights the fact, if needed, that a snapshot view of the currents provided by a single transect can be strongly

  20. Robust features of Atlantic multi-decadal variability and its climate impacts

    NASA Astrophysics Data System (ADS)

    Ting, Mingfang; Kushnir, Yochanan; Seager, Richard; Li, Cuihua

    2011-09-01

    Atlantic Multi-decadal Variability (AMV), also known as the Atlantic Multi-decadal Oscillation (AMO), is characterized by a sharp rise and fall of the North Atlantic basin-wide sea surface temperatures (SST) on multi-decadal time scales. Widespread consequences of these rapid temperature swings were noted in many previous studies. Among these are the drying of Sahel in the 1960-70s and change in the frequency and intensity of Atlantic hurricanes on multi-decadal time scales. Given the short instrumental data records (about a century long) the central question is whether these climate fluctuations are robustly linked with the AMV and to what extent are these connections subject to changes in a changing climate. Here we address this issue by using the CMIP3 simulations for the 20th, 21st, and pre-industrial eras with 23 IPCC models. While models tend to produce AMV of shorter time scales and less periodic than suggested by the observations, the spatial structures of the SST anomaly patterns, and their association with worldwide precipitation, are surprisingly similar between models (with differing external forcing) and observations. Our results confirm the strong link between AMV and Sahel rainfall and suggest a clear physical mechanism for the linkage in terms of meridional shifts of the Atlantic ITCZ. The results also help clarify influences that may not be robust, such as the impacts over North America, India, and Australia.

  1. Multifunctional organic nitrates: A decade of TD-LIF Observations

    NASA Astrophysics Data System (ADS)

    Cohen, R. C.

    2012-12-01

    With our first observations of total RONO2 in 1999 a relatively routine and quantitative basis for assessing the prominent role RONO2s chemistry plays in our atmosphere emerged. In the decade since our ambient measurements have inspired us to think carefully about how RONO2 chemistry suppresses ozone formation in urban atmospheres (and more recently in regions dominated by oil and gas drilling), how RONO2 formation ss the dominant sink of NOx in rural continental locations affects the NOx lifetime, how RONO2 fits into our models of the NOy budget and the extent to which RONO2 aerosol are important. In this talk I will review the development of these ideas.

  2. Photometric variability in earthshine observations.

    PubMed

    Langford, Sally V; Wyithe, J Stuart B; Turner, Edwin L

    2009-04-01

    The identification of an extrasolar planet as Earth-like will depend on the detection of atmospheric signatures or surface non-uniformities. In this paper we present spatially unresolved flux light curves of Earth for the purpose of studying a prototype extrasolar terrestrial planet. Our monitoring of the photometric variability of earthshine revealed changes of up to 23% per hour in the brightness of Earth's scattered light at around 600 nm, due to the removal of specular reflection from the view of the Moon. This variability is accompanied by reddening of the spectrum and results from a change in surface properties across the continental boundary between the Indian Ocean and Africa's east coast. Our results based on earthshine monitoring indicate that specular reflection should provide a useful tool in determining the presence of liquid water on extrasolar planets via photometric observations.

  3. The Leading Modes of Decadal SST Variability in the Southern Ocean in CMIP5 Simulations

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Dommenget, Dietmar

    2016-04-01

    The leading modes of Sea Surface Temperature (SST) variability in the Southern Ocean on decadal and even larger time scales are analysed using Coupled Model Intercomparison Project 5 (CMIP5) model simulations and observations. We compare the modes from the CMIP5 super ensemble against several simple null hypotheses, such as isotropic diffusion (red noise) and a Slab Ocean model, to investigate the sources of decadal variability and the physical processes affecting the characteristics of the modes. The results show three main modes in the Southern Ocean: the first and most dominant mode on interannual to decadal time scales is an annular mode with largest amplitudes in the Pacific, which is strongly related to atmospheric forcing by the Southern Annular Mode (SAM) and El Nino Southern Oscillation (ENSO). The second mode is an almost basin wide monopole pattern, which has pronounced multi-decadal and longer time scales variability. It is firstly inducted by the Wave-3 patterns in the atmosphere and further developed via ocean dynamics. The third mode is a dipole pattern in the southern Pacific that has a pronounced peak in the power spectrum at multi-decadal time scales. All three leading modes found in the CMIP5 super model have distinct patterns and time scale behaviour that can not be explained by simple stochastic null hypothesis, thus all three leading modes are ocean-atmospheric coupled modes and are likely to be substantially influenced or driven by ocean dynamical processes. The mechanism of the basin-wide mode is further analysed based on a series of idealized experiments. The results show that the monopole mode has a two-step power spectrum, with a first spectral increase on interannual time scale and a second higher up level on the multi-decadal to centennial time scales. Ocean dynamics, especially the ocean advection, transport the anomalous signals, connect the entire ocean and lead to the homogeneous-like spatial pattern even under stochastic

  4. Decadal Variability of Tropical Cyclone Annual Frequency in Different Ocean Basins

    NASA Astrophysics Data System (ADS)

    Zhao, Y.

    2015-12-01

    Yating Zhao1, Jing Jiang1 1 School of Atmospheric Sciences, Nanjing University Nanjing 210093 China Abstract: Tropical cyclone, one of the most severe global natural disasters, causes massive casualties and economic losses every year, greatly influences the rapid development of the modern society. Using hurricane best track data from JTWC and TPC we investigate the decadal variations of TC activities. Our research indicates that the variability of TC frequency of different ocean basins (North Indian Ocean (NIO), Northwest Pacific Ocean (WP), Northeast Pacific Ocean (NEP), North Atlantic Ocean (NA) and South Hemisphere (SH)) all have significant decadal periods, and these decadal signals have something connect with the Pacific Decadal Oscillation (PDO), which acting as the background, modulating and influencing the synoptic scale weather systems. Through diagnosing the oceanic and atmospheric circulation in different stages of PDO, we find that, as the PDO signal transmits through the Pacific Ocean, the atmospheric circulation changes accordingly all over the tropical ocean. And they influence the dynamic conditions in the troposphere and promote or restrain the tropical cyclone activities in these areas. In another word, in the positive phase of PDO, there are much more (less) TC activities observed over the NEP (NA, WP, NIO, SH), which very likely due to the favorable (unfavorable) environmental factors, such as higher (lower) SST, weaker (stronger) vertical wind shear, higher (lower) relative humidity in the middle level of troposphere, and low level positive (negative) vorticity in the local area. Meanwhile, what should be noted is that the primary environmental factor could be very different in different ocean basin. Keywords: tropical cyclone, decadal variability, PDO

  5. Decadal variability of NAO during the last millennium inferred from Saharan dust in Alpine ice

    NASA Astrophysics Data System (ADS)

    Schwikowski, Margit; Sigl, Michael; Gäggeler, Heinz W.; Gabrieli, Jacopo; Barbante, Carlo; Boutron, Claude

    2010-05-01

    Interannual variability of North African atmospheric dust is strongly linked to drought conditions in the Sahel and to the winter North Atlantic Oscillation (NAO). Dust generation and transport are enhanced during winter NAO(+) phases when the North African dust source regions are controlled by high pressure situations leading to less precipitation, and thus to stronger wind erosion of soil material. However, direct Saharan dust observations are limited to the last decades only. Here, we present a first highly resolved ice core record of Saharan dust from the Alps, spanning the last 1,000 years. We focus thereby on concentrations of Fe, Al, Sr, and Ca which are typical elements present in long-range transported Saharan dust. We show that the mineral dust transport to the Southern Alps is primarily controlled by drought conditions in Northern Africa and by the winter NAO. Mean dust concentrations of the last 20 years are unprecedented in the context of the last 1,000 years. These elevated Saharan dust concentrations are consistent with the observed widespread increase in dustiness and dust storm frequencies over Northern Africa from direct measurements or from satellite based observations over the last decades. In contrast, between AD 1050 and 1400, when persistent arid conditions in the main source regions of dust in Northern Africa were deduced from tree-ring data and linked to a pervasive positive NAO mode over centuries, no according imprint is recorded in the ice core mineral dust record. We assume that the low-frequency variability of the tree-ring based reconstruction of Moroccan droughts (which also form the basis for the NAO reconstruction) is biased by the method applied to remove the non-climatic growth trends from the tree-ring series. Based on the ice core data we suggest that decadal-scale variability of the NAO (Moroccan droughts) prevailed over the last 1,000 years.

  6. Aerosol Variability Observed with Rpas

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Lampert, A.; Scholtz, A.; Bange, J.; Platis, A.; Hermann, M.; Wehner, B.

    2013-08-01

    To observe the origin, vertical and horizontal distribution and variability of aerosol particles, and especially ultrafine particles recently formed, we plan to employ the remotely piloted aircraft system (RPAS) Carolo-P360 "ALADINA" of TU Braunschweig. The goal of the presented project is to investigate the vertical and horizontal distribution, transport and small-scale variability of aerosol particles in the atmospheric boundary layer using RPAS. Two additional RPAS of type MASC of Tübingen University equipped with turbulence instrumentation add the opportunity to study the interaction of the aerosol concentration with turbulent transport and exchange processes of the surface and the atmosphere. The combination of different flight patterns of the three RPAS allows new insights in atmospheric boundary layer processes. Currently, the different aerosol sensors are miniaturized at the Leibniz Institute for Tropospheric Research, Leipzig and together with the TU Braunschweig adapted to fit into the RPAS. Moreover, an additional meteorological payload for measuring temperature, humidity and turbulence properties is constructed by Tübingen University. Two condensation particle counters determine the total aerosol number with a different lower detection threshold in order to investigate the horizontal and vertical aerosol variability and new particle formation (aerosol particles of some nm diameter). Further the aerosol size distribution in the range from about 0.300 to ~5 μm is given by an optical particle counter.

  7. Multi-Decadal Rainfall Variability under the South Pacific Convergence Zone from 1570-2005

    NASA Astrophysics Data System (ADS)

    Partin, J. W.; Quinn, T. M.; Shen, C.; Taylor, F. W.; Banner, J. L.; Maupin, C. R.; lin, K.; Sinclair, D. J.; Huh, C.

    2011-12-01

    The Pacific Ocean Basin undergoes natural climate variability on decadal to multi-decadal timescales. Ocean-atmosphere feedbacks drive a complex cycle in tropical and extra-tropical winds and zonal sea-surface temperatures (SST) resulting in basin-scale climate reorganizations. The Pacific Ocean zonal SST gradient responds to upwelling of cold waters near the equator transported by shallow Pacific Meridional Overturning Circulation (PMOC), which in turn responds to changes in winds. However, the frequency, timing, and magnitude of past decadal changes in the Pacific are largely unknown. To address this question, we developed a U-Th dated, 430-year stable oxygen isotope (δ18O) cave record of past precipitation in Vanuatu, a location whose climate is heavily influenced by variability in the South Pacific Convergence Zone (SPCZ). The δ18O-based precipitation record shows repeating cycles that are ~25-50 years in duration and correspond to ~115 mm/month of rainfall change that can occur in as fast as 5 years - a change larger and quicker than the 1976 regime shift. The stalagmite δ18O to rainfall amount conversion is based on the "amount effect" observed at similar tropical sites. The "Little Ice Age" (LIA) section of the record exhibits no trend in precipitation, hence no change in the strength or position of the SPCZ over Vanuatu. This result suggests a disconnection between changes in the SPCZ and the Intertropical Convergence Zone (ITCZ), which does exhibit a southerly shift during the LIA period. Changes in PMOC via ocean-atmosphere feedbacks most likely explain the decadal shifts in SPCZ strength through alteration of the tropical Pacific zonal SST gradient and subsequent trade wind response. Periods of high paleo-rainfall in Vanuatu (strong PMOC, increased zonal SST gradient and increased trade winds) correlate with historical accounts of little to no El Niño activity implying that Pacific Basin mean state regulates interannual variability.

  8. Observed decadal variations in surface solar radiation and their causes

    NASA Astrophysics Data System (ADS)

    Ohmura, Atsumu

    2009-05-01

    Long-term variations of global solar irradiance at the Earth's surface from the beginning of the observations to 2005 are analyzed for more than 400 sites. Further, likely causes for the variations, an estimation of the magnitudes of aerosol direct and indirect effects, and the temperature sensitivity of the climate system due to radiation changes are evaluated. The record of observed global radiation begins with an increasing phase from 1920s to late 1940s/early 1960s. This brightening period (first brightening phase) is followed by the decreasing trend lasting to late 1980s, known as the global dimming, which finally translates into the second brightening phase in many regions of the world. These decadal variations are to great extent caused by aerosol and cloud fluctuations. The total aerosol effect as well as its direct and indirect effects were evaluated mainly on the basis of the observations. To meet this goal, simultaneous observations of global solar radiation and zenith transmittance are necessary. Five such regions/sites in Europe and Japan satisfy these conditions. By using the 20-year dimming phase from 1960 to 1980 and the 15-year brightening phase from 1990 to 2005, it was found that the aerosol direct and indirect effects played about an equal weight in changing global solar radiation. The temperature sensitivity due to radiation change is estimated at 0.05 to 0.06 K/(W m-2). The first brightening phase lasting to 1940s/early 1960s does not show a compatibility with the variation of transmittance of the atmosphere and originated probably from a different cause.

  9. Decadal variability of chlorophyll a in the South China Sea: a possible mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Fenfen; Chen, Chuqun; Zhan, Haigang

    2012-11-01

    Four climatologies on a monthly scale (January, April, May and November) of chlorophyll a within the South China Sea (SCS) were calculated using a Coastal Zone Color Scanner (CZCS) (1979-1983) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) (1998-2002). We analyzed decadal variability of chlorophyll a by comparing the products of the two observation periods. The relationships of variability in chlorophyll a with sea surface wind speed (SSW), sea surface temperature (SST), wind stress (WS), and mixed layer depth (MLD) were determined. The results indicate that there is obvious chlorophyll a decadal variability in the SCS. The decadal chlorophyll a presents distinct seasonal variability in characteristics, which may be as a result of various different dynamic processes. The negative chlorophyll a concentration anomaly in January was associated with the warming of SST and a shallower MLD. Generally, there were higher chlorophyll a concentrations in spring during the SeaWiFS period compared with the CZCS period. However, the chlorophyll a concentration exhibits some regional differences during this season, leading to an explanation being diffi cult. The deepened MLD may have contributed to the positive chlorophyll a concentration anomalies from the northwestern Luzon Island to the northeastern region of Vietnam during April and May. The increases of chlorophyll a concentration in northwestern Borneo during May may be because the stronger SSW and higher WS produce a deeper mixed layer and convective mixing, leading to high levels of nutrient concentrations. The higher chlorophyll a off southeastern Vietnam may be associated with the advective transport of the colder water extending from the Karimata Strait to southeastern Vietnam.

  10. Inter-Decadal to Multi-Decadal Sea Surface Temperature Variability in the Southwest Tropical Pacific Since AD 1648

    NASA Astrophysics Data System (ADS)

    Delong, K. L.; Quinn, T. M.; Taylor, F. W.; Lin, K.; Shen, C.

    2008-12-01

    The southwest tropical Pacific is a region with temporally and spatially sparse sea surface temperature (SST) records that limit investigations of climate variability on interannual to centennial time scales for this region. We present a monthly resolved coral Sr/Ca record from 1648 to 1999 from Amédée Island, New Caledonia (22.48°S, 166.47°E), and reconstruct SST variability in the southwest Pacific for the past 350 years. The coral Sr/Ca record was assembled from two 3-m long coeval cores from the same massive Porites lutea coral colony. The chronology is based on annual density-band counting, cross- correlation of the two intracolony coral Sr/Ca records, and 11 230Th dates with 2σ precision of ±1.1 to 16.5 years. The intracolony coral Sr/Ca variations are reproducible for more than three centuries (average monthly misfit error = ±0.015 mmol/mol; ~0.28°C), and the intracolony variations are coherent from interannual to centennial periodicities. The SST reconstructed from coral Sr/Ca shows a cooling trend from AD 1740 to 1815, a cold 19th century (~0.6°C with respect to AD 1967 to 1992), followed by a warming trend into the 20th century. Many of the cold events in the coral Sr/Ca record coincide with large volcanic eruptions (e.g., Tambora AD 1815 and Krakatau AD 1883). Spectral analysis reveals the record is dominated by modulating inter-decadal (14 to 21 years) periodicities and quasi-persistent multi-decadal (24 to 38 years) periodicities that do not exhibit coherence with the Pacific Decadal Oscillation (PDO) or the Inter-decadal Pacific Oscillation (IPO). Wavelet analysis reveals that the inter-decadal periodicities coincide with large volcanic eruptions, and the 55- to 70-year periodicities are coeval with volcanic cooling and warming trends in the 19th and 20th centuries. The multi-decadal periodicities may be a harmonic of the modulating inter-decadal periodicities or may represent an independent mode not previously recognized in the southwest

  11. Interannual and decadal-scale variability of soil moisture and water resources in Africa

    NASA Astrophysics Data System (ADS)

    Thomas, E.; Jung, M.; Wattenbach, M.; Heinke, J.; Weber, U.

    2013-12-01

    Within water scarce regions such as the African continent, water availability is a fundamental factor for both ecosystems and human population. In particular the various ecoregions are highly vulnerable to climate change as seen in the recent drought in 2011, which affected the entire East African region and forced severe food crises causing the death of thousands of people. Several climate change scenarios associated with the expected population growth revealed an additional pressure on water availability, water accessibility and water demand in Africa in the future. In order to prevent, adapt and to mitigate climate change impacts (e.g. increasing water scarcity in the future) on soil moisture variability and water resources synthesis of its recent variations are extremely important. Unfortunately, there is currently no synthesis that highlights recent variations of soil moisture and fresh water resources in Africa. The aim of the study is to identify regions with large inter annual variability as well as decadal scale variability (trend, trend changes) of soil moisture and water resources. Hence, especially patterns of soil moisture and water resources variability will be demonstrated and implications in terms of vulnerability will be further discussed. The study comprises three different data sources: point measurements, remote sensing datasets and modelling results. Soil moisture observations from passive microwave radiometry (TRMM, AMSRE-E) and GRACE-derived terrestrial water storage were applied to locate areas which show a large inter annual variability. Supplementary, water level fluctuations from SAR altimetry (LEGOS/GOHS, ENVISAT) and in-situ runoff observations (SA FRIEND) provided by the Global Runoff Data Centre were used to confirm the encountered patterns of soil moisture and water resources variability. The spatial map of inter annual variability was subsequently overlaid by population density and land use data to assess the vulnerability of the

  12. Decadal variability in coupled sea-ice-thermohaline circulation systems

    SciTech Connect

    Yang, J.; Neelin, J.D.

    1997-12-01

    An interdecadal oscillation in a coupled ocean-ice system was identified in a previous study. This paper extends that study to further examine the stability of the oscillation and the sensitivity of its frequency to various parameters and forcing fields. Three models are used: (i) an analytical box model; (ii) a two-dimensional model for the ocean thermohaline circulation (THC) coupled to a thermodynamic ice model, as in the authors` previous study; and (iii) a three-dimensional ocean general circulation model (OGCM) coupled to a similar ice model. The box model is used to elucidate the essential feedbacks that give rise to this oscillation and to identify the most important parameters and processes that determine the period. The counted model becomes more stable toward low coupling, greater diffusion, and weaker THC feedback. Nonlinear effects in the sea-ice model become important in the higher ocean-ice coupling regime where the effective sea-ice damping associated with this nonlinearity stabilizes the model. The 3D OGCM is used to test this coupled ocean-ice mechanism in a more realistic model setting. This model generates an interdecadal oscillation whose characteristics and phase relations among the model variables are similar to the oscillation obtained in the 2D models. The major difference is that the oscillation frequency is considerably lower. The difference can be explained in terms of the analytical box model solution in which the period of oscillation depends on the rate of anomalous density production by melting/cooling of sea ice per SST anomaly, times the rate of warming/cooling by anomalous THC heat advection per change in density anomaly. The 3D model has a smaller THC response to high-latitude density perturbations than the 2D model, and anomalous velocities in the 3D case tend to follow the mean isotherms so anomalous heat advection is reduced. This slows the ocean-ice feedback process, leading to the longer oscillation period. 36 refs., 27 figs.

  13. Observations of Interesting Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Dai, Zhibin; Szkody, Paula; Garnavich, Peter M.; Kennedy, Mark

    2015-01-01

    Cataclysmic Variables (CVs) comprise one category of active mass transfer binaries containing a white dwarf accreting from an orbiting late main-sequence companion. Undoubtedly, non-magnetic CVs, intermediate polars and polars constitute a powerful probe of the structure of accretion onto white dwarfs and the theories of angular momentum loss, which elucidate the long-term evolution leading to the formation of these short period compact binaries. Combining photometric and spectroscopic data from space and ground telescopes can lead to novel discoveries. The SDSS survey provided a large dataset of spectra of different types of CVs. Followup photometry and spectroscopy is still underway to determine the unique properties of the objects identified as CVs. The Kepler program provided the first look at the variability of CVs over a continuous timescale of months. The extension of the program to the K2 fields allows further sets of CVs to be explored. We present some interesting results for several new CVs found in the SDSS and Kepler surveys which include their behavior during quiescence and outburst. These observations further demonstrate the complexities of CVs. This research was partially funded by CAS visiting scholar grant, NSF grant AST-1008734 and NASA grant HST-GO12870.

  14. Decadal variability in the occurrence of wintertime haze in central eastern China tied to the Pacific Decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Zhao, Sen; Li, Jianping; Sun, Cheng

    2016-06-01

    Haze is a serious issue in China with increasing concerns, and understanding the factors driving decadal-scale variations in haze occurrence is relevant for government policymaking. Using a comprehensive observational haze dataset, we demonstrate notable decadal fluctuations in the number of haze days (HD) during winter in central eastern China, showing a decline since the mid-1980s. The leading mode of the wintertime HD features an increasing trend for 1959–2012 in eastern China, highly correlated with China’s gross domestic product (GDP) that represents increasing trend of pollutant emissions, and to a lesser extent meteorological factors. The second mode shows decadal variations in central eastern China associated with Pacific Decadal Oscillation (PDO). Observations and numerical simulations suggest that Mongolia High and corresponding descending motion tend to be enhanced (weakened) in central eastern China during the positive (negative) phase of PDO. With PDO shifting towards a negative phase, the weakened Mongolia High and ascending anomalies make the air unstable and conduce to the spread of pollutants, leading to the decline in the wintertime HD over central eastern China since the mid-1980s. Based on above physical mechanisms, a linear model based on PDO and GDP metrics provided a good fit to the observed HD.

  15. Decadal variability in the occurrence of wintertime haze in central eastern China tied to the Pacific Decadal Oscillation

    PubMed Central

    Zhao, Sen; Li, Jianping; Sun, Cheng

    2016-01-01

    Haze is a serious issue in China with increasing concerns, and understanding the factors driving decadal-scale variations in haze occurrence is relevant for government policymaking. Using a comprehensive observational haze dataset, we demonstrate notable decadal fluctuations in the number of haze days (HD) during winter in central eastern China, showing a decline since the mid-1980s. The leading mode of the wintertime HD features an increasing trend for 1959–2012 in eastern China, highly correlated with China’s gross domestic product (GDP) that represents increasing trend of pollutant emissions, and to a lesser extent meteorological factors. The second mode shows decadal variations in central eastern China associated with Pacific Decadal Oscillation (PDO). Observations and numerical simulations suggest that Mongolia High and corresponding descending motion tend to be enhanced (weakened) in central eastern China during the positive (negative) phase of PDO. With PDO shifting towards a negative phase, the weakened Mongolia High and ascending anomalies make the air unstable and conduce to the spread of pollutants, leading to the decline in the wintertime HD over central eastern China since the mid-1980s. Based on above physical mechanisms, a linear model based on PDO and GDP metrics provided a good fit to the observed HD. PMID:27282140

  16. Temperature Responses to Spectral Solar Variability on Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Wen, Guoyong; Harder, Jerald W.; Pilewskie, Peter

    2010-01-01

    Two scenarios of spectral solar forcing, namely Spectral Irradiance Monitor (SIM)-based out-of-phase variations and conventional in-phase variations, are input to a time-dependent radiative-convective model (RCM), and to the GISS modelE. Both scenarios and models give maximum temperature responses in the upper stratosphere, decreasing to the surface. Upper stratospheric peak-to-peak responses to out-of-phase forcing are approx.0.6 K and approx.0.9 K in RCM and modelE, approx.5 times larger than responses to in-phase forcing. Stratospheric responses are in-phase with TSI and UV variations, and resemble HALOE observed 11-year temperature variations. For in-phase forcing, ocean mixed layer response lags surface air response by approx.2 years, and is approx.0.06 K compared to approx.0.14 K for atmosphere. For out-of-phase forcing, lags are similar, but surface responses are significantly smaller. For both scenarios, modelE surface responses are less than 0.1 K in the tropics, and display similar patterns over oceanic regions, but complex responses over land.

  17. North Pacific carbon cycle response to climate variability on seasonal to decadal timescales

    NASA Astrophysics Data System (ADS)

    McKinley, G. A.; Takahashi, T.; Buitenhuis, E.; Chai, F.; Christian, J. R.; Doney, S. C.; Jiang, M.-S.; Lindsay, K.; Moore, J. K.; Le QuéRé, C.; Lima, I.; Murtugudde, R.; Shi, L.; Wetzel, P.

    2006-07-01

    Climate variability drives significant changes in the physical state of the North Pacific, and there may be important impacts of this variability on the upper ocean carbon balance across the basin. We address this issue by considering the response of seven biogeochemical ocean models to climate variability in the North Pacific. The models' upper ocean pCO2 and air-sea CO2 flux respond similarly to climate variability on seasonal to decadal timescales. Modeled seasonal cycles of pCO2 and its temperature- and non-temperature-driven components at three contrasting oceanographic sites capture the basic features found in observations (Takahashi et al., 2002, 2006; Keeling et al., 2004; Brix et al., 2004). However, particularly in the Western Subarctic Gyre, the models have difficulty representing the temporal structure of the total pCO2 seasonal cycle because it results from the difference of these two large and opposing components. In all but one model, the air-sea CO2 flux interannual variability (1σ) in the North Pacific is smaller (ranges across models from 0.03 to 0.11 PgC/yr) than in the Tropical Pacific (ranges across models from 0.08 to 0.19 PgC/yr), and the time series of the first or second EOF of the air-sea CO2 flux has a significant correlation with the Pacific Decadal Oscillation (PDO). Though air-sea CO2 flux anomalies are correlated with the PDO, their magnitudes are small (up to ±0.025 PgC/yr (1σ)). Flux anomalies are damped because anomalies in the key drivers of pCO2 (temperature, dissolved inorganic carbon (DIC), and alkalinity) are all of similar magnitude and have strongly opposing effects that damp total pCO2 anomalies.

  18. HERSCHEL OBSERVATIONS OF CATACLYSMIC VARIABLES

    SciTech Connect

    Harrison, Thomas E.; Hamilton, Ryan T.; Tappert, Claus; Hoffman, Douglas I.; Campbell, Ryan K. E-mail: rthamilt@nmsu.edu E-mail: dhoffman@ipac.caltech.edu

    2013-01-01

    We have used the PACS instrument on the Herschel Space Observatory to observe eight cataclysmic variables at 70 and 160 {mu}m. Of these eight objects, only AM Her was detected. We have combined the Herschel results with ground-based, Spitzer, and WISE observations to construct spectral energy distributions for all of the targets. For the two dwarf novae in the sample, SS Cyg and U Gem, we find that their infrared luminosities are completely dominated by their secondary stars. For the two highly magnetic 'polars' in our survey, AM Her and EF Eri, we find that their mid-infrared excesses, previously attributed to circumbinary dust emission, can be fully explained by cyclotron emission. The WISE light curves for both sources show large, orbitally modulated variations that are identically phased to their near-IR light curves. We propose that significant emission from the lowest cyclotron harmonics (n {<=} 3) is present in EF Eri and AM Her. Previously, such emission would have been presumed to be optically thick, and not provide significant orbitally modulated flux. This suggests that the accretion onto polars is more complicated than assumed in the simple models developed for these two sources. We develop a model for the near-/mid-IR light curves for WZ Sge with an L2 donor star that shows that the ellipsoidal variations from its secondary star are detected. We conclude that none of the targets surveyed have dusty circumbinary disks.

  19. Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Shevliakova, E.; Malyshev, S.; Lamarque, J.-F.; Wittenberg, A. T.

    2016-12-01

    Connections between wildfires and modes of variability in climate are sought as a means for predicting fire activity on interannual to multi-decadal timescales. Several fire drivers, such as temperature and local drought index, have been shown to vary on these timescales, and analysis of tree-ring data suggests covariance between fires and climate oscillation indices in some regions. However, the shortness of the satellite record of global fire events limits investigations on larger spatial scales. Here we explore the interplay between climate variability and wildfire emissions with the preindustrial long control numerical experiments and historical ensembles of CESM1 and the NOAA/GFDL ESM2Mb. We find that interannual variability in fires is underpredicted in both Earth System models (ESMs) compared to present day fire emission inventories. Modeled fire emissions respond to the El Niño/southern oscillation (ENSO) and Pacific decadal oscillation (PDO) with increases in southeast Asia and boreal North America emissions, and decreases in southern North America and Sahel emissions, during the ENSO warm phase in both ESMs, and the PDO warm phase in CESM1. Additionally, CESM1 produces decreases in boreal northern hemisphere fire emissions for the warm phase of the Atlantic Meridional Oscillation. Through analysis of the long control simulations, we show that the 20th century trends in both ESMs are statistically significant, meaning that the signal of anthropogenic activity on fire emissions over this time period is detectable above the annual to decadal timescale noise. However, the trends simulated by the two ESMs are of opposite sign (CESM1 decreasing, ESM2Mb increasing), highlighting the need for improved understanding, proxy observations, and modeling to resolve this discrepancy.

  20. Drivers of annual to decadal streamflow variability in the lower Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Lambeth-Beagles, R. S.; Troch, P. A.

    2010-12-01

    The Colorado River is the main water supply to the southwest region. As demand reaches the limit of supply in the southwest it becomes increasingly important to understand the dynamics of streamflow in the Colorado River and in particular the tributaries to the lower Colorado River. Climate change may pose an additional threat to the already-scarce water supply in the southwest. Due to the narrowing margin for error, water managers are keen on extending their ability to predict streamflow volumes on a mid-range to decadal scale. Before a predictive streamflow model can be developed, an understanding of the physical drivers of annual to decadal streamflow variability in the lower Colorado River Basin is needed. This research addresses this need by applying multiple statistical methods to identify trends, patterns and relationships present in streamflow, precipitation and temperature over the past century in four contributing watersheds to the lower Colorado River. The four watersheds selected were the Paria, Little Colorado, Virgin/Muddy, and Bill Williams. Time series data over a common period from 1906-2007 for streamflow, precipitation and temperature were used for the initial analysis. Through statistical analysis the following questions were addressed: 1) are there observable trends and patterns in these variables during the past century and 2) if there are trends or patterns, how are they related to each other? The Mann-Kendall test was used to identify trends in the three variables. Assumptions regarding autocorrelation and persistence in the data were taken into consideration. Kendall’s tau-b test was used to establish association between any found trends in the data. Initial results suggest there are two primary processes occurring. First, statistical analysis reveals significant upward trends in temperatures and downward trends in streamflow. However, there appears to be no trend in precipitation data. These trends in streamflow and temperature speak to

  1. North Pacific decadal variability in the CMIP5 last millennium simulations

    NASA Astrophysics Data System (ADS)

    Fleming, Laura E.; Anchukaitis, Kevin J.

    2016-12-01

    The Pacific ocean-atmosphere system exerts an important influence on the climate of Asia and North America, but the limited length of the observational record prevents a complete understanding of its bidecadal and multidecadal time scales. Paleoclimate reconstructions provide one source of information on longer time scales, although they differ in their estimation of the behavior of the Pacific decadal oscillation (PDO) prior to the instrumental period. Forced general circulation model simulations offer complementary long-term perspectives on both the history and dynamics of this important mode of variability. Here, we analyze the PDO in the ensemble of CMIP5/PMIP3 last millennium (past1000 + historical) simulations. We evaluate the modeled spatial, temporal, and spectral characteristics of this mode, as well as teleconnections between North Pacific variability and global climate. All models produce a mode of North Pacific variability over the last millennium with spatial patterns and spectral power density similar to observations. CCSM, FGOALS, and IPSL best reproduce observed spatial patterns, spectral characteristics, and teleconnections to terrestrial regions used in paleoclimate proxy reconstructions. In these simulations, the PDO shows no consistent response to solar or volcanic forcing.

  2. Herschel Observations of Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Harrison, Thomas E.; Hamilton, Ryan T.; Tappert, Claus; Hoffman, Douglas I.; Campbell, Ryan K.

    2013-01-01

    We have used the PACS instrument on the Herschel Space Observatory to observe eight cataclysmic variables at 70 and 160 μm. Of these eight objects, only AM Her was detected. We have combined the Herschel results with ground-based, Spitzer, and WISE observations to construct spectral energy distributions for all of the targets. For the two dwarf novae in the sample, SS Cyg and U Gem, we find that their infrared luminosities are completely dominated by their secondary stars. For the two highly magnetic "polars" in our survey, AM Her and EF Eri, we find that their mid-infrared excesses, previously attributed to circumbinary dust emission, can be fully explained by cyclotron emission. The WISE light curves for both sources show large, orbitally modulated variations that are identically phased to their near-IR light curves. We propose that significant emission from the lowest cyclotron harmonics (n <= 3) is present in EF Eri and AM Her. Previously, such emission would have been presumed to be optically thick, and not provide significant orbitally modulated flux. This suggests that the accretion onto polars is more complicated than assumed in the simple models developed for these two sources. We develop a model for the near-/mid-IR light curves for WZ Sge with an L2 donor star that shows that the ellipsoidal variations from its secondary star are detected. We conclude that none of the targets surveyed have dusty circumbinary disks. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  3. Persistent decadal-scale rainfall variability in the tropical South Pacific Convergence Zone through the past six centuries

    NASA Astrophysics Data System (ADS)

    Maupin, C. R.; Partin, J. W.; Shen, C.-C.; Quinn, T. M.; Lin, K.; Taylor, F. W.; Banner, J. L.; Thirumalai, K.; Sinclair, D. J.

    2013-10-01

    Observations and reconstructions of decadal-scale climate variability are necessary to place predictions of future global climate change into temporal context (Goddard et al., 2012). This is especially true for decadal-scale climate variability that originates in the Pacific Ocean (Deser et al., 2004; Dong and Lu, 2013). We focus here on the western tropical Pacific (Solomon Islands; ~ 9.5° S, ~ 160° E), a region directly influenced by: the South Pacific Convergence Zone (SPCZ), the West Pacific Warm Pool (WPWP), the Pacific Walker Circulation (PWC), and the Hadley Circulation. We calibrate δ18O variations in a fast growing stalagmite to local rainfall amount and produce a 600 yr record of rainfall variability from the zonally oriented, tropical portion of the SPCZ. We present evidence for large (~ 1.5 m), persistent and decade(s)-long shifts in total annual rainfall amount in the Solomon Islands since 1416 ± 5 CE. The timing of the decadal changes in rainfall inferred from the 20th century portion of the stalagmite δ18O record coincide with previously identified decadal shifts in Pacific ocean-atmosphere behavior (Clement et al., 2011; Deser et al., 2004). The 600 yr Solomons stalagmite δ18O record indicates that decadal oscillations in rainfall are a robust characteristic of SPCZ-related climate variability, which has important implications to water resource management in this region.

  4. Interannual to decadal variability of circulation in the northern Japan/East Sea, 1958-2006

    NASA Astrophysics Data System (ADS)

    Stepanov, Dmitry; Stepanova, Victoriia; Gusev, Anatoly

    2015-04-01

    We use a numerical ocean model INMOM (Institute of Numerical Mathematics Ocean Model) and atmospheric forcing data extracted from the CORE (Coordinated Ocean Reference Experiments) dataset and reconstruct a circulation in the Japan/East Sea (JES) from 1958 to 2006 and its interannual and decadal variability in the intermediate and abyssal layers in the northern JES. It is founded that the circulation is cyclonic over the course of a climatological year. The circulation increases in spring and decreases in autumn. We analyzes the relative vorticity (RV) averaged over the Japan Basin (JB) and show that the variability is characterized by the interannual oscillations (2.3, 3.7 and 4.7 years) and decadal variability (9.5 and 14.3 years). The spectrum structure of the average RV variability does not change with depth; however, the energy of the decadal oscillations decreases in contrast to that of the interannual oscillations. We analyze monthly anomalies of the wind stress curl and sensible heat flux and reveal that interannual variability (3-4 years) of the circulation over the JB result from 4-year variability of the wind stress curl. In contrast, the decadal variability (period of 9.5 years) of the circulation over the JB is generated by both the wind stress curl and the decadal variability in deep convection.

  5. Aerosols impact on the multi-decadal SST variability simulation over the North Pacific

    NASA Astrophysics Data System (ADS)

    Boo, Kyung-On; Booth, Ben; Byun, Young-Hwa; Cho, ChunHo; Lee, Johan; Park, Soo-Hyun; Shim, Sung-Bo; Park, Sung-Bin

    2013-04-01

    Aerosol emission by the anthropogenic source has increased in the 20th century and the effects on climate have received much attention for understanding of historical climate change and variability. Aerosols contribute to change solar radiation at the surface directly and indirectly enhance radiative effect through cloud properties changes, altering surface climate and large-scale atmospheric circulation as well. Recently Oldenborgh et al. [2012] , Chikamoto et al. [2012] and Wang et al.[2012] showed the Pacific decadal scale variability is able to be affected by the aerosols. Since climate response in global warming is modulated by decadal variability and the Asian monsoon circulation changes are known to be affected by anthropogenic aerosols [Lau et al., 2006; Ramana et al., 2010], aerosol impact over the Pacific needs to be studied. Both effects by natural and anthropogenic emissions are important. To simulate the North Atlantic climate variability, aerosol forcing is important [Mann and Emanuel, 2006; Oldenborgh et al., 2012]. In particular, it is known to be better represented when indirect effect by anthropogenic emitted aerosols is considered [Booth et al, 2011]. Therefore, considering previous studies, this study investigates aerosol effect with indirect effect by anthropogenic aerosol emission over the Pacific. In this study, comparison between historical run and fixed aerosol experiments using HadGEM2-AO shows that multidecadal variability in historical run is closer to the observed ERSST variability over the North Pacific. In detrended SST anomalies, warming and cooling in the period of 1925-1960 and 1965-1990 are reproduced in aerosol forced historical simulation. The climate variability is partly related by the shortwave changes in response to aerosols emission. There is cooling effect, directly. Here, we are interested in indirect cloud property changes and the Pacific SST variability is investigated using previous results [Williams et al., 2001

  6. Pacific Decadal Variability and Central Pacific Warming El Niño in a Changing Climate

    SciTech Connect

    Di Lorenzo, Emanuele

    2015-02-27

    This research aimed at understanding the dynamics controlling decadal variability in the Pacific Ocean and its interactions with global-scale climate change. The first goal was to assess how the dynamics and statistics of the El Niño Southern Oscillation and the modes of Pacific decadal variability are represented in global climate models used in the IPCC. The second goal was to quantify how decadal dynamics are projected to change under continued greenhouse forcing, and determine their significance in the context of paleo-proxy reconstruction of long-term climate.

  7. OCEAN CIRCULATION. Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises.

    PubMed

    Srokosz, M A; Bryden, H L

    2015-06-19

    The importance of the Atlantic Meridional Overturning Circulation (AMOC) heat transport for climate is well acknowledged. Climate models predict that the AMOC will slow down under global warming, with substantial impacts, but measurements of ocean circulation have been inadequate to evaluate these predictions. Observations over the past decade have changed that situation, providing a detailed picture of variations in the AMOC. These observations reveal a surprising degree of AMOC variability in terms of the intraannual range, the amplitude and phase of the seasonal cycle, the interannual changes in strength affecting the ocean heat content, and the decline of the AMOC over the decade, both of the latter two exceeding the variations seen in climate models.

  8. Sahel decadal rainfall variability and the role of model horizontal resolution

    NASA Astrophysics Data System (ADS)

    Vellinga, Michael; Roberts, Malcolm; Vidale, Pier Luigi; Mizielinski, Matthew S.; Demory, Marie-Estelle; Schiemann, Reinhard; Strachan, Jane; Bain, Caroline

    2016-01-01

    Substantial low-frequency rainfall fluctuations occurred in the Sahel throughout the twentieth century, causing devastating drought. Modeling these low-frequency rainfall fluctuations has remained problematic for climate models for many years. Here we show using a combination of state-of-the-art rainfall observations and high-resolution global climate models that changes in organized heavy rainfall events carry most of the rainfall variability in the Sahel at multiannual to decadal time scales. Ability to produce intense, organized convection allows climate models to correctly simulate the magnitude of late-twentieth century rainfall change, underlining the importance of model resolution. Increasing model resolution allows a better coupling between large-scale circulation changes and regional rainfall processes over the Sahel. These results provide a strong basis for developing more reliable and skilful long-term predictions of rainfall (seasons to years) which could benefit many sectors in the region by allowing early adaptation to impending extremes.

  9. The impact of Labrador Sea temperature and salinity variability on density and the subpolar AMOC in a decadal prediction system

    NASA Astrophysics Data System (ADS)

    Menary, Matthew B.; Hermanson, Leon; Dunstone, Nick J.

    2016-12-01

    Labrador Sea density variability is important for Atlantic Meridional Overturning Circulation (AMOC) dynamics and hence decadal variability in the Atlantic. We investigate whether temperature or salinity dominate top 500 m interannual Labrador Sea density variability in gridded observations, an assimilation of the observations, and a set of multiannual hindcasts. We find that salinity dominates in the observations and assimilation. In the hindcasts salinity remains dominant for the first year but from year three these revert to the same temperature dominance seen in the underlying climate model. This is due to damping of the interannual salinity variability, possibly caused by unrealistically large convection that develops. Crucially, the hindcasts have high correlation skill in temperature/salinity throughout, but no skill in density, dynamic sea level, or the subpolar AMOC due to the incorrect drivers. This highlights the importance of correctly simulating both the sign and magnitude of temperature/salinity variability in a prediction system.

  10. Decadal variation in the Chandler amplitude and the decadal oscillation in the observed dynamic oblateness J2

    NASA Astrophysics Data System (ADS)

    Fang, M.; Hager, B. H.; Cheng, M.

    2011-12-01

    Numerical simulation based on atmospheric angular momentum forcing recovers a distinctive decadal variation in the amplitude of the Chandler Wobble, or the Chandler amplitude (CA) for the period 1976-2010. This decadal variation in the CA qualitatively anti-correlates with the decadal oscillation in the Earth's dynamic oblateness, J2, observed by satellite laser ranging for the same period. This revelation raises more questions than it answers: even though the polar-motion-induced perturbation of J2 depends on and anti-correlates with the CA, it is generically second order as a result of trace invariance in the moment of inertia tensor. Only direct mass redistribution can cause first order variation in J2. The decadal variation in the CA excited by highly irregular atmospheric forcing is unlikely to be by chance, as we find that the autocorrelation of the forcing is strongest at the time lag of ~10 years for the period 1976-2010. The time lag between the two strongest cold ENSO phases during the same period of time is also ~10 years (1987-1997), as indicated in the Southern Oscillation Index. The most conspicuous anomalies in the J2 time series that characterize its decadal variation are closely associated with the two cold phases. Detailed anatomy of the broadband excitation for the Chandler Wobble based on the NCEP atmospheric forcing and ECCO ocean model shows a chaotic phase transition in the Chandler signal during the prolonged cold ENSO phases from 1998-2001. All of this evidence consistently points to a decadal climatology in the rapid mass variations in the Earth's water cycle that at least in significant part contributes to the decadal variations of the CA and J2. Thus, it is dangerous to attribute all decadal variations in the Earth's gravity field to deep core dynamics without considering surface processes.

  11. Decadal Air-Sea Interaction in the North Atlantic Based on Observations and Modeling Results

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1998-01-01

    The decadal, 12-14 year, cycle observed in the North Atlantic SST and tide gauge data was examined using the NCEP/NCAR reanalyses, COADS data and an ocean model simulation. Besides this decadal mode, a shorter, subdecadal period of about 8 years exists in tide gauge data north of 40N, in the subpolar SST and in the winter North Atlantic Oscillation (NAO) index and in subpolar winter heat flux values. The decadal cycle is a well separated mode in a singular spectrum analysis (SSA) for a time series of SST EOF mode 1 with a center over the Gulf Stream extension. Tide gauge and SST data are consistent in that both show a significant subdecadal periodicity exclusively in the subpolar gyre, but in subtropics the 12-14 year period is the prominent, but nonstationary, decadal signal. The main finding of this study is that this 12-14 year cycle can be constructed based on the leading mode of the surface heat flux. This connection to the surface heat flux implicates the participation of the thermohaline circulation in the decadal cycle. During the cycle starting from the positive index phase of NAO, SST and oceanic heat content anomalies are created in subtropics due to local heat flux and intensification of the thermohaline circulation. The anomalies advect to the subpolar gyre where they are amplified by local heat flux and are part of the negative feedback of thermohaline circulation on itself. Consequently the oceanic thermohaline circulation slows down and the opposite cycle starts. The oscillatory nature would not be possible without the active atmospheric participation in the cycle, because it provides the unstable interaction through heat flux, without it, the oceanic mode would be damped. This analysis suggests that the two principal modes of heat flux variability, corresponding to patterns similar to North Atlantic Oscillation (NAO) and Western Atlantic (WA), are part of the same decadal cycle and an indirect measure of the north-south movement of the storm tracks.

  12. Two centuries of coherent decadal climate variability across the Pacific North American region

    NASA Astrophysics Data System (ADS)

    Sanchez, S. C.; Charles, C. D.; Carriquiry, J. D.; Villaescusa, J. A.

    2016-09-01

    The decadal variability of the Pacific Ocean and North American hydroclimate are subjects of immediate concern for society, yet the length of the instrumental record limits full mechanistic understanding of this variability. Here we introduce a 178 year, seasonally resolved coral oxygen isotopic record from Clarion Island (18°N, 115°W), a sampling a subtropical region that is strongly influenced by the decadal-scale fluctuations of the North Pacific Gyre Oscillation and a region that serves as a critical locus for the communication of climate anomalies with the tropics. This Mexican Pacific coral record is highly correlated to coral records from the central tropical Pacific and tree ring records from western North America. Significant changes in the amplitude of oceanic decadal variability in the early nineteenth century are mirrored in the drought reconstructions in western North America. The spatial manifestation of this relationship was relatively invariant, despite notable changes in the climatic mean state.

  13. Decadal-scale thermohaline variability in the Atlantic sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Hutchinson, K.; Swart, S.; Meijers, A.; Ansorge, I.; Speich, S.

    2016-05-01

    An enhanced Altimetry Gravest Empirical Mode (AGEM), including both adiabatic and diabatic trends, is developed for the Antarctic Circumpolar Current (ACC) south of Africa using updated hydrographic CTD sections, Argo data, and satellite altimetry. This AGEM has improved accuracy compared to traditional climatologies and other proxy methods. The AGEM for the Atlantic Southern Ocean offers an ideal technique to investigate the thermohaline variability over the past two decades in a key region for water mass exchanges and transformation. In order to assess and attribute changes in the hydrography of the region, we separate the changes into adiabatic and diabatic components. Integrated over the upper 2000 dbar of the ACC south of Africa, results show mean adiabatic changes of 0.16 ± 0.11°C decade-1 and 0.006 ± 0.014 decade-1, and diabatic differences of -0.044 ± 0.13°C decade-1 and -0.01 ± 0.017 decade-1 for temperature and salinity, respectively. The trends of the resultant AGEM, that include both adiabatic and diabatic variability (termed AD-AGEM), show a significant increase in the heat content of the upper 2000 dbar of the ACC with a mean warming of 0.12 ± 0.087°C decade-1. This study focuses on the Antarctic Intermediate Water (AAIW) mass where negative diabatic trends dominate positive adiabatic differences in the Subantarctic Zone (SAZ), with results indicating a cooling (-0.17°C decade-1) and freshening (-0.032 decade-1) of AAIW in this area, whereas south of the SAZ positive adiabatic and diabatic trends together create a cumulative warming (0.31°C decade-1) and salinification (0.014 decade-1) of AAIW.

  14. Global Ocean Evaporation: How Well Can We Estimate Interannual to Decadal Variability?

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Bosilovich, Michael G.; Roberts, Jason B.; Wang, Hailan

    2015-01-01

    Evaporation from the world's oceans constitutes the largest component of the global water balance. It is important not only as the ultimate source of moisture that is tied to the radiative processes determining Earth's energy balance but also to freshwater availability over land, governing habitability of the planet. Here we focus on variability of ocean evaporation on scales from interannual to decadal by appealing to three sources of data: the new MERRA-2 (Modern-Era Retrospective analysis for Research and Applications -2); climate models run with historical sea-surface temperatures, ice and atmospheric constituents (so-called AMIP experiments); and state-of-the-art satellite retrievals from the Seaflux and HOAPS (Hamburg Ocean-Atmosphere Parameters and Fluxes from Satellite) projects. Each of these sources has distinct advantages as well as drawbacks. MERRA-2, like other reanalyses, synthesizes evaporation estimates consistent with observationally constrained physical and dynamical models-but data stream discontinuities are a major problem for interpreting multi-decadal records. The climate models used in data assimilation can also be run with lesser constraints such as with SSTs and sea-ice (i.e. AMIPs) or with additional, minimal observations of surface pressure and marine observations that have longer and less fragmentary observational records. We use the new ERA-20C reanalysis produced by ECMWF embodying the latter methodology. Still, the model physics biases in climate models and the lack of a predicted surface energy balance are of concern. Satellite retrievals and comparisons to ship-based measurements offer the most observationally-based estimates, but sensor inter-calibration, algorithm retrieval assumptions, and short records are dominant issues. Our strategy depends on maximizing the advantages of these combined records. The primary diagnostic tool used here is an analysis of bulk aerodynamic computations produced by these sources and uses a first

  15. Analysis and modeling of decadal and long-term variability of coastal California summer temperature changes

    NASA Astrophysics Data System (ADS)

    Sequera, Pedro

    Summer average daily maximum temperature (Tmax) trends for 1950-2010 were calculated for 241 locations along all of California by use of daily max temperatures from NWS Coop sites to understand the spatial and temporal variabilities of the previously reported summer coastal-cooling. Results show that coastal-cooling appears almost continuously throughout the California coast in locations open to marine air penetrations for the period of 1970-2010. Correlations with the Pacific Decadal Oscillation (PDO) Index show that coastal-cooling disappears during the increasing PDO period (1950-1985). The most influential factor(s) on California summer coastal temperatures, i.e., Greenhouse Gas (GHG) warming, PDO and changes in Land Cover/Land Use (LCLU), were determined through numerical atmospheric modeling using the Weather Research & Forecasting (WRF) model. Combined results from observations, reanalysis and modeling lead to the conclusion that PDO is the main mechanism of decadal variability of California summer temperatures, dominating over global GHG-warming effects. PDO affects both coastal and inland temperatures by controlling the position and intensity of the two dominating global circulation patterns on California summer: the semi-permanent Pacific High Pressure System and the continental Thermal-Low. Coastal cooling will rise on decreasing PDO periods, where the warming of inland regions and cooling of nearshore Sea Surface Temperatures (SSTs) results in an increase in sea-breeze activity. Coastal-warming results in increasing periods of the PDO. Global warming induced by GHG and hyper-urbanization were found to be major sources of coastal warming over complete PDO cycles (1950-2010).

  16. Ozone and upper troposphere/lower stratosphere variability and change at southern midlatitudes 1980-2000: Decadal variations

    NASA Astrophysics Data System (ADS)

    Canziani, P. O.; Malanca, F. E.; Agosta, E. A.

    2008-10-01

    Total ozone relationships with selected upper troposphere/lower stratosphere variables (400- and 70-hPa temperatures, tropopause height and temperature, 70-hPa geopotential height, and 340-K potential vorticity), as well as between the variables, are analyzed on decadal scales over Southern Hemisphere midlatitudes for the period 1980-2000. Total Ozone Mapping Spectrometer version 8 total ozone and European Centre for Medium Range Weather Forecast ERA-40 data products for June and October (early winter and spring) are used. Multiple spatial correlation techniques and shared variance estimates are applied to infer relationships between mean fields as well as among decadal difference fields. Wave activity Z and local Eliassen-Palm fluxes were calculated to further analyze the dynamics of the samples and their variability. The statistical studies show that observed total ozone latitudinal and longitudinal decadal variations can be driven by upper tropospheric and stratospheric variability, depending on latitude and season. The sampled regions, divided into subtropical and subpolar, yield differentiated relationships. October ozone decadal variations during the 1980s, particularly at higher latitudes, are attributed primarily to chemical ozone depletion, while there appear to be links between tropospheric decadal change and some of the stratospheric variables and tropopause behavior. In the 1990s, tropospheric contributions decrease, and stratospheric quasi stationary wave 1 plays a major role. In June, tropospheric change/variability appears to be more important than stratospheric driving, which nevertheless also contributes to change. Ozone change in the 1990s responded more to stratospheric dynamic change at higher latitudes, but despite reduced contributions, the troposphere remains a driver of variation at the lower latitudes of the sample.

  17. Associations of decadal to multidecadal sea-surface temperature variability with Upper Colorado River flow

    USGS Publications Warehouse

    McCabe, G.J.; Betancourt, J.L.; Hidalgo, H.G.

    2007-01-01

    The relations of decadal to multidecadal (D2M) variability in global sea-surface temperatures (SSTs) with D2M variability in the flow of the Upper Colorado River Basin (UCRB) are examined for the years 1906-2003. Results indicate that D2M variability of SSTs in the North Atlantic, North Pacific, tropical Pacific, and Indian Oceans is associated with D2M variability of the UCRB. A principal components analysis (with varimax rotation) of detrended and 11-year smoothed global SSTs indicates that the two leading rotated principal components (RPCs) explain 56% of the variability in the transformed SST data. The first RPC (RPC1) strongly reflects variability associated with the Atlantic Multidecadal Oscillation and the second RPC (RPC2) represents variability of the Pacific Decadal Oscillation, the tropical Pacific Ocean, and Indian Ocean SSTs. Results indicate that SSTs in the North Atlantic Ocean (RPC1) explain as much of the D2M variability in global SSTs as does the combination of Indian and Pacific Ocean variability (RPC2). These results suggest that SSTs in all of the oceans have some relation with flow of the UCRB, but the North Atlantic may have the strongest and most consistent association on D2M time scales. Hydroclimatic persistence on these time scales introduces significant nonstationarity in mean annual streamflow, with critical implications for UCRB water resource management. ?? 2007 American Water Resources Association.

  18. Optimal nonlinear excitation of decadal variability of the North Atlantic thermohaline circulation

    NASA Astrophysics Data System (ADS)

    Zu, Ziqing; Mu, Mu; Dijkstra, Henk A.

    2013-11-01

    Nonlinear development of salinity perturbations in the Atlantic thermohaline circulation (THC) is investigated with a three-dimensional ocean circulation model, using the conditional nonlinear optimal perturbation method. The results show two types of optimal initial perturbations of sea surface salinity, one associated with freshwater and the other with salinity. Both types of perturbations excite decadal variability of the THC. Under the same amplitude of initial perturbation, the decadal variation induced by the freshwater perturbation is much stronger than that by the salinity perturbation, suggesting that the THC is more sensitive to freshwater than salinity perturbation. As the amplitude of initial perturbation increases, the decadal variations become stronger for both perturbations. For salinity perturbations, recovery time of the THC to return to steady state gradually saturates with increasing amplitude, whereas this recovery time increases remarkably for freshwater perturbations. A nonlinear (advective) feedback between density and velocity anomalies is proposed to explain these characteristics of decadal variability excitation. The results are consistent with previous ones from simple box models, and highlight the importance of nonlinear feedback in decadal THC variability.

  19. Decadal Changes in the Cryosphere as Observed by Historical Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Comiso, J. C.

    2015-12-01

    The earliest signals of a climate change are being observed in the Arctic where warming has been amplified primarily on account of ice-albedo feedbacks associated with the high albedo of snow and ice. It is also the region where the sea ice cover has been declining rapidly. Because of general inaccessibility, there is a paucity of in situ data and hence the need to use satellite data to observe the large-scale variability and trends in surface temperature and sea ice in the region. The sensor with the longest record on surface temperature has been the Advanced Very High Resolution Radiometer (AVHRR) that has provided continuous thermal infrared data since 1981. The primary source of error in the data is cloud masking because of similar signatures of clouds and snow/ice covered surfaces and calibration of the different AVHRR sensors that makes up the historical data. The temperatures derived from the Moderate Resolution Imaging Spectro-radiometer from 2000 have provided higher quality data and are used as the baseline for enhancing the AVHRR data. Sea ice cover parameters are derived from the Scanning Multichannel Microwave Radiometer (SMMR) and a series of Special Scanning Microwave Imager (SSM/I) data which together provide continuous data from November 1978 to the present. The results of analysis of temperature data show an average warming rate of 0.6°C per decade in the Arctic from 1981 to 2014 which is 3 times that of about 0.2°C per decade globally for the same period. The trend in the sea ice cover in the Arctic has been -3.8 % per decade but the thicker portion called multiyear ice has been declining more drastically at about -14% per decade. Other parameters like albedo and cloud cover have been changing as well but the uncertainties in the trends are greater. The strength of the relationships of the different cryospheric parameters will be discussed.

  20. Decadal variability of the Turner Angle in the Mediterranean Sea and its implications for double diffusion

    NASA Astrophysics Data System (ADS)

    Meccia, Virna L.; Simoncelli, Simona; Sparnocchia, Stefania

    2016-08-01

    The physical reanalysis component of the Mediterranean Forecasting System is used to construct a high-resolution three-dimensional atlas of the Turner Angle. An assessment of the model quality shows a maximum degree of agreement with observations in the water column between 150 and 1000 m depth. The mean state of the favourable conditions for double diffusion processes is evaluated and the recent decadal variability is studied in terms of changes in the water mass properties. The results show that approximately 50% of the Mediterranean Sea is favourable to double diffusion processes, from which around 47% is associated with salt fingering. The Tyrrhenian, Ionian and southwestern Mediterranean are the most vulnerable basins to salt fingering, and the strongest processes can occur in the Tyrrhenian deep waters. Diffusive convection is most likely to occur in the Ionian, Aegean and eastern Mediterranean at vertical levels deeper than 1000 m. The observed gradual warming and salinification of the Mediterranean after 1997 decreased and increased the possibilities of the occurrence of salt fingers and double diffusive convections, respectively. The climatological atlas that is presented in this paper provides a three-dimensional picture of the regions that are either doubly stable or favourable to double diffusion instability and allows for the characterization of the diffusive properties of the water masses.

  1. Variable Star Observing in South Africa

    NASA Astrophysics Data System (ADS)

    Hers, Jan

    1986-12-01

    Variable star observing by amateurs in South Africa has a long history, dating back to the previous century. Amateurs all over the world still play an important role in the study of variable stars contributing important observations to the professional community.

  2. Forcing of recent decadal variability in the Equatorial and North Indian Ocean

    NASA Astrophysics Data System (ADS)

    Thompson, P. R.; Piecuch, C. G.; Merrifield, M. A.; McCreary, J. P.; Firing, E.

    2016-09-01

    Recent decadal sea surface height (SSH) variability across the Equatorial and North Indian Ocean (ENIO, north of 5°S) is spatially coherent and related to a reversal in basin-scale, upper-ocean-temperature trends. Analysis of ocean and forcing fields from a data-assimilating ocean synthesis (ECCOv4) suggests that two equally important mechanisms of wind-driven heat redistribution within the Indian Ocean account for a majority of the decadal variability. The first is the Cross-Equatorial Cell (CEC) forced by zonal wind stress curl at the equator. The wind stress curl variability relates to the strength and position of the Mascarene High, which is influenced by the phase of the Indian Ocean Subtropical Dipole. The second mechanism is deep (700 m) upwelling related to zonal wind stress at the equator that causes deep, cross-equatorial overturning due to the unique geometry of the basin. The CEC acts to cool the upper ocean throughout most of the first decade of satellite altimetry, while the deep upwelling delays and then amplifies the effect of the CEC on SSH. During the subsequent decade, reversals in the forcing anomalies drive warming of the upper ocean and increasing SSH, with the effect of the deep upwelling leading the CEC.

  3. The role of Atlantic Multi-decadal Oscillation in the global mean temperature variability

    SciTech Connect

    Chylek, Petr; Klett, James D.; Dubey, Manvendra K.; Hengartner, Nicolas

    2016-11-01

    We simulated the global mean 1900–2015 warming by 42 Coupled Models Inter-comparison Project, phase 5 (CMIP5) climate models varies between 0.58 and 1.70 °C. The observed warming according to the NASA GISS temperature analysis is 0.95 °C with a 1200 km smoothing radius, or 0.86 °C with a 250 km smoothing radius. The projection of the future 2015–2100 global warming under a moderate increase of anthropogenic radiative forcing (RCP4.5 scenario) by individual models is between 0.7 and 2.3 °C. The CMIP5 climate models agree that the future climate will be warmer; however, there is little consensus as to how large the warming will be (reflected by an uncertainty of over a factor of three). Moreover, a parsimonious statistical regression model with just three explanatory variables [anthropogenic radiative forcing due to greenhouse gases and aerosols (GHGA), solar variability, and the Atlantic Multi-decadal Oscillation (AMO) index] accounts for over 95 % of the observed 1900–2015 temperature variance. This statistical regression model reproduces very accurately the past warming (0.96 °C compared to the observed 0.95 °C) and projects the future 2015–2100 warming to be around 0.95 °C (with the IPCC 2013 suggested RCP4.5 radiative forcing and an assumed cyclic AMO behavior). The AMO contribution to the 1970–2005 warming was between 0.13 and 0.20 °C (depending on which AMO index is used) compared to the GHGA contribution of 0.49–0.58 °C. During the twenty-first century AMO cycle the AMO contribution is projected to remain the same (0.13–0.20 °C), while the GHGA contribution is expected to decrease to 0.21–0.25 °C due to the levelling off of the GHGA radiative forcing that is assumed according to the RCP4.5 scenario. Therefore, the anthropogenic contribution and natural variability are expected to contribute about equally to the anticipated global warming during the second half of the twenty-first century for the RCP4.5 trajectory.

  4. The role of Atlantic Multi-decadal Oscillation in the global mean temperature variability

    NASA Astrophysics Data System (ADS)

    Chylek, Petr; Klett, James D.; Dubey, Manvendra K.; Hengartner, Nicolas

    2016-11-01

    The global mean 1900-2015 warming simulated by 42 Coupled Models Inter-comparison Project, phase 5 (CMIP5) climate models varies between 0.58 and 1.70 °C. The observed warming according to the NASA GISS temperature analysis is 0.95 °C with a 1200 km smoothing radius, or 0.86 °C with a 250 km smoothing radius. The projection of the future 2015-2100 global warming under a moderate increase of anthropogenic radiative forcing (RCP4.5 scenario) by individual models is between 0.7 and 2.3 °C. The CMIP5 climate models agree that the future climate will be warmer; however, there is little consensus as to how large the warming will be (reflected by an uncertainty of over a factor of three). A parsimonious statistical regression model with just three explanatory variables [anthropogenic radiative forcing due to greenhouse gases and aerosols (GHGA), solar variability, and the Atlantic Multi-decadal Oscillation (AMO) index] accounts for over 95 % of the observed 1900-2015 temperature variance. This statistical regression model reproduces very accurately the past warming (0.96 °C compared to the observed 0.95 °C) and projects the future 2015-2100 warming to be around 0.95 °C (with the IPCC 2013 suggested RCP4.5 radiative forcing and an assumed cyclic AMO behavior). The AMO contribution to the 1970-2005 warming was between 0.13 and 0.20 °C (depending on which AMO index is used) compared to the GHGA contribution of 0.49-0.58 °C. During the twenty-first century AMO cycle the AMO contribution is projected to remain the same (0.13-0.20 °C), while the GHGA contribution is expected to decrease to 0.21-0.25 °C due to the levelling off of the GHGA radiative forcing that is assumed according to the RCP4.5 scenario. Thus the anthropogenic contribution and natural variability are expected to contribute about equally to the anticipated global warming during the second half of the twenty-first century for the RCP4.5 trajectory.

  5. The role of Atlantic Multi-decadal Oscillation in the global mean temperature variability

    DOE PAGES

    Chylek, Petr; Klett, James D.; Dubey, Manvendra K.; ...

    2016-11-01

    We simulated the global mean 1900–2015 warming by 42 Coupled Models Inter-comparison Project, phase 5 (CMIP5) climate models varies between 0.58 and 1.70 °C. The observed warming according to the NASA GISS temperature analysis is 0.95 °C with a 1200 km smoothing radius, or 0.86 °C with a 250 km smoothing radius. The projection of the future 2015–2100 global warming under a moderate increase of anthropogenic radiative forcing (RCP4.5 scenario) by individual models is between 0.7 and 2.3 °C. The CMIP5 climate models agree that the future climate will be warmer; however, there is little consensus as to how largemore » the warming will be (reflected by an uncertainty of over a factor of three). Moreover, a parsimonious statistical regression model with just three explanatory variables [anthropogenic radiative forcing due to greenhouse gases and aerosols (GHGA), solar variability, and the Atlantic Multi-decadal Oscillation (AMO) index] accounts for over 95 % of the observed 1900–2015 temperature variance. This statistical regression model reproduces very accurately the past warming (0.96 °C compared to the observed 0.95 °C) and projects the future 2015–2100 warming to be around 0.95 °C (with the IPCC 2013 suggested RCP4.5 radiative forcing and an assumed cyclic AMO behavior). The AMO contribution to the 1970–2005 warming was between 0.13 and 0.20 °C (depending on which AMO index is used) compared to the GHGA contribution of 0.49–0.58 °C. During the twenty-first century AMO cycle the AMO contribution is projected to remain the same (0.13–0.20 °C), while the GHGA contribution is expected to decrease to 0.21–0.25 °C due to the levelling off of the GHGA radiative forcing that is assumed according to the RCP4.5 scenario. Therefore, the anthropogenic contribution and natural variability are expected to contribute about equally to the anticipated global warming during the second half of the twenty-first century for the RCP4.5 trajectory.« less

  6. The Hydroclimate of East Africa: Seasonal cycle, Decadal Variability, and Human-induced Climate Change

    NASA Astrophysics Data System (ADS)

    Yang, Wenchang

    The hydroclimate of East Africa shows distinctive variabilities on seasonal to decadal time scales and poses a great challenge to climatologists attempting to project its response to anthropogenic emissions of greenhouse gases (GHGs). Increased frequency and intensity of droughts over East Africa in recent decades raise the question of whether the drying trend will continue into the future. To address this question, we first examine the decadal variability of the East African rainfall during March--May (MAM, the major rainy season in East Africa) and assess how well a series of models simulate the observed features. Observational results show that the drying trend during MAM is associated with decadal natural variability of sea surface temperature (SST) variations over the Pacific Ocean. The multimodel mean of the SST-forced, Coupled Model Intercomparison Project Phase 5 (CMIP5) AMIP experiment models reproduces both the climatological annual cycle and the drying trend in recent decades. The fully coupled models from the CMIP5 historical experiment, however, have systematic errors in simulating the East African rainfall annual cycle by underestimating the MAM rainfall while overestimating the October--December (OND, the second rainy season in East Africa) rainfall. The multimodel mean of the historical coupled runs of the MAM rainfall anomalies, which is the best estimate of the radiatively-forced change, shows a weak wetting trend associated with anthropogenic forcing. However, the SST anomaly pattern associated with the MAM rainfall has large discrepancies with the observations. The errors in simulating the East African hydroclimate with coupled models raise questions about how reliable model projections of future East African climate are. This motivates a fundamental study of why East African climate is the way it is and why coupled models get it wrong. East African hydroclimate is characterized by a dry annual mean climatology compared to other deep tropical

  7. Variability of Ocean Heat Uptake: Reconciling Observations and Models

    SciTech Connect

    AchutaRao, K M; Santer, B D; Gleckler, P J; Taylor, K; Pierce, D; Barnett, T; Wigley, T L

    2005-05-05

    This study examines the temporal variability of ocean heat uptake in observations and in climate models. Previous work suggests that coupled Atmosphere-Ocean General Circulation Models (A-OGCMs) may have underestimated the observed natural variability of ocean heat content, particularly on decadal and longer timescales. To address this issue, we rely on observed estimates of heat content from the 2004 World Ocean Atlas (WOA-2004) compiled by Levitus et al. (2005). Given information about the distribution of observations in WOA-2004, we evaluate the effects of sparse observational coverage and the infilling that Levitus et al. use to produce the spatially-complete temperature fields required to compute heat content variations. We first show that in ocean basins with limited observational coverage, there are important differences between ocean temperature variability estimated from observed and infilled portions of the basin. We then employ data from control simulations performed with eight different A-OGCMs as a test-bed for studying the effects of sparse, space- and time-varying observational coverage. Subsampling model data with actual observational coverage has a large impact on the inferred temperature variability in the top 300 and 3000 meters of the ocean. This arises from changes in both sampling depth and in the geographical areas sampled. Our results illustrate that subsampling model data at the locations of available observations increases the variability, reducing the discrepancy between models and observations.

  8. A decadally delayed response of the tropical Pacific to Atlantic multidecadal variability

    NASA Astrophysics Data System (ADS)

    Zanchettin, Davide; Bothe, Oliver; Graf, Hans F.; Omrani, Nour-Eddine; Rubino, Angelo; Jungclaus, Johann H.

    2016-01-01

    North Atlantic sea surface temperature anomalies are known to affect tropical Pacific climate variability and El Niño-Southern Oscillation (ENSO) through thermocline adjustment in the equatorial Pacific Ocean. Here coupled climate simulations featuring repeated idealized cycles of the Atlantic Multidecadal Oscillation (AMO) generated by nudging its tropical branch demonstrate that the tropical Pacific response to the AMO also entails a substantial decadally delayed component. The simulations robustly show multidecadal fluctuations in central equatorial Pacific sea surface temperatures lagging the AMO by about three decades and a subdecadal cold-to-warm transition of the tropical Pacific mean state during the AMO's cooling phase. The interplay between out-of-phase responses of seawater temperature and salinity in the western Pacific and associated density anomalies in local thermocline waters emerge as crucial factors of remotely driven multidecadal variations of the equatorial Pacific climate. The delayed AMO influences on tropical Pacific dynamics could help understanding past and future ENSO variability.

  9. Decadal and Lower Frequency South Pacific Climate Variability Since 1619 AD from Replicated Coral Records

    NASA Astrophysics Data System (ADS)

    Linsley, B. K.; Wellington, G. M.; Kaplan, A.; Demenocal, P. B.

    2004-12-01

    both influenced to varying degrees by the South Pacific Convergence Zone (SPCZ) one explanation for the \\delta18O trend is that the SPCZ has been intensifying over the last 200 years with increasing cloud cover and rainfall as the surface ocean warmed. On decadal-interdecadal time-scales, comparison of the Fiji and Rarotonga coral \\delta18O series to other coral \\delta18O records from New Caledonia and the Great Barrier Reef indicates that some interdecadal climate shifts apparently were related to changes in the SPCZ and others apparently were unrelated to the SPCZ. This observation suggests the possibility that decadal-interdecadal climate variability in the South Pacific has multiple sources, and may at times be related to higher latitude South Pacific processes.

  10. Associations of multi-decadal sea-surface temperature variability with US drought

    USGS Publications Warehouse

    McCabe, G.J.; Betancourt, J.L.; Gray, S.T.; Palecki, M.A.; Hidalgo, H.G.

    2008-01-01

    Recent research suggests a link between drought occurrence in the conterminous United States (US) and sea surface temperature (SST) variability in both the tropical Pacific and North Atlantic Oceans on decadal to multidecadal (D2M) time scales. Results show that the Atlantic Multidecadal Oscillation (AMO) is the most consistent indicator of D2M drought variability in the conterminous US during the 20th century, but during the 19th century the tropical Pacific is a more consistent indicator of D2 M drought. The interaction between El Nin??o-Southern Oscillation (ENSO) and the AMO explain a large part of the D2M drought variability in the conterminous US. More modeling studies are needed to reveal possible mechanisms linking low-frequency ENSO variability and the AMO with drought in the conterminous US. ?? 2007 Elsevier Ltd and INQUA.

  11. Global linkages originating from decadal oceanic variability in the subpolar North Atlantic

    NASA Astrophysics Data System (ADS)

    Chafik, L.; Häkkinen, S.; England, M. H.; Carton, J. A.; Nigam, S.; Ruiz-Barradas, A.; Hannachi, A.; Miller, L.

    2016-10-01

    The anomalous decadal warming of the subpolar North Atlantic Ocean (SPNA), and the northward spreading of this warm water, has been linked to rapid Arctic sea ice loss and more frequent cold European winters. Recently, variations in this heat transport have also been reported to covary with global warming slowdown/acceleration periods via a Pacific climate response. We here examine the role of SPNA temperature variability in this Atlantic-Pacific climate connectivity. We find that the evolution of ocean heat content anomalies from the subtropics to the subpolar region, likely due to ocean circulation changes, coincides with a basin-wide Atlantic warming/cooling. This induces an Atlantic-Pacific sea surface temperature seesaw, which in turn, strengthens/weakens the Walker circulation and amplifies the Pacific decadal variability that triggers pronounced global-scale atmospheric circulation anomalies. We conclude that the decadal oceanic variability in the SPNA is an essential component of the tropical interactions between the Atlantic and Pacific Oceans.

  12. What has driven the interannual variability of atmospheric methane concentrations over the last three decades?

    NASA Astrophysics Data System (ADS)

    Coulon, A.; Stenke, A.; Peter, T.

    2015-12-01

    Atmospheric methane (CH4) is the second most anthropogenic greenhouse gas (IPCC, 2013). Observations of methane concentrations at the surface from the last three decades show puzzling fluctuations; from the early 1980s they indicate a nearly constant increase of 8.7 ppbv/year until 2000, including a slowdown after 1990. After a period of about eight years with near zero growh rates, methane concentrations have again been rising since 2007 (Sussmann et al., 2012). Simulations forced with prescribed meteorological fields have been performed for the 1980-2010 period using the chemistry-climate model (CCM) SOCOL. 48 methane tracers have been included in SOCOL and used together with flux boundary conditions for CH4 to allow the tracking of methane emissions from different source categories, such as wetlands, rice paddies, ruminants, industry…, as well as geographical regions. These new simulations provide an innovative way to better understand methane variability, both in terms of emission changes and changes in tropospheric OH, which is investigated with a tracer based on methyl chloroform emissions. An analysis of the tracers elucidates the impact of different emission source categories for different time periods. For 1980-1990, positive gobal methane growth rates result from increasing anthropogenic emissions over Europe, India, and China. A decrease of anthropogenic emissions over Europe after 1990 is consistent with the slow down in the global methane growth rate for 1990-2000. During this period short-lived events such as the eruption of Mount Pinatubo and the strong 1997-1998 El-Niño also affect global methane concentrations, largely by a decrease in wetlands emissions during 1992 and high levels of biomass burning in tropical Asia, respectively. The near-zero trend is maintained after 2000 because of reduced natural emissions, again from wetlands. After 2005, our simulations show a positive global methane growth rate, in agreement with the observations, due

  13. Decadal-Scale Rainfall Variability in Guam over the Common Era

    NASA Astrophysics Data System (ADS)

    Lindzey, K.; Partin, J. W.; Quinn, T. M.; Jenson, J. W.; Shen, C.; Banner, J. L.; lin, K.; Hardt, B. F.

    2012-12-01

    Guam is located in the Western Pacific Warm Pool (WPWP), a region of the ocean where seasonal sea surface temperatures > 28°C provide a major source of heat and water vapor to the atmosphere. Rainfall data from islands in the WPWP are limited in time and space in the pre-satellite era. Instrumental rainfall records are available from Guam from 1948 to the present. These instrumental records contain evidence of inter-decadal variations of 1-1.4 m of wet season rainfall over ~20 year periods. Rainfall proxies that overlap with, and extend beyond, the instrumental period are needed to capture the spectrum of natural rainfall variability. We use variations in stalagmite δ18O from Cool Cave in southern Guam as a proxy for rainfall variability from 2010 back to 460 CE. Our preliminary age model is based on two U-series disequilibrium dates and the time of collection. The preliminary stalagmite δ18O rainfall reconstruction is continuous back to 980 CE, has an average temporal resolution of 4 years per data point, and is dominated by inter-decadal variability (20-40 year period) in δ18O of 0.8-2.2‰. The δ18O rainfall reconstruction contains no clear centennial-scale extrema associated with the Little Ice Age or the Medieval Climate Anomaly; nor any correlation with the Pacific Decadal Oscillation (in agreement with the instrumental record of rainfall). Additional U/Th dates are needed, however, to reduce age model uncertainties. The Guam stalagmite δ18O record suggests that internal climate variability, and not external solar forcing, controls rainfall variability in this region of the WPWP.

  14. Indian Ocean heat content changes masked by multi-decadal variability: Is the Indian Ocean warming or not?

    NASA Astrophysics Data System (ADS)

    Ummenhofer, Caroline; Biastoch, Arne; Böning, Claus

    2015-04-01

    The Indian Ocean has sustained robust surface warming in recent decades, with warming rates exceeding those of other tropical ocean basins. Significant, non-uniform trends in Indian Ocean sea surface temperatures - both in observations and projections for the 21st Century - have the potential to impact regional climate, through variations in the monsoon circulation, characteristics of Indian Ocean Dipole events, and the associated hydroclimate across the wider Indo-Pacific. However, it remains unclear what role decadal to multi-decadal variability in upper-ocean Indian Ocean thermal characteristics play in these trends. Using high-resolution ocean model hindcasts building on the ocean/sea-ice numerical Nucleus for European Modelling of the Ocean (NEMO) framework forced with atmospheric forcing fields of the Coordinated Ocean Reference Experiments (CORE), the characteristics of Indian Ocean temperature changes are explored. Sensitivity experiments, where interannual atmospheric forcing variability is restricted to thermal or wind-stress forcing only, support the interpretation of forcing mechanisms for the evolution of temperature characteristics across the Indian Ocean, focusing on the top 700m. Simulated temperature changes across the Indian Ocean in the hindcasts are consistent with those recorded in observational products, as well as ocean reanalyses. Assessment of Indian Ocean heat content since the 1950s suggests extensive (subsurface) cooling for much of the tropical Indian Ocean. The presence of substantial multi-decadal variability in its heat content further implies caution in interpreting linear trends in thermal properties, as long-term trends can be masked. The sensitivity experiments reveal that cooling trends in Indian Ocean heat content since the mid-1960s to the late 1990s are largely driven by wind-stress forcing, likely due to remote Pacific wind forcing associated with the Pacific Decadal Oscillation (PDO). As such, multi-decadal wind-forcing has

  15. Missing pieces of the puzzle: understanding decadal variability of Sahel Rainfall

    NASA Astrophysics Data System (ADS)

    Vellinga, Michael; Roberts, Malcolm; Vidale, Pier-Luigi; Mizielinski, Matthew; Demory, Marie-Estelle; Schiemann, Reinhard; Strachan, Jane; Bain, Caroline

    2015-04-01

    The instrumental record shows that substantial decadal fluctuations affected Sahel rainfall from the West African monsoon throughout the 20th century. Climate models generally underestimate the magnitude of decadal Sahel rainfall changes compared to observations. This shows that the processes that control low-frequency Sahel rainfall change are misrepresented in most CMIP5-era climate models. Reliable climate information of future low-frequency rainfall changes thus remains elusive. Here we identify key processes that control the magnitude of the decadal rainfall recovery in the Sahel since the mid-1980s. We show its sensitivity to model resolution and physics in a suite of experiments with global HadGEM3 model configurations at resolutions between 130-25 km. The decadal rainfall trend increases with resolution and at 60-25 km falls within the observed range. Higher resolution models have stronger increases of moisture supply and of African Easterly wave activity. Easterly waves control the occurrence of strong organised rainfall events which carry most of the decadal trend. Weak rainfall events occur too frequently at all resolutions and at low resolution contribute substantially to the decadal trend. All of this behaviour is seen across CMIP5, including future scenarios. Additional simulations with a global 12km version of HadGEM3 show that treating convection explicitly dramatically improves the properties of Sahel rainfall systems. We conclude that interaction between convective scale and global scale processes is key to decadal rainfall changes in the Sahel. This work is distributed under the Creative Commons Attribution 3.0 Unported License together with an author copyright. This license does not conflict with the regulations of the Crown Copyright.Crown Copyright

  16. Multi-Decadal Modulations in the Variability of the East Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Nakamura, H.; Machimura, T.; Ogawa, S.; Kosaka, Y.; Nishii, K.; Miyasaka, T.

    2015-12-01

    The East Asian summer monsoon fluctuates from its climatological activity on monthly and interannual time scales, and the most dominant pattern of the variability is known as the Pacific-Japan (PJ) pattern. Characterized by a meridional teleconnection in anomalous activity of the Meiyu/Baiu rainband, tropical storms and a surface subtropical anticyclone (the Bonin High) in between, the PJ pattern exerts substantial influence on summertime climatic conditions over East Asia and the western North Pacific. Despite the recent warming trend observed in its background state, no assessment thus far has been made on how substantially the PJ has undergone, if any, multi-decadal modulations in its structure and/or dominance. Through an EOF analysis applied to a new dataset of global atmospheric reanalysis (JRA-55), the predominance of the PJ pattern is confirmed as being extracted in the leading EOF of lower-tropospheric monthly vorticity anomalies over 55 recent years. Both efficient barotropic/baroclinic energy conversion from the climatological-mean state and efficient generation of available potential energy through anomalous convective activity over the tropical western Pacific are shown to be essential for the maintenance of the monthly atmospheric anomalies of the PJ pattern over the entire 55-year period. At the same time, however, the same EOF analysis as above but applied separately to each of the sub-periods reveals a distinct signature of long-term modulations in amplitude and thus the dominance of the PJ pattern. While being extracted in the first EOF up to the 1980s, the PJ pattern is extracted in the second EOF in the period since the 1990s with marked reductions in both the variance fraction explained and the efficiency of energy conversion/generation. The resultant modulations of the summertime meridional teleconnection are also discussed with implications for future changes.

  17. Mountain hemlock growth responds to climatic variability at annual and decadal time scales

    USGS Publications Warehouse

    Peterson, D.W.; Peterson, D.L.

    2001-01-01

    Improved understanding of tree growth responses to climate is needed to model and predict forest ecosystem responses to current and future climatic variability. We used dendroecological methods to study the effects of climatic variability on radial growth of a subalpine conifer, mountain hemlock (Tsuga mertensiana). Tree-ring chronologies were developed for 31 sites, spanning the latitudinal and elevational ranges of mountain hemlock in the Pacific Northwest. Factor analysis was used to identify common patterns of inter-annual growth variability among the chronologies, and correlation and regression analyses were used to identify climatic factors associated with that variability. Factor analysis identified three common growth patterns, representing groups of sites with different climate-growth relationships. At high-elevation and midrange sites in Washington and northern Oregon, growth was negatively correlated with spring snowpack depth, and positively correlated with growth-year summer temperature and the winter Pacific Decadal Oscillation index (PDO). In southern Oregon, growth was negatively correlated with spring snowpack depth and previous summer temperature, and positively correlated with previous summer precipitation. At the low-elevation sites, growth was mostly insensitive to annual climatic variability but displayed sensitivity to decadal variability in the PDO opposite to that found at high-elevation sites. Mountain hemlock growth appears to be limited by late snowmelt, short growing seasons, and cool summer temperatures throughout much of its range in the Pacific Northwest. Earlier snowmelt, higher summer temperatures, and lower summer precipitation in southern Oregon produce conditions under which growth is limited by summer temperature and/or soil water availability. Increasing atmospheric CO2 concentrations could produce warmer temperatures and reduced snowpack depths in the next century. Such changes would likely increase mountain hemlock growth

  18. Tropical Atlantic Impacts on the Decadal Climate Variability of the Tropical Ocean and Atmosphere.

    NASA Astrophysics Data System (ADS)

    Li, X.; Xie, S. P.; Gille, S. T.; Yoo, C.

    2015-12-01

    Previous studies revealed atmospheric bridges between the tropical Pacific, Atlantic, and Indian Ocean. In particular, several recent works indicate that the Atlantic sea surface temperature (SST) may contribute to the climate variability over the equatorial Pacific. Inspired by these studies, our work aims at investigating the impact of the tropical Atlantic on the entire tropical climate system, and uncovering the physical dynamics under these tropical teleconnections. We first performed a 'pacemaker' simulation by restoring the satellite era tropical Atlantic SST changes in a fully coupled model - the CESM1. Results reveal that the Atlantic warming heats the Indo-Western Pacific and cools the Eastern Pacific, enhances the Walker circulation and drives the subsurface Pacific to a La Niña mode, contributing to 60-70% of the above tropical changes in the past 30 years. The same pan-tropical teleconnections have been validated by the statistics of observations and 106 CMIP5 control simulations. We then used a hierarchy of atmospheric and oceanic models with different complexities, to single out the roles of atmospheric dynamics, atmosphere-ocean fluxes, and oceanic dynamics in these teleconnections. With these simulations we established a two-step mechanism as shown in the schematic figure: 1) Atlantic warming generates an atmospheric deep convection and induces easterly wind anomalies over the Indo-Western Pacific in the form of Kelvin waves, and westerly wind anomalies over the eastern equatorial Pacific as Rossby waves, in line with Gill's solution. This circulation changes warms the Indo-Western Pacific and cools the Eastern Pacific with the wind-evaporation-SST effect, forming a temperature gradient over the Indo-Pacific basins. 2) The temperature gradient further generates a secondary atmospheric deep convection, which reinforces the easterly wind anomalies over the equatorial Pacific and enhances the Walker circulation, triggering the Pacific to a La Ni

  19. Decadal-scale variability in climate proxy records: a search for tidal and solar forcing

    NASA Astrophysics Data System (ADS)

    Berger, W.; Paetzold, J.; Wefer, G.

    2003-04-01

    Decadal-scale climate- and ocean variability is an unsolved problem. The geologic record holds a number of clues as to possible forcing functions; useful proxy series are in ice cores, corals, biogenic deposits in anaerobic basins, marine varves and small turbidites, in the sea and in lakes. Certain decadal-scale cycles seem to occur more commonly than others, and in a number of records with an entirely different pedigree, suggesting effects from outside forcing. If we assume that both solar forcing and tidal forcing play some role (as supported by spectra from corals and varves), we should expect interference between the respective forcing functions. From such interference, we can calculate the most likely periods to be found. Analysis of an 800-y coral record from Bermuda suggests that such interference periods are expressed in this proxy record.

  20. EUVE Observations of Nonmagnetic Cataclysmic Variables

    SciTech Connect

    Mauche, C W

    2001-09-05

    The authors summarize EUVE's contribution to the study of the boundary layer emission of high accretion-rate nonmagnetic cataclysmic variables, especially the dwarf novae SS Cyg, U Gem, VW Hyi, and OY Car in outburst. They discuss the optical and EUV light curves of dwarf nova outbursts, the quasi-coherent oscillations of the EUV flux of SS Cyg, the EUV spectra of dwarf novae, and the future of EUV observations of cataclysmic variables.

  1. Ocean surface temperature variability: Large model–data differences at decadal and longer periods

    PubMed Central

    Laepple, Thomas; Huybers, Peter

    2014-01-01

    The variability of sea surface temperatures (SSTs) at multidecadal and longer timescales is poorly constrained, primarily because instrumental records are short and proxy records are noisy. Through applying a new noise filtering technique to a global network of late Holocene SST proxies, we estimate SST variability between annual and millennial timescales. Filtered estimates of SST variability obtained from coral, foraminifer, and alkenone records are shown to be consistent with one another and with instrumental records in the frequency bands at which they overlap. General circulation models, however, simulate SST variability that is systematically smaller than instrumental and proxy-based estimates. Discrepancies in variability are largest at low latitudes and increase with timescale, reaching two orders of magnitude for tropical variability at millennial timescales. This result implies major deficiencies in observational estimates or model simulations, or both, and has implications for the attribution of past variations and prediction of future change. PMID:25385623

  2. Ocean surface temperature variability: large model-data differences at decadal and longer periods.

    PubMed

    Laepple, Thomas; Huybers, Peter

    2014-11-25

    The variability of sea surface temperatures (SSTs) at multidecadal and longer timescales is poorly constrained, primarily because instrumental records are short and proxy records are noisy. Through applying a new noise filtering technique to a global network of late Holocene SST proxies, we estimate SST variability between annual and millennial timescales. Filtered estimates of SST variability obtained from coral, foraminifer, and alkenone records are shown to be consistent with one another and with instrumental records in the frequency bands at which they overlap. General circulation models, however, simulate SST variability that is systematically smaller than instrumental and proxy-based estimates. Discrepancies in variability are largest at low latitudes and increase with timescale, reaching two orders of magnitude for tropical variability at millennial timescales. This result implies major deficiencies in observational estimates or model simulations, or both, and has implications for the attribution of past variations and prediction of future change.

  3. Footprints of decadal climate variability in ozone at Mauna Loa Observatory

    NASA Astrophysics Data System (ADS)

    Lin, M.; Horowitz, L. W.; Oltmans, S. J.; Fiore, A. M.; Fan, S.

    2013-12-01

    Ozone is a greenhouse gas that plays a central role in tropospheric chemistry. A 40-year ozone record at Mauna Loa Observatory (MLO, 3.4 km altitude) reveals strikingly different seasonality of ozone trends from those observed at northern mid-latitudes: increasing in fall at MLO but in spring at northern midlatitude remote sites. These changes in seasonal ozone are well reproduced by a chemistry-climate model. We find that the seasonal ozone changes at MLO cannot be accounted for by trends in ozone precursor emissions alone, but reflect decadal shifts in circulation regimes. Specifically, airflow from Eurasia towards Hawaii weakened in spring but strengthened in fall. In spring, the long-term tropical expansion, combined with an early-2000s shift in the Pacific Decadal Oscillation (PDO) towards fewer El Niño events, offsets ozone increases that otherwise would have occurred due to rising Asian emissions. In fall, transport of midlatitude pollution events to MLO has occurred more frequently since the mid-1990s, corresponding with a period of predominantly positive Pacific-North American (PNA) pattern. Our findings highlight the potential for atmospheric ozone measurements at remote sites to document interannual to decadal changes in atmospheric circulation. Decadal shifts in circulation regimes must be considered when attributing ozone changes observed at remote sites to trends in precursor emissions.

  4. Swithin St. Cleeve: Variable Star Observer

    NASA Astrophysics Data System (ADS)

    Weitzenhoffer, K.

    1986-12-01

    THomas Hardy's romance "Two on a Tower" is the first novel to use an astronomical background as its unifying theme and the first to cast an astronomer in the role of protagonist. One subplot of the novel concerns Swithin St. Cleeve's quest for fame through his observations of variable stars. Despite a number of observational and instrumental setbacks, he makes an amazing discovery about variable stars, one he is certain will excite the astronomical world. But before he can get the news into print, another astronomer announces that very discover and takes from St. Cleeve the fame he thought would be his.

  5. Decadal Variability in an OGCM Southern Ocean: intrinsic modes, forced modes and metastable states

    NASA Astrophysics Data System (ADS)

    O'Kane, Terence; Matear, Richard; Chamberlain, Matthew; Risbey, James; Horenko, Illia; Sloyan, Bernadette

    2014-05-01

    An Ocean General Circulation Model (OGCM) is used to identify a Southern Ocean southeast Pacific intrinsic mode of low frequency variability. Using CORE data a comprehensive suite of experiments were carried out to elucidate excitation and amplification responses of this intrinsic mode to low frequency forcing (ENSO, SAM) and stochastic forcing due to high frequency winds. Subsurface anomalies were found to teleconnect the Pacific and Atlantic regions of the Antarctic Circumpolar Current (ACC) thermocline. The Pacific region of the ACC is characterised by intrinsic baroclinic disturbances that respond to both SAM and ENSO, while the Atlantic sector of the ACC is sensitive to higher frequency winds that act to amplify thermocline anomalies propagating downstream from the Pacific. Non-stationary cluster analysis was used to identify the system's dynamical regimes and characterise meta-stability, persistence and transitions between the respective states. This analysis reveals significant trends, indicating fundamental changes to the meta-stability of the ocean dynamics in response to changes in atmospheric forcing. Intrinsic variability in sea-ice concentration was found to be coupled to thermocline processes. Sea-ice variability localised in the Atlantic was most closely associated with high frequency weather forcing. The SAM was associated with a circumpolar sea-ice response whereas ENSO was found to be a major driver of sea-ice variability only in the Pacific. This simulation study identifies plausible mechanisms that determine the predictability of the Southern Ocean climate on multi-decadal timescales.

  6. Characterizing unforced multi-decadal variability of ENSO: a case study with the GFDL CM2.1 coupled GCM

    NASA Astrophysics Data System (ADS)

    Atwood, A. R.; Battisti, D. S.; Wittenberg, A. T.; Roberts, W. H. G.; Vimont, D. J.

    2016-12-01

    Large multi-decadal fluctuations of El Niño-Southern Oscillation (ENSO) variability simulated in a 4000-year pre-industrial control run of GFDL CM2.1 have received considerable attention due to implications for constraining the causes of past and future changes in ENSO. We evaluated the mechanisms of this low-frequency ENSO modulation through analysis of the extreme epochs of CM2.1 as well as through the use of a linearized intermediate-complexity model of the tropical Pacific, which produces reasonable emulations of observed ENSO variability. We demonstrate that the low-frequency ENSO modulation can be represented by the simplest model of a linear, stationary process, even in the highly nonlinear CM2.1. These results indicate that CM2.1's ENSO modulation is driven by transient processes that operate at interannual or shorter time scales. Nonlinearities and/or multiplicative noise in CM2.1 likely exaggerate the ENSO modulation by contributing to the overly active ENSO variability. In contrast, simulations with the linear model suggest that intrinsically-generated tropical Pacific decadal mean state changes do not contribute to the extreme-ENSO epochs in CM2.1. Rather, these decadal mean state changes actually serve to damp the intrinsically-generated ENSO modulation, primarily by stabilizing the ENSO mode during strong-ENSO epochs. Like most coupled General Circulation Models, CM2.1 suffers from large biases in its ENSO simulation, including ENSO variance that is nearly twice that seen in the last 50 years of observations. We find that CM2.1's overly strong ENSO variance directly contributes to its strong multi-decadal modulation through broadening the distribution of epochal variance, which increases like the square of the long-term variance. These results suggest that the true spectrum of unforced ENSO modulation is likely substantially narrower than that in CM2.1. However, relative changes in ENSO modulation are similar between CM2.1, the linear model tuned to

  7. The role of external forcing and internal variability in regulating global mean surface temperatures on decadal timescales

    NASA Astrophysics Data System (ADS)

    Dong, Lu; McPhaden, Michael J.

    2017-03-01

    Global mean surface temperature (GMST) shows considerable decadal variations superimposed on a pronounced warming trend, with rapid warming during 1920–1945 and 1977–2000 and warming hiatuses during 1946–1976 and 2001–2013. The prevailing view is that internally generated variations associated with the Interdecadal Pacific Oscillation (IPO) dominate decadal variations in GMST, while external forcing from greenhouse gases and anthropogenic aerosols dominate the long-term trend in GMST over the last hundred years. Here we show evidence from observations and climate models that external forcing largely governs decadal GMST variations in the historical record with internally generated variations playing a secondary role, except during those periods of IPO extremes. In particular, the warming hiatus during 1946–1976 started from a negative IPO but was later dominated by the eruption of Mount Agung in 1963, while the subsequent accelerated warming during 1977–2000 was due primarily to increased greenhouse gas forcing. The most recent warming hiatus apparent in observations occurred largely through cooling from a negative IPO extreme that overwhelmed the warming from external forcing. An important implication of this work is that when the phase of the IPO turns positive, as it did in 2014, the combination of external forcing and internal variability should lead to accelerated global warming. This accelerated warming appears to be underway, with record high GMST in 2014, 2015, and 2016.

  8. Land surface phenological response to decadal climate variability across Australia using satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Broich, M.; Huete, A.; Tulbure, M. G.; Ma, X.; Xin, Q.; Paget, M.; Restrepo-Coupe, N.; Davies, K.; Devadas, R.; Held, A.

    2014-05-01

    continent. The phenological cycle peak magnitude and integrated greenness were most significantly correlated with monthly SOI within the preceding 12 months. Correlation patterns occurred primarily over north-eastern Australia and within the MDB predominantly over natural land cover and particularly in floodplain and wetland areas. Integrated greenness of the phenological cycles (surrogate of productivity) showed positive anomalies of more than two standard deviations over most of eastern Australia in 2009-2010, which coincided with the transition between the El Niño induced decadal droughts to flooding caused by La Niña. The quantified spatial-temporal variability in phenology across Australia in response to climate variability presented here provides important information for land management and climate change studies and applications.

  9. Links between central Greenland stable isotopes, blocking and extreme climate variability over Europe at decadal to multidecadal time scales

    NASA Astrophysics Data System (ADS)

    Rimbu, N.; Lohmann, G.; Werner, M.; Ionita, M.

    2016-10-01

    The link between central Greenland stable oxygen isotopes, atmospheric blocking frequency and cold temperature extremes at decadal to multidecadal time scales is investigated using observed and proxy data as well as model experiments. A composite analysis reveals that positive stable isotope anomalies in central Greenland are associated with enhanced blocking activity in the Atlantic European region. Several indices of blocking activity in the Atlantic European region are higher correlated with central Greenland stable isotope time series than with the North Atlantic Oscillation indices both in observations and model simulation. Furthermore, the blocking frequency anomaly pattern associated with central Greenland stable isotope variability is similar to the blocking anomaly pattern associated with the Atlantic Multidecadal Oscillation. A composite analysis reveals that stable isotope variations in central Greenland are related to a large-scale pattern in the frequency of extreme low temperature events with significant positive anomalies over Europe and a southwest to northeast dipolar pattern over Asia. During observational period central Greenland isotope records, blocking and extreme temperature indices over Europe show enhanced variability 10-30 and 50-70 years. Similar quasi-periodicities dominate the spectrum of central Greenland isotope variability during the last millennium. We argue that long-term variations of climate extreme indices over Europe and Asia, as derived from observational data, can be put into a long-term perspective using central Greenland stable isotope ice core records.

  10. Temporal Variability of Observed and Simulated Hyperspectral Earth Reflectance

    NASA Technical Reports Server (NTRS)

    Roberts, Yolanda; Pilewskie, Peter; Kindel, Bruce; Feldman, Daniel; Collins, William D.

    2012-01-01

    series analysis of the PC scores using techniques such as Singular Spectrum Analysis (SSA) and Multichannel SSA will provide information about the temporal variability of the dominant variables. Quantitative comparison techniques can evaluate how well the OSSE reproduces the temporal variability observed by SCIAMACHY spectral reflectance measurements during the first decade of the 21st century. PCA of OSSE-simulated reflectance can also be used to study how the dominant spectral variables change on centennial scales for forced and unforced climate change scenarios. To have confidence in OSSE predictions of the spectral variability of hyperspectral reflectance, it is first necessary for us to evaluate the degree to which the OSSE simulations are able to reproduce the Earth?s present-day spectral variability.

  11. Decadal climatic variability and regional weather simulation: stochastic nature of forest fuel moisture and climatic forcing

    NASA Astrophysics Data System (ADS)

    Tsinko, Y.; Johnson, E. A.; Martin, Y. E.

    2014-12-01

    Natural range of variability of forest fire frequency is of great interest due to the current changing climate and seeming increase in the number of fires. The variability of the annual area burned in Canada has not been stable in the 20th century. Recently, these changes have been linked to large scale climate cycles, such as Pacific Decadal Oscillation (PDO) phases and El Nino Southern Oscillation (ENSO). The positive phase of the PDO was associated with the increased probability of hot dry spells leading to drier fuels and increased area burned. However, so far only one historical timeline was used to assess correlations between the natural climate oscillations and forest fire frequency. To counteract similar problems, weather generators are extensively used in hydrological and agricultural modeling to extend short instrumental record and to synthesize long sequences of daily weather parameters that are different from but statistically similar to historical weather. In the current study synthetic weather models were used to assess effects of alternative weather timelines on fuel moisture in Canada by using Canadian Forest Fire Weather Index moisture codes and potential fire frequency. The variability of fuel moisture codes was found to increase with the increased length of simulated series, thus indicating that the natural range of variability of forest fire frequency may be larger than that calculated from available short records. It may be viewed as a manifestation of a Hurst effect. Since PDO phases are thought to be caused by diverse mechanisms including overturning oceanic circulation, some of the lower frequency signals may be attributed to the long term memory of the oceanic system. Thus, care must be taken when assessing natural variability of climate dependent processes without accounting for potential long-term mechanisms.

  12. Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest

    USGS Publications Warehouse

    Swetnam, T.W.; Betancourt, J.L.

    1998-01-01

    Ecological responses to climatic variability in the Southwest include regionally synchronized fires, insect outbreaks, and pulses in tree demography (births and deaths). Multicentury, tree-ring reconstructions of drought, disturbance history, and tree demography reveal climatic effects across scales, from annual to decadal, and from local (<102 km2) to mesoscale (104-106 km2). Climate-disturbance relations are more variable and complex than previously assumed. During the past three centuries, mesoscale outbreaks of the western spruce budworm (Choristoneura occidentalis) were associated with wet, not dry episodes, contrary to conventional wisdom. Regional fires occur during extreme droughts but, in some ecosystems, antecedent wet conditions play a secondary role by regulating accumulation of fuels. Interdecadal changes in fire-climate associations parallel other evidence for shifts in the frequency or amplitude of the Southern Oscillation (SO) during the past three centuries. High interannual, fire-climate correlations (r = 0.7 to 0.9) during specific decades (i.e., circa 1740-80 and 1830-60) reflect periods of high amplitude in the SO and rapid switching from extreme wet to dry years in the Southwest, thereby entraining fire occurrence across the region. Weak correlations from 1780 to 1830 correspond with a decrease in SO frequency or amplitude inferred from independent tree-ring width, ice core, and coral isotope reconstructions. Episodic dry and wet episodes have altered age structures and species composition of woodland and conifer forests. The scarcity of old, living conifers established before circa 1600 suggests that the extreme drought of 1575-95 had pervasive effects on tree populations. The most extreme drought of the past 400 years occurred in the mid-twentieth century (1942-57). This drought resulted in broadscale plant dieoffs in shrublands, woodlands, and forests and accelerated shrub invasion of grasslands. Drought conditions were broken by the post

  13. The eddy-dipole mode interaction and the decadal variability of the Kuroshio Extension system

    NASA Astrophysics Data System (ADS)

    Luo, Dehai; Feng, Shaohua; Wu, Lixin

    2016-10-01

    In this paper, the physical cause of why the eddy kinetic energy (EKE) in the upstream Kuroshio Extension (KE) region is strong (weak) during a large (small) jet meandering period is studied by using the satellite altimeter data and constructing an eddy-dipole mode interaction theory from a reduced gravity shallow water wave quasi-geostrophic vorticity equation. It is found that the large KE jet meander corresponds to a large-scale positive-over-negative dipole SSH anomaly (KED- mode, hereafter), a double-branch jet with a weak strength and a strong EKE in the upstream KE region, while the small jet meander corresponds to a negative-over-positive dipole anomaly (KED+ mode, hereafter), a strong single-branch jet, and a weak EKE. Further diagnostics using this new eddy-dipole mode interaction theory reveals that the horizontal advection and KED deformation field can change the eddy activity in the upstream KE region. When the KED- mode is amplified by mesoscale eddies, the EKE grows by extracting energy from the KED- deformation (shearing and stretching) field and due to a reduced eastward advection, thus showing a high EKE level during the KED- mode (large jet meander) episode. In contrast, when the KED+ mode is intensified, the kinetic energy of the eddy weakens by losing its energy to the KED+ deformation field and by an enhanced eastward advection, thus showing a low EKE level during the KED+ mode (small jet meander) episode. Because the KED mode shows a clear decadal variation due to the modulation of the Pacific Decadal Oscillation, both the KE jet and EKE exhibit inevitably a distinct decadal variability.

  14. Decadal variability of European sea level extremes in relation to the solar activity

    NASA Astrophysics Data System (ADS)

    Martínez-Asensio, Adrián.; Tsimplis, Michael N.; Calafat, Francisco Mir

    2016-11-01

    This study investigates the relationship between decadal changes in solar activity and sea level extremes along the European coasts and derived from tide gauge data. Autumn sea level extremes vary with the 11 year solar cycle at Venice as suggested by previous studies, but a similar link is also found at Trieste. In addition, a solar signal in winter sea level extremes is also found at Venice, Trieste, Marseille, Ceuta, Brest, and Newlyn. The influence of the solar cycle is also evident in the sea level extremes derived from a barotropic model with spatial patterns that are consistent with the correlations obtained at the tide gauges. This agreement indicates that the link to the solar cycle is through modulation of the atmospheric forcing. The only atmospheric regional pattern that showed variability at the 11 year period was the East Atlantic pattern.

  15. Impact of the Atlantic meridional overturning circulation on the decadal variability of the Gulf Stream path and regional chlorophyll and nutrient concentrations

    NASA Astrophysics Data System (ADS)

    Sanchez-Franks, A.; Zhang, R.

    2015-11-01

    In this study, we show that the underlying physical driver for the decadal variability in the Gulf Stream (GS) path and the regional biogeochemical cycling is linked to the low frequency variability in the Atlantic meridional overturning circulation (AMOC). There is a significant anticorrelation between AMOC variations and the meridional shifts of the GS path at decadal time scale in both observations and two Earth system models (ESMs). The chlorophyll and nutrient concentrations in the GS region are found significantly correlated with the AMOC fingerprint and anticorrelated with the GS path at decadal time scale through coherent isopycnal changes in the GS front in the ESMs. Our results illustrate how changes in the large-scale ocean circulation, such as AMOC, are teleconnected with regional decadal physical and biogeochemical variations near the North American east coast. Such linkages are useful for predicting future physical and biogeochemical variations in this region.

  16. Deep ocean mass fluxes in the coastal upwelling off Mauritania from 1988 to 2012: variability on seasonal to decadal timescales

    NASA Astrophysics Data System (ADS)

    Fischer, Gerhard; Romero, Oscar; Merkel, Ute; Donner, Barbara; Iversen, Morten; Nowald, Nico; Ratmeyer, Volker; Ruhland, Götz; Klann, Marco; Wefer, Gerold

    2016-05-01

    A more than two-decadal sediment trap record from the Eastern Boundary Upwelling Ecosystem (EBUE) off Cape Blanc, Mauritania, is analysed with respect to deep ocean mass fluxes, flux components and their variability on seasonal to decadal timescales. The total mass flux revealed interannual fluctuations which were superimposed by fluctuations on decadal timescales. High winter fluxes of biogenic silica (BSi), used as a measure of marine production (mostly by diatoms) largely correspond to a positive North Atlantic Oscillation (NAO) index (December-March). However, this relationship is weak. The highest positive BSi anomaly was in winter 2004-2005 when the NAO was in a neutral state. More episodic BSi sedimentation events occurred in several summer seasons between 2001 and 2005, when the previous winter NAO was neutral or even negative. We suggest that distinct dust outbreaks and deposition in the surface ocean in winter and occasionally in summer/autumn enhanced particle sedimentation and carbon export on short timescales via the ballasting effect. Episodic perturbations of the marine carbon cycle by dust outbreaks (e.g. in 2005) might have weakened the relationships between fluxes and large-scale climatic oscillations. As phytoplankton biomass is high throughout the year, any dry (in winter) or wet (in summer) deposition of fine-grained dust particles is assumed to enhance the efficiency of the biological pump by incorporating dust into dense and fast settling organic-rich aggregates. A good correspondence between BSi and dust fluxes was observed for the dusty year 2005, following a period of rather dry conditions in the Sahara/Sahel region. Large changes of all bulk fluxes occurred during the strongest El Niño-Southern Oscillation (ENSO) in 1997-1999 where low fluxes were obtained for almost 1 year during the warm El Niño and high fluxes in the following cold La Niña phase. For decadal timescales, Bakun (1990) suggested an intensification of coastal upwelling

  17. Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability

    NASA Astrophysics Data System (ADS)

    Screen, James A.; Francis, Jennifer A.

    2016-09-01

    The pace of Arctic warming is about double that at lower latitudes--a robust phenomenon known as Arctic amplification. Many diverse climate processes and feedbacks cause Arctic amplification, including positive feedbacks associated with diminished sea ice. However, the precise contribution of sea-ice loss to Arctic amplification remains uncertain. Through analyses of both observations and model simulations, we show that the contribution of sea-ice loss to wintertime Arctic amplification seems to be dependent on the phase of the Pacific Decadal Oscillation (PDO). Our results suggest that, for the same pattern and amount of sea-ice loss, consequent Arctic warming is larger during the negative PDO phase relative to the positive phase, leading to larger reductions in the poleward gradient of tropospheric thickness and to more pronounced reductions in the upper-level westerlies. Given the oscillatory nature of the PDO, this relationship has the potential to increase skill in decadal-scale predictability of the Arctic and sub-Arctic climate. Our results indicate that Arctic warming in response to the ongoing long-term sea-ice decline is greater (reduced) during periods of the negative (positive) PDO phase. We speculate that the observed recent shift to the positive PDO phase, if maintained and all other factors being equal, could act to temporarily reduce the pace of wintertime Arctic warming in the near future.

  18. Mesoscale Disturbance and Ecological Response to Decadal Climatic Variability in the American Southwest.

    NASA Astrophysics Data System (ADS)

    Swetnam, Thomas W.; Betancourt, Julio L.

    1998-12-01

    Ecological responses to climatic variability in the Southwest include regionally synchronized fires, insect outbreaks, and pulses in tree demography (births and deaths). Multicentury, tree-ring reconstructions of drought, disturbance history, and tree demography reveal climatic effects across scales, from annual to decadal, and from local (<102 km2) to mesoscale (104-106 km2). Climate-disturbance relations are more variable and complex than previously assumed. During the past three centuries, mesoscale outbreaks of the western spruce budworm (Choristoneura occidentalis) were associated with wet, not dry episodes, contrary to conventional wisdom. Regional fires occur during extreme droughts but, in some ecosystems, antecedent wet conditions play a secondary role by regulating accumulation of fuels. Interdecadal changes in fire-climate associations parallel other evidence for shifts in the frequency or amplitude of the Southern Oscillation (SO) during the past three centuries. High interannual, fire-climate correlations (r = 0.7 to 0.9) during specific decades (i.e., circa 1740-80 and 1830-60) reflect periods of high amplitude in the SO and rapid switching from extreme wet to dry years in the Southwest, thereby entraining fire occurrence across the region. Weak correlations from 1780 to 1830 correspond with a decrease in SO frequency or amplitude inferred from independent tree-ring width, ice core, and coral isotope reconstructions.Episodic dry and wet episodes have altered age structures and species composition of woodland and conifer forests. The scarcity of old, living conifers established before circa 1600 suggests that the extreme drought of 1575-95 had pervasive effects on tree populations. The most extreme drought of the past 400 years occurred in the mid-twentieth century (1942-57). This drought resulted in broadscale plant dieoffs in shrublands, woodlands, and forests and accelerated shrub invasion of grasslands. Drought conditions were broken by the post

  19. High marsh foraminiferal assemblages' response to intra-decadal and multi-decadal precipitation variability, between 1934 and 2010 (Minho, NW Portugal)

    NASA Astrophysics Data System (ADS)

    Fatela, Francisco; Moreno, João; Leorri, Eduardo; Corbett, Reide

    2014-10-01

    Foraminiferal assemblages of Caminha tidal marshes have been studied since 2002 revealing a peculiar dominance of brackish species, such as Haplophragmoides manilaensis, Haplophragmoides wilberti, Haplophragmoides sp., Pseudothurammina limnetis and Trochamminita salsa/irregularis in the high marshes of the Minho and the Coura lower estuaries. The assemblage composition reflects low salinity conditions, despite the short distance to the estuarine mouth (~ 4 km). However, in May 2010, the presence of salt marsh species Trochammina inflata and Jadammina macrescens became very significant, likely a result of 5 consecutive dry years and a corresponding salinity rise in sediment pore water. Correspondence analysis (CA) groups the surface samples according to their marsh zone, showing a positive correlation with the submersion time of each sampling point. The brackish and normal salinity foraminiferal species appear separated in the CA. This observation was applied to the top 10 cm of a high marsh sediment core that corresponds to the period of instrumental record of precipitation and river flow in the Minho region. We found that river flow strongly correlates with precipitation in the Lima and Minho basins. The longer precipitation record was, therefore, used to interpret the foraminiferal assemblages' variability. Three main phases were distinguished along ca. 80 years of precipitation data: 1) negative anomalies from 1934 to 1957; 2) positive anomalies from 1958 to 1983; and 3) negative anomalies from 1984 to 2010. This last dryer period exhibits the precipitation maximum and the greatest amplitude of rainfall values. High marsh foraminifera reveals a fast response to these short-term shifts; low salinity species relative abundance increases when precipitation increases over several decades, as well as in the same decade, in the years of heavy rainfall of dryer periods. High marsh foraminifera records the increase of freshwater flooding and seepage by 1) decreasing

  20. Decadal surface water quality trends under variable climate, land use, and hydrogeochemical setting in Iowa, USA

    NASA Astrophysics Data System (ADS)

    Green, Christopher T.; Bekins, Barbara A.; Kalkhoff, Stephen J.; Hirsch, Robert M.; Liao, Lixia; Barnes, Kimberlee K.

    2014-03-01

    Understanding how nitrogen fluxes respond to changes in agriculture and climate is important for improving water quality. In the midwestern United States, expansion of corn cropping for ethanol production led to increasing N application rates in the 2000s during a period of extreme variability of annual precipitation. To examine the effects of these changes, surface water quality was analyzed in 10 major Iowa Rivers. Several decades of concentration and flow data were analyzed with a statistical method that provides internally consistent estimates of the concentration history and reveals flow-normalized trends that are independent of year-to-year streamflow variations. Flow-normalized concentrations of nitrate+nitrite-N decreased from 2000 to 2012 in all basins. To evaluate effects of annual discharge and N loading on these trends, multiple conceptual models were developed and calibrated to flow-weighted annual concentrations. The recent declining concentration trends can be attributed to both very high and very low discharge in the 2000s and to the long (e.g., 8 year) subsurface residence times in some basins. Dilution of N and depletion of stored N occurs in years with high discharge. Reduced N transport and increased N storage occurs in low-discharge years. Central Iowa basins showed the greatest reduction in flow-normalized concentrations, likely because of smaller storage volumes and shorter residence times. Effects of land-use changes on the water quality of major Iowa Rivers may not be noticeable for years or decades in peripheral basins of Iowa, and may be obscured in the central basins where extreme flows strongly affect annual concentration trends.

  1. Decadal surface water quality trends under variable climate, land use, and hydrogeochemical setting in Iowa, USA

    USGS Publications Warehouse

    Green, Christopher T.; Bekins, Barbara A.; Kalkhoff, Stephen J.; Hirsch, Robert M.; Liao, Lixia; Barnes, Kimberlee K.

    2014-01-01

    Understanding how nitrogen fluxes respond to changes in agriculture and climate is important for improving water quality. In the midwestern United States, expansion of corn cropping for ethanol production led to increasing N application rates in the 2000s during a period of extreme variability of annual precipitation. To examine the effects of these changes, surface water quality was analyzed in 10 major Iowa Rivers. Several decades of concentration and flow data were analyzed with a statistical method that provides internally consistent estimates of the concentration history and reveals flow-normalized trends that are independent of year-to-year streamflow variations. Flow-normalized concentrations of nitrate+nitrite-N decreased from 2000 to 2012 in all basins. To evaluate effects of annual discharge and N loading on these trends, multiple conceptual models were developed and calibrated to flow-weighted annual concentrations. The recent declining concentration trends can be attributed to both very high and very low discharge in the 2000s and to the long (e.g., 8 year) subsurface residence times in some basins. Dilution of N and depletion of stored N occurs in years with high discharge. Reduced N transport and increased N storage occurs in low-discharge years. Central Iowa basins showed the greatest reduction in flow-normalized concentrations, likely because of smaller storage volumes and shorter residence times. Effects of land-use changes on the water quality of major Iowa Rivers may not be noticeable for years or decades in peripheral basins of Iowa, and may be obscured in the central basins where extreme flows strongly affect annual concentration trends.

  2. Decadal Variability and Temperature Trends in the Middle Atmosphere From Historical Rocketsonde Data

    NASA Technical Reports Server (NTRS)

    Dunkerton, Timothy J.

    2000-01-01

    Observational studies were performed using historical rocketsonde data to investigate long-term temperature trends, solar-cycle variations, and interactions between tropical and extratropical latitudes in the middle atmosphere. Evidence from tropical, subtropical, and midlatitude North American rocketsonde stations indicated a consistent downward trend over 25 years, with a solar cycle component superposed. The trend is about -1.4 to -2.0 K per decade and the amplitude of the decadal oscillation is about 1.1 K. Prior to trend derivation it was necessary for us to correct temperatures for aerodynamic heating in the early years. The empirically derived correction profile agrees well with a theoretical profile of Krumins and Lyons. A study was also performed of the correlation between equatorial winds and north polar temperatures in winter, showing that the entire stratospheric wind profile near the equator -- including the quasi-biennial oscillation (QBO) and stratopause semiannual oscillation (SAO) -- is important to the extratropical flow, not merely the QBO component as previously thought. A strong correlation was discovered between winter polar temperatures and equatorial winds in the upper stratosphere during the preceding September, suggesting a role for the second cycle of the SAO.

  3. Evaluation of a Multi-Decadal Simulation of Stratospheric Ozone by Comparison with Total Ozone Mapping Spectrometer (TOMS) Observations

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Stolarski, Richard S.; Steenrod, Steven; Pawson, Steven

    2003-01-01

    One key application of atmospheric chemistry and transport models is prediction of the response of ozone and other constituents to various natural and anthropogenic perturbations. These include changes in composition, such as the previous rise and recent decline in emission of man-made chlorofluorcarbons, changes in aerosol loading due to volcanic eruption, and changes in solar forcing. Comparisons of hindcast model results for the past few decades with observations are a key element of model evaluation and provide a sense of the reliability of model predictions. The 25 year data set from Total Ozone Mapping Spectrometers is a cornerstone of such model evaluation. Here we report evaluation of three-dimensional multi-decadal simulation of stratospheric composition. Meteorological fields for this off-line calculation are taken from a 50 year simulation of a general circulation model. Model fields are compared with observations from TOMS and also with observations from the Stratospheric Aerosol and Gas Experiment (SAGE), Microwave Limb Sounder (MLS), Cryogenic Limb Array Etalon Spectrometer (CLAES), and the Halogen Occultation Experiment (HALOE). This overall evaluation will emphasize the spatial, seasonal, and interannual variability of the simulation compared with observed atmospheric variability.

  4. External forcing as a source for the observed multi-decadal relation between AMV and the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Svendsen, Lea; Luo, Feifei; Sankar, Syam; Gao, Yongqi; Keenlyside, Noel; Vareed Joseph, Porathur; Johannessen, Ola

    2016-04-01

    The instrumental records show a significant positive correlation between the Atlantic multi-decadal variability (AMV) and the Indian summer monsoon (ISM) rainfall, where a positive (negative) AMV is associated with more (less) ISM rainfall. We have used both proxy reconstruction and twelve models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to investigate if the observed AMV-ISM relation is a persistent internal climate signal or externally forced. A comparison of several annual resolution proxy records both from the Atlantic and for the ISM show that the multi-decadal variability in both indices is persistent, but the link between them is not. The correlation between the two regions is weak, and even negative in some periods, before the instrumental time period. The analysis of CMIP5 simualtions is consistent with these results. While none of the CMIP5 models investigated simulate the significant AMV-ISM connection in the pre-industrial control simulations with fixed external forcing, three of the models reproduce the relation in the 20th century historical simulations with transient forcing. In these models external forcing is linked to the mid-to-upper tropospheric temperature pattern with a strengthened land-ocean contrast over South Asia, consistent with an enhanced ISM, as well as the evolution of AMV. We conclude that the significant AMV-ISM relation found in the observations after the industrial revolution may be associated with external forcing, rather than being internal climate variability.

  5. Deep ocean mass fluxes in the coastal upwelling off Mauritania from 1988 to 2012: variability on seasonal to decadal timescales

    NASA Astrophysics Data System (ADS)

    Fischer, G.; Romero, O.; Merkel, U.; Donner, B.; Iversen, M.; Nowald, N.; Ratmeyer, V.; Ruhland, G.; Klann, M.; Wefer, G.

    2015-11-01

    A more than two-decadal sediment trap record from the Eastern Boundary Upwelling Ecosystem (EBUE) off Cape Blanc, Mauritania, is analyzed with respect to deep ocean mass fluxes, flux components and their variability on seasonal to decadal timescales. The total mass flux revealed interannual fluctuations which were superimposed by fluctuations on decadal timescales possibly linked to the Atlantic Multidedadal Oscillation (AMO). High winter fluxes of biogenic silica (BSi), used as a measure of marine production mostly by diatoms largely correspond to a positive North Atlantic Oscillation (NAO) index during boreal winter (December-March). However, this relationship is weak. The highest positive BSi anomaly was in winter 2004-2005 when the NAO was in a neutral state. More episodic BSi sedimentation events occurred in several summer seasons between 2001 and 2005, when the previous winter NAO was neutral or even negative. We suggest that distinct dust outbreaks and deposition in the surface ocean in winter but also in summer/fall enhanced particle sedimentation and carbon export on rather short timescales via the ballasting effect, thus leading to these episodic sedimentation events. Episodic perturbations of the marine carbon cycle by dust outbreaks (e.g. in 2005) weakened the relationships between fluxes and larger scale climatic oscillations. As phytoplankton biomass is high throughout the year in our study area, any dry (in winter) or wet (in summer) deposition of fine-grained dust particles is assumed to enhance the efficiency of the biological pump by being incorporated into dense and fast settling organic-rich aggregates. A good correspondence between BSi and dust fluxes was observed for the dusty year 2005, following a period of rather dry conditions in the Sahara/Sahel region. Large changes of all fluxes occurred during the strongest El Niño-Southern Oscillation (ENSO) in 1997-1999 where low fluxes were obtained for almost one year during the warm El Niño and

  6. Variability in terrestrial carbon sinks over two decades: Part 2 — Eurasia

    NASA Astrophysics Data System (ADS)

    Potter, C.; Klooster, S.; Tan, P.; Steinbach, M.; Kumar, V.; Genovese, V.

    2005-12-01

    We have analyzed 17 yr (1982-1998) of net carbon flux predictions from a simulation model based on satellite observations of monthly vegetation cover. The NASA-CASA model was driven by vegetation cover properties derived from the Advanced Very High Resolution Radiometer and radiative transfer algorithms that were developed for the Moderate Resolution Imaging Spectroradiometer (MODIS). We report that although the terrestrial ecosystem sink for atmospheric CO 2 for the Eurasian region has been fairly consistent at between 0.3 and 0.6 Pg C per year since 1988, high interannual variability in net ecosystem production (NEP) fluxes can be readily identified at locations across the continent. Ten major areas of highest variability in NEP were detected: eastern Europe, the Iberian Peninsula, the Balkan states, Scandinavia, northern and western Russia, eastern Siberia, Mongolia and western China, and central India. Analysis of climate anomalies over this 17-yr time period suggests that variability in precipitation and surface solar irradiance could be associated with trends in carbon sink fluxes within such regions of high NEP variability.

  7. Flatfish recruitment response to decadal climatic variability and ocean conditions in the eastern Bering Sea

    NASA Astrophysics Data System (ADS)

    Wilderbuer, T. K.; Hollowed, A. B.; Ingraham, W. J.; Spencer, P. D.; Conners, M. E.; Bond, N. A.; Walters, G. E.

    2002-10-01

    This paper provides a retrospective analysis of the relationship of physical oceanography and biology and recruitment of three Eastern Bering Sea flatfish stocks: flathead sole ( Hippoglossoides elassodon), northern rock sole ( Lepidopsetta polyxystra), and arrowtooth flounder ( Atheresthes stomias) for the period 1978-1996. Temporal trends in flatfish production in the Eastern Bering Sea are consistent with the hypothesis that decadal scale climate variability influences marine survival during the early life history period. Density-dependence (spawning stock size) is statistically significant in a Ricker model of flatfish recruitment, which includes environmental terms. Wind-driven advection of flatfish larvae to favorable nursery grounds was also found to coincide with years of above-average recruitment through the use of an ocean surface current simulation model (OSCURS). Ocean forcing of Bristol Bay surface waters during springtime was mostly shoreward (eastward) during the 1980s and seaward (westerly) during the 1990s, corresponding with periods of good and poor recruitment. Distance from shore and water depth at the endpoint of 90-day drift periods (estimated time of settlement) were also found to correspond with flatfish productivity.

  8. Evidence for 800 years of North Atlantic multi-decadal variability from a Puerto Rican speleothem

    NASA Astrophysics Data System (ADS)

    Winter, Amos; Miller, Thomas; Kushnir, Yochanan; Sinha, Ashish; Timmermann, Axel; Jury, Mark R.; Gallup, Christina; Cheng, Hai; Edwards, R. Lawrence

    2011-08-01

    The long-term behavior of the tropical Atlantic ocean/atmospheric system prior to the 20th century is not well characterized due to a lack of high-resolution proxy records to extend the short instrumental record. Here we present the first reconstruction of rainfall variability for the western tropical Atlantic that spans the past 8 centuries and is derived from the δ 18O of speleothem calcite. The δ 18O of speleothem calcite at this Puerto Rican location varies primarily in response to changes in the amount of summer-time precipitation. The speleothem documents multi-decadal to centennial length oscillations in δ 18O that point to large variations in rainfall that have not been manifest in the short instrumental period. Since AD 1850, variations in δ 18O have tracked shifts in the Atlantic Multidecadal Oscillation (AMO). We tentatively suggest that the speleothem δ 18O-based rainfall record from Puerto Rico extends the history of the AMO to the 12th century.

  9. Persistent decadal-scale rainfall variability in the tropical South Pacific Convergence Zone through the past six centuries

    NASA Astrophysics Data System (ADS)

    Maupin, C. R.; Partin, J. W.; Shen, C.-C.; Quinn, T. M.; Lin, K.; Taylor, F. W.; Banner, J. L.; Thirumalai, K.; Sinclair, D. J.

    2014-07-01

    Modern Pacific decadal variability (PDV) has global impacts; hence records of PDV from the pre-instrumental period are needed to better inform models that are used to project future climate variability. We focus here on reconstructing rainfall in the western tropical Pacific (Solomon Islands; ~ 9.5° S, ~160° E), a region directly influenced by PDV, using cave deposits (stalagmite). A relationship is developed between δ18O variations in the stalagmite and local rainfall amount to produce a 600 yr record of rainfall variability from the South Pacific Convergence Zone (SPCZ). We present evidence for large (~1.5 m), abrupt, and periodic changes in total annual rainfall amount on decadal to multidecadal timescales since 1423 ± 5 CE (Common Era) in the Solomon Islands. The timing of the decadal changes in rainfall inferred from the 20th century portion of the stalagmite δ18O record coincides with previously identified decadal shifts in PDV-related Pacific ocean-atmosphere behavior (Clement et al., 2011; Deser et al., 2004). The Solomons record of PDV is not associated with variations in external forcings, but rather results from internal climate variability. The 600 yr Solomon Islands stalagmite δ18O record indicates that decadal oscillations in rainfall are a persistent characteristic of SPCZ-related climate variability.

  10. Mechanisms of decadal variability in the Labrador Sea and the wider North Atlantic in a high-resolution climate model

    NASA Astrophysics Data System (ADS)

    Ortega, Pablo; Robson, Jon; Sutton, Rowan T.; Andrews, Martin B.

    2016-12-01

    A necessary step before assessing the performance of decadal predictions is the evaluation of the processes that bring memory to the climate system, both in climate models and observations. These mechanisms are particularly relevant in the North Atlantic, where the ocean circulation, related to both the Subpolar Gyre and the Meridional Overturning Circulation (AMOC), is thought to be important for driving significant heat content anomalies. Recently, a rapid decline in observed densities in the deep Labrador Sea has pointed to an ongoing slowdown of the AMOC strength taking place since the mid 90s, a decline also hinted by in-situ observations from the RAPID array. This study explores the use of Labrador Sea densities as a precursor of the ocean circulation changes, by analysing a 300-year long simulation with the state-of-the-art coupled model HadGEM3-GC2. The major drivers of Labrador Sea density variability are investigated, and are characterised by three major contributions. First, the integrated effect of local surface heat fluxes, mainly driven by year-to-year changes in the North Atlantic Oscillation, which accounts for 62% of the total variance. Additionally, two multidecadal-to-centennial contributions from the Greenland-Scotland Ridge outflows are quantified; the first associated with freshwater exports via the East Greenland Current, and the second with density changes in the Denmark Strait Overflow. Finally, evidence is shown that decadal trends in Labrador Sea densities are followed by important atmospheric impacts. In particular, a positive winter NAO response appears to follow the negative Labrador Sea density trends, and provides a phase reversal mechanism.

  11. Observations of Atlantic overturning variability and latitudinal coherence with GRACE time-variable gravity

    NASA Astrophysics Data System (ADS)

    Landerer, Felix; Wiese, David; Bentel, Katrin; Watkins, Michael; Boening, Carmen

    2016-04-01

    The Atlantic Meridional Overturning Circulation (AMOC) is a key mechanism of pole-ward planetary heat transport. Concerns about AMOC changes imply the need for a continuous, large-scale observation capability to detect and monitor changes on interannual to decadal time scales. Here we present measurements of AMOC component transport changes directly obtained from time-variable gravity observations of the Gravity Recovery and Climate Experiment (GRACE) satellites from 2003 until now. Recent improvements at JPL of monthly gravity field retrievals allow the detection of AMOC-related interannual bottom pressure anomalies and in turn LNADW transport estimates. In the Atlantic at 26N, these GRACE AMOC estimates are in good agreement with those from the Rapid Climate Change-Meridional Overturning Circulation and Heatflux Array (RAPID/MOCHA) . We extend the GRACE-based estimates of AMOC variability from the Southern Ocean to the Northern sinking branch to assess meridional coherence and discuss challenges of the GRACE observing system. Our results highlight the efficacy and utility of space-gravimetry for observing AMOC variations to evaluate latitudinal coherency and long-term variability.

  12. Decadal variability of the Tropical Atlantic Ocean Surface Temperature in shipboard measurements and in a Global Ocean-Atmosphere model

    NASA Technical Reports Server (NTRS)

    Mehta, Vikram M.; Delworth, Thomas

    1995-01-01

    Sea surface temperature (SST) variability was investigated in a 200-yr integration of a global model of the coupled oceanic and atmospheric general circulations developed at the Geophysical Fluid Dynamics Laboratory (GFDL). The second 100 yr of SST in the coupled model's tropical Atlantic region were analyzed with a variety of techniques. Analyses of SST time series, averaged over approximately the same subregions as the Global Ocean Surface Temperature Atlas (GOSTA) time series, showed that the GFDL SST anomalies also undergo pronounced quasi-oscillatory decadal and multidecadal variability but at somewhat shorter timescales than the GOSTA SST anomalies. Further analyses of the horizontal structures of the decadal timescale variability in the GFDL coupled model showed the existence of two types of variability in general agreement with results of the GOSTA SST time series analyses. One type, characterized by timescales between 8 and 11 yr, has high spatial coherence within each hemisphere but not between the two hemispheres of the tropical Atlantic. A second type, characterized by timescales between 12 and 20 yr, has high spatial coherence between the two hemispheres. The second type of variability is considerably weaker than the first. As in the GOSTA time series, the multidecadal variability in the GFDL SST time series has approximately opposite phases between the tropical North and South Atlantic Oceans. Empirical orthogonal function analyses of the tropical Atlantic SST anomalies revealed a north-south bipolar pattern as the dominant pattern of decadal variability. It is suggested that the bipolar pattern can be interpreted as decadal variability of the interhemispheric gradient of SST anomalies. The decadal and multidecadal timescale variability of the tropical Atlantic SST, both in the actual and in the GFDL model, stands out significantly above the background 'red noise' and is coherent within each of the time series, suggesting that specific sets of

  13. Decadal variability in core surface flows deduced from geomagnetic observatory monthly means

    NASA Astrophysics Data System (ADS)

    Whaler, K. A.; Olsen, N.; Finlay, C. C.

    2016-10-01

    Monthly means of the magnetic field measurements at ground observatories are a key data source for studying temporal changes of the core magnetic field. However, when they are calculated in the usual way, contributions of external (magnetospheric and ionospheric) origin may remain, which make them less favourable for studying the field generated by dynamo action in the core. We remove external field predictions, including a new way of characterizing the magnetospheric ring current, from the data and then calculate revised monthly means using robust methods. The geomagnetic secular variation (SV) is calculated as the first annual differences of these monthly means, which also removes the static crustal field. SV time-series based on revised monthly means are much less scattered than those calculated from ordinary monthly means, and their variances and correlations between components are smaller. On the annual to decadal timescale, the SV is generated primarily by advection in the fluid outer core. We demonstrate the utility of the revised monthly means by calculating models of the core surface advective flow between 1997 and 2013 directly from the SV data. One set of models assumes flow that is constant over three months; such models exhibit large and rapid temporal variations. For models of this type, less complex flows achieve the same fit to the SV derived from revised monthly means than those from ordinary monthly means. However, those obtained from ordinary monthly means are able to follow excursions in SV that are likely to be external field contamination rather than core signals. Having established that we can find models that fit the data adequately, we then assess how much temporal variability is required. Previous studies have suggested that the flow is consistent with torsional oscillations (TO), solid body-like oscillations of fluid on concentric cylinders with axes aligned along the Earth's rotation axis. TO have been proposed to explain decadal

  14. A dynamical fingerprint of tropical Pacific sea surface temperatures on the decadal-scale variability of cool-season Arctic precipitation

    NASA Astrophysics Data System (ADS)

    Hegyi, Bradley M.; Deng, Yi

    2011-10-01

    The temporal and spatial characteristics of decadal-scale variability in the Northern Hemisphere (NH) cool-season (October-March) Arctic precipitation are identified from both the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the Global Precipitation Climatology Project (GPCP) precipitation data sets. This decadal variability is shown to be partly connected to the decadal-scale variations in tropical central Pacific sea surface temperatures (SSTs) that are primarily associated with a decadal modulation of the El Niño-Southern Oscillation (ENSO), i.e., transitions between periods favoring typical eastern Pacific warming (EPW) events and periods favoring central Pacific warming (CPW) events. Regression and composite analyses reveal that increases of central Pacific SSTs drive a stationary Rossby wave train that destructively interferes with the wave number-1 component of the extratropical planetary wave. This destructive interference is opposite to the mean effect of typical EPW on the extratropical planetary wave. It leads to suppressed upward propagation of wave energy into the polar stratosphere, a stronger stratospheric polar vortex, and a tendency toward a positive phase of the Arctic Oscillation (AO). The positive AO tendency is synchronized on the decadal scale with a poleward shift of the NH storm tracks, particularly in the North Atlantic. Storm track variations further induce changes in the amount of moisture transported into the Arctic by synoptic eddies. The fluctuations in the eddy moisture transport ultimately contribute to the observed decadal-scale variations in the total Arctic precipitation in the NH cool season.

  15. Interannual to Decadal Variability of Atlantic Water in the Nordic and Adjacent Seas

    NASA Technical Reports Server (NTRS)

    Carton, James A.; Chepurin, Gennady A.; Reagan, James; Haekkinen, Sirpa

    2011-01-01

    Warm salty Atlantic Water is the main source water for the Arctic Ocean and thus plays an important role in the mass and heat budget of the Arctic. This study explores interannual to decadal variability of Atlantic Water properties in the Nordic Seas area where Atlantic Water enters the Arctic, based on a reexamination of the historical hydrographic record for the years 1950-2009, obtained by combining multiple data sets. The analysis shows a succession of four multi-year warm events where temperature anomalies at 100m depth exceed 0.4oC, and three cold events. Three of the four warm events lasted 3-4 years, while the fourth began in 1999 and persists at least through 2009. This most recent warm event is anomalous in other ways as well, being the strongest, having the broadest geographic extent, being surface-intensified, and occurring under exceptional meteorological conditions. Three of the four warm events were accompanied by elevated salinities consistent with enhanced ocean transport into the Nordic Seas, with the exception of the event spanning July 1989-July 1993. Of the three cold events, two lasted for four years, while the third lasted for nearly 14 years. Two of the three cold events are associated with reduced salinities, but the cold event of the 1960s had elevated salinities. The relationship of these events to meteorological conditions is examined. The results show that local surface heat flux variations act in some cases to reinforce the anomalies, but are too weak to be the sole cause.

  16. Decadal variability of wind-energy input to the world ocean

    NASA Astrophysics Data System (ADS)

    Huang, Rui Xin; Wang, Wei; Liu, Ling Ling

    2006-01-01

    Wind-stress energy input to the oceans is the most important source of mechanical energy in maintaining the oceanic general circulation. Previous studies indicate that wind-energy input to the Ekman layer and surface waves has varied greatly over the past 50 years. In this study, wind-energy input to surface current and surface geostrophic current was calculated as the scalar product of wind stress and surface current and surface geostrophic current. The surface geostrophic current was calculated in two ways: the surface geostrophic velocity was diagnosed from the TOPEX/POSEIDON altimeter data between 1993 and 2003, and calculated from the sea-surface height of the numerical model. The surface velocity was obtained from a numerical model. Estimate of wind-energy input based on altimetric data averaged over 1993-2003 is 0.84 TW (1TW=10W), excluding the equatorial band (within ±3∘ of the equator). Estimate of the wind-energy input to the surface geostrophic current based on the numerical model is 0.87 TW averaged from 1993 to 2003, and wind-energy input to the surface current for the same period is 1.16 TW. This input is primarily concentrated over the Southern Ocean and the equatorial region (20∘S-20∘N). This energy varied greatly on interannual and decadal time scales, and it increased 12% over the past 25 years, and the interannual variability mainly occurs in the latitude band of 40∘S-60∘S and the equatorial region.

  17. Observer variability in estimating numbers: An experiment

    USGS Publications Warehouse

    Erwin, R.M.

    1982-01-01

    Census estimates of bird populations provide an essential framework for a host of research and management questions. However, with some exceptions, the reliability of numerical estimates and the factors influencing them have received insufficient attention. Independent of the problems associated with habitat type, weather conditions, cryptic coloration, ete., estimates may vary widely due only to intrinsic differences in observers? abilities to estimate numbers. Lessons learned in the field of perceptual psychology may be usefully applied to 'real world' problems in field ornithology. Based largely on dot discrimination tests in the laboratory, it was found that numerical abundance, density of objects, spatial configuration, color, background, and other variables influence individual accuracy in estimating numbers. The primary purpose of the present experiment was to assess the effects of observer, prior experience, and numerical range on accuracy in estimating numbers of waterfowl from black-and-white photographs. By using photographs of animals rather than black dots, I felt the results could be applied more meaningfully to field situations. Further, reinforcement was provided throughout some experiments to examine the influence of training on accuracy.

  18. Santa Ana Winds of Southern California: Their Climatology and Variability Spanning 6.5 Decades from Regional Dynamical Modelling

    NASA Astrophysics Data System (ADS)

    Guzman-Morales, J.; Gershunov, A.

    2015-12-01

    Santa Ana Winds (SAWs) are an integral feature of the regional climate of Southern California/Northern Baja California region. In spite of their tremendous episodic impacts on the health, economy and mood of the region, climate-scale behavior of SAW is poorly understood. In the present work, we identify SAWs in mesoscale dynamical downscaling of a global reanalysis product and construct an hourly SAW catalogue spanning 65 years. We describe the long-term SAW climatology at relevant time-space resolutions, i.e, we developed local and regional SAW indices and analyse their variability on hourly, daily, annual, and multi-decadal timescales. Local and regional SAW indices are validated with available anemometer observations. Characteristic behaviors are revealed, e.g. the SAW intensity-duration relationship. At interdecadal time scales, we find that seasonal SAW activity is sensitive to prominent large-scale low-frequency modes of climate variability rooted in the tropical and north Pacific ocean-atmosphere system that are also known to affect the hydroclimate of this region. Lastly, we do not find any long-term trend in SAW frequency and intensity as previously reported. Instead, we identify a significant long-term trend in SAW behavior whereby contribution of extreme SAW events to total seasonal SAW activity has been increasing at the expense of moderate events. These findings motivate further investigation on SAW evolution in future climate and its impact on wildfires.

  19. A Generalized Stability Analysis of the AMOC in Earth System Models: Implication for Decadal Variability and Abrupt Climate Change

    SciTech Connect

    Fedorov, Alexey V.

    2015-01-14

    The central goal of this research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) as related to climate variability and abrupt climate change within a hierarchy of climate models ranging from realistic ocean models to comprehensive Earth system models. Generalized Stability Analysis, a method that quantifies the transient and asymptotic growth of perturbations in the system, is one of the main approaches used throughout this project. The topics we have explored range from physical mechanisms that control AMOC variability to the factors that determine AMOC predictability in the Earth system models, to the stability and variability of the AMOC in past climates.

  20. Modeling the Temperature Responses to Spectral Solar Variability on Decadal and Centennial Time Scales

    NASA Astrophysics Data System (ADS)

    Cahalan, R. F.; Wen, G.; Pilewskie, P.; Harder, J. W.

    2010-12-01

    Atmospheric temperature responses to decadal solar variations are computed for two scenarios of solar spectral irradiance (SSI), SIM-based out-of-phase and proxy-based in-phase variations, using a time-dependent radiative-convective model (RCM), and also GISS modelE (GCM.) For both scenarios and both models, maximum responses occur in upper stratosphere, decreasing downward to the surface. Upper stratospheric temperature peak-to-peak responses to out-of-phase forcing are ~0.6 K in RCM and ~0.9 K over tropics in GCM, ~5x as large as responses to in-phase forcing. Stratospheric responses are in-phase with TSI (Total Solar Irradiance). Modeled upper stratospheric temperature responses to SIM-based forcing are similar to 11-year temperature variations observed with HALOE (Halogen Occultation Experiment). For both RCM and GCM, surface responses to the two scenarios are significantly smaller than stratospheric responses. On centennial timescales, SSI variations are poorly known. However, two scenarios of reconstructed TSI, one based on 11-year cycle with background [Lean 2000] and the other on flux transport with much less background [Wang, Lean, and Sheeley, 2005], provide a potential range of TSI variations. We apply phase relations among different SSI bands both from SIM observations and proxy reconstructions to the two scenarios of historical TSI to derive associated historical SSI, which then drives the RCM. The updated atmosphere and ocean mixed coupled RCM including diffusion to deep-ocean provide a first order estimate of temperature responses to SSI variations on centennial time scales. We discuss potential mechanisms for atmosphere-ocean and stratosphere-troposphere couplings responsible for the climate responses to spectral solar variations.

  1. Space-time variability of Indonesian rainfall at inter-annual and multi-decadal time scales

    NASA Astrophysics Data System (ADS)

    Yanto; Rajagopalan, Balaji; Zagona, Edith

    2016-11-01

    We investigated the space-time variability of wet (Nov-Apr) and dry (May-Oct) season rainfall over Indonesia, using monthly gridded rainfall data from the University of East Anglia Climatic Research Unit covering the period 1901-2012. Three complimentary techniques were employed—(1) principal component analysis to identify the dominant modes of variability, (2) wavelet spectral analysis to identify the spectral characteristics of the leading modes and their coherence with large scale climate variables and (3) Bayesian Dynamical Linear Model (BDLM) to quantify the temporal variability of the association between rainfall modes and climate variables. In the dry season when the Inter Tropical Convergence Zone (ITCZ) is to the north of the equator the leading two principal components (PCs) explain close to 50 % of the rainfall. In the wet season the ITCZ moves to the south and the leading PCs explain close to 30 % of the variance. El Niño Southern Oscillation (ENSO) is the driver of the leading modes of rainfall variability during both seasons. We find asymmetry in the teleconnections of ENSO to high and low rainfall years in the dry season. Furthermore, ENSO and the leading PCs of rainfall have spectral coherence in the inter-annual band (2-8 years) over the entire period of record and in the multi-decadal (8-16 years) band in post-1980 years. In addition, during the 1950-1980 period the second mode of variability in both seasons has a strong relationship with Pacific Decadal Oscillation. The association between ENSO and the leading mode of Indonesian rainfall has strengthened in recent decades, more so during dry season. These inter-annual and multi-decadal variability of Indonesian rainfall modulated by Pacific climate drivers has implications for rainfall and hydrologic predictability important for water resources management.

  2. Decadal trend of precipitation and temperature patterns and impacts on snow-related variables in a semiarid region, Sierra Nevada, Spain.

    NASA Astrophysics Data System (ADS)

    José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María

    2016-04-01

    , with the exception of the average annual mean and maximum daily temperature. In the case of the snow-related variables, no significant trends are observed at this time scale; nonetheless, a global decreasing rate is predominant in most of the variables. The torrential events are more frequent in the last decades of the study period, with an apparently increasing associated dispersion. This study constitutes a first sound analysis of the long-term observed trends of the snow regime in this area under the context of increasing temperature and decreasing precipitation regimes. The results highlight the complexity of non-linearity in environmental processes in Mediterranean regions, and point out to a significant shift in the precipitation and temperature regime, and thus on the snow-affected hydrological variables in the study area.

  3. Decadal-Scale Tropical North Atlantic Climate Variability Recorded in Slow Growing Cape Verde Corals

    NASA Astrophysics Data System (ADS)

    Moses, C. S.; Swart, P. K.; Dodge, R. E.; Helmle, K. P.; Thorrold, S.

    2002-12-01

    The decadal to century scale climate variability of the tropical North Atlantic has major implications for both neighboring coastal and inland areas. Changes in patterns of sea surface temperature (SST) and SST anomalies (SSTA) in the tropical North Atlantic are known to affect rainfall in Florida, South America, and sub-Saharan Africa, as well as the number of major hurricanes formed in the Atlantic. Because of the significance of these connections, it is important to further increase our predictive capacity for the recognition of trends and cycles in tropical North Atlantic SST and SSTA. Located at 15° N latitude off the west coast of sub-Saharan Africa, the Cape Verde Islands are an ideal geographic location to search for records of the Tropical North Atlantic Index (TNA). Such patterns are present in proxy indicators of climate (O, C, Sr/Ca and Mg/Ca) recorded in the skeletons of slow growing corals, such as Siderastrea radians, found in Cape Verde (growth rate = 1-2 mm/yr). These corals represent an archive for SST and SSTA records that exceed the instrumental period of the eastern tropical North Atlantic. We cored corals from several different locations within the Cape Verde archipelago and analyzed them for stable isotopes (δ13C and δ18O) and minor elements (Sr, Mg, and Ba). The δ18O signal present in these corals shows a distinct relationship to the TNA over the better part of the last 100 years. In addition, the δ18O record in several of these corals also records the onset of the latest Sahel (11°-18° N in Africa) drought which began in 1970. The Sr/Ca and Mg/Ca records of these corals indicate a slight warming of the waters around Cape Verde during the last 100 years, as well as accurately recording the El Niño events of 1982-83 and 1997-98. The correlations present between the records in these corals and the known instrumental record for the eastern tropical North Atlantic suggests that the fluctuations recorded in the proxy indicators may be

  4. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    SciTech Connect

    Maslowski, Wieslaw; Cassano, John J.; Gutowski, Jr., William J.; Lipscomb, William H.; Nijssen, Bart; Roberts, Andrew; Robertson, William; Tulaczyk, Slawek; Zeng, Xubin

    2011-05-15

    The primary outcome of the project was the development of the Regional Arctic System Model (RASM) and evaluation of its individual model components, coupling among them and fully coupled model results. Overall, we have demonstrated that RASM produces realistic mean and seasonal surface climate as well as its interannual and decadal variability and trends.

  5. Modeling the Climate Responses to Spectral Solar Variability on Decadal and Centennial Time Scales

    NASA Astrophysics Data System (ADS)

    Cahalan, Robert; Wen, Guoyong; Pilewskie, Peter; Harder, Jerald

    We apply two scenarios of external forcing, namely the SIM-based out-of-phase variations and the proxy-based in-phase variations, as input to a time-dependent radiative-convective model (RCM), and also to the GISS modelE GCM, to compute climate responses to solar variation on decadal time scale. We find that the maximum temperature response occurs in the upper stratosphere, while temperature response decreases downward to the surface for both scenarios, and both models. The upper stratospheric temperature peak-to-peak responses to out-of-phase solar forcing are 0.6 K in RCM and 0.9 K over the tropical region in GCM simulations, a factor of 5 times as large as responses to in-phase solar forcing. Stratospheric responses are in-phase with TSI (Total Solar Irradiance) variations. The modeled upper stratospheric temperature responses to the SORCE SIM observed SSI (Spectral Solar Irradiance) forcing are similar to the HALOE (Halogen Occultation Experiment) observed 11-year temperature variations. Surface responses to the two SSI scenarios are small for both RCM and GCM studies, as compared to the stratospheric responses. Though solar irradiance variations on centennial time scale are not well known, the two sce-narios of reconstructed TSI time series (i.e., the one based on 11-year cycle with background [Lean 2000] and the other one from flux transport that has much less background component [Wang, Lean, and Sheeley, 2005]) provide potential range of variations of TSI on centennial time scale. We apply phase relations among different spectral irradiance bands both from SIM observation and proxy reconstructions to the two scenarios of historical TSI to derive the as-sociated historical SSI. The historical SSI is used to drive the RCM. The updated atmosphere and ocean mixed coupled RCM including diffusion to deep-ocean will provide the first order estimate of temperature response to SSI variation on centennial time scales. We anticipate the stratosphere, troposphere, and

  6. North Pacific Decadal Variability in the GEOS-5 Atmosphere-Ocean Model

    NASA Technical Reports Server (NTRS)

    Achuthavarier, Deepthi; Schubert, Siegfried D.; Vikhliaev, Yury V.

    2013-01-01

    This study examines the mechanisms of the Pacific decadal oscillation (PDO) in the GEOS-5 general circulation model. The model simulates a realistic PDO pattern that is resolved as the first empirical orthogonal function (EOF) of winter sea surface temperature (SST). The simulated PDO is primarily forced by Aleutian low through Ekman transport and surface fluxes, and shows a red spectrum without any preferred periodicity. This differs from the observations, which indicate a greater role of El Nino-Southern Oscillation (ENSO) forcing, and likely reflects the too short time scale of the simulated ENSO. The geostrophic transport in response to the Aleutian low is limited to the Kuroshio-Oyashio Extension, and is unlikely the main controlling factor in this model, although it reinforces the Ekman-induced SST anomalies. The delay between the Aleutian low and the PDO is relatively short (1 year) suggesting that the fast Ekman response (rather than Rossby wave propagation) sets the SST pattern immediately following an Aleutian low fluctuation. The atmospheric feedback (response to the SST) is only about 25 of the forcing and never evolves into an Aleutian low completely, instead projecting onto the North Pacific Oscillation (NPO), a meridional dipole in sea level pressure (SLP). The lack of preferred periodicity and weak atmospheric response bothindicate a coupled oscillation is an unlikely mechanism for the PDO in this model. In agreement with recent studies, the NPO is correlated with the North Pacific Gyre Oscillation (NPGO), which is another leading EOF of the North Pacific SST. A possible connection between the PDO and the NPGO is discussed.

  7. Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets.

    PubMed

    Li, Wei; Ciais, Philippe; Wang, Yilong; Peng, Shushi; Broquet, Grégoire; Ballantyne, Ashley P; Canadell, Josep G; Cooper, Leila; Friedlingstein, Pierre; Le Quéré, Corinne; Myneni, Ranga B; Peters, Glen P; Piao, Shilong; Pongratz, Julia

    2016-11-15

    Conventional calculations of the global carbon budget infer the land sink as a residual between emissions, atmospheric accumulation, and the ocean sink. Thus, the land sink accumulates the errors from the other flux terms and bears the largest uncertainty. Here, we present a Bayesian fusion approach that combines multiple observations in different carbon reservoirs to optimize the land (B) and ocean (O) carbon sinks, land use change emissions (L), and indirectly fossil fuel emissions (F) from 1980 to 2014. Compared with the conventional approach, Bayesian optimization decreases the uncertainties in B by 41% and in O by 46%. The L uncertainty decreases by 47%, whereas F uncertainty is marginally improved through the knowledge of natural fluxes. Both ocean and net land uptake (B + L) rates have positive trends of 29 ± 8 and 37 ± 17 Tg C⋅y(-2) since 1980, respectively. Our Bayesian fusion of multiple observations reduces uncertainties, thereby allowing us to isolate important variability in global carbon cycle processes.

  8. Decadal variability in the composition of Faroe Shetland Channel bottom water

    NASA Astrophysics Data System (ADS)

    Turrell, William R.; Slesser, George; Adams, Richard D.; Payne, Rodney; Gillibrand, Philip A.

    1999-01-01

    Two standard sections across the deep water channel separating the Faroese Plateau from the Scottish continental shelf have been surveyed regularly since the start of the 20th century. There have been significant changes in the characteristics of surface, intermediate and deep water masses during this period. At intermediate depths, the presence of Norwegian Sea Arctic Intermediate Water (NSAIW) was evident as a salinity minimum during the first decade of the century. During the decades 1960-1980 this salinity minimum disappeared, and only four water types were identified in the Channel. Since 1980 the salinity of the intermediate water has again decreased, due to changes in the atmospheric forcing over the Nordic Seas, and it is again evident on a θS curve as a distinct minimum. The salinity of the bottom water in the Channel has also decreased (0.01/decade) linearly since the mid-1970s, although at a slower rate than the intermediate water (0.02/decade). The decline in salinity of the bottom water cannot be accounted for by changes in the salinity of upper Norwegian Sea Deep Water (NSDW), which Faroe Shetland Channel Bottom Water (FSCBW) has traditionally been assumed to be composed of. There is evidence that the upper level of NSDW has become deeper outside the Channel owing to a reduced supply from the Greenland Sea. This has resulted in a change in the composition of FSCBW, from being approximately 60% NSDW during the period 1970-1985 to 40% NSDW since 1990. Thus, the thermohaline circulation of the Nordic Seas has lost its deep water connection. The associated freshening of FSCBW has propagated out through the Channel into the North Atlantic and has resulted in a reduction of the salinity (0.02/decade) and transport (1-7%/decade) of Iceland Scotland Overflow Water (ISOW) into the North Atlantic.

  9. Simulating multi-decadal variability of Caspian Sea level changes using regional climate model outputs

    NASA Astrophysics Data System (ADS)

    Elguindi, N.; Giorgi, F.

    2006-02-01

    The Caspian Sea is the largest enclosed body of water on earth, covering approximately 4×105 km2 and sharing its coast with five countries (Iran, Azerbaijan, Kazakhstan, Russia and Turkmenistan). Because it has no outlet to the ocean the Caspian Sea level (CSL) has undergone rapid shifts in response to climatic forcings, and these have been devastating for the surrounding countries. In this paper we present the initial results of a modeling effort aimed at building a regional climate model for the Caspian Sea basin suitable to study the response of the CSL to interdecadal climate variability and anthropogenic climate change. Simulations are performed using the International Centre for Theoretical Physics (ICTP) regional climate model RegCM at a 50 km grid spacing for the period 1948 1990. During this period an abrupt shift occurred in the sea level after 1977, when the CSL rose about two meters until the early 1990s. Using a simple equation of hydrologic balance for the Caspian Sea basin to predict the CSL, we show that the model is able to reproduce the observed CSL changes at interannual to multidecadal scales. The correlation coefficient between the simulated and observed annual CSL changes is 0.91 and the model is able to reproduce the abrupt shift in CSL which occurred after 1977. Analysis of the climatologies before and after 1977 indicate that the CSL rise was mostly due to an increase in precipitation over the northern basin and a decrease in evaporation over the sea, primarily during the warm season. We plan to apply our model to the investigation of the response of the CSL to anthropogenic climate forcings.

  10. Teleconnections, Midlatitude Cyclones and Aegean Sea Turbulent Heat Flux Variability on Daily Through Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Romanski, Joy; Romanou, Anastasia; Bauer, Michael; Tselioudis, George

    2013-01-01

    We analyze daily wintertime cyclone variability in the central and eastern Mediterranean during 1958-2001, and identify four distinct cyclone states, corresponding to the presence or absence of cyclones in each basin. Each cyclone state is associated with wind flows that induce characteristic patterns of cooling via turbulent (sensible and latent) heat fluxes in the eastern Mediterranean basin and Aegean Sea. The relative frequency of occurrence of each state determines the heat loss from the Aegean Sea during that winter, with largest heat losses occurring when there is a storm in the eastern but not central Mediterranean (eNOTc), and the smallest occurring when there is a storm in the central but not eastern Mediterranean (cNOTe). Time series of daily cyclone states for each winter allow us to infer Aegean Sea cooling for winters prior to 1985, the earliest year for which we have daily heat flux observations. We show that cyclone states conducive to Aegean Sea convection occurred in 1991/1992 and 1992/1993, the winters during which deep water formation was observed in the Aegean Sea, and also during the mid-1970s and the winters of 1963/1964 and 1968/1969. We find that the eNOTc cyclone state is anticorrelated with the North Atlantic Oscillation (NAO) prior to 1977/1978. After 1977/1978, the cNOTe state is anticorrelated with both the NAO and the North Caspian Pattern (NCP), showing that the area of influence of large scale atmospheric teleconnections on regional cyclone activity shifted from the eastern to the central Mediterranean during the late 1970s. A trend toward more frequent occurrence of the positive phase of the NAO produced less frequent cNOTe states since the late 1970s, increasing the number of days with strong cooling of the Aegean Sea surface waters.

  11. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability

    NASA Astrophysics Data System (ADS)

    Meehl, Gerald A.; Arblaster, Julie M.; Bitz, Cecilia M.; Chung, Christine T. Y.; Teng, Haiyan

    2016-08-01

    Antarctic sea-ice extent has been slowly increasing in the satellite record that began in 1979. Since the late 1990s, the increase has accelerated, but the average of all climate models shows a decline. Meanwhile, the Interdecadal Pacific Oscillation, an internally generated mode of climate variability, transitioned from positive to negative, with an average cooling of tropical Pacific sea surface temperatures, a slowdown of the global warming trend and a deepening of the Amundsen Sea Low near Antarctica that has contributed to regional circulation changes in the Ross Sea region and expansion of sea ice. Here we show that the negative phase of the Interdecadal Pacific Oscillation in global coupled climate models is characterized by anomalies similar to the observed sea-level pressure and near-surface 850 hPa wind changes near Antarctica since 2000 that are conducive to expanding Antarctic sea-ice extent, particularly in the Ross Sea region in all seasons, involving a deepening of the Amundsen Sea Low. These atmospheric circulation changes are shown to be mainly driven by precipitation and convective heating anomalies related to the Interdecadal Pacific Oscillation in the equatorial eastern Pacific, with additional contributions from convective heating anomalies in the South Pacific convergence zone and tropical Atlantic regions.

  12. Decadal covariability of Atlantic SSTs and western Amazon dry-season hydroclimate in observations and CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Fernandes, Katia; Giannini, Alessandra; Verchot, Louis; Baethgen, Walter; Pinedo-Vasquez, Miguel

    2015-08-01

    The unusual severity and return time of the 2005 and 2010 dry-season droughts in western Amazon is attributed partly to decadal climate fluctuations and a modest drying trend. Decadal variability of western Amazon hydroclimate is highly correlated to the Atlantic sea surface temperature (SST) north-south gradient (NSG). Shifts of dry and wet events frequencies are also related to the NSG phase, with a 66% chance of 3+ years of dry events per decade when NSG > 0 and 19% when NSG < 0. The western Amazon and NSG decadal covariability is well reproduced in general circulation models (GCMs) historical (HIST) and preindustrial control (PIC) experiments of the Coupled Model Intercomparison Project Phase 5 (CMIP5). The HIST and PIC also reproduce the shifts in dry and wet events probabilities, indicating potential for decadal predictability based on GCMs. Persistence of the current NSG positive phase favors above normal frequency of western Amazon dry events in coming decades.

  13. Intra- to Multi-Decadal Temperature Variability over the Continental United States: 1896-2012

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Optimal Ranking Regime (ORR) method was used to identify intra- to multi-decadal (IMD) time windows containing significant ranking sequences in U.S. climate division temperature data. The simplicity of the ORR procedure’s output – a time series’ most significant non-overlapping periods of high o...

  14. Geomagnetic storms during the last decade: Cluster and Double Star observations (Invited)

    NASA Astrophysics Data System (ADS)

    Escoubet, C.; Taylor, M. G.; Masson, A.; Laakso, H. E.; Liu, Z.; Goldstein, M. L.

    2013-12-01

    The launch of the Cluster spacecraft almost coincided with one of the largest geomagnetic storm of the last decade, well known as the "Bastille Day" storm, on 14-15 July 2000. Planned on 15 July, the launch was aborted a few minutes before due to a thunderstorm that had hit the Baikonour cosmodrome and made a disruption in the communication lines with the rocket. The launch took place the day after, on 16 July 2000. Our US colleagues had warned us about the storm and recommended not to launch on 15 July. Given the facts that (1) Cluster was built to study the effects of space weather and geomagnetic storms and (2) that the Russian launch authorities were not concerned for the Soyuz rocket, it was decided to go ahead with the launch. The launch was fine and, after a second launch less than a month later, the four Cluster spacecraft were put successfully in their 4x19 RE polar orbit. Since then, Cluster has observed many geomagnetic storms and could observe, for the first time with a constellation of four spacecraft, the dynamics induced in the magnetosphere by coronal mass ejections or interplanetary shocks coming from the Sun. In this talk we will use storms observed by Cluster and Double Star in the last decade to illustrate how the magnetosphere was affected. We have observed large compressions of the magnetosphere, distortions of the polar cusp, acceleration of particles associated with chorus and ULF waves, intensification of the ring current imaged by energetic neutral atom imagers, oxygen outflow from polar regions, and tail current sheet motions.

  15. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society

    NASA Astrophysics Data System (ADS)

    Santo, H.; Taylor, P. H.; Gibson, R.

    2016-09-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958-2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different.

  16. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society.

    PubMed

    Santo, H; Taylor, P H; Gibson, R

    2016-09-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958-2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different.

  17. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society

    PubMed Central

    Taylor, P. H.; Gibson, R.

    2016-01-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958–2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different. PMID:27713662

  18. German Bight residual current variability on a daily basis: principal components of multi-decadal barotropic simulations

    NASA Astrophysics Data System (ADS)

    Callies, Ulrich; Gaslikova, Lidia; Kapitza, Hartmut; Scharfe, Mirco

    2016-08-01

    Time variability of Eulerian residual currents in the German Bight (North Sea) is studied drawing on existing multi-decadal 2D barotropic simulations (1.6 km resolution) for the period Jan. 1958-Aug. 2015. Residual currents are calculated as 25 h means of velocity fields stored every hour. Principal component analysis (PCA) reveals that daily variations of these residual currents can be reasonably well represented in terms of only 2-3 degrees of freedom, partly linked to wind directions. The daily data refine monthly data already used in the past. Unlike existing classifications based on subjective assessment, numerical principal components (PCs) provide measures of strength and can directly be incorporated into more comprehensive statistical data analyses. Daily resolution in particular fits the time schedule of data sampled at the German Bight long-term monitoring station at Helgoland Roads. An example demonstrates the use of PCs and corresponding empirical orthogonal functions (EOFs) for the interpretation of short-term variations of these local observations. On the other hand, monthly averaging of the daily PCs enables to link up with previous studies on longer timescales.

  19. German Bight residual current variability on a daily basis: principal components of multi-decadal barotropic simulations

    NASA Astrophysics Data System (ADS)

    Callies, Ulrich; Gaslikova, Lidia; Kapitza, Hartmut; Scharfe, Mirco

    2017-04-01

    Time variability of Eulerian residual currents in the German Bight (North Sea) is studied drawing on existing multi-decadal 2D barotropic simulations (1.6 km resolution) for the period Jan. 1958-Aug. 2015. Residual currents are calculated as 25 h means of velocity fields stored every hour. Principal component analysis (PCA) reveals that daily variations of these residual currents can be reasonably well represented in terms of only 2-3 degrees of freedom, partly linked to wind directions. The daily data refine monthly data already used in the past. Unlike existing classifications based on subjective assessment, numerical principal components (PCs) provide measures of strength and can directly be incorporated into more comprehensive statistical data analyses. Daily resolution in particular fits the time schedule of data sampled at the German Bight long-term monitoring station at Helgoland Roads. An example demonstrates the use of PCs and corresponding empirical orthogonal functions (EOFs) for the interpretation of short-term variations of these local observations. On the other hand, monthly averaging of the daily PCs enables to link up with previous studies on longer timescales.

  20. Decadal Challenges in Ground-Based Observations for Solar and Space Physics (Invited)

    NASA Astrophysics Data System (ADS)

    Robinson, R. M.

    2013-12-01

    Ground-based observations of the sun and near-Earth space have long provided the fundamental information needed to achieve a better understanding of the coupled Sun-Earth system and the processes responsible for solar activity and its effects on Earth's magnetosphere, ionosphere, and atmosphere. Observations based on both active and passive radio wave and optical techniques provide measurements throughout Earth's atmosphere, geospace, the heliosphere, and the Sun. Although the number of observing instruments, the capabilities of the instruments, and the variety of ground-based assets continue to open new frontiers and enable scientific discoveries, gaps still exist, not only in terms of the spatial coverage of the measurements, but also in the properties of the system that are observed and the cadence and frequency of the observations. Fortunately, new technologies have provided the tools by which these challenges can be overcome. This is an opportune time to develop an integrated strategy for development, deployment, operation, and data analysis of ground-based assets. These include, for example, advanced networking technologies, crowd-sourced data acquisition, and multi-use observational platforms. Ground-based observations can also be optimized through the development of smart sensors, that operate at low power and are easily deployable, reconfigurable, and remotely operable. Furthermore, the data from ground-based observations will be collected, archived, and disseminated in ways that will enable effective and productive data mining, image and pattern recognition, cross-correlation among diverse data sets, and broadly-based collaborative research. These capabilities are especially important as we attempt to understand the system aspects of the solar-terrestrial environment. The next decade will undoubtedly see new understanding and discoveries resulting from improved and expanded ground-based instruments, as well as in their strategic deployment and operation.

  1. Climatic controls on the interannual to decadal variability in Saudi Arabian dust activity: Toward the development of a seasonal dust prediction model

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Notaro, Michael; Liu, Zhengyu; Wang, Fuyao; Alkolibi, Fahad; Fadda, Eyad; Bakhrjy, Fawzieh

    2015-03-01

    The observed climatic controls on springtime and summertime Saudi Arabian dust activities during 1975-2012 are analyzed, leading to development of a seasonal dust prediction model. According to empirical orthogonal function analysis, dust storm frequency exhibits a dominantly homogeneous pattern across Saudi Arabia, with distinct interannual and decadal variability. The previously identified positive trend in remotely sensed aerosol optical depth since 2000 is shown to be a segment of the decadal oscillation in dust activity, according to long-duration station record. Regression and correlation analyses reveal that the interannual variability in Saudi Arabian dust storm frequency is regulated by springtime rainfall across the Arabian Peninsula and summertime Shamal wind intensity. The key drivers of Saudi Arabian dust storm variability are identified. Winter-to-spring La Niña enhances subsequent spring dust activity by decreasing rainfall across the country's primary dust source region, the Rub' al Khali Desert. A relatively cool tropical Indian Ocean favors frequent summer dust storms by producing an anomalously anticyclonic circulation over the central Arabian Peninsula, which enhances the Shamal wind. Decadal variability in Saudi Arabian dust storm frequency is associated with North African rainfall and Sahel vegetation, which regulate African dust emissions and transport to Saudi Arabia. Mediterranean sea surface temperatures (SSTs) also regulate decadal dust variability, likely through their influence on Sahel rainfall and Shamal intensity. Using antecedent-accumulated rainfall over the Arabian Peninsula and North Africa, and Mediterranean SSTs, as low-frequency predictors, and tropical eastern Pacific and tropical Indian Ocean SSTs as high-frequency predictors, Saudi Arabia's seasonal dust activity is well predicted.

  2. Observations of decadal time scale salinity changes in the subtropical thermocline of the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Ren, Li; Riser, Stephen C.

    2010-07-01

    Data from Argo floats indicate that significant salinity changes have occurred in the North Pacific thermocline relative to data collected in the previous two decades, including observations obtained as part of the WOCE hydrographic program. Such a salinity decrease on both isopyncals and isobars implies a freshening scenario in the near-surface source region of this water mass. The frequently repeated meridional section P16 supports this inference. The subsurface salinity freshening likely began in the early 1990s, strengthened through 1997, and continued into the 2000s; the surface salinity freshening had commenced by 1984 and continued through the first decade of the 21st century. The spatial distribution of salinity change on the density surface σ θ=25.5 is examined through comparisons of Argo and most of the North Pacific WOCE sections (1985-1994) and between Argo and the Hydrobase climatology, largely composed of data from the late 1970s through the mid-1980s. Both comparisons show a large-scale, basin-wide decrease in subsurface salinity through the Argo time period used in this analysis (2003-2006). The salinity difference is maximum in the northeast area and spreads southward and westward, approximately following geostrophic streamlines.

  3. Highlights from a Decade of OMI-TOMS Total Ozone Observations on EOS Aura

    NASA Technical Reports Server (NTRS)

    Haffner, David P.; Bhartia, Pawan K.; McPeters, Richard D.; Joiner, Joanna; Ziemke, Jerald R.; Vassilkov, Alexander; Labow, Gordon J.; Chiou, Er-Woon

    2014-01-01

    Total ozone measurements from OMI have been instrumental in meeting Aura science objectives. In the last decade, OMI has extended the length of the TOMS total ozone record to over 35 years to monitor stratospheric ozone recovery. OMI-TOMS total ozone measurements have also been combined synergistically with measurements from other Aura instruments and MLS in particular, which provides vertically resolved information that complements the total O3 mapping capability of OMI. With this combined approach, the EOS Aura platform has produced more accurate and detailed measurements of tropospheric ozone. This has led in turn to greater understanding of the sources and transport of tropospheric ozone as well as its radiative forcing effect. The combined use of OMI and MLS data was also vital to the analysis of the severe Arctic ozone depletion event of 2011. The quality of OMI-TOMS total O3 data used in these studies is the result of several factors: a mature and well-validated algorithm, the striking stability of the OMI instrument, and OMI's hyperspectral capabilities used to derive cloud pressures. The latter has changed how we think about the effects of clouds on total ozone retrievals. We will discuss the evolution of the operational V8.5 algorithm and provide an overview and motivation for V9. After reviewing results and developments of the past decade, we finally highlight how ozone observations from EOS Aura are playing an important role in new ozone mapping missions.

  4. Mapping of decadal middle Adriatic oceanographic variability and its relation to the BiOS regime

    NASA Astrophysics Data System (ADS)

    Mihanović, Hrvoje; Vilibić, Ivica; Dunić, Natalija; Å epić, Jadranka

    2015-08-01

    We analyzed long-term time series of temperature, salinity, and dissolved oxygen (DO) concentrations collected along the Palagruža Sill transect (middle Adriatic) between 1952 and 2010. The data have been mostly collected on seasonal basis, allowing for extraction of seasonal signal from the series. By applying Self-Organizing Maps (SOM) method, a kind of unsupervised neural network method, the processes on a decadal time scale emerged as the most relevant for changes of oceanographic properties in the middle Adriatic area. Sensitivity studies revealed that oceanographic patterns obtained by SOM were not sensitive to shortening of time series, to removal of data from one station or to removal of DO from the analysis. Simultaneous SOM-based mapping of sea surface heights in the northern Ionian Sea, with these heights serving as a proxy for the Adriatic-Ionian Bimodal Oscillating System (BiOS), revealed asymmetry between anticyclonic and cyclonic BiOS patterns and correlated the decadal oscillations in the middle Adriatic with the reversals in the BiOS circulation regimes. These reversals are found to either rapidly change oceanographic properties in the middle Adriatic (e.g., during the Eastern Mediterranean Transient) or to change them with a time lag of 2-3 years. The mapped connections may be used for a short-time (a few years) forecasting of the Adriatic oceanographic properties or for mapping future climate decadal oscillations as seen by ocean climate models.

  5. A Decade of Volcanic Observations from Aura and the A-Train

    NASA Technical Reports Server (NTRS)

    Carn, Simon A.; Krotkov, Nickolay Anatoly; Yang, Kai; Krueger, Arlin J.; Hughes, Eric J.; Wang, Jun; Flower, Verity; Telling, Jennifer

    2014-01-01

    Aura observations have made many seminal contributions to volcanology. Prior to the Aura launch, satellite observations of volcanic degassing (e.g., from TOMS) were mostly restricted to large eruptions. However, the vast majority of volcanic gases are released during quiescent 'passive' degassing between eruptions. The improved sensitivity of Aura OMI permitted the first daily, space-borne measurements of passive volcanic SO2 degassing, providing improved constraints on the source locations and magnitude of global SO2 emissions for input to atmospheric chemistry and climate models. As a result of this unique sensitivity to volcanic activity, OMI data were also the first satellite SO2 measurements to be routinely used for volcano monitoring at several volcano observatories worldwide. Furthermore, the Aura OMI SO2 data also offer unprecedented sensitivity to volcanic clouds in the UTLS, elucidating the transport, fate and lifetime of volcanic SO2 and providing critical input to aviation hazard mitigation efforts. Another major advance has been the improved vertical resolution of volcanic clouds made possible by synergy between Aura and other A-Train instruments (e.g., AIRS, CALIPSO, CloudSat), advanced UV SO2 altitude retrievals, and inverse trajectory modeling of detailed SO2 cloud maps. This altitude information is crucial for climate models and aviation hazards. We will review some of the highlights of a decade of Aura observations of volcanic activity and look ahead to the future of volcanic observations from space.

  6. Collaborative Research. Separating Forced and Unforced Decadal Predictability in Models and Observations

    SciTech Connect

    DelSole, Timothy

    2015-08-31

    The purpose of the proposed research was to identify unforced predictable components on decadal time scales, distinguish these components from forced predictable components, and to assess the reliability of model predictions of these components. The question of whether anthropogenic forcing changes decadal predictability, or gives rise to new forms of decadal predictability, also will be

  7. Forest Dragon-3: Decadal Trends of Northeastern Forests in China from Earth Observation Synergy

    NASA Astrophysics Data System (ADS)

    Schmullius, C.; Balling, J.; Schratz, P.; Thiel, C.; Santoro, M.; Wegmuller, U.; Li, Z.; Yong, P.

    2016-08-01

    In Forest DRAGON 3, synergy of Earth Observation products to derive information of decadal trends of forest in northeast China was investigated. Following up the results of Forest-DRAGON 1 and 2, Growing Stock Volume (GSV) products from different years were investigated to derive information on vegetational in north- east China. The BIOMASAR maps of 2005 and 2010, produced within the previous DRAGON projects, set the base for all analyses. We took a closer look at scale problems regarding GSV derivation, which are introduced by differing landcover within one pixel, to investigate differences throughout pixel classes with varying landcover class percentages. We developed an approach to select pixels containing forest only with the aim of undertaking a detailed analysis on retrieved GSV values for such pixels for the years 2005 and 2010. Using existing land cover products at different scales, the plausibility of changes in the BIOMASAR maps were checked.

  8. An updated set of nutations derived from the reanalysis of 3.5 decades VLBI observations

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Koot, Laurence; Rivoldini, Attilio; Dehant, Veronique

    2016-04-01

    The global VLBI observation started in the 1979. After that the qualities of the measurements are continuously improving by taking into account various instrumental and environmental effects. The MHB2000 models was introduced in 2002 (Mathews, et.al. 2002, [1]) and it has a good agreement (5 μas) on the short period nutation series (<400 days) with the values derived from 2 decades (1979-2000) VLBI data while a higher uncertainties up to 56 μas for those longer periods (>400 days) nutation series (Herring et.al. 2002). In MHB2000, the forcing frequencies of the nutation series are solved by least-squares fitting to the VLBI data in frequency domain. Koot et al. (2008), have processed another similar set of nutation series by inversing the time series of VLBI data (1984-2005) using a Bayesian approach. In the present work, we will repeat both approaches using the up-to-date 3.5 decades VLBI observations (1980-2014) meanwhile paying more attention on the results of longer period (>400 days). Finally some features of Earth's interior structure will be discussed based on the determined nutation series. [1] Mathews, P.M., Herring, T.A. & Buffett, B.A., 2002. Modeling of nutation and precession: new nutation series for nonrigid Earth and insights into the Earth's interior, J. Geophys. Res., 107, 2068, doi: 10.1029/2001JB000390. [2] Herring, T. A., P. M. Mathews, and B. A. Buffett, Modeling of nutation and precession: Very long baseline interferometry results, J. Geophys. Res., 107, B4, 2069, doi: 10.1029/2001JB000165, 2002 [3] Koot, L., Rivoldini, A., de Viron, O. & Dehant, V., 2008. Estimation of Earth interior parameters from a Bayesian inversion of very long baseline interferometry nutation time series, J. Geophys. Res., 113, 8414, doi: 10.1029/2007JB005409.

  9. A new centennial index to study the Western North Pacific Monsoon decadal variability

    NASA Astrophysics Data System (ADS)

    Vega, Inmaculada; Gómez-Delgado, F. de Paula; Gallego, David; Ribera, Pedro; Peña-Ortiz, Cristina; García-Herrera, Ricardo

    2016-04-01

    The concept of the Western North Pacific Summer Monsoon (WNPSM) appeared for the first time in 1987. It is, unlike the Indian Summer Monsoon (ISM) and the East Asian summer monsoon (EASM), an oceanic monsoon mostly driven by the meridional gradient of sea surface temperature. Its circulation is characterized by a northwest-southeast oriented monsoon trough with intense precipitation and low-level southwesterlies and upper-tropospheric easterlies in the region [100°-130° E, 5°-15°N]. Up to now, the primary index to characterize the WNPSM has been the Western North Pacific Monsoon Index (WNPMI) which covers the 1949-2013 period. The original WNPMI was defined as the difference of 850-hPa westerlies between two regions: D1 [5°-15°N, 100°-130°E] and D2 [20°-30°N, 110°-140°E]. Both domains are included in the main historical ship routes circumnavigating Asia for hundreds of years. Many of the logbooks of these ships have been preserved in historical archives and they usually contain daily observations of wind force and direction. Therefore, it has been possible to compute a new index of instrumental character, which reconstructs the WNPSM back to the middle of the 19th Century, by using solely historical wind direction records preserved in logbooks. We define the monthly Western North Pacific Directional Index (WNPDI) as the sum of the persistence of the low-level westerly winds in D1 and easterly winds in D2. The advantages of this new index are its nature (instrumental) and its length (1849-2013), which is 100 years longer than the WNPMI (which was based on reanalysis data). Our WNPDI shows a high correlation (r=+0.87, p<0.01) with the previous WNPMI in summer for the 1949-2009 period, thus allowing to study the multidecadal variability of the WNPSM in a more robust way. Our results show that the WNPDI has a strong impact on the precipitation in densely populated areas in South-East Asia, such as the Philippines or the west coast of Myanmar where the

  10. Decadal Trends and Variability in Special Sensor Microwave / Imager (SSM/I) Brightness Temperatures and Earth Incidence Angle

    NASA Astrophysics Data System (ADS)

    Hilburn, K. A.; Shie, C.

    2011-12-01

    The Goddard Satellite-based Surface Turbulent Fluxes (GSSTF) dataset is a valuable tool for monitoring air-sea fluxes over the global ocean. The most recently released version of GSSTF, Version 2b, uses Remote Sensing Systems (RSS) Version-6 Special Sensor Microwave / Imager (SSM/I) brightness temperature (TB) dataset in its production. Analysis of long-term trends from 1987 to 2008 in GSSTF showed a surprising result: while column-integrated water vapor has a small positive trend (less than 1%/decade), the lowest 500-m water vapor (WB) has a large negative trend (-3.4%/decade). Through collaboration between our two groups, we determined that the trends in WB are due to trends in the earth incidence angle (EIA) of SSM/I TB measurements. The effect of these EIA trends must be removed from TB to get accurate trends in WB. This presentation characterizes EIA trends and variability in the SSM/I dataset, and explains their effect on TB. The entire dataset is analyzed, including all six sensors operating from 1987-2009. The methodology used to calculate EIA is explained, which provides insight into the sources of EIA variability. The main source of variability is the change in altitude over an orbit, however this is modulated by the precession of perigee that varies with a four month period. The physical relationship between EIA and TB is explained with RSS radiative transfer model. The relationship is not constant, but depends on the meteorological conditions in the satellite footprint, which is the key difficulty in removing EIA effects. Since the SSM/I satellites are gradually falling over time, EIA has a trend of -0.14°/decade. This produces a -0.3 K/decade trend in vertical polarization TB. RSS has always handled EIA variations using its retrieval algorithms that are parameterized in terms of EIA. In order to use legacy algorithms that do not include EIA dependence (e.g., Schulz WB retrieval algorithm), an algorithm to normalize TB to a nominal EIA is derived and

  11. Modelling convective severe weather occurrence using observations, reanalysis data and decadal climate predictions

    NASA Astrophysics Data System (ADS)

    Pistotnik, Georg; Groenemeijer, Pieter

    2014-05-01

    Observations of local severe convective events can be combined with atmospheric reanalyses to compute severe weather probability as a function of parameters characterizing the local state of the atmosphere. Using ERA-Interim reanalysis data and observations from the European Severe Weather Database, we have investigated several ways to express the probability of large hail, tornadoes, flash floods or wind gusts as a function of parameters such as convective available potential energy, vertical wind shear and precipitation. Our attempts include fitting analytic functions, using smoothers of various kinds, and binning the data within the multidimensional parameter space according to various algorithms. We imposed that any difference between binned observations and the modelled probability function be insignificant at the 95% confidence level. Further tests of robustness of the model were conducted. A probability function fulfilling this criterion was selected and subsequently applied to the ERA-Interim data as well as to predictions of the decadal forecasting system developed in the MiKlip programme. We investigated climatic and modelled past and future trends of severe convective weather. We will present the (preliminary) results of that effort.

  12. Observation of methane in this decade by ground-based FTIR Spectrometer over Poker Flat, ALASKA

    NASA Astrophysics Data System (ADS)

    Kasai, Y.; Kagawa, A.; Jones, N. B.; Murayama, Y.

    2010-12-01

    Tropospheric CH4 is an important greenhouse gas as second largest radiative forcing in the troposphere with a long lifetime of ~10 years (Rinsland et. al., 2005). Poker Flat is a suitable location to detect CH4 abnormally due to Siberian/Alaskan biomass burning (Kasai et. al., 2005), volcano, and an anthropogenical emissions such as gas leakage from pipe-lines. We have been observed troposheric CH4 over 10 years between 2000-2010 by using ground-based spectroscopic infrared solar absorption remote sensing measurement over Poker Flat, ALASKA (65.11N, 147.42W, 0.61km). CH4 vertical profiles were obtained by using SFIT2 ver.3.9 which incorporates Rodgers’ formulation of the Optimal Estimation Method (OEM) with an iterative Newton scheme (Rodgers, 2000). Frequency region of the CH4 is used 2600-2900 cm-1 region with the resolution 0.036cm-1. Seasonal and annual variation of the tropospheric CH4 in this decades was obtained. Increasing trend of tropospheric CH4 was observed. Several enhancement and depletion events were also observed.

  13. Discovery and observation of BY Draconis variables

    NASA Astrophysics Data System (ADS)

    Bopp, B. W.; Noah, P. V.; Klimke, A.; Africano, J.

    1981-10-01

    The discovery of BY Draconis variables was efficiently accomplished by a spectroscopic survey of dK-M stars for weak H-alpha emissions, using 1-2 A resolution. The four BY Dra variables discovered are all spectroscopic binaries with P values lower than about 10 d, in light of which, it is noted that the onset of high surface activity and appearance of H-alpha emission occur sharply at v(equator) of approximately 5 km/sec. At v(equator) of about 3 km/sec, dK-M stars have low levels of surface activity. It is found that while there is a range of Ca II emission strength, and only the strongest emitters of this line are BY Dra and/or flare stars, the H-alpha feature changes abruptly to an emission feature signaling the onset of flaring and/or the BY Dra syndrome. An increase of the rotation rate above v(equator) 5 km/sec does not appear to increase the level of surface activity.

  14. Chandra Watches Over A Decade Of Variability In M31 Globular Clusters

    NASA Astrophysics Data System (ADS)

    Barnard, Robin; Li, Z.; Garcia, M.; Murray, S.

    2011-05-01

    The central region of M31 has been monitored with Chandra > 120 times over the last 11 years. In this region we find X-ray sources corresponding to 35 out of 420 globular clusters; these are highly likely to be X-ray binaries. We have created long-term, calibrated lightcurves for all 35 sources, and will present highlights of our variability survey. We have detected significant variability in all the sources with 0.3-10 keV luminosity > 2x10E+36 erg/s. Since the emission spectra of background active galaxies often resemble those of X-ray binaries, the long term variability will be a valuable tool for identifying X-ray binaries in the remaining 400 sources in our field. This work is funded by Chandra grant GO9-0100X and HST grant GO-1101.

  15. CLARREO Cornerstone of the Earth Observing System: Measuring Decadal Change Through Accurate Emitted Infrared and Reflected Solar Spectra and Radio Occultation

    NASA Technical Reports Server (NTRS)

    Sandford, Stephen P.

    2010-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is one of four Tier 1 missions recommended by the recent NRC Decadal Survey report on Earth Science and Applications from Space (NRC, 2007). The CLARREO mission addresses the need to provide accurate, broadly acknowledged climate records that are used to enable validated long-term climate projections that become the foundation for informed decisions on mitigation and adaptation policies that address the effects of climate change on society. The CLARREO mission accomplishes this critical objective through rigorous SI traceable decadal change observations that are sensitive to many of the key uncertainties in climate radiative forcings, responses, and feedbacks that in turn drive uncertainty in current climate model projections. These same uncertainties also lead to uncertainty in attribution of climate change to anthropogenic forcing. For the first time CLARREO will make highly accurate, global, SI-traceable decadal change observations sensitive to the most critical, but least understood, climate forcings, responses, and feedbacks. The CLARREO breakthrough is to achieve the required levels of accuracy and traceability to SI standards for a set of observations sensitive to a wide range of key decadal change variables. The required accuracy levels are determined so that climate trend signals can be detected against a background of naturally occurring variability. Climate system natural variability therefore determines what level of accuracy is overkill, and what level is critical to obtain. In this sense, the CLARREO mission requirements are considered optimal from a science value perspective. The accuracy for decadal change traceability to SI standards includes uncertainties associated with instrument calibration, satellite orbit sampling, and analysis methods. Unlike most space missions, the CLARREO requirements are driven not by the instantaneous accuracy of the measurements, but by accuracy in

  16. ROAD (Remote Observatory Atacama Desert): Intensive Observations of Variable Stars

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.

    2012-10-01

    The author discusses his new remote observatory under pristine skies and the intensive observations of variable stars he is accomplishing. The stars under investigation are mainly cataclysmic variables, observed in response to AAVSO, CBA, and VSNET alerts; other types, such as RR Lyrae stars, were also observed. Examples are presented of dense observations of different cataclysmic variables as well as an RR Lyrae star. Featured is the first bright outburst of SV Ari (Nova Ari 1905) since its discovery, as well as the first outburst of UGWZ candidate BW Scl. Results for VW Hyi, another cataclysmic variable, will also be shown. Furthermore, an intensively observed RR Lyrae star will be highlighted.

  17. Atmospheric Variability of CO2 impact on space observation Requirements

    NASA Astrophysics Data System (ADS)

    Swanson, A. L.; Sen, B.; Newhart, L.; Segal, G.

    2009-12-01

    If International governments are to reduce GHG levels by 80% by 2050, as recommended by most scientific bodies concerned with avoiding the most hazardous changes in climate, then massive investments in infrastructure and new technology will be required over the coming decades. Such an investment will be a huge commitment by governments and corporations, and while it will offer long-term dividends in lower energy costs, a healthier environment and averted additional global warming, the shear magnitude of upfront costs will drive a call for a monitoring and verification system. Such a system will be required to offer accountability to signatories of governing bodies, as well as, for the global public. Measuring the average global distribution of CO2 is straight forward, as exemplified by the long running station measurements managed by NOAA’s Global Monitoring Division that includes the longterm Keeling record. However, quantifying anthropogenic and natural source/sink distributions and atmospheric mixing have been much more difficult to constrain. And, yet, an accurate accounting of all anthropogenic source strengths is required for Global Treaty verification. The only way to accurately assess Global GHG emissions is to construct an integrated system of ground, air and space based observations with extensive chemical modeling capabilities. We look at the measurement requirements for the space based component of the solutions. To determine what space sensor performance requirements for ground resolution, coverage, and revisit, we have analyzed regional CO2 distributions and variability using NASA and NOAA aircraft flight campaigns. The results of our analysis are presented as variograms showing average spatial variability over several Northern Hemispheric regions. There are distinct regional differences with the starkest contrast between urban versus rural and Coastal Asia versus Coastal US. The results suggest specific consequences on what spatial and temporal

  18. Shoreline variability from days to decades: Results of long-term video imaging

    NASA Astrophysics Data System (ADS)

    Pianca, C.; Holman, R.; Siegle, E.

    2015-03-01

    The present work characterizes the time-space scales of variability and forcing dependencies of a unique 26 year record of daily to hourly shoreline data from a steep beach at Duck, North Carolina. Shoreline positions over a 1500 m alongshore span were estimated using a new algorithm called ASLIM based on fitting the band of high light intensity in time exposure images to a local Gaussian fit, with a subsequent Kalman filter to reduce noise and uncertainty. Our findings revealed that the shoreline change at long times scales dominates seasonal variability, despite that wave forcing had only 2% variance at interannual frequencies. The shoreline response presented 66% of the variance at interannual scales. These results were not expected since from wave forcing it would have been expected that the shoreline response should similarly lack interannual variability, but we found it to be dominated by this scale. The alongshore-mean shoreline time series revealed no significant annual cycle. However, there are annual oscillations in the shoreline response that are coherent with wave forcing and deserves further explanations. The pier was found to have a significant influence on shoreline behavior since restricts the seasonal longshore transport between the sides, resulting in a seasonally reversing sediment accumulation. Thus, there is a significant annual peak in shoreline variability that is coherent with the annual forcing but becomes insignificant in the longshore-average.

  19. On the Contextual Independence of Personality: Teachers’ Assessments Predict Directly Observed Behavior after Four Decades

    PubMed Central

    Nave, Christopher S.; Sherman, Ryne A.; Funder, David C.; Hampson, Sarah E.; Goldberg, Lewis R.

    2010-01-01

    The continuity of personality’s association with directly observed behavior is demonstrated across two contexts spanning four decades. During the 1960s, elementary school teachers rated personalities of members of the ethnically diverse Hawaii Personality and Health Cohort (Hampson & Goldberg, 2006). The same individuals were interviewed in a medical clinic over 40 years later. Trained coders viewed video recordings of a subset of these interviews (N = 144, 68 F, 76 M) and assessed the behavior they observed using the Riverside Behavioral Q-sort Version 3.0 (Funder, Furr & Colvin, 2000; Furr, Wagerman & Funder, 2010). Children rated by their teachers as “verbally fluent” (defined as unrestrained talkativeness) showed dominant and socially adept behavior as middle-aged adults. Early “adaptability” was associated with cheerful and intellectually curious behavior, early “impulsivity” was associated with later talkativeness and loud speech, and early rated tendencies to “self-minimize” were related to adult expressions of insecurity and humility. PMID:20890402

  20. Can we reconcile our understanding of the atmospheric methane budget over the past decades with atmospheric observations?

    NASA Astrophysics Data System (ADS)

    Bruhwiler, L. M.; Matthews, E.

    2007-12-01

    The balance of methane in the atmosphere is determined by surface emission, and losses due to uptake in soils and reaction with the hydroxyl radical. The atmospheric abundance of methane has risen by about a factor of three since pre-industrial times, but the growth rate has decreased substantially since the 1990's. Thus, global atmospheric methane appears to have equilibrated to around 1780 ppb subject to considerable interannual variability, the causes of which are not well-understood. Methane emissions are expected to increase in the future due to increases in fossil fuel use and possible changes in wetlands at high-latitudes, and it is therefore important to test our understanding of the methane budget over the last two decades against network observations of atmospheric methane. Issues of interest are whether we can match the rise in methane over the 1980's, whether we can explain the decrease in growth rate during the 1990's, and whether we are able to simulate the observed interannual variability in the observations. We will show results from a multi-decade model simulation using analyzed meteorology from the ERA-40 reanalysis over this period. New times series of methane sources for 1980 through the early 2000's are used in the simulation. Anthropogenic sources include fossil fuels with a total of 7 fuel-process emission combinations associated with mining, processing, transport and distribution of coal, natural gas and oil; ruminant animals and manure based on regionally-representative profiles of bovine populations ; landfills including the impact of on- site methane capture; and irrigated rice cultivation based on seasonal rice-cropping calendars. Natural sources we include are biomass burning from the GFED emission data base, oceans, termites, and natural wetlands using a multiple-regression model derived from a process-based model. If time permits, we will also show preliminary results of a methane data assimilation using the Cooperative Air

  1. Collaborative Research: Separating Forced and Unforced Decadal Predictability in Models and Observations

    SciTech Connect

    Tippett, Michael K.

    2014-04-09

    This report is a progress report of the accomplishments of the research grant “Collaborative Research: Separating Forced and Unforced Decadal Predictability in Models and Observa- tions” during the period 1 May 2011- 31 August 2013. This project is a collaborative one between Columbia University and George Mason University. George Mason University will submit a final technical report at the conclusion of their no-cost extension. The purpose of the proposed research is to identify unforced predictable components on decadal time scales, distinguish these components from forced predictable components, and to assess the reliability of model predictions of these components. Components of unforced decadal predictability will be isolated by maximizing the Average Predictability Time (APT) in long, multimodel control runs from state-of-the-art climate models. Components with decadal predictability have large APT, so maximizing APT ensures that components with decadal predictability will be detected. Optimal fingerprinting techniques, as used in detection and attribution analysis, will be used to separate variations due to natural and anthropogenic forcing from those due to unforced decadal predictability. This methodology will be applied to the decadal hindcasts generated by the CMIP5 project to assess the reliability of model projections. The question of whether anthropogenic forcing changes decadal predictability, or gives rise to new forms of decadal predictability, also will be investigated.

  2. FUSE observations of Luminous Blue Variables

    NASA Astrophysics Data System (ADS)

    Iping, Rosina C.; Sonneborn, George; Massa, Derck L.

    P Cyg, AG Car, HD 5980 and η Car were observed with the Far Ultraviolet Spectroscopic Explorer ( FUSE) satellite. FUSE covers the spectral range from 980 Å to 1187 Å at a resolution of 0.05 Å. In this paper we discuss the far-UV properties of these LBVs and explore their similarities and differences. The FUSE observations of P Cyg and AG Car, both spectral type B2pe, are very similar. The atmospheres of both η Car and HD 5980 appear to be somewhat hotter and have much higher ionization stages (Si IV, S IV, and P V) in the FUSE spectrum than P Cyg and AG Car. There is a very good agreement between the FUSE spectrum of P Cygni and the model atmosphere computed by John Hillier with his code CMFGEN. The FUSE spectrum of η Car, however, does not agree very well with existing model spectra.

  3. Tree-ring based reconstructions of interannual to decadal scale precipitation variability for northeastern Utah since 1226 A.D.

    USGS Publications Warehouse

    Gray, S.T.; Jackson, S.T.; Betancourt, J.L.

    2004-01-01

    Samples from 107 pin??on pines (Pinus edulis) at four sites were used to develop a proxy record of annual (June to June) precipitation spanning the 1226 to 2001 AD interval for the Uinta Basin Watershed of northeastern Utah. The reconstruction reveals significant precipitation variability at interannual to decadal scales. Single-year dry events before the instrumental period tended to be more severe than those after 1900. In general, decadal scale dry events were longer and more severe prior to 1900. In particular, dry events in the late 13th, 16th, and 18th Centuries surpass the magnitude and duration of droughts seen in the Uinta Basin after 1900. The last four decades of the 20th Century also represent one of the wettest periods in the reconstruction. The proxy record indicates that the instrumental record (approximately 1900 to the Present) underestimates the potential frequency and severity of severe, sustained droughts in this area, while over representing the prominence of wet episodes. In the longer record, the empirical probability of any decadal scale drought exceeding the duration of the 1954 through 1964 drought is 94 percent, while the probability for any wet event exceeding the duration of the 1965 through 1999 wet spell is only 1 percent. Hence, estimates of future water availability in the Uinta Basin and forecasts for exports to the Colorado River, based on the 1961 to 1990 and 1971 to 2000 "normal" periods, may be overly optimistic.

  4. Observed variations of cloud fraction and types over Russia in last decades

    NASA Astrophysics Data System (ADS)

    Chernokulsky, Alexander; Akperov, Mirseid; Bulygina, Olga; Mokhov, Igor; Nikitina, Natalia

    2013-04-01

    Cloudiness changes may mitigate or exacerbate global and local warming. Here, we assess changes of total and low cloud fraction and the occurrence of days with different cloud conditions and different cloud types including convective clouds over Russia from 1965 to 2011 years. Our analysis is based on visual daytime routine observations from almost 500 Russian meteorological stations for the period 1965-2011 and than 1800 stations for the period 1984-2011. In general, cloud fraction tends to increase during the last years. A major increase of total cloud fraction and a decrease of the number of clear days are revealed in spring and autumn mostly due to an increase of the occurrence of convective and non-precipitating stratiform clouds. In contrast, the occurrence of Nimbostratus clouds tends to decrease, which lead to a general decrease of the occurrence of overcast days. In most regions, the ratio between the occurrence of Cumulonimbus and Nimbostratus clouds has increased in last decade compare to previous ones. It worth noting, that for particular stations this redistribution may be associated with observers changes. Over some regions (Ural and the Far East), a decrease of total cloud fraction and an increase of the number of clear days are noted. In addition, we assess possible causes of cloudiness variations. In particular, sensitivity of cloudiness changes to temperature changes were evaluated. The relationship of cloud variations with cyclonic/anticyclonic activity including atmospheric centers of action (Azores and Siberian highs, Aleutian and Icelandic lows) were assessed as well. An overall increase of convective clouds occurrence is an additional and independent evidence for the intensification of convective processes in the last decades over land in the northern midlatitudes. Alongside with an increase of heavy precipitation events, an increase of occurrence of Cumulonimbus clouds leads to lightning occurrence increase and, in turn, leads to an increase

  5. Four decades of variability in turbidity in the western Wadden Sea as derived from corrected Secchi disk readings

    NASA Astrophysics Data System (ADS)

    Philippart, Catharina J. M.; Salama, Mhd. Suhyb; Kromkamp, Jacco C.; van der Woerd, Hendrik J.; Zuur, Alain F.; Cadée, Gerhard C.

    2013-09-01

    The Wadden Sea has undergone many changes of which some (e.g., seagrass disappearance, dredging activities) are thought to have affected the concentrations of suspended particulate matter (SPM) in these waters. Results of previous analyses of long-term variation and trends in SPM are, however, possibly biased by the fact that the data underlying these trends were not corrected for methodological changes in time. In this paper we analyze the variability of Secchi disk measurements recorded at one location in the westernmost part of the Wadden Sea during almost four decades (from 1974 to 2010). The Secchi readings were corrected for varying environmental conditions (solar zenith angle, solar irradiance and sea surface conditions) at the time of observation and then converted to a turbidity proxy that measures the attenuation of light due to suspended and dissolved materials in the water column. We tested a series of hypotheses to describe the seasonal and long-term variations of this turbidity proxy. The best statistical model assumed one common seasonal pattern within the study period and a strong variation in turbidity over the years without any apparent long-term increase or decrease in time (n = 1361; r2 = 0.53). In addition, we found that most of the turbidity variation in this part of the Wadden Sea can be described as a function of SPM, chlorophyll-a, salinity, water temperature, the filter type used for the SPM determinations, and a still unidentified seasonal factor (n = 401; r2 = 0.88). Comparison with annual averaged ADCP-derived SPM concentrations as determined from a ferry sailing across the Marsdiep tidal inlet (1998-2008) showed that the variability in turbidity at the sampling station was indicative for the variation in light attenuation in the westernmost part of the Wadden Sea. Because the intensity of the underwater light-field affects primary productivity, this new and consistent information on long-term variation in turbidity is of profound

  6. Modelling the response of cyanobacteria to pH-variability on seasonal to decadal time scales

    NASA Astrophysics Data System (ADS)

    Hofmeister, Richard; Hinners, Jana; Hense, Inga

    2015-04-01

    Cyanobacteria blooms regularly occurred in the Baltic Sea during the last decades. The possible effects of increasing temperatures and eutrophication on cyanobacteria have been already investigated. This model study concentrates on the combined effect of expected temperature increase and ocean acidification on cyanobacteria blooms in the Baltic Sea. We make use of an established model system that comprises the life cycle model of cyanobacteria (CLC) and a biogeochemical model (ERGOM), a carbon chemistry model, and the water column model GOTM. These models are modularly coupled through the framework for aquatic biogeochemical models (FABM). In the CLC model, the cyanobacteria growth is dependent on the sea water pH following the results of experimental studies. The numerical experiments are forced by the output of a regional climate model (RCAO) for the period 1960-2100. A number of simulations are performed for different configurations of the coupled ecosystem, in order to estimate the effect of acidification and the effect of seasonally varying pH on the cyanobacteria bloom. Our simulation experiments show that cyanobacteria growth is stimulated by the increase of temperature in the future, while the blooms' strength decreases in the second half of the 21th century due to ocean acidification. The magnitude and trend of cyanobacteria concentrations are also affected by the seasonal variations of pH. Overall, the results show that the combined effect of the climate stressors, warming and acidification, on the cyanobacteria bloom is weak.

  7. Evolving into a remnant: optical observations of SN 1978K at three decades

    NASA Astrophysics Data System (ADS)

    Kuncarayakti, H.; Maeda, K.; Anderson, J. P.; Hamuy, M.; Nomoto, K.; Galbany, L.; Doi, M.

    2016-05-01

    We present new optical observations of the supernova SN 1978K, obtained in 2007 and 2014 with the Very Large Telescope. We discover that the supernova has not faded significantly, even more than three decades after its explosion. The spectrum exhibits numerous narrow (FWHM ≲600 km s-1) emission lines, indicating that the supernova blastwave is persistently interacting with dense circumstellar material (CSM). Evolution of emission lines indicates that the supernova ejecta is slowly progressing through the reverse shock, and has not expanded past the outer edge of the circumstellar envelope. We demonstrate that the CSM is not likely to be spherically distributed, with mass of ≲1 M⊙. The progenitor mass loss rate is estimated as ≳0.01 M⊙ yr-1. The slowly fading late-time light curve and spectra show striking similarity with SN 1987A, indicating that a rate at which the CSM is being swept-up by the blastwave is gradually decaying and SN 1978K is undergoing similar evolution to become a remnant. Due to its proximity (4 Mpc), SN 1978K serves as the next best example of late-time supernova evolution after SN 1987A.

  8. The near-Earth asteroid population from two decades of observations

    NASA Astrophysics Data System (ADS)

    Tricarico, Pasquale

    2017-03-01

    Determining the size and orbital distribution of the population of near-Earth asteroids (NEAs) is the focus of intense research, with the most recent models converging to a population of approximately 1000 NEAs larger than 1 km and up to approximately 109 NEAs with absolute magnitude H < 30. We present an analysis of the combined observations of nine of the leading asteroid surveys over the past two decades, and show that for an absolute magnitude H < 17.75, which is often taken as proxy for an average diameter larger than 1 km, the population of NEAs is 920 ± 10, lower than other recent estimates. The population of small NEAs is estimated at (4 ± 1) × 108 for H < 30, and the number of decameter NEAs is lower than other recent estimates. This population tracks accurately the orbital distribution of recently discovered large NEAs, and produces an estimated Earth impact rate for small NEAs in good agreement with the bolide data.

  9. Oxygen minimum zone of the open Arabian Sea: variability of oxygen and nitrite from daily to decadal time scales

    NASA Astrophysics Data System (ADS)

    Banse, K.; Naqvi, S. W. A.; Narvekar, P. V.; Postel, J. R.; Jayakumar, D. A.

    2013-09-01

    -1; n = 10 and 12, differing at p = 0.01); (2) four decades of statistically significant decreases of O2 between 15° and 20° N but a trend to a similar increase near 21° N are observed. The balance of the mechanisms that more or less annually maintain the O2 levels are still uncertain. At least between 300 and 500 m the annual reconstitution of the decrease is inferred to be due to lateral, isopycnal re-supply of O2, while at 200 (250?) m it is diapycnal, most likely by eddies. Similarly, recent models show large vertical advection of O2 well below the pycno-cum-oxycline. The spatial (within drift stations) and temporal (daily) variability in hydrography and chemistry is large also below the principal pycnocline. The seasonal change of hydrography is considerable even at 500 m. There is no trend in the redox environment for a quarter of a century at a GEOSECS station near 20° N. In the entire OMZ the slopes on year within seasons for the quite variable NO2- (taken as an indicator of active denitrification) do not show a clear pattern. Also, future O2 or nutrient budgets for the OMZ should not be based on single cruises or sections obtained during one season only. Steady state cannot be assumed any longer for the intermediate layers of the central Arabian Sea.

  10. A decadal observation of vegetation dynamics using multi-resolution satellite images

    NASA Astrophysics Data System (ADS)

    Chiang, Yang-Sheng; Chen, Kun-Shan; Chu, Chang-Jen

    2012-10-01

    Vegetation cover not just affects the habitability of the earth, but also provides potential terrestrial mechanism for mitigation of greenhouse gases. This study aims at quantifying such green resources by incorporating multi-resolution satellite images from different platforms, including Formosat-2(RSI), SPOT(HRV/HRG), and Terra(MODIS), to investigate vegetation fractional cover (VFC) and its inter-/intra-annual variation in Taiwan. Given different sensor capabilities in terms of their spatial coverage and resolution, infusion of NDVIs at different scales was used to determine fraction of vegetation cover based on NDVI. Field campaign has been constantly conducted on a monthly basis for 6 years to calibrate the critical NDVI threshold for the presence of vegetation cover, with test sites covering IPCC-defined land cover types of Taiwan. Based on the proposed method, we analyzed spatio- temporal changes of VFC for the entire Taiwan Island. A bimodal sequence of VFC was observed for intra-annual variation based on MODIS data, with level around 5% and two peaks in spring and autumn marking the principal dual-cropping agriculture pattern in southwestern Taiwan. Compared to anthropogenic-prone variation, the inter-annual VFC (Aug.-Oct.) derived from HRV/HRG/RSI reveals that the moderate variations (3%) and the oscillations were strongly linked with regional climate pattern and major disturbances resulting from extreme weather events. Two distinct cycles (2002-2005 and 2005-2009) were identified in the decadal observations, with VFC peaks at 87.60% and 88.12% in 2003 and 2006, respectively. This time-series mapping of VFC can be used to examine vegetation dynamics and its response associated with short-term and long-term anthropogenic/natural events.

  11. An analysis of the decadal variability of Carbon fluxes in three evergreen European forests through modelling

    NASA Astrophysics Data System (ADS)

    Delpierre, N.; Dufrêne, E.

    2009-04-01

    With several sites measuring mass and energy turbulent fluxes for more than ten years, the CarboEurope database appears as a valuable resource for addressing the question of the determinism of the interannual variability of carbon (C) and water balances in forests ecosystems. Apart from major climate-driven anomalies during the anomalous 2003 summer and 2007 spring, little is known about the factors driving interannual variability (IAV) of the C balance in forest ecosystems. We used the CASTANEA process-based model to simulate the C and W fluxes and balances of three European evergreen forests for the 2000-2007 period (FRPue Quercus ilex, 44°N; DETha Picea abies, 51°N; FIHyy Pinus sylvestris, 62°N). The model fairly reproduced the day-to-day variability of measured fluxes, accounting for 70-81%, 77-91% and 59-90% of the daily variance of measured NEP, GPP and TER, respectively. However, the model was challenged in representing the IAV of fluxes integrated on an annual time scale. It reproduced ca. 80% of the interannual variance of measured GPP, but no significant relationship could be established between annual measured and modelled NEP or TER. Accordingly, CASTANEA appeared as a suitable tool for disentangling the influence of climate and biological processes on GPP at mutiple time scales. We show that climate and biological processes relative influences on the modelled GPP vary from year to year in European evergreen forests. Water-stress related and phenological processes (i.e. release of the winter thermal constraint on photosynthesis in evergreens) appear as primary drivers for the particular 2003 and 2007 years, respectively, but the relative influence of other climatic factors widely varies for less remarkable years at all sites. We discuss shortcomings of the method, as related to the influence of compensating errors in the simulated fluxes, and assess the causes of the model poor ability to represent the IAV of the annual sums of NEP and TER.

  12. Rainfall variability in southern Spain on decadal to centennial time scales

    NASA Astrophysics Data System (ADS)

    Rodrigo, F. S.; Esteban-Parra, M. J.; Pozo-Vázquez, D.; Castro-Díez, Y.

    2000-06-01

    In this work a long rainfall series in Andalusia (southern Spain) is analysed. Methods of historical climatology were used to reconstruct a 500-year series from historical sources. Different statistical tools were used to detect and characterize significant changes in this series. Results indicate rainfall fluctuations, without abrupt changes, in the following alternating dry and wet phases: 1501-1589 dry, 1590-1649 wet, 1650-1775 dry, 1776-1937 wet and 1938-1997 dry. Possible causal mechanisms are discussed, emphasizing the important contribution of the North Atlantic Oscillation (NAO) to rainfall variability in the region. Solar activity is discussed in relation to the Maunder Minimum period, and finally the past and present are compared. Results indicate that the magnitude of fluctuations is similar in the past and present.

  13. Future rainfall variability in Indonesia under different ENSO and IOD composites based on decadal predictions of CMIP5 datasets

    NASA Astrophysics Data System (ADS)

    Bilhaqqi Qalbi, Harisa; Faqih, Akhmad; Hidayat, Rahmat

    2017-01-01

    El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) are amongst important climate drivers that play a significant role in driving rainfall variability in Indonesia, especially on inter-annual timescales. The phenomena are suggested to have an association with interdecadal climate variability through the modulation of their oscillations. This study aims to analyse the characteristics of future rainfall variability in Indonesia during different condition of ENSO and IOD events based on decadal predictions of near-term climate change CMIP5 GCM data outputs up to year 2035. Monthly data of global rainfall data with 5x5 km grid resolutions of CHIRPS dataset is used in this study to represent historical rainfall variability as well to serve as a reference for future rainfall predictions. The current and future rainfall and sea surface temperature data have been bias corrected before performing the analysis. Given the comparison between rainfall composites during El-Nino and positive IOD events, the study showed that the future rainfall conditions in Indonesia will become drier than the historical condition resulted from the same composite approach. In general, this study showed the Indonesian rainfall variability in the future is expected to respond differently to a different combination of ENSO and IOD conditions.

  14. ROAD (Remote Observatory Atacama Desert): Intensive Observations of Variable Stars

    NASA Astrophysics Data System (ADS)

    Hambsch, Franz-Josef

    2012-05-01

    The author discusses his new remote observatory under pristine skies and the intensive observations of variable stars he is accomplishing. The stars under investigations are mainly cataclysmic variables in request of AAVSO, CBA and VSNET alerts as well as other type of stars like RR Lyrae stars. Examples of dense observations of different cataclysmic variables as well as a RR Lyrae star are presented. The focus goes to the first bright outburst of SV Ari (Nova Ari 1905) since its discovery as well as the first outburst of UGWZ candidate BW Scl. Also results for VW Hyi, another cataclysmic variable will be shown. Furthermore an intensively observed RR Lyrae star will be highlighted.

  15. Influence of climate variability versus change at multi-decadal time scales on hydrological extremes

    NASA Astrophysics Data System (ADS)

    Willems, Patrick

    2014-05-01

    Recent studies have shown that rainfall and hydrological extremes do not randomly occur in time, but are subject to multidecadal oscillations. In addition to these oscillations, there are temporal trends due to climate change. Design statistics, such as intensity-duration-frequency (IDF) for extreme rainfall or flow-duration-frequency (QDF) relationships, are affected by both types of temporal changes (short term and long term). This presentation discusses these changes, how they influence water engineering design and decision making, and how this influence can be assessed and taken into account in practice. The multidecadal oscillations in rainfall and hydrological extremes were studied based on a technique for the identification and analysis of changes in extreme quantiles. The statistical significance of the oscillations was evaluated by means of a non-parametric bootstrapping method. Oscillations in large scale atmospheric circulation were identified as the main drivers for the temporal oscillations in rainfall and hydrological extremes. They also explain why spatial phase shifts (e.g. north-south variations in Europe) exist between the oscillation highs and lows. Next to the multidecadal climate oscillations, several stations show trends during the most recent decades, which may be attributed to climate change as a result of anthropogenic global warming. Such attribution to anthropogenic global warming is, however, uncertain. It can be done based on simulation results with climate models, but it is shown that the climate model results are too uncertain to enable a clear attribution. Water engineering design statistics, such as extreme rainfall IDF or peak or low flow QDF statistics, obviously are influenced by these temporal variations (oscillations, trends). It is shown in the paper, based on the Brussels 10-minutes rainfall data, that rainfall design values may be about 20% biased or different when based on short rainfall series of 10 to 15 years length, and

  16. Observations and 3D hydrodynamics-based modeling of decadal-scale shoreline change along the Outer Banks, North Carolina

    USGS Publications Warehouse

    Safak, Ilgar; List, Jeffrey; Warner, John C.; Kumar, N.

    2017-01-01

    Long-term decadal-scale shoreline change is an important parameter for quantifying the stability of coastal systems. The decadal-scale coastal change is controlled by processes that occur on short time scales (such as storms) and long-term processes (such as prevailing waves). The ability to predict decadal-scale shoreline change is not well established and the fundamental physical processes controlling this change are not well understood. Here we investigate the processes that create large-scale long-term shoreline change along the Outer Banks of North Carolina, an uninterrupted 60 km stretch of coastline, using both observations and a numerical modeling approach. Shoreline positions for a 24-yr period were derived from aerial photographs of the Outer Banks. Analysis of the shoreline position data showed that, although variable, the shoreline eroded an average of 1.5 m/yr throughout this period. The modeling approach uses a three-dimensional hydrodynamics-based numerical model coupled to a spectral wave model and simulates the full 24-yr time period on a spatial grid running on a short (second scale) time-step to compute the sediment transport patterns. The observations and the model results show similar magnitudes (O(105 m3/yr)) and patterns of alongshore sediment fluxes. Both the observed and the modeled alongshore sediment transport rates have more rapid changes at the north of our section due to continuously curving coastline, and possible effects of alongshore variations in shelf bathymetry. The southern section with a relatively uniform orientation, on the other hand, has less rapid transport rate changes. Alongshore gradients of the modeled sediment fluxes are translated into shoreline change rates that have agreement in some locations but vary in others. Differences between observations and model results are potentially influenced by geologic framework processes not included in the model. Both the observations and the model results show higher rates of

  17. Landsat and GRACE observations of arid wetland dynamics in a dryland river system under multi-decadal hydroclimatic extremes

    NASA Astrophysics Data System (ADS)

    Xie, Zunyi; Huete, Alfredo; Ma, Xuanlong; Restrepo-Coupe, Natalia; Devadas, Rakhesh; Clarke, Kenneth; Lewis, Megan

    2016-12-01

    Arid wetlands are important for biodiversity conservation, but sensitive and vulnerable to climate variability and hydroclimatic events. Amplification of the water cycle, including the increasing frequency and severity of droughts and wet extremes, is expected to alter spatial and temporal hydrological patterns in arid wetlands globally, with potential threats to ecosystem services and their functioning. Despite these pressing challenges, the ecohydrological interactions and resilience of arid wetlands to highly variable water regimes over long time periods remain largely unknown. Recent broad-scale drought and floods over Australia provide unique opportunities to improve our understanding of arid wetland ecosystem responses to hydroclimatic extremes. Here we analysed the ecohydrological dynamics of the Coongie Lakes arid wetland in central Australia, one of the world's largest Ramsar-designated wetlands, using more than two decades (1988-2011) of vegetation and floodwater extent retrievals derived from Landsat satellite observations. To explore the impacts of large-scale hydrological fluctuations on the arid wetland, we further coupled Landsat measurements with Total Water Storage Anomaly (TWSA) data obtained from the Gravity Recovery and Climate Experiment (GRACE) satellites. Pronounced seasonal and inter-annual variabilities of flood and vegetation activities were observed over the wetland, with variations in vegetation growth extent highly correlated with flood extent (r = 0.64, p < 0.05) that ranged from nearly zero to 3456 km2. We reported the hydrological dynamics and associated ecosystem responses to be largely driven by the two phases (El Niño and La Niña) of the El Nino-Southern Oscillation (ENSO) ocean-atmosphere system. Changes in flood and vegetation extent were better explained by GRACE-TWSA (r = 0.8, lag = 0 month) than rainfall (r = 0.34, lag = 3 months) over the water source area, demonstrating that TWS is a valuable hydrological indicator for

  18. Observing Decadal Trends in Atmospheric Feedbacks and Climate Change with Zeus and CLARREO

    NASA Astrophysics Data System (ADS)

    Revercomb, H. E.; Best, F. A.; Knuteson, R. O.; Tobin, D. C.; Taylor, J. K.; Gero, P.; Adler, D. P.; Pettersen, C.; Mulligan, M.; Tobin, D. C.

    2012-12-01

    New technologies for observing decadal trends in atmospheric feedbacks and climate change from space have been recently demonstrated via a NASA Instrument Incubator Program (IIP) project of our group and the Anderson Group of Harvard University. Using these new technologies, a mission named Zeus has been proposed to the first NASA Earth Venture Instruments opportunity (EVI-1). Zeus would provide a low cost mechanism to initiate a new era in high spectral resolution IR climate Benchmark and Intercalibration observations, the basis for which has been established by definition of the CLARREO mission in the 2007 NRC "Decadal Survey" and by the Science Definition Team established by NASA LaRC to further the full blown CLARREO mission. Zeus EVI is a low-cost, low-risk, and high-value EVI mission that will deploy an Absolute Radiance Interferometer (ARI) instrument to measure absolute spectrally resolved infrared radiance over much of the Earth-emitted spectrum with ultra-high accuracy (<0.1 K 3-sigma brightness temperature). Zeus makes use of broad spectral coverage (3.7-50 microns) and high spectral resolution (<1 cm-1) to provide benchmark products for climate trending with much higher information content than traditional spectrally-integrated measurements. While ARI requirements for accuracy and spectral properties are demanding, the overall instrument is relatively simple and low-cost because of the limited requirements on spatial sampling (25-100 km nadir-only footprints spaced at < 250 km) and on noise performance (climate products are created by combining many samples). The orbit chosen for Zeus must provide coverage immune to time-of-day sampling errors. Because of its relatively high rate of precession, an attractive baseline option for Zeus EVI is the 51.6 degrees inclination orbit of the International Space Station (ISS). For Zeus deployment on the ISS, higher latitude climate benchmark information will be obtained from operational sounders intercalibrated by

  19. A Tropical Ocean Recharge Mechanism for Climate Variability. Part II: A Unified Theory for Decadal and ENSO Modes.

    NASA Astrophysics Data System (ADS)

    Wang, Xiaochun; Jin, Fei-Fei; Wang, Yuqing

    2003-11-01

    Decadal to interdecadal timescale variability in the Pacific region, commonly referred to as the Pacific decadal oscillation (PDO), is studied in this research using analytical and numerical models. A coupled analytical model is formulated to analyze the physical mechanism of both the PDO and ENSO. It has the equatorial β-plane dynamics of a reduced-gravity model coupled with the wind stress of fixed spatial patterns. The amplitude of the latter is proportional to the sea surface temperature (SST) anomaly in the eastern equatorial Pacific. The SST anomaly is governed by a simple thermal dynamic equation used for ENSO modeling. It is found that when a warm SST is coupled with cyclonic wind stress patterns in the eastern subtropical Pacific, an oscillation with a timescale of around 10 15 yr could be generated. In contrast, when a warm SST is coupled with only a westerly wind stress in the central equatorial Pacific, an ENSO-like oscillation could be generated with a timescale of around 3 5 yr. Thus the present research is potentially relevant to aspects of the PDO and the mechanism of the PDO may be understood as a weakly coupled decadal recharge oscillator similar to the recharge oscillator dynamics of ENSO. The sensitivity of these two kinds of coupled modes to different parameters is tested. Numerical integrations with the reduced-gravity shallow-water model in a rectangular basin and a similar coupled framework confirm the results of the analytical model.

  20. Multi-decadal variability of ice extent in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Vinje, T.; Colony, R.

    2003-04-01

    The European Arctic has been explored and commercially exploited for more than 400 years. In 1596, Willem Barentsz sailed the northern Barents Sea reporting on sea-ice extent and on the large number of whales found along the ice edge. By the early 17th century, an extensive and sophisticated whaling industry had developed in northern Spitzbergen. The whale hunters systematically observed and logged sea-ice conditions and ice edge location. These shipboard observations provide sea-ice extent information throughout the Nordic Seas and the western Barents for much of the 17th and 18th centuries. In 1850, Norway began extensive whale/seal hunting along the ice edge, stretching from Iceland to Novaya Zemlya. The records of sea-ice conditions and extent were archived by the Norwegian Polar Research Institute and are now placed in the ACSYS Historical Ice Chart Database. The annual April and August latitude of sea-ice extent in the western Barents is constructed for the period 1730-2000. The early part of the record (1730-1790) suggests April and August ice conditions similar to the modern era. However, just at the end of the 18th century, the sea-ice moved 300 km southward of its previous mean position. For the next 200 years (1800-2000), sea ice cover in the western Barents has steadily receded to its present state. Covariance studies offer insight into the processes controlling sea-ice extent and serve to bound the observational errors. The instrumental temperature record is mostly limited to the past 150-years. During this period, we estimate the correlation between Northern Hemisphere mean temperature and August sea-ice extent at r = 0.80 (using 7-year running means). Temperature records from central England are available from 1700, as are proxy temperature based data boreholes from the Greenland Ice Sheet Project. Again, significant covariance is found. The most provocative data come from sun spot observations and the associated time series of solar total irradiance

  1. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    SciTech Connect

    Maslowski, Wieslaw

    2016-10-17

    This project aims to develop, apply and evaluate a regional Arctic System model (RASM) for enhanced decadal predictions. Its overarching goal is to advance understanding of the past and present states of arctic climate and to facilitate improvements in seasonal to decadal predictions. In particular, it will focus on variability and long-term change of energy and freshwater flows through the arctic climate system. The project will also address modes of natural climate variability as well as extreme and rapid climate change in a region of the Earth that is: (i) a key indicator of the state of global climate through polar amplification and (ii) which is undergoing environmental transitions not seen in instrumental records. RASM will readily allow the addition of other earth system components, such as ecosystem or biochemistry models, thus allowing it to facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts. As such, RASM is expected to become a foundation for more complete Arctic System models and part of a model hierarchy important for improving climate modeling and predictions.

  2. 30-Year Satellite Record Reveals Contrasting Arctic and Antarctic Decadal Sea Ice Variability

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Parkinson, C. L.; Vinnikov, K. Y.

    2003-01-01

    A 30-year satellite record of sea ice extents derived mostly from satellite microwave radiometer observations reveals that the Arctic sea ice extent decreased by 0.30+0.03 x 10(exp 6) square kilometers per 10 yr from 1972 through 2002, but by 0.36 plus or minus 0.05 x 10(exp 6) square kilometers per 10yr from 1979 through 2002, indicating an acceleration of 20% in the rate of decrease. In contrast, the Antarctic sea ice extent decreased dramatically over the period 1973-1977, then gradually increased. Over the full 30-year period, the Antarctic ice extent decreased by 0.15 plus or minus 0.08 x 10(exp 6) square kilometers per 10 yr. The trend reversal is attributed to a large positive anomaly in Antarctic sea ice extent in the early 1970's, an anomaly that apparently began in the late 1960's, as observed in early visible and infrared satellite images.

  3. Temperature Responses to Spectral Solar Variability on Decadal and Centennial Time Scales

    NASA Astrophysics Data System (ADS)

    Cahalan, Robert; Wen, Guoyong; Pilewskie, Peter; Harder, Jerald

    2010-05-01

    We apply two scenarios of 11-year solar spectral forcing, namely SIM-based out-of-phase variations and proxy-based in-phase variations, as input to a time-dependent radiative-convective model (RCM), and also to the GISS modelE GCM. For both scenarios, and both models, we find that the maximum temperature response occurs in the upper stratosphere, and temperature responses decrease downward to the surface. The upper stratospheric temperature peak-to-peak responses to out-of-phase solar forcing are ~0.6 K in RCM and ~0.9 K over the tropical region in GCM simulations, a factor of ~5 times as large as responses to in-phase solar forcing. Stratospheric responses are in-phase with TSI (Total Solar Irradiance) variations. The modeled upper stratospheric temperature response to the SORCE SIM observed SSI (Spectral Solar Irradiance) forcing resembles 11-year temperature variations observed with HALOE (Halogen Occultation Experiment). Surface responses to the two SSI scenarios are small for both RCM and GCM studies, as compared to stratospheric responses. Though solar irradiance variations on centennial time scale are not well known, the two scenarios of reconstructed TSI time series (i.e., one based on 11-year cycles with background [Lean 2000] and the second from flux transport that has much less background change [Wang, Lean, and Sheeley, 2005]) provide a range of variations of TSI on centennial time scales. We apply phase relations among different spectral irradiance bands both from SIM observation and proxy reconstructions to the two scenarios of historical TSI. The spectral solar forcing is used to drive the RCM. The updated atmosphere and ocean mixed coupled RCM including diffusion to deep-ocean provides a first-order estimate of climate response. We report the different responses of stratosphere, troposphere, and ocean surface to these 4 scenarios of centennial spectral solar forcing. We further discuss the mechanisms for atmosphere-ocean and stratosphere

  4. One decade of thermohaline variability in the deep western Mediterranean Sea (2004-2014)

    NASA Astrophysics Data System (ADS)

    Schroeder, Katrin; Ismail, S. Ben; Bryden, Harry; Borghini, Mireno; Sparnocchia, Stefania; Chiggiato, Jacopo; Ribotti, Alberto

    2015-04-01

    Recent intense deep water formation events in the western Mediterranean have produced a huge amount of a new deep water. Significantly warmer and saltier than previously, it substituted the resident deep water. The deep structure and properties began to change after winter 2004/2005 and the water rapidly spread towards the interior of the basin, in the direction of the Strait of Gibraltar and within the Tyrrhenian Sea. The changes observed over the past 10 years are substantial: since 2004 we witnessed increases in deep water temperature and salinity 3-4 times faster than during 1961-2004. The possible impacts these changes could have on a global scale are still an open issue.

  5. Decadal timescale variability of the Enceladus plumes inferred from Cassini images

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.; Ewald, Shawn P.

    2017-01-01

    The brightness of the Enceladus plumes varies with position in the satellite's eccentric orbit, with altitude above the surface, and with time from one year to the next. Hedman et al. (2013, hereinafter H13) were the first to report these variations. They used data from Cassini's Visible and Infrared Mapping Spectrometer (VIMS). Here we present brightness observations from Cassini's Imaging Science Subsystem (ISS), which has 40 times higher spatial resolution than VIMS. Our unit of measure is slab density, the total mass of particles in a horizontal slab per unit thickness of the slab. Using slab density is one approach to correcting for the variation of brightness with wavelength and scattering angle. Approaches differ mainly by a multiplicative scaling factor that depends on particle density, which is uncertain. All approaches lead to the same qualitative conclusions and agree with the conclusions from VIMS. We summarize our conclusions as follows: At all altitudes between 50 and 200 km, the corrected brightness is 4-5 times greater when Enceladus is farther from Saturn (near apocenter) than when it is closer (near pericenter). A secondary maximum occurs after pericenter and before apocenter. Corrected brightness vs. altitude is best described as a power law whose negative exponent is greatest in magnitude at apocenter, indicating a slower launch speed for the particles at apocenter than at other points in the orbit. Corrected brightness decreased by roughly a factor of two during much of the period 2005-2015. The last is our principal result, and we offer three hypotheses to explain it. One is a long-period tide-the decreasing phase of an 11-year cycle in orbital eccentricity; another is buildup of ice at the throats of the vents; and the third is seasonal change-the end of summer at the south pole.

  6. Coupled decadal variability of the North Atlantic Oscillation, regional rainfall and karst spring discharges in the Campania region (southern Italy)

    NASA Astrophysics Data System (ADS)

    De Vita, P.; Allocca, V.; Manna, F.; Fabbrocino, S.

    2012-05-01

    Thus far, studies on climate change have focused mainly on the variability of the atmospheric and surface components of the hydrologic cycle, investigating the impact of this variability on the environment, especially with respect to the risks of desertification, droughts and floods. Conversely, the impacts of climate change on the recharge of aquifers and on the variability of groundwater flow have been less investigated, especially in Mediterranean karst areas whose water supply systems depend heavily upon groundwater exploitation. In this paper, long-term climatic variability and its influence on groundwater recharge were analysed by examining decadal patterns of precipitation, air temperature and spring discharges in the Campania region (southern Italy), coupled with the North Atlantic Oscillation (NAO). The time series of precipitation and air temperature were gathered over 90 yr, from 1921 to 2010, using 18 rain gauges and 9 air temperature stations with the most continuous functioning. The time series of the winter NAO index and of the discharges of 3 karst springs, selected from those feeding the major aqueducts systems, were collected for the same period. Regional normalised indexes of the precipitation, air temperature and karst spring discharges were calculated, and different methods were applied to analyse the related time series, including long-term trend analysis using smoothing numerical techniques, cross-correlation and Fourier analysis. The investigation of the normalised indexes highlighted the existence of long-term complex periodicities, from 2 to more than 30 yr, with differences in average values of up to approximately ±30% for precipitation and karst spring discharges, which were both strongly correlated with the winter NAO index. Although the effects of the North Atlantic Oscillation (NAO) had already been demonstrated in the long-term precipitation and streamflow patterns of different European countries and Mediterranean areas, the results

  7. FRESIP project observations of cataclysmic variables: A unique opportunity

    NASA Technical Reports Server (NTRS)

    Howell, Steve B.

    1994-01-01

    FRESIP Project observations of cataclysmic variables would provide unique data sets. In the study of known cataclysmic variables they would provide extended, well sampled temporal photometric information and in addition, they would provide a large area deep survey; obtaining a complete magnitude limited sample of the galaxy in the volume cone defined by the FRESIP field of view.

  8. Bayesian Network Models for Local Dependence among Observable Outcome Variables

    ERIC Educational Resources Information Center

    Almond, Russell G.; Mulder, Joris; Hemat, Lisa A.; Yan, Duanli

    2009-01-01

    Bayesian network models offer a large degree of flexibility for modeling dependence among observables (item outcome variables) from the same task, which may be dependent. This article explores four design patterns for modeling locally dependent observations: (a) no context--ignores dependence among observables; (b) compensatory context--introduces…

  9. Late Holocene (0-1.2 ka BP) centennial to decadal time scales surface and deep water variability in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Moffa Sanchez, P.; Hall, I. R.; Barker, S.; Thornalley, D. J.

    2011-12-01

    The subpolar North Atlantic is a key region for understanding climate variability, as it is one of the world's main localities of deepwater formation. On decadal to multidecadal time-scales two interrelated modes of natural climate variability have been identified that contribute to changes observed in the recent North Atlantic climate system (mostly through their impact on the Atlantic Meridional Overturning Circulation, AMOC): the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation (AMO). The Medieval Climatic Anomaly (MCA) and the Little Ice Age (LIA) have often been highlighted as a good example of the impact of climate oscillations on society. Although the causality of these intervals still remains controversial, a commonly cited explanation is a weak solar trigger which was amplified and transmitted globally through positive feedbacks, possibly including some internal climatic modes (such as the NAO/AMO) and the AMOC. In this study, sediment cores RAPiD-35-25B and RAPiD-17-5P recovered from the Eirik Drift (south of Greenland) and Björn Drift (Iceland Basin) respectively, are used to produce multi-proxy reconstructions of some of the main constituents of the AMOC at sub-decadal to multidecadal resolution during the last 1.2 ka BP. Near-bottom flow speed reconstructions based on the sortable silt mean grain size proxy show multidecadal variability in both of the Nordic Overflows. In particular, the Iceland Scotland Overflow Water vigour presents a range of decadal to centennial periodicities similar to the AMO (55 years) and deVries solar cycles (200 years). Additionally, surface water reconstructions from multi-species planktonic foraminiferal δ18O, Mg/Ca and assemblage counts reveal changes in the properties of the North Atlantic Current and summer season stratification of the upper water column in the Eastern Labrador Sea, with a possible common link to changes in Subpolar Gyre dynamics. As yet, no clear consensus has emerged as to

  10. The Recognition of Multi-Decadal Scale Climate Variability in the Paleo-record over the Past 1000 Years

    NASA Astrophysics Data System (ADS)

    Swart, Peter; Waite, Amanda; Rosenheim, Brad; Moses, Chris

    2010-05-01

    Proxy reconstructions of climate from tree rings, corals, stalagmites, sclerosponges, and deep-sea sediments show multi-decadal climate variability preserved in records extending back at least 1000 years. Most of these records appear to show a strong correlation with indices such as the North Atlantic Oscillation (NAO) and the Atlantic Multi-decadal Oscillation (AMO) over the period of the instrumental record (~1850-present). The repeated recognition of these signals in a number of different archives and geographical locations throughout the Atlantic (Cape Verde Islands, Gulf of Guinea, Puerto Rico, Cariaco Basin , South Florida, and the Bahamas) strongly suggests that these signals are real and have climatic significance. The AMO and NAO climate signals are manifested in these indices through (i) the direct effect of water temperature and salinity on the growth rate of trees and corals and (ii) temperature and salinity influences on the incorporation of geochemical proxies, such as the Mg/Ca, Sr/Ca, and oxygen isotopic ratios, into the skeletons of different carbonate producing organisms. In many areas these relationships are complex and there is often considerable local variability in the response of corals and trees, particularly in the growth rate related parameters. Prior to the instrumental period, the tree-ring index compiled by (Gray et al., 2004, GRL,31) has been taken as the principal reconstruction of the AMO. While most of the marine records examined appear to correlate with the tree-ring record during the instrumental period, there are significant discrepancies prior to 1850. This raises many questions about the stationarity and persistence of the AMO and the suitability of individual archives such as tree rings for these modes.

  11. (abstract) Mount Rainier: New Remote Sensing Observations of a Decade Volcano

    NASA Technical Reports Server (NTRS)

    Realmuto, V. J.; Zebker, H. A.; Frank, D.

    1994-01-01

    Mount Rainier was selected as a Decade Volcano by the International Association of Volcanology and Chemistry of the Earth's Interior. The purpose of this selection is to focus scientific and public attention on Mount Rainier during the current decade, the United Nations-designated International Decade of Natural Hazard Reduction. The Mount Rainier science plan calls for remote sensing surveys to monitor the volcano. To date, we have conducted airborne surveys with visible and near-infrared, thermal infrared, and interferometric radar instruments. Our preliminary analysis of some night-time time-series thermal infrared survey data sets of the summit suggests that, aside from seasonal variations in snow cover, there have been no qualitative changes in the size or pattern of the summit hot spots. Day-time airborne surveys were done to record the current surface appearance of the volcano and map hydrothermal alteration in the summit region. An interferometric radar survey yielded a high-resolution digital elevation model (DEM) which serves as a base for the registration of the other remote sensing data sets. More importantly, the DEM documents the current topography of glaciers and valleys. Planned biannual radar survey of mount rainier will produce a data set from which seasonal changes in glacier and valley topography can be characterized. Such characterization is essential if we are to recognize geothermally induced changes in snow and ice cover.

  12. North Atlantic Simulations in Coordinated Ocean-Ice Reference Experiments Phase II (CORE-II) . Part II; Inter-Annual to Decadal Variability

    NASA Technical Reports Server (NTRS)

    Danabasoglu, Gokhan; Yeager, Steve G.; Kim, Who M.; Behrens, Erik; Bentsen, Mats; Bi, Daohua; Biastoch, Arne; Bleck, Rainer; Boening, Claus; Bozec, Alexandra; Canuto, Vittorio M.; Howard, Armando M.; Kelley, Maxwell

    2015-01-01

    Simulated inter-annual to decadal variability and trends in the North Atlantic for the 1958-2007 period from twenty global ocean - sea-ice coupled models are presented. These simulations are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The study is Part II of our companion paper (Danabasoglu et al., 2014) which documented the mean states in the North Atlantic from the same models. A major focus of the present study is the representation of Atlantic meridional overturning circulation (AMOC) variability in the participating models. Relationships between AMOC variability and those of some other related variables, such as subpolar mixed layer depths, the North Atlantic Oscillation (NAO), and the Labrador Sea upper-ocean hydrographic properties, are also investigated. In general, AMOC variability shows three distinct stages. During the first stage that lasts until the mid- to late-1970s, AMOC is relatively steady, remaining lower than its long-term (1958-2007) mean. Thereafter, AMOC intensifies with maximum transports achieved in the mid- to late-1990s. This enhancement is then followed by a weakening trend until the end of our integration period. This sequence of low frequency AMOC variability is consistent with previous studies. Regarding strengthening of AMOC between about the mid-1970s and the mid-1990s, our results support a previously identified variability mechanism where AMOC intensification is connected to increased deep water formation in the subpolar North Atlantic, driven by NAO-related surface fluxes. The simulations tend to show general agreement in their representations of, for example, AMOC, sea surface temperature (SST), and subpolar mixed layer depth variabilities. In particular, the observed variability of the North Atlantic SSTs is captured well by all models. These findings indicate that simulated variability and trends are primarily dictated by the atmospheric datasets which include

  13. North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability

    NASA Astrophysics Data System (ADS)

    Danabasoglu, Gokhan; Yeager, Steve G.; Kim, Who M.; Behrens, Erik; Bentsen, Mats; Bi, Daohua; Biastoch, Arne; Bleck, Rainer; Böning, Claus; Bozec, Alexandra; Canuto, Vittorio M.; Cassou, Christophe; Chassignet, Eric; Coward, Andrew C.; Danilov, Sergey; Diansky, Nikolay; Drange, Helge; Farneti, Riccardo; Fernandez, Elodie; Fogli, Pier Giuseppe; Forget, Gael; Fujii, Yosuke; Griffies, Stephen M.; Gusev, Anatoly; Heimbach, Patrick; Howard, Armando; Ilicak, Mehmet; Jung, Thomas; Karspeck, Alicia R.; Kelley, Maxwell; Large, William G.; Leboissetier, Anthony; Lu, Jianhua; Madec, Gurvan; Marsland, Simon J.; Masina, Simona; Navarra, Antonio; Nurser, A. J. George; Pirani, Anna; Romanou, Anastasia; Salas y Mélia, David; Samuels, Bonita L.; Scheinert, Markus; Sidorenko, Dmitry; Sun, Shan; Treguier, Anne-Marie; Tsujino, Hiroyuki; Uotila, Petteri; Valcke, Sophie; Voldoire, Aurore; Wang, Qiang; Yashayaev, Igor

    2016-01-01

    Simulated inter-annual to decadal variability and trends in the North Atlantic for the 1958-2007 period from twenty global ocean - sea-ice coupled models are presented. These simulations are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The study is Part II of our companion paper (Danabasoglu et al., 2014) which documented the mean states in the North Atlantic from the same models. A major focus of the present study is the representation of Atlantic meridional overturning circulation (AMOC) variability in the participating models. Relationships between AMOC variability and those of some other related variables, such as subpolar mixed layer depths, the North Atlantic Oscillation (NAO), and the Labrador Sea upper-ocean hydrographic properties, are also investigated. In general, AMOC variability shows three distinct stages. During the first stage that lasts until the mid- to late-1970s, AMOC is relatively steady, remaining lower than its long-term (1958-2007) mean. Thereafter, AMOC intensifies with maximum transports achieved in the mid- to late-1990s. This enhancement is then followed by a weakening trend until the end of our integration period. This sequence of low frequency AMOC variability is consistent with previous studies. Regarding strengthening of AMOC between about the mid-1970s and the mid-1990s, our results support a previously identified variability mechanism where AMOC intensification is connected to increased deep water formation in the subpolar North Atlantic, driven by NAO-related surface fluxes. The simulations tend to show general agreement in their temporal representations of, for example, AMOC, sea surface temperature (SST), and subpolar mixed layer depth variabilities. In particular, the observed variability of the North Atlantic SSTs is captured well by all models. These findings indicate that simulated variability and trends are primarily dictated by the atmospheric datasets which

  14. Oxygen minimum zone of the open Arabian Sea: variability of oxygen and nitrite from daily to decadal timescales

    NASA Astrophysics Data System (ADS)

    Banse, K.; Naqvi, S. W. A.; Narvekar, P. V.; Postel, J. R.; Jayakumar, D. A.

    2014-04-01

    seasonal regressions of O2 on year for each of the NE and SW monsoon seasons are -0.0043 and -0.0019 mL L-1 a-1, respectively (-0.19 and -0.08 μM a-1; n = 10 and 12, differing at p = 0.01); (2) four decades of statistically significant decreases of O2 between 15 and 20° N but an opposing trend toward an increase near 21° N are observed. The mechanisms of the balance that more or less annually maintain the O2 levels are still uncertain. At least between 300 and 500 m, the replenishment is inferred to be due to isopycnal re-supply of O2, while at 200 (or 250?) m it is diapycnal, most likely by eddies. Similarly, recent models show large vertical advection of O2 well below the pycnoclines and oxyclines. The NO2- distribution, taken as an indicator of active NO3- reduction, does not show a trend in the redox environment for a quarter of a century at a GEOSECS station near 20° N. In the entire OMZ, the regression slopes on year within seasons for the rather variable NO2- do not present a clear pattern but by other measures tended to an increase of NO2-. Vertical net hauls collect resident animal (metazoan) pelagic life in the NO2- maximum of the OMZ at O2 levels well below the lower limit of the Winkler titration; the extremely low O2 content is inferred from the presence of NO2- believed to be produced through microbial NO3- reduction. Instead of the difficult measurement by the STOX sensor, the relation between the very low O2 inferred from presence of NO2- and mesozooplankton should be studied with 100 to 150 L bottles rather than nets. The spatial (within drift stations) and temporal (daily) variability in hydrography and chemistry is large also below the principal pycnocline. The seasonal change of hydrography is considerable even at 500 m depth. Future O2 or nutrient budgets for the OMZ must not be based on single cruises or sections obtained during one season only. Steady state cannot be assumed any longer for the intermediate layers of the central Arabian Sea.

  15. Asian Monsoon Climate from Tropical Tree Rings: Decadal Scale Variability and Links to Tropical Pacific Sea Surface Temperature.

    NASA Astrophysics Data System (ADS)

    Buckley, B. M.; Duangsathaporn, K.; Borgaonkar, H.; Palakit, K.

    2006-12-01

    Records of climate from the terrestrial tropics for the period before instrumentation are very limited. Tropical tree ring research, particularly in the Asian tropics, has been limited by difficulties ranging from problematic annual ring formation, poor understanding of phenology and physiology of thousands of tree species, complicated forest dynamics factors, and political turmoil and resultant effects on access. The need for understanding the potential range of variability in the monsoon regions of Asia is critical for making sound planning decisions in the face of potential hydrological changes associated with global climate change. A growing body of work from the SSEA-DENDRO (South and Southeast Asian Dendrochronology) project, one component of an NSF-funded project "Tree-Ring Reconstruction of Asian Monsoon Climate Dynamics", is beginning to allow analyses of local and regional climate from Monsoon Asian tree rings. We now have continuous records of 500-plus years, that enable analyses of important time periods such as the Little Ice Age (LIA), while "floating" time series span portions of the Medieval Climate Anomaly (MCA). From these records, we see clear evidence of decadal-scale reduced monsoon strength from India to Thailand for much of the 18th century, and we suggest warm SST anomalies in the eastern tropical Pacific as one of the primary factors. We compare our tree-ring based results with evidence from Speleothem research from northeast India that corroborates the decadal-scale monsoon weakening in the LIA, while revealing increased rainfall during the MCA. The role of SST anomalies in the eastern tropical Pacific is seen as significant, with El Ni?o and La Ni?a like conditions resulting in rainfall reductions and increases, respectively, in the study region. Persistent state changes in the SST fields can result in the kinds of decadal-scale patterns we are seeing in monsoon Asia, with far-reaching influence into the western hemisphere as well. More

  16. An 1800-yr record of decadal-scale hydroclimatic variability in the upper Arkansas River basin from bristlecone pine

    USGS Publications Warehouse

    Woodhouse, C.A.; Pederson, G.T.; Gray, S.T.

    2011-01-01

    Bristlecone pine trees are exceptionally long-lived, and with the incorporation of remnant material have been used to construct multi-millennial length ring-width chronologies. These chronologies can provide valuable information about past temperature and moisture variability. In this study, we outline a method to build a moisture-sensitive bristlecone chronology and assess the robustness and consistency of this sensitivity over the past 1200. yr using new reconstructions of Arkansas River flow (AD 1275-2002 and 1577-2002) and the summer Palmer Drought Sensitivity Index. The chronology, a composite built from parts of three collections in the central Rocky Mountains, is a proxy for decadal-scale moisture variability for the past 18 centuries. Since the sample size is small in some portions of the time series, the chronology should be considered preliminary; the timing and duration of drought events are likely the most robust characteristics. This chronology suggests that the region experienced increased aridity during the medieval period, as did much of western North America, but that the timing and duration of drought episodes within this period were somewhat different from those in other western locations, such as the upper Colorado River basin. ?? 2010 University of Washington.

  17. Understanding interannual, decadal level variability in paralytic shellfish poisoning toxicity in the Gulf of Maine: the HAB Index

    PubMed Central

    Anderson, Donald M.; Couture, Darcie A.; Kleindinst, Judith L.; Keafer, Bruce A.; McGillicuddy, Dennis J.; Martin, Jennifer L.; Richlen, Mindy L.; Hickey, J. Michael; Solow, Andrew R.

    2013-01-01

    A major goal in harmful algal bloom (HAB) research has been to identify mechanisms underlying interannual variability in bloom magnitude and impact. Here the focus is on variability in Alexandrium fundyense blooms and paralytic shellfish poisoning (PSP) toxicity in Maine, USA, over 34 years (1978 – 2011). The Maine coastline was divided into two regions -eastern and western Maine, and within those two regions, three measures of PSP toxicity (the percent of stations showing detectable toxicity over the year, the cumulative amount of toxicity per station measured in all shellfish (mussel) samples during that year, and the duration of measurable toxicity) were examined for each year in the time series. These metrics were combined into a simple HAB Index that provides a single measure of annual toxin severity across each region. The three toxin metrics, as well as the HAB Index that integrates them, reveal significant variability in overall toxicity between individual years as well as long-term, decadal patterns or regimes. Based on different conceptual models of the system, we considered three trend formulations to characterize the long-term patterns in the Index – a three-phase (mean-shift) model, a linear two-phase model, and a pulse-decline model. The first represents a “regime shift” or multiple equilibria formulation as might occur with alternating periods of sustained high and low cyst abundance or favorable and unfavorable growth conditions, the second depicts a scenario of more gradual transitions in cyst abundance or growth conditions of vegetative cells, and the third characterizes a ”sawtooth” pattern in which upward shifts in toxicity are associated with major cyst recruitment events, followed by a gradual but continuous decline until the next pulse. The fitted models were compared using both residual sum of squares and Akaike's Information Criterion. There were some differences between model fits, but none consistently gave a better fit than

  18. Understanding interannual, decadal level variability in paralytic shellfish poisoning toxicity in the Gulf of Maine: The HAB Index

    NASA Astrophysics Data System (ADS)

    Anderson, Donald M.; Couture, Darcie A.; Kleindinst, Judith L.; Keafer, Bruce A.; McGillicuddy, Dennis J., Jr.; Martin, Jennifer L.; Richlen, Mindy L.; Hickey, J. Michael; Solow, Andrew R.

    2014-05-01

    A major goal in harmful algal bloom (HAB) research has been to identify mechanisms underlying interannual variability in bloom magnitude and impact. Here the focus is on variability in Alexandrium fundyense blooms and paralytic shellfish poisoning (PSP) toxicity in Maine, USA, over 34 years (1978-2011). The Maine coastline was divided into two regions - eastern and western Maine, and within those two regions, three measures of PSP toxicity (the percent of stations showing detectable toxicity over the year, the cumulative amount of toxicity per station measured in all shellfish (mussel) samples during that year, and the duration of measurable toxicity) were examined for each year in the time series. These metrics were combined into a simple HAB Index that provides a single measure of annual toxin severity across each region. The three toxin metrics, as well as the HAB Index that integrates them, reveal significant variability in overall toxicity between individual years as well as long-term, decadal patterns or regimes. Based on different conceptual models of the system, we considered three trend formulations to characterize the long-term patterns in the Index - a three-phase (mean-shift) model, a linear two-phase model, and a pulse-decline model. The first represents a “regime shift” or multiple equilibria formulation as might occur with alternating periods of sustained high and low cyst abundance or favorable and unfavorable growth conditions, the second depicts a scenario of more gradual transitions in cyst abundance or growth conditions of vegetative cells, and the third characterizes a ”sawtooth” pattern in which upward shifts in toxicity are associated with major cyst recruitment events, followed by a gradual but continuous decline until the next pulse. The fitted models were compared using both residual sum of squares and Akaike's Information Criterion. There were some differences between model fits, but none consistently gave a better fit than the

  19. Caroline Furness and the Evolution of Visual Variable Star Observing

    NASA Astrophysics Data System (ADS)

    Larsen, Kristine

    2017-01-01

    An Introduction to the Study of Variable Stars by Dr. Caroline Ellen Furness (1869-1936), Director of the Vassar College Observatory, was published in October 2015. Issued in honor of the fiftieth anniversary of the founding of Vassar College, the work was meant to fill a void in the literature, namely as both an introduction to the topic of variable stars as well as a manual explaining how they should be observed and the resulting data analyzed. It was judged to be one of the hundred best books written by an American woman in the last hundred years at the 1933 World’s Fair in Chicago. The book covers the relevant history of and background on types of variable stars, star charts, catalogs, and the magnitude scale, then describes observing techniques, including visual, photographic, and photoelectric photometry. The work finishes with a discussion of light curves and patterns of variability, with a special emphasis on eclipsing binaries and long period variables. Furness’s work is therefore a valuable snapshot of the state of astronomical knowledge, technology, and observing techniques from a century ago. Furness’s book and its reception in the scientific community are analyzed, and parallels with (and departures from) the current advice given by the AAVSO to beginning variable star observers today are highlighted.

  20. Comparisons of observed and modelled lake δ18O variability

    NASA Astrophysics Data System (ADS)

    Jones, Matthew D.; Cuthbert, Mark O.; Leng, Melanie J.; McGowan, Suzanne; Mariethoz, Gregoire; Arrowsmith, Carol; Sloane, Hilary J.; Humphrey, Kerenza K.; Cross, Iain

    2016-01-01

    With the substantial number of lake sediment δ18O records published in recent decades, a quantitative, process-based understanding of these systems can increase our understanding of past climate change. We test mass balance models of lake water δ18O variability against five years of monthly monitoring data from lakes with different hydrological characteristics, in the East-Midlands region of the UK, and the local isotope composition of precipitation. These mass balance models can explain up to 74% of the measured lake water isotope variability. We investigate the sensitivity of the model to differing calculations of evaporation amount, the amount of groundwater, and to different climatic variables. We show there is only a small range of values for groundwater exchange flux that can produce suitable lake water isotope compositions and that variations in evaporation and precipitation are both required to produce recorded isotope variability in lakes with substantial evaporative water losses. We then discuss the potential for this model to be used in a long-term, palaeo-scenario. This study demonstrates how long term monitoring of a lake system can lead to the development of robust models of lake water isotope compositions. Such systematics-based explanations allow us to move from conceptual, to more quantified reconstructions of past climates and environments.

  1. Near-infrared observations of the variable crab nebula

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.; Mori, K.; Shibata, S.; Tsujimoto, M.; Misawa, T.; Burrows, D.; Kawai, N.

    We present three near-infrared NIR observations of the Crab Nebula obtained with CISCO on the Subaru Telescope and Quick Infrared Camera on the University of HAWAII 88 inch Telescope The observations were performed on 2004 September 2005 February and 2005 October and were coordinated with X-ray observations obtained with the Chandra X-ray observatory within 10 days As shown in previous optical and X-ray monitoring observations outward-moving wisps and variable knots are detected also in our NIR observations The NIR variations are closely correlated with variations in the X-ray observations indicating that both variations are driven by the same physical process We discuss the origin of NIR-emitting particles based on the temporal variations as well as the spectral energy distributions of each variable component

  2. Observational and Model Estimates of Decadal-scale Changes in Anthropogenic Carbon in the Atlantic and Pacific Oceans

    NASA Astrophysics Data System (ADS)

    Doney, S. C.; Levine, N. M.; Wanninkof, R.; Sabine, C.; Feely, R. A.

    2008-12-01

    Dissolved inorganic carbon (DIC) in the upper ocean is increasing over time due to the invasion of anthropogenic CO2 from the atmosphere. The CLIVAR/CO2 Repeat Hydrography Program is attempting to quantifying these trends by reoccupying on approximately decadal time-scales ocean sections that were first sampled during the WOCE/JGOFS era in the late 1980s and 1990s. Direct point to point comparisons are strongly aliased by interannual variability, and we use multiple linear regression techniques to isolate the anthropogenic carbon signal. We show field-based estimates of decadal changes in DIC for meridional sections (about 60°N to 60°S) in the Atlantic and Pacific basins (A16 and P16). The field estimates are also compared with historical hindcast simulation results from the Community Climate System Model (CCSM) ocean biogeochemical model.

  3. Cloud structure of brown dwarfs from spectroscopic variability observations

    NASA Astrophysics Data System (ADS)

    Buenzli, E.; Marley, M. S.; Apai, D.; Lupu, R. E.

    Recent discoveries of variable brown dwarfs have provided us with a new window into their three-dimensional cloud structure. The highest variables are found at the L/T transition, where the cloud cover is thought to break up, but variability has been found to occur also for both cloudy L dwarfs and (mostly) cloud-free mid T dwarfs. We summarize results from recent HST programs measuring the spectral variability of brown dwarfs in the near-infrared and compare to results from ground-based programs. We discuss the patchy cloud structure of L/T transition objects, for which it is becoming increasingly certain that the variability does not arise from cloud holes into the deep hot regions but from varying cloud thickness. We present a new patchy cloud model to explain the spectral variability of 2MASSJ21392676+0220226. We also discuss the curious multi-wavelength variability behavior of the recently discovered very nearby early T dwarf WISE J104915.57-531906.1B (Luhman 16B) and the mid T dwarf 2MASS J22282889-431026. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program # 12314 and 13280

  4. Potential impacts of a future Grand Solar Minimum on decadal regional climate change and interannual hemispherical climate variability

    NASA Astrophysics Data System (ADS)

    Spiegl, Tobias; Langematz, Ulrike

    2016-04-01

    The political, technical and socio-economic developments of the next decades will determine the magnitude of 21st century climate change, since they are inextricably linked to future anthropogenic greenhouse gas emissions. To assess the range of uncertainty that is related to these developments, it is common to assume different emission scenarios for 21st climate projections. While the uncertainties associated with the anthropogenic greenhouse gas forcing have been studied intensely, the contribution of natural climate drivers (particularly solar variability) to recent and future climate change are subject of intense debate. The past 1,000 years featured at least 5 excursions (lasting 60-100 years) of exceptionally low solar activity, induced by a weak magnetic field of the Sun, so called Grand Solar Minima. While the global temperature response to such a decrease in solar activity is assumed to be rather small, nonlinear mechanisms in the climate system might amplify the regional temperature signal. This hypothesis is supported by the last Grand Solar Minimum (the Maunder Minimum, 1645-1715) which coincides with the Little Ice Age, an epoch which is characterized by severe cold and hardship over Europe, North America and Asia. The long-lasting minimum of Solar Cycle 23 as well as the overall weak maximum of Cycle 24 reveal the possibility for a return to Grand Solar Minimum conditions within the next decades. The quantification of the implications of such a projected decrease in solar forcing is of ultimate importance, given the on-going public discussion of the role of carbon dioxide emissions for global warming, and the possible role a cooling due to decreasing solar activity could be ascribed to. Since there is still no clear consensus about the actual strength of the Maunder Minimum, we used 3 acknowledged solar reconstruction datasets that show significant differences in both, total solar irradiance (TSI) and spectral irradiance (SSI) to simulate a future

  5. Trends and variability in East African rainfall and temperature observations

    NASA Astrophysics Data System (ADS)

    Seregina, Larisa; Ermert, Volker; Fink, Andreas H.; Pinto, Joaquim G.

    2014-05-01

    The economy of East Africa is highly dependent on agriculture, leading to a strong vulnerability of local society to fluctuations in seasonal rainfall amounts, including extreme events. Hence, the knowledge about the evolution of seasonal rainfall under future climate conditions is crucial. Rainfall regimes over East Africa are influenced by multiple factors, including two monsoon systems, several convergence zones and the Rift Valley lakes. In addition, local conditions, like topography, modulate the large-scale rainfall pattern. East African rainfall variability is also influenced by various teleconnections like the Indian Ocean Zonal Mode and El Niño Southern Oscillation. Regarding future climate projections, regional and global climate models partly disagree on the increase or decrease of East African rainfall. The specific aim of the present study is the acquirement of historic data from weather stations in East Africa (Kenya, Tanzania, Ruanda and Uganda), the use of gridded satellite (rainfall) products (ARC2 and TRMM), and three-dimensional atmospheric reanalysis (e.g., ERA-Interim) to quantify climate variability in the recent past and to understand its causes. Climate variability and trends, including changes in extreme events, are evaluated using ETCCDI climate change and standardized precipitation indices. These climate indices are determined in order to investigate the variability of temperature and rainfall and their trends with the focus on most recent decades. In the follow-up, statistical and dynamical analyses are conducted to quantify the local impact of pertinent large-scale modes of climate variability (Indian Ocean Zonal Mode, El Niño Southern Oscillation, Sea Surface Temperature of the Indian Ocean).

  6. How well can interannual to decadal-scale variability in stratospheric ozone and water vapor be quantified using limb-based satellite measurements?

    NASA Astrophysics Data System (ADS)

    Davis, S. M.; Rosenlof, K. H.; Hurst, D. F.; Hassler, B.; Read, W. G.

    2015-12-01

    Vertical profiles of ozone and humidity from the upper troposphere to stratosphere have been retrieved from a number of limb sounding and solar occultation satellite instruments since the 1980's. In particular, measurements from the SAGE instruments, UARS MLS, UARS HALOE, and most recently Aura MLS, have provided overlapping data since 1984. In order to quantify interannual- to decadal-scale variability in water vapor and ozone, it is necessary to have a uniform and homogenous record over the period of interest. With this in mind, we merged the aforementioned satellite measurements to create the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) data set, which contains vertically resolved zonal-mean (2.5°) monthly-mean water vapor and ozone concentration at levels covering the stratosphere. In this presentation, we describe the process of merging the satellite data sets, which involves adjusting the data to a reference measurement using offsets calculated from coincident observations taken during instrument overlap periods. Uncertainties associated with individual measurement precision, geophysical variability, and the merging process are quantified and compared to one another. We show that while the SWOOSH data can be used to quantify interannual variability, quantifying long-term trends in SWOOSH is complicated by the various sources of uncertainty, as well as by potential drifts of individual instruments. The issue of satellite-derived trends is discussed in relation to the long-term record of balloon-borne frostpoint hygrometer measurements from Boulder, CO.

  7. A review of advances in lightning observations during the past decade in Guangdong, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun; Lü, Weitao; Chen, Shaodong; Zheng, Dong; Zhang, Yang; Yan, Xu; Chen, Lüwen; Dong, Wansheng; Dan, Jianru; Pan, Hanbo

    2016-08-01

    This paper reviews recent advances in understanding the physical processes of artificially triggered lightning and natural lightning as well as the progress in testing lightning protection technologies, based on a series of lightning field campaigns jointly conducted by the Chinese Academy of Meteorological Sciences and Guangdong Meteorological Bureau since 2006. During the decade-long series of lightning field experiments, the technology of rocket-wire artificially triggered lightning has been improved, and has successfully triggered 94 lightning flashes. Through direct lightning current waveform measurements, an average return stroke peak current of 16 kA was obtained. The phenomenon that the downward leader connects to the lateral surface of the upward leader in the attachment process was discovered, and the speed of the upward leader during the connection process being significantly greater than that of the downward leader was revealed. The characteristics of several return strokes in cloud-to-ground lighting have also been unveiled, and the mechanism causing damage to lightning protection devices (i.e., ground potential rise within the rated current) was established. The performance of three lightning monitoring systems in Guangdong Province has also been quantitatively assessed.

  8. Variations in water storage in China over recent decades from GRACE observations and GLDAS

    NASA Astrophysics Data System (ADS)

    Mo, X.; Wu, J. J.; Wang, Q.; Zhou, H.

    2016-02-01

    We applied Gravity Recovery and Climate Experiment (GRACE) Tellus products in combination with Global Land Data Assimilation System (GLDAS) simulations and data from reports, to analyze variations in terrestrial water storage (TWS) in China as a whole and eight of its basins from 2003 to 2013. Amplitudes of TWS were well restored after scaling, and showed good correlations with those estimated from models at the basin scale. TWS generally followed variations in annual precipitation; it decreased linearly in the Huai River basin (-0.56 cm yr-1) and increased with fluctuations in the Changjiang River basin (0.35 cm yr-1), Zhujiang basin (0.55 cm yr-1) and southeast rivers basin (0.70 cm yr-1). In the Hai River basin and Yellow River basin, groundwater exploitation may have altered TWS's response to climate, and TWS kept decreasing until 2012. Changes in soil moisture storage contributed over 50 % of variance in TWS in most basins. Precipitation and runoff showed a large impact on TWS, with more explained TWS in the south than in the north. North China and southwest rivers region exhibited long-term TWS depletions. TWS has increased significantly over recent decades in the middle and lower reaches of Changjiang River, southeastern coastal areas, as well as the Hoh Xil, and the headstream region of the Yellow River in the Tibetan Plateau. The findings in this study could be helpful to climate change impact research and disaster mitigation planning.

  9. What We Have Learned About Clusters From a Decade of Arcsecond Resolution X-ray Observations

    NASA Technical Reports Server (NTRS)

    Markevitch, Maxim

    2012-01-01

    This talk will briefly review the main findings from Chandra high angular resolution observations of galaxy clusters, emphasizing results on cluster astrophysics. Chandra has discovered shock fronts in merging systems, providing information on the shock Mach number and velocity, and for best-observed shocks, constraining the microphysical properties of the intracluster medium (ICM). Cold fronts, a Chandra discovery, are ubiquitous both in merging clusters and in the cool ccres of relaxed systems. They reveal the structure and strength of the intracluster magnetic fields and constrain the ICM viscosity a combined with radio data, these observations also shed light on the production of ultra-relativistic particles that are known to coexist with thermal plasma. Finally, in nearly all cool cores, Chandra observes cavities in the ICM that are produced by the central AGN. All these phenomena will be extremely interesting for high-resolution SZ studies.

  10. Reconstruction and robust reduced-order observation of flexible variables

    NASA Technical Reports Server (NTRS)

    Hastings, Gordon G.; Book, Wayne J.

    1986-01-01

    This paper discusses reconstruction and estimation of flexible variables from multiple strain measurements for use in state feedback control of flexible manipulators. Reconstruction is proposed for obtaining flexible mode amplitudes from the measurements, and estimation for the modal velocities. Design of the observer for estimation of the velocities is discussed with regard to robust implementation. The performance of the observer is examined experimentally for several specifications of the error dynamics.

  11. Variability of Arctic Sea Ice as Determined from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1999-01-01

    The compiled, quality-controlled satellite multichannel passive-microwave record of polar sea ice now spans over 18 years, from November 1978 through December 1996, and is revealing considerable information about the Arctic sea ice cover and its variability. The information includes data on ice concentrations (percent areal coverages of ice), ice extents, ice melt, ice velocities, the seasonal cycle of the ice, the interannual variability of the ice, the frequency of ice coverage, and the length of the sea ice season. The data reveal marked regional and interannual variabilities, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 sq km, while individual regions experienced much greater percent variations, for instance, with the Greenland Sea having a range of 740,000 - 1,110,000 sq km in its yearly maximum ice coverage. In spite of the large variations from year to year and region to region, overall the Arctic ice extents showed a statistically significant, 2.80% / decade negative trend over the 18.2-year period. Ice season lengths, which vary from only a few weeks near the ice margins to the full year in the large region of perennial ice coverage, also experienced interannual variability, along with spatially coherent overall trends. Linear least squares trends show the sea ice season to have lengthened in much of the Bering Sea, Baffin Bay, the Davis Strait, and the Labrador Sea, but to have shortened over a much larger area, including the Sea of Okhotsk, the Greenland Sea, the Barents Sea, and the southeastern Arctic.

  12. Characteristics of IR variable stars as observed from orbit

    NASA Technical Reports Server (NTRS)

    Maran, S. P.; Heinsheimer, T. F.; Stocker, T. L.; Chapman, R. D.; Hobbs, R. W.; Michalitsanos, A. G.

    1976-01-01

    A selection of infrared variable stars was studied at wavelength 2.7 microns during 1971-1975 with data from U.S. Air Force satellites. Stars observed in this program are classified as long-period variable stars, semiregular variables, and irregular variables and are among the strongest stellar sources at this wavelength. In addition, a few new, as yet unclassified variable stars were identified during the course of the investigation. Time scales of reproducible variations range from a few weeks to a few years, and amplitudes of variation are as large as a factor of three for stars with periods of order one year. The minimum infrared flux density of a long-period star repeats accurately from one cycle to the next, whereas the maximum flux density was found to be unstable. The correlation of 2.7 micron and radio emission line data from one, well-studied long-period variable is consistent with the hypothesis that the H2O and OH circumstellar masers are saturated, if pumped by the stellar infrared flux near 2.7 microns.

  13. Two decades [1992-2012] of surface wind analyses based on satellite scatterometer observations

    NASA Astrophysics Data System (ADS)

    Desbiolles, Fabien; Bentamy, Abderrahim; Blanke, Bruno; Roy, Claude; Mestas-Nuñez, Alberto M.; Grodsky, Semyon A.; Herbette, Steven; Cambon, Gildas; Maes, Christophe

    2017-04-01

    Surface winds (equivalent neutral wind velocities at 10 m) from scatterometer missions since 1992 have been used to build up a 20-year climate series. Optimal interpolation and kriging methods have been applied to continuously provide surface wind speed and direction estimates over the global ocean on a regular grid in space and time. The use of other data sources such as radiometer data (SSM/I) and atmospheric wind reanalyses (ERA-Interim) has allowed building a blended product available at 1/4° spatial resolution and every 6 h from 1992 to 2012. Sampling issues throughout the different missions (ERS-1, ERS-2, QuikSCAT, and ASCAT) and their possible impact on the homogeneity of the gridded product are discussed. In addition, we assess carefully the quality of the blended product in the absence of scatterometer data (1992 to 1999). Data selection experiments show that the description of the surface wind is significantly improved by including the scatterometer winds. The blended winds compare well with buoy winds (1992-2012) and they resolve finer spatial scales than atmospheric reanalyses, which make them suitable for studying air-sea interactions at mesoscale. The seasonal cycle and interannual variability of the product compare well with other long-term wind analyses. The product is used to calculate 20-year trends in wind speed, as well as in zonal and meridional wind components. These trends show an important asymmetry between the southern and northern hemispheres, which may be an important issue for climate studies.

  14. Monitoring Coastal Change Dynamics Using Multi-Decadal Moderate Resolution Earth Observation Data

    NASA Astrophysics Data System (ADS)

    Lymburner, Leo; Sagar, Stephen; Thankappan, Medhavy; Fyfe, Sue; Nicholas, Tony; Mueller, Norman; Lewis, Adam; Brooke, Brendan

    2016-08-01

    Coastal environments are intrinsically dynamic and respond to a wide array of natural and anthropogenic drivers across a broad range of time steps. In addition, coastal environments are under increasing pressure from land use intensification and climate change. The development of the Australian Geoscience Data Cube has delivered an unprecedented capability to support environmental change monitoring applications through rapid processing and analysis of standardised Earth Observation (EO) time-series data in a High Performance Computing environment. Standardised long-term EO data records provide the capacity to monitor coastal changes processes and understand current changes from a historical perspective. The ability to visualise environmental changes in a spatio- temporal context provides the opportunity to assess whether the change phenomena are rapid / gradual onset, and/or episodic / cyclical in nature. Understanding the spatio-temporal nature of the changes also enables the attribution of observed changes to the potential causes.

  15. High resolution earth observation satellites and services in the next decade a European perspective

    NASA Astrophysics Data System (ADS)

    Schreier, Gunter; Dech, Stefan

    2005-07-01

    Projects to use very high resolution optical satellite sensor data started in the late 90s and are believed to be the major driver for the commercialisation of earth observation. The global political security situation and updated legislative frameworks created new opportunities for high resolution, dual use satellite systems. In addition to new optical sensors, very high resolution synthetic aperture radars will become in the next few years an important component in the imaging satellite fleet. The paper will review the development in this domain so far, and give perspectives on future emerging markets and opportunities. With dual-use satellite initiatives and new political frameworks agreed between the European Commission and the European Space Agency (ESA), the European market becomes very attractive for both service suppliers and customers. The political focus on "Global Monitoring for Environment and Security" (GMES) and the "European Defence and Security Policy" drive and amplify this demand which ranges from low resolution climate monitoring to very high resolution reconnaissance tasks. In order to create an operational and sustainable GMES in Europe by 2007, the European infrastructure need to be adapted and extended. This includes the ESA SENTINEL and OXYGEN programmes, aiming for a fleet of earth observation satellites and an open and operational earth observation ground segment. The harmonisation of national and regional geographic information is driven by the European Commission's INSPIRE programme. The necessary satellite capacity to complement existing systems in the delivery of space based data required for GMES is currently under definition. Embedded in a market with global competition and in the global political framework of a Global Earth Observation System of Systems, European companies, agencies and research institutions are now contributing to this joint undertaking. The paper addresses the chances, risks and options for the future.

  16. Variability in functional brain networks predicts expertise during action observation.

    PubMed

    Amoruso, Lucía; Ibáñez, Agustín; Fonseca, Bruno; Gadea, Sebastián; Sedeño, Lucas; Sigman, Mariano; García, Adolfo M; Fraiman, Ricardo; Fraiman, Daniel

    2017-02-01

    Observing an action performed by another individual activates, in the observer, similar circuits as those involved in the actual execution of that action. This activation is modulated by prior experience; indeed, sustained training in a particular motor domain leads to structural and functional changes in critical brain areas. Here, we capitalized on a novel graph-theory approach to electroencephalographic data (Fraiman et al., 2016) to test whether variability in functional brain networks implicated in Tango observation can discriminate between groups differing in their level of expertise. We found that experts and beginners significantly differed in the functional organization of task-relevant networks. Specifically, networks in expert Tango dancers exhibited less variability and a more robust functional architecture. Notably, these expertise-dependent effects were captured within networks derived from electrophysiological brain activity recorded in a very short time window (2s). In brief, variability in the organization of task-related networks seems to be a highly sensitive indicator of long-lasting training effects. This finding opens new methodological and theoretical windows to explore the impact of domain-specific expertise on brain plasticity, while highlighting variability as a fruitful measure in neuroimaging research.

  17. Changes in SO2 and NO2 Pollution over the Past Decade Observed by Aura OMI

    NASA Astrophysics Data System (ADS)

    Krotkov, N. A.; Li, C.; Lamsal, L. N.; Celarier, E. A.; Marchenko, S. V.; Swartz, W.; Bucsela, E. J.; Fioletov, V.; McLinden, C. A.; Joiner, J.; Bhartia, P. K.; Duncan, B. N.; Dickerson, R. R.

    2014-12-01

    The Ozone Monitoring Instrument (OMI), a NASA partnership with the Netherlands and Finland, flies on the EOS Aura satellite and uses reflected sunlight to measure two critical atmospheric trace gases, nitrogen dioxide (NO2) and sulfur dioxide (SO2), characterizing daily air quality. Both gases and the secondary pollutants they produce (particulate matter, PM2.5, and tropospheric ozone) are among USEPA designated criteria pollutants, posing serious threats to human health and the environment (e.g., acid rain, plant damage, and reduced visibility). A new generation of the OMI standard SO2 and NO2 products (based on critically improved DOAS spectral fitting for NO2 and innovative Principal Component Analysis method for SO2) provides a valuable dataset for studying anthropogenic pollution on local to global scales. Here we highlight some of the OMI observed long-term changes in air quality over several regions. Over the US, average NO2 and SO2 pollution levels have decreased dramatically as a result of both technological improvements (e.g., catalytic converters on cars) and stricter regulations of emissions. We see continued decline in NO2 and SO2 pollution over Europe. Over China OMI observed a ~ 60% increase in NO2 pollution between 2005 and 2013, despite a temporary reversal of the growing trend due to both 2008 Olympic Games and the economic recession in 2009. Chinese SO2 pollution seems to have stabilized since peaking in 2007, probably due to government efforts to curb SO2 emissions from the power sector. We have also observed large increases in both SO2 and NO2 pollution particularly in Eastern India where a number of new large coal power plants have been built in recent years. We expect that further improvements in the OMI NO2 and SO2 products will allow more robust quantification of long-term trends in local to global air quality.

  18. Monitoring multi-decadal satellite earth observation of soil moisture using era-land global land water resources dataset

    NASA Astrophysics Data System (ADS)

    Albergel, Clement; Dorigo, Wouter; Balsamo, Gianpaolo; de Rosnay, Patricia; Muñoz-Sabater, Joaquin; Isaksen, Lars; Brocca, Luca; de Jeu, Richard; Wagner, Wolfgang

    2014-05-01

    It has been widely recognized that soil moisture is one of the main drivers of the water, energy and carbon cycles. It is a crucial variable for Numerical Weather Prediction (NWP) and climate projections because it plays a key role in hydro-meteorological processes. A good representation of soil moisture conditions can help improving the forecasting of precipitation, temperature, droughts and floods. For many applications global or continental scale soil moisture maps are needed. As a consequence, a signi?cant amount of studies have been conducted to obtain such information. For that purpose, land surface modeling, remote sensing techniques or a combination of both through Land Data Assimilation Systems are used. Assessing the quality of these products is required and for instance, the release of a new -long term- harmonized soil moisture product (SM-MW hereafter) from remote sensing within the framework of the European Space Agency's Water Cycle Multi-mission Observation Strategy (WACMOS) and Climate Change Initiative (CCI) projects in 2012 (more information at http://www.esa-soilmoisture-cci.org/) triggered several evaluation activities. The typical validation approach for model and satellite based data products is to compare them to in situ observations. However the evaluation of soil moisture products using ground measurements is not trivial. Even if in the recent years huge efforts were made to make such observations available in contrasting biomes and climate conditions, long term and large scale ground measurements networks are still sparse. Additionally, different networks will present different characteristics (e.g. measurement methods, installation depths and modes, calibration techniques, measurement interval, and temporal and spatial coverage). Finally using in situ measurements, the quality of retrieved soil moisture can be accurately assessed for the locations of the stations. That is why it is of interest to conceive new validation methods

  19. Modes of North Atlantic Decadal Variability in the ECHAM1/LSG Coupled Ocean-Atmosphere General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Zorita, Eduardo; Frankignoul, Claude

    1997-02-01

    The climate variability in the North Atlantic sector is investigated in a 325-yr integration of the ECHAM1/ LSG coupled ocean-atmosphere general circulation model. At the interannual timescale, the coupled model behaves realistically and sea surface temperature (SST) anomalies arise as a response of the oceanic surface layer to the stochastic forcing by the atmosphere, with the heat exchanges both generating and damping the SST anomalies. In the ocean interior, the temperature spectra are red up to a period of about 20 years, and substantial decadal fluctuations are found in the upper kilometer or so of the water column. Using extended empirical orthogonal function analysis, two distinct quasi-oscillatory modes of ocean-atmosphere variability are identified, with dominant periods of about 20 and 10 years, respectively. The oceanic changes in both modes reflect the direct forcing by the atmosphere through anomalous air-sea fluxes and Ekman pumping, which after some delay affects the intensity of the subtropical and subpolar gyres. The SST is also strongly modulated by the gyre currents. In the thermocline, the temperature and salinity fluctuations are in phase, as if caused by thermocline displacements, and they have no apparent connection with the thermohaline circulation. The 20-yr mode is the most energetic one; it is easily seen in the thermocline and can be found in SST data, but it is not detected in the atmosphere alone. As there is no evidence of positive ocean-atmosphere feedback, the 20-yr mode primarily reflects the passive response of the ocean to atmospheric fluctuations, which may be in part associated with climate anomalies appearing a few years earlier in the North Pacific. The 10-yr mode is more surface trapped in the ocean. Although the mode is most easily seen in the temperature variations of the upper few hundred meters of the ocean, it is also detected in the atmosphere alone and thus appears to be a coupled ocean-atmosphere mode. In both modes

  20. Interannual and Decadal Variability of Ocean Surface Latent Heat Flux as Seen from Passive Microwave Satellite Algorithms

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Jackson, Darren L.; Wick, Gary A.; Roberts, Brent; Miller, Tim L.

    2007-01-01

    Ocean surface turbulent fluxes are critical links in the climate system since they mediate energy exchange between the two fluid systems (ocean and atmosphere) whose combined heat transport determines the basic character of Earth's climate. Deriving physically-based latent and sensible heat fluxes from satellite is dependent on inferences of near surface moisture and temperature from coarser layer retrievals or satellite radiances. Uncertainties in these "retrievals" propagate through bulk aerodynamic algorithms, interacting as well with error properties of surface wind speed, also provided by satellite. By systematically evaluating an array of passive microwave satellite algorithms, the SEAFLUX project is providing improved understanding of these errors and finding pathways for reducing or eliminating them. In this study we focus on evaluating the interannual variability of several passive microwave-based estimates of latent heat flux starting from monthly mean gridded data. The algorithms considered range from those based essentially on SSM/I (e.g. HOAPS) to newer approaches that consider additional moisture information from SSM/T-2 or AMSU-B and lower tropospheric temperature data from AMSU-A. On interannual scales, variability arising from ENSO events and time-lagged responses of ocean turbulent and radiative fluxes in other ocean basins (as well as the extratropical Pacific) is widely recognized, but still not well quantified. Locally, these flux anomalies are of order 10-20 W/sq m and present a relevant "target" with which to verify algorithm performance in a climate context. On decadal time scales there is some evidence from reanalyses and remotely-sensed fluxes alike that tropical ocean-averaged latent heat fluxes have increased 5-10 W/sq m since the early 1990s. However, significant uncertainty surrounds this estimate. Our work addresses the origin of these uncertainties and provides statistics on time series of tropical ocean averages, regional space

  1. A large increase in U.S. methane emissions over the past decade inferred from satellite data and surface observations

    NASA Astrophysics Data System (ADS)

    Turner, A. J.; Jacob, D. J.; Benmergui, J.; Wofsy, S. C.; Maasakkers, J. D.; Butz, A.; Hasekamp, O.; Biraud, S. C.

    2016-03-01

    The global burden of atmospheric methane has been increasing over the past decade, but the causes are not well understood. National inventory estimates from the U.S. Environmental Protection Agency indicate no significant trend in U.S. anthropogenic methane emissions from 2002 to present. Here we use satellite retrievals and surface observations of atmospheric methane to suggest that U.S. methane emissions have increased by more than 30% over the 2002-2014 period. The trend is largest in the central part of the country, but we cannot readily attribute it to any specific source type. This large increase in U.S. methane emissions could account for 30-60% of the global growth of atmospheric methane seen in the past decade.

  2. The IRIS Data Management Center: Enabling Access to Observational Time Series Spanning Decades

    NASA Astrophysics Data System (ADS)

    Ahern, T.; Benson, R.; Trabant, C.

    2009-04-01

    The Incorporated Research Institutions for Seismology (IRIS) is funded by the National Science Foundation (NSF) to operate the facilities to generate, archive, and distribute seismological data to research communities in the United States and internationally. The IRIS Data Management System (DMS) is responsible for the ingestion, archiving, curation and distribution of these data. The IRIS Data Management Center (DMC) manages data from more than 100 permanent seismic networks, hundreds of temporary seismic deployments as well as data from other geophysical observing networks such as magnetotelluric sensors, ocean bottom sensors, superconducting gravimeters, strainmeters, surface meteorological measurements, and in-situ atmospheric pressure measurements. The IRIS DMC has data from more than 20 different types of sensors. The IRIS DMC manages approximately 100 terabytes of primary observational data. These data are archived in multiple distributed storage systems that insure data availability independent of any single catastrophic failure. Storage systems include both RAID systems of greater than 100 terabytes as well as robotic tape robots of petabyte capacity. IRIS performs routine transcription of the data to new media and storage systems to insure the long-term viability of the scientific data. IRIS adheres to the OAIS Data Preservation Model in most cases. The IRIS data model requires the availability of metadata describing the characteristics and geographic location of sensors before data can be fully archived. IRIS works with the International Federation of Digital Seismographic Networks (FDSN) in the definition and evolution of the metadata. The metadata insures that the data remain useful to both current and future generations of earth scientists. Curation of the metadata and time series is one of the most important activities at the IRIS DMC. Data analysts and an automated quality assurance system monitor the quality of the incoming data. This insures data

  3. Lake oxygen isotopes as recorders of North American Rocky Mountain hydroclimate: Holocene patterns and variability at multi-decadal to millennial time scales

    USGS Publications Warehouse

    Anderson, Lesleigh; Max Berkelhammer,; Barron, John A.; Steinman, Byron A.; Finney, Bruce P.; Abbott, Mark B.

    2016-01-01

    Lake sediment oxygen isotope records (calcium carbonate-δ18O) in the western North American Cordillera developed during the past decade provide substantial evidence of Pacific ocean–atmosphere forcing of hydroclimatic variability during the Holocene. Here we present an overview of 18 lake sediment δ18O records along with a new compilation of lake water δ18O and δ2H that are used to characterize lake sediment sensitivity to precipitation-δ18O in contrast to fractionation by evaporation. Of the 18 records, 14 have substantial sensitivity to evaporation. Two records reflect precipitation-δ18O since the middle Holocene, Jellybean and Bison Lakes, and are geographically positioned in the northern and southern regions of the study area. Their comparative analysis indicates a sequence of time-varying north–south precipitation-δ18O patterns that is evidence for a highly non-stationary influence by Pacific ocean–atmosphere processes on the hydroclimate of western North America. These observations are discussed within the context of previous research on North Pacific precipitation-δ18O based on empirical and modeling methods. The Jellybean and Bison Lake records indicate that a prominent precipitation-δ18O dipole (enriched-north and depleted-south) was sustained between ~ 3.5 and 1.5 ka, which contrasts with earlier Holocene patterns, and appears to indicate the onset of a dominant tropical control on North Pacific ocean–atmosphere dynamics. This remains the state of the system today. Higher frequency reversals of the north–south precipitation-δ18O dipole between ~ 2.5 and 1.5 ka, and during the Medieval Climate Anomaly and the Little Ice Age, also suggest more varieties of Pacific ocean–atmosphere modes than a single Pacific Decadal Oscillation (PDO) type analogue. Results indicate that further investigation of precipitation-δ18O patterns on short (observational) and long (Holocene) time scales is needed to improve our understanding of the

  4. Lake oxygen isotopes as recorders of North American Rocky Mountain hydroclimate: Holocene patterns and variability at multi-decadal to millennial time scales

    NASA Astrophysics Data System (ADS)

    Anderson, Lesleigh; Berkelhammer, Max; Barron, John A.; Steinman, Byron A.; Finney, Bruce P.; Abbott, Mark B.

    2016-02-01

    Lake sediment oxygen isotope records (calcium carbonate-δ18O) in the western North American Cordillera developed during the past decade provide substantial evidence of Pacific ocean-atmosphere forcing of hydroclimatic variability during the Holocene. Here we present an overview of 18 lake sediment δ18O records along with a new compilation of lake water δ18O and δ2H that are used to characterize lake sediment sensitivity to precipitation-δ18O in contrast to fractionation by evaporation. Of the 18 records, 14 have substantial sensitivity to evaporation. Two records reflect precipitation-δ18O since the middle Holocene, Jellybean and Bison Lakes, and are geographically positioned in the northern and southern regions of the study area. Their comparative analysis indicates a sequence of time-varying north-south precipitation-δ18O patterns that is evidence for a highly non-stationary influence by Pacific ocean-atmosphere processes on the hydroclimate of western North America. These observations are discussed within the context of previous research on North Pacific precipitation-δ18O based on empirical and modeling methods. The Jellybean and Bison Lake records indicate that a prominent precipitation-δ18O dipole (enriched-north and depleted-south) was sustained between ~ 3.5 and 1.5 ka, which contrasts with earlier Holocene patterns, and appears to indicate the onset of a dominant tropical control on North Pacific ocean-atmosphere dynamics. This remains the state of the system today. Higher frequency reversals of the north-south precipitation-δ18O dipole between ~ 2.5 and 1.5 ka, and during the Medieval Climate Anomaly and the Little Ice Age, also suggest more varieties of Pacific ocean-atmosphere modes than a single Pacific Decadal Oscillation (PDO) type analogue. Results indicate that further investigation of precipitation-δ18O patterns on short (observational) and long (Holocene) time scales is needed to improve our understanding of the processes that drive

  5. Links between atmosphere, ocean, and cryosphere from two decades of microseism observations on the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Anthony, Robert E.; Aster, Richard C.; McGrath, Daniel

    2017-01-01

    The lack of landmasses, climatological low pressure, and strong circumpolar westerly winds between the latitudes of 50°S to 65°S produce exceptional storm-driven wave conditions in the Southern Ocean. This combination makes the Antarctic Peninsula one of Earth's most notable regions of high-amplitude wave activity and thus, ocean-swell-driven microseism noise in both the primary (direct wave-coastal region interactions) and secondary (direct ocean floor forcing due to interacting wave trains) period bands. Microseism observations are examined across 23 years (1993-2015) from Palmer Station (PMSA), on the west coast of the Antarctic Peninsula, and from East Falkland Island (EFI). These records provide a spatially integrative measure of both Southern Ocean wave amplitudes and the interactions between ocean waves and the solid Earth in the presence of sea ice, which can reduce wave coupling with the continental shelf. We utilize a spatiotemporal correlation-based approach to illuminate how the distribution of sea ice influences seasonal microseism power. We characterize primary and secondary microseism power due to variations in sea ice and find that primary microseism energy is both more sensitive to sea ice and more capable of propagating across ocean basins than secondary microseism energy. During positive phases of the Southern Annular Mode, sea ice is reduced in the Bellingshausen Sea and overall storm activity in the Drake Passage increases, thus strongly increasing microseism power levels.

  6. MISR Decadal Observations of Mineral Dust: Property Characterization and Climate Applications

    NASA Technical Reports Server (NTRS)

    Kalashnikova, Olga V.; Garay, Michael J.; Sokolik, Irina; Kahn, Ralph A.; Lyapustin, A.; Diner, David J.; Lee, Jae N.; Torres, Omar; Leptoukh, Gregory G.; Sabbah, Ismail

    2012-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) provides a unique, independent source of data for studying dust emission and transport. MISR's multiple view angles allow the retrieval of aerosol properties over bright surfaces, and such retrievals have been shown to be sensitive to the non-sphericity of dust aerosols over both land and water. MISR stereographic views of thick aerosol plumes allow height and instantaneous wind derivations at spatial resolutions of better than 1.1 km horizontally and 200m vertically. We will discuss the radiometric and stereo-retrieval capabilities of MISR specifically for dust, and demonstrate the use of MISR data in conjunction with other available satellite observations for dust property characterization and climate studies.First, we will discuss MISR non-spherical (dust) fraction product over the global oceans. We will show that over the Atlantic Ocean, changes in the MISR-derived non-spherical AOD fraction illustrate the evolution of dust during transport. Next, we will present a MISR satellite perspective on dust climatology in major dust source regions with a particular emphasis on the West Africa and Middle East and discuss MISR's unique strengths as well as current product biases. Finally, we will discuss MISR dust plume product and climatological applications.

  7. Forest Dragon-3: Decadal Trends of Northeastern Forests in China from Earth Observation Synergy

    NASA Astrophysics Data System (ADS)

    Li, Jiancheng; Sneeuw, Nico; Jiang, Weiping; Cai, Jianqing; Chu, Yonghai; Jin, Taoyong

    2016-08-01

    The inland lake water level variations could reveal and reflect the climatic processes, such as the precipitation and evaporation, in the upper and lower reaches of the lake watershed. This dynamic hydrologic variation is an important part of the global change monitoring. The satellite radar altimetry provides an efficient space observation technology for long-term and continual monitoring of the water levels of inland lakes. It has also improved our understanding of hydrological changes, especially for the lakes located in the remote areas. In this study, several typical lakes (Yangtze River, Tibetan Plateau) are selected to investigate the water level change using T/P, JASON1/2,ENVISAT, SARAL and CRYOSAT mission data. The results show that the lake water level changes in Yangtze River directly reflect the water levels of the Yangtze River, and contribute to the floods and their associated disasters that usually occur in its middle and lower reaches. Since artificial activity has limit contribution, the lake water levels over Tibetan Plateau should reflect primarily the climate change.

  8. Variability of water mass properties in the last two decades in the South Adriatic Sea with emphasis on the period 2006-2009

    NASA Astrophysics Data System (ADS)

    Cardin, Vanessa; Bensi, Manuel; Pacciaroni, Massimo

    2011-06-01

    Spatially averaged temperature and salinity profiles from individual cruises between 1990 and 2009 were analysed to outline the temporal evolution of water mass properties in the deep convection site in the South Adriatic Pit (SAP). The long-term variability in thermohaline conditions has been explained and related to a close feedback mechanism between the Ionian and the Adriatic Sea. Prominent influences of the Eastern Mediterranean Transient are manifested in changes in the vertical temperature and salinity patterns in the South Adriatic, and the whole studied period was divided into three stages according to the main thermohaline characteristics: 1990-1995, 1995-2004 and the last period from 2005 onwards. Particular attention was given to data collected during 2006-2009, which permitted us to situate the actual thermohaline properties in the context of the decadal variability. This last period was characterised by a very low production of dense water in the northern basin during 2007, while from winter 2008 high production of North Adriatic Deep Water (NAdDW) and Adriatic Deep Water (AdDW) in the northern and southern basins, respectively, was observed. Finally, we used the Optimum Multiparameter Analysis (OMP) to identify the percentages of the different water masses contained in the SAP, and this highlighted some differences between two recent periods studied (2007 and 2008) and the production of dense waters.

  9. Systematic Variations of Macrospicule Properties Observed by SDO/AIA over Half a Decade

    NASA Astrophysics Data System (ADS)

    Kiss, T. S.; Gyenge, N.; Erdélyi, R.

    2017-01-01

    Macrospicules (MSs) are localized small-scale jet-like phenomena in the solar atmosphere, which have the potential to transport a considerable amount of momentum and energy from the lower solar atmospheric regions to the transition region and the low corona. A detailed statistical analysis of their temporal behavior and spatial properties is carried out in this work. Using state-of-the-art spatial and temporal resolution observations, yielded by the Atmospheric Imaging Assembly of Solar Dynamics Observatory, we constructed a database covering a 5.5 year long period, containing 301 macrospicules that occurred between 2010 June and 2015 December, detected at 30.4 nm wavelength. Here, we report the long-term variation of the height, length, average speed, and width of MS in coronal holes and Quiet Sun areas both in the northern and southern hemisphere of the Sun. This new database helps to refine our knowledge about the physical properties of MSs. Cross-correlation of these properties shows a relatively strong correlation, but not always a dominant one. However, a more detailed analysis indicates a wave-like signature in the behavior of MS properties in time. The periods of these long-term oscillatory behaviors are just under two years. Also, in terms of solar north/south hemispheres, a strong asymmetry was found in the spatial distribution of MS properties, which may be accounted for by the solar dynamo. This latter feature may then indicate a strong and rather intrinsic link between global internal and local atmospheric phenomena in the Sun.

  10. A DECADE OF SOLAR TYPE III RADIO BURSTS OBSERVED BY THE NANCAY RADIOHELIOGRAPH 1998-2008

    SciTech Connect

    Saint-Hilaire, P.; Vilmer, N.; Kerdraon, A.

    2013-01-01

    We present a statistical survey of almost 10,000 radio type III bursts observed by the Nancay Radioheliograph from 1998 to 2008, covering nearly a full solar cycle. In particular, sources sizes, positions, and fluxes were examined. We find an east-west asymmetry in source positions that could be attributed to a 6 Degree-Sign {+-} 1 Degree-Sign eastward tilt of the magnetic field, that source FWHM sizes s roughly follow a solar-cycle-averaged distribution (dN/ds) Almost-Equal-To 14 {nu}{sup -3.3} s {sup -4} arcmin{sup -1} day{sup -1}, and that source fluxes closely follow a solar-cycle-averaged (dN/ds {sub {nu}}) Almost-Equal-To 0.34 {nu}{sup -2.9} S {sup -1.7} {sub {nu}} sfu{sup -1} day{sup -1} distribution (when {nu} is in GHz, s in arcminutes, and S {sub {nu}} in sfu). Fitting a barometric density profile yields a temperature of 0.6 MK, while a solar wind-like ({proportional_to}h {sup -2}) density profile yields a density of 1.2 Multiplication-Sign 10{sup 6} cm{sup -3} at an altitude of 1 R{sub S} , assuming harmonic emission. Finally, we found that the solar-cycle-averaged radiated type III energy could be similar in magnitude to that radiated by nanoflares via non-thermal bremsstrahlung processes, and we hint at the possibility that escaping electron beams might carry as much energy away from the corona as is introduced into it by accelerated nanoflare electrons.

  11. Anne S. Young: Professor and Variable Star Observer Extraordinaire

    NASA Astrophysics Data System (ADS)

    Bracher, K.

    2012-06-01

    One of the original eight members of the AAVSO, but not well known today, was Professor Anne Sewell Young of Mount Holyoke College. Miss Young taught there for thirty-seven years, and trained many women astronomers during the first third of the 20th century. This paper will attempt to present her life as an inspiring teacher, as well as a contributor of more than 6,500 variable star observations to the AAVSO.

  12. Observational Evidence for a Decade-long climate optimum near the Hesperian/Amazonian Transition

    NASA Astrophysics Data System (ADS)

    Parsons, R.; Moore, J. M.; Howard, A. D.

    2012-12-01

    Hesperian to Amazonian-aged valleys (HAVs) are predominantly found in the southern equatorial and mid-latitudes of Mars and form parallel to dendritic networks. These features record a significant warming of the regional/global climate which may have been associated with outflow channel formation and/or a period of alluvial fan deposition in Margaritifer Terra [1]. HAVs are distinct from older valley networks in both their age and morphology and they provide a window into the past climate conditions and potential water sources which formed them. Using quantitative geomorphic analysis we calculate the expected range of timescales, water volumes, precipitation rates and atmospheric conditions which contributed to HAV formation. In Newton crater (40oS, -159oE) we measured valley widths, depths, slopes and alluvial fan volumes. These observations, when combined with a set of terrestrial sediment transport prediction functions [2,3,4,5], allow us to calculate an expected duration of fluvial activity ranging from 0.1 to 10 years for water-filled channel depths ranging between 20 and 130 cm, and median sediment grain size ranging from 1 mm to 10 cm. The water volume required to form a single HAV in Newton crater ranges between 1.8 and 5.7~km3 based on the Darcy-Weisbach equation [6] in combination with the aforementioned range in channel depths, grain sizes and formation timescales. These results imply water runoff rates of between 1 to 10~cm/day over a typical, 300~km2, drainage area. Such a high runoff rate and short formation time suggest a brief, dramatic regional to global climate excursion. The source of water which formed these features remains unclear, but it must have been released at the aforementioned rates, and was widely distributed within each drainage catchment, and regionally over Newton crater and the southern highlands. HAV formation was likely a two-step process involving, first, the deposition of a 10s of meters thick regional snowpack along

  13. Coral Luminescence Identifies the Pacific Decadal Oscillation as a Primary Driver of River Runoff Variability Impacting the Southern Great Barrier Reef

    PubMed Central

    Rodriguez-Ramirez, Alberto; Grove, Craig A.; Zinke, Jens; Pandolfi, John M.; Zhao, Jian-xin

    2014-01-01

    The Pacific Decadal Oscillation (PDO) is a large-scale climatic phenomenon modulating ocean-atmosphere variability on decadal time scales. While precipitation and river flow variability in the Great Barrier Reef (GBR) catchments are sensitive to PDO phases, the extent to which the PDO influences coral reefs is poorly understood. Here, six Porites coral cores were used to produce a composite record of coral luminescence variability (runoff proxy) and identify drivers of terrestrial influence on the Keppel reefs, southern GBR. We found that coral skeletal luminescence effectively captured seasonal, inter-annual and decadal variability of river discharge and rainfall from the Fitzroy River catchment. Most importantly, although the influence of El Niño-Southern Oscillation (ENSO) events was evident in the luminescence records, the variability in the coral luminescence composite record was significantly explained by the PDO. Negative luminescence anomalies (reduced runoff) were associated with El Niño years during positive PDO phases while positive luminescence anomalies (increased runoff) coincided with strong/moderate La Niña years during negative PDO phases. This study provides clear evidence that not only ENSO but also the PDO have significantly affected runoff regimes at the Keppel reefs for at least a century, and suggests that upcoming hydrological disturbances and ecological responses in the southern GBR region will be mediated by the future evolution of these sources of climate variability. PMID:24416214

  14. Coral luminescence identifies the Pacific Decadal Oscillation as a primary driver of river runoff variability impacting the southern Great Barrier Reef.

    PubMed

    Rodriguez-Ramirez, Alberto; Grove, Craig A; Zinke, Jens; Pandolfi, John M; Zhao, Jian-xin

    2014-01-01

    The Pacific Decadal Oscillation (PDO) is a large-scale climatic phenomenon modulating ocean-atmosphere variability on decadal time scales. While precipitation and river flow variability in the Great Barrier Reef (GBR) catchments are sensitive to PDO phases, the extent to which the PDO influences coral reefs is poorly understood. Here, six Porites coral cores were used to produce a composite record of coral luminescence variability (runoff proxy) and identify drivers of terrestrial influence on the Keppel reefs, southern GBR. We found that coral skeletal luminescence effectively captured seasonal, inter-annual and decadal variability of river discharge and rainfall from the Fitzroy River catchment. Most importantly, although the influence of El Niño-Southern Oscillation (ENSO) events was evident in the luminescence records, the variability in the coral luminescence composite record was significantly explained by the PDO. Negative luminescence anomalies (reduced runoff) were associated with El Niño years during positive PDO phases while positive luminescence anomalies (increased runoff) coincided with strong/moderate La Niña years during negative PDO phases. This study provides clear evidence that not only ENSO but also the PDO have significantly affected runoff regimes at the Keppel reefs for at least a century, and suggests that upcoming hydrological disturbances and ecological responses in the southern GBR region will be mediated by the future evolution of these sources of climate variability.

  15. Long-term Solar Irradiance Variability: 1984-1989 Observations

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III

    1990-01-01

    Long-term variability in the total solar irradiance has been observed in the Earth Radiation Budget Experiment (ERBE) solar monitor measurements. The monitors have been used to measure the irradiance from the Earth Radiation Budget Satellite (ERBS) and the National Oceanic and Atmospheric Administration NOAA-9 and NOAA-10 spacecraft platforms since October 25, 1984, January 23, 1985, and October 22, 1986, respectively. Before September 1986, the ERBS irradiance values were found to be decreasing -0.03 percent per year. This period was marked by decreasing solar magnetic activity. Between September 1986 and mid-1989, the irradiance values increased approximately 0.1 percent. The latter period was marked by increasing solar activity which was associated with the initiations of the sunspot cycle number 22 and of a new 22-year Hale solar magnetic cycle. Therefore, long-term solar-irradiance variability appears to be correlated directly with solar activity. The maximum smoothed sunspot number occurred during September 1989, according to the Sunspot Index Data Center. Therefore, the recent irradiance increasing trend should disappear during early 1990 and change into a decreasing trend if the observed irradiance variability is correlated more so with the 11-year sunspot cycle than the 22-year Hale cycle. The ERBE irradiance values are presented and compared with sunspot activity for the 1984 to 1989 period. The ERBE values are compared with those available from the Nimbus-7 and Solar Maximum Mission spacecraft experiments.

  16. Sea surface temperature and salinity variability in the Levantine Basin during the last decade, 1996 to 2006

    NASA Astrophysics Data System (ADS)

    Samuel-Rhoads, Y.; Iona, S.; Zodiatis, G.; Hayes, D.; Gertman, I.; Georgiou, G.

    2009-04-01

    remote sensing data are thus a very good indicator of environmental conditions. We also analyse in-situ sea surface salinity (SSS) data collected over the same period of time to determine any similarities in the patterns of variability with SSTs. The pattern of SST variability is shared by the patterns of SSS. Therefore, it can be expected that the Levantine Basin has also undergone salinity increases during the last 11 years. Finally, we investigate the variability in regional wind speeds and latent heat fluxes as possible driving mechanisms of the changes observed in SST and SSS. It will be valuable to investigate future trends in SSTs to determine whether the observed patterns of SSTs represent a continued pattern of persistent warming or a new direction for an ever-changing Levantine Basin.

  17. Decadal-scale sea level rise acceleration along the Florida Atlantic coast and its relations to sea level variability along the Florida Current

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Thompson, P. R.; Mitchum, G. T.; Park, J.

    2015-12-01

    The US Atlantic coast is one of the most vulnerable areas to sea level rise (SLR) due to its low elevation, large population concentrations, and economic importance. Further vulnerability arises from accelerating rates of SLR, which began in the early 2000's and caused a significant increase in flooding frequency in several coastal communities. Several studies have suggested that the accelerating SLR rates are due to the slowing down of the Atlantic Meridional Overturning Circulation, in particular, a weakening of the Gulf Stream (GS). However, there are no direct observations that link the GS conditions and high sea levels along the coast. In this study we use satellite altimetry, tide gauge, and Florida Current (FC) cable data to explore possible relations between the recent SLR rate increase along the Florida Atlantic coast and various dynamical processes in the GS/FC system. Preliminary calculations indicate a good agreement between coastal sea level and nearshore altimetry series (R = 0.76-0.8) suggesting that SSH gradients from altimetry may be useful for assessing the dynamics associated with the coastal sea level change. Here we focus on spatio-temporal SSH changes along the two satellite passes located closest to the Florida Atlantic coast. Our results indicate an intriguing transition in SSH behavior around 2004-5. Prior to 2004, anomalous low coastal SSH events (strong FC) occurred every 3-5 years in correlation with warm ENSO events. After 2004, the strong relationship between ENSO and the gradient across the FC vanishes, while the mean sea level across the current increases. The observed SSH anomaly transition around 2004-5 correlates well with the initiation of accelerated rates of coastal SLR, suggesting that the decadal scale SLR acceleration has occurred during weak FC conditions. However, the forcing of this transition and the role of mean sea level variability, which is of comparable magnitude to variability in the gradient, remain unexplained.

  18. Existence and inter-decadal changes of the Antarctic Circumpolar Wave during the last 142 years and its relationship to large scale modes of variability

    NASA Astrophysics Data System (ADS)

    Cerrone, Dario; Fusco, Giannetta; Cotroneo, Yuri; Simmonds, Ian; Budillon, Giorgio

    2016-04-01

    The Southern Ocean is the region of the world ocean bordering on Antarctica over which important exchanges between the atmosphere, the ocean and the sea ice take place. Here, the strong and nearly unhindered eastward flow of the Antarctic Circumpolar Current (ACC) plays an important control on mean global climate as it transmits climate anomalies around the globe. Features of interannual variability have been often observed to propagate eastward around the Southern Ocean with the circumpolar flow in form of a system of coupled anomalies, known as the Antarctic Circumpolar Wave (ACW). In the present study, using a 142-year series of a composite dataset (850hPa geopotential height, sea level pressure, sea surface temperature, surface meridional wind, surface air temperature) spanning from 1871-2012, the presence of ACWs was investigated. Results show the presence of the ACW before the mid-1950s and interdecadal changes in its variability. Modifications in strength and speed of circumpolar wave have also been observed in connection with large-scale climate changes. CEOF analyses on the same period confirmed that the ACW becomes apparent when there is a constructive combination between the Pacific-South America pattern and the subantarctic zonal wavenumber-3 (ZW3). The analyses also quantify the role played by El-Niño Southern Oscillation (ENSO) teleconnections for the appearance of the ACW. The composite dataset and various climate indices have been also used to diagnose interactions among the Southern Annular Mode (SAM), ENSO and ZW3 circulation patterns on interannual and sub-decadal scales. Results show that SAM and ENSO patterns interact with each other modulating ACW anomalies in the western and central south Pacific Ocean on interannual scale.

  19. Atmospheric CO2 Variability Observed From ASCENDS Flight Campaigns

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Browell, Edward; Campbell, Joel; Choi, Yonghoon; Dobler, Jeremy; Fan, Tai-Fang; Harrison, F. Wallace; Kooi, Susan; Liu, Zhaoyan; Meadows, Byron; Nehrir, Amin; Obland, Michael; Plant, James; Yang, Melissa

    2015-01-01

    Significant atmospheric CO2 variations on various spatiotemporal scales were observed during ASCENDS flight campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200x300 sq km over Iowa during a summer 2014 flight. Even over extended forests, about 2-ppm CO2 column variability was measured within about 500-km distance. For winter times, especially over snow covered ground, relatively less horizontal CO2 variability was observed, likely owing to minimal interactions between the atmosphere and land surface. Inter-annual variations of CO2 drawdown over cornfields in the Mid-West were found to be larger than 5 ppm due to slight differences in the corn growing phase and meteorological conditions even in the same time period of a year. Furthermore, considerable differences in atmospheric CO2 profiles were found during winter and summer campaigns. In the winter CO2 was found to decrease from about 400 ppm in the atmospheric boundary layer (ABL) to about 392 ppm above 10 km, while in the summer CO2 increased from 386 ppm in the ABL to about 396 ppm in free troposphere. These and other CO2 observations are discussed in this presentation.

  20. Interannual and decadal variability of East Asian Winter Monsoon and ENSO detected in a 120-year coral record from the eastern coast of the Philippines

    NASA Astrophysics Data System (ADS)

    Fukushima, A.; Kawahata, H.; Suzuki, A.; Kojima, K.; Okai, T.; Ishimura, T.; Siringan, F. P.

    2010-12-01

    Coral skeletal climatology has provided increasing knowledge of tropical ocean-atmosphere interaction such as El Niño Southern Oscillation (ENSO). On the other hand, there are only few studies regarding the Asian Monsoon although it also plays an important role in the global climate system. Here we present a 120-year Sr/Ca and δ18O of the coral (δ18Ocoral) record (1883-2002) from the eastern coast of the Philippines. Spectral analyses of both time series showed significant quasi-biennial periodicity, which indicated the Tropospheric Biennial Oscillation (TBO) related to the Monsoon system. The δ18Ocoral time series also identified interannual (3.8 and 8.2 years) and decadal (22 years) periodicity. The former indicated ENSO-related frequency. Our reconstruction revealed that winter sea surface temperature (SST) is significantly correlated with East Asian Winter Monsoon Index (WMI) especially within climatic regimes. Then, we showed that the intensity of EAWM had changed on the decadal scale using possible regime shift detection method based on the sequential t-test. This transition occurred around regime shift years. It is suggested that winter SST variability in this region reflects the change of the wind pattern related to the decadal variability often found in the mid-latitudes. Our results suggest the potential of Philippines’ coral for monitoring the large-scale climate variability on the decadal scale.

  1. Causes of seasonal and decadal variability in a tropical seagrass seascape (Reunion Island, south western Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Cuvillier, A.; Villeneuve, N.; Cordier, E.; Kolasinski, J.; Maurel, L.; Farnier, N.; Frouin, P.

    2017-01-01

    While seagrass meadows are considered as vulnerable or declining habitats worldwide, facing many natural and anthropogenic pressures, the opposite trend is suggested by this study in Reunion Island (Indian Ocean). Located at the benthos-pelagos interface, seagrass beds are critical coastal habitats and can be used as relevant health indicators for larger marine ecosystems or land-sea continuum. In order to determine which are the factors driving seagrass ecosystems health it is essential to quantify their seascape pattern fluctuations. The long-term (over 65 years) and seasonal scale variability was assessed in the monospecific Syringodium isoetifolium seagrass bed seascape at the Ermitage/La Saline fringing reef using aerial photographs and field measurements. Both long-term and short-term scales have been informative and both types of monitoring appear as useful tools for seagrass ecosystem management. Strong variations in seagrass coverage were observed in the 16 rasters analyzed from years 1950-2015, the magnitude order was however similar to the one observed at the recent seasonal scale (up to 2016 m2 gained or 4863 m2 lost over few months at site scale). Seascape pattern analysis revealed that physical factors (swell events, cyclones) had a major impact on the ocean-exposed site with varying impact degree depending on frequency, duration and intensity. Biotic (herbivory) or anthropogenic (grubbing, nutrient inputs) factors were also identified to influence the structural shape, fragmentation, or disappearance of seagrass beds. Further work is required to better quantify the effect of each single factor, a difficult task due to their combined expression. At the reef scale, these results showed a positive correlation between seagrass beds and inner reef flat coverage suggesting that common factors drive these highly resilient ecosystems.

  2. Satellite Observed Variability in Antarctic and Arctic Surface Temperatures and Their Correlation to Open Water Areas

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Zukor, Dorothy (Technical Monitor)

    2000-01-01

    Recent studies using meterological station data have indicated that global surface air temperature has been increasing at a rate of 0.05 K/decade. Using the same set of data but for stations in the Antarctic and Arctic regions (>50 N) only, the increases in temperature were 0.08, and 0.22 K/decade, when record lengths of 100 and 50 years, respectively, were used. To gain insights into the increasing rate of warming, satellite infrared and passive microwave observations over the Arctic region during the last 20 years were processed and analyzed. The results show that during this period, the ice extent in the Antarctic has been increasing at the rate of 1.2% per decade while the surface temperature has been decreasing at about 0.08 K per decade. Conversely, in the Northern Hemisphere, the ice extent has been decreasing at a rate of 2.8% per decade, while the surface temperatures have been increasing at the rate of 0.38 K per decade. In the Antarctic, it is surprising that there is a short term trend of cooling during a global period of warming. Very large anomalies in open water areas in the Arctic were observed especially in the western region, that includes the Beaufort Sea, where the observed open water area was about 1x10(exp 6) sq km, about twice the average for the region, during the summer of 1998. In the eastern region, that includes the Laptev Sea, the area of open water was also abnormally large in the summer of 1995. Note that globally, the warmest and second warmest years in this century, were 1998 and 1995, respectively. The data, however, show large spatial variability with the open water area distribution showing a cyclic periodicity of about ten years, which is akin to the North Atlantic and Arctic Oscillations. This was observed in both western and eastern regions but with the phase of one lagging the other by about two years. This makes it difficult to interpret what the trends really mean. But although the record length of satellite data is still

  3. Subtropical Gyre Variability Observed by Ocean Color Satellites

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Signorini, Sergio R.; Christian, James R.

    2002-01-01

    The subtropical gyres of the world are extensive, coherent regions that occupy about 40% of the surface of the earth. Once thought to be homogeneous and static habitats, there is increasing evidence that mid-latitude gyres exhibit substantial physical and biological variability on a variety of time scales. While biological productivity within these oligotrophic regions may be relatively small, their immense size makes their total contribution significant. Global distributions of dynamic height derived from satellite altimeter data, and chlorophyll concentration derived from satellite ocean color data, show that the dynamic center of the gyres, the region of maximum dynamic height where the thermocline is deepest, does not coincide with the region of minimum chlorophyll concentration. The physical and biological processes by which this distribution of ocean properties is maintained, and the spatial and temporal scales of variability associated with these processes, are analyzed using global surface chlorophyll-a concentrations, sea surface height, sea surface temperature and surface winds from operational satellite and meteorological sources, and hydrographic data from climatologies and individual surveys. Seasonal and interannual variability in the areal extent of the subtropical gyres are examined using 8 months (November 1996 - June 1997) of OCTS and nearly 5 years (September 1997 - June 02) of SeaWiFS ocean color data and are interpreted in the context of climate variability and measured changes in other ocean properties (i.e., wind forcing, surface currents, Ekman pumping, and vertical mixing). The North Pacific and North Atlantic gyres are observed to be shrinking over this period, while the South Pacific, South Atlantic, and South Indian Ocean gyres appear to be expanding.

  4. Hunting for eclipses: high-speed observations of cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Hardy, L. K.; McAllister, M. J.; Dhillon, V. S.; Littlefair, S. P.; Bours, M. C. P.; Breedt, E.; Butterley, T.; Chakpor, A.; Irawati, P.; Kerry, P.; Marsh, T. R.; Parsons, S. G.; Savoury, C. D. J.; Wilson, R. W.; Woudt, P. A.

    2017-03-01

    We present new time-resolved photometry of 74 cataclysmic variables (CVs), 47 of which are eclipsing. Thirteen of these eclipsing systems are newly discovered. For all 47 eclipsing systems, we show high cadence (1-20 s) light curves obtained with the high-speed cameras ULTRACAM and ULTRASPEC. We provide new or refined ephemerides, and supply mid-eclipse times for all observed eclipses. We assess the potential for light-curve modelling of all 47 eclipsing systems to determine their system parameters, finding 20 systems that appear to be suitable for future study. Systems of particular interest include V713 Cep, in which we observed a temporary switching-off of accretion; and ASASSN-14mv and CSS111019:233313-155744, which both have orbital periods well below the CV period minimum. The short orbital periods and light-curve shapes suggest that they may be double degenerate (AM CVn) systems or CVs with evolved donor stars.

  5. Interannual and (multi-)decadal variability in the sedimentary BIT index of Lake Challa, East Africa, over the past 2200 years: assessment of the precipitation proxy

    NASA Astrophysics Data System (ADS)

    Buckles, Laura K.; Verschuren, Dirk; Weijers, Johan W. H.; Cocquyt, Christine; Blaauw, Maarten; Sinninghe Damsté, Jaap S.

    2016-05-01

    The branched vs. isoprenoid tetraether (BIT) index is based on the relative abundance of branched tetraether lipids (brGDGTs) and the isoprenoidal GDGT crenarchaeol. In Lake Challa sediments the BIT index has been applied as a proxy for local monsoon precipitation on the assumption that the primary source of brGDGTs is soil washed in from the lake's catchment. Since then, microbial production within the water column has been identified as the primary source of brGDGTs in Lake Challa sediments, meaning that either an alternative mechanism links BIT index variation with rainfall or that the proxy's application must be reconsidered. We investigated GDGT concentrations and BIT index variation in Lake Challa sediments at a decadal resolution over the past 2200 years, in combination with GDGT time-series data from 45 monthly sediment-trap samples and a chronosequence of profundal surface sediments.Our 2200-year geochemical record reveals high-frequency variability in GDGT concentrations, and therefore in the BIT index, superimposed on distinct lower-frequency fluctuations at multi-decadal to century timescales. These changes in BIT index are correlated with changes in the concentration of crenarchaeol but not with those of the brGDGTs. A clue for understanding the indirect link between rainfall and crenarchaeol concentration (and thus thaumarchaeotal abundance) was provided by the observation that surface sediments collected in January 2010 show a distinct shift in GDGT composition relative to sediments collected in August 2007. This shift is associated with increased bulk flux of settling mineral particles with high Ti / Al ratios during March-April 2008, reflecting an event of unusually high detrital input to Lake Challa concurrent with intense precipitation at the onset of the principal rain season that year. Although brGDGT distributions in the settling material are initially unaffected, this soil-erosion event is succeeded by a massive dry-season diatom bloom in

  6. Atmospheric CO2 Variability Observed during ASCENDS Flight Campaigns

    NASA Astrophysics Data System (ADS)

    Lin, B.; Browell, E. V.; Campbell, J. F.; Choi, Y.; Dobler, J. T.; Fan, T. F.; Harrison, F. W.; Kooi, S. A.; Liu, Z.; Meadows, B.; Nehrir, A. R.; Obland, M. D.; Plant, J.; Yang, M. M.

    2015-12-01

    Accurate observations of atmospheric CO2 with a space-based lidar system, such as for the NASA ASCENDS mission, will improve knowledge of global CO2 distribution and variability and increase the confidence in predictions of future climate changes. To prepare for the ASCENDS mission, the NASA Langley Research Center and Exelis Inc. (now part of Harris Corp.) have been collaborating in the development and evaluation of an Intensity-Modulated Continuous-Wave (IM-CW) lidar approach for measuring atmospheric CO2 from space. Two airborne IM-CW lidars operating in the 1.57-mm CO2 absorption band have been developed and flight tested to demonstrate precise atmospheric CO2 column measurements. A total of 14 flight campaigns have been conducted with the two lidar and in-situ CO2 measurement systems. Significant atmospheric CO2 variations on various spatiotemporal scales were observed during these campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200×300 km2 over Iowa during a summer 2014 flight. Even over extended forests, about 2-ppm CO2 column variability was measured within about 500-km distance. For winter times, especially over snow covered ground, relatively less horizontal CO2 variability was observed, likely owing to minimal interactions between the atmosphere and land surface. Inter-annual variations of CO2 drawdown over cornfields in the Mid-West were found to be larger than 5 ppm due to slight differences in the corn growing phase and meteorological conditions even in the same time period of a year. Furthermore, considerable differences in atmospheric CO2 profiles were found during winter and summer campaigns. In the winter CO2 was found to decrease from about 400 ppm in the atmospheric boundary layer (ABL) to about 392 ppm above 10 km, while in the summer CO2 increased from 386 ppm in the ABL to about 396 ppm in free troposphere. These and other CO2 observations are discussed in this presentation.

  7. Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability.

    PubMed

    Litzow, Michael A; Mueter, Franz J; Hobday, Alistair J

    2014-01-01

    In areas of the North Pacific that are largely free of overfishing, climate regime shifts - abrupt changes in modes of low-frequency climate variability - are seen as the dominant drivers of decadal-scale ecological variability. We assessed the ability of leading modes of climate variability [Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), Arctic Oscillation (AO), Pacific-North American Pattern (PNA), North Pacific Index (NPI), El Niño-Southern Oscillation (ENSO)] to explain decadal-scale (1965-2008) patterns of climatic and biological variability across two North Pacific ecosystems (Gulf of Alaska and Bering Sea). Our response variables were the first principle component (PC1) of four regional climate parameters [sea surface temperature (SST), sea level pressure (SLP), freshwater input, ice cover], and PCs 1-2 of 36 biological time series [production or abundance for populations of salmon (Oncorhynchus spp.), groundfish, herring (Clupea pallasii), shrimp, and jellyfish]. We found that the climate modes alone could not explain ecological variability in the study region. Both linear models (for climate PC1) and generalized additive models (for biology PC1-2) invoking only the climate modes produced residuals with significant temporal trends, indicating that the models failed to capture coherent patterns of ecological variability. However, when the residual climate trend and a time series of commercial fishery catches were used as additional candidate variables, resulting models of biology PC1-2 satisfied assumptions of independent residuals and out-performed models constructed from the climate modes alone in terms of predictive power. As measured by effect size and Akaike weights, the residual climate trend was the most important variable for explaining biology PC1 variability, and commercial catch the most important variable for biology PC2. Patterns of climate sensitivity and exploitation history for taxa strongly associated with biology

  8. Observations of Land Surface Variability Using Passive Microwave Sensing

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.

    1999-01-01

    Understanding the global variability of land surface wetness (soil moisture), skin temperature, and related surface fluxes of heat and moisture is key to assessing the importance of the land surface in influencing climate. The feasibility of producing model estimates of these quantities is being studied as part of the International Satellite Land Surface Climatology Project (ISLSCP) Global Soil Wetness Project (GSWP). In the GSWP approach, meteorological observations and analyses are used to drive global circulation models. Satellite measurements can provide independent estimates of key land surface parameters that are needed for initializing and validating the climate models and for monitoring long-term change. Satellite observations of the land surface can also be assimilated into soil models to estimate moisture in the root zone. In our research, passive microwave satellite data recorded during 1978-1987 from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) are being used to examine spatial and temporal trends in surface soil moisture, vegetation, and temperature. These data include observations at C and X bands (6.6 and 10.7 GHz), which are not available on the current Special Sensor Microwave/Imager (SSM/I) and are precursors to data that will become available from the Advanced Microwave Scanning Radiometer (AMSR) on Advanced Earth Observing Satellite (ADEOS-II) and Earth Observing System (EOS) PM1 in the year 2000. A chart shows a time-series of SMMR-derived surface temperature, T-e and surface soil moisture M, retrieved on a 0.5 deg x 0.5 deg grid and further averaged over a 4 deg x 10 deg study region in the African Sahel. Also shown are National Center for Environmental Prediction (NCEP) model outputs of surface temperature, T-sfc, and soil wetness, Soil-w. The variables have been scaled to have similar dynamic ranges on the plots. The NCEP data from the NCEP Reanalysis Project are monthly averages on a 2.5 deg x 2.5 deg grid averaged over

  9. Analysis of Kepler Observations of ASAS Variable Stars

    NASA Astrophysics Data System (ADS)

    Pezzato, Jacklyn M.; Mighell, Kenneth J.

    2016-01-01

    We present preliminary results of a study that compares the performance of period-finding algorithms when using data gathered by ground-based telescopes to their performance when using data gathered by space-based telescopes. In order to make this comparison, the periods reported by the All Sky Automated Survey (ASAS) Catalog for Variable Stars in the Kepler Field of View, a study that identified targets for the Kepler Mission before its launch, were compared to periods determined by this study. Only targets that were identified in the ASAS Catalog and later observed by the Kepler Mission were selected for analysis, for a total of 599 targets. The observations gathered by the Kepler Mission were analyzed using three period-finding algorithms: the Lafler-Kinman algorithm, the Analysis of Variance algorithm, and the Conditional Entropy algorithm. These three algorithms analyzed the light curves of each target, and one of the periods produced was selected to be compared to the period found by the ASAS Catalog. The analysis of the two data sets highlights issues with the performance of period finding algorithms with ground-based data, leading to crude period estimates for all targets with periods longer than 10 days. Since the Large Synoptic Scanning Telescope (LSST), due for first light in 2020, will have a similar observation schedule to that of the ASAS survey, similar issues can be expected with the analysis of LSST data for some types of long period variables, like semiregulars), that have periods longer than 10 days. Pezzato was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  10. Climate and polar motion during the GRACE observing period: 2002-2015: Implications for decadal scale oscillations during the 20th Century

    NASA Astrophysics Data System (ADS)

    Ivins, Erik; Adhikari, Surendra; Larour, Eric

    2016-04-01

    The motion of the Earth's pole in space has been observed with great accuracy for the last 115 years. The angular variations of the pole position away from its mean are a well explained at annual and 434-day periods. Variations at annual periods are caused by changes in the mass and angular momentum forced by all Earth surface changes that have near seasonality. The 434-day period is explained as a resonance between the cumulative driving forces having periods near the Chandler wobble free eigenmode of the Earth and is well understood theoretically. The Earth also has a longer-term drift that is explained primarily as a response to the ice age changes in the moments of inertial of the Earth. However, there has been a long-standing search for the origins of pole variations that have a period near 10 years. Using GRACE space gravimetry we show that ice mass losses from Greenland and Antarctica, and when combined with changes in continental hydrology, explain almost all the main features of interannual time scale polar wander. The discovery has broad interdisciplinary implications, as we show that decadal scale pole variations are directly linked to global changes continental water. The energy sources for these pole position changes are, therefore, likely to be associated with decadal scale ocean and atmospheric oscillations that also drive 20th Century on-land wet-dry oscillations at decadal-scale across the globe. Variability in pole position, therefore, offers a tool for assessing past stability of our climate, and for the future, now faced with an increased intensity in the water cycle and more vulnerable to ice sheet instability.

  11. Decadal- and Centennial-Scale Variability in Sea Surface Temperature in Beppu Bay in Japan During the Last 2900 Years

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.; Kuwae, M.; Abe, M.; Ichikawa, N.

    2012-12-01

    We generated 8-year-resolution records of paleotemperatures using UK37‧ and TEX86 and discuss the decadal and centennial changes in winter and summer sea surface temperatures (SSTs) in Beppu Bay, Kyushu Island, Japan. Beppu Bay is a silled basin filled with oxygen-deficient bottom water. Because of anoxic environment, organic matter is well preserved in sediments and bioturbation is limited. Fourteen piston and gravity cores were retrieved at the center of the basin. Correlation of cores was conducted using sand and silt seams, and the age-depth model was created by wiggle-matching of forty-two AMS radiocarbon dates from bivalve mollusk shells and excess Pb-210 and Cs-137 concentrations. The sedimentation rates were 230-300 cm/ky. TEX86 and UK37‧ records show different patterns, but both have a similar multi-decadal periodicity. The temperature estimated by TEX86 at the core-top sample is lower than mean annual SST, implying that TEX86 reflects the SST weighted in winter. That by UK37‧ corresponds to the SST weighted in summer. UK37‧ shows multi-decadal and centennial-scale variation interrupted by frequent short-term cool periods. The periods corresponded to volcanic eruptions recorded in a Greenland ice core. TEX86 shows multi-decadal variation that is consistent with a proxy PDO record reconstructed from North American tree-rings. Beppu Bay sediments are a good climate archive to provide high-resolution summer and winter SST records in the northwestern Pacific region.

  12. OBSERVATIONS OF THERMAL FLARE PLASMA WITH THE EUV VARIABILITY EXPERIMENT

    SciTech Connect

    Warren, Harry P.; Doschek, George A.; Mariska, John T.

    2013-06-20

    One of the defining characteristics of a solar flare is the impulsive formation of very high temperature plasma. The properties of the thermal emission are not well understood, however, and the analysis of solar flare observations is often predicated on the assumption that the flare plasma is isothermal. The EUV Variability Experiment (EVE) on the Solar Dynamics Observatory provides spectrally resolved observations of emission lines that span a wide range of temperatures (e.g., Fe XV-Fe XXIV) and allow for thermal flare plasma to be studied in detail. In this paper we describe a method for computing the differential emission measure distribution in a flare using EVE observations and apply it to several representative events. We find that in all phases of the flare the differential emission measure distribution is broad. Comparisons of EVE spectra with calculations based on parameters derived from the Geostationary Operational Environmental Satellites soft X-ray fluxes indicate that the isothermal approximation is generally a poor representation of the thermal structure of a flare.

  13. Constraints on Variability of Brightness and Surface Magnetism on Time Scales of Decades to Centuries in the Sun and Sun-Like Stars: A Source of Potential Terrestrial Climate Variability

    NASA Technical Reports Server (NTRS)

    Baliunas, Sallie L.; Sharber, James (Technical Monitor)

    2001-01-01

    These four points summarize our work to date. (1) Conciliation of solar and stellar photometric variability. Previous research by us and colleagues suggested that the Sun might at present be showing unusually low photometric variability compared to other sun-like stars. Those early results would question the suitability of the technique of using sun-like stars as proxies for solar irradiance change on time scales of decades to centuries. However, our results indicate the contrary: the Sun's observed short-term (seasonal) and longterm (year-to-year) brightness variations closely agree with observed brightness variations in stars of similar mass and age. (2) We have demonstrated an inverse correlation between the global temperature of the terrestrial lower troposphere, inferred from the NASA Microwave Sounding Unit (MSU) radiometers, and the total area of the Sun covered by coronal holes from January 1979 to present (up to May 2000). Variable fluxes of either solar charged particles or cosmic rays, or both, may influence the terrestrial tropospheric temperature. The geographical pattern of the correlation is consistent with our interpretation of an extra-terrestrial charged particle forcing. (3) Possible climate mechanism amplifying the impact of solar ultraviolet irradiance variations. The key points of our proposed climate hypersensitivity mechanism are: (a) The Sun is more variable in the UV (ultraviolet) than in the visible. However, the increased UV irradiance is mainly absorbed in the lower stratosphere/upper troposphere rather than at the surface. (b) Absorption in the stratosphere raises the temperature moderately around the vicinity of the tropopause, and tends to stabilize the atmosphere against vertical convective/diffusive transport, thus decreasing the flux of heat and moisture carried upward from surface. (c) The decrease in the upward convection of heat and moisture tends to raise the surface temperature because a drier upper atmosphere becomes less

  14. Building on Decades of Research on the McMurdo Volcanic Group, Antarctica: A Geologic Field Guide to Observation Hill

    NASA Astrophysics Data System (ADS)

    Pound, K. S.; Panter, K. S.

    2008-12-01

    Based on more than four decades of research on the rocks of the Erebus Volcanic Province of the McMurdo Volcanic Group, a geologic field guide to the Observation Hill walking tracks near McMurdo Station, Antarctica has been developed. The geologic field guide was an outcome of questions generated by: (1) Teachers participating in the Andrill Research Immersion for Science Educators (ARISE) program; (2) McMurdo Station support staff, as well as (3) Geoscientists with specialties outside volcanology and petrology. Whilst these individuals are acutely aware of the more than a century of references to Observation Hill in exploration literature, there was little in the way of easily-accessible information about the geologic history of Hut Point and Observation Hill, as well as other nearby volcanoes (e.g. Mt. Erebus, White and Black Islands) and larger scale geologic features (e.g. Transantarctic Mountains) that can be seen from the vantage point of Observation Hill. Questions also focused on smaller scale features of the landscape (e.g. patterned ground) and textures and minerals observed in volcanic rocks exposed on the trails. In order to encompass the wide-ranging background of the audience and facilitate access, the field guide will be available in three formats: (1) A downloadable MP3 file, which includes the general information and stop-by- stop information; (2) A double-sided paper brochure that provides a relatively simple, easier-to-digest guide to views and geologic features; (3) A Google Earth Layer that includes access to the MP3 files and the paper brochure, as well as additional geologic information. Links to the field guide can be found at http://www.andrill.org/education.

  15. Advancing Variable Star Astronomy: The Centennial History of the American Association of Variable Star Observers

    NASA Astrophysics Data System (ADS)

    Williams, Thomas R.; Saladyga, Michael

    2011-05-01

    Preface; Part I. Pioneers in Variable Star Astronomy Prior to 1909: 1. The emergence of variable star astronomy - a need for observations; 2. A need for observers; Part II. The Founding of the AAVSO - The William Tyler Olcott Era: 3. The amateur's amateur; 4. Amateurs in the service of science; Part III. The Leon Campbell Era: 5. Leon Campbell to the rescue; 6. Formalizing relationships; 7. The Pickering Memorial Endowment; 8. Fading of the Old Guard; 9. Growing pains and distractions; Part IV. The Service Bureau - The Margaret Mayall Era: 10. Learning about independence; 11. Eviction from Harvard College Observatory; 12. Actions and reactions; 13. In search of a home; 14. Survival on Brattle Street; 15. AAVSO achievements; 16. Breathing room on Concord Avenue; Part V. Analysis and Science: The Janet Mattei Era: 17. The growth of a director; 18. Learning the ropes the hard way; 19. Managing with renewed confidence; 20. Expanding the scientific charter; Part VI. Accelerating Observational Science - The Arne Henden Era: 21. Bridging the gap; 22. Accelerating the science - the Henden era begins; Epilogue; Appendices; Index.

  16. Reconciling observed and modeled temperature and precipitation trends over Europe by adjusting for circulation variability

    NASA Astrophysics Data System (ADS)

    Saffioti, Claudio; Fischer, Erich M.; Scherrer, Simon C.; Knutti, Reto

    2016-08-01

    Europe experienced a pronounced winter cooling of about -0.37°C/decade in the period 1989-2012, in contrast to the strong warming simulated by the Coupled Model Intercomparison Project Phase 5 multimodel average during the same period. Even more pronounced discrepancies between observed and simulated short-term trends are found at the local scale, e.g., a strong winter cooling over Switzerland and a pronounced reduction in precipitation along the coast of Norway. We show that monthly sea level pressure variability accounts for much of the short-term variations of temperature over most of the domain and of precipitation in certain regions. Removing the effect of atmospheric circulation through a regression approach reconciles the observed temperature trends over Europe and Switzerland and the precipitation trend along the coast of Norway with the corresponding multimodel mean trends.

  17. Decadal to millennial-scale variability in sea ice, primary productivity, and Pacific-Water inflow in the Chukchi/East Siberian Sea area (Arctic Ocean)

    NASA Astrophysics Data System (ADS)

    Stein, Ruediger; Fahl, Kirsten; Matthiessen, Jens; Méheust, Marie; Nam, Seung-il; Niessen, Frank; Schade, Inka; Schreck, Michael; Wassmuth, Saskia; Xiao, Xiaotong

    2014-05-01

    Sea-ice is an essential component of the global climate system and, especially, the Polar Oceans. An alarming decrease in term of sea-ice concentration, thickness and duration, has been observed in the Arctic Ocean and its marginal seas over the last 30 years. Thus, understanding the processes controlling modern sea-ice variability and reconstructing paleo-sea-ice extent and variability in polar regions have become of great interest for the international scientific community during the last years. Here, we present new proxy records determined in sediment cores from the East Siberian Sea (RV Polarstern Expedition ARK-XXIII/3 in 2008; Core PS72/350) and from the Chukchi Sea (RV Araon Expedition ARA2B in 2011; Core ARA2B-1A, -1B). These records, including organic-geochemical bulk parameters, specific biomarkers (IP25 and sterols; PIP25; for recent reviews see Stein et al., 2012; Belt and Müller, 2013), biogenic opal, mineralogical data as well as high-resolution XRF scanning data, give new insight into the short-term (decadal-, centennial- to millennial-scale) variability in sea-ice, primary productivity and Pacific-Water inflow during Holocene times. Maximum concentrations of phytoplankton biomarkers and biogenic opal were determined between 8.5 and 4 kyrs. BP, suggesting enhanced primary productivity triggered by increased inflow of nutrient-rich Pacific Water (and/or an increased nutrient input due to an ice-edge position). Short-lived peak values in productivity might be related to strong pulses of Pacific-Water input during this time period (cf., Ortiz et al., 2009). A seasonal sea-ice cover was present in the Chukchi Sea throughout the last 10 kyrs. During the last 3-4 kyrs. BP, the sea-ice cover significantly extended. References Belt, S.T. and Müller, J., 2013. The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions. Quaternary Science Review 73, 9-25. Ortiz

  18. Interannual to Decadal Variability in Climate and the Glacier Mass Balance in Washington, Western Canada, and Alaska*.

    NASA Astrophysics Data System (ADS)

    Bitz, C. M.; Battisti, D. S.

    1999-11-01

    The authors examine the net winter, summer, and annual mass balance of six glaciers along the northwest coast of North America, extending from Washington State to Alaska. The net winter (NWB) and net annual (NAB) mass balance anomalies for the maritime glaciers in the southern group, located in Washington and British Columbia, are shown to be positively correlated with local precipitation anomalies and storminess (defined as the rms of high-passed 500-mb geopotential anomalies) and weakly and negatively correlated with local temperature anomalies. The NWB and NAB of the maritime Wolverine glacier in Alaska are also positively correlated with local precipitation, but they are positively correlated with local winter temperature and negatively correlated with local storminess. Hence, anomalies in mass balance at Wolverine result mainly from the change in moisture that is being advected into the region by anomalies in the averaged wintertime circulation rather than from a change in storminess. The patterns of the wintertime 500-mb circulation and storminess anomalies associated with years of high NWB in the southern glacier group are similar to those associated with low NWB years at the Wolverine glacier, and vice versa.The decadal ENSO-like climate phenomenon discussed by Zhang et al. has a large impact on the NWB and NAB of these maritime glaciers, accounting for up to 35% of the variance in NWB. The 500-mb circulation and storminess anomalies associated with this decadal ENSO-like mode resemble the Pacific-North American pattern, as do 500-mb composites of years of extreme NWB of South Cascade glacier in Washington and of Wolverine glacier in Alaska. Hence, the decadal ENSO-like mode affects precipitation in a crucial way for the NWB of these glaciers. Specifically, the decadal ENSO-like phenomenon strongly affects the storminess over British Columbia and Washington and the moisture transported by the seasonally averaged circulation into maritime Alaska. In contrast

  19. Decadal variability of upper ocean heat content in the Pacific: Responding to the 11-year solar cycle

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Yan, Shuangxi; Qiao, Fangli

    2015-12-01

    Ocean heat content anomaly (OHCa) time series in some areas of the Pacific are significantly correlated with the total solar irradiance (TSI). Using the composite mean-difference method, we determined the mean response of OHCa in the upper-700 m of the ocean to the TSI. Among the high solar response areas, we figure out two regions, one in the tropical mid-Pacific and the other in the western Pacific, where the OHCa present decadal variations, but different phases. The variation in phase of the solar response indicates that there exists an agency for the OHCa's response to TSI.

  20. Sea Ice Variability in the Sea of Okhotsk from Passive Microwave Satellite Observations

    NASA Technical Reports Server (NTRS)

    Cavalieri, Donald J.; Zukor, Dorothy (Technical Monitor)

    2000-01-01

    The Sea of Okhotsk, located between 50 and 60 N, is bounded by the Kamchatka Peninsula, Siberia, Sakhalin Island, and the Kuril Island chain and is the largest midlatitude seasonal sea ice zone in the Northern Hemisphere. The winter sea ice cover begins to form in November and expands to cover most of the sea by March. Over the following three months, the ice retreats with only small ice-covered areas remaining by the beginning of June. The sea is ice free or nearly ice free on average for six months of the year, from June through November. The recent compilation of a consistent, long-term record of Northern Hemisphere sea ice extents based on passive microwave satellite observations from the Nimbus 7 Scanning Multichannel Microwave Radiometer and from four Defense Meteorological Satellite Program Special Sensor Microwave Imagers provides the basis for assessing long-term sea ice extent variability in the Sea of Okhotsk. Analysis of this 20-year data record (1979-1998) shows that based on yearly averages the overall extent of the Sea of Okhotsk ice cover is decreasing at the rate of -8.1+/-2.1x10(exp 3) sq km/yr (-17.2%/decade), in contrast to the rate of decrease of -33.3+/-0.7x10(exp 3) sq km/yr (-2.7%/decade) for the Northern Hemisphere as a whole. There is large regional sea ice extent variability of the Arctic ice cover. Two of the nine Arctic regions analyzed, the Bering Sea and the Gulf of St. Lawrence, show increases of 0.8+/-1.4xl0(exp 3) sq km/yr (2.7%/decade) and 1.2+/-0.5xl0(exp 3) sq km/yr (17.1%/decade), respectively. Interestingly, the Sea of Okhotsk and the Gulf of St. Lawrence show about equal percentage changes, but of opposite sign. The Sea of Okhotsk exhibits its greatest percent decrease (-24.3%/decade) during spring (April-June). The year of maximum winter sea ice extent for the Sea of Okhotsk was 1979, whereas the minimum winter sea ice extent occurred in 1984.

  1. OBSERVED VARIABILITY OF THE SOLAR Mg II h SPECTRAL LINE

    SciTech Connect

    Schmit, D.; Pontieu, B. De; Bryans, P.; McIntosh, S.; Leenaarts, J.; Carlsson, M.

    2015-10-01

    The Mg ii h and k doublet are two of the primary spectral lines observed by the Sun-pointing Interface Region Imaging Spectrograph (IRIS). These lines are tracers of the magnetic and thermal environment that spans from the photosphere to the upper chromosphere. We use a double-Gaussian model to fit the Mg ii h profile for a full-Sun mosaic data set taken on 2014 August 24. We use the ensemble of high-quality profile fits to conduct a statistical study on the variability of the line profile as it relates the magnetic structure, dynamics, and center-to-limb viewing angle. The average internetwork profile contains a deeply reversed core and is weakly asymmetric at h2. In the internetwork, we find a strong correlation between h3 wavelength and profile asymmetry as well as h1 width and h2 width. The average reversal depth of the h3 core is inversely related to the magnetic field. Plage and sunspots exhibit many profiles that do not contain a reversal. These profiles also occur infrequently in the internetwork. We see indications of magnetically aligned structures in plage and network in statistics associated with the line core, but these structures are not clear or extended in the internetwork. The center-to-limb variations are compared to predictions of semi-empirical model atmospheres. We measure a pronounced limb darkening in the line core that is not predicted by the model. The aim of this work is to provide a comprehensive measurement baseline and preliminary analysis on the observed structure and formation of the Mg ii profiles observed by IRIS.

  2. West African monsoon decadal variability and surface-related forcings: second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II)

    NASA Astrophysics Data System (ADS)

    Xue, Yongkang; De Sales, Fernando; Lau, William K.-M.; Boone, Aaron; Kim, Kyu-Myong; Mechoso, Carlos R.; Wang, Guiling; Kucharski, Fred; Schiro, Kathleen; Hosaka, Masahiro; Li, Suosuo; Druyan, Leonard M.; Sanda, Ibrah Seidou; Thiaw, Wassila; Zeng, Ning; Comer, Ruth E.; Lim, Young-Kwon; Mahanama, Sarith; Song, Guoqiong; Gu, Yu; Hagos, Samson M.; Chin, Mian; Schubert, Siegfried; Dirmeyer, Paul; Ruby Leung, L.; Kalnay, Eugenia; Kitoh, Akio; Lu, Cheng-Hsuan; Mahowald, Natalie M.; Zhang, Zhengqiu

    2016-12-01

    The second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedbacks of sea surface temperature (SST), land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales. The project's strategy is to apply prescribed observationally based anomaly forcing, i.e., "idealized but realistic" forcing, in simulations by climate models. The goal is to assess these forcings' effects in producing/amplifying seasonal and decadal climate variability in the Sahel between the 1950s and the 1980s, which is selected to characterize the great drought period of the last century. This is the first multi-model experiment specifically designed to simultaneously evaluate such relative contributions. The WAMME II models have consistently demonstrated that SST forcing is a major contributor to the twentieth century Sahel drought. Under the influence of the maximum possible SST forcing, the ensemble mean of WAMME II models can produce up to 60 % of the precipitation difference during the period. The present paper also addresses the role of SSTs in triggering and maintaining the Sahel drought. In this regard, the consensus of WAMME II models is that both Indian and Pacific Ocean SSTs greatly contributed to the drought, with the former producing an anomalous displacement of the Intertropical Convergence Zone before the WAM onset, and the latter mainly contributes to the summer WAM drought. The WAMME II models also show that the impact of LULCC forcing on the Sahel climate system is weaker than that of SST forcing, but still of first order magnitude. According to the results, under LULCC forcing the ensemble mean of WAMME II models can produces about 40 % of the precipitation difference between the 1980s and the 1950s. The role of land surface processes in responding to and amplifying the drought is also identified. The results suggest that catastrophic

  3. Long-term Variability in Pacific Decadal Oscillation Teleconnections to Climate in Alaska: From "In a Relationship" to "It's Complicated"

    NASA Astrophysics Data System (ADS)

    Heckler, S.; McAfee, S. A.

    2015-12-01

    Since the Pacific Decadal Oscillation's (PDO) identification in 1997, it has been widely used as a seasonal-forecasting and decision-making tool in Alaska. Gulf of Alaska sea surface temperatures have oscillated every few decades between warmer (positive PDO) and colder (negative PDO). In the historical record, there are two negative phases and two positive phases, but since 2000, the PDO has vacillated between warm and cold states annually. Recent inconsistencies in the phase of the PDO as well as its influence on climate have warranted further study of this climate phenomenon. Previous work found that strength and importance of the PDO teleconnections to temperature and precipitation varied widely over time in the Twentieth Century Reanalysis (v2) data and in CRU TS3.2.1. In light of the inherent problems with reanalyses and with gridded products in data-poor areas, it is necessary to examine individual station data to further understand the relationship of the PDO with climate in Alaska. This study examines temperature and precipitation data for individual stations across Alaska to determine the stability of PDO teleconnections. Individual station data were downloaded from the NOAA National Centers for Environmental Information GHCN-D database. For the months of January, February and March, stations with at least 90% complete data for all three months were selected. Using stations grouped according to the recently developed Alaska climate divisions, the stability of PDO teleconnections was analyzed in terms of station anomalies from the PRISM climatology. In many parts of the state, the relationship between the PDO and local climate was not as stable as expected. Even at individual stations, the strength and influence of the PDO was often inconsistent over time.

  4. Effects of variable climate, land use, and hydrogeochemical setting on decadal surface water quality trends, Iowa, USA

    NASA Astrophysics Data System (ADS)

    Green, C. T.; Bekins, B. A.; Kalkhoff, S.; Hirsch, R. M.; Liao, L.; Barnes, K.

    2013-12-01

    Nitrogen fluxes from agricultural lands are a major concern for ecological health and water quality. Understanding how these fluxes respond to changes in agricultural practices and climatic variations is important for improving water quality in agricultural settings. In the midwestern USA, intensification of corn cropping as a result of ethanol production led to increases in N application rates in the 2000s during a period including both extreme dry and wet conditions. To examine the effect of these recent changes, a study was conducted on surface water quality in 10 major Iowa Rivers. Long term (~20 to 30 years) water quality and flow data were analyzed with Weighted Regression on Time, Discharge and Season (WRTDS), a statistical method that provides internally consistent estimates of the concentration history and reveals decadal trends that are independent of random variations of stream flow from seasonal averages. Trends of surface water quality showed constant or decreasing flow-normalized concentrations of nitrate+nitrite-N from 2000 to 2012 in all basins. To evaluate effects of annual discharge and N loading on these trends, multiple conceptual models were developed and calibrated to annual concentrations. The recent declining concentration trends can be attributed to both very high and very low discharge in the 2000's and to the long (e.g. 8-year) subsurface residence times in some basins. Dilution of surface water nitrate and depletion of stored nitrate may occur in years with very high discharge. Limited transport of N to surface water and accumulation of stored N may occur in years with very low discharge. Central Iowa basins showed the greatest reduction in concentrations, likely because extensive tile drainage results in smaller storage volumes and shorter residence times, and the glacial sediments are naturally reducing. Effects of agricultural intensification from ethanol production and other factors will likely be delayed for years or decades in

  5. The free oscillations of the earth excited by three strongest earthquakes of the past decade according to deformation observations

    NASA Astrophysics Data System (ADS)

    Milyukov, V. K.; Vinogradov, M. P.; Mironov, A. P.; Myasnikov, A. V.; Perelygin, N. A.

    2015-03-01

    Based on the deformation data provided by the Baksan laser interferometer-strainmeter measurements, the free oscillations of the Earth (FOE) excited by the three strongest earthquakes of the past decade are analyzed. These seismic events include the Great Sumatra-Andaman earthquake that occurred in 2004 in the Indian Ocean, the Mauli earthquake of 2010 in Chile, and the Great Tohoku earthquake of March 2011 in Japan. The frequency-time structure of the free oscillations is studied, and the pattern of interaction between the modes with close frequencies (cross-coupling effect) is explored. For each earthquake, the correspondence of the observed FOE modes to the model predictions by the PREM model is investigated. A reliable consistent shift towards the high frequency of the toroidal modes with angular degree l = 12-19 is revealed. The maximal energy density of the toroidal oscillations is concentrated in the upper mantle of the Earth. Therefore, the established effect corresponds to the higher velocity of the shear waves in the upper mantle than it is predicted by the PREM model.

  6. Multi-Decadal Aerosol Variations from 1980 to 2009: A Perspective from Observations and a Global Model

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, T.; Tan, Q.; Prospero, J. M.; Kahn, R. A.; Remer, L. A.; Yu, H.; Sayer, A. M.; Bian, H.; Geogdzhayev, I. V.; Holben, B. N.; Howell, S. G.; Huebert, B. J.; Hsu, N. C.; Kim, D.; Kucsera, T. L.; Levy, R. C.; Mishchenko, M. I.; Pan, X.; Quinn, P. K.; Schuster, G. L.; Streets, D. G.; Strode, S. A.; Torres, O.; Zhao, X.-P.

    2014-01-01

    Aerosol variations and trends over different land and ocean regions during 1980-2009 are analyzed with the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model and observations from multiple satellite sensors and ground-based networks. Excluding time periods with large volcanic influences, the tendency of aerosol optical depth (AOD) and surface concentration over polluted land regions is consistent with the anthropogenic emission changes.The largest reduction occurs over Europe, and regions in North America and Russia also exhibit reductions. On the other hand, East Asia and South Asia show AOD increases, although relatively large amount of natural aerosols in Asia makes the total changes less directly connected to the pollutant emission trends. Over major dust source regions, model analysis indicates that the dust emissions over the Sahara and Sahel respond mainly to the near-surface wind speed, but over Central Asia they are largely influenced by ground wetness. The decreasing dust trend in the tropical North Atlantic is most closely associated with the decrease of Sahel dust emission and increase of precipitation over the tropical North Atlantic, likely driven by the sea surface temperature increase. Despite significant regional trends, the model-calculated global annual average AOD shows little changes over land and ocean in the past three decades, because opposite trends in different regions cancel each other in the global average. This highlights the need for regional-scale aerosol assessment, as the global average value conceals regional changes, and thus is not sufficient for assessing changes in aerosol loading.

  7. Cataclysmic Variables Observed During K2 Campaigns 0 and 1

    NASA Astrophysics Data System (ADS)

    Dai, Zhibin; Szkody, Paula; Garnavich, Peter M.; Kennedy, Mark

    2016-07-01

    There are 15 cataclysmic variables (CVs) observed in the first two campaigns of the K2 mission. In this paper, the eight CVs showing distinct features are analyzed in detail. Among these eight, modulations during quiescence are evident at the known orbital periods in the SU UMa stars QZ Vir and RZ Leo, and at our newly determined orbital periods for 1RXS J0632+2536 and WD 1144+011. The periodogram analysis for the quiescent light curve of QZ Vir reveals multi-period modulations and the coexistence of orbital and superhump periods. The phased orbital light curves for the other three CVs in quiescence display wide (about half cycle) and shallow (<0.5 mag) eclipse features. Besides these modulations, their quiescent light curves reveal several transient events: a sudden decrease of system light in 1RXS J0632+2536, a low-level flare-like event in QZ Vir, a short brightening event in RZ Leo, and a temporary disappearance of the orbital modulation in WD 1144+011. The two known dwarf novae UV Gem and TW Vir and the CVs USNO-B1.01144-00115322 and CSS 130516:111236:111236.7+002807 show outbursts, including one complete and three incomplete normal outbursts and two complete superoutbursts. An incomplete but typical normal outburst confirms the dwarf nova identification of the USNO-B1.01144-00115322. The one complete normal outburst in UV Gem may provide the orbital period, since its modulations are shorter than the previously observed superhump period. The superoutburst of CSS 130516:111236.7+002807, along with the corresponding superhump period, indicates that this object is an SU UMa star. The derived superhump period of CSS 130516:111236:111236.7+002807 is 1.44 hr, implying that this new SU UMa star is close to the period minimum.

  8. Multiwavelength Variability Study of the Classical BL Lac Object PKS 0735+178 on Timescales Ranging from Decades to Minutes

    NASA Astrophysics Data System (ADS)

    Goyal, Arti; Stawarz, Łukasz; Ostrowski, Michał; Larionov, Valeri; Gopal-Krishna; Wiita, Paul J.; Joshi, Santosh; Soida, Marian; Agudo, Iván

    2017-03-01

    We present the results of our power spectral analysis for the BL Lac object PKS 0735+178, utilizing the Fermi-LAT survey at high-energy γ-rays, several ground-based optical telescopes, and single-dish radio telescopes operating at GHz frequencies. The novelty of our approach is that, by combining long-term and densely sampled intra-night light curves in the optical regime, we were able to construct for the first time the optical power spectrum of the blazar for a time domain extending from 23 years down to minutes. Our analysis reveals that: (1) the optical variability is consistent with a pure red noise, for which the power spectral density can be well approximated by a single power law throughout the entire time domain probed; (2) the slope of power spectral density at high-energy γ-rays (∼1) is significantly flatter than that found at radio and optical frequencies (∼2) within the corresponding time variability range; (3) for the derived power spectra, we did not detect any low-frequency flattening, nor do we see any evidence for cutoffs at the highest frequencies down to the noise floor levels due to measurement uncertainties. We interpret our findings in terms of a model where the blazar variability is generated by the underlying single stochastic process (at radio and optical frequencies), or a linear superposition of such processes (in the γ-ray regime). Along with the detailed PSD analysis, we also present the results of our extended (1998–2015) intra-night optical monitoring program and newly acquired optical photo-polarimetric data for the source.

  9. Evaluating carbon dioxide variability in the Community Earth System Model against atmospheric observations

    NASA Astrophysics Data System (ADS)

    Keppel-Aleks, G.; Randerson, J. T.; Lindsay, K. T.; Stephens, B. B.; Moore, J. K.; Doney, S. C.; Thornton, P. E.; Mahowald, N. M.; Hoffman, F. M.; Sweeney, C.; Tans, P. P.; Wennberg, P. O.; Wofsy, S. C.

    2012-12-01

    Changes in atmospheric CO_2 variability during the 21st century may provide insight on ecosystem responses to climate change and have implications for the design of carbon monitoring programs. We analyzed results from a fully coupled climate-carbon simulation using the Community Earth System Model (CESM1-BGC). We evaluated CO2 simulated for the historical period against surface, aircraft, and column observations. The mean annual cycle in total column atmospheric CO2 was underestimated throughout the northern hemisphere relative to TCCON observations, suggesting that the growing season net flux in the land component of CESM was too weak by 50%. Sampling CESM along HIPPO transects confirmed low growing season uptake, but also showed that spring drawdown in the Northern Hemisphere began too early. The vertical gradients in CESM generally agreed with HIPPO data and with NOAA aircraft profiles outside the growing season, but were too weak during the summer. The seasonal bias suggests that vertical transport in CAM4 (the atmospheric component of CESM) was too weak year round. Model evaluation and improvement based on atmospheric observations is crucial. The simulation of surface exchange and atmospheric transport of CO2 in coupled models such as CESM may help with the design of optimal detection strategies. For example, in the simulations of the 21st century, CESM predicted increases in the mean annual cycle of atmospheric CO2 and larger horizontal gradients. Both north-south and east-west contrasts in CO2 strengthened due to changing patterns in fossil fuel emissions and terrestrial carbon exchange, and northern hemisphere interannual variability increased as well. Our results suggest that using atmospheric observations to gain insight about changing terrestrial and ocean processes over the next several decades may become more challenging as anthropogenic contributions to variability on multiple temporal and spatial scales continue to grow.

  10. Interannual and Seasonal Variability of Biomass Burning Emissions Constrained by Satellite Observations

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Martin, Randall V.; Staudt, Amanda C.; Yevich, Rosemarie; Logan, Jennifer A.

    2003-01-01

    We present a methodology for estimating the seasonal and interannual variation of biomass burning designed for use in global chemical transport models. The average seasonal variation is estimated from 4 years of fire-count data from the Along Track Scanning Radiometer (ATSR) and 1-2 years of similar data from the Advanced Very High Resolution Radiometer (AVHRR) World Fire Atlases. We use the Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) data product as a surrogate to estimate interannual variability in biomass burning for six regions: Southeast Asia, Indonesia and Malaysia, Brazil, Central America and Mexico, Canada and Alaska, and Asiatic Russia. The AI data set is available from 1979 to the present with an interruption in satellite observations from mid-1993 to mid-1996; this data gap is filled where possible with estimates of area burned from the literature for different regions. Between August 1996 and July 2000, the ATSR fire-counts are used to provide specific locations of emissions and a record of interannual variability throughout the world. We use our methodology to estimate mean seasonal and interannual variations for emissions of carbon monoxide from biomass burning, and we find that no trend is apparent in these emissions over the last two decades, but that there is significant interannual variability.

  11. On the use of Standardized Drought Indices under decadal climate variability: Critical assessment and drought policy implications

    NASA Astrophysics Data System (ADS)

    Núñez, J.; Rivera, D.; Oyarzún, R.; Arumí, J. L.

    2014-09-01

    Since the recent High Level Meeting on National Drought Policy held in Geneva in 2013, a greater concern about the creation and adaptation of national drought monitoring systems is expected. Consequently, backed by international recommendations, the use of Standardized Drought Indices (SDI), such as the Standardized Precipitation Index (SPI), as an operational basis of drought monitoring systems has been increasing in many parts of the world. Recommendations for the use of the SPI, and consequently, those indices that share its properties, do not take into account the limitations that this type of index can exhibit under the influence of multidecadal climate variability. These limitations are fundamentally related to the lack of consistency among the operational definition expressed by this type of index, the conceptual definition with which it is associated and the political definition it supports. Furthermore, the limitations found are not overcome by the recommendations for their application. This conclusion is supported by the long-term study of the Standardized Streamflow Index (SSI) in the arid north-central region of Chile, under the influence of multidecadal climate variability. The implications of the findings of the study are discussed with regard to their link to aspects of drought policy in the cases of Australia, the United States and Chile.

  12. GLIMPSE Proper: Mid-Infrared Observations of Proper Motion and Variability Towards Galactic Center

    NASA Astrophysics Data System (ADS)

    Benjamin, Robert; Babler, Brian; Churchwell, Ed; Clarkson, Will; Kirkpatrick, Davy; Meade, Marilyn; Whitney, Barbara

    2015-10-01

    We propose to re-image 43.4 square degrees of the Galactic center to measure the proper motions of over fifteen million sources within 5 degrees of Galactic center over the last decade. This stellar sample will be over 20 times larger than the previous optical ground-based measurements and will allow us to constrain the anisotropic stellar velocity dispersion as a function of direction and distance as well as test previous claims of streaming motions associated with the near/far side of the Galactic bar, the X-shaped bar, and the vertically thin extended Long Bar. Not only will this be the largest Galactic bulge proper motion survey to date, it will also be the most uniform as mid-infrared observations are minimally affected by extinction over most of the region. We also expect to find at least 150 high proper motion stars (>100 mas/yr) which could be substellar objects and possible microlensing candidates against the crowded Galactic bulge. We will put constraints on the current production rate of hyper-velocity stars thought to be formed in binary interactions with the supermassive black hole of the Galaxy. Finally, we will be able to identify many new variable stars, particularly in the central 2x1.5 degree region of the Galaxy which has only been observed in a single epoch with Spitzer; we expect to find 1000 new sources with variability amplitudes greater than 0.2 mag.

  13. Observing Simulated Cepheid Variable Stars in an Introductory Astronomy Lab.

    ERIC Educational Resources Information Center

    Flesch, Terry R.

    1979-01-01

    Describes an exercise developed by the author to help college students to become familiar with the technique of photoelectric photometry of variable stars and permits each student to work with data he or she has personally obtained. (HM)

  14. Mythological Evidence for Ancient Observations of Variable Stars

    NASA Astrophysics Data System (ADS)

    Wilk, Stephen R.

    I suggest that the variability of Algol was known in pre-classical Greece, and that knowledge of its period is reflected in the myth of Perseus. Moreover, knowledge of the variability of Algol, Mira, delta Cephei, and gamma Cassiopeiae accounts for all their parent constellations being associated in the same myth as antagonists of Perseus. Finally, I propose alternative interpretations of the same constellations which show their influence upon classical myth.

  15. New data-based mechanistic methodology to quantify hydrological & biogeochemical recovery following forest disturbance using observations monitored from sub-hourly to decadal time-scales (Invited)

    NASA Astrophysics Data System (ADS)

    Chappell, N. A.; Jones, T.

    2013-12-01

    Quantifying recovery in hydrological & biogeochemical processes following forest disturbances is difficult given sensitivities of watershed systems to controlling climate dynamics at sub-daily to decadal timescales. Trends associated with forest hydrological & biogeochemical recovery can be difficult to identify where natural climate cycles at seasonal to inter-annual time-scales are present & need to be accounted for. Equally, fundamental relationships between physico-chemical processes within experimental watersheds are often unidentifiable where observations are not undertaken at a sufficiently high sampling rate e.g., sub-hourly (Kirchner et al., 2004 Hydrol Process). Consequently, the study of recovery in hydrological & biogeochemical systems requires robust analysis of both short- & long-term dynamic relationships in watersheds. We newly apply two data-based mechanistic (DBM) approaches to characterise change resulting from forest disturbance & recovery in both: (1) longer-term cycles & trends in biogeochemical variables; & (2) short-term dynamic relationships between biogeochemical & controlling hydro-climatic variables. The Unobserved Components - Dynamic Harmonic Regression (UC-DHR) modeling approach is used to quantify the longer-term trends & cycles (Chappell & Tych, 2012 Hydrol Process), while continuous time transfer function modeling is used to illustrate changes in the short-term (within storm) dynamics over the forest management cycle. The DBM philosophy is appropriate for a new focus on under-studied recovering forests because it first makes no a priori assumptions about processes that need to be described, instead uses information contained in the time-series to derive multiple statistically valid models. In the second stage of the approach only those models that also have robust hydrological &/or geochemical interpretations are accepted for further consideration of the dynamics. This study utilises the longest forest hydrological & associated

  16. Two centuries of observed atmospheric variability and change over the North Sea region

    NASA Astrophysics Data System (ADS)

    Stendel, Martin; van den Besselaar, Else; Hannachi, Abdel; Kent, Elizabeth; Lefebvre, Christiana; Rosenhagen, Gudrun; Schenk, Frederik; van der Schrier, Gerard; Woollings, Tim

    2016-04-01

    In the upcoming North Sea Region Climate Change Assessment (NOSCCA), we present a synthesis of current knowledge about past, present and possible future climate change in the North Sea region. A climate change assessment from published scientific work has been conducted as a kind of regional IPCC report, and a book has been produced that will be published by Springer in 2016. In the framework of the NOSCCA project, we examine past and present studies of variability and changes in atmospheric variables within the North Sea region over the instrumental period, roughly the past 200 years, based on observations and reanalyses. The variables addressed in this presentation are large-scale circulation, pressure and wind, surface air temperature, precipitation and radiative properties (clouds, solar radiation, and sunshine duration). While air temperature over land, not unexpectedly, has increased everywhere in the North Sea region, with strongest trends in spring and in the north of the region, a precipitation increase has been observed in the north and a decrease in the south of the region. This pattern goes along with a north-eastward shift of storm tracks and is in agreement with climate model projections under enhanced greenhouse gas concentrations. For other variables, it is not obvious which part of the observed changes may be due to anthropogenic activities and which is internally forced. It remains also unclear to what extent atmospheric circulation over the North Sea region is influenced by distant factors, in particular Arctic sea-ice decline in recent decades. There are indications of an increase in the number of deep cyclones (but not in the total number of cyclones), while storminess since the late 19th century shows no robust trends. The persistence of circulation types appears to have increased over the last century, and consequently, there is an indication for 'more extreme' extreme events. However, changes in extreme weather events are difficult to assess

  17. Southern Ocean deep convection in global climate models: A driver for variability of subpolar gyres and Drake Passage transport on decadal timescales

    NASA Astrophysics Data System (ADS)

    Behrens, Erik; Rickard, Graham; Morgenstern, Olaf; Martin, Torge; Osprey, Annette; Joshi, Manoj

    2016-06-01

    We investigate the individual and joint decadal variability of Southern Ocean state quantities, such as the strength of the Ross and Weddell Gyres, Drake Passage transport, and sea ice area, using the National Institute of Water and Atmospheric Research UK Chemistry and Aerosols (NIWA-UKCA) model and CMIP5 models. Variability in these quantities is stimulated by strong deep reaching convective events in the Southern Ocean, which produce an Antarctic Bottom Water-like water mass and affect the large-scale meridional density structure in the Southern Ocean. An increase in the (near) surface stratification, due to freshwater forcing, can be a precondition for subsequent strong convection activity. The combination of enhanced-gyre driven sea ice and freshwater export, as well as ongoing subsurface heat accumulation, lead to a time lag between changes in oceanic freshwater and heat content. This causes an ongoing weakening of the stratification until sudden strong mixing events emerge and the heat is released to the atmosphere. We find that strong convection reduces sea ice cover, weakens the subpolar gyres, increases the meridional density gradient and subsequently results in a positive Drake Passage transport anomaly. Results of available CMIP5 models confirm that variability in sea ice, Drake Passage transport, and the Weddell Gyre strength is enhanced if models show strong open ocean convective events. Consistent relationships between convection, sea ice, Drake Passage transport, and Ross Gyre strength variability are evident in most models, whether or not they host open ocean convection.

  18. Seasonal to Decadal-Scale Variability in Satellite Ocean Color and Sea Surface Temperature for the California Current System

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Greg; Kahru, Mati; Marra, John (Technical Monitor)

    2002-01-01

    Support for this project was used to develop satellite ocean color and temperature indices (SOCTI) for the California Current System (CCS) using the historic record of CZCS West Coast Time Series (WCTS), OCTS, WiFS and AVHRR SST. The ocean color satellite data have been evaluated in relation to CalCOFI data sets for chlorophyll (CZCS) and ocean spectral reflectance and chlorophyll OCTS and SeaWiFS. New algorithms for the three missions have been implemented based on in-water algorithm data sets, or in the case of CZCS, by comparing retrieved pigments with ship-based observations. New algorithms for absorption coefficients, diffuse attenuation coefficients and primary production have also been evaluated. Satellite retrievals are being evaluated based on our large data set of pigments and optics from CalCOFI.

  19. Rainfall variability and trends of the past six decades (1950-2014) in the subtropical NW Argentine Andes

    NASA Astrophysics Data System (ADS)

    Castino, F.; Bookhagen, B.; Strecker, M. R.

    2017-02-01

    The eastern flanks of the Central Andes are characterized by deep convection, exposing them to hydrometeorological extreme events, often resulting in floods and a variety of mass movements. We assessed the spatiotemporal pattern of rainfall trends and the changes in the magnitude and frequency of extreme events (≥95th percentile) along an E-W traverse across the southern Central Andes using rain-gauge and high-resolution gridded datasets (CPC-uni and TRMM 3B42 V7). We generated different climate indices and made three key observations: (1) an increase of the annual rainfall has occurred at the transition between low (<0.5 km) and intermediate (0.5-3 km) elevations between 1950 and 2014. Also, rainfall increases during the wet season and, to a lesser degree, decreases during the dry season. Increasing trends in annual total amounts characterize the period 1979-2014 in the arid, high-elevation southern Andean Plateau, whereas trend reversals with decreasing annual total amounts were found at low elevations. (2) For all analyzed periods, we observed small or no changes in the median values of the rainfall-frequency distribution, but significant trends with intensification or attenuation in the 95th percentile. (3) In the southern Andean Plateau, extreme rainfall events exhibit trends towards increasing magnitude and, to a lesser degree, frequency during the wet season, at least since 1979. Our analysis revealed that low (<0.5 km), intermediate (0.5-3 km), and high-elevation (>3 km) areas respond differently to changing climate conditions, and the transition zone between low and intermediate elevations is characterized by the most significant changes.

  20. Spatiotemporal variability of methane over the Amazon from satellite observations

    NASA Astrophysics Data System (ADS)

    Ribeiro, Igor Oliveira; de Souza, Rodrigo Augusto Ferreira; Andreoli, Rita Valéria; Kayano, Mary Toshie; Costa, Patrícia dos Santos

    2016-07-01

    The spatiotemporal variability of the greenhouse gas methane (CH4) in the atmosphere over the Amazon is studied using data from the space-borne measurements of the Atmospheric Infrared Sounder on board NASA's AQUA satellite for the period 2003-12. The results show a pronounced variability of this gas over the Amazon Basin lowlands region, where wetland areas occur. CH4 has a well-defined seasonal behavior, with a progressive increase of its concentration during the dry season, followed by a decrease during the wet season. Concerning this variability, the present study indicates the important role of ENSO in modulating the variability of CH4 emissions over the northern Amazon, where this association seems to be mostly linked to changes in flooded areas in response to ENSO-related precipitation changes. In this region, a CH4 decrease (increase) is due to the El Niño-related (La Niña-related) dryness (wetness). On the other hand, an increase (decrease) in the biomass burning over the southeastern Amazon during very dry (wet) years explains the increase (decrease) in CH4 emissions in this region. The present analysis identifies the two main areas of the Amazon, its northern and southeastern sectors, with remarkable interannual variations of CH4. This result might be useful for future monitoring of the variations in the concentration of CH4, the second-most important greenhouse gas, in this area.

  1. High nutrient pulses, tidal mixing and biological response in a small California estuary: Variability in nutrient concentrations from decadal to hourly time scales

    USGS Publications Warehouse

    Caffrey, J.M.; Chapin, T.P.; Jannasch, H.W.; Haskins, J.C.

    2007-01-01

    Elkhorn Slough is a small estuary in Central California, where nutrient inputs are dominated by runoff from agricultural row crops, a golf course, and residential development. We examined the variability in nutrient concentrations from decadal to hourly time scales in Elkhorn Slough to compare forcing by physical and biological factors. Hourly data were collected using in situ nitrate analyzers and water quality data sondes, and two decades of monthly monitoring data were analyzed. Nutrient concentrations increased from the mid 1970s to 1990s as pastures and woodlands were converted to row crops and population increased in the watershed. Climatic variability was also a significant factor controlling interannual nutrient variability, with higher nutrient concentrations during wet than drought years. Elkhorn Slough has a Mediterranean climate with dry and rainy seasons. Dissolved inorganic nitrogen (DIN) concentrations were relatively low (10-70 ??mol L-1) during the dry season and high (20-160 ??mol L-1) during the rainy season. Dissolved inorganic phosphorus (DIP) concentrations showed the inverse pattern, with higher concentrations during the dry season. Pulsed runoff events were a consistent feature controlling nitrate concentrations during the rainy season. Peak nitrate concentrations lagged runoff events by 1 to 6 days. Tidal exchange with Monterey Bay was also an important process controlling nutrient concentrations, particularly near the mouth of the Slough. Biological processes had the greatest effect on nitrate concentrations during the dry season and were less important during the rainy season. While primary production was enhanced by nutrient pulses, chlorophyll a concentrations were not. We believe that the generally weak biological response compared to the strong physical forcing in Elkhorn Slough occurred because the short residence time and tidal mixing rapidly diluted nutrient pulses. ?? 2006 Elsevier Ltd. All rights reserved.

  2. A new calibration for the Sr/Ca-temperature relationship in sclerosponges reveals synchronous changes in Caribbean specimens indicative of warming and multi-decadal climate variability

    NASA Astrophysics Data System (ADS)

    Waite, A. J.; Swart, P. K.; Rosenheim, B. E.

    2009-12-01

    Previous work defined the calibration between the skeletal Sr/Ca ratio of the sclerosponge Ceratoporella nicholsoni and the ambient seawater temperature. However, application of this calibration to records throughout the Caribbean reveals a nearly 4°C warming over the last 150 years, in excess of what one might expect from global climate averages. As the original C. nicholsoni Sr/Ca-temperature relationship was calibrated between 26 and 30°C, it is possible that the relationship differed outside of the examined temperature window. This suspicion is confirmed by the measurement of Sr/Ca ratios from additional specimens of the same species. These show a significantly different slope between Sr/Ca and temperature at lower temperatures (21 to 26°C). Using this information, the calibration equation has been refined and the subsequent reconstructions of temperature are much more realistic, indicating a warming of approximately 1°C over the last 150 years. Applying this new calibration to additional published sclerosponge records of Sr/Ca reveals remarkable agreements between records from the Bahamas and Jamaica, both in amplitude of warming and smaller scale variability. In addition, the depth versus temperature relationship associated with these specimens is preserved. The refined temperature reconstruction of a 600 year record from Exuma Sound, Bahamas, demonstrates the cyclic nature of its variability (~15 and 28 year periodicities). Further use of these data and stable oxygen isotopes to calculate salinity reveals variability on multi-decadal timescales. This includes an approximately 20 year periodicity between 1400 and 1790. From 1790 to 2000, the dominant mode appears to switch to a roughly 60 year periodicity, consistent with that of the Atlantic Multi-decadal Oscillation (AMO).

  3. Malvinas Current variability as observed by satellite altimetry data

    NASA Astrophysics Data System (ADS)

    Saraceno, Martin; Artana, Camila; Bodichon, Renaud; Provost, Christine

    The Malvinas Current (MC) is the northernmost extension of the Antarctic Circumpolar Current that carries cold and nutrient-rich waters. The MC is thought to be a major source of nutrients to the SW South Atlantic. The interaction of the MC with the sloping bottom is presumably responsible for sustaining upwelling along the shelf-break. Numerical and analytical models indicate that the upwelling intensity and mean transport along the Patagonian continental shelf is modulated by the MC transport. Apart from its regional influence, the MC contributes to regulate the climate since it helps the exchange of heat and salt as is a crucial component of the Meridional Overturning Circulation. Satellite altimetry data in conjunction with in-situ data allowed monitoring the transport of the MC at 41ºS. A CNES founded program will repeat those measures and will measure at the same time currents over the continental shelf under a satellite altimetry track. First deployment of instruments will occur in November 2014. In this work we use satellite altimetry data to explore the relationship between the MC and continental shelf transports and the correspondence between the variability of the MC and the mesoscale activity in the SW South Atlantic. Results suggest that (i) the large decreases of the MC transport are associated to eddies that interact with the MC and (ii) the first mode associated to the variability of the transport over the Patagonian continental shelf is significantly correlated to the first mode of variability of the MC transport.

  4. Spatial Analysis of Weather-induced Annual and Decadal Average Yield Variability as Modeled by EPIC for Rain-fed Wheat in Europe

    NASA Astrophysics Data System (ADS)

    Khabarov, Nikolay; Balkovic, Juraj; Schmid, Erwin; Schwartz, Alexander; Obersteiner, Michael; Azevedo, Ligia B.

    2016-04-01

    In our analysis we evaluate the accuracy of near-term (decadal) average crop yield assessments as supported by the biophysical crop growth model EPIC. A spatial assessment of averages and variability has clear practical implications for agricultural producers and investors concerned with an estimation of the basic stochastic characteristics of a crop yield distribution. As a reliable weather projection for a time period of several years will apparently remain a challenge in the near future, we have employed the existing gridded datasets on historical weather as a best proxy for the current climate. Based on different weather inputs to EPIC, we analyzed the model runs for the rain-fed wheat for 1968-2007 employing AgGRID/GGCMI simulations using harmonized inputs and assumptions (weather datasets: GRASP and Princeton). We have explored the variability of historical ten-year yield averages in the past forty years as modeled by the EPIC model, and found that generally the ten-year average yield variability is less than 20% ((max-min)/average), whereas there are mid/low yielding areas with a higher ten-years average variability of 20-50%. The location of these spots of high variability differs between distinctive model-weather setups. Assuming that historical weather can be used as a proxy of the weather in the next ten years, a best possible EPIC-based assessment of a ten-year average yield is a range of 20% width ((max-min)/average). For some mid/low productive areas the range is up to 50% wide.

  5. Inter-annual to inter-decadal streamflow variability in Quebec and Ontario in relation to dominant large-scale climate indices

    NASA Astrophysics Data System (ADS)

    Nalley, D.; Adamowski, J.; Khalil, B.; Biswas, A.

    2016-05-01

    The impacts of large-scale climate oscillations on hydrological systems and their variability have been documented in different parts of the world. Since hydroclimatic data are known to exhibit non-stationary characteristics, spectral analyses such as wavelet transforms are very useful in extracting time-frequency information from such data. As Canadian studies, particularly those of regions east of the Prairies, using wavelet transform-based methods to draw links between relevant climate indices [e.g., the El Niño Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Pacific Decadal Oscillation (PDO)] and streamflow variability are not common, this study aims to analyze such relationships for the southern regions of Quebec and Ontario. Monthly and annual streamflow data with a record length of 55 years were used to capture streamflow variability at intra-annual, inter-annual and inter-decadal scales. The continuous wavelet transform spectra of monthly streamflow data revealed consistent significant 6- and 12-month periodicities, which are likely associated with strong seasonality factors. Its annual counterparts showed four different significant periodicities: up to 4 years, 4-6 years, 6-8 years, and greater than 8 years - all of which occurred after the late 1960s/early 1970s. Wavelet coherence analyses show that the influence of ENSO and NAO at the inter-annual scale occurs at 2-6 year periodicities, and the influence of PDO occur at periodicities up to 8 years and exceeding 16 years. Correlations between these climate indices and streamflow were computed to determine the time delay of streamflow response to the influence of ENSO, NAO, and PDO. The lag times ranged from 6-48 months (for monthly data) and 1-4 years (for annual data). This research contributes to our understanding of streamflow variability over the southern parts of Quebec and Ontario, and the role of ENSO, NAO, and PDO phenomena on this variability. These relationships can

  6. Variability in Tropical Tropospheric Ozone as Observed by SHADOZ

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Coetzee, Geert J. R.; Chatfield, Robert B.; Hudson, Robert D.

    2004-01-01

    The SHADOZ (Southern Hemisphere Additional Ozonesondes) ozone sounding network was initiated in 1998 to improve the coverage of tropical in-situ ozone measurements for satellite validation, algorithm development and related process studies. Over 2000 soundings have been archived at the central website, , for 12 stations: Ascension Island; Nairobi and Malindi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil; Paramaribo, Surinam. Some results to date indicate reliability of the measurement and highly variable interactions between ozone and tropical meteorology. For example: 1. By using ECC sondes with similar procedures, 5-10% accuracy and precision (1-sigma) of the sonde total ozone measurement was achieved [Thompson et al., 2003al; 2. Week-to-week variability in tropospheric ozone is so great that statistics are frequently not Gaussian and most stations vary up to a factor of 3 in column amount over the course of a year [Thompson et al., 2002b]. 3. Longitudinal variability in tropospheric ozone profiles is a consistent feature, with a 10- 15 DU column-integrated difference between Atlantic and Pacific sites; this is the cause of the zonal wave-one feature in total ozone [Shiotani, 1992]. The ozone record from Paramaribo, Surinam (6N, 55W) is a marked contrast to southern tropical ozone because Surinam is often north of the Intertropical Convergence Zone. Interpretations of SHADOZ time-series and approaches to classification suggested by SHADOZ data over Africa and the Indian Ocean will be described.

  7. Kepler Observations of Rapid Optical Variability in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Edelson, R.; Baumgartner, W. H.; Gandhi, P.

    2012-01-01

    Over three quarters in 2010 - 2011, Kepler monitored optical emission from four active galactic nuclei (AGN) with approx 30 min sampling, > 90% duty cycle and approx < 0.1% repeatability. These data determined the AGN optical fluctuation power spectral density functions (PSDs) over a wide range in temporal frequency. Fits to these PSDs yielded power law slopes of -2.6 to -3.3, much steeper than typically seen in the X-rays. We find evidence that individual AGN exhibit intrinsically different PSD slopes. The steep PSD fits are a challenge to recent AGN variability models but seem consistent with first order MRI theoretical calculations of accretion disk fluctuations.

  8. Observations of the sun, an ultraviolet variable star

    NASA Technical Reports Server (NTRS)

    Heath, D. F.

    1972-01-01

    The uncertainty as to whether or not the sun is a variable star in that region of the ultraviolet which is absorbed in the mesosphere and stratosphere led to an experiment with acronym MUSE, Monitor of Ultraviolet Solar Energy. The experiment was first flown on an Aerobee rocket in August 1966 and subsequently on Nimbus 3 and 4 in April 1969 and April 1970 respectively. The basic philosophy behind the design of the experiment was to provide an instrument which would not require a solar pointing mechanism and at the same time would be capable of high radiometric accuracy for long periods in space.

  9. Optimization of the transmission of observable expectation values and observable statistics in continuous-variable teleportation

    SciTech Connect

    Albano Farias, L.; Stephany, J.

    2010-12-15

    We analyze the statistics of observables in continuous-variable (CV) quantum teleportation in the formalism of the characteristic function. We derive expressions for average values of output-state observables, in particular, cumulants which are additive in terms of the input state and the resource of teleportation. Working with a general class of teleportation resources, the squeezed-bell-like states, which may be optimized in a free parameter for better teleportation performance, we discuss the relation between resources optimal for fidelity and those optimal for different observable averages. We obtain the values of the free parameter of the squeezed-bell-like states which optimize the central momenta and cumulants up to fourth order. For the cumulants the distortion between in and out states due to teleportation depends only on the resource. We obtain optimal parameters {Delta}{sub (2)}{sup opt} and {Delta}{sub (4)}{sup opt} for the second- and fourth-order cumulants, which do not depend on the squeezing of the resource. The second-order central momenta, which are equal to the second-order cumulants, and the photon number average are also optimized by the resource with {Delta}{sub (2)}{sup opt}. We show that the optimal fidelity resource, which has been found previously to depend on the characteristics of input, approaches for high squeezing to the resource that optimizes the second-order momenta. A similar behavior is obtained for the resource that optimizes the photon statistics, which is treated here using the sum of the squared differences in photon probabilities of input versus output states as the distortion measure. This is interpreted naturally to mean that the distortions associated with second-order momenta dominate the behavior of the output state for large squeezing of the resource. Optimal fidelity resources and optimal photon statistics resources are compared, and it is shown that for mixtures of Fock states both resources are equivalent.

  10. Coupled ocean-atmosphere model system for studies of interannual-to-decadal climate variability over the North Pacific Basin and precipitation over the Southwestern United States

    SciTech Connect

    Lai, Chung-Chieng A.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The ultimate objective of this research project is to make understanding and predicting regional climate easier. The long-term goals of this project are (1) to construct a coupled ocean-atmosphere model (COAM) system, (2) use it to explore the interannual-to-decadal climate variability over the North Pacific Basin, and (3) determine climate effects on the precipitation over the Southwestern United States. During this project life, three major tasks were completed: (1) Mesoscale ocean and atmospheric model; (2) global-coupled ocean and atmospheric modeling: completed the coupling of LANL POP global ocean model with NCAR CCM2+ global atmospheric model; and (3) global nested-grid ocean modeling: designed the boundary interface for the nested-grid ocean models.

  11. Six-decade temporal change and seasonal decomposition of climate variables in Lake Dianchi watershed (China): stable trend or abrupt shift?

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Liang, Zhongyao; Liu, Yong; Guo, Huaicheng; He, Dan; Zhao, Lei

    2015-01-01

    Meteorological trend analysis is a useful tool for understanding climate change and can provide useful information on the possibility of future change. Lake Dianchi is the sixth largest freshwater body in China with serious eutrophication. Algal blooms outbreak was proven to be closely associated with some climatic factors in Lake Dianchi. It is therefore essential to explore the trends of climatic time series to understand the mechanism of climate change on lake eutrophication. We proposed an integrated method of Mann-Kendall (MK) test, seasonal-trend decomposition using locally weighted regression (LOESS) (STL), and regime shift index (RSI) to decompose the trend analysis and identify the stable and abrupt changes of some climate variables from 1951 to 2009. The variables include mean air temperature (Tm), maximum air temperatures (Tmax), minimum air temperatures (Tmin), precipitation (Prec), average relative humidity (Hum), and average wind speed (Wind). The results showed that (a) annual Tm, Tmax, and Tmin have a significant increasing trend with the increasing rates of 0.26, 0.15and 0.43 °C per decade, respectively; (b) annual precipitation has an insignificant decreasing trend with the decreasing rate of 3.17 mm per decade; (c) annual Hum has a significant decreasing trend in all seasons; and (d) there are two turning points for temperature rise around 1980 and 1995 and two abrupt change periods for precipitation with the extreme points appearing in 1963 and 1976. Temperature rise and precipitation decline in summer and autumn as well as wind speed decrease after the 1990s may be an important reason for algal blooms outbreak in Lake Dianchi. This study was expected to provide foundation and reference for regional water resource management.

  12. The photometric variability of ζ Ori Aa observed by BRITE* **

    NASA Astrophysics Data System (ADS)

    Buysschaert, B.; Neiner, C.

    2016-12-01

    Using BRITE photometry, we investigated the photometric variability of the magnetic O-type supergiant ζOri Aa. We found two independent frequencies, leading to several higher harmonics and simple linear combinations. One frequency is related to the rotation period, f_{rot} = 0.15±0.02 d^{-1}. The derived rotation period from this frequency and its higher harmonics, P_{rot} = 6.65±0.28 d, is compatible with the literature value (P_{rot} = 6.83±0.08 d). Thanks to simultaneous CHIRON spectroscopy, we locate the origin of the second frequency, f_{env} = 0.10±0.02 d^{-1}, at the circumstellar environment. We propose mass-loss events as the underlying origin.

  13. Component noise variables of a light observation helicopter

    NASA Technical Reports Server (NTRS)

    Robinson, F.

    1973-01-01

    A test program was conducted to isolate and evaluate the individual noise sources of a light helicopter. To accomplish this, the helicopter was mounted on a special test rig, at a 6-foot skid height, in a simulated hover. The test rig contained by dynamometer for absorbing engine power and an exhaust silencing system for reducing engine noise. This test set-up allowed the various components of the helicopter to be run and listened to individually or in any combination. The sound pressure level was recorded at a point 200 feet from the helicopter as the component parameters were systematically varied. The tests were conducted in an open area, during the middle of the night, with no wind, and with all other known variables either eliminated or kept as constant as possible.

  14. Equatorial F2 characteristic variability: A review of recent observations

    NASA Astrophysics Data System (ADS)

    Somoye, E. O.; Akala, A. O.; Adeniji-Adele, R. A.; Iheonu, E. E.; Onori, E. O.; Ogwala, A.

    2013-10-01

    This paper reviews the variability of equatorial/low latitude F2 characteristics with emphasis on the most general results reported by authors. On a general note, diurnal variation of ionospheric F2 layer characteristics coefficient of variability (CV) is characterised by post- and pre-midnight peaks at all seasons, epochs and longitude. The post-midnight peak is greater than pre-midnight peak for all the characteristics considered except h'F2 CV during high solar activity (HSA) possibly due to occurrence of post-sunset pre-reversal enhancement (PRE) in height of reflection prominent during HSA. NmF2 CV is greater than CV of MUF and h'F2. MUF CV and foF2 CV are of the same order of magnitude. While seasonal trend is little or nil in daytime CV of F2 layer characteristics, nighttime CV is greater in general at the equinoxes and June Solstice. Nighttime F2 layer characteristics CV are found to decrease with increasing sunspot. This is not the case with daytime CV. Except for h'F2 CV, daytime CV of F2 layer characteristics are independent of latitude while nighttime CV decreases with latitude. Equatorial stations east (Vanimo, 2.7°S, 141.3°E, dip 22.5°S) and west (Huancayo, 12°S, 75.3°W, dip 1.9°N) of the Greenwich Meridian (GM) have greater nighttime CV than those in the neighbourhood of the GM (Ouagadougou, 12.4°N, 1.5°W, dip 7.6°N) with those stations west of GM having the greatest CV, implying longitudinal effect on CV. During magnetic storms CV are reported to be greater than during quiet periods.

  15. Pacific Decadal Variability in the Southern Indian Ocean: A 1 ky Interdecadal Pacific Oscillation and Australian Megadrought Reconstruction from Law Dome, East Antarctica.

    NASA Astrophysics Data System (ADS)

    Vance, T.; Roberts, J. L.; Plummer, C. T.; Kiem, A.; van Ommen, T. D.

    2014-12-01

    The Interdecadal Pacific Oscillation (IPO) is a multidecadal mode of Pacific basin SST anomalies, and is the basin-wide, bi-hemispheric expression of the Pacific Decadal Oscillation (PDO). The two indices are highly correlated, but the extent to which they are merely low frequency ENSO is debated. Nonetheless, the IPO/PDO significantly influences interannual rainfall variability and drought risk across and beyond the Pacific region on multi-decadal timescales, thus an understanding of long-term IPO/PDO variability will help with assessing past and future drought risk. A new and highly accurate 1 ky IPO reconstruction has been produced from the Law Dome ice core (East Antarctica). Law Dome is a high accumulation site on the coast of Antarctica in the Indian Ocean sector of the Southern Ocean, and the Law Dome record is directly related to atmospheric anomalies across a broad mid-latitude swathe of this region. The reconstruction utilizes both the accumulation (snowfall) and sea salt (wind proxy) records to produce a reconstruction that is highly calibrated to the instrumental IPO record from 1870-2009 and shows excellent skill (reduction of error value of 0.86). We then super-imposed the 1 ky IPO on a Law Dome proxy for rainfall in eastern subtropical Australia (previously shown to represent rainfall with high significance during IPO positive phases (r =0.406-0.677, p <0.0001-0.01) to identify eight Australian 'mega-droughts' (dry periods >5 y duration) over the last millennium. Six mega-droughts occur between AD 1000-1320 including one 39 y drought (AD 1174-1212). Water resources and infrastructure planning in Australia has been based on very limited statistical certainty around drought risk due to the short instrumental record and lack of rainfall proxies. A recent drought (the 'Big Dry' ~1995-2009) brought both agricultural and urban water supplies to critically low levels, while the Murray-Darling Basin river system, which provides 65% of the water used for

  16. Solar spectral irradiance variability in cycle 24: observations and models

    NASA Astrophysics Data System (ADS)

    Marchenko, Sergey V.; DeLand, Matthew T.; Lean, Judith L.

    2016-12-01

    Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265 and 500 nm during the ongoing cycle 24. We supplement the OMI data with concurrent observations from the Global Ozone Monitoring Experiment-2 (GOME-2) and Solar Radiation and Climate Experiment (SORCE) instruments and find fair-to-excellent, depending on wavelength, agreement among the observations, and predictions of the Naval Research Laboratory Solar Spectral Irradiance (NRLSSI2) and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S) models.

  17. Anne S. Young: Professor and Variable Star Observer Extraordinaire

    NASA Astrophysics Data System (ADS)

    Bracher, Katherine

    2011-05-01

    Anne Sewell Young (1871-1961) was one of the eight original members of the AAVSO, to which she contributed more than 6500 observations over 33 years. She also taught astronomy for 37 years at Mount Holyoke College; among her students was Helen Sawyer Hogg. This paper will look at her life and career both at Mount Holyoke and with the AAVSO.

  18. Comparison of temperature variability in observations and sixteen climate model simulations

    NASA Astrophysics Data System (ADS)

    CMIP Investigators; Bell, J.; Duffy, P.; Covey, C.; Sloan, L.

    2000-01-01

    Understanding how much, if any, of observed climate changes are anthropogenic depends upon understanding the magnitude and spatial patterns of natural climate variability. We have compared simulated surface air temperature (SAT) variability in 16 coupled ocean-atmosphere-sea ice climate model simulations to observed temperature variability. The majority of the simulations exhibit excessive air temperature variability over land while simulated temperature variability over oceans is generally too low. The ratio of variability over land to over oceans is too high in all the simulations, relative to observations. We have identified several factors which may contribute to the differences in temperature variability. In particular, many of the models use ”bucket” land surface schemes which produce greater temperature variability over land, due to lower levels of soil moisture, than more realistic land surface schemes produce.

  19. Comparison of temperature variability in observations and sixteen climate model simulations

    NASA Astrophysics Data System (ADS)

    Bell, J.; Duffy, P.; Covey, C.; Sloan, L.

    2000-01-01

    Understanding how much, if any, of observed climate changes are anthropogenic depends upon understanding the magnitude and spatial patterns of natural climate variability. We have compared simulated surface air temperature (SAT) variability in 16 coupled ocean-atmosphere-sea ice climate model simulations to observed temperature variability. The majority of the simulations exhibit excessive air temperature variability over land while simulated temperature variability over oceans is generally too low. The ratio of variability over land to over oceans is too high in all the simulations, relative to observations. We have identified several factors which may contribute to the differences in temperature variability. In particular, many of the models use "bucket" land surface schemes which produce greater temperature variability over land, due to lower levels of soil moisture, than more realistic land surface schemes produce.

  20. The influence of PMCs on water vapor and drivers behind PMC variability from SOFIE observations

    NASA Astrophysics Data System (ADS)

    Hervig, Mark E.; Siskind, David E.; Bailey, Scott M.; Russell, James M.

    2015-09-01

    Observations from the Solar Occultation For Ice Experiment (SOFIE) are used to quantify relationships between polar mesospheric clouds (PMC) and their environment. Dehydration due to ice growth is found to be greatest ∼1.8 km above the height of peak ice mass density on average, and H2O enhancement due to sublimation is greatest near the bottom of the PMC layer. The dehydration and hydration layers contain a similar amount of H2O, although less than is found in ice layers, a difference that may be due to meridional transport. Because PMCs modify the surrounding water vapor, PMC-H2O relationships can be misleading and recommendations are made for dealing with this issue. The dependence of PMCs on water vapor and temperature was quantified, accounting for the effects of ice on water vapor. The approach examined inter-annual variations and considered the subset of PMCs detected by the Solar Backscatter Ultraviolet (SBUV) instruments, which are less sensitive than SOFIE. Results in the Northern Hemisphere indicate that PMC variations are dominated by temperature, but that a combination of temperature and water vapor provides the best explanation of the observations. In the Southern Hemisphere PMC variability is attributed primarily to temperature, with water vapor playing a minor role. The subset of SBUV PMCs are found to be one third as sensitive to changing temperature as the entire PMC population observed by SOFIE. Finally, an approach is presented which allows temperature and water vapor anomalies to be estimated from various PMC data sets such as SBUV. Using recently reported SBUV PMC trends at 64-74°N latitude with the results of this study indicates a cooling trend of -0.27±0.14 K decade-1 and a water vapor increase of +0.66±0.34% decade-1 (both at 80-84 km). This cooling trend agrees with reports based on observations in the middle atmosphere at similar latitudes. The water vapor increase is lower than expected due to increasing methane, although this

  1. Follow up observations of SDSS and CRTS candidate cataclysmic variables

    SciTech Connect

    Szkody, Paula; Vasquez-Soltero, Stephanie; Everett, Mark E.; Silva, David R.; Howell, Steve B.; Landolt, Arlo U.; Bond, Howard E. E-mail: dsilva@noao.edu E-mail: landolt@rouge.phys.lsu.edu

    2014-10-01

    We present photometry and spectroscopy of 11 and 35 potential cataclysmic variables, respectively, from the Sloan Digital Sky Survey, the Catalina Real-Time Transient Survey, and vsnet alerts. The photometry results include quasi-periodic oscillations during the decline of V1363 Cyg, nightly accretion changes in the likely Polar (AM Herculis binary) SDSS J1344+20, eclipses in SDSS J2141+05 with an orbital period of 76 ± 2 minutes, and possible eclipses in SDSS J2158+09 at an orbital period near 100 minutes. Time-resolved spectra reveal short orbital periods near 80 minutes for SDSS J0206+20, 85 minutes for SDSS J1502+33, and near 100 minutes for CSS J0015+26, RXS J0150+37, SDSS J1132+62, SDSS J2154+15, and SDSS J2158+09. The prominent He II line and velocity amplitude of SDSS J2154+15 are consistent with a Polar nature for this object, while the absence of this line and a low velocity amplitude argue against this classification for RXS J0150+37. Single spectra of 10 objects were obtained near outburst and the rest near quiescence, confirming the dwarf novae nature of these objects.

  2. Observations of SST diurnal variability in the South China Sea

    NASA Astrophysics Data System (ADS)

    Tu, Qianguang; Pan, Delu; Hao, Zengzhou; Chen, Jianyu

    2015-10-01

    In this study, a 3-hourly time resolution gap free sea surface temperature (SST) analysis is generated to resolve the diurnal cycle in the South China Sea (SCS, 0°-25°N, 100°-125°E).It takes advantage of hourly geostationary satellite MTSAT observations and combines three infrared and two microwave polar satellite observations at different local times. First, all the data are classified into eight SST datasets at 3 hour intervals and then remapped to 0.05°resolution grids. A series of critical quality control is done to remove the outliers.Then bias adjustment is applied to the polar satellite observations with reference to the MTSAT data. Finally, the six satellites SST data are blended by using the optimal interpolated algorithm. The 3-hourly blended SST is compared against buoy measurements. It shows a good agreement that the biases do not exceed 0.2 °C and root mean square errors range from 0.5 to 0.65 °C. A typical diurnal cycle similar to sine wave is observed. The minimum SST occurs at around 0600h and warming peak occurring between 1300h and 1500h local solar time and then decrease in the late afternoon, tapering off at night on March 13, 2008 for example. The frequency of diurnal warming events derived from four years of the blended SST provides solid statistics to investigate the seasonal and spatial distributions of the diurnal warming in the SCS. The sea surface diurnal warming tends to appear more easily in spring, especially in the coastal regions than other seasons and the central regions.

  3. Combined optical and X-ray observations of variable stars

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.

    1975-01-01

    Questions concerning the optical identification of X-ray sources are considered. There are now a total of eight optically identified galactic X-ray sources. Of these eight, five are definitely established as binaries. The nature of the other three sources remains unknown. Studies of U Geminorum conducted on the basis of optical and X-ray observations are also discussed. From the upper limit to the accretion rate for U Gem obtained with the aid of soft X-ray data, it is seen that most of the mass flow in U Gem is lost from the system.

  4. Demographic Variables for Wild Asian Elephants Using Longitudinal Observations

    PubMed Central

    de Silva, Shermin; Webber, C. Elizabeth; Weerathunga, U. S.; Pushpakumara, T. V.; Weerakoon, Devaka K.; Wittemyer, George

    2013-01-01

    Detailed demographic data on wild Asian elephants have been difficult to collect due to habitat characteristics of much of the species’ remaining range. Such data, however, are critical for understanding and modeling population processes in this endangered species. We present data from six years of an ongoing study of Asian elephants (Elephas maximus) in Uda Walawe National Park, Sri Lanka. This relatively undisturbed population numbering over one thousand elephants is individually monitored, providing cohort-based information on mortality and reproduction. Reproduction was seasonal, such that most births occurred during the long inter-monsoon dry season and peaked in May. During the study, the average age at first reproduction was 13.4 years and the 50th percentile inter-birth interval was approximately 6 years. Birth sex ratios did not deviate significantly from parity. Fecundity was relatively stable throughout the observed reproductive life of an individual (ages 11–60), averaging between 0.13–0.17 female offspring per individual per year. Mortalities and injuries based on carcasses and disappearances showed that males were significantly more likely than females to be killed or injured through anthropogenic activity. Overall, however, most observed injuries did not appear to be fatal. This population exhibits higher fecundity and density relative to published estimates on other Asian elephant populations, possibly enhanced by present range constriction. Understanding the factors responsible for these demographic dynamics can shed insight on the future needs of this elephant population, with probable parallels to other populations in similar settings. PMID:24376581

  5. Interannual Variability of OLR as Observed by AIRS and CERES

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula I.; Iredell, Lena F.; Loeb, Norman G.

    2012-01-01

    The paper examines spatial anomaly time series of Outgoing Longwave Radiation (OLR) and Clear Sky OLR (OLR(sub CLR)) as determined using observations from CERES Terra and AIRS over the time period September 2002 through June 2011. We find excellent agreement of the two OLR data sets in almost every detail down to the x11deg spatial grid point level. The extremely close agreement of OLR anomaly time series derived from observations by two different instruments implies high stability of both sets of results. Anomalies of global mean, and especially tropical mean, OLR are shown to be strongly correlated with an El Nino index. These correlations explain that the recent global and tropical mean decreases in OLR over the time period studied are primarily the result of a transition from an El Nino condition at the beginning of the data record to La Nina conditions toward the end of the data period. We show that the close correlation of mean OLR anomalies with the El Nino Index can be well accounted for by temporal changes of OLR within two spatial regions, one to the east of, and one to the west of, the NOAA Nino-4 region. Anomalies of OLR in these two spatial regions are both strongly correlated with the El Nino Index as a result of the strong anti-correlation of anomalies of cloud cover and mid-tropospheric water vapor in these two regions with the El Nino Index.

  6. Multi-Decadal Variability in the Bering Sea: A Synthesis of Model Results and Observations from 1948 to the Present

    DTIC Science & Technology

    2013-12-01

    Alaska from 1948–2009. .............................36 Figure 21. H1 case run monthly mean heat content and ice thickness anomalies with 13, 37, and...atmospheric loading, clouds and fronts, ice sheets/ caps , permafrost, river runoff, and air-sea ice -land interactions and coupling (Maslowski et al...are addition of model components for ice sheets, ice caps , mountain glaciers, and dynamic vegetation (Maslowski et al. 2012). The RASM model domain

  7. Interannual Variability of OLR as Observed by AIRS and CERES

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula; Iredell, Lena; Loeb, Norman G.

    2012-01-01

    This paper compares spatial anomaly time series of OLR (Outgoing Longwave Radiation) and OLR(sub CLR) (Clear Sky OLR) as determined using observations from CERES Terra and AIRS over the time period September 2002 through June 2011. Both AIRS and CERES show a significant decrease in global mean and tropical mean OLR over this time period. We find excellent agreement of the anomaly time-series of the two OLR data sets in almost every detail, down to 1 deg X 1 deg spatial grid point level. The extremely close agreement of OLR anomaly time series derived from observations by two different instruments implies that both sets of results must be highly stable. This agreement also validates to some extent the anomaly time series of the AIRS derived products used in the computation of the AIRS OLR product. The paper also examines the correlations of anomaly time series of AIRS and CERES OLR, on different spatial scales, as well as those of other AIRS derived products, with that of the NOAA Sea Surface Temperature (SST) product averaged over the NOAA Nino-4 spatial region. We refer to these SST anomalies as the El Nino Index. Large spatially coherent positive and negative correlations of OLR anomaly time series with that of the El Nino Index are found in different spatial regions. Anomalies of global mean, and especially tropical mean, OLR are highly positively correlated with the El Nino Index. These correlations explain that the recent global and tropical mean decreases in OLR over the period September 2002 through June 2011, as observed by both AIRS and CERES, are primarily the result of a transition from an El Nino condition at the beginning of the data record to La Nina conditions toward the end of the data period. We show that the close correlation of global mean, and especially tropical mean, OLR anomalies with the El Nino Index can be well accounted for by temporal changes of OLR within two spatial regions which lie outside the NOAA Nino-4 region, in which anomalies

  8. A study of temporal variability of clouds in exo-atmospheres using Earth observations as a proxy

    NASA Astrophysics Data System (ADS)

    Kopparla, Pushkar; Zhai, Albert; Zhai, Alice; Su, Hui; Jiang, Jonathan H.; Yung, Yuk Ling

    2015-11-01

    Clouds are strongly linked to the dynamics of the atmosphere, and have been observed to vary over multiple spatial scales and timescales on Earth and the planets: hourly, diurnal, seasonal, interannual and decadal. The study of such variations in exoplanetary atmospheres could only be made through lightly constrained general circulation models (GCMs). In most cases, the exoplanet itself is unresolved from its star and individual cloud patches and their variations cannot be observed. However, temporal and spatial variation of cloud fields can have significant implications for the interpreting the observed phase-curve of the lights from the star-exoplanet system, yet it remains almost wholly unconstrained. To address this issue, we model Earth as an exoplanet, to understand changes in observables due to temporal and spatial variations of clouds by leveraging the rich datasets available for Earth. In particular, the International Satellite Cloud Climatology Project (ISCCP) has compiled cloud observations on Earth in the past three decades, producing a high-resolution dataset. We perform radiative transfer calculations using cloud profiles sampled from this dataset to produce disc integrated brightness and polarization phase curves which map seasonal and interannual cloud variations. This exercise gives us the first (pseudo)-observation based constraints for temporal variability of clouds in exo-atmospheres.

  9. Patterns and Variability in Global Ocean Chlorophyll: Satellite Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Gregg, Watson

    2004-01-01

    Recent analyses of SeaWiFS data have shown that global ocean chlorophyll has increased more than 4% since 1998. The North Pacific ocean basin has increased nearly 19%. These trend analyses follow earlier results showing decadal declines in global ocean chlorophyll and primary production. To understand the causes of these changes and trends we have applied the newly developed NASA Ocean Biogeochemical Assimilation Model (OBAM), which is driven in mechanistic fashion by surface winds, sea surface temperature, atmospheric iron deposition, sea ice, and surface irradiance. The model utilizes chlorophyll from SeaWiFS in a daily assimilation. The model has in place many of the climatic variables that can be expected to produce the changes observed in SeaWiFS data. This enables us to diagnose the model performance, the assimilation performance, and possible causes for the increase in chlorophyll. A full discussion of the changes and trends, possible causes, modeling approaches, and data assimilation will be the focus of the seminar.

  10. Influence of Surface Roughness Spatial Variability and Temporal Dynamics on the Retrieval of Soil Moisture from SAR Observations

    PubMed Central

    Álvarez-Mozos, Jesús; Verhoest, Niko E.C.; Larrañaga, Arantzazu; Casalí, Javier; González-Audícana, María

    2009-01-01

    Radar-based surface soil moisture retrieval has been subject of intense research during the last decades. However, several difficulties hamper the operational estimation of soil moisture based on currently available spaceborne sensors. The main difficulty experienced so far results from the strong influence of other surface characteristics, mainly roughness, on the backscattering coefficient, which hinders the soil moisture inversion. This is especially true for single configuration observations where the solution to the surface backscattering problem is ill-posed. Over agricultural areas cultivated with winter cereal crops, roughness can be assumed to remain constant along the growing cycle allowing the use of simplified approaches that facilitate the estimation of the moisture content of soils. However, the field scale spatial variability and temporal variations of roughness can introduce errors in the estimation of soil moisture that are difficult to evaluate. The objective of this study is to assess the impact of roughness spatial variability and roughness temporal variations on the retrieval of soil moisture from radar observations. A series of laser profilometer measurements were performed over several fields in an experimental watershed from September 2004 to March 2005. The influence of the observed roughness variability and its temporal variations on the retrieval of soil moisture is studied using simulations performed with the Integral Equation Model, considering different sensor configurations. Results show that both field scale roughness spatial variability and its temporal variations are aspects that need to be taken into account, since they can introduce large errors on the retrieved soil moisture values. PMID:22389611

  11. Stable Auroral Red arc occurrences detected by the Pacific Northwest Laboratory photometer network: A decade of observations, 1978--1988

    SciTech Connect

    Slater, D.W.; Kleckner, E.W.

    1989-11-01

    Using data obtained from a network of all-sky scanning photometers designed to operate routinely for long periods of time, a comprehensive inspection of observations covering the time period 1978--1988 has revealed features that we interpret to be Stable Auroral Red (SAR) arcs during 250 nighttime observing periods. These arcs result from high temperature within the ionospheric electron gas that is maintained by slow leakage of energy from the earth's magnetosphere. A listing of these events, the most complete available for this time interval, is presented for the purpose of complementing observations reported for earlier dates. This listing is composed of location of the observing photometer, date, time, photometric intensity, and location (as defined by the earth's magnetic coordinate system). The intent is to make these observations available to a broad range of researchers and thereby initiate further investigations of these features. 22 refs., 3 figs., 2 tabs.

  12. Seasonal variability in global sea level observed with Geosat altimetry

    NASA Technical Reports Server (NTRS)

    Zlotnicki, V.; Fu, L.-L.; Patzert, W.

    1989-01-01

    Time changes in global mesoscale sea level variances were observed with satellite altimetry between November 1986 and March 1988, showing significant, geographically coherent seasonal patterns. The NE Pacific and NE Atlantic variances show the most reliable patterns, higher than their yearly averages in both the fall and winter. The response to wind forcing appears as the major contributor to the NE Pacific and Atlantic signals; errors in the estimated inverse barometer response due to errors in atmospheric pressure, residual orbit errors, and errors in sea state bias are evaluated and found to be negligible contributors to this particular signal. The equatorial regions also show significant seasonal patterns, but the uncertainties in the wet tropospheric correction prevent definitive conclusions. The western boundary current changes are very large but not statistically significant. Estimates of the regression coefficient between sea level and significant wave height, an estimate of the sea state bias correction, range between 2.3 and 2.9 percent and vary with the type of orbit correction applied.

  13. Variability in solar irradiance observed at two contrasting Antarctic sites

    NASA Astrophysics Data System (ADS)

    Petkov, Boyan H.; Láska, Kamil; Vitale, Vito; Lanconelli, Christian; Lupi, Angelo; Mazzola, Mauro; Budíková, Marie

    2016-05-01

    The features of erythemally weighted (EW) and short-wave downwelling (SWD) solar irradiances, observed during the spring-summer months of 2007-2011 at Johann Gregor Mendel (63°48‧S, 57°53‧W, 7 m a.s.l.) and Dome Concordia (75°06‧S, 123°21‧E, 3233 m a.s.l.) stations, placed at the Antarctic coastal region and on the interior plateau respectively, have been analysed and compared to each other. The EW and SWD spectral components have been presented by the corresponding daily integrated values and were examined taking into account the different geographic positions and different environmental conditions at both sites. The results indicate that at Mendel station the surface solar irradiance is strongly affected by the changes in the cloud cover, aerosols and albedo that cause a decrease in EW between 20% and 35%, and from 0% to 50% in SWD component, which contributions are slightly lower than the seasonal SWD variations evaluated to be about 71%. On the contrary, the changes in the cloud cover features at Concordia station produce only a 5% reduction of the solar irradiance, whilst the seasonal oscillations of 94% turn out to be the predominant mode. The present analysis leads to the conclusion that the variations in the ozone column cause an average decrease of about 46% in EW irradiance with respect to the value found in the case of minimum ozone content at each of the stations. In addition, the ratio between EW and SWD spectral components can be used to achieve a realistic assessment of the radiation amplification factor that quantifies the relationship between the atmospheric ozone and the surface UV irradiance.

  14. Final Progress Report: Collaborative Research: Decadal-to-Centennial Climate & Climate Change Studies with Enhanced Variable and Uniform Resolution GCMs Using Advanced Numerical Techniques

    SciTech Connect

    Fox-Rabinovitz, M; Cote, J

    2009-06-05

    The joint U.S-Canadian project has been devoted to: (a) decadal climate studies using developed state-of-the-art GCMs (General Circulation Models) with enhanced variable and uniform resolution; (b) development and implementation of advanced numerical techniques; (c) research in parallel computing and associated numerical methods; (d) atmospheric chemistry experiments related to climate issues; (e) validation of regional climate modeling strategies for nested- and stretched-grid models. The variable-resolution stretched-grid (SG) GCMs produce accurate and cost-efficient regional climate simulations with mesoscale resolution. The advantage of the stretched grid approach is that it allows us to preserve the high quality of both global and regional circulations while providing consistent interactions between global and regional scales and phenomena. The major accomplishment for the project has been the successful international SGMIP-1 and SGMIP-2 (Stretched-Grid Model Intercomparison Project, phase-1 and phase-2) based on this research developments and activities. The SGMIP provides unique high-resolution regional and global multi-model ensembles beneficial for regional climate modeling and broader modeling community. The U.S SGMIP simulations have been produced using SciDAC ORNL supercomputers. Collaborations with other international participants M. Deque (Meteo-France) and J. McGregor (CSIRO, Australia) and their centers and groups have been beneficial for the strong joint effort, especially for the SGMIP activities. The WMO/WCRP/WGNE endorsed the SGMIP activities in 2004-2008. This project reflects a trend in the modeling and broader communities to move towards regional and sub-regional assessments and applications important for the U.S. and Canadian public, business and policy decision makers, as well as for international collaborations on regional, and especially climate related issues.

  15. Evidence For Decadal and Century Scale Climate and Oceanic Variability in the Guaymas Basin, Gulf of California, Over the Last Millenium

    NASA Astrophysics Data System (ADS)

    Pineda, L.; Ravelo, A. C.; Aiello, I. W.; Stewart, Z.; Sauthoff, W.

    2015-12-01

    Linda Pineda1Ana Christina Ravelo2Ivano Aiello3Zach Stewart2Wilson Sauthoff2 Earth and Planetary Sciences Department, UCSC Ocean Sciences Department, UCSC Moss Landing Marine Lab Natural climate change affects coastal water resources, human land use, and marine biological productivity. In particular, the seasonal migration of the Intertropical Convergence Zone (ITCZ) is influenced by changes in global-scale temperature and pressure gradients and is responsible for spatial changes in summertime rainfall in Mesoamerica impacting regional water resources and the strength of upwelling. In October 2014, aboard the Research Vessel El Puma, a 3.9 meter long core (G14-P12) was recovered from the Northeast flank of the Guaymas Basin in the Gulf of California within the oxygen minimum zone (27˚52.11'N, 111˚41.51'W, water depth of 677m) to investigate changes in seasonal upwelling and Central Mexico rainfall over the last ~1000 years. The age model was developed using Pb210, C14 and lamination counting. The time interval includes the Little Ice Age and the Medieval Warm Period. Biological productivity and precipitation proxy records were produced using an X-Ray Fluorescence (XRF) core-scanner and a color line scanner to generate a record of bulk chemistry and color reflectance. The records indicate marked decadal and centennial scale variability in the lithologic composition of the sediment superimposed on millimeter-scale variability that reflects the presence of seasonally laminated sediments. Nitrogen isotopic and nitrogen weight % measurements were used, in combination with the scanned data, to interpret changes in nitrate utilization and biological productivity. These new records will have broad implications on the link between regional coastal environmental conditions in the Gulf of California and global climate change.

  16. Observations of changes in the dissolved CO2 system in the North Sea, in four summers of the 2001-2011 decade

    NASA Astrophysics Data System (ADS)

    Clargo, Nicola; Salt, Lesley; Thomas, Helmuth; de Baar, Hein

    2015-04-01

    Since the industrial revolution, atmospheric concentrations of carbon dioxide (CO2) have risen dramatically, largely due to the combustion of fossil fuels, changes in land-use patterns and the production of cement. The oceans have absorbed a large amount of this CO2, with resulting impacts on ocean chemistry. Coastal seas play a significant role in the mitigation of anthropogenic atmospheric CO2 as they contribute approximately 10-30% of global primary productivity despite accounting for only 7% of the surface area. The North Sea is a perfect natural laboratory in which to study the CO2 system as it consists of two biogeochemically distinct regions displaying both oceanic and relatively coastal behaviour. It has also been identified as a continental shelf pump with respect to CO2, transporting it to the deeper waters of the North Atlantic. Large scale forcing has been shown to have a significant impact on the CO2 system over varying time scales, often masking the effects of anthropogenic influence. Here, we present data from the North Sea spanning the 2001-2011 decade. In order to investigate the dynamics of the dissolved CO2 system in this region in the face of climate change, four basin-wide cruises were conducted during the summers of 2001, 2005, 2008 and 2011. The acquired Dissolved Inorganic Carbon (DIC) and alkalinity data were then used to fully resolve the carbon system in order to assess trends over the 2001-2011 decade. We find significant interannual variability, but with a consistent, notable trend in decreasing pH. We found that surface alkalinity remained relatively constant over the decade, whereas DIC increased, indicating that the pH decline is DIC-driven. We also found that the partial pressure of CO2 (pCO2) increased faster than concurrent atmospheric CO2 concentrations, and that the CO2 buffering capacity of the North Sea decreased over the decade, with implications for future CO2 uptake.

  17. Use of Machine Learning Techniques for Iidentification of Robust Teleconnections to East African Rainfall Variability in Observations and Models

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Franklin R.; Funk, Chris

    2014-01-01

    Providing advance warning of East African rainfall variations is a particular focus of several groups including those participating in the Famine Early Warming Systems Network. Both seasonal and long-term model projections of climate variability are being used to examine the societal impacts of hydrometeorological variability on seasonal to interannual and longer time scales. The NASA / USAID SERVIR project, which leverages satellite and modeling-based resources for environmental decision making in developing nations, is focusing on the evaluation of both seasonal and climate model projections to develop downscaled scenarios for using in impact modeling. The utility of these projections is reliant on the ability of current models to capture the embedded relationships between East African rainfall and evolving forcing within the coupled ocean-atmosphere-land climate system. Previous studies have posited relationships between variations in El Niño, the Walker circulation, Pacific decadal variability (PDV), and anthropogenic forcing. This study applies machine learning methods (e.g. clustering, probabilistic graphical model, nonlinear PCA) to observational datasets in an attempt to expose the importance of local and remote forcing mechanisms of East African rainfall variability. The ability of the NASA Goddard Earth Observing System (GEOS5) coupled model to capture the associated relationships will be evaluated using Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations.

  18. Variability of trace gas concentrations over Asian region: satellite observations vs model

    NASA Astrophysics Data System (ADS)

    Sheel, Varun; Richter, Andreas; Srivastava, Shuchita; Lal, Shyam

    2012-07-01

    Nitrogen dioxide (NO_2) and Carbon Monoxide (CO) play a key role in the chemistry of the tropospheric ozone and are emitted mainly by anthropogenic processes. These emissions have been increasing over Asia over the past few years due to rapid economic growth and yet there are very few systematic ground based observations of these species over this region. We have analysed ten years of data from space borne instruments: Global Ozone Monitoring Experiment (GOME), SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) and Measurements of Pollution in the Troposphere (MOPITT), which have been measuring the tropospheric abundance of these trace gases. We have examined trends over the period 1996-2008 in NO_2 and CO over a few Indian regions where high economic growth in the present decade is likely to see increased emissions for these species. However, even the highest growth rate of these species seen in the present study, is less when compared with similar polluted regions of China, where a much more rapid increase has been observed. In order to understand the trends and variability in atmospheric trace gas concentrations, one must take into account changes in emissions and transport. Only by assessing the relevance of each of these factors will it be possible to predict future changes with reasonable confidence. To this effect we have used a global chemical transport model, MOZART, to simulate concentrations of NO_2 and CO using the POET (European) and REAS (Asian) emission inventories. These are compared with satellite measurements to study seasonal variations and the discrepancies are discussed. The combined uncertainties of the emission inventory and retrieval of the satellite data could be contributing factors to the discrepancies. It may be thus worthwhile to develop emission inventories for India at a higher resolution to include local level activity data.

  19. Spatial Variability of Trace Gases During DISCOVER-AQ: Planning for Geostationary Observations of Atmospheric Composition

    NASA Technical Reports Server (NTRS)

    Follette-Cook, Melanie B.; Pickering, K.; Crawford, J.; Appel, W.; Diskin, G.; Fried, A.; Loughner, C.; Pfister, G.; Weinheimer, A.

    2015-01-01

    Results from an in-depth analysis of trace gas variability in MD indicated that the variability in this region was large enough to be observable by a TEMPO-like instrument. The variability observed in MD is relatively similar to the other three campaigns with a few exceptions: CO variability in CA was much higher than in the other regions; HCHO variability in CA and CO was much lower; MD showed the lowest variability in NO2All model simulations do a reasonable job simulating O3 variability. For CO, the CACO simulations largely under over estimate the variability in the observations. The variability in HCHO is underestimated for every campaign. NO2 variability is slightly overestimated in MD, more so in CO. The TX simulation underestimates the variability in each trace gas. This is most likely due to missing emissions sources (C. Loughner, manuscript in preparation).Future Work: Where reasonable, we will use these model outputs to further explore the resolvability from space of these key trace gases using analyses of tropospheric column amounts relative to satellite precision requirements, similar to Follette-Cook et al. (2015).

  20. Two decades of historical phenology observations of African tropical tree species: exploring the past to predict the futur

    NASA Astrophysics Data System (ADS)

    Hufkens, K.; Kosmala, M.; Ewango, C.; Richardson, A. D.; Beeckman, H.

    2015-12-01

    African tropical forests cover ~630 million ha, store up to 66 Pg of carbon and represent a significant carbon sink (0.34Pg C yr-1 ). As such African tropical forests provide an important negative feedback to the global carbon cycle. Unlike temperate forests, tropical forests lack sharp temperature and photoperiod cues to constrain phenology and growth. Therefore, events such as seasonal leaf abscission and reproductive life cycles are often driven by changes in water availability. With future climate predictions expecting a warmer, and especially drier tropical Africa, it is likely we will see concomitant changes in tree growth and phenology.As tropical trees show a high degree of phenological plasticity depending on the severity of the dry season, intermittent water stress or the location of an individual in the canopy structure. As such, frequent and long term observations are key to characterize tropical tree phenology. Here I use two long term historical phenology records of weekly observations, some digitized within the context of a citizen science project (http://junglerhythms.org/), to explore differences in tree phenology between two sites (Luki and Yangambi, DR Congo) with contrasting climate regimes within the Congo basin. I describe variation in leaf, flower and fruit phenology across similar species at both locations in relation to complementary historical climatological observations. I further discuss the potential implications of changing phenology under future climate conditions as phenological changes could alter both ecosystem demography and growing season length providing important feedbacks to the climate system.

  1. Ozone and temperature decadal responses to solar variability in the stratosphere and lower mesosphere, based on measurements from SABER on TIMED

    NASA Astrophysics Data System (ADS)

    Huang, Frank T.; Mayr, Hans G.; Russell, James M., III; Mlynczak, Martin G.

    2016-09-01

    We have derived ozone and temperature responses to solar variability over a solar cycle, from 2002 to 2014 at 20-60 km and 48° S-48° N, based on data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite. Simultaneous results for ozone and temperature with this kind of spatial coverage have not been previously available, and they provide the opportunity to study correlations between ozone and temperature responses. In previous studies, there has not been general agreement on the details or, at times, even the broad behavior of the responses to decadal solar variability. New results from a different dataset should supply new information on this important and interesting subject. A multiple regression is applied to obtain responses as a function of the solar 10.7 cm flux. Positive responses mean that they are larger at solar maximum than at solar minimum of the solar cycle. Both ozone and temperature responses are found be positive or negative, depending on location. Generally, from ˜ 25 to 60 km, the ozone and temperature responses are mostly out of phase (negatively correlated) with each other as a function of solar variability, with some exceptions in the lower altitudes. These negative correlations are maintained even though the individual ozone (temperature) responses can change signs as a function of altitude and latitude, because the corresponding temperature (ozone) responses change signs in step with each other. From ˜ 50 to 60 km, ozone responses are relatively small, varying from ˜ -1 to ˜ 2 % 100 sfu-1 (solar flux units), while temperature responses can approach ˜ 2 °K 100 sfu-1. From ˜ 25 to ˜ 40 km, the ozone responses have become mostly positive at all latitudes and approach a maximum of ˜ 5 % 100 sfu-1 near the Equator and ˜ 30-35 km. In contrast, at low latitudes, the temperature responses have become negative but also

  2. Decadal- to biennial scale variability of planktic foraminifera in the northeastern Arabian Sea during the last two millennia: evidence for winter monsoon forcing mechanisms

    NASA Astrophysics Data System (ADS)

    Munz, Philipp; Lückge, Andreas; Siccha, Michael; Kucera, Michal; Schulz, Hartmut

    2015-04-01

    The Asian monsoon system is controlling the hydrologic cycle, and thus the agricultural and economic prosperity of the worlds most densely populated region. Strong and moisture-laden winds from the southwest induce upwelling and significant productivity in the western Arabian Sea during boreal summer. During boreal winter, weaker dry and cold surface winds from the northeast nourish ocean productivity mainly in the northeastern Arabian Sea. Instrumental records spanning the last century are too short to understand how the monsoon system reacts to external forcing mechanisms and to accurately determine its natural variability. Compared to the summer monsoon component, the dynamics of the winter monsoon are virtually unknown, due to the lack of adequate archives that are affected only by winter conditions. Here we present a decadal- to biennial-scale resolution record of past winter monsoon variability over the last two millennia, based on census counts of planktic foraminifera from two laminated sediment cores collected offshore Pakistan. One shorter box core (SO90-39KG) spans the last 250 years with an average ~2-year resolution, whereas the longer piston core (SO130-275KL) spans the last 2,100 years with a 10-year resolution. We use Globigerina falconensis as a faunal indicator for winter conditions, a species that is most abundant during winter in the NE Arabian Sea (Peeters and Brummer, 2002; Schulz et al., 2002). Our results show that during the past 2,100 years G. falconensis varied with significant periodicities centered on ˜ 60, ˜ 53, ˜ 40, ˜ 34 and ˜ 29 years per cycle. Some of these periods closely match cycles that are known from proxy records of solar irradiance, suggesting a solar forcing on winter monsoon variability. During the past 250 years G. falconensis varied in correlation with the (11-year) Schwabe and the (22-year) Hale solar cycles. Furthermore, a significant ˜ 7 year cyclicity could indicate a teleconnection to the El Niño Southern

  3. New HST observations of Io's time-variable UV aurora: Probing Io's magma ocean and neutral and plasma environment

    NASA Astrophysics Data System (ADS)

    Roth, L.; Saur, J.; Retherford, K. D.; Strobel, D. F.; Feldman, P. D.; Bloecker, A.; Ivchenko, N.; Kullen, A.

    2014-12-01

    We report on new Space Telescope Imaging Spectrograph (STIS) observations of Io's oxygen and sulfur UV aurora obtained during two visits with the Hubble Space Telescope (HST) in December 2013 and January 2014. Io's aurora was monitored over a full variation cycle of the Jovian magnetic field to map the temporal behavior of the bright auroral spots. The aurora oscillates around the equator roughly in correlation with the time-variable orientation of the local magnetic field of Jupiter. Magnetic field perturbations near Io measured by the Galileo spacecraft were proposed to originate from induction in an electrically conductive global magma ocean. If magnetic induction modifies Io's local magnetic field environment, it will also alter the time-variable morphology of the aurora. We analyze the observed aurora variability and compare it to theoretically predicted spot morphologies for different magma ocean properties. Additionally, we compare the global O and S aurora morphology and brightness in the new observations to a large set of previous STIS images taken over a decade ago between 1997 and 2001 and investigate long-term changes of Io's neutral and plasma environment.

  4. Spatial-temporal characteristics of lake level change in Tibet and Qinghai from two decades of altimeter observations

    NASA Astrophysics Data System (ADS)

    Cheng, Y. S.; Hwang, C.; Huang, C. Y.; Kao, R.; Han, J.

    2015-12-01

    Lake levels in the Tibet and Qinghai Plateaus provide valuable records for climate change studies. Most lakes here are hard to access, having only few lake level gauges that give in situ measurements of changes in lake level and area. Remote sensing sensors, such as satellite imagery and satellite altimetry, are able to measure lake level variations with a dense spatial coverage and with a high temporal resolution. In this study, we use the TOPEX/Poseidon series of satellite altimeters (TP, Jason-1 and -2, 1992-2014) to observe lake level variations at 23 lakes along their repeat ground tracks every 10 days. We also use the Envisat altimeter (2002-2008) to observe lake levels in three lakes of Qinghai at an interval of 35 days. We use subwaveform retracking to improve the ranging precisions of satellite altimeters. We employ an optimal processing technique to obtain quality measurements, including outlier detection, space-time reduction of measurements to a common reference point, and optimal filtering. Jason-1 fails to deliver height measurements over most of the lakes. The waveforms are classified to ensure observations with a sufficiently good quality. Over 1992-2014, the lake levels of most lakes in eastern Tibet rose, while the lake levels in western Tibet dropped. In Qinghai, the lake levels dropped before 2005 and then rose afterwards, suggesting a sharp climate change in 2005, or that the measure to protect the Qinghai ecosystem (e.g., reducing livestocks) started to take effect in 2005. In general, the overall pattern of lake change in Tibet and Qinghai is related to the variation of the Indian monsoons and locations of lakes. Most lake levels show clear annual and inter-annual oscillations. In some lakes, the amplitudes of annual variation in the TP era (1992-2002) were large and then turned smaller in the Jason-2 era (2008-2014). In some lakes, the annual amplitudes were reversed between the TP and Jason-2 eras. Also, some lakes show phase shifts in the

  5. Observational constraints on pulsars: Location of the emission region and pulse shape stability on decade time scales

    SciTech Connect

    Blaskiewicz, M.M.

    1991-01-01

    Twenty years after their discovery, many basic problems in pulsar physics remain unsolved. Plasma flow patterns along with the associated radio emission and energy loss mechanisms remain a mystery. The dynamical behavior of the neutron star spin rate has been explored via timing analyses but the presence of precession or wandering of the spin axis remain largely unconstrained. The possibility of surface activity such as plate tectonics or volcanism remains open. Observational limits are placed on these phenomena. An introduction is given to pulsars, with an emphasis on the aspects relevant to the remainder of the thesis. The implications of polar cap models are explored within the context of special relativity. Under fairly general conditions, it is found that the suppositions of polar cap models imply a time delay between the centroids of the intensity waveform and the polarization profile with the polarization profile lagging the intensity waveform.

  6. Reconstruction of past oceanographic variability in Southeast Greenland from marine sedimentary records: The influence from the Atlantic Multi-decadal Oscillation

    NASA Astrophysics Data System (ADS)

    Hansen, M. J.; Andresen, C. S.; Seidenkrantz, M.-S.; Kuijpers, A.; Nørgaard-Pedersen, N.

    2012-04-01

    The Greenland ice sheet is one of the most significant water contributors to the rising global sea level, and therefore there are concerns about its long term stability. However, prediction of its contribution to global sea-level rise is complicated by lack of knowledge about mechanisms behind ice sheet change. In particular ice streams and their interaction with components of the atmospheric and oceanic climate system needs further investigation in order to make realistic models of future sea level rise. The SEDIMICE project ('Linking sediments with ice-sheet response and glacier retreat in Southeast Greenland') investigates past outlet glacier fluctuations in Southeast Greenland. The aim is to extend the knowledge from observational time series further back in time by analysing sediment cores retrieved from fjords by outlet glaciers and from the shelf. This presentation is based on results from a core retrieved near Sermilik Fjord by Helheim Glacier. The past 6000 years of Irminger water variability on the shelf has been reconstructed by analysing sediments from a side-bassin to the through connecting Sermilik fjord with the Irminger Sea. This reconstruction shows the Late-Holocene climate deterioration and is superimposed by a centennial-scale climate variability, which at times concurs with the climate records obtained for Northwest Europe. A wavelet analysis of the high-resolution K/Ti data (indicating grainsize variability) shows that the AMO (50-70 yr quasi-periodicity) recurrently controls Irminger water variability on the shelf. These results highlight the importance of adequate representation of regional climate modes in prognostic ice-sheet models.

  7. Regional modeling reveals summer precipitation trend signals over the European Alps consistent with trends observed in recent decades

    NASA Astrophysics Data System (ADS)

    Giorgi, Filippo; Torma, Csaba; Coppola, Erika

    2015-04-01

    We analyze an ensemble of high resolution regional climate model (RCM) projections for the 21st century (RCP8.5 scenario) over the European Alps from the EURO-CORDEX and MED-CORDEX experiments. We find that, while the driving global models project a reduction in future summer precipitation over the region, the RCM ensemble project an increase in precipitation over the highest elevations of the Alpine chain. This positive precipitation change signal is associated with an increase of convective precipitation driven by increased potential instability induced by high elevation surface heating. An analysis of observed summer precipitation trends over the region during the historical period 1975-2004 shows a precipitation trend signal consistent with the late 21st century RCM projections and with the RCM-simulated late 20th century trends. These multiple lines of evidence challenge the picture of a decreasing summer precipitation change signal over the Alps found in most GCM projections and point to the added value of high resolution RCMs in providing future climate information over mountainous regions.

  8. The American Association of Variable Star Observers as a Professional-Amateur Astronomical Community of practice

    NASA Astrophysics Data System (ADS)

    Kafka, Stella; 6173540484

    2016-06-01

    The AAVSO was formed in 1911 as a group of US-based amateur observers obtaining data in support of professional astronomy projects. Now, it has evolved into an International Organization with members and observers in all continents, contributing photometry to a public database of about 22,000 variable objects. I will present main aspects of the association and how it has evolved with time to a premium resource for variable star research. I will also discuss current projects and opportunities for Professional-Amateur collaborations within the AAVSO, building a stronger international community of variable star observers!

  9. Nearly a Decade of CALIPSO Observations of Asian and Saharan Dust Properties Near Source and Transport Regions

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Liu, Z.; Tackett, J.; Vaughan, M.; Trepte, C.; Winker, D.; H. Yu,

    2015-01-01

    The lidar on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, makes robust measurements of dust and has generated a length of record that is significant both seasonally and inter-annually. We exploit this record to determine a multi-year climatology of the properties of Asian and Saharan dust, in particular seasonal optical depths, layer frequencies, and layer heights of dust gridded in accordance with the Level 3 data products protocol, between 2006-2015. The data are screened using standard CALIPSO quality assurance flags, cloud aerosol discrimination (CAD) scores, overlying features and layer properties. To evaluate the effects of transport on the morphology, vertical extent and size of the dust layers, we compare probability distribution functions of the layer integrated volume depolarization ratios, geometric depths and integrated attenuated color ratios near the source to the same distributions in the far field or transport region. CALIPSO is collaboration between NASA and Centre National D'études Spatiales (CNES), was launched in April 2006 to provide vertically resolved measurements of cloud and aerosol distributions. The primary instrument on the CALIPSO satellite is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a near-nadir viewing two-wavelength polarization-sensitive instrument. The unique nature of CALIOP measurements make it quite challenging to validate backscatter profiles, aerosol type, and cloud phase, all of which are used to retrieve extinction and optical depth. To evaluate the uncertainty in the lidar ratios, we compare the values computed from dust layers overlying opaque water clouds, considered nominal, with the constant lidar ratio value used in the CALIOP algorithms for dust. We also explore the effects of noise on the CALIOP retrievals at daytime by comparing the distributions of the properties at daytime to the nighttime distributions.

  10. Nearly a Decade of CALIPSO Observations of Asian and Saharan Dust Properties near Source and Transport Regions

    NASA Astrophysics Data System (ADS)

    Omar, A. H.; Tackett, J. L.; Liu, Z.; Vaughan, M. A.; Trepte, C. R.; Winker, D. M.; Yu, H.

    2015-12-01

    The lidar on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, makes robust measurements of dust and has generated a length of record that is significant both seasonally and inter-annually. We exploit this record to determine a multi-year climatology of the properties of Asian and Saharan dust, in particular seasonal optical depths, layer frequencies, and layer heights of dust gridded in accordance with the Level 3 data products protocol between 2006 and 2015. The data are screened using standard CALIPSO quality assurance flags, cloud aerosol discrimination (CAD) scores, overlying features and layer properties. To evaluate the effects of transport on small-scale phenomena such as morphology, vertical extent and size of the dust layers, we compare probability distribution functions of the layer integrated volume depolarization ratios, geometric depths and integrated attenuated color ratios near the source to the same distributions in the far field or transport region. CALIPSO is collaboration between NASA and Centre National d'Études Spatiales (CNES), was launched in April 2006 to provide vertically resolved measurements of cloud and aerosol distributions. The primary instrument on the CALIPSO satellite is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a near-nadir viewing two-wavelength polarization-sensitive instrument. The unique nature of CALIOP measurements make it quite challenging to validate backscatter profiles, aerosol type, and cloud phase, all of which are used to retrieve extinction and optical depth. To evaluate the uncertainty in the lidar ratios, we compare the values computed from dust layers overlying opaque water clouds, considered nominal, with the constant lidar ratio value used in the CALIOP algorithms for dust. We also explore the effects of noise on the CALIOP retrievals at daytime by comparing the distributions of the properties at daytime to the nighttime distributions.

  11. Source Parameter Inversion for Recent Great Earthquakes from a Decade-long Observation of Global Gravity Fields

    NASA Technical Reports Server (NTRS)

    Han, Shin-Chan; Riva, Ricccardo; Sauber, Jeanne; Okal, Emile

    2013-01-01

    We quantify gravity changes after great earthquakes present within the 10 year long time series of monthly Gravity Recovery and Climate Experiment (GRACE) gravity fields. Using spherical harmonic normal-mode formulation, the respective source parameters of moment tensor and double-couple were estimated. For the 2004 Sumatra-Andaman earthquake, the gravity data indicate a composite moment of 1.2x10(exp 23)Nm with a dip of 10deg, in agreement with the estimate obtained at ultralong seismic periods. For the 2010 Maule earthquake, the GRACE solutions range from 2.0 to 2.7x10(exp 22)Nm for dips of 12deg-24deg and centroid depths within the lower crust. For the 2011 Tohoku-Oki earthquake, the estimated scalar moments range from 4.1 to 6.1x10(exp 22)Nm, with dips of 9deg-19deg and centroid depths within the lower crust. For the 2012 Indian Ocean strike-slip earthquakes, the gravity data delineate a composite moment of 1.9x10(exp 22)Nm regardless of the centroid depth, comparing favorably with the total moment of the main ruptures and aftershocks. The smallest event we successfully analyzed with GRACE was the 2007 Bengkulu earthquake with M(sub 0) approx. 5.0x10(exp 21)Nm. We found that the gravity data constrain the focal mechanism with the centroid only within the upper and lower crustal layers for thrust events. Deeper sources (i.e., in the upper mantle) could not reproduce the gravity observation as the larger rigidity and bulk modulus at mantle depths inhibit the interior from changing its volume, thus reducing the negative gravity component. Focal mechanisms and seismic moments obtained in this study represent the behavior of the sources on temporal and spatial scales exceeding the seismic and geodetic spectrum.

  12. Observed Multi-Decade DD and DT Z-Pinch Fusion Rate Scaling in 5 Dense Plasma Focus Fusion Machines

    SciTech Connect

    Hagen, E. C.; Lowe, D. R.; O'Brien, R.; Meehan, B. T.

    2013-06-18

    Dense Plasma Focus (DPF) machines are in use worldwide or a wide variety of applications; one of these is to produce intense, short bursts of fusion via r-Z pinch heating and compression of a working gas. We have designed and constructed a series of these, ranging from portable to a maximum energy storage capacity of 2 MJ. Fusion rates from 5 DPF pulsed fusion generators have been measured in a single laboratory using calibrated activation detectors. Measured rates range from ~ 1015 to more than 1019 fusions per second have been measured. Fusion rates from the intense short (20 – 50 ns) periods of production were inferred from measurement of neutron production using both calibrated activation detectors and scintillator-PMT neutron time of flight (NTOF) detectors. The NTOF detectors are arranged to measure neutrons versus time over flight paths of 30 Meters. Fusion rate scaling versus energy and current will be discussed. Data showing observed fusion cutoff at D-D fusion yield levels of approximately 1*1012, and corresponding tube currents of ~ 3 MA will be shown. Energy asymmetry of product neutrons will also be discussed. Data from the NTOF lines of sight have been used to measure energy asymmetries of the fusion neutrons. From this, center of mass energies for the D(d,n)3He reaction are inferred. A novel re-entrant chamber that allows extremely high single pulse neutron doses (> 109 neutrons/cm2 in 50 ns) to be supplied to samples will be described. Machine characteristics and detector types will be discussed.

  13. Decadal-scale Climate Variability on the Central Iranian Plateau Spanning the So-called 4.2 ka BP Drought Event

    NASA Astrophysics Data System (ADS)

    Carolin, S.; Walker, R. T.; Henderson, G. M.; Maxfield, L.; Ersek, V.; Sloan, A.; Talebian, M.; Fattahi, M.; Nezamdoust, J.

    2015-12-01

    The influence of climate on the growth and development of ancient civilizations throughout the Holocene remains a topic of heated debate. The 4.2 ka BP global-scale mid-to-low latitude aridification event (Walker et al., 2012) in particular has incited various correlation proposals. Some authors suggest that this event may have led to the collapse of the Akkadian empire in Mesopotamia, one of the first empires in human history, as well as to changes among other Early Bronze Age societies dependent on cereal agriculture (eg. Staubwasser and Weiss, 2006). Other authors remain doubtful of the impact of environmental factors on the collapse of past societies (eg. Middleton, 2012). While coincident timing of an environmental event with archeological evidence does not necessitate a causation, a comprehensive understanding of climate variability in the ancient Near East is nonetheless an essential component to resolving the full history of early human settlements. Paleoclimate data on the Central Iranian Plateau, a region rich with ancient history, is exceptionally sparse compared to other areas. Many karst locations are found throughout the region, however, setting the stage for the development of several high-resolution, accurate and precisely-dated climate proxy records if a correlation between the chemistry of semi-arid speleothem samples and climate is resolved. Here we present a 5.1-3.7 ka BP record of decadal-scale stalagmite stable isotope and trace metal variability. The stalagmite was collected in Gol-e zard cave (35.8oN, 52.0oE), ~100 km NE of Tehran on the southern flank of the Alborz mountain range (2530masl). The area currently receives ~270mm mean annual precipitation, with more than 90% of precipitation falling within the wet season (November-May). We use GNIP data from Tehran and local and regional meteorological data to resolve the large-scale mechanisms forcing isotopic variations in rainwater over Gol-e zard cave. We discuss possible transformation of

  14. Temporal and Spatial Variability of Ross polynya using Multi-Satellite Observations

    NASA Astrophysics Data System (ADS)

    Park, J.; Jo, Y. H.

    2014-12-01

    Polynyas are particularly vulnerable to not only local environmental changes, but also global climate changes through air-sea-ice interactions. In order to understand the large scales of its interactions, a temporal and spatial variation of polynyas and, areas of open water in the middle of ice shelf, around the Antarctica were analyzed based on remote sensing measurements. Especially, the polynya in the Ross Sea (Ross polynya) was analyzed, which was the largest on among the all of them around the Antarctica for last decades. Accordingly, the main purpose of this presentation is to (1) evaluate a variability of Ross polynya spatial and temporal characteristics and (2) address relationship between spatial polynya variability and global warming effect. In order to conduct research the observations from the Advanced Microwave Scanning Radiometer-EOS (AMAR-E) were used. The products (SST, wind speed, cloud vapor, atmospheric water vapor and rain rate), including sea ice extent, are from June 2002 to October 2011. Additionally, Gravity Recovery and Climate Experiment (GRACE) data sets were used to estimate mass changes in adjacent ice sheet affected by local atmospheric condition. Based on the nine year's data, research results suggest that Ross polynya normally started to appear around the end of December and persist for about 77.5 days. The extent of Ross polynya in 2011 is the largest and had a tendency to increase year after year. SST in adjacent sea has slightly decreased for the same period (as 0.054◦C yr-1) due to the melting ice and variation of wind, water vapor and rain rate are 0.054 m s-1 yr-1, -0.027 mm yr-1 and 0.001 mm hr-1 yr-1, respectively. Increase land mass in the west-southern Antarctica could be the result of accumulating snow which is made of vapor induced by extended polynya. In addition, we would conduct to evaluate a correlation with characteristics of other global and local components corresponding climate change and understand that how the

  15. Spatial variability of the dose rate from (137)Cs fallout in settlements in Russia and Belarus more than two decades after the Chernobyl accident.

    PubMed

    Bernhardsson, C; Rääf, C L; Mattsson, S

    2015-11-01

    Radionuclides from the 1986 Chernobyl accident were released and dispersed during a limited period of time, but under widely varying weather conditions. As a result, there was a high geographical variation in the deposited radioactive fallout per unit area over Europe, depending on the released composition of fission products and the weather during the 10 days of releases. If the plume from Chernobyl coincided with rain, then the radionuclides were unevenly distributed on the ground. However, large variations in the initial fallout also occurred locally or even on a meter scale. Over the ensuing years the initial deposition may have been altered further by different weathering processes or human activities such as agriculture, gardening, and decontamination measures. Using measurements taken more than two decades after the accident, we report on the inhomogeneous distribution of the ground deposition of the fission product (137)Cs and its influence on the dose rate 1 m above ground, on both large and small scales (10ths of km(2) - 1 m(2)), in the Gomel-Bryansk area close to the border between Belarus and Russia. The dose rate from the deposition was observed to vary by one order of magnitude depending on the size of the area considered, whether human processes were applied to the surface or not, and on location specific properties (e.g. radionuclide migration in soil).

  16. Decadal-scale variability of diffuse CO2 emissions and seismicity revealed from long-term monitoring (1995-2013) at Mammoth Mountain, California, USA

    NASA Astrophysics Data System (ADS)

    Werner, Cynthia; Bergfeld, Deborah; Farrar, Christopher D.; Doukas, Michael P.; Kelly, Peter J.; Kern, Christoph

    2014-12-01

    Mammoth Mountain, California, is a dacitic volcano that has experienced several periods of unrest since 1989. The onset of diffuse soil CO2 emissions at numerous locations on the flanks of the volcano began in 1989-1990 following an 11-month period of heightened seismicity. CO2 emission rates were measured yearly from 1995 to 2013 at Horseshoe Lake (HSL), the largest tree kill area on Mammoth Mountain, and measured intermittently at four smaller degassing areas around Mammoth from 2006 to 2013. The long-term record at HSL shows decadal-scale variations in CO2 emissions with two peaks in 2000-2001 and 2011-2012, both of which follow peaks in seismicity by 2-3 years. Between 2000 and 2004 emissions gradually declined during a seismically quiet period, and from 2004 to 2009 were steady at ~ 100 metric tonnes per day (t d- 1). CO2 emissions at the four smaller tree-kill areas also increased by factors of 2-3 between 2006 and 2011-2012, demonstrating a mountain-wide increase in degassing. Delays between the peaks in seismicity and degassing have been observed at other volcanic and hydrothermal areas worldwide, and are thought to result from an injection of deep CO2-rich fluid into shallow subsurface reservoirs causing a pressurization event with a delayed transport to the surface. Such processes are consistent with previous studies at Mammoth, and here we highlight (1) the mountain-wide response, (2) the characteristic delay of 2-3 years, and (3) the roughly decadal reoccurrence interval for such behavior. Our best estimate of total CO2 degassing from Mammoth Mountain was 416 t d- 1 in 2011 during the peak of emissions, over half of which was emitted from HSL. The cumulative release of CO2 between 1995 and 2013 from diffuse emissions is estimated to be ~ 2-3 Mt, and extrapolation back to 1989 gives ~ 4.8 Mt. This amount of CO2 release is similar to that produced by the mid-sized (VEI 3) 2009 eruption of Redoubt Volcano in Alaska (~ 2.3 Mt over 11 months), and

  17. Developing priority variables ("ecosystem Essential Ocean Variables" - eEOVs) for observing dynamics and change in Southern Ocean ecosystems

    NASA Astrophysics Data System (ADS)

    Constable, Andrew J.; Costa, Daniel P.; Schofield, Oscar; Newman, Louise; Urban, Edward R.; Fulton, Elizabeth A.; Melbourne-Thomas, Jessica; Ballerini, Tosca; Boyd, Philip W.; Brandt, Angelika; de la Mare, Willaim K.; Edwards, Martin; Eléaume, Marc; Emmerson, Louise; Fennel, Katja; Fielding, Sophie; Griffiths, Huw; Gutt, Julian; Hindell, Mark A.; Hofmann, Eileen E.; Jennings, Simon; La, Hyoung Sul; McCurdy, Andrea; Mitchell, B. Greg; Moltmann, Tim; Muelbert, Monica; Murphy, Eugene; Press, Anthony J.; Raymond, Ben; Reid, Keith; Reiss, Christian; Rice, Jake; Salter, Ian; Smith, David C.; Song, Sun; Southwell, Colin; Swadling, Kerrie M.; Van de Putte, Anton; Willis, Zdenka

    2016-09-01

    Reliable statements about variability and change in marine ecosystems and their underlying causes are needed to report on their status and to guide management. Here we use the Framework on Ocean Observing (FOO) to begin developing ecosystem Essential Ocean Variables (eEOVs) for the Southern Ocean Observing System (SOOS). An eEOV is a defined biological or ecological quantity, which is derived from field observations, and which contributes significantly to assessments of Southern Ocean ecosystems. Here, assessments are concerned with estimating status and trends in ecosystem properties, attribution of trends to causes, and predicting future trajectories. eEOVs should be feasible to collect at appropriate spatial and temporal scales and are useful to the extent that they contribute to direct estimation of trends and/or attribution, and/or development of ecological (statistical or simulation) models to support assessments. In this paper we outline the rationale, including establishing a set of criteria, for selecting eEOVs for the SOOS and develop a list of candidate eEOVs for further evaluation. Other than habitat variables, nine types of eEOVs for Southern Ocean taxa are identified within three classes: state (magnitude, genetic/species, size spectrum), predator-prey (diet, foraging range), and autecology (phenology, reproductive rate, individual growth rate, detritus). Most candidates for the suite of Southern Ocean taxa relate to state or diet. Candidate autecological eEOVs have not been developed other than for marine mammals and birds. We consider some of the spatial and temporal issues that will influence the adoption and use of eEOVs in an observing system in the Southern Ocean, noting that existing operations and platforms potentially provide coverage of the four main sectors of the region - the East and West Pacific, Atlantic and Indian. Lastly, we discuss the importance of simulation modelling in helping with the design of the observing system in the long

  18. Amplitude Variability in gamma Dor and delta Sct Stars Observed by Kepler

    SciTech Connect

    Guzik, Joyce Ann; Kosak, Mary Katherine; Bradley, Paul Andrew; Jackiewicz, Jason

    2015-08-17

    The NASA Kepler spacecraft data revealed a large number of new multimode nonradially pulsating gamma Dor and delta Sct variable stars. The Kepler high-precision long time-series photometry makes it possible to study amplitude variations of the frequencies, and recent literature on amplitude and frequency variations in nonradially pulsating variables is summarized. Several methods are applied to study amplitude variability in about a dozen gamma Doradus or delta Scuti candidate variable stars observed for several quarters as part of the Kepler Guest Observer program. The magnitude and timescale of the amplitude variations are discussed, along with the presence or absence of correlations between amplitude variations for different frequencies of a given star. Proposed causes of amplitude spectrum variability that will require further investigation are also discussed.

  19. Cassini UVIS Observations of the Io Plasma Torus. 3; Observations of Temporal and Azimuthal Variability

    NASA Technical Reports Server (NTRS)

    Steffl, A. J.; Delamere, P. A.; Bagenal, F.

    2006-01-01

    In this third paper in a series presenting observations by the Cassini Ultraviolet Imaging Spectrometer (UVIS) of the Io plasma torus, we show remarkable, though subtle, spatio-temporal variations in torus properties. The Io torus is found to exhibit significant, near sinusoidal variations in ion composition as a functions of azimuthal position. The azimuthal variation in composition is such that the mixing ratio of S II us strongly correlated with the mixing ratio of S III and the equatorial electron density and strongly anti-correlated with the mixing ratios of both S IV and O II and the equatorial electron temperature. Surprisingly, the azimuthal variation in ion composition is observed to have a period of 10.07 h -- 1.5% longer than the System III rotation period of Jupiter, yet 1.3% shorter than the System UV period defined by [Brown, M. E., 1995. J. Geophys. Res. 100, 21683-21696]. Although the amplitude of the azimuthal variation of S III and O II remained in the range of 2-5%, the amplitude of the S II and S IV compositional variation ranged between 5 and 25% during the UVIS observations. Furthermore, the amplitude of the azimuthal variations of S II and S IV appears to be modulated by its location in System III longitude, such that when the region of maximum S II mixing ration (minimum S IV mixing ratio) is aligned with a System III longitude of 200 deg +/-, the amplitude is a factor of 4 greater than when the variation is anti-aligned. This behavior can explain numerous, often apparently contradictory, observations of variations in the properties of the Io plasma torus with the System III and System IV coordinate systems.

  20. The American Association of Variable Star Observers: Serving the Research Community in 2010 and Beyond

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.; Henden, A. A.; Davis, K.; Kinne, R.; Watson, C.; Saladyga, M.; Waagen, E.; Beck, S.; Menali, G.; Price, A.; Turner, R.

    2010-05-01

    The American Association of Variable Star Observers (AAVSO) holds the largest single online database of variable star data in the world, collected from thousands of amateur and professional observers during the past century. One of our core missions is to preserve and distribute these data to the research community in service to the science of variable star astronomy. But as an organization, the AAVSO is much more than a data archive. Our services to the research community include: monitoring for and announcement of major astronomical events like novae and supernovae; organization and management of observing campaigns; support for satellite and other TOO observing programs by the professional community; creation of comparison star sequences and generation of charts for the observer community; and observational and other support for the amateur, professional, and educator communities in all things related to variable stars. As we begin a new century of variable star astronomy we invite you to take advantage of the services the AAVSO can provide, and to become a part of our organization yourselves. In this poster, we highlight some of the most important services the AAVSO can provide to the professional research community, as well as suggest ways in which your research may be enhanced with support from the AAVSO.

  1. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Giomi, Matteo; Gerard, Lucie; Maier, Gernot

    2016-07-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the variability properties of the sources, as compared to strategies that concentrate the observing time in a small number of large observing windows. Although derived using CTA as an example, our conclusions are conceptually valid for any IACTs facility, and in general, to all observatories with small field of view and limited duty cycle.

  2. Inter-observer Variability of Clinical Criteria in Nursing Home Residents with Suspected UTI

    PubMed Central

    Juthani-Mehta, Manisha; Tinetti, Mary; Perrelli, Eleanor; Towle, Virginia; Van Ness, Peter H.; Quagliarello, Vincent

    2009-01-01

    We determined the inter-observer variability of clinical criteria for urinary tract infection (UTI) in nursing home residents. Pairs of nursing home staff caring for thirty residents were interviewed at times of suspected UTI. At least one measure from each clinical criteria category was reliably observed by nursing home staff members. PMID:18419369

  3. Observations of candidate oscillating eclipsing binaries and two newly discovered pulsating variables

    NASA Astrophysics Data System (ADS)

    Liakos, A.; Niarchos, P.

    2009-03-01

    CCD observations of 24 eclipsing binary systems with spectral types ranging between A0-F0, candidate for containing pulsating components, were obtained. Appropriate exposure times in one or more photometric filters were used so that short-periodic pulsations could be detected. Their light curves were analyzed using the Period04 software in order to search for pulsational behaviour. Two new variable stars, namely GSC 2673-1583 and GSC 3641-0359, were discov- ered as by-product during the observations of eclipsing variables. The Fourier analysis of the observations of each star, the dominant pulsation frequencies and the derived frequency spectra are also presented.

  4. Variable Stars Observed in the Galactic Disk by AST3-1 from Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Wang, Lingzhi; Ma, Bin; Li, Gang; Hu, Yi; Fu, Jianning; Wang, Lifan; Ashley, Michael C. B.; Cui, Xiangqun; Du, Fujia; Gong, Xuefei; Li, Xiaoyan; Li, Zhengyang; Liu, Qiang; Pennypacker, Carl R.; Shang, Zhaohui; Yuan, Xiangyan; York, Donald G.; Zhou, Jilin

    2017-03-01

    AST3-1 is the second-generation wide-field optical photometric telescope dedicated to time-domain astronomy at Dome A, Antarctica. Here, we present the results of an i-band images survey from AST3-1 toward one Galactic disk field. Based on time-series photometry of 92,583 stars, 560 variable stars were detected with i magnitude ≤16.5 mag during eight days of observations; 339 of these are previously unknown variables. We tentatively classify the 560 variables as 285 eclipsing binaries (EW, EB, and EA), 27 pulsating variable stars (δ Scuti, γ Doradus, δ Cephei variable, and RR Lyrae stars), and 248 other types of variables (unclassified periodic, multiperiodic, and aperiodic variable stars). Of the eclipsing binaries, 34 show O’Connell effects. One of the aperiodic variables shows a plateau light curve and another variable shows a secondary maximum after peak brightness. We also detected a complex binary system with an RS CVn-like light-curve morphology; this object is being followed-up spectroscopically using the Gemini South telescope.

  5. ROSAT all-sky survey observations of X-ray variability in cool giant stars

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard; Schmitt, J. H. M. M.

    1994-01-01

    We have identified 24 active late-type giant stars, including 11 RS CVn systems, with soft X-ray count rates high enough to allow the detection of statistically significant variability on a Roentgen Satellite (ROSAT) orbital timescale (96 minutes) as observed by the Position Sensitive Proportional Counter (PSPC) during the all-sky survey. Our sensitivity typically lies in the range of 10% - 25%, depending on the source count rate. Comparison is made to the daily, nonflare solar soft X-ray variability as observed by the Solrad satellites during solar minimum in 1969 and solar maximum in 1975. Seven of the 24 stars show significant variability; in two of these cases (HR 3922 and HR 8448) major flares were observed in which the peak count rate is enhanced by at least a factor of 3 above quiescent. While HR 3922 (G5 III) is not (yet) classified as an RS CVn star, its flare is more energetic (3 x 10(exp 31) ergs/s) than previously observed RS CVn flares. The apparently single giant HR 8167 (G8 III) also shows two flares. While one might expect to find an anticorrelation between saturated coronae and variability, we find no evidence of this: the two stars in our sample with the highest ratio of f(sub x)/f(sub v) both show variability. We also point out that Capella (G6 III + F9 III) is one of the stars manifesting variability.

  6. Interannual variability in the atmosphere-biosphere CO2 exchange as simulated by a process-based model for the last decades

    NASA Astrophysics Data System (ADS)

    Ito, A.

    2001-05-01

    Atmosphere-biosphere CO2 exchange induces not only seasonal oscillation but also interannual change in the atmospheric CO2 concentration. Actually, in 1998, atmospheric CO2 concentration increased at a remarkably high rate, while the growth rate was apparently depressed in 1992 and 1993. Elucidating whether these anomalies were attributable to the ocean or the terrestrial biosphere is an important challenge for carbon cycle researchers. In this study, a process-based model of terrestrial carbon dynamics (Sim-CYCLE) was constructed and used to simulate the terrestrial carbon balance for the period from 1953 to 1999. Climatic variables related to ecosystem processes were derived from the U.S NCEP/NCAR-reanalysis data (T62 spatial resolution), and the Matthews's biome map was adopted. The atmospheric CO2 fertilization effect during the experimental period was also considered in the simulation analysis. Sim-CYCLE includes five carbon compartments (leaves, stems, roots, litter, and humus), and calculates fluxes among them at a monthly step, with taking environmental regulations into account. Accordingly, I could obtain a time-series of net carbon budget, i.e. net ecosystem production (NEP), on the global scale. Through the experimental period, global annual NEP exhibited a considerable interannual variability ranging from +2.0 Pg C in 1971 to ?2.5 Pg C in 1998 (SD 1.1 Pg C yr-1). Tropical ecosystems were most responsible for the interannual variability, especially in such ENSO years as 1973, 1983, and 1998. The estimated NEP anomalies were negatively correlated with surface temperature anomaly, due to the high sensitivity of respiration and decomposition to temperature. Thus, it is inferred that higher temperatures induced by the strong 1997-98 ENSO event would lead to extra CO2 emission and consequently the largest negative NEP anomaly. The estimated responsiveness of terrestrial carbon budget seems enough large to cause anomalies in atmospheric CO2 concentration

  7. The observed day-to-day variability of Mars water vapor

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.; Lapointe, Michael R.; Zurek, Richard W.

    1987-01-01

    The diurnal variability of atmospheric water vapor as derived from the Viking MAWD data is discussed. The detection of day to day variability of atmospheric water would be a significant finding since it would place constraints on the nature of surface reservoirs. Unfortunately, the diurnal variability seen by the MAWD experiment is well correlated with the occurrence of dust and/or ice hazes, making it difficult to separate real variations from observational effects. Analysis of the day to day variability of water vapor in the Martian atmosphere suggests that the observations are, at certain locations and seasons, significantly affected by the presence of water-ice hazes. Because such effects are generally limited to specific locations, such as Tharsis, Lunae Planum, and the polar cap edge during the spring, the seasonal and latitudinal trends in water vapor that have been previously reported are not significantly affected.

  8. Report on the Photometric Observations of the Variable Stars DH Pegasi, DY Pegasi, and RZ Cephei

    NASA Astrophysics Data System (ADS)

    Abu-Sharkh, I.; Fang, S.; Mehta, S.; Pham, D.

    2014-12-01

    We report 872 observations on two RR Lyrae variable stars, DH Pegasi and RZ Cephei, and on one SX Phoenicis variable, DY Pegasi. This paper discusses the methodology of our measurements, the light curves, magnitudes, epochs, and epoch prediction of the above stars. We also derived the period of DY Pegasi. All measurements and analyses are compared with prior publications and known values from multiple databases.

  9. Variability and evolution of the midlatitude stratospheric aerosol budget from 22 years of ground-based lidar and satellite observations

    NASA Astrophysics Data System (ADS)

    Khaykin, Sergey M.; Godin-Beekmann, Sophie; Keckhut, Philippe; Hauchecorne, Alain; Jumelet, Julien; Vernier, Jean-Paul; Bourassa, Adam; Degenstein, Doug A.; Rieger, Landon A.; Bingen, Christine; Vanhellemont, Filip; Robert, Charles; DeLand, Matthew; Bhartia, Pawan K.

    2017-02-01

    The article presents new high-quality continuous stratospheric aerosol observations spanning 1994-2015 at the French Observatoire de Haute-Provence (OHP, 44° N, 6° E) obtained by two independent, regularly maintained lidar systems operating within the Network for Detection of Atmospheric Composition Change (NDACC). Lidar series are compared with global-coverage observations by Stratospheric Aerosol and Gas Experiment (SAGE II), Global Ozone Monitoring by Occultation of Stars (GOMOS), Optical Spectrograph and InfraRed Imaging System (OSIRIS), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and Ozone Mapping Profiling Suite (OMPS) satellite instruments, altogether covering the time span of OHP lidar measurements. Local OHP and zonal-mean satellite series of stratospheric aerosol optical depth are in excellent agreement, allowing for accurate characterization of stratospheric aerosol evolution and variability at northern midlatitudes during the last 2 decades. The combination of local and global observations is used for a careful separation between volcanically perturbed and quiescent periods. While the volcanic signatures dominate the stratospheric aerosol record, the background aerosol abundance is found to be modulated remotely by the poleward transport of convectively cleansed air from the deep tropics and aerosol-laden air from the Asian monsoon region. The annual cycle of background aerosol at midlatitudes, featuring a minimum during late spring and a maximum during late summer, correlates with that of water vapor from the Aura Microwave Limb Sounder (MLS). Observations covering two volcanically quiescent periods over the last 2 decades provide an indication of a growth in the nonvolcanic component of stratospheric aerosol. A statistically significant factor of 2 increase in nonvolcanic aerosol since 1998, seasonally restricted to late summer and fall, is associated with the influence of the Asian monsoon and growing pollution therein.

  10. Towards the Prediction of Decadal to Centennial Climate Processes in the Coupled Earth System Model

    SciTech Connect

    Liu, Zhengyu; Kutzbach, J.; Jacob, R.; Prentice, C.

    2011-12-05

    In this proposal, we have made major advances in the understanding of decadal and long term climate variability. (a) We performed a systematic study of multidecadal climate variability in FOAM-LPJ and CCSM-T31, and are starting exploring decadal variability in the IPCC AR4 models. (b) We develop several novel methods for the assessment of climate feedbacks in the observation. (c) We also developed a new initialization scheme DAI (Dynamical Analogue Initialization) for ensemble decadal prediction. (d) We also studied climate-vegetation feedback in the observation and models. (e) Finally, we started a pilot program using Ensemble Kalman Filter in CGCM for decadal climate prediction.

  11. Observed inter-camera variability of clinically relevant performance characteristics for Siemens Symbia gamma cameras.

    PubMed

    Kappadath, S Cheenu; Erwin, William D; Wendt, Richard E

    2006-11-28

    We conducted an evaluation of the intercamera (i.e., between cameras) variability in clinically relevant performance characteristics for Symbia gamma cameras (Siemens Medical Solutions, Malvern, PA) based on measurements made using nine separate systems. The significance of the observed intercamera variability was determined by comparing it to the intracamera (i.e., within a single camera) variability. Measurements of performance characteristics were based on the standards of the National Electrical Manufacturers Association and reports 6, 9, 22, and 52 from the American Association of Physicists in Medicine. All measurements were performed using 99mTc (except 57Co used for extrinsic resolution) and low-energy, high-resolution collimation. Of the nine cameras, four have crystals 3/8 in. thick and five have crystals 5/8 in. thick. We evaluated intrinsic energy resolution, intrinsic and extrinsic spatial resolution, intrinsic integral and differential flood uniformity over the useful field-of-view, count rate at 20% count loss, planar sensitivity, single-photon emission computed tomography (SPECT) resolution, and SPECT integral uniformity. The intracamera variability was estimated by repeated measurements of the performance characteristics on a single system. The significance of the observed intercamera variability was evaluated using the two-tailed F distribution. The planar sensitivity of the gamma cameras tested was found be variable at the 99.8% confidence level for both the 3/8-in. and 5/8-in. crystal systems. The integral uniformity and energy resolution were found to be variable only for the 5/8-in. crystal systems at the 98% and 90% confidence level, respectively. All other performance characteristics tested exhibited no significant variability between camera systems. The measured variability reported here could perhaps be used to define nominal performance values of Symbia gamma cameras for planar and SPECT imaging.

  12. High Speed Optical Observations of Cataclysmic Variables: FL Ceti, BY Cam, and DQ Her

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Gomez, S.; Robinson, E. L.; Andronov, I. L.; Gonzalez, R. I.

    2013-01-01

    We present photometric data on three cataclysmic variables. Broad-band CCD observations of FL Ceti, BY Cam, and DQ Her were obtained with 1-3s integrations at the Otto Struve, 2.1m, Telescope of McDonald Observatory. High speed optical photometry reveals details in these cataclysmic variables not possible using longer time integrations. In FL Ceti, the shortest period eclipsing polar known, the eclipse of two separate well localized accretion regions is resolved. In BY Cam and DQ Her, the spin period of the white dwarf is revealed. We discuss model constrains provided by these observations.

  13. 9.5 Million Variable Star Observations Coming to You by 2005!

    NASA Astrophysics Data System (ADS)

    Waagen, E. O.; Mattei, J. A.

    2003-12-01

    The American Association of Variable Star Observers (AAVSO) is in the midst of an exciting two-year project, thanks to a grant from NASA, to validate and make public over 9.5 million mostly visual observations of over 4,900 variable and suspected variable stars contributed to the AAVSO International Database by amateur astronomers around the world since 1911. The data are being released as the project progresses. They may be accessed around the clock via the AAVSO webpage www.aavso.org/data/download. Validated data are provided electronically to the researcher automatically; a request for unvalidated data is automatically channeled to AAVSO technical staff for fulfillment on a priority basis set by the requester. Why is validation of the data necessary? The AAVSO is committed to providing to the astronomical community optical variable star data of the highest quality and dependability. To ensure this level of data reliability, incoming observations must be assessed in the context of other observations of the same star made at the same time to be sure they accurately represent both the observers' observations and the optical behavior of the star. When the AAVSO disseminates data on a star, the researcher can rest assured that the AAVSO has performed this assessment. Clearly discrepant observations are not disseminated, but they are kept in the database; no observation is ever discarded except at the express request of the observer. Examples are given of the longterm optical datasets - many spanning 90 years or more - that are becoming available to the astronomical community through this project, as well as areas of application for AAVSO data, including multiwavelength data correlation, stellar evolution studies, and theoretical model testing. The services the AAVSO offers to the astronomical and educational communities are also described. The AAVSO gratefully acknowledges NASA grant NAG5-12602 for providing funding for the AAVSO Data Validation Project.

  14. Bayesian Techniques for Comparing Time-dependent GRMHD Simulations to Variable Event Horizon Telescope Observations

    NASA Astrophysics Data System (ADS)

    Kim, Junhan; Marrone, Daniel P.; Chan, Chi-Kwan; Medeiros, Lia; Özel, Feryal; Psaltis, Dimitrios

    2016-12-01

    The Event Horizon Telescope (EHT) is a millimeter-wavelength, very-long-baseline interferometry (VLBI) experiment that is capable of observing black holes with horizon-scale resolution. Early observations have revealed variable horizon-scale emission in the Galactic Center black hole, Sagittarius A* (Sgr A*). Comparing such observations to time-dependent general relativistic magnetohydrodynamic (GRMHD) simulations requires statistical tools that explicitly consider the variability in both the data and the models. We develop here a Bayesian method to compare time-resolved simulation images to variable VLBI data, in order to infer model parameters and perform model comparisons. We use mock EHT data based on GRMHD simulations to explore the robustness of this Bayesian method and contrast it to approaches that do not consider the effects of variability. We find that time-independent models lead to offset values of the inferred parameters with artificially reduced uncertainties. Moreover, neglecting the variability in the data and the models often leads to erroneous model selections. We finally apply our method to the early EHT data on Sgr A*.

  15. Sea Surface Salinity Variability from Simulations and Observations: Preparing for Aquarius

    NASA Technical Reports Server (NTRS)

    Jacob, S. Daniel; LeVine, David M.

    2010-01-01

    Oceanic fresh water transport has been shown to play an important role in the global hydrological cycle. Sea surface salinity (SSS) is representative of the surface fresh water fluxes and the upcoming Aquarius mission scheduled to be launched in December 2010 will provide excellent spatial and temporal SSS coverage to better estimate the net exchange. In most ocean general circulation models, SSS is relaxed to climatology to prevent model drift. While SST remains a well observed variable, relaxing to SST reduces the range of SSS variability in the simulations (Fig.1). The main objective of the present study is to simulate surface tracers using a primitive equation ocean model for multiple forcing data sets to identify and establish a baseline SSS variability. The simulated variability scales are compared to those from near-surface argo salinity measurements.

  16. The Variability and Spectrum of NGC 4051 from Deep, Simultaneous EUVE and XTE Observations

    NASA Technical Reports Server (NTRS)

    Fruscione, Antonella; Cagnoni, Ilaria; Papadakis, Iossif; McHardy, Ian

    1998-01-01

    We present timing and spectral analysis of the data collected by the Extreme Ultraviolet Explorer Satellite (EUVE) for the Seyfert 1 galaxy NGC 4051 during 1996. NGC 4051 was observed twice in May 1996 and again in December 1996 for a total of more than 200 ksec. The observations were always simultaneous with hard X-ray observations conducted with the X-Ray Timing Explorer (XTE). The EUVE light curves are extremely variable during each observation, with the maximum variability during May 1996 when we registered changes by a factor of 21 over 8 hours and more than a factor of 24 variations from peak to minimum. We detected signal in the EUVE spectrograph in the 75-100 Arange which is well fitted by absorbed power law models. We will illustrate the results of our spectral and detailed power spectrum analysis for the simultaneous EUVE and XTE spectra and light curves and discuss the consequences on possible emission mechanisms.

  17. Seasonal to Decadal Variations of Water Vapor in the Tropical Lower Stratosphere Observed with Balloon-Borne Cryogenic Frost Point Hygrometers

    NASA Technical Reports Server (NTRS)

    Fujiwara, M.; Voemel, H.; Hasebe, F.; Shiotani, M.; Ogino, S.-Y.; Iwasaki, S.; Nishi, N.; Shibata, T.; Shimizu, K.; Nishimoto, E.; ValverdeCanossa, J. M.; Selkirk, H. B.; Oltmans, S. J.

    2010-01-01

    We investigated water vapor variations in the tropical lower stratosphere on seasonal, quasi-biennial oscillation (QBO), and decadal time scales using balloon-borne cryogenic frost point hygrometer data taken between 1993 and 2009 during various campaigns including the Central Equatorial Pacific Experiment (March 1993), campaigns once or twice annually during the Soundings of Ozone and Water in the Equatorial Region (SOWER) project in the eastern Pacific (1998-2003) and in the western Pacific and Southeast Asia (2001-2009), and the Ticosonde campaigns and regular sounding at Costa Rica (2005-2009). Quasi-regular sounding data taken at Costa Rica clearly show the tape recorder signal. The observed ascent rates agree well with the ones from the Halogen Occultation Experiment (HALOE) satellite sensor. Average profiles from the recent five SOWER campaigns in the equatorial western, Pacific in northern winter and from the three Ticosonde campaigns at Costa Rica (10degN) in northern summer clearly show two effects of the QBO. One is the vertical displacement of water vapor profiles associated with the QBO meridional circulation anomalies, and the other is the concentration variations associated with the QBO tropopause temperature variations. Time series of cryogenic frost point hygrometer data averaged in a lower stratospheric layer together with HALOE and Aura Microwave Limb Sounder data show the existence of decadal variations: The mixing ratios were higher and increasing in the 1990s, lower in the early 2000s, and probably slightly higher again or recovering after 2004. Thus linear trend analysis is not appropriate to investigate the behavior of the tropical lower stratospheric water vapor.

  18. Decadal changes in downward shortwave radiation from a satellite-derived CM SAF product and ground-based observations over Europe

    NASA Astrophysics Data System (ADS)

    Sanchez-Lorenzo, Arturo; Wild, Martin; Trentmann, Jörg; Enriquez-Alonso, Aaron; Pfeifroth, Uwe; Manara, Veronica

    2016-04-01

    Trends of downward shortwave radiation (DSR) from high-spatial resolution satellite-derived data over Europe since 1983 are first presented based on a Satellite Application Facility on Climate Monitoring (CM SAF) surface radiation data set, which is derived from the Meteosat geostationary satellites. The results show a widespread brightening in the major part of Europe, especially since the mid-1990s and in springtime. There is a mean increase of SSR of around 2 Wm-2 per decade over the whole Europe, which, taking into account that the satellite-derived product lacks of aerosol variations, can be related to a decrease in the cloud radiative effects over Europe. The reported increase in SSR is slightly lower than the obtained using high-quality ground-based series over Europe. Secondly, residual series have been derived as the result of the difference between ground-based and satellite-derived all-sky SSR data. The residual mean series points to a significant increase during the period 1983-2010, with higher rates of around 2 Wm-2 per decade over central and eastern Europe. The spatial variation of these residual time series seem to be in line with observed clear-sky SSR and anthropogenic aerosol loading trends and are not just explained by inhomogeneities in the satellite-derived product. This increase in the residual series is mainly due to a strong increase from the mid-1980s to the late 1990s, thus possibly linked to a decrease in anthropogenic emissions and a recovery from the El Chichón and Pinatubo volcanic eruptions.

  19. Multi-decadal shoreline changes on Takú Atoll, Papua New Guinea: Observational evidence of early reef island recovery after the impact of storm waves

    NASA Astrophysics Data System (ADS)

    Mann, Thomas; Westphal, Hildegard

    2016-03-01

    Hurricanes, tropical cyclones and other high-magnitude events are important steering mechanisms in the geomorphic development of coral reef islands. Sandy reef islands located outside the storm belts are strongly sensitive to the impact of occasional high-magnitude events and show abrupt, commonly erosive geomorphic change in response to such events. Based on the interpretation of remote sensing data, it is well known that the process of landform recovery might take several decades or even longer. However, despite the increasing amount of scientific attention towards short- and long-term island dynamics, the lack of data and models often prevent a robust analysis of the timing and nature of recovery initiation. Here we show how natural island recovery starts immediately after the impact of a high-magnitude event. We analyze multi-temporal shoreline changes on Takú Atoll, Papua New Guinea and combine our findings with a unique set of published field observations (Smithers and Hoeke, 2014). Trends of shoreline change since 1943 and changes in planform island area indicate a long-term accretionary mode for most islands. Apparent shoreline instability is detected for the last decade of analysis, however this can be explained by the impact of storm waves in December 2008 that (temporarily?) masked the long-term trend. The transition from negative to positive rates of change in the aftermath of this storm event is indicative of inherent negative feedback processes that counteract short-term changes in energy input and represent the initiation of island recovery. Collectively, our results support the concept of dynamic rather than static reef islands and clearly demonstrate how short-term processes can influence interpretations of medium-term change.

  20. Observations of entrainment and time variability in the HH 47 jet

    NASA Technical Reports Server (NTRS)

    Hartigan, Patrick; Morse, Jon A.; Heathcote, Steve; Cecil, Gerald

    1993-01-01

    We present new Fabry-Perot images of the HH 47 jet that show the first clear evidence for entrainment in a jet from a young star. The material in the jet moves faster down the axis of the flow and slower at the edges, similar to viscous flow in a pipe. The higher excitation lines occur along the edges of the jet, as expected if entrainment accelerates and heats the ambient material. We confirm previous observations of multiple bow shocks in this system. Together, time variability and entrainment produce much of the observed shock-excited gas in this object. Our data show that the 'wiggles' along the jet are not caused by jet material tied to a spiraling magnetic field, but instead result from time variability, variable ejection angles, or inhomogeneities in the flow. The gas entrained in the HH 47 jet may be atomic; our results do not provide direct evidence that stellar jets drive molecular outflows.

  1. TAOS Project: Searching for Variable Stars in the Selected TAOS Fields and Optical Followup Observations

    NASA Astrophysics Data System (ADS)

    Ngeow, Chow Choong; Chang, D.; Pan, K.; Chung, T.; Koptelova, E.; TAOS Collaboration

    2010-05-01

    The Taiwan-American Occultation Survey (TAOS) project is aimed to find Kuiper Belt Objects (KBO) and measure their size distribution using the occultation technique. The TAOS project employed four 20-inch wide-field (F/1.9, 3 degree-squared FOV) telescopes, equipped with a 2K x 2K CCD, to simultaneously monitor the same patch of the sky. All four TAOS telescopes, which can be operated automatically, were located at the Lulin Observatory in central Taiwan. The TAOS project has been continuously taking data since 2005. In addition of finding KBO, the dense sampling strategy employed in TAOS can also be used to find variable stars. We report the search of variable stars from selected TAOS fields at this Meeting. For example, we found about 50 candidate variables (out of 2600 stars) in TAOS 60 Field (RA: 04h48m00s, DEC: +20d46m20s, with limiting magnitudes about15 mag. at S/N=10), including three previously known variables, using sigma deviation and Stetson's J-index methods. The available data in this field spanned about 150 days in time. However, TAOS observations were conducted using a customized filter. We therefore initiated a followup program to observe and construct the light curves of these candidate variables in the BVRI bands, using the Lulin's One-Meter telescope, Lulin's SLT telescope (16-inch aperture) and 32-inch telescope from the Tenagra II Observatory. The multi-band optical followup observation will help in improving the classification of these candidates, estimate their BVRI mean magnitudes, colors as well as extinction. This will enable a wide range of research in astrophysics for these variables. We also present our preliminary results based on the first season of the followup observations. CCN acknowledges the support from NSC 98-2112-M-008-013-MY3.

  2. FUSE Observations of Stellar Wind Variability in {Sk -67°166}

    NASA Astrophysics Data System (ADS)

    Fullerton, A. W.; Massa, D. L.; Howarth, I. D.; Owocki, S. P.; Prinja, R. K.; Willis, A. J.

    2000-12-01

    We present results from an 18-day campaign to monitor stellar wind variability in {Sk -67°166} (HDE 269698), an O4 If+ star in the Large Magellanic Cloud, with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. Optical depth enhancements that progress from blue to red through the absorption trough are prominent in all unsaturated P Cygni profiles, particularly the resonance doublets of {S 4} and {P 5}. Related variability is evident in the resonance lines of {S 6} and {O 6}. The variations are qualitatively similar to those observed in the {Si 4} wind lines of the Galactic supergiant ζ Puppis [O4 I(n)f] during a 16-day monitoring campaign with IUE. However, the FUSE observations contain more diagnostic information about the nature of the structures responsible for the observed variability. In particular, the relative amplitudes of the variations in {S 4} and {S 6} provide the first empirical constraint on the ionization equilibrium of these structures in an O star wind, while the variability of {O 6} traces the distribution of very hot gas. This work is based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by the Johns Hopkins University under NASA contract NAS5-32985.

  3. Understanding the Long-Term Spectral Variability of Cygnus X-1 from BATSE and ASM Observations

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Poutanen, Juri; Paciesas, William S.; Wen, Linqing; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present a spectral analysis of observations of Cygnus X-1 by the RXTE/ASM (1.5-12 keV) and CGRO/BATSE (20-300 keV), including about 1200 days of simultaneous data. We find a number of correlations between intensities and hardnesses in different energy bands from 1.5 keV to 300 keV. In the hard (low) spectral state, there is a negative correlation between the ASM 1.5-12 keV flux and the hardness at any energy. In the soft (high) spectral state, the ASM flux is positively correlated with the ASM hardness (as previously reported) but uncorrelated with the BATSE hardness. In both spectral states, the BATSE hardness correlates with the flux above 100 keV, while it shows no correlation with the flux in the 20-100 keV range. At the same time, there is clear correlation between the BATSE fluxes below and above 100 keV. In the hard state, most of the variability can be explained by softening the overall spectrum with a pivot at approximately 50 keV. The observations show that there has to be another, independent variability pattern of lower amplitude where the spectral shape does not change when the luminosity changes. In the soft state, the variability is mostly caused by a variable hard (Comptonized) spectral component of a constant shape superimposed on a constant soft blackbody component. These variability patterns are in agreement with the dependence of the rms variability on the photon energy in the two states. We interpret the observed correlations in terms of theoretical Comptonization models. In the hard state, the variability appears to be driven mostly by changing flux in seed photons Comptonized in a hot thermal plasma cloud with an approximately constant power supply. In the soft state, the variability is consistent with flares of hybrid, thermal/nonthermal, plasma with variable power above a stable cold disk. Also, based on broadband pointed observations simultaneous with those of the ASM and BATSE, we find the intrinsic bolometric luminosity increases by a

  4. The Trend in the Observation of Legacy Long Period Variable Stars (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Dudley, R.

    2015-06-01

    (Abstract only) A decrease in the number of observers of the Legacy Long Period Variable Stars has been noted by the AAVSO. Amongst the observing community there is the perception that observers collecting digital data is making up for this gap. Data from the annual President's report (2002-2013) and the AAVSO International Data Base for the years 1993, 2003, and 2013 were analyzed. For the period of 2002 to 2013 the total number of observers remained fairly constant (816 ± 97) with a large bump in 2011. The number of observations has slowly declined since 2007 though there has recently been an increase in the number of observations. From the AID data the number of observations reached a maximum in 2003 and has slowly declined afterwards. These trends as well as other information gleamed from the data will be present and discussed.

  5. Observations of variability of TeV gamma-ray blazars

    NASA Astrophysics Data System (ADS)

    Feng, Qi

    The boom in ground-based gamma-ray astronomy since the beginning of the 21st century has enabled a new probe of the universe using very-high-energy photons. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is an array of four 12-m imaging Cherenkov telescopes that is sensitive to gamma rays in the energy range between ~100 GeV and ~30 TeV. Among all known TeV sources, blazars, a particular type of active galactic nuclei, have shown exceptional variabilities over a wide range of timescales and energies. The observations of such variabilities have been previously limited at lower energies, ranging from radio to X-ray. However, the superior sensitivity of VERITAS has made the detection of fast TeV gamma-ray variability of blazars possible. The studies of their gamma-ray variability can, in a relatively model-independent way, shed significant light on the emitting regions and production mechanisms in blazars. This thesis describes my work on blazar variability, based primarily on the VERITAS observations but are interpreted in a multi-wavelength context. One of the most exceptional phenomena observed in blazars with VERITAS is the fast variability of the TeV gamma rays. The short duration of these flares strongly constrains the size of the emitting region, and provides insights to the kinetics and location of the emitting region. We describe the fast TeV flare of BL Lacertae as an example, and discuss the connection between TeV flares and multi-wavelength observations that may help localize the TeV emitting region. To study the persistent variability of TeV blazars, we examine a variety of statistical properties in the time and frequency domains. We study both local properties of time series, e.g. time lags between different energy bands and spectral hysteresis during flares, and global properties, e.g. variability amplitude and power spectrum. These properties are connected to the physical processes in blazars, although they are also limited by

  6. Photometric Variability Properties of 21 T Tauri and Related Stars from AAVSO Visual Observations

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Esteves, S.; Glasheen, J.; Lin, A.; Long, J.; Mashintsova, M.; Terziev, E.; Wu, S.

    2010-12-01

    T Tauri