Sample records for observed detection limits

  1. Observing Strategies for the Detection of Jupiter Analogs

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Tinney, C. G.; Horner, J.; Butler, R. P.; Jones, H. R. A.; O'Toole, S. J.; Bailey, J.; Carter, B. D.; Salter, G. S.; Wright, D.

    2013-04-01

    To understand the frequency, and thus the formation and evolution, of planetary systems like our own solar system, it is critical to detect Jupiter-like planets in Jupiter-like orbits. For long-term radial-velocity monitoring, it is useful to estimate the observational effort required to reliably detect such objects, particularly in light of severe competition for limited telescope time. We perform detailed simulations of observational campaigns, maximizing the realism of the sampling of a set of simulated observations. We then compute the detection limits for each campaign to quantify the effect of increasing the number of observational epochs and varying their time coverage. We show that once there is sufficient time baseline to detect a given orbital period, it becomes less effective to add further time coverage—rather, the detectability of a planet scales roughly as the square root of the number of observations, independently of the number of orbital cycles included in the data string. We also show that no noise floor is reached, with a continuing improvement in detectability at the maximum number of observations N = 500 tested here.

  2. Material limitations on the detection limit in refractometry.

    PubMed

    Skafte-Pedersen, Peder; Nunes, Pedro S; Xiao, Sanshui; Mortensen, Niels Asger

    2009-01-01

    We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η, with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and filling fractions into account, the detection limit declines. As an example we discuss the fundamental limits of silicon-based high-Q resonators, such as photonic crystal resonators, for sensing in a bio-liquid environment, such as a water buffer. In the transparency window (λ ≳ 1100 nm) of silicon the detection limit becomes almost independent on the filling fraction, while in the visible, the detection limit depends strongly on the filling fraction because the silicon absorbs strongly.

  3. Material Limitations on the Detection Limit in Refractometry

    PubMed Central

    Skafte-Pedersen, Peder; Nunes, Pedro S.; Xiao, Sanshui; Mortensen, Niels Asger

    2009-01-01

    We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η, with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and filling fractions into account, the detection limit declines. As an example we discuss the fundamental limits of silicon-based high-Q resonators, such as photonic crystal resonators, for sensing in a bio-liquid environment, such as a water buffer. In the transparency window (λ ≳ 1100 nm) of silicon the detection limit becomes almost independent on the filling fraction, while in the visible, the detection limit depends strongly on the filling fraction because the silicon absorbs strongly. PMID:22291513

  4. LIMITATIONS ON THE USES OF MULTIMEDIA EXPOSURE MEASUREMENTS FOR MULTIPATHWAY EXPOSURE ASSESSMENT - PART I: HANDLING OBSERVATIONS BELOW DETECTION LIMITS

    EPA Science Inventory

    Multimedia data from two probability-based exposure studies were investigated in terms of how censoring of non-detects affected estimation of population parameters and associations. Appropriate methods for handling censored below-detection-limit (BDL) values in this context were...

  5. The solar-flare infrared continuum - Observational techniques and upper limits

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1975-01-01

    Exploratory observations at 20 microns and 350 microns have determined detection thresholds for solar flares in these wavelengths. In the 20-micron range, solar atmospheric fluctuations (the 'temperature field') set the basic limits on flare detectability at about 5 K; at 350 microns, extinction in the earth's atmosphere provides the basic limitation of about 30 K. These thresholds are low enough for the successful detection of several infrared-emitting components of large flares. The upper limits obtained for subflares indicate that the thickness of the H-alpha flare region does not exceed approximately 10 km. This result confirms the conclusion of Suemoto and Hiei (1959) regarding the small effective thickness of the H-alpha-emitting regions in solar flares.

  6. Detection of colloidal silver chloride near solubility limit

    NASA Astrophysics Data System (ADS)

    Putri, K. Y.; Adawiah, R.

    2018-03-01

    Detection of nanoparticles in solution has been made possible by several means; one of them is laser-induced breakdown detection (LIBD). LIBD is able to distinguish colloids of various sizes and concentrations. This technique has been used in several solubility studies. In this study, the formation of colloids in a mixed system of silver nitrate and sodium chloride was observed by acoustic LIBD. Silver chloride has low solubility limit, therefore LIBD measurement is appropriate. Silver and chloride solutions with equal concentrations, set at below and above the solubility of silver chloride as the expected solid product, were mixed and the resulting colloids were observed. The result of LIBD measurement showed that larger particles were present as more silver and chloride introduced. However, once the concentrations exceeded the solubility limit of silver chloride, the detected particle size seemed to be decreasing, hence suggested the occurrence of coprecipitation process. This phenomenon indicated that the ability of LIBD to detect even small changes in colloid amounts might be a useful tool in study on formation and stability of colloids, i.e. to confirm whether nanoparticles synthesis has been successfully performed and whether the system is stable or not.

  7. Detecting Visually Observable Disease Symptoms from Faces.

    PubMed

    Wang, Kuan; Luo, Jiebo

    2016-12-01

    Recent years have witnessed an increasing interest in the application of machine learning to clinical informatics and healthcare systems. A significant amount of research has been done on healthcare systems based on supervised learning. In this study, we present a generalized solution to detect visually observable symptoms on faces using semi-supervised anomaly detection combined with machine vision algorithms. We rely on the disease-related statistical facts to detect abnormalities and classify them into multiple categories to narrow down the possible medical reasons of detecting. Our method is in contrast with most existing approaches, which are limited by the availability of labeled training data required for supervised learning, and therefore offers the major advantage of flagging any unusual and visually observable symptoms.

  8. Shot noise limited detection of OH using the technique of laser induced fluorescence

    NASA Technical Reports Server (NTRS)

    Bakalyar, D. M.; Davis, L. I., Jr.; Guo, C.; James, J. V.; Kakos, S.; Morris, P. T.; Wang, C. C.

    1984-01-01

    Nearly shot-noise limited detection of OH using the technique of laser-induced fluorescence is reported. A LIDAR configuration is used to excite fluorescence in a large volume and a narrow-bandwidth interference filter provides spectral discrimination. This arrangement alleviates the effect of ozone interference and facilitates image processing at relatively close distances. The detection limit is determined mainly by the shot-noise of the solar background. Ground-based measurements in Dearborn indicate a detection limit of better than 1 x 10 to the 6th power OH/cubic cm over a forty-minute acquisition period. Under favorable conditions, a comparable detection limit was also observed for airborne measurements.

  9. Shot noise limited detection of OH using the technique of laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Bakalyar, D. M.; Davis, L. I., Jr.; Guo, C.; James, J. V.; Wang, C. C.; Kakos, S.; Morris, P. T.

    1984-01-01

    Nearly shot-noise limited detection of OH using the technique of laser-induced fluorescence is reported. A LIDAR configuration is used to excite fluoresence in a large volume and a narrow-bandwidth interference filter provides spectral discrimination. This arrangement alleviates the effect of ozone interference and facilitates image processing at relatively close distances. The detection limit is determined mainly by the short-noise of the solar background. Ground-based measurements in Dearborn indicate a detection limit of better than 1 x 10 to the 6th power OH/cubic cm over a forty-minute acquisition period. Under favorable conditions, a comparable detection limit was also observed for airborne measurements.

  10. Re-evaluation of groundwater monitoring data for glyphosate and bentazone by taking detection limits into account.

    PubMed

    Hansen, Claus Toni; Ritz, Christian; Gerhard, Daniel; Jensen, Jens Erik; Streibig, Jens Carl

    2015-12-01

    Current regulatory assessment of pesticide contamination of Danish groundwater is exclusively based on samples with pesticide concentrations above detection limit. Here we demonstrate that a realistic quantification of pesticide contamination requires the inclusion of "non-detect" samples i.e. samples with concentrations below the detection limit, as left-censored observations. The median calculated pesticide concentrations are shown to be reduced 10(4) to 10(5) fold for two representative herbicides (glyphosate and bentazone) relative to the median concentrations based upon observations above detection limits alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Limits of detection and decision. Part 4

    NASA Astrophysics Data System (ADS)

    Voigtman, E.

    2008-02-01

    Probability density functions (PDFs) have been derived for a number of commonly used limit of detection definitions, including several variants of the Relative Standard Deviation of the Background-Background Equivalent Concentration (RSDB-BEC) method, for a simple linear chemical measurement system (CMS) having homoscedastic, Gaussian measurement noise and using ordinary least squares (OLS) processing. All of these detection limit definitions serve as both decision and detection limits, thereby implicitly resulting in 50% rates of Type 2 errors. It has been demonstrated that these are closely related to Currie decision limits, if the coverage factor, k, is properly defined, and that all of the PDFs are scaled reciprocals of noncentral t variates. All of the detection limits have well-defined upper and lower limits, thereby resulting in finite moments and confidence limits, and the problem of estimating the noncentrality parameter has been addressed. As in Parts 1-3, extensive Monte Carlo simulations were performed and all the simulation results were found to be in excellent agreement with the derived theoretical expressions. Specific recommendations for harmonization of detection limit methodology have also been made.

  12. Upper limits on the rates of BNS and NSBH mergers from Advanced LIGO's first observing run

    NASA Astrophysics Data System (ADS)

    Lackey, Benjamin; LIGO Collaboration

    2017-01-01

    Last year the Advanced LIGO detectors finished their first observing run and detected two binary black hole mergers with high significance but no binary neutron star (BNS) or neutron-star-black-hole (NSBH) mergers. We present upper limits on the rates of BNS and NSBH mergers in the universe based on their non-detection with two modeled searches. With zero detections, the upper limits depend on the choice of prior, but we find 90% upper limits using a conservative prior of 12 , 000 / Gpc3 / yr for BNS mergers and 1 , 000 - 3 , 000 / Gpc3 / yr for NSBH mergers depending on the black hole mass. Comparing these upper limits to several rates predictions in the literature, we find our upper limits are close to the more optimistic rates estimates. Further non-detections in the second and third observing runs should be able to rule out several rates predictions. Using the observed rate of short gamma ray bursts (GRBs), we can also place lower limits on the average beaming angle of short GRBs. Assuming all short GRBs come from BNS mergers, we find a 90% lower limit of 1-4 degrees on the GRB beaming angle, with the range coming from the uncertainty in short GRB rates.

  13. STATISTICAL METHODS FOR ENVIRONMENTAL APPLICATIONS USING DATA SETS WITH BELOW DETECTION LIMIT OBSERVATIONS AS INCORPORTED IN PROUCL 4.0

    EPA Science Inventory

    Nondetect (ND) or below detection limit (BDL) results cannot be measured accurately, and, therefore, are reported as less than certain detection limit (DL) values. However, since the presence of some contaminants (e.g., dioxin) in environmental media may pose a threat to human he...

  14. Observer performance in semi-automated microbleed detection

    NASA Astrophysics Data System (ADS)

    Kuijf, Hugo J.; Brundel, Manon; de Bresser, Jeroen; Viergever, Max A.; Biessels, Geert Jan; Geerlings, Mirjam I.; Vincken, Koen L.

    2013-03-01

    Cerebral microbleeds are small bleedings in the human brain, detectable with MRI. Microbleeds are associated with vascular disease and dementia. The number of studies involving microbleed detection is increasing rapidly. Visual rating is the current standard for detection, but is a time-consuming process, especially at high-resolution 7.0 T MR images, has limited reproducibility and is highly observer dependent. Recently, multiple techniques have been published for the semi-automated detection of microbleeds, attempting to overcome these problems. In the present study, a 7.0 T dual-echo gradient echo MR image was acquired in 18 participants with microbleeds from the SMART study. Two experienced observers identified 54 microbleeds in these participants, using a validated visual rating scale. The radial symmetry transform (RST) can be used for semi-automated detection of microbleeds in 7.0 T MR images. In the present study, the results of the RST were assessed by two observers and 47 microbleeds were identified: 35 true positives and 12 extra positives (microbleeds that were missed during visual rating). Hence, after scoring a total number of 66 microbleeds could be identified in the 18 participants. The use of the RST increased the average sensitivity of observers from 59% to 69%. More importantly, inter-observer agreement (ICC and Dice's coefficient) increased from 0.85 and 0.64 to 0.98 and 0.96, respectively. Furthermore, the required rating time was reduced from 30 to 2 minutes per participant. By fine-tuning the RST, sensitivities up to 90% can be achieved, at the cost of extra false positives.

  15. ROBUST ESTIMATION OF MEAN AND VARIANCE USING ENVIRONMENTAL DATA SETS WITH BELOW DETECTION LIMIT OBSERVATIONS

    EPA Science Inventory

    Scientists, especially environmental scientists often encounter trace level concentrations that are typically reported as less than a certain limit of detection, L. Type 1, left-censored data arise when certain low values lying below L are ignored or unknown as they cannot be mea...

  16. The limit of detection for explosives in spectroscopic differential reflectometry

    NASA Astrophysics Data System (ADS)

    Dubroca, Thierry; Vishwanathan, Karthik; Hummel, Rolf E.

    2011-05-01

    In the wake of recent terrorist attacks, such as the 2008 Mumbai hotel explosion or the December 25th 2009 "underwear bomber", our group has developed a technique (US patent #7368292) to apply differential reflection spectroscopy to detect traces of explosives. Briefly, light (200-500 nm) is shone on a surface such as a piece of luggage at an airport. Upon reflection, the light is collected with a spectrometer combined with a CCD camera. A computer processes the data and produces in turn a differential reflection spectrum involving two adjacent areas of the surface. This differential technique is highly sensitive and provides spectroscopic data of explosives. As an example, 2,4,6, trinitrotoluene (TNT) displays strong and distinct features in differential reflectograms near 420 nm. Similar, but distinctly different features are observed for other explosives. One of the most important criteria for explosive detection techniques is the limit of detection. This limit is defined as the amount of explosive material necessary to produce a signal to noise ratio of three. We present here, a method to evaluate the limit of detection of our technique. Finally, we present our sample preparation method and experimental set-up specifically developed to measure the limit of detection for our technology. This results in a limit ranging from 100 nano-grams to 50 micro-grams depending on the method and the set-up parameters used, such as the detector-sample distance.

  17. Improved Sensor Fault Detection, Isolation, and Mitigation Using Multiple Observers Approach

    PubMed Central

    Wang, Zheng; Anand, D. M.; Moyne, J.; Tilbury, D. M.

    2017-01-01

    Traditional Fault Detection and Isolation (FDI) methods analyze a residual signal to detect and isolate sensor faults. The residual signal is the difference between the sensor measurements and the estimated outputs of the system based on an observer. The traditional residual-based FDI methods, however, have some limitations. First, they require that the observer has reached its steady state. In addition, residual-based methods may not detect some sensor faults, such as faults on critical sensors that result in an unobservable system. Furthermore, the system may be in jeopardy if actions required for mitigating the impact of the faulty sensors are not taken before the faulty sensors are identified. The contribution of this paper is to propose three new methods to address these limitations. Faults that occur during the observers' transient state can be detected by analyzing the convergence rate of the estimation error. Open-loop observers, which do not rely on sensor information, are used to detect faults on critical sensors. By switching among different observers, we can potentially mitigate the impact of the faulty sensor during the FDI process. These three methods are systematically integrated with a previously developed residual-based method to provide an improved FDI and mitigation capability framework. The overall approach is validated mathematically, and the effectiveness of the overall approach is demonstrated through simulation on a 5-state suspension system. PMID:28924303

  18. True detection limits in an experimental linearly heteroscedastic system. Part 1

    NASA Astrophysics Data System (ADS)

    Voigtman, Edward; Abraham, Kevin T.

    2011-11-01

    Using a lab-constructed laser-excited filter fluorimeter deliberately designed to exhibit linearly heteroscedastic, additive Gaussian noise, it has been shown that accurate estimates may be made of the true theoretical Currie decision levels ( YC and XC) and true Currie detection limits ( YD and XD) for the detection of rhodamine 6 G tetrafluoroborate in ethanol. The obtained experimental values, for 5% probability of false positives and 5% probability of false negatives, were YC = 56.1 mV, YD = 125. mV, XC = 0.132 μg /mL and XD = 0.294 μg /mL. For 5% probability of false positives and 1% probability of false negatives, the obtained detection limits were YD = 158. mV and XD = 0.372 μg /mL. These decision levels and corresponding detection limits were shown to pass the ultimate test: they resulted in observed probabilities of false positives and false negatives that were statistically equivalent to the a priori specified values.

  19. Spatio-temporal Hotelling observer for signal detection from image sequences

    PubMed Central

    Caucci, Luca; Barrett, Harrison H.; Rodríguez, Jeffrey J.

    2010-01-01

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection. PMID:19550494

  20. Spatio-temporal Hotelling observer for signal detection from image sequences.

    PubMed

    Caucci, Luca; Barrett, Harrison H; Rodriguez, Jeffrey J

    2009-06-22

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection.

  1. Inhomogeneous Poisson process rate function inference from dead-time limited observations.

    PubMed

    Verma, Gunjan; Drost, Robert J

    2017-05-01

    The estimation of an inhomogeneous Poisson process (IHPP) rate function from a set of process observations is an important problem arising in optical communications and a variety of other applications. However, because of practical limitations of detector technology, one is often only able to observe a corrupted version of the original process. In this paper, we consider how inference of the rate function is affected by dead time, a period of time after the detection of an event during which a sensor is insensitive to subsequent IHPP events. We propose a flexible nonparametric Bayesian approach to infer an IHPP rate function given dead-time limited process realizations. Simulation results illustrate the effectiveness of our inference approach and suggest its ability to extend the utility of existing sensor technology by permitting more accurate inference on signals whose observations are dead-time limited. We apply our inference algorithm to experimentally collected optical communications data, demonstrating the practical utility of our approach in the context of channel modeling and validation.

  2. Metabolomics variable selection and classification in the presence of observations below the detection limit using an extension of ERp.

    PubMed

    van Reenen, Mari; Westerhuis, Johan A; Reinecke, Carolus J; Venter, J Hendrik

    2017-02-02

    ERp is a variable selection and classification method for metabolomics data. ERp uses minimized classification error rates, based on data from a control and experimental group, to test the null hypothesis of no difference between the distributions of variables over the two groups. If the associated p-values are significant they indicate discriminatory variables (i.e. informative metabolites). The p-values are calculated assuming a common continuous strictly increasing cumulative distribution under the null hypothesis. This assumption is violated when zero-valued observations can occur with positive probability, a characteristic of GC-MS metabolomics data, disqualifying ERp in this context. This paper extends ERp to address two sources of zero-valued observations: (i) zeros reflecting the complete absence of a metabolite from a sample (true zeros); and (ii) zeros reflecting a measurement below the detection limit. This is achieved by allowing the null cumulative distribution function to take the form of a mixture between a jump at zero and a continuous strictly increasing function. The extended ERp approach is referred to as XERp. XERp is no longer non-parametric, but its null distributions depend only on one parameter, the true proportion of zeros. Under the null hypothesis this parameter can be estimated by the proportion of zeros in the available data. XERp is shown to perform well with regard to bias and power. To demonstrate the utility of XERp, it is applied to GC-MS data from a metabolomics study on tuberculosis meningitis in infants and children. We find that XERp is able to provide an informative shortlist of discriminatory variables, while attaining satisfactory classification accuracy for new subjects in a leave-one-out cross-validation context. XERp takes into account the distributional structure of data with a probability mass at zero without requiring any knowledge of the detection limit of the metabolomics platform. XERp is able to identify variables

  3. Limiter Observations during W7-X First Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurden, Glen Anthony; Biedermann, C.; Effenberg, F.

    During the first operational phase (referred to as OP1.1) of the new Wendelstein 7-X (W7-X) stellarator, five poloidal graphite limiters were mounted on the inboard side of the vacuum vessel, one in each of the five toroidal modules which form the W7-X vacuum vessel. Each limiter consisted of nine specially shaped graphite tiles, designed to conform to the last closed field line geometry in the bean-shaped section of the standard OP1.1 magnetic field configuration (Sunn Pedersen et al 2015 Nucl. Fusion 55 126001). Here, we observed the limiters with multiple infrared and visible camera systems, as well as filtered photomultipliers.more » Power loads are calculated from infrared (IR) temperature measurements using THEODOR, and heating patterns (dual stripes) compare well with field line mapping and EMC3-EIRENE predictions. While the poloidal symmetry of the heat loads was excellent, the toroidal heating pattern showed up to a factor of 2× variation, with peak heat loads on Limiter 1. The total power intercepted by the limiters was up to ~60% of the input ECRH heating power. Calorimetry using bulk tile heating (measured via post-shot IR thermography) on Limiter 3 showed a difference between short high power discharges, and longer lower power ones, with regards to the fraction of energy deposited on the limiters. Finally, fast heating transients, with frequency >1 kHz were detected, and their visibility was enhanced by the presence of surface coatings which developed on the limiters by the end of the campaign.« less

  4. Limiter Observations during W7-X First Plasmas

    DOE PAGES

    Wurden, Glen Anthony; Biedermann, C.; Effenberg, F.; ...

    2017-04-03

    During the first operational phase (referred to as OP1.1) of the new Wendelstein 7-X (W7-X) stellarator, five poloidal graphite limiters were mounted on the inboard side of the vacuum vessel, one in each of the five toroidal modules which form the W7-X vacuum vessel. Each limiter consisted of nine specially shaped graphite tiles, designed to conform to the last closed field line geometry in the bean-shaped section of the standard OP1.1 magnetic field configuration (Sunn Pedersen et al 2015 Nucl. Fusion 55 126001). Here, we observed the limiters with multiple infrared and visible camera systems, as well as filtered photomultipliers.more » Power loads are calculated from infrared (IR) temperature measurements using THEODOR, and heating patterns (dual stripes) compare well with field line mapping and EMC3-EIRENE predictions. While the poloidal symmetry of the heat loads was excellent, the toroidal heating pattern showed up to a factor of 2× variation, with peak heat loads on Limiter 1. The total power intercepted by the limiters was up to ~60% of the input ECRH heating power. Calorimetry using bulk tile heating (measured via post-shot IR thermography) on Limiter 3 showed a difference between short high power discharges, and longer lower power ones, with regards to the fraction of energy deposited on the limiters. Finally, fast heating transients, with frequency >1 kHz were detected, and their visibility was enhanced by the presence of surface coatings which developed on the limiters by the end of the campaign.« less

  5. Censoring: a new approach for detection limits in total-reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Pajek, M.; Kubala-Kukuś, A.; Braziewicz, J.

    2004-08-01

    It is shown that the detection limits in the total-reflection X-ray fluorescence (TXRF), which restrict quantification of very low concentrations of trace elements in the samples, can be accounted for using the statistical concept of censoring. We demonstrate that the incomplete TXRF measurements containing the so-called "nondetects", i.e. the non-measured concentrations falling below the detection limits and represented by the estimated detection limit values, can be viewed as the left random-censored data, which can be further analyzed using the Kaplan-Meier (KM) method correcting for nondetects. Within this approach, which uses the Kaplan-Meier product-limit estimator to obtain the cumulative distribution function corrected for the nondetects, the mean value and median of the detection limit censored concentrations can be estimated in a non-parametric way. The Monte Carlo simulations performed show that the Kaplan-Meier approach yields highly accurate estimates for the mean and median concentrations, being within a few percent with respect to the simulated, uncensored data. This means that the uncertainties of KM estimated mean value and median are limited in fact only by the number of studied samples and not by the applied correction procedure for nondetects itself. On the other hand, it is observed that, in case when the concentration of a given element is not measured in all the samples, simple approaches to estimate a mean concentration value from the data yield erroneous, systematically biased results. The discussed random-left censoring approach was applied to analyze the TXRF detection-limit-censored concentration measurements of trace elements in biomedical samples. We emphasize that the Kaplan-Meier approach allows one to estimate the mean concentrations being substantially below the mean level of detection limits. Consequently, this approach gives a new access to lower the effective detection limits for TXRF method, which is of prime interest for

  6. Statistical behavior of ten million experimental detection limits

    NASA Astrophysics Data System (ADS)

    Voigtman, Edward; Abraham, Kevin T.

    2011-02-01

    Using a lab-constructed laser-excited fluorimeter, together with bootstrapping methodology, the authors have generated many millions of experimental linear calibration curves for the detection of rhodamine 6G tetrafluoroborate in ethanol solutions. The detection limits computed from them are in excellent agreement with both previously published theory and with comprehensive Monte Carlo computer simulations. Currie decision levels and Currie detection limits, each in the theoretical, chemical content domain, were found to be simply scaled reciprocals of the non-centrality parameter of the non-central t distribution that characterizes univariate linear calibration curves that have homoscedastic, additive Gaussian white noise. Accurate and precise estimates of the theoretical, content domain Currie detection limit for the experimental system, with 5% (each) probabilities of false positives and false negatives, are presented.

  7. Automatic rectum limit detection by anatomical markers correlation.

    PubMed

    Namías, R; D'Amato, J P; del Fresno, M; Vénere, M

    2014-06-01

    Several diseases take place at the end of the digestive system. Many of them can be diagnosed by means of different medical imaging modalities together with computer aided detection (CAD) systems. These CAD systems mainly focus on the complete segmentation of the digestive tube. However, the detection of limits between different sections could provide important information to these systems. In this paper we present an automatic method for detecting the rectum and sigmoid colon limit using a novel global curvature analysis over the centerline of the segmented digestive tube in different imaging modalities. The results are compared with the gold standard rectum upper limit through a validation scheme comprising two different anatomical markers: the third sacral vertebra and the average rectum length. Experimental results in both magnetic resonance imaging (MRI) and computed tomography colonography (CTC) acquisitions show the efficacy of the proposed strategy in automatic detection of rectum limits. The method is intended for application to the rectum segmentation in MRI for geometrical modeling and as contextual information source in virtual colonoscopies and CAD systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Experimental evaluation of shark detection rates by aerial observers.

    PubMed

    Robbins, William D; Peddemors, Victor M; Kennelly, Steven J; Ives, Matthew C

    2014-01-01

    Aerial surveys are a recognised technique to identify the presence and abundance of marine animals. However, the capability of aerial observers to reliably sight coastal sharks has not been previously assessed, nor have differences in sighting rates between aircraft types been examined. In this study we investigated the ability of observers in fixed-wing and helicopter aircraft to sight 2.5 m artificial shark analogues placed at known depths and positions. Initial tests revealed that the shark analogues could only be detected at shallow depths, averaging only 2.5 m and 2.7 m below the water surface for observers in fixed-wing and helicopter aircraft, respectively. We then deployed analogues at shallower depths along a 5 km-long grid, and assessed their sightability to aircraft observers through a series of transects flown within 500 m. Analogues were seen infrequently from all distances, with overall sighting rates of only 12.5% and 17.1% for fixed-wing and helicopter observers, respectively. Although helicopter observers had consistently higher success rates of sighting analogues within 250 m of their flight path, neither aircraft observers sighted more than 9% of analogues deployed over 300 m from their flight paths. Modelling of sighting rates against environmental and experimental variables indicated that observations were affected by distance, aircraft type, sun glare and sea conditions, while the range of water turbidities observed had no effect. We conclude that aerial observers have limited ability to detect the presence of submerged animals such as sharks, particularly when the sharks are deeper than ∼ 2.6 m, or over 300 m distant from the aircraft's flight path, especially during sunny or windy days. The low rates of detections found in this study cast serious doubts on the use of aerial beach patrols as an effective early-warning system to prevent shark attacks.

  9. Experimental Evaluation of Shark Detection Rates by Aerial Observers

    PubMed Central

    Robbins, William D.; Peddemors, Victor M.; Kennelly, Steven J.; Ives, Matthew C.

    2014-01-01

    Aerial surveys are a recognised technique to identify the presence and abundance of marine animals. However, the capability of aerial observers to reliably sight coastal sharks has not been previously assessed, nor have differences in sighting rates between aircraft types been examined. In this study we investigated the ability of observers in fixed-wing and helicopter aircraft to sight 2.5 m artificial shark analogues placed at known depths and positions. Initial tests revealed that the shark analogues could only be detected at shallow depths, averaging only 2.5 m and 2.7 m below the water surface for observers in fixed-wing and helicopter aircraft, respectively. We then deployed analogues at shallower depths along a 5 km-long grid, and assessed their sightability to aircraft observers through a series of transects flown within 500 m. Analogues were seen infrequently from all distances, with overall sighting rates of only 12.5% and 17.1% for fixed-wing and helicopter observers, respectively. Although helicopter observers had consistently higher success rates of sighting analogues within 250 m of their flight path, neither aircraft observers sighted more than 9% of analogues deployed over 300 m from their flight paths. Modelling of sighting rates against environmental and experimental variables indicated that observations were affected by distance, aircraft type, sun glare and sea conditions, while the range of water turbidities observed had no effect. We conclude that aerial observers have limited ability to detect the presence of submerged animals such as sharks, particularly when the sharks are deeper than ∼2.6 m, or over 300 m distant from the aircraft's flight path, especially during sunny or windy days. The low rates of detections found in this study cast serious doubts on the use of aerial beach patrols as an effective early-warning system to prevent shark attacks. PMID:24498258

  10. Nitromethane K-9 Detection Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strobel, R; Kury, J

    2003-08-29

    The Bureau of Alcohol, Tobacco and Firearms (ATF) trains canine/handler teams to detect explosives for government and other agencies worldwide. After completing the training program the teams are tested on an array containing explosives and numerous other samples designed to distract a canine. Passing this test results in a team's certification. These teams can be considered as ''detection instruments'' freshly calibrated just before leaving the ''factory''. Using these teams to examine special experimental arrays immediately following certification can lead to a better understanding of a canine's detection capabilities. Forty-one of these ''detection instruments'' were used in four test series withmore » arrays containing dilute nitromethane-in-water solutions. (The canines had been trained on the amount of nitromethane vapor in equilibrium with the undiluted liquid explosive.) By diluting liquid nitromethane with water, the amount of explosive vapor can be reduced many orders of magnitude to test the lower limit of the canine's nitromethane vapor detection response. The results are presented in this paper.« less

  11. Upper limit on NUT charge from the observed terrestrial Sagnac effect

    NASA Astrophysics Data System (ADS)

    Kulbakova, A.; Karimov, R. Kh; Izmailov, R. N.; Nandi, K. K.

    2018-06-01

    The exact Sagnac delay in the Kerr–Taub–NUT (Newman–Unti–Tamburino) spacetime is derived in the equatorial plane for non-geodesic as well as geodesic circular orbits. The resulting formula, being exact, can be directly applied to motion in the vicinity of any spinning object including black holes but here we are considering only the terrestrial case since observational data are available. The formula reveals that, in the limit of spin , the delay does not vanish. This fact is similar to the non-vanishing of Lense–Thirring precession under even though the two effects originate from different premises. Assuming a reasonable input that the Kerr–Taub–NUT corrections are subsumed in the average residual uncertainty in the measured Sagnac delay, we compute upper limits on the NUT charge n. It is found that the upper limits on n are far larger than the Earth’s gravitational mass, which has not been detected in observations, implying that the Sagnac effect cannot constrain n to smaller values near zero. We find a curious difference between the delays for non-geodesic and geodesic clock orbits and point out its implication for the well known ‘twin paradox’ of special relativity.

  12. Maximizing the Detection Probability of Kilonovae Associated with Gravitational Wave Observations

    NASA Astrophysics Data System (ADS)

    Chan, Man Leong; Hu, Yi-Ming; Messenger, Chris; Hendry, Martin; Heng, Ik Siong

    2017-01-01

    Estimates of the source sky location for gravitational wave signals are likely to span areas of up to hundreds of square degrees or more, making it very challenging for most telescopes to search for counterpart signals in the electromagnetic spectrum. To boost the chance of successfully observing such counterparts, we have developed an algorithm that optimizes the number of observing fields and their corresponding time allocations by maximizing the detection probability. As a proof-of-concept demonstration, we optimize follow-up observations targeting kilonovae using telescopes including the CTIO-Dark Energy Camera, Subaru-HyperSuprimeCam, Pan-STARRS, and the Palomar Transient Factory. We consider three simulated gravitational wave events with 90% credible error regions spanning areas from ∼ 30 {\\deg }2 to ∼ 300 {\\deg }2. Assuming a source at 200 {Mpc}, we demonstrate that to obtain a maximum detection probability, there is an optimized number of fields for any particular event that a telescope should observe. To inform future telescope design studies, we present the maximum detection probability and corresponding number of observing fields for a combination of limiting magnitudes and fields of view over a range of parameters. We show that for large gravitational wave error regions, telescope sensitivity rather than field of view is the dominating factor in maximizing the detection probability.

  13. Immuno-analysis of microparticles: probing at the limits of detection

    PubMed Central

    Latham, Sharissa L.; Tiberti, Natalia; Gokoolparsadh, Naveena; Holdaway, Karen; Olivier Couraud, Pierre; Grau, Georges E. R.; Combes, Valery

    2015-01-01

    Microparticle (MP) research is clouded by debate regarding the accuracy and validity of flow cytometry (FCM) as an analytical methodology, as it is influenced by many variables including the pre-analytical conditions, instruments physical capabilities and detection parameters. This study utilises a simplistic in vitro system for generating MP, and through comparative analysis with immuno-electron microscopy (Immuno-EM) assesses the strengths and limitations of probe selection and high-sensitivity FCM. Of the markers examined, MP were most specifically labelled with phosphatidylserine ligands, annexin V and lactadherin, although only ~60% MP are PS positive. Whilst these two ligands detect comparable absolute MP numbers, they interact with the same population in distinct manners; annexin V binding is enhanced on TNF induced MP. CD105 and CD54 expression were, as expected, consistent and enhanced following TNF activation respectively. Their labelling however accounted for as few as 30–40% of MP. The greatest discrepancies between FCM and I-EM were observed in the population solely labelled for the surface antigen. These findings demonstrate that despite significant improvements in resolution, high-sensitivity FCM remains limited in detecting small-size MP expressing low antigen levels. This study highlights factors to consider when selecting endothelial MP probes, as well as interpreting and representing data. PMID:26553743

  14. Search times and probability of detection in time-limited search

    NASA Astrophysics Data System (ADS)

    Wilson, David; Devitt, Nicole; Maurer, Tana

    2005-05-01

    When modeling the search and target acquisition process, probability of detection as a function of time is important to war games and physical entity simulations. Recent US Army RDECOM CERDEC Night Vision and Electronics Sensor Directorate modeling of search and detection has focused on time-limited search. Developing the relationship between detection probability and time of search as a differential equation is explored. One of the parameters in the current formula for probability of detection in time-limited search corresponds to the mean time to detect in time-unlimited search. However, the mean time to detect in time-limited search is shorter than the mean time to detect in time-unlimited search and the relationship between them is a mathematical relationship between these two mean times. This simple relationship is derived.

  15. Thermal Infrared Spectral Band Detection Limits for Unidentified Surface Materials

    NASA Technical Reports Server (NTRS)

    Kirkland, Laurel E.; Herr, Kenneth C.; Salisbury, John W.

    2001-01-01

    Infrared emission spectra recorded by airborne or satellite spectrometers can be searched for spectral features to determine the composition of rocks on planetary surfaces. Surface materials are identified by detections of characteristic spectral bands. We show how to define whether to accept an observed spectral feature as a detection when the target material is unknown. We also use remotely sensed spectra measured by the Thermal Emission Spectrometer (TES) and the Spatially Enhanced Broadband Array Spectrograph System to illustrate the importance of instrument parameters and surface properties on band detection limits and how the variation in signal-to-noise ratio with wavelength affects the bands that are most detectable for a given instrument. The spectrometer's sampling interval, spectral resolution, signal-to-noise ratio as a function of wavelength, and the sample's surface properties influence whether the instrument can detect a spectral feature exhibited by a material. As an example, in the 6-13 micrometer wavelength region, massive carbonates exhibit two bands: a very strong, broad feature at approximately 6.5 micrometers and a less intense, sharper band at approximately 11.25 micrometers. Although the 6.5-micrometer band is stronger and broader in laboratory-measured spectra, the 11.25-micrometer band will cause a more detectable feature in TES spectra.

  16. USE OF METHOD DETECTION LIMITS IN ENVIRONMENTAL MEASUREMENTS

    EPA Science Inventory

    Environmental measurements often produce values below the method detection limit (MDL). Because low or zero values may be used in determining compliance with regulatory limits, in determining emission factors (typical concentrations emitted by a given type of source), or in model...

  17. Procedures for determination of detection limits: application to high-performance liquid chromatography analysis of fat-soluble vitamins in human serum.

    PubMed

    Browne, Richard W; Whitcomb, Brian W

    2010-07-01

    Problems in the analysis of laboratory data commonly arise in epidemiologic studies in which biomarkers subject to lower detection thresholds are used. Various thresholds exist including limit of detection (LOD), limit of quantification (LOQ), and limit of blank (LOB). Choosing appropriate strategies for dealing with data affected by such limits relies on proper understanding of the nature of the detection limit and its determination. In this paper, we demonstrate experimental and statistical procedures generally used for estimating different detection limits according to standard procedures in the context of analysis of fat-soluble vitamins and micronutrients in human serum. Fat-soluble vitamins and micronutrients were analyzed by high-performance liquid chromatography with diode array detection. A simulated serum matrix blank was repeatedly analyzed for determination of LOB parametrically by using the observed blank distribution as well as nonparametrically by using ranks. The LOD was determined by combining information regarding the LOB with data from repeated analysis of standard reference materials (SRMs), diluted to low levels; from LOB to 2-3 times LOB. The LOQ was determined experimentally by plotting the observed relative standard deviation (RSD) of SRM replicates compared with the concentration, where the LOQ is the concentration at an RSD of 20%. Experimental approaches and example statistical procedures are given for determination of LOB, LOD, and LOQ. These quantities are reported for each measured analyte. For many analyses, there is considerable information available below the LOQ. Epidemiologic studies must understand the nature of these detection limits and how they have been estimated for appropriate treatment of affected data.

  18. ARE WE THERE YET? TIME TO DETECTION OF NANOHERTZ GRAVITATIONAL WAVES BASED ON PULSAR-TIMING ARRAY LIMITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, S. R.; Vallisneri, M.; Ellis, J. A.

    2016-03-01

    Decade-long timing observations of arrays of millisecond pulsars have placed highly constraining upper limits on the amplitude of the nanohertz gravitational-wave stochastic signal from the mergers of supermassive black hole binaries (∼10{sup −15} strain at f = 1 yr{sup −1}). These limits suggest that binary merger rates have been overestimated, or that environmental influences from nuclear gas or stars accelerate orbital decay, reducing the gravitational-wave signal at the lowest, most sensitive frequencies. This prompts the question whether nanohertz gravitational waves (GWs) are likely to be detected in the near future. In this Letter, we answer this question quantitatively using simple statistical estimates,more » deriving the range of true signal amplitudes that are compatible with current upper limits, and computing expected detection probabilities as a function of observation time. We conclude that small arrays consisting of the pulsars with the least timing noise, which yield the tightest upper limits, have discouraging prospects of making a detection in the next two decades. By contrast, we find large arrays are crucial to detection because the quadrupolar spatial correlations induced by GWs can be well sampled by many pulsar pairs. Indeed, timing programs that monitor a large and expanding set of pulsars have an ∼80% probability of detecting GWs within the next 10 years, under assumptions on merger rates and environmental influences ranging from optimistic to conservative. Even in the extreme case where 90% of binaries stall before merger and environmental coupling effects diminish low-frequency gravitational-wave power, detection is delayed by at most a few years.« less

  19. Minerva exoplanet detection sensitivity from simulated observations

    NASA Astrophysics Data System (ADS)

    McCrady, Nate; Nava, C.

    2014-01-01

    Small rocky planets induce radial velocity signals that are difficult to detect in the presence of stellar noise sources of comparable or larger amplitude. Minerva is a dedicated, robotic observatory that will attain 1 meter per second precision to detect these rocky planets in the habitable zone around nearby stars. We present results of an ongoing project investigating Minerva’s planet detection sensitivity as a function of observational cadence, planet mass, and orbital parameters (period, eccentricity, and argument of periastron). Radial velocity data is simulated with realistic observing cadence, accounting for weather patterns at Mt. Hopkins, Arizona. Instrumental and stellar noise are added to the simulated observations, including effects of oscillation, jitter, starspots and rotation. We extract orbital parameters from the simulated RV data using the RVLIN code. A Monte Carlo analysis is used to explore the parameter space and evaluate planet detection completeness. Our results will inform the Minerva observing strategy by providing a quantitative measure of planet detection sensitivity as a function of orbital parameters and cadence.

  20. Epidemiologic Evaluation of Measurement Data in the Presence of Detection Limits

    PubMed Central

    Lubin, Jay H.; Colt, Joanne S.; Camann, David; Davis, Scott; Cerhan, James R.; Severson, Richard K.; Bernstein, Leslie; Hartge, Patricia

    2004-01-01

    Quantitative measurements of environmental factors greatly improve the quality of epidemiologic studies but can pose challenges because of the presence of upper or lower detection limits or interfering compounds, which do not allow for precise measured values. We consider the regression of an environmental measurement (dependent variable) on several covariates (independent variables). Various strategies are commonly employed to impute values for interval-measured data, including assignment of one-half the detection limit to nondetected values or of “fill-in” values randomly selected from an appropriate distribution. On the basis of a limited simulation study, we found that the former approach can be biased unless the percentage of measurements below detection limits is small (5–10%). The fill-in approach generally produces unbiased parameter estimates but may produce biased variance estimates and thereby distort inference when 30% or more of the data are below detection limits. Truncated data methods (e.g., Tobit regression) and multiple imputation offer two unbiased approaches for analyzing measurement data with detection limits. If interest resides solely on regression parameters, then Tobit regression can be used. If individualized values for measurements below detection limits are needed for additional analysis, such as relative risk regression or graphical display, then multiple imputation produces unbiased estimates and nominal confidence intervals unless the proportion of missing data is extreme. We illustrate various approaches using measurements of pesticide residues in carpet dust in control subjects from a case–control study of non-Hodgkin lymphoma. PMID:15579415

  1. Stochastic fluctuations and the detectability limit of network communities.

    PubMed

    Floretta, Lucio; Liechti, Jonas; Flammini, Alessandro; De Los Rios, Paolo

    2013-12-01

    We have analyzed the detectability limits of network communities in the framework of the popular Girvan and Newman benchmark. By carefully taking into account the inevitable stochastic fluctuations that affect the construction of each and every instance of the benchmark, we come to the conclusion that the native, putative partition of the network is completely lost even before the in-degree/out-degree ratio becomes equal to that of a structureless Erdös-Rényi network. We develop a simple iterative scheme, analytically well described by an infinite branching process, to provide an estimate of the true detectability limit. Using various algorithms based on modularity optimization, we show that all of them behave (semiquantitatively) in the same way, with the same functional form of the detectability threshold as a function of the network parameters. Because the same behavior has also been found by further modularity-optimization methods and for methods based on different heuristics implementations, we conclude that indeed a correct definition of the detectability limit must take into account the stochastic fluctuations of the network construction.

  2. Application of the Hotelling and ideal observers to detection and localization of exoplanets

    PubMed Central

    Caucci, Luca; Barrett, Harrison H.; Devaney, Nicholas; Rodríguez, Jeffrey J.

    2008-01-01

    The ideal linear discriminant or Hotelling observer is widely used for detection tasks and image-quality assessment in medical imaging, but it has had little application in other imaging fields. We apply it to detection of planets outside of our solar system with long-exposure images obtained from ground-based or space-based telescopes. The statistical limitations in this problem include Poisson noise arising mainly from the host star, electronic noise in the image detector, randomness or uncertainty in the point-spread function (PSF) of the telescope, and possibly a random background. PSF randomness is reduced but not eliminated by the use of adaptive optics. We concentrate here on the effects of Poisson and electronic noise, but we also show how to extend the calculation to include a random PSF. For the case where the PSF is known exactly, we compare the Hotelling observer to other observers commonly used for planet detection; comparison is based on receiver operating characteristic (ROC) and localization ROC (LROC) curves. PMID:18059905

  3. Application of the Hotelling and ideal observers to detection and localization of exoplanets.

    PubMed

    Caucci, Luca; Barrett, Harrison H; Devaney, Nicholas; Rodríguez, Jeffrey J

    2007-12-01

    The ideal linear discriminant or Hotelling observer is widely used for detection tasks and image-quality assessment in medical imaging, but it has had little application in other imaging fields. We apply it to detection of planets outside of our solar system with long-exposure images obtained from ground-based or space-based telescopes. The statistical limitations in this problem include Poisson noise arising mainly from the host star, electronic noise in the image detector, randomness or uncertainty in the point-spread function (PSF) of the telescope, and possibly a random background. PSF randomness is reduced but not eliminated by the use of adaptive optics. We concentrate here on the effects of Poisson and electronic noise, but we also show how to extend the calculation to include a random PSF. For the case where the PSF is known exactly, we compare the Hotelling observer to other observers commonly used for planet detection; comparison is based on receiver operating characteristic (ROC) and localization ROC (LROC) curves.

  4. Lower Limits on Aperture Size for an ExoEarth Detecting Coronagraphic Mission

    NASA Technical Reports Server (NTRS)

    Stark, Christopher C.; Roberge, Aki; Mandell, Avi; Clampin, Mark; Domagal-Goldman, Shawn D.; McElwain, Michael W.; Stapelfeldt, Karl R.

    2015-01-01

    The yield of Earth-like planets will likely be a primary science metric for future space-based missions that will drive telescope aperture size. Maximizing the exoEarth candidate yield is therefore critical to minimizing the required aperture. Here we describe a method for exoEarth candidate yield maximization that simultaneously optimizes, for the first time, the targets chosen for observation, the number of visits to each target, the delay time between visits, and the exposure time of every observation. This code calculates both the detection time and multiwavelength spectral characterization time required for planets. We also refine the astrophysical assumptions used as inputs to these calculations, relying on published estimates of planetary occurrence rates as well as theoretical and observational constraints on terrestrial planet sizes and classical habitable zones. Given these astrophysical assumptions, optimistic telescope and instrument assumptions, and our new completeness code that produces the highest yields to date, we suggest lower limits on the aperture size required to detect and characterize a statistically motivated sample of exoEarths.

  5. Detection limit used for early warning in public health surveillance.

    PubMed

    Kobari, Tsuyoshi; Iwaki, Kazuo; Nagashima, Tomomi; Ishii, Fumiyoshi; Hayashi, Yuzuru; Yajima, Takehiko

    2009-06-01

    A theory of detection limit, developed in analytical chemistry, is applied to public health surveillance to detect an outbreak of national emergencies such as natural disaster and bioterrorism. In this investigation, the influenza epidemic around the Tokyo area from 2003 to 2006 is taken as a model of normal and large-scale epidemics. The detection limit of the normal epidemic is used as a threshold with a specified level of significance to identify a sign of the abnormal epidemic among the daily variation in anti-influenza drug sales at community pharmacies. While auto-correlation of data is often an obstacle to an unbiased estimator of standard deviation involved in the detection limit, the analytical theory (FUMI) can successfully treat the auto-correlation of the drug sales in the same way as the auto-correlation appearing as 1/f noise in many analytical instruments.

  6. Methane Flux Estimation from Point Sources using GOSAT Target Observation: Detection Limit and Improvements with Next Generation Instruments

    NASA Astrophysics Data System (ADS)

    Kuze, A.; Suto, H.; Kataoka, F.; Shiomi, K.; Kondo, Y.; Crisp, D.; Butz, A.

    2017-12-01

    Atmospheric methane (CH4) has an important role in global radiative forcing of climate but its emission estimates have larger uncertainties than carbon dioxide (CO2). The area of anthropogenic emission sources is usually much smaller than 100 km2. The Thermal And Near infrared Sensor for carbon Observation Fourier-Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT) has measured CO2 and CH4 column density using sun light reflected from the earth's surface. It has an agile pointing system and its footprint can cover 87-km2 with a single detector. By specifying pointing angles and observation time for every orbit, TANSO-FTS can target various CH4 point sources together with reference points every 3 day over years. We selected a reference point that represents CH4 background density before or after targeting a point source. By combining satellite-measured enhancement of the CH4 column density and surface measured wind data or estimates from the Weather Research and Forecasting (WRF) model, we estimated CH4emission amounts. Here, we picked up two sites in the US West Coast, where clear sky frequency is high and a series of data are available. The natural gas leak at Aliso Canyon showed a large enhancement and its decrease with time since the initial blowout. We present time series of flux estimation assuming the source is single point without influx. The observation of the cattle feedlot in Chino, California has weather station within the TANSO-FTS footprint. The wind speed is monitored continuously and the wind direction is stable at the time of GOSAT overpass. The large TANSO-FTS footprint and strong wind decreases enhancement below noise level. Weak wind shows enhancements in CH4, but the velocity data have large uncertainties. We show the detection limit of single samples and how to reduce uncertainty using time series of satellite data. We will propose that the next generation instruments for accurate anthropogenic CO2 and CH

  7. Qualitative Contrast between Knowledge-Limited Mixed-State and Variable-Resources Models of Visual Change Detection

    ERIC Educational Resources Information Center

    Nosofsky, Robert M.; Donkin, Chris

    2016-01-01

    We report an experiment designed to provide a qualitative contrast between knowledge-limited versions of mixed-state and variable-resources (VR) models of visual change detection. The key data pattern is that observers often respond "same" on big-change trials, while simultaneously being able to discriminate between same and small-change…

  8. Error Detection Processes during Observational Learning

    ERIC Educational Resources Information Center

    Badets, Arnaud; Blandin, Yannick; Wright, David L.; Shea, Charles H.

    2006-01-01

    The purpose of this experiment was to determine whether a faded knowledge of results (KR) frequency during observation of a model's performance enhanced error detection capabilities. During the observation phase, participants observed a model performing a timing task and received KR about the model's performance on each trial or on one of two…

  9. 4D numerical observer for lesion detection in respiratory-gated PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorsakul, Auranuch; Li, Quanzheng; Ouyang, Jinsong

    2014-10-15

    Purpose: Respiratory-gated positron emission tomography (PET)/computed tomography protocols reduce lesion smearing and improve lesion detection through a synchronized acquisition of emission data. However, an objective assessment of image quality of the improvement gained from respiratory-gated PET is mainly limited to a three-dimensional (3D) approach. This work proposes a 4D numerical observer that incorporates both spatial and temporal informations for detection tasks in pulmonary oncology. Methods: The authors propose a 4D numerical observer constructed with a 3D channelized Hotelling observer for the spatial domain followed by a Hotelling observer for the temporal domain. Realistic {sup 18}F-fluorodeoxyglucose activity distributions were simulated usingmore » a 4D extended cardiac torso anthropomorphic phantom including 12 spherical lesions at different anatomical locations (lower, upper, anterior, and posterior) within the lungs. Simulated data based on Monte Carlo simulation were obtained using GEANT4 application for tomographic emission (GATE). Fifty noise realizations of six respiratory-gated PET frames were simulated by GATE using a model of the Siemens Biograph mMR scanner geometry. PET sinograms of the thorax background and pulmonary lesions that were simulated separately were merged to generate different conditions of the lesions to the background (e.g., lesion contrast and motion). A conventional ordered subset expectation maximization (OSEM) reconstruction (5 iterations and 6 subsets) was used to obtain: (1) gated, (2) nongated, and (3) motion-corrected image volumes (a total of 3200 subimage volumes: 2400 gated, 400 nongated, and 400 motion-corrected). Lesion-detection signal-to-noise ratios (SNRs) were measured in different lesion-to-background contrast levels (3.5, 8.0, 9.0, and 20.0), lesion diameters (10.0, 13.0, and 16.0 mm), and respiratory motion displacements (17.6–31.3 mm). The proposed 4D numerical observer applied on multiple

  10. A Sneak Peek at the JWST Era: Observing Galaxies Below the Hubble Limit with Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Livermore, Rachael C.

    2016-01-01

    The installation of WFC3 on the Hubble Space Telescope pushed the frontier of high-redshift galaxy studies to only 500 Myr after the Big Bang. However, observations in this epoch remain challenging and are limited to the brightest galaxies; the fainter sources believed to be responsible for reionizing the Universe remain beyond the grasp of Hubble. With gravitational lensing, however, we can benefit from the magnification of faint sources, which brings them within reach of today's telescopes. The Hubble Frontier Fields program is a deep survey of strongly lensing clusters observed in the optical and near-infrared. Unfortunately, detecting highly magnified, intrinsically faint galaxies in these fields has proved challenging due to the bright foregound cluster galaxies and intracluster light. We have developed a technique using wavelet decomposition to overcome these difficulties and detect galaxies at z~7 with intrinsic UV magnitudes as faint as MUV = -13. We present this method and the resulting luminosity functions, which support a steep faint-end slope extending out to the observational limits. Our method has uncovered hundreds of galaxies at z > 6 fainter than any that have been seen before, providing our first insight into the small galaxy population during the epoch of reionization and a preview of the capabilities of JWST.

  11. Censoring approach to the detection limits in X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Pajek, M.; Kubala-Kukuś, A.

    2004-10-01

    We demonstrate that the effect of detection limits in the X-ray fluorescence analysis (XRF), which limits the determination of very low concentrations of trace elements and results in appearance of the so-called "nondetects", can be accounted for using the statistical concept of censoring. More precisely, the results of such measurements can be viewed as the left random censored data, which can further be analyzed using the Kaplan-Meier method correcting the data for the presence of nondetects. Using this approach, the results of measured, detection limit censored concentrations can be interpreted in a nonparametric manner including the correction for the nondetects, i.e. the measurements in which the concentrations were found to be below the actual detection limits. Moreover, using the Monte Carlo simulation technique we show that by using the Kaplan-Meier approach the corrected mean concentrations for a population of the samples can be estimated within a few percent uncertainties with respect of the simulated, uncensored data. This practically means that the final uncertainties of estimated mean values are limited in fact by the number of studied samples and not by the correction procedure itself. The discussed random-left censoring approach was applied to analyze the XRF detection-limit-censored concentration measurements of trace elements in biomedical samples.

  12. True detection limits in an experimental linearly heteroscedastic system.. Part 2

    NASA Astrophysics Data System (ADS)

    Voigtman, Edward; Abraham, Kevin T.

    2011-11-01

    Despite much different processing of the experimental fluorescence detection data presented in Part 1, essentially the same estimates were obtained for the true theoretical Currie decision levels ( YC and XC) and true Currie detection limits ( YD and XD). The obtained experimental values, for 5% probability of false positives and 5% probability of false negatives, were YC = 56.0 mV, YD = 125. mV, XC = 0.132 μg/mL and XD = 0.293 μg/mL. For 5% probability of false positives and 1% probability of false negatives, the obtained detection limits were YD = 158 . mV and XD = 0.371 μg/mL. Furthermore, by using bootstrapping methodology on the experimental data for the standards and the analytical blank, it was possible to validate previously published experimental domain expressions for the decision levels ( yC and xC) and detection limits ( yD and xD). This was demonstrated by testing the generated decision levels and detection limits for their performance in regard to false positives and false negatives. In every case, the obtained numbers of false negatives and false positives were as specified a priori.

  13. Calculation of the detection limit in radiation measurements with systematic uncertainties

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. M.; Russ, W.; Venkataraman, R.; Young, B. M.

    2015-06-01

    The detection limit (LD) or Minimum Detectable Activity (MDA) is an a priori evaluation of assay sensitivity intended to quantify the suitability of an instrument or measurement arrangement for the needs of a given application. Traditional approaches as pioneered by Currie rely on Gaussian approximations to yield simple, closed-form solutions, and neglect the effects of systematic uncertainties in the instrument calibration. These approximations are applicable over a wide range of applications, but are of limited use in low-count applications, when high confidence values are required, or when systematic uncertainties are significant. One proposed modification to the Currie formulation attempts account for systematic uncertainties within a Gaussian framework. We have previously shown that this approach results in an approximation formula that works best only for small values of the relative systematic uncertainty, for which the modification of Currie's method is the least necessary, and that it significantly overestimates the detection limit or gives infinite or otherwise non-physical results for larger systematic uncertainties where such a correction would be the most useful. We have developed an alternative approach for calculating detection limits based on realistic statistical modeling of the counting distributions which accurately represents statistical and systematic uncertainties. Instead of a closed form solution, numerical and iterative methods are used to evaluate the result. Accurate detection limits can be obtained by this method for the general case.

  14. Recent observations of interstellar molecules - Detection of CCO and a limit on H2C3O

    NASA Technical Reports Server (NTRS)

    Brown, R. D.; Cragg, D. M.; Godfrey, P. D.; Irvine, W. M.; Mcgonagle, D.; Ohishi, M.

    1992-01-01

    In order to test gas-phase reaction schemes for the production of small oxides of carbon in cold, dense interstellar clouds, we have searched for the radical CCO and for propadienone (H2C3O) in Taurus Molecular Cloud 1, a nearby cloud which exhibits a rich organic chemistry. The radical CCO has been detected with a fractional abundance some two orders of magnitude less than that of CCS, about one order of magnitude less than that of H2CCO, and slightly less than that of C3O. An upper limit has been obtained on the abundance of propadienone which is slightly less than that of its isomer propynal (HC2CHO).

  15. Flexible Modeling of Survival Data with Covariates Subject to Detection Limits via Multiple Imputation.

    PubMed

    Bernhardt, Paul W; Wang, Huixia Judy; Zhang, Daowen

    2014-01-01

    Models for survival data generally assume that covariates are fully observed. However, in medical studies it is not uncommon for biomarkers to be censored at known detection limits. A computationally-efficient multiple imputation procedure for modeling survival data with covariates subject to detection limits is proposed. This procedure is developed in the context of an accelerated failure time model with a flexible seminonparametric error distribution. The consistency and asymptotic normality of the multiple imputation estimator are established and a consistent variance estimator is provided. An iterative version of the proposed multiple imputation algorithm that approximates the EM algorithm for maximum likelihood is also suggested. Simulation studies demonstrate that the proposed multiple imputation methods work well while alternative methods lead to estimates that are either biased or more variable. The proposed methods are applied to analyze the dataset from a recently-conducted GenIMS study.

  16. Estimating the resolution limit of the map equation in community detection

    NASA Astrophysics Data System (ADS)

    Kawamoto, Tatsuro; Rosvall, Martin

    2015-01-01

    A community detection algorithm is considered to have a resolution limit if the scale of the smallest modules that can be resolved depends on the size of the analyzed subnetwork. The resolution limit is known to prevent some community detection algorithms from accurately identifying the modular structure of a network. In fact, any global objective function for measuring the quality of a two-level assignment of nodes into modules must have some sort of resolution limit or an external resolution parameter. However, it is yet unknown how the resolution limit affects the so-called map equation, which is known to be an efficient objective function for community detection. We derive an analytical estimate and conclude that the resolution limit of the map equation is set by the total number of links between modules instead of the total number of links in the full network as for modularity. This mechanism makes the resolution limit much less restrictive for the map equation than for modularity; in practice, it is orders of magnitudes smaller. Furthermore, we argue that the effect of the resolution limit often results from shoehorning multilevel modular structures into two-level descriptions. As we show, the hierarchical map equation effectively eliminates the resolution limit for networks with nested multilevel modular structures.

  17. From nature to MEMS: towards the detection-limit of crickets' hair sensors

    NASA Astrophysics Data System (ADS)

    Dagamseh, A. M. K.

    2013-05-01

    Crickets use highly sensitive mechanoreceptor hairs to detect approaching spiders. The high sensitivity of these hairs enables perceiving tiny air-movements which are only just distinguishable from noise. This forms our source of inspiration to design sensitive arrays made of artificial hair sensors for flow pattern observation i.e. Flow camera. The realization of such high-sensitive hair sensor requires designs with low thermo-mechanical noise to match the detection-limit of crickets' hairs. Here we investigate the damping factor in our artificial hair-sensor using different models as it is the source of the thermo-mechanical noise in MEMS structures. The results show that the damping factor estimated in air is in the range of 10-12 N.m/rad.s-1 which translates into a 52 μm/s threshold flow velocity.

  18. Limits of detection and decision. Part 3

    NASA Astrophysics Data System (ADS)

    Voigtman, E.

    2008-02-01

    It has been shown that the MARLAP (Multi-Agency Radiological Laboratory Analytical Protocols) for estimating the Currie detection limit, which is based on 'critical values of the non-centrality parameter of the non-central t distribution', is intrinsically biased, even if no calibration curve or regression is used. This completed the refutation of the method, begun in Part 2. With the field cleared of obstructions, the true theory underlying Currie's limits of decision, detection and quantification, as they apply in a simple linear chemical measurement system (CMS) having heteroscedastic, Gaussian measurement noise and using weighted least squares (WLS) processing, was then derived. Extensive Monte Carlo simulations were performed, on 900 million independent calibration curves, for linear, "hockey stick" and quadratic noise precision models (NPMs). With errorless NPM parameters, all the simulation results were found to be in excellent agreement with the derived theoretical expressions. Even with as much as 30% noise on all of the relevant NPM parameters, the worst absolute errors in rates of false positives and false negatives, was only 0.3%.

  19. Of Detection Limits and Effective Mitigation: The Use of Infrared Cameras for Methane Leak Detection

    NASA Astrophysics Data System (ADS)

    Ravikumar, A. P.; Wang, J.; McGuire, M.; Bell, C.; Brandt, A. R.

    2017-12-01

    Mitigating methane emissions, a short-lived and potent greenhouse gas, is critical to limiting global temperature rise to two degree Celsius as outlined in the Paris Agreement. A major source of anthropogenic methane emissions in the United States is the oil and gas sector. To this effect, state and federal governments have recommended the use of optical gas imaging systems in periodic leak detection and repair (LDAR) surveys to detect for fugitive emissions or leaks. The most commonly used optical gas imaging systems (OGI) are infrared cameras. In this work, we systematically evaluate the limits of infrared (IR) camera based OGI system for use in methane leak detection programs. We analyze the effect of various parameters that influence the minimum detectable leak rates of infrared cameras. Blind leak detection tests were carried out at the Department of Energy's MONITOR natural gas test-facility in Fort Collins, CO. Leak sources included natural gas wellheads, separators, and tanks. With an EPA mandated 60 g/hr leak detection threshold for IR cameras, we test leak rates ranging from 4 g/hr to over 350 g/hr at imaging distances between 5 ft and 70 ft from the leak source. We perform these experiments over the course of a week, encompassing a wide range of wind and weather conditions. Using repeated measurements at a given leak rate and imaging distance, we generate detection probability curves as a function of leak-size for various imaging distances, and measurement conditions. In addition, we estimate the median detection threshold - leak-size at which the probability of detection is 50% - under various scenarios to reduce uncertainty in mitigation effectiveness. Preliminary analysis shows that the median detection threshold varies from 3 g/hr at an imaging distance of 5 ft to over 150 g/hr at 50 ft (ambient temperature: 80 F, winds < 4 m/s). Results from this study can be directly used to improve OGI based LDAR protocols and reduce uncertainty in estimated

  20. Targeted Analyte Detection by Standard Addition Improves Detection Limits in MALDI Mass Spectrometry

    PubMed Central

    Eshghi, Shadi Toghi; Li, Xingde; Zhang, Hui

    2014-01-01

    Matrix-assisted laser desorption/ionization has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications. PMID:22877355

  1. Detection limits of antimicrobials in ewe milk by delvotest photometric measurements.

    PubMed

    Althaus, R L; Torres, A; Montero, A; Balasch, S; Molina, M P

    2003-02-01

    The Delvotest method detection limits per manufacturer's instructions at a fixed reading time of 3 h for 24 antimicrobial agents were determined in ewe milk by photometric measurement. For each drug, eight concentrations were tested on 20 ewe milk samples from individual ewes. Detection limits, determined by means of logistic regression models, were (microg/kg): 3, amoxycillin; 2, ampicillin; 18, cloxacillin; 1, penicillin "G"; 34, cefadroxil; 430, cephalosporin "C"; 40, cephalexin; 20, cefoperazone; 33, Ceftiofur; 18, cefuroxime; 6100, streptomycin; 1200, gentamycin; 2600, neomycin; 830, erythromycin; 100, tylosin; 180, doxycycline; 320, oxytetracycline; 590, tetracycline; 88, sulfadiazine; 44, sulfamethoxazole; 140, sulfametoxypyridazine; 48, sulfaquinoxaline; 12,000, chloramphenicol; and 290, trimethoprim. Whereas the beta-lactam antibiotics, sulphonamides, and tylosin were detected by Delvotest method at levels equal to those of maximum residue limits, its sensitivity needs to be enhanced to detect aminoglycosides, tetracyclines, streptomycin, chloramphenicol, and trimethoprim residues in ewe milk or to develop an integrated residue detection system for ewe milk with different sensitive microorganisms for each group of antiinfectious agents.

  2. The detection of planetary systems from Space Station - A star observation strategy

    NASA Technical Reports Server (NTRS)

    Mascy, Alfred C.; Nishioka, Ken; Jorgensen, Helen; Swenson, Byron L.

    1987-01-01

    A 10-20-yr star-observation program for the Space Station Astrometric Telescope Facility (ATF) is proposed and evaluated by means of computer simulations. The primary aim of the program is to detect stars with planetary systems by precise determination of their motion relative to reference stars. The designs proposed for the ATF are described and illustrated; the basic parameters of the 127 stars selected for the program are listed in a table; spacecraft and science constraints, telescope slewing rates, and the possibility of limiting the program sample to stars near the Galactic equator are discussed; and the effects of these constraints are investigated by simulating 1 yr of ATF operation. Viewing all sky regions, the ATF would have 81-percent active viewing time, observing each star about 200 times (56 h) per yr; only small decrements in this performance would result from limiting the viewing field.

  3. Lesion detectability in 2D-mammography and digital breast tomosynthesis using different targets and observers

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Mackenzie, Alistair; Dance, David R.; Young, Kenneth C.; Wells, Kevin

    2018-05-01

    This work investigates the detection performance of specialist and non-specialist observers for different targets in 2D-mammography and digital breast tomosynthesis (DBT) using the OPTIMAM virtual clinical trials (VCT) Toolbox and a 4-alternative forced choice (4AFC) assessment paradigm. Using 2D-mammography and DBT images of virtual breast phantoms, we compare the detection limits of simple uniform spherical targets and irregular solid masses. Target diameters of 4 mm and 6 mm have been chosen to represent target sizes close to the minimum detectable size found in breast screening, across a range of controlled contrast levels. The images were viewed by a set of specialist observers (five medical physicists and six experienced clinical readers) and five non-specialists. Combined results from both observer groups indicate that DBT has a significantly lower detectable threshold contrast than 2D-mammography for small masses (4 mm: 2.1% [DBT] versus 6.9% [2D]; 6 mm: 0.7% [DBT] versus 3.9% [2D]) and spheres (4 mm: 2.9% [DBT] versus 5.3% [2D]; 6 mm: 0.3% [DBT] versus 2.2% [2D]) (p  <  0.0001). Both observer groups found spheres significantly easier to detect than irregular solid masses for both sizes and modalities (p  <  0.0001) (except 4 mm DBT). The detection performances of specialist and non-specialist observers were generally found to be comparable, where each group marginally outperformed the other in particular detection tasks. Within the specialist group, the clinical readers performed better than the medical physicists with irregular masses (p  <  0.0001). The results indicate that using spherical targets in such studies may produce over-optimistic detection thresholds compared to more complex masses, and that the superiority of DBT for detecting masses over 2D-mammography has been quantified. The results also suggest specialist observers may be supplemented by non-specialist observers (with training) in some types of 4AFC studies.

  4. Observational Research Opportunities and Limitations

    PubMed Central

    Boyko, Edward J.

    2013-01-01

    Medical research continues to progress in its ability to identify treatments and characteristics associated with benefits and adverse outcomes. The principle engine for the evaluation of treatment efficacy is the randomized controlled trial (RCT). Due to the cost and other considerations, RCTs cannot address all clinically important decisions. Observational research often is used to address issues not addressed or not addressable by RCTs. This article provides an overview of the benefits and limitations of observational research to serve as a guide to the interpretation of this category of research designs in diabetes investigations. The potential for bias is higher in observational research but there are design and analysis features that can address these concerns although not completely eliminate them. Pharmacoepidemiologic research may provide important information regarding relative safety and effectiveness of diabetes pharmaceuticals. Such research must effectively address the important issue of confounding by indication in order to produce clinically meaningful results. Other methods such as instrumental variable analysis are being employed to enable stronger causal inference but these methods also require fulfillment of several key assumptions that may or may not be realistic. Nearly all clinical decisions involve probabilistic reasoning and confronting uncertainly, so a realistic goal for observational research may not be the high standard set by RCTs but instead the level of certainty needed to influence a diagnostic or treatment decision. PMID:24055326

  5. Observational research--opportunities and limitations.

    PubMed

    Boyko, Edward J

    2013-01-01

    Medical research continues to progress in its ability to identify treatments and characteristics associated with benefits and adverse outcomes. The principal engine for the evaluation of treatment efficacy is the randomized controlled trial (RCT). Due to the cost and other considerations, RCTs cannot address all clinically important decisions. Observational research often is used to address issues not addressed or not addressable by RCTs. This article provides an overview of the benefits and limitations of observational research to serve as a guide to the interpretation of this category of research designs in diabetes investigations. The potential for bias is higher in observational research but there are design and analysis features that can address these concerns although not completely eliminate them. Pharmacoepidemiologic research may provide important information regarding relative safety and effectiveness of diabetes pharmaceuticals. Such research must effectively address the important issue of confounding by indication in order to produce clinically meaningful results. Other methods such as instrumental variable analysis are being employed to enable stronger causal inference but these methods also require fulfillment of several key assumptions that may or may not be realistic. Nearly all clinical decisions involve probabilistic reasoning and confronting uncertainly, so a realistic goal for observational research may not be the high standard set by RCTs but instead the level of certainty needed to influence a diagnostic or treatment decision. © 2013.

  6. Gamma-Ray Upper Limits on Magnetars with Six Years of FERMI-LAT Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jian; Rea, Nanda; Torres, Diego F.

    2017-01-16

    In this article, we report on the search for gamma-ray emission from 20 magnetars using six years of Fermi Large Area Telescope observations. No significant evidence for gamma-ray emission from any of the currently known magnetars is found. We derived the most stringent upper limits to date on the 0.1–10 GeV emission of Galactic magnetars, which are estimated between ~10 -12 and 10 -11 erg s -1 cm -2. We searched gamma-ray pulsations for the four magnetars having reliable ephemerides over the observing period, but detected none. Finally, we also report updated morphologies and spectral properties of seven spatially extendedmore » gamma-ray sources, which are most likely attributed to supernova remnants associated with or adjacent to the magnetars.« less

  7. GAMMA-RAY UPPER LIMITS ON MAGNETARS WITH SIX YEARS OF FERMI -LAT OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jian; Rea, Nanda; Torres, Diego F.

    2017-01-20

    We report on the search for gamma-ray emission from 20 magnetars using six years of Fermi Large Area Telescope observations. No significant evidence for gamma-ray emission from any of the currently known magnetars is found. We derived the most stringent upper limits to date on the 0.1–10 GeV emission of Galactic magnetars, which are estimated between ∼10{sup −12} and 10{sup −11} erg s{sup −1} cm{sup −2}. We searched gamma-ray pulsations for the four magnetars having reliable ephemerides over the observing period, but detected none. We also report updated morphologies and spectral properties of seven spatially extended gamma-ray sources, which aremore » most likely attributed to supernova remnants associated with or adjacent to the magnetars.« less

  8. Using Statistical Process Control for detecting anomalies in multivariate spatiotemporal Earth Observations

    NASA Astrophysics Data System (ADS)

    Flach, Milan; Mahecha, Miguel; Gans, Fabian; Rodner, Erik; Bodesheim, Paul; Guanche-Garcia, Yanira; Brenning, Alexander; Denzler, Joachim; Reichstein, Markus

    2016-04-01

    The number of available Earth observations (EOs) is currently substantially increasing. Detecting anomalous patterns in these multivariate time series is an important step in identifying changes in the underlying dynamical system. Likewise, data quality issues might result in anomalous multivariate data constellations and have to be identified before corrupting subsequent analyses. In industrial application a common strategy is to monitor production chains with several sensors coupled to some statistical process control (SPC) algorithm. The basic idea is to raise an alarm when these sensor data depict some anomalous pattern according to the SPC, i.e. the production chain is considered 'out of control'. In fact, the industrial applications are conceptually similar to the on-line monitoring of EOs. However, algorithms used in the context of SPC or process monitoring are rarely considered for supervising multivariate spatio-temporal Earth observations. The objective of this study is to exploit the potential and transferability of SPC concepts to Earth system applications. We compare a range of different algorithms typically applied by SPC systems and evaluate their capability to detect e.g. known extreme events in land surface processes. Specifically two main issues are addressed: (1) identifying the most suitable combination of data pre-processing and detection algorithm for a specific type of event and (2) analyzing the limits of the individual approaches with respect to the magnitude, spatio-temporal size of the event as well as the data's signal to noise ratio. Extensive artificial data sets that represent the typical properties of Earth observations are used in this study. Our results show that the majority of the algorithms used can be considered for the detection of multivariate spatiotemporal events and directly transferred to real Earth observation data as currently assembled in different projects at the European scale, e.g. http://baci-h2020.eu

  9. Trouble Brewing: Using Observations of Invariant Behavior to Detect Malicious Agency in Distributed Control Systems

    NASA Astrophysics Data System (ADS)

    McEvoy, Thomas Richard; Wolthusen, Stephen D.

    Recent research on intrusion detection in supervisory data acquisition and control (SCADA) and DCS systems has focused on anomaly detection at protocol level based on the well-defined nature of traffic on such networks. Here, we consider attacks which compromise sensors or actuators (including physical manipulation), where intrusion may not be readily apparent as data and computational states can be controlled to give an appearance of normality, and sensor and control systems have limited accuracy. To counter these, we propose to consider indirect relations between sensor readings to detect such attacks through concurrent observations as determined by control laws and constraints.

  10. Theoretical detection limit of PIXE analysis using 20 MeV proton beams

    NASA Astrophysics Data System (ADS)

    Ishii, Keizo; Hitomi, Keitaro

    2018-02-01

    Particle-induced X-ray emission (PIXE) analysis is usually performed using proton beams with energies in the range 2∼3 MeV because at these energies, the detection limit is low. The detection limit of PIXE analysis depends on the X-ray production cross-section, the continuous background of the PIXE spectrum and the experimental parameters such as the beam currents and the solid angle and detector efficiency of X-ray detector. Though the continuous background increases as the projectile energy increases, the cross-section of the X-ray increases as well. Therefore, the detection limit of high energy proton PIXE is not expected to increase significantly. We calculated the cross sections of continuous X-rays produced in several bremsstrahlung processes and estimated the detection limit of a 20 MeV proton PIXE analysis by modelling the Compton tail of the γ-rays produced in the nuclear reactions, and the escape effect on the secondary electron bremsstrahlung. We found that the Compton tail does not affect the detection limit when a thin X-ray detector is used, but the secondary electron bremsstrahlung escape effect does have an impact. We also confirmed that the detection limit of the PIXE analysis, when used with 4 μm polyethylene backing film and an integrated beam current of 1 μC, is 0.4∼2.0 ppm for proton energies in the range 10∼30 MeV and elements with Z = 16-90. This result demonstrates the usefulness of several 10 MeV cyclotrons for performing PIXE analysis. Cyclotrons with these properties are currently installed in positron emission tomography (PET) centers.

  11. Sniper detection using infrared camera: technical possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Kastek, M.; Dulski, R.; Trzaskawka, P.; Bieszczad, G.

    2010-04-01

    The paper discusses technical possibilities to build an effective system for sniper detection using infrared cameras. Descriptions of phenomena which make it possible to detect sniper activities in infrared spectra as well as analysis of physical limitations were performed. Cooled and uncooled detectors were considered. Three phases of sniper activities were taken into consideration: before, during and after the shot. On the basis of experimental data the parameters defining the target were determined which are essential in assessing the capability of infrared camera to detect sniper activity. A sniper body and muzzle flash were analyzed as targets. The simulation of detection ranges was done for the assumed scenario of sniper detection task. The infrared sniper detection system was discussed, capable of fulfilling the requirements. The discussion of the results of analysis and simulations was finally presented.

  12. Robust high-contrast companion detection from interferometric observations. The CANDID algorithm and an application to six binary Cepheids

    NASA Astrophysics Data System (ADS)

    Gallenne, A.; Mérand, A.; Kervella, P.; Monnier, J. D.; Schaefer, G. H.; Baron, F.; Breitfelder, J.; Le Bouquin, J. B.; Roettenbacher, R. M.; Gieren, W.; Pietrzyński, G.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Ridgway, S.; Kraus, S.

    2015-07-01

    Context. Long-baseline interferometry is an important technique to spatially resolve binary or multiple systems in close orbits. By combining several telescopes together and spectrally dispersing the light, it is possible to detect faint components around bright stars in a few hours of observations. Aims: We provide a rigorous and detailed method to search for high-contrast companions around stars, determine the detection level, and estimate the dynamic range from interferometric observations. Methods: We developed the code CANDID (Companion Analysis and Non-Detection in Interferometric Data), a set of Python tools that allows us to search systematically for point-source, high-contrast companions and estimate the detection limit using all interferometric observables, i.e., the squared visibilities, closure phases and bispectrum amplitudes. The search procedure is made on a N × N grid of fit, whose minimum needed resolution is estimated a posteriori. It includes a tool to estimate the detection level of the companion in the number of sigmas. The code CANDID also incorporates a robust method to set a 3σ detection limit on the flux ratio, which is based on an analytical injection of a fake companion at each point in the grid. Our injection method also allows us to analytically remove a detected component to 1) search for a second companion; and 2) set an unbiased detection limit. Results: We used CANDID to search for the companions around the binary Cepheids V1334 Cyg, AX Cir, RT Aur, AW Per, SU Cas, and T Vul. First, we showed that our previous discoveries of the components orbiting V1334 Cyg and AX Cir were detected at >25σ and >13σ, respectively. The astrometric positions and flux ratios provided by CANDID for these two stars are in good agreement with our previously published values. The companion around AW Per is detected at more than 15σ with a flux ratio of f = 1.22 ± 0.30%, and it is located at ρ = 32.16 ± 0.29 mas and PA = 67.1 ± 0.3°. We made a

  13. Swift and NuSTAR observations of GW170817: Detection of a blue kilonova

    DOE PAGES

    Evans, P. A.; Cenko, S. B.; Kennea, J. A.; ...

    2017-10-16

    With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. However, a complete picture of compact object mergers requires the detection of an electromagnetic (EM) counterpart. Here, we report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW 170817. The bright, rapidly fading ultraviolet emission indicates a high mass (≈ 0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30°more » away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a γ-ray burst afterglow).« less

  14. Swift and NuSTAR observations of GW170817: Detection of a blue kilonova.

    PubMed

    Evans, P A; Cenko, S B; Kennea, J A; Emery, S W K; Kuin, N P M; Korobkin, O; Wollaeger, R T; Fryer, C L; Madsen, K K; Harrison, F A; Xu, Y; Nakar, E; Hotokezaka, K; Lien, A; Campana, S; Oates, S R; Troja, E; Breeveld, A A; Marshall, F E; Barthelmy, S D; Beardmore, A P; Burrows, D N; Cusumano, G; D'Aì, A; D'Avanzo, P; D'Elia, V; de Pasquale, M; Even, W P; Fontes, C J; Forster, K; Garcia, J; Giommi, P; Grefenstette, B; Gronwall, C; Hartmann, D H; Heida, M; Hungerford, A L; Kasliwal, M M; Krimm, H A; Levan, A J; Malesani, D; Melandri, A; Miyasaka, H; Nousek, J A; O'Brien, P T; Osborne, J P; Pagani, C; Page, K L; Palmer, D M; Perri, M; Pike, S; Racusin, J L; Rosswog, S; Siegel, M H; Sakamoto, T; Sbarufatti, B; Tagliaferri, G; Tanvir, N R; Tohuvavohu, A

    2017-12-22

    With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope Array of the EM counterpart of the binary neutron star merger GW170817. The bright, rapidly fading UV emission indicates a high mass (≈0.03 solar masses) wind-driven outflow with moderate electron fraction ( Y e ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30° away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultrarelativistic, highly collimated ejecta (a γ-ray burst afterglow). Copyright © 2017, American Association for the Advancement of Science.

  15. Swift and NuSTAR observations of GW170817: Detection of a blue kilonova

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, P. A.; Cenko, S. B.; Kennea, J. A.

    With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. However, a complete picture of compact object mergers requires the detection of an electromagnetic (EM) counterpart. Here, we report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW 170817. The bright, rapidly fading ultraviolet emission indicates a high mass (≈ 0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30°more » away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a γ-ray burst afterglow).« less

  16. Statistical Methods for Generalized Linear Models with Covariates Subject to Detection Limits.

    PubMed

    Bernhardt, Paul W; Wang, Huixia J; Zhang, Daowen

    2015-05-01

    Censored observations are a common occurrence in biomedical data sets. Although a large amount of research has been devoted to estimation and inference for data with censored responses, very little research has focused on proper statistical procedures when predictors are censored. In this paper, we consider statistical methods for dealing with multiple predictors subject to detection limits within the context of generalized linear models. We investigate and adapt several conventional methods and develop a new multiple imputation approach for analyzing data sets with predictors censored due to detection limits. We establish the consistency and asymptotic normality of the proposed multiple imputation estimator and suggest a computationally simple and consistent variance estimator. We also demonstrate that the conditional mean imputation method often leads to inconsistent estimates in generalized linear models, while several other methods are either computationally intensive or lead to parameter estimates that are biased or more variable compared to the proposed multiple imputation estimator. In an extensive simulation study, we assess the bias and variability of different approaches within the context of a logistic regression model and compare variance estimation methods for the proposed multiple imputation estimator. Lastly, we apply several methods to analyze the data set from a recently-conducted GenIMS study.

  17. Detectability limit and uncertainty considerations for laser induced fluorescence spectroscopy in flames

    NASA Technical Reports Server (NTRS)

    Daily, J. W.

    1978-01-01

    Laser induced fluorescence spectroscopy of flames is discussed, and derived uncertainty relations are used to calculate detectability limits due to statistical errors. Interferences due to Rayleigh scattering from molecules as well as Mie scattering and incandescence from particles have been examined for their effect on detectability limits. Fluorescence trapping is studied, and some methods for reducing the effect are considered. Fluorescence trapping places an upper limit on the number density of the fluorescing species that can be measured without signal loss.

  18. Detection limit of a VCO based detection chain dedicated to particles recognition and tracking

    NASA Astrophysics Data System (ADS)

    Coulié, K.; Rahajandraibe, W.; Aziza, H.; Micolau, G.; Vauché, R.

    2018-01-01

    A particle detection chain based on CMOS-SOI VCO circuit is presented. The solution is used for the recognition and the tracking of a given particle at circuit level. TCAD simulation of the detector has been performed on a 3×3 matrix of diodes based detector for particles recognition and tracking. The current response of the detector has been used for a case study in order to determine the ability of the chain to recognize an alpha particle crossing a 3×3 detection cell. The detection limit of the proposed solution is investigated and discussed in this paper.

  19. Detection, Size, Measurement, and Structural Analysis Limits for the 2MASS, UKIDSS-LAS, and VISTA VIKING Surveys

    NASA Astrophysics Data System (ADS)

    Andrews, Stephen K.; Kelvin, Lee S.; Driver, Simon P.; Robotham, Aaron S. G.

    2014-01-01

    The 2MASS, UKIDSS-LAS, and VISTA VIKING surveys have all now observed the GAMA 9hr region in the Ks band. Here we compare the detection rates, photometry, basic size measurements, and single-component GALFIT structural measurements for a sample of 37 591 galaxies. We explore the sensitivity limits where the data agree for a variety of issues including: detection, star-galaxy separation, photometric measurements, size and ellipticity measurements, and Sérsic measurements. We find that 2MASS fails to detect at least 20% of the galaxy population within all magnitude bins, however for those that are detected we find photometry is robust (± 0.2 mag) to 14.7 AB mag and star-galaxy separation to 14.8 AB mag. For UKIDSS-LAS we find incompleteness starts to enter at a flux limit of 18.9 AB mag, star-galaxy separation is robust to 16.3 AB mag, and structural measurements are robust to 17.7 AB mag. VISTA VIKING data are complete to approximately 20.0 AB mag and structural measurements appear robust to 18.8 AB mag.

  20. The limit of detection in scintigraphic imaging with I-131 in patients with differentiated thyroid carcinoma

    NASA Astrophysics Data System (ADS)

    Hänscheid, H.; Lassmann, M.; Buck, A. K.; Reiners, C.; Verburg, F. A.

    2014-05-01

    Radioiodine scintigraphy influences staging and treatment in patients with differentiated thyroid carcinoma. The limit of detection for fractional uptake in an iodine avid focus in a scintigraphic image was determined from the number of lesion net counts and the count density of the tissue background. The count statistics were used to calculate the diagnostic activity required to elevate the signal from a lesion with a given uptake significantly above a homogeneous background with randomly distributed counts per area. The dependences of the minimal uptake and the minimal size of lesions visible in a scan on several parameters of influence were determined by linking the typical biokinetics observed in iodine avid tissue to the lesion mass and to the absorbed dose received in a radioiodine therapy. The detection limits for fractional uptake in a neck lesion of a typical patient are about 0.001% after therapy with 7000 MBq, 0.01% for activities typically administered in diagnostic assessments (74-185 MBq), and 0.1% after the administration of 10 MBq I-131. Lesions at the limit of detection in a diagnostic scan with biokinetics eligible for radioiodine therapy are small with diameters of a few millimeters. Increasing the diagnostic activity by a factor of 4 reduces the diameter of visible lesions by 25% or about 1 mm. Several other determinants have a comparable or higher influence on the limit of detection than the administered activity; most important are the biokinetics in both blood pool and target tissue and the time of measurement. A generally valid recommendation for the timing of the scan is impossible as the time of the highest probability to detect iodine avid tissue depends on the administered activity as well as on the biokinetics in the lesion and background in the individual patient.

  1. Limitations of Electromagnetic Ion Cyclotron Wave Observations in Low Earth Orbit

    NASA Astrophysics Data System (ADS)

    Hwang, Junga; Kim, Hyangpyo; Park, Jaeheung; Lee, Jaejin

    2018-03-01

    Pc1 pulsations are geomagnetic fluctuations in the frequency range of 0.2 to 5 Hz. There have been several observations of Pc1 pulsations in low earth orbit by MAGSAT, DE-2, Viking, Freja, CHAMP, and SWARM satellites. However, there has been a clear limitation in resolving the spatial and temporal variations of the pulsation by using a single-point observation by a single satellite. To overcome such limitations of previous observations, a new space mission was recently initiated, using the concept of multi-satellites, named the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE). The SNIPE mission consists of four nanosatellites ( 10 kg), which will be launched into a polar orbit at an altitude of 600 km (TBD) in 2020. Four satellites will be deployed in orbit, and the distances between each satellite will be controlled from 10 to 1,000 km by a highend formation-flying algorithm. One of the possible science targets of the SNIPE mission is observing electromagnetic ion cyclotron (EMIC) waves. In this paper, we report on examples of observations, showing the limitations of previous EMIC observations in low earth orbit, and suggest possibilities to overcome those limitations through a new mission.

  2. On the Determination of Uncertainty and Limit of Detection in Label-Free Biosensors.

    PubMed

    Lavín, Álvaro; Vicente, Jesús de; Holgado, Miguel; Laguna, María F; Casquel, Rafael; Santamaría, Beatriz; Maigler, María Victoria; Hernández, Ana L; Ramírez, Yolanda

    2018-06-26

    A significant amount of noteworthy articles reviewing different label-free biosensors are being published in the last years. Most of the times, the comparison among the different biosensors is limited by the procedure used of calculating the limit of detection and the measurement uncertainty. This article clarifies and establishes a simple procedure to determine the calibration function and the uncertainty of the concentration measured at any point of the measuring interval of a generic label-free biosensor. The value of the limit of detection arises naturally from this model as the limit at which uncertainty tends when the concentration tends to zero. The need to provide additional information, such as the measurement interval and its linearity, among others, on the analytical systems and biosensor in addition to the detection limit is pointed out. Finally, the model is applied to curves that are typically obtained in immunoassays and a discussion is made on the application validity of the model and its limitations.

  3. Prediction of the limit of detection of an optical resonant reflection biosensor.

    PubMed

    Hong, Jongcheol; Kim, Kyung-Hyun; Shin, Jae-Heon; Huh, Chul; Sung, Gun Yong

    2007-07-09

    A prediction of the limit of detection of an optical resonant reflection biosensor is presented. An optical resonant reflection biosensor using a guided-mode resonance filter is one of the most promising label-free optical immunosensors due to a sharp reflectance peak and a high sensitivity to the changes of optical path length. We have simulated this type of biosensor using rigorous coupled wave theory to calculate the limit of detection of the thickness of the target protein layer. Theoretically, our biosensor has an estimated ability to detect thickness change approximately the size of typical antigen proteins. We have also investigated the effects of the absorption and divergence of the incident light on the detection ability of the biosensor.

  4. Contributions and Limitations of National Cervical Cancer Screening Program in Korea: A Retrospective Observational Study.

    PubMed

    Lee, Jung Hyun; Kim, Hyeongsu; Choi, Heejung; Jeong, Hyoseon; Ko, Young; Shim, Seung-Hyuk; Lee, Eunjoo; Chae, Su Hyun

    2018-03-01

    The purpose of this study was to evaluate the contributions and limitations of the cervical cancer screening test with accuracy in Korea. This was a retrospective observational study. The study population consisted of all participants who underwent cervical cancer screening test from 2009 to 2014. The data were obtained from National Health Information Database (NHID) which represents medical use records of most Koreans. As the indices for contributions and limitations of the screening test, crude detection rate, incidence rate of interval cancer, sensitivity, specificity, and positive predictive value were used. The crude detection rate of screening test per 100,000 participants increased from 100.7 in 2009 to 102.1 in 2014. The incidence rate of interval cancer per 100,000 negatives decreased from 13.0 in 2009 to 10.2 in 2014. The sensitivities of screening test were 88.7% in 2009 and 91.2% in 2014, and the specificities were 98.5% in 2009 and 97.7% in 2014. The positive predictive value of screening decreased from 6.2% in 2009 to 4.3% in 2014. The Korean national cervical cancer screening program has improved in accuracy and has contributed to detection of early stage of cervical cancer over the years. Along with efforts to promote participation in cancer screening programs, quality control over the screening program should be enhanced. Copyright © 2018. Published by Elsevier B.V.

  5. Eye movements during change detection: implications for search constraints, memory limitations, and scanning strategies.

    PubMed

    Zelinsky, G J

    2001-02-01

    Search, memory, and strategy constraints on change detection were analyzed in terms of oculomotor variables. Observers viewed a repeating sequence of three displays (Scene 1-->Mask-->Scene 2-->Mask...) and indicated the presence-absence of a changing object between Scenes 1 and 2. Scenes depicted real-world objects arranged on a surface. Manipulations included set size (one, three, or nine items) and the orientation of the changing objects (similar or different). Eye movements increased with the number of potentially changing objects in the scene, with this set size effect suggesting a relationship between change detection and search. A preferential fixation analysis determined that memory constraints are better described by the operation comparing the pre- and postchange objects than as a capacity limitation, and a scanpath analysis revealed a change detection strategy relying on the peripheral encoding and comparison of display items. These findings support a signal-in-noise interpretation of change detection in which the signal varies with the similarity of the changing objects and the noise is determined by the distractor objects and scene background.

  6. Nonparametric rank regression for analyzing water quality concentration data with multiple detection limits.

    PubMed

    Fu, Liya; Wang, You-Gan

    2011-02-15

    Environmental data usually include measurements, such as water quality data, which fall below detection limits, because of limitations of the instruments or of certain analytical methods used. The fact that some responses are not detected needs to be properly taken into account in statistical analysis of such data. However, it is well-known that it is challenging to analyze a data set with detection limits, and we often have to rely on the traditional parametric methods or simple imputation methods. Distributional assumptions can lead to biased inference and justification of distributions is often not possible when the data are correlated and there is a large proportion of data below detection limits. The extent of bias is usually unknown. To draw valid conclusions and hence provide useful advice for environmental management authorities, it is essential to develop and apply an appropriate statistical methodology. This paper proposes rank-based procedures for analyzing non-normally distributed data collected at different sites over a period of time in the presence of multiple detection limits. To take account of temporal correlations within each site, we propose an optimal linear combination of estimating functions and apply the induced smoothing method to reduce the computational burden. Finally, we apply the proposed method to the water quality data collected at Susquehanna River Basin in United States of America, which clearly demonstrates the advantages of the rank regression models.

  7. Fuzzy model-based observers for fault detection in CSTR.

    PubMed

    Ballesteros-Moncada, Hazael; Herrera-López, Enrique J; Anzurez-Marín, Juan

    2015-11-01

    Under the vast variety of fuzzy model-based observers reported in the literature, what would be the properone to be used for fault detection in a class of chemical reactor? In this study four fuzzy model-based observers for sensor fault detection of a Continuous Stirred Tank Reactor were designed and compared. The designs include (i) a Luenberger fuzzy observer, (ii) a Luenberger fuzzy observer with sliding modes, (iii) a Walcott-Zak fuzzy observer, and (iv) an Utkin fuzzy observer. A negative, an oscillating fault signal, and a bounded random noise signal with a maximum value of ±0.4 were used to evaluate and compare the performance of the fuzzy observers. The Utkin fuzzy observer showed the best performance under the tested conditions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  8. Nanoparticle size detection limits by single particle ICP-MS for 40 elements.

    PubMed

    Lee, Sungyun; Bi, Xiangyu; Reed, Robert B; Ranville, James F; Herckes, Pierre; Westerhoff, Paul

    2014-09-02

    The quantification and characterization of natural, engineered, and incidental nano- to micro-size particles are beneficial to assessing a nanomaterial's performance in manufacturing, their fate and transport in the environment, and their potential risk to human health. Single particle inductively coupled plasma mass spectrometry (spICP-MS) can sensitively quantify the amount and size distribution of metallic nanoparticles suspended in aqueous matrices. To accurately obtain the nanoparticle size distribution, it is critical to have knowledge of the size detection limit (denoted as Dmin) using spICP-MS for a wide range of elements (other than a few available assessed ones) that have been or will be synthesized into engineered nanoparticles. Herein is described a method to estimate the size detection limit using spICP-MS and then apply it to nanoparticles composed of 40 different elements. The calculated Dmin values correspond well for a few of the elements with their detectable sizes that are available in the literature. Assuming each nanoparticle sample is composed of one element, Dmin values vary substantially among the 40 elements: Ta, U, Ir, Rh, Th, Ce, and Hf showed the lowest Dmin values, ≤10 nm; Bi, W, In, Pb, Pt, Ag, Au, Tl, Pd, Y, Ru, Cd, and Sb had Dmin in the range of 11-20 nm; Dmin values of Co, Sr, Sn, Zr, Ba, Te, Mo, Ni, V, Cu, Cr, Mg, Zn, Fe, Al, Li, and Ti were located at 21-80 nm; and Se, Ca, and Si showed high Dmin values, greater than 200 nm. A range of parameters that influence the Dmin, such as instrument sensitivity, nanoparticle density, and background noise, is demonstrated. It is observed that, when the background noise is low, the instrument sensitivity and nanoparticle density dominate the Dmin significantly. Approaches for reducing the Dmin, e.g., collision cell technology (CCT) and analyte isotope selection, are also discussed. To validate the Dmin estimation approach, size distributions for three engineered nanoparticle samples were

  9. A double-observer approach for estimating detection probability and abundance from point counts

    USGS Publications Warehouse

    Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Fallon, F.W.; Fallon, J.E.; Heglund, P.J.

    2000-01-01

    Although point counts are frequently used in ornithological studies, basic assumptions about detection probabilities often are untested. We apply a double-observer approach developed to estimate detection probabilities for aerial surveys (Cook and Jacobson 1979) to avian point counts. At each point count, a designated 'primary' observer indicates to another ('secondary') observer all birds detected. The secondary observer records all detections of the primary observer as well as any birds not detected by the primary observer. Observers alternate primary and secondary roles during the course of the survey. The approach permits estimation of observer-specific detection probabilities and bird abundance. We developed a set of models that incorporate different assumptions about sources of variation (e.g. observer, bird species) in detection probability. Seventeen field trials were conducted, and models were fit to the resulting data using program SURVIV. Single-observer point counts generally miss varying proportions of the birds actually present, and observer and bird species were found to be relevant sources of variation in detection probabilities. Overall detection probabilities (probability of being detected by at least one of the two observers) estimated using the double-observer approach were very high (>0.95), yielding precise estimates of avian abundance. We consider problems with the approach and recommend possible solutions, including restriction of the approach to fixed-radius counts to reduce the effect of variation in the effective radius of detection among various observers and to provide a basis for using spatial sampling to estimate bird abundance on large areas of interest. We believe that most questions meriting the effort required to carry out point counts also merit serious attempts to estimate detection probabilities associated with the counts. The double-observer approach is a method that can be used for this purpose.

  10. Determination of Detection Limits and Quantitation Limits for Compounds in a Database of GC/MS by FUMI Theory

    PubMed Central

    Nakashima, Shinya; Hayashi, Yuzuru

    2016-01-01

    The aim of this paper is to propose a stochastic method for estimating the detection limits (DLs) and quantitation limits (QLs) of compounds registered in a database of a GC/MS system and prove its validity with experiments. The approach described in ISO 11843 Part 7 is adopted here as an estimation means of DL and QL, and the decafluorotriphenylphosphine (DFTPP) tuning and retention time locking are carried out for adjusting the system. Coupled with the data obtained from the system adjustment experiments, the information (noise and signal of chromatograms and calibration curves) stored in the database is used for the stochastic estimation, dispensing with the repetition measurements. Of sixty-six pesticides, the DL values obtained by the ISO method were compared with those from the statistical approach and the correlation between them was observed to be excellent with the correlation coefficient of 0.865. The accuracy of the method proposed was also examined and concluded to be satisfactory as well. The samples used are commercial products of pesticides mixtures and the uncertainty from sample preparation processes is not taken into account. PMID:27162706

  11. An adaptive confidence limit for periodic non-steady conditions fault detection

    NASA Astrophysics Data System (ADS)

    Wang, Tianzhen; Wu, Hao; Ni, Mengqi; Zhang, Milu; Dong, Jingjing; Benbouzid, Mohamed El Hachemi; Hu, Xiong

    2016-05-01

    System monitoring has become a major concern in batch process due to the fact that failure rate in non-steady conditions is much higher than in steady ones. A series of approaches based on PCA have already solved problems such as data dimensionality reduction, multivariable decorrelation, and processing non-changing signal. However, if the data follows non-Gaussian distribution or the variables contain some signal changes, the above approaches are not applicable. To deal with these concerns and to enhance performance in multiperiod data processing, this paper proposes a fault detection method using adaptive confidence limit (ACL) in periodic non-steady conditions. The proposed ACL method achieves four main enhancements: Longitudinal-Standardization could convert non-Gaussian sampling data to Gaussian ones; the multiperiod PCA algorithm could reduce dimensionality, remove correlation, and improve the monitoring accuracy; the adaptive confidence limit could detect faults under non-steady conditions; the fault sections determination procedure could select the appropriate parameter of the adaptive confidence limit. The achieved result analysis clearly shows that the proposed ACL method is superior to other fault detection approaches under periodic non-steady conditions.

  12. Gold nanoparticle-based low limit of detection Love wave biosensor for carcinoembryonic antigens.

    PubMed

    Li, Shuangming; Wan, Ying; Su, Yan; Fan, Chunhai; Bhethanabotla, Venkat R

    2017-09-15

    In this work, a Love wave biosensing platform is described for detecting cancer-related biomarker carcinoembryonic antigen (CEA). An ST 90°-X quartz Love wave device with a layer of SiO 2 waveguide was combined with gold nanoparticles (Au NPs) to amplify the mass loading effect of the acoustic wave sensor to achieve a limit of detection of 37pg/mL. The strategy involves modifying the Au NPs with anti-CEA antibody conjugates to form nanoprobes in a sandwich immunoassay. The unamplified detection limit of the Love wave biosensor is 9.4ng/mL. This 2-3 order of magnitude reduction in the limit of detection brings the SAW platform into the range useful for clinical diagnosis. Measurement electronics and microfluidics are easily constructed for acoustic wave biosensors, such as the Love wave device described here, allowing for robust platforms for point of care applications for cancer biomarkers in general. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Strategies and limitations for fluorescence detection of XAFS at high flux beamlines

    DOE PAGES

    Heald, Steve M.

    2015-02-17

    The issue of detecting the XAFS signal from dilute samples is discussed in detail with the aim of making best use of high flux beamlines that provide up to 10 13 photons -1. Various detection methods are compared, including filters with slits, solid state detectors, crystal analyzers and combinations of these. These comparisons rely on simulations that use experimentally determined parameters. It is found that inelastic scattering places a fundamental limit on detection, and that it is important to take proper account of the polarization dependence of the signals. The combination of a filter–slit system with a solid state detectormore » is a promising approach. With an optimized system good performance can be obtained even if the total count rate is limited to 10 7 Hz. Detection schemes with better energy resolution can help at the largest dilutions if their collection efficiency and count rate limits can be improved.« less

  14. Strategies and limitations for fluorescence detection of XAFS at high flux beamlines

    PubMed Central

    Heald, Steve M.

    2015-01-01

    The issue of detecting the XAFS signal from dilute samples is discussed in detail with the aim of making best use of high flux beamlines that provide up to 1013 photons s−1. Various detection methods are compared, including filters with slits, solid state detectors, crystal analyzers and combinations of these. These comparisons rely on simulations that use experimentally determined parameters. It is found that inelastic scattering places a fundamental limit on detection, and that it is important to take proper account of the polarization dependence of the signals. The combination of a filter–slit system with a solid state detector is a promising approach. With an optimized system good performance can be obtained even if the total count rate is limited to 107 Hz. Detection schemes with better energy resolution can help at the largest dilutions if their collection efficiency and count rate limits can be improved. PMID:25723945

  15. Limit of detection of 15{sub N} by gas-chromatography atomic emission detection: Optimization using an experimental design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deruaz, D.; Bannier, A.; Pionchon, C.

    1995-08-01

    This paper deals with the optimal conditions for the detection of {sup 15}N determined using a four-factor experimental design from [2{sup 13}C,-1,3 {sup 15}N] caffeine measured with an atomic emission detector (AED) coupled to gas chromatography (GC). Owing to the capability of a photodiodes array, AED can simultaneously detect several elements using their specific emission lines within a wavelength range of 50 nm. So, the emissions of {sup 15}N and {sup 14}N are simultaneously detected at 420.17 nm and 421.46 nm respectively. Four independent experimental factors were tested (1) helium flow rate (plasma gas); (2) methane pressure (reactant gas); (3)more » oxygen pressure; (4) hydrogen pressure. It has been shown that these four gases had a significant influence on the analytical response of {sup 15}N. The linearity of the detection was determined using {sup 15}N amounts ranging from 1.52 pg to 19 ng under the optimal conditions obtained from the experimental design. The limit of detection was studied using different methods. The limits of detection of {sup 15}N was 1.9 pg/s according to the IUPAC method (International-Union of Pure and Applied Chemistry). The method proposed by Quimby and Sullivan gave a value of 2.3 pg/s and that of Oppenheimer gave a limit of 29 pg/s. For each determination, and internal standard: 1-isobutyl-3.7 dimethylxanthine was used. The results clearly demonstrate that GC AED is sensitive and selective enough to detect and measure {sup 15}N-labelled molecules after gas chromatographic separation.« less

  16. Method for improving the limit of detection in a data signal

    DOEpatents

    Synovec, Robert E.; Yueng, Edward S.

    1989-10-17

    A method for improving the limit of detection for a data set in which experimental noise is uncorrelated along a given abscissa and an analytical signal is correlated to the abscissa, the steps comprising collecting the data set, converting the data set into a data signal including an analytical portion and the experimental noise portion, designating and adjusting a baseline of the data signal to center the experimental noise numerically about a zero reference, and integrating the data signal preserving the corresponding information for each point of the data signal. The steps of the method produce an enhanced integrated data signal which improves the limit of detection of the data signal.

  17. Swift and NuSTAR observations of GW170817: Detection of a blue kilonova

    NASA Astrophysics Data System (ADS)

    Evans, P. A.; Cenko, S. B.; Kennea, J. A.; Emery, S. W. K.; Kuin, N. P. M.; Korobkin, O.; Wollaeger, R. T.; Fryer, C. L.; Madsen, K. K.; Harrison, F. A.; Xu, Y.; Nakar, E.; Hotokezaka, K.; Lien, A.; Campana, S.; Oates, S. R.; Troja, E.; Breeveld, A. A.; Marshall, F. E.; Barthelmy, S. D.; Beardmore, A. P.; Burrows, D. N.; Cusumano, G.; D’Aì, A.; D’Avanzo, P.; D’Elia, V.; de Pasquale, M.; Even, W. P.; Fontes, C. J.; Forster, K.; Garcia, J.; Giommi, P.; Grefenstette, B.; Gronwall, C.; Hartmann, D. H.; Heida, M.; Hungerford, A. L.; Kasliwal, M. M.; Krimm, H. A.; Levan, A. J.; Malesani, D.; Melandri, A.; Miyasaka, H.; Nousek, J. A.; O’Brien, P. T.; Osborne, J. P.; Pagani, C.; Page, K. L.; Palmer, D. M.; Perri, M.; Pike, S.; Racusin, J. L.; Rosswog, S.; Siegel, M. H.; Sakamoto, T.; Sbarufatti, B.; Tagliaferri, G.; Tanvir, N. R.; Tohuvavohu, A.

    2017-12-01

    The gravitational wave event GW170817 was caused by the merger of two neutron stars (see the Introduction by Smith). In three papers, teams associated with the GROWTH (Global Relay of Observatories Watching Transients Happen) project present their observations of the event at wavelengths from x-rays to radio waves. Evans et al. used space telescopes to detect GW170817 in the ultraviolet and place limits on its x-ray flux, showing that the merger generated a hot explosion known as a blue kilonova. Hallinan et al. describe radio emissions generated as the explosion slammed into the surrounding gas within the host galaxy. Kasliwal et al. present additional observations in the optical and infrared and formulate a model for the event involving a cocoon of material expanding at close to the speed of light, matching the data at all observed wavelengths.

  18. Detectability of auditory signals presented without defined observation intervals

    NASA Technical Reports Server (NTRS)

    Watson, C. S.; Nichols, T. L.

    1976-01-01

    Ability to detect tones in noise was measured without defined observation intervals. Latency density functions were estimated for the first response following a signal and, separately, for the first response following randomly distributed instances of background noise. Detection performance was measured by the maximum separation between the cumulative latency density functions for signal-plus-noise and for noise alone. Values of the index of detectability, estimated by this procedure, were approximately those obtained with a 2-dB weaker signal and defined observation intervals. Simulation of defined- and non-defined-interval tasks with an energy detector showed that this device performs very similarly to the human listener in both cases.

  19. Satellite based Global Flood Detection System - strengths and limitations

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Salamon, Peter; Thielen, Jutta; De Groeve, Tom; Zajac, Zuzanna

    2014-05-01

    One of the main problems for global hydrological models is that for many regions only very limited or no observational data for a model assessment is available. This problem could be overcome with filling the gaps using information derived from satellite observations. Thus, an evaluation of the remote sensing signal of the Global Flood Detection System (GFDS) against observed discharge data was performed in order to test the use of this data in sparsely gauged river basins. The study was carried out at 398 locations near the main rivers and in Africa, Asia, Europe, North America and South America. After evaluating different methodologies for extracting the satellite signal, a temporal (4 days) and spatial (4 GFDS pixels) average was chosen to proceed with the analysis. For the 340 stations with a concurrent time series longer than seven years for both, the signal and the in situ observed discharge (obtained mainly from the Global Runoff Data Centre), a calibration based on monthly linear models was carried out. The validation was executed and several skill scores were calculated such as the R2, Nash-Sutcliffe (NSE), and Root Mean Square Error (RMSE). It is important to highlight that, for this study, 230 stations globally had Nash-Sutcliffe efficient score higher than zero, indicating that for specific conditions the satellite signal as used in GFDS can fill the gaps where observations are not available. For example, several locations in African catchments have good performance as in the Niger, Volta and Zambezi for which Nash-Sutcliffe is greater than 0.75. It is known that a number of factors affect total upwelling microwave brightness from a mixed water and land surface measured by a single image pixel. Aiming to better understand how some features of the sites could affect the satellite signal and the correlation with in situ observations, apart from the dependency on the river geometry, a multivariate analysis was carried out between the skill scores (NSE and

  20. METHODS OF DEALING WITH VALUES BELOW THE LIMIT OF DETECTION USING SAS

    EPA Science Inventory

    Due to limitations of chemical analysis procedures, small concentrations cannot be precisely measured. These concentrations are said to be below the limit of detection (LOD). In statistical analyses, these values are often censored and substituted with a constant value, such ...

  1. Method for improving the limit of detection in a data signal

    DOEpatents

    Synovec, R.E.; Yueng, E.S.

    1989-10-17

    Disclosed is a method for improving the limit of detection for a data set in which experimental noise is uncorrelated along a given abscissa and an analytical signal is correlated to the abscissa, the steps comprising collecting the data set, converting the data set into a data signal including an analytical portion and the experimental noise portion, designating and adjusting a baseline of the data signal to center the experimental noise numerically about a zero reference, and integrating the data signal preserving the corresponding information for each point of the data signal. The steps of the method produce an enhanced integrated data signal which improves the limit of detection of the data signal. 8 figs.

  2. Signal detection evidence for limited capacity in visual search

    PubMed Central

    Fencsik, David E.; Flusberg, Stephen J.; Horowitz, Todd S.; Wolfe, Jeremy M.

    2014-01-01

    The nature of capacity limits (if any) in visual search has been a topic of controversy for decades. In 30 years of work, researchers have attempted to distinguish between two broad classes of visual search models. Attention-limited models have proposed two stages of perceptual processing: an unlimited-capacity preattentive stage, and a limited-capacity selective attention stage. Conversely, noise-limited models have proposed a single, unlimited-capacity perceptual processing stage, with decision processes influenced only by stochastic noise. Here, we use signal detection methods to test a strong prediction of attention-limited models. In standard attention-limited models, performance of some searches (feature searches) should only be limited by a preattentive stage. Other search tasks (e.g., spatial configuration search for a “2” among “5”s) should be additionally limited by an attentional bottleneck. We equated average accuracies for a feature and a spatial configuration search over set sizes of 1–8 for briefly presented stimuli. The strong prediction of attention-limited models is that, given overall equivalence in performance, accuracy should be better on the spatial configuration search than on the feature search for set size 1, and worse for set size 8. We confirm this crossover interaction and show that it is problematic for at least one class of one-stage decision models. PMID:21901574

  3. Observations on military exploitation of explosives detection technologies

    NASA Astrophysics Data System (ADS)

    Faust, Anthony A.; de Ruiter, C. J.; Ehlerding, Anneli; McFee, John E.; Svinsås, Eirik; van Rheenen, Arthur D.

    2011-06-01

    Accurate and timely detection of explosives, energetic materials, and their associated compounds would provide valuable information to military commanders in a wide range of military operations: protection of fast moving convoys from mobile or static IED threats; more deliberate countermine and counter-IED operations during route or area clearance; and static roles such as hasty or deliberate checkpoints, critical infrastructure protection and support to public security. The detection of hidden explosive hazards is an extremely challenging problem, as evidenced by the fact that related research has been ongoing in many countries for at least seven decades and no general purpose solution has yet been found. Technologies investigated have spanned all major scientific fields, with emphasis on the physical sciences, life sciences, engineering, robotics, computer technology and mathematics. This paper will present a limited, operationally-focused overview of the current status of detection technologies. Emphasis will be on those technologies that directly detect the explosive hazard, as opposed to those that detect secondary properties of the threat, such as the casing, associated wires or electronics. Technologies that detect explosives include those based on nuclear radiation and terahertz radiation, as well as trace and biological detection techniques. Current research areas of the authors will be used to illustrate the practical applications.

  4. Efficiency of the human observer detecting random signals in random backgrounds

    PubMed Central

    Park, Subok; Clarkson, Eric; Kupinski, Matthew A.; Barrett, Harrison H.

    2008-01-01

    The efficiencies of the human observer and the channelized-Hotelling observer relative to the ideal observer for signal-detection tasks are discussed. Both signal-known-exactly (SKE) tasks and signal-known-statistically (SKS) tasks are considered. Signal location is uncertain for the SKS tasks, and lumpy backgrounds are used for background uncertainty in both cases. Markov chain Monte Carlo methods are employed to determine ideal-observer performance on the detection tasks. Psychophysical studies are conducted to compute human-observer performance on the same tasks. Efficiency is computed as the squared ratio of the detectabilities of the observer of interest to the ideal observer. Human efficiencies are approximately 2.1% and 24%, respectively, for the SKE and SKS tasks. The results imply that human observers are not affected as much as the ideal observer by signal-location uncertainty even though the ideal observer outperforms the human observer for both tasks. Three different simplified pinhole imaging systems are simulated, and the humans and the model observers rank the systems in the same order for both the SKE and the SKS tasks. PMID:15669610

  5. Ground-based detectability of terrestrial and Jovian extrasolar planets: observations of CM Draconis at Lick Observatory.

    PubMed

    Doyle, L R; Dunham, E T; Deeg, H J; Blue, J E; Jenkins, J M

    1996-06-25

    The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case especially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes > or = 1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define "terrestrial planets" herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a "spin-off" of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.

  6. Ground-based detectability of terrestrial and Jovian extrasolar planets: observations of CM Draconis at Lick Observatory

    NASA Technical Reports Server (NTRS)

    Doyle, L. R.; Dunham, E. T.; Deeg, H. J.; Blue, J. E.; Jenkins, J. M.

    1996-01-01

    The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case especially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes > or = 1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define "terrestrial planets" herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a "spin-off" of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.

  7. METHODS OF DEALING WITH VALUES BELOW THE LIMIT OF DETECTION USING SAS

    EPA Science Inventory

    Due to limitations of chemical analysis procedures, small values cannot be precisely measured. These values are said to be below the limit of detection (LOD). In statistical analyses, these values are often censored and substituted with a constant value, such as half the LOD,...

  8. Global limits and interference patterns in dark matter direct detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catena, Riccardo; Gondolo, Paolo

    2015-08-13

    We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limitsmore » by up to one order of magnitude in the coupling constants.« less

  9. Global limits and interference patterns in dark matter direct detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catena, Riccardo; Gondolo, Paolo, E-mail: riccardo.catena@theorie.physik.uni-goettingen.de, E-mail: paolo.gondolo@utah.edu

    2015-08-01

    We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limitsmore » by up to one order of magnitude in the coupling constants.« less

  10. Predicting detection performance with model observers: Fourier domain or spatial domain?

    PubMed

    Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia

    2016-02-27

    The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images.

  11. Predicting detection performance with model observers: Fourier domain or spatial domain?

    PubMed Central

    Chen, Baiyu; Yu, Lifeng; Leng, Shuai; Kofler, James; Favazza, Christopher; Vrieze, Thomas; McCollough, Cynthia

    2016-01-01

    The use of Fourier domain model observer is challenged by iterative reconstruction (IR), because IR algorithms are nonlinear and IR images have noise texture different from that of FBP. A modified Fourier domain model observer, which incorporates nonlinear noise and resolution properties, has been proposed for IR and needs to be validated with human detection performance. On the other hand, the spatial domain model observer is theoretically applicable to IR, but more computationally intensive than the Fourier domain method. The purpose of this study is to compare the modified Fourier domain model observer to the spatial domain model observer with both FBP and IR images, using human detection performance as the gold standard. A phantom with inserts of various low contrast levels and sizes was repeatedly scanned 100 times on a third-generation, dual-source CT scanner at 5 dose levels and reconstructed using FBP and IR algorithms. The human detection performance of the inserts was measured via a 2-alternative-forced-choice (2AFC) test. In addition, two model observer performances were calculated, including a Fourier domain non-prewhitening model observer and a spatial domain channelized Hotelling observer. The performance of these two mode observers was compared in terms of how well they correlated with human observer performance. Our results demonstrated that the spatial domain model observer correlated well with human observers across various dose levels, object contrast levels, and object sizes. The Fourier domain observer correlated well with human observers using FBP images, but overestimated the detection performance using IR images. PMID:27239086

  12. Detection of Rain-on-Snow (ROS) Events Using the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and Weather Station Observations

    NASA Astrophysics Data System (ADS)

    Ryan, E. M.; Brucker, L.; Forman, B. A.

    2015-12-01

    During the winter months, the occurrence of rain-on-snow (ROS) events can impact snow stratigraphy via generation of large scale ice crusts, e.g., on or within the snowpack. The formation of such layers significantly alters the electromagnetic response of the snowpack, which can be witnessed using space-based microwave radiometers. In addition, ROS layers can hinder the ability of wildlife to burrow in the snow for vegetation, which limits their foraging capability. A prime example occurred on 23 October 2003 in Banks Island, Canada, where an ROS event is believed to have caused the deaths of over 20,000 musk oxen. Through the use of passive microwave remote sensing, ROS events can be detected by utilizing observed brightness temperatures (Tb) from AMSR-E. Tb observed at different microwave frequencies and polarizations depends on snow properties. A wet snowpack formed from an ROS event yields a larger Tb than a typical dry snowpack would. This phenomenon makes observed Tb useful when detecting ROS events. With the use of data retrieved from AMSR-E, in conjunction with observations from ground-based weather station networks, a database of estimated ROS events over the past twelve years was generated. Using this database, changes in measured Tb following the ROS events was also observed. This study adds to the growing knowledge of ROS events and has the potential to help inform passive microwave snow water equivalent (SWE) retrievals or snow cover properties in polar regions.

  13. Stringent upper limit of CH4 on Mars based on SOFIA/EXES observations

    NASA Astrophysics Data System (ADS)

    Aoki, S.; Richter, M. J.; DeWitt, C.; Boogert, A.; Encrenaz, T.; Sagawa, H.; Nakagawa, H.; Vandaele, A. C.; Giuranna, M.; Greathouse, T. K.; Fouchet, T.; Geminale, A.; Sindoni, G.; McKelvey, M.; Case, M.; Kasaba, Y.

    2018-03-01

    Discovery of CH4 in the Martian atmosphere has led to much discussion since it could be a signature of biological and/or geological activities on Mars. However, the presence of CH4 and its temporal and spatial variations are still under discussion because of the large uncertainties embedded in the previous observations. We performed sensitive measurements of Martian CH4 by using the Echelon-Cross-Echelle Spectrograph (EXES) onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA) on 16 March 2016, which corresponds to summer (Ls = 123.2∘) in the northern hemisphere on Mars. The high altitude of SOFIA ( 13.7 km) enables us to significantly reduce the effects of terrestrial atmosphere. Thanks to this, SOFIA/EXES improves our chances of detecting Martian CH4 lines because it reduces the impact of telluric CH4 on Martian CH4, and allows us to use CH4 lines in the 7.5 μm band which has less contamination. However, our results show no unambiguous detection of Martian CH4. The Martian disk was spatially resolved into 3 × 3 areas, and the upper limits on the CH4 volume mixing ratio range from 1 to 9 ppb across the Martian atmosphere, which is significantly less than detections in several other studies. These results emphasize that release of CH4 on Mars is sporadic and/or localized if the process is present.

  14. Targeted analyte detection by standard addition improves detection limits in matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Toghi Eshghi, Shadi; Li, Xingde; Zhang, Hui

    2012-09-18

    Matrix-assisted laser desorption/ionization (MALDI) has proven an effective tool for fast and accurate determination of many molecules. However, the detector sensitivity and chemical noise compromise the detection of many invaluable low-abundance molecules from biological and clinical samples. To challenge this limitation, we developed a targeted analyte detection (TAD) technique. In TAD, the target analyte is selectively elevated by spiking a known amount of that analyte into the sample, thereby raising its concentration above the noise level, where we take advantage of the improved sensitivity to detect the presence of the endogenous analyte in the sample. We assessed TAD on three peptides in simple and complex background solutions with various exogenous analyte concentrations in two MALDI matrices. TAD successfully improved the limit of detection (LOD) of target analytes when the target peptides were added to the sample in a concentration close to optimum concentration. The optimum exogenous concentration was estimated through a quantitative method to be approximately equal to the original LOD for each target. Also, we showed that TAD could achieve LOD improvements on an average of 3-fold in a simple and 2-fold in a complex sample. TAD provides a straightforward assay to improve the LOD of generic target analytes without the need for costly hardware modifications.

  15. Detection limit for rate fluctuations in inhomogeneous Poisson processes

    NASA Astrophysics Data System (ADS)

    Shintani, Toshiaki; Shinomoto, Shigeru

    2012-04-01

    Estimations of an underlying rate from data points are inevitably disturbed by the irregular occurrence of events. Proper estimation methods are designed to avoid overfitting by discounting the irregular occurrence of data, and to determine a constant rate from irregular data derived from a constant probability distribution. However, it can occur that rapid or small fluctuations in the underlying density are undetectable when the data are sparse. For an estimation method, the maximum degree of undetectable rate fluctuations is uniquely determined as a phase transition, when considering an infinitely long series of events drawn from a fluctuating density. In this study, we analytically examine an optimized histogram and a Bayesian rate estimator with respect to their detectability of rate fluctuation, and determine whether their detectable-undetectable phase transition points are given by an identical formula defining a degree of fluctuation in an underlying rate. In addition, we numerically examine the variational Bayes hidden Markov model in its detectability of rate fluctuation, and determine whether the numerically obtained transition point is comparable to those of the other two methods. Such consistency among these three principled methods suggests the presence of a theoretical limit for detecting rate fluctuations.

  16. Detection limit for rate fluctuations in inhomogeneous Poisson processes.

    PubMed

    Shintani, Toshiaki; Shinomoto, Shigeru

    2012-04-01

    Estimations of an underlying rate from data points are inevitably disturbed by the irregular occurrence of events. Proper estimation methods are designed to avoid overfitting by discounting the irregular occurrence of data, and to determine a constant rate from irregular data derived from a constant probability distribution. However, it can occur that rapid or small fluctuations in the underlying density are undetectable when the data are sparse. For an estimation method, the maximum degree of undetectable rate fluctuations is uniquely determined as a phase transition, when considering an infinitely long series of events drawn from a fluctuating density. In this study, we analytically examine an optimized histogram and a Bayesian rate estimator with respect to their detectability of rate fluctuation, and determine whether their detectable-undetectable phase transition points are given by an identical formula defining a degree of fluctuation in an underlying rate. In addition, we numerically examine the variational Bayes hidden Markov model in its detectability of rate fluctuation, and determine whether the numerically obtained transition point is comparable to those of the other two methods. Such consistency among these three principled methods suggests the presence of a theoretical limit for detecting rate fluctuations.

  17. Ultrafast scene detection and recognition with limited visual information

    PubMed Central

    Hagmann, Carl Erick; Potter, Mary C.

    2016-01-01

    Humans can detect target color pictures of scenes depicting concepts like picnic or harbor in sequences of six or twelve pictures presented as briefly as 13 ms, even when the target is named after the sequence (Potter, Wyble, Hagmann, & McCourt, 2014). Such rapid detection suggests that feedforward processing alone enabled detection without recurrent cortical feedback. There is debate about whether coarse, global, low spatial frequencies (LSFs) provide predictive information to high cortical levels through the rapid magnocellular (M) projection of the visual path, enabling top-down prediction of possible object identities. To test the “Fast M” hypothesis, we compared detection of a named target across five stimulus conditions: unaltered color, blurred color, grayscale, thresholded monochrome, and LSF pictures. The pictures were presented for 13–80 ms in six-picture rapid serial visual presentation (RSVP) sequences. Blurred, monochrome, and LSF pictures were detected less accurately than normal color or grayscale pictures. When the target was named before the sequence, all picture types except LSF resulted in above-chance detection at all durations. Crucially, when the name was given only after the sequence, performance dropped and the monochrome and LSF pictures (but not the blurred pictures) were at or near chance. Thus, without advance information, monochrome and LSF pictures were rarely understood. The results offer only limited support for the Fast M hypothesis, suggesting instead that feedforward processing is able to activate conceptual representations without complementary reentrant processing. PMID:28255263

  18. Failure Detecting Method of Fault Current Limiter System with Rectifier

    NASA Astrophysics Data System (ADS)

    Tokuda, Noriaki; Matsubara, Yoshio; Asano, Masakuni; Ohkuma, Takeshi; Sato, Yoshibumi; Takahashi, Yoshihisa

    A fault current limiter (FCL) is extensively needed to suppress fault current, particularly required for trunk power systems connecting high-voltage transmission lines, such as 500kV class power system which constitutes the nucleus of the electric power system. We proposed a new type FCL system (rectifier type FCL), consisting of solid-state diodes, DC reactor and bypass AC reactor, and demonstrated the excellent performances of this FCL by developing the small 6.6kV and 66kV model. It is important to detect the failure of power devices used in the rectifier under the normal operating condition, for keeping the excellent reliability of the power system. In this paper, we have proposed a new failure detecting method of power devices most suitable for the rectifier type FCL. This failure detecting system is simple and compact. We have adapted the proposed system to the 66kV prototype single-phase model and successfully demonstrated to detect the failure of power devices.

  19. The detection limits of antimicrobial agents in cow's milk by a simple Yoghurt Culture Test.

    PubMed

    Mohsenzadeh, M; Bahrainipour, A

    2008-09-15

    The aim of this study was to study performance of Yoghurt Culture Test (YCT) in the detection of antimicrobial residues in milk. For this purpose, the sensitivity of YCT for 15 antibiotics were determined. For each drug, 8 concentrations were tested. The detection limits of YCT at 2.5 h and 4 h incubation were determined (microg kg(-1)): 15 and 37.5, penicillin G; 4 and 5, ampicillin; 5 and 7.5, amoxycillin; 100 and 200, cephalexin; 80 and 100, cefazoline; 100 and 200, oxytetracycline; 500 and 100, chlortetracycline; 100 and 200, tetracycline; 150 and 200, doxycycline; 200 and 400, sulphadimidine; 500 and 1000, gentamycin; 1000 and 1500, spectinomycin; 400 and 500, erythromycin; 50 and 100, tylosin; 5000 and 10000, chloramphenicol. The YCT detection limits at 2.5 h incubation for ampicillin, cephalexin, tetracycline, oxytetracycline and tylosin are similar to those obtained as Maximum Residue Limit (MRL) according to Regulation 2377/90 EEC as set out by the European Union. In addition the detection limits of YCT for some antibiotics were lower than some of microbial inhibitor test.

  20. Upper Limits from Five Years of Blazar Observations with the VERITAS Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Biteau, J.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cerruti, M.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Eisch, J. D.; Errando, M.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Fortin, P.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Griffin, S.; Grube, J.; Gyuk, G.; Hütten, M.; Håkansson, N.; Hanna, D.; Holder, J.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Krennrich, F.; Kumar, S.; Lang, M. J.; Maier, G.; McArthur, S.; McCann, A.; Meagher, K.; Moriarty, P.; Mukherjee, R.; Nguyen, T.; Nieto, D.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Otte, A. N.; Park, N.; Perkins, J. S.; Pichel, A.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rovero, A. C.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Smith, A. W.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Vincent, S.; Wakely, S. P.; Weiner, O. M.; Weinstein, A.; Williams, D. A.; Zitzer, B.; VERITAS Collaboration; Fumagalli, M.; Prochaska, J. X.

    2016-06-01

    Between the beginning of its full-scale scientific operations in 2007 and 2012, the VERITAS Cherenkov telescope array observed more than 130 blazars; of these, 26 were detected as very-high-energy (VHE; E > 100 GeV) γ-ray sources. In this work, we present the analysis results of a sample of 114 undetected objects. The observations constitute a total live-time of ˜570 hr. The sample includes several unidentified Fermi-Large Area Telescope (LAT) sources (located at high Galactic latitude) as well as all the sources from the second Fermi-LAT catalog that are contained within the field of view of the VERITAS observations. We have also performed optical spectroscopy measurements in order to estimate the redshift of some of these blazars that do not have spectroscopic distance estimates. We present new optical spectra from the Kast instrument on the Shane telescope at the Lick observatory for 18 blazars included in this work, which allowed for the successful measurement or constraint on the redshift of four of them. For each of the blazars included in our sample, we provide the flux upper limit in the VERITAS energy band. We also study the properties of the significance distributions and we present the result of a stacked analysis of the data set, which shows a 4σ excess.

  1. UPPER LIMITS FROM FIVE YEARS OF BLAZAR OBSERVATIONS WITH THE VERITAS CHERENKOV TELESCOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archambault, S.; Archer, A.; Buckley, J. H.

    2016-06-01

    Between the beginning of its full-scale scientific operations in 2007 and 2012, the VERITAS Cherenkov telescope array observed more than 130 blazars; of these, 26 were detected as very-high-energy (VHE; E > 100 GeV) γ -ray sources. In this work, we present the analysis results of a sample of 114 undetected objects. The observations constitute a total live-time of ∼570 hr. The sample includes several unidentified Fermi -Large Area Telescope (LAT) sources (located at high Galactic latitude) as well as all the sources from the second Fermi -LAT catalog that are contained within the field of view of the VERITASmore » observations. We have also performed optical spectroscopy measurements in order to estimate the redshift of some of these blazars that do not have spectroscopic distance estimates. We present new optical spectra from the Kast instrument on the Shane telescope at the Lick observatory for 18 blazars included in this work, which allowed for the successful measurement or constraint on the redshift of four of them. For each of the blazars included in our sample, we provide the flux upper limit in the VERITAS energy band. We also study the properties of the significance distributions and we present the result of a stacked analysis of the data set, which shows a 4 σ excess.« less

  2. Attentional Capacity Limits Gap Detection during Concurrent Sound Segregation.

    PubMed

    Leung, Ada W S; Jolicoeur, Pierre; Alain, Claude

    2015-11-01

    Detecting a brief silent interval (i.e., a gap) is more difficult when listeners perceive two concurrent sounds rather than one in a sound containing a mistuned harmonic in otherwise in-tune harmonics. This impairment in gap detection may reflect the interaction of low-level encoding or the division of attention between two sound objects, both of which could interfere with signal detection. To distinguish between these two alternatives, we compared ERPs during active and passive listening with complex harmonic tones that could include a gap, a mistuned harmonic, both features, or neither. During active listening, participants indicated whether they heard a gap irrespective of mistuning. During passive listening, participants watched a subtitled muted movie of their choice while the same sounds were presented. Gap detection was impaired when the complex sounds included a mistuned harmonic that popped out as a separate object. The ERP analysis revealed an early gap-related activity that was little affected by mistuning during the active or passive listening condition. However, during active listening, there was a marked decrease in the late positive wave that was thought to index attention and response-related processes. These results suggest that the limitation in detecting the gap is related to attentional processing, possibly divided attention induced by the concurrent sound objects, rather than deficits in preattentional sensory encoding.

  3. Combining markers with and without the limit of detection

    PubMed Central

    Dong, Ting; Liu, Catherine Chunling; Petricoin, Emanuel F.; Tang, Liansheng Larry

    2014-01-01

    In this paper, we consider the combination of markers with and without the limit of detection (LOD). LOD is often encountered when measuring proteomic markers. Because of the limited detecting ability of an equipment or instrument, it is difficult to measure markers at a relatively low level. Suppose that after some monotonic transformation, the marker values approximately follow multivariate normal distributions. We propose to estimate distribution parameters while taking the LOD into account, and then combine markers using the results from the linear discriminant analysis. Our simulation results show that the ROC curve parameter estimates generated from the proposed method are much closer to the truth than simply using the linear discriminant analysis to combine markers without considering the LOD. In addition, we propose a procedure to select and combine a subset of markers when many candidate markers are available. The procedure based on the correlation among markers is different from a common understanding that a subset of the most accurate markers should be selected for the combination. The simulation studies show that the accuracy of a combined marker can be largely impacted by the correlation of marker measurements. Our methods are applied to a protein pathway dataset to combine proteomic biomarkers to distinguish cancer patients from non-cancer patients. PMID:24132938

  4. Detection limits for nanoparticles in solution with classical turbidity spectra

    NASA Astrophysics Data System (ADS)

    Le Blevennec, G.

    2013-09-01

    Detection of nanoparticles in solution is required to manage safety and environmental problems. Spectral transmission turbidity method has now been known for a long time. It is derived from the Mie Theory and can be applied to any number of spheres, randomly distributed and separated by large distance compared to wavelength. Here, we describe a method for determination of size, distribution and concentration of nanoparticles in solution using UV-Vis transmission measurements. The method combines Mie and Beer Lambert computation integrated in a best fit approximation. In a first step, a validation of the approach is completed on silver nanoparticles solution. Verification of results is realized with Transmission Electronic Microscopy measurements for size distribution and an Inductively Coupled Plasma Mass Spectrometry for concentration. In view of the good agreement obtained, a second step of work focuses on how to manage the concentration to be the most accurate on the size distribution. Those efficient conditions are determined by simple computation. As we are dealing with nanoparticles, one of the key points is to know what the size limits reachable are with that kind of approach based on classical electromagnetism. In taking into account the transmission spectrometer accuracy limit we determine for several types of materials, metals, dielectrics, semiconductors the particle size limit detectable by such a turbidity method. These surprising results are situated at the quantum physics frontier.

  5. Optimization of medical imaging display systems: using the channelized Hotelling observer for detecting lung nodules: experimental study

    NASA Astrophysics Data System (ADS)

    Platisa, Ljiljana; Vansteenkiste, Ewout; Goossens, Bart; Marchessoux, Cédric; Kimpe, Tom; Philips, Wilfried

    2009-02-01

    Medical-imaging systems are designed to aid medical specialists in a specific task. Therefore, the physical parameters of a system need to optimize the task performance of a human observer. This requires measurements of human performance in a given task during the system optimization. Typically, psychophysical studies are conducted for this purpose. Numerical observer models have been successfully used to predict human performance in several detection tasks. Especially, the task of signal detection using a channelized Hotelling observer (CHO) in simulated images has been widely explored. However, there are few studies done for clinically acquired images that also contain anatomic noise. In this paper, we investigate the performance of a CHO in the task of detecting lung nodules in real radiographic images of the chest. To evaluate variability introduced by the limited available data, we employ a commonly used study of a multi-reader multi-case (MRMC) scenario. It accounts for both case and reader variability. Finally, we use the "oneshot" methods to estimate the MRMC variance of the area under the ROC curve (AUC). The obtained AUC compares well to those reported for human observer study on a similar data set. Furthermore, the "one-shot" analysis implies a fairly consistent performance of the CHO with the variance of AUC below 0.002. This indicates promising potential for numerical observers in optimization of medical imaging displays and encourages further investigation on the subject.

  6. Observer detection of image degradation caused by irreversible data compression processes

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Flynn, Michael J.; Gross, Barry; Spizarny, David

    1991-05-01

    Irreversible data compression methods have been proposed to reduce the data storage and communication requirements of digital imaging systems. In general, the error produced by compression increases as an algorithm''s compression ratio is increased. We have studied the relationship between compression ratios and the detection of induced error using radiologic observers. The nature of the errors was characterized by calculating the power spectrum of the difference image. In contrast with studies designed to test whether detected errors alter diagnostic decisions, this study was designed to test whether observers could detect the induced error. A paired-film observer study was designed to test whether induced errors were detected. The study was conducted with chest radiographs selected and ranked for subtle evidence of interstitial disease, pulmonary nodules, or pneumothoraces. Images were digitized at 86 microns (4K X 5K) and 2K X 2K regions were extracted. A full-frame discrete cosine transform method was used to compress images at ratios varying between 6:1 and 60:1. The decompressed images were reprinted next to the original images in a randomized order with a laser film printer. The use of a film digitizer and a film printer which can reproduce all of the contrast and detail in the original radiograph makes the results of this study insensitive to instrument performance and primarily dependent on radiographic image quality. The results of this study define conditions for which errors associated with irreversible compression cannot be detected by radiologic observers. The results indicate that an observer can detect the errors introduced by this compression algorithm for compression ratios of 10:1 (1.2 bits/pixel) or higher.

  7. Man vs. Machine: A Junior-level Laboratory Exercise Comparing Human and Instrumental Detection Limits

    ERIC Educational Resources Information Center

    Elias, Ryan J.; Hopfer, Helene; Hofstaedter, Amanda N.; Hayes, John E.

    2017-01-01

    The human nose is a very sensitive detector and is able to detect potent aroma compounds down to low ng/L levels. These levels are often below detection limits of analytical instrumentation. The following laboratory exercise is designed to compare instrumental and human methods for the detection of volatile odor active compounds. Reference…

  8. Observations of diffusion-limited aggregation-like patterns by atmospheric plasma jet

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Yang; Chu, Hong-Yu

    2017-11-01

    We report on the observations of diffusion-limited aggregation-like patterns during the thin film removal process by an atmospheric plasma jet. The fractal patterns are found to have various structures like dense branching and tree-like patterns. The determination of surface morphology reveals that the footprints of discharge bursts are not as random as expected. We propose a diffusion-limited aggregation model with a few extra requirements by analogy with the experimental results, and thereby present the beauty of nature. We show that the model simulates not only the shapes of the patterns similar to the experimental observations, but also the growing sequences of fluctuating, oscillatory, and zigzag traces.

  9. Calculation of the detection limits for radionuclides identified in gamma-ray spectra based on post-processing peak analysis results.

    PubMed

    Korun, M; Vodenik, B; Zorko, B

    2018-03-01

    A new method for calculating the detection limits of gamma-ray spectrometry measurements is presented. The method is applicable for gamma-ray emitters, irrespective of the influences of the peaked background, the origin of the background and the overlap with other peaks. It offers the opportunity for multi-gamma-ray emitters to calculate the common detection limit, corresponding to more peaks. The detection limit is calculated by approximating the dependence of the uncertainty in the indication on its value with a second-order polynomial. In this approach the relation between the input quantities and the detection limit are described by an explicit expression and can be easy investigated. The detection limit is calculated from the data usually provided by the reports of peak-analyzing programs: the peak areas and their uncertainties. As a result, the need to use individual channel contents for calculating the detection limit is bypassed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. SEDHI: a new generation of detection electronics for earth observation satellites

    NASA Astrophysics Data System (ADS)

    Dantes, Didier; Neveu, Claude; Biffi, Jean-Marc; Devilliers, Christophe; Andre, Serge

    2017-11-01

    Future earth observation optical systems will be more and more demanding in terms of ground sampling distance, swath width, number of spectral bands, duty cycle. Existing architectures of focal planes and video processing electronics are hardly compatible with these new requirements: electronic functions are split in several units, and video processing is limited to frequencies around 5 MHz in order to fulfil the radiometric requirements expected for high performance image quality systems. This frequency limitation induces a high number of video chains operated in parallel to process the huge amount of pixels at focal plane output, and leads to unacceptable mass and power consumption budgets. Furthermore, splitting the detection electronics functions into several units (at least one for the focal plane and proximity electronics, and one for the video processing functions) does not optimise the production costs : specific development efforts must be performed on critical analogue electronics at each equipment level and operations of assembly, integration and tests are duplicated at equipment and subsystem levels. Alcatel Space Industries has proposed to CNES a new concept of highly integrated detection electronics (SEDHI), and is developing for CNES a breadboard which will allow to confirm its potentialities. This paper presents the trade-off study which have been performed before selection of this new concept and summarises the main advantages and drawbacks of each possible architecture. The electrical, mechanical and thermal aspects of the SEDHI concept are described, including the basic technologies : ASIC for phase shift of detector clocks, ASIC for video processing, hybrids, microchip module... The adaptability to a large amount of missions and optical instruments is also discussed.

  11. Determination of target detection limits in hyperspectral data using band selection and dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Gross, W.; Boehler, J.; Twizer, K.; Kedem, B.; Lenz, A.; Kneubuehler, M.; Wellig, P.; Oechslin, R.; Schilling, H.; Rotman, S.; Middelmann, W.

    2016-10-01

    Hyperspectral remote sensing data can be used for civil and military applications to robustly detect and classify target objects. High spectral resolution of hyperspectral data can compensate for the comparatively low spatial resolution, which allows for detection and classification of small targets, even below image resolution. Hyperspectral data sets are prone to considerable spectral redundancy, affecting and limiting data processing and algorithm performance. As a consequence, data reduction strategies become increasingly important, especially in view of near-real-time data analysis. The goal of this paper is to analyze different strategies for hyperspectral band selection algorithms and their effect on subpixel classification for different target and background materials. Airborne hyperspectral data is used in combination with linear target simulation procedures to create a representative amount of target-to-background ratios for evaluation of detection limits. Data from two different airborne hyperspectral sensors, AISA Eagle and Hawk, are used to evaluate transferability of band selection when using different sensors. The same target objects were recorded to compare the calculated detection limits. To determine subpixel classification results, pure pixels from the target materials are extracted and used to simulate mixed pixels with selected background materials. Target signatures are linearly combined with different background materials in varying ratios. The commonly used classification algorithms Adaptive Coherence Estimator (ACE) is used to compare the detection limit for the original data with several band selection and data reduction strategies. The evaluation of the classification results is done by assuming a fixed false alarm ratio and calculating the mean target-to-background ratio of correctly detected pixels. The results allow drawing conclusions about specific band combinations for certain target and background combinations. Additionally

  12. In vitro bioassays for detecting dioxin-like activity--application potentials and limits of detection, a review.

    PubMed

    Eichbaum, Kathrin; Brinkmann, Markus; Buchinger, Sebastian; Reifferscheid, Georg; Hecker, Markus; Giesy, John P; Engwall, Magnus; van Bavel, Bert; Hollert, Henner

    2014-07-15

    Use of in vitro assays as screening tool to characterize contamination of a variety of environmental matrices has become an increasingly popular and powerful toolbox in the field of environmental toxicology. While bioassays cannot entirely substitute analytical methods such as gas chromatography-mass spectrometry (GC-MS), the increasing improvement of cell lines and standardization of bioassay procedures enhance their utility as bioanalytical pre-screening tests prior to more targeted chemical analytical investigations. Dioxin-receptor-based assays provide a holistic characterization of exposure to dioxin-like compounds (DLCs) by integrating their overall toxic potential, including potentials of unknown DLCs not detectable via e.g. GC-MS. Hence, they provide important additional information with respect to environmental risk assessment of DLCs. This review summarizes different in vitro bioassay applications for detection of DLCs and considers the comparability of bioassay and chemical analytically derived toxicity equivalents (TEQs) of different approaches and various matrices. These range from complex samples such as sediments through single reference to compound mixtures. A summary of bioassay derived detection limits (LODs) showed a number of current bioassays to be equally sensitive as chemical methodologies, but moreover revealed that most of the bioanalytical studies conducted to date did not report their LODs, which represents a limitation with regard to low potency samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Model observer for assessing digital breast tomosynthesis for multi-lesion detection in the presence of anatomical noise

    NASA Astrophysics Data System (ADS)

    Wen, Gezheng; Markey, Mia K.; Miner Haygood, Tamara; Park, Subok

    2018-02-01

    Model observers are widely used in task-based assessments of medical image quality. The presence of multiple abnormalities in a single set of images, such as in multifocal multicentric breast cancer (MFMC), has an immense clinical impact on treatment planning and survival outcomes. Detecting multiple breast tumors is challenging as MFMC is relatively uncommon, and human observers do not know the number or locations of tumors a priori. Digital breast tomosynthesis (DBT), in which an x-ray beam sweeps over a limited angular range across the breast, has the potential to improve the detection of multiple tumors. However, prior studies of DBT image quality all focus on unifocal breast cancers. In this study, we extended our 2D multi-lesion (ML) channelized Hotelling observer (CHO) into a 3D ML-CHO that detects multiple lesions from volumetric imaging data. Then we employed the 3D ML-CHO to identify optimal DBT acquisition geometries for detection of MFMC. Digital breast phantoms with multiple embedded synthetic lesions were scanned by simulated DBT scanners of different geometries (wide/narrow angular span, different number of projections per scan) to simulate MFMC cases. With new implementations of 3D partial least squares (PLS) and modified Laguerre-Gauss (LG) channels, the 3D ML-CHO made detection decisions based upon the overall information from individual DBT slices and their correlations. Our evaluation results show that: (1) the 3D ML-CHO could achieve good detection performance with a small number of channels, and 3D PLS channels on average outperform the counterpart LG channels; (2) incorporating locally varying anatomical backgrounds and their correlations as in the 3D ML-CHO is essential for multi-lesion detection; (3) the most effective DBT geometry for detection of MFMC may vary when the task of clinical interest changes, and a given DBT geometry may not yield images that are equally informative for detecting MF, MC, and unifocal cancers.

  14. Predictive inference for best linear combination of biomarkers subject to limits of detection.

    PubMed

    Coolen-Maturi, Tahani

    2017-08-15

    Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine, machine learning and credit scoring. The receiver operating characteristic (ROC) curve is a useful tool to assess the ability of a diagnostic test to discriminate between two classes or groups. In practice, multiple diagnostic tests or biomarkers are combined to improve diagnostic accuracy. Often, biomarker measurements are undetectable either below or above the so-called limits of detection (LoD). In this paper, nonparametric predictive inference (NPI) for best linear combination of two or more biomarkers subject to limits of detection is presented. NPI is a frequentist statistical method that is explicitly aimed at using few modelling assumptions, enabled through the use of lower and upper probabilities to quantify uncertainty. The NPI lower and upper bounds for the ROC curve subject to limits of detection are derived, where the objective function to maximize is the area under the ROC curve. In addition, the paper discusses the effect of restriction on the linear combination's coefficients on the analysis. Examples are provided to illustrate the proposed method. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Sparse aperture masking at the VLT. II. Detection limits for the eight debris disks stars β Pic, AU Mic, 49 Cet, η Tel, Fomalhaut, g Lup, HD 181327 and HR 8799

    NASA Astrophysics Data System (ADS)

    Gauchet, L.; Lacour, S.; Lagrange, A.-M.; Ehrenreich, D.; Bonnefoy, M.; Girard, J. H.; Boccaletti, A.

    2016-10-01

    Context. The formation of planetary systems is a common, yet complex mechanism. Numerous stars have been identified to possess a debris disk, a proto-planetary disk or a planetary system. The understanding of such formation process requires the study of debris disks. These targets are substantial and particularly suitable for optical and infrared observations. Sparse aperture masking (SAM) is a high angular resolution technique strongly contributing to probing the region from 30 to 200 mas around the stars. This area is usually unreachable with classical imaging, and the technique also remains highly competitive compared to vortex coronagraphy. Aims: We aim to study debris disks with aperture masking to probe the close environment of the stars. Our goal is either to find low-mass companions, or to set detection limits. Methods: We observed eight stars presenting debris disks (β Pictoris, AU Microscopii, 49 Ceti, η Telescopii, Fomalhaut, g Lupi, HD 181327, and HR 8799) with SAM technique on the NaCo instrument at the Very Large Telescope (VLT). Results: No close companions were detected using closure phase information under 0.5'' of separation from the parent stars. We obtained magnitude detection limits that we converted to Jupiter masses detection limits using theoretical isochrones from evolutionary models. Conclusions: We derived upper mass limits on the presence of companions in the area of a few times the telescope's diffraction limits around each target star. Based on observations collected at the European Southern Observatory (ESO) during runs 087.C-0450(A), 087.C-0450(B) 087.C-0750(A), 088.C-0358(A).All magnitude detection limits maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A31

  16. 40 CFR Appendix B to Part 136 - Definition and Procedure for the Determination of the Method Detection Limit-Revision 1.11

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calculated method detection limit. To insure that the estimate of the method detection limit is a good...) where: MDL = the method detection limit t(n-1,1- α=.99) = the students' t value appropriate for a 99... Determination of the Method Detection Limit-Revision 1.11 B Appendix B to Part 136 Protection of Environment...

  17. An Observational Upper Limit on the Interstellar Number Density of Asteroids and Comets

    NASA Astrophysics Data System (ADS)

    Engelhardt, Toni; Jedicke, Robert; Vereš, Peter; Fitzsimmons, Alan; Denneau, Larry; Beshore, Ed; Meinke, Bonnie

    2017-03-01

    We derived 90% confidence limits (CLs) on the interstellar number density ({ρ }{IS}{CL}) of interstellar objects (ISOs; comets and asteroids) as a function of the slope of their size-frequency distribution (SFD) and limiting absolute magnitude. To account for gravitational focusing, we first generated a quasi-realistic ISO population to ˜ 750 {au} from the Sun and propagated it forward in time to generate a steady state population of ISOs with heliocentric distance < 50 {au}. We then simulated the detection of the synthetic ISOs using pointing data for each image and average detection efficiencies for each of three contemporary solar system surveys—Pan-STARRS1, the Mt. Lemmon Survey, and the Catalina Sky Survey. These simulations allowed us to determine the surveys’ combined ISO detection efficiency under several different but realistic modes of identifying ISOs in the survey data. Some of the synthetic detected ISOs had eccentricities as small as 1.01, which is in the range of the largest eccentricities of several known comets. Our best CL of {ρ }{IS}{CL}=1.4× {10}-4 {{au}}-3 implies that the expectation that extra-solar systems form like our solar system, eject planetesimals in the same way, and then distribute them throughout the Galaxy, is too simplistic, or that the SFD or behavior of ISOs as they pass through our solar system is far from expectation.

  18. An adaptive tracking observer for failure-detection systems

    NASA Technical Reports Server (NTRS)

    Sidar, M.

    1982-01-01

    The design problem of adaptive observers applied to linear, constant and variable parameters, multi-input, multi-output systems, is considered. It is shown that, in order to keep the observer's (or Kalman filter) false-alarm rate (FAR) under a certain specified value, it is necessary to have an acceptable proper matching between the observer (or KF) model and the system parameters. An adaptive observer algorithm is introduced in order to maintain desired system-observer model matching, despite initial mismatching and/or system parameter variations. Only a properly designed adaptive observer is able to detect abrupt changes in the system (actuator, sensor failures, etc.) with adequate reliability and FAR. Conditions for convergence for the adaptive process were obtained, leading to a simple adaptive law (algorithm) with the possibility of an a priori choice of fixed adaptive gains. Simulation results show good tracking performance with small observer output errors and accurate and fast parameter identification, in both deterministic and stochastic cases.

  19. Hubble Space Telescope observations of cool white dwarf stars: Detection of new species of heavy elements

    NASA Technical Reports Server (NTRS)

    Shipman, Harry; Barnhill, Maurice; Provencal, Judi; Roby, Scott; Bues, Irmela; Cordova, France; Hammond, Gordon; Hintzen, Paul; Koester, Detlev; Liebert, James

    1995-01-01

    Observations of cool white dwarf stars with the Hubble Space Telescope (HST) has uncovered a number of spectral features from previouslly unobserved species. In this paper we present the data on four cool white dwarfs. We present identifications, equivalent width measurements, and brief summaries of the significance of our findings. The four stars observed are GD 40 (DBZ3, G 74-7 (DAZ), L 745-46A (DZ), and LDS 749B (DBA). Many additional species of heavey elements were detected in GD 40 and G 74-7. In L 745-46A, while the detections are limited to Fe 1, Fe II, and Mg II, the quality of the Mg II h and K line profiles should permit a test of the line broadening theories, which are so crucial to abundance determinations. The clear detection of Mg II h and k in LDS 749 B should, once an abundance determination is made, provide a clear test of the hypothesis that the DBA stars are the result of accretion from the interstellar medium. This star contains no other clear features other than a tantalizing hint of C II 1335 with a P Cygni profile, and some expected He 1 lines.

  20. Evaluation of Long-Range Lightning Detection Networks Using TRMM/LIS Observations

    NASA Technical Reports Server (NTRS)

    Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cecil, Daniel J.; Cummins, Kenneth L.; Petersen, Walter A.; Blakeslee, Richard J.; Goodman, Steven J.

    2011-01-01

    Recent advances in long-range lightning detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range lightning datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. Toward this end, the present study evaluates data from the World Wide Lightning Location Network (WWLLN) using observations from the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study documents the WWLLN detection efficiency and location accuracy relative to LIS observations, describes the spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by WWLLN. Improved knowledge of the WWLLN detection capabilities will allow researchers, algorithm developers, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary Lightning Mapper (GLM).

  1. Characteristics and Limitations of Submerged GPS L1 Observations

    NASA Astrophysics Data System (ADS)

    Steiner, Ladina; Geiger, Alain

    2017-04-01

    Extensive amount of water stored in snow covers has a high impact on flood development during snow melting periods. Early assessment of these parameters in mountain environments enhance early-warning and thus prevention of major impacts. Sub-snow GNSS techniques are lately suggested to determine liquid water content, snow water equivalent or considered for avalanche rescue. This technique is affordable, flexible, and provides accurate and continuous observations independent on weather conditions. However, the characteristics of GNSS observations for applications within a snow-pack still need to be further investigated. The magnitude of the main interaction processes involved for the GPS wavelength propagating through different layers of snow, ice or water is theoretically examined. Liquid water exerts the largest influence on GPS signal propagation through a snow-pack. Therefore, we focus on determining the characteristics of GNSS observables under water. An experiment was set-up to investigate the characteristics and limitations of submerged GPS observations using a pool, a level control by communicating pipes, a geodetic and a low-cost GPS antenna, and a water level sensor. The GPS antennas were placed into the water. The water level was increased daily by a step of two millimeters up to thirty millimeters above the antenna. Based on this experiment, the signal penetration depth, satellite availability, the attenuation of signal strength and the quality of solutions are analyzed. Our experimental results show an agreement with the theoretically derived attenuation parameter and signal penetration depth. The assumption of water as the limiting parameter for GPS observations within a snow-pack can be confirmed. Higher wetness in a snow-pack leads to less transmission, higher refraction, higher attenuation and thus a decreased penetration depth as well as a reduced quality of the solutions. In consequence, GPS applications within a snow-pack are heavily impacted by

  2. Limited Surface Observations Climatic Summary (LISOCS), Bo Baker AAF, Germany.

    DTIC Science & Technology

    1987-11-01

    MSC 0109711 N 47 46 1011 36 ELEV 2350 FT EDOT PARTS 1 - 5 HOURS SUMMARIZED: 0600 - 2100 LST PERIOD 01 RECORD : HOURLY OBSERVATIONS; NOv 76 - OCT 86...LIMITED SURFACE OS.RATIONS CLINAIIC SUNMAIES--LISOCS ASkVILLL NC 20501 HOURLY gSCKVauIOMSs ALL RECORD O4 RECORD SPECIaL OBSERVaTIONS RECORDED ON TPE...MEIWA STATIONS i|SININS IN JAN 19081 AND SYNOPTIC WEPORTING STATIONS RECORDED ON TH4E AN$ F0DAS 10110A AND TRARSMI 1ED LONGLINE ONLY TE HIGHEST ORDEP OF

  3. SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sana, H.; Le Bouquin, J.-B.; Duvert, G.

    2014-11-01

    Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected physical separations of 2-200 AU. The Southern MAssive Stars at High angular resolution survey (SMaSH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/Sparse Aperturemore » Masking (SAM), probing the separation ranges 1-45 and 30-250 mas and brightness contrasts of ΔH < 4 and ΔH < 5, respectively. Taking advantage of NACO's field of view, we further uniformly searched for visual companions in an 8'' radius down to ΔH = 8. This paper describes observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1 mas to 8'' and presents a catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (δ < 0°; H < 7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200 mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation ρ < 8'' increases to f {sub m} = 0.91 ± 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30 mas while their average number of physically connected companions within 8'' is f {sub c} = 2.2 ± 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. The nine non-thermal radio emitters observed by SMaSH+ are all resolved

  4. Radiometric Short-Term Fourier Transform analysis of photonic Doppler velocimetry recordings and detectivity limit

    NASA Astrophysics Data System (ADS)

    Prudhomme, G.; Berthe, L.; Bénier, J.; Bozier, O.; Mercier, P.

    2017-01-01

    Photonic Doppler Velocimetry is a plug-and-play and versatile diagnostic used in dynamic physic experiments to measure velocities. When signals are analyzed using a Short-Time Fourier Transform, multiple velocities can be distinguished: for example, the velocities of moving particle-cloud appear on spectrograms. In order to estimate the back-scattering fluxes of target, we propose an original approach "PDV Radiometric analysis" resulting in an expression of time-velocity spectrograms coded in power units. Experiments involving micron-sized particles raise the issue of detection limit; particle-size limit is very difficult to evaluate. From the quantification of noise sources, we derive an estimation of the spectrogram noise leading to a detectivity limit, which may be compared to the fraction of the incoming power which has been back-scattered by the particle and then collected by the probe. This fraction increases with their size. At last, some results from laser-shock accelerated particles using two different PDV systems are compared: it shows the improvement of detectivity with respect to the Effective Number of Bits (ENOB) of the digitizer.

  5. Comparison of human observer and algorithmic target detection in nonurban forward-looking infrared imagery

    NASA Astrophysics Data System (ADS)

    Weber, Bruce A.

    2005-07-01

    We have performed an experiment that compares the performance of human observers with that of a robust algorithm for the detection of targets in difficult, nonurban forward-looking infrared imagery. Our purpose was to benchmark the comparison and document performance differences for future algorithm improvement. The scale-insensitive detection algorithm, used as a benchmark by the Night Vision Electronic Sensors Directorate for algorithm evaluation, employed a combination of contrastlike features to locate targets. Detection receiver operating characteristic curves and observer-confidence analyses were used to compare human and algorithmic responses and to gain insight into differences. The test database contained ground targets, in natural clutter, whose detectability, as judged by human observers, ranged from easy to very difficult. In general, as compared with human observers, the algorithm detected most of the same targets, but correlated confidence with correct detections poorly and produced many more false alarms at any useful level of performance. Though characterizing human performance was not the intent of this study, results suggest that previous observational experience was not a strong predictor of human performance, and that combining individual human observations by majority vote significantly reduced false-alarm rates.

  6. Iron pentacarbonyl detection limits in the cigarette smoke matrix using FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Parrish, Milton E.; Plunkett, Susan E.; Harward, Charles N.

    2005-11-01

    Endogenous metals present in tobacco from agricultural practices have been purported to generate metal carbonyls in cigarette smoke. Transition metal catalysts, such as iron oxide, have been investigated for the reduction of carbon monoxide (CO) in cigarette smoke. These studies motivated the development of an analytical method to determine if iron pentacarbonyl [Fe(CO) 5] is present in mainstream smoke from cigarette models having cigarette paper made with iron oxide. An FT-IR puff-by-puff method was developed and the detection limit was determined using two primary reference spectra from different sources to estimate the amount of Fe(CO) 5 present in a high-pressure steel cylinder of CO. We do not detect Fe(CO) 5 in a single 35 mL puff from reference cigarettes or from those cigarette models having cigarette paper made with iron oxide, with a 30-ppbV limit of detection (LOD). Also, it was shown that a filter containing activated carbon would remove Fe(CO) 5.

  7. Gravitational wave detection using laser interferometry beyond the standard quantum limit

    NASA Astrophysics Data System (ADS)

    Heurs, M.

    2018-05-01

    Interferometric gravitational wave detectors (such as advanced LIGO) employ high-power solid-state lasers to maximize their detection sensitivity and hence their reach into the universe. These sophisticated light sources are ultra-stabilized with regard to output power, emission frequency and beam geometry; this is crucial to obtain low detector noise. However, even when all laser noise is reduced as far as technically possible, unavoidable quantum noise of the laser still remains. This is a consequence of the Heisenberg Uncertainty Principle, the basis of quantum mechanics: in this case, it is fundamentally impossible to simultaneously reduce both the phase noise and the amplitude noise of a laser to arbitrarily low levels. This fact manifests in the detector noise budget as two distinct noise sources-photon shot noise and quantum radiation pressure noise-which together form a lower boundary for current-day gravitational wave detector sensitivities, the standard quantum limit of interferometry. To overcome this limit, various techniques are being proposed, among them different uses of non-classical light and alternative interferometer topologies. This article explains how quantum noise enters and manifests in an interferometric gravitational wave detector, and gives an overview of some of the schemes proposed to overcome this seemingly fundamental limitation, all aimed at the goal of higher gravitational wave event detection rates. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  8. Inclusivity, exclusivity and limit of detection of commercially available real-time PCR assays for the detection of Salmonella.

    PubMed

    Margot, H; Stephan, R; Guarino, S; Jagadeesan, B; Chilton, D; O'Mahony, E; Iversen, C

    2013-08-01

    The traditional cultural detection of Salmonella spp. is both time- and labour-intensive. Salmonella is often a release criterion for the food industry and time to result is therefore an important factor. Storage of finished products and raw materials can be costly and may adversely impact available shelf-life. The application of real-time PCR for the detection of Salmonella spp. in food samples enables a potential time-saving of up to four days. The advancement of real-time PCR coupled with the development of commercially available systems in different formats has made this technology accessible for laboratories in an industrial environment. Ideally these systems are reliable and rapid as well as easy to use. The current study represents a comparative evaluation of seven commercial real-time PCR systems for the detection of Salmonella. Forty-nine target and twenty-nine non-target strains were included in the study to assess inclusivity and exclusivity. The limit of detection for each of the method was determined in four different food products. All systems evaluated were able to correctly identify the 49 Salmonella strains. Nevertheless, false positive results (Citrobacter spp.) were obtained with four of the seven systems. In milk powder and bouillon powder, the limit of detection was similar for all systems, suggesting a minimal matrix effect with these samples. Conversely, for black tea and cocoa powder some systems were prone to inhibition from matrix components. Up to 100% of the samples were inhibited using the proprietary extracts but inhibition could be reduced considerably by application of a DNA clean-up kit. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Observations of acoustic ray detection by aircraft wake vortices

    DOT National Transportation Integrated Search

    1972-03-15

    Acoustic ray deflection by aircraft wake vortex flow has been observed during landing operations of large aircraft. The phenomenon has been used to detect and locate vortex traces in a plane perpendicular to the runway centerline. The maximum deflect...

  10. Assessment of target detection limits in hyperspectral data

    NASA Astrophysics Data System (ADS)

    Gross, W.; Boehler, J.; Schilling, H.; Middelmann, W.; Weyermann, J.; Wellig, P.; Oechslin, R.; Kneubuehler, M.

    2015-10-01

    Hyperspectral remote sensing data can be used for civil and military applications to detect and classify target objects that cannot be reliably separated using broadband sensors. The comparably low spatial resolution is compensated by the fact that small targets, even below image resolution, can still be classified. The goal of this paper is to determine the target size to spatial resolution ratio for successful classification of different target and background materials. Airborne hyperspectral data is used to simulate data with known mixture ratios and to estimate the detection threshold for given false alarm rates. The data was collected in July 2014 over Greding, Germany, using airborne aisaEAGLE and aisaHAWK hyperspectral sensors. On the ground, various target materials were placed on natural background. The targets were four quadratic molton patches with an edge length of 7 meters in the colors black, white, grey and green. Also, two different types of polyethylene (camouflage nets) with an edge length of approximately 5.5 meters were deployed. Synthetic data is generated from the original data using spectral mixtures. Target signatures are linearly combined with different background materials in specific ratios. The simulated mixtures are appended to the original data and the target areas are removed for evaluation. Commonly used classification algorithms, e.g. Matched Filtering, Adaptive Cosine Estimator are used to determine the detection limit. Fixed false alarm rates are employed to find and analyze certain regions where false alarms usually occur first. A combination of 18 targets and 12 backgrounds is analyzed for three VNIR and two SWIR data sets of the same area.

  11. Detection and attribution of climate extremes in the observed record

    DOE PAGES

    Easterling, David R.; Kunkel, Kenneth E.; Wehner, Michael F.; ...

    2016-01-18

    We present an overview of practices and challenges related to the detection and attribution of observed changes in climate extremes. Detection is the identification of a statistically significant change in the extreme values of a climate variable over some period of time. Issues in detection discussed include data quality, coverage, and completeness. Attribution takes that detection of a change and uses climate model simulations to evaluate whether a cause can be assigned to that change. Additionally, we discuss a newer field of attribution, event attribution, where individual extreme events are analyzed for the express purpose of assigning some measure ofmore » whether that event was directly influenced by anthropogenic forcing of the climate system.« less

  12. A fuel-limited isothermal DNA machine for the sensitive detection of cellular deoxyribonucleoside triphosphates.

    PubMed

    Dong, Jiantong; Wu, Tongbo; Xiao, Yu; Xu, Lei; Fang, Simin; Zhao, Meiping

    2016-09-29

    A fuel-limited isothermal DNA machine has been built for the sensitive fluorescence detection of cellular deoxyribonucleoside triphosphates (dNTPs) at the fmol level, which greatly reduces the required sample cell number. Upon the input of the limiting target dNTP, the machine runs automatically at 37 °C without the need for higher temperature.

  13. Narrow phase-dependent features in X-ray dim isolated neutron stars: a new detection and upper limits

    NASA Astrophysics Data System (ADS)

    Borghese, A.; Rea, N.; Coti Zelati, F.; Tiengo, A.; Turolla, R.; Zane, S.

    2017-07-01

    We report on the results of a detailed phase-resolved spectroscopy of archival XMM-Newton observations of X-ray dim isolated neutron stars (XDINSs). Our analysis revealed a narrow and phase-variable absorption feature in the X-ray spectrum of RX J1308.6+2127. The feature has an energy of ˜740 eV and an equivalent width of ˜15 eV. It is detected only in ˜1/5 of the phase cycle, and appears to be present for the entire timespan covered by the observations (2001 December to 2007 June). The strong dependence on the pulsar rotation and the narrow width suggest that the feature is likely due to resonant cyclotron absorption/scattering in a confined high-B structure close to the stellar surface. Assuming a proton cyclotron line, the magnetic field strength in the loop is Bloop ˜ 1.7 × 1014 G, about a factor of ˜5 higher than the surface dipolar magnetic field (Bsurf ˜ 3.4 × 1013 G). This feature is similar to that recently detected in another XDINS, RX J0720.4-3125, showing (as expected by theoretical simulations) that small-scale magnetic loops close to the surface might be common to many highly magnetic neutron stars (although difficult to detect with current X-ray instruments). Furthermore, we investigated the available XMM-Newton data of all XDINSs in search for similar narrow phase-dependent features, but could derive only upper limits for all the other sources.

  14. Gravitational wave detection using laser interferometry beyond the standard quantum limit.

    PubMed

    Heurs, M

    2018-05-28

    Interferometric gravitational wave detectors (such as advanced LIGO) employ high-power solid-state lasers to maximize their detection sensitivity and hence their reach into the universe. These sophisticated light sources are ultra-stabilized with regard to output power, emission frequency and beam geometry; this is crucial to obtain low detector noise. However, even when all laser noise is reduced as far as technically possible, unavoidable quantum noise of the laser still remains. This is a consequence of the Heisenberg Uncertainty Principle, the basis of quantum mechanics: in this case, it is fundamentally impossible to simultaneously reduce both the phase noise and the amplitude noise of a laser to arbitrarily low levels. This fact manifests in the detector noise budget as two distinct noise sources-photon shot noise and quantum radiation pressure noise-which together form a lower boundary for current-day gravitational wave detector sensitivities, the standard quantum limit of interferometry. To overcome this limit, various techniques are being proposed, among them different uses of non-classical light and alternative interferometer topologies. This article explains how quantum noise enters and manifests in an interferometric gravitational wave detector, and gives an overview of some of the schemes proposed to overcome this seemingly fundamental limitation, all aimed at the goal of higher gravitational wave event detection rates.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Author(s).

  15. Anomaly Detection in Test Equipment via Sliding Mode Observers

    NASA Technical Reports Server (NTRS)

    Solano, Wanda M.; Drakunov, Sergey V.

    2012-01-01

    Nonlinear observers were originally developed based on the ideas of variable structure control, and for the purpose of detecting disturbances in complex systems. In this anomaly detection application, these observers were designed for estimating the distributed state of fluid flow in a pipe described by a class of advection equations. The observer algorithm uses collected data in a piping system to estimate the distributed system state (pressure and velocity along a pipe containing liquid gas propellant flow) using only boundary measurements. These estimates are then used to further estimate and localize possible anomalies such as leaks or foreign objects, and instrumentation metering problems such as incorrect flow meter orifice plate size. The observer algorithm has the following parts: a mathematical model of the fluid flow, observer control algorithm, and an anomaly identification algorithm. The main functional operation of the algorithm is in creating the sliding mode in the observer system implemented as software. Once the sliding mode starts in the system, the equivalent value of the discontinuous function in sliding mode can be obtained by filtering out the high-frequency chattering component. In control theory, "observers" are dynamic algorithms for the online estimation of the current state of a dynamic system by measurements of an output of the system. Classical linear observers can provide optimal estimates of a system state in case of uncertainty modeled by white noise. For nonlinear cases, the theory of nonlinear observers has been developed and its success is mainly due to the sliding mode approach. Using the mathematical theory of variable structure systems with sliding modes, the observer algorithm is designed in such a way that it steers the output of the model to the output of the system obtained via a variety of sensors, in spite of possible mismatches between the assumed model and actual system. The unique properties of sliding mode control

  16. Characterizing Observed Limit Cycles in the Cassini Main Engine Guidance Control System

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen; Weitl, Raquel M.

    2011-01-01

    The Cassini spacecraft dynamics-related telemetry during long Main Engine (ME) burns has indicated the presence of stable limit cycles between 0.03-0.04 Hz frequencies. These stable limit cycles cause the spacecraft to possess non-zero oscillating rates for extended periods of time. This indicates that the linear ME guidance control system does not model the complete dynamics of the spacecraft. In this study, we propose that the observed limit cycles in the spacecraft dynamics telemetry appear from a stable interaction between the unmodeled nonlinear elements in the ME guidance control system. Many nonlinearities in the control system emerge from translating the linear engine gimbal actuator (EGA) motion into a spacecraft rotation. One such nonlinearity comes from the gear backlash in the EGA system, which is the focus of this paper. The limit cycle characteristics and behavior can be predicted by modeling this gear backlash nonlinear element via a describing function and studying the interaction of this describing function with the overall dynamics of the spacecraft. The linear ME guidance controller and gear backlash nonlinearity are modeled analytically. The frequency, magnitude, and nature of the limit cycle are obtained from the frequency response of the ME guidance controller and nonlinear element. In addition, the ME guidance controller along with the nonlinearity is simulated. The simulation response contains a limit cycle with similar characterstics as predicted analytically: 0.03-0.04 Hz frequency and stable, sustained oscillations. The analytical and simulated limit cycle responses are compared to the flight telemetry for long burns such as the Saturn Orbit Insertion and Main Engine Orbit Trim Maneuvers. The analytical and simulated limit cycle characteristics compare well with the actual observed limit cycles in the flight telemetry. Both have frequencies between 0.03-0.04 Hz and stable oscillations. This work shows that the stable limit cycles occur

  17. Design of analytical failure detection using secondary observers

    NASA Technical Reports Server (NTRS)

    Sisar, M.

    1982-01-01

    The problem of designing analytical failure-detection systems (FDS) for sensors and actuators, using observers, is addressed. The use of observers in FDS is related to the examination of the n-dimensional observer error vector which carries the necessary information on possible failures. The problem is that in practical systems, in which only some of the components of the state vector are measured, one has access only to the m-dimensional observer-output error vector, with m or = to n. In order to cope with these cases, a secondary observer is synthesized to reconstruct the entire observer-error vector from the observer output error vector. This approach leads toward the design of highly sensitive and reliable FDS, with the possibility of obtaining a unique fingerprint for every possible failure. In order to keep the observer's (or Kalman filter) false-alarm rate under a certain specified value, it is necessary to have an acceptable matching between the observer (or Kalman filter) models and the system parameters. A previously developed adaptive observer algorithm is used to maintain the desired system-observer model matching, despite initial mismatching or system parameter variations. Conditions for convergence for the adaptive process are obtained, leading to a simple adaptive law (algorithm) with the possibility of an a priori choice of fixed adaptive gains. Simulation results show good tracking performance with small observer output errors, while accurate and fast parameter identification, in both deterministic and stochastic cases, is obtained.

  18. Trace element analysis by EPMA in geosciences: detection limit, precision and accuracy

    NASA Astrophysics Data System (ADS)

    Batanova, V. G.; Sobolev, A. V.; Magnin, V.

    2018-01-01

    Use of the electron probe microanalyser (EPMA) for trace element analysis has increased over the last decade, mainly because of improved stability of spectrometers and the electron column when operated at high probe current; development of new large-area crystal monochromators and ultra-high count rate spectrometers; full integration of energy-dispersive / wavelength-dispersive X-ray spectrometry (EDS/WDS) signals; and the development of powerful software packages. For phases that are stable under a dense electron beam, the detection limit and precision can be decreased to the ppm level by using high acceleration voltage and beam current combined with long counting time. Data on 10 elements (Na, Al, P, Ca, Ti, Cr, Mn, Co, Ni, Zn) in olivine obtained on a JEOL JXA-8230 microprobe with tungsten filament show that the detection limit decreases proportionally to the square root of counting time and probe current. For all elements equal or heavier than phosphorus (Z = 15), the detection limit decreases with increasing accelerating voltage. The analytical precision for minor and trace elements analysed in olivine at 25 kV accelerating voltage and 900 nA beam current is 4 - 18 ppm (2 standard deviations of repeated measurements of the olivine reference sample) and is similar to the detection limit of corresponding elements. To analyse trace elements accurately requires careful estimation of background, and consideration of sample damage under the beam and secondary fluorescence from phase boundaries. The development and use of matrix reference samples with well-characterised trace elements of interest is important for monitoring and improving of the accuracy. An evaluation of the accuracy of trace element analyses in olivine has been made by comparing EPMA data for new reference samples with data obtained by different in-situ and bulk analytical methods in six different laboratories worldwide. For all elements, the measured concentrations in the olivine reference sample

  19. Finite-size analysis of the detectability limit of the stochastic block model

    NASA Astrophysics Data System (ADS)

    Young, Jean-Gabriel; Desrosiers, Patrick; Hébert-Dufresne, Laurent; Laurence, Edward; Dubé, Louis J.

    2017-06-01

    It has been shown in recent years that the stochastic block model is sometimes undetectable in the sparse limit, i.e., that no algorithm can identify a partition correlated with the partition used to generate an instance, if the instance is sparse enough and infinitely large. In this contribution, we treat the finite case explicitly, using arguments drawn from information theory and statistics. We give a necessary condition for finite-size detectability in the general SBM. We then distinguish the concept of average detectability from the concept of instance-by-instance detectability and give explicit formulas for both definitions. Using these formulas, we prove that there exist large equivalence classes of parameters, where widely different network ensembles are equally detectable with respect to our definitions of detectability. In an extensive case study, we investigate the finite-size detectability of a simplified variant of the SBM, which encompasses a number of important models as special cases. These models include the symmetric SBM, the planted coloring model, and more exotic SBMs not previously studied. We conclude with three appendices, where we study the interplay of noise and detectability, establish a connection between our information-theoretic approach and random matrix theory, and provide proofs of some of the more technical results.

  20. QRS complex detection based on continuous density hidden Markov models using univariate observations

    NASA Astrophysics Data System (ADS)

    Sotelo, S.; Arenas, W.; Altuve, M.

    2018-04-01

    In the electrocardiogram (ECG), the detection of QRS complexes is a fundamental step in the ECG signal processing chain since it allows the determination of other characteristics waves of the ECG and provides information about heart rate variability. In this work, an automatic QRS complex detector based on continuous density hidden Markov models (HMM) is proposed. HMM were trained using univariate observation sequences taken either from QRS complexes or their derivatives. The detection approach is based on the log-likelihood comparison of the observation sequence with a fixed threshold. A sliding window was used to obtain the observation sequence to be evaluated by the model. The threshold was optimized by receiver operating characteristic curves. Sensitivity (Sen), specificity (Spc) and F1 score were used to evaluate the detection performance. The approach was validated using ECG recordings from the MIT-BIH Arrhythmia database. A 6-fold cross-validation shows that the best detection performance was achieved with 2 states HMM trained with QRS complexes sequences (Sen = 0.668, Spc = 0.360 and F1 = 0.309). We concluded that these univariate sequences provide enough information to characterize the QRS complex dynamics from HMM. Future works are directed to the use of multivariate observations to increase the detection performance.

  1. Comparison of volatile organic compounds from lung cancer patients and healthy controls-challenges and limitations of an observational study.

    PubMed

    Schallschmidt, Kristin; Becker, Roland; Jung, Christian; Bremser, Wolfram; Walles, Thorsten; Neudecker, Jens; Leschber, Gunda; Frese, Steffen; Nehls, Irene

    2016-10-12

    This paper outlines the design and performance of an observational study on the profiles of volatile organic compounds (VOCs) in the breath of 37 lung cancer patients and 23 healthy controls of similar age. The need to quantify each VOC considered as a potential disease marker on the basis of individual calibration is elaborated, and the quality control measures required to maintain reproducibility in breath sampling and subsequent instrumental trace VOC analysis using solid phase microextraction-gas chromatography-mass spectrometry over a study period of 14 months are described. Twenty-four VOCs were quantified on the basis of their previously suggested potential as cancer markers. The concentration of aromatic compounds in the breath was increased, as expected, in smokers, while lung cancer patients displayed significantly increased levels of oxygenated VOCs such as aldehydes, 2-butanone and 1-butanol. Although sets of selected oxygenated VOCs displayed sensitivities and specificities between 80% and 90% using linear discriminant analysis (LDA) with leave-one-out cross validation, the effective selectivity of the breath VOC approach with regard to cancer detection is clearly limited. Results are discussed against the background of the literature on volatile cancer marker investigations and the prospects of linking increased VOC levels in patients' breath with approaches that employ sniffer dogs. Experience from this study and the literature suggests that the currently available methodology is not able to use breath VOCs to reliably discriminate between cancer patients and healthy controls. Observational studies often tend to note significant differences in levels of certain oxygenated VOCs, but without the resolution required for practical application. Any step towards the exploitation of differences in VOC profiles for illness detection would have to solve current restrictions set by the low and variable VOC concentrations. Further challenges are the technical

  2. Exploring the Thermal Limits of IR-Based Automatic Whale Detection (ETAW)

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Exploring the thermal limits of IR-based automatic whale ...marine mammals are entering a predefined exclusion zone. Marine mammal observers usually scan the ship’s environs for whales using binoculars or the...Hence, in combination with the whales ’ prolonged dives, sighting opportunities are rare, which, in addition to the limited field of view and finite

  3. Coleman AAF, Germany (West). Limited Surface Observations Climatic Summary (LISOCS).

    DTIC Science & Technology

    1983-08-10

    the provenance of the number (e.g., HSC 999999) which will appear on future OL-A standard products. -No II USAFETAC LIMITED SURFACE OBSERVATIONS...7 ,L A A L A - AAv STATION Y MONTH P_ ’C"NTAI.C FCrEu:uvCY OF OCCUPPENCE OF wEATE’ N TIZSN ~rOM HOUqLY OdSEOVATIONS RAIN FREEZING SNOW 1OF SMORE DUST

  4. Signal averaging limitations in heterodyne- and direct-detection laser remote sensing measurements

    NASA Technical Reports Server (NTRS)

    Menyuk, N.; Killinger, D. K.; Menyuk, C. R.

    1983-01-01

    The improvement in measurement uncertainty brought about by the averaging of increasing numbers of pulse return signals in both heterodyne- and direct-detection lidar systems is investigated. A theoretical analysis is presented which shows the standard deviation of the mean measurement to decrease as the inverse square root of the number of measurements, except in the presence of temporal correlation. Experimental measurements based on a dual-hybrid-TEA CO2 laser differential absorption lidar system are reported which demonstrate that the actual reduction in the standard deviation of the mean in both heterodyne- and direct-detection systems is much slower than the inverse square-root dependence predicted for uncorrelated signals, but is in agreement with predictions in the event of temporal correlation. Results thus favor the use of direct detection at relatively short range where the lower limit of the standard deviation of the mean is about 2 percent, but advantages of heterodyne detection at longer ranges are noted.

  5. Number of discernible colors for color-deficient observers estimated from the MacAdam limits.

    PubMed

    Perales, Esther; Martínez-Verdú, Francisco Miguel; Linhares, João Manuel Maciel; Nascimento, Sérgio Miguel Cardoso

    2010-10-01

    We estimated the number of colors perceived by color normal and color-deficient observers when looking at the theoretic limits of object-color stimuli. These limits, the optimal color stimuli, were computed for a color normal observer and CIE standard illuminant D65, and the resultant colors were expressed in the CIELAB and DIN99d color spaces. The corresponding color volumes for abnormal color vision were computed using models simulating for normal trichromatic observers the appearance for dichromats and anomalous trichomats. The number of colors perceived in each case was then computed from the color volumes enclosed by the optimal colors also known as MacAdam limits. It was estimated that dichromats perceive less than 1% of the colors perceived by normal trichromats and that anomalous trichromats perceive 50%-60% for anomalies in the medium-wavelength-sensitive and 60%-70% for anomalies in the long-wavelength-sensitive cones. Complementary estimates obtained similarly for the spectral locus of monochromatic stimuli suggest less impairment for color-deficient observers, a fact that is explained by the two-dimensional nature of the locus.

  6. Detection limits of the strip test and PCR for genetically modified corn in Brazil.

    PubMed

    Nascimento, V E; Von Pinho, É V R; Von Pinho, R G; do Nascimento, A D

    2012-08-16

    Brazilian legislation establishes a labeling limit for products that contain more than 1% material from genetically modified organisms (GMOs). We assessed the sensitivity of the lateral flow strip test in detection of the GMO corn varieties Bt11 and MON810 and the specificity and sensitivity of PCR techniques for their detection. For the strip test, the GMO seeds were mixed with conventional seeds at levels of 0.2, 0.4 and 0.8% for Bt11, and 0.4, 0.8 and 1.6% for MON810. Three different methodologies were assessed and whole seeds, their endosperm and embryonic axis were used. For the PCR technique, the GMO seeds of each of the two varieties were mixed with conventional seeds at levels of 20, 10, 5, 2, 1, and 0.5%. The seeds were ground and the DNA extracted. For detection of the GMO material, specific primers were used for MON810 and Bt11 and maize zein as an endogenous control. The sensitivity of the strip test varied for both maize varieties and methodologies. The test was positive for Bt11 only at 0.8%, in contrast with the detection limit of 0.4% indicated by the manufacturer. In the multiplex PCR, the primers proved to be specific for the different varieties. These varieties were detected in samples with one GMO seed in 100. Thus, this technique proved to be efficient in detecting contaminations equal to or greater than 1%.

  7. Radar detectability studies of slow and small Zodiacal Dust Cloud Particles: I. The case of Arecibo 430 MHz meteor head echo observations

    PubMed Central

    Janches, D.; Plane, J.M.C.; Nesvorný, D.; Feng, W.; Vokrouhlický, D.; Nicolls, M.J.

    2016-01-01

    Recent model development of the Zodiacal Dust Cloud (ZDC) model (Nesvorný et al. 2010, 2011b) argue that the incoming flux of meteoric material into the Earth’s upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC physical model by ground-based measurements. In particular, for this work, we focus on Arecibo 430 MHz observations since this is the most sensitive radar utilized for this type of observations to date. For this, we integrate and employ existing comprehensive models of meteoroid ablation, ionization and radar detection to enable accurate interpretation of radar observations and show that reasonable agreement in the hourly rates is found between model predictions and Arecibo observations when: 1) we invoke the lower limit of the model predicted flux (~16 t/d) and 2) we estimate the ionization probability of ablating metal atoms using laboratory measurements of the ionization cross sections of high speed metal atom beams, resulting in values up to two orders of magnitude lower than the extensively utilized figure reported by Jones (1997) for low speeds meteors. However, even at this lower limit the model over predicts the slow portion of the Arecibo radial velocity distributions by a factor of 3, suggesting the model requires some revision. PMID:27642186

  8. Radar Detectability Studies of Slow and Small Zodiacal Dust Cloud Particles: I. The Case of Arecibo 430 MHz Meteor Head Echo Observations

    NASA Technical Reports Server (NTRS)

    Janches, D.; Plane, J. M. C.; Nesvorny, D.; Feng, W.; Vokrouhlicky, D.; Nicolls, M. J.

    2014-01-01

    Recent model development of the Zodiacal Dust Cloud (ZDC) model (Nesvorny et al. 2010, 2011b) argue that the incoming flux of meteoric material into the Earth's upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC physical model by ground-based measurements. In particular, for this work, we focus on Arecibo 430 MHz observations since this is the most sensitive radar utilized for this type of observations to date. For this, we integrate and employ existing comprehensive models of meteoroid ablation, ionization and radar detection to enable accurate interpretation of radar observations and show that reasonable agreement in the hourly rates is found between model predictions and Arecibo observations when: 1) we invoke the lower limit of the model predicted flux (approximately 16 t/d) and 2) we estimate the ionization probability of ablating metal atoms using laboratory measurements of the ionization cross sections of high speed metal atom beams, resulting in values up to two orders of magnitude lower than the extensively utilized figure reported by Jones (1997) for low speeds meteors. However, even at this lower limit the model over predicts the slow portion of the Arecibo radial velocity distributions by a factor of 3, suggesting the model requires some revision.

  9. Radar detectability studies of slow and small zodiacal dust cloud particles. I. The case of Arecibo 430 MHz meteor head echo observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janches, D.; Plane, J. M. C.; Feng, W.

    2014-11-20

    Recent model development of the Zodiacal Dust Cloud (ZDC) argues that the incoming flux of meteoric material into the Earth's upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper, we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC physical model by ground-based measurements. In particular, for this work, we focus on Arecibo 430 MHz observations since this is the most sensitive radar utilized for this type of observations to date.more » For this, we integrate and employ existing comprehensive models of meteoroid ablation, ionization, and radar detection to enable accurate interpretation of radar observations and show that reasonable agreement in the hourly rates is found between model predictions and Arecibo observations when (1) we invoke the lower limit of the model predicted flux (∼16 t d{sup –1}) and (2) we estimate the ionization probability of ablating metal atoms using laboratory measurements of the ionization cross sections of high-speed metal atom beams, resulting in values up to two orders of magnitude lower than the extensively utilized figure reported by Jones for low-speed meteors. However, even at this lower limit, the model overpredicts the slow portion of the Arecibo radial velocity distributions by a factor of three, suggesting that the model requires some revision.« less

  10. Observational constraints on earthquake source scaling: Understanding the limits in resolution

    USGS Publications Warehouse

    Hough, S.E.

    1996-01-01

    I examine the resolution of the type of stress drop estimates that have been used to place observational constraints on the scaling of earthquake source processes. I first show that apparent stress and Brune stress drop are equivalent to within a constant given any source spectral decay between ??1.5 and ??3 (i.e., any plausible value) and so consistent scaling is expected for the two estimates. I then discuss the resolution and scaling of Brune stress drop estimates, in the context of empirical Green's function results from recent earthquake sequences, including the 1992 Joshua Tree, California, mainshock and its aftershocks. I show that no definitive scaling of stress drop with moment is revealed over the moment range 1019-1025; within this sequence, however, there is a tendency for moderate-sized (M 4-5) events to be characterized by high stress drops. However, well-resolved results for recent M > 6 events are inconsistent with any extrapolated stress increase with moment for the aftershocks. Focusing on comer frequency estimates for smaller (M < 3.5) events, I show that resolution is extremely limited even after empirical Green's function deconvolutions. A fundamental limitation to resolution is the paucity of good signal-to-noise at frequencies above 60 Hz, a limitation that will affect nearly all surficial recordings of ground motion in California and many other regions. Thus, while the best available observational results support a constant stress drop for moderate-to large-sized events, very little robust observational evidence exists to constrain the quantities that bear most critically on our understanding of source processes: stress drop values and stress drop scaling for small events.

  11. Experimental Study of the Detection Limit in Dual-Gate Biosensors Using Ultrathin Silicon Transistors

    DOE PAGES

    Wu, Ting; Alharbi, Abdullah; You, Kai-Dyi; ...

    2017-06-21

    Dual-gate field-effect biosensors (bioFETs) with asymmetric gate capacitances were shown to surpass the Nernst limit of 59 mV/pH. However, previous studies have conflicting findings on the effect of the capacitive amplification scheme on the sensor detection limit, which is inversely proportional to the signal-to-noise ratio (SNR). In this paper, we present a systematic experimental investigation of the SNR using ultrathin silicon transistors. Our sensors operate at low voltage and feature asymmetric front and back oxide capacitances with asymmetry factors of 1.4 and 2.3. We demonstrate that in the dual-gate configuration, the response of our bioFETs to the pH change increasesmore » proportional to the asymmetry factor and indeed exceeds the Nernst limit. Further, our results reveal that the noise amplitude also increases in proportion to the asymmetry factor. We establish that the commensurate increase of the noise amplitude originates from the intrinsic low-frequency characteristic of the sensor noise, dominated by number fluctuation. Finally, these findings suggest that this capacitive signal amplification scheme does not improve the intrinsic detection limit of the dual-gate biosensors.« less

  12. Experimental Study of the Detection Limit in Dual-Gate Biosensors Using Ultrathin Silicon Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ting; Alharbi, Abdullah; You, Kai-Dyi

    Dual-gate field-effect biosensors (bioFETs) with asymmetric gate capacitances were shown to surpass the Nernst limit of 59 mV/pH. However, previous studies have conflicting findings on the effect of the capacitive amplification scheme on the sensor detection limit, which is inversely proportional to the signal-to-noise ratio (SNR). In this paper, we present a systematic experimental investigation of the SNR using ultrathin silicon transistors. Our sensors operate at low voltage and feature asymmetric front and back oxide capacitances with asymmetry factors of 1.4 and 2.3. We demonstrate that in the dual-gate configuration, the response of our bioFETs to the pH change increasesmore » proportional to the asymmetry factor and indeed exceeds the Nernst limit. Further, our results reveal that the noise amplitude also increases in proportion to the asymmetry factor. We establish that the commensurate increase of the noise amplitude originates from the intrinsic low-frequency characteristic of the sensor noise, dominated by number fluctuation. Finally, these findings suggest that this capacitive signal amplification scheme does not improve the intrinsic detection limit of the dual-gate biosensors.« less

  13. Experimental Study of the Detection Limit in Dual-Gate Biosensors Using Ultrathin Silicon Transistors.

    PubMed

    Wu, Ting; Alharbi, Abdullah; You, Kai-Dyi; Kisslinger, Kim; Stach, Eric A; Shahrjerdi, Davood

    2017-07-25

    Dual-gate field-effect biosensors (bioFETs) with asymmetric gate capacitances were shown to surpass the Nernst limit of 59 mV/pH. However, previous studies have conflicting findings on the effect of the capacitive amplification scheme on the sensor detection limit, which is inversely proportional to the signal-to-noise ratio (SNR). Here, we present a systematic experimental investigation of the SNR using ultrathin silicon transistors. Our sensors operate at low voltage and feature asymmetric front and back oxide capacitances with asymmetry factors of 1.4 and 2.3. We demonstrate that in the dual-gate configuration, the response of our bioFETs to the pH change increases proportional to the asymmetry factor and indeed exceeds the Nernst limit. Further, our results reveal that the noise amplitude also increases in proportion to the asymmetry factor. We establish that the commensurate increase of the noise amplitude originates from the intrinsic low-frequency characteristic of the sensor noise, dominated by number fluctuation. These findings suggest that this capacitive signal amplification scheme does not improve the intrinsic detection limit of the dual-gate biosensors.

  14. Currie detection limits in gamma-ray spectroscopy.

    PubMed

    De Geer, Lars-Erik

    2004-01-01

    Currie Hypothesis testing is applied to gamma-ray spectral data, where an optimum part of the peak is used and the background is considered well known from nearby channels. With this, the risk of making Type I errors is about 100 times lower than commonly assumed. A programme, PeakMaker, produces random peaks with given characteristics on the screen and calculations are done to facilitate a full use of Poisson statistics in spectrum analyses. SHORT TECHNICAL NOTE SUMMARY: The Currie decision limit concept applied to spectral data is reinterpreted, which gives better consistency between the selected error risk and the observed error rates. A PeakMaker program is described and the few count problem is analyzed.

  15. Evaluation of a single-item screening question to detect limited health literacy in peritoneal dialysis patients.

    PubMed

    Jain, Deepika; Sheth, Heena; Bender, Filitsa H; Weisbord, Steven D; Green, Jamie A

    2014-01-01

    Studies have shown that a single-item question might be useful in identifying patients with limited health literacy. However, the utility of the approach has not been studied in patients receiving maintenance peritoneal dialysis (PD). We assessed health literacy in a cohort of 31 PD patients by administering the Rapid Estimate of Adult Literacy in Medicine (REALM) and a single-item health literacy (SHL) screening question "How confident are you filling out medical forms by yourself?" (Extremely, Quite a bit, Somewhat, A little bit, or Not at all). To determine the accuracy of the single-item question for detecting limited health literacy, we performed sensitivity and specificity analyses of the SHL and plotted the area under the receiver operating characteristic (AUROC) curve using the REALM as a reference standard. Using a cut-off of "Somewhat" or less confident, the sensitivity of the SHL for detecting limited health literacy was 80%, and the specificity was 88%. The positive likelihood ratio was 6.9. The SHL had an AUROC of 0.79 (95% confidence interval: 0.52 to 1.00). Our results show that the SHL could be effective in detecting limited health literacy in PD patients.

  16. Detection and plant monitoring programs: lessons from an intensive survey of Asclepias meadii with five observers.

    PubMed

    Alexander, Helen M; Reed, Aaron W; Kettle, W Dean; Slade, Norman A; Bodbyl Roels, Sarah A; Collins, Cathy D; Salisbury, Vaughn

    2012-01-01

    Monitoring programs, where numbers of individuals are followed through time, are central to conservation. Although incomplete detection is expected with wildlife surveys, this topic is rarely considered with plants. However, if plants are missed in surveys, raw count data can lead to biased estimates of population abundance and vital rates. To illustrate, we had five independent observers survey patches of the rare plant Asclepias meadii at two prairie sites. We analyzed data with two mark-recapture approaches. Using the program CAPTURE, the estimated number of patches equaled the detected number for a burned site, but exceeded detected numbers by 28% for an unburned site. Analyses of detected patches using Huggins models revealed important effects of observer, patch state (flowering/nonflowering), and patch size (number of stems) on probabilities of detection. Although some results were expected (i.e. greater detection of flowering than nonflowering patches), the importance of our approach is the ability to quantify the magnitude of detection problems. We also evaluated the degree to which increased observer numbers improved detection: smaller groups (3-4 observers) generally found 90 - 99% of the patches found by all five people, but pairs of observers or single observers had high error and detection depended on which individuals were involved. We conclude that an intensive study at the start of a long-term monitoring study provides essential information about probabilities of detection and what factors cause plants to be missed. This information can guide development of monitoring programs.

  17. Probability of Future Observations Exceeding One-Sided, Normal, Upper Tolerance Limits

    DOE PAGES

    Edwards, Timothy S.

    2014-10-29

    Normal tolerance limits are frequently used in dynamic environments specifications of aerospace systems as a method to account for aleatory variability in the environments. Upper tolerance limits, when used in this way, are computed from records of the environment and used to enforce conservatism in the specification by describing upper extreme values the environment may take in the future. Components and systems are designed to withstand these extreme loads to ensure they do not fail under normal use conditions. The degree of conservatism in the upper tolerance limits is controlled by specifying the coverage and confidence level (usually written inmore » “coverage/confidence” form). Moreover, in high-consequence systems it is common to specify tolerance limits at 95% or 99% coverage and confidence at the 50% or 90% level. Despite the ubiquity of upper tolerance limits in the aerospace community, analysts and decision-makers frequently misinterpret their meaning. The misinterpretation extends into the standards that govern much of the acceptance and qualification of commercial and government aerospace systems. As a result, the risk of a future observation of the environment exceeding the upper tolerance limit is sometimes significantly underestimated by decision makers. This note explains the meaning of upper tolerance limits and a related measure, the upper prediction limit. So, the objective of this work is to clarify the probability of exceeding these limits in flight so that decision-makers can better understand the risk associated with exceeding design and test levels during flight and balance the cost of design and development with that of mission failure.« less

  18. Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms.

    PubMed

    Pisano, E D; Zong, S; Hemminger, B M; DeLuca, M; Johnston, R E; Muller, K; Braeuning, M P; Pizer, S M

    1998-11-01

    The purpose of this project was to determine whether Contrast Limited Adaptive Histogram Equalization (CLAHE) improves detection of simulated spiculations in dense mammograms. Lines simulating the appearance of spiculations, a common marker of malignancy when visualized with masses, were embedded in dense mammograms digitized at 50 micron pixels, 12 bits deep. Film images with no CLAHE applied were compared to film images with nine different combinations of clip levels and region sizes applied. A simulated spiculation was embedded in a background of dense breast tissue, with the orientation of the spiculation varied. The key variables involved in each trial included the orientation of the spiculation, contrast level of the spiculation and the CLAHE settings applied to the image. Combining the 10 CLAHE conditions, 4 contrast levels and 4 orientations gave 160 combinations. The trials were constructed by pairing 160 combinations of key variables with 40 backgrounds. Twenty student observers were asked to detect the orientation of the spiculation in the image. There was a statistically significant improvement in detection performance for spiculations with CLAHE over unenhanced images when the region size was set at 32 with a clip level of 2, and when the region size was set at 32 with a clip level of 4. The selected CLAHE settings should be tested in the clinic with digital mammograms to determine whether detection of spiculations associated with masses detected at mammography can be improved.

  19. First direct detection limits on sub-GeV dark matter from XENON10.

    PubMed

    Essig, Rouven; Manalaysay, Aaron; Mardon, Jeremy; Sorensen, Peter; Volansky, Tomer

    2012-07-13

    The first direct detection limits on dark matter in the MeV to GeV mass range are presented, using XENON10 data. Such light dark matter can scatter with electrons, causing ionization of atoms in a detector target material and leading to single- or few-electron events. We use 15  kg day of data acquired in 2006 to set limits on the dark-matter-electron scattering cross section. The strongest bound is obtained at 100 MeV where σ(e)<3×10(-38)  cm2 at 90% C.L., while dark-matter masses between 20 MeV and 1 GeV are bounded by σ(e)<10(-37)  cm2 at 90% C.L. This analysis provides a first proof of principle that direct detection experiments can be sensitive to dark-matter candidates with masses well below the GeV scale.

  20. Power-limited low-thrust trajectory optimization with operation point detection

    NASA Astrophysics Data System (ADS)

    Chi, Zhemin; Li, Haiyang; Jiang, Fanghua; Li, Junfeng

    2018-06-01

    The power-limited solar electric propulsion system is considered more practical in mission design. An accurate mathematical model of the propulsion system, based on experimental data of the power generation system, is used in this paper. An indirect method is used to deal with the time-optimal and fuel-optimal control problems, in which the solar electric propulsion system is described using a finite number of operation points, which are characterized by different pairs of thruster input power. In order to guarantee the integral accuracy for the discrete power-limited problem, a power operation detection technique is embedded in the fourth-order Runge-Kutta algorithm with fixed step. Moreover, the logarithmic homotopy method and normalization technique are employed to overcome the difficulties caused by using indirect methods. Three numerical simulations with actual propulsion systems are given to substantiate the feasibility and efficiency of the proposed method.

  1. Limits in feature-based attention to multiple colors.

    PubMed

    Liu, Taosheng; Jigo, Michael

    2017-11-01

    Attention to a feature enhances the sensory representation of that feature. Although much has been learned about the properties of attentional modulation when attending to a single feature, the effectiveness of attending to multiple features is not well understood. We investigated this question in a series of experiments using a color-detection task while varying the number of attended colors in a cueing paradigm. Observers were shown either a single cue, two cues, or no cue (baseline) before detecting a coherent color target. We measured detection threshold by varying the coherence level of the target. Compared to the baseline condition, we found consistent facilitation of detection performance in the one-cue and two-cue conditions, but performance in the two-cue condition was lower than that in the one-cue condition. In the final experiment, we presented a 50% valid cue to emulate the situation in which observers were only able to attend a single color in the two-cue condition, and found equivalent detection thresholds with the standard two-cue condition. These results indicate a limit in attending to two colors and further imply that observers could effectively attend a single color at a time. Such a limit is likely due to an inability to maintain multiple active attentional templates for colors.

  2. Detection Method of Lightning and TLEs by JEM-GLIMS Nadir Observation

    NASA Astrophysics Data System (ADS)

    Adachi, T.; Sato, M.; Ushio, T.; Yamazaki, A.; Suzuki, M.; Masayuki, K.; Takahashi, Y.; Inan, U.; Linscott, I.; Hobara, Y.

    2013-12-01

    A scientific payload named JEM-GLIMS aboard the International Space Station (ISS) is aimed at observing lightning and Transient Luminous Events (TLEs) globally. Keeping its field-of-view toward the nadir direction, GLIMS clarifies the horizontal structures of lightning and TLEs, which is a crucial issue to understand the electrodynamic coupling between the troposphere and ionosphere. A difficult point, however, is that careful analyses are necessary to separate the emissions of lightning and TLEs which spatially overlap along the line-of-sights in the case of nadir observation. In this study, we analyze the multi-wavelength optical data obtained by GLIMS to identify lightning and TLEs. The main data analyzed are those of imager (LSI) and spectrophotometer (PH). LSI consists of two cameras equipped with a broadband red filter and a narrowband 762-nm filter, respectively, and obtains imagery at a spatial resolution of 400 m/pixel on the ground surface. PH detects time-resolved emission intensity at a sampling rate of 20 kHz by six photometer channels measuring at 150-280, 337, 762, 600-900, 316 and 392 nm, respectively. During a period between November 2012 and June 2013, GLIMS observed 815 lightning and/or TLE events, and in 494 of them, both LSI and PH data showed clear signals above the noise level. As the first step, we carried out case study using an event observed at 09:50:47UT on Jan 29 2013 which did not cause strong saturation on the LSI and PH data. The estimated peak irradiance was 1.38x10^(-3) W/m^(2) at 600-900 nm, which is equivalent to the top 10 % bright lightning events observed by FORTE satellite in the past. This finding suggests that GLIMS selectively observes the most optically-powerful events. The peak irradiance was estimated also for the other PH channels. At all visible channels other than a far ultra violet (FUV) channel, the peak irradiance was estimated to be in good agreement with the atmospheric transmittance curve calculated between 10

  3. Detection limit of intragenic deletions with targeted array comparative genomic hybridization

    PubMed Central

    2013-01-01

    Background Pathogenic mutations range from single nucleotide changes to deletions or duplications that encompass a single exon to several genes. The use of gene-centric high-density array comparative genomic hybridization (aCGH) has revolutionized the detection of intragenic copy number variations. We implemented an exon-centric design of high-resolution aCGH to detect single- and multi-exon deletions and duplications in a large set of genes using the OGT 60 K and 180 K arrays. Here we describe the molecular characterization and breakpoint mapping of deletions at the smaller end of the detectable range in several genes using aCGH. Results The method initially implemented to detect single to multiple exon deletions, was able to detect deletions much smaller than anticipated. The selected deletions we describe vary in size, ranging from over 2 kb to as small as 12 base pairs. The smallest of these deletions are only detectable after careful manual review during data analysis. Suspected deletions smaller than the detection size for which the method was optimized, were rigorously followed up and confirmed with PCR-based investigations to uncover the true detection size limit of intragenic deletions with this technology. False-positive deletion calls often demonstrated single nucleotide changes or an insertion causing lower hybridization of probes demonstrating the sensitivity of aCGH. Conclusions With optimizing aCGH design and careful review process, aCGH can uncover intragenic deletions as small as dozen bases. These data provide insight that will help optimize probe coverage in array design and illustrate the true assay sensitivity. Mapping of the breakpoints confirms smaller deletions and contributes to the understanding of the mechanism behind these events. Our knowledge of the mutation spectra of several genes can be expected to change as previously unrecognized intragenic deletions are uncovered. PMID:24304607

  4. Exploring the Thermal Limits of IR-Based Automatic Whale Detection

    DTIC Science & Technology

    2014-09-30

    spouts during the northward humpback whale migration, which occurs annually rather close to shore near North Stradbroke Island, Queensland, Australia...with concurrent visual observations. APPROACH By obtaining continuous IR video footage during two successive northward humpback whale ... Whale Detection (ETAW) Olaf Boebel P.O. Box 120161 27515 Bremerhaven GERMANY phone: +49 (471) 4831-1879 fax: +49 (471) 4831-1797 email

  5. Detection and Plant Monitoring Programs: Lessons from an Intensive Survey of Asclepias meadii with Five Observers

    PubMed Central

    Alexander, Helen M.; Reed, Aaron W.; Kettle, W. Dean; Slade, Norman A.; Bodbyl Roels, Sarah A.; Collins, Cathy D.; Salisbury, Vaughn

    2012-01-01

    Monitoring programs, where numbers of individuals are followed through time, are central to conservation. Although incomplete detection is expected with wildlife surveys, this topic is rarely considered with plants. However, if plants are missed in surveys, raw count data can lead to biased estimates of population abundance and vital rates. To illustrate, we had five independent observers survey patches of the rare plant Asclepias meadii at two prairie sites. We analyzed data with two mark-recapture approaches. Using the program CAPTURE, the estimated number of patches equaled the detected number for a burned site, but exceeded detected numbers by 28% for an unburned site. Analyses of detected patches using Huggins models revealed important effects of observer, patch state (flowering/nonflowering), and patch size (number of stems) on probabilities of detection. Although some results were expected (i.e. greater detection of flowering than nonflowering patches), the importance of our approach is the ability to quantify the magnitude of detection problems. We also evaluated the degree to which increased observer numbers improved detection: smaller groups (3–4 observers) generally found 90 – 99% of the patches found by all five people, but pairs of observers or single observers had high error and detection depended on which individuals were involved. We conclude that an intensive study at the start of a long-term monitoring study provides essential information about probabilities of detection and what factors cause plants to be missed. This information can guide development of monitoring programs. PMID:23285179

  6. Improvements of low-detection-limit filter-free fluorescence sensor developed by charge accumulation operation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kiyotsugu; Choi, Yong Joon; Moriwaki, Yu; Hizawa, Takeshi; Iwata, Tatsuya; Dasai, Fumihiro; Kimura, Yasuyuki; Takahashi, Kazuhiro; Sawada, Kazuaki

    2017-04-01

    We developed a low-detection-limit filter-free fluorescence sensor by a charge accumulation technique. For charge accumulation, a floating diffusion amplifier (FDA), which included a floating diffusion capacitor, a transfer gate, and a source follower circuit, was used. To integrate CMOS circuits with the filter-free fluorescence sensor, we adopted a triple-well process to isolate transistors from the sensor on a single chip. We detected 0.1 nW fluorescence under the illumination of excitation light by 1.5 ms accumulation, which was one order of magnitude greater than that of a previous current detection sensor.

  7. Visual-search model observer for assessing mass detection in CT

    NASA Astrophysics Data System (ADS)

    Karbaschi, Zohreh; Gifford, Howard C.

    2017-03-01

    Our aim is to devise model observers (MOs) to evaluate acquisition protocols in medical imaging. To optimize protocols for human observers, an MO must reliably interpret images containing quantum and anatomical noise under aliasing conditions. In this study of sampling parameters for simulated lung CT, the lesion-detection performance of human observers was compared with that of visual-search (VS) observers, a channelized nonprewhitening (CNPW) observer, and a channelized Hoteling (CH) observer. Scans of a mathematical torso phantom modeled single-slice parallel-hole CT with varying numbers of detector pixels and angular projections. Circular lung lesions had a fixed radius. Twodimensional FBP reconstructions were performed. A localization ROC study was conducted with the VS, CNPW and human observers, while the CH observer was applied in a location-known ROC study. Changing the sampling parameters had negligible effect on the CNPW and CH observers, whereas several VS observers demonstrated a sensitivity to sampling artifacts that was in agreement with how the humans performed.

  8. Contemporaneous VLBA 5 GHz Observations of Large Area Telescope Detected Blazars

    DTIC Science & Technology

    2012-01-10

    Polarimetry Survey (VIPS) have been included in the sample, as well as 142 sources not found in VIPS. This very large, 5 GHz flux-limited sample of active...observing runs were follow-up observations on 90 sources in the VLBA Imaging and Polarimetry Survey (VIPS; Helmboldt et al. 2007) and new 5 GHz observations...Array (VLBA). In total, 232 sources were observed with the VLBA. Ninety sources that were previously observed as part of the VLBA Imaging and Polarimetry

  9. Rapid Detection of Small Movements with GNSS Doppler Observables

    NASA Astrophysics Data System (ADS)

    Hohensinn, Roland; Geiger, Alain

    2017-04-01

    High-alpine terrain reacts very sensitively to varying environmental conditions. As an example, increasing temperatures cause thawing of permafrost areas. This, in turn causes an increasing threat by natural hazards like debris flow (e.g. rock glaciers) or rockfalls. The Institute of Geodesy and Photogrammetry is contributing to alpine mass-movement monitoring systems in different project areas in the Swiss Alps. A main focus lies on providing geodetic mass-movement information derived from GNSS static solutions on a daily and a sub-daily basis, obtained with low-cost and autonomous GNSS stations. Another focus is set on rapidly providing reliable geodetic information in real-time i.e. for an integration in early warning systems. One way to achieve this is the estimation of accurate station velocities from observations of range rates, which can be obtained as Doppler observables from time derivatives of carrier phase measurements. The key for this method lies in a precise modeling of prominent effects contributing to the observed range rates, which are satellite velocity, atmospheric delay rates and relativistic effects. A suitable observation model is then devised, which accounts for these predictions. The observation model, combined with a simple kinematic movement model forms the basis for the parameter estimation. Based on the estimated station velocities, movements are then detected using a statistical test. To improve the reliablity of the estimated parameters, another spotlight is set on an on-line quality control procedure. We will present the basic algorithms as well as results from first tests which were carried out with a low-cost GPS L1 phase receiver. With a u-blox module and a sampling rate of 5 Hz, accuracies on the mm/s level can be obtained and velocities down to 1 cm/s can be detected. Reliable and accurate station velocities and movement information can be provided within seconds.

  10. NEAR-INFRARED THERMAL EMISSION FROM TrES-3b: A Ks-BAND DETECTION AND AN H-BAND UPPER LIMIT ON THE DEPTH OF THE SECONDARY ECLIPSE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croll, Bryce; Jayawardhana, Ray; Fortney, Jonathan J.

    2010-08-01

    We present H- and Ks-band photometry bracketing the secondary eclipse of the hot Jupiter TrES-3b using the Wide-field Infrared Camera on the Canada-France-Hawaii Telescope. We detect the secondary eclipse of TrES-3b with a depth of 0.133{sup +0.018}{sub -0.016}% in the Ks band (8{sigma})-a result that is in sharp contrast to the eclipse depth reported by de Mooij and Snellen. We do not detect its thermal emission in the H band, but place a 3{sigma} limit of 0.051% on the depth of the secondary eclipse in this band. A secondary eclipse of this depth in Ks requires very efficient day-to-nightside redistributionmore » of heat and nearly isotropic reradiation, a conclusion that is in agreement with longer wavelength, mid-infrared Spitzer observations. Our 3{sigma} upper limit on the depth of our H-band secondary eclipse also argues for very efficient redistribution of heat and suggests that the atmospheric layer probed by these observations may be well homogenized. However, our H-band upper limit is so constraining that it suggests the possibility of a temperature inversion at depth, or an absorbing molecule, such as methane, that further depresses the emitted flux at this wavelength. The combination of our near-infrared measurements and those obtained with Spitzer suggests that TrES-3b displays a near-isothermal dayside atmospheric temperature structure, whose spectrum is well approximated by a blackbody. We emphasize that our strict H-band limit is in stark disagreement with the best-fit atmospheric model that results from longer wavelength observations only, thus highlighting the importance of near-infrared observations at multiple wavelengths, in addition to those returned by Spitzer in the mid-infrared, to facilitate a comprehensive understanding of the energy budgets of transiting exoplanets.« less

  11. EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, K. M.; Ida, S.; Ochiai, H.

    2015-05-20

    We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets aremore » stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data.« less

  12. STATISTICS OF GAMMA-RAY POINT SOURCES BELOW THE FERMI DETECTION LIMIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyshev, Dmitry; Hogg, David W., E-mail: dm137@nyu.edu

    2011-09-10

    An analytic relation between the statistics of photons in pixels and the number counts of multi-photon point sources is used to constrain the distribution of gamma-ray point sources below the Fermi detection limit at energies above 1 GeV and at latitudes below and above 30 deg. The derived source-count distribution is consistent with the distribution found by the Fermi Collaboration based on the first Fermi point-source catalog. In particular, we find that the contribution of resolved and unresolved active galactic nuclei (AGNs) to the total gamma-ray flux is below 20%-25%. In the best-fit model, the AGN-like point-source fraction is 17%more » {+-} 2%. Using the fact that the Galactic emission varies across the sky while the extragalactic diffuse emission is isotropic, we put a lower limit of 51% on Galactic diffuse emission and an upper limit of 32% on the contribution from extragalactic weak sources, such as star-forming galaxies. Possible systematic uncertainties are discussed.« less

  13. Quantum-limited Terahertz detection without liquid cryogens

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under this contract, we have successfully designed, fabricated and tested a revolutionary new type of detector for Terahertz (THz) radiation, the tunable antenna-coupled intersubband Terahertz (TACIT) detector. The lowest-noise THz detectors used in the astrophysics community require cooling to temperatures below 4K. This deep cryogenic requirement forces satellites launched for THz- observing missions to include either large volumes of liquid Helium, complex cryocoolers, or both. Cryogenic requirements thus add significantly to the cost, complexity and mass of satellites and limit the duration of their missions. It hence desirable to develop new detector technologies with less stringent cryogenic requirements. Such detectors will not only be important in space-based astrophysics, but also respond to a growing demand for THz technology for earth-based scientific and commercial applications.

  14. Detection Limits for Spectro-fluorometry: A Case Study in the Region of Finstersee, Canton Zug, Northern Switzerland

    NASA Astrophysics Data System (ADS)

    Otz, M. H.; Otz, H. K.; Keller, P.

    2002-05-01

    Synthetic fluorescent dyes, applied below the visual detection limit (< 0.1 mg/L), have been used as tracers of ground water flow paths since the beginning of the 1950s. Since 1965, we have used spectro-fluorometers with photomultipliers to measure low concentrations of fluorescent dyes in ground water in Switzerland. In collaboration with the Engineering Geology Department of the ETH, we have separated uranine at 0.1 ng/L and Na-naphtionate at 1 ng/L from background fluorescence of spring water in the Finstersee region. These values are 10-100 times lower than postulated detection limits in the literature. The use of low dye concentrations prevents a study region from being contaminated by increased background levels due to remnant dye within the aquifer, thereby leaving the region available for future dye tracing studies. Lower detection limits also can solve particular hydraulic problems where conventional methods fail and enhance the possibility for using artificial dyes in environmentally sensitive aquifer settings.

  15. ON COMPUTING UPPER LIMITS TO SOURCE INTENSITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashyap, Vinay L.; Siemiginowska, Aneta; Van Dyk, David A.

    2010-08-10

    A common problem in astrophysics is determining how bright a source could be and still not be detected in an observation. Despite the simplicity with which the problem can be stated, the solution involves complicated statistical issues that require careful analysis. In contrast to the more familiar confidence bound, this concept has never been formally analyzed, leading to a great variety of often ad hoc solutions. Here we formulate and describe the problem in a self-consistent manner. Detection significance is usually defined by the acceptable proportion of false positives (background fluctuations that are claimed as detections, or Type I error),more » and we invoke the complementary concept of false negatives (real sources that go undetected, or Type II error), based on the statistical power of a test, to compute an upper limit to the detectable source intensity. To determine the minimum intensity that a source must have for it to be detected, we first define a detection threshold and then compute the probabilities of detecting sources of various intensities at the given threshold. The intensity that corresponds to the specified Type II error probability defines that minimum intensity and is identified as the upper limit. Thus, an upper limit is a characteristic of the detection procedure rather than the strength of any particular source. It should not be confused with confidence intervals or other estimates of source intensity. This is particularly important given the large number of catalogs that are being generated from increasingly sensitive surveys. We discuss, with examples, the differences between these upper limits and confidence bounds. Both measures are useful quantities that should be reported in order to extract the most science from catalogs, though they answer different statistical questions: an upper bound describes an inference range on the source intensity, while an upper limit calibrates the detection process. We provide a recipe for computing

  16. Trends in detectable viral load by calendar year in the Australian HIV observational database.

    PubMed

    Law, Matthew G; Woolley, Ian; Templeton, David J; Roth, Norm; Chuah, John; Mulhall, Brian; Canavan, Peter; McManus, Hamish; Cooper, David A; Petoumenos, Kathy

    2011-02-23

    Recent papers have suggested that expanded combination antiretroviral treatment (cART) through lower viral load may be a strategy to reduce HIV transmission at a population level. We assessed calendar trends in detectable viral load in patients recruited to the Australian HIV Observational Database who were receiving cART. Patients were included in analyses if they had started cART (defined as three or more antiretrovirals) and had at least one viral load assessment after 1 January 1997. We analyzed detectable viral load (>400 copies/ml) in the first and second six months of each calendar year while receiving cART. Repeated measures logistic regression methods were used to account for within and between patient variability. Rates of detectable viral load were predicted allowing for patients lost to follow up. Analyses were based on 2439 patients and 31,339 viral load assessments between 1 January 1997 and 31 March 2009. Observed detectable viral load in patients receiving cART declined to 5.3% in the first half of 2009. Predicted detectable viral load based on multivariate models, allowing for patient loss to follow up, also declined over time, but at higher levels, to 13.8% in 2009. Predicted detectable viral load in Australian HIV Observational Database patients receiving cART declined over calendar time, albeit at higher levels than observed. However, over this period, HIV diagnoses and estimated HIV incidence increased in Australia.

  17. Detection limits for real-time source water monitoring using indigenous freshwater microalgae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez Jr, Miguel; Greenbaum, Elias

    This research identified toxin detection limits using the variable fluorescence of naturally occurring microalgae in source drinking water for five chemical toxins with different molecular structures and modes of toxicity. The five chemicals investigated were atrazine, Diuron, paraquat, methyl parathion, and potassium cyanide. Absolute threshold sensitivities of the algae for detection of the toxins in unmodified source drinking water were measured. Differential kinetics between the rate of action of the toxins and natural changes in algal physiology, such as diurnal photoinhibition, are significant enough that effects of the toxin can be detected and distinguished from the natural variance. This ismore » true even for physiologically impaired algae where diminished photosynthetic capacity may arise from uncontrollable external factors such as nutrient starvation. Photoinhibition induced by high levels of solar radiation is a predictable and reversible phenomenon that can be dealt with using a period of dark adaption of 30 minutes or more.« less

  18. The robustness of using near-UV observations to detect and study exoplanet magnetic fields

    NASA Astrophysics Data System (ADS)

    Turner, J.; Christie, D.; Arras, P.; Johnson, R.

    2015-10-01

    Studying the magnetic fields of exoplanets will allow for the investigation of their formation history, evolution, interior structure, rotation period, atmospheric dynamics, moons, and potential habitability. We previously observed the transits of 16 exoplanets as they crossed the face of their host-star in the near-UV in an attempt to detect their magnetic fields (Turner et al. 2013; Pearson et al. 2014; Turner et al. in press). It was postulated that the magnetic fields of all our targets could be constrained if their near-UV light curves start earlier than in their optical light curves (Vidotto et al. 2011). This effect can be explained by the presence of a bow shock in front of the planet formed by interactions between the stellar coronal material and the planet's magnetosphere. Furthermore, if the shocked material in the magnetosheath is optically thick, it will absorb starlight and cause an early ingress in the near- UV light curve. We do not observe an early ingress in any of our targets (See Figure 1 for an example light curve in our study), but determine upper limits on their magnetic field strengths. All our magnetic field upper limits are well below the predicted magnetic field strengths for hot Jupiters (Reiners & Christensen 2010; Sanchez-Lavega 2004). The upper limits we derived assume that there is an absorbing species in the near-UV. Therefore, our upper limits cannot be trusted if there is no species to cause the absorption. In this study we simulate the atomic physics, chemistry, radiation transport, and dynamics of the plasma characteristics in the vicinity of a hot Jupiter using the widely used radiative transfer code CLOUDY (Ferland et al. 2013). Using CLOUDY we have investigated whether there is an absorption species in the near-UV that can exist to cause an observable early ingress. The number density of hydrogen in the bow shock was varied from 104 - -108 cm-3 and the output spectrum was calculated (Figure 2) and compared to the input

  19. Detection limits of Legionella pneumophila in environmental samples after co-culture with Acanthamoeba polyphaga

    PubMed Central

    2013-01-01

    Background The efficiency of recovery and the detection limit of Legionella after co-culture with Acanthamoeba polyphaga are not known and so far no investigations have been carried out to determine the efficiency of the recovery of Legionella spp. by co-culture and compare it with that of conventional culturing methods. This study aimed to assess the detection limits of co-culture compared to culture for Legionella pneumophila in compost and air samples. Compost and air samples were spiked with known concentrations of L. pneumophila. Direct culturing and co-culture with amoebae were used in parallel to isolate L. pneumophila and recovery standard curves for both methods were produced for each sample. Results The co-culture proved to be more sensitive than the reference method, detecting 102-103 L. pneumophila cells in 1 g of spiked compost or 1 m3 of spiked air, as compared to 105-106 cells in 1 g of spiked compost and 1 m3 of spiked air. Conclusions Co-culture with amoebae is a useful, sensitive and reliable technique to enrich L. pneumophila in environmental samples that contain only low amounts of bacterial cells. PMID:23442526

  20. Activities of JAXA's Innovative Technology Center on Space Debris Observation

    NASA Astrophysics Data System (ADS)

    Yanagisawa, T.; Kurosaki, H.; Nakajima, A.

    The innovative technology research center of JAXA is developing observational technologies for GEO objects in order to cope with the space debris problem. The center had constructed the optical observational facility for space debris at Mt. Nyukasa, Nagano in 2006. As observational equipments such as CCD cameras and telescopes were set up, the normal observation started. In this paper, the detail of the facilities and its activities are introduced. The observational facility contains two telescopes and two CCD cameras. The apertures of the telescopes are 35cm and 25 cm, respectively. One CCD camera in which 2K2K chip is installed can observe a sky region of 1.3 times 1.3-degree using the 35cm telescope. The other CCD camera that contains two 4K2K chips has an ability to observe 2.6 times 2.6-degree's region with the 25cm telescope. One of our main objectives is to detect faint GEO objects that are not catalogued. Generally, the detection limit of GEO object is determined by the aperture of the telescope. However, by improving image processing techniques, the limit may become low. We are developing some image processing methods that use many CCD frames to detect faint objects. We are trying to use FPGA (Field Programmable Gate Array) system to reduce analyzing time. By applying these methods to the data taken by a large telescope, the detection limit will be significantly lowered. The orbital determination of detected GEO debris is one of the important things to do. Especially, the narrow field view of an optical telescope hinders us from re-detection of the GEO debris for the orbital determination. Long observation time is required for one GEO object for the orbital determination that is inefficient. An effective observation strategy should be considered. We are testing one observation method invented by Umehara that observes one inertia position in the space. By observing one inertia position for two nights, a GEO object that passed through the position in the

  1. Sample-morphology effects on x-ray photoelectron peak intensities. II. Estimation of detection limits for thin-film materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Cedric J., E-mail: cedric.powell@nist.gov; Werner, Wolfgang S. M.; Smekal, Werner

    2014-09-01

    The authors show that the National Institute of Standards and Technology database for the simulation of electron spectra for surface analysis (SESSA) can be used to determine detection limits for thin-film materials such as a thin film on a substrate or buried at varying depths in another material for common x-ray photoelectron spectroscopy (XPS) measurement conditions. Illustrative simulations were made for a W film on or in a Ru matrix and for a Ru film on or in a W matrix. In the former case, the thickness of a W film at a given depth in the Ru matrix wasmore » varied so that the intensity of the W 4d{sub 5/2} peak was essentially the same as that for a homogeneous RuW{sub 0.001} alloy. Similarly, the thickness of a Ru film at a selected depth in the W matrix was varied so that the intensity of the Ru 3p{sub 3/2} peak matched that from a homogeneous WRu{sub 0.01} alloy. These film thicknesses correspond to the detection limits of each minor component for measurement conditions where the detection limits for a homogeneous sample varied between 0.1 at. % (for the RuW{sub 0.001} alloy) and 1 at. % (for the WRu{sub 0.01} alloy). SESSA can be similarly used to convert estimates of XPS detection limits for a minor species in a homogeneous solid to the corresponding XPS detection limits for that species as a thin film on or buried in the chosen solid.« less

  2. System for detecting and limiting electrical ground faults within electrical devices

    DOEpatents

    Gaubatz, Donald C.

    1990-01-01

    An electrical ground fault detection and limitation system for employment with a nuclear reactor utilizing a liquid metal coolant. Elongate electromagnetic pumps submerged within the liquid metal coolant and electrical support equipment experiencing an insulation breakdown occasion the development of electrical ground fault current. Without some form of detection and control, these currents may build to damaging power levels to expose the pump drive components to liquid metal coolant such as sodium with resultant undesirable secondary effects. Such electrical ground fault currents are detected and controlled through the employment of an isolated power input to the pumps and with the use of a ground fault control conductor providing a direct return path from the affected components to the power source. By incorporating a resistance arrangement with the ground fault control conductor, the amount of fault current permitted to flow may be regulated to the extent that the reactor may remain in operation until maintenance may be performed, notwithstanding the existence of the fault. Monitors such as synchronous demodulators may be employed to identify and evaluate fault currents for each phase of a polyphase power, and control input to the submerged pump and associated support equipment.

  3. Comparison of detection limit in fiber-based conventional, amplified, and gain-clamped cavity ring-down techniques

    NASA Astrophysics Data System (ADS)

    Sharma, K.; Abdul Khudus, M. I. M.; Alam, S. U.; Bhattacharya, S.; Venkitesh, D.; Brambilla, G.

    2018-01-01

    Relative performance and detection limit of conventional, amplified, and gain-clamped cavity ring-down techniques (CRDT) in all-fiber configurations are compared experimentally for the first time. Refractive index measurement using evanescent field in tapered fibers is used as a benchmark for the comparison. The systematic optimization of a nested-loop configuration in gain-clamped CRDT is also discussed, which is crucial for achieving a constant gain in a CRDT experiment. It is found that even though conventional CRDT has the lowest standard error in ring-down time (Δτ), the value of ring-down time (τ) is very small, thus leading to poor detection limit. Amplified CRDT provides an improvement in τ, albeit with two orders of magnitude higher Δτ due to amplifier noise. The nested-loop configuration in gain-clamped CRDT helps in reducing Δτ by an order of magnitude as compared to amplified CRDT whilst retaining the improvement in τ. A detection limit of 1 . 03 × 10-4 RIU at refractive index of 1.322 with a 3 mm long and 4.5 μm diameter tapered fiber is demonstrated with the gain-clamped CRDT.

  4. Mixed-effects location and scale Tobit joint models for heterogeneous longitudinal data with skewness, detection limits, and measurement errors.

    PubMed

    Lu, Tao

    2017-01-01

    The joint modeling of mean and variance for longitudinal data is an active research area. This type of model has the advantage of accounting for heteroscedasticity commonly observed in between and within subject variations. Most of researches focus on improving the estimating efficiency but ignore many data features frequently encountered in practice. In this article, we develop a mixed-effects location scale joint model that concurrently accounts for longitudinal data with multiple features. Specifically, our joint model handles heterogeneity, skewness, limit of detection, measurement errors in covariates which are typically observed in the collection of longitudinal data from many studies. We employ a Bayesian approach for making inference on the joint model. The proposed model and method are applied to an AIDS study. Simulation studies are performed to assess the performance of the proposed method. Alternative models under different conditions are compared.

  5. Automated Detection of Small Bodies by Space Based Observation

    NASA Astrophysics Data System (ADS)

    Bidstrup, P. R.; Grillmayer, G.; Andersen, A. C.; Haack, H.; Jorgensen, J. L.

    The number of known comets and asteroids is increasing every year. Up till now this number is including approximately 250,000 of the largest minor planets, as they are usually referred. These discoveries are due to the Earth-based observation which has intensified over the previous decades. Additionally larger telescopes and arrays of telescopes are being used for exploring our Solar System. It is believed that all near- Earth and Main-Belt asteroids of diameters above 10 to 30 km have been discovered, leaving these groups of objects as observationally complete. However, the cataloguing of smaller bodies is incomplete as only a very small fraction of the expected number has been discovered. It is estimated that approximately 1010 main belt asteroids in the size range 1 m to 1 km are too faint to be observed using Earth-based telescopes. In order to observe these small bodies, space-based search must be initiated to remove atmospheric disturbances and to minimize the distance to the asteroids and thereby minimising the requirement for long camera integration times. A new method of space-based detection of moving non-stellar objects is currently being developed utilising the Advanced Stellar Compass (ASC) built for spacecraft attitude determination by Ørsted, Danish Technical University. The ASC serves as a backbone technology in the project as it is capable of fully automated distinction of known and unknown celestial objects. By only processing objects of particular interest, i.e. moving objects, it will be possible to discover small bodies with a minimum of ground control, with the ultimate ambition of a fully automated space search probe. Currently, the ASC is being mounted on the Flying Laptop satellite of the Institute of Space Systems, Universität Stuttgart. It will, after a launch into a low Earth polar orbit in 2008, test the detection method with the ASC equipment that already had significant in-flight experience. A future use of the ASC based automated

  6. Using non-specialist observers in 4AFC human observer studies

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Mackenzie, Alistair; Dance, David R.; Young, Kenneth C.; Wells, Kevin

    2017-03-01

    Virtual clinical trials (VCTs) are an emergent approach for rapid evaluation and comparison of various breast imaging technologies and techniques using computer-based modeling tools. Increasingly 4AFC (Four alternative forced choice) virtual clinical trials are used to compare detection performances of different breast imaging modalities. Most prior studies have used physicists and/or radiologists and physicists interchangeably. However, large scale use of statistically significant 4AFC observer studies is challenged by the individual time commitment and cost of such observers, often drawn from a limited local pool of specialists. This work aims to investigate whether non-specialist observers can be used to supplement such studies. A team of five specialist observers (medical physicists) and five non-specialists participated in a 4AFC study containing simulated 2D-mammography and DBT (digital breast tomosynthesis) images, produced using the OPTIMAM toolbox for VCTs. The images contained 4mm irregular solid masses and 4mm spherical targets at a range of contrast levels embedded in a realistic breast phantom background. There was no statistically significant difference between the detection performance of medical physicists and non-specialists (p>0.05). However, non-specialists took longer to complete the study than their physicist counterparts, which was statistically significant (p<0.05). Overall, the results from both observer groups indicate that DBT has a lower detectable threshold contrast than 2D-mammography for both masses and spheres, and both groups found spheres easier to detect than irregular solid masses.

  7. Detection of nanoplastics in food by asymmetric flow field-flow fractionation coupled to multi-angle light scattering: possibilities, challenges and analytical limitations.

    PubMed

    Correia, Manuel; Loeschner, Katrin

    2018-02-06

    We tested the suitability of asymmetric flow field-flow fractionation (AF4) coupled to multi-angle light scattering (MALS) for detection of nanoplastics in fish. A homogenized fish sample was spiked with 100 nm polystyrene nanoparticles (PSNPs) (1.3 mg/g fish). Two sample preparation strategies were tested: acid digestion and enzymatic digestion with proteinase K. Both procedures were found suitable for degradation of the organic matrix. However, acid digestion resulted in large PSNPs aggregates/agglomerates (> 1 μm). The presence of large particulates was not observed after enzymatic digestion, and consequently it was chosen as a sample preparation method. The results demonstrated that it was possible to use AF4 for separating the PSNPs from the digested fish and to determine their size by MALS. The PSNPs could be easily detected by following their light scattering (LS) signal with a limit of detection of 52 μg/g fish. The AF4-MALS method could also be exploited for another type of nanoplastics in solution, namely polyethylene (PE). However, it was not possible to detect the PE particles in fish, due to the presence of an elevated LS background. Our results demonstrate that an analytical method developed for a certain type of nanoplastics may not be directly applicable to other types of nanoplastics and may require further adjustment. This work describes for the first time the detection of nanoplastics in a food matrix by AF4-MALS. Despite the current limitations, this is a promising methodology for detecting nanoplastics in food and in experimental studies (e.g., toxicity tests, uptake studies). Graphical abstract Basic concept for the detection of nanoplastics in fish by asymmetric flow field-flow fractionation coupled to multi-angle light scattering.

  8. Detection limits of organic compounds achievable with intense, short-pulse lasers.

    PubMed

    Miles, Jordan; De Camillis, Simone; Alexander, Grace; Hamilton, Kathryn; Kelly, Thomas J; Costello, John T; Zepf, Matthew; Williams, Ian D; Greenwood, Jason B

    2015-06-21

    Many organic molecules have strong absorption bands which can be accessed by ultraviolet short pulse lasers to produce efficient ionization. This resonant multiphoton ionization scheme has already been exploited as an ionization source in time-of-flight mass spectrometers used for environmental trace analysis. In the present work we quantify the ultimate potential of this technique by measuring absolute ion yields produced from the interaction of 267 nm femtosecond laser pulses with the organic molecules indole and toluene, and gases Xe, N2 and O2. Using multiphoton ionization cross sections extracted from these results, we show that the laser pulse parameters required for real-time detection of aromatic molecules at concentrations of one part per trillion in air and a limit of detection of a few attomoles are achievable with presently available commercial laser systems. The potential applications for the analysis of human breath, blood and tissue samples are discussed.

  9. Evaluation on the detection limit of blood hemoglobin using photolepthysmography based on path-length optimization

    NASA Astrophysics Data System (ADS)

    Sun, Di; Guo, Chao; Zhang, Ziyang; Han, Tongshuai; Liu, Jin

    2016-10-01

    The blood hemoglobin concentration's (BHC) measurement using Photoplethysmography (PPG), which gets blood absorption to near infrared light from the instantaneous pulse of transmitted light intensity, has not been applied to the clinical use due to the non-enough precision. The main challenge might be caused of the non-enough stable pulse signal when it's very weak and it often varies in different human bodies or in the same body with different physiological states. We evaluated the detection limit of BHC using PPG as the measurement precision level, which can be considered as a best precision result because we got the relative stable subject's pulse signals recorded by using a spectrometer with high signal-to-noise ratio (SNR) level, which is about 30000:1 in short term. Moreover, we optimized the used pathlength using the theory based on optimum pathlength to get a better sensitivity to the absorption variation in blood. The best detection limit was evaluated as about 1 g/L for BHC, and the best SNR of pulse for in vivo measurement was about 2000:1 at 1130 and 1250 nm. Meanwhile, we conclude that the SNR of pulse signal should be better than 400:1 when the required detection limit is set to 5 g/L. Our result would be a good reference to the BHC measurement to get a desired BHC measurement precision of real application.

  10. Detection of facilities in satellite imagery using semi-supervised image classification and auxiliary contextual observables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Neal R; Ruggiero, Christy E; Pawley, Norma H

    2009-01-01

    Detecting complex targets, such as facilities, in commercially available satellite imagery is a difficult problem that human analysts try to solve by applying world knowledge. Often there are known observables that can be extracted by pixel-level feature detectors that can assist in the facility detection process. Individually, each of these observables is not sufficient for an accurate and reliable detection, but in combination, these auxiliary observables may provide sufficient context for detection by a machine learning algorithm. We describe an approach for automatic detection of facilities that uses an automated feature extraction algorithm to extract auxiliary observables, and a semi-supervisedmore » assisted target recognition algorithm to then identify facilities of interest. We illustrate the approach using an example of finding schools in Quickbird image data of Albuquerque, New Mexico. We use Los Alamos National Laboratory's Genie Pro automated feature extraction algorithm to find a set of auxiliary features that should be useful in the search for schools, such as parking lots, large buildings, sports fields and residential areas and then combine these features using Genie Pro's assisted target recognition algorithm to learn a classifier that finds schools in the image data.« less

  11. Updating the Standard Spatial Observer for Contrast Detection

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J.; Watson, Andrew B.

    2011-01-01

    Watson and Ahmuada (2005) constructed a Standard Spatial Observer (SSO) model for foveal luminance contrast signal detection based on the Medelfest data (Watson, 1999). Here we propose two changes to the model, dropping the oblique effect from the CSF and using the cone density data of Curcio et al. (1990) to estimate the variation of sensitivity with eccentricity. Dropping the complex images, and using medians to exclude outlier data points, the SSO model now accounts for essentially all the predictable variance in the data, with an RMS prediction error of only 0.67 dB.

  12. Modeling of a Single-Notch Microfiber Coupler for High-Sensitivity and Low Detection-Limit Refractive Index Sensing.

    PubMed

    Zhang, Jiali; Shi, Lei; Zhu, Song; Xu, Xinbiao; Zhang, Xinliang

    2016-05-11

    A highly sensitive refractive index sensor with low detection limit based on an asymmetric optical microfiber coupler is proposed. It is composed of a silica optical microfiber and an As₂Se₃ optical microfiber. Due to the asymmetry of the microfiber materials, a single-notch transmission spectrum is demonstrated by the large refractive index difference between the two optical microfibers. Compared with the symmetric coupler, the bandwidth of the asymmetric structure is over one order of magnitude narrower than that of the former. Therefore, the asymmetric optical microfiber coupler based sensor can reach over one order of magnitude smaller detection limit, which is defined as the minimal detectable refractive index change caused by the surrounding analyte. With the advantage of large evanescent field, the results also show that a sensitivity of up to 3212 nm per refractive index unit with a bandwidth of 12 nm is achieved with the asymmetric optical microfiber coupler. Furthermore, a maximum sensitivity of 4549 nm per refractive index unit can be reached while the radii of the silica optical microfiber and As₂Se₃ optical microfiber are 0.5 μm and a 0.128 μm, respectively. This sensor component may have important potential for low detection-limit physical and biochemical sensing applications.

  13. Collimator optimization in myocardial perfusion SPECT using the ideal observer and realistic background variability for lesion detection and joint detection and localization tasks

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Du, Yong; Links, Jonathan M.; Frey, Eric C.

    2016-03-01

    In SPECT imaging, collimators are a major factor limiting image quality and largely determine the noise and resolution of SPECT images. In this paper, we seek the collimator with the optimal tradeoff between image noise and resolution with respect to performance on two tasks related to myocardial perfusion SPECT: perfusion defect detection and joint detection and localization. We used the Ideal Observer (IO) operating on realistic background-known-statistically (BKS) and signal-known-exactly (SKE) data. The areas under the receiver operating characteristic (ROC) and localization ROC (LROC) curves (AUCd, AUCd+l), respectively, were used as the figures of merit for both tasks. We used a previously developed population of 54 phantoms based on the eXtended Cardiac Torso Phantom (XCAT) that included variations in gender, body size, heart size and subcutaneous adipose tissue level. For each phantom, organ uptakes were varied randomly based on distributions observed in patient data. We simulated perfusion defects at six different locations with extents and severities of 10% and 25%, respectively, which represented challenging but clinically relevant defects. The extent and severity are, respectively, the perfusion defect’s fraction of the myocardial volume and reduction of uptake relative to the normal myocardium. Projection data were generated using an analytical projector that modeled attenuation, scatter, and collimator-detector response effects, a 9% energy resolution at 140 keV, and a 4 mm full-width at half maximum (FWHM) intrinsic spatial resolution. We investigated a family of eight parallel-hole collimators that spanned a large range of sensitivity-resolution tradeoffs. For each collimator and defect location, the IO test statistics were computed using a Markov Chain Monte Carlo (MCMC) method for an ensemble of 540 pairs of defect-present and -absent images that included the aforementioned anatomical and uptake variability. Sets of test statistics were

  14. Blurred digital mammography images: an analysis of technical recall and observer detection performance.

    PubMed

    Ma, Wang Kei; Borgen, Rita; Kelly, Judith; Millington, Sara; Hilton, Beverley; Aspin, Rob; Lança, Carla; Hogg, Peter

    2017-03-01

    Blurred images in full-field digital mammography are a problem in the UK Breast Screening Programme. Technical recalls may be due to blurring not being seen on lower resolution monitors used for review. This study assesses the visual detection of blurring on a 2.3-MP monitor and a 5-MP report grade monitor and proposes an observer standard for the visual detection of blurring on a 5-MP reporting grade monitor. 28 observers assessed 120 images for blurring; 20 images had no blurring present, whereas 100 images had blurring imposed through mathematical simulation at 0.2, 0.4, 0.6, 0.8 and 1.0 mm levels of motion. Technical recall rate for both monitors and angular size at each level of motion were calculated. χ 2 tests were used to test whether significant differences in blurring detection existed between 2.3- and 5-MP monitors. The technical recall rate for 2.3- and 5-MP monitors are 20.3% and 9.1%, respectively. The angular size for 0.2- to 1-mm motion varied from 55 to 275 arc s. The minimum amount of motion for visual detection of blurring in this study is 0.4 mm. For 0.2-mm simulated motion, there was no significant difference [χ 2 (1, N = 1095) = 1.61, p = 0.20] in blurring detection between the 2.3- and 5-MP monitors. According to this study, monitors ≤2.3 MP are not suitable for technical review of full-field digital mammography images for the detection of blur. Advances in knowledge: This research proposes the first observer standard for the visual detection of blurring.

  15. Blurred digital mammography images: an analysis of technical recall and observer detection performance

    PubMed Central

    Borgen, Rita; Kelly, Judith; Millington, Sara; Hilton, Beverley; Aspin, Rob; Lança, Carla; Hogg, Peter

    2017-01-01

    Objective: Blurred images in full-field digital mammography are a problem in the UK Breast Screening Programme. Technical recalls may be due to blurring not being seen on lower resolution monitors used for review. This study assesses the visual detection of blurring on a 2.3-MP monitor and a 5-MP report grade monitor and proposes an observer standard for the visual detection of blurring on a 5-MP reporting grade monitor. Methods: 28 observers assessed 120 images for blurring; 20 images had no blurring present, whereas 100 images had blurring imposed through mathematical simulation at 0.2, 0.4, 0.6, 0.8 and 1.0 mm levels of motion. Technical recall rate for both monitors and angular size at each level of motion were calculated. χ2 tests were used to test whether significant differences in blurring detection existed between 2.3- and 5-MP monitors. Results: The technical recall rate for 2.3- and 5-MP monitors are 20.3% and 9.1%, respectively. The angular size for 0.2- to 1-mm motion varied from 55 to 275 arc s. The minimum amount of motion for visual detection of blurring in this study is 0.4 mm. For 0.2-mm simulated motion, there was no significant difference [χ2 (1, N = 1095) = 1.61, p = 0.20] in blurring detection between the 2.3- and 5-MP monitors. Conclusion: According to this study, monitors ≤2.3 MP are not suitable for technical review of full-field digital mammography images for the detection of blur. Advances in knowledge: This research proposes the first observer standard for the visual detection of blurring. PMID:28134567

  16. Picomolar detection limits with current-polarized Pb2+ ion-selective membranes.

    PubMed

    Pergel, E; Gyurcsányi, R E; Tóth, K; Lindner, E

    2001-09-01

    Minor ion fluxes across ion-selective membranes bias submicromolar activity measurements with conventional ion-selective electrodes. When ion fluxes are balanced, the lower limit of detection is expected to be dramatically improved. As proof of principle, the flux of lead ions across an ETH 5435 ionophore-based lead-selective membrane was gradually compensated by applying a few nanoamperes of galvanostatic current. When the opposite ion fluxes were matched, and the undesirable leaching of primary ions was eliminated, Nernstian response down to 3 x 10(-12) M was achieved.

  17. Detection limit of Mycobacterium chimaera in water samples for monitoring medical device safety: insights from a pilot experimental series.

    PubMed

    Schreiber, P W; Köhler, N; Cervera, R; Hasse, B; Sax, H; Keller, P M

    2018-07-01

    A growing number of Mycobacterium chimaera infections after cardiosurgery have been reported by several countries. These potentially fatal infections were traced back to contaminated heater-cooler devices (HCDs), which use water as a heat transfer medium. Aerosolization of water contaminated with M. chimaera from HCDs enables airborne transmission to patients undergoing open chest surgery. Infection control teams test HCD water samples for mycobacterial growth to guide preventive measures. The detection limit of M. chimaera in water samples, however, has not previously been investigated. To determine the detection limit of M. chimaera in water samples using laboratory-based serial dilution tests. An M. chimaera strain representative of the international cardiosurgery-associated M. chimaera outbreak was used to generate a logarithmic dilution series. Two different water volumes, 50 and 1000mL, were inoculated, and, after identical processing (centrifugation, decantation, and decontamination), seeded on mycobacteria growth indicator tube (MGIT) and Middlebrook 7H11 solid media. MGIT consistently showed a lower detection limit than 7H11 solid media, corresponding to a detection limit of ≥1.44 × 10 4 cfu/mL for 50mL and ≥2.4cfu/mL for 1000mL water samples. Solid media failed to detect M. chimaera in 50mL water samples. Depending on water volume and culture method, major differences exist in the detection limit of M. chimaera. In terms of sensitivity, 1000mL water samples in MGIT media performed best. Our results have important implications for infection prevention and control strategies in mitigation of the M. chimaera outbreak and healthcare water safety in general. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Detection of CS in Neptune's atmosphere from ALMA observations

    NASA Astrophysics Data System (ADS)

    Moreno, R.; Lellouch, E.; Cavalié, T.; Moullet, A.

    2017-12-01

    Context. The large and vertically non-uniform abundance of CO in Neptune's atmosphere has been interpreted as the result of past cometary impact(s), either single or distributed in size and time, which could also be at the origin of Neptune's HCN. Aims: We aim to provide observational support for this scenario by searching for other comet-induced species, in particular carbon sulfide (CS) which has been observed continuously in Jupiter since the 1994 Shoemaker-Levy 9 impacts. Methods: In April 2016 we used the ALMA interferometer to search for CS(7-6) at 342.883 GHz in Neptune. Results: We report on the detection of CS in Neptune's atmosphere, the first unambiguous observation of a sulfur-bearing species in a giant planet beyond Jupiter. Carbon sulfide appears to be present only at submillibar levels, with a column density of (2.0-3.1) × 1012 cm-2, and a typical mixing ratio of (2-20) × 10-11 that depends on its precise vertical location. The favoured origin of CS is deposition by a putative large comet impact several centuries ago, and the strong depletion of CS with respect to CO - compared to the Jupiter case - is likely due to the CS sticking to aerosols or clustering to form polymers in Neptune's lower stratosphere. Conclusions: The CS detection, along with recent analyses of the CO profile, reinforces the presumption of a large comet impact into Neptune 1000 yr ago, that delivered CO, CS, and HCN at the same time.

  19. Model observer design for multi-signal detection in the presence of anatomical noise

    NASA Astrophysics Data System (ADS)

    Wen, Gezheng; Markey, Mia K.; Park, Subok

    2017-02-01

    As psychophysical studies are resource-intensive to conduct, model observers are commonly used to assess and optimize medical imaging quality. Model observers are typically designed to detect at most one signal. However, in clinical practice, there may be multiple abnormalities in a single image set (e.g. multifocal multicentric (MFMC) breast cancer), which can impact treatment planning. Prevalence of signals can be different across anatomical regions, and human observers do not know the number or location of signals a priori. As new imaging techniques have the potential to improve multiple-signal detection (e.g. digital breast tomosynthesis may be more effective for diagnosis of MFMC than mammography), image quality assessment approaches addressing such tasks are needed. In this study, we present a model observer to detect multiple signals in an image dataset. A novel implementation of partial least squares (PLS) was developed to estimate different sets of efficient channels directly from the images. The PLS channels are adaptive to the characteristics of signals and the background, and they capture the interactions among signal locations. Corresponding linear decision templates are employed to generate both image-level and location-specific scores on the presence of signals. Our results show that: (1) the model observer can achieve high performance with a reasonably small number of channels; (2) the model observer with PLS channels outperforms that with benchmark modified Laguerre-Gauss channels, especially when realistic signal shapes and complex background statistics are involved; (3) the tasks of clinical interest, and other constraints such as sample size would alter the optimal design of the model observer.

  20. Exploring the Thermal Limits of IR-Based Automatic Whale Detection (ETAW)

    DTIC Science & Technology

    2013-09-30

    the northward humpback whale migration, which occurs annually rather close to shore near North Stradbroke Island, Queensland, Australia. Based on the...successive northward humpback whale migrations and collecting concurrent independent (double blind) visual observations (modified cue counting), a... Whale Detection (ETAW) Olaf Boebel P.O. Box 120161 27515 Bremerhaven Germany phone: +49 (471) 4831-1879 fax: +49 (471) 4831-1797 email

  1. Evaluating the effectiveness of wildlife detection and observation technologies at a solar power tower facility

    USGS Publications Warehouse

    Diehl, Robert H.; Valdez, Ernest W.; Preston, Todd M.; Wellik, Mike J.; Cryan, Paul

    2016-01-01

    Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light (“solar flux”) in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world’s largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife.

  2. Evaluating the Effectiveness of Wildlife Detection and Observation Technologies at a Solar Power Tower Facility.

    PubMed

    Diehl, Robert H; Valdez, Ernest W; Preston, Todd M; Wellik, Michael J; Cryan, Paul M

    2016-01-01

    Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light ("solar flux") in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world's largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife.

  3. Evaluating the Effectiveness of Wildlife Detection and Observation Technologies at a Solar Power Tower Facility

    PubMed Central

    Diehl, Robert H.; Valdez, Ernest W.; Preston, Todd M.; Wellik, Michael J.; Cryan, Paul M.

    2016-01-01

    Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light (“solar flux”) in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world’s largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife. PMID:27462989

  4. Batch Fabrication of Ultrasensitive Carbon Nanotube Hydrogen Sensors with Sub-ppm Detection Limit.

    PubMed

    Xiao, Mengmeng; Liang, Shibo; Han, Jie; Zhong, Donglai; Liu, Jingxia; Zhang, Zhiyong; Peng, Lianmao

    2018-04-27

    Carbon nanotube (CNT) has been considered as an ideal channel material for building highly sensitive gas sensors. However, the reported H 2 sensors based on CNT always suffered from the low sensitivity or low production. We developed the technology to massively fabricate ultra-highly sensitive H 2 sensors based on solution derived CNT network through comprehensive optimization of the CNT material, device structure, and fabrication process. In the H 2 sensors, high semiconducting purity solution-derived CNT film sorted by poly[9-(1-octylonoyl)-9 H-carbazole-2,7-diyl](PCz) is used as the main channel, which is decorated with Pd nanoparticles as functionalization for capturing H 2 . Meanwhile, Ti contacts are used to form a Schottky barrier for enhancing transferred charge-induced resistance change, and then a response of resistance change by 3 orders of magnitude is achieved at room temperature under the concentration of ∼311 ppm with a very fast response time of approximately 7 s and a detection limit of 890 ppb, which is the highest response to date for CNT H 2 sensors and the very first time to show the sub-ppm detection for H 2 at room temperature. Furthermore, the detection limit concentration can be improved to 89 ppb at 100 °C. The batch fabrication of CNT film H 2 sensors with ultra-high sensitivity and high uniformity is ready to promote CNT devices to application for the first time in some specialized field.

  5. Upper limits to the detection of ammonia from protoplanetary disks around HL Tauri and L1551-IRS 5

    NASA Technical Reports Server (NTRS)

    Gomez, Jose F.; Torrelles, Jose M.; Ho, Paul T. P.; Rodriguez, Luis F.; Canto, Jorge

    1993-01-01

    We present NH3(1, 1) and (2, 2) observations of the young stellar sources HL Tau and L1551-IRS 5 using the VLA in its B-configuration, which provides an angular resolution of about 0.4 arcsec (about 50 AU at 140 pc) at 1.3 cm wavelength. Our goal was to detect and resolve circumstellar molecular disks with radius of the order of 100 AU around these two sources. No ammonia emission was detected toward either of them. The 3-sigma levels were 2.7 mJy/beam and 3.9 mJy/beam for HL Tau and L1551-IRS 5, respectively, with a velocity resolution of about 5 km/s. With this nondetection, we estimate upper limits to the mass of the proposed protoplanetary molecular disks (within a radius of 10 AU from the central stars) on the order of 0.02/(X(NH3)/10 exp -8) solar mass for HL Tau and 0.1/(X(NH3)/10 exp -8) solar mass for L1551-IRS 5.

  6. Optical aperture synthesis: limitations and interest for the earth observation

    NASA Astrophysics Data System (ADS)

    Brouard, Laurent; Safa, Frederic; Crombez, Vincent; Laubier, David

    2017-11-01

    For very large telescope diameters, typically above 4 meters, monolithic telescopes can hardly be envisaged for space applications. Optical aperture synthesis can be envisaged in the future for improving the image resolution from high altitude orbits by co-phasing several individual telescopes of smaller size and reconstituting an aperture of large surface. The telescopes can be deployed on a single spacecraft or distributed on several spacecrafts in free flying formation. Several future projects are based on optical aperture synthesis for science or earth observation. This paper specifically discusses the limitations and interest of aperture synthesis technique for Earth observation from high altitude orbits, in particular geostationary orbit. Classical Fizeau and Michelson configurations are recalled, and system design aspects are investigated: synthesis of the Modulation Transfer Function (MTF), integration time and imaging procedure are first discussed then co-phasing strategies and instrument metrology are developed. The discussion is supported by specific designs made at EADS Astrium. As example, a telescope design is presented with a surface of only 6.6 m2 for the primary mirror for an external diameter of 10.6 m allowing a theoretical resolution of 1.2 m from geostationary orbit with a surface lower than 10% of the overall surface. The impact is that the integration time is increasing leading to stringent satellite attitude requirements. Image simulation results are presented. The practical implementation of the concept is evaluated in terms of system impacts in particular spacecraft attitude control, spacecraft operations and imaging capability limitations.

  7. Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection

    PubMed Central

    Pokhriyal, Anusha; Lu, Meng; Chaudhery, Vikram; Huang, Cheng-Sheng; Schulz, Stephen; Cunningham, Brian T.

    2010-01-01

    A Photonic Crystal (PC) surface fabricated upon a quartz substrate using nanoimprint lithography has been demonstrated to enhance light emission from fluorescent molecules in close proximity to the PC surface. Quartz was selected for its low autofluorescence characteristics compared to polymer-based PCs, improving the detection sensitivity and signal-to-noise ratio (SNR) of PC Enhanced Fluorescence (PCEF). Nanoimprint lithography enables economical fabrication of the subwavelength PCEF surface structure over entire 1x3 in2 quartz slides. The demonstrated PCEF surface supports a transverse magnetic (TM) resonant mode at a wavelength of λ = 632.8 nm and an incident angle of θ = 11°, which amplifies the electric field magnitude experienced by surface-bound fluorophores. Meanwhile, another TM mode at a wavelength of λ = 690 nm and incident angle of θ = 0° efficiently directs the fluorescent emission toward the detection optics. An enhancement factor as high as 7500 × was achieved for the detection of LD-700 dye spin-coated upon the PC, compared to detecting the same material on an unpatterned glass surface. The detection of spotted Alexa-647 labeled polypeptide on the PC exhibits a 330 × SNR improvement. Using dose-response characterization of deposited fluorophore-tagged protein spots, the PCEF surface demonstrated a 140 × lower limit of detection compared to a conventional glass substrate. PMID:21164826

  8. Detection of ocean glint and ozone absorption using LCROSS Earth observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Tyler D.; Ennico, Kimberly; Meadows, Victoria S.

    The Lunar CRater Observation and Sensing Satellite (LCROSS) observed the distant Earth on three occasions in 2009. These data span a range of phase angles, including a rare crescent phase view. For each epoch, the satellite acquired near-infrared and mid-infrared full-disk images, and partial-disk spectra at 0.26-0.65 μm (λ/Δλ ∼ 500) and 1.17-2.48 μm (λ/Δλ ∼ 50). Spectra show strong absorption features due to water vapor and ozone, which is a biosignature gas. We perform a significant recalibration of the UV-visible spectra and provide the first comparison of high-resolution visible Earth spectra to the NASA Astrobiology Institute's Virtual Planetary Laboratorymore » three-dimensional spectral Earth model. We find good agreement with the observations, reproducing the absolute brightness and dynamic range at all wavelengths for all observation epochs, thus validating the model to within the ∼10% data calibration uncertainty. Data-model comparisons reveal a strong ocean glint signature in the crescent phase data set, which is well matched by our model predictions throughout the observed wavelength range. This provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths, where the glint signal is strongest. We examine the detection of the ozone 255 nm Hartley and 400-700 nm Chappuis bands. While the Hartley band is the strongest ozone feature in Earth's spectrum, false positives for its detection could exist. Finally, we discuss the implications of these findings for future exoplanet characterization missions.« less

  9. Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125.

    PubMed

    Su, Hui-Wen; Lee, Mon-Juan; Lee, Wei

    2015-05-01

    Liquid crystal (LC)-based biosensing has attracted much attention in recent years. We focus on improving the detection limit of LC-based immunoassay techniques by surface modification of the surfactant alignment layer consisting of dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP). The cancer biomarker CA125 was detected with an array of anti-CA125 antibodies immobilized on the ultraviolet (UV)-modified DMOAP monolayer. Compared with a pristine counterpart, UV irradiation enhanced the binding affinity of the CA125 antibody and reproducibility of immunodetection in which a detection limit of 0.01 ng∕ml for the cancer biomarker CA125 was achieved. Additionally, the optical texture observed under a crossed polarized microscope was correlated with the analyte concentration. In a proof-of-concept experiment using CA125-spiked human serum as the analyte, specific binding between the CA125 antigen and the anti-CA125 antibody resulted in a distinct and concentration-dependent optical response despite the high background caused by nonspecific binding of other biomolecules in the human serum. Results from this study indicate that UVmodification of the alignment layer, as well as detection with LCs of large birefringence, contributes to the enhanced performance of the label-free LC-based immunodetection, which may be considered a promising alternative to conventional label-based methods.

  10. Accounting for Limited Detection Efficiency and Localization Precision in Cluster Analysis in Single Molecule Localization Microscopy

    PubMed Central

    Shivanandan, Arun; Unnikrishnan, Jayakrishnan; Radenovic, Aleksandra

    2015-01-01

    Single Molecule Localization Microscopy techniques like PhotoActivated Localization Microscopy, with their sub-diffraction limit spatial resolution, have been popularly used to characterize the spatial organization of membrane proteins, by means of quantitative cluster analysis. However, such quantitative studies remain challenged by the techniques’ inherent sources of errors such as a limited detection efficiency of less than 60%, due to incomplete photo-conversion, and a limited localization precision in the range of 10 – 30nm, varying across the detected molecules, mainly depending on the number of photons collected from each. We provide analytical methods to estimate the effect of these errors in cluster analysis and to correct for them. These methods, based on the Ripley’s L(r) – r or Pair Correlation Function popularly used by the community, can facilitate potentially breakthrough results in quantitative biology by providing a more accurate and precise quantification of protein spatial organization. PMID:25794150

  11. SU-E-I-46: Sample-Size Dependence of Model Observers for Estimating Low-Contrast Detection Performance From CT Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiser, I; Lu, Z

    2014-06-01

    Purpose: Recently, task-based assessment of diagnostic CT systems has attracted much attention. Detection task performance can be estimated using human observers, or mathematical observer models. While most models are well established, considerable bias can be introduced when performance is estimated from a limited number of image samples. Thus, the purpose of this work was to assess the effect of sample size on bias and uncertainty of two channelized Hotelling observers and a template-matching observer. Methods: The image data used for this study consisted of 100 signal-present and 100 signal-absent regions-of-interest, which were extracted from CT slices. The experimental conditions includedmore » two signal sizes and five different x-ray beam current settings (mAs). Human observer performance for these images was determined in 2-alternative forced choice experiments. These data were provided by the Mayo clinic in Rochester, MN. Detection performance was estimated from three observer models, including channelized Hotelling observers (CHO) with Gabor or Laguerre-Gauss (LG) channels, and a template-matching observer (TM). Different sample sizes were generated by randomly selecting a subset of image pairs, (N=20,40,60,80). Observer performance was quantified as proportion of correct responses (PC). Bias was quantified as the relative difference of PC for 20 and 80 image pairs. Results: For n=100, all observer models predicted human performance across mAs and signal sizes. Bias was 23% for CHO (Gabor), 7% for CHO (LG), and 3% for TM. The relative standard deviation, σ(PC)/PC at N=20 was highest for the TM observer (11%) and lowest for the CHO (Gabor) observer (5%). Conclusion: In order to make image quality assessment feasible in the clinical practice, a statistically efficient observer model, that can predict performance from few samples, is needed. Our results identified two observer models that may be suited for this task.« less

  12. Neutrino detection of transient sources with optical follow-up observations

    NASA Astrophysics Data System (ADS)

    Dornic, D.; Ageron, M.; Al Samarai, I.; Basa, S.; Bertin, V.; Brunner, J.; Busto, J.; Escoffier, S.; Schussler, F.; Vallage, B.; Vecchi, M.

    2010-12-01

    The ANTARES telescope has the opportunity to detect transient neutrino sources,such as gamma-ray bursts,core-collapse supernovae,flares of active galactic nuclei. To enhance the sensitivity to these sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. For this purpose the ANTARES Collaboration has implemented a fast on-line muon track reconstruction with a good angular resolution. These characteristics allow to trigger a network of optical telescopes in order to identify the nature of the neutrino sources. An optical follow-up of special events, such as neutrino doublets, coincident in time and direction, or single neutrinos with a very high energy, would not only give access to the nature of their sources but also improve the sensitivity for neutrino detection. The alert system is operational since early 2009, and as of September 2010, 22 alerts have been sent to the TAROT and ROTSE telescopes.

  13. Limits of linearity and detection for some drugs of abuse.

    PubMed

    Needleman, S B; Romberg, R W

    1990-01-01

    The limits of linearity (LOL) and detection (LOD) are important factors in establishing the reliability of an analytical procedure for accurately assaying drug concentrations in urine specimens. Multiple analyses of analyte over an extended range of concentrations provide a measure of the ability of the analytical procedure to correctly identify known quantities of drug in a biofluid matrix. Each of the seven drugs of abuse gives linear analytical responses from concentrations at or near their LOD to concentrations several-fold higher than those generally encountered in the drug screening laboratory. The upper LOL exceeds the Department of Navy (DON) cutoff values by factors of approximately 2 to 160. The LOD varies from 0.4 to 5.0% of the DON cutoff value for each drug. The limit of quantitation (LOQ) is calculated as the LOD + 7 SD. The range for LOL is greater for drugs analyzed with deuterated internal standards compared with those using conventional internal standards. For THC acid, cocaine, PCP, and morphine, LOLs are 8 to 160-fold greater than the defined cutoff concentrations. For the other drugs, the LOL's are only 2 to 4-fold greater than the defined cutoff concentrations.

  14. Diamond-based electrochemical aptasensor realizing a femtomolar detection limit of bisphenol A.

    PubMed

    Ma, Yibo; Liu, Junsong; Li, Hongdong

    2017-06-15

    In this study, we designed and fabricated an electrochemical impedance aptasensor based on Au nanoparticles (Au-NPs) coated boron-doped diamond (BDD) modified with aptamers, and 6-mercapto-1-hexanol (MCH) for the detection of bisphenol A (BPA). The constructed BPA aptasensor exhibits good linearity from 1.0×10 -14 to 1.0×10 -9 molL -1 . The detection limitation of 7.2×10 -15 molL -1 was achieved, which can be attributed to the synergistic effect of combining BDD with Au-NPs, aptamers, and MCH. The examine results of BPA traces in Tris-HCl buffer and in milk, UV spectra of aptamer/BPA and interference test revealed that the novel aptasensors are of high sensitivity, specificity, stability and repeatability, which could be promising in practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Detecting the sampling rate through observations

    NASA Astrophysics Data System (ADS)

    Shoji, Isao

    2018-09-01

    This paper proposes a method to detect the sampling rate of discrete time series of diffusion processes. Using the maximum likelihood estimates of the parameters of a diffusion process, we establish a criterion based on the Kullback-Leibler divergence and thereby estimate the sampling rate. Simulation studies are conducted to check whether the method can detect the sampling rates from data and their results show a good performance in the detection. In addition, the method is applied to a financial time series sampled on daily basis and shows the detected sampling rate is different from the conventional rates.

  16. Evaluating 6 ricin field detection assays.

    PubMed

    Slotved, Hans-Christian; Sparding, Nadja; Tanassi, Julia Tanas; Steenhard, Nina R; Heegaard, Niels H H

    2014-01-01

    This study presents data showing the performance of 6 commercial detection assays against ricin around concentrations specified as detection limits by the producers. A 2-fold dilution series of 20 ng/ml ricin was prepared and used for testing the lateral-flow kits: BADD, Pro Strips™, ENVI, RAID DX, Ricin BioThreat Alert, and IMASS™ device. Three of the 6 tested field assays (IMASS™ device, ENVI assay, and the BioThreat Alert assay) were able to detect ricin, although differences in the measured detection limits compared to the official detection limits and false-negative results were observed. We were not able to get the BADD, Pro Strips™, and RAID assays to function in our laboratory. We conclude that when purchasing a field responder assay, there is large variation in the specificity of the assays, and a number of in-house tests must be performed to ensure functionality.

  17. Design of a model observer to evaluate calcification detectability in breast tomosynthesis and application to smoothing prior optimization.

    PubMed

    Michielsen, Koen; Nuyts, Johan; Cockmartin, Lesley; Marshall, Nicholas; Bosmans, Hilde

    2016-12-01

    In this work, the authors design and validate a model observer that can detect groups of microcalcifications in a four-alternative forced choice experiment and use it to optimize a smoothing prior for detectability of microcalcifications. A channelized Hotelling observer (CHO) with eight Laguerre-Gauss channels was designed to detect groups of five microcalcifications in a background of acrylic spheres by adding the CHO log-likelihood ratios calculated at the expected locations of the five calcifications. This model observer is then applied to optimize the detectability of the microcalcifications as a function of the smoothing prior. The authors examine the quadratic and total variation (TV) priors, and a combination of both. A selection of these reconstructions was then evaluated by human observers to validate the correct working of the model observer. The authors found a clear maximum for the detectability of microcalcification when using the total variation prior with weight β TV = 35. Detectability only varied over a small range for the quadratic and combined quadratic-TV priors when weight β Q of the quadratic prior was changed by two orders of magnitude. Spearman correlation with human observers was good except for the highest value of β for the quadratic and TV priors. Excluding those, the authors found ρ = 0.93 when comparing detection fractions, and ρ = 0.86 for the fitted detection threshold diameter. The authors successfully designed a model observer that was able to predict human performance over a large range of settings of the smoothing prior, except for the highest values of β which were outside the useful range for good image quality. Since detectability only depends weakly on the strength of the combined prior, it is not possible to pick an optimal smoothness based only on this criterion. On the other hand, such choice can now be made based on other criteria without worrying about calcification detectability.

  18. Near-infrared Thermal Emission from TrES-3b: A Ks-band Detection and an H-band Upper Limit on the Depth of the Secondary Eclipse

    NASA Astrophysics Data System (ADS)

    Croll, Bryce; Jayawardhana, Ray; Fortney, Jonathan J.; Lafrenière, David; Albert, Loic

    2010-08-01

    We present H- and Ks-band photometry bracketing the secondary eclipse of the hot Jupiter TrES-3b using the Wide-field Infrared Camera on the Canada-France-Hawaii Telescope. We detect the secondary eclipse of TrES-3b with a depth of 0.133+0.018 -0.016% in the Ks band (8σ)—a result that is in sharp contrast to the eclipse depth reported by de Mooij & Snellen. We do not detect its thermal emission in the H band, but place a 3σ limit of 0.051% on the depth of the secondary eclipse in this band. A secondary eclipse of this depth in Ks requires very efficient day-to-nightside redistribution of heat and nearly isotropic reradiation, a conclusion that is in agreement with longer wavelength, mid-infrared Spitzer observations. Our 3σ upper limit on the depth of our H-band secondary eclipse also argues for very efficient redistribution of heat and suggests that the atmospheric layer probed by these observations may be well homogenized. However, our H-band upper limit is so constraining that it suggests the possibility of a temperature inversion at depth, or an absorbing molecule, such as methane, that further depresses the emitted flux at this wavelength. The combination of our near-infrared measurements and those obtained with Spitzer suggests that TrES-3b displays a near-isothermal dayside atmospheric temperature structure, whose spectrum is well approximated by a blackbody. We emphasize that our strict H-band limit is in stark disagreement with the best-fit atmospheric model that results from longer wavelength observations only, thus highlighting the importance of near-infrared observations at multiple wavelengths, in addition to those returned by Spitzer in the mid-infrared, to facilitate a comprehensive understanding of the energy budgets of transiting exoplanets. Based on observations obtained with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada, France, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of

  19. Capability of the CALIPSO lidar observations to detect the dust source regions

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, D. G.; Kharol, Shailesh Kumar; Kambezidis, H. D.; Nastos, P. T.; Rani Sharma, Anu; Kvs, Badarinath

    Two dust events with high aerosol optical depth (AOD) values have been observed over Athens on 4 and 6-7 February 2009. These dust events were well captured by the satellite obser-vations and are investigated in the present study by means of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations, ceilometer vertical profiles and DREAM model predictions. The CALIPSO provides new insight to study the role of clouds and atmospheric aerosols in regulating Earth's weather, climate, and air quality. CALIPSO has a 98o-inclination orbit and flies at an altitude of 705 km providing daily global maps of the ver-tical distribution of aerosols and clouds. The CALIPSO satellite carries a polarization-sensitive lidar, the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), which provides profiles of backscatter coefficient at 532 and 1064 nm. The ceilometer used in the present study is a Vaisala CL31 model. It is equipped with an InGaAs MOCVD pulsed laser, emitting at 930 nm and having an energy per pulse of 1.2 J. The emission frequency is 10 kHz while the pulse duration is 100 ns. The vertical profiles of the aerosol backscatter coefficient were obtained from 5 m up to 7.5 km at 930 nm. The CL31 is installed at the Actinometric station of the National Observatory of Athens. The CALIPSO-derived total attenuated backscatter at 532 and 1064 nm is used to identify the position of dust along the overpass trajectory. A typical example of the vertical distribution of the dust plume over the study region during nighttime on 5 Febru-ary 2009 is provided. Limiting the analysis over Libya, eastern Mediterranean and Greece (24o -37o N, 15o-19o E), the dust aerosol layer exhibits a high total attenuated backscatter at 532 nm, reaching to 0.05-0.06 km-1sr-1. CALIPSO observations clearly show that the dust plume was generated over the Sahara desert at about 24oN, 15oE near the borders of Libya, Chad and Niger. After its exposure it was uplifted to

  20. Observational signatures of self-destructive civilizations

    NASA Astrophysics Data System (ADS)

    Stevens, Adam; Forgan, Duncan; James, Jack O'malley

    2016-10-01

    We address the possibility that intelligent civilizations that destroy themselves could present signatures observable by humanity. Placing limits on the number of self-destroyed civilizations in the Milky Way has strong implications for the final three terms in Drake's Equation, and would allow us to identify which classes of solution to Fermi's Paradox fit with the evidence (or lack thereof). Using the Earth as an example, we consider a variety of scenarios in which humans could extinguish their own technological civilization. Each scenario presents some form of observable signature that could be probed by astronomical campaigns to detect and characterize extrasolar planetary systems. Some observables are unlikely to be detected at interstellar distances, but some scenarios are likely to produce significant changes in atmospheric composition that could be detected serendipitously with next-generation telescopes. In some cases, the timing of the observation would prove crucial to detection, as the decay of signatures is rapid compared with humanity's communication lifetime. In others, the signatures persist on far longer timescales.

  1. Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity.

    PubMed

    Hart, James L; Lang, Andrew C; Leff, Asher C; Longo, Paolo; Trevor, Colin; Twesten, Ray D; Taheri, Mitra L

    2017-08-15

    In many cases, electron counting with direct detection sensors offers improved resolution, lower noise, and higher pixel density compared to conventional, indirect detection sensors for electron microscopy applications. Direct detection technology has previously been utilized, with great success, for imaging and diffraction, but potential advantages for spectroscopy remain unexplored. Here we compare the performance of a direct detection sensor operated in counting mode and an indirect detection sensor (scintillator/fiber-optic/CCD) for electron energy-loss spectroscopy. Clear improvements in measured detective quantum efficiency and combined energy resolution/energy field-of-view are offered by counting mode direct detection, showing promise for efficient spectrum imaging, low-dose mapping of beam-sensitive specimens, trace element analysis, and time-resolved spectroscopy. Despite the limited counting rate imposed by the readout electronics, we show that both core-loss and low-loss spectral acquisition are practical. These developments will benefit biologists, chemists, physicists, and materials scientists alike.

  2. Statistical analysis of water-quality data containing multiple detection limits: S-language software for regression on order statistics

    USGS Publications Warehouse

    Lee, L.; Helsel, D.

    2005-01-01

    Trace contaminants in water, including metals and organics, often are measured at sufficiently low concentrations to be reported only as values below the instrument detection limit. Interpretation of these "less thans" is complicated when multiple detection limits occur. Statistical methods for multiply censored, or multiple-detection limit, datasets have been developed for medical and industrial statistics, and can be employed to estimate summary statistics or model the distributions of trace-level environmental data. We describe S-language-based software tools that perform robust linear regression on order statistics (ROS). The ROS method has been evaluated as one of the most reliable procedures for developing summary statistics of multiply censored data. It is applicable to any dataset that has 0 to 80% of its values censored. These tools are a part of a software library, or add-on package, for the R environment for statistical computing. This library can be used to generate ROS models and associated summary statistics, plot modeled distributions, and predict exceedance probabilities of water-quality standards. ?? 2005 Elsevier Ltd. All rights reserved.

  3. Effect of Using 2 mm Voxels on Observer Performance for PET Lesion Detection

    NASA Astrophysics Data System (ADS)

    Morey, A. M.; Noo, Frédéric; Kadrmas, Dan J.

    2016-06-01

    Positron emission tomography (PET) images are typically reconstructed with an in-plane pixel size of approximately 4 mm for cancer imaging. The objective of this work was to evaluate the effect of using smaller pixels on general oncologic lesion-detection. A series of observer studies was performed using experimental phantom data from the Utah PET Lesion Detection Database, which modeled whole-body FDG PET cancer imaging of a 92 kg patient. The data comprised 24 scans over 4 days on a Biograph mCT time-of-flight (TOF) PET/CT scanner, with up to 23 lesions (diam. 6-16 mm) distributed throughout the phantom each day. Images were reconstructed with 2.036 mm and 4.073 mm pixels using ordered-subsets expectation-maximization (OSEM) both with and without point spread function (PSF) modeling and TOF. Detection performance was assessed using the channelized non-prewhitened numerical observer with localization receiver operating characteristic (LROC) analysis. Tumor localization performance and the area under the LROC curve were then analyzed as functions of the pixel size. In all cases, the images with 2 mm pixels provided higher detection performance than those with 4 mm pixels. The degree of improvement from the smaller pixels was larger than that offered by PSF modeling for these data, and provided roughly half the benefit of using TOF. Key results were confirmed by two human observers, who read subsets of the test data. This study suggests that a significant improvement in tumor detection performance for PET can be attained by using smaller voxel sizes than commonly used at many centers. The primary drawback is a 4-fold increase in reconstruction time and data storage requirements.

  4. Optical Observation, Image-processing, and Detection of Space Debris in Geosynchronous Earth Orbit

    NASA Astrophysics Data System (ADS)

    Oda, H.; Yanagisawa, T.; Kurosaki, H.; Tagawa, M.

    2014-09-01

    We report on optical observations and an efficient detection method of space debris in the geosynchronous Earth orbit (GEO). We operate our new Australia Remote Observatory (ARO) where an 18 cm optical telescope with a charged-coupled device (CCD) camera covering a 3.14-degree field of view is used for GEO debris survey, and analyse datasets of successive CCD images using the line detection method (Yanagisawa and Nakajima 2005). In our operation, the exposure time of each CCD image is set to be 3 seconds (or 5 seconds), and the time interval of CCD shutter open is about 4.7 seconds (or 6.7 seconds). In the line detection method, a sufficient number of sample objects are taken from each image based on their shape and intensity, which includes not only faint signals but also background noise (we take 500 sample objects from each image in this paper). Then we search a sequence of sample objects aligning in a straight line in the successive images to exclude the noise sample. We succeed in detecting faint signals (down to about 1.8 sigma of background noise) by applying the line detection method to 18 CCD images. As a result, we detected about 300 GEO objects up to magnitude of 15.5 among 5 nights data. We also calculate orbits of objects detected using the Simplified General Perturbations Satellite Orbit Model 4(SGP4), and identify the objects listed in the two-line-element (TLE) data catalogue publicly provided by the U.S. Strategic Command (USSTRATCOM). We found that a certain amount of our detections are new objects that are not contained in the catalogue. We conclude that our ARO and detection method posse a high efficiency detection of GEO objects despite the use of comparatively-inexpensive observation and analysis system. We also describe the image-processing specialized for the detection of GEO objects (not for usual astronomical objects like stars) in this paper.

  5. PKS 1954-388: RadioAstron Detection on 80,000 km Baselines and Multiwavelength Observations

    NASA Astrophysics Data System (ADS)

    Edwards, P. G.; Kovalev, Y. Y.; Ojha, R.; An, H.; Bignall, H.; Carpenter, B.; Hovatta, T.; Stevens, J.; Voytsik, P.; Andrianov, A. S.; Dutka, M.; Hase, H.; Horiuchi, S.; Jauncey, D. L.; Kadler, M.; Lisakov, M.; Lovell, J. E. J.; McCallum, J.; Müller, C.; Phillips, C.; Plötz, C.; Quick, J.; Reynolds, C.; Schulz, R.; Sokolovsky, K. V.; Tzioumis, A. K.; Zuga, V.

    2017-04-01

    We present results from a multiwavelength study of the blazar PKS 1954-388 at radio, UV, X-ray, and gamma-ray energies. A RadioAstron observation at 1.66 GHz in June 2012 resulted in the detection of interferometric fringes on baselines of 6.2 Earth-diameters. This suggests a source frame brightness temperature of greater than 2 × 1012 K, well in excess of both equipartition and inverse Compton limits and implying the existence of Doppler boosting in the core. An 8.4-GHz TANAMI VLBI image, made less than a month after the RadioAstron observations, is consistent with a previously reported superluminal motion for a jet component. Flux density monitoring with the Australia Telescope Compact Array confirms previous evidence for long-term variability that increases with observing frequency. A search for more rapid variability revealed no evidence for significant day-scale flux density variation. The ATCA light-curve reveals a strong radio flare beginning in late 2013, which peaks higher, and earlier, at higher frequencies. Comparison with the Fermi gamma-ray light-curve indicates this followed 9 months after the start of a prolonged gamma-ray high-state-a radio lag comparable to that seen in other blazars. The multiwavelength data are combined to derive a Spectral Energy Distribution, which is fitted by a one-zone synchrotron-self-Compton (SSC) model with the addition of external Compton (EC) emission.

  6. AW UMa observed with MOST satellite

    NASA Astrophysics Data System (ADS)

    Rucinski, S. M.; Matthews, J. M.; Cameron, C.; Guenther, D. B.; Kuschnig, R.; Moffat, A. F. J.; Rowe, J. F.; Sasselov, D.; Weiss, W. W.

    2013-11-01

    MOST observations were obtained to search for photometric non-radial oscillations; none was detected with an upper limit of 0.0001 in relative amplitude. A single, precise moment of the primary eclipse confirms the progressive shortening of the orbital period.

  7. Optical GRB Afterglows Detected with UVOT

    NASA Astrophysics Data System (ADS)

    Marshall, F. E.

    2008-05-01

    The automated response of the UltraViolet and Optical Telescope (UVOT) on Swift to new GRBs has several parameters, including exposure time, filter sequence and data mode, that can be adjusted to optimize the science return of early afterglow observations. After some initial changes, the response has remained stable since March 15, 2006. From then through August 10, 2007, UVOT observed 122 of the 130 GRBs detected with Swift's Burst Alert Telescope (BAT). UVOT typically takes an initial 100-s exposure with the White filter (160-650 nm) starting 60-180 s after the trigger and then takes exposures with the other 6 filters. In its first finding chart exposure UVOT detected 39% of the 84 long (T90>2.0 s) GRBs that were not heavily reddened in the Milky Way (EB-V<0.5) and were observed within 500 seconds of the trigger. Another 4% were detected after including subsequent exposures. Afterglow magnitudes ranged from 12.8 to the sensitivity limit of ~21. Only 1 of 11 short GRBs were detected, and its magnitude was near the sensitivity limit. We also report correlations of afterglow magnitudes with other GRB properties.

  8. Resolution Limits of Nanoimprinted Patterns by Fluorescence Microscopy

    NASA Astrophysics Data System (ADS)

    Kubo, Shoichi; Tomioka, Tatsuya; Nakagawa, Masaru

    2013-06-01

    The authors investigated optical resolution limits to identify minimum distances between convex lines of fluorescent dye-doped nanoimprinted resist patterns by fluorescence microscopy. Fluorescent ultraviolet (UV)-curable resin and thermoplastic resin films were transformed into line-and-space patterns by UV nanoimprinting and thermal nanoimprinting, respectively. Fluorescence immersion observation needed an immersion medium immiscible to the resist films, and an ionic liquid of triisobutyl methylphosphonium tosylate was appropriate for soluble thermoplastic polystyrene patterns. Observation with various numerical aperture (NA) values and two detection wavelength ranges showed that the resolution limits were smaller than the values estimated by the Sparrow criterion. The space width to identify line patterns became narrower as the line width increased. The space width of 100 nm was demonstrated to be sufficient to resolve 300-nm-wide lines in the detection wavelength range of 575-625 nm using an objective lens of NA= 1.40.

  9. Detection of Stimulus Displacements Across Saccades is Capacity-Limited and Biased in Favor of the Saccade Target

    PubMed Central

    Irwin, David E.; Robinson, Maria M.

    2015-01-01

    Retinal image displacements caused by saccadic eye movements are generally unnoticed. Recent theories have proposed that perceptual stability across saccades depends on a local evaluation process centered on the saccade target object rather than on remapping and evaluating the positions of all objects in a display. In three experiments, we examined whether objects other than the saccade target also influence perceptual stability by measuring displacement detection thresholds across saccades for saccade targets and a variable number of non-saccade objects. We found that the positions of multiple objects are maintained across saccades, but with variable precision, with the saccade target object having priority in the perception of displacement, most likely because it is the focus of attention before the saccade and resides near the fovea after the saccade. The perception of displacement of objects that are not the saccade target is affected by acuity limitations, attentional limitations, and limitations on memory capacity. Unlike previous studies that have found that a postsaccadic blank improves the detection of displacement direction across saccades, we found that postsaccadic blanking hurt the detection of displacement per se by increasing false alarms. Overall, our results are consistent with the hypothesis that visual working memory underlies the perception of stability across saccades. PMID:26640430

  10. Reflectance measurements for the detection and mapping of soil limitations

    NASA Technical Reports Server (NTRS)

    Benson, L. A.; Frazee, C. J.

    1973-01-01

    During 1971 and 1972 research was conducted on two fallow fields in the proposed Oahe Irrigation Project to investigate the relationship between the tonal variations observed on aerial photographs and the principal soil limitations of the area. A grid sampling procedure was used to collected detailed field data during the 1972 growing season. The field data was compared to imagery collected on May 14, 1971 at 3050 meters altitude. The imagery and field data were initially evaluated by a visual analysis. Correlation and regression analysis revealed a highly significant correlation and regression analysis revealed a highly significant correlation between the digitized color infrared film data and soil properties such as organic matter content, color, depth to carbonates, bulk density and reflectivity. Computer classification of the multiemulsion film data resulted in maps delineating the areas containing claypan and erosion limitations. Reflectance data from the red spectral band provided the best results.

  11. An accurate and inexpensive color-based assay for detecting severe anemia in a limited-resource setting

    PubMed Central

    McGann, Patrick T.; Tyburski, Erika A.; de Oliveira, Vysolela; Santos, Brigida; Ware, Russell E.; Lam, Wilbur A.

    2016-01-01

    Severe anemia is an important cause of morbidity and mortality among children in resource-poor settings, but laboratory diagnostics are often limited in these locations. To address this need, we developed a simple, inexpensive, and color-based point-of-care (POC) assay to detect severe anemia. The purpose of this study was to evaluate the accuracy of this novel POC assay to detect moderate and severe anemia in a limited-resource setting. The study was a cross-sectional study conducted on children with sickle cell anemia in Luanda, Angola. The hemoglobin concentrations obtained by the POC assay were compared to reference values measured by a calibrated automated hematology analyzer. A total of 86 samples were analyzed (mean hemoglobin concentration 6.6 g/dL). There was a strong correlation between the hemoglobin concentrations obtained by the POC assay and reference values obtained from an automated hematology analyzer (r=0.88, P<0.0001). The POC assay demonstrated excellent reproducibility (r=0.93, P<0.0001) and the reagents appeared to be durable in a tropical setting (r=0.93, P<0.0001). For the detection of severe anemia that may require blood transfusion (hemoglobin <5 g/dL), the POC assay had sensitivity of 88.9% and specificity of 98.7%. These data demonstrate that an inexpensive (<$0.25 USD) POC assay accurately estimates low hemoglobin concentrations and has the potential to become a transformational diagnostic tool for severe anemia in limited-resource settings. PMID:26317494

  12. Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach

    PubMed Central

    Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Åslund, Magnus

    2012-01-01

    Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption

  13. Robust Observation Detection for Single Object Tracking: Deterministic and Probabilistic Patch-Based Approaches

    PubMed Central

    Zulkifley, Mohd Asyraf; Rawlinson, David; Moran, Bill

    2012-01-01

    In video analytics, robust observation detection is very important as the content of the videos varies a lot, especially for tracking implementation. Contrary to the image processing field, the problems of blurring, moderate deformation, low illumination surroundings, illumination change and homogenous texture are normally encountered in video analytics. Patch-Based Observation Detection (PBOD) is developed to improve detection robustness to complex scenes by fusing both feature- and template-based recognition methods. While we believe that feature-based detectors are more distinctive, however, for finding the matching between the frames are best achieved by a collection of points as in template-based detectors. Two methods of PBOD—the deterministic and probabilistic approaches—have been tested to find the best mode of detection. Both algorithms start by building comparison vectors at each detected points of interest. The vectors are matched to build candidate patches based on their respective coordination. For the deterministic method, patch matching is done in 2-level test where threshold-based position and size smoothing are applied to the patch with the highest correlation value. For the second approach, patch matching is done probabilistically by modelling the histograms of the patches by Poisson distributions for both RGB and HSV colour models. Then, maximum likelihood is applied for position smoothing while a Bayesian approach is applied for size smoothing. The result showed that probabilistic PBOD outperforms the deterministic approach with average distance error of 10.03% compared with 21.03%. This algorithm is best implemented as a complement to other simpler detection methods due to heavy processing requirement. PMID:23202226

  14. Detection of Yarkovsky acceleration in the context of precovery observations and the future Gaia catalogue

    NASA Astrophysics Data System (ADS)

    Desmars, J.

    2015-03-01

    Context. The Yarkovsky effect is a weak non-gravitational force leading to a small variation of the semi-major axis of an asteroid. Using radar measurements and astrometric observations, it is possible to measure a drift in semi-major axis through orbit determination. Aims: This paper aims to detect a reliable drift in semi-major axis of near-Earth asteroids (NEAs) from ground-based observations and to investigate the impact of precovery observations and the future Gaia catalogue in the detection of a secular drift in semi-major axis. Methods: We have developed a precise dynamical model of an asteroid's motion taking the Yarkovsky acceleration into account and allowing the fitting of the drift in semi-major axis. Using statistical methods, we investigate the quality and the robustness of the detection. Results: By filtering spurious detections with an estimated maximum drift depending on the asteroid's size, we found 46 NEAs with a reliable drift in semi-major axis in good agreement with the previous studies. The measure of the drift leads to a better orbit determination and constrains some physical parameters of these objects. Our results are in good agreement with the 1 /D dependence of the drift and with the expected ratio of prograde and retrograde NEAs. We show that the uncertainty of the drift mainly depends on the length of orbital arc and in this way we highlight the importance of the precovery observations and data mining in the detection of consistent drift. Finally, we discuss the impact of Gaia catalogue in the determination of drift in semi-major axis.

  15. Prioritizing Arctic Observations with Limited Resources

    NASA Astrophysics Data System (ADS)

    Kelly, B.; Starkweather, S.

    2012-12-01

    U.S. Federal agencies recently completed a five-year research plan for the Arctic including plans to enhance efforts toward an Arctic Observing Network (AON). Following on numerous national and international planning efforts, the five-year plan identifies nine priority areas including enhancing observing system design, assessing priorities of local residents, and improving data access. AON progress to date has been realized through bottom-up funding decisions and some top-down design optimization approaches, which have resulted in valuable yet ad hoc progress towards Arctic research imperatives. We suggest that advancing AON beyond theoretical design and ad hoc efforts with the engagement of multiple U.S. Federal agencies will require a structured, input-based planning approach to prioritization that recognizes budget realities. Completing a long list of worthy observing efforts appears to be unsustainable and inadequate in responding to the rapid changes taking place in the Arctic. Society would be better served by more rapid implementation of sustained, long-term observations focused on those climate feedbacks with the greatest potential negative impacts. Several emerging theoretical frameworks have pointed to the need to enhance iterative, capacity-building dialog between observationalists, modelers, and stakeholders as a way to identify these broadest potential benefits. We concur and suggest that those dialogs need to be facilitated and sustained over long periods. Efforts to isolate observational programs from process research are, we believe, impeding progress. At the same time, we note that bottom-up funding decisions, while useful for prioritizing process research, are less appropriate to building observing systems.

  16. Learning the ideal observer for SKE detection tasks by use of convolutional neural networks (Cum Laude Poster Award)

    NASA Astrophysics Data System (ADS)

    Zhou, Weimin; Anastasio, Mark A.

    2018-03-01

    It has been advocated that task-based measures of image quality (IQ) should be employed to evaluate and optimize imaging systems. Task-based measures of IQ quantify the performance of an observer on a medically relevant task. The Bayesian Ideal Observer (IO), which employs complete statistical information of the object and noise, achieves the upper limit of the performance for a binary signal classification task. However, computing the IO performance is generally analytically intractable and can be computationally burdensome when Markov-chain Monte Carlo (MCMC) techniques are employed. In this paper, supervised learning with convolutional neural networks (CNNs) is employed to approximate the IO test statistics for a signal-known-exactly and background-known-exactly (SKE/BKE) binary detection task. The receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) are compared to those produced by the analytically computed IO. The advantages of the proposed supervised learning approach for approximating the IO are demonstrated.

  17. Unmodeled observation error induces bias when inferring patterns and dynamics of species occurrence via aural detections

    USGS Publications Warehouse

    McClintock, Brett T.; Bailey, Larissa L.; Pollock, Kenneth H.; Simons, Theodore R.

    2010-01-01

    The recent surge in the development and application of species occurrence models has been associated with an acknowledgment among ecologists that species are detected imperfectly due to observation error. Standard models now allow unbiased estimation of occupancy probability when false negative detections occur, but this is conditional on no false positive detections and sufficient incorporation of explanatory variables for the false negative detection process. These assumptions are likely reasonable in many circumstances, but there is mounting evidence that false positive errors and detection probability heterogeneity may be much more prevalent in studies relying on auditory cues for species detection (e.g., songbird or calling amphibian surveys). We used field survey data from a simulated calling anuran system of known occupancy state to investigate the biases induced by these errors in dynamic models of species occurrence. Despite the participation of expert observers in simplified field conditions, both false positive errors and site detection probability heterogeneity were extensive for most species in the survey. We found that even low levels of false positive errors, constituting as little as 1% of all detections, can cause severe overestimation of site occupancy, colonization, and local extinction probabilities. Further, unmodeled detection probability heterogeneity induced substantial underestimation of occupancy and overestimation of colonization and local extinction probabilities. Completely spurious relationships between species occurrence and explanatory variables were also found. Such misleading inferences would likely have deleterious implications for conservation and management programs. We contend that all forms of observation error, including false positive errors and heterogeneous detection probabilities, must be incorporated into the estimation framework to facilitate reliable inferences about occupancy and its associated vital rate parameters.

  18. Observation chart design features affect the detection of patient deterioration: a systematic experimental evaluation.

    PubMed

    Christofidis, Melany J; Hill, Andrew; Horswill, Mark S; Watson, Marcus O

    2016-01-01

    To systematically evaluate the impact of several design features on chart-users' detection of patient deterioration on observation charts with early-warning scoring-systems. Research has shown that observation chart design affects the speed and accuracy with which abnormal observations are detected. However, little is known about the contribution of individual design features to these effects. A 2 × 2 × 2 × 2 mixed factorial design, with data-recording format (drawn dots vs. written numbers), scoring-system integration (integrated colour-based system vs. non-integrated tabular system) and scoring-row placement (grouped vs. separate) varied within-participants and scores (present vs. absent) varied between-participants by random assignment. 205 novice chart-users, tested between March 2011-March 2014, completed 64 trials where they saw real patient data presented on an observation chart. Each participant saw eight cases (four containing abnormal observations) on each of eight designs (which represented a factorial combination of the within-participants variables). On each trial, they assessed whether any of the observations were physiologically abnormal, or whether all observations were normal. Response times and error rates were recorded for each design. Participants responded faster (scores present and absent) and made fewer errors (scores absent) using drawn-dot (vs. written-number) observations and an integrated colour-based (vs. non-integrated tabular) scoring-system. Participants responded faster using grouped (vs. separate) scoring-rows when scores were absent, but separate scoring-rows when scores were present. Our findings suggest that several individual design features can affect novice chart-users' ability to detect patient deterioration. More broadly, the study further demonstrates the need to evaluate chart designs empirically. © 2015 John Wiley & Sons Ltd.

  19. TU-FG-209-11: Validation of a Channelized Hotelling Observer to Optimize Chest Radiography Image Processing for Nodule Detection: A Human Observer Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, A; Little, K; Chung, J

    Purpose: To validate the use of a Channelized Hotelling Observer (CHO) model for guiding image processing parameter selection and enable improved nodule detection in digital chest radiography. Methods: In a previous study, an anthropomorphic chest phantom was imaged with and without PMMA simulated nodules using a GE Discovery XR656 digital radiography system. The impact of image processing parameters was then explored using a CHO with 10 Laguerre-Gauss channels. In this work, we validate the CHO’s trend in nodule detectability as a function of two processing parameters by conducting a signal-known-exactly, multi-reader-multi-case (MRMC) ROC observer study. Five naive readers scored confidencemore » of nodule visualization in 384 images with 50% nodule prevalence. The image backgrounds were regions-of-interest extracted from 6 normal patient scans, and the digitally inserted simulated nodules were obtained from phantom data in previous work. Each patient image was processed with both a near-optimal and a worst-case parameter combination, as determined by the CHO for nodule detection. The same 192 ROIs were used for each image processing method, with 32 randomly selected lung ROIs per patient image. Finally, the MRMC data was analyzed using the freely available iMRMC software of Gallas et al. Results: The image processing parameters which were optimized for the CHO led to a statistically significant improvement (p=0.049) in human observer AUC from 0.78 to 0.86, relative to the image processing implementation which produced the lowest CHO performance. Conclusion: Differences in user-selectable image processing methods on a commercially available digital radiography system were shown to have a marked impact on performance of human observers in the task of lung nodule detection. Further, the effect of processing on humans was similar to the effect on CHO performance. Future work will expand this study to include a wider range of detection/classification tasks and

  20. Enhancement of laser-induced breakdown spectroscopy (LIBS) Detection limit using a low-pressure and short-pulse laser-induced plasma process.

    PubMed

    Wang, Zhen Zhen; Deguchi, Yoshihiro; Kuwahara, Masakazu; Yan, Jun Jie; Liu, Ji Ping

    2013-11-01

    Laser-induced breakdown spectroscopy (LIBS) technology is an appealing technique compared with many other types of elemental analysis because of the fast response, high sensitivity, real-time, and noncontact features. One of the challenging targets of LIBS is the enhancement of the detection limit. In this study, the detection limit of gas-phase LIBS analysis has been improved by controlling the pressure and laser pulse width. In order to verify this method, low-pressure gas plasma was induced using nanosecond and picosecond lasers. The method was applied to the detection of Hg. The emission intensity ratio of the Hg atom to NO (IHg/INO) was analyzed to evaluate the LIBS detection limit because the NO emission (interference signal) was formed during the plasma generation and cooling process of N2 and O2 in the air. It was demonstrated that the enhancement of IHg/INO arose by decreasing the pressure to a few kilopascals, and the IHg/INO of the picosecond breakdown was always much higher than that of the nanosecond breakdown at low buffer gas pressure. Enhancement of IHg/INO increased more than 10 times at 700 Pa using picosecond laser with 35 ps pulse width. The detection limit was enhanced to 0.03 ppm (parts per million). We also saw that the spectra from the center and edge parts of plasma showed different features. Comparing the central spectra with the edge spectra, IHg/INO of the edge spectra was higher than that of the central spectra using the picosecond laser breakdown process.

  1. Fault detection for discrete-time LPV systems using interval observers

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Hui; Yang, Guang-Hong

    2017-10-01

    This paper is concerned with the fault detection (FD) problem for discrete-time linear parameter-varying systems subject to bounded disturbances. A parameter-dependent FD interval observer is designed based on parameter-dependent Lyapunov and slack matrices. The design method is presented by translating the parameter-dependent linear matrix inequalities (LMIs) into finite ones. In contrast to the existing results based on parameter-independent and diagonal Lyapunov matrices, the derived disturbance attenuation, fault sensitivity and nonnegative conditions lead to less conservative LMI characterisations. Furthermore, without the need to design the residual evaluation functions and thresholds, the residual intervals generated by the interval observers are used directly for FD decision. Finally, simulation results are presented for showing the effectiveness and superiority of the proposed method.

  2. A Shadowing Problem in the Detection of Overlapping Communities: Lifting the Resolution Limit through a Cascading Procedure

    PubMed Central

    Young, Jean-Gabriel; Allard, Antoine; Hébert-Dufresne, Laurent; Dubé, Louis J.

    2015-01-01

    Community detection is the process of assigning nodes and links in significant communities (e.g. clusters, function modules) and its development has led to a better understanding of complex networks. When applied to sizable networks, we argue that most detection algorithms correctly identify prominent communities, but fail to do so across multiple scales. As a result, a significant fraction of the network is left uncharted. We show that this problem stems from larger or denser communities overshadowing smaller or sparser ones, and that this effect accounts for most of the undetected communities and unassigned links. We propose a generic cascading approach to community detection that circumvents the problem. Using real and artificial network datasets with three widely used community detection algorithms, we show how a simple cascading procedure allows for the detection of the missing communities. This work highlights a new detection limit of community structure, and we hope that our approach can inspire better community detection algorithms. PMID:26461919

  3. Detection of radioactive particles offshore by γ-ray spectrometry Part I: Monte Carlo assessment of detection depth limits

    NASA Astrophysics Data System (ADS)

    Maučec, M.; de Meijer, R. J.; Rigollet, C.; Hendriks, P. H. G. M.; Jones, D. G.

    2004-06-01

    A joint research project between the British Geological Survey and Nuclear Geophysics Division of the Kernfysisch Versneller Instituut, Groningen, the Netherlands, was commissioned by the United Kingdom Atomic Energy Authority to establish the efficiency of a towed seabed γ-ray spectrometer for the detection of 137Cs-containing radioactive particles offshore Dounreay, Scotland. Using the MCNP code, a comprehensive Monte Carlo feasibility study was carried out to model various combinations of geological matrices, particle burial depth and lateral displacement, source activity and detector material. To validate the sampling and absolute normalisation procedures of MCNP for geometries including multiple (natural and induced) heterogeneous sources in environmental monitoring, a benchmark experiment was conducted. The study demonstrates the ability of seabed γ-ray spectrometry to locate radioactive particles offshore and to distinguish between γ count rate increases due to particles from those due to enhanced natural radioactivity. The information presented in this study will be beneficial for estimation of the inventory of 137Cs particles and their activity distribution and for the recovery of particles from the sea floor. In this paper, the Monte Carlo assessment of the detection limits is presented. The estimation of the required towing speed and acquisition times and their application to radioactive particle detection and discrimination offshore formed a supplementary part of this study.

  4. A novel dNTP-limited PCR and HRM assay to detect Williams-Beuren syndrome.

    PubMed

    Zhang, Lichen; Zhang, Xiaoqing; You, Guoling; Yu, Yongguo; Fu, Qihua

    2018-06-01

    Williams-Beuren syndrome (WBS) is caused by a microdeletion of chromosome arm 7q11.23. A rapid and inexpensive genotyping method to detect microdeletion on 7q11.23 needs to be developed for the diagnosis of WBS. This study describes the development of a new type of molecular diagnosis method to detect microdeletion on 7q11.23 based upon high-resolution melting (HRM). Four genes on 7q11.23 were selected as the target genes for the deletion genotyping. dNTP-limited duplex PCR was used to amplify the reference gene, CFTR, and one of the four genes respectively on 7q11.23. An HRM assay was performed on the PCR products, and the height ratio of the negative derivative peaks between the target gene and reference gene was employed to analyze the copy number variation of the target region. A new genotyping method for detecting 7q11.23 deletion was developed based upon dNTP-limited PCR and HRM, which cost only 96 min. Samples from 15 WBS patients and 12 healthy individuals were genotyped by this method in a blinded fashion, and the sensitivity and specificity was 100% (95% CI, 0.80-1, and 95% CI, 0.75-1, respectively) which was proved by CytoScan HD array. The HRM assay we developed is an rapid, inexpensive, and highly accurate method for genotyping 7q11.23 deletion. It is potentially useful in the clinical diagnosis of WBS. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Investigation of detection limits for solutes in water measured by laser raman spectrometry

    USGS Publications Warehouse

    Goldberg, M.C.

    1977-01-01

    The influence of experimental parameters on detection sensitivity was determined for laser Raman analysis of dissolved solutes in water. Individual solutions of nitrate, sulfate, carbonate, bicarbonate, monohydrogen phosphate, dihydrogen phosphate, acetate ion, and acetic acid were measured. An equation is derived which expresses the signal-to-noise ratio in terms of solute concentration, measurement time, spectral slit width, laser power fluctuations, and solvent background intensity. Laser beam intensity fluctuations at the sample and solvent background intensity are the most important limiting factors.

  6. Correlation between model observers in uniform background and human observers in patient liver background for a low-contrast detection task in CT

    NASA Astrophysics Data System (ADS)

    Gong, Hao; Yu, Lifeng; Leng, Shuai; Dilger, Samantha; Zhou, Wei; Ren, Liqiang; McCollough, Cynthia H.

    2018-03-01

    Channelized Hotelling observer (CHO) has demonstrated strong correlation with human observer (HO) in both single-slice viewing mode and multi-slice viewing mode in low-contrast detection tasks with uniform background. However, it remains unknown if the simplest single-slice CHO in uniform background can be used to predict human observer performance in more realistic tasks that involve patient anatomical background and multi-slice viewing mode. In this study, we aim to investigate the correlation between CHO in a uniform water background and human observer performance at a multi-slice viewing mode on patient liver background for a low-contrast lesion detection task. The human observer study was performed on CT images from 7 abdominal CT exams. A noise insertion tool was employed to synthesize CT scans at two additional dose levels. A validated lesion insertion tool was used to numerically insert metastatic liver lesions of various sizes and contrasts into both phantom and patient images. We selected 12 conditions out of 72 possible experimental conditions to evaluate the correlation at various radiation doses, lesion sizes, lesion contrasts and reconstruction algorithms. CHO with both single and multi-slice viewing modes were strongly correlated with HO. The corresponding Pearson's correlation coefficient was 0.982 (with 95% confidence interval (CI) [0.936, 0.995]) and 0.989 (with 95% CI of [0.960, 0.997]) in multi-slice and single-slice viewing modes, respectively. Therefore, this study demonstrated the potential to use the simplest single-slice CHO to assess image quality for more realistic clinically relevant CT detection tasks.

  7. Detecting influential observations in nonlinear regression modeling of groundwater flow

    USGS Publications Warehouse

    Yager, Richard M.

    1998-01-01

    Nonlinear regression is used to estimate optimal parameter values in models of groundwater flow to ensure that differences between predicted and observed heads and flows do not result from nonoptimal parameter values. Parameter estimates can be affected, however, by observations that disproportionately influence the regression, such as outliers that exert undue leverage on the objective function. Certain statistics developed for linear regression can be used to detect influential observations in nonlinear regression if the models are approximately linear. This paper discusses the application of Cook's D, which measures the effect of omitting a single observation on a set of estimated parameter values, and the statistical parameter DFBETAS, which quantifies the influence of an observation on each parameter. The influence statistics were used to (1) identify the influential observations in the calibration of a three-dimensional, groundwater flow model of a fractured-rock aquifer through nonlinear regression, and (2) quantify the effect of omitting influential observations on the set of estimated parameter values. Comparison of the spatial distribution of Cook's D with plots of model sensitivity shows that influential observations correspond to areas where the model heads are most sensitive to certain parameters, and where predicted groundwater flow rates are largest. Five of the six discharge observations were identified as influential, indicating that reliable measurements of groundwater flow rates are valuable data in model calibration. DFBETAS are computed and examined for an alternative model of the aquifer system to identify a parameterization error in the model design that resulted in overestimation of the effect of anisotropy on horizontal hydraulic conductivity.

  8. Detecting potential anomalies in projections of rainfall trends and patterns using human observations

    NASA Astrophysics Data System (ADS)

    Kohfeld, K. E.; Savo, V.; Sillmann, J.; Morton, C.; Lepofsky, D.

    2016-12-01

    Shifting precipitation patterns are a well-documented consequence of climate change, but their spatial variability is particularly difficult to assess. While the accuracy of global models has increased, specific regional changes in precipitation regimes are not well captured by these models. Typically, researchers who wish to detect trends and patterns in climatic variables, such as precipitation, use instrumental observations. In our study, we combined observations of rainfall by subsistence-oriented communities with several metrics of rainfall estimated from global instrumental records for comparable time periods (1955 - 2005). This comparison was aimed at identifying: 1) which rainfall metrics best match human observations of changes in precipitation; 2) areas where local communities observe changes not detected by global models. The collated observations ( 3800) made by subsistence-oriented communities covered 129 countries ( 1830 localities). For comparable time periods, we saw a substantial correspondence between instrumental records and human observations (66-77%) at the same locations, regardless of whether we considered trends in general rainfall, drought, or extreme rainfall. We observed a clustering of mismatches in two specific regions, possibly indicating some climatic phenomena not completely captured by the currently available global models. Many human observations also indicated an increased unpredictability in the start, end, duration, and continuity of the rainy seasons, all of which may hamper the performance of subsistence activities. We suggest that future instrumental metrics should capture this unpredictability of rainfall. This information would be important for thousands of subsistence-oriented communities in planning, coping, and adapting to climate change.

  9. PKS 1954–388: RadioAstron detection on 80,000 km baselines and multiwavelength observations

    DOE PAGES

    Edwards, P. G.; Kovalev, Y. Y.; Ojha, R.; ...

    2017-04-26

    Here, we present results from a multiwavelength study of the blazar PKS 1954–388 at radio, UV, X-ray, and gamma-ray energies. A RadioAstron observation at 1.66 GHz in June 2012 resulted in the detection of interferometric fringes on baselines of 6.2 Earth-diameters. This suggests a source frame brightness temperature of greater than 2 × 10 12 K, well in excess of both equipartition and inverse Compton limits and implying the existence of Doppler boosting in the core. An 8.4-GHz TANAMI VLBI image, made less than a month after the RadioAstron observations, is consistent with a previously reported superluminal motion for amore » jet component. Flux density monitoring with the Australia Telescope Compact Array confirms previous evidence for long-term variability that increases with observing frequency. A search for more rapid variability revealed no evidence for significant day-scale flux density variation. The ATCA light-curve reveals a strong radio flare beginning in late 2013, which peaks higher, and earlier, at higher frequencies. Comparison with the Fermi gamma-ray light-curve indicates this followed ~ 9 months after the start of a prolonged gamma-ray high-state—a radio lag comparable to that seen in other blazars. The multiwavelength data are combined to derive a Spectral Energy Distribution, which is fitted by a one-zone synchrotron-self-Compton (SSC) model with the addition of external Compton (EC) emission.« less

  10. Observation of millimeter-wave oscillations from resonant tunneling diodes and some theoretical considerations of ultimate frequency limits

    NASA Technical Reports Server (NTRS)

    Sollner, T. C. L. G.; Brown, E. R.; Goodhue, W. D.; Le, H. Q.

    1987-01-01

    Recent observations of oscillation frequencies up to 56 GHz in resonant tunneling structures are discussed in relation to calculations by several authors of the ultimate frequency limits of these devices. It is found that calculations relying on the Wentzel-Kramers-Brillouin (WKB) approximation give limits well below the observed oscillation frequencies. Two other techniques for calculating the upper frequency limit were found to give more reasonable results. One method employs the solution of the time-dependent Schroedinger equation obtained by Kundrotas and Dargys (1986); the other uses the energy width of the transmission function for electrons through the double-barrier structure. This last technique is believed to be the most accurate since it is based on general results for the lifetime of any resonant state. It gives frequency limits on the order of 1 THz for two recently fabricated structures. It appears that the primary limitation of the oscillation frequency for double-barrier resonant-tunneling diodes is imposed by intrinsic device circuit parameters and by the transit time of the depletion layer rather than by time delays encountered in the double-barrier region.

  11. STEREO SECCHI Observations of Space Debris: Are They Associated with S/WAVES Dust Detections?

    NASA Astrophysics Data System (ADS)

    St. Cyr, O. C.; Howard, R. A.; Wang, D.; Thompson, W. T.; Harrison, R. A.; Kaiser, M. L.

    2007-12-01

    White-light coronagraphs are optimized to reject stray light in order to accomplish their primary science objective - - the observation of coronal mass ejections (CMEs) and the corona. Because they were designed to detect these faint signals while pointing at the Sun, many spacebased coronagraphs in the past (Skylab, SMM, SOHO) have detected "debris" apparently associated with the vehicle. These appear to be sunlit particles very near the front of the telescope aperture (~meters). In at least one case, these earlier debris sightings were interpreted as deteriorating insulation from the thermal blankets on the spacecraft (St. Cyr and Warner, 1991ASPC...17..126S); and for the earlier Sklyab observations, the sightings were believed to be associated with water droplets (Eddy, "A New Sun: The Solar Results from Skylab", NASA SP-402, p119, 1979.) The STEREO SECCHI suite of white-light coronagraphs represents the most recent instantations of these specialized instruments, and for the first time we are able to track CMEs from their initiation at the Sun out to 1 A.U. Since observations commenced, the SECCHI white-light telescopes have been sporadically detecting debris particles. Most of the detections are individual or small numbers of bright objects in the field which therefore do not affect the primary science goals of the mission. But on several occasions in the eight months' of observation there have been "swarms" of these bright objects which completely obscure the field of view of one or more instrument for a brief period of time. Here we report on the intriguing possibility that the SECCHI debris sightings represent particles of thermal insulation, ejected from the spacecraft by interplanetary dust impacts. Because of the large field of view and high duty cycle of the Heliospheric Imagers on STEREO, we may be able to demonstrate that some of these have also been detected by STEREO S/WAVES as sporadic plasma emissions.

  12. Detection of Landmines by Neutron Backscattering: Effects of Soil Moisture on the Detection System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baysoy, D. Y.; Subasi, M.

    2010-01-21

    Detection of buried land mines by using neutron backscattering technique (NBS) is a well established method. It depends on detecting a hydrogen anomaly in dry soil. Since a landmine and its plastic casing contain much more hydrogen atoms than the dry soil, this anomaly can be detected by observing a rise in the number of neutrons moderated to thermal or epithermal energy. But, the presence of moisture in the soil limits the effectiveness of the measurements. In this work, a landmine detection system using the NBS technique was designed. A series of Monte Carlo calculations was carried out to determinemore » the limits of the system due to the moisture content of the soil. In the simulations, an isotropic fast neutron source ({sup 252}Cf, 100 mug) and a neutron detection system which consists of five {sup 3}He detectors were used in a practicable geometry. In order to see the effects of soil moisture on the efficiency of the detection system, soils with different water contents were tested.« less

  13. Compact binary merger rates: Comparison with LIGO/Virgo upper limits

    DOE PAGES

    Belczynski, Krzysztof; Repetto, Serena; Holz, Daniel E.; ...

    2016-03-03

    Here, we compare evolutionary predictions of double compact object merger rate densities with initial and forthcoming LIGO/Virgo upper limits. We find that: (i) Due to the cosmological reach of advanced detectors, current conversion methods of population synthesis predictions into merger rate densities are insufficient. (ii) Our optimistic models are a factor of 18 below the initial LIGO/Virgo upper limits for BH–BH systems, indicating that a modest increase in observational sensitivity (by a factor of ~2.5) may bring the first detections or first gravitational wave constraints on binary evolution. (iii) Stellar-origin massive BH–BH mergers should dominate event rates in advanced LIGO/Virgo and can be detected out to redshift z sime 2 with templates including inspiral, merger, and ringdown. Normal stars (more » $$\\lt 150\\;{M}_{\\odot }$$) can produce such mergers with total redshifted mass up to $${M}_{{\\rm{tot,z}}}\\simeq 400\\;{M}_{\\odot }$$. (iv) High black hole (BH) natal kicks can severely limit the formation of massive BH–BH systems (both in isolated binary and in dynamical dense cluster evolution), and thus would eliminate detection of these systems even at full advanced LIGO/Virgo sensitivity. We find that low and high BH natal kicks are allowed by current observational electromagnetic constraints. (v) The majority of our models yield detections of all types of mergers (NS–NS, BH–NS, BH–BH) with advanced detectors. Numerous massive BH–BH merger detections will indicate small (if any) natal kicks for massive BHs.« less

  14. Comparison of detection limits in environmental analysis--is it possible? An approach on quality assurance in the lower working range by verification.

    PubMed

    Geiss, S; Einax, J W

    2001-07-01

    Detection limit, reporting limit and limit of quantitation are analytical parameters which describe the power of analytical methods. These parameters are used for internal quality assurance and externally for competing, especially in the case of trace analysis in environmental compartments. The wide variety of possibilities for computing or obtaining these measures in literature and in legislative rules makes any comparison difficult. Additionally, a host of terms have been used within the analytical community to describe detection and quantitation capabilities. Without trying to create an order for the variety of terms, this paper is aimed at providing a practical proposal for answering the main questions for the analysts concerning quality measures above. These main questions and related parameters were explained and graphically demonstrated. Estimation and verification of these parameters are the two steps to get real measures. A rule for a practical verification is given in a table, where the analyst can read out what to measure, what to estimate and which criteria have to be fulfilled. In this manner verified parameters detection limit, reporting limit and limit of quantitation now are comparable and the analyst himself is responsible to the unambiguity and reliability of these measures.

  15. Improved detection limits for electrospray ionization on a magnetic sector mass spectrometer by using an array detector.

    PubMed

    Cody, R B; Tamura, J; Finch, J W; Musselman, B D

    1994-03-01

    Array detection was compared with point detection for solutions of hen egg-white lysozyme, equine myoglobin, and ubiquitin analyzed by electrospray ionization with a magnetic sector mass spectrometer. The detection limits for samples analyzed by using the array detector system were at least 10 times lower than could be achieved by using a point detector on the same mass spectrometer. The minimum detectable quantity of protein corresponded to a signal-to-background ratio of approximately 2∶1 for a 500 amol/μL solution of hen egg-white lysozyme. However, the ultimate practical sample concentrations appeared to be in the 10-100 fmol/μL range for the analysis of dilute solutions of relatively pure proteins or simple mixtures.

  16. Long-term implications of observing an expanding cosmological civilization

    NASA Astrophysics Data System (ADS)

    Olson, S. Jay

    2018-01-01

    Suppose that advanced civilizations, separated by a cosmological distance and time, wish to maximize their access to cosmic resources by rapidly expanding into the universe. How does the presence of one limit the expansionistic ambitions of another, and what sort of boundary forms between their expanding domains? We describe a general scenario for any expansion speed, separation distance and time. We then specialize to a question of particular interest: What are the future prospects for a young and ambitious civilization if they can observe the presence of another at a cosmological distance? We treat cases involving the observation of one or two expanding domains. In the single-observation case, we find that almost any plausible detection will limit one's future cosmic expansion to some extent. Also, practical technological limits to expansion speed (well below the speed of light) play an interesting role. If a domain is visible at the time one embarks on cosmic expansion, higher practical limits to expansion speed are beneficial only up to a certain point. Beyond this point, a higher speed limit means that gains in the ability to expand are more than offset by the first-mover advantage of the observed domain. In the case of two visible domains, it is possible to be `trapped' by them if the practical speed limit is high enough and their angular separation in the sky is large enough, i.e. one's expansion in any direction will terminate at a boundary with the two visible civilizations. Detection at an extreme cosmological distance has surprisingly little mitigating effect on our conclusions.

  17. Experimental investigation of observation error in anuran call surveys

    USGS Publications Warehouse

    McClintock, B.T.; Bailey, L.L.; Pollock, K.H.; Simons, T.R.

    2010-01-01

    Occupancy models that account for imperfect detection are often used to monitor anuran and songbird species occurrence. However, presenceabsence data arising from auditory detections may be more prone to observation error (e.g., false-positive detections) than are sampling approaches utilizing physical captures or sightings of individuals. We conducted realistic, replicated field experiments using a remote broadcasting system to simulate simple anuran call surveys and to investigate potential factors affecting observation error in these studies. Distance, time, ambient noise, and observer abilities were the most important factors explaining false-negative detections. Distance and observer ability were the best overall predictors of false-positive errors, but ambient noise and competing species also affected error rates for some species. False-positive errors made up 5 of all positive detections, with individual observers exhibiting false-positive rates between 0.5 and 14. Previous research suggests false-positive errors of these magnitudes would induce substantial positive biases in standard estimators of species occurrence, and we recommend practices to mitigate for false positives when developing occupancy monitoring protocols that rely on auditory detections. These recommendations include additional observer training, limiting the number of target species, and establishing distance and ambient noise thresholds during surveys. ?? 2010 The Wildlife Society.

  18. Multi-Parameter Observation and Detection of Pre-Earthquake Signals in Seismically Active Areas

    NASA Technical Reports Server (NTRS)

    Ouzounov, D.; Pulinets, S.; Parrot, M.; Liu, J. Y.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The recent large earthquakes (M9.0 Tohoku, 03/2011; M7.0 Haiti, 01/2010; M6.7 L Aquila, 04/2008; and M7.9 Wenchuan 05/2008) have renewed interest in pre-anomalous seismic signals associated with them. Recent workshops (DEMETER 2006, 2011 and VESTO 2009 ) have shown that there were precursory atmospheric /ionospheric signals observed in space prior to these events. Our initial results indicate that no single pre-earthquake observation (seismic, magnetic field, electric field, thermal infrared [TIR], or GPS/TEC) can provide a consistent and successful global scale early warning. This is most likely due to complexity and chaotic nature of earthquakes and the limitation in existing ground (temporal/spatial) and global satellite observations. In this study we analyze preseismic temporal and spatial variations (gas/radon counting rate, atmospheric temperature and humidity change, long-wave radiation transitions and ionospheric electron density/plasma variations) which we propose occur before the onset of major earthquakes:. We propose an Integrated Space -- Terrestrial Framework (ISTF), as a different approach for revealing pre-earthquake phenomena in seismically active areas. ISTF is a sensor web of a coordinated observation infrastructure employing multiple sensors that are distributed on one or more platforms; data from satellite sensors (Terra, Aqua, POES, DEMETER and others) and ground observations, e.g., Global Positioning System, Total Electron Content (GPS/TEC). As a theoretical guide we use the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model to explain the generation of multiple earthquake precursors. Using our methodology, we evaluated retrospectively the signals preceding the most devastated earthquakes during 2005-2011. We observed a correlation between both atmospheric and ionospheric anomalies preceding most of these earthquakes. The second phase of our validation include systematic retrospective analysis for more than 100 major earthquakes (M>5

  19. Applying ISO 11929:2010 Standard to detection limit calculation in least-squares based multi-nuclide gamma-ray spectrum evaluation

    NASA Astrophysics Data System (ADS)

    Kanisch, G.

    2017-05-01

    The concepts of ISO 11929 (2010) are applied to evaluation of radionuclide activities from more complex multi-nuclide gamma-ray spectra. From net peak areas estimated by peak fitting, activities and their standard uncertainties are calculated by weighted linear least-squares method with an additional step, where uncertainties of the design matrix elements are taken into account. A numerical treatment of the standard's uncertainty function, based on ISO 11929 Annex C.5, leads to a procedure for deriving decision threshold and detection limit values. The methods shown allow resolving interferences between radionuclide activities also in case of calculating detection limits where they can improve the latter by including more than one gamma line per radionuclide. The co"mmon single nuclide weighted mean is extended to an interference-corrected (generalized) weighted mean, which, combined with the least-squares method, allows faster detection limit calculations. In addition, a new grouped uncertainty budget was inferred, which for each radionuclide gives uncertainty budgets from seven main variables, such as net count rates, peak efficiencies, gamma emission intensities and others; grouping refers to summation over lists of peaks per radionuclide.

  20. Detection loophole in Bell experiments: How postselection modifies the requirements to observe nonlocality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branciard, Cyril

    2011-03-15

    A common problem in Bell-type experiments is the well-known detection loophole: if the detection efficiencies are not perfect and if one simply postselects the conclusive events, one might observe a violation of a Bell inequality, even though a local model could have explained the experimental results. In this paper, we analyze the set of all postselected correlations that can be explained by a local model, and show that it forms a polytope, larger than the Bell local polytope. We characterize the facets of this postselected local polytope in the Clauser-Horne-Shimony-Holt scenario, where two parties have binary inputs and outcomes. Ourmore » approach gives interesting insights on the detection loophole problem.« less

  1. A Supercompressible, Elastic, and Bendable Carbon Aerogel with Ultrasensitive Detection Limits for Compression Strain, Pressure, and Bending Angle.

    PubMed

    Zhuo, Hao; Hu, Yijie; Tong, Xing; Chen, Zehong; Zhong, Linxin; Lai, Haihong; Liu, Linxiang; Jing, Shuangshuang; Liu, Qingzhong; Liu, Chuanfu; Peng, Xinwen; Sun, Runcang

    2018-05-01

    Ultralight and compressible carbon materials have promising applications in strain and pressure detection. However, it is still difficult to prepare carbon materials with supercompressibility, elasticity, stable strain-electrical signal response, and ultrasensitive detection limits, due to the challenge in structural regulation. Herein, a new strategy to prepare a reduced graphene oxide (rGO)-based lamellar carbon aerogels with unexpected and integrated performances by designing wave-shape rGO layers and enhancing the interaction among the rGO layers is demonstrated. Addition of cellulose nanocrystalline and low-molecular-weight carbon precursors enhances the interaction among rGO layers and thus produces an ultralight, flexible, and superstable structure. The as-prepared carbon aerogel displays a supercompressibility (undergoing an extreme strain of 99%) and elasticity (100% height retention after 10 000 cycles at a strain of 30%), as well as stable strain-current response (at least 10 000 cycles). Particularly, the carbon aerogel is ultrasensitive for detecting tiny change in strain (0.012%) and pressure (0.25 Pa), which are the lowest detection limits for compressible carbon materials reported in the literature. Moreover, the carbon aerogel exhibits excellent bendable performance and can detect an ultralow bending angle of 0.052°. Additionally, the carbon aerogel also demonstrates its promising application as wearable devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Deep magma accumulation at Nyamulagira volcano in 2011 detected by GNSS observations

    NASA Astrophysics Data System (ADS)

    Ji, Kang Hyeun; Stamps, D. Sarah; Geirsson, Halldor; Mashagiro, Niche; Syauswa, Muhindo; Kafudu, Benjamin; Subira, Josué; d'Oreye, Nicolas

    2017-10-01

    People in the area of the Virunga Mountains, along the borders of the Democratic Republic of Congo, Rwanda, and Uganda, are at very high natural risk due to active volcanism. A Global Navigation Satellite System (GNSS) network, KivuGNet (Kivu Geodetic Network), has operated since 2009 for monitoring and research of the deformation of Nyamulagira and Nyiragongo volcanoes as well as tectonic deformation in the region. We detected an inflationary signal from the position time-series observed in the network using our detection method, which is a combination of Kalman filtering and principal component analysis. The inflation event began in October 2010 and lasted for about 6 months prior to the 2011-2012 eruption at Nyamulagira volcano. The pre-eruptive inflationary signal is much weaker than the co-eruptive signal, but our method successfully detected the signal. The maximum horizontal and vertical displacements observed are ∼9 mm and ∼5 mm, respectively. A Mogi point source at a depth >10 km can explain the displacement field. This suggests that a relatively deep source for the magma chamber generated the inflationary signal. The deep reservoir that is the focus of this study may feed a shallower magma chamber, which is the likely source of the 2011-2012 eruption. Continuous monitoring of the volcanic activity is essential for understanding the eruption cycle and assessing potential volcanic hazards.

  3. Early breast cancer screening using iron/iron oxide-based nanoplatforms with sub-femtomolar limits of detection

    PubMed Central

    Samarakoon, Thilani N; Yapa, Asanka S; Abayaweera, Gayani; Basel, Matthew T; Maynez, Pamela; Ortega, Raquel; Toledo, Yubisela; Bossmann, Leonie; Robinson, Colette; Janik, Katharine E; Koper, Olga B; Li, Ping; Motamedi, Massoud; Higgins, Daniel A; Gadbury, Gary

    2016-01-01

    Summary Proteases, including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins (CTS) exhibit numerous functions in tumor biology. Solid tumors are characterized by changes in protease expression levels by tumor and surrounding tissue. Therefore, monitoring protease levels in tissue samples and liquid biopsies is a vital strategy for early cancer detection. Water-dispersable Fe/Fe3O4-core/shell based nanoplatforms for protease detection are capable of detecting protease activity down to sub-femtomolar limits of detection. They feature one dye (tetrakis(carboxyphenyl)porphyrin (TCPP)) that is tethered to the central nanoparticle by means of a protease-cleavable consensus sequence and a second dye (Cy 5.5) that is directly linked. Based on the protease activities of urokinase plasminogen activator (uPA), MMPs 1, 2, 3, 7, 9, and 13, as well as CTS B and L, human breast cancer can be detected at stage I by means of a simple serum test. By monitoring CTS B and L stage 0 detection may be achieved. This initial study, comprised of 46 breast cancer patients and 20 apparently healthy human subjects, demonstrates the feasibility of protease-activity-based liquid biopsies for early cancer diagnosis. PMID:27335730

  4. Early breast cancer screening using iron/iron oxide-based nanoplatforms with sub-femtomolar limits of detection.

    PubMed

    Udukala, Dinusha N; Wang, Hongwang; Wendel, Sebastian O; Malalasekera, Aruni P; Samarakoon, Thilani N; Yapa, Asanka S; Abayaweera, Gayani; Basel, Matthew T; Maynez, Pamela; Ortega, Raquel; Toledo, Yubisela; Bossmann, Leonie; Robinson, Colette; Janik, Katharine E; Koper, Olga B; Li, Ping; Motamedi, Massoud; Higgins, Daniel A; Gadbury, Gary; Zhu, Gaohong; Troyer, Deryl L; Bossmann, Stefan H

    2016-01-01

    Proteases, including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins (CTS) exhibit numerous functions in tumor biology. Solid tumors are characterized by changes in protease expression levels by tumor and surrounding tissue. Therefore, monitoring protease levels in tissue samples and liquid biopsies is a vital strategy for early cancer detection. Water-dispersable Fe/Fe3O4-core/shell based nanoplatforms for protease detection are capable of detecting protease activity down to sub-femtomolar limits of detection. They feature one dye (tetrakis(carboxyphenyl)porphyrin (TCPP)) that is tethered to the central nanoparticle by means of a protease-cleavable consensus sequence and a second dye (Cy 5.5) that is directly linked. Based on the protease activities of urokinase plasminogen activator (uPA), MMPs 1, 2, 3, 7, 9, and 13, as well as CTS B and L, human breast cancer can be detected at stage I by means of a simple serum test. By monitoring CTS B and L stage 0 detection may be achieved. This initial study, comprised of 46 breast cancer patients and 20 apparently healthy human subjects, demonstrates the feasibility of protease-activity-based liquid biopsies for early cancer diagnosis.

  5. Determining the 95% limit of detection for waterborne pathogen analyses from primary concentration to qPCR

    USDA-ARS?s Scientific Manuscript database

    The limit of detection (LOD) for qPCR-based analyses is not consistently defined or determined in studies on waterborne pathogens. Moreover, the LODs reported often reflect the qPCR assay rather than the entire sample process. Our objective was to develop a method to determine the 95% LOD (lowest co...

  6. Digital breast tomosynthesis for detecting multifocal and multicentric breast cancer: influence of acquisition geometry on model observer performance in breast phantom images

    NASA Astrophysics Data System (ADS)

    Wen, Gezheng; Park, Subok; Markey, Mia K.

    2017-03-01

    Multifocal and multicentric breast cancer (MFMC), i.e., the presence of two or more tumor foci within the same breast, has an immense clinical impact on treatment planning and survival outcomes. Detecting multiple breast tumors is challenging as MFMC breast cancer is relatively uncommon, and human observers do not know the number or locations of tumors a priori. Digital breast tomosynthesis (DBT), in which an x-ray beam sweeps over a limited angular range across the breast, has the potential to improve the detection of multiple tumors.1, 2 However, prior efforts to optimize DBT image quality only considered unifocal breast cancers (e.g.,3-9), so the recommended geometries may not necessarily yield images that are informative for the task of detecting MFMC. Hence, the goal of this study is to employ a 3D multi-lesion (ml) channelized-Hotelling observer (CHO) to identify optimal DBT acquisition geometries for MFMC. Digital breast phantoms and simulated DBT scanners of different geometries (e.g., wide or narrow arc scans, different number of projections in each scan) were used to generate image data for the simulation study. Multiple 3D synthetic lesions were inserted into different breast regions to simulate MF cases and MC cases. 3D partial least squares (PLS) channels, and 3D Laguerre-Gauss (LG) channels were estimated to capture discriminant information and correlations among signals in locally varying anatomical backgrounds, enabling the model observer to make both image-level and location-specific detection decisions. The 3D ml-CHO with PLS channels outperformed that with LG channels in this study. The simulated MC cases and MC cases were not equally difficult for the ml-CHO to detect across the different simulated DBT geometries considered in this analysis. Also, the results suggest that the optimal design of DBT may vary as the task of clinical interest changes, e.g., a geometry that is better for finding at least one lesion may be worse for counting the

  7. WE-H-207A-09: Theoretical Limits to Molecular Biomarker Detection Using Magnetic Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, J; Geisel School of Medicine, Dartmouth College, Hanover, NH

    Purpose: Estimate the limits of molecular biomarker detection using magnetic nanoparticle methods like in vivo ELISA. Methods: Magnetic nanoparticles in an alternating magnetic field produce a magnetization that can be detected at exceedingly low levels because the signal at the harmonic frequencies is uniquely produced by the nanoparticles. Because the magnetization can also be used to characterize the nanoparticle rotational freedom, the bound state can be found. If the nanoparticles are coated with molecules that bind the desired biomarker, the rotational freedom reflects the biomarker concentration. The irreducible noise limit is the thermal noise or Johnson noise of the tissuemore » and the contrast that can be measured must be larger than that limit. The contrast produced is a function of the applied field and depends strongly on nanoparticle volume. We have estimated the contrast using a Langevin function of a single composite variable to approximate the full stochastic Langevin equation for nanoparticle dynamics. Results: The thermal noise for a bandwidth reasonable for spectroscopy suggests mid zeptomolar (10–21) to low attomolar (10–18) concentrations can be measured in a volume that is 10cm in scale. The suggested sensitivity is far below the physiologically concentrations of almost all critical biomarkers including cytokines (picomolar), hormones (nanomolar) and heat shock proteins. Conclusion: The sensitivity of in vivo ELISA concentration measurements should be sufficient to measure physiological concentrations of critical biomarkers like cytokines in vivo. Further the sensitivity should be sufficient to measure concentrations of other biomarkers that are six to eight orders of magnitude lower in concentration than immune signaling molecules like cytokines. NIH - 1U54CA151662-01 Department of Radiology.« less

  8. First NuSTAR Limits on Quiet Sun Hard X-Ray Transient Events

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew J.; Smith, David M.; Glesener, Lindsay; Hannah, Iain G.; Grefenstette, Brian W.; Caspi, Amir; Krucker, Säm; Hudson, Hugh S.; Madsen, Kristin K.; White, Stephen M.; Kuhar, Matej; Wright, Paul J.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2017-11-01

    We present the first results of a search for transient hard X-ray (HXR) emission in the quiet solar corona with the Nuclear Spectroscopic Telescope Array (NuSTAR) satellite. While NuSTAR was designed as an astrophysics mission, it can observe the Sun above 2 keV with unprecedented sensitivity due to its pioneering use of focusing optics. NuSTAR first observed quiet-Sun regions on 2014 November 1, although out-of-view active regions contributed a notable amount of background in the form of single-bounce (unfocused) X-rays. We conducted a search for quiet-Sun transient brightenings on timescales of 100 s and set upper limits on emission in two energy bands. We set 2.5-4 keV limits on brightenings with timescales of 100 s, expressed as the temperature T and emission measure EM of a thermal plasma. We also set 10-20 keV limits on brightenings with timescales of 30, 60, and 100 s, expressed as model-independent photon fluxes. The limits in both bands are well below previous HXR microflare detections, though not low enough to detect events of equivalent T and EM as quiet-Sun brightenings seen in soft X-ray observations. We expect future observations during solar minimum to increase the NuSTAR sensitivity by over two orders of magnitude due to higher instrument livetime and reduced solar background.

  9. Evaluation of MidIR fibre optic reflectance: Detection limit, reproducibility and binary mixture discrimination

    NASA Astrophysics Data System (ADS)

    Sessa, Clarimma; Bagán, Héctor; García, José Francisco

    2013-11-01

    MidIR fibre optic reflectance (MidIR-FORS) is a promising analytical technique in the field of science conservation, especially because it is non-destructive. Another advantage of MidIR-FORS is that the obtained information is representative, as a large amount of spectral data can be collected. Although the technique has a high potential and is almost routinely applied, its quality parameters have not been thoroughly studied in the specific application of analysis of artistic materials. The objective of this study is to evaluate the instrumental capabilities of MidIR-FORS for the analysis of artwork materials in terms of detection limit, reproducibility, and mixture characterisation. The study has been focused on oil easel painting and several paints of known composition have been analysed. Paint layers include blue pigments not only because of their important role along art history, but also because their physical and spectroscopic characteristics allow a better evaluation of the MidIR-FORS capabilities. The results of the analysis indicate that MidIR-FORS supplies a signal affected by different factors, such as the optical, morphological and physical properties of the surface, in addition to the composition of materials analysed. Consequently, the detection limits established are relatively high for artistic objects (Prussian blue - PB 2.1-6.5%; Phthalocyanine blue - Pht 6.3-10.2%; synthetic Ultramarine blue - UM 12.1%) and may therefore lead to an incomplete description of the artwork. Reproducibility of the technique over time and across surface has been determined. The results show that the major sources of dispersion are the heterogeneity of the pigments distribution, physical features, and band shape distortions. The total dispersion is around 4% for the most intense bands (oil) and increases up to 26% when weak or overlapped bands are considered (PB, Pht, UM). The application of different pre-treatments (cutoff of fibres absorption, Savizky-Golay smoothing

  10. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit

    NASA Astrophysics Data System (ADS)

    Pan, Weicheng; Wu, Haodi; Luo, Jiajun; Deng, Zhenzhou; Ge, Cong; Chen, Chao; Jiang, Xiaowei; Yin, Wan-Jian; Niu, Guangda; Zhu, Lujun; Yin, Lixiao; Zhou, Ying; Xie, Qingguo; Ke, Xiaoxing; Sui, Manling; Tang, Jiang

    2017-11-01

    Sensitive X-ray detection is crucial for medical diagnosis, industrial inspection and scientific research. The recently described hybrid lead halide perovskites have demonstrated low-cost fabrication and outstanding performance for direct X-ray detection, but they all contain toxic Pb in a soluble form. Here, we report sensitive X-ray detectors using solution-processed double perovskite Cs2AgBiBr6 single crystals. Through thermal annealing and surface treatment, we largely eliminate Ag+/Bi3+ disordering and improve the crystal resistivity, resulting in a detector with a minimum detectable dose rate as low as 59.7 nGyair s-1, comparable to the latest record of 0.036 μGyair s-1 using CH3NH3PbBr3 single crystals. Suppressed ion migration in Cs2AgBiBr6 permits relatively large external bias, guaranteeing efficient charge collection without a substantial increase in noise current and thus enabling the low detection limit.

  11. Investigation of detection limits for diffuse optical tomography systems: II. Analysis of slab and cup geometry for breast imaging.

    PubMed

    Ziegler, Ronny; Brendel, Bernhard; Rinneberg, Herbert; Nielsen, Tim

    2009-01-21

    Using a statistical (chi-square) test on simulated data and a realistic noise model derived from the system's hardware we study the performance of diffuse optical tomography systems for fluorescence imaging. We compare the predicted smallest size of detectable lesions at various positions in slab and cup geometry and model how detection sensitivity depends on breast compression and lesion fluorescence contrast. Our investigation shows that lesion detection is limited by relative noise in slab geometry and by absolute noise in cup geometry.

  12. Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, A. S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Campbell, W.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, E.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schlassa, S.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, D.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-03-01

    We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20-1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range Fα ,Θ(f )<(0.1 - 56 )×10-8 erg cm-2 s-1 Hz-1(f /25 Hz )α -1 depending on the sky location Θ and the spectral power index α . For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ω (f ,Θ )<(0.39 - 7.6 )×10-8 sr-1(f /25 Hz )α depending on Θ and α . Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h0<(6.7 ,5.5 , and 7.0 )×10-25 , respectively, at the most sensitive detector frequencies between 130-175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.

  13. The search for radio emission from exoplanets using LOFAR low-frequency beam-formed observations

    NASA Astrophysics Data System (ADS)

    Turner, Jake D.; Griessmeier, Jean-Mathias; Zarka, Philippe

    2018-01-01

    Detection of radio emission from exoplanets can provide information on the star-planet system that is very difficult or impossible to study otherwise, such as the planet’s magnetic field, magnetosphere, rotation period, orbit inclination, and star-planet interactions. Such a detection in the radio domain would open up a whole new field in the study of exoplanets, however, currently there are no confirmed detections of an exoplanet at radio frequencies. In this study, we discuss our ongoing observational campaign searching for exoplanetary radio emissions using beam-formed observations within the Low Band of the Low-Frequency Array (LOFAR). To date we have observed three exoplanets: 55 Cnc, Upsilon Andromedae, and Tau Boötis. These planets were selected according to theoretical predictions, which indicated them as among the best candidates for an observation. During the observations we usually recorded three beams simultaneously, one on the exoplanet and two on patches of nearby “empty” sky. An automatic pipeline was created to automatically find RFI, calibrate the data due to instrumental effects, and to search for emission in the exoplanet beam. Additionally, we observed Jupiter with LOFAR with the same exact observational setup as the exoplanet observations. The main goals of the Jupiter observations are to train the detection algorithm and to calculate upper limits in the case of a non-detection. Data analysis is currently ongoing. Conclusions reached at the time of the meeting, about detection of or upper limit to the planetary signal, will be presented.

  14. Turbulence detection using radiosondes: plugging the gaps in the observation of turbulence

    NASA Astrophysics Data System (ADS)

    Marlton, Graeme; Harrison, Giles; Williams, Paul; Nicoll, Keri

    2014-05-01

    Turbulence costs the airline industry tens of millions of dollars each year, through damage to aircraft and injury to passengers. Clear-air turbulence (CAT) is particularly problematic, as it cannot be detected using remote sensing methods and we lack consistent observations to validate forecast models. Here we describe two specially adapted meteorological radiosondes that are used to measure turbulence. The first sensor consists of a Hall-effect magnetometer, which uses the Earth's magnetic field as a reference point, allowing the motion of the sonde to be measured. The second consists of an accelerometer that measures the accelerations the balloon encounters. A solar radiation sensor is mounted at the top of the package, to determine whether the sonde is in cloud. Results from multiple flights over Reading, UK in different conditions, show both sensors detecting turbulent regions near jet boundaries and above cloud tops, with the accelerometer recording values in excess of 6g in these regions. Case studies will show how these observations can be used to test the performance of a selection of empirical turbulence diagnostics initialised from ERA-interim data.

  15. Intermittent detection of fetal heart rate abnormalities identify infants at greatest risk for fresh stillbirths, birth asphyxia, neonatal resuscitation, and early neonatal deaths in a limited-resource setting: a prospective descriptive observational study at Haydom Lutheran Hospital.

    PubMed

    Langli Ersdal, Hege; Mduma, Estomih; Svensen, Erling; Sundby, Johanne; Perlman, Jeffrey

    2012-01-01

    Intermittent fetal heart rate (FHR) monitoring during labor using an acoustic stethoscope is the most frequent method for fetal assessment of well-being in low- and middle-income countries. Evidence concerning reliability and efficacy of this technique is almost nonexistent. To determine the value of routine intermittent FHR monitoring during labor in the detection of FHR abnormalities, and the relationship of abnormalities to the subsequent fresh stillbirths (FSB), birth asphyxia (BA), need for neonatal face mask ventilation (FMV), and neonatal deaths within 24 h. This is a descriptive observational study in a delivery room from November 2009 through December 2011. Research assistants/observers (n = 14) prospectively observed every delivery and recorded labor information including FHR and interventions, neonatal information including responses in the delivery room, and fetal/neonatal outcomes (FSB, death within 24 h, admission neonatal area, or normal). 10,271 infants were born. FHR was abnormal (i.e. <120 or >160 beats/min) in 279 fetuses (2.7%) and absent in 200 (1.9%). Postnatal outcomes included FSB in 159 (1.5%), need for FMV in 695 (6.8%), BA (i.e. 5-min Apgar score <7) in 69 (0.7%), and deaths in 89 (0.9%). Abnormal FHR was associated with labor complications (OR = 31.4; 95% CI: 23.1-42.8), increased need for FMV (OR = 7.8; 95% CI: 5.9-10.1), BA (OR = 21.7; 95% CI: 12.7-37.0), deaths (OR = 9.9; 95% CI: 5.6-17.5), and FSB (OR = 35; 95% CI: 20.3-60.4). An undetected FHR predicted FSB (OR = 1,983; 95% CI: 922-4,264). Intermittent detection of an absent or abnormal FHR using a fetal stethoscope is associated with FSB, increased need for neonatal resuscitation, BA, and neonatal death in a limited-resource setting. The likelihood of an abnormal FHR is magnified with labor complications. Copyright © 2012 S. Karger AG, Basel.

  16. Limitation in the detection of Listeria monocytogenes in food in the presence of competing Listeria innocua.

    PubMed

    Oravcová, K; Trncíková, T; Kuchta, T; Kaclíková, E

    2008-02-01

    Detectability of Listeria monocytogenes at 10(0) CFU per food sample in the presence of Listeria innocua using standard microbiological detection was evaluated and compared with the real-time PCR-based method. Enrichment in half-Fraser broth followed by subculture in Fraser broth according to EN ISO 11290-1 was used. False-negative detection of 10(0) CFU L. monocytogenes was obtained in the presence of 10(1) CFU L. innocua per sample using the standard detection method in contrast to more than 10(5) CFU L. innocua per sample using real-time PCR. Identification of L. monocytogenes on the chromogenic medium by the standard procedure was impossible if L. innocua was able to overgrow L. monocytogenes by more than three orders of magnitude after the enrichment in model samples. These results were confirmed using naturally contaminated food samples. Standard microbiological method was insufficient for the reliable detection of 10(0) CFU L. monocytogenes in the presence of more than 10(0) CFU of L. innocua per sample. On the other hand, if the growth of L. monocytogenes was sufficient to reach the concentration equal to the detection limit of PCR, the amount of the other microflora present in the food sample including L. innocua was not relevant for success of the PCR detection of L. monocytogenes. After the enrichment, the PCR detection is more convenient than the standard one as PCR detection is not compromised by other present microflora.

  17. Feasibility of blocking detection in observations from radio occultation

    NASA Astrophysics Data System (ADS)

    Brunner, Lukas; Steiner, Andrea Karin; Scherllin-Pirscher, Barbara; Jury, Martin

    2015-04-01

    Blocking describes an atmospheric situation in which the climatological westerly flow at mid latitudes is weakened or reversed. This is caused by a persistent high pressure system which can be stationary for several days to weeks. In the Northern Hemisphere blocking preferably occurs over the Atlantic/European and the Pacific regions. In recent years blocking has been under close scientific investigation due to its effect on weather extremes, triggering heat waves in summer and cold spells in winter. So far, scientific literature mainly focused on the investigation of blocking in reanalysis and global climate model data sets. However, blocking is underestimated in most climate models due to small-scale processes involved in its evolution. For a detection of blocking, most commonly applied methods are based on the computation of meridional geopotential height gradients at the 500 hPa level. Therefore measurements with adequate vertical, horizontal, and temporal resolution and coverage are required. We use an observational data set based on Global Positioning System (GPS) Radio Occultation (RO) measurements fulfilling these requirements. RO is a relatively new, satellite based remote sensing technique, delivering profiles of atmospheric parameters such as geopotential height, pressure, and temperature. It is characterized by favorable properties like long-term stability, global coverage, and high vertical resolution. Our data set is based on the most recent WEGC RO retrieval. Here we report on a feasibility study for blocking detection and analysis in RO data for two exemplary blocking events: the blocking over Russia in summer 2010 and the blocking over Greenland in late winter 2013. For these two events about 700 RO measurements per day are available in the Northern Hemisphere. We will show that the measurement density and quality of RO observations are favorable for blocking analysis and can therefore contribute to blocking research.

  18. Ionospheric detection of tsunami earthquakes: observation, modeling and ideas for future early warning

    NASA Astrophysics Data System (ADS)

    Occhipinti, G.; Manta, F.; Rolland, L.; Watada, S.; Makela, J. J.; Hill, E.; Astafieva, E.; Lognonne, P. H.

    2017-12-01

    Detection of ionospheric anomalies following the Sumatra and Tohoku earthquakes (e.g., Occhipinti 2015) demonstrated that ionosphere is sensitive to earthquake and tsunami propagation: ground and oceanic vertical displacement induces acoustic-gravity waves propagating within the neutral atmosphere and detectable in the ionosphere. Observations supported by modelling proved that ionospheric anomalies related to tsunamis are deterministic and reproducible by numerical modeling via the ocean/neutral-atmosphere/ionosphere coupling mechanism (Occhipinti et al., 2008). To prove that the tsunami signature in the ionosphere is routinely detected we show here perturbations of total electron content (TEC) measured by GPS and following tsunamigenic earthquakes from 2004 to 2011 (Rolland et al. 2010, Occhipinti et al., 2013), nominally, Sumatra (26 December, 2004 and 12 September, 2007), Chile (14 November, 2007), Samoa (29 September, 2009) and the recent Tohoku-Oki (11 Mars, 2011). Based on the observations close to the epicenter, mainly performed by GPS networks located in Sumatra, Chile and Japan, we highlight the TEC perturbation observed within the first 8 min after the seismic rupture. This perturbation contains information about the ground displacement, as well as the consequent sea surface displacement resulting in the tsunami. In addition to GNSS-TEC observations close to the epicenter, new exciting measurements in the far-field were performed by airglow measurement in Hawaii show the propagation of the internal gravity waves induced by the Tohoku tsunami (Occhipinti et al., 2011). This revolutionary imaging technique is today supported by two new observations of moderate tsunamis: Queen Charlotte (M: 7.7, 27 October, 2013) and Chile (M: 8.2, 16 September 2015). We finally detail here our recent work (Manta et al., 2017) on the case of tsunami alert failure following the Mw7.8 Mentawai event (25 October, 2010), and its twin tsunami alert response following the Mw7

  19. First limits on the very-high energy gamma-ray afterglow emission of a fast radio burst. H.E.S.S. observations of FRB 150418

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'c.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; Superb Collaboration; Jankowski, F.; Keane, E. F.; Petroff, E.

    2017-01-01

    Aims: Following the detection of the fast radio burst FRB150418 by the SUPERB project at the Parkes radio telescope, we aim to search for very-high energy gamma-ray afterglow emission. Methods: Follow-up observations in the very-high energy gamma-ray domain were obtained with the H.E.S.S. imaging atmospheric Cherenkov telescope system within 14.5 h of the radio burst. Results: The obtained 1.4 h of gamma-ray observations are presented and discussed. At the 99% C.L. we obtained an integral upper limit on the gamma-ray flux of Φγ(E > 350 GeV) < 1.33 × 10-8 m-2 s-1. Differential flux upper limits as function of the photon energy were derived and used to constrain the intrinsic high-energy afterglow emission of FRB 150418. Conclusions: No hints for high-energy afterglow emission of FRB 150418 were found. Taking absorption on the extragalactic background light into account and assuming a distance of z = 0.492 based on radio and optical counterpart studies and consistent with the FRB dispersion, we constrain the gamma-ray luminosity at 1 TeV to L < 5.1 × 1047 erg/s at 99% C.L.

  20. Estimating the mean and standard deviation of environmental data with below detection limit observations: Considering highly skewed data and model misspecification.

    PubMed

    Shoari, Niloofar; Dubé, Jean-Sébastien; Chenouri, Shoja'eddin

    2015-11-01

    In environmental studies, concentration measurements frequently fall below detection limits of measuring instruments, resulting in left-censored data. Some studies employ parametric methods such as the maximum likelihood estimator (MLE), robust regression on order statistic (rROS), and gamma regression on order statistic (GROS), while others suggest a non-parametric approach, the Kaplan-Meier method (KM). Using examples of real data from a soil characterization study in Montreal, we highlight the need for additional investigations that aim at unifying the existing literature. A number of studies have examined this issue; however, those considering data skewness and model misspecification are rare. These aspects are investigated in this paper through simulations. Among other findings, results show that for low skewed data, the performance of different statistical methods is comparable, regardless of the censoring percentage and sample size. For highly skewed data, the performance of the MLE method under lognormal and Weibull distributions is questionable; particularly, when the sample size is small or censoring percentage is high. In such conditions, MLE under gamma distribution, rROS, GROS, and KM are less sensitive to skewness. Related to model misspecification, MLE based on lognormal and Weibull distributions provides poor estimates when the true distribution of data is misspecified. However, the methods of rROS, GROS, and MLE under gamma distribution are generally robust to model misspecifications regardless of skewness, sample size, and censoring percentage. Since the characteristics of environmental data (e.g., type of distribution and skewness) are unknown a priori, we suggest using MLE based on gamma distribution, rROS and GROS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Limits to the radiative decays of neutrinos and axions from gamma-ray observations of SN 1987A

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Turner, Michael S.

    1989-01-01

    Gamma-ray observations obtained by the SMM gamma-ray spectrometer in the energy range 4.1-6.4 MeV are used to provide limits on the possible radiative decay of neutrinos and axions emitted by SN 1987A. For branching ratio values for the radiative decay modes of less than about 0.0001, the present limits are more stringent than those based upon the photon flux from decaying relic neutrinos. The data are also used to set an axion mass limit.

  2. A simple and highly sensitive colorimetric detection method for gaseous formaldehyde.

    PubMed

    Feng, Liang; Musto, Christopher J; Suslick, Kenneth S

    2010-03-31

    A colorimetric detection method using amine-functionalized polymer films doped with a pH indicator has been developed for the rapid, sensitive, and quantitative detection of gaseous formaldehyde at concentrations well below the immediately dangerous to life or health (IDLH) limit. In 1 min, visible color changes are easily observed, even down to the permissible exposure limit (PEL) at 750 ppb. The limit of detection is below 50 ppb (7% of the PEL) after 10 min of exposure. This sensor is essentially unaffected by changes in humidity or temperature (4 to 50 degrees C) and is not sensitive to common interferents.

  3. Channelized relevance vector machine as a numerical observer for cardiac perfusion defect detection task

    NASA Astrophysics Data System (ADS)

    Kalayeh, Mahdi M.; Marin, Thibault; Pretorius, P. Hendrik; Wernick, Miles N.; Yang, Yongyi; Brankov, Jovan G.

    2011-03-01

    In this paper, we present a numerical observer for image quality assessment, aiming to predict human observer accuracy in a cardiac perfusion defect detection task for single-photon emission computed tomography (SPECT). In medical imaging, image quality should be assessed by evaluating the human observer accuracy for a specific diagnostic task. This approach is known as task-based assessment. Such evaluations are important for optimizing and testing imaging devices and algorithms. Unfortunately, human observer studies with expert readers are costly and time-demanding. To address this problem, numerical observers have been developed as a surrogate for human readers to predict human diagnostic performance. The channelized Hotelling observer (CHO) with internal noise model has been found to predict human performance well in some situations, but does not always generalize well to unseen data. We have argued in the past that finding a model to predict human observers could be viewed as a machine learning problem. Following this approach, in this paper we propose a channelized relevance vector machine (CRVM) to predict human diagnostic scores in a detection task. We have previously used channelized support vector machines (CSVM) to predict human scores and have shown that this approach offers better and more robust predictions than the classical CHO method. The comparison of the proposed CRVM with our previously introduced CSVM method suggests that CRVM can achieve similar generalization accuracy, while dramatically reducing model complexity and computation time.

  4. Limited copy number-high resolution melting (LCN-HRM) enables the detection and identification by sequencing of low level mutations in cancer biopsies.

    PubMed

    Do, Hongdo; Dobrovic, Alexander

    2009-10-08

    Mutation detection in clinical tumour samples is challenging when the proportion of tumour cells, and thus mutant alleles, is low. The limited sensitivity of conventional sequencing necessitates the adoption of more sensitive approaches. High resolution melting (HRM) is more sensitive than sequencing but identification of the mutation is desirable, particularly when it is important to discriminate false positives due to PCR errors or template degradation from true mutations.We thus developed limited copy number - high resolution melting (LCN-HRM) which applies limiting dilution to HRM. Multiple replicate reactions with a limited number of target sequences per reaction allow low level mutations to be detected. The dilutions used (based on Ct values) are chosen such that mutations, if present, can be detected by the direct sequencing of amplicons with aberrant melting patterns. Using cell lines heterozygous for mutations, we found that the mutations were not readily detected when they comprised 10% of total alleles (20% tumour cells) by sequencing, whereas they were readily detectable at 5% total alleles by standard HRM. LCN-HRM allowed these mutations to be identified by direct sequencing of those positive reactions.LCN-HRM was then used to review formalin-fixed paraffin-embedded (FFPE) clinical samples showing discordant findings between sequencing and HRM for KRAS exon 2 and EGFR exons 19 and 21. Both true mutations present at low levels and sequence changes due to artefacts were detected by LCN-HRM. The use of high fidelity polymerases showed that the majority of the artefacts were derived from the damaged template rather than replication errors during amplification. LCN-HRM bridges the sensitivity gap between HRM and sequencing and is effective in distinguishing between artefacts and true mutations.

  5. Satellite Observations for Detecting and Tracking Changes in Atmospheric Composition

    NASA Technical Reports Server (NTRS)

    Neil, Doreen O.; Kondragunbta, Shobha; Osterman, Gregory; Pickering, Kenneth; Pinder, Robert W.; Prados, Ana I.; Szykman, James

    2009-01-01

    The satellite observations provide constraints on detailed atmospheric modeling, including emissions inventories, indications of transport, harmonized data over vast areas suitable for trends analysis, and a link between spatial scales ranging from local to global, and temporal scales from diurnal to interannual. 1 The National Oceanic and Atmospheric Administration's (NOAA) long-term commitments help provide these observations in cooperation with international meteorological organizations. NASA s long-term commitments will advance scientifically important observations as part of its Earth Science Program, and will assist the transition of the science measurements to applied analyses through the Applied Science Program. Both NASA and NOAA have begun to provide near realtime data and tools to visualize and analyze satellite data,2 while maintaining data quality, validation, and standards. Consequently, decision-makers can expect satellite data services to support air quality decision making now and in the future. The international scientific community's Integrated Global Atmosphere Chemistry Observation System Report3 outlined a plan for ground-based, airborne and satellite measurements and models to integrate the observations into a four-dimensional representation of the atmosphere (space and time) to support assessment and policy information needs. This plan is being carried out under the Global Earth Observation System of Systems (GEOSS). Demonstrations of such an integrated capability4 provide new understanding of the changing atmosphere and link policy decisions to benefits for society. In this article, we highlight the use of satellite data to constrain biomass burning emissions, to assess oxides of nitrogen (NO(x)) emission reductions, and to contribute to state implementation plans, as examples of the use of satellite observations for detecting and tracking changes in atmospheric composition.

  6. Detecting atmospheric normal modes with periods less than 6 h by barometric observations

    NASA Astrophysics Data System (ADS)

    Ermolenko, S. I.; Shved, G. M.; Jacobi, Ch.

    2018-04-01

    The theory of atmospheric normal modes (ANMs) predicts the existence of relatively short-period gravity-inertia ANMs. Simultaneous observations of surface air-pressure variations by barometers at distant stations of the Global Geodynamics Project network during an interval of 6 months were used to detect individual gravity-inertia ANMs with periods of ∼2-5 h. Evidence was found for five ANMs with a lifetime of ∼10 days. The data of the stations, which are close in both latitude and longitude, were utilized for deriving the phases of the detected ANMs. The phases revealed wave propagation to the west and increase of zonal wavenumbers with frequency. As all the detected gravity-inertia ANMs are westward propagating, they are suggested to be generated due to the breakdown of migrating solar tides and/or large-scale Rossby waves. The existence of an ANM background will complicate the detection of the translational motions of the Earth's inner core.

  7. Comparison of computational to human observer detection for evaluation of CT low dose iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Eck, Brendan; Fahmi, Rachid; Brown, Kevin M.; Raihani, Nilgoun; Wilson, David L.

    2014-03-01

    Model observers were created and compared to human observers for the detection of low contrast targets in computed tomography (CT) images reconstructed with an advanced, knowledge-based, iterative image reconstruction method for low x-ray dose imaging. A 5-channel Laguerre-Gauss Hotelling Observer (CHO) was used with internal noise added to the decision variable (DV) and/or channel outputs (CO). Models were defined by parameters: (k1) DV-noise with standard deviation (std) proportional to DV std; (k2) DV-noise with constant std; (k3) CO-noise with constant std across channels; and (k4) CO-noise in each channel with std proportional to CO variance. Four-alternative forced choice (4AFC) human observer studies were performed on sub-images extracted from phantom images with and without a "pin" target. Model parameters were estimated using maximum likelihood comparison to human probability correct (PC) data. PC in human and all model observers increased with dose, contrast, and size, and was much higher for advanced iterative reconstruction (IMR) as compared to filtered back projection (FBP). Detection in IMR was better than FPB at 1/3 dose, suggesting significant dose savings. Model(k1,k2,k3,k4) gave the best overall fit to humans across independent variables (dose, size, contrast, and reconstruction) at fixed display window. However Model(k1) performed better when considering model complexity using the Akaike information criterion. Model(k1) fit the extraordinary detectability difference between IMR and FBP, despite the different noise quality. It is anticipated that the model observer will predict results from iterative reconstruction methods having similar noise characteristics, enabling rapid comparison of methods.

  8. Determining the 95% limit of detection for waterborne pathogen analyses from primary concentration to qPCR.

    PubMed

    Stokdyk, Joel P; Firnstahl, Aaron D; Spencer, Susan K; Burch, Tucker R; Borchardt, Mark A

    2016-06-01

    The limit of detection (LOD) for qPCR-based analyses is not consistently defined or determined in studies on waterborne pathogens. Moreover, the LODs reported often reflect the qPCR assay alone rather than the entire sample process. Our objective was to develop an approach to determine the 95% LOD (lowest concentration at which 95% of positive samples are detected) for the entire process of waterborne pathogen detection. We began by spiking the lowest concentration that was consistently positive at the qPCR step (based on its standard curve) into each procedural step working backwards (i.e., extraction, secondary concentration, primary concentration), which established a concentration that was detectable following losses of the pathogen from processing. Using the fraction of positive replicates (n = 10) at this concentration, we selected and analyzed a second, and then third, concentration. If the fraction of positive replicates equaled 1 or 0 for two concentrations, we selected another. We calculated the LOD using probit analysis. To demonstrate our approach we determined the 95% LOD for Salmonella enterica serovar Typhimurium, adenovirus 41, and vaccine-derived poliovirus Sabin 3, which were 11, 12, and 6 genomic copies (gc) per reaction (rxn), respectively (equivalent to 1.3, 1.5, and 4.0 gc L(-1) assuming the 1500 L tap-water sample volume prescribed in EPA Method 1615). This approach limited the number of analyses required and was amenable to testing multiple genetic targets simultaneously (i.e., spiking a single sample with multiple microorganisms). An LOD determined this way can facilitate study design, guide the number of required technical replicates, aid method evaluation, and inform data interpretation. Published by Elsevier Ltd.

  9. Determining the 95% limit of detection for waterborne pathogen analyses from primary concentration to qPCR

    USGS Publications Warehouse

    Stokdyk, Joel P.; Firnstahl, Aaron; Spencer, Susan K.; Burch, Tucker R; Borchardt, Mark A.

    2016-01-01

    The limit of detection (LOD) for qPCR-based analyses is not consistently defined or determined in studies on waterborne pathogens. Moreover, the LODs reported often reflect the qPCR assay alone rather than the entire sample process. Our objective was to develop an approach to determine the 95% LOD (lowest concentration at which 95% of positive samples are detected) for the entire process of waterborne pathogen detection. We began by spiking the lowest concentration that was consistently positive at the qPCR step (based on its standard curve) into each procedural step working backwards (i.e., extraction, secondary concentration, primary concentration), which established a concentration that was detectable following losses of the pathogen from processing. Using the fraction of positive replicates (n = 10) at this concentration, we selected and analyzed a second, and then third, concentration. If the fraction of positive replicates equaled 1 or 0 for two concentrations, we selected another. We calculated the LOD using probit analysis. To demonstrate our approach we determined the 95% LOD for Salmonella enterica serovar Typhimurium, adenovirus 41, and vaccine-derived poliovirus Sabin 3, which were 11, 12, and 6 genomic copies (gc) per reaction (rxn), respectively (equivalent to 1.3, 1.5, and 4.0 gc L−1 assuming the 1500 L tap-water sample volume prescribed in EPA Method 1615). This approach limited the number of analyses required and was amenable to testing multiple genetic targets simultaneously (i.e., spiking a single sample with multiple microorganisms). An LOD determined this way can facilitate study design, guide the number of required technical replicates, aid method evaluation, and inform data interpretation.

  10. Observations of Leonid Meteors Using a Mid-Wave Infrared Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Rossano, G. S.; Russell, R. W.; Lynch, D. K.; Tessensohn, T. K.; Warren, D.; Jenniskens, P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    We report broadband 3-5.5 micrometer detections of two Leonid meteors observed during the 1998 Leonid Multi-Instrument Aircraft Campaign. Each meteor was detected at only one position along their trajectory just prior to the point of maximum light emission. We describe the particular aspects of the Aerospace Corp. Mid-wave Infra-Red Imaging Spectrograph (MIRIS) developed for the observation of short duration transient events that impact its ability to detect Leonid meteors. This instrument had its first deployment during the 1998 Leonid MAC. We infer from our observations that the mid-infrared light curves of two Leonid meteors differed from the visible light curve. At the points of detection, the infrared emission in the MIRIS passband was 25 +/- 4 times that at optical wavelengths for both meteors. In addition, we find an upper limit of 800 K for the solid body temperature of the brighter meteor we observed, at the point in the trajectory where we made our mid-wave infrared detection.

  11. ATCA observations of the MACS-Planck Radio Halo Cluster Project. II. Radio observations of an intermediate redshift cluster sample

    NASA Astrophysics Data System (ADS)

    Martinez Aviles, G.; Johnston-Hollitt, M.; Ferrari, C.; Venturi, T.; Democles, J.; Dallacasa, D.; Cassano, R.; Brunetti, G.; Giacintucci, S.; Pratt, G. W.; Arnaud, M.; Aghanim, N.; Brown, S.; Douspis, M.; Hurier, J.; Intema, H. T.; Langer, M.; Macario, G.; Pointecouteau, E.

    2018-04-01

    Aim. A fraction of galaxy clusters host diffuse radio sources whose origins are investigated through multi-wavelength studies of cluster samples. We investigate the presence of diffuse radio emission in a sample of seven galaxy clusters in the largely unexplored intermediate redshift range (0.3 < z < 0.44). Methods: In search of diffuse emission, deep radio imaging of the clusters are presented from wide band (1.1-3.1 GHz), full resolution ( 5 arcsec) observations with the Australia Telescope Compact Array (ATCA). The visibilities were also imaged at lower resolution after point source modelling and subtraction and after a taper was applied to achieve better sensitivity to low surface brightness diffuse radio emission. In case of non-detection of diffuse sources, we set upper limits for the radio power of injected diffuse radio sources in the field of our observations. Furthermore, we discuss the dynamical state of the observed clusters based on an X-ray morphological analysis with XMM-Newton. Results: We detect a giant radio halo in PSZ2 G284.97-23.69 (z = 0.39) and a possible diffuse source in the nearly relaxed cluster PSZ2 G262.73-40.92 (z = 0.421). Our sample contains three highly disturbed massive clusters without clear traces of diffuse emission at the observed frequencies. We were able to inject modelled radio haloes with low values of total flux density to set upper detection limits; however, with our high-frequency observations we cannot exclude the presence of RH in these systems because of the sensitivity of our observations in combination with the high z of the observed clusters. The reduced images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A94

  12. Performance characteristics of a visual-search human-model observer with sparse PET image data

    NASA Astrophysics Data System (ADS)

    Gifford, Howard C.

    2012-02-01

    As predictors of human performance in detection-localization tasks, statistical model observers can have problems with tasks that are primarily limited by target contrast or structural noise. Model observers with a visual-search (VS) framework may provide a more reliable alternative. This framework provides for an initial holistic search that identifies suspicious locations for analysis by a statistical observer. A basic VS observer for emission tomography focuses on hot "blobs" in an image and uses a channelized nonprewhitening (CNPW) observer for analysis. In [1], we investigated this model for a contrast-limited task with SPECT images; herein, a statisticalnoise limited task involving PET images is considered. An LROC study used 2D image slices with liver, lung and soft-tissue tumors. Human and model observers read the images in coronal, sagittal and transverse display formats. The study thus measured the detectability of tumors in a given organ as a function of display format. The model observers were applied under several task variants that tested their response to structural noise both at the organ boundaries alone and over the organs as a whole. As measured by correlation with the human data, the VS observer outperformed the CNPW scanning observer.

  13. High-resolution spectroscopy of Venus: Detection of OCS, upper limit to H 2S, and latitudinal variations of CO and HF in the upper cloud layer

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    2008-10-01

    Venus was observed at 2.4 and 3.7 μm with a resolving power of 4×10 using the long-slit high-resolution spectrograph CSHELL at NASA IRTF. The observations were made along a chord that covered a latitude range of ± 60° at a local time near 8:00. The continuous reflectivity and limb brightening at 2.4 μm are fitted by the clouds with a single scattering albedo 1-a=0.01 and a pure absorbing layer with τ=0.09 above the clouds. The value of 1-a agrees with the refractive index of H 2SO 4 (85%) and the particle radius of 1 μm. The absorbing layer is similar to that observed by the UV spectrometer at the Pioneer Venus orbiter. However, its nature is puzzling. CO 2 was measured using its R32 and R34 lines. The retrieved product of the CO 2 abundance and airmass is constant at 1.9 km-atm along the instrument slit in the latitude range of ± 60°. The CO mixing ratio (measured using the P21 line) is rather constant at 70 ppm, and its variations of ˜10% may be caused by atmospheric dynamics. The observed value is higher than the 50 ppm retrieved previously from a spectrum of the full disk, possibly, because of some downward extension of the mesospheric morningside bulge of CO. The observations of the HF R3 line reveal a constant HF mixing ratio of 3.5±0.5 ppb within ± 60° of latitude, which is within the scatter in the previous measurements of HF. OCS has been detected for the first time at the cloud tops by summing 17 lines of the P-branch. The previous detections of OCS refer to the lower atmosphere at 30-35 km. The retrieved OCS mixing ratio varies with a scale height of 1 to 3 km. The mean OCS mixing ratio is ˜2 ppb at 70 km and ˜14 ppb at 64 km. Vertical motions in the atmosphere may change the OCS abundance. The detected OCS should significantly affect Venus' photochemistry. A sensitive search for H 2S using its line at 2688.93 cm -1 results in a 3 sigma upper limit of 23 ppb, which is more restrictive than the previous limit of 100 ppb.

  14. Passive and Active Detection of Clouds: Comparisons between MODIS and GLAS Observations

    NASA Technical Reports Server (NTRS)

    Mahesh, Ashwin; Gray, Mark A.; Palm, Stephen P.; Hart, William D.; Spinhirne, James D.

    2003-01-01

    The Geoscience Laser Altimeter System (GLAS), launched on board the Ice, Cloud and Land Elevation Satellite in January 2003 provides space-borne laser observations of atmospheric layers. GLAS provides opportunities to validate passive observations of the atmosphere for the first time from space with an active optical instrument. Data from the Moderate Resolution Imaging Spectrometer aboard the Aqua satellite is examined along with GLAS observations of cloud layers. In more than three-quarters of the cases, MODIS scene identification from spectral radiances agrees with GLAS. Disagreement between the two platforms is most significant over snow-covered surfaces in the northern hemisphere. Daytime clouds detected by GLAS are also more easily seen in the MODIS data as well, compared to observations made at night. These comparisons illustrate the capabilities of active remote sensing to validate and assess passive measurements, and also to complement them in studies of atmospheric layers.

  15. Observed Limits on Charge Exchange Contributions to the Diffuse X-Ray Background

    NASA Astrophysics Data System (ADS)

    Crowder, S. G.; Barger, K. A.; Brandl, D. E.; Eckart, M. E.; Galeazzi, M.; Kelley, R. L.; Kilbourne, C. A.; McCammon, D.; Pfendner, C. G.; Porter, F. S.; Rocks, L.; Szymkowiak, A. E.; Teplin, I. M.

    2012-10-01

    We present a high-resolution spectrum of the diffuse X-ray background from 0.1 to 1 keV for a ~1 sr region of the sky centered at l = 90°, b = +60° using a 36 pixel array of microcalorimeters flown on a sounding rocket. With an energy resolution of 11 eV FWHM below 1 keV, the spectrum's observed line ratios help separate charge exchange contributions originating within the heliosphere from thermal emission of hot gas in the interstellar medium. The X-ray sensitivity below 1 keV was reduced by about a factor of four from contamination that occurred early in the flight, limiting the significance of the results. The observed centroid of helium-like O VII is 568+2 - 3 eV at 90% confidence. Since the centroid expected for thermal emission is 568.4 eV and for charge exchange is 564.2 eV, thermal emission appears to dominate for this line complex. The dominance of thermal emission is consistent with much of the high-latitude O VII emission originating in 2-3 × 106 K gas in the Galactic halo. On the other hand, the observed ratio of C VI Lyγ to Lyα is 0.3 ± 0.2. The expected ratios are 0.04 for thermal emission and 0.24 for charge exchange, indicating that charge exchange must contribute strongly to this line and therefore potentially to the rest of the ROSAT R12 band usually associated with 106 K emission from the Local Hot Bubble. The limited statistics of this experiment and systematic uncertainties due to the contamination require only >32% thermal emission for O VII and >20% from charge exchange for C VI at the 90% confidence level. An experimental gold coating on the silicon substrate of the array greatly reduced extraneous signals induced on nearby pixels from cosmic rays passing through the substrate, reducing the triggered event rate by a factor of 15 from a previous flight of the instrument.

  16. Detection of Lensing Substructure Using Alma Observations of the Dusty Galaxy SDP.81

    DOE PAGES

    Hezaveh, Yashar D.; Dalal, Neal; Marrone, Daniel P.; ...

    2016-05-19

    We study the abundance of substructure in the matter density near galaxies using ALMA Science Verification observations of the strong lensing system SDP.81. We present a method to measure the abundance of subhalos around galaxies using interferometric observations of gravitational lenses. Using simulated ALMA observations we explore the effects of various systematics, including antenna phase errors and source priors, and show how such errors may be measured or marginalized. We apply our formalism to ALMA observations of SDP.81. We find evidence for the presence of a M = 10 8.96±0.12 M ⊙ subhalo near one of the images, with amore » significance of 6.9σ in a joint fit to data from bands 6 and 7; the effect of the subhalo is also detected in both bands individually. We also derive constraints on the abundance of dark matter (DM) subhalos down to M ~ 2 × 10 7 M ⊙, pushing down to the mass regime of the smallest detected satellites in the Local Group, where there are significant discrepancies between the observed population of luminous galaxies and predicted DM subhalos. We find hints of additional substructure, warranting further study using the full SDP.81 data set (including, for example, the spectroscopic imaging of the lensed carbon monoxide emission). We compare the results of this search to the predictions of ΛCDM halos, and find that given current uncertainties in the host halo properties of SDP.81, our measurements of substructure are consistent with theoretical expectations. Finally, observations of larger samples of gravitational lenses with ALMA should be able to improve the constraints on the abundance of galactic substructure.« less

  17. Detectability index of differential phase contrast CT compared with conventional CT: a preliminary channelized Hotelling observer study

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Yang, Yi; Tang, Shaojie

    2013-03-01

    Under the framework of model observer with signal and background exactly known (SKE/BKE), we investigate the detectability of differential phase contrast CT compared with that of the conventional attenuation-based CT. Using the channelized Hotelling observer and the radially symmetric difference-of-Gaussians channel template , we investigate the detectability index and its variation over the dimension of object and detector cells. The preliminary data show that the differential phase contrast CT outperforms the conventional attenuation-based CT significantly in the detectability index while both the object to be detected and the cell of detector used for data acquisition are relatively small. However, the differential phase contrast CT's dominance in the detectability index diminishes with increasing dimension of either object or detector cell, and virtually disappears while the dimension of object or detector cell approaches a threshold, respectively. It is hoped that the preliminary data reported in this paper may provide insightful understanding of the differential phase contrast CT's characteristic in the detectability index and its comparison with that of the conventional attenuation-based CT.

  18. A Control Allocation System for Automatic Detection and Compensation of Phase Shift Due to Actuator Rate Limiting

    NASA Technical Reports Server (NTRS)

    Yildiz, Yidiray; Kolmanovsky, Ilya V.; Acosta, Diana

    2011-01-01

    This paper proposes a control allocation system that can detect and compensate the phase shift between the desired and the actual total control effort due to rate limiting of the actuators. Phase shifting is an important problem in control system applications since it effectively introduces a time delay which may destabilize the closed loop dynamics. A relevant example comes from flight control where aggressive pilot commands, high gain of the flight control system or some anomaly in the system may cause actuator rate limiting and effective time delay introduction. This time delay can instigate Pilot Induced Oscillations (PIO), which is an abnormal coupling between the pilot and the aircraft resulting in unintentional and undesired oscillations. The proposed control allocation system reduces the effective time delay by first detecting the phase shift and then minimizing it using constrained optimization techniques. Flight control simulation results for an unstable aircraft with inertial cross coupling are reported, which demonstrate phase shift minimization and recovery from a PIO event.

  19. Swift Observations Of High-z Radio-loud Quasars Detected With Bat

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita M.; Tueller, J.; Markwardt, C.; Mushotzky, R.; Tavecchio, F.

    2006-01-01

    We present follow-up Swift observations of 4 high-z radio-loud quasars detected with the BAT during the 15-month survey in 15-150 keV. The 0.5-8-keV spectra are best fitted either with a power law with no excess absorption over the Galactic value (0212+735, 0836+710, 2149--307 in higher state) or by a downward-curved broken power law model (0537--286, 2149--307 in lower state). The BAT spectra integrated over the whole 15 months of the survey are fitted with a single power law, with a range of spectral slopes, Gamma=l.3-2.3. Comparison with previous SAX observations shows that there is a trend for the 15-150-keV continuum to soften with fading intensity; on the contrary, little or no spectral variations are observed at medium-hard X-rays. This may suggest either/both dramatic variability above 10-keV, or/and two separate spectral components.

  20. Limitations of the Mycobacterium tuberculosis reference genome H37Rv in the detection of virulence-related loci.

    PubMed

    O'Toole, Ronan F; Gautam, Sanjay S

    2017-10-01

    The genome sequence of Mycobacterium tuberculosis strain H37Rv is an important and valuable reference point in the study of M. tuberculosis phylogeny, molecular epidemiology, and drug-resistance mutations. However, it is becoming apparent that use of H37Rv as a sole reference genome in analysing clinical isolates presents some limitations to fully investigating M. tuberculosis virulence. Here, we examine the presence of single locus variants and the absence of entire genes in H37Rv with respect to strains that are responsible for cases and outbreaks of tuberculosis. We discuss how these polymorphisms may affect phenotypic properties of H37Rv including pathogenicity. Based on our observations and those of other researchers, we propose that use of a single reference genome, H37Rv, is not sufficient for the detection and characterisation of M. tuberculosis virulence-related loci. We recommend incorporation of genome sequences of other reference strains, in particular, direct clinical isolates, in such analyses in addition to H37Rv. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Limited Surface Observations Climatic Summary (LISOCS), Murmansk, USSR. Parts A-F

    DTIC Science & Technology

    1988-06-01

    1 OPERATING LOCATION - A USAFETAC Air Weather Service (MAC) "LIMITED SURFACE OBSERVATIONS" , 3sP6FETAr CLIMATIC SUMMARY "LISOCS" MURMANSK USSR MSC ...3’ 7"󈧵 1 -𔄁 4p-5s UC S6 TLIAL PLAN (Dr ’ EES I I 0 INb N • . 1.. 9.2 7.9 .7 29.9 7.5 !NL 7 𔃾.6 3.. ’,2 17.1 66 . 2.3 3 .6 1.2 7.2 93 TC 7 . 1.3...CEIrATOLOSY R INCH PLPCENIAGE F TEE L UC -NCY Or OCCUPRC NCE (IF SUROFACE WI1ND UTPf C tION VERSUS WINE) lFEfE StEAFL T AC FRU4 POORLYOERY08AT31ON’ Alg

  2. Combining satellite-based fire observations and ground-based lightning detections to identify lightning fires across the conterminous USA

    USGS Publications Warehouse

    Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2012-01-01

    Lightning fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of lightning fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to develop and test an algorithm that combined MODIS fire detections with lightning detections from the National Lightning Detection Network to identify lightning fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected lightning strikes, given a spatiotemporal lag between lightning strike and fire ignition. The algorithm revealed distinctive spatial patterns of lightning fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of lightning fire occurrence, and especially lightning fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of lightning fire activity, and can be used to identify the broad scale factors controlling fire occurrence.

  3. Effects of Kapton Sample Cell Windows on the Detection Limit of Smectite: Implications for CheMin on the Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Achilles, C. N.; Ming, Douglas W.; Morris, R. V.; Blake, D. F.

    2012-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CheMin has two different window materials used for sample cells -- Mylar and Kapton. Instrument details are provided elsewhere. Fe/Mg-smectite (e.g., nontronite) has been identified in Gale Crater, the MSL future landing site, by CRISM spectra. While large quantities of phyllosilicate minerals will be easily detected by CheMin, it is important to establish detection limits of such phases to understand capabilities and limitations of the instrument. A previous study indicated that the (001) peak of smectite at 15 Ang was detectable in a mixture of 1 wt.% smectite with olivine when Mylar is the window material for the sample cell. Complications arise when Kapton is the window material because Kapton itself also has a diffraction peak near 15 Ang (6.8 deg 2 Theta). This study presents results of mineral mixtures of smectite and olivine to determine smectite detection limits for Kapton sample cells. Because the intensity and position of the smectite (001) peak depends on the hydration state, we also analyzed mixtures with "hydrated" and "dehydrated"h smectite to examine the effects of hydration state on detection limits.

  4. The Functional Lumen Imaging Probe Detects Esophageal Contractility not Observed with Manometry in Patients with Achalasia

    PubMed Central

    Carlson, Dustin A.; Lin, Zhiyue; Kahrilas, Peter J.; Sternbach, Joel; Donnan, Erica N.; Friesen, Laurel; Listernick, Zoe; Mogni, Benjamin; Pandolfino, John E.

    2015-01-01

    Background & Aims The functional lumen imaging probe (FLIP) could improve characterization of achalasia subtypes by detecting non-occlusive esophageal contractions not observed with standard manometry. We aimed to evaluate for esophageal contractions during volumetric distention in patients with achalasia using FLIP topography. Methods Fifty one treatment-naïve patients with achalasia, defined and sub-classified by high-resolution esophageal pressure topography, and 10 asymptomatic individuals (controls) were evaluated with the FLIP during endoscopy. During stepwise distension, simultaneous intra-bag pressures and 16 channels of cross-sectional areas were measured; data were exported to software that generated FLIP topography plots. Esophageal contractility was identified by noting periods of reduced luminal diameter. Esophageal contractions were further characterized by propagation direction, repetitiveness, and based on whether they were occluding or non-occluding. Results Esophageal contractility was detected in all 10 controls: 8/10 had repetitive, antegrade, contractions and 9/10 had occluding contractions. Contractility was detected in 27% (4/15) of patients with type I achalasia and 65% (18/26, including 9 with occluding contractions) of patients with type II achalasia. Contractility was detected in all 10 patients with type III achalasia; 8 of these patients had a pattern of contractility not observed in controls (repetitive, retrograde contractions). Conclusions Esophageal contractility not observed with manometry can be detected in patients with achalasia using FLIP topography. The presence and patterns of contractility detected with FLIP topography may represent variations in pathophysiology, such as mechanisms of pan-esophageal pressurization in patients with type II achalasia. These findings could have implications for additional sub-classification to supplement prediction of the achalasia disease course. PMID:26278501

  5. A method for evaluating the performance of computer-aided detection of pulmonary nodules in lung cancer CT screening: detection limit for nodule size and density

    PubMed Central

    Kobayashi, Hajime; Ohkubo, Masaki; Narita, Akihiro; Marasinghe, Janaka C; Murao, Kohei; Matsumoto, Toru; Sone, Shusuke

    2017-01-01

    Objective: We propose the application of virtual nodules to evaluate the performance of computer-aided detection (CAD) of lung nodules in cancer screening using low-dose CT. Methods: The virtual nodules were generated based on the spatial resolution measured for a CT system used in an institution providing cancer screening and were fused into clinical lung images obtained at that institution, allowing site specificity. First, we validated virtual nodules as an alternative to artificial nodules inserted into a phantom. In addition, we compared the results of CAD analysis between the real nodules (n = 6) and the corresponding virtual nodules. Subsequently, virtual nodules of various sizes and contrasts between nodule density and background density (ΔCT) were inserted into clinical images (n = 10) and submitted for CAD analysis. Results: In the validation study, 46 of 48 virtual nodules had the same CAD results as artificial nodules (kappa coefficient = 0.913). Real nodules and the corresponding virtual nodules showed the same CAD results. The detection limits of the tested CAD system were determined in terms of size and density of peripheral lung nodules; we demonstrated that a nodule with a 5-mm diameter was detected when the nodule had a ΔCT > 220 HU. Conclusion: Virtual nodules are effective in evaluating CAD performance using site-specific scan/reconstruction conditions. Advances in knowledge: Virtual nodules can be an effective means of evaluating site-specific CAD performance. The methodology for guiding the detection limit for nodule size/density might be a useful evaluation strategy. PMID:27897029

  6. Faint Object Detection in Multi-Epoch Observations via Catalog Data Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budavári, Tamás; Szalay, Alexander S.; Loredo, Thomas J.

    Astronomy in the time-domain era faces several new challenges. One of them is the efficient use of observations obtained at multiple epochs. The work presented here addresses faint object detection and describes an incremental strategy for separating real objects from artifacts in ongoing surveys. The idea is to produce low-threshold single-epoch catalogs and to accumulate information across epochs. This is in contrast to more conventional strategies based on co-added or stacked images. We adopt a Bayesian approach, addressing object detection by calculating the marginal likelihoods for hypotheses asserting that there is no object or one object in a small imagemore » patch containing at most one cataloged source at each epoch. The object-present hypothesis interprets the sources in a patch at different epochs as arising from a genuine object; the no-object hypothesis interprets candidate sources as spurious, arising from noise peaks. We study the detection probability for constant-flux objects in a Gaussian noise setting, comparing results based on single and stacked exposures to results based on a series of single-epoch catalog summaries. Our procedure amounts to generalized cross-matching: it is the product of a factor accounting for the matching of the estimated fluxes of the candidate sources and a factor accounting for the matching of their estimated directions. We find that probabilistic fusion of multi-epoch catalogs can detect sources with similar sensitivity and selectivity compared to stacking. The probabilistic cross-matching framework underlying our approach plays an important role in maintaining detection sensitivity and points toward generalizations that could accommodate variability and complex object structure.« less

  7. Faint Object Detection in Multi-Epoch Observations via Catalog Data Fusion

    NASA Astrophysics Data System (ADS)

    Budavári, Tamás; Szalay, Alexander S.; Loredo, Thomas J.

    2017-03-01

    Astronomy in the time-domain era faces several new challenges. One of them is the efficient use of observations obtained at multiple epochs. The work presented here addresses faint object detection and describes an incremental strategy for separating real objects from artifacts in ongoing surveys. The idea is to produce low-threshold single-epoch catalogs and to accumulate information across epochs. This is in contrast to more conventional strategies based on co-added or stacked images. We adopt a Bayesian approach, addressing object detection by calculating the marginal likelihoods for hypotheses asserting that there is no object or one object in a small image patch containing at most one cataloged source at each epoch. The object-present hypothesis interprets the sources in a patch at different epochs as arising from a genuine object; the no-object hypothesis interprets candidate sources as spurious, arising from noise peaks. We study the detection probability for constant-flux objects in a Gaussian noise setting, comparing results based on single and stacked exposures to results based on a series of single-epoch catalog summaries. Our procedure amounts to generalized cross-matching: it is the product of a factor accounting for the matching of the estimated fluxes of the candidate sources and a factor accounting for the matching of their estimated directions. We find that probabilistic fusion of multi-epoch catalogs can detect sources with similar sensitivity and selectivity compared to stacking. The probabilistic cross-matching framework underlying our approach plays an important role in maintaining detection sensitivity and points toward generalizations that could accommodate variability and complex object structure.

  8. Limited copy number - high resolution melting (LCN-HRM) enables the detection and identification by sequencing of low level mutations in cancer biopsies

    PubMed Central

    Do, Hongdo; Dobrovic, Alexander

    2009-01-01

    Background Mutation detection in clinical tumour samples is challenging when the proportion of tumour cells, and thus mutant alleles, is low. The limited sensitivity of conventional sequencing necessitates the adoption of more sensitive approaches. High resolution melting (HRM) is more sensitive than sequencing but identification of the mutation is desirable, particularly when it is important to discriminate false positives due to PCR errors or template degradation from true mutations. We thus developed limited copy number - high resolution melting (LCN-HRM) which applies limiting dilution to HRM. Multiple replicate reactions with a limited number of target sequences per reaction allow low level mutations to be detected. The dilutions used (based on Ct values) are chosen such that mutations, if present, can be detected by the direct sequencing of amplicons with aberrant melting patterns. Results Using cell lines heterozygous for mutations, we found that the mutations were not readily detected when they comprised 10% of total alleles (20% tumour cells) by sequencing, whereas they were readily detectable at 5% total alleles by standard HRM. LCN-HRM allowed these mutations to be identified by direct sequencing of those positive reactions. LCN-HRM was then used to review formalin-fixed paraffin-embedded (FFPE) clinical samples showing discordant findings between sequencing and HRM for KRAS exon 2 and EGFR exons 19 and 21. Both true mutations present at low levels and sequence changes due to artefacts were detected by LCN-HRM. The use of high fidelity polymerases showed that the majority of the artefacts were derived from the damaged template rather than replication errors during amplification. Conclusion LCN-HRM bridges the sensitivity gap between HRM and sequencing and is effective in distinguishing between artefacts and true mutations. PMID:19811662

  9. Detection limits of 405 nm and 633 nm excited PpIX fluorescence for brain tumor detection during stereotactic biopsy

    NASA Astrophysics Data System (ADS)

    Markwardt, Niklas; Götz, Marcus; Haj-Hosseini, Neda; Hollnburger, Bastian; Sroka, Ronald; Stepp, Herbert; Zelenkov, Petr; Rühm, Adrian

    2016-04-01

    5-aminolevulinic-acid-(5-ALA)-induced protoporphyrin IX (PpIX) fluorescence may be used to improve stereotactic brain tumor biopsies. In this study, the sensitivity of PpIX-based tumor detection has been investigated for two potential excitation wavelengths (405 nm, 633 nm). Using a 200 μm fiber in contact with semi-infinite optical phantoms containing ink and Lipovenös, PpIX detection limits of 4.0 nM and 200 nM (relating to 1 mW excitation power) were determined for 405 nm and 633 nm excitation, respectively. Hence, typical PpIX concentrations in glioblastomas of a few μM should be well detectable with both wavelengths. Additionally, blood layers of selected thicknesses were placed between fiber and phantom. Red excitation was shown to be considerably less affected by blood interference: A 50 μm blood layer, for instance, blocked the 405- nm-excited fluorescence completely, but reduced the 633-nm-excited signal by less than 50%. Ray tracing simulations demonstrated that - without blood layer - the sensitivity advantage of 405 nm rises for decreasing fluorescent volume from 50-fold to a maximum of 100-fold. However, at a tumor volume of 1 mm3, which is a typical biopsy sample size, the 633-nm-excited fluorescence signal is only reduced by about 10%. Further simulations revealed that with increasing fiber-tumor distance, the signal drops faster for 405 nm. This reduces the risk of detecting tumor tissue outside the needle's coverage, but diminishes the overlap between optically and mechanically sampled volumes. While 405 nm generally offers a higher sensitivity, 633 nm is more sensitive to distant tumors and considerably superior in case of blood-covered tumor tissue.

  10. A sampling design and model for estimating abundance of Nile crocodiles while accounting for heterogeneity of detectability of multiple observers

    USGS Publications Warehouse

    Shirley, Matthew H.; Dorazio, Robert M.; Abassery, Ekramy; Elhady, Amr A.; Mekki, Mohammed S.; Asran, Hosni H.

    2012-01-01

    As part of the development of a management program for Nile crocodiles in Lake Nasser, Egypt, we used a dependent double-observer sampling protocol with multiple observers to compute estimates of population size. To analyze the data, we developed a hierarchical model that allowed us to assess variation in detection probabilities among observers and survey dates, as well as account for variation in crocodile abundance among sites and habitats. We conducted surveys from July 2008-June 2009 in 15 areas of Lake Nasser that were representative of 3 main habitat categories. During these surveys, we sampled 1,086 km of lake shore wherein we detected 386 crocodiles. Analysis of the data revealed significant variability in both inter- and intra-observer detection probabilities. Our raw encounter rate was 0.355 crocodiles/km. When we accounted for observer effects and habitat, we estimated a surface population abundance of 2,581 (2,239-2,987, 95% credible intervals) crocodiles in Lake Nasser. Our results underscore the importance of well-trained, experienced monitoring personnel in order to decrease heterogeneity in intra-observer detection probability and to better detect changes in the population based on survey indices. This study will assist the Egyptian government establish a monitoring program as an integral part of future crocodile harvest activities in Lake Nasser

  11. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA

    USGS Publications Warehouse

    Hunter, Margaret; Dorazio, Robert M.; Butterfield, John S.; Meigs-Friend, Gaia; Nico, Leo; Ferrante, Jason A.

    2017-01-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species’ presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty – indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis, and forensic and clinical diagnostics.

  12. ALMA observations of α Centauri. First detection of main-sequence stars at 3 mm wavelength

    NASA Astrophysics Data System (ADS)

    Liseau, R.; Vlemmings, W.; Bayo, A.; Bertone, E.; Black, J. H.; del Burgo, C.; Chavez, M.; Danchi, W.; De la Luz, V.; Eiroa, C.; Ertel, S.; Fridlund, M. C. W.; Justtanont, K.; Krivov, A.; Marshall, J. P.; Mora, A.; Montesinos, B.; Nyman, L.-A.; Olofsson, G.; Sanz-Forcada, J.; Thébault, P.; White, G. J.

    2015-01-01

    Context. The precise mechanisms that provide the non-radiative energy for heating the chromosphere and the corona of the Sun and those of other stars constitute an active field of research. By studying stellar chromospheres one aims at identifying the relevant physical processes. Defining the permittable extent of the parameter space can also serve as a template for the Sun-as-a-star. This feedback will probably also help identify stars that potentially host planetary systems that are reminiscent of our own. Aims: Earlier observations with Herschel and APEX have revealed the temperature minimum of α Cen, but these were unable to spatially resolve the binary into individual components. With the data reported in this Letter, we aim at remedying this shortcoming. Furthermore, these earlier data were limited to the wavelength region between 100 and 870 μm. In the present context, we intend to extend the spectral mapping (SED) to longer wavelengths, where the contrast between stellar photospheric and chromospheric emission becomes increasingly evident. Methods: The Atacama Large Millimeter/submillimeter Array (ALMA) is particularly suited to point sources, such as unresolved stars. ALMA provides the means to achieve our objectives with both its high sensitivity of the collecting area for the detection of weak signals and the high spatial resolving power of its adaptable interferometer for imaging close multiple stars. Results: This is the first detection of main-sequence stars at a wavelength of 3 mm. Furthermore, the individual components of the binary α Cen AB are clearly detected and spatially well resolved at all ALMA wavelengths. The high signal-to-noise ratios of these data permit accurate determination of their relative flux ratios, i.e., SyB / SyA> = 0.54 ± 0.04 at 440 μm, = 0.46 ± 0.01 at 870 μm, and = 0.47 ± 0.006 at 3.1 mm, respectively. Conclusions: The previously obtained flux ratio of 0.44±0.18, which was based on measurements in the optical and

  13. Lowering thresholds for speed limit enforcement impairs peripheral object detection and increases driver subjective workload.

    PubMed

    Bowden, Vanessa K; Loft, Shayne; Tatasciore, Monica; Visser, Troy A W

    2017-01-01

    Speed enforcement reduces incidences of speeding, thus reducing traffic accidents. Accordingly, it has been argued that stricter speed enforcement thresholds could further improve road safety. Effective speed monitoring however requires driver attention and effort, and human information-processing capacity is limited. Emphasizing speed monitoring may therefore reduce resource availability for other aspects of safe vehicle operation. We investigated whether lowering enforcement thresholds in a simulator setting would introduce further competition for limited cognitive and visual resources. Eighty-four young adult participants drove under conditions where they could be fined for travelling 1, 6, or 11km/h over a 50km/h speed-limit. Stricter speed enforcement led to greater subjective workload and significant decrements in peripheral object detection. These data indicate that the benefits of reduced speeding with stricter enforcement may be at least partially offset by greater mental demands on drivers, reducing their responses to safety-critical stimuli on the road. It is likely these results under-estimate the impact of stricter speed enforcement on real-world drivers who experience significantly greater pressures to drive at or above the speed limit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Upper limits for X-ray emission from Jupiter as measured from the Copernicus satellite

    NASA Technical Reports Server (NTRS)

    Vesecky, J. F.; Culhane, J. L.; Hawkins, F. J.

    1975-01-01

    X-ray telescopic observations are made by the Copernicus satellite for detecting X-ray emission from Jupiter analogous to X-rays from terrestrial aurorae. Values of X-ray fluxes recorded by three Copernicus detectors covering the 0.6 to 7.5 keV energy range are reported. The detectors employed are described and the times at which the observations were made are given. Resulting upper-limit spectra are compared with previous X-ray observations of Jupiter. The upper-limit X-ray fluxes are discussed in terms of magnetospheric activity on Jupiter.

  15. Observations of Phobos by the Mars Express radar MARSIS: Description of the detection techniques and preliminary results

    NASA Astrophysics Data System (ADS)

    Cicchetti, A.; Nenna, C.; Plaut, J. J.; Plettemeier, D.; Noschese, R.; Cartacci, M.; Orosei, R.

    2017-11-01

    The Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) (Picardi et al., 2005) is a synthetic aperture low frequency radar altimeter, onboard the ESA Mars Express orbiter, launched in June 2003. It is the first and so far the only spaceborne radar that has observed the Martian moon Phobos. Radar echoes were collected on different flyby trajectories. The primary aim of sounding Phobos is to prove the feasibility of deep sounding, into its subsurface. MARSIS is optimized for deep penetration investigations and is capable of transmitting at four different bands between 1.3 MHz and 5.5 MHz with a 1 MHz bandwidth. Unfortunately the instrument was originally designed to operate exclusively on Mars, assuming that Phobos would not be observed. Following this assumption, a protection mechanism was implemented in the hardware (HW) to maintain a minimum time separation between transmission and reception phases of the radar. This limitation does not have any impact on Mars observation but it prevented the observation of Phobos. In order to successfully operate the instrument at Phobos, a particular configuration of the MARSIS onboard software (SW) parameters, called ;Range Ambiguity,; was implemented to override the HW protection zone, ensuring at the same time a high level of safety of the instrument. This paper describes the principles of MARSIS onboard processing, and the procedure through which the parameters of the processing software were tuned to observe targets below the minimum distance allowed by hardware. Some preliminary results of data analysis will be shown, with the support of radar echo simulations. A qualitative comparison between the simulated results and the actual data, does not support the detection of subsurface reflectors.

  16. Nonparametric EROC analysis for observer performance evaluation on joint detection and estimation tasks

    NASA Astrophysics Data System (ADS)

    Wunderlich, Adam; Goossens, Bart

    2014-03-01

    The majority of the literature on task-based image quality assessment has focused on lesion detection tasks, using the receiver operating characteristic (ROC) curve, or related variants, to measure performance. However, since many clinical image evaluation tasks involve both detection and estimation (e.g., estimation of kidney stone composition, estimation of tumor size), there is a growing interest in performance evaluation for joint detection and estimation tasks. To evaluate observer performance on such tasks, Clarkson introduced the estimation ROC (EROC) curve, and the area under the EROC curve as a summary figure of merit. In the present work, we propose nonparametric estimators for practical EROC analysis from experimental data, including estimators for the area under the EROC curve and its variance. The estimators are illustrated with a practical example comparing MRI images reconstructed from different k-space sampling trajectories.

  17. A Game Theoretic Fault Detection Filter

    NASA Technical Reports Server (NTRS)

    Chung, Walter H.; Speyer, Jason L.

    1995-01-01

    The fault detection process is modelled as a disturbance attenuation problem. The solution to this problem is found via differential game theory, leading to an H(sub infinity) filter which bounds the transmission of all exogenous signals save the fault to be detected. For a general class of linear systems which includes some time-varying systems, it is shown that this transmission bound can be taken to zero by simultaneously bringing the sensor noise weighting to zero. Thus, in the limit, a complete transmission block can he achieved, making the game filter into a fault detection filter. When we specialize this result to time-invariant system, it is found that the detection filter attained in the limit is identical to the well known Beard-Jones Fault Detection Filter. That is, all fault inputs other than the one to be detected (the "nuisance faults") are restricted to an invariant subspace which is unobservable to a projection on the output. For time-invariant systems, it is also shown that in the limit, the order of the state-space and the game filter can be reduced by factoring out the invariant subspace. The result is a lower dimensional filter which can observe only the fault to be detected. A reduced-order filter can also he generated for time-varying systems, though the computational overhead may be intensive. An example given at the end of the paper demonstrates the effectiveness of the filter as a tool for fault detection and identification.

  18. Assessment of prostate cancer detection with a visual-search human model observer

    NASA Astrophysics Data System (ADS)

    Sen, Anando; Kalantari, Faraz; Gifford, Howard C.

    2014-03-01

    Early staging of prostate cancer (PC) is a significant challenge, in part because of the small tumor sizes in- volved. Our long-term goal is to determine realistic diagnostic task performance benchmarks for standard PC imaging with single photon emission computed tomography (SPECT). This paper reports on a localization receiver operator characteristic (LROC) validation study comparing human and model observers. The study made use of a digital anthropomorphic phantom and one-cm tumors within the prostate and pelvic lymph nodes. Uptake values were consistent with data obtained from clinical In-111 ProstaScint scans. The SPECT simulation modeled a parallel-hole imaging geometry with medium-energy collimators. Nonuniform attenua- tion and distance-dependent detector response were accounted for both in the imaging and the ordered-subset expectation-maximization (OSEM) iterative reconstruction. The observer study made use of 2D slices extracted from reconstructed volumes. All observers were informed about the prostate and nodal locations in an image. Iteration number and the level of postreconstruction smoothing were study parameters. The results show that a visual-search (VS) model observer correlates better with the average detection performance of human observers than does a scanning channelized nonprewhitening (CNPW) model observer.

  19. Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, A S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Campbell, W; Canepa, M; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, E; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fernández Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, Whansun; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Napier, K; Nardecchia, I; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schlassa, S; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tao, D; Tápai, M; Taracchini, A; Taylor, R; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J

    2017-03-24

    We employ gravitational-wave radiometry to map the stochastic gravitational wave background expected from a variety of contributing mechanisms and test the assumption of isotropy using data from the Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. We also search for persistent gravitational waves from point sources with only minimal assumptions over the 20-1726 Hz frequency band. Finding no evidence of gravitational waves from either point sources or a stochastic background, we set limits at 90% confidence. For broadband point sources, we report upper limits on the gravitational wave energy flux per unit frequency in the range F_{α,Θ}(f)<(0.1-56)×10^{-8}    erg cm^{-2} s^{-1} Hz^{-1}(f/25  Hz)^{α-1} depending on the sky location Θ and the spectral power index α. For extended sources, we report upper limits on the fractional gravitational wave energy density required to close the Universe of Ω(f,Θ)<(0.39-7.6)×10^{-8}  sr^{-1}(f/25  Hz)^{α} depending on Θ and α. Directed searches for narrowband gravitational waves from astrophysically interesting objects (Scorpius X-1, Supernova 1987 A, and the Galactic Center) yield median frequency-dependent limits on strain amplitude of h_{0}<(6.7,5.5,  and  7.0)×10^{-25}, respectively, at the most sensitive detector frequencies between 130-175 Hz. This represents a mean improvement of a factor of 2 across the band compared to previous searches of this kind for these sky locations, considering the different quantities of strain constrained in each case.

  20. Observations of interstellar zinc

    NASA Technical Reports Server (NTRS)

    Jura, M.; York, D.

    1981-01-01

    The International Ultraviolet Explorer observations of interstellar zinc toward 10 stars are examined. It is found that zinc is at most only slightly depleted in the interstellar medium; its abundance may serve as a tracer of the true metallicity in the gas. The local interstellar medium has abundances that apparently are homogeneous to within a factor of two, when integrated over paths of about 500 pc, and this result is important for understanding the history of nucleosynthesis in the solar neighborhood. The intrinsic errors in detecting weak interstellar lines are analyzed and suggestions are made as to how this error limit may be lowered to 5 mA per target observation.

  1. DETECTION OF LENSING SUBSTRUCTURE USING ALMA OBSERVATIONS OF THE DUSTY GALAXY SDP.81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hezaveh, Yashar D.; Mao, Yao-Yuan; Morningstar, Warren

    2016-05-20

    We study the abundance of substructure in the matter density near galaxies using ALMA Science Verification observations of the strong lensing system SDP.81. We present a method to measure the abundance of subhalos around galaxies using interferometric observations of gravitational lenses. Using simulated ALMA observations we explore the effects of various systematics, including antenna phase errors and source priors, and show how such errors may be measured or marginalized. We apply our formalism to ALMA observations of SDP.81. We find evidence for the presence of a M = 10{sup 8.96±0.12} M {sub ⊙} subhalo near one of the images, withmore » a significance of 6.9 σ in a joint fit to data from bands 6 and 7; the effect of the subhalo is also detected in both bands individually. We also derive constraints on the abundance of dark matter (DM) subhalos down to M ∼ 2 × 10{sup 7} M {sub ⊙}, pushing down to the mass regime of the smallest detected satellites in the Local Group, where there are significant discrepancies between the observed population of luminous galaxies and predicted DM subhalos. We find hints of additional substructure, warranting further study using the full SDP.81 data set (including, for example, the spectroscopic imaging of the lensed carbon monoxide emission). We compare the results of this search to the predictions of ΛCDM halos, and find that given current uncertainties in the host halo properties of SDP.81, our measurements of substructure are consistent with theoretical expectations. Observations of larger samples of gravitational lenses with ALMA should be able to improve the constraints on the abundance of galactic substructure.« less

  2. Thermal background noise limitations

    NASA Technical Reports Server (NTRS)

    Gulkis, S.

    1982-01-01

    Modern detection systems are increasingly limited in sensitivity by the background thermal photons which enter the receiving system. Expressions for the fluctuations of detected thermal radiation are derived. Incoherent and heterodyne detection processes are considered. References to the subject of photon detection statistics are given.

  3. Observation of force-detected nuclear magnetic resonance in a homogeneous field

    PubMed Central

    Madsen, L. A.; Leskowitz, G. M.; Weitekamp, D. P.

    2004-01-01

    We report the experimental realization of BOOMERANG (better observation of magnetization, enhanced resolution, and no gradient), a sensitive and general method of magnetic resonance. The prototype millimeter-scale NMR spectrometer shows signal and noise levels in agreement with the design principles. We present 1H and 19F NMR in both solid and liquid samples, including time-domain Fourier transform NMR spectroscopy, multiple-pulse echoes, and heteronuclear J spectroscopy. By measuring a 1H-19F J coupling, this last experiment accomplishes chemically specific spectroscopy with force-detected NMR. In BOOMERANG, an assembly of permanent magnets provides a homogeneous field throughout the sample, while a harmonically suspended part of the assembly, a detector, is mechanically driven by spin-dependent forces. By placing the sample in a homogeneous field, signal dephasing by diffusion in a field gradient is made negligible, enabling application to liquids, in contrast to other force-detection methods. The design appears readily scalable to μm-scale samples where it should have sensitivity advantages over inductive detection with microcoils and where it holds great promise for application of magnetic resonance in biology, chemistry, physics, and surface science. We briefly discuss extensions of the BOOMERANG method to the μm and nm scales. PMID:15326302

  4. Visible contrast energy metrics for detection and discrimination

    NASA Astrophysics Data System (ADS)

    Ahumada, Albert J.; Watson, Andrew B.

    2013-03-01

    Contrast energy was proposed by Watson, Barlow, and Robson (Science, 1983) as a useful metric for representing luminance contrast target stimuli because it represents the detectability of the stimulus in photon noise for an ideal observer. We propose here the use of visible contrast energy metrics for detection and discrimination among static luminance patterns. The visibility is approximated with spatial frequency sensitivity weighting and eccentricity sensitivity weighting. The suggested weighting functions revise the Standard Spatial Observer (Watson and Ahumada, J. Vision, 2005) for luminance contrast detection , extend it into the near periphery, and provide compensation for duration. Under the assumption that the detection is limited only by internal noise, both detection and discrimination performance can be predicted by metrics based on the visible energy of the difference images.

  5. Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models.

    PubMed

    Burgués, Javier; Jiménez-Soto, Juan Manuel; Marco, Santiago

    2018-07-12

    The limit of detection (LOD) is a key figure of merit in chemical sensing. However, the estimation of this figure of merit is hindered by the non-linear calibration curve characteristic of semiconductor gas sensor technologies such as, metal oxide (MOX), gasFETs or thermoelectric sensors. Additionally, chemical sensors suffer from cross-sensitivities and temporal stability problems. The application of the International Union of Pure and Applied Chemistry (IUPAC) recommendations for univariate LOD estimation in non-linear semiconductor gas sensors is not straightforward due to the strong statistical requirements of the IUPAC methodology (linearity, homoscedasticity, normality). Here, we propose a methodological approach to LOD estimation through linearized calibration models. As an example, the methodology is applied to the detection of low concentrations of carbon monoxide using MOX gas sensors in a scenario where the main source of error is the presence of uncontrolled levels of humidity. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Correlation between a 2D channelized Hotelling observer and human observers in a low-contrast detection task with multislice reading in CT.

    PubMed

    Yu, Lifeng; Chen, Baiyu; Kofler, James M; Favazza, Christopher P; Leng, Shuai; Kupinski, Matthew A; McCollough, Cynthia H

    2017-08-01

    Model observers have been successfully developed and used to assess the quality of static 2D CT images. However, radiologists typically read images by paging through multiple 2D slices (i.e., multislice reading). The purpose of this study was to correlate human and model observer performance in a low-contrast detection task performed using both 2D and multislice reading, and to determine if the 2D model observer still correlate well with human observer performance in multislice reading. A phantom containing 18 low-contrast spheres (6 sizes × 3 contrast levels) was scanned on a 192-slice CT scanner at five dose levels (CTDI vol = 27, 13.5, 6.8, 3.4, and 1.7 mGy), each repeated 100 times. Images were reconstructed using both filtered-backprojection (FBP) and an iterative reconstruction (IR) method (ADMIRE, Siemens). A 3D volume of interest (VOI) around each sphere was extracted and placed side-by-side with a signal-absent VOI to create a 2-alternative forced choice (2AFC) trial. Sixteen 2AFC studies were generated, each with 100 trials, to evaluate the impact of radiation dose, lesion size and contrast, and reconstruction methods on object detection. In total, 1600 trials were presented to both model and human observers. Three medical physicists acted as human observers and were allowed to page through the 3D volumes to make a decision for each 2AFC trial. The human observer performance was compared with the performance of a multislice channelized Hotelling observer (CHO_MS), which integrates multislice image data, and with the performance of previously validated CHO, which operates on static 2D images (CHO_2D). For comparison, the same 16 2AFC studies were also performed in a 2D viewing mode by the human observers and compared with the multislice viewing performance and the two CHO models. Human observer performance was well correlated with the CHO_2D performance in the 2D viewing mode [Pearson product-moment correlation coefficient R = 0.972, 95% confidence

  7. AN ALTERNATIVE CALIBRATION OF CR-39 DETECTORS FOR RADON DETECTION BEYOND THE SATURATION LIMIT.

    PubMed

    Franci, Daniele; Aureli, Tommaso; Cardellini, Francesco

    2016-12-01

    Time-integrated measurements of indoor radon levels are commonly carried out using solid-state nuclear track detectors (SSNTDs), due to the numerous advantages offered by this radiation detection technique. However, the use of SSNTD also presents some problems that may affect the accuracy of the results. The effect of overlapping tracks often results in the underestimation of the detected track density, which leads to the reduction of the counting efficiency for increasing radon exposure. This article aims to address the effect of overlapping tracks by proposing an alternative calibration technique based on the measurement of the fraction of the detector surface covered by alpha tracks. The method has been tested against a set of Monte Carlo data and then applied to a set of experimental data collected at the radon chamber of the Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti, at the ENEA centre in Casaccia, using CR-39 detectors. It has been proved that the method allows to extend the detectable range of radon exposure far beyond the intrinsic limit imposed by the standard calibration based on the track density. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Detection of special nuclear material by observation of delayed neutrons with a novel fast neutron composite detector

    NASA Astrophysics Data System (ADS)

    Mayer, Michael; Nattress, Jason; Barhoumi Meddeb, Amira; Foster, Albert; Trivelpiece, Cory; Rose, Paul; Erickson, Anna; Ounaies, Zoubeida; Jovanovic, Igor

    2015-10-01

    Detection of shielded special nuclear material is crucial to countering nuclear terrorism and proliferation, but its detection is challenging. By observing the emission of delayed neutrons, which is a unique signature of nuclear fission, the presence of nuclear material can be inferred. We report on the observation of delayed neutrons from natural uranium by using monoenergetic photons and neutrons to induce fission. An interrogating beam of 4.4 MeV and 15.1 MeV gamma-rays and neutrons was produced using the 11B(d,n-γ)12C reaction and used to probe different targets. Neutron detectors with complementary Cherenkov detectors then discriminate material undergoing fission. A Li-doped glass-polymer composite neutron detector was used, which displays excellent n/ γ discrimination even at low energies, to observe delayed neutrons from uranium fission. Delayed neutrons have relatively low energies (~0.5 MeV) compared to prompt neutrons, which makes them difficult to detect using recoil-based detectors. Neutrons were counted and timed after the beam was turned off to observe the characteristic decaying time profile of delayed neutrons. The expected decay of neutron emission rate is in agreement with the common parametrization into six delayed neutron groups.

  9. SOFIA Observations of SN 2010jl: Another Non-Detection of the 9.7 Micrometer Silicate Dust Feature

    NASA Technical Reports Server (NTRS)

    Williams, Brian J.; Fox, Ori D.

    2015-01-01

    We present photometric observations from the Stratospheric Observatory for Infrared Astronomy (SOFIA) at 11.1 micrometers of the Type IIn supernova (SN IIn) 2010jl. The SN is undetected by SOFIA, but the upper limits obtained, combined with new and archival detections from Spitzer at 3.6 and 4.5 micrometers, allow us to characterize the composition of the dust present. Dust in other SN IIn has been shown in previous works to reside in a circumstellar shell of material ejected by the progenitor system in the few millennia prior to explosion. Our model fits show that the dust in the system shows no evidence for the strong, ubiquitous 9.7 micrometer feature from silicate dust, suggesting the presence of carbonaceous grains. The observations are best fit with 0.01-0.05 solar mass of carbonaceous dust radiating at a temperature of approximately 550-620 degrees Kelvin. The dust composition may reveal clues concerning the nature of the progenitor system, which remains ambiguous for this subclass. Most of the single star progenitor systems proposed for SNe IIn, such as luminous blue variables, red supergiants, yellow hypergiants, and B[e] stars, all clearly show silicate dust in their pre-SN outflows. However, this post-SN result is consistent with the small sample of SNe IIn with mid-infrared observations, none of which show signs of emission from silicate dust in their infrared spectra.

  10. Retrospective observation on contribution and limitations of screening for breast cancer with mammography in Korea: detection rate of breast cancer and incidence rate of interval cancer of the breast.

    PubMed

    Lee, Kunsei; Kim, Hyeongsu; Lee, Jung Hyun; Jeong, Hyoseon; Shin, Soon Ae; Han, Taehwa; Seo, Young Lan; Yoo, Youngbum; Nam, Sang Eun; Park, Jong Heon; Park, Yoo Mi

    2016-11-18

    The purpose of this study was to determine the benefits and limitations of screening for breast cancer using mammography. Descriptive design with follow-up was used in the study. Data from breast cancer screening and health insurance claim data were used. The study population consisted of all participants in breast cancer screening from 2009 to 2014. Crude detection rate, positive predictive value and sensitivity and specificity of breast cancer screening and, incidence rate of interval cancer of the breast were calculated. The crude detection rate of breast cancer screening per 100,000 participants increased from 126.3 in 2009 to 182.1 in 2014. The positive predictive value of breast cancer screening per 100,000 positives increased from 741.2 in 2009 to 1,367.9 in 2014. The incidence rate of interval cancer of the breast per 100,000 negatives increased from 51.7 in 2009 to 76.3 in 2014. The sensitivities of screening for breast cancer were 74.6% in 2009 and 75.1% in 2014 and the specificities were 83.1% in 2009 and 85.7% in 2014. To increase the detection rate of breast cancer by breast cancer screening using mammography, the participation rate should be higher and an environment where accurate mammography and reading can be performed and reinforcement of quality control are required. To reduce the incidence rate of interval cancer of the breast, it will be necessary to educate women after their 20s to perform self-examination of the breast once a month regardless of participation in screening for breast cancer.

  11. Chandra Observations of Magnetic White Dwarfs and Their Theoretical Implications

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Noble, M.; Porter, J. G.; Winget, D. E.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Observations of cool DA and DB white dwarfs have not yet been successful in detecting coronal X-ray emission but observations of late-type dwarfs and giants show that coronae are common for these stars. To produce coronal X-rays, a star must have dynamo-generated surface magnetic fields and a well-developed convection zone. There is strong observational evidence that the DA star LHS 1038 and the DB star GD 358 have weak and variable surface magnetic fields. Since these fields are likely to be generated by dynamo action and since both stars have well-developed convection zones, theory predicts detectable levels of coronal X-rays from these white dwarfs. However, we present analysis of Chandra observations of both stars showing no detectable X-ray emission. The derived upper limits for the X-ray fluxes provide strong constraints on theories of formation of coronae around magnetic white dwarfs.

  12. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA.

    PubMed

    Hunter, Margaret E; Dorazio, Robert M; Butterfield, John S S; Meigs-Friend, Gaia; Nico, Leo G; Ferrante, Jason A

    2017-03-01

    A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low-concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species' presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty-indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis and forensic and clinical diagnostics. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  13. Observed Limits on Charge Exchange Contributions to the Diffuse X-Ray Background

    NASA Technical Reports Server (NTRS)

    Crowder, S. G.; Barger, K. A.; Brandl, D. E.; Eckart, M. E.; Galeazzi, M.; Kelley, R. L.; Kilbourne, C. A.; McCammon, D.; Pfendner, C. G.; Porter, F. S.; hide

    2012-01-01

    We present a high-resolution spectrum of the diffuse X-ray background from 0.1 to 1 keV for an approximately 1 sr region of the sky centered at l = 90 degrees b = +60 degrees using a 36 pixel array of microcalorimeters flown on a sounding rocket. With an energy resolution of 11 eV FWHM below 1 keV, the spectrum s observed line ratios help separate charge exchange contributions originating within the heliosphere from thermal emission of hot gas in the interstellar medium. The X-ray sensitivity below 1 keV was reduced by about a factor of four from contamination that occurred early in the flight, limiting the significance of the results. The observed centroid of helium-like O VII is 568 (sup +2 (sub -3) eV at 90% confidence. Since the centroid expected for thermal emission is 568.4 eV and for charge exchange is 564.2 eV, thermal emission appears to dominate for this line complex. The dominance of thermal emission is consistent with much of the high-latitude O VII emission originating in 2-3 x 10(exp 6) K gas in the Galactic halo. On the other hand, the observed ratio of C VI Lygamma to Lyalpha is 0.3 plus or minus 0.2. The expected ratios are 0.04 for thermal emission and 0.24 for charge exchange, indicating that charge exchange must contribute strongly to this line and therefore potentially to the rest of the ROSAT R12 band usually associated with 10(sup 6) K emission from the Local Hot Bubble. The limited statistics of this experiment and systematic uncertainties due to the contamination require only greater than 32% thermal emission for O VII and greater than 20% from charge exchange for C VI at the 90% confidence level. An experimental gold coating on the silicon substrate of the array greatly reduced extraneous signals induced on nearby pixels from cosmic rays passing through the substrate, reducing the triggered event rate by a factor of 15 from a previous flight of the instrument.

  14. Detection of Hepatitis B Virus DNA among Chronic and potential Occult HBV patients in resource-limited settings by Loop-Mediated Isothermal Amplification assay.

    PubMed

    Akram, Arifa; Islam, S M Rashedul; Munshi, Saif Ullah; Tabassum, Shahina

    2018-05-16

    Transmission of Hepatitis B Virus (HBV) usually occurs due to the transfusion of blood or blood products from chronic HBV (CHB) or occult HBV infected (OBI) patients. Besides serological tests e.g. HBsAg and anti-HBc (total), detection of HBV-DNA is necessary for the diagnosis of OBI patients. Different nucleic acid tests (NATs) including real-time-Polymerase Chain Reaction (qPCR) are used for the detect HBV-DNA. The NATs are expensive and require technical expertise which are barriers to introducing them in resource-limited settings. This study was undertaken to evaluate the use of Loop-Mediated Isothermal Amplification (LAMP) assay as an alternative to qPCR for the detection of HBV-DNA in CHB and potential OBI patients in resource-limited settings. Following the published protocols with some modifications, a LAMP assay was developed for detection of HBV-DNA by either using a heat block followed by detection in an agarose gel or using a qPCR thermocycler. The LAMP assay was applied to supernatant prepared from heat treated serum collected from CHB and potential OBI patients. HBV viral load in serum was measured by qPCR using a single step HBV-DNA quantification kit. Among 200 samples tested, qPCR was capable to detect HBV-DNA in 25.5% of cases, whereas LAMP assay detected HBV-DNA in 43.5% cases. The qPCR was able to detect 11 (9.16%) potential OBI cases, whereas LAMP assay identified HBV-DNA in 43 (35.83%) cases. In addition to tests for HBsAg and/or anti-HBc (total), detection of HBV-DNA by LAMP assay may aid in preventing post-transfusion HBV infection in resource-limited settings. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Observing Quantum State Diffusion by Heterodyne Detection of Fluorescence

    NASA Astrophysics Data System (ADS)

    Campagne-Ibarcq, P.; Six, P.; Bretheau, L.; Sarlette, A.; Mirrahimi, M.; Rouchon, P.; Huard, B.

    2016-01-01

    A qubit can relax by fluorescence, which prompts the release of a photon into its electromagnetic environment. By counting the emitted photons, discrete quantum jumps of the qubit state can be observed. The succession of states occupied by the qubit in a single experiment, its quantum trajectory, depends in fact on the kind of detector. How are the quantum trajectories modified if one measures continuously the amplitude of the fluorescence field instead? Using a superconducting parametric amplifier, we perform heterodyne detection of the fluorescence of a superconducting qubit. For each realization of the measurement record, we can reconstruct a different quantum trajectory for the qubit. The observed evolution obeys quantum state diffusion, which is characteristic of quantum measurements subject to zero-point fluctuations. Independent projective measurements of the qubit at various times provide a quantitative verification of the reconstructed trajectories. By exploring the statistics of quantum trajectories, we demonstrate that the qubit states span a deterministic surface in the Bloch sphere at each time in the evolution. Additionally, we show that when monitoring fluorescence field quadratures, coherent superpositions are generated during the decay from excited to ground state. Counterintuitively, measuring light emitted during relaxation can give rise to trajectories with increased excitation probability.

  16. JAMES WEBB SPACE TELESCOPE CAN DETECT KILONOVAE IN GRAVITATIONAL WAVE FOLLOW-UP SEARCH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartos, I.; Márka, S.; Huard, T. L., E-mail: ibartos@phys.columbia.edu

    Kilonovae represent an important electromagnetic counterpart for compact binary mergers, which could become the most commonly detected gravitational-wave (GW) source. Follow-up observations of kilonovae, triggered by GW events, are nevertheless difficult due to poor localization by GW detectors and due to their faint near-infrared peak emission, which has limited observational capability. We show that the Near-Infrared Camera (NIRCam) on the James Webb Space Telescope will be able to detect kilonovae within the relevant GW-detection range of ∼200 Mpc in short (≲12-s) exposure times for a week following the merger. Despite this sensitivity, a kilonova search fully covering a fiducial localizedmore » area of 10 deg{sup 2} will not be viable with NIRCam due to its limited field of view. However, targeted surveys may be developed to optimize the likelihood of discovering kilonovae efficiently within limited observing time. We estimate that a survey of 10 deg{sup 2} focused on galaxies within 200 Mpc would require about 13 hr, dominated by overhead times; a survey further focused on galaxies exhibiting high star formation rates would require ∼5 hr. The characteristic time may be reduced to as little as ∼4 hr, without compromising the likelihood of detecting kilonovae, by surveying sky areas associated with 50%, rather than 90%, confidence regions of 3 GW events, rather than a single event. Upon the detection and identification of a kilonova, a limited number of NIRCam follow-up observations could constrain the properties of matter ejected by the binary and the equation of state of dense nuclear matter.« less

  17. Solid phase extraction of large volume of water and beverage samples to improve detection limits for GC-MS analysis of bisphenol A and four other bisphenols.

    PubMed

    Cao, Xu-Liang; Popovic, Svetlana

    2018-01-01

    Solid phase extraction (SPE) of large volumes of water and beverage products was investigated for the GC-MS analysis of bisphenol A (BPA), bisphenol AF (BPAF), bisphenol F (BPF), bisphenol E (BPE), and bisphenol B (BPB). While absolute recoveries of the method were improved for water and some beverage products (e.g. diet cola, iced tea), breakthrough may also have occurred during SPE of 200 mL of other beverages (e.g. BPF in cola). Improvements in method detection limits were observed with the analysis of large sample volumes for all bisphenols at ppt (pg/g) to sub-ppt levels. This improvement was found to be proportional to sample volumes for water and beverage products with less interferences and noise levels around the analytes. Matrix effects and interferences were observed during SPE of larger volumes (100 and 200 mL) of the beverage products, and affected the accurate analysis of BPF. This improved method was used to analyse bisphenols in various beverage samples, and only BPA was detected, with levels ranging from 0.022 to 0.030 ng/g for products in PET bottles, and 0.085 to 0.32 ng/g for products in cans.

  18. Discriminating between camouflaged targets by their time of detection by a human-based observer assessment method

    NASA Astrophysics Data System (ADS)

    Selj, G. K.; Søderblom, M.

    2015-10-01

    Detection of a camouflaged object in natural sceneries requires the target to be distinguishable from its local background. The development of any new camouflage pattern therefore has to rely on a well-founded test methodology - which has to be correlated with the final purpose of the pattern - as well as an evaluation procedure, containing the optimal criteria for i) discriminating between the targets and then eventually ii) for a final rank of the targets. In this study we present results from a recent camouflage assessment trial where human observers were used in a search by photo methodology to assess generic test camouflage patterns. We conducted a study to investigate possible improvements in camouflage patterns for battle dress uniforms. The aim was to do a comparative study of potential, and generic patterns intended for use in arid areas (sparsely vegetated, semi desert). We developed a test methodology that was intended to be simple, reliable and realistic with respect to the operational benefit of camouflage. Therefore we chose to conduct a human based observer trial founded on imagery of realistic targets in natural backgrounds. Inspired by a recent and similar trial in the UK, we developed new and purpose-based software to be able to conduct the observer trial. Our preferred assessment methodology - the observer trial - was based on target recordings in 12 different, but operational relevant scenes, collected in a dry and sparsely vegetated area (Rhodes). The scenes were chosen with the intention to span as broadly as possible. The targets were human-shaped mannequins and were situated identically in each of the scenes to allow for a relative comparison of camouflage effectiveness in each scene. Test of significance, among the targets' performance, was carried out by non-parametric tests as the corresponding time of detection distributions in overall were found to be difficult to parameterize. From the trial, containing 12 different scenes from

  19. Using channelized Hotelling observers to quantify temporal effects of medical liquid crystal displays on detection performance

    NASA Astrophysics Data System (ADS)

    Platiša, Ljiljana; Goossens, Bart; Vansteenkiste, Ewout; Badano, Aldo; Philips, Wilfried

    2010-02-01

    Clinical practice is rapidly moving in the direction of volumetric imaging. Often, radiologists interpret these images in liquid crystal displays at browsing rates of 30 frames per second or higher. However, recent studies suggest that the slow response of the display can compromise image quality. In order to quantify the temporal effect of medical displays on detection performance, we investigate two designs of a multi-slice channelized Hotelling observer (msCHO) model in the task of detecting a single-slice signal in multi-slice simulated images. The design of msCHO models is inspired by simplifying assumptions about how humans observe while viewing in the stack-browsing mode. For comparison, we consider a standard CHO applied only on the slice where the signal is located, recently used in a similar study. We refer to it as a single-slice CHO (ssCHO). Overall, our results confirm previous findings that the slow response of displays degrades the detection performance of the observers. More specifically, the observed performance range of msCHO designs is higher compared to the ssCHO suggesting that the extent and rate of degradation, though significant, may be less drastic than previously estimated by the ssCHO. Especially, the difference between msCHO and ssCHO is more significant for higher browsing speeds than for slow image sequences or static images. This, together with their design criteria driven by the assumptions about humans, makes the msCHO models promising candidates for further studies aimed at building anthropomorphic observer models for the stack-mode image presentation.

  20. Low contrast detection in abdominal CT: comparing single-slice and multi-slice tasks

    NASA Astrophysics Data System (ADS)

    Ba, Alexandre; Racine, Damien; Viry, Anaïs.; Verdun, Francis R.; Schmidt, Sabine; Bochud, François O.

    2017-03-01

    Image quality assessment is crucial for the optimization of computed tomography (CT) protocols. Human and mathematical model observers are increasingly used for the detection of low contrast signal in abdominal CT, but are frequently limited to the use of a single image slice. Another limitation is that most of them only consider the detection of a signal embedded in a uniform background phantom. The purpose of this paper was to test if human observer performance is significantly different in CT images read in single or multiple slice modes and if these differences are the same for anatomical and uniform clinical images. We investigated detection performance and scrolling trends of human observers of a simulated liver lesion embedded in anatomical and uniform CT backgrounds. Results show that observers don't take significantly benefit of additional information provided in multi-slice reading mode. Regarding the background, performances are moderately higher for uniform than for anatomical images. Our results suggest that for low contrast detection in abdominal CT, the use of multi-slice model observers would probably only add a marginal benefit. On the other hand, the quality of a CT image is more accurately estimated with clinical anatomical backgrounds.

  1. Observations of Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report 5-(sigma) tangent column detections of Al and Fe, and strict 3-(sigma) tangent column upper limits for Ca(+) in Mercury's exosphere obtained using the HIRES spectrometer on the Keck I telescope. These are the first direct detections of Al and Fe in Mercury's exosphere. Our Ca(-) observation is consistent with that reported by The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft.

  2. The Functional Lumen Imaging Probe Detects Esophageal Contractility Not Observed With Manometry in Patients With Achalasia.

    PubMed

    Carlson, Dustin A; Lin, Zhiyue; Kahrilas, Peter J; Sternbach, Joel; Donnan, Erica N; Friesen, Laurel; Listernick, Zoe; Mogni, Benjamin; Pandolfino, John E

    2015-12-01

    The functional lumen imaging probe (FLIP) could improve the characterization of achalasia subtypes by detecting nonocclusive esophageal contractions not observed with standard manometry. We aimed to evaluate esophageal contractions during volumetric distention in patients with achalasia using FLIP topography. Fifty-one treatment-naive patients with achalasia, defined and subclassified by high-resolution esophageal pressure topography, and 10 asymptomatic individuals (controls) were evaluated with the FLIP during endoscopy. During stepwise distension, simultaneous intrabag pressures and 16 channels of cross-sectional areas were measured; data were exported to software that generated FLIP topography plots. Esophageal contractility was identified by noting periods of reduced luminal diameter. Esophageal contractions were characterized further by propagation direction, repetitiveness, and based on whether they were occluding or nonoccluding. Esophageal contractility was detected in all 10 controls: 8 of 10 had repetitive antegrade contractions and 9 of 10 had occluding contractions. Contractility was detected in 27% (4 of 15) of patients with type I achalasia and in 65% (18 of 26, including 9 with occluding contractions) of patients with type II achalasia. Contractility was detected in all 10 patients with type III achalasia; 8 of these patients had a pattern of contractility that was not observed in controls (repetitive retrograde contractions). Esophageal contractility not observed with manometry can be detected in patients with achalasia using FLIP topography. The presence and patterns of contractility detected with FLIP topography may represent variations in pathophysiology, such as mechanisms of panesophageal pressurization in patients with type II achalasia. These findings could have implications for additional subclassification to supplement prediction of the achalasia disease course. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights

  3. Lesion detection performance of cone beam CT images with anatomical background noise: single-slice vs. multi-slice human and model observer study

    NASA Astrophysics Data System (ADS)

    Han, Minah; Jang, Hanjoo; Baek, Jongduk

    2018-03-01

    We investigate lesion detectability and its trends for different noise structures in single-slice and multislice CBCT images with anatomical background noise. Anatomical background noise is modeled using a power law spectrum of breast anatomy. Spherical signal with a 2 mm diameter is used for modeling a lesion. CT projection data are acquired by the forward projection and reconstructed by the Feldkamp-Davis-Kress algorithm. To generate different noise structures, two types of reconstruction filters (Hanning and Ram-Lak weighted ramp filters) are used in the reconstruction, and the transverse and longitudinal planes of reconstructed volume are used for detectability evaluation. To evaluate single-slice images, the central slice, which contains the maximum signal energy, is used. To evaluate multislice images, central nine slices are used. Detectability is evaluated using human and model observer studies. For model observer, channelized Hotelling observer (CHO) with dense difference-of-Gaussian (D-DOG) channels are used. For all noise structures, detectability by a human observer is higher for multislice images than single-slice images, and the degree of detectability increase in multislice images depends on the noise structure. Variation in detectability for different noise structures is reduced in multislice images, but detectability trends are not much different between single-slice and multislice images. The CHO with D-DOG channels predicts detectability by a human observer well for both single-slice and multislice images.

  4. Survey of 25 years of observations with the aim of detecting intelligent extraterrestrial beings

    NASA Astrophysics Data System (ADS)

    Vallee, J. P.

    1985-02-01

    Observational programs intended to detect the presence of intelligent extraterrestrial life or to locate stars with potentially life-supporting planets are surveyed for the period 1960-1985. The astrometric, spectroscopic, photometric, and linear-polarimetric techniques employed are explained; the 45 programs undertaken are listed in tables; a typical observation at Algonquin Radioastronomy Observatory is described; theoretical computations of the number of life-supporting planets are summarized; and hypotheses advanced to explain the fact that no contact appears to have been made are discussed.

  5. Using self-organizing maps to determine observation threshold limit predictions in highly variant data

    USGS Publications Warehouse

    Paganoni, C.A.; Chang, K.C.; Robblee, M.B.

    2006-01-01

    A significant data quality challenge for highly variant systems surrounds the limited ability to quantify operationally reasonable limits on the data elements being collected and provide reasonable threshold predictions. In many instances, the number of influences that drive a resulting value or operational range is too large to enable physical sampling for each influencer, or is too complicated to accurately model in an explicit simulation. An alternative method to determine reasonable observation thresholds is to employ an automation algorithm that would emulate a human analyst visually inspecting data for limits. Using the visualization technique of self-organizing maps (SOM) on data having poorly understood relationships, a methodology for determining threshold limits was developed. To illustrate this approach, analysis of environmental influences that drive the abundance of a target indicator species (the pink shrimp, Farfantepenaeus duorarum) provided a real example of applicability. The relationship between salinity and temperature and abundance of F. duorarum is well documented, but the effect of changes in water quality upstream on pink shrimp abundance is not well understood. The highly variant nature surrounding catch of a specific number of organisms in the wild, and the data available from up-stream hydrology measures for salinity and temperature, made this an ideal candidate for the approach to provide a determination about the influence of changes in hydrology on populations of organisms.

  6. Using self-organizing maps to determine observation threshold limit predictions in highly variant data

    NASA Astrophysics Data System (ADS)

    Paganoni, Christopher A.; Chang, K. C.; Robblee, Michael B.

    2006-05-01

    A significant data quality challenge for highly variant systems surrounds the limited ability to quantify operationally reasonable limits on the data elements being collected and provide reasonable threshold predictions. In many instances, the number of influences that drive a resulting value or operational range is too large to enable physical sampling for each influencer, or is too complicated to accurately model in an explicit simulation. An alternative method to determine reasonable observation thresholds is to employ an automation algorithm that would emulate a human analyst visually inspecting data for limits. Using the visualization technique of self-organizing maps (SOM) on data having poorly understood relationships, a methodology for determining threshold limits was developed. To illustrate this approach, analysis of environmental influences that drive the abundance of a target indicator species (the pink shrimp, Farfantepenaeus duorarum) provided a real example of applicability. The relationship between salinity and temperature and abundance of F. duorarum is well documented, but the effect of changes in water quality upstream on pink shrimp abundance is not well understood. The highly variant nature surrounding catch of a specific number of organisms in the wild, and the data available from up-stream hydrology measures for salinity and temperature, made this an ideal candidate for the approach to provide a determination about the influence of changes in hydrology on populations of organisms.

  7. Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions

    NASA Astrophysics Data System (ADS)

    Factor, Samuel M.; Kraus, Adam L.

    2017-01-01

    Direct detection of close in companions (exoplanets or binary systems) is notoriously difficult. While coronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast. Non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, though the mask discards ˜95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM to a diffraction limited image utilizing the full aperture. Instead of non-redundant closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I have developed my own faint companion detection pipeline which utilizes an Bayesian analysis of kernel-phases. I have used this pipeline to search for new companions in archival images from HST/NICMOS in order to constrain planet and binary formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical λ/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. This technique can easily be applied to archival data as no mask is needed and will thus make the detection of close in companions cheap and simple as no additional observations are needed. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time.

  8. Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions

    NASA Astrophysics Data System (ADS)

    Factor, Samuel M.; Kraus, Adam L.

    2017-06-01

    Direct detection of close in companions (exoplanets or binary systems) is notoriously difficult. While coronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast near λ/D. Non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, though the mask discards ˜ 95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM to a diffraction limited image utilizing the full aperture. Instead of non-redundant closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I have developed a new, easy to use, faint companion detection pipeline which analyzes kernel-phases utilizing Bayesian model comparison. I demonstrate this pipeline on archival images from HST/NICMOS, searching for new companions in order to constrain binary formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical λ/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time. As no mask is needed, this technique can easily be applied to archival data and even target acquisition images (e.g. from JWST), making the detection of close in companions cheap and simple as no additional observations are needed.

  9. SUPPLEMENT TO EPA COMPENDIUM METHOD TO-15 - REDUCTION OF METHOD DETECTION LIMITS TO MEET VAPOR INTRUSION MONITORING NEEDS

    EPA Science Inventory

    The Supplement to EPA Compendium Method TO-15 provides guidance for reducing the method detection limit (MDL) for the compound 1,1- dichloroethene (1,1-DCE) and for other volatile organic compounds (VOCs) from 0.5 ppbv, as cited in Method TO-15, to much lower concentrations. R...

  10. SUPPLEMENT TO EPA COMPENDIUM METHOD TO-15 - REDUCTION OF METHOD DETECTION LIMITS TO MEET VAPOR INTRUSION MONITORING NEEDS

    EPA Science Inventory

    The Supplement to EPA Compendium Method TO-15 provides guidance for reducing the method detection limit (MDL) for the compound 1,1-dichloroethene (1,1-DCE) and for other volatile organic compounds (VOCs) from 0.5 parts per billion by volume (ppbv), as cited in Method TO-15, to ...

  11. Detecting Exoplanets with the New Worlds Observer: The Problem of Exozodiacal Dust

    NASA Technical Reports Server (NTRS)

    Roberge, A.; Noecker, M. C.; Glassman, T. M.; Oakley, P.; Turnbull, M. C.

    2009-01-01

    Dust coming from asteroids and comets will strongly affect direct imaging and characterization of terrestrial planets in the Habitable Zones of nearby stars. Such dust in the Solar System is called the zodiacal dust (or 'zodi' for short). Higher levels of similar dust are seen around many nearby stars, confined in disks called debris disks. Future high-contrast images of an Earth-like exoplanet will very likely be background-limited by light scattered of both the local Solar System zodi and the circumstellar dust in the extrasolar system (the exozodiacal dust). Clumps in the exozodiacal dust, which are expected in planet-hosting systems, may also be a source of confusion. Here we discuss the problems associated with imaging an Earth-like planet in the presence of unknown levels of exozodiacal dust. Basic formulae for the exoplanet imaging exposure time as function of star, exoplanet, zodi, exozodi, and telescope parameters will be presented. To examine the behavior of these formulae, we apply them to the New Worlds Observer (NWO) mission. NWO is a proposed 4-meter UV/optical/near-IR telescope, with a free flying starshade to suppress the light from a nearby star and achieve the high contrast needed for detection and characterization of a terrestrial planet in the star's Habitable Zone. We find that NWO can accomplish its science goals even if exozodiacal dust levels are typically much higher than the Solar System zodi level. Finally, we highlight a few additional problems relating to exozodiacal dust that have yet to be solved.

  12. Volcanic eruption detection with TOMS

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.

    1987-01-01

    The Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) is designed for mapping of the atmospheric ozone distribution. Absorption by sulfur dioxide at the same ultraviolet spectral wavelengths makes it possible to observe and resolve the size of volcanic clouds. The sulfur dioxide absorption is discriminated from ozone and water clouds in the data processing by their spectral signatures. Thus, the sulfur dioxide can serve as a tracer which appears in volcanic eruption clouds because it is not present in other clouds. The detection limit with TOMS is close to the theoretical limit due to telemetry signal quantization of 1000 metric tons (5-sigma threshold) within the instrument field of view (50 by 50 km near the nadir). Requirements concerning the use of TOMS in detection of eruptions, geochemical cycles, and volcanic climatic effects are discussed.

  13. Natural history of optical coherence tomography-detected non-flow-limiting edge dissections following drug-eluting stent implantation.

    PubMed

    Radu, Maria D; Räber, Lorenz; Heo, Jungho; Gogas, Bill D; Jørgensen, Erik; Kelbæk, Henning; Muramatsu, Takashi; Farooq, Vasim; Helqvist, Steffen; Garcia-Garcia, Hector M; Windecker, Stephan; Saunamäki, Kari; Serruys, Patrick W

    2014-01-22

    Angiographic evidence of edge dissections has been associated with a risk of early stent thrombosis. Optical coherence tomography (OCT) is a high-resolution technology detecting a greater number of edge dissections--particularly non-flow-limiting--compared to angiography. Their natural history and clinical implications remain unclear. The objectives of the present study were to assess the morphology, healing response, and clinical outcomes of OCT-detected edge dissections using serial OCT imaging at baseline and at one year following drug-eluting stent (DES) implantation. Edge dissections were defined as disruptions of the luminal surface in the 5 mm segments proximal and distal to the stent, and categorised as flaps, cavities, double-lumen dissections or fissures. Qualitative and quantitative OCT analyses were performed every 0.5 mm at baseline and one year, and clinical outcomes were assessed. Sixty-three lesions (57 patients) were studied with OCT at baseline and one-year follow-up. Twenty-two non-flow-limiting edge dissections in 21 lesions (20 patients) were identified by OCT; only two (9%) were angiographically visible. Flaps were found in 96% of cases. The median longitudinal dissection length was 2.9 mm (interquartile range [IQR] 1.6-4.2 mm), whereas the circumferential and axial extensions amounted to 1.2 mm (IQR: 0.9-1.7 mm) and 0.6 mm (IQR: 0.4-0.7 mm), respectively. Dissections extended into the media and adventitia in seven (33%) and four (20%) cases, respectively. Eighteen (82%) OCT-detected edge dissections were also evaluated with intravascular ultrasound which identified nine (50%) of these OCT-detected dissections. No stent thrombosis or target lesion revascularisation occurred up to one year. At follow-up, 20 (90%) edge dissections were completely healed on OCT. The two cases exhibiting persistent dissection had the longest flaps (2.81 mm and 2.42 mm) at baseline. OCT-detected edge dissections which are angiographically silent in the majority of

  14. Dual-balanced detection scheme with optical hard-limiters in an optical code division multiple access system

    NASA Astrophysics Data System (ADS)

    Liu, Maw-Yang; Hsu, Yi-Kai

    2017-03-01

    Three-arm dual-balanced detection scheme is studied in an optical code division multiple access system. As the MAI and beat noise are the main deleterious source of system performance, we utilize optical hard-limiters to alleviate such channel impairment. In addition, once the channel condition is improved effectively, the proposed two-dimensional error correction code can remarkably enhance the system performance. In our proposed scheme, the optimal thresholds of optical hard-limiters and decision circuitry are fixed, and they will not change with other system parameters. Our proposed scheme can accommodate a large number of users simultaneously and is suitable for burst traffic with asynchronous transmission. Therefore, it is highly recommended as the platform for broadband optical access network.

  15. Direct observation limits on antimatter gravitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischler, Mark; Lykken, Joe; Roberts, Tom

    2008-06-01

    The proposed Antihydrogen Gravity experiment at Fermilab (P981) will directly measure the gravitational attraction g between antihydrogen and the Earth, with an accuracy of 1% or better. The following key question has been asked by the PAC: Is a possible 1% difference between g and g already ruled out by other evidence? This memo presents the key points of existing evidence, to answer whether such a difference is ruled out (a) on the basis of direct observational evidence; and/or (b) on the basis of indirect evidence, combined with reasoning based on strongly held theoretical assumptions. The bottom line is thatmore » there are no direct observations or measurements of gravitational asymmetry which address the antimatter sector. There is evidence which by indirect reasoning can be taken to rule out such a difference, but the analysis needed to draw that conclusion rests on models and assumptions which are in question for other reasons and are thus worth testing. There is no compelling evidence or theoretical reason to rule out such a difference at the 1% level.« less

  16. Laser-only Adaptive Optics Achieves Significant Image Quality Gains Compared to Seeing-limited Observations over the Entire Sky

    NASA Astrophysics Data System (ADS)

    Howard, Ward S.; Law, Nicholas M.; Ziegler, Carl A.; Baranec, Christoph; Riddle, Reed

    2018-02-01

    Adaptive optics laser guide-star systems perform atmospheric correction of stellar wavefronts in two parts: stellar tip-tilt and high-spatial-order laser correction. The requirement of a sufficiently bright guide star in the field-of-view to correct tip-tilt limits sky coverage. In this paper, we show an improvement to effective seeing without the need for nearby bright stars, enabling full sky coverage by performing only laser-assisted wavefront correction. We used Robo-AO, the first robotic AO system, to comprehensively demonstrate this laser-only correction. We analyze observations from four years of efficient robotic operation covering 15000 targets and 42000 observations, each realizing different seeing conditions. Using an autoguider (or a post-processing software equivalent) and the laser to improve effective seeing independent of the brightness of a target, Robo-AO observations show a 39% ± 19% improvement to effective FWHM, without any tip-tilt correction. We also demonstrate that 50% encircled energy performance without tip-tilt correction remains comparable to diffraction-limited, standard Robo-AO performance. Faint-target science programs primarily limited by 50% encircled energy (e.g., those employing integral field spectrographs placed behind the AO system) may see significant benefits to sky coverage from employing laser-only AO.

  17. Development of hybrid fog detection algorithm (FDA) using satellite and ground observation data for nighttime

    NASA Astrophysics Data System (ADS)

    Kim, So-Hyeong; Han, Ji-Hae; Suh, Myoung-Seok

    2017-04-01

    In this study, we developed a hybrid fog detection algorithm (FDA) using AHI/Himawari-8 satellite and ground observation data for nighttime. In order to detect fog at nighttime, Dual Channel Difference (DCD) method based on the emissivity difference between SWIR and IR1 is most widely used. DCD is good at discriminating fog from other things (middle/high clouds, clear sea and land). However, it is difficult to distinguish fog from low clouds. In order to separate the low clouds from the pixels that satisfy the thresholds of fog in the DCD test, we conducted supplementary tests such as normalized local standard derivation (NLSD) of BT11 and the difference of fog top temperature (BT11) and air temperature (Ta) from NWP data (SST from OSTIA data). These tests are based on the larger homogeneity of fog top than low cloud tops and the similarity of fog top temperature and Ta (SST). Threshold values for the three tests were optimized through ROC analysis for the selected fog cases. In addition, considering the spatial continuity of fog, post-processing was performed to detect the missed pixels, in particular, at edge of fog or sub-pixel size fog. The final fog detection results are presented by fog probability (0 100 %). Validation was conducted by comparing fog detection probability with the ground observed visibility data from KMA. The validation results showed that POD and FAR are ranged from 0.70 0.94 and 0.45 0.72, respectively. The quantitative validation and visual inspection indicate that current FDA has a tendency to over-detect the fog. So, more works which reducing the FAR is needed. In the future, we will also validate sea fog using CALIPSO data.

  18. Optical Vector Receiver Operating Near the Quantum Limit

    NASA Astrophysics Data System (ADS)

    Vilnrotter, V. A.; Lau, C.-W.

    2005-05-01

    An optical receiver concept for binary signals with performance approaching the quantum limit at low average-signal energies is developed and analyzed. A conditionally nulling receiver that reaches the quantum limit in the absence of background photons has been devised by Dolinar. However, this receiver requires ideal optical combining and complicated real-time shaping of the local field; hence, it tends to be difficult to implement at high data rates. A simpler nulling receiver that approaches the quantum limit without complex optical processing, suitable for high-rate operation, had been suggested earlier by Kennedy. Here we formulate a vector receiver concept that incorporates the Kennedy receiver with a physical beamsplitter, but it also utilizes the reflected signal component to improve signal detection. It is found that augmenting the Kennedy receiver with classical coherent detection at the auxiliary beamsplitter output, and optimally processing the vector observations, always improves on the performance of the Kennedy receiver alone, significantly so at low average-photon rates. This is precisely the region of operation where modern codes approach channel capacity. It is also shown that the addition of background radiation has little effect on the performance of the coherent receiver component, suggesting a viable approach for near-quantum-limited performance in high background environments.

  19. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    PubMed Central

    Wang, Chuji; Sahay, Peeyush

    2009-01-01

    Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis. PMID:22408503

  20. [Estimation of time detection limit for human cytochrome b in females of Lutzomyia evansi].

    PubMed

    Vergara, José Gabriel; Verbel-Vergara, Daniel; Montesino, Ana Milena; Pérez-Doria, Alveiro; Bejarano, Eduar Elías

    2017-03-29

    Molecular biology techniques have allowed a better knowledge of sources of blood meals in vector insects. However, the usefulness of these techniques depends on both the quantity of ingested blood and the digestion process in the insect. To identify the time limit for detection of the human cytochrome b (Cyt b) gene in experimentally fed females of Lutzomyia evansi. Eight groups of L. evansi females were fed on human blood and sacrificed at intervals of 24 hours post-ingestion. Total DNA was extracted from each female and a segment of 358 bp of Cyt b was amplified. In order to eliminate false positives, amplification products were subjected to a restriction fragment length polymorphism (RFLP) analysis. The human Cyt b gene segment was detected in 86% (49/57) of the females of L. evansi, from 0 to 168 hours after blood ingestion. In 7% (4/57) of the individuals we amplified insect DNA, while in the remaining 7%, the band of interest was not amplified. We did not find any statistical differences between groups of females sacrificed at different times post-blood meal regarding the amplification of the human Cyt b gene segment or the number of samples amplified. The human Cyt b gene segment was detectable in L. evansi females up to 168 hours after blood ingestion.

  1. Limits on radio emission from meteors using the MWA

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Hancock, P.; Devillepoix, H. A. R.; Wayth, R. B.; Beardsley, A.; Crosse, B.; Emrich, D.; Franzen, T. M. O.; Gaensler, B. M.; Horsley, L.; Johnston-Hollitt, M.; Kaplan, D. L.; Kenney, D.; Morales, M. F.; Pallot, D.; Steele, K.; Tingay, S. J.; Trott, C. M.; Walker, M.; Williams, A.; Wu, C.; Ji, Jianghui; Ma, Yuehua

    2018-07-01

    Recently, low-frequency, broad-band radio emission has been observed accompanying bright meteors by the Long Wavelength Array (LWA). The broad-band spectra between 20 and 60 MHz were captured for several events, while the spectral index (dependence of flux density on frequency, with Sν ∝ να) was estimated to be -4 ± 1 during the peak of meteor afterglows. Here we present a survey of meteor emission and other transient events using the Murchison Wide Field Array (MWA) at 72-103 MHz. In our 322 h survey, down to a 5σ detection threshold of 3.5 Jy beam-1, no transient candidates were identified as intrinsic emission from meteors. We derived an upper limit of -3.7 (95 per cent confidence limit) on the spectral index in our frequency range. We also report detections of other transient events, such as reflected FM broadcast signals from small satellites, conclusively demonstrating the ability of the MWA to detect and track space debris on scales as small as 0.1 m in low Earth orbits.

  2. Limits on radio emission from meteors using the MWA

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Hancock, Paul; Devillepoix, Hadrien A. R.; Wayth, Randall B.; Beardsley, A.; Crosse, B.; Emrich, D.; Franzen, T. M. O.; Gaensler, B. M.; Horsley, L.; Johnston-Hollitt, M.; Kaplan, D. L.; Kenney, D.; Morales, M. F.; Pallot, D.; Steele, K.; Tingay, S. J.; Trott, C. M.; Walker, M.; Williams, A.; Wu, C.; Ji, Jianghui; Ma, Yuehua

    2018-04-01

    Recently, low frequency, broadband radio emission has been observed accompanying bright meteors by the Long Wavelength Array (LWA). The broadband spectra between 20 and 60 MHz were captured for several events, while the spectral index (dependence of flux density on frequency, with Sν∝να) was estimated to be -4 ± 1 during the peak of meteor afterglows. Here we present a survey of meteor emission and other transient events using the Murchison Widefield Array (MWA) at 72-103 MHz. In our 322-hour survey, down to a 5σ detection threshold of 3.5 Jy/beam, no transient candidates were identified as intrinsic emission from meteors. We derived an upper limit of -3.7 (95% confidence limit) on the spectral index in our frequency range. We also report detections of other transient events, like reflected FM broadcast signals from small satellites, conclusively demonstrating the ability of the MWA to detect and track space debris on scales as small as 0.1 m in low Earth orbits.

  3. Kernel-Phase Interferometry for Super-Resolution Detection of Faint Companions

    NASA Astrophysics Data System (ADS)

    Factor, Samuel

    2016-10-01

    Direct detection of close in companions (binary systems or exoplanets) is notoriously difficult. While chronagraphs and point spread function (PSF) subtraction can be used to reduce contrast and dig out signals of companions under the PSF, there are still significant limitations in separation and contrast. While non-redundant aperture masking (NRM) interferometry can be used to detect companions well inside the PSF of a diffraction limited image, the mask discards 95% of the light gathered by the telescope and thus the technique is severely flux limited. Kernel-phase analysis applies interferometric techniques similar to NRM though utilizing the full aperture. Instead of closure-phases, kernel-phases are constructed from a grid of points on the full aperture, simulating a redundant interferometer. I propose to develop my own faint companion detection pipeline which utilizes an MCMC analysis of kernel-phases. I will search for new companions in archival images from NIC1 and ACS/HRC in order to constrain binary and planet formation models at separations inaccessible to previous techniques. Using this method, it is possible to detect a companion well within the classical l/D Rayleigh diffraction limit using a fraction of the telescope time as NRM. This technique can easily be applied to archival data as no mask is needed and will thus make the detection of close in companions cheap and simple as no additional observations are needed. Since the James Webb Space Telescope (JWST) will be able to perform NRM observations, further development and characterization of kernel-phase analysis will allow efficient use of highly competitive JWST telescope time.

  4. Scheme for efficient extraction of low-frequency signal beyond the quantum limit by frequency-shift detection.

    PubMed

    Yang, R G; Zhang, J; Zhai, Z H; Zhai, S Q; Liu, K; Gao, J R

    2015-08-10

    Low-frequency (Hz~kHz) squeezing is very important in many schemes of quantum precision measurement. But it is more difficult than that at megahertz-frequency because of the introduction of laser low-frequency technical noise. In this paper, we propose a scheme to obtain a low-frequency signal beyond the quantum limit from the frequency comb in a non-degenerate frequency and degenerate polarization optical parametric amplifier (NOPA) operating below threshold with type I phase matching by frequency-shift detection. Low-frequency squeezing immune to laser technical noise is obtained by a detection system with a local beam of two-frequency intense laser. Furthermore, the low-frequency squeezing can be used for phase measurement in Mach-Zehnder interferometer, and the signal-to-noise ratio (SNR) can be enhanced greatly.

  5. Quantitative analysis of trace levels of surface contamination by X-ray photoelectron spectroscopy Part I: statistical uncertainty near the detection limit.

    PubMed

    Hill, Shannon B; Faradzhev, Nadir S; Powell, Cedric J

    2017-12-01

    We discuss the problem of quantifying common sources of statistical uncertainties for analyses of trace levels of surface contamination using X-ray photoelectron spectroscopy. We examine the propagation of error for peak-area measurements using common forms of linear and polynomial background subtraction including the correlation of points used to determine both background and peak areas. This correlation has been neglected in previous analyses, but we show that it contributes significantly to the peak-area uncertainty near the detection limit. We introduce the concept of relative background subtraction variance (RBSV) which quantifies the uncertainty introduced by the method of background determination relative to the uncertainty of the background area itself. The uncertainties of the peak area and atomic concentration and of the detection limit are expressed using the RBSV, which separates the contributions from the acquisition parameters, the background-determination method, and the properties of the measured spectrum. These results are then combined to find acquisition strategies that minimize the total measurement time needed to achieve a desired detection limit or atomic-percentage uncertainty for a particular trace element. Minimization of data-acquisition time is important for samples that are sensitive to x-ray dose and also for laboratories that need to optimize throughput.

  6. The Relative Importance of Random Error and Observation Frequency in Detecting Trends in Upper Tropospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Vermeesch, Kevin C.; Oman, Luke D.; Weatherhead, Elizabeth C.

    2011-01-01

    Recent published work assessed the amount of time to detect trends in atmospheric water vapor over the coming century. We address the same question and conclude that under the most optimistic scenarios and assuming perfect data (i.e., observations with no measurement uncertainty) the time to detect trends will be at least 12 years at approximately 200 hPa in the upper troposphere. Our times to detect trends are therefore shorter than those recently reported and this difference is affected by data sources used, method of processing the data, geographic location and pressure level in the atmosphere where the analyses were performed. We then consider the question of how instrumental uncertainty plays into the assessment of time to detect trends. We conclude that due to the high natural variability in atmospheric water vapor, the amount of time to detect trends in the upper troposphere is relatively insensitive to instrumental random uncertainty and that it is much more important to increase the frequency of measurement than to decrease the random error in the measurement. This is put in the context of international networks such as the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) and the Network for the Detection of Atmospheric Composition Change (NDACC) that are tasked with developing time series of climate quality water vapor data.

  7. The relative importance of random error and observation frequency in detecting trends in upper tropospheric water vapor

    NASA Astrophysics Data System (ADS)

    Whiteman, David N.; Vermeesch, Kevin C.; Oman, Luke D.; Weatherhead, Elizabeth C.

    2011-11-01

    Recent published work assessed the amount of time to detect trends in atmospheric water vapor over the coming century. We address the same question and conclude that under the most optimistic scenarios and assuming perfect data (i.e., observations with no measurement uncertainty) the time to detect trends will be at least 12 years at approximately 200 hPa in the upper troposphere. Our times to detect trends are therefore shorter than those recently reported and this difference is affected by data sources used, method of processing the data, geographic location and pressure level in the atmosphere where the analyses were performed. We then consider the question of how instrumental uncertainty plays into the assessment of time to detect trends. We conclude that due to the high natural variability in atmospheric water vapor, the amount of time to detect trends in the upper troposphere is relatively insensitive to instrumental random uncertainty and that it is much more important to increase the frequency of measurement than to decrease the random error in the measurement. This is put in the context of international networks such as the Global Climate Observing System (GCOS) Reference Upper-Air Network (GRUAN) and the Network for the Detection of Atmospheric Composition Change (NDACC) that are tasked with developing time series of climate quality water vapor data.

  8. Detecting surface runoff location in a small catchment using distributed and simple observation method

    NASA Astrophysics Data System (ADS)

    Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît

    2015-06-01

    Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall

  9. Fermi Large Area Telescope observations of Local Group galaxies: detection of M 31 and search for M 33

    DOE PAGES

    Abdo, A. A.

    2010-11-01

    Context. Cosmic rays (CRs) can be studied through the galaxy-wide gamma-ray emission that they generate when propagating in the interstellar medium. The comparison of the diffuse signals from different systems may inform us about the key parameters in CR acceleration and transport. Aims. We aim to determine and compare the properties of the cosmic-ray-induced gamma-ray emission of several Local Group galaxies. Methods. We use 2 years of nearly continuous sky-survey observations obtained with the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope to search for gamma-ray emission from M 31 and M 33. We compare the results with thosemore » for the Large Magellanic Cloud, the Small Magellanic Cloud, the Milky Way, and the starburst galaxies M 82 and NGC 253. Results. We detect a gamma-ray signal at 5σ significance in the energy range 200 MeV–20 GeV that is consistent with originating from M 31. The integral photon flux above 100 MeV amounts to (9.1 ± 1.9stat ± 1.0sys) × 10 -9 ph cm-2 s -1. We find no evidence for emission from M 33 and derive an upper limit on the photon flux >100 MeV of 5.1 × 10 -9 ph cm -2 s -1 (2σ). Comparing these results to the properties of other Local Group galaxies, we find indications of a correlation between star formation rate and gamma-ray luminosity that also holds for the starburst galaxies. Conclusions. The gamma-ray luminosity of M 31 is about half that of the Milky Way, which implies that the ratio between the average CR densities in M 31 and the Milky Way amounts to ξ = 0.35 ± 0.25. The observed correlation between gamma-ray luminosity and star formation rate suggests that the flux of M 33 is not far below the current upper limit from the LAT observations.« less

  10. The estimation method on diffusion spot energy concentration of the detection system

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Song, Zongxi; Liu, Feng; Dan, Lijun; Sun, Zhonghan; Du, Yunfei

    2016-09-01

    We propose a method to estimate the diffusion spot energy of the detection system. We do outdoor observation experiments in Xinglong Observatory, by using a detection system which diffusion spot energy concentration is estimated (the correlation coefficient is approximate 0.9926).The aperture of system is 300mm and limiting magnitude of system is 14.15Mv. Observation experiments show that the highest detecting magnitude of estimated system is 13.96Mv, and the average detecting magnitude of estimated system is about 13.5Mv. The results indicate that this method can be used to evaluate the energy diffusion spot concentration level of detection system efficiently.

  11. Advances and Limitations of Atmospheric Boundary Layer Observations with GPS Occultation over Southeast Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Xie, F.; Wu, D. L.; Ao, C. O.; Mannucci, A. J.; Kursinski, E. R.

    2012-01-01

    The typical atmospheric boundary layer (ABL) over the southeast (SE) Pacific Ocean is featured with a strong temperature inversion and a sharp moisture gradient across the ABL top. The strong moisture and temperature gradients result in a sharp refractivity gradient that can be precisely detected by the Global Positioning System (GPS) radio occultation (RO) measurements. In this paper, the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) GPS RO soundings, radiosondes and the high-resolution ECMWF analysis over the SE Pacific are analyzed. COSMIC RO is able to detect a wide range of ABL height variations (1-2 kilometer) as observed from the radiosondes. However, the ECMWF analysis systematically underestimates the ABL heights. The sharp refractivity gradient at the ABL top frequently exceeds the critical refraction (e.g., -157 N-unit per kilometer) and becomes the so-called ducting condition, which results in a systematic RO refractivity bias (or called N-bias) inside the ABL. Simulation study based on radiosonde profiles reveals the magnitudes of the N-biases are vertical resolution dependent. The N-bias is also the primary cause of the systematically smaller refractivity gradient (rarely exceeding -110 N-unit per kilometer) at the ABL top from RO measurement. However, the N-bias seems not affect the ABL height detection. Instead, the very large RO bending angle and the sharp refractivity gradient due to ducting allow reliable detection of the ABL height from GPS RO. The seasonal mean climatology of ABL heights derived from a nine-month composite of COSMIC RO soundings over the SE Pacific reveals significant differences from the ECMWF analysis. Both show an increase of ABL height from the shallow stratocumulus near the coast to a much higher trade wind inversion further off the coast. However, COSMIC RO shows an overall deeper ABL and reveals different locations of the minimum and maximum ABL heights as compared to the ECMWF analysis

  12. Chandra Observations of Magnetic White Dwarfs and their Theoretical Implications

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Noble, M.; Porter, J. G.; Winget, D. E.

    2003-01-01

    Observations of cool DA and DB white dwarfs have not yet been successful in detecting coronal X-ray emission, but observations of late-type dwarfs and giants show that coronae are common for these stars. To produce coronal X-rays, a star must have dynamo-generated surface magnetic fields and a well-developed convection zone. There is some observational evidence that the DA star LHS 1038 and the DB star GD 358 have weak and variable surface magnetic fields. It has been suggested that such fields can be generated by dynamo action, and since both stars have well-developed convection zones, theory predicts detectable levels of coronal X-rays from these white dwarfs. However, we present analysis of Chandra observations of both stars showing no detectable X-ray emission. The derived upper limits for the X-ray fluxes provide strong constraints on theories of formation of coronae around magnetic white dwarfs. Another important implication of our negative Chandra observations is the possibility that the magnetic fields of LHS 1038 and GD 358 are fossil fields.

  13. Computer Aided Detection of Breast Masses in Digital Tomosynthesis

    DTIC Science & Technology

    2008-06-01

    the suspicious CAD location were extracted. For the second set, 256x256 ROIs representing the - 8 - summed slab of 5 slices (5 mm) were extracted...region hotelling observer, digital tomosynthesis, multi-slice CAD algorithms, biopsy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...developing computer-aided detection ( CAD ) tools for mammography. Although these tools have shown promise in identifying calcifications, detecting

  14. Limiter heat loads during the first operation of the W7-X stellarator

    NASA Astrophysics Data System (ADS)

    Wurden, Glen; Niemann, Holger; Jakubowski, Marcin; Bozhenkov, Sergey; Biedermann, Christoph; Marsen, Stefan; Effenberg, Florian; Stephey, Laurie; Schmitz, Oliver; W7-X Team

    2016-10-01

    During the first operational phase (OP1.1) of the new W7-X stellarator, five poloidal graphite limiters served as the main boundary for the plasma. There was a dedicated set of diagnostics to observe the performance of the temporary poloidal limiters and infer basic transport behavior of the 3-D helical SOL plasma. We describe IR imaging of the limiters, which resulted in observations of 1) heat flux determination as a function of time and space, 2) total energy into the limiters, 3) high-frequency helical patterns of energy bursts onto the limiters, 4) changes in surface emissivity, and 5) detection of UFO's (small-to-large dusts). These measurements were made in 2 magnetic configuration discharges (differing iota), and in ones where the power loads to the limiters were systematically modified by the use of trim coils. Observed power fractions on the limiters ranged from 40% to 20% of the 0.6 to 4 MW ECRH input powers. Acknowledgement: Funded under DOE LANS Contract DE-AC5026NA25396 and DE-SC0014210, and within the EUROfusion Consortium under Euratom Grant 633053.

  15. Increasing Deception Detection Accuracy with Strategic Questioning

    ERIC Educational Resources Information Center

    Levine, Timothy R.; Shaw, Allison; Shulman, Hillary C.

    2010-01-01

    One explanation for the finding of slightly above-chance accuracy in detecting deception experiments is limited variance in sender transparency. The current study sought to increase accuracy by increasing variance in sender transparency with strategic interrogative questioning. Participants (total N = 128) observed cheaters and noncheaters who…

  16. A simple method for low-contrast detectability, image quality and dose optimisation with CT iterative reconstruction algorithms and model observers.

    PubMed

    Bellesi, Luca; Wyttenbach, Rolf; Gaudino, Diego; Colleoni, Paolo; Pupillo, Francesco; Carrara, Mauro; Braghetti, Antonio; Puligheddu, Carla; Presilla, Stefano

    2017-01-01

    The aim of this work was to evaluate detection of low-contrast objects and image quality in computed tomography (CT) phantom images acquired at different tube loadings (i.e. mAs) and reconstructed with different algorithms, in order to find appropriate settings to reduce the dose to the patient without any image detriment. Images of supraslice low-contrast objects of a CT phantom were acquired using different mAs values. Images were reconstructed using filtered back projection (FBP), hybrid and iterative model-based methods. Image quality parameters were evaluated in terms of modulation transfer function; noise, and uniformity using two software resources. For the definition of low-contrast detectability, studies based on both human (i.e. four-alternative forced-choice test) and model observers were performed across the various images. Compared to FBP, image quality parameters were improved by using iterative reconstruction (IR) algorithms. In particular, IR model-based methods provided a 60% noise reduction and a 70% dose reduction, preserving image quality and low-contrast detectability for human radiological evaluation. According to the model observer, the diameters of the minimum detectable detail were around 2 mm (up to 100 mAs). Below 100 mAs, the model observer was unable to provide a result. IR methods improve CT protocol quality, providing a potential dose reduction while maintaining a good image detectability. Model observer can in principle be useful to assist human performance in CT low-contrast detection tasks and in dose optimisation.

  17. Learning by observation: insights from Williams syndrome.

    PubMed

    Foti, Francesca; Menghini, Deny; Mandolesi, Laura; Federico, Francesca; Vicari, Stefano; Petrosini, Laura

    2013-01-01

    Observing another person performing a complex action accelerates the observer's acquisition of the same action and limits the time-consuming process of learning by trial and error. Observational learning makes an interesting and potentially important topic in the developmental domain, especially when disorders are considered. The implications of studies aimed at clarifying whether and how this form of learning is spared by pathology are manifold. We focused on a specific population with learning and intellectual disabilities, the individuals with Williams syndrome. The performance of twenty-eight individuals with Williams syndrome was compared with that of mental age- and gender-matched thirty-two typically developing children on tasks of learning of a visuo-motor sequence by observation or by trial and error. Regardless of the learning modality, acquiring the correct sequence involved three main phases: a detection phase, in which participants discovered the correct sequence and learned how to perform the task; an exercise phase, in which they reproduced the sequence until performance was error-free; an automatization phase, in which by repeating the error-free sequence they became accurate and speedy. Participants with Williams syndrome beneficiated of observational training (in which they observed an actor detecting the visuo-motor sequence) in the detection phase, while they performed worse than typically developing children in the exercise and automatization phases. Thus, by exploiting competencies learned by observation, individuals with Williams syndrome detected the visuo-motor sequence, putting into action the appropriate procedural strategies. Conversely, their impaired performances in the exercise phases appeared linked to impaired spatial working memory, while their deficits in automatization phases to deficits in processes increasing efficiency and speed of the response. Overall, observational experience was advantageous for acquiring competencies

  18. What is the limit to case detection under the DOTS strategy for tuberculosis control?

    PubMed

    Dye, Christopher; Watt, Catherine J; Bleed, Daniel M; Williams, Brian G

    2003-01-01

    In year 2000, the WHO DOTS strategy for tuberculosis (TB) control had been adopted by 148 out of 212 countries, but only 27% of all estimated sputum smear-positive patients were notified under DOTS in that year. Here we investigate the way in which gains in case detection under DOTS were made up until 2000 in an attempt to anticipate future progress towards the global target of 70% case detection. The analysis draws on annual reports of DOTS geographical coverage and case notifications, and focuses on the 22 high-burden countries (HBCs) that account for about 80% of new TB cases arising globally each year. Our principal observation is that, as TB programmes in the 22 HBCs have expanded geographically, the fraction of the estimated number of sputum smear-positive cases detected within designated DOTS areas has remained constant at 40-50% although there are significant differences between countries. This fraction is about the same as the percentage of all smear-positive cases notified annually to WHO via public health systems worldwide. The implication is that, unless the DOTS strategy can reach beyond traditional public health reporting systems, or unless these systems can be improved, case detection will not rise much above 40% in the 22 HBCs, or in the world as a whole, even when the geographical coverage of DOTS is nominally 100%. We estimate that, under full DOTS coverage, three-quarters of the undetected smear-positive cases will be living in India, China, Indonesia, Nigeria, Bangladesh and Pakistan. But case detection could also remain low in countries with smaller populations: in year 2000, over half of all smear-positive TB cases were living in 49 countries that detected less than 40% of cases within DOTS areas. Substantial efforts are therefore needed (a) to develop new case finding and management methods to bridge the gap between current and target case detection, and (b) to improve the accuracy of national estimates of TB incidence, above all by

  19. Detection of flow limitation in obstructive sleep apnea with an artificial neural network.

    PubMed

    Norman, Robert G; Rapoport, David M; Ayappa, Indu

    2007-09-01

    During sleep, the development of a plateau on the inspiratory airflow/time contour provides a non-invasive indicator of airway collapsibility. Humans recognize this abnormal contour easily, and this study replicates this with an artificial neural network (ANN) using a normalized shape. Five 10 min segments were selected from each of 18 sleep records (respiratory airflow measured with a nasal cannula) with varying degrees of sleep disordered breathing. Each breath was visually scored for shape, and breaths split randomly into a training and test set. Equally spaced, peak amplitude normalized flow values (representing breath shape) formed the only input to a back propagation ANN. Following training, breath-by-breath agreement of the ANN with the manual classification was tabulated for the training and test sets separately. Agreement of the ANN was 89% in the training set and 70.6% in the test set. When the categories of 'probably normal' and 'normal', and 'probably flow limited' and 'flow limited' were combined, the agreement increased to 92.7% and 89.4% respectively, similar to the intra- and inter-rater agreements obtained by a visual classification of these breaths. On a naive dataset, the agreement of the ANN to visual classification was 57.7% overall and 82.4% when the categories were collapsed. A neural network based only on the shape of inspiratory airflow succeeded in classifying breaths as to the presence/absence of flow limitation. This approach could be used to provide a standardized, reproducible and automated means of detecting elevated upper airway resistance.

  20. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. III. MEASURES BELOW THE DIFFRACTION LIMIT OF THE WIYN TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horch, Elliott P.; Van Altena, William F.; Howell, Steve B.

    2011-06-15

    In this paper, we study the ability of CCD- and electron-multiplying-CCD-based speckle imaging to obtain reliable astrometry and photometry of binary stars below the diffraction limit of the WIYN 3.5 m Telescope. We present a total of 120 measures of binary stars, 75 of which are below the diffraction limit. The measures are divided into two groups that have different measurement accuracy and precision. The first group is composed of standard speckle observations, that is, a sequence of speckle images taken in a single filter, while the second group consists of paired observations where the two observations are taken onmore » the same observing run and in different filters. The more recent paired observations were taken simultaneously with the Differential Speckle Survey Instrument, which is a two-channel speckle imaging system. In comparing our results to the ephemeris positions of binaries with known orbits, we find that paired observations provide the opportunity to identify cases of systematic error in separation below the diffraction limit and after removing these from consideration, we obtain a linear measurement uncertainty of 3-4 mas. However, if observations are unpaired or if two observations taken in the same filter are paired, it becomes harder to identify cases of systematic error, presumably because the largest source of this error is residual atmospheric dispersion, which is color dependent. When observations are unpaired, we find that it is unwise to report separations below approximately 20 mas, as these are most susceptible to this effect. Using the final results obtained, we are able to update two older orbits in the literature and present preliminary orbits for three systems that were discovered by Hipparcos.« less

  1. A Strong Limit on the Very-high-energy Emission from GRB 150323A

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Archer, A.; Benbow, W.; Bird, R.; Brose, R.; Buchovecky, M.; Bugaev, V.; Connolly, M. P.; Cui, W.; Errando, M.; Falcone, A.; Feng, Q.; Finley, J. P.; Flinders, A.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Hütten, M.; Hanna, D.; Hervet, O.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Krennrich, F.; Lang, M. J.; Lin, T. T. Y.; Maier, G.; McArthur, S.; Moriarty, P.; Mukherjee, R.; O’Brien, S.; Ong, R. A.; Park, N.; Perkins, J. S.; Petrashyk, A.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Tyler, J.; Wakely, S. P.; Weiner, O. M.; Weinstein, A.; Wells, R. M.; Wilcox, P.; Wilhelm, A.; Williams, D. A.; Zitzer, B.; VERITAS Collaboration; Vurm, Indrek; Beloborodov, Andrei

    2018-04-01

    On 2015 March 23, the Very Energetic Radiation Imaging Telescope Array System (VERITAS) responded to a Swift-Burst Alert Telescope (BAT) detection of a gamma-ray burst, with observations beginning 270 s after the onset of BAT emission, and only 135 s after the main BAT emission peak. No statistically significant signal is detected above 140 GeV. The VERITAS upper limit on the fluence in a 40-minute integration corresponds to about 1% of the prompt fluence. Our limit is particularly significant because the very-high-energy (VHE) observation started only ∼2 minutes after the prompt emission peaked, and Fermi-Large Area Telescope observations of numerous other bursts have revealed that the high-energy emission is typically delayed relative to the prompt radiation and lasts significantly longer. Also, the proximity of GRB 150323A (z = 0.593) limits the attenuation by the extragalactic background light to ∼50% at 100–200 GeV. We conclude that GRB 150323A had an intrinsically very weak high-energy afterglow, or that the GeV spectrum had a turnover below ∼100 GeV. If the GRB exploded into the stellar wind of a massive progenitor, the VHE non-detection constrains the wind density parameter to be A ≳ 3 × 1011 g cm‑1, consistent with a standard Wolf–Rayet progenitor. Alternatively, the VHE emission from the blast wave would be weak in a very tenuous medium such as the interstellar medium, which therefore cannot be ruled out as the environment of GRB 150323A.

  2. Metacognitive monitoring and control in visual change detection: Implications for situation awareness and cognitive control

    PubMed Central

    McAnally, Ken I.; Morris, Adam P.; Best, Christopher

    2017-01-01

    Metacognitive monitoring and control of situation awareness (SA) are important for a range of safety-critical roles (e.g., air traffic control, military command and control). We examined the factors affecting these processes using a visual change detection task that included representative tactical displays. SA was assessed by asking novice observers to detect changes to a tactical display. Metacognitive monitoring was assessed by asking observers to estimate the probability that they would correctly detect a change, either after study of the display and before the change (judgement of learning; JOL) or after the change and detection response (judgement of performance; JOP). In Experiment 1, observers failed to detect some changes to the display, indicating imperfect SA, but JOPs were reasonably well calibrated to objective performance. Experiment 2 examined JOLs and JOPs in two task contexts: with study-time limits imposed by the task or with self-pacing to meet specified performance targets. JOPs were well calibrated in both conditions as were JOLs for high performance targets. In summary, observers had limited SA, but good insight about their performance and learning for high performance targets and allocated study time appropriately. PMID:28915244

  3. Correlation between a 2D Channelized Hotelling Observer and Human Observers in a Low-contrast Detection Task with Multi-slice Reading in CT

    PubMed Central

    Yu, Lifeng; Chen, Baiyu; Kofler, James M.; Favazza, Christopher P.; Leng, Shuai; Kupinski, Matthew A.; McCollough, Cynthia H.

    2017-01-01

    Purpose Model observers have been successfully developed and used to assess the quality of static 2D CT images. However, radiologists typically read images by paging through multiple 2D slices (i.e. multi-slice reading). The purpose of this study was to correlate human and model observer performance in a low-contrast detection task performed using both 2D and multi-slice reading, and to determine if the 2D model observer still correlate well with human observer performance in multi-slice reading. Methods A phantom containing 18 low-contrast spheres (6 sizes × 3 contrast levels) was scanned on a 192-slice CT scanner at 5 dose levels (CTDIvol = 27, 13.5, 6.8, 3.4, and 1.7 mGy), each repeated 100 times. Images were reconstructed using both filtered-backprojection (FBP) and an iterative reconstruction (IR) method (ADMIRE, Siemens). A 3D volume of interest (VOI) around each sphere was extracted and placed side-by-side with a signal-absent VOI to create a 2-alternative forced choice (2AFC) trial. Sixteen 2AFC studies were generated, each with 100 trials, to evaluate the impact of radiation dose, lesion size and contrast, and reconstruction methods on object detection. In total, 1600 trials were presented to both model and human observers. Three medical physicists acted as human observers and were allowed to page through the 3D volumes to make a decision for each 2AFC trial. The human observer performance was compared with the performance of a multi-slice channelized Hotelling observer (CHO_MS), which integrates multi-slice image data, and with the performance of previously validated CHO, which operates on static 2D images (CHO_2D). For comparison, the same 16 2AFC studies were also performed in a 2D viewing mode by the human observers and compared with the multi-slice viewing performance and the two CHO models. Results Human observer performance was well correlated with the CHO_2D performance in the 2D viewing mode (Pearson product-moment correlation coefficient R=0

  4. Confocal laser-induced fluorescence detector for narrow capillary system with yoctomole limit of detection.

    PubMed

    Weaver, Mitchell T; Lynch, Kyle B; Zhu, Zaifang; Chen, Huang; Lu, Joann J; Pu, Qiaosheng; Liu, Shaorong

    2017-04-01

    Laser-induced fluorescence (LIF) detectors for low-micrometer and sub-micrometer capillary on-column detection are not commercially available. In this paper, we describe in details how to construct a confocal LIF detector to address this issue. We characterize the detector by determining its limit of detection (LOD), linear dynamic range (LDR) and background signal drift; a very low LOD (~70 fluorescein molecules or 12 yoctomole fluorescein), a wide LDR (greater than 3 orders of magnitude) and a small background signal drift (~1.2-fold of the root mean square noise) are obtained. For detecting analytes inside a low-micrometer and sub-micrometer capillary, proper alignment is essential. We present a simple protocol to align the capillary with the optical system and use the position-lock capability of a translation stage to fix the capillary in position during the experiment. To demonstrate the feasibility of using this detector for narrow capillary systems, we build a 2-μm-i.d. capillary flow injection analysis (FIA) system using the newly developed LIF prototype as a detector and obtain an FIA LOD of 14 zeptomole fluorescein. We also separate a DNA ladder sample by bare narrow capillary - hydrodynamic chromatography and use the LIF prototype to monitor the resolved DNA fragments. We obtain not only well-resolved peaks but also the quantitative information of all DNA fragments. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Crustal density contrast detection by global gravity and topography models and in-situ gravity observations

    NASA Astrophysics Data System (ADS)

    Claessens, S. J.

    2016-12-01

    Mass density contrasts in the Earth's crust can be detected using an inversion of terrestrial or airborne gravity data. This contribution shows a technique to detect short-scale density contrasts using in-situ gravity observations in combination with a high-resolution global gravity model that includes variations in the gravity field due to topography. The technique is exemplified at various test sites using the Global Gravity Model Plus (GGMplus), which is a 7.2 arcsec resolution model of the Earth's gravitational field, covering all land masses and near-coastal areas within +/- 60° latitude. The model is a composite of GRACE and GOCE satellite observations, the EGM2008 global gravity model, and short-scale topographic gravity effects. Since variations in the Earth's gravity field due to topography are successfully modelled by GGMplus, any remaining differences with in-situ gravity observations are primarily due to mass density variations. It is shown that this technique effectively filters out large-scale density variations, and highlights short-scale near-surface density contrasts in the Earth's crust. Numerical results using recent high-density gravity surveys are presented, which indicate a strong correlation between density contrasts found and known lines of geological significance.

  6. Fifty Years of Lightning Observations from Space

    NASA Astrophysics Data System (ADS)

    Christian, H. J., Jr.

    2017-12-01

    Some of the earliest satellites, starting with OSO (1965), ARIEL (1967), and RAE (1968), detected lightning using either optical and RF sensors, although that was not their intent. One of the earliest instruments designed to detect lightning was the PBE (1977). The use of space to study lightning activity has exploded since these early days. The advent of focal-plane imaging arrays made it possible to develop high performance optical lightning sensors. Prior to the use of charged-coupled devices (CCD), most space-based lightning sensors used only a few photo-diodes, which limited the location accuracy and detection efficiency (DE) of the instruments. With CCDs, one can limit the field of view of each detector (pixel), and thus improve the signal to noise ratio over single-detectors that summed the light reflected from many clouds with the lightning produced by a single cloud. This pixelization enabled daytime DE to increase from a few percent to close to 90%. The OTD (1995), and the LIS (1997), were the first lightning sensors to utilize focal-plane arrays. Together they detected global lightning activity for more than twenty years, providing the first detailed information on the distribution of global lightning and its variability. The FORTE satellite was launched shortly after LIS, and became the first dedicated satellite to simultaneously measure RF and optical lightning emissions. It too used a CCD focal plane to detect and locate lightning. In November 2016, the GLM became the first lightning instrument in geostationary orbit. Shortly thereafter, China placed its GLI in orbit. Lightning sensors in geostationary orbit significantly increase the value of space-based observations. For the first time, lightning activity can be monitored continuously, over large areas of the Earth with high, uniform DE and location accuracy. In addition to observing standard lightning, a number of sensors have been placed in orbit to detect transient luminous events and

  7. Long-wavelength TCF-based fluorescence probes for the detection and intracellular imaging of biological thiols.

    PubMed

    Sedgwick, Adam C; Gardiner, Jordan E; Kim, Gyoungmi; Yevglevskis, Maksims; Lloyd, Matthew D; Jenkins, A Toby A; Bull, Steven D; Yoon, Juyoung; James, Tony D

    2018-05-08

    Two 'turn on' TCF-based fluorescence probes were developed for the detection of biological thiols (TCF-GSH and TCFCl-GSH). TCF-GSH was shown to have a high sensitivity towards glutathione (GSH) with a 0.28 μM limit of detection. Unfortunately, at higher GSH concentrations the fluorescence intensity of TCF-GSH decreased and toxicity was observed for TCF-GSH in live cells. However, TCFCl-GSH was shown to be able to detect GSH at biologically relevant concentrations with a 0.45 μM limit of detection. No toxicity was found for TCFCl-GSH and a clear 'turn on' with good photostability was observed for the exogenous addition of GSH, Cys and HCys. Furthermore, TCFCl-GSH was used to evaluate the effects of drug treatment on the levels of GSH in live cells.

  8. Comparison of Detection Limits of 4th Generation Combination HIV Antigen/Antibody, p24 Antigen and Viral Load Assays on Diverse HIV Isolates.

    PubMed

    Stone, Mars; Bainbridge, John; Sanchez, Ana M; Keating, Sheila M; Pappas, Andrea; Rountree, Wes; Todd, Chris; Bakkour, Sonia; Manak, Mark; Peel, Sheila A; Coombs, Robert W; Ramos, Eric M; Shriver, M Kathleen; Contestable, Paul; Nair, Sangeetha Vijaysri; Wilson, David H; Stengelin, Martin; Murphy, Gary; Hewlett, Indira; Denny, Thomas N; Busch, Michael P

    2018-05-23

    Detection of acute HIV infection is critical for HIV public health and diagnostics. Clinical 4 th generation antigen-antibody (Ag/Ab) combination (combo) and p24 Ag immunoassays have enhanced detection of acute infection compared to Ab alone assays, but require ongoing evaluation with currently circulating diverse subtypes. Genetically and geographically diverse HIV clinical isolates were used to assess clinical HIV diagnostic, blood screening and next generation assays. Blinded 300 member panels of 20 serially diluted well-characterized antibody negative HIV isolates were distributed to manufacturers and end-user labs to assess relative analytic sensitivity of currently approved and pre-approved clinical HIV 4 th generation Ag/Ab combo or p24 Ag alone immunoassays across diverse subtypes. The limits of virus detection (LODs) were estimated for different subtypes relative to confirmed viral loads. Analysis of immunoassay sensitivity was benchmarked against confirmed viral load measurements on the blinded panel. Based on the proportion of positive results on 300 observations all Ag/Ab combo and standard sensitivity p24 Ag assays performed similarly and within half log LODs, illustrating similar breadth of reactivity and diagnostic utility. Ultrasensitive p24 Ag assays achieved dramatically increased sensitivities, while the rapid combo-assays performed poorly. Similar performance of the different commercially available 4 th gen assays on diverse subtypes supports their use in broad geographic settings with locally circulating HIV clades and recombinant strains. Next generation pre-clinical ultrasensitive p24 Ag assays achieved dramatically improved sensitivity, while p24 Ag detection by rapid 4 th gen assays performed poorly. Copyright © 2018 American Society for Microbiology.

  9. Dynamical models to explain observations with SPHERE in planetary systems with double debris belts

    NASA Astrophysics Data System (ADS)

    Lazzoni, C.; Desidera, S.; Marzari, F.; Boccaletti, A.; Langlois, M.; Mesa, D.; Gratton, R.; Kral, Q.; Pawellek, N.; Olofsson, J.; Bonnefoy, M.; Chauvin, G.; Lagrange, A. M.; Vigan, A.; Sissa, E.; Antichi, J.; Avenhaus, H.; Baruffolo, A.; Baudino, J. L.; Bazzon, A.; Beuzit, J. L.; Biller, B.; Bonavita, M.; Brandner, W.; Bruno, P.; Buenzli, E.; Cantalloube, F.; Cascone, E.; Cheetham, A.; Claudi, R. U.; Cudel, M.; Daemgen, S.; De Caprio, V.; Delorme, P.; Fantinel, D.; Farisato, G.; Feldt, M.; Galicher, R.; Ginski, C.; Girard, J.; Giro, E.; Janson, M.; Hagelberg, J.; Henning, T.; Incorvaia, S.; Kasper, M.; Kopytova, T.; LeCoroller, H.; Lessio, L.; Ligi, R.; Maire, A. L.; Ménard, F.; Meyer, M.; Milli, J.; Mouillet, D.; Peretti, S.; Perrot, C.; Rouan, D.; Samland, M.; Salasnich, B.; Salter, G.; Schmidt, T.; Scuderi, S.; Sezestre, E.; Turatto, M.; Udry, S.; Wildi, F.; Zurlo, A.

    2018-03-01

    Context. A large number of systems harboring a debris disk show evidence for a double belt architecture. One hypothesis for explaining the gap between the debris belts in these disks is the presence of one or more planets dynamically carving it. For this reason these disks represent prime targets for searching planets using direct imaging instruments, like the Spectro-Polarimetric High-constrast Exoplanet Research (SPHERE) at the Very Large Telescope. Aim. The goal of this work is to investigate this scenario in systems harboring debris disks divided into two components, placed, respectively, in the inner and outer parts of the system. All the targets in the sample were observed with the SPHERE instrument, which performs high-contrast direct imaging, during the SHINE guaranteed time observations. Positions of the inner and outer belts were estimated by spectral energy distribution fitting of the infrared excesses or, when available, from resolved images of the disk. Very few planets have been observed so far in debris disks gaps and we intended to test if such non-detections depend on the observational limits of the present instruments. This aim is achieved by deriving theoretical predictions of masses, eccentricities, and semi-major axes of planets able to open the observed gaps and comparing such parameters with detection limits obtained with SPHERE. Methods: The relation between the gap and the planet is due to the chaotic zone neighboring the orbit of the planet. The radial extent of this zone depends on the mass ratio between the planet and the star, on the semi-major axis, and on the eccentricity of the planet, and it can be estimated analytically. We first tested the different analytical predictions using a numerical tool for the detection of chaotic behavior and then selected the best formula for estimating a planet's physical and dynamical properties required to open the observed gap. We then apply the formalism to the case of one single planet on a

  10. Determination of a Limited Scope Network's Lightning Detection Efficiency

    NASA Technical Reports Server (NTRS)

    Rompala, John T.; Blakeslee, R.

    2008-01-01

    This paper outlines a modeling technique to map lightning detection efficiency variations over a region surveyed by a sparse array of ground based detectors. A reliable flash peak current distribution (PCD) for the region serves as the technique's base. This distribution is recast as an event probability distribution function. The technique then uses the PCD together with information regarding: site signal detection thresholds, type of solution algorithm used, and range attenuation; to formulate the probability that a flash at a specified location will yield a solution. Applying this technique to the full region produces detection efficiency contour maps specific to the parameters employed. These contours facilitate a comparative analysis of each parameter's effect on the network's detection efficiency. In an alternate application, this modeling technique gives an estimate of the number, strength, and distribution of events going undetected. This approach leads to a variety of event density contour maps. This application is also illustrated. The technique's base PCD can be empirical or analytical. A process for formulating an empirical PCD specific to the region and network being studied is presented. A new method for producing an analytical representation of the empirical PCD is also introduced.

  11. Examination about the Spatial Representation of PM2.5 Obtained from Limited Stations Using a Network Observation

    NASA Astrophysics Data System (ADS)

    Shi, X.; Zhao, C.

    2017-12-01

    Haze aerosol pollution has been a focus issue in China, and its characteristics is highly demanded. With limited observation sites, aerosol properties obtained from a single site is frequently used to represent the haze condition over a large domain, such as tens of kilometers. This could result in high uncertainties in the haze characteristics due to their spatial variation. Using a network observation from November 2015 to February 2016 over an urban city in North China with high spatial resolution, this study examines the spatial representation of ground site observations. A method is first developed to determine the representative area of measurements from limited stations. The key idea of this method is to determine the spatial variability of particulate matter with diameters less than 2.5 μm (PM2.5) concentration using a variance function in 2km x 2km grids. Based on the high spatial resolution (0.5km x 0.5km) measurements of PM2.5, the grids in which PM2.5 have high correlations and weak value differences are determined as the representation area of measurements at these grids. Note that the size representation area is not exactly a circle region. It shows that the size representation are for the study region and study period ranges from 0.25 km2 to 16.25 km2. The representation area varies with locations. For the 20 km x 20 km study region, 10 station observations would have a good representation of the PM2.5 observations obtained from current 169 stations at the four-month time scale.

  12. VLA observations of A and B stars with kilogauss magnetic fields

    NASA Technical Reports Server (NTRS)

    Drake, S. A.; Abbott, D. C.; Linsky, J. L.; Bieging, J. H.; Churchwell, E.

    1985-01-01

    The serendipitous discovery that the star Sigma Ori E is a 3.5 mJy radio continuum source at 6 cm has stimulated a radio survey of other early-type stars with strong magnetic fields. No Ap stars have been detected of the eight observed, with typical 3-sigma upper limits of 0.5 mJy at 2 cm. Of the six Bp stars examined, only HR 1890, a helium-strong star, was detected. Possible emission mechanisms for the observed radio emission are discussed, and it is concluded that nonthermal emission seems the most plausible, on the basis of the present data.

  13. Medication safety research by observational study design.

    PubMed

    Lao, Kim S J; Chui, Celine S L; Man, Kenneth K C; Lau, Wallis C Y; Chan, Esther W; Wong, Ian C K

    2016-06-01

    Observational studies have been recognised to be essential for investigating the safety profile of medications. Numerous observational studies have been conducted on the platform of large population databases, which provide adequate sample size and follow-up length to detect infrequent and/or delayed clinical outcomes. Cohort and case-control are well-accepted traditional methodologies for hypothesis testing, while within-individual study designs are developing and evolving, addressing previous known methodological limitations to reduce confounding and bias. Respective examples of observational studies of different study designs using medical databases are shown. Methodology characteristics, study assumptions, strengths and weaknesses of each method are discussed in this review.

  14. Addressing the Limit of Detectability of Residual Oxide Discontinuities in Friction Stir Butt Welds of Aluminum using Phased Array Ultrasound

    NASA Technical Reports Server (NTRS)

    Johnston, P. H.

    2008-01-01

    This activity seeks to estimate a theoretical upper bound of detectability for a layer of oxide embedded in a friction stir weld in aluminum. The oxide is theoretically modeled as an ideal planar layer of aluminum oxide, oriented normal to an interrogating ultrasound beam. Experimentally-measured grain scattering level is used to represent the practical noise floor. Echoes from naturally-occurring oxides will necessarily fall below this theoretical limit, and must be above the measurement noise to be potentially detectable.

  15. Short-term outcome of treatment limitation discussions for newborn infants, a multicentre prospective observational cohort study.

    PubMed

    Aladangady, Narendra; Shaw, Chloe; Gallagher, Katie; Stokoe, Elizabeth; Marlow, Neil

    2017-03-01

    To determine the short-term outcomes of babies for whom clinicians or parents discussed the limitation of life-sustaining treatment (LST). Prospective multicentre observational study. Two level 3, six level 2 and one level 1 neonatal units in the North-East London Neonatal Network. A total of 87 babies including 68 for whom limiting LST was discussed with parents and 19 babies died without discussion of limiting LST in the labour ward or neonatal unit. Final decision reached after discussions about limiting LST and neonatal unit outcomes (death or survived to discharge) for babies. Withdrawing LST, withholding LST and do not resuscitate (DNR) order was discussed with 48, 16 and 4 parents, respectively. In 49/68 (72%) cases decisions occurred in level 3 and 19 cases in level 2 units. Following the initial discussions, 34/68 parents made the decision to continue LST. In 33/68 cases, a second opinion was obtained. The parents of 14/48 and 2/16 babies did not agree to withdraw and withhold LST, respectively. Forty-seven out of 87 babies (54%) died following limitation of LST, 28/87 (32%) died receiving full intensive care support, 5/87 (6%) survived following a decision to limit LST and 7/87 (8%) babies survived following decision to continue LST. A significant proportion of parents chose to continue treatment following discussions regarding limiting LST for their babies, and a proportion of these babies survived to neonatal unit discharge. The long-term outcomes of babies who survive following limiting LST discussion need to be investigated. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Modeling And Detecting Anomalies In Scada Systems

    NASA Astrophysics Data System (ADS)

    Svendsen, Nils; Wolthusen, Stephen

    The detection of attacks and intrusions based on anomalies is hampered by the limits of specificity underlying the detection techniques. However, in the case of many critical infrastructure systems, domain-specific knowledge and models can impose constraints that potentially reduce error rates. At the same time, attackers can use their knowledge of system behavior to mask their manipulations, causing adverse effects to observed only after a significant period of time. This paper describes elementary statistical techniques that can be applied to detect anomalies in critical infrastructure networks. A SCADA system employed in liquefied natural gas (LNG) production is used as a case study.

  17. Interferometric Meteor Head Echo Observations using the Southern Argentina Agile Meteor Radar (SAAMER)

    NASA Technical Reports Server (NTRS)

    Janches, D.; Hocking, W.; Pifko, S.; Hormaechea, J. L.; Fritts, D. C.; Brunini, C; Michell, R.; Samara, M.

    2013-01-01

    A radar meteor echo is the radar scattering signature from the free-electrons in a plasma trail generated by entry of extraterrestrial particles into the atmosphere. Three categories of scattering mechanisms exist: specular, nonspecular trails, and head-echoes. Generally, there are two types of radars utilized to detect meteors. Traditional VHF meteor radars (often called all-sky1radars) primarily detect the specular reflection of meteor trails traveling perpendicular to the line of sight of the scattering trail, while High Power and Large Aperture (HPLA) radars efficiently detect meteor head-echoes and, in some cases, non-specular trails. The fact that head-echo measurements can be performed only with HPLA radars limits these studies in several ways. HPLA radars are very sensitive instruments constraining the studies to the lower masses, and these observations cannot be performed continuously because they take place at national observatories with limited allocated observing time. These drawbacks can be addressed by developing head echo observing techniques with modified all-sky meteor radars. In addition, the fact that the simultaneous detection of all different scattering mechanisms can be made with the same instrument, rather than requiring assorted different classes of radars, can help clarify observed differences between the different methodologies. In this study, we demonstrate that such concurrent observations are now possible, enabled by the enhanced design of the Southern Argentina Agile Meteor Radar (SAAMER) deployed at the Estacion Astronomica Rio Grande (EARG) in Tierra del Fuego, Argentina. The results presented here are derived from observations performed over a period of 12 days in August 2011, and include meteoroid dynamical parameter distributions, radiants and estimated masses. Overall, the SAAMER's head echo detections appear to be produced by larger particles than those which have been studied thus far using this technique.

  18. Observational limitations of Bose-Einstein photon statistics and radiation noise in thermal emission

    NASA Astrophysics Data System (ADS)

    Lee, Y.-J.; Talghader, J. J.

    2018-01-01

    For many decades, theory has predicted that Bose-Einstein statistics are a fundamental feature of thermal emission into one or a few optical modes; however, the resulting Bose-Einstein-like photon noise has never been experimentally observed. There are at least two reasons for this: (1) Relationships to describe the thermal radiation noise for an arbitrary mode structure have yet to be set forth, and (2) the mode and detector constraints necessary for the detection of such light is extremely hard to fulfill. Herein, photon statistics and radiation noise relationships are developed for systems with any number of modes and couplings to an observing space. The results are shown to reproduce existing special cases of thermal emission and are then applied to resonator systems to discuss physically realizable conditions under which Bose-Einstein-like thermal statistics might be observed. Examples include a single isolated cavity and an emitter cavity coupled to a small detector space. Low-mode-number noise theory shows major deviations from solely Bose-Einstein or Poisson treatments and has particular significance because of recent advances in perfect absorption and subwavelength structures both in the long-wave infrared and terahertz regimes. These microresonator devices tend to utilize a small volume with few modes, a regime where the current theory of thermal emission fluctuations and background noise, which was developed decades ago for free-space or single-mode cavities, has no derived solutions.

  19. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: implications for astrobiology

    PubMed Central

    Jehlička, Jan; Edwards, Howell G. M.; Osterrothová, Kateřina; Novotná, Julie; Nedbalová, Linda; Kopecký, Jiří; Němec, Ivan; Oren, Aharon

    2014-01-01

    In this paper, it is demonstrated how Raman spectroscopy can be used to detect different carotenoids as possible biomarkers in various groups of microorganisms. The question which arose from previous studies concerns the level of unambiguity of discriminating carotenoids using common Raman microspectrometers. A series of laboratory-grown microorganisms of different taxonomic affiliation was investigated, such as halophilic heterotrophic bacteria, cyanobacteria, the anoxygenic phototrophs, the non-halophilic heterotrophs as well as eukaryotes (Ochrophyta, Rhodophyta and Chlorophyta). The data presented show that Raman spectroscopy is a suitable tool to assess the presence of carotenoids of these organisms in cultures. Comparison is made with the high-performance liquid chromatography approach of analysing pigments in extracts. Direct measurements on cultures provide fast and reliable identification of the pigments. Some of the carotenoids studied are proposed as tracers for halophiles, in contrast with others which can be considered as biomarkers of other genera. The limits of application of Raman spectroscopy are discussed for a few cases where the current Raman spectroscopic approach does not allow discriminating structurally very similar carotenoids. The database reported can be used for applications in geobiology and exobiology for the detection of pigment signals in natural settings. PMID:25368348

  20. Comparison of Helioseismic Far-Side Active Region Detections with STEREO Far-Side EUV Observations of Solar Activity

    NASA Astrophysics Data System (ADS)

    Liewer, P. C.; Qiu, J.; Lindsey, C.

    2017-10-01

    Seismic maps of the Sun's far hemisphere, computed from Doppler data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) are now being used routinely to detect strong magnetic regions on the far side of the Sun (http://jsoc.stanford.edu/data/farside/). To test the reliability of this technique, the helioseismically inferred active region detections are compared with far-side observations of solar activity from the Solar TErrestrial RElations Observatory (STEREO), using brightness in extreme-ultraviolet light (EUV) as a proxy for magnetic fields. Two approaches are used to analyze nine months of STEREO and HMI data. In the first approach, we determine whether new large east-limb active regions are detected seismically on the far side before they appear Earth side and study how the detectability of these regions relates to their EUV intensity. We find that while there is a range of EUV intensities for which far-side regions may or may not be detected seismically, there appears to be an intensity level above which they are almost always detected and an intensity level below which they are never detected. In the second approach, we analyze concurrent extreme-ultraviolet and helioseismic far-side observations. We find that 100% (22) of the far-side seismic regions correspond to an extreme-ultraviolet plage; 95% of these either became a NOAA-designated magnetic region when reaching the east limb or were one before crossing to the far side. A low but significant correlation is found between the seismic signature strength and the EUV intensity of a far-side region.

  1. Upper limit set for level of lightning activity on Titan

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Kaiser, M. L.

    1990-01-01

    Because optically thick cloud and haze layers prevent lightning detection at optical wavelength on Titan, a search was conducted for lightning-radiated signals (spherics) at radio wavelengths using the planetary radioastronomy instrument aboard Voyager 1. Given the maximum ionosphere density of about 3000/cu cm, lightning spherics should be detectable above an observing frequency of 500 kHz. Since no evidence for spherics is found, an upper limit to the total energy per flash in Titan lightning of about 10 to the 6th J, or about 1000 times weaker than that of typical terrestrial lightning, is inferred.

  2. Matching traditional and scientific observations to detect environmental change: a discussion on Arctic terrestrial ecosystems.

    PubMed

    Huntington, Henry; Callaghan, Terry; Fox, Shari; Krupnik, Igor

    2004-11-01

    Recent environmental changes are having, and are expected to continue to have, significant impacts in the Arctic as elsewhere in the world. Detecting those changes and determining the mechanisms that cause them are far from trivial problems. The use of multiple methods of observation can increase confidence in individual observations, broaden the scope of information available about environmental change, and contribute to insights concerning mechanisms of change. In this paper, we examine the ways that using traditional ecological knowledge (TEK) together with scientific observations can achieve these objectives. A review of TEK observations in comparison with scientific observations demonstrates the promise of this approach, while also revealing several challenges to putting it into practice on a large scale. Further efforts are suggested, particularly in undertaking collaborative projects designed to produce parallel observations that can be readily compared and analyzed in greater detail than is possible in an opportunistic sample.

  3. Geologic Carbon Sequestration Leakage Detection: A Physics-Guided Machine Learning Approach

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Harp, D. R.; Chen, B.; Pawar, R.

    2017-12-01

    One of the risks of large-scale geologic carbon sequestration is the potential migration of fluids out of the storage formations. Accurate and fast detection of this fluids migration is not only important but also challenging, due to the large subsurface uncertainty and complex governing physics. Traditional leakage detection and monitoring techniques rely on geophysical observations including pressure. However, the resulting accuracy of these methods is limited because of indirect information they provide requiring expert interpretation, therefore yielding in-accurate estimates of leakage rates and locations. In this work, we develop a novel machine-learning technique based on support vector regression to effectively and efficiently predict the leakage locations and leakage rates based on limited number of pressure observations. Compared to the conventional data-driven approaches, which can be usually seem as a "black box" procedure, we develop a physics-guided machine learning method to incorporate the governing physics into the learning procedure. To validate the performance of our proposed leakage detection method, we employ our method to both 2D and 3D synthetic subsurface models. Our novel CO2 leakage detection method has shown high detection accuracy in the example problems.

  4. Portable TXRF Spectrometer with 10{sup -11}g Detection Limit and Portable XRF Spectromicroscope with Sub-mm Spatial Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunimura, Shinsuke; Hatakeyama, So; Sasaki, Nobuharu

    A portable total reflection X-ray fluorescence (TXRF) spectrometer that we have developed is applied to trace elemental analysis of water solutions. Although a 5 W X-ray tube is used in the portable TXRF spectrometer, detection limits of several ppb are achieved for 3d transition metal elements and trace elements in a leaching solution of soils, a leaching solution of solder, and alcoholic beverages are detected. Portable X-ray fluorescence (XRF) spectromicroscopes with a 1 W X-ray tube and an 8 W X-ray tube are also presented. Using the portable XRF spectromicroscope with the 1 W X-ray tube, 93 ppm of Crmore » is detected with an about 700 {mu}m spatial resolution. Spatially resolved elemental analysis of a mug painted with blue, red, green, and white is performed using the two portable spectromicroscopes, and the difference in elemental composition at each paint is detected.« less

  5. Detection of individual atoms in helium buffer gas and observation of their real-time motion

    NASA Technical Reports Server (NTRS)

    Pan, C. L.; Prodan, J. V.; Fairbank, W. M., Jr.; She, C. Y.

    1980-01-01

    Single atoms are detected and their motion measured for the first time to our knowledge by the fluorescence photon-burst method in the presence of large quantities of buffer gas. A single-clipped digital correlator records the photon burst in real time and displays the atom's transit time across the laser beam. A comparison is made of the special requirements for single-atom detection in vacuum and in a buffer gas. Finally, the probability distribution of the bursts from many atoms is measured. It further proves that the bursts observed on resonance are due to single atoms and not simply to noise fluctuations.

  6. Summer Dust Aerosols Detected from CALIPSO Observations over the Tibetan Plateau

    NASA Technical Reports Server (NTRS)

    Huang, Jianping; Minnis, Patrick; Yi, Yuhong; Tang, Qiang; Wang, Xin; Hu, Yongxiang; Liu, Zhaoyan; Ayers, Kirk; Trepte, Charles; Winker, David

    2007-01-01

    Summertime Tibetan dust aerosol plumes are detected from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. CALIPSO reveals that dust storms occur 4 times more frequently than previously found from Tibetan surface observations because few surface sites were available over remote northwestern Tibet. The Tibetan dust aerosol is characterized by column-averaged depolarization and color ratios around 21% and 0.83, respectively. The dust layers appear most frequently around 4-7 km above mean sea level. The depolarization ratio for about 90% of the dust particles is less than 10% at low altitudes (3-5 km), while only about 50% of the particles have a greater depolarization ratio at higher altitudes (7-10 km) suggesting a separation of larger irregular particles from smaller, near spherical ones during transport. The 4-day back trajectory analyses show that these plumes probably originate from the nearby Taklimakan desert surface and accumulate over the northern slopes of the Tibetan Plateau. These dust outbreaks can affect the radiation balance of the atmosphere of Tibet because they both absorb and reflect solar radiation.

  7. 40 CFR Appendix C to Part 425 - Definition and Procedure for the Determination of the Method Detection Limit 1

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Determination of the Method Detection Limit 1 C Appendix C to Part 425 Protection of Environment ENVIRONMENTAL... CATEGORY Pt. 425, App. C Appendix C to Part 425—Definition and Procedure for the Determination of the... reagent water. (c) The concentration value that corresponds to the region of the standard curve where...

  8. Upper Limits on the Rates of Binary Neutron Star and Neutron Star-Black Hole Mergers from Advanced LIGO’s First Observing Run

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio., M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-12-01

    We report here the non-detection of gravitational waves from the merger of binary-neutron star systems and neutron star-black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary-neutron star systems with component masses \\in [1,3] {M}⊙ and component dimensionless spins <0.05. We also searched for neutron star-black hole systems with the same neutron star parameters, black hole mass \\in [2,99] {M}⊙ , and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems and find that they could have detected the merger of binary-neutron star systems with component mass distributions of 1.35 ± 0.13 M ⊙ at a volume-weighted average distance of ˜70 Mpc, and for neutron star-black hole systems with neutron star masses of 1.4 M ⊙ and black hole masses of at least 5 M ⊙, a volume-weighted average distance of at least ˜110 Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc-3 yr-1 for binary-neutron star systems and less than 3600 Gpc-3 yr-1 for neutron star-black hole systems. We discuss the astrophysical implications of these results, which we find to be in conflict with only the most optimistic predictions. However, we find that if no detection of neutron star-binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of {10}-7+20 Gpc-3 yr-1, short gamma-ray bursts beamed toward the Earth, and assuming that all short gamma-ray bursts have binary-neutron star (neutron star-black hole) progenitors, we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than 2\\buildrel{\\circ}\\over{.} {3}-1.1+1.7 (4\\buildrel{\\circ}\\over{.} {3}-1.9+3.1).

  9. Markov Dynamics as a Zooming Lens for Multiscale Community Detection: Non Clique-Like Communities and the Field-of-View Limit

    PubMed Central

    Schaub, Michael T.; Delvenne, Jean-Charles; Yaliraki, Sophia N.; Barahona, Mauricio

    2012-01-01

    In recent years, there has been a surge of interest in community detection algorithms for complex networks. A variety of computational heuristics, some with a long history, have been proposed for the identification of communities or, alternatively, of good graph partitions. In most cases, the algorithms maximize a particular objective function, thereby finding the ‘right’ split into communities. Although a thorough comparison of algorithms is still lacking, there has been an effort to design benchmarks, i.e., random graph models with known community structure against which algorithms can be evaluated. However, popular community detection methods and benchmarks normally assume an implicit notion of community based on clique-like subgraphs, a form of community structure that is not always characteristic of real networks. Specifically, networks that emerge from geometric constraints can have natural non clique-like substructures with large effective diameters, which can be interpreted as long-range communities. In this work, we show that long-range communities escape detection by popular methods, which are blinded by a restricted ‘field-of-view’ limit, an intrinsic upper scale on the communities they can detect. The field-of-view limit means that long-range communities tend to be overpartitioned. We show how by adopting a dynamical perspective towards community detection [1], [2], in which the evolution of a Markov process on the graph is used as a zooming lens over the structure of the network at all scales, one can detect both clique- or non clique-like communities without imposing an upper scale to the detection. Consequently, the performance of algorithms on inherently low-diameter, clique-like benchmarks may not always be indicative of equally good results in real networks with local, sparser connectivity. We illustrate our ideas with constructive examples and through the analysis of real-world networks from imaging, protein structures and the power grid

  10. The Evolution of the Multiplicity of Embedded Protostars. I. Sample Properties and Binary Detections

    NASA Astrophysics Data System (ADS)

    Connelley, Michael S.; Reipurth, Bo; Tokunaga, Alan T.

    2008-06-01

    We present the observational results of a near-infrared survey of a large sample of Class I protostars designed to determine the Class I binary separation distribution from ~100 AU to ~5000 AU. We have selected targets from a new sample of 267 nearby candidate Class I objects. This sample is well understood, consists of mostly Class I young stellar objects (YSOs) within 1 kpc, has targets selected from the whole sky, and is not biased by previous studies of star formation. We have observed 189 Class I YSOs north of δ = -40° at the H, K, and L' bands, with a median angular resolution of 0farcs33 at L'. We determine our detection limit for close binary companions by observing artificial binaries. We choose a contrast limit and an outer detection limit to minimize contamination and to ensure that a candidate companion is gravitationally bound. Our survey uses observations at the L' rather than the K band for the detection of binary companions since there is less scattered light and better seeing at L'. This paper presents the positions of our targets, the near-IR photometry of sources detected in our fields at L', as well as the observed properties of the 89 detected companions (73 of which are newly discovered). Although we have chosen contrast and separation limits to minimize contamination, we expect that there are about six stars identified as binary companions that are due to contamination. Finder charts at L' for each field are shown to facilitate future studies of these objects. The Infrared Telescope Facility is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. The United Kingdom Infrared Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the U.K. Based in part on data collected at the Subaru Telescope, which is operated by the National Astronomical

  11. Observation of two-photon interference with continuous variables by homodyne detection

    NASA Astrophysics Data System (ADS)

    Wu, Daohua; Kawamoto, Kota; Guo, Xiaomin; Kasai, Katsuyuki; Watanabe, Masayoshi; Zhang, Yun

    2017-10-01

    We experimentally observed a two-photon interference between a squeezed vacuum state from an optical parametric amplifier and a weak coherent state on a beam splitter with continuous variables. The photon statistics properties of the mixed field were investigated by calculating the correlations among four permutations of measured quadratures components, which were obtained by two homodyne detection systems. This also means that the two-photon interference occurred at analysis frequency differing from the previous two-photon interference reports. The nonclassical effect of photon anti-bunching occurred when an amplitude squeezed vacuum state acted as one of interference sources. On the other hand, the photon bunching effect appeared when a phase squeezed vacuum state was employed.

  12. Sensor fault detection and recovery in satellite attitude control

    NASA Astrophysics Data System (ADS)

    Nasrolahi, Seiied Saeed; Abdollahi, Farzaneh

    2018-04-01

    This paper proposes an integrated sensor fault detection and recovery for the satellite attitude control system. By introducing a nonlinear observer, the healthy sensor measurements are provided. Considering attitude dynamics and kinematic, a novel observer is developed to detect the fault in angular rate as well as attitude sensors individually or simultaneously. There is no limit on type and configuration of attitude sensors. By designing a state feedback based control signal and Lyapunov stability criterion, the uniformly ultimately boundedness of tracking errors in the presence of sensor faults is guaranteed. Finally, simulation results are presented to illustrate the performance of the integrated scheme.

  13. Observing Infrared Emission Lines of Neutron-Capture Species in Planetary Nebulae: New Detections with IGRINS

    NASA Astrophysics Data System (ADS)

    Dinerstein, Harriet L.; Sterling, N. C.; Kaplan, Kyle F.; Bautista, Manuel A.

    2015-08-01

    As the former envelopes of evolved stars, planetary nebulae (PNe) present an opportunity to study slow neutron-capture reactions (the “s-process”) during the AGB. Such studies differ from those of AGB stars in two ways. First, PNe represent the end point of self-enrichment and dredge-up in the star and most of its mass return to the ISM, enabling us to infer the nucleosynthetic yield of a specific element. Second, some s-process products are observable in PNe but difficult or impossible to observe in cool stars. These include some species with nuclear charge Z in the 30’s for which the major synthesis sites are uncertain. Optical emission lines of trans-iron species have been observed in some PNe, but are faint and can suffer from blending with lines of more abundant elements (Péquignot & Baluteau 1994, A&A, 283, 593; Sharpee et al. 2007, ApJ, 659, 1265). Observing infrared transitions from low energy states has proven to be a fruitful alternate approach. We used K-band lines of Se (Z=34) and Kr (Z=36) to study the demographics of their abundances in a large sample of Milky Way PNe (Dinerstein 2001, ApJ, 550, L223; Sterling & Dinerstein 2008, ApJ, 174, 158; Sterling, Porter, & Dinerstein 2015, submitted). An L-band emission line of Zn identified by Dinerstein & Geballe (2001, ApJ, 562, 515) and further observed by Smith, Zijlstra, & Dinerstein 2014 (MNRAS, 441, 3161), can be used as a tracer of the Fe-group, enabling determinations of the key stellar population diagnostic ratio [alpha/Fe] in PNe (see poster by Dinerstein et al., Focus Meeting 4). Using IGRINS, a high spectral resolution H and K band spectrometer (Park & Jaffe et al. 2014, Proc SPIE, 9147), we have discovered several new lines not previously reported in any astronomical object. Our detection of an H-band line of Rb (Z=37) confirms previous claims of optical Rb detections and indicates enrichment by a factor of ~4 in the PN NGC 7027 (Sterling, Dinerstein, Kaplan, & Bautista, in preparation

  14. Applying Signal-Detection Theory to the Study of Observer Accuracy and Bias in Behavioral Assessment

    ERIC Educational Resources Information Center

    Lerman, Dorothea C.; Tetreault, Allison; Hovanetz, Alyson; Bellaci, Emily; Miller, Jonathan; Karp, Hilary; Mahmood, Angela; Strobel, Maggie; Mullen, Shelley; Keyl, Alice; Toupard, Alexis

    2010-01-01

    We evaluated the feasibility and utility of a laboratory model for examining observer accuracy within the framework of signal-detection theory (SDT). Sixty-one individuals collected data on aggression while viewing videotaped segments of simulated teacher-child interactions. The purpose of Experiment 1 was to determine if brief feedback and…

  15. Test Operations Procedure (TOP) 01-1-025 Camouflage Performance Testing Using Observers

    DTIC Science & Technology

    2016-05-05

    15. SUBJECT TERMS camouflage, detection, blending , signatures 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...21 6.2 Blending Data... learning effect on observers. If military personnel are required for testing, determine if Military Occupational Specialty (MOS) qualified Soldier

  16. Power Beaming Leakage Radiation as A SETI Observable

    NASA Technical Reports Server (NTRS)

    Benford, James N.; Benford, Dominic J.

    2016-01-01

    The most observable leakage radiation from an advanced civilization may well be from the use of power beam-ing to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors and ultimately starships. We estimate the principal observable parameters of power beaming leak-age. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system.We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful,if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: Instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be done, which could broaden the parameter space of observable features we have discussed here.

  17. Power Beaming Leakage Radiation as a SETI Observable

    NASA Astrophysics Data System (ADS)

    Benford, James N.; Benford, Dominic J.

    2016-07-01

    The most observable leakage radiation from an advanced civilization may well be from the use of power beaming to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors, and ultimately starships. We estimate the principal observable parameters of power beaming leakage. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC 8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system. We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful, if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be performed, potentially broadening the parameter space of the observable features that we have discussed here.

  18. A comparison of climatological observing windows and their impact on detecting daily temperature extrema

    NASA Astrophysics Data System (ADS)

    Žaknić-Ćatović, Ana; Gough, William A.

    2018-04-01

    Climatological observing window (COW) is defined as a time frame over which continuous or extreme air temperature measurements are collected. A 24-h time interval, ending at 00UTC or shifted to end at 06UTC, has been associated with difficulties in characterizing daily temperature extrema. A fixed 24-h COW used to obtain the temperature minima leads to potential misidentification due to fragmentation of "nighttime" into two subsequent nighttime periods due to the time discretization interval. The correct identification of air temperature extrema is achievable using a COW that identifies daily minimum over a single nighttime period and maximum over a single daytime period, as determined by sunrise and sunset. Due to a common absence of hourly air temperature observations, the accuracy of the mean temperature estimation is dependent on the accuracy of determination of diurnal air temperature extrema. Qualitative and quantitative criteria were used to examine the impact of the COW on detecting daily air temperature extrema. The timing of the 24-h observing window occasionally affects the determination of daily extrema through a mischaracterization of the diurnal minima and by extension can lead to errors in determining daily mean temperature. Hourly air temperature data for the time period from year 1987 to 2014, obtained from Toronto Buttonville Municipal Airport weather station, were used in analysis of COW impacts on detection of daily temperature extrema and calculation of annual temperature averages based on such extrema.

  19. Solid-state electron spin lifetime limited by phononic vacuum modes.

    PubMed

    Astner, T; Gugler, J; Angerer, A; Wald, S; Putz, S; Mauser, N J; Trupke, M; Sumiya, H; Onoda, S; Isoya, J; Schmiedmayer, J; Mohn, P; Majer, J

    2018-04-01

    Longitudinal relaxation is the process by which an excited spin ensemble decays into its thermal equilibrium with the environment. In solid-state spin systems, relaxation into the phonon bath usually dominates over the coupling to the electromagnetic vacuum 1-9 . In the quantum limit, the spin lifetime is determined by phononic vacuum fluctuations 10 . However, this limit was not observed in previous studies due to thermal phonon contributions 11-13 or phonon-bottleneck processes 10, 14,15 . Here we use a dispersive detection scheme 16,17 based on cavity quantum electrodynamics 18-21 to observe this quantum limit of spin relaxation of the negatively charged nitrogen vacancy (NV - ) centre 22 in diamond. Diamond possesses high thermal conductivity even at low temperatures 23 , which eliminates phonon-bottleneck processes. We observe exceptionally long longitudinal relaxation times T 1 of up to 8 h. To understand the fundamental mechanism of spin-phonon coupling in this system we develop a theoretical model and calculate the relaxation time ab initio. The calculations confirm that the low phononic density of states at the NV - transition frequency enables the spin polarization to survive over macroscopic timescales.

  20. Penumbral lunar eclipse of September 16, 2016: observing with sunglasses to make it popular

    NASA Astrophysics Data System (ADS)

    Sigismondi, Costantino

    2016-08-01

    The observation of a penumbral lunar eclipse is usually missed for a lack of interest. The real problem is the difficulty to observe it, because the strong luminosity of the full Moon and the eye response is easily saturated, being difficult the detection of the penumbral limit. The solution to use sunglasses, even two or three folded can make this observation very popular;

  1. Automated detection of coronal mass ejections in three-dimensions using multi-viewpoint observations

    NASA Astrophysics Data System (ADS)

    Hutton, J.; Morgan, H.

    2017-03-01

    A new, automated method of detecting coronal mass ejections (CMEs) in three dimensions for the LASCO C2 and STEREO COR2 coronagraphs is presented. By triangulating isolated CME signal from the three coronagraphs over a sliding window of five hours, the most likely region through which CMEs pass at 5 R⊙ is identified. The centre and size of the region gives the most likely direction of propagation and approximate angular extent. The Automated CME Triangulation (ACT) method is tested extensively using a series of synthetic CME images created using a wireframe flux rope density model, and on a sample of real coronagraph data; including halo CMEs. The accuracy of the angular difference (σ) between the detection and true input of the synthetic CMEs is σ = 7.14°, and remains acceptable for a broad range of CME positions relative to the observer, the relative separation of the three observers and even through the loss of one coronagraph. For real data, the method gives results that compare well with the distribution of low coronal sources and results from another instrument and technique made further from the Sun. The true three dimension (3D)-corrected kinematics and mass/density are discussed. The results of the new method will be incorporated into the CORIMP database in the near future, enabling improved space weather diagnostics and forecasting.

  2. RXTE Observations of Cas A

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.; Lingenfelter, R. E.; Heindl, W. A.; Blanco, P. R.; Pelling, M. R.; Gruber, D. E.; Allen, G. E.; Jahoda, K.; Swank, J. H.; Woosley, S. E.; hide

    1997-01-01

    The exciting detection by the COMPTEL instrument of the 1157 keV Ti-44 line from the supernova remnant Cas A sets important new constraints on supernova dynamics and nucleosynthesis. The Ti-44 decay also produces x-ray lines at 68 and 78 keV, whose flux should be essentially the same as that of the gamma ray line. The revised COMPTEL flux of 4 x l0(exp -5) cm(exp -2)s(exp -1) is very near the sensitivity limit for line detection by the HEXTE instrument on RXTE. We report on the results from two RXTE observations - 20 ks during In Orbit Checkout in January 1996 and 200 ks in April 1996. We also find a strong continuum emission suggesting cosmic ray electron acceleration in the remnant.

  3. Highly selective optical fluoride ion sensor with submicromolar detection limit based on aluminum(III) octaethylporphyrin in thin polymeric film.

    PubMed

    Badr, Ibrahim H A; Meyerhoff, Mark E

    2005-04-20

    A highly selective, sensitive, and reversible fluoride optical sensing film based on aluminum(III)octaethylporphyrin as a fluoride ionophore and a lipophilic pH indicator as the optical transducer is described. The fluoride optical sensing films exhibit a submicromolar detection limit and high discrimination for fluoride over several lipophilic anions such as nitrate, perchlorate, and thiocyanate.

  4. Changes in respiratory function impairment following the treatment of severe pulmonary tuberculosis - limitations for the underlying COPD detection.

    PubMed

    Radovic, Milan; Ristic, Lidija; Ciric, Zorica; Dinic-Radovic, Violeta; Stankovic, Ivana; Pejcic, Tatjana; Rancic, Milan; Bogdanovic, Dragan

    2016-01-01

    During the treatment phase of active pulmonary tuberculosis (PTB), respiratory function impairment is usually restrictive. This may become obstructive, as a PTB-associated airflow obstruction (AFO) or as a later manifestation of underlying COPD. The aim of the study was to examine the potential causes and risks for AFO development in PTB by exploring the aspects of spirometry limitations and clinical implications for the underlying COPD detection, taking into account various confounding factors. Prospective, nest case-control study on 40 new cases of PTB with initial restrictive respiratory function impairment, diagnosed and treated according to the directly observed treatment short course (DOTS) strategy. From all observed patients, 37.5% of them developed AFO upon the completion of PTB treatment, with significantly increased average of forced vital capacity (%) (P<0.01). Their changes in forced expiratory volume in the first second (%) during the PTB treatment were strongly associated with the air pollution exposure in living (0.474%-20.971% for 95% confidence interval [CI]; P=0.041) and working environments (3.928%-20.379% for 95% CI; P=0.005), initial radiological extent of PTB lesions (0.018%-0.700% for 95% CI; P=0.047), leukocyte count (0.020%-1.328% for 95% CI; P=0.043), and C-reactive protein serum level (0.046%-0.205% for 95% CI; P=0.003) compared to the other patients. The multivariate logistic regression analysis model shows initial radiological extent of pulmonary tuberculosis lesions (OR 1.01-1.05 for 95% CI; P=0.02) and sputum conversion rate on culture (OR 1.02-1.68 for 95% CI; P=0.04) as the most significant predictors for the risk of AFO development. AFO upon PTB treatment is a common manifestation of underlying COPD, which mostly occurs later, during the reparative processes in active PTB, even in the absence of major risk factors, such as cigarette smoking and biomass fuel dust exposure. Initial spirometry testing in patients with active PTB is

  5. OSSE observations of NGC 1275 in the 0.05-10.0 MeV range

    NASA Astrophysics Data System (ADS)

    Osako, C. Y.; Ulmer, M. P.; Grabelsky, D. A.; Purcell, W. R.; Strickman, M. S.; Johnson, W. N.; Kinzer, R. L.; Kurfess, J. D.; Jung, G. V.

    1994-11-01

    We made observations of NGC 1275 with the Compton Gamma-Ray Observatory's Oriented Scintillation Spectrometer Experiment (OSSE) between 1991 November 28 and December 12. We did not detect the source during this viewing period. Our 3 sigma upper limit to a detection in the approximately 50-90 keV range is 6 x 10-6 photons/sq cm/s/keV. This flux is more than 10 times lower than the 3 sigma detection in the same energy range reported by Rothschild et al. for their OSO 7 observations. Our results are discussed in comparison with radio observations and models for the X-ray emission, and we show that it is likely that most of the approx. greater than 10 keV photons come from the nuclear region of NGC 1275. We find no significant correlation between the variable radio intensity and the hard X-ray flux of the entire NGC 1275 source. Simultaneous Very Large Baseline Array and gamma-ray observations are needed to test the self-Compton synchrotron models for gamma-ray emission from the core of NGC 1275. Our results also provide a lower limit to the magnetic field of approximately 2 x 10-7 gauss for the approximately 5 min radio source centered on NGC 1275.

  6. Dangerous gas detection based on infrared video

    NASA Astrophysics Data System (ADS)

    Ding, Kang; Hong, Hanyu; Huang, Likun

    2018-03-01

    As the gas leak infrared imaging detection technology has significant advantages of high efficiency and remote imaging detection, in order to enhance the detail perception of observers and equivalently improve the detection limit, we propose a new type of gas leak infrared image detection method, which combines background difference methods and multi-frame interval difference method. Compared to the traditional frame methods, the multi-frame interval difference method we proposed can extract a more complete target image. By fusing the background difference image and the multi-frame interval difference image, we can accumulate the information of infrared target image of the gas leak in many aspect. The experiment demonstrate that the completeness of the gas leakage trace information is enhanced significantly, and the real-time detection effect can be achieved.

  7. A New Approach for 3D Ocean Reconstruction from Limited Observations

    NASA Astrophysics Data System (ADS)

    Xiao, X.

    2014-12-01

    Satellites can measure ocean surface height and temperature with sufficient spatial and temporal resolution to capture mesoscale features across the globe. Measurements of the ocean's interior, however, remain sparse and irregular, thus the dynamical inference of subsurface flows is necessary to interpret surface measurements. The most common (and accurate) approach is to incorporate surface measurements into a data-assimilating forward ocean model, but this approach is expensive and slow, and thus completely impractical for time-critical needs, such as offering guidance to ship-based observational campaigns. Two recently-developed approaches have made use of the apparent partial consistency of upper ocean dynamics with quasigeostrophic flows that take into account surface buoyancy gradients (i.e. the "surface quasigeostrophic" (SQG) model) to "reconstruct" the interior flow from knowledge of surface height and buoyancy. Here we improve on these methods in three ways: (1) we adopt a modal decomposition that represents the surface and interior dynamics in an efficient way, allowing the separation of surface energy from total energy; (2) we make use of instantaneous vertical profile observations (e.g. from ARGO data) to improve the reconstruction of eddy variables at depth; and (3) we use advanced statistical methods to choose the optimal modes for the reconstruction. The method is tested using a series of high horizontal and vertical resolution quasigeostrophic simulation, with a wide range of surface buoyancy and interior potential vorticity gradient combinations. In addtion, we apply the method to output from a very high resolution primitive equation simulation of a forced and dissipated baroclinic front in a channel. Our new method is systematically compared to the existing methods as well. Its advantages and limitations will be discussed.

  8. Constraining the Braneworld with Gravitational Wave Observations

    NASA Technical Reports Server (NTRS)

    McWilliams, Sean T.

    2011-01-01

    Some braneworld models may have observable consequences that, if detected, would validate a requisite element of string theory. In the infinite Randall-Sundrum model (RS2), the AdS radius of curvature, L, of the extra dimension supports a single bound state of the massless graviton on the brane, thereby reproducing Newtonian gravity in the weak-field limit. However, using the AdS/CFT correspondence, it has been suggested that one possible consequence of RS2 is an enormous increase in Hawking radiation emitted by black holes. We utilize this possibility to derive two novel methods for constraining L via gravitational wave measurements. We show that the EMRI event rate detected by LISA can constrain L at the approximately 1 micron level for optimal cases, while the observation of a single galactic black hole binary with LISA results in an optimal constraint of L less than or equal to 5 microns.

  9. Constraining the braneworld with gravitational wave observations.

    PubMed

    McWilliams, Sean T

    2010-04-09

    Some braneworld models may have observable consequences that, if detected, would validate a requisite element of string theory. In the infinite Randall-Sundrum model (RS2), the AdS radius of curvature, l, of the extra dimension supports a single bound state of the massless graviton on the brane, thereby reproducing Newtonian gravity in the weak-field limit. However, using the AdS/CFT correspondence, it has been suggested that one possible consequence of RS2 is an enormous increase in Hawking radiation emitted by black holes. We utilize this possibility to derive two novel methods for constraining l via gravitational wave measurements. We show that the EMRI event rate detected by LISA can constrain l at the approximately 1 microm level for optimal cases, while the observation of a single galactic black hole binary with LISA results in an optimal constraint of l < or = 5 microm.

  10. Detection limits of intraoperative near infrared imaging for tumor resection.

    PubMed

    Thurber, Greg M; Figueiredo, Jose-Luiz; Weissleder, Ralph

    2010-12-01

    The application of fluorescent molecular imaging to surgical oncology is a developing field with the potential to reduce morbidity and mortality. However, the detection thresholds and other requirements for successful intervention remain poorly understood. Here we modeled and experimentally validated depth and size of detection of tumor deposits, trade-offs in coverage and resolution of areas of interest, and required pharmacokinetics of probes based on differing levels of tumor target presentation. Three orthotopic tumor models were imaged by widefield epifluorescence and confocal microscopes, and the experimental results were compared with pharmacokinetic models and light scattering simulations to determine detection thresholds. Widefield epifluorescence imaging can provide sufficient contrast to visualize tumor margins and detect tumor deposits 3-5  mm deep based on labeled monoclonal antibodies at low objective magnification. At higher magnification, surface tumor deposits at cellular resolution are detectable at TBR ratios achieved with highly expressed antigens. A widefield illumination system with the capability for macroscopic surveying and microscopic imaging provides the greatest utility for varying surgical goals. These results have implications for system and agent designs, which ultimately should aid complete resection in most surgical beds and provide real-time feedback to obtain clean margins. © 2010 Wiley-Liss, Inc.

  11. A practical approach to determination of laboratory GC-MS limits of detection.

    PubMed

    Underwood, P J; Kananen, G E; Armitage, E K

    1997-01-01

    Determination of limit of detection (LOD) values in a forensic laboratory serves a fundamental forensic requirement for assay performance. In addition to demonstrating assay capability, LOD values can also be used to fulfill certification requirements of a high-volume forensic drug laboratory. The LOD was defined as the lowest concentration of drug that the laboratory can detect in a specimen with forensic certainty at a minimum of 85% of the time. Overall batch acceptance criteria included acceptable quantitation of control materials (within 20% of target), acceptable chromatography (symmetry, peak integration, peak shape, peak, and baseline resolution), retention time within +/-1% of the extracted standard, and mass ion ratios within +/-20% of the extracted standard mass ion ratios. Individual specimen acceptance criteria were the same as the batch acceptance criteria excluding the quantitation requirement. Data were collected from all instruments on different runs. A minimum of ten data points was required for each certified instrument, and a minimum of 85% of data points was acceptable. Quantitation within +/-20% of the LOD concentration was not required, but acceptable mass ratios were required. Data points with poor chromatography (internal standard failed mass ratios; interference of the baseline, for example, shoulders; asymmetry; and baseline resolution) was omitted from the acceptable rate calculation. Data points with good chromatography with failed mass ion ratios were included in the acceptable rate calculation. With these criteria, we established the following LODs: 11-nor-delta 9-tetrahydrocannabinol-9-carboxylic acid, 2 ng/mL; benzoylecgonine, 5 ng/mL; phencyclidine, 2.5 ng/mL; amphetamine, 150 ng/mL; methamphetamine, 100 ng/mL; codeine, 500 ng/mL; and morphine, 1000 ng/mL.

  12. Acoustic Observation of Living Organisms Reveals the Upper Limit of the Oxygen Minimum Zone

    PubMed Central

    Bertrand, Arnaud; Ballón, Michael; Chaigneau, Alexis

    2010-01-01

    Background Oxygen minimum zones (OMZs) are expanding in the World Ocean as a result of climate change and direct anthropogenic influence. OMZ expansion greatly affects biogeochemical processes and marine life, especially by constraining the vertical habitat of most marine organisms. Currently, monitoring the variability of the upper limit of the OMZs relies on time intensive sampling protocols, causing poor spatial resolution. Methodology/Principal Findings Using routine underwater acoustic observations of the vertical distribution of marine organisms, we propose a new method that allows determination of the upper limit of the OMZ with a high precision. Applied in the eastern South-Pacific, this original sampling technique provides high-resolution information on the depth of the upper OMZ allowing documentation of mesoscale and submesoscale features (e.g., eddies and filaments) that structure the upper ocean and the marine ecosystems. We also use this information to estimate the habitable volume for the world's most exploited fish, the Peruvian anchovy (Engraulis ringens). Conclusions/Significance This opportunistic method could be implemented on any vessel geared with multi-frequency echosounders to perform comprehensive high-resolution monitoring of the upper limit of the OMZ. Our approach is a novel way of studying the impact of physical processes on marine life and extracting valid information about the pelagic habitat and its spatial structure, a crucial aspect of Ecosystem-based Fisheries Management in the current context of climate change. PMID:20442791

  13. Suppression of plasma virus load below the detection limit of a human immunodeficiency virus kit is associated with longer virologic response than suppression below the limit of quantitation.

    PubMed

    Raboud, J M; Rae, S; Hogg, R S; Yip, B; Sherlock, C H; Harrigan, P R; O'Shaughnessy, M V; Montaner, J S

    1999-10-01

    Suppression of human immunodeficiency virus type 1 plasma virus load (PVL) to <20 copies/mL is associated with a longer virologic response after initiation of antiretroviral therapy. The relationship between duration of virologic response and PVL nadir according to a less sensitive assay was explored. When compared with subjects with a PVL nadir >500 copies/mL, the relative risks of PVL rising above 1000 copies/mL for participants in the INCAS trial and the British Columbia Drug Treatment Program with a PVL nadir below the limit of detection (LOD) were 0.04 (95% confidence interval [CI], 0.02-0.09) and 0.06 (95% CI, 0.03-0.12), respectively. The corresponding relative risks for persons with a detectable but not quantifiable PVL nadir were 0.25 (95% CI, 0.13-0.50) and 0.54 (95% CI, 0.25-1.19). The relative risks of virologic failure associated with a PVL nadir detectable but not quantifiable and a PVL nadir below the LOD were statistically different (P<.0001) in both data sets.

  14. Gamma-ray-burst beaming and gravitational-wave observations.

    PubMed

    Chen, Hsin-Yu; Holz, Daniel E

    2013-11-01

    Using the observed rate of short-duration gamma-ray bursts (GRBs) it is possible to make predictions for the detectable rate of compact binary coalescences in gravitational-wave detectors. We show that the nondetection of mergers in the existing LIGO/Virgo data constrains the beaming angles and progenitor masses of gamma-ray bursts, although these limits are fully consistent with existing expectations. We make predictions for the rate of events in future networks of gravitational-wave observatories, finding that the first detection of a neutron-star-neutron-star binary coalescence associated with the progenitors of short GRBs is likely to happen within the first 16 months of observation, even in the case of only two observatories (e.g., LIGO-Hanford and LIGO-Livingston) operating at intermediate sensitivities (e.g., advanced LIGO design sensitivity, but without signal recycling mirrors), and assuming a conservative distribution of beaming angles (e.g., all GRBs beamed within θ(j) = 30°). Less conservative assumptions reduce the waiting time until first detection to a period of weeks to months, with an event detection rate of >/~10/yr. Alternatively, the compact binary coalescence model of short GRBs can be ruled out if a binary is not seen within the first two years of operation of a LIGO-Hanford, LIGO-Livingston, and Virgo network at advanced design sensitivity. We also demonstrate that the gravitational wave detection rate of GRB triggered sources (i.e., those seen first in gamma rays) is lower than the rate of untriggered events (i.e., those seen only in gravitational waves) if θ(j)≲30°, independent of the noise curve, network configuration, and observed GRB rate. The first detection in gravitational waves of a binary GRB progenitor is therefore unlikely to be associated with the observation of a GRB.

  15. FERMI Observations of TeV-Selected Active Galactic Nuclei

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-12-04

    Here, we report on observations of TeV-selected active galactic nuclei (AGNs) made during the first 5.5 months of observations with the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope (Fermi). In total, 96 AGNs were selected for study, each being either (1) a source detected at TeV energies (28 sources) or (2) an object that has been studied with TeV instruments and for which an upper limit has been reported (68 objects). The Fermi observations show clear detections of 38 of these TeV-selected objects, of which 21 are joint GeV-TeV sources, and 29 were not in the thirdmore » EGRET catalog. For each of the 38 Fermi-detected sources, spectra and light curves are presented. Most can be described with a power law of spectral index harder than 2.0, with a spectral break generally required to accommodate the TeV measurements. Based on an extrapolation of the Fermi spectrum, we identify sources, not previously detected at TeV energies, which are promising targets for TeV instruments. Finally, evidence for systematic evolution of the γ-ray spectrum with redshift is presented and discussed in the context of interaction with the extragalactic background light.« less

  16. Dark matter direct detection of a fermionic singlet at one loop

    NASA Astrophysics Data System (ADS)

    Herrero-García, Juan; Molinaro, Emiliano; Schmidt, Michael A.

    2018-06-01

    The strong direct detection limits could be pointing to dark matter - nucleus scattering at loop level. We study in detail the prototype example of an electroweak singlet (Dirac or Majorana) dark matter fermion coupled to an extended dark sector, which is composed of a new fermion and a new scalar. Given the strong limits on colored particles from direct and indirect searches we assume that the fields of the new dark sector are color singlets. We outline the possible simplified models, including the well-motivated cases in which the extra scalar or fermion is a Standard Model particle, as well as the possible connection to neutrino masses. We compute the contributions to direct detection from the photon, the Z and the Higgs penguins for arbitrary quantum numbers of the dark sector. Furthermore, we derive compact expressions in certain limits, i.e., when all new particles are heavier than the dark matter mass and when the fermion running in the loop is light, like a Standard Model lepton. We study in detail the predicted direct detection rate and how current and future direct detection limits constrain the model parameters. In case dark matter couples directly to Standard Model leptons we find an interesting interplay between lepton flavor violation, direct detection and the observed relic abundance.

  17. Hallmarks in prostate cancer imaging with Ga68-PSMA-11-PET/CT with reference to detection limits and quantitative properties.

    PubMed

    Sanchez-Crespo, Alejandro; Jussing, Emma; Björklund, Ann-Charlotte; Pokrovskaja Tamm, Katja

    2018-04-04

    Gallium-68-labeled prostate-specific antigen positron emission tomography/computed tomography imaging (Ga68-PSMA-11-PET/CT) has emerged as a potential gold standard for prostate cancer (PCa) diagnosis. However, the imaging limitations of this technique at the early state of PCa recurrence/metastatic spread are still not well characterized. The aim of this study was to determine the quantitative properties and the fundamental imaging limits of Ga68-PSMA-11-PET/CT in localizing small PCa cell deposits. The human PCa LNCaP cells (PSMA expressing) were grown and collected as single cell suspension or as 3D-spheroids at different cell numbers and incubated with Ga68-PSMA-11. Thereafter, human HCT116 cells (PSMA negative) were added to a total cell number of 2 × 10 5 cells per tube. The tubes were then pelleted and the supernatant aspirated. A whole-body PET/CT scanner with a clinical routine protocol was used for imaging the pellets inside of a cylindrical water phantom with increasing amounts of background activity. The actual activity bound to the cells was also measured in an automatic gamma counter. Imaging detection limits and activity recovery coefficients as a function of LNCaP cell number were obtained. The effect of Ga68-PSMA-11 mass concentration on cell binding was also investigated in samples of LnCaP cells incubated with increasing concentrations of radioligand. A total of 1 × 10 4 LNCaP cells mixed in a pellet of 2 × 10 5 cells were required to reach a 50% detection probability with Ga68-PSMA-11-PET/CT without background. With a background level of 1 kBq/ml, between 4 × 10 5 and 1 × 10 6 cells are required. The radioligand equilibrium dissociation constant was 27.05 nM, indicating high binding affinity. Hence, the specific activity of the radioligand has a profound effect on image quantification. Ga68-PSMA-11-PET detects a small number of LNCaP cells even when they are mixed in a population of non-PSMA expressing cells and in the

  18. Sources of variation in detection of wading birds from aerial surveys in the Florida Everglades

    USGS Publications Warehouse

    Conroy, M.J.; Peterson, J.T.; Bass, O.L.; Fonnesbeck, C.J.; Howell, J.E.; Moore, C.T.; Runge, J.P.

    2008-01-01

    We conducted dual-observer trials to estimate detection probabilities (probability that a group that is present and available is detected) for fixed-wing aerial surveys of wading birds in the Everglades system, Florida. Detection probability ranged from <0.2 to similar to 0.75 and varied according to species, group size, observer, and the observer's position in the aircraft (front or rear seat). Aerial-survey simulations indicated that incomplete detection can have a substantial effect oil assessment of population trends, particularly river relatively short intervals (<= 3 years) and small annual changes in population size (<= 3%). We conclude that detection bias is an important consideration for interpreting observations from aerial surveys of wading birds, potentially limiting the use of these data for comparative purposes and trend analyses. We recommend that workers conducting aerial surveys for wading birds endeavor to reduce observer and other controllable sources of detection bias and account for uncontrollable sources through incorporation of dual-observer or other calibratior methods as part of survey design (e.g., using double sampling).

  19. The Use and Abuse of Limits of Detection in Environmental Analytical Chemistry

    PubMed Central

    Brown, Richard J. C.

    2008-01-01

    The limit of detection (LoD) serves as an important method performance measure that is useful for the comparison of measurement techniques and the assessment of likely signal to noise performance, especially in environmental analytical chemistry. However, the LoD is only truly related to the precision characteristics of the analytical instrument employed for the analysis and the content of analyte in the blank sample. This article discusses how other criteria, such as sampling volume, can serve to distort the quoted LoD artificially and make comparison between various analytical methods inequitable. In order to compare LoDs between methods properly, it is necessary to state clearly all of the input parameters relating to the measurements that have been used in the calculation of the LoD. Additionally, the article discusses that the use of LoDs in contexts other than the comparison of the attributes of analytical methods, in particular when reporting analytical results, may be confusing, less informative than quoting the actual result with an accompanying statement of uncertainty, and may act to bias descriptive statistics. PMID:18690384

  20. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Giomi, Matteo; Gerard, Lucie; Maier, Gernot

    2016-07-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the variability properties of the sources, as compared to strategies that concentrate the observing time in a small number of large observing windows. Although derived using CTA as an example, our conclusions are conceptually valid for any IACTs facility, and in general, to all observatories with small field of view and limited duty cycle.

  1. Optimization and characterization of condensation nucleation light scattering detection coupled with supercritical fluid chromatography

    NASA Astrophysics Data System (ADS)

    Yang, Shaoping

    This dissertation is an investigation of two aspects of coupling condensation nucleation light scattering detection (CNLSD) with supercritical fluid chromatography (SFC). In the first part, it was demonstrated that CNLSD was compatible with packed column SFC using either pure CO2 or organic solvent modified CO2 as mobile phases. Factors which were expected to affect the interface between SFC and CNLSD were optimized for the detector to reach low detection limits. With SFC using pure CO2 as mobile phase, the detection limit of CNLSD with SFC was observed to be at low nanogram levels, which was at the same level of flame ionization detection (FID) coupled with SFC. For SFC using modified CO2 as mobile phase, detection limits at the picogram level were observed for CNLSD at optimal conditions, which were at least ten times lower than those reached by evaporative light scattering detection. In the second part, particle size distributions of aerosols produced from rapid expansion of supercritical solutions were measured with a scanning mobility particle sizer. The effect of the factors, which were investigated in the first part for their effects on signal intensities and signal to noise ratios (S/N), on particle size distributions (PSDs) of both analyte and background were investigated. Whenever possible, both particle sizes and particle number obtained from PSDs were used to explain the optimization results. In general, PSD data support the observations made in the first part. The detection limits of CNLSD obtained were much higher than predicted. PSDs did not provide direct explanation of this problem. The amount of analyte deposited in the transport tubing, evaporated to gas phase, and condensed to form particles was determined experimentally. Almost no analyte was found in the gas phase. Less than 3% was found in the particle forms. The vast majority of analyte was lost in the transport tubing, especially in the short distance after supercritical fluid expansion. A

  2. Finding Kuiper Belt Objects Below the Detection Limit

    NASA Astrophysics Data System (ADS)

    Whidden, Peter; Kalmbach, Bryce; Bektesevic, Dino; Connolly, Andrew; Jones, Lynne; Smotherman, Hayden; Becker, Andrew

    2018-01-01

    We demonstrate a novel approach for uncovering the signatures of moving objects (e.g. Kuiper Belt Objects) below the detection thresholds of single astronomical images. To do so, we will employ a matched filter moving at specific rates of proposed orbits through a time-domain dataset. This is analogous to the better-known "shift-and-stack" method; however it uses neither direct shifting nor stacking of the image pixels. Instead of resampling the raw pixels to create an image stack, we will instead integrate the object detection probabilities across multiple single-epoch images to accrue support for a proposed orbit. The filtering kernel provides a measure of the probability that an object is present along a given orbit, and enables the user to make principled decisions about when the search has been successful, and when it may be terminated. The results we present here utilize GPUs to speed up the search by two orders of magnitudes over CPU implementations.

  3. Variation in the limit-of-detection of the ProSpecT Campylobacter microplate enzyme immunoassay in stools spiked with emerging Campylobacter species.

    PubMed

    Bojanić, Krunoslav; Midwinter, Anne Camilla; Marshall, Jonathan Craig; Rogers, Lynn Elizabeth; Biggs, Patrick Jon; Acke, Els

    2016-08-01

    Campylobacter enteritis in humans is primarily associated with C. jejuni/coli infection. The impact of other Campylobacter spp. is likely to be underestimated due to the bias of culture methods towards Campylobacter jejuni/coli diagnosis. Stool antigen tests are becoming increasingly popular and appear generally less species-specific. A review of independent studies of the ProSpecT® Campylobacter Microplate enzyme immunoassay (EIA) developed for C. jejuni/coli showed comparable diagnostic results to culture methods but the examination of non-jejuni/coli Campylobacter spp. was limited and the limit-of-detection (LOD), where reported, varied between studies. This study investigated LOD of EIA for Campylobacter upsaliensis, Campylobacter hyointestinalis and Campylobacter helveticus spiked in human stools. Multiple stools and Campylobacter isolates were used in three different concentrations (10(4)-10(9)CFU/ml) to reflect sample heterogeneity. All Campylobacter species evaluated were detectable by EIA. Multivariate analysis showed LOD varied between Campylobacter spp. and faecal consistency as fixed effects and individual faecal samples as random effects. EIA showed excellent performance in replicate testing for both within and between batches of reagents, in agreement between visual and spectrophotometric reading of results, and returned no discordance between the bacterial concentrations within independent dilution test runs (positive results with lower but not higher concentrations). This study shows how limitations in experimental procedures lead to an overestimation of consistency and uniformity of LOD for EIA that may not hold under routine use in diagnostic laboratories. Benefits and limitations for clinical practice and the influence on estimates of performance characteristics from detection of multiple Campylobacter spp. by EIA are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Estimation of the limit of detection using information theory measures.

    PubMed

    Fonollosa, Jordi; Vergara, Alexander; Huerta, Ramón; Marco, Santiago

    2014-01-31

    Definitions of the limit of detection (LOD) based on the probability of false positive and/or false negative errors have been proposed over the past years. Although such definitions are straightforward and valid for any kind of analytical system, proposed methodologies to estimate the LOD are usually simplified to signals with Gaussian noise. Additionally, there is a general misconception that two systems with the same LOD provide the same amount of information on the source regardless of the prior probability of presenting a blank/analyte sample. Based upon an analogy between an analytical system and a binary communication channel, in this paper we show that the amount of information that can be extracted from an analytical system depends on the probability of presenting the two different possible states. We propose a new definition of LOD utilizing information theory tools that deals with noise of any kind and allows the introduction of prior knowledge easily. Unlike most traditional LOD estimation approaches, the proposed definition is based on the amount of information that the chemical instrumentation system provides on the chemical information source. Our findings indicate that the benchmark of analytical systems based on the ability to provide information about the presence/absence of the analyte (our proposed approach) is a more general and proper framework, while converging to the usual values when dealing with Gaussian noise. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Reconciling Simulated and Observed Views of Clouds: MODIS, ISCCP, and the Limits or Instrument Simulators

    NASA Technical Reports Server (NTRS)

    Ackerman, Steven A.; Hemler, Richard S.; Hofman, Robert J. Patrick; Pincus, Robert; Platnick, Steven

    2011-01-01

    The properties of clouds that may be observed by satellite instruments, such as optical depth and cloud top pressure, are only loosely related to the way clouds m-e represented in models of the atmosphere. One way to bridge this gap is through "instrument simulators," diagnostic tools that map the model representation to synthetic observations so that differences between simulator output and observations can be interpreted unambiguously as model error. But simulators may themselves be restricted by limited information available from the host model or by internal assumptions. This paper considers the extent to which instrument simulators are able to capture essential differences between MODIS and ISCCP, two similar but independent estimates of cloud properties. The authors review the measurements and algorithms underlying these two cloud climatologies, introduce a MODIS simulator, and detail data sets developed for comparison with global models using ISCCP and MODIS simulators, In nature MODIS observes less mid-level doudines!> than ISCCP, consistent with the different methods used to determine cloud top pressure; aspects of this difference are reproduced by the simulators running in a climate modeL But stark differences between MODIS and ISCCP observations of total cloudiness and the distribution of cloud optical thickness can be traced to different approaches to marginal pixels, which MODIS excludes and ISCCP treats as homogeneous. These pixels, which likely contain broken clouds, cover about 15 k of the planet and contain almost all of the optically thinnest clouds observed by either instrument. Instrument simulators can not reproduce these differences because the host model does not consider unresolved spatial scales and so can not produce broken pixels. Nonetheless, MODIS and ISCCP observation are consistent for all but the optically-thinnest clouds, and models can be robustly evaluated using instrument simulators by excluding ambiguous observations.

  6. Chlorine-trapped CVD bilayer graphene for resistive pressure sensor with high detection limit and high sensitivity

    NASA Astrophysics Data System (ADS)

    Phuong Pham, Viet; Triet Nguyen, Minh; Park, Jin Woo; Kwak, Sung Soo; Nguyen, Dieu Hien Thi; Kyeom Mun, Mu; Danh Phan, Hoang; San Kim, Doo; Kim, Ki Hyun; Lee, Nae-Eung; Yeom, Geun Young

    2017-06-01

    Pressure sensing is one of the key functions for smart electronics. Considerably more effort is required to achieve the fabrication of pressure sensors that can imitate and overcome the sophisticated pressure sensing characteristics in nature and industry, especially in the innovation of materials and structures. Almost all of the pressure sensors reported until now have a high sensitivity at a low-pressure detection limit (<10 kPa). While the exploration of a pressure sensor with a high sensitivity and a high responsivity at a high-pressure is challenging, it is required for next generation smart electronics. Here, we report an exotic heterostructure pressure sensor based on ZnO/chlorine radical-trap doped bilayer graphene (ZGClG) as an ideal channel for pressure sensors. Using this ZGClG as the channel, this study shows the possibility of forming a pressure sensor with a high sensitivity (0.19 kPa-1) and a high responsivity (0.575 s) at V  =  1 V on glass substrate. Further, the pressure detection limit of this device was as high as 98 kPa. The investigation of the sensing mechanism under pressure has revealed that the significant improved sensing effect is related to the heavy p-type chlorine trap doping in the channel graphene with chlorine radicals without damaging the graphene. This work indicates that the ZGClG channel used for the pressure sensing device could also provide a simple and essential sensing platform for chemical-, medical-, and biological-sensing for future smart electronics.

  7. Lower limits of spin detection efficiency for two-parameter two-qubit (TPTQ) states with non-ideal ferromagnetic detectors

    NASA Astrophysics Data System (ADS)

    Majd, Nayereh; Ghasemi, Zahra

    2016-10-01

    We have investigated a TPTQ state as an input state of a non-ideal ferromagnetic detectors. Minimal spin polarization required to demonstrate spin entanglement according to entanglement witness and CHSH inequality with respect to (w.r.t.) their two free parameters have been found, and we have numerically shown that the entanglement witness is less stringent than the direct tests of Bell's inequality in the form of CHSH in the entangled limits of its free parameters. In addition, the lower limits of spin detection efficiency fulfilling secure cryptographic key against eavesdropping have been derived. Finally, we have considered TPTQ state as an output of spin decoherence channel and the region of ballistic transmission time w.r.t. spin relaxation time and spin dephasing time has been found.

  8. Evaluating detection limits of next-generation sequencing for the surveillance and monitoring of international marine pests.

    PubMed

    Pochon, Xavier; Bott, Nathan J; Smith, Kirsty F; Wood, Susanna A

    2013-01-01

    Most surveillance programmes for marine invasive species (MIS) require considerable taxonomic expertise, are laborious, and are unable to identify species at larval or juvenile stages. Therefore, marine pests may go undetected at the initial stages of incursions when population densities are low. In this study, we evaluated the ability of the benchtop GS Junior™ 454 pyrosequencing system to detect the presence of MIS in complex sample matrices. An initial in-silico evaluation of the mitochondrial cytochrome c oxidase subunit I (COI) and the nuclear small subunit ribosomal DNA (SSU) genes, found that multiple primer sets (targeting a ca. 400 base pair region) would be required to obtain species level identification within the COI gene. In contrast a single universal primer set was designed to target the V1-V3 region of SSU, allowing simultaneous PCR amplification of a wide taxonomic range of MIS. To evaluate the limits of detection of this method, artificial contrived communities (10 species from 5 taxonomic groups) were created using varying concentrations of known DNA samples and PCR products. Environmental samples (water and sediment) spiked with one or five 160 hr old Asterias amurensis larvae were also examined. Pyrosequencing was able to recover DNA/PCR products of individual species present at greater than 0.64% abundance from all tested contrived communities. Additionally, single A. amurensis larvae were detected from both water and sediment samples despite the co-occurrence of a large array of environmental eukaryotes, indicating an equivalent sensitivity to quantitative PCR. NGS technology has tremendous potential for the early detection of marine invasive species worldwide.

  9. Improved Limits for Higgs-Portal Dark Matter from LHC Searches.

    PubMed

    Hoferichter, Martin; Klos, Philipp; Menéndez, Javier; Schwenk, Achim

    2017-11-03

    Searches for invisible Higgs decays at the Large Hadron Collider constrain dark matter Higgs-portal models, where dark matter interacts with the standard model fields via the Higgs boson. While these searches complement dark matter direct-detection experiments, a comparison of the two limits depends on the coupling of the Higgs boson to the nucleons forming the direct-detection nuclear target, typically parametrized in a single quantity f_{N}. We evaluate f_{N} using recent phenomenological and lattice-QCD calculations, and include for the first time the coupling of the Higgs boson to two nucleons via pion-exchange currents. We observe a partial cancellation for Higgs-portal models that makes the two-nucleon contribution anomalously small. Our results, summarized as f_{N}=0.308(18), show that the uncertainty of the Higgs-nucleon coupling has been vastly overestimated in the past. The improved limits highlight that state-of-the-art nuclear physics input is key to fully exploiting experimental searches.

  10. A statistical study of whistler waves observed by Van Allen Probes (RBSP) and lightning detected by WWLLN

    NASA Astrophysics Data System (ADS)

    Zheng, Hao; Holzworth, Robert H.; Brundell, James B.; Jacobson, Abram R.; Wygant, John R.; Hospodarsky, George B.; Mozer, Forrest S.; Bonnell, John

    2016-03-01

    Lightning-generated whistler waves are electromagnetic plasma waves in the very low frequency (VLF) band, which play an important role in the dynamics of radiation belt particles. In this paper, we statistically analyze simultaneous waveform data from the Van Allen Probes (Radiation Belt Storm Probes, RBSP) and global lightning data from the World Wide Lightning Location Network (WWLLN). Data were obtained between July to September 2013 and between March and April 2014. For each day during these periods, we predicted the most probable 10 min for which each of the two RBSP satellites would be magnetically conjugate to lightning producing regions. The prediction method uses integrated WWLLN stroke data for that day obtained during the three previous years. Using these predicted times for magnetic conjugacy to lightning activity regions, we recorded high time resolution, burst mode waveform data. Here we show that whistlers are observed by the satellites in more than 80% of downloaded waveform data. About 22.9% of the whistlers observed by RBSP are one-to-one coincident with source lightning strokes detected by WWLLN. About 40.1% more of whistlers are found to be one-to-one coincident with lightning if source regions are extended out 2000 km from the satellites footpoints. Lightning strokes with far-field radiated VLF energy larger than about 100 J are able to generate a detectable whistler wave in the inner magnetosphere. One-to-one coincidences between whistlers observed by RBSP and lightning strokes detected by WWLLN are clearly shown in the L shell range of L = 1-3. Nose whistlers observed in July 2014 show that it may be possible to extend this coincidence to the region of L≥4.

  11. Rapid Detection of Ebola Virus with a Reagent-Free, Point-of-Care Biosensor

    PubMed Central

    Baca, Justin T.; Severns, Virginia; Lovato, Debbie; Branch, Darren W.; Larson, Richard S.

    2015-01-01

    Surface acoustic wave (SAW) sensors can rapidly detect Ebola antigens at the point-of-care without the need for added reagents, sample processing, or specialized personnel. This preliminary study demonstrates SAW biosensor detection of the Ebola virus in a concentration-dependent manner. The detection limit with this methodology is below the average level of viremia detected on the first day of symptoms by PCR. We observe a log-linear sensor response for highly fragmented Ebola viral particles, with a detection limit corresponding to 1.9 × 104 PFU/mL prior to virus inactivation. We predict greatly improved sensitivity for intact, infectious Ebola virus. This point-of-care methodology has the potential to detect Ebola viremia prior to symptom onset, greatly enabling infection control and rapid treatment. This biosensor platform is powered by disposable AA batteries and can be rapidly adapted to detect other emerging diseases in austere conditions. PMID:25875186

  12. VERITAS Observations of the Nova in V407 Cygni

    NASA Technical Reports Server (NTRS)

    Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; hide

    2012-01-01

    We report on very high energy (E > 100 GeV) gamma-ray observations of V407 Cygni, a symbiotic binary that underwent a nova outburst producing 0.1- 10 GeV gamma rays during 2010 March 10-26. Observations were made with the Very Energetic Radiation Imaging Telescope Array System during 2010 March 19-26 at relatively large zenith angles, due to the position of V407 Cyg. An improved reconstruction technique for large zenith angle observations is presented and used to analyze the data. We do not detect V407 Cygni and place a differential upper limit on the flux at 1.6 TeV of 2.3 10(exp -12) erg/sq cm/s (at the 95% confidence level). When considered jointly with data from Fermi-LAT, this result places limits on the acceleration of very high energy particles in the nova.

  13. National review of ambient air toxics observations.

    PubMed

    Strum, Madeleine; Scheffe, Richard

    2016-02-01

    Ambient air observations of hazardous air pollutant (HAPs), also known as air toxics, derived from routine monitoring networks operated by states, local agencies, and tribes (SLTs), are analyzed to characterize national concentrations and risk across the nation for a representative subset of the 187 designated HAPs. Observations from the National Air Toxics Trend Sites (NATTS) network of 27 stations located in most major urban areas of the contiguous United States have provided a consistent record of HAPs that have been identified as posing the greatest risk since 2003 and have also captured similar concentration patterns of nearly 300 sites operated by SLTs. Relatively high concentration volatile organic compounds (VOCs) such as benzene, formaldehyde, and toluene exhibit the highest annual average concentration levels, typically ranging from 1 to 5 µg/m(3). Halogenated (except for methylene chloride) and semivolatile organic compounds (SVOCs) and metals exhibit concentrations typically 2-3 orders of magnitude lower. Formaldehyde is the highest national risk driver based on estimated cancer risk and, nationally, has not exhibited significant changes in concentration, likely associated with the large pool of natural isoprene and formaldehyde emissions. Benzene, toluene, ethylbenzene, and 1,3-butadiene are ubiquitous VOC HAPs with large mobile source contributions that continue to exhibit declining concentrations over the last decade. Common chlorinated organic compounds such as ethylene dichloride and methylene chloride exhibit increasing concentrations. The variety of physical and chemical attributes and measurement technologies across 187 HAPs result in a broad range of method detection limits (MDLs) and cancer risk thresholds that challenge confidence in risk results for low concentration HAPs with MDLs near or greater than risk thresholds. From a national monitoring network perspective, the ability of the HAPs observational database to characterize the multiple

  14. Quantum Limits of Space-to-Ground Optical Communications

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Dolinar, S.

    2012-01-01

    For a pure loss channel, the ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light): (1) Capacity-achieving receiver (measurement) is yet to be determined. (2) Heterodyne detection approaches the ultimate capacity at high mean photon numbers. (3) Photon-counting approaches the ultimate capacity at low mean photon numbers. A number of current technology limits drive the achievable performance of free-space communication links. Approaching fundamental limits in the bandwidth-limited regime: (1) Heterodyne detection with high-order coherent-state modulation approaches ultimate limits. SOA improvements to laser phase noise, adaptive optics systems for atmospheric transmission would help. (2) High-order intensity modulation and photon-counting can approach heterodyne detection within approximately a factor of 2. This may have advantages over coherent detection in the presence of turbulence. Approaching fundamental limits in the photon-limited regime (1) Low-duty cycle binary coherent-state modulation (OOK, PPM) approaches ultimate limits. SOA improvements to laser extinction ratio, receiver dark noise, jitter, and blocking would help. (2) In some link geometries (near field links) number-state transmission could improve over coherent-state transmission

  15. Detection of magnetic fields in chemically peculiar stars observed with the K2 space mission

    NASA Astrophysics Data System (ADS)

    Buysschaert, B.; Neiner, C.; Martin, A. J.; Aerts, C.; Bowman, D. M.; Oksala, M. E.; Van Reeth, T.

    2018-05-01

    We report the results of an observational study aimed at searching for magnetic pulsating hot stars suitable for magneto-asteroseismology. A sample of sixteen chemically peculiar stars was selected and analysed using both high-resolution spectropolarimetry with ESPaDOnS and K2 high-precision space photometry. For all stars, we derive the effective temperature, surface gravity, rotational and non-rotational line broadening from our spectropolarimetric data. High-quality K2 light curves were obtained for thirteen of the sixteen stars and revealed rotational modulation, providing accurate rotation periods. Two stars show evidence for roAp pulsations, and one star shows signatures of internal gravity waves or unresolved g-mode pulsations. We confirm the presence of a large-scale magnetic field for eleven of the studied stars, of which nine are first detections. Further, we report one marginal detection and four non-detections. Two of the stars with a non-detected magnetic field show rotational modulation due to surface abundance inhomogeneities in the K2 light curve, and we confirm that the other two are chemically peculiar. Thus, these five stars likely host a weak (undetected) large-scale magnetic field.

  16. A comparison of moving object detection methods for real-time moving object detection

    NASA Astrophysics Data System (ADS)

    Roshan, Aditya; Zhang, Yun

    2014-06-01

    Moving object detection has a wide variety of applications from traffic monitoring, site monitoring, automatic theft identification, face detection to military surveillance. Many methods have been developed across the globe for moving object detection, but it is very difficult to find one which can work globally in all situations and with different types of videos. The purpose of this paper is to evaluate existing moving object detection methods which can be implemented in software on a desktop or laptop, for real time object detection. There are several moving object detection methods noted in the literature, but few of them are suitable for real time moving object detection. Most of the methods which provide for real time movement are further limited by the number of objects and the scene complexity. This paper evaluates the four most commonly used moving object detection methods as background subtraction technique, Gaussian mixture model, wavelet based and optical flow based methods. The work is based on evaluation of these four moving object detection methods using two (2) different sets of cameras and two (2) different scenes. The moving object detection methods have been implemented using MatLab and results are compared based on completeness of detected objects, noise, light change sensitivity, processing time etc. After comparison, it is observed that optical flow based method took least processing time and successfully detected boundary of moving objects which also implies that it can be implemented for real-time moving object detection.

  17. Relative saliency in change signals affects perceptual comparison and decision processes in change detection.

    PubMed

    Yang, Cheng-Ta

    2011-12-01

    Change detection requires perceptual comparison and decision processes on different features of multiattribute objects. How relative salience between two feature-changes influences the processes has not been addressed. This study used the systems factorial technology to investigate the processes when detecting changes in a Gabor patch with visual inputs from orientation and spatial frequency channels. Two feature-changes were equally salient in Experiment 1, but a frequency-change was more salient than an orientation-change in Experiment 2. Results showed that all four observers adopted parallel self-terminating processing with limited- to unlimited-capacity processing in Experiment 1. In Experiment 2, one observer used parallel self-terminating processing with unlimited-capacity processing, and the others adopted serial self-terminating processing with limited- to unlimited-capacity processing to detect changes. Postexperimental interview revealed that subjective utility of feature information underlay the adoption of a decision strategy. These results highlight that observers alter decision strategies in change detection depending on the relative saliency in change signals, with relative saliency being determined by both physical salience and subjective weight of feature information. When relative salience exists, individual differences in the process characteristics emerge.

  18. Constraints on Short, Hard Gamma-Ray Burst Beaming Angles from Gravitational Wave Observations

    NASA Astrophysics Data System (ADS)

    Williams, D.; Clark, J. A.; Williamson, A. R.; Heng, I. S.

    2018-05-01

    The first detection of a binary neutron star merger, GW170817, and an associated short gamma-ray burst confirmed that neutron star mergers are responsible for at least some of these bursts. The prompt gamma-ray emission from these events is thought to be highly relativistically beamed. We present a method for inferring limits on the extent of this beaming by comparing the number of short gamma-ray bursts (SGRBs) observed electromagnetically with the number of neutron star binary mergers detected in gravitational waves. We demonstrate that an observing run comparable to the expected Advanced LIGO (aLIGO) 2016–2017 run would be capable of placing limits on the beaming angle of approximately θ \\in (2\\buildrel{\\circ}\\over{.} 88,14\\buildrel{\\circ}\\over{.} 15), given one binary neutron star detection, under the assumption that all mergers produce a gamma-ray burst, and that SGRBs occur at an illustrative rate of {{ \\mathcal R }}grb}=10 {Gpc}}-3 {yr}}-1. We anticipate that after a year of observations with aLIGO at design sensitivity in 2020, these constraints will improve to θ \\in (8\\buildrel{\\circ}\\over{.} 10,14\\buildrel{\\circ}\\over{.} 95), under the same efficiency and SGRB rate assumptions.

  19. Very high energy observations of the BL Lac objects 3C 66A and OJ 287

    NASA Astrophysics Data System (ADS)

    Lindner, T.; Hanna, D. S.; Kildea, J.; Ball, J.; Bramel, D. A.; Carson, J.; Covault, C. E.; Driscoll, D.; Fortin, P.; Gingrich, D. M.; Jarvis, A.; Mueller, C.; Mukherjee, R.; Ong, R. A.; Ragan, K.; Scalzo, R. A.; Williams, D. A.; Zweerink, J.

    2007-11-01

    Using the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE), we have observed the BL Lac objects 3C 66A and OJ 287. These are members of the class of low-frequency-peaked BL Lac objects (LBLs) and are two of the three LBLs predicted by Costamante and Ghisellini [L. Costamante, G. Ghisellini, Astron. Astrophys. 384 (2002) 56] to be potential sources of very high energy (>100 GeV) gamma-ray emission. The third candidate, BL Lacertae, has recently been detected by the MAGIC collaboration [J. Albert et al., arXiv:astro-ph/0703084v1 (2007)]. Our observations have not produced detections; we calculate a 99% CL upper limit of flux from 3C 66A of 0.15 Crab flux units and from OJ 287 our limit is 0.52 Crab. These limits assume a Crab-like energy spectrum with an effective energy threshold of 185 GeV.

  20. Quantum-limited evanescent single molecule sensing.

    NASA Astrophysics Data System (ADS)

    Bowen, Warwick; Mauranyapin, Nicolas; Madsen, Lars; Taylor, Michael; Waleed, Muhammad

    Sensors that are able to detect and track single unlabeled biomolecules are an important tool both to understand biomolecular dynamics and interactions, and for medical diagnostics operating at their ultimate detection limits. Recently, exceptional sensitivity has been achieved using the strongly enhanced evanescent fields provided by optical microcavities and plasmonic resonators. However, at high field intensities photodamage to the biological specimen becomes increasingly problematic. Here, we introduce a new approach that combines dark field illumination and heterodyne detection in an optical nanofibre. This allows operation at the fundamental precision limit introduced by quantisation of light. We achieve state-of-the-art sensitivity with a four order-of-magnitude reduction in optical intensity. This enables quantum noise limited tracking of single biomolecules as small as 3.5 nm and surface-molecule interactions to be montored over extended periods. By achieving quantum noise limited precision, our approach provides a pathway towards quantum-enhanced single-molecule biosensors. We acknkowledge financial support from AFOSR and AOARD.

  1. Detecting climate variations and change: New challenges for observing and data management systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karl, T.R.; Quayle, R.G.; Groisman, P.Ya.

    1993-08-01

    Several essential aspects of weather observing and the management of weather data related to improving knowledge of climate variations and change in the surface boundary layer and the consequences for socioeconomic and biogeophysical systems, are discussed. The issues include long-term homogeneous time series of routine weather observations; time- and space-scale resolution of datasets derived from the observations; information about observing systems, data collection systems, and data reduction algorithms; and the enhancement of weather observing systems to serve as climate observing systems. Although much has been learned from existing weather networks and methods of data management, the system is far frommore » perfect. Several vital areas have not received adequate attention. Particular improvements are needed in the interaction between network designers and climatologists; operational analyses that focus on detecting and documenting outliers and time-dependent biases within datasets; developing the means to cope with and minimize potential inhomogeneities in weather observing systems; and authoritative documentation of how various aspects of climate have or have not changed. In this last area, close attention must be given to time and space resolution of the data. In many instances the time and space resolution requirements for understanding why the climate changes are not synonymous with understanding how it has changed or varied. This is particularly true within the surface boundary layer. A standard global daily/monthly climate message should also be introduced to supplement current Global Telecommunication System's CLIMAT data. Overall, a call is made for improvements in routine weather observing, data management, and analysis systems. Routine observations have provided (and will continue to provide) most of the information regarding how the climate has changed during the last 100 years affecting where we live, work, and grow our food. 58 refs., 8 figs

  2. "Ring rain" on Saturn's ionosphere: densities and temperatures from 2011 observations and re-detection in 2013 observations

    NASA Astrophysics Data System (ADS)

    O'Donoghue, J.; Moore, L.; Melin, H.; Connerney, J. E. P.; Oliversen, R. J.

    2017-12-01

    In ground-based observations using the 10 meter W. M. Keck telescope in 2011, we discovered that the "ring rain" which falls on Saturn from the rings (along magnetic field lines) leaves an imprint on the upper-atmospheric H3+ ion. H3+ emissions were brightest where water products are expected to fall. Through subsequent modeling of the upper atmosphere, it became clear that an influx of water products (e.g. H2O+, O+, etc.) would act to soak up electrons - something that would otherwise destroy H3+ through recombination - and lead to a higher H3+ density and therefore emission. Here we present the first re-detections of the imprint of "ring rain" on Saturn's ionospheric H3+ from ground-based Keck telescope data from 2013. Observed intensities at low-latitudes decreased by an order of magnitude from 2011 to 2013, likely due to a decrease in upper atmospheric temperature by 100 K. A new analysis of 2011 observations revealed temperatures and densities as a function of latitude on Saturn for the first time. Where water influx is expected, H3+ column densities are high (as models predicted) and temperatures are low. While the latter was unexpected, the effect of ring rain on electron densities is stronger at lower altitudes. Therefore, as ring rain enhances density at lower altitudes where the temperature is lower, it should result in the emitting column of H3+ having a lower average temperature. These results come at a critical time as the Cassini spacecraft completes all orbits between planet and rings, with the opportunity to sample the forces and material fluxes related to ring rain.

  3. On the Ability of Space-Based Passive and Active Remote Sensing Observations of CO2 to Detect Flux Perturbations to the Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Crowell, Sean M. R.; Randolph Kawa, S.; Browell, Edward V.; Hammerling, Dorit M.; Moore, Berrien; Schaefer, Kevin; Doney, Scott C.

    2018-01-01

    Space-borne observations of CO2 are vital to gaining understanding of the carbon cycle in regions of the world that are difficult to measure directly, such as the tropical terrestrial biosphere, the high northern and southern latitudes, and in developing nations such as China. Measurements from passive instruments such as GOSAT and OCO-2, however, are constrained by solar zenith angle limitations as well as sensitivity to the presence of clouds and aerosols. Active measurements such as those in development for the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) mission show strong potential for making measurements in the high-latitude winter and in cloudy regions. In this work we examine the enhanced flux constraint provided by the improved coverage from an active measurement such as ASCENDS. The simulation studies presented here show that with sufficient precision, ASCENDS will detect permafrost thaw and fossil fuel emissions shifts at annual and seasonal time scales, even in the presence of transport errors, representativeness errors, and biogenic flux errors. While OCO-2 can detect some of these perturbations at the annual scale, the seasonal sampling provided by ASCENDS provides the stronger constraint.

  4. Upper limits for gravitational radiation from supermassive coalescing binaries

    NASA Technical Reports Server (NTRS)

    Anderson, J. D.; Armstrong, J. W.; Lau, E. L.

    1993-01-01

    We report a search for waves from supermassive coalescing binaries using a 10.5 day Pioneer 10 data set taken in 1988. Depending on the time to coalescence, the initial frequency of the wave, and the length of the observing interval, a coalescing binary waveform appears in the tracking record either as a sinusoid, a 'chirp', or as a more complicated signal. We searched our data for coalescing binary waveforms in all three regimes. We successfully detected a (fortuitous) 'chirp' signal caused by the varying spin rate of the spacecraft; this nicely served as a calibration of the data quality and as a test of our analysis procedures on real data. We did not detect any signals of astronomical origin in the millihertz band to an upper limit of about 7 x 10 exp -15 (rms amplitude). This is the first time spacecraft Doppler data have been analyzed for coalescing binary waveforms, and the upper limits reported here are the best to date for any waveform in the millihertz band.

  5. Radio detections of southern ultracool dwarfs

    NASA Astrophysics Data System (ADS)

    Lynch, C.; Murphy, T.; Ravi, V.; Hobbs, G.; Lo, K.; Ward, C.

    2016-04-01

    We report the results of a volume-limited survey using the Australia Telescope Compact Array to search for transient and quiescent radio emission from 15 Southern hemisphere ultracool dwarfs. We detect radio emission from 2MASSW J0004348-404405 increasing the number of radio loud ultracool dwarfs to 22. We also observe radio emission from 2MASS J10481463-3956062 and 2MASSI J0339352-352544, two sources with previous radio detections. The radio emission from the three detected sources shows no variability or flare emission. Modelling this quiescent emission we find that it is consistent with optically thin gyrosynchrotron emission from a magnetosphere with an emitting region radius of (1-2)R*, magnetic field inclination 20°-80°, field strength ˜10-200 G, and power-law electron density ˜104-108 cm-3. Additionally, we place upper limits on four ultracool dwarfs with no previous radio observations. This increases the number of ultracool dwarfs studied at radio frequencies to 222. Analysing general trends of the radio emission for this sample of 15 sources, we find that the radio activity increases for later spectral types and more rapidly rotating objects. Furthermore, comparing the ratio of the radio to X-ray luminosities for these sources, we find 2MASS J10481463-3956062 and 2MASSI J0339352-352544 violate the Güdel-Benz relation by more than two orders of magnitude.

  6. Prospects for Observing Ultracompact Binaries with Space-Based Gravitational Wave Interferometers and Optical Telescopes

    NASA Technical Reports Server (NTRS)

    Littenberg, T. B.; Larson, S. L.; Nelemans, G.; Cornish, N. J.

    2012-01-01

    Space-based gravitational wave interferometers are sensitive to the galactic population of ultracompact binaries. An important subset of the ultracompact binary population are those stars that can be individually resolved by both gravitational wave interferometers and electromagnetic telescopes. The aim of this paper is to quantify the multimessenger potential of space-based interferometers with arm-lengths between 1 and 5 Gm. The Fisher information matrix is used to estimate the number of binaries from a model of the Milky Way which are localized on the sky by the gravitational wave detector to within 1 and 10 deg(exp 2) and bright enough to be detected by a magnitude-limited survey.We find, depending on the choice ofGW detector characteristics, limiting magnitude and observing strategy, that up to several hundred gravitational wave sources could be detected in electromagnetic follow-up observations.

  7. OH detection by Ford Motor Company

    NASA Technical Reports Server (NTRS)

    Wang, Charles C.

    1986-01-01

    Two different methods for detection of OH are presented: a low pressure flow cell system and a frequency modulation absorption measurement. Using conventional absorption spectroscopy, detection limits were quoted of 1,000,000 OH molecules per cu cm using a 30-minute averaging time on the ground, and a 3-hour averaging time in the air for present apparatus in use. With the addition of FM spectroscopy at 1 GHz, a double-beam machine should permit detectable absorption of and an OH limit of 100,000 per cu cm in a 30-minute averaging time. In the low pressure system on which experiments are ongoing nonexponential time behavior was observed after the decay had progressed to about 0.3 of its original level; this was attributed to ion emission in the photomultiplier. A flame source with OH present at high concentration levels was used as a calibration. It was estimated that within the sampling chamber, 400,000 OH could be measured. With a factor-of-2 loss at the sampling orifice, this means detectability of 5 to 8 x 100,000 cu cm at the present time. This could be reduced by a factor of 2 in one hour averaging time; improvements in laser bandwidth and energy should provide another factor of 2 in sensitivity.

  8. Parallel heuristics for scalable community detection

    DOE PAGES

    Lu, Hao; Halappanavar, Mahantesh; Kalyanaraman, Ananth

    2015-08-14

    Community detection has become a fundamental operation in numerous graph-theoretic applications. Despite its potential for application, there is only limited support for community detection on large-scale parallel computers, largely owing to the irregular and inherently sequential nature of the underlying heuristics. In this paper, we present parallelization heuristics for fast community detection using the Louvain method as the serial template. The Louvain method is an iterative heuristic for modularity optimization. Originally developed in 2008, the method has become increasingly popular owing to its ability to detect high modularity community partitions in a fast and memory-efficient manner. However, the method ismore » also inherently sequential, thereby limiting its scalability. Here, we observe certain key properties of this method that present challenges for its parallelization, and consequently propose heuristics that are designed to break the sequential barrier. For evaluation purposes, we implemented our heuristics using OpenMP multithreading, and tested them over real world graphs derived from multiple application domains. Compared to the serial Louvain implementation, our parallel implementation is able to produce community outputs with a higher modularity for most of the inputs tested, in comparable number or fewer iterations, while providing real speedups of up to 16x using 32 threads.« less

  9. OH detection by Ford Motor Company

    NASA Astrophysics Data System (ADS)

    Wang, Charles C.

    1986-12-01

    Two different methods for detection of OH are presented: a low pressure flow cell system and a frequency modulation absorption measurement. Using conventional absorption spectroscopy, detection limits were quoted of 1,000,000 OH molecules per cu cm using a 30-minute averaging time on the ground, and a 3-hour averaging time in the air for present apparatus in use. With the addition of FM spectroscopy at 1 GHz, a double-beam machine should permit detectable absorption of and an OH limit of 100,000 per cu cm in a 30-minute averaging time. In the low pressure system on which experiments are ongoing nonexponential time behavior was observed after the decay had progressed to about 0.3 of its original level; this was attributed to ion emission in the photomultiplier. A flame source with OH present at high concentration levels was used as a calibration. It was estimated that within the sampling chamber, 400,000 OH could be measured. With a factor-of-2 loss at the sampling orifice, this means detectability of 5 to 8 x 100,000 cu cm at the present time. This could be reduced by a factor of 2 in one hour averaging time; improvements in laser bandwidth and energy should provide another factor of 2 in sensitivity.

  10. Characteristics of right-sided colonic neoplasia and colonoscopy barriers limiting their early detection and prognosis: a review of the literature.

    PubMed

    Fischbach, Wolfgang; Elsome, Rory; Amlani, Bharat

    2018-06-05

    Colonoscopy provides less protection from colorectal cancer in the right colon than the left. Areas covered: This review examines patient outcomes and colonoscopy success rates to identify factors that limit the protective effect of colonoscopy in the right colon. The MEDLINE and Embase databases were searched for literature from 2000 onwards, on the long-term outcomes and differences in screening practice between the right and left colon. In total, 12 systematic reviews (including nine meta-analyses) and 44 primary data records were included. Differences in patient outcomes and colonoscopy practice were identified between the right and left colon, suggesting that several factors, many of which disproportionally affect the right colon, impact lesion detection rates. Shorter withdrawal times reduce detection rates, while longer times significantly increase detection; mostly of adenomas in the right colon. Colonoscope attachments often only show a significant improvement in detection rates in the right colon, suggesting detection is more challenging due to visibility of the right colonic mucosa. Higher bowel cleansing grades significantly improve detection rates in the right colon compared to the left. Expert commentary: These findings confirm the need for continued improvement of colonoscopy effectiveness, and obligatory quality assessment, overall and especially in the right colon.

  11. Development of Detectability Limits for On-Orbit Inspection of Space Shuttle Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Stephan, Ryan A.; Johnson, David G.; Mastropietro, A. J.; Ancarrow, Walt C.

    2005-01-01

    At the conclusion of the Columbia Accident Investigation, one of the recommendations of the Columbia Accident Investigation Board (CAIB) was that NASA develop and implement an inspection plan for the Reinforced Carbon-Carbon (RCC) system components of the Space Shuttle. To address these issues, a group of scientists and engineers at NASA Langley Research Center proposed the use of an IR camera to inspect the RCC. Any crack in an RCC panel changes the thermal resistance of the material in the direction perpendicular to the crack. The change in thermal resistance can be made visible by introducing a heat flow across the crack and using an IR camera to image the resulting surface temperature distribution. The temperature difference across the crack depends on the change in the thermal resistance, the length of the crack, the local thermal gradient, and the rate of radiation exchange with the environment. This paper describes how the authors derived the minimum thermal gradient detectability limits for a through crack in an RCC panel. This paper will also show, through the use of a transient, 3-dimensional, finite element model, that these minimum gradients naturally exist on-orbit. The results from the finite element model confirm that there are sufficient thermal gradient to detect a crack on 96% of the RCC leading edge.

  12. Detecting position using ARKit II: generating position-time graphs in real-time and further information on limitations of ARKit

    NASA Astrophysics Data System (ADS)

    Dilek, Ufuk; Erol, Mustafa

    2018-05-01

    ARKit is a framework which allows developers to create augmented reality apps for the iPhone and iPad. In a previous study, we had shown that it could be used to detect position in educational physics experiments and emphasized that the ability to provide position data in real-time was one of the prominent features of this newly emerging technology. In this study, we demonstrate an example of how real-time data acquisition can be employed in educational settings, report some of the limitations of ARKit and how we have overcome these limitations. By means of ARKit or a similar framework, ordinary mobile devices can be adapted for use in microcomputer-based lab activities.

  13. From Ground Truth to Space: Surface, Subsurface and Remote Observations Associated with Nuclear Test Detection

    NASA Astrophysics Data System (ADS)

    Sussman, A. J.; Anderson, D.; Burt, C.; Craven, J.; Kimblin, C.; McKenna, I.; Schultz-Fellenz, E. S.; Miller, E.; Yocky, D. A.; Haas, D.

    2016-12-01

    Underground nuclear explosions (UNEs) result in numerous signatures that manifest on a wide range of temporal and spatial scales. Currently, prompt signals, such as the detection of seismic waves provide only generalized locations and the timing and amplitude of non-prompt signals are difficult to predict. As such, research into improving the detection, location, and identification of suspect events has been conducted, resulting in advancement of nuclear test detection science. In this presentation, we demonstrate the scalar variably of surface and subsurface observables, briefly discuss current capabilities to locate, detect and characterize potential nuclear explosion locations, and explain how emergent technologies and amalgamation of disparate data sets will facilitate improved monitoring and verification. At the smaller scales, material and fracture characterization efforts on rock collected from legacy UNE sites and from underground experiments using chemical explosions can be incorporated into predictive modeling efforts. Spatial analyses of digital elevation models and orthoimagery of both modern conventional and legacy nuclear sites show subtle surface topographic changes and damage at nearby outcrops. Additionally, at sites where such technology cannot penetrate vegetative cover, it is possible to use the vegetation itself as both a companion signature reflecting geologic conditions and showing subsurface impacts to water, nutrients, and chemicals. Aerial systems based on RGB imagery, light detection and ranging, and hyperspectral imaging can allow for combined remote sensing modalities to perform pattern recognition and classification tasks. Finally, more remote systems such as satellite based synthetic aperture radar and satellite imagery are other techniques in development for UNE site detection, location and characterization.

  14. Swift observations of SDSS J141118.31+481257.6 during its first detected outburst

    NASA Astrophysics Data System (ADS)

    Sandoval, L. E. Rivera; Maccarone, T.

    2018-05-01

    We report Swift observations of the AM CVn-type system SDSS J141118.31+481257.6 (RA=14:11:18.31, Dec=+48:12:57.6) during its first ever recorded outburst. The system was detected by Tadashi Kojima on 2018-May-20 with a V magnitude of 12.6 +- 0.2 (http://ooruri.kusastro.kyoto-u.ac.jp/mailarchive/vsnet-alert/22176), an increase of 7 mags compared to any previous measurement in the same filter.

  15. Detecting frontal ablation processes from direct observations of submarine terminus morphology

    NASA Astrophysics Data System (ADS)

    Fried, M.; Carroll, D.; Catania, G. A.; Sutherland, D. A.; Stearns, L. A.; Bartholomaus, T. C.; Shroyer, E.; Nash, J. D.

    2017-12-01

    Tidewater glacier termini couple glacier and ocean systems. Subglacial discharge emerging from the terminus produces buoyant plumes that modulate submarine melting, calving, fjord circulation and, in turn, changes in ice dynamics from back-stress perturbations. However, the absence of critical observational data at the ice-ocean interface limits plume and, by extension, melt models from incorporating realistic submarine terminus face morphologies and assessing their impact on terminus behavior at tidewater glaciers. Here we present a comprehensive inventory and characterization of submarine terminus face shapes from a side-looking, multibeam echo sounding campaign across Kangerdlugssuaq Sermerssua glacier, central-west Greenland. We combine these observations with in-situ measurements of ocean stratification and remotely sensed subglacial discharge, terminus positions, ice velocity, and ice surface datasets to infer the spectrum of processes sculpting the submarine terminus face. Subglacial discharge outlet locations are confirmed through observations of sediment plumes, localized melt-driven undercutting of the terminus face, and bathymetry of the adjacent seafloor. From our analysis, we differentiate terminus morphologies resulting from submarine melt and calving and assess the contribution of each process to the net frontal ablation budget. Finally, we constrain a plume model using direct observations of the submarine terminus face and conduit geometry. Plume model simulations demonstrate that the majority of discharge outlets are fed by small discharge fluxes, suggestive of a distributed subglacial hydrologic system. Outlets with the largest, concentrated discharge fluxes are morphologically unique and strongly control seasonal terminus position. At these locations, we show that the spatiotemporal pattern of terminus retreat is well correlated with time periods when local melt rate exceeds ice velocity.

  16. Theoretical limitations of quantification for noncompetitive sandwich immunoassays.

    PubMed

    Woolley, Christine F; Hayes, Mark A; Mahanti, Prasun; Douglass Gilman, S; Taylor, Tom

    2015-11-01

    Immunoassays exploit the highly selective interaction between antibodies and antigens to provide a vital method for biomolecule detection at low concentrations. Developers and practitioners of immunoassays have long known that non-specific binding often restricts immunoassay limits of quantification (LOQs). Aside from non-specific binding, most efforts by analytical chemists to reduce the LOQ for these techniques have focused on improving the signal amplification methods and minimizing the limitations of the detection system. However, with detection technology now capable of sensing single-fluorescence molecules, this approach is unlikely to lead to dramatic improvements in the future. Here, fundamental interactions based on the law of mass action are analytically connected to signal generation, replacing the four- and five-parameter fittings commercially used to approximate sigmoidal immunoassay curves and allowing quantitative consideration of non-specific binding and statistical limitations in order to understand the ultimate detection capabilities of immunoassays. The restrictions imposed on limits of quantification by instrumental noise, non-specific binding, and counting statistics are discussed based on equilibrium relations for a sandwich immunoassay. Understanding the maximal capabilities of immunoassays for each of these regimes can greatly assist in the development and evaluation of immunoassay platforms. While many studies suggest that single molecule detection is possible through immunoassay techniques, here, it is demonstrated that the fundamental limit of quantification (precision of 10 % or better) for an immunoassay is approximately 131 molecules and this limit is based on fundamental and unavoidable statistical limitations.

  17. Detection of supercooled liquid water-topped mixed-phase clouds >from shortwave-infrared satellite observations

    NASA Astrophysics Data System (ADS)

    NOH, Y. J.; Miller, S. D.; Heidinger, A. K.

    2015-12-01

    Many studies have demonstrated the utility of multispectral information from satellite passive radiometers for detecting and retrieving the properties of cloud globally, which conventionally utilizes shortwave- and thermal-infrared bands. However, the satellite-derived cloud information comes mainly from cloud top or represents a vertically integrated property. This can produce a large bias in determining cloud phase characteristics, in particular for mixed-phase clouds which are often observed to have supercooled liquid water at cloud top but a predominantly ice phase residing below. The current satellite retrieval algorithms may report these clouds simply as supercooled liquid without any further information regarding the presence of a sub-cloud-top ice phase. More accurate characterization of these clouds is very important for climate models and aviation applications. In this study, we present a physical basis and preliminary results for the algorithm development of supercooled liquid-topped mixed-phase cloud detection using satellite radiometer observations. The detection algorithm is based on differential absorption properties between liquid and ice particles in the shortwave-infrared bands. Solar reflectance data in narrow bands at 1.6 μm and 2.25 μm are used to optically probe below clouds for distinction between supercooled liquid-topped clouds with and without an underlying mixed phase component. Varying solar/sensor geometry and cloud optical properties are also considered. The spectral band combination utilized for the algorithm is currently available on Suomi NPP Visible/Infrared Imaging Radiometer Suite (VIIRS), Himawari-8 Advanced Himawari Imager (AHI), and the future GOES-R Advance Baseline Imager (ABI). When tested on simulated cloud fields from WRF model and synthetic ABI data, favorable results were shown with reasonable threat scores (0.6-0.8) and false alarm rates (0.1-0.2). An ARM/NSA case study applied to VIIRS data also indicated promising

  18. No Bursts Detected from FRB121102 in Two 5 hr Observing Campaigns with the Robert C. Byrd Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Price, Danny C.; Gajjar, Vishal; Rosenthal, Lee; Hallinan, Gregg; Croft, Steve; DeBoer, David; Hellbourg, Greg; Isaacson, Howard; Lebofsky, Matt; Lynch, Ryan; MacMahon, David H. E.; Men, Yunpeng; Xu, Yonghua; Liu, Zhiyong; Lee, Kejia; Siemion, Andrew

    2018-02-01

    Here, we report non-detection of radio bursts from Fast Radio Burst FRB 121102 during two 5-hour observation sessions on the Robert C. Byrd 100-m Green Bank Telescope in West Virginia, USA, on December 11, 2017, and January 12, 2018. In addition, we report non-detection during an abutting 10-hour observation with the Kunming 40-m telescope in China, which commenced UTC 10:00 January 12, 2018. These are among the longest published contiguous observations of FRB 121102, and support the notion that FRB 121102 bursts are episodic. These observations were part of a simultaneous optical and radio monitoring campaign with the the Caltech HIgh- speed Multi-color CamERA (CHIMERA) instrument on the Hale 5.1-m telescope.

  19. RadioAstron Observations of the Quasar 3C273: A Challenge to the Brightness Temperature Limit

    NASA Astrophysics Data System (ADS)

    Kovalev, Y. Y.; Kardashev, N. S.; Kellermann, K. I.; Lobanov, A. P.; Johnson, M. D.; Gurvits, L. I.; Voitsik, P. A.; Zensus, J. A.; Anderson, J. M.; Bach, U.; Jauncey, D. L.; Ghigo, F.; Ghosh, T.; Kraus, A.; Kovalev, Yu. A.; Lisakov, M. M.; Petrov, L. Yu.; Romney, J. D.; Salter, C. J.; Sokolovsky, K. V.

    2016-03-01

    Inverse Compton cooling limits the brightness temperature of the radiating plasma to a maximum of 1011.5 K. Relativistic boosting can increase its observed value, but apparent brightness temperatures much in excess of 1013 K are inaccessible using ground-based very long baseline interferometry (VLBI) at any wavelength. We present observations of the quasar 3C 273, made with the space VLBI mission RadioAstron on baselines up to 171,000 km, which directly reveal the presence of angular structure as small as 26 μas (2.7 light months) and brightness temperature in excess of 1013 K. These measurements challenge our understanding of the non-thermal continuum emission in the vicinity of supermassive black holes and require a much higher Doppler factor than what is determined from jet apparent kinematics.

  20. Low upper limit to methane abundance on Mars.

    PubMed

    Webster, Christopher R; Mahaffy, Paul R; Atreya, Sushil K; Flesch, Gregory J; Farley, Kenneth A

    2013-10-18

    By analogy with Earth, methane in the Martian atmosphere is a potential signature of ongoing or past biological activity. During the past decade, Earth-based telescopic observations reported "plumes" of methane of tens of parts per billion by volume (ppbv), and those from Mars orbit showed localized patches, prompting speculation of sources from subsurface bacteria or nonbiological sources. From in situ measurements made with the Tunable Laser Spectrometer (TLS) on Curiosity using a distinctive spectral pattern specific to methane, we report no detection of atmospheric methane with a measured value of 0.18 ± 0.67 ppbv corresponding to an upper limit of only 1.3 ppbv (95% confidence level), which reduces the probability of current methanogenic microbial activity on Mars and limits the recent contribution from extraplanetary and geologic sources.