Single-Slit Diffraction Pattern of a Thermal Atomic Potassium Beam
ERIC Educational Resources Information Center
Leavitt, John A.; Bills, Francis A.
1969-01-01
The diffraction of a full thermal atomic potassium beam by a single slit was observed. Four experimental diffraction patterns were compared with that predicted by de Brogtie's hypothesis and simple scalar Fresnel diffraction theory. Possible reasons for the differences were discussed. (LC)
NASA Astrophysics Data System (ADS)
Chen, K. Y.; Su, S. Y.; Liu, C. H.; Basu, S.
2005-06-01
Quasiperiodic (QP) diffraction pattern in scintillation patches has been known to highly correlate with the edge structures of a plasma bubble (Franke et al., 1984). A new time-frequency analysis method of Hilbert-Huang transform (HHT) has been applied to analyze the scintillation data taken at Ascension Island to understand the characteristics of corresponding ionosphere irregularities. The HHT method enables us to extract the quasiperiodic diffraction signals embedded inside the scintillation data and to obtain the characteristics of such diffraction signals. The cross correlation of the two sets of diffraction signals received by two stations at each end of Ascension Island indicates that the density irregularity pattern that causes the diffraction pattern should have an eastward drift velocity of ˜130 m/s. The HHT analysis of the instantaneous frequency in the QP diffraction patterns also reveals some frequency shifts in their peak frequencies. For the QP diffraction pattern caused by the leading edge of the large density gradient at the east wall of a structured bubble, an ascending note in the peak frequency is observed, and for the trailing edge a descending note is observed. The linear change in the transient of the peak frequency in the QP diffraction pattern is consistent with the theory and the simulation result of Franke et al. Estimate of the slope in the transient frequency provides us the information that allows us to identify the locations of plasma walls, and the east-west scale of the irregularity can be estimated. In our case we obtain about 24 km in the east-west scale. Furthermore, the height location of density irregularities that cause the diffraction pattern is estimated to be between 310 and 330 km, that is, around the F peak during observation.
Bates, S; Jonaitis, D; Nail, S
2013-10-01
Total X-ray Powder Diffraction Analysis (TXRPD) using transmission geometry was able to observe significant variance in measured powder patterns for sucrose lyophilizates with differing residual water contents. Integrated diffraction intensity corresponding to the observed variances was found to be linearly correlated to residual water content as measured by an independent technique. The observed variance was concentrated in two distinct regions of the lyophilizate powder pattern, corresponding to the characteristic sucrose matrix double halo and the high angle diffuse region normally associated with free-water. Full pattern fitting of the lyophilizate powder patterns suggested that the high angle variance was better described by the characteristic diffraction profile of a concentrated sucrose/water system rather than by the free-water diffraction profile. This suggests that the residual water in the sucrose lyophilizates is intimately mixed at the molecular level with sucrose molecules forming a liquid/solid solution. The bound nature of the residual water and its impact on the sucrose matrix gives an enhanced diffraction response between 3.0 and 3.5 beyond that expected for free-water. The enhanced diffraction response allows semi-quantitative analysis of residual water contents within the studied sucrose lyophilizates to levels below 1% by weight. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Suchwalko, Agnieszka; Buzalewicz, Igor; Podbielska, Halina
2012-01-01
In the presented paper the optical system with converging spherical wave illumination for classification of bacteria species, is proposed. It allows for compression of the observation space, observation of Fresnel patterns, diffraction pattern scaling and low level of optical aberrations, which are not possessed by other optical configurations. Obtained experimental results have shown that colonies of specific bacteria species generate unique diffraction signatures. Analysis of Fresnel diffraction patterns of bacteria colonies can be fast and reliable method for classification and recognition of bacteria species. To determine the unique features of bacteria colonies diffraction patterns the image processing analysis was proposed. Classification can be performed by analyzing the spatial structure of diffraction patterns, which can be characterized by set of concentric rings. The characteristics of such rings depends on the bacteria species. In the paper, the influence of basic features and ring partitioning number on the bacteria classification, is analyzed. It is demonstrated that Fresnel patterns can be used for classification of following species: Salmonella enteritidis, Staplyococcus aureus, Proteus mirabilis and Citrobacter freundii. Image processing is performed by free ImageJ software, for which a special macro with human interaction, was written. LDA classification, CV method, ANOVA and PCA visualizations preceded by image data extraction were conducted using the free software R.
Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina
2016-01-01
The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach to the subject.
Buzalewicz, Igor; Kujawińska, Małgorzata; Krauze, Wojciech; Podbielska, Halina
2016-01-01
The use of light diffraction for the microbiological diagnosis of bacterial colonies was a significant breakthrough with widespread implications for the food industry and clinical practice. We previously confirmed that optical sensors for bacterial colony light diffraction can be used for bacterial identification. This paper is focused on the novel perspectives of this method based on digital in-line holography (DIH), which is able to reconstruct the amplitude and phase properties of examined objects, as well as the amplitude and phase patterns of the optical field scattered/diffracted by the bacterial colony in any chosen observation plane behind the object from single digital hologram. Analysis of the amplitude and phase patterns inside a colony revealed its unique optical properties, which are associated with the internal structure and geometry of the bacterial colony. Moreover, on a computational level, it is possible to select the desired scattered/diffracted pattern within the entire observation volume that exhibits the largest amount of unique, differentiating bacterial features. These properties distinguish this method from the already proposed sensing techniques based on light diffraction/scattering of bacterial colonies. The reconstructed diffraction patterns have a similar spatial distribution as the recorded Fresnel patterns, previously applied for bacterial identification with over 98% accuracy, but they are characterized by both intensity and phase distributions. Our results using digital holography provide new optical discriminators of bacterial species revealed in one single step in form of new optical signatures of bacterial colonies: digital holograms, reconstructed amplitude and phase patterns, as well as diffraction patterns from all observation space, which exhibit species-dependent features. To the best of our knowledge, this is the first report on bacterial colony analysis via digital holography and our study represents an innovative approach to the subject. PMID:26943121
Observation of electromigration in a Cu thin line by in situ coherent x-ray diffraction microscopy
NASA Astrophysics Data System (ADS)
Takahashi, Yukio; Nishino, Yoshinori; Furukawa, Hayato; Kubo, Hideto; Yamauchi, Kazuto; Ishikawa, Tetsuya; Matsubara, Eiichiro
2009-06-01
Electromigration (EM) in a 1-μm-thick Cu thin line was investigated by in situ coherent x-ray diffraction microscopy (CXDM). Characteristic x-ray speckle patterns due to both EM-induced voids and thermal deformation in the thin line were observed in the coherent x-ray diffraction patterns. Both parts of the voids and the deformation were successfully visualized in the images reconstructed from the diffraction patterns. This result not only represents the first demonstration of the visualization of structural changes in metallic materials by in situ CXDM but is also an important step toward studying the structural dynamics of nanomaterials using x-ray free-electron lasers in the near future.
Optical diffraction properties of multimicrogratings
Rothenbach, Christian A.; Kravchenko, Ivan I.; Gupta, Mool C.
2015-02-27
This paper shows the results of optical diffraction properties of multimicrograting structures fabricated by e-beam lithography. Multimicrograting consist of arrays of hexagonally shaped cells containing periodic one-dimensional (1D) grating lines in different orientations and arrayed to form large area patterns. We analyzed the optical diffraction properties of multimicrogratings by studying the individual effects of the several periodic elements of multimicrogratings. The observed optical diffraction pattern is shown to be the combined effect of the periodic and non-periodic elements that define the multimicrogratings and the interaction between different elements. We measured the total transverse electric (TE) diffraction efficiency of multimicrogratings andmore » found it to be 32.1%, which is closely related to the diffraction efficiency of 1D periodic grating lines of the same characteristics, measured to be 33.7%. Beam profiles of the optical diffraction patterns from multimicrogratings are captured with a CCD sensor technique. Interference fringes were observed under certain conditions formed by multimicrograting beams interfering with each other. Finally, these diffraction structures may find applications in sensing, nanometrology, and optical interconnects.« less
On the diffraction pattern of bundled rare-earth silicide nanowires on Si(0 0 1).
Timmer, F; Bahlmann, J; Wollschläger, J
2017-11-01
Motivated by the complex diffraction pattern observed for bundled rare-earth silicide nanowires on the Si(0 0 1) surface, we investigate the influence of the width and the spacing distribution of the nanowires on the diffraction pattern. The diffraction pattern of the bundled rare-earth silicide nanowires is analyzed by the binary surface technique applying a kinematic approach to diffraction. Assuming a categorical distribution for the (individual) nanowire size and a Poisson distribution for the size of the spacing between adjacent nanowire-bundles, we are able to determine the parameters of these distributions and derive an expression for the distribution of the nanowire-bundle size. Additionally, the comparison of our simulations to the experimental diffraction pattern reveal that a (1 × 1)-periodicity on top of the nanowires has to be assumed for a good match.
Excitation of phonons in medium-energy electron diffraction
NASA Astrophysics Data System (ADS)
Alvarez, M. A. Vicente; Ascolani, H.; Zampieri, G.
1996-03-01
The ``elastic'' backscattering of electrons from crystalline surfaces presents two regimes: a low-energy regime, in which the characteristic low-energy electron diffraction (LEED) pattern is observed, and a medium-energy regime, in which the diffraction pattern is similar to those observed in x-ray photoemission diffraction (XPD) and Auger electron diffraction (AED) experiments. We present a model for the electron scattering which, including the vibrational degrees of freedom of the crystal, contains both regimes and explains the passage from one regime to the other. Our model is based on a separation of the electron and atomic motions (adiabatic approximation) and on a cluster-type formulation of the multiple scattering of the electron. The inelastic scattering events (excitation and/or absorption of phonons) are treated as coherent processes and no break of the phase relation between the incident and the exit paths of the electron is assumed. The LEED and the medium-energy electron diffraction regimes appear naturally in this model as the limit cases of completely elastic scattering and of inelastic scattering with excitation and/or absorption of multiple phonons. Intensity patterns calculated with this model are in very good agreement with recent experiments of electron scattering on Cu(001) at low and medium energies. We show that there is a correspondence between the type of intensity pattern and the mean number of phonons excited and/or absorbed during the scattering: a LEED-like pattern is observed when this mean number is less than 2, LEED-like and XPD/AED-like features coexist when this number is 3-4, and a XPD/AED-like pattern is observed when this number is greater than 5-6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haishuang; Krysiak, Yaşar; Hoffmann, Kristin
The crystal structure and disorder phenomena of Al{sub 4}B{sub 2}O{sub 9}, an aluminum borate from the mullite-type family, were studied using automated diffraction tomography (ADT), a recently established method for collection and analysis of electron diffraction data. Al{sub 4}B{sub 2}O{sub 9}, prepared by sol-gel approach, crystallizes in the monoclinic space group C2/m. The ab initio structure determination based on three-dimensional electron diffraction data from single ordered crystals reveals that edge-connected AlO{sub 6} octahedra expanding along the b axis constitute the backbone. The ordered structure (A) was confirmed by TEM and HAADF-STEM images. Furthermore, disordered crystals with diffuse scattering along themore » b axis are observed. Analysis of the modulation pattern implies a mean superstructure (AAB) with a threefold b axis, where B corresponds to an A layer shifted by ½a and ½c. Diffraction patterns simulated for the AAB sequence including additional stacking disorder are in good agreement with experimental electron diffraction patterns. - Graphical abstract: Crystal structure and disorder phenomena of B-rich Al{sub 4}B{sub 2}O{sub 9} studied by automated electron diffraction tomography (ADT) and described by diffraction simulation using DISCUS. - Highlights: • Ab-initio structure solution by electron diffraction from single nanocrystals. • Detected modulation corresponding mainly to three-fold superstructure. • Diffuse diffraction streaks caused by stacking faults in disordered crystals. • Observed streaks explained by simulated electron diffraction patterns.« less
SU-E-I-77: X-Ray Coherent Scatter Diffraction Pattern Modeling in GEANT4.
Kapadia, A; Samei, E; Harrawood, B; Sahbaee, P; Chawla, A; Tan, Z; Brady, D
2012-06-01
To model X-ray coherent scatter diffraction patterns in GEANT4 for simulating experiments involving material detection through diffraction pattern measurement. Although coherent scatter cross-sections are modeled accurately in GEANT4, diffraction patterns for crystalline materials are not yet included. Here we describe our modeling of crystalline diffraction patterns in GEANT4 for specific materials and the validation of the results against experimentally measured data. Coherent scatter in GEANT4 is currently based on Hubbell's non-relativistic form factor tabulations from EPDL97. We modified the form-factors by introducing an interference function that accounts for the angular dependence between the Rayleigh-scattered photons and the photon wavelength. The modified form factors were used to replace the inherent form-factors in GEANT4. The simulation was tested using monochromatic and polychromatic x-ray beams (separately) incident on objects containing one or more elements with modified form-factors. The simulation results were compared against the experimentally measured diffraction images of corresponding objects using an in-house x-ray diffraction imager for validation. The comparison was made using the following metrics: number of diffraction rings, radial distance, absolute intensity, and relative intensity. Sharp diffraction pattern rings were observed in the monochromatic simulations at locations consistent with the angular dependence of the photon wavelength. In the polychromatic simulations, the diffraction patterns exhibited a radial blur consistent with the energy spread of the polychromatic spectrum. The simulated and experimentally measured patterns showed identical numbers of rings with close agreement in radial distance, absolute and relative intensities (barring statistical fluctuations). No significant change was observed in the execution time of the simulations. This work demonstrates the ability to model coherent scatter diffraction in GEANT4 in an accurate and efficient manner without compromising the accuracy or runtime of the simulation. This work was supported by the Department of Homeland Security under grant DHS (BAA 10-01 F075), and by the Department of Defense under award W81XWH-09-1-0066. © 2012 American Association of Physicists in Medicine.
Diffraction of V-point singularities through triangular apertures.
Ram, B S Bhargava; Sharma, Anurag; Senthilkumaran, P
2017-05-01
In this paper we present experimental studies on diffraction of V-point singularities through equilateral and isosceles right triangular apertures. When V-point index, also called Poincare-Hopf index (η), of the optical field is +1, the diffraction disintegrates it into two monstars/lemons. When V-point index η is -1, diffraction produces two stars. The diffraction pattern, unlike phase singularity, is insensitive to polarity of the polarization singularity and the intensity pattern remains invariant. Higher order V-point singularities are generated using Sagnac interferometer and it is observed that the diffraction disintegrates them into lower order C-points.
NASA Astrophysics Data System (ADS)
McRae, E. G.; Petroff, P. M.
1984-11-01
Several structural models of the Si(111)-7 × 7 surface are tested by comparing calculated and observed transmission electron diffraction (TED) patterns. The models comprise "adatom" models where the unit mesh contains 12 adatoms or atom clusters in a locally (2 × 2) arrangement, and "triangle-dimer" models where the unit mesh contains 9 dimers or pairs of dimers bordering a triangular subunit of the unit mesh. The distribution of diffraction intensity among fractional-order spots is calculated kinematically and compared with TED patterns observed by Petroff and Wilson and others. No agreement is found for adatom models. Good but not perfect agreement is found for one triangle-dimer model.
Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi
2014-11-17
Coherent X-ray diffraction imaging (CXDI) is a lensless imaging technique that is suitable for visualizing the structures of non-crystalline particles with micrometer to sub-micrometer dimensions from material science and biology. One of the difficulties inherent to CXDI structural analyses is the reconstruction of electron density maps of specimen particles from diffraction patterns because saturated detector pixels and a beam stopper result in missing data in small-angle regions. To overcome this difficulty, the dark-field phase-retrieval (DFPR) method has been proposed. The DFPR method reconstructs electron density maps from diffraction data, which are modified by multiplying Gaussian masks with an observed diffraction pattern in the high-angle regions. In this paper, we incorporated Friedel centrosymmetry for diffraction patterns into the DFPR method to provide a constraint for the phase-retrieval calculation. A set of model simulations demonstrated that this constraint dramatically improved the probability of reconstructing correct electron density maps from diffraction patterns that were missing data in the small-angle region. In addition, the DFPR method with the constraint was applied successfully to experimentally obtained diffraction patterns with significant quantities of missing data. We also discuss this method's limitations with respect to the level of Poisson noise in X-ray detection.
Fiber Diffraction Data Indicate a Hollow Core for the Alzheimer’s Aβ Three-fold Symmetric Fibril
McDonald, Michele; Box, Hayden; Bian, Wen; Kendall, Amy; Tycko, Robert; Stubbs, Gerald
2012-01-01
Amyloid β protein (Aβ), the principal component of the extracellular plaques found in the brains of Alzheimer’s disease patients, forms fibrils well suited to structural study by X-ray fiber diffraction. Fiber diffraction patterns from the 40-residue form Aβ(1–40) confirm a number of features of a three-fold symmetric Aβ model from solid state NMR, but suggest that the fibrils have a hollow core, not present in the original ssNMR models. Diffraction patterns calculated from a revised hollow three-fold model with a more regular β-sheet structure are in much better agreement with the observed diffraction data than patterns calculated from the original ssNMR model. Refinement of a hollow-core model against ssNMR data led to a revised ssNMR model, similar to the fiber diffraction model. PMID:22903058
Renoux, Céline; Parrow, Nermi; Faes, Camille; Joly, Philippe; Hardeman, Max; Tisdale, John; Levine, Mark; Garnier, Nathalie; Bertrand, Yves; Kebaili, Kamila; Cuzzubbo, Daniela; Cannas, Giovanna; Martin, Cyril; Connes, Philippe
2016-01-01
Red blood cell (RBC) deformability is severely decreased in patients with sickle cell anemia (SCA), which plays a role in the pathophysiology of the disease. However, investigation of RBC deformability from SCA patients demands careful methodological considerations. We assessed RBC deformability by ektacytometry (LORRCA MaxSis, Mechatronics, The Netherlands) in 6 healthy individuals and 49 SCA patients and tested the effects of different heights of the RBC diffraction patterns, obtained by altering the camera gain of the LORRCA, on the result of RBC deformability measurements, expressed as Elongation Index (EI). Results indicate that the pattern of RBCs from control subjects adopts an elliptical shape under shear stress, whereas the pattern of RBCs from individuals with SCA adopts a diamond shape arising from the superposition of elliptical and circular patterns. The latter represent rigid RBCs. While the EI measures did not change with the variations of the RBC diffraction pattern heights in the control subjects, we observed a decrease of EI when the RBC diffraction pattern height is increased in the SCA group. The differences in SCA EI values measured at 5 Pa between the different diffraction pattern heights correlated with the percent of hemoglobin S and the percent of sickled RBC observed by microscopy. Our study confirms that the camera gain or aperture of the ektacytometer should be used to standardize the size of the RBC diffraction pattern height when measuring RBC deformability in sickle cell patients and underscores the potential clinical utility of this technique.
Structural and electron diffraction scaling of twisted graphene bilayers
NASA Astrophysics Data System (ADS)
Zhang, Kuan; Tadmor, Ellad B.
2018-03-01
Multiscale simulations are used to study the structural relaxation in twisted graphene bilayers and the associated electron diffraction patterns. The initial twist forms an incommensurate moiré pattern that relaxes to a commensurate microstructure comprised of a repeating pattern of alternating low-energy AB and BA domains surrounding a high-energy AA domain. The simulations show that the relaxation mechanism involves a localized rotation and shrinking of the AA domains that scales in two regimes with the imposed twist. For small twisting angles, the localized rotation tends to a constant; for large twist, the rotation scales linearly with it. This behavior is tied to the inverse scaling of the moiré pattern size with twist angle and is explained theoretically using a linear elasticity model. The results are validated experimentally through a simulated electron diffraction analysis of the relaxed structures. A complex electron diffraction pattern involving the appearance of weak satellite peaks is predicted for the small twist regime. This new diffraction pattern is explained using an analytical model in which the relaxation kinematics are described as an exponentially-decaying (Gaussian) rotation field centered on the AA domains. Both the angle-dependent scaling and diffraction patterns are in quantitative agreement with experimental observations. A Matlab program for extracting the Gaussian model parameters accompanies this paper.
Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc
2015-06-01
Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and 'relaxed' after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal.
Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc
2015-01-01
Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and ‘relaxed’ after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal. PMID:26089755
UHV-TEM/TED observation of Ag islands grown on Si( 1 1 1 ) 3× 3-Ag surface
NASA Astrophysics Data System (ADS)
Oshima, Yoshifumi; Nakade, Hiroyuki; Shigeki, Sinya; Hirayama, Hiroyuki; Takayanagi, Kunio
2001-11-01
Growths of Ag islands on Si(1 1 1)3×3-Ag surface at room temperature were observed by UHV transmission electron microscopy and diffraction. The Ag islands grown after six monolayer deposition had neither (1 0 0) nor (1 1 0) orientation, but had two complex epitaxial orientations dominantly. One was striped islands which gave rise to a diffraction pattern commensurate with the 3×3 lattice of the Si(1 1 1) surface. The other was the coagulated islands whose diffraction pattern indicated the Ag(1 -3 4) sheet grown parallel to the Si(1 1 1) surface.
Takehira, Rieko; Momose, Yasunori; Yamamura, Shigeo
2010-10-15
A pattern-fitting procedure using an X-ray diffraction pattern was applied to the quantitative analysis of binary system of crystalline pharmaceuticals in tablets. Orthorhombic crystals of isoniazid (INH) and mannitol (MAN) were used for the analysis. Tablets were prepared under various compression pressures using a direct compression method with various compositions of INH and MAN. Assuming that X-ray diffraction pattern of INH-MAN system consists of diffraction intensities from respective crystals, observed diffraction intensities were fitted to analytic expression based on X-ray diffraction theory and separated into two intensities from INH and MAN crystals by a nonlinear least-squares procedure. After separation, the contents of INH were determined by using the optimized normalization constants for INH and MAN. The correction parameter including all the factors that are beyond experimental control was required for quantitative analysis without calibration curve. The pattern-fitting procedure made it possible to determine crystalline phases in the range of 10-90% (w/w) of the INH contents. Further, certain characteristics of the crystals in the tablets, such as the preferred orientation, size of crystallite, and lattice disorder were determined simultaneously. This method can be adopted to analyze compounds whose crystal structures are known. It is a potentially powerful tool for the quantitative phase analysis and characterization of crystals in tablets and powders using X-ray diffraction patterns. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamanaka, Eiji; Taniguchi, Rikiya; Itoh, Masamitsu; Omote, Kazuhiko; Ito, Yoshiyasu; Ogata, Kiyoshi; Hayashi, Naoya
2016-05-01
Nanoimprint lithography (NIL) is one of the most potential candidates for the next generation lithography for semiconductor. It will achieve the lithography with high resolution and low cost. High resolution of NIL will be determined by a high definition template. Nanoimprint lithography will faithfully transfer the pattern of NIL template to the wafer. Cross-sectional profile of the template pattern will greatly affect the resist profile on the wafer. Therefore, the management of the cross-sectional profile is essential. Grazing incidence small angle x-ray scattering (GI-SAXS) technique has been proposed as one of the method for measuring cross-sectional profile of periodic nanostructure pattern. Incident x-rays are irradiated to the sample surface with very low glancing angle. It is close to the critical angle of the total reflection of the x-ray. The scattered x-rays from the surface structure are detected on a two-dimensional detector. The observed intensity is discrete in the horizontal (2θ) direction. It is due to the periodicity of the structure, and diffraction is observed only when the diffraction condition is satisfied. In the vertical (β) direction, the diffraction intensity pattern shows interference fringes reflected to height and shape of the structure. Features of the measurement using x-ray are that the optical constant for the materials are well known, and it is possible to calculate a specific diffraction intensity pattern based on a certain model of the cross-sectional profile. The surface structure is estimated by to collate the calculated diffraction intensity pattern that sequentially while changing the model parameters with the measured diffraction intensity pattern. Furthermore, GI-SAXS technique can be measured an object in a non-destructive. It suggests the potential to be an effective tool for product quality assurance. We have developed a cross-sectional profile measurement of quartz template pattern using GI-SAXS technique. In this report, we will report the measurement capabilities of GI-SAXS technique as a cross-sectional profile measurement tool of NIL quartz template pattern.
Three-dimensional reconstruction for coherent diffraction patterns obtained by XFEL.
Nakano, Miki; Miyashita, Osamu; Jonic, Slavica; Song, Changyong; Nam, Daewoong; Joti, Yasumasa; Tama, Florence
2017-07-01
The three-dimensional (3D) structural analysis of single particles using an X-ray free-electron laser (XFEL) is a new structural biology technique that enables observations of molecules that are difficult to crystallize, such as flexible biomolecular complexes and living tissue in the state close to physiological conditions. In order to restore the 3D structure from the diffraction patterns obtained by the XFEL, computational algorithms are necessary as the orientation of the incident beam with respect to the sample needs to be estimated. A program package for XFEL single-particle analysis based on the Xmipp software package, that is commonly used for image processing in 3D cryo-electron microscopy, has been developed. The reconstruction program has been tested using diffraction patterns of an aerosol nanoparticle obtained by tomographic coherent X-ray diffraction microscopy.
Three-dimensional Bragg diffraction in growth-disordered opals
NASA Astrophysics Data System (ADS)
Baryshev, A. V.; Kaplyanskii, Alexander A.; Kosobukin, Vladimir A.; Limonov, M. F.; Samusev, K. B.; Usvyat, D. E.
2003-06-01
After artificial opals as well as opal-based infilled and inverted composites are considered to be promising representatives of photonic crystal materials. Earlier, photonic stop gaps in opals were studied mainly in transmission or specular reflection geometries corresponding to "one-dimensional" Bragg diffraction. On the contrary, this work was aimed at observing the typical patterns of optical Bragg diffraction in which phenomenon opal crystal structure acts as a three-dimensional diffraction grating. Although our experiments were performed for artificial opals possessing unavoidable imperfections a well-pronounced diffraction peaks were observed characteristic of a crystal structure. Each of the diffraction maxima reveals a photonic stop gap in the specified direction, while the spectral width of the peak is a measure of the photonic stop gap width.
Current sensing using bismuth rare-earth iron garnet films
NASA Astrophysics Data System (ADS)
Ko, Michael; Garmire, Elsa
1995-04-01
Ferrimagnetic iron garnet films are investigated as current-sensing elements. The Faraday effect within the films permits measurement of the magnetic field or current by a simple polarimetric technique. Polarized diffraction patterns from the films have been observed that arise from the presence of magnetic domains in the films. A physical model for the diffraction is discussed, and results from a mathematical analysis are in good agreement with the experimental observations. A method of current sensing that uses this polarized diffraction is demonstrated.
Hirose, Makoto; Shimomura, Kei; Suzuki, Akihiro; Burdet, Nicolas; Takahashi, Yukio
2016-05-30
The sample size must be less than the diffraction-limited focal spot size of the incident beam in single-shot coherent X-ray diffraction imaging (CXDI) based on a diffract-before-destruction scheme using X-ray free electron lasers (XFELs). This is currently a major limitation preventing its wider applications. We here propose multiple defocused CXDI, in which isolated objects are sequentially illuminated with a divergent beam larger than the objects and the coherent diffraction pattern of each object is recorded. This method can simultaneously reconstruct both objects and a probe from the coherent X-ray diffraction patterns without any a priori knowledge. We performed a computer simulation of the prposed method and then successfully demonstrated it in a proof-of-principle experiment at SPring-8. The prposed method allows us to not only observe broad samples but also characterize focused XFEL beams.
Barrow, Matthew S; Williams, P Rhodri; Chan, Hoi-Houng; Dore, John C; Bellissent-Funel, Marie-Claire
2012-10-14
High-speed photographic studies and neutron diffraction measurements have been made of water under tension in a Berthelot tube. Liquid water was cooled below the normal ice-nucleation temperature and was in a doubly-metastable state prior to a collapse of the liquid state. This transition was accompanied by an exothermic heat release corresponding with the rapid production of a solid phase nucleated by cavitation. Photographic techniques have been used to observe the phase transition over short time scales in which a solidification front is observed to propagate through the sample. Significantly, other images at a shorter time interval reveal the prior formation of cavitation bubbles at the beginning of the process. The ice-nucleation process is explained in terms of a mechanism involving hydrodynamically-induced changes in tension in supercooled water in the near vicinity of an expanding cavitation bubble. Previous explanations have attributed the nucleation of the solid phase to the production of high positive pressures. Corresponding results are presented which show the initial neutron diffraction pattern after ice-nucleation. The observed pattern does not exhibit the usual crystalline pattern of hexagonal ice [I(h)] that is formed under ambient conditions, but indicates the presence of other ice forms. The composite features can be attributed to a mixture of amorphous ice, ice-I(h)/I(c) and the high-pressure form, ice-III, and the diffraction pattern continues to evolve over a time period of about an hour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sampath, Sujatha; Isdebski, Thomas; Jenkins, Janelle E.
Synchrotron X-ray micro-diffraction experiments were carried out on Nephila clavipes (NC) and Argiope aurantia (AA) major (MA) and minor ampullate (MiA) fibers that make up dragline spider silk. The diffraction patterns show a semi-crystalline structure with {beta}-poly(L-alanine) nanocrystallites embedded in a partially oriented amorphous matrix. A superlattice reflection 'S' diffraction ring is observed, which corresponds to a crystalline component larger in size and is poorly oriented, when compared to the {beta}-poly(L-alanine) nanocrystallites that are commonly observed in dragline spider silks. Crystallite size, crystallinity and orientation about the fiber axis have been determined from the wide-angle X-ray diffraction (WAXD) patterns. Inmore » both NC and AA, the MiA silks are found to be more highly crystalline, when compared with the corresponding MA silks. Detailed analysis on the amorphous matrix shows considerable differences in the degree of order of the oriented amorphous component between the different silks studied and may play a crucial role in determining the mechanical properties of the silks.« less
Optofluidic two-dimensional grating volume refractive index sensor.
Sarkar, Anirban; Shivakiran Bhaktha, B N; Khastgir, Sugata Pratik
2016-09-10
We present an optofluidic reservoir with a two-dimensional grating for a lab-on-a-chip volume refractive index sensor. The observed diffraction pattern from the device resembles the analytically obtained fringe pattern. The change in the diffraction pattern has been monitored in the far-field for fluids with different refractive indices. Reliable measurements of refractive index variations, with an accuracy of 6×10-3 refractive index units, for different fluids establishes the optofluidic device as a potential on-chip tool for monitoring dynamic refractive index changes.
Recombinant Reflectin-Based Optical Materials
2012-01-01
sili- con substrates were placed in a sealed plastic box. The RH was controlled using a Dydra electronic cigar humidifier and monitored using a Fisher...diffraction gratings to generate diffraction patterns. Nano-spheres and la- mellar microstructures of refCBA samples were observed by scanning electron ...samples were observed by scanning electron microscopy and atomic force microscopy. Despite the reduced complexity of the refCBA protein compared to natural
Variation in the Helical Structure of Native Collagen
2014-02-24
unsampled molecular transform of the sample (non-crystalline diffraction arising from the helical symmetry), these patterns also contain Bragg peaks...tissues may be treated as analogous to that from a single macromolecular crystal. Except that it arises from many fibrils within the sample , giving rise...density maps, constructed from experimentally determined phases and observed amplitudes, showed good agreement. The observed diffraction and the simulated
High-speed autofocusing of a cell using diffraction pattern
NASA Astrophysics Data System (ADS)
Oku, Hiromasa; Ishikawa, Masatoshi; Theodorus; Hashimoto, Koichi
2006-05-01
This paper proposes a new autofocusing method for observing cells under a transmission illumination. The focusing method uses a quick and simple focus estimation technique termed “depth from diffraction,” which is based on a diffraction pattern in a defocused image of a biological specimen. Since this method can estimate the focal position of the specimen from only a single defocused image, it can easily realize high-speed autofocusing. To demonstrate the method, it was applied to continuous focus tracking of a swimming paramecium, in combination with two-dimensional position tracking. Three-dimensional tracking of the paramecium for 70 s was successfully demonstrated.
Local nanoscale strain mapping of a metallic glass during in situ testing
NASA Astrophysics Data System (ADS)
Gammer, Christoph; Ophus, Colin; Pekin, Thomas C.; Eckert, Jürgen; Minor, Andrew M.
2018-04-01
The local elastic strains during tensile deformation in a CuZrAlAg metallic glass are obtained by fitting an elliptic shape function to the characteristic amorphous ring in electron diffraction patterns. Scanning nanobeam electron diffraction enables strain mapping with a resolution of a few nanometers. Here, a fast direct electron detector is used to acquire the diffraction patterns at a sufficient speed to map the local transient strain during continuous tensile loading in situ in the transmission electron microscope. The elastic strain in tensile direction was found to increase during loading. After catastrophic fracture, a residual elastic strain that relaxes over time was observed.
Speckle in the diffraction patterns of Hendricks-Teller and icosahedral glass models
NASA Technical Reports Server (NTRS)
Garg, Anupam; Levine, Dov
1988-01-01
It is shown that the X-ray diffraction patterns from the Hendricks-Teller model for layered systems and the icosahedral glass models for the icosahedral phases show large fluctuations between nearby scattering wave vectors and from sample to sample, that are quite analogous to laser speckle. The statistics of these fluctuations are studied analytically for the first model and via computer simulations for the second. The observability of these effects is discussed briefly.
Direct Observation of Azimuthal Correlations between DNA in Hydrated Aggregates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kornyshev, Alexei A.; Lee, Dominic J.; Wynveen, Aaron
2005-09-30
This study revisits the classical x-ray diffraction patterns from hydrated, noncrystalline fibers originally used to establish the helical structure of DNA. We argue that changes in these diffraction patterns with DNA packing density reveal strong azimuthally dependent interactions between adjacent molecules up to {approx}40 A interaxial or {approx}20 A surface-to-surface separations. These interactions appear to force significant torsional 'straightening' of DNA and strong azimuthal alignment of nearest neighbor molecules. The results are in good agreement with the predictions of recent theoretical models relating DNA-DNA interactions to the helical symmetry of their surface charge patterns.
Theoretical study of the properties of X-ray diffraction moiré fringes. I
Yoshimura, Jun-ichi
2015-01-01
A detailed and comprehensive theoretical description of X-ray diffraction moiré fringes for a bicrystal specimen is given on the basis of a calculation by plane-wave dynamical diffraction theory. Firstly, prior to discussing the main subject of the paper, a previous article [Yoshimura (1997 ▸). Acta Cryst. A53, 810–812] on the two-dimensionality of diffraction moiré patterns is restated on a thorough calculation of the moiré interference phase. Then, the properties of moiré fringes derived from the above theory are explained for the case of a plane-wave diffraction image, where the significant effect of Pendellösung intensity oscillation on the moiré pattern when the crystal is strained is described in detail with theoretically simulated moiré images. Although such plane-wave moiré images are not widely observed in a nearly pure form, knowledge of their properties is essential for the understanding of diffraction moiré fringes in general. PMID:25970298
Teaching Fraunhofer diffraction via experimental and simulated images in the laboratory
NASA Astrophysics Data System (ADS)
Peinado, Alba; Vidal, Josep; Escalera, Juan Carlos; Lizana, Angel; Campos, Juan; Yzuel, Maria
2012-10-01
Diffraction is an important phenomenon introduced to Physics university students in a subject of Fundamentals of Optics. In addition, in the Physics Degree syllabus of the Universitat Autònoma de Barcelona, there is an elective subject in Applied Optics. In this subject, diverse diffraction concepts are discussed in-depth from different points of view: theory, experiments in the laboratory and computing exercises. In this work, we have focused on the process of teaching Fraunhofer diffraction through laboratory training. Our approach involves students working in small groups. They visualize and acquire some important diffraction patterns with a CCD camera, such as those produced by a slit, a circular aperture or a grating. First, each group calibrates the CCD camera, that is to say, they obtain the relation between the distances in the diffraction plane in millimeters and in the computer screen in pixels. Afterwards, they measure the significant distances in the diffraction patterns and using the appropriate diffraction formalism, they calculate the size of the analyzed apertures. Concomitantly, students grasp the convolution theorem in the Fourier domain by analyzing the diffraction of 2-D gratings of elemental apertures. Finally, the learners use a specific software to simulate diffraction patterns of different apertures. They can control several parameters: shape, size and number of apertures, 1-D or 2-D gratings, wavelength, focal lens or pixel size.Therefore, the program allows them to reproduce the images obtained experimentally, and generate others by changingcertain parameters. This software has been created in our research group, and it is freely distributed to the students in order to help their learning of diffraction. We have observed that these hands on experiments help students to consolidate their theoretical knowledge of diffraction in a pedagogical and stimulating learning process.
Yamamura, Shigeo; Momose, Yasunori
2003-06-18
The purpose of this study is to characterize the monoclinic crystals in tablets by using X-ray powder diffraction data and to evaluate the deformation feature of crystals during compression. The monoclinic crystals of acetaminophen and benzoic acid were used as the samples. The observed X-ray diffraction intensities were fitted to the analytic expression, and the fitting parameters, such as the lattice parameters, the peak-width parameters, the preferred orientation parameter and peak asymmetric parameter were optimized by a non-linear least-squares procedure. The Gauss and March distribution functions were used to correct the preferred orientation of crystallites in the tablet. The March function performed better in correcting the modification of diffraction intensity by preferred orientation of crystallites, suggesting that the crystallites in the tablets had fiber texture with axial orientation. Although a broadening of diffraction peaks was observed in acetaminophen tablets with an increase of compression pressure, little broadening was observed in the benzoic tablets. These results suggest that "acetaminophen is a material consolidating by fragmentation of crystalline particles and benzoic acid is a material consolidating by plastic deformation then occurred rearrangement of molecules during compression". A pattern-fitting procedure is the superior method for characterizing the crystalline drugs of monoclinic crystals in the tablets, as well as orthorhombic isoniazid and mannitol crystals reported in the previous paper.
NASA Astrophysics Data System (ADS)
Pathan, Idris G.; Suryawanshi, Dinesh N.; Bari, Anil R.; Patil, Lalchand A.
2018-05-01
This work presents the effect of iron doping having different volume ratios (1 ml, 2.5 ml and 5 ml) on the structural, microstructural and electrical properties of zinc stannate thin films, prepared by spray pyrolysis method. These properties were characterized with X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). In our study, XRD pattern indicates that ZnSnO3 has a perovskite phase with face exposed hexahedron structure. The electron diffraction fringes observed are in consistent with the peak observed in XRD patterns. Moreover the sensor reported in our study is cost-effective, user friendly and easy to fabricate.
Laser scattering induced holograms in lithium niobate. [observation of diffraction cones
NASA Technical Reports Server (NTRS)
Magnusson, R.; Gaylord, T. K.
1974-01-01
A 3.0-mm thick poled single crystal of lithium niobate doped with 0.1 mole% iron was exposed to a single beam and then to two intersecting beams of an argon ion laser operating at 515-nm wavelength. Laser scattering induced holograms were thus written and analyzed. The presence of diffraction cones was observed and is shown to result from the internally recorded interference pattern resulting from the interference of the original incident laser beam with light scattered from material inhomogeneities. This phenomenon is analyzed using Ewald sphere construction techniques which reveal the geometrical relationships existing for the diffraction cones.
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Yahya
1986-01-01
Both offset and symmetric Cassegrain reflector antennas are used in satellite and ground communication systems. It is known that the subreflector diffraction can degrade the performance of these reflectors. A geometrical theory of diffraction/physical optics analysis technique is used to investigate the effects of the extended subreflector, beyond its optical rim, on the reflector efficiency and far-field patterns. Representative numerical results are shown for an offset Cassegrain reflector antenna with different feed illumination tapers and subreflector extensions. It is observed that for subreflector extensions as small as one wavelength, noticeable improvements in the overall efficiencies can be expected. Useful design data are generated for the efficiency curves and far-field patterns.
Shemesh, Noam; Ozarslan, Evren; Basser, Peter J; Cohen, Yoram
2010-01-21
NMR observable nuclei undergoing restricted diffusion within confining pores are important reporters for microstructural features of porous media including, inter-alia, biological tissues, emulsions and rocks. Diffusion NMR, and especially the single-pulsed field gradient (s-PFG) methodology, is one of the most important noninvasive tools for studying such opaque samples, enabling extraction of important microstructural information from diffusion-diffraction phenomena. However, when the pores are not monodisperse and are characterized by a size distribution, the diffusion-diffraction patterns disappear from the signal decay, and the relevant microstructural information is mostly lost. A recent theoretical study predicted that the diffusion-diffraction patterns in double-PFG (d-PFG) experiments have unique characteristics, such as zero-crossings, that make them more robust with respect to size distributions. In this study, we theoretically compared the signal decay arising from diffusion in isolated cylindrical pores characterized by lognormal size distributions in both s-PFG and d-PFG methodologies using a recently presented general framework for treating diffusion in NMR experiments. We showed the gradual loss of diffusion-diffraction patterns in broadening size distributions in s-PFG and the robustness of the zero-crossings in d-PFG even for very large standard deviations of the size distribution. We then performed s-PFG and d-PFG experiments on well-controlled size distribution phantoms in which the ground-truth is well-known a priori. We showed that the microstructural information, as manifested in the diffusion-diffraction patterns, is lost in the s-PFG experiments, whereas in d-PFG experiments the zero-crossings of the signal persist from which relevant microstructural information can be extracted. This study provides a proof of concept that d-PFG may be useful in obtaining important microstructural features in samples characterized by size distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mironov, B. N.; Kompanets, V. O.; Aseev, S. A., E-mail: isanfemto@yandex.ru
2017-03-15
The generation of coherent optical phonons in a polycrystalline antimony film sample has been investigated using femtosecond electron diffraction method. Phonon vibrations have been induced in the Sb sample by the main harmonic of a femtosecond Ti:Sa laser (λ = 800 nm) and probed by a pulsed ultrashort photoelectron beam synchronized with the pump laser. The diffraction patterns recorded at different times relative to the pump laser pulse display oscillations of electron diffraction intensity corresponding to the frequencies of vibrations of optical phonons: totally symmetric (A{sub 1g}) and twofold degenerate (E{sub g}) phonon modes. The frequencies that correspond to combinationsmore » of these phonon modes in the Sb sample have also been experimentally observed.« less
Macromolecular diffractive imaging using imperfect crystals
Ayyer, Kartik; Yefanov, Oleksandr; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Lourdu Xavier, Paulraj; Beyerlein, Kenneth R.; Schmidt, Marius; Sarrou, Iosifina; Spence, John C. H.; Weierstall, Uwe; White, Thomas A.; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S.; Robinson, Joseph S.; Koglin, Jason E.; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N.
2016-01-01
The three-dimensional structures of macromolecules and their complexes are predominantly elucidated by X-ray protein crystallography. A major limitation is access to high-quality crystals, to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields sufficiently high-resolution information that the crystal structure can be solved. The observation that crystals with shrunken unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks1,2 hints that crystallographic resolution for some macromolecules may be limited not by their heterogeneity but rather by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern, equal to the incoherent sum of diffraction from rigid single molecular complexes aligned along several discrete crystallographic orientations and hence with an increased information content3. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins4 —they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5 Å limit of measurable Bragg peaks, which allows us to directly phase5 the pattern. With the molecular envelope conventionally determined at 4.5 Å as a constraint, we then obtain a static image of the photosystem II dimer at 3.5 Å resolution. This result shows that continuous diffraction can be used to overcome long-supposed resolution limits of macromolecular crystallography, with a method that puts great value in commonly encountered imperfect crystals and opens up the possibility for model-free phasing6,7. PMID:26863980
The elliptical Gaussian wave transformation due to diffraction by an elliptical hologram
NASA Astrophysics Data System (ADS)
Janicijevic, L.
1985-03-01
Realized as an interferogram of a spherical and a cylindrical wave, the elliptical hologram is treated as a plane diffracting grating which produces Fresnel diffraction of a simple astigmatic Gaussian incident wave. It is shown that if the principal axes of the incident beam coincide with the principal axes of the hologram, the diffracted wave field is composed of three different astigmatic Gaussian waves, with their waists situated in parallel but distinct planes. The diffraction pattern, observed on a transverse screen, is the result of the interference of the three diffracted wave components. It consists of three systems of overlapped second-order curves, whose shape depends on the distance of the observation screen from the hologram, as well as on the parameters of the incident wave beam and the hologram. The results are specialized for gratings in the form of circular and linear holograms and for the case of a stigmatic Gaussian incident wave, as well as for the normal plane-wave incidence on the three mentioned types of hologram.
Two-dimensional microsphere quasi-crystal: fabrication and properties
NASA Astrophysics Data System (ADS)
Noginova, Natalia E.; Venkateswarlu, Putcha; Kukhtarev, Nickolai V.; Sarkisov, Sergey S.; Noginov, Mikhail A.; Caulfield, H. John; Curley, Michael J.
1996-11-01
2D quasi-crystals were fabricated from polystyrene microspheres and characterized for their structural, diffraction, and non-linear optics properties. The quasi- crystals were produced with the method based on Langmuir- Blodgett thin film technique. Illuminating the crystal with the laser beam, we observed the diffraction pattern in the direction of the beam propagation and in the direction of the back scattering, similar to the x-ray Laue pattern observed in regular crystals with hexagonal structure. The absorption spectrum of the quasi-crystal demonstrated two series of regular maxima and minima, with the spacing inversely proportional to the microspheres diameter. Illumination of the dye-doped microspheres crystal with Q- switched radiation of Nd:YAG laser showed the enhancement of non-linear properties, in particular, second harmonic generation.
Detection of a Novel Mechanism of Acousto-Optic Modulation of Incoherent Light
Jarrett, Christopher W.; Caskey, Charles F.; Gore, John C.
2014-01-01
A novel form of acoustic modulation of light from an incoherent source has been detected in water as well as in turbid media. We demonstrate that patterns of modulated light intensity appear to propagate as the optical shadow of the density variations caused by ultrasound within an illuminated ultrasonic focal zone. This pattern differs from previous reports of acousto-optical interactions that produce diffraction effects that rely on phase shifts and changes in light directions caused by the acoustic modulation. Moreover, previous studies of acousto-optic interactions have mainly reported the effects of sound on coherent light sources via photon tagging, and/or the production of diffraction phenomena from phase effects that give rise to discrete sidebands. We aimed to assess whether the effects of ultrasound modulation of the intensity of light from an incoherent light source could be detected directly, and how the acoustically modulated (AOM) light signal depended on experimental parameters. Our observations suggest that ultrasound at moderate intensities can induce sufficiently large density variations within a uniform medium to cause measurable modulation of the intensity of an incoherent light source by absorption. Light passing through a region of high intensity ultrasound then produces a pattern that is the projection of the density variations within the region of their interaction. The patterns exhibit distinct maxima and minima that are observed at locations much different from those predicted by Raman-Nath, Bragg, or other diffraction theory. The observed patterns scaled appropriately with the geometrical magnification and sound wavelength. We conclude that these observed patterns are simple projections of the ultrasound induced density changes which cause spatial and temporal variations of the optical absorption within the illuminated sound field. These effects potentially provide a novel method for visualizing sound fields and may assist the interpretation of other hybrid imaging methods. PMID:25105880
Optical diffraction by the microstructure of the wing of a moth
NASA Astrophysics Data System (ADS)
Brink, D. J.; Smit, J. E.; Lee, M. E.; Möller, A.
1995-09-01
On the wing of the moth Trichoplusia orichalcea a prominent, apparently highly reflective, golden spot can be seen. Scales from this area of the wing exhibit a regular microstructure resembling a submicrometer herringbone pattern. We show that a diffraction process from this structure is responsible for the observed optical properties, such as directionality, brightness variations, polarization, and color.
Chang, C F; Williams, R C; Grano, D A; Downing, K H; Glaeser, R M
1983-01-01
This study investigates the causes of the apparent differences between the optical diffraction pattern of a micrograph of a Tobacco Mosaic Virus (TMV) particle, the optical diffraction pattern of a ten-fold photographically averaged image, and the computed diffraction pattern of the original micrograph. Peak intensities along the layer lines in the transform of the averaged image appear to be quite unlike those in the diffraction pattern of the original micrograph, and the diffraction intensities for the averaged image extend to unexpectedly high resolution. A carefully controlled, quantitative comparison reveals, however, that the optical diffraction pattern of the original micrograph and that of the ten-fold averaged image are essentially equivalent. Using computer-based image processing, we discovered that the peak intensities on the 6th layer line have values very similar in magnitude to the neighboring noise, in contrast to what was expected from the optical diffraction pattern of the original micrograph. This discrepancy was resolved by recording a series of optical diffraction patterns when the original micrograph was immersed in oil. These patterns revealed the presence of a substantial phase grating effect, which exaggerated the peak intensities on the 6th layer line, causing an erroneous impression that the high resolution features possessed a good signal-to-noise ratio. This study thus reveals some pitfalls and misleading results that can be encountered when using optical diffraction patterns to evaluate image quality.
NASA Astrophysics Data System (ADS)
Eliseev, A. A.; Gorozhankin, D. F.; Napolskii, K. S.; Petukhov, A. V.; Sapoletova, N. A.; Vasilieva, A. V.; Grigoryeva, N. A.; Mistonov, A. A.; Byelov, D. V.; Bouwman, W. G.; Kvashnina, K. O.; Chernyshov, D. Yu.; Bosak, A. A.; Grigoriev, S. V.
2009-10-01
The distribution of the scattering intensity in the reciprocal space for natural and artificial opals has been reconstructed from a set of small-angle X-ray diffraction patterns. The resulting three-dimensional intensity maps are used to analyze the defect structure of opals. The structure of artificial opals can be satisfactorily described in the Wilson probability model with the prevalence of layers in the fcc environment. The diffraction patterns observed for a natural opal confirm the presence of sufficiently long unequally occupied fcc domains.
Two-dimensional time-resolved x-ray diffraction study of dual phase rapid solidification in steels
NASA Astrophysics Data System (ADS)
Yonemura, Mitsuharu; Osuki, Takahiro; Terasaki, Hidenori; Komizo, Yuichi; Sato, Masugu; Toyokawa, Hidenori; Nozaki, Akiko
2010-01-01
The high intensity heat source used for fusion welding creates steep thermal gradients of 100 °C/s from 1800 °C. Further, the influence of preferred orientation is important for the observation of a directional solidification that follows the dendrite growth along the ⟨100⟩ direction toward the moving heat source. In the present study, we observed the rapid solidification of weld metal at a time resolution of 0.01-0.1 s by a two-dimensional time-resolved x-ray diffraction (2DTRXRD) system for real welding. The diffraction rings were dynamically observed by 2DTRXRD with synchrotron energy of 18 keV while the arc passes over the irradiation area of the x-rays. The arc power output was 10 V-150 A, and the scan speed of the arc was 1.0 mm/s. The temperature rise in instruments was suppressed by a water-cooled copper plate under the specimen. Further, the temperature distribution of the weld metal was measured by a thermocouple and correlated with the diffraction patterns. Consequently, solidification and solid phase transformation of low carbon steels and stainless steels were observed during rapid cooling by 2DTRXRD. In the low carbon steel, the microstructure is formed in a two step process, (i) formation of crystallites and (ii) increase of crystallinity. In stainless steel, the irregular interface layer of δ/γ in the quenched metal after solidification is expected to show the easy movement of dendrites at a lower temperature. In carbide precipitation stainless steel, it is easy for NbC to grow on δ phase with a little undercooling. Further, a mistlike pattern, which differs from the halo pattern, in the fusion zone gave some indication of the possibilities to observe the nucleation and the early solidification by 2DTRXRD.
Direct laser interference patterning of ophthalmic polydimethylsiloxane (PDMS) polymers
NASA Astrophysics Data System (ADS)
Sola, D.; Lavieja, C.; Orera, A.; Clemente, M. J.
2018-07-01
The inscription of diffractive elements in ophthalmic polymers and ocular tissues to induce refractive index changes is of great interest in the fields of Optics and Ophthalmology. In this work fabrication of linear periodic patterns in polydimethylsiloxane (PDMS) intraocular lenses by means of the direct laser interference patterning (DLIP) technique was studied. A Q-Switch Nd:YAG laser coupled to second and third harmonic modules emitting linearly polarized 4 ns pulses at 355 nm with 20 Hz repetition rate was used as the laser source. Laser processing parameters were modified to produce the linear patterns. Processed samples were characterized by means of optical confocal microscopy, Scanning Electron Microscopy SEM, Energy Dispersive X-ray Spectroscopy EDX, Attenuated Total Reflectance-Infrared Spectroscopy ATR-FTIR, and Raman Spectroscopy. Depending on the laser parameters both photo-thermal and photo-chemical damage were observed in the DLIP irradiated areas. Finally, diffractive techniques were used to characterize the diffraction gratings inscribed in the samples resulting in a refractive index change of 1.9 × 10-2 under illumination of a 632.8 nm He-Ne laser.
Diffraction Correlation to Reconstruct Highly Strained Particles
NASA Astrophysics Data System (ADS)
Brown, Douglas; Harder, Ross; Clark, Jesse; Kim, J. W.; Kiefer, Boris; Fullerton, Eric; Shpyrko, Oleg; Fohtung, Edwin
2015-03-01
Through the use of coherent x-ray diffraction a three-dimensional diffraction pattern of a highly strained nano-crystal can be recorded in reciprocal space by a detector. Only the intensities are recorded, resulting in a loss of the complex phase. The recorded diffraction pattern therefore requires computational processing to reconstruct the density and complex distribution of the diffracted nano-crystal. For highly strained crystals, standard methods using HIO and ER algorithms are no longer sufficient to reconstruct the diffraction pattern. Our solution is to correlate the symmetry in reciprocal space to generate an a priori shape constraint to guide the computational reconstruction of the diffraction pattern. This approach has improved the ability to accurately reconstruct highly strained nano-crystals.
Femtosecond time-resolved MeV electron diffraction
Zhu, Pengfei; Zhu, Y.; Hidaka, Y.; ...
2015-06-02
We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS 2 are obtained utilizing a 5 fC (~3 × 10 4 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirms that electron beam has a normalized emittance of ~50 nm rad. The transverse and longitudinal coherence length is ~11 and ~2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ~100 fs (rms). The temporal resolution is demonstrated bymore » observing the evolution of Bragg and superlattice peaks of 1T-TaS 2 following an 800 nm optical pump and was found to be 130 fs. Lastly, our results demonstrate the advantages of MeV electrons, including large elastic differential scattering cross-section and access to high-order reflections, and the feasibility of ultimately realizing below 10 fs time-resolved electron diffraction.« less
NASA Astrophysics Data System (ADS)
Welch, Kevin; Leonard, Jerry; Jones, Richard D.
2010-08-01
Increasingly stringent requirements on the performance of diffractive optical elements (DOEs) used in wafer scanner illumination systems are driving continuous improvements in their associated manufacturing processes. Specifically, these processes are designed to improve the output pattern uniformity of off-axis illumination systems to minimize degradation in the ultimate imaging performance of a lithographic tool. In this paper, we discuss performance improvements in both photolithographic patterning and RIE etching of fused silica diffractive optical structures. In summary, optimized photolithographic processes were developed to increase critical dimension uniformity and featuresize linearity across the substrate. The photoresist film thickness was also optimized for integration with an improved etch process. This etch process was itself optimized for pattern transfer fidelity, sidewall profile (wall angle, trench bottom flatness), and across-wafer etch depth uniformity. Improvements observed with these processes on idealized test structures (for ease of analysis) led to their implementation in product flows, with comparable increases in performance and yield on customer designs.
NASA Astrophysics Data System (ADS)
He, Zhaohan; Nees, John; Hou, Bixue; Krushelnick, Karl; Thomas, Alec; Beaurepaire, Benoît; Malka, Victor; Faure, Jérôme
2013-10-01
Femtosecond bunches of electrons with relativistic to ultra-relativistic energies can be robustly produced in laser plasma wakefield accelerators (LWFA). Scaling the electron energy down to sub-relativistic and MeV level using a millijoule laser system will make such electron source a promising candidate for ultrafast electron diffraction (UED) applications due to the intrinsic short bunch duration and perfect synchronization with the optical pump. Recent results of electron diffraction from a single crystal gold foil, using LWFA electrons driven by 8-mJ, 35-fs laser pulses at 500 Hz, will be presented. The accelerated electrons were collimated with a solenoid magnetic lens. By applying a small-angle tilt to the magnetic lens, the diffraction pattern can be streaked such that the temporal evolution is separated spatially on the detector screen after propagation. The observable time window and achievable temporal resolution are studied in pump-probe measurements of photo-induced heating on the gold foil.
Fourier-Based Diffraction Analysis of Live Caenorhabditis elegans.
Magnes, Jenny; Hastings, Harold M; Raley-Susman, Kathleen M; Alivisatos, Clara; Warner, Adam; Hulsey-Vincent, Miranda
2017-09-13
This manuscript describes how to classify nematodes using temporal far-field diffraction signatures. A single C. elegans is suspended in a water column inside an optical cuvette. A 632 nm continuous wave HeNe laser is directed through the cuvette using front surface mirrors. A significant distance of at least 20-30 cm traveled after the light passes through the cuvette ensures a useful far-field (Fraunhofer) diffraction pattern. The diffraction pattern changes in real time as the nematode swims within the laser beam. The photodiode is placed off-center in the diffraction pattern. The voltage signal from the photodiode is observed in real time and recorded using a digital oscilloscope. This process is repeated for 139 wild type and 108 "roller" C. elegans. Wild type worms exhibit a rapid oscillation pattern in solution. The "roller" worms have a mutation in a key component of the cuticle that interferes with smooth locomotion. Time intervals that are not free of saturation and inactivity are discarded. It is practical to divide each average by its maximum to compare relative intensities. The signal for each worm is Fourier transformed so that the frequency pattern for each worm emerges. The signal for each type of worm is averaged. The averaged Fourier spectra for the wild type and the "roller" C. elegans are distinctly different and reveal that the dynamic worm shapes of the two different worm strains can be distinguished using Fourier analysis. The Fourier spectra of each worm strain match an approximate model using two different binary worm shapes that correspond to locomotory moments. The envelope of the averaged frequency distribution for actual and modeled worms confirms the model matches the data. This method can serve as a baseline for Fourier analysis for many microscopic species, as every microorganism will have its unique Fourier spectrum.
Fluorescent holograms with albumin-acrylamide
NASA Astrophysics Data System (ADS)
Ordóñez-Padilla, M. J.; Olivares-Pérez, A.; Fuentes-Tapia, I.
2014-02-01
We describe fluorescent holograms were made with photosensitive films of albumin (protein) quail, used as modified matrices. Albumin is mixed with acrylamide and eosin Y. Therefore, prepare a photosensitive emulsion and solid hydrated with the ability to phase transmission holograms and volume (VPH). Eosin Y is a fluorescent agent that acts as a photo-sensitizing dye which stimulates the polymerization of acrylamide. To record the interference pattern produced by two waves superimposed on the modified matrix, we use a He-Cd laser. To reconstruct the diffraction pattern is observed with He- Ne laser, λ = 632.8nm, the material is self-developing properties. Measure the diffraction efficiency of the diffracted orders (η[-1, +1]) as a function of exposure energy. We work with various thicknesses and measure the variation of the refractive index using the coupled wave theory of Kogelnik, the holographic gratings meet Bragg condition.
Development of splitting convergent beam electron diffraction (SCBED).
Houdellier, Florent; Röder, Falk; Snoeck, Etienne
2015-12-01
Using a combination of condenser electrostatic biprism with dedicated electron optic conditions for sample illumination, we were able to split a convergent beam electron probe focused on the sample in two half focused probes without introducing any tilt between them. As a consequence, a combined convergent beam electron diffraction pattern is obtained in the back focal plane of the objective lens arising from two different sample areas, which could be analyzed in a single pattern. This splitting convergent beam electron diffraction (SCBED) pattern has been tested first on a well-characterized test sample of Si/SiGe multilayers epitaxially grown on a Si substrate. The SCBED pattern contains information from the strained area, which exhibits HOLZ lines broadening induced by surface relaxation, with fine HOLZ lines observed in the unstrained reference part of the sample. These patterns have been analyzed quantitatively using both parts of the SCBED transmitted disk. The fine HOLZ line positions are used to determine the precise acceleration voltage of the microscope while the perturbed HOLZ rocking curves in the stained area are compared to dynamical simulated ones. The combination of these two information leads to a precise evaluation of the sample strain state. Finally, several SCBED setups are proposed to tackle fundamental physics questions as well as applied materials science ones and demonstrate how SCBED has the potential to greatly expand the range of applications of electron diffraction and electron holography. Copyright © 2015 Elsevier B.V. All rights reserved.
Stewart, James A.; Brookman, G.; Price, Patrick Michael; ...
2018-04-25
In this study, the evolution and characterization of single-isolated-ion-strikes are investigated by combining atomistic simulations with selected-area electron diffraction (SAED) patterns generated from these simulations. Five molecular dynamics simulations are performed for a single 20 keV primary knock-on atom in bulk crystalline Si. The resulting cascade damage is characterized in two complementary ways. First, the individual cascade events are conventionally quantified through the evolution of the number of defects and the atomic (volumetric) strain associated with these defect structures. These results show that (i) the radiation damage produced is consistent with the Norgett, Robinson, and Torrens model of damage productionmore » and (ii) there is a net positive volumetric strain associated with the cascade structures. Second, virtual SAED patterns are generated for the resulting cascade-damaged structures along several zone axes. The analysis of the corresponding diffraction patterns shows the SAED spots approximately doubling in size, on average, due to broadening induced by the defect structures. Furthermore, the SAED spots are observed to exhibit an average radial outward shift between 0.33% and 0.87% depending on the zone axis. Finally, this characterization approach, as utilized here, is a preliminary investigation in developing methodologies and opportunities to link experimental observations with atomistic simulations to elucidate microstructural damage states.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, James A.; Brookman, G.; Price, Patrick Michael
In this study, the evolution and characterization of single-isolated-ion-strikes are investigated by combining atomistic simulations with selected-area electron diffraction (SAED) patterns generated from these simulations. Five molecular dynamics simulations are performed for a single 20 keV primary knock-on atom in bulk crystalline Si. The resulting cascade damage is characterized in two complementary ways. First, the individual cascade events are conventionally quantified through the evolution of the number of defects and the atomic (volumetric) strain associated with these defect structures. These results show that (i) the radiation damage produced is consistent with the Norgett, Robinson, and Torrens model of damage productionmore » and (ii) there is a net positive volumetric strain associated with the cascade structures. Second, virtual SAED patterns are generated for the resulting cascade-damaged structures along several zone axes. The analysis of the corresponding diffraction patterns shows the SAED spots approximately doubling in size, on average, due to broadening induced by the defect structures. Furthermore, the SAED spots are observed to exhibit an average radial outward shift between 0.33% and 0.87% depending on the zone axis. Finally, this characterization approach, as utilized here, is a preliminary investigation in developing methodologies and opportunities to link experimental observations with atomistic simulations to elucidate microstructural damage states.« less
NASA Astrophysics Data System (ADS)
Stewart, J. A.; Brookman, G.; Price, P.; Franco, M.; Ji, W.; Hattar, K.; Dingreville, R.
2018-04-01
The evolution and characterization of single-isolated-ion-strikes are investigated by combining atomistic simulations with selected-area electron diffraction (SAED) patterns generated from these simulations. Five molecular dynamics simulations are performed for a single 20 keV primary knock-on atom in bulk crystalline Si. The resulting cascade damage is characterized in two complementary ways. First, the individual cascade events are conventionally quantified through the evolution of the number of defects and the atomic (volumetric) strain associated with these defect structures. These results show that (i) the radiation damage produced is consistent with the Norgett, Robinson, and Torrens model of damage production and (ii) there is a net positive volumetric strain associated with the cascade structures. Second, virtual SAED patterns are generated for the resulting cascade-damaged structures along several zone axes. The analysis of the corresponding diffraction patterns shows the SAED spots approximately doubling in size, on average, due to broadening induced by the defect structures. Furthermore, the SAED spots are observed to exhibit an average radial outward shift between 0.33% and 0.87% depending on the zone axis. This characterization approach, as utilized here, is a preliminary investigation in developing methodologies and opportunities to link experimental observations with atomistic simulations to elucidate microstructural damage states.
NASA Astrophysics Data System (ADS)
Jayashri, T. A.; Krishnan, G.; Rema Rani, N.
2014-12-01
Tris(1,2-diaminoethane)nickel(II)sulphate was prepared, and characterised by various chemical and spectral techniques. The sample was irradiated with 60Co gamma rays for varying doses. Sulphite ion and ammonia were detected and estimated in the irradiated samples. Non-isothermal decomposition kinetics, X-ray diffraction pattern, Fourier transform infrared spectroscopy, electronic, fast atom bombardment mass spectra, and surface morphology of the complex were studied before and after irradiation. Kinetic parameters were evaluated by integral, differential, and approximation methods. Irradiation enhanced thermal decomposition, lowering thermal and kinetic parameters. The mechanism of decomposition is controlled by R3 function. From X-ray diffraction studies, change in lattice parameters and subsequent changes in unit cell volume and average crystallite size were observed. Both unirradiated and irradiated samples of the complex belong to trigonal crystal system. Decrease in the intensity of the peaks was observed in the infrared spectra of irradiated samples. Electronic spectral studies revealed that the M-L interaction is unaffected by irradiation. Mass spectral studies showed that the fragmentation patterns of the unirradiated and irradiated samples are similar. The additional fragment with m/z 256 found in the irradiated sample is attributed to S8+. Surface morphology of the complex changed upon irradiation.
Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Matthias; Carlson, David B.; Hunter, Mark
2014-02-28
Here we present femtosecond x-ray diffraction patterns from two-dimensional (2-D) protein crystals using an x-ray free electron laser (XFEL). To date it has not been possible to acquire x-ray diffraction from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permits a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy methodology at the Linac Coherent Light Source, we observed Bragg diffraction to better than 8.5 Å resolution for two different 2-D protein crystal samples that were maintained at room temperature. These proof-of-principle results show promisemore » for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.« less
NASA Astrophysics Data System (ADS)
Rahvar, Sohrab
2018-05-01
In this work, we study the interaction of the electromagnetic wave (EW) from a distant quasar with the gravitational wave (GW) sourced by the binary stars. While in the regime of geometric optics, the light bending due to this interaction is negligible, we show that the phase shifting on the wavefront of an EW can produce the diffraction pattern on the observer plane. The diffraction of the light (with the wavelength of λe) by the gravitational wave playing the role of gravitational grating (with the wavelength of λg) has the diffraction angle of Δβ ˜ λe/λg. The relative motion of the observer, the source of gravitational wave and the quasar results in a relative motion of the observer through the interference pattern on the observer plane. The consequence of this fringe crossing is the modulation in the light curve of a quasar with the period of few hours in the microwave wavelength. The optical depth for the observation of this phenomenon for a Quasar with the multiple images strongly lensed by a galaxy where the light trajectory of some of the images crosses the lensing galaxy is τ ≃ 0.2. By shifting the time-delay of the light curves of the multiple images in a strong lensed quasar and removing the intrinsic variations of a quasar, our desired signals, as a new method for detection of GWs can be detected.
Abbey, Brian; Dilanian, Ruben A.; Darmanin, Connie; Ryan, Rebecca A.; Putkunz, Corey T.; Martin, Andrew V.; Wood, David; Streltsov, Victor; Jones, Michael W. M.; Gaffney, Naylyn; Hofmann, Felix; Williams, Garth J.; Boutet, Sébastien; Messerschmidt, Marc; Seibert, M. Marvin; Williams, Sophie; Curwood, Evan; Balaur, Eugeniu; Peele, Andrew G.; Nugent, Keith A.; Quiney, Harry M.
2016-01-01
X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration. PMID:27626076
Direct graphene growth on MgO: origin of the band gap.
Gaddam, Sneha; Bjelkevig, Cameron; Ge, Siping; Fukutani, Keisuke; Dowben, Peter A; Kelber, Jeffry A
2011-02-23
A 2.5 monolayer (ML) thick graphene film grown by chemical vapor deposition of thermally dissociated C(2)H(4) on MgO(111), displays a significant band gap. The apparent six-fold low energy electron diffraction (LEED) pattern actually consists of two three-fold patterns with different 'A' and 'B' site diffraction intensities. Similar effects are observed for the LEED patterns of a 1 ML carbon film derived from annealing adventitious carbon on MgO(111), and for a 1.5 ML thick graphene film grown by sputter deposition on the 1 ML film. The LEED data indicate different electron densities at the A and B sites of the graphene lattice, suggesting that the observed band gap results from lifting the graphene HOMO/LUMO degeneracy at the Dirac point. The data also indicate that disparities in A site/B site LEED intensities decrease with increasing carbon overlayer thickness, suggesting that the graphene band gap size decreases with increasing number of graphene layers on MgO(111). © 2011 IOP Publishing Ltd
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graceffa, R.; Burghammer, M.; Davies, R. J.
Using stroboscopic techniques, diffraction patterns of ballistic paraffin wax microdrops have been observed. The microdrops, generated by a high-temperature ink-jet system, travel through the 1 {mu}m synchrotron radiation beam with a speed of about 1.4 m/s. Diffraction patterns were recorded in flight by a charge couple device with a microchannel plate image intensifier stage, which was activated with the microdrop generation frequency of 1000 Hz during 2 {mu}s. The data show liquid microdrops with a constant temperature up to 8 mm from the ink-jet system capillary exit. The general technique could be adapted for studying fast structural processes, such asmore » protein conformational changes in aqueous microdrops.« less
Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi
2014-05-01
Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the `diffraction before destruction' scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles.
Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi
2014-01-01
Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the ‘diffraction before destruction’ scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles. PMID:24763651
New in-situ neutron diffraction cell for electrode materials
NASA Astrophysics Data System (ADS)
Biendicho, Jordi Jacas; Roberts, Matthew; Offer, Colin; Noréus, Dag; Widenkvist, Erika; Smith, Ronald I.; Svensson, Gunnar; Edström, Kristina; Norberg, Stefan T.; Eriksson, Sten G.; Hull, Stephen
2014-02-01
A novel neutron diffraction cell has been constructed to allow in-situ studies of the structural changes in materials of relevance to battery applications during charge/discharge cycling. The new design is based on the coin cell geometry, but has larger dimensions compared to typical commercial batteries in order to maximize the amount of electrode material and thus, collect diffraction data of good statistical quality within the shortest possible time. An important aspect of the design is its modular nature, allowing flexibility in both the materials studied and the battery configuration. This paper reports electrochemical tests using a Nickel-metal-hydride battery (Ni-MH), which show that the cell is able to deliver 90% of its theoretical capacity when using deuterated components. Neutron diffraction studies performed on the Polaris diffractometer using nickel metal and a hydrogen-absorbing alloy (MH) clearly show observable changes in the neutron diffraction patterns as a function of the discharge state. Due to the high quality of the diffraction patterns collected in-situ (i.e. good peak-to-background ratio), phase analysis and peak indexing can be performed successfully using data collected in around 30 min. In addition to this, structural parameters for the β-phase (charged) MH electrode obtained by Rietveld refinement are presented.
Quantitative locomotion study of freely swimming micro-organisms using laser diffraction.
Magnes, Jenny; Susman, Kathleen; Eells, Rebecca
2012-10-25
Soil and aquatic microscopic organisms live and behave in a complex three-dimensional environment. Most studies of microscopic organism behavior, in contrast, have been conducted using microscope-based approaches, which limit the movement and behavior to a narrow, nearly two-dimensional focal field.(1) We present a novel analytical approach that provides real-time analysis of freely swimming C. elegans in a cuvette without dependence on microscope-based equipment. This approach consists of tracking the temporal periodicity of diffraction patterns generated by directing laser light through the cuvette. We measure oscillation frequencies for freely swimming nematodes. Analysis of the far-field diffraction patterns reveals clues about the waveforms of the nematodes. Diffraction is the process of light bending around an object. In this case light is diffracted by the organisms. The light waves interfere and can form a diffraction pattern. A far-field, or Fraunhofer, diffraction pattern is formed if the screen-to-object distance is much larger than the diffracting object. In this case, the diffraction pattern can be calculated (modeled) using a Fourier transform.(2) C. elegans are free-living soil-dwelling nematodes that navigate in three dimensions. They move both on a solid matrix like soil or agar in a sinusoidal locomotory pattern called crawling and in liquid in a different pattern called swimming.(3) The roles played by sensory information provided by mechanosensory, chemosensory, and thermosensory cells that govern plastic changes in locomotory patterns and switches in patterns are only beginning to be elucidated.(4) We describe an optical approach to measuring nematode locomotion in three dimensions that does not require a microscope and will enable us to begin to explore the complexities of nematode locomotion under different conditions.
Improved crystal orientation and physical properties from single-shot XFEL stills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauter, Nicholas K., E-mail: nksauter@lbl.gov; Hattne, Johan; Brewster, Aaron S.
X-ray free-electron laser crystallography relies on the collection of still-shot diffraction patterns. New methods are developed for optimal modeling of the crystals’ orientations and mosaic block properties. X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factorsmore » from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model the diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Bragg’s law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise.« less
Light Diffraction by Large Amplitude Ultrasonic Waves in Liquids
NASA Technical Reports Server (NTRS)
Adler, Laszlo; Cantrell, John H.; Yost, William T.
2016-01-01
Light diffraction from ultrasound, which can be used to investigate nonlinear acoustic phenomena in liquids, is reported for wave amplitudes larger than that typically reported in the literature. Large amplitude waves result in waveform distortion due to the nonlinearity of the medium that generates harmonics and produces asymmetries in the light diffraction pattern. For standing waves with amplitudes above a threshold value, subharmonics are generated in addition to the harmonics and produce additional diffraction orders of the incident light. With increasing drive amplitude above the threshold a cascade of period-doubling subharmonics are generated, terminating in a region characterized by a random, incoherent (chaotic) diffraction pattern. To explain the experimental results a toy model is introduced, which is derived from traveling wave solutions of the nonlinear wave equation corresponding to the fundamental and second harmonic standing waves. The toy model reduces the nonlinear partial differential equation to a mathematically more tractable nonlinear ordinary differential equation. The model predicts the experimentally observed cascade of period-doubling subharmonics terminating in chaos that occurs with increasing drive amplitudes above the threshold value. The calculated threshold amplitude is consistent with the value estimated from the experimental data.
Comment on Sub-15 nm Hard X-Ray Focusing with a New Total-Reflection Zone Plate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, Eliot D
2011-01-01
Takano et al. report the focusing of 10-keV X-rays to a size of 14.4 nm using a total-reflection zone plate (TRZP). This focal size is at the diffraction limit for the optic's aperture. This would be a noteworthy result, since the TRZP was fabricated using conventional lithography techniques. Alternative nanofocusing optics require more demanding fabrication methods. However, as I will discuss in this Comment, the intensity distribution presented by Takano et al. (Fig. 4 of ref. 1) is more consistent with the random speckle pattern produced by the scattering of a coherent incident beam by a distorted optic than withmore » a diffraction-limited focus. When interpreted in this manner, the true focal spot size is {approx}70 nm: 5 times the diffraction limit. When a coherent photon beam illuminates an optic containing randomly distributed regions which introduce different phase shifts, the scattered diffraction pattern consists of a speckle pattern. Each speckle will be diffraction-limited: the peak width of a single speckle depends entirely on the source coherence and gives no information about the optic. The envelope of the speckle distribution corresponds to the focal spot which would be observed using incoherent illumination. The width of this envelope is due to the finite size of the coherently-diffracting domains produced by slope and position errors in the optic. The focal intensity distribution in Fig. 4 of ref. 1 indeed contains a diffraction-limited peak, but this peak contains only a fraction of the power in the focused, and forms part of a distribution of sharp peaks with an envelope {approx}70 nm in width, just as expected for a speckle pattern. At the 4mm focal distance, the 70 nm width corresponds to a slope error of 18 {micro}rad. To reach the 14 nm diffraction limit, the slope error must be reduced to 3 {micro}rad. Takano et al. have identified a likely source of this error: warping due to stress as a result of zone deposition. It will be interesting to see whether the use of a more rigid substrate gives improved results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khidirov, I., E-mail: khidirov@inp.uz; Parpiev, A. S.
2013-05-15
A series of superstructural reflections (described within the sp. gr. Fd3m) are found to be split into three symmetric parts in the neutron powder diffraction pattern of titanium carbide TiC{sub 0.60} annealed at a temperature of 600 Degree-Sign C. No splitting of superstructural reflections is observed in the neutron diffraction pattern of TiC{sub 0.60} annealed at relatively high temperatures (780 Degree-Sign C). This phenomenon can be explained by that fact that the ordering of carbon atoms at relatively high temperatures (780 Degree-Sign C) is accompanied by the formation of randomly oriented rather large antiphase domains (APDs) (450 A). At relativelymore » low temperatures (600 Degree-Sign C), stacking faults arise in the arrangement of partially ordered carbon atoms. In this case, relatively small ordered APDs (290 A) are formed, along with disordered ones.« less
Quasi-crystalline and disordered photonic structures fabricated using direct laser writing
NASA Astrophysics Data System (ADS)
Sinelnik, Artem D.; Pinegin, Konstantin V.; Bulashevich, Grigorii A.; Rybin, Mikhail V.; Limonov, Mikhail F.; Samusev, Kirill B.
2017-09-01
Direct laser writing is a rapid prototyping technology that has been utilized for the fabrication of micro- and nano-scale materials that have a perfect structure in most of the cases. In this study we exploit the direct laser writing to create several classes of non-periodic materials, such as quasi-crystalline lattices and three-dimensional (3D) objects with an orientation disorder in structural elements. Among quasi-crystalline lattices we consider Penrose tiling and Lévy-type photonic glasses. Images of the fabricated structures are obtained with a scanning electron microscope. In experiment we study the optical diffraction from 3D woodpile photonic structures with orientation disorder and analyze diffraction patters observed on a flat screen positioned behind the sample. With increasing of the disorder degree, we find an impressive transformation of the diffraction patterns from perfect Laue picture to a speckle pattern.
Computer Generated Diffraction Patterns Of Rough Surfaces
NASA Astrophysics Data System (ADS)
Rakels, Jan H.
1989-03-01
It is generally accepted, that optical methods are the most promising for the in-process measurement of surface finish. These methods have the advantages of being non-contacting and fast data acquisition. In the Micro-Engineering Centre at the University of Warwick, an optical sensor has been devised which can measure the rms roughness, slope and wavelength of turned and precision ground surfaces. The operation of this device is based upon the Kirchhoff-Fresnel diffraction integral. Application of this theory to ideal turned surfaces is straightforward, and indeed the theoretically calculated diffraction patterns are in close agreement with patterns produced by an actual optical instrument. Since it is mathematically difficult to introduce real surface profiles into the diffraction integral, a computer program has been devised, which simulates the operation of the optical sensor. The program produces a diffraction pattern as a graphical output. Comparison between computer generated and actual diffraction patterns of the same surfaces show a high correlation.
Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, De-Qin; School of Science, Tianjin University of Technology and Education, Tianjin 300222; Song, Xin-Bing
It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical predictionmore » in the two-photon quantum imaging regime.« less
Diffractive elements for generating microscale laser beam patterns: a Y2K problem
NASA Astrophysics Data System (ADS)
Teiwes, Stephan; Krueger, Sven; Wernicke, Guenther K.; Ferstl, Margit
2000-03-01
Lasers are widely used in industrial fabrication for engraving, cutting and many other purposes. However, material processing at very small scales is still a matter of concern. Advances in diffractive optics could provide for laser systems that could be used for engraving or cutting of micro-scale patterns at high speeds. In our paper we focus on the design of diffractive elements which can be used for this special application. It is a common desire in material processing to apply 'discrete' as well as 'continuous' beam patterns. Especially, the latter case is difficult to handle as typical micro-scale patterns are characterized by bad band-limitation properties, and as speckles can easily occur in beam patterns. It is shown in this paper that a standard iterative design method usually fails to obtain diffractive elements that generate diffraction patterns with acceptable quality. Insights gained from an analysis of the design problems are used to optimize the iterative design method. We demonstrate applicability and success of our approach by the design of diffractive phase elements that generate a discrete and a continuous 'Y2K' pattern.
High-pressure synthesis of predicted oxynitride perovskite: Yttrium Silicon Oxynitride (YSiO2N)
NASA Astrophysics Data System (ADS)
Ahart, Muhtar; Somayazulu, M.; Vadapoo, Rajasekarakumar; Cohen, R. E.
We synthesized the previously predicted polar oxynitride perovskite in a diamond anvil cell with laser heating. YSiO2N was predicted to have the polar P4mm structure with an effective spontaneous polarization of 130 μC/cm2. A mixture of Yttrium nitride (YN) and amorphous Silicon dioxide (SiO2) were loaded into a diamond anvil cell and laser heated at or above 1200 C at 12 GPa. The run products were investigated by x-ray diffraction, Raman spectroscopy, and second harmonic generation, for their phase and structural properties. The x-ray diffraction pattern (a = 3.235 Å, c = 4.485 Å) shows the phase formation of YSiO2N and matches with the diffraction pattern derived from the first-principle predicted lattice parameters. However, minor unknown peaks are on the diffraction pattern indicating of the co-existence of other unknown phases. Further study of Raman spectroscopy observes the theoretically predicted modes, and second harmonic generation shows strong non-linear optical signal, which confirms the polar properties of YSiO2N. This work is supported by ONR Grants N00014-12-1-1038 and N00014-14-1-0561, by the ERC Advanced Grant ToMCaT.
Harnessing AIA Diffraction Patterns to Determine Flare Footpoint Temperatures
NASA Astrophysics Data System (ADS)
Bain, H. M.; Schwartz, R. A.; Torre, G.; Krucker, S.; Raftery, C. L.
2014-12-01
In the "Standard Flare Model" energy from accelerated electrons is deposited at the footpoints of newly reconnected flare loops, heating the surrounding plasma. Understanding the relation between the multi-thermal nature of the footpoints and the energy flux from accelerated electrons is therefore fundamental to flare physics. Extreme ultraviolet (EUV) images of bright flare kernels, obtained from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory, are often saturated despite the implementation of automatic exposure control. These kernels produce diffraction patterns often seen in AIA images during the most energetic flares. We implement an automated image reconstruction procedure, which utilizes diffraction pattern artifacts, to de-saturate AIA images and reconstruct the flare brightness in saturated pixels. Applying this technique to recover the footpoint brightness in each of the AIA EUV passbands, we investigate the footpoint temperature distribution. Using observations from the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), we will characterize the footpoint accelerated electron distribution of the flare. By combining these techniques, we investigate the relation between the nonthermal electron energy flux and the temperature response of the flare footpoints.
Coherent diffraction imaging: consistency of the assembled three-dimensional distribution.
Tegze, Miklós; Bortel, Gábor
2016-07-01
The short pulses of X-ray free-electron lasers can produce diffraction patterns with structural information before radiation damage destroys the particle. From the recorded diffraction patterns the structure of particles or molecules can be determined on the nano- or even atomic scale. In a coherent diffraction imaging experiment thousands of diffraction patterns of identical particles are recorded and assembled into a three-dimensional distribution which is subsequently used to solve the structure of the particle. It is essential to know, but not always obvious, that the assembled three-dimensional reciprocal-space intensity distribution is really consistent with the measured diffraction patterns. This paper shows that, with the use of correlation maps and a single parameter calculated from them, the consistency of the three-dimensional distribution can be reliably validated.
Analysis of the role of diffraction in topographic site effects using boundary element techniques
NASA Astrophysics Data System (ADS)
Gomez, Juan; Restrepo, Doriam; Jaramillo, Juan; Valencia, Camilo
2013-10-01
The role played by the diffraction field on the problem of seismic site effects is studied. For that purpose we solve and analyze simple scattering problems under P and SV in-plane wave assumptions, using two well known direct boundary-element-based numerical methods. After establishing the difference between scattered and diffracted motions, and introducing the concept of artificious and physically based incoming fields, we obtain the amplitude of the Fourier spectra for the diffracted part of the response: this is achieved after establishing the connection between the spatial distribution of the transfer function over the studied simple topographies and the diffracted field. From the numerical simulations it is observed that this diffracted part of the response is responsible for the amplification of the surface ground motions due to the geometric effect. Furthermore, it is also found that the diffraction field sets in a fingerprint of the topographic effect in the total ground motions. These conclusions are further supported by observations in the time-domain in terms of snapshots of the propagation patterns over the complete computational model. In this sense the geometric singularities are clearly identified as sources of diffraction and for the considered range of dimensionless frequencies it is evident that larger amplifications are obtained for the geometries containing a larger number of diffraction sources thus resulting in a stronger topographic effect. The need for closed-form solutions of canonical problems to construct a robust analysis method based on the diffraction field is identified.
Detection of nanoscale embedded layers using laboratory specular X-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beekman, Matt, E-mail: matt.beekman@oit.edu; Rodriguez, Gabriel; Atkins, Ryan
Unusual specular X-ray diffraction patterns have been observed from certain thin film intergrowths of metal monochalcogenide (MX) and transition metal dichalcogenide (TX{sub 2}) structures. These patterns exhibit selective “splitting” or broadening of selected (00l) diffraction peaks, while other (00l) reflections remain relatively unaffected [Atkins et al., Chem. Mater. 24, 4594 (2012)]. Using a simplified optical model in the kinematic approximation, we illustrate that these peculiar and somewhat counterintuitive diffraction features can be understood in terms of additional layers of one of the intergrowth components, MX or TX{sub 2}, interleaved between otherwise “ideal” regions of MX-TX{sub 2} intergrowth. The interpretation ismore » in agreement with scanning transmission electron microscope imaging, which reveals the presence of such stacking “defects” in films prepared from non-ideal precursors. In principle, the effect can be employed as a simple, non-destructive laboratory probe to detect and characterize ultrathin layers of one material, e.g., 2-dimensional crystals, embedded between two slabs of a second material, effectively using the two slabs as a highly sensitive interferometer of their separation distance.« less
NASA Astrophysics Data System (ADS)
Ranjan Choudhury, Rajul; Chitra, R.; Jayakrishnan, V. B.
2016-03-01
Quenching of dynamic disorder in glassy systems is termed as the glass transition. Ferroic glasses belong to the class of paracrystalline materials having crystallographic order in-between that of a perfect crystal and amorphous material, a classic example of ferroic glass is the solid solution of ferroelectric deuterated potassium dihydrogen phosphate and antiferroelectric deuterated ammonium dihydrogen phosphate. Lowering temperature of this ferroic glass can lead to a glass transition to a quenched disordered state. The subtle atomic rearrangement that takes place at such a glass transition can be revealed by careful examination of the temperature induced changes occurring in the x-ray powder diffraction (XRD) patterns of these materials. Hence we report here results of a complete diffraction line shape analysis of the XRD patterns recorded at different temperatures from deuterated mixed crystals DK x A1-x DP with mixing concentration x ranging as 0 < x < 1. Changes observed in diffraction peak shapes have been explained on the basis of structural rearrangements induced by changing O-D-O hydrogen bond dynamics in these paracrystals.
Micro X-ray diffraction analysis of thin films using grazing-exit conditions.
Noma, T; Iida, A
1998-05-01
An X-ray diffraction technique using a hard X-ray microbeam for thin-film analysis has been developed. To optimize the spatial resolution and the surface sensitivity, the X-ray microbeam strikes the sample surface at a large glancing angle while the diffracted X-ray signal is detected with a small (grazing) exit angle. Kirkpatrick-Baez optics developed at the Photon Factory were used, in combination with a multilayer monochromator, for focusing X-rays. The focused beam size was about 10 x 10 micro m. X-ray diffraction patterns of Pd, Pt and their layered structure were measured. Using a small exit angle, the signal-to-background ratio was improved due to a shallow escape depth. Under the grazing-exit condition, the refraction effect of diffracted X-rays was observed, indicating the possibility of surface sensitivity.
Iwamoto, Hiroyuki; Trombitás, Károly; Yagi, Naoto; Suggs, Jennifer A.; Bernstein, Sanford I.
2014-01-01
Fruit fly (Drosophila melanogaster) is one of the most useful animal models to study the causes and effects of hereditary diseases because of its rich genetic resources. It is especially suitable for studying myopathies caused by myosin mutations, because specific mutations can be induced to the flight muscle-specific myosin isoform, while leaving other isoforms intact. Here we describe an X-ray-diffraction-based method to evaluate the structural effects of mutations in contractile proteins in Drosophila indirect flight muscle. Specifically, we describe the effect of the headless myosin mutation, Mhc10-Y97, in which the motor domain of the myosin head is deleted, on the X-ray diffraction pattern. The loss of general integrity of the filament lattice is evident from the pattern. A striking observation, however, is the prominent meridional reflection at d = 14.5 nm, a hallmark for the regularity of the myosin-containing thick filament. This reflection has long been considered to arise mainly from the myosin head, but taking the 6th actin layer line reflection as an internal control, the 14.5-nm reflection is even stronger than that of wild-type muscle. We confirmed these results via electron microscopy, wherein image analysis revealed structures with a similar periodicity. These observations have major implications on the interpretation of myosin-based reflections. PMID:25400584
NASA Astrophysics Data System (ADS)
Dumon, M.; Van Ranst, E.
2016-01-01
This paper presents a free and open-source program called PyXRD (short for Python X-ray diffraction) to improve the quantification of complex, poly-phasic mixed-layer phyllosilicate assemblages. The validity of the program was checked by comparing its output with Sybilla v2.2.2, which shares the same mathematical formalism. The novelty of this program is the ab initio incorporation of the multi-specimen method, making it possible to share phases and (a selection of) their parameters across multiple specimens. PyXRD thus allows for modelling multiple specimens side by side, and this approach speeds up the manual refinement process significantly. To check the hypothesis that this multi-specimen set-up - as it effectively reduces the number of parameters and increases the number of observations - can also improve automatic parameter refinements, we calculated X-ray diffraction patterns for four theoretical mineral assemblages. These patterns were then used as input for one refinement employing the multi-specimen set-up and one employing the single-pattern set-ups. For all of the assemblages, PyXRD was able to reproduce or approximate the input parameters with the multi-specimen approach. Diverging solutions only occurred in single-pattern set-ups, which do not contain enough information to discern all minerals present (e.g. patterns of heated samples). Assuming a correct qualitative interpretation was made and a single pattern exists in which all phases are sufficiently discernible, the obtained results indicate a good quantification can often be obtained with just that pattern. However, these results from theoretical experiments cannot automatically be extrapolated to all real-life experiments. In any case, PyXRD has proven to be useful when X-ray diffraction patterns are modelled for complex mineral assemblages containing mixed-layer phyllosilicates with a multi-specimen approach.
Method of calculating retroreflector-array transfer functions. [laser range finders
NASA Technical Reports Server (NTRS)
Arnold, D. A.
1978-01-01
Techniques and equations used in calculating the transfer functions to relate the observed return laser pulses to the center of mass of the Lageos satellite retroflector array, and for most of the retroreflector-equipped satellites now in orbit are described. The methods derived include the effects of coherent interference, diffraction, polarization, and dihedral-angle offsets. Particular emphasis is given to deriving expressions for the diffraction pattern and active reflecting area of various cube-corner designs.
Quantum erasure in the near-field
NASA Astrophysics Data System (ADS)
Walborn, S. P.
2018-05-01
The phenomenon of quantum erasure has shed light on the nature of wave-particle duality and quantum complementarity. A number of quantum erasers have been realized using the far-field diffraction of photons from a Young double-slit apparatus. By marking the path of a photon using an additional degree of freedom, the usual Young interference pattern is destroyed. An appropriate measurement of the system marking the photon’s path allows one to recover the interference pattern. Here quantum erasure is considered in the context of near-field diffraction. To observe interference in the near-field requires the use of two periodic wave functions, so that the usual ‘which way’ marker then becomes a ‘which-wave function’ marker. We determine the propagation distances for which quantum erasure, or more generally the observation of interference between the two periodic wave functions, can be observed. The meaning of wave and particle-like properties in this scenario is discussed. These results could lead to quantum eraser experiments with material particles, for which interference effects are more readily observed in the near-field rather than the far-field.
Phyllotactic arrangements of optical elements
NASA Astrophysics Data System (ADS)
Horacek, M.; Meluzin, P.; Kratky, S.; Matejka, M.; Kolarik, V.
2017-05-01
Phyllotaxy studies arrangements of biological entities, e.g. a placement of seeds in the flower head. Vogel (1979) presented a phyllotactic model based on series of seeds ordered along a primary spiral. This arrangement allows each seed to occupy the same area within a circular flower head. Recently, a similar arrangement of diffraction primitives forming a planar relief diffractive structure was presented. The planar relief structure was used for benchmarking and testing purposes of the electron beam writer patterning process. This contribution presents the analysis of local periods and azimuths of optical phyllotactic arrangements. Two kinds of network characteristic triangles are introduced. If the discussed planar structure has appropriate size and density, diffraction of the incoming light creates characteristic a phyllotactic diffraction pattern. Algorithms enabling the analysis of such behavior were developed and they were validated by fabricated samples of relief structures. Combined and higher diffraction orders are also analyzed. Different approaches enabling the creation of phyllotactic diffractive patterns are proposed. E-beam lithography is a flexible technology for various diffraction gratings origination. The e-beam patterning typically allows for the creation of optical diffraction gratings in the first diffraction order. Nevertheless, this technology enables also more complex grating to be prepared, e.g. blazed gratings and zero order gratings. Moreover, the mentioned kinds of gratings can be combined within one planar relief structure. The practical part of the presented work deals with the nano patterning of such structures by using two different types of the e-beam pattern generators.
Predicted and measured transmission and diffraction by a metallic mesh coating
NASA Astrophysics Data System (ADS)
Halman, Jennifer I.; Ramsey, Keith A.; Thomas, Michael; Griffin, Andrew
2009-05-01
Metallic mesh coatings are used on visible and infrared windows and domes to provide shielding from electromagnetic interference (EMI) and as heaters to de-fog or de-ice windows or domes. The periodic metallic mesh structures that provide the EMI shielding and/or resistive electrical paths for the heating elements create a diffraction pattern when optical or infrared beams are incident on the coated windows. Over the years several different mesh geometries have been used to try to reduce the effects of diffraction. We have fabricated several different mesh patterns on small coupons of BK-7 and measured the transmitted power and the diffraction patterns of each one using a CW 1064 nm laser. In this paper we will present some predictions and measurements of the diffraction patterns of several different mesh patterns.
NASA Technical Reports Server (NTRS)
Kittel, J Howard
1945-01-01
For a simple diffraction pattern, the time required to calculate interplanar distances from measurements of the pattern is not excessive. If more than a few lines are present, however, or if several patterns are to be studied, it is very advantageous to have available a table giving interplanar spacings directly in terms of the linear measurements made on the film of the lines appearing on the diffraction pattern. The preparation of the table given here was undertaken when the expansion of research activities involving X-ray diffraction techniques indicated that such a table would greatly decrease the time required to analyze diffraction patterns. The table was prepared for use with K alpha(sub 1) radiation from the following target materials: molybdenum, copper, cobalt, iron, and chromium.
Visible diffraction from quasi-crystalline arrays of carbon nanotubes
NASA Astrophysics Data System (ADS)
Butler, Timothy P.; Butt, Haider; Wilkinson, Timothy D.; Amaratunga, Gehan A. J.
2015-08-01
Large area arrays of vertically-aligned carbon nanotubes (VACNTs) are patterned in a quasi-crystalline Penrose tile arrangement through electron beam lithography definition of Ni catalyst dots and subsequent nanotube growth by plasma-enhanced chemical vapour deposition. When illuminated with a 532 nm laser beam high-quality and remarkable diffraction patterns are seen. The diffraction is well matched to theoretical calculations which assume apertures to be present at the location of the VACNTs for transmitted light. The results show that VACNTs act as diffractive elements in reflection and can be used as spatially phased arrays for producing tailored diffraction patterns.
Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns
NASA Astrophysics Data System (ADS)
Vespucci, S.; Winkelmann, A.; Naresh-Kumar, G.; Mingard, K. P.; Maneuski, D.; Edwards, P. R.; Day, A. P.; O'Shea, V.; Trager-Cowan, C.
2015-11-01
Electron backscatter diffraction is a scanning electron microscopy technique used to obtain crystallographic information on materials. It allows the nondestructive mapping of crystal structure, texture, and strain with a lateral and depth resolution on the order of tens of nanometers. Electron backscatter diffraction patterns (EBSPs) are presently acquired using a detector comprising a scintillator coupled to a digital camera, and the crystallographic information obtainable is limited by the conversion of electrons to photons and then back to electrons again. In this article we will report the direct acquisition of energy-filtered EBSPs using a digital complementary metal-oxide-semiconductor hybrid pixel detector, Timepix. We show results from a range of samples with different mass and density, namely diamond, silicon, and GaN. Direct electron detection allows the acquisition of EBSPs at lower (≤5 keV) electron beam energies. This results in a reduction in the depth and lateral extension of the volume of the specimen contributing to the pattern and will lead to a significant improvement in lateral and depth resolution. Direct electron detection together with energy filtering (electrons having energy below a specific value are excluded) also leads to an improvement in spatial resolution but in addition provides an unprecedented increase in the detail in the acquired EBSPs. An increase in contrast and higher-order diffraction features are observed. In addition, excess-deficiency effects appear to be suppressed on energy filtering. This allows the fundamental physics of pattern formation to be interrogated and will enable a step change in the use of electron backscatter diffraction (EBSD) for crystal phase identification and the mapping of strain. The enhancement in the contrast in high-pass energy-filtered EBSD patterns is found to be stronger for lighter, less dense materials. The improved contrast for such materials will enable the application of the EBSD technique to be expanded to materials for which conventional EBSD analysis is not presently practicable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balagurov, Anatoly M.; Bobrikov, Ivan A.; Bokuchava, Gizo D.
2015-11-15
High resolution neutron diffraction was applied for elucidating of the microstructural evolution of nanocrystalline niobium carbide NbC{sub 0.93} powders subjected to high-energy ball milling. The diffraction patterns were collected with the high resolution Fourier diffractometer HRFD by using the reverse time-of-flight (RTOF) mode of data acquisition. The traditional single diffraction line analysis, the Rietveld method and more advanced Whole Powder Pattern Modeling technique were applied for the data analysis. The comparison of these techniques was performed. It is established that short-time milling produces a non-uniform powder, in which two distinct fractions with differing microstructure can be identified. Part of themore » material is in fact milled efficiently, with a reduction in grain size, an increase in the quantity of defects, and a corresponding tendency to decarburize reaching a composition NbC{sub 0.80} after 15 h of milling. The rest of the powder is less efficiently processed and preserves its composition and lower defect content. Larger milling times should have homogenized the system by increasing the efficiently milled fraction, but the material is unable to reach a uniform and homogeneous state. It is definitely shown that RTOF neutron diffraction patterns can provide the very accurate data for microstructure analysis of nanocrystalline powders. - Highlights: • The NbC{sub 0.93} powder was processed by high-energy ball milling. • The microstrain and dislocation density increase with milling time increase. • The corresponding decrease in crystallite size with milling time was observed. • The material exhibits the presence of two fractions after ball milling. • The RTOF neutron diffraction data are suitable for accurate microstructure analysis.« less
Light diffraction studies of single muscle fibers as a function of fiber rotation.
Gilliar, W G; Bickel, W S; Bailey, W F
1984-01-01
Light diffraction patterns from single glycerinated frog semitendinosus muscle fibers were examined photographically and photoelectrically as a function of diffraction angle and fiber rotation. The total intensity diffraction pattern indicates that the order maxima change both position and intensity periodically as a function of rotation angle. The total diffracted light, light diffracted above and below the zero-order plane, and light diffracted into individual orders gives information about the fiber's longitudinal and rotational structure and its noncylindrical symmetry. Images FIGURE 2 PMID:6611174
Von Dreele, Robert B.; D'Amico, Kevin
2006-10-31
A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.
Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene.
Seuring, Carolin; Ayyer, Kartik; Filippaki, Eleftheria; Barthelmess, Miriam; Longchamp, Jean-Nicolas; Ringler, Philippe; Pardini, Tommaso; Wojtas, David H; Coleman, Matthew A; Dörner, Katerina; Fuglerud, Silje; Hammarin, Greger; Habenstein, Birgit; Langkilde, Annette E; Loquet, Antoine; Meents, Alke; Riek, Roland; Stahlberg, Henning; Boutet, Sébastien; Hunter, Mark S; Koglin, Jason; Liang, Mengning; Ginn, Helen M; Millane, Rick P; Frank, Matthias; Barty, Anton; Chapman, Henry N
2018-05-09
Here we present a new approach to diffraction imaging of amyloid fibrils, combining a free-standing graphene support and single nanofocused X-ray pulses of femtosecond duration from an X-ray free-electron laser. Due to the very low background scattering from the graphene support and mutual alignment of filaments, diffraction from tobacco mosaic virus (TMV) filaments and amyloid protofibrils is obtained to 2.7 Å and 2.4 Å resolution in single diffraction patterns, respectively. Some TMV diffraction patterns exhibit asymmetry that indicates the presence of a limited number of axial rotations in the XFEL focus. Signal-to-noise levels from individual diffraction patterns are enhanced using computational alignment and merging, giving patterns that are superior to those obtainable from synchrotron radiation sources. We anticipate that our approach will be a starting point for further investigations into unsolved structures of filaments and other weakly scattering objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghica, C., E-mail: cghica@infim.ro; Negrea, R. F.; Nistor, L. C.
2014-07-14
In this paper, we analyze the structural distortions observed by transmission electron microscopy in thin epitaxial SrRuO{sub 3} layers used as bottom electrodes in multiferroic coatings onto SrTiO{sub 3} substrates for future multiferroic devices. Regardless of the nature and architecture of the multilayer oxides deposited on the top of the SrRuO{sub 3} thin films, selected area electron diffraction patterns systematically revealed the presence of faint diffraction spots appearing in forbidden positions for the SrRuO{sub 3} orthorhombic structure. High-resolution transmission electron microscopy (HRTEM) combined with Geometric Phase Analysis (GPA) evidenced the origin of these forbidden diffraction spots in the presence ofmore » structurally disordered nanometric domains in the SrRuO{sub 3} bottom layers, resulting from a strain-driven phase transformation. The local high compressive strain (−4% ÷ −5%) measured by GPA in the HRTEM images induces a local orthorhombic to monoclinic phase transition by a cooperative rotation of the RuO{sub 6} octahedra. A further confirmation of the origin of the forbidden diffraction spots comes from the simulated diffraction patterns obtained from a monoclinic disordered SrRuO{sub 3} structure.« less
Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Yang; Dmowski, W.; Bei, Hongbin
Using high energy X-ray diffraction we studied the temperature, stress, and time effect on structural changes in a Zr-based bulk metallic glass induced by thermo-mechanical creep. Pair distribution functions obtained from two-dimensional diffraction patterns show that thermo-mechanical creep induces structural disordering, but only when the stress beyond a threshold is applied. A similar threshold behavior was observed for anelastic strain. We conclude that anelastic creep strain induces rejuvenation, whereas plastic strain does not.
Mechanical rejuvenation in bulk metallic glass induced by thermo-mechanical creep
Tong, Yang; Dmowski, W.; Bei, Hongbin; ...
2018-02-16
Using high energy X-ray diffraction we studied the temperature, stress, and time effect on structural changes in a Zr-based bulk metallic glass induced by thermo-mechanical creep. Pair distribution functions obtained from two-dimensional diffraction patterns show that thermo-mechanical creep induces structural disordering, but only when the stress beyond a threshold is applied. A similar threshold behavior was observed for anelastic strain. We conclude that anelastic creep strain induces rejuvenation, whereas plastic strain does not.
Diffraction-Induced Bidimensional Talbot Self-Imaging with Full Independent Period Control
NASA Astrophysics Data System (ADS)
Guillet de Chatellus, Hugues; Romero Cortés, Luis; Deville, Antonin; Seghilani, Mohamed; Azaña, José
2017-03-01
We predict, formulate, and observe experimentally a generalized version of the Talbot effect that allows one to create diffraction-induced self-images of a periodic two-dimensional (2D) waveform with arbitrary control of the image spatial periods. Through the proposed scheme, the periods of the output self-image are multiples of the input ones by any desired integer or fractional factor, and they can be controlled independently across each of the two wave dimensions. The concept involves conditioning the phase profile of the input periodic wave before free-space diffraction. The wave energy is fundamentally preserved through the self-imaging process, enabling, for instance, the possibility of the passive amplification of the periodic patterns in the wave by a purely diffractive effect, without the use of any active gain.
Diffraction-Induced Bidimensional Talbot Self-Imaging with Full Independent Period Control.
Guillet de Chatellus, Hugues; Romero Cortés, Luis; Deville, Antonin; Seghilani, Mohamed; Azaña, José
2017-03-31
We predict, formulate, and observe experimentally a generalized version of the Talbot effect that allows one to create diffraction-induced self-images of a periodic two-dimensional (2D) waveform with arbitrary control of the image spatial periods. Through the proposed scheme, the periods of the output self-image are multiples of the input ones by any desired integer or fractional factor, and they can be controlled independently across each of the two wave dimensions. The concept involves conditioning the phase profile of the input periodic wave before free-space diffraction. The wave energy is fundamentally preserved through the self-imaging process, enabling, for instance, the possibility of the passive amplification of the periodic patterns in the wave by a purely diffractive effect, without the use of any active gain.
Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro
2013-11-01
Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 10(6) noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 10(6) diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode.
Tokuhisa, Atsushi; Arai, Junya; Joti, Yasumasa; Ohno, Yoshiyuki; Kameyama, Toyohisa; Yamamoto, Keiji; Hatanaka, Masayuki; Gerofi, Balazs; Shimada, Akio; Kurokawa, Motoyoshi; Shoji, Fumiyoshi; Okada, Kensuke; Sugimoto, Takashi; Yamaga, Mitsuhiro; Tanaka, Ryotaro; Yokokawa, Mitsuo; Hori, Atsushi; Ishikawa, Yutaka; Hatsui, Takaki; Go, Nobuhiro
2013-01-01
Single-particle coherent X-ray diffraction imaging using an X-ray free-electron laser has the potential to reveal the three-dimensional structure of a biological supra-molecule at sub-nanometer resolution. In order to realise this method, it is necessary to analyze as many as 1 × 106 noisy X-ray diffraction patterns, each for an unknown random target orientation. To cope with the severe quantum noise, patterns need to be classified according to their similarities and average similar patterns to improve the signal-to-noise ratio. A high-speed scalable scheme has been developed to carry out classification on the K computer, a 10PFLOPS supercomputer at RIKEN Advanced Institute for Computational Science. It is designed to work on the real-time basis with the experimental diffraction pattern collection at the X-ray free-electron laser facility SACLA so that the result of classification can be feedback for optimizing experimental parameters during the experiment. The present status of our effort developing the system and also a result of application to a set of simulated diffraction patterns is reported. About 1 × 106 diffraction patterns were successfully classificatied by running 255 separate 1 h jobs in 385-node mode. PMID:24121336
Computer Simulation of Diffraction Patterns.
ERIC Educational Resources Information Center
Dodd, N. A.
1983-01-01
Describes an Apple computer program (listing available from author) which simulates Fraunhofer and Fresnel diffraction using vector addition techniques (vector chaining) and allows user to experiment with different shaped multiple apertures. Graphics output include vector resultants, phase difference, diffraction patterns, and the Cornu spiral…
Neutron diffraction study of the in situ oxidation of UO(2).
Desgranges, Lionel; Baldinozzi, Gianguido; Rousseau, Gurvan; Nièpce, Jean-Claude; Calvarin, Gilbert
2009-08-17
This paper discusses uranium oxide crystal structure modifications that are observed during the low-temperature oxidation which transforms UO(2) into U(3)O(8). The symmetries and the structural parameters of UO(2), beta-U(4)O(9), beta-U(3)O(7), and U(3)O(8) were determined by refining neutron diffraction patterns on pure single-phase samples. Neutron diffraction patterns were also collected during the in situ oxidation of powder samples at 483 K. The lattice parameters and relative ratios of the four pure phases were measured during the progression of the isothermal oxidation. The transformation of UO(2) into U(3)O(8) involves a complex modification of the oxygen sublattice and the onset of complex superstructures for U(4)O(9) and U(3)O(7), associated with regular stacks of complex defects known as cuboctahedra, which consist of 13 oxygen atoms. The kinetics of the oxidation process are discussed on the basis of the results of the structural analysis.
Factors Influencing Ferrihydrite Crystallinity In Natural And Synthetic Systems
Recent investigations of the structure of the mineral ferrihydrite indicate that disparities in the number of peaks observed in powder x-ray diffraction patterns can be attributed to differences in crystallite size. This has lead to the conclusion that specimens previously refer...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patella, F.; Arciprete, F.; Fanfoni, M.
2005-12-19
We have followed by reflection high-energy electron diffraction the nucleation of InAs quantum dots on GaAs(001), grown by molecular-beam epitaxy with growth interruptions. Surface mass transport gives rise, at the critical InAs thickness, to a huge nucleation of three-dimensional islands within 0.2 monolayers (ML). Such surface mass diffusion has been evidenced by observing the transition of the reflection high-energy electron diffraction pattern from two- to three-dimensional during the growth interruption after the deposition of 1.59 ML of InAs. It is suggested that the process is driven by the As{sub 2} adsorption-desorption process and by the lowering of the In bindingmore » energy due to compressive strain. The last condition is met first in the region surrounding dots at step edges where nucleation predominantly occurs.« less
Structure and texture analysis of PVC foils by neutron diffraction.
Kalvoda, L; Dlouhá, M; Vratislav, S
2010-01-01
Crystalline order of molded and then bi-axially stretched foils prepared from atactic PVC resin is investigated by means of wide-angle neutron diffraction (WAND). The observed high-resolution WAND patterns of all samples are dominated by a sharp maximum corresponding to the inter-planar distance 0.52 nm. Two weaker maxima are also resolved at 0.62 and 0.78 nm. Intensities of the peaks vary with deformation ratios of the samples and their diffraction position. Average size of the coherently scattering domains is estimated as approximately 4-8 nm. Based on the experimental data, a novel model of crystalline order of atactic PVC is proposed. Copyright 2009 Elsevier Ltd. All rights reserved.
Deformation of a bismuth ferrite nanocrystal imaged by coherent X-ray diffraction
NASA Astrophysics Data System (ADS)
Newton, Marcus C.; Pietraszewski, Adam; Kenny, Anthony; Wagner, Ulrich; Rau, Christoph
2017-06-01
Perovskite materials that contain transition metal-oxides often exhibit multifunctional properties with considerable utility in a device setting. BiFeO3 is a multiferroic perovskite material that exhibits room temperature anti-ferromagnetic and ferroelectric ordering. Optical excitation of BiFeO3 crystals results in an elastic structural deformation of the lattice with a fast response on the pico-second time scale. Here we report on dynamic optical excitation coupled with Bragg coherent X-ray diffraction measurements to investigate the structural properties of BiFeO3 nanoscale crystals. A continuous distortion of the diffraction speckle pattern was observed with increasing illumination. This was attributed to strain resulting from photo-induced lattice deformation.
Efficient modeling of Bragg coherent x-ray nanobeam diffraction
Hruszkewycz, S. O.; Holt, M. V.; Allain, M.; ...
2015-07-02
X-ray Bragg diffraction experiments that utilize tightly focused coherent beams produce complicated Bragg diffraction patterns that depend on scattering geometry, characteristics of the sample, and properties of the x-ray focusing optic. In this paper, we use a Fourier-transform-based method of modeling the 2D intensity distribution of a Bragg peak and apply it to the case of thin films illuminated with a Fresnel zone plate in three different Bragg scattering geometries. Finally, the calculations agree well with experimental coherent diffraction patterns, demonstrating that nanodiffraction patterns can be modeled at nonsymmetric Bragg conditions with this approach—a capability critical for advancing nanofocused x-raymore » diffraction microscopy.« less
NASA Astrophysics Data System (ADS)
Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi
2018-06-01
The local atomic structure around a specific element atom can be recorded as a photoelectron diffraction pattern. Forward focusing peaks and diffraction rings around them indicate the directions and distances from the photoelectron emitting atom to the surrounding atoms. The state-of-the-art holography reconstruction algorithm enables us to image the local atomic arrangement around the excited atom in a real space. By using circularly polarized light as an excitation source, the angular momentum transfer from the light to the photoelectron induces parallax shifts in these diffraction patterns. As a result, stereographic images of atomic arrangements are obtained. These diffraction patterns can be used as atomic-site-resolved probes for local electronic structure investigation in combination with spectroscopy techniques. Direct three-dimensional atomic structure visualization and site-specific electronic property analysis methods are reviewed. Furthermore, circular dichroism was also found in valence photoelectron and Auger electron diffraction patterns. The investigation of these new phenomena provides hints for the development of new techniques for local structure probing.
Diffractive optical devices produced by light-assisted trapping of nanoparticles.
Muñoz-Martínez, J F; Jubera, M; Matarrubia, J; García-Cabañes, A; Agulló-López, F; Carrascosa, M
2016-01-15
One- and two-dimensional diffractive optical devices have been fabricated by light-assisted trapping and patterning of nanoparticles. The method is based on the dielectrophoretic forces appearing in the vicinity of a photovoltaic crystal, such as Fe:LiNbO3, during or after illumination. By illumination with the appropriate light distribution, the nanoparticles are organized along patterns designed at will. One- and two-dimensional diffractive components have been achieved on X- and Z-cut Fe:LiNbO3 crystals, with their polar axes parallel and perpendicular to the crystal surface, respectively. Diffraction gratings with periods down to around a few micrometers have been produced using metal (Al, Ag) nanoparticles with radii in the range of 70-100 nm. Moreover, several 2D devices, such as Fresnel zone plates, have been also produced showing the potential of the method. The diffractive particle patterns remain stable when light is removed. A method to transfer the diffractive patterns to other nonphotovoltaic substrates, such as silica glass, has been also reported.
Latychevskaia, T; Chushkin, Y; Fink, H-W
2016-10-01
In coherent diffractive imaging, the resolution of the reconstructed object is limited by the numerical aperture of the experimental setup. We present here a theoretical and numerical study for achieving super-resolution by postextrapolation of coherent diffraction images, such as diffraction patterns or holograms. We demonstrate that a diffraction pattern can unambiguously be extrapolated from only a fraction of the entire pattern and that the ratio of the extrapolated signal to the originally available signal is linearly proportional to the oversampling ratio. Although there could be in principle other methods to achieve extrapolation, we devote our discussion to employing iterative phase retrieval methods and demonstrate their limits. We present two numerical studies; namely, the extrapolation of diffraction patterns of nonbinary and that of phase objects together with a discussion of the optimal extrapolation procedure. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zugarramurdi, A.; Debiossac, M.; Lunca-Popa, P.
2015-03-09
We present a grazing incidence fast atom diffraction (GIFAD) study of monolayer graphene on 6H-SiC(0001). This system shows a Moiré-like 13 × 13 superlattice above the reconstructed carbon buffer layer. The averaging property of GIFAD results in electronic and geometric corrugations that are well decoupled; the graphene honeycomb corrugation is only observed with the incident beam parallel to the zigzag direction while the geometric corrugation arising from the superlattice is revealed along the armchair direction. Full-quantum calculations of the diffraction patterns show the very high GIFAD sensitivity to the amplitude of the surface corrugation. The best agreement between the calculated and measuredmore » diffraction intensities yields a corrugation height of 0.27 ± 0.03 Å.« less
NASA Astrophysics Data System (ADS)
Zhou, Z.; Bouwman, W. G.; Schut, H.; van Staveren, T. O.; Heijna, M. C. R.; Pappas, C.
2017-04-01
Neutron irradiation effects on the microstructure of nuclear graphite have been investigated by X-ray diffraction on virgin and low doses (∼ 1.3 and ∼ 2.2 dpa), high temperature (750° C) irradiated samples. The diffraction patterns were interpreted using a model, which takes into account the turbostratic disorder. Besides the lattice constants, the model introduces two distinct coherent lengths in the c-axis and the basal plane, that characterise the volumes from which X-rays are scattered coherently. The methodology used in this work allows to quantify the effect of irradiation damage on the microstructure of nuclear graphite seen by X-ray diffraction. The results show that the changes of the deduced structural parameters are in agreement with previous observations from electron microscopy, but not directly related to macroscopic changes.
NASA Astrophysics Data System (ADS)
Jones, K. L.
1984-12-01
The steerable beam Bribie Island radar (152 deg E, 27 deg S) operating at a frequency of 1.98 MHz was used to obtain data relevant to reflection conditions near 100 km altitude on 7 days during June-October 1982. The rapid signal fading commonly observed is primarily due to transient reflectors with lifetimes of a few seconds, often seen up to angles of 20 deg from the zenith. Longer lived moving reflectors (presumed to be sporadic-E clouds) also play a part. Certain properties of the transient reflectors are consistent with a turbulent generation mechanism. However, any theory of their origin must explain why, for about a third of the time, they tend to occur preferentially to the north and east of the observing site. A direct comparison of velocities using Doppler and spaced antenna drifts methods shows reasonable agreement when the data is averaged over quarter hour periods. However, conclusions by previous workers, on the basis of observations of motions of diffraction patterns, that the ionospheric structure responsible for the diffraction pattern observed on the ground is undulations of the isoionic contours by gravity waves, is not supported by a detailed analysis of the data.
Observation of electromagnetically induced Talbot effect in an atomic system
NASA Astrophysics Data System (ADS)
Zhang, Zhaoyang; Liu, Xing; Zhang, Dan; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min
2018-01-01
The electromagnetically induced Talbot effect (EITE) resulting from the repeated self-reconstruction of a spatially intensity-modulated probe field is experimentally demonstrated in a three-level atomic configuration. The probe beam is launched into an optically induced lattice (established by the interference of two coupling fields) inside a rubidium vapor cell and is diffracted by the electromagnetically induced grating that was formed. The diffraction pattern repeats itself at the planes of integer multiple Talbot lengths. In addition, a fractional EITE is also investigated. The experimental observations agree well with the theoretical predictions. This investigation may potentially pave the way for studying the nonlinear and quantum dynamical features that have been predicted for established periodic optical systems.
Nakajima, Hiroshi; Kotani, Atsuhiro; Harada, Ken; Mori, Shigeo
2018-04-09
We construct an electron optical system to investigate Bragg diffraction (the crystal lattice plane, 10-2 to 10-3 rad) with the objective lens turned off by adjusting the current in the intermediate lenses. A crossover was located on the selected-area aperture plane. Thus, the dark-field imaging can be performed by using a selected-area aperture to select Bragg diffraction spots. The camera length can be controlled in the range of 0.8-4 m without exciting the objective lens. Furthermore, we can observe the magnetic-field dependence of electron diffraction using the objective lens under weak excitation conditions. The diffraction mode for Bragg diffraction can be easily switched to a small-angle electron diffraction mode having a camera length of more than 100 m. We propose this experimental method to acquire electron diffraction patterns that depict an extensive angular range from 10-2 to 10-7 rad. This method is applied to analyze the magnetic microstructures in three distinct magnetic materials, i.e. a uniaxial magnetic structure of BaFe10.35Sc1.6Mg0.05O19, a martensite of a Ni-Mn-Ga alloy, and a helical magnetic structure of Ba0.5Sr1.5Zn2Fe12O22.
Electron Microscopy of Tungsten Disulphide Inorganic Nanomaterials
2009-09-01
cylindrical molecule similar to a carbon nanotube. Inorganic nanotubes have been observed in some mineral deposits. Linus Pauling suggested the...diffraction pattern was due to the carbon coating. Figure 6 SAED taken from the single nanotube shown in figure 5 REFERENCES 1. Pauling , L; "The
Nanoscale Cu{sub 2}O films: Radio-frequency magnetron sputtering and structural and optical studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudryashov, D. A., E-mail: kudryashovda@apbau.ru; Gudovskikh, A. S.; Babichev, A. V.
2017-01-15
Nanoscale copper (I) oxide layers are formed by magnetron-assisted sputtering onto glassy and silicon substrates in an oxygen-free environment at room temperature, and the structural and optical properties of the layers are studied. It is shown that copper oxide formed on a silicon substrate exhibits a lower degree of disorder than that formed on a glassy substrate, which is supported by the observation of a higher intensity and a smaller half-width of reflections in the diffraction pattern. The highest intensity of reflections in the diffraction pattern is observed for Cu{sub 2}O films grown on silicon at a magnetron power ofmore » 150 W. The absorption and transmittance spectra of these Cu{sub 2}O films are in agreement with the well-known spectra of bulk crystals. In the Raman spectra of the films, phonons inherent in the crystal lattice of cubic Cu{sub 2}O crystals are identified.« less
A High-Pressure Study of Manganese Metal and its Reactions with CO2 at 6, 23, and 44 GPa
NASA Astrophysics Data System (ADS)
Sawchuk, K. L. S.; McGuire, C. P.; Greenburg, A.; Makhluf, A.; Kavner, A.
2017-12-01
The free energies of formation of oxides and carbonates at the extreme pressures and temperatures of Earth's interior provides some of the thermodynamic constrains for models of mantle/core formation and subsequent chemical evolution. The broad goal of our research program is to measure the pressure- and temperature-dependence of free energies of formation of transition metal oxides and carbonates. This requires measurements of the phase stability, density, and thermoelastic properties of metals, oxides, and carbonates at deep-Earth and planetary conditions. Manganese is of interest because it is one of the most abundant transition metal geochemical tracers, it readily forms a carbonate at ambient pressure, and its high-pressure carbonate and oxide densities and equation of state parameters are relatively unknown. Here we report new data on the pressure/volume equation of state and structure of manganese metal as well as its reactions with CO2. These measurements were made using a laser heated diamond anvil cell in conjunction with synchrotron-based X-ray diffraction at beamline 12.2.2 at the Advanced Light Source. Three samples of manganese metal were gas-loaded in a CO2 pressure medium and pressurized to 6, 23, and 44 GPa. Upon laser heating, the CO2 reacted with the Mn metal generating new phases. To analyze the diffraction patterns, we we use a python-based program developed in-house for extracting high resolution 2-dimensional diffraction peak position and intensity information from two-dimensional X-ray diffraction patterns. At each pressure step, the structure and density of the quenched Mn metal phase was determined. At 6 GPa, Mn metal adopts a BCC structure, and at 23 GPa a tetragonal distortion is observed in the lattice. The measured equation of state is in good agreement with an existing meaurement by Fujihisa and Takemura (1995). MnCO3 rhodochrosite is observed in the sample quenched after heating at 6 GPa. Additional high pressure phases are evident in the diffraction patterns from the samples at 23 GPa and 44 GPa. The density and equation of state parameters for our observed oxide, carbonate, and metal manganese structures are used in conjunction with existing thermodynamic information to predict how the free energies of formation of Mn- oxide and Mn-carbonate change as a function of pressure.
NASA Astrophysics Data System (ADS)
Hirai, Yoshihiko; Okano, Masato; Okuno, Takayuki; Toyota, Hiroshi; Yotsuya, Tsutomu; Kikuta, Hisao; Tanaka, Yoshio
2001-11-01
Fabrication of a fine diffractive optical element on a Si chip is demonstrated using imprint lithography. A chirped diffraction grating, which has modulated pitched pattern with curved cross section is fabricated by an electron beam lithography, where the exposure dose profile is automatically optimized by computer aided system. Using the resist pattern as an etching mask, anisotropic dry etching is performed to transfer the resist pattern profile to the Si chip. The etched Si substrate is used as a mold in the imprint lithography. The Si mold is pressed to a thin polymer (poly methyl methacrylate) on a Si chip. After releasing the mold, a fine diffractive optical pattern is successfully transferred to the thin polymer. This method is exceedingly useful for fabrication of integrated diffractive optical elements with electric circuits on a Si chip.
Toto-Arellano, Noel-Ivan; Rodriguez-Zurita, Gustavo; Meneses-Fabian, Cruz; Vazquez-Castillo, Jose F
2008-11-10
Among several techniques, phase shifting interferometry can be implemented with a grating used as a beam divider to attain several interference patterns around each diffraction order. Because each pattern has to show a different phase-shift, a suitable shifting technique must be employed. Phase gratings are attractive to perform the former task due to their higher diffraction efficiencies. But as is very well known, the Fourier coefficients of only-phase gratings are integer order Bessel functions of the first kind. The values of these real-valued functions oscillate around zero, so they can adopt negative values, thereby introducing phase shifts of pi at certain diffraction orders. Because this almost trivial fact seems to have been overlooked in the literature regarding its practical implications, in this communication such phase shifts are stressed in the description of interference patterns obtained with grating interferometers. These patterns are obtained by placing two windows in the object plane of a 4f system with a sinusoidal grating/grid in the Fourier plane. It is shown that the corresponding experimental observations of the fringe modulation, as well as the corresponding phase measurements, are all in agreement with the proposed description. A one-shot phase shifting interferometer is finally proposed taking into account these properties after proper incorporation of modulation of polarization.
Lange, R H; Grodziński, Z; Kilarski, W
1982-01-01
Yolk-platelet crystals in Amia calva L., Lepisosteus osseus (L.) and Polypterus bichir have orthorhombic features with unit-cell dimensions a = 8.3 ... 8.8 nm, b = 16.4 ... 16.9 nm and c = 18.6 ... 19.8 nm as determined in electron-diffracted patterns of fixed, epoxy-resin embedded and thin-sectioned material. Electron-diffraction patterns, crystal projections and the above unit-cell data make them extremely similar to the orthorhombic yolk-platelet crystals known for amphibians and teleosts. This observation fills a gap in yolk-platelet research and supports the view that the general architecture of yolk platelets has been conserved for nearly 400 million years. It follows that the peculiar platelet architecture itself has physiological significance.
Perylene and Perylene-Derivative Nano-Cocrystals: Preparation and Physicochemical Property
NASA Astrophysics Data System (ADS)
Baba, Koichi; Konta, Sayaka; Oliveira, Daniel; Sugai, Kenji; Onodera, Tsunenobu; Masuhara, Akito; Kasai, Hitoshi; Oikawa, Hidetoshi; Nakanishi, Hachiro
2012-12-01
Organic nano-cocrystals of functional dyes of perylene and a perylene derivative were successfully prepared by the reprecipitation method. The particle sizes, optical properties, and powder X-ray diffraction patterns of nano-cocrystals were evaluated. Typically, the size with size distribution of nano-cocrystals was 55±15 nm when the molar ratio of perylene to the perylene derivative was 50:50. The particular intermolecular electronic interaction between perylene and the perylene derivative in the nano-cocrystal state was observed by absorption and fluorescence spectra measurements. The powder X-ray diffraction pattern analysis confirmed that the structure of nano-cocrystals was different from those prepared from perylene and the perylene derivative. The nano-cocrystal having unique physicochemical properties will be potentially classified as a new type of functional nanomaterial.
Diffraction data of core-shell nanoparticles from an X-ray free electron laser
Li, Xuanxuan; Chiu, Chun -Ya; Wang, Hsiang -Ju; ...
2017-04-11
X-ray free-electron lasers provide novel opportunities to conduct single particle analysis on nanoscale particles. Coherent diffractive imaging experiments were performed at the Linac Coherent Light Source (LCLS), SLAC National Laboratory, exposing single inorganic core-shell nanoparticles to femtosecond hard-X-ray pulses. Each facetted nanoparticle consisted of a crystalline gold core and a differently shaped palladium shell. Scattered intensities were observed up to about 7 nm resolution. Analysis of the scattering patterns revealed the size distribution of the samples, which is consistent with that obtained from direct real-space imaging by electron microscopy. Furthermore, scattering patterns resulting from single particles were selected and compiledmore » into a dataset which can be valuable for algorithm developments in single particle scattering research.« less
EUV phase-shifting masks and aberration monitors
NASA Astrophysics Data System (ADS)
Deng, Yunfei; Neureuther, Andrew R.
2002-07-01
Rigorous electromagnetic simulation with TEMPEST is used to examine the use of phase-shifting masks in EUV lithography. The effects of oblique incident illumination and mask patterning by ion-mixing of multilayers are analyzed. Oblique incident illumination causes streamers at absorber edges and causes position shifting in aerial images. The diffraction waves between ion-mixed and pristine multilayers are observed. The phase-shifting caused by stepped substrates is simulated and images show that it succeeds in creation of phase-shifting effects. The diffraction process at the phase boundary is also analyzed. As an example of EUV phase-shifting masks, a coma pattern and probe based aberration monitor is simulated and aerial images are formed under different levels of coma aberration. The probe signal rises quickly as coma increases as designed.
Crystal structure of human tooth enamel studied by neutron diffraction
NASA Astrophysics Data System (ADS)
Ouladdiaf, Bachir; Rodriguez-Carvajal, Juan; Goutaudier, Christelle; Ouladdiaf, Selma; Grosgogeat, Brigitte; Pradelle, Nelly; Colon, Pierre
2015-02-01
Crystal structure of human tooth enamel was investigated using high-resolution neutron powder diffraction. Excellent agreement between observed and refined patterns is obtained, using the hexagonal hydroxyapatite model for the tooth enamel, where a large hydroxyl deficiency ˜70% is found in the 4e site. Rietveld refinements method combined with the difference Fourier maps have revealed, however, that the hydroxyl ions are not only disordered along the c-axis but also within the basal plane. Additional H ions located at the 6h site and forming HPO42- anions were found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Veronica J.; O’Malley Ford, Judith M.
Double blind analysis of a batch of thirty skin tissue samples from potential prostate cancer sufferers correctly identified all “control” patients, patients with high and low grade prostate cancers, the presence of benign prostate hyperplasia (BPH), perineural invasions, and the one lymphatic invasion. Identification was by analysis of fibre diffraction patterns interpreted using a schema developed from observations in nine previous studies. The method, schema, and specific experiment results are reported in this paper, with some implications then drawn.
James, Veronica J.; O’Malley Ford, Judith M.
2014-01-01
Double blind analysis of a batch of thirty skin tissue samples from potential prostate cancer sufferers correctly identified all “control” patients, patients with high and low grade prostate cancers, the presence of benign prostate hyperplasia (BPH), perineural invasions, and the one lymphatic invasion. Identification was by analysis of fibre diffraction patterns interpreted using a schema developed from observations in nine previous studies. The method, schema, and specific experiment results are reported in this paper, with some implications then drawn.
Laser fresnel distance measuring system and method
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W. (Inventor); Lehner, David L. (Inventor); Smalley, Larry L. (Inventor); Smith, legal representative, Molly C. (Inventor); Sanders, Alvin J. (Inventor); Earl, Dennis Duncan (Inventor); Allison, Stephen W. (Inventor); Smith, Kelly L. (Inventor)
2008-01-01
A method and system for determining range to a target are provided. A beam of electromagnetic energy is transmitted through an aperture in an opaque screen such that a portion of the beam passes through the aperture to generate a region of diffraction that varies as a function of distance from the aperture. An imaging system is focused on a target plane in the region of diffraction with the generated image being compared to known diffraction patterns. Each known diffraction pattern has a unique value associated therewith that is indicative of a distance from the aperture. A match between the generated image and at least one of the known diffraction patterns is indicative of a distance between the aperture and target plane.
Zhang, C.; Balachandran, S.; Eisenlohr, P.; ...
2017-10-04
The subsurface dislocation content in a Ti-5Al-2.5Sn (wt%) uniaxial tension sample deformed at ambient temperature was characterized by peak streak analysis of micro-Laue diffraction patterns collected non-destructively by differential aperture X-raymicroscopy, and with focused ion beam transmission electron microscopy of material in the same volume. This comparison reveals that micro-Laue diffraction streak analysis based on an edge dislocation assumption can accurately identify the dominant dislocation slip system history (Burgers vector and plane observed by TEM), despite the fact that dislocations have predominantly screw character. As a result, other dislocations identified by TEM were not convincingly discernible from the peak streakmore » analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, C.; Balachandran, S.; Eisenlohr, P.
The subsurface dislocation content in a Ti-5Al-2.5Sn (wt%) uniaxial tension sample deformed at ambient temperature was characterized by peak streak analysis of micro-Laue diffraction patterns collected non-destructively by differential aperture X-raymicroscopy, and with focused ion beam transmission electron microscopy of material in the same volume. This comparison reveals that micro-Laue diffraction streak analysis based on an edge dislocation assumption can accurately identify the dominant dislocation slip system history (Burgers vector and plane observed by TEM), despite the fact that dislocations have predominantly screw character. As a result, other dislocations identified by TEM were not convincingly discernible from the peak streakmore » analysis.« less
Fan, Shuzhen; Qi, Feng; Notake, Takashi; Nawata, Kouji; Takida, Yuma; Matsukawa, Takeshi; Minamide, Hiroaki
2015-03-23
Real-time terahertz (THz) wave imaging has wide applications in areas such as security, industry, biology, medicine, pharmacy, and the arts. This report describes real-time room-temperature THz imaging by nonlinear optical frequency up-conversion in an organic 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate (DAST) crystal, with high resolution reaching the diffraction limit. THz-wave images were converted to the near infrared region and then captured using an InGaAs camera in a tandem imaging system. The resolution of the imaging system was analyzed. Diffraction and interference of THz wave were observed in the experiments. Videos are supplied to show the interference pattern variation that occurs with sample moving and tilting.
Loh, Ne-Te Duane
2011-08-01
These 2000 single-shot diffraction patterns include were either background-scattering only or hits (background-scattering plus diffraction signal from sub-micron ellipsoidal particles at random, undetermined orientations). Candidate hits were identified by eye, and the remainder were presumed as background. 54 usable, background-subtracted hits in this set (procedure in referenced article) were used to reconstruct the 3D diffraction intensities of the average ellipsoidal particle.
Studies on X-ray diffraction microscopy
NASA Astrophysics Data System (ADS)
Miao, Huijie
This dissertation includes three main parts: studies on coherence requirements for the diffraction microscopy experiments, ice formation on frozen-hydrated sample during data collection, and centering of the diffraction data sets. These three subjects are all in support of our groups overall goal of high resolution 3D imaging of frozen hydrated eukaryotic cells via x-ray diffraction microscopy. X-ray diffraction microscopy requires coherent illumination. However, the actual degree of coherence at some beamlines has never been tested. In research on coherence, our first aim is to determine the transverse coherence width at the sample plane at BL 9.0.1 at the Advanced Light Source in Lawrence Berkeley National Laboratory. An analytical calculation of the coherence at the sample plane is presented. Experimental diffraction patterns of pinhole-pair samples were also taken at the beamline to determine the coherence. Due to the irregular shape of the pinholes and other optics complexity, it was very difficult to fit the data with known theoretical equations as it was traditionally done with 1D data. However, we found out that the auto-correlation function shows clearly three spots. Theoretical calculation have been carried out to show that the degree of coherence can be obtained from the intensities of the three spots. These results are compared with the results from the analytical calculation. We then perform a simulation, showing the required transverse coherence width for reconstructing samples with a given size. Ice accumulation has been a major problem in X-ray diffraction microscopy with frozen hydrated samples. Since the ice structure is different from point to point, we cannot subtract the scattering from ice, nor assume a completely "empty" region outside the finite support constraint area as required for reconstruction. Ice forms during the sample preparation and transfer. However, from the tests we did in September 2007, we found that the ice layer thickens significantly during the data collecting process. One of the tests we did was putting a dry room-temperature grid into the beam, cooling it down to liquid nitrogen temperature, and then collecting the diffraction pattern of it over time. This test showed that, after the cold grid remained in the chamber for a while, a ring could be observed in the diffraction pattern. The time necessary for this ring to be visible is highly dependent on the pressure and vacuum history of the chamber. We will discuss how the chamber pressure influences the ice accumulation rate, how an anti-contamination device can help to reduce the rate, and how this ring forms. The last part of the research is based on simulations and a real data set collected on beamline 9.0.1 at the ALS in Berkeley. In X-ray diffraction microscopy, one of the major challenges when processing the data is to accurately determine the true center of the recorded data; that is, the zero spatial frequency position. Simulations of reconstructing shifted data show that if the center of a 2D diffraction pattern is shifted by more than 3 pixels from its true center, the positivity constraint to the phase, which otherwise might be applied to improve the convergence of the reconstruction algorithm, cannot be imposed. Moreover, the phase unwrapping problem may appear during the reconstruction. These issues undermine the quality of the reconstruction of 2D data. Furthermore, the individual shift in each 2D pattern will lead to errors when assembling a 3D diffraction data cube, making the 3D reconstruction very difficult. We developed a method which uses power spectra of the partial diffraction pattern to pre-align the data. A reconstruction without severe phase unwrapping can then be obtained from the pre-aligned data. Next, the precise zero spatial frequency position can be found by examining the linear ramp present in the reconstructed phase. This method was applied to a freeze-dried yeast data set to show that this approach is effective with experimental data.
Optical-diffraction method for determining crystal orientation
Sopori, B.L.
1982-05-07
Disclosed is an optical diffraction technique for characterizing the three-dimensional orientation of a crystal sample. An arbitrary surface of the crystal sample is texture etched so as to generate a pseudo-periodic diffraction grating on the surface. A laser light beam is then directed onto the etched surface, and the reflected light forms a farfield diffraction pattern in reflection. Parameters of the diffraction pattern, such as the geometry and angular dispersion of the diffracted beam are then related to grating shape of the etched surface which is in turn related to crystal orientation. This technique may be used for examining polycrystalline silicon for use in solar cells.
Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances
Zhang, Yan; Inouye, Hideyo; Crowley, Michael; ...
2016-10-14
Intensity simulation of X-ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X-ray diffraction patterns from complex fibrils using atom-type-specific pair-distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair-distance data set. These quantized pair-distance arrays are used with a modified and vectorized Debyemore » formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. As a result, this algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement.« less
Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yan; Inouye, Hideyo; Crowley, Michael
Intensity simulation of X-ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X-ray diffraction patterns from complex fibrils using atom-type-specific pair-distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair-distance data set. These quantized pair-distance arrays are used with a modified and vectorized Debyemore » formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. This algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement.« less
Diffraction pattern simulation of cellulose fibrils using distributed and quantized pair distances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yan; Inouye, Hideyo; Crowley, Michael
Intensity simulation of X-ray scattering from large twisted cellulose molecular fibrils is important in understanding the impact of chemical or physical treatments on structural properties such as twisting or coiling. This paper describes a highly efficient method for the simulation of X-ray diffraction patterns from complex fibrils using atom-type-specific pair-distance quantization. Pair distances are sorted into arrays which are labelled by atom type. Histograms of pair distances in each array are computed and binned and the resulting population distributions are used to represent the whole pair-distance data set. These quantized pair-distance arrays are used with a modified and vectorized Debyemore » formula to simulate diffraction patterns. This approach utilizes fewer pair distances in each iteration, and atomic scattering factors are moved outside the iteration since the arrays are labelled by atom type. As a result, this algorithm significantly reduces the computation time while maintaining the accuracy of diffraction pattern simulation, making possible the simulation of diffraction patterns from large twisted fibrils in a relatively short period of time, as is required for model testing and refinement.« less
Ophus, Colin; Ercius, Peter; Huijben, Mark; ...
2017-02-08
The local atomic structure of a crystalline sample aligned along a zone axis can be probed with a focused electron probe, which produces a convergent beam electron diffraction pattern. The introduction of high speed direct electron detectors has allowed for experiments that can record a full diffraction pattern image at thousands of probe positions on a sample. By incoherently summing these patterns over crystalline unit cells, we demonstrate in this paper that in addition to crystal structure and thickness, we can also estimate the local composition of a perovskite superlattice sample. This is achieved by matching the summed patterns tomore » a library of simulated diffraction patterns. Finally, this technique allows for atomic-scale chemical measurements without requiring a spectrometer or hardware aberration correction.« less
Transparent Electrochemical Gratings from a Patterned Bistable Silver Mirror.
Park, Chihyun; Na, Jongbeom; Han, Minsu; Kim, Eunkyoung
2017-07-25
Silver mirror patterns were formed reversibly on a polystyrene (PS)-patterned electrode to produce gratings through the electrochemical reduction of silver ions. The electrochemical gratings exhibited high transparency (T > 95%), similar to a see-through window, by matching the refractive index of the grating pattern with the surrounding medium. The gratings switch to a diffractive state upon the formation of a mirror pattern (T < 5%) with a high diffraction efficiency up to 40%, providing reversible diffractive gratings. The diffraction state was maintained in the voltage-off state (V-off) for 40 min, which demonstrated bistable reversible electrochemical grating (BREG) behavior. By carefully combining the BREGs through period matching, dual-color switching was achieved within the full color region, which exhibited three distinct optical switching states between -2.5, 0, and +2.5 V. The wide range of light tenability using the metallic BREGs developed herein enabled IR modulation, NIR light reflection, and on-demand heat transfer.
Diffraction and interference of walking drops
NASA Astrophysics Data System (ADS)
Pucci, Giuseppe; Harris, Daniel M.; Bush, John W. M.
2016-11-01
A decade ago, Yves Couder and Emmanuel Fort discovered a wave-particle association on the macroscopic scale: a drop can bounce indefinitely on a vibrating bath of the same liquid and can be piloted by the waves that it generates. These walking droplets have been shown to exhibit several quantum-like features, including single-particle diffraction and interference. Recently, the original diffraction and interference experiments of Couder and Fort have been revisited and contested. We have revisited this system using an improved experimental set-up, and observed a strong dependence of the behavior on system parameters, including drop size and vibrational forcing. In both the single- and the double-slit geometries, the diffraction pattern is dominated by the interaction of the walking droplet with a planar boundary. Critically, in the double-slit geometry, the walking droplet is influenced by both slits by virtue of its spatially extended wave field. NSF support via CMMI-1333242.
NASA Astrophysics Data System (ADS)
Cremons, Daniel R.; Schliep, Karl B.; Flannigan, David J.
2013-09-01
With ultrafast transmission electron microscopy (UTEM), access can be gained to the spatiotemporal scales required to directly visualize rapid, non-equilibrium structural dynamics of materials. This is achieved by operating a transmission electron microscope (TEM) in a stroboscopic pump-probe fashion by photoelectrically generating coherent, well-timed electron packets in the gun region of the TEM. These probe photoelectrons are accelerated down the TEM column where they travel through the specimen before reaching a standard, commercially-available CCD detector. A second laser pulse is used to excite (pump) the specimen in situ. Structural changes are visualized by varying the arrival time of the pump laser pulse relative to the probe electron packet at the specimen. Here, we discuss how ultrafast nanoscale motions of crystalline materials can be visualized and precisely quantified using diffraction contrast in UTEM. Because diffraction contrast sensitively depends upon both crystal lattice orientation as well as incoming electron wavevector, minor spatial/directional variations in either will produce dynamic and often complex patterns in real-space images. This is because sections of the crystalline material that satisfy the Laue conditions may be heterogeneously distributed such that electron scattering vectors vary over nanoscale regions. Thus, minor changes in either crystal grain orientation, as occurs during specimen tilting, warping, or anisotropic expansion, or in the electron wavevector result in dramatic changes in the observed diffraction contrast. In this way, dynamic contrast patterns observed in UTEM images can be used as sensitive indicators of ultrafast specimen motion. Further, these motions can be spatiotemporally mapped such that direction and amplitude can be determined.
Near-field diffraction from amplitude diffraction gratings: theory, simulation and results
NASA Astrophysics Data System (ADS)
Abedin, Kazi Monowar; Rahman, S. M. Mujibur
2017-08-01
We describe a computer simulation method by which the complete near-field diffract pattern of an amplitude diffraction grating can be generated. The technique uses the method of iterative Fresnel integrals to calculate and generate the diffraction images. Theoretical background as well as the techniques to perform the simulation is described. The program is written in MATLAB, and can be implemented in any ordinary PC. Examples of simulated diffraction images are presented and discussed. The generated images in the far-field where they reduce to Fraunhofer diffraction pattern are also presented for a realistic grating, and compared with the results predicted by the grating equation, which is applicable in the far-field. The method can be used as a tool to teach the complex phenomenon of diffraction in classrooms.
Huang, Zhifeng; Bartels, Matthias; Xu, Rui; Osterhoff, Markus; Kalbfleisch, Sebastian; Sprung, Michael; Suzuki, Akihiro; Takahashi, Yukio; Blanton, Thomas N; Salditt, Tim; Miao, Jianwei
2015-07-01
In situ X-ray diffraction (XRD) and transmission electron microscopy (TEM) have been used to investigate many physical science phenomena, ranging from phase transitions, chemical reactions and crystal growth to grain boundary dynamics. A major limitation of in situ XRD and TEM is a compromise that has to be made between spatial and temporal resolution. Here, we report the development of in situ X-ray nanodiffraction to measure high-resolution diffraction patterns from single grains with up to 5 ms temporal resolution. We observed, for the first time, grain rotation and lattice deformation in chemical reactions induced by X-ray photons: Br(-) + hv → Br + e(-) and e(-) + Ag(+) → Ag(0). The grain rotation and lattice deformation associated with the chemical reactions were quantified to be as fast as 3.25 rad s(-1) and as large as 0.5 Å, respectively. The ability to measure high-resolution diffraction patterns from individual grains with a temporal resolution of several milliseconds is expected to find broad applications in materials science, physics, chemistry and nanoscience.
Flat ion milling: a powerful tool for preparation of cross-sections of lead-silver alloys.
Brodusch, Nicolas; Boisvert, Sophie; Gauvin, Raynald
2013-06-01
While conventional mechanical and chemical polishing results in stress, deformation and polishing particles embedded on the surface, flat milling with Ar+ ions erodes the material with no mechanical artefacts. This flat milling process is presented as an alternative method to prepare a Pb-Ag alloy cross-section for scanning electron microscopy. The resulting surface is free of scratches with very little to no stress induced, so that electron diffraction and channelling contrast are possible. The results have shown that energy dispersive spectrometer (EDS) mapping, electron channelling contrast imaging and electron backscatter diffraction can be conducted with only one sample preparation step. Electron diffraction patterns acquired at 5 keV possessed very good pattern quality, highlighting an excellent surface condition. An orientation map was acquired at 20 keV with an indexing rate of 90.1%. An EDS map was performed at 5 keV, and Pb-Ag precipitates of sizes lower than 100 nm were observed. However, the drawback of the method is the generation of a noticeable surface topography resulting from the interaction of the ion beam with a polycrystalline and biphasic sample.
Liu, Haiguang; Spence, John C H
2014-11-01
Crystallographic auto-indexing algorithms provide crystal orientations and unit-cell parameters and assign Miller indices based on the geometric relations between the Bragg peaks observed in diffraction patterns. However, if the Bravais symmetry is higher than the space-group symmetry, there will be multiple indexing options that are geometrically equivalent, and hence many ways to merge diffraction intensities from protein nanocrystals. Structure factor magnitudes from full reflections are required to resolve this ambiguity but only partial reflections are available from each XFEL shot, which must be merged to obtain full reflections from these 'stills'. To resolve this chicken-and-egg problem, an expectation maximization algorithm is described that iteratively constructs a model from the intensities recorded in the diffraction patterns as the indexing ambiguity is being resolved. The reconstructed model is then used to guide the resolution of the indexing ambiguity as feedback for the next iteration. Using both simulated and experimental data collected at an X-ray laser for photosystem I in the P63 space group (which supports a merohedral twinning indexing ambiguity), the method is validated.
Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials
MacDonald, M. J.; Vorberger, J.; Gamboa, E. J.; ...
2016-06-07
Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate lattice strains for all initial crystallite orientations, enablingmore » elastic anisotropy and sample texture effects to be modeled directly. Furthermore, the effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.« less
Fluid synthesis and structure of a new polymorphic modification of boron nitride
NASA Astrophysics Data System (ADS)
Pokropivny, V. V.; Smolyar, A. S.; Ovsiannikova, L. I.; Pokropivny, A. V.; Kuts, V. A.; Lyashenko, V. I.; Nesterenko, Yu. V.
2013-04-01
A new previously unknown phase of boron nitride with a hardness of 0.41-0.63 GPa has been pre-pared by the supercritical fluid synthesis. The presence of a new phase is confirmed by the X-ray spectra and IR absorption spectra, where new reflections and bands are distinguished. The fundamental reflection of the X-ray diffraction pattern is d = 0.286-0.291 nm, and the characteristic band in the infrared absorption spectrum is observed at 704 cm-1. The X-ray diffraction pattern and the experimental and theoretical infrared absorption spectra show that a new synthesized boron nitride phase can be a cluster crystal (space group 211) with a simple cubic lattice. Cage clusters of a fullerene-like morphology B24N24 with point symmetry O are arranged in lattice sites.
Single shot multi-wavelength phase retrieval with coherent modulation imaging.
Dong, Xue; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang
2018-04-15
A single shot multi-wavelength phase retrieval method is proposed by combining common coherent modulation imaging (CMI) and a low rank mixed-state algorithm together. A radiation beam consisting of multi-wavelength is illuminated on the sample to be observed, and the exiting field is incident on a random phase plate to form speckle patterns, which is the incoherent superposition of diffraction patterns of each wavelength. The exiting complex amplitude of the sample including both the modulus and phase of each wavelength can be reconstructed simultaneously from the recorded diffraction intensity using a low rank mixed-state algorithm. The feasibility of this proposed method was verified with visible light experimentally. This proposed method not only makes CMI realizable with partially coherent illumination but also can extend its application to various traditionally unrelated fields, where several wavelengths should be considered simultaneously.
Yamamura, S; Momose, Y
2001-01-16
A pattern-fitting procedure for quantitative analysis of crystalline pharmaceuticals in solid dosage forms using X-ray powder diffraction data is described. This method is based on a procedure for pattern-fitting in crystal structure refinement, and observed X-ray scattering intensities were fitted to analytical expressions including some fitting parameters, i.e. scale factor, peak positions, peak widths and degree of preferred orientation of the crystallites. All fitting parameters were optimized by the non-linear least-squares procedure. Then the weight fraction of each component was determined from the optimized scale factors. In the present study, well-crystallized binary systems, zinc oxide-zinc sulfide (ZnO-ZnS) and salicylic acid-benzoic acid (SA-BA), were used as the samples. In analysis of the ZnO-ZnS system, the weight fraction of ZnO or ZnS could be determined quantitatively in the range of 5-95% in the case of both powders and tablets. In analysis of the SA-BA systems, the weight fraction of SA or BA could be determined quantitatively in the range of 20-80% in the case of both powders and tablets. Quantitative analysis applying this pattern-fitting procedure showed better reproducibility than other X-ray methods based on the linear or integral intensities of particular diffraction peaks. Analysis using this pattern-fitting procedure also has the advantage that the preferred orientation of the crystallites in solid dosage forms can be also determined in the course of quantitative analysis.
Diffractive shear interferometry for extreme ultraviolet high-resolution lensless imaging
NASA Astrophysics Data System (ADS)
Jansen, G. S. M.; de Beurs, A.; Liu, X.; Eikema, K. S. E.; Witte, S.
2018-05-01
We demonstrate a novel imaging approach and associated reconstruction algorithm for far-field coherent diffractive imaging, based on the measurement of a pair of laterally sheared diffraction patterns. The differential phase profile retrieved from such a measurement leads to improved reconstruction accuracy, increased robustness against noise, and faster convergence compared to traditional coherent diffractive imaging methods. We measure laterally sheared diffraction patterns using Fourier-transform spectroscopy with two phase-locked pulse pairs from a high harmonic source. Using this approach, we demonstrate spectrally resolved imaging at extreme ultraviolet wavelengths between 28 and 35 nm.
A quantum diffractor for thermal flux
NASA Astrophysics Data System (ADS)
José Martínez-Pérez, Maria; Giazotto, Francesco
2014-04-01
Macroscopic phase coherence between weakly coupled superconductors leads to peculiar interference phenomena. Among these, magnetic flux-driven diffraction might be produced, in full analogy to light diffraction through a rectangular slit. This can be experimentally revealed by the electric current and, notably, also by the heat current transmitted through the circuit. The former was observed more than 50 years ago and represented the first experimental evidence of the phase-coherent nature of the Josephson effect, whereas the second one was still lacking. Here we demonstrate the existence of heat diffraction by measuring the modulation of the electronic temperature of a small metallic electrode nearby-contacted to a thermally biased short Josephson junction subjected to an in-plane magnetic field. The observed temperature dependence exhibits symmetry under magnetic flux reversal, and clear resemblance with a Fraunhofer-like modulation pattern. Our approach, joined to widespread methods for phase-biasing superconducting circuits, might represent an effective tool for controlling the thermal flux in nanoscale devices.
Local terahertz field enhancement for time-resolved x-ray diffraction
Kozina, M.; Pancaldi, M.; Bernhard, C.; ...
2017-02-20
We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.
Local terahertz field enhancement for time-resolved x-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozina, M.; Pancaldi, M.; Bernhard, C.
We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.
Network based approaches reveal clustering in protein point patterns
NASA Astrophysics Data System (ADS)
Parker, Joshua; Barr, Valarie; Aldridge, Joshua; Samelson, Lawrence E.; Losert, Wolfgang
2014-03-01
Recent advances in super-resolution imaging have allowed for the sub-diffraction measurement of the spatial location of proteins on the surfaces of T-cells. The challenge is to connect these complex point patterns to the internal processes and interactions, both protein-protein and protein-membrane. We begin analyzing these patterns by forming a geometric network amongst the proteins and looking at network measures, such the degree distribution. This allows us to compare experimentally observed patterns to models. Specifically, we find that the experimental patterns differ from heterogeneous Poisson processes, highlighting an internal clustering structure. Further work will be to compare our results to simulated protein-protein interactions to determine clustering mechanisms.
Rosalind Franklin's X-ray photo of DNA as an undergraduate optical diffraction experiment
NASA Astrophysics Data System (ADS)
Thompson, J.; Braun, G.; Tierney, D.; Wessels, L.; Schmitzer, H.; Rossa, B.; Wagner, H. P.; Dultz, W.
2018-02-01
Rosalind Franklin's X-ray diffraction patterns of DNA molecules rendered the important clue that DNA has the structure of a double helix. The most famous X-ray photograph, Photo 51, is still printed in most Biology textbooks. We suggest two optical experiments for undergraduates that make this historic achievement comprehensible for students by using macromodels of DNA and visible light to recreate a diffraction pattern similar to Photo 51. In these macromodels, we replace the double helix both mathematically and experimentally with its two-dimensional (flat) projection and explain why this is permissible. Basic optical concepts are used to infer certain well-known characteristics of DNA from the diffraction pattern.
Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Bender, H A; Wilcox, N S
2010-01-01
Single shot diffraction patterns using a 250-fs-long electron beam have been obtained at the UCLA Pegasus laboratory. High quality images with spatial resolution sufficient to distinguish closely spaced peaks in the Debye-Scherrer ring pattern have been recorded by scattering the 1.6 pC 3.5 MeV electron beam generated in the rf photoinjector off a 100-nm-thick Au foil. Dark current and high emittance particles are removed from the beam before sending it onto the diffraction target using a 1 mm diameter collimating hole. These results open the door to the study of irreversible phase transformations by single shot MeV electron diffraction.
Analysis of XFEL serial diffraction data from individual crystalline fibrils
Wojtas, David H.; Ayyer, Kartik; Liang, Mengning; Mossou, Estelle; Romoli, Filippo; Seuring, Carolin; Beyerlein, Kenneth R.; Bean, Richard J.; Morgan, Andrew J.; Oberthuer, Dominik; Fleckenstein, Holger; Heymann, Michael; Gati, Cornelius; Yefanov, Oleksandr; Barthelmess, Miriam; Ornithopoulou, Eirini; Galli, Lorenzo; Xavier, P. Lourdu; Ling, Wai Li; Frank, Matthias; Yoon, Chun Hong; White, Thomas A.; Bajt, Saša; Mitraki, Anna; Boutet, Sebastien; Aquila, Andrew; Barty, Anton; Forsyth, V. Trevor; Chapman, Henry N.; Millane, Rick P.
2017-01-01
Serial diffraction data collected at the Linac Coherent Light Source from crystalline amyloid fibrils delivered in a liquid jet show that the fibrils are well oriented in the jet. At low fibril concentrations, diffraction patterns are recorded from single fibrils; these patterns are weak and contain only a few reflections. Methods are developed for determining the orientation of patterns in reciprocal space and merging them in three dimensions. This allows the individual structure amplitudes to be calculated, thus overcoming the limitations of orientation and cylindrical averaging in conventional fibre diffraction analysis. The advantages of this technique should allow structural studies of fibrous systems in biology that are inaccessible using existing techniques. PMID:29123682
Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi
2013-01-01
We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.
NOTE: Calculating diffraction patterns
NASA Astrophysics Data System (ADS)
Rioux, Frank
2003-05-01
Following Marcella's approach to the double-slit experiment (Marcella T V 2002 Eur. J. Phys. 23 615-21), diffraction patterns for two-dimensional masks are calculated by Fourier transform of the Mask geometry into momentum space.
Passos, M H M; Lemos, M R; Almeida, S R; Balthazar, W F; da Silva, L; Huguenin, J A O
2017-01-10
In this work, we report on the analysis of speckle patterns produced by illuminating different rough surfaces with an optical vortex, a first-order (l=1) Laguerre-Gaussian beam. The generated speckle patterns were observed in the normal direction exploring four different planes: the diffraction plane, image plane, focal plane, and exact Fourier transform plane. The digital speckle patterns were analyzed using the Hurst exponent of digital images, an interesting tool used to study surface roughness. We show a proof of principle that the Hurst exponent of a digital speckle pattern is more sensitive with respect to the surface roughness when the speckle pattern is produced by an optical vortex and observed at a focal plane. We also show that Hurst exponents are not so sensitive with respect to the topological charge l. These results open news possibilities of investigation into speckle metrology once we have several techniques that use speckle patterns for different applications.
Growth and characterization of organic NLO material: Clobetasol propionate
NASA Astrophysics Data System (ADS)
Purusothaman, R.; Rajesh, P.; Ramasamy, P.
2015-06-01
Single crystals of clobetasol propionate (CP) have been grown by slow evaporation solution technique using mixed solvent of methanol-acetone. The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm their lattice parameter and space group. The powder X-ray diffraction pattern of the grown CP has been indexed. Thermal analysis was performed to study the thermal stability of the grown crystals. Photoluminescence spectrum shows broad emission peak observed at 421 nm. Nonlinear optical studies were carried out for the grown crystal and second harmonic generation (SHG) efficiency was found in the crystal.
Robust reconstruction of time-resolved diffraction from ultrafast streak cameras
Badali, Daniel S.; Dwayne Miller, R. J.
2017-01-01
In conjunction with ultrafast diffraction, streak cameras offer an unprecedented opportunity for recording an entire molecular movie with a single probe pulse. This is an attractive alternative to conventional pump-probe experiments and opens the door to studying irreversible dynamics. However, due to the “smearing” of the diffraction pattern across the detector, the streaking technique has thus far been limited to simple mono-crystalline samples and extreme care has been taken to avoid overlapping diffraction spots. In this article, this limitation is addressed by developing a general theory of streaking of time-dependent diffraction patterns. Understanding the underlying physics of this process leads to the development of an algorithm based on Bayesian analysis to reconstruct the time evolution of the two-dimensional diffraction pattern from a single streaked image. It is demonstrated that this approach works on diffraction peaks that overlap when streaked, which not only removes the necessity of carefully choosing the streaking direction but also extends the streaking technique to be able to study polycrystalline samples and materials with complex crystalline structures. Furthermore, it is shown that the conventional analysis of streaked diffraction can lead to erroneous interpretations of the data. PMID:28653022
Diffraction-based BioCD biosensor for point-of-care diagnostics
NASA Astrophysics Data System (ADS)
Choi, H.; Chang, C.; Savran, C.; Nolte, D.
2018-02-01
The BioCD platform technology uses spinning-disk interferometry to detect molecular binding to target molecular probes in biological samples. Interferometric configurations have included differential phase contrast and in-line quadrature detection. For the detection of extremely low analyte concentrations, nano- or microparticles can enhance the signal through background-free diffraction detection. Diffraction signal measurements on BioCD biosensors are achieved by forming gratings on a disc surface. The grating pattern was printed with biotinylated bovine serum albumin (BSA) and streptavidin coated beads were deployed. The diameter of the beads was 1 micron and strong protein bonding occurs between BSA and streptavidin-coated beads at the printed location. The wavelength for the protein binding detection was 635 nm. The periodic pattern on the disc amplified scattered light into the first-order diffraction position. The diffracted signal contains Mie scattering and a randomly-distributed-bead noise contributions. Variation of the grating pattern periodicity modulates the diffraction efficiency. To test multiple spatial frequencies within a single scan, we designed a fan-shaped grating to perform frequency filter multiplexing on a diffraction-based BioCD.
Brodusch, N; Demers, H; Gauvin, R
2013-04-01
A charge-coupled device camera of an electron backscattered diffraction system in a scanning electron microscope was positioned below a thin specimen and transmission Kikuchi patterns were collected. Contrary to electron backscattered diffraction, transmission electron forward scatter diffraction provides phase identification and orientation mapping at the nanoscale. The minimum Pd particle size for which a Kikuchi diffraction pattern was detected and indexed reliably was 5.6 nm. An orientation mapping resolution of 5 nm was measured at 30 kV. The resolution obtained with transmission electron forward scatter diffraction was of the same order of magnitude than that reported in electron nanodiffraction in the transmission electron microscope. An energy dispersive spectrometer X-ray map and a transmission electron forward scatter diffraction orientation map were acquired simultaneously. The high-resolution chemical, phase and orientation maps provided at once information on the chemical form, orientation and coherency of precipitates in an aluminium-lithium 2099 alloy. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Research on Near Field Pattern Effects.
1981-01-01
block numbr) High frequency solutions Prolate spheroid mounted antennas Uniform Geometrical Theory of Diffraction Airborne antenna pattern predicti...Geometrical Theory of Diffraction solutions which were developed previously were DD 1473 EDITION OF I NOV 66 IS OBSOLETE UCASFE SECURITY CLASSIFICATION...be used later to simulate the fuselage of a general aircraft. The general uniform Geometrical Theory of Diffraction (GTD) solutions [1i which are
Tripathi, Ashish; McNulty, Ian; Shpyrko, Oleg G
2014-01-27
Ptychographic coherent x-ray diffractive imaging is a form of scanning microscopy that does not require optics to image a sample. A series of scanned coherent diffraction patterns recorded from multiple overlapping illuminated regions on the sample are inverted numerically to retrieve its image. The technique recovers the phase lost by detecting the diffraction patterns by using experimentally known constraints, in this case the measured diffraction intensities and the assumed scan positions on the sample. The spatial resolution of the recovered image of the sample is limited by the angular extent over which the diffraction patterns are recorded and how well these constraints are known. Here, we explore how reconstruction quality degrades with uncertainties in the scan positions. We show experimentally that large errors in the assumed scan positions on the sample can be numerically determined and corrected using conjugate gradient descent methods. We also explore in simulations the limits, based on the signal to noise of the diffraction patterns and amount of overlap between adjacent scan positions, of just how large these errors can be and still be rendered tractable by this method.
Optical diffraction for measurements of nano-mechanical bending
NASA Astrophysics Data System (ADS)
Hermans, Rodolfo I.; Dueck, Benjamin; Ndieyira, Joseph Wafula; McKendry, Rachel A.; Aeppli, Gabriel
2016-06-01
We explore and exploit diffraction effects that have been previously neglected when modelling optical measurement techniques for the bending of micro-mechanical transducers such as cantilevers for atomic force microscopy. The illumination of a cantilever edge causes an asymmetric diffraction pattern at the photo-detector affecting the calibration of the measured signal in the popular optical beam deflection technique (OBDT). The conditions that avoid such detection artefacts conflict with the use of smaller cantilevers. Embracing diffraction patterns as data yields a potent detection technique that decouples tilt and curvature and simultaneously relaxes the requirements on the illumination alignment and detector position through a measurable which is invariant to translation and rotation. We show analytical results, numerical simulations and physiologically relevant experimental data demonstrating the utility of the diffraction patterns. We offer experimental design guidelines and quantify possible sources of systematic error in OBDT. We demonstrate a new nanometre resolution detection method that can replace OBDT, where diffraction effects from finite sized or patterned cantilevers are exploited. Such effects are readily generalized to cantilever arrays, and allow transmission detection of mechanical curvature, enabling instrumentation with simpler geometry. We highlight the comparative advantages over OBDT by detecting molecular activity of antibiotic Vancomycin.
Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction
NASA Astrophysics Data System (ADS)
Miao, Jianwei; Hodgson, Keith O.; Ishikawa, Tetsuya; Larabell, Carolyn A.; Legros, Mark A.; Nishino, Yoshinori
2003-01-01
We report the first experimental recording, to our knowledge, of the diffraction pattern from intact Escherichia coli bacteria using coherent x-rays with a wavelength of 2 Å. By using the oversampling phasing method, a real space image at a resolution of 30 nm was directly reconstructed from the diffraction pattern. An R factor used for characterizing the quality of the reconstruction was in the range of 5%, which demonstrated the reliability of the reconstruction process. The distribution of proteins inside the bacteria labeled with manganese oxide has been identified and this distribution confirmed by fluorescence microscopy images. Compared with lens-based microscopy, this diffraction-based imaging approach can examine thicker samples, such as whole cultured cells, in three dimensions with resolution limited only by radiation damage. Looking forward, the successful recording and reconstruction of diffraction patterns from biological samples reported here represent an important step toward the potential of imaging single biomolecules at near-atomic resolution by combining single-particle diffraction with x-ray free electron lasers.
NASA Astrophysics Data System (ADS)
Kuo, Ju-Nan; Chen, Kuan-Yu
2010-11-01
In this paper, we present a single-beam optical tweezer integrated with a planar curved diffraction grating for microbead manipulation. Various curvatures of the surface micromachined planar curved grating are systematically investigated. The planar curved grating was fabricated using multiuser micro-electro-mechanical-system (MEMS) processes (MUMPs). The angular separation and the number of diffracted orders were determined. Experimental results indicate that the diffraction patterns and curvature of the planar curved grating are closely related. As the curvature of the planar curved grating increases, the vertical diffraction angle increases, resulting in the strip patterns of the planar curved grating. A single-beam optical tweezer integrated with a planar curved diffraction grating was developed. We demonstrate a technique for creating multiple optical traps from a single laser beam using the developed planar curved grating. The strip patterns of the planar curved grating that resulted from diffraction were used to trap one row of polystyrene beads.
Khatua, Pradip; Bansal, Bhavtosh; Shahar, Dan
2014-01-10
In a "thought experiment," now a classic in physics pedagogy, Feynman visualizes Young's double-slit interference experiment with electrons in magnetic field. He shows that the addition of an Aharonov-Bohm phase is equivalent to shifting the zero-field wave interference pattern by an angle expected from the Lorentz force calculation for classical particles. We have performed this experiment with one slit, instead of two, where ballistic electrons within two-dimensional electron gas diffract through a small orifice formed by a quantum point contact (QPC). As the QPC width is comparable to the electron wavelength, the observed intensity profile is further modulated by the transverse waveguide modes present at the injector QPC. Our experiments open the way to realizing diffraction-based ideas in mesoscopic physics.
NASA Astrophysics Data System (ADS)
Nithya, V. D.; Kalai Selvan, R.; Vasylechko, Leonid
2015-11-01
The well defined microstructures of BiPO4 were successfully synthesized by the facile hexamethylenetetramine (HMT) assisted hydrothermal method. The low temperature monoclinic BiPO4 structure with space group P21/n, were obtained from X-ray diffraction (XRD) for the pristine and HMT-assisted BiPO4 with 1, 3, 5 and 10 mmole concentration. A transformation from low temperature monazite-type phase to the high temperature SbPO4-type phase of BiPO4 was observed at the 10 mmole concentration. There was a variation in the morphology from polyhedron to octahedra-like and finally into cube shape upon an increase in concentration of HMT. The role of reaction time in the morphology of BiPO4 particles was investigated. The selected area electron diffraction (SAED) pattern elucidated the ordered dot pattern and the calculated d-spacing revealed the formation of BiPO4. An increased specific capacitance of HMT assisted materials (202 F/g) compared with pristine BiPO4 (89 F/g) at 5 mA/cm2 was observed upon morphological variation due to HMT addition.
Computer Simulation Of An In-Process Surface Finish Sensor.
NASA Astrophysics Data System (ADS)
Rakels, Jan H.
1987-01-01
It is generally accepted, that optical methods are the most promising for the in-process measurement of surface finish. These methods have the advantages of being non-contacting and fast data acquisition. Furthermore, these optical instruments can be easily retrofitted on existing machine-tools. In the Micro-Engineering Centre at the University of Warwick, an optical sensor has been developed which can measure the rms roughness, slope and wavelength of turned and precision ground surfaces during machining. The operation of this device is based upon the Kirchhoff-Fresnel diffraction integral. Application of this theory to ideal turned and ground surfaces is straightforward, and indeed the calculated diffraction patterns are in close agreement with patterns produced by an actual optical instrument. Since it is mathematically difficult to introduce real machine-tool behaviour into the diffraction integral, a computer program has been devised, which simulates the operation of the optical sensor. The program produces a diffraction pattern as a graphical output. Comparison between computer generated and actual diffraction patterns of the same surfaces show a high correlation. The main aim of this program is to construct an atlas, which maps known machine-tool errors versus optical diffraction patterns. This atlas can then be used for machine-tool condition diagnostics. It has been found that optical monitoring is very sensitive to minor defects. Therefore machine-tool detoriation can be detected before it is detrimental.
Controllable light diffraction in woodpile photonic crystals filled with liquid crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Chih-Hua; Zeng, Hao; Wiersma, Diederik S.
2015-01-12
An approach to switching between different patterns of light beams transmitted through the woodpile photonic crystals filled with liquid crystals is proposed. The phase transition between the nematic and isotropic liquid crystal states leads to an observable variation of the spatial pattern transmitted through the photonic structure. The transmission profiles in the nematic phase also show polarization sensibility due to refractive index dependence on the field polarization. The experimental results are consistent with a numerical calculation by Finite Difference Time Domain method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stohr, J.
The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focused beyond the diffraction limit. Furthermore, the case of cloned photon pairs is compared to and distinguished from entangled photonmore » pairs or biphotons.« less
Stohr, J.
2017-01-11
The interference pattern of a circular photon source has long been used to define the optical diffraction limit. Here we show the breakdown of conventional x-ray diffraction theory for the fundamental case of a “source”, consisting of a back-illuminated thin film in a circular aperture. When the conventional spontaneous x-ray scattering by atoms in the film is replaced at high incident intensity by stimulated resonant scattering, the film becomes the source of cloned photon twins and the diffraction pattern becomes self-focused beyond the diffraction limit. Furthermore, the case of cloned photon pairs is compared to and distinguished from entangled photonmore » pairs or biphotons.« less
Tang, M X; Zhang, Y Y; E, J C; Luo, S N
2018-05-01
Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, M. X.; Zhang, Y. Y.; E, J. C.
Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of themore » diffraction patterns is discussed.« less
Three-dimensional electron diffraction of plant light-harvesting complex
Wang, Da Neng; Kühlbrandt, Werner
1992-01-01
Electron diffraction patterns of two-dimensional crystals of light-harvesting chlorophyll a/b-protein complex (LHC-II) from photosynthetic membranes of pea chloroplasts, tilted at different angles up to 60°, were collected to 3.2 Å resolution at -125°C. The reflection intensities were merged into a three-dimensional data set. The Friedel R-factor and the merging R-factor were 21.8 and 27.6%, respectively. Specimen flatness and crystal size were critical for recording electron diffraction patterns from crystals at high tilts. The principal sources of experimental error were attributed to limitations of the number of unit cells contributing to an electron diffraction pattern, and to the critical electron dose. The distribution of strong diffraction spots indicated that the three-dimensional structure of LHC-II is less regular than that of other known membrane proteins and is not dominated by a particular feature of secondary structure. ImagesFIGURE 1FIGURE 2 PMID:19431817
Brodusch, Nicolas; Demers, Hendrix; Gauvin, Raynald
2015-01-01
Dark-field (DF) images were acquired in the scanning electron microscope with an offline procedure based on electron backscatter diffraction (EBSD) patterns (EBSPs). These EBSD-DF images were generated by selecting a particular reflection on the electron backscatter diffraction pattern and by reporting the intensity of one or several pixels around this point at each pixel of the EBSD-DF image. Unlike previous studies, the diffraction information of the sample is the basis of the final image contrast with a pixel scale resolution at the EBSP providing DF imaging in the scanning electron microscope. The offline facility of this technique permits the selection of any diffraction condition available in the diffraction pattern and displaying the corresponding image. The high number of diffraction-based images available allows a better monitoring of deformation structures compared to electron channeling contrast imaging (ECCI) which is generally limited to a few images of the same area. This technique was applied to steel and iron specimens and showed its high capability in describing more rigorously the deformation structures around micro-hardness indents. Due to the offline relation between the reference EBSP and the EBSD-DF images, this new technique will undoubtedly greatly improve our knowledge of deformation mechanism and help to improve our understanding of the ECCI contrast mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.
Analysis of XFEL serial diffraction data from individual crystalline fibrils
Wojtas, David H.; Ayyer, Kartik; Liang, Mengning; ...
2017-10-20
Serial diffraction data collected at the Linac Coherent Light Source from crystalline amyloid fibrils delivered in a liquid jet show that the fibrils are well oriented in the jet. At low fibril concentrations, diffraction patterns are recorded from single fibrils; these patterns are weak and contain only a few reflections. Methods are developed for determining the orientation of patterns in reciprocal space and merging them in three dimensions. This allows the individual structure amplitudes to be calculated, thus overcoming the limitations of orientation and cylindrical averaging in conventional fibre diffraction analysis. In conclusion, the advantages of this technique should allowmore » structural studies of fibrous systems in biology that are inaccessible using existing techniques.« less
Analysis of XFEL serial diffraction data from individual crystalline fibrils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojtas, David H.; Ayyer, Kartik; Liang, Mengning
Serial diffraction data collected at the Linac Coherent Light Source from crystalline amyloid fibrils delivered in a liquid jet show that the fibrils are well oriented in the jet. At low fibril concentrations, diffraction patterns are recorded from single fibrils; these patterns are weak and contain only a few reflections. Methods are developed for determining the orientation of patterns in reciprocal space and merging them in three dimensions. This allows the individual structure amplitudes to be calculated, thus overcoming the limitations of orientation and cylindrical averaging in conventional fibre diffraction analysis. In conclusion, the advantages of this technique should allowmore » structural studies of fibrous systems in biology that are inaccessible using existing techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacotte, M.; David, A.; Pravarthana, D.
2014-12-28
The local epitaxial growth of pulsed laser deposited Ca{sub 2}MnO{sub 4} films on polycrystalline spark plasma sintered Sr{sub 2}TiO{sub 4} substrates was investigated to determine phase formation and preferred epitaxial orientation relationships (ORs) for isostructural Ruddlesden-Popper (RP) heteroepitaxy, further developing the high-throughput synthetic approach called Combinatorial Substrate Epitaxy (CSE). Both grazing incidence X-ray diffraction and electron backscatter diffraction patterns of the film and substrate were indexable as single-phase RP-structured compounds. The optimal growth temperature (between 650 °C and 800 °C) was found to be 750 °C using the maximum value of the average image quality of the backscattered diffraction patterns. Films grew inmore » a grain-over-grain pattern such that each Ca{sub 2}MnO{sub 4} grain had a single OR with the Sr{sub 2}TiO{sub 4} grain on which it grew. Three primary ORs described 47 out of 49 grain pairs that covered nearly all of RP orientation space. The first OR, found for 20 of the 49, was the expected RP unit-cell over RP unit-cell OR, expressed as [100][001]{sub film}||[100][001]{sub sub}. The other two ORs were essentially rotated from the first by 90°, with one (observed for 17 of 49 pairs) being rotated about the [100] and the other (observed for 10 of 49 pairs) being rotated about the [110] (and not exactly by 90°). These results indicate that only a small number of ORs are needed to describe isostructural RP heteroepitaxy and further demonstrate the potential of CSE in the design and growth of a wide range of complex functional oxides.« less
Electromagnetic scattering by impedance structures
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Griesser, Timothy
1987-01-01
The scattering of electromagnetic waves from impedance structures is investigated, and current work on antenna pattern calculation is presented. A general algorithm for determining radiation patterns from antennas mounted near or on polygonal plates is presented. These plates are assumed to be of a material which satisfies the Leontovich (or surface impedance) boundary condition. Calculated patterns including reflection and diffraction terms are presented for numerious geometries, and refinements are included for antennas mounted directly on impedance surfaces. For the case of a monopole mounted on a surface impedance ground plane, computed patterns are compared with experimental measurements. This work in antenna pattern prediction forms the basis of understanding of the complex scattering mechanisms from impedance surfaces. It provides the foundation for the analysis of backscattering patterns which, in general, are more problematic than calculation of antenna patterns. Further proposed study of related topics, including surface waves, corner diffractions, and multiple diffractions, is outlined.
Magnetic ground state of the multiferroic hexagonal LuFe O3
NASA Astrophysics Data System (ADS)
Suresh, Pittala; Vijaya Laxmi, K.; Bera, A. K.; Yusuf, S. M.; Chittari, Bheema Lingam; Jung, Jeil; Anil Kumar, P. S.
2018-05-01
The structural, electric, and magnetic properties of bulk hexagonal LuFe O3 are investigated. Single phase hexagonal LuFe O3 has been successfully stabilized in the bulk form without any doping by sol-gel method. The hexagonal crystal structure with P 63c m space group has been confirmed by x-ray-diffraction, neutron-diffraction, and Raman spectroscopy study at room temperature. Neutron diffraction confirms the hexagonal phase of LuFe O3 persists down to 6 K. Further, the x-ray photoelectron spectroscopy established the 3+ oxidation state of Fe ions. The temperature-dependent magnetic dc susceptibility, specific heat, and neutron-diffraction studies confirm an antiferromagnetic ordering below the Néel temperature (TN)˜130 K . Analysis of magnetic neutron-diffraction patterns reveals an in-plane (a b -plane) 120∘ antiferromagnetic structure, characterized by a propagation vector k =(0 0 0 ) with an ordered moment of 2.84 μB/F e3 + at 6 K. The 120∘ antifferomagnetic ordering is further confirmed by spin-orbit coupling density functional theory calculations. The on-site coulomb interaction (U ) and Hund's parameter (JH) on Fe atoms reproduced the neutron-diffraction Γ1 spin pattern among the Fe atoms. P -E loop measurements at room temperature confirm an intrinsic ferroelectricity of the sample with remnant polarization Pr˜0.18 μ C /c m2 . A clear anomaly in the dielectric data is observed at ˜TN revealing the presence of magnetoelectric coupling. A change in the lattice constants at TN has also been found, indicating the presence of a strong magnetoelastic coupling. Thus a coupling between lattice, electric, and magnetic degrees of freedom is established in bulk hexagonal LuFe O3 .
NASA Astrophysics Data System (ADS)
Donnadieu, Patricia
1994-05-01
The (Al6Li3Cu) (T2) quasicrystals are known to exhibit large deviations from the icosahedral symmetry. Series of electron diffraction patterns are used to investigate these imperfections in as-cast T, samples. A detailed analysis of the 5-fold and 3-fold symmetry diffraction patterns shows that they are compatible with the m3 point group instead of the m35 icosahedral group. This symmetry reduction is interprétéd as reminiscent of the cubic approximant phase (R-Al5Li3Cu) rather than of higher order approximant phases. This interpretation is supported by previous observations on crystal/quasicrystal phase transformation in the AlLiCu system. Les quasicristaux de phase T2(Al6Li3Cu) montrent d'importantes déviations à la symétrie icosaédrique. Ces imperfections sont mises en évidence par diffraction électronique dans des échantillons de phase T2 brut de coulée. Un examen détaillé des diagrammes de diffraction de symétrie d'ordre 3 et 5 révèle qu'ils sont compatibles avec le groupe ponctuel m3 au lieu du groupe de l'icosaèdre (m35). Cette réduction de symétrie est interprétée comme une réminiscence de la phase cubique approximante (R-Al5Li3Cu) et non l'apparition d'approximant d'ordre plus élevé. Cette interprétation est suggérée par des observations antérieures sur la transformation cristal/quasicristal dans le système AlLiCu.
Erratum to: Psammoma bodies in two types of human ovarian tumours: a mineralogical study
NASA Astrophysics Data System (ADS)
Meng, Fanlu; Wang, Changqiu; Li, Yan; Lu, Anhuai; Mei, Fang; Liu, Jianying; Du, Jingyun; Zhang, Yan
2015-06-01
Psammoma body (PB) is a common form of calcification in pathological diagnosis and closely relevant to tumours. This paper focuses on the mineralogical characteristics of PBs in ovarian serous cancer and teratoma by using polarization microscope (POM), environmental scanning electron microscope (ESEM), micro-Fourier transform infrared spectroscopy (micro-FT-IR), transmission electron microscope (TEM), micro-area synchrotron radiation X-ray powder diffraction (μ-SRXRD) and fluorescence (μ-SRXRF). Both the PBs in tissues and separated from eight typical cases were investigated. POM and ESEM observation revealed the inside-out growth pattern of PBs. μ-SRXRD and micro-FT-IR results demonstrated the dominant mineral phase of PBs in ovarian serous cancer and teratoma was AB-type carbonate hydroxyapatite (Ca10[(PO4)6-x-y(CO3)x(HPO4)y][(OH)2-u(CO3)u] with 0 ≤ x,y,u ≤ 2). As observed by ESEM and TEM, the layer-rich PBs in teratoma were up to 70 μm and mainly consisted of 5 nm-wide, 5-12 nm-long columnar crystals; the PBs in ovarian serous cancer with a maximum diameter of 35 μm were composed of slightly longer columnar crystals and granulates with 20-100 nm in diameter. The selected area electron diffraction patterns showed dispersed polycrystalline diffraction rings with arching behavior of (002) diffraction, indicating the aggregated nanocrystals grew in the preferred orientation of (002) face. The EDX and μ-SRXRF results together indicated the existence of Na, Mg, Zn and Sr in PBs. These detailed mineralogical characteristics may help uncover the nature of the pathological PBs in ovary.
Psammoma bodies in two types of human ovarian tumours: a mineralogical study
NASA Astrophysics Data System (ADS)
Fanlu, Meng; Changqiu, Wang; Yan, Li; Anhuai, Lu; Fang, Mei; Jianying, Liu; Jingyun, Du; Yan, Zhang
2015-06-01
Psammoma body (PB) is a common form of calcification in pathological diagnosis and closely relevant to tumours. This paper focuses on the mineralogical characteristics of PBs in ovarian serous cancer and teratoma by using polarization microscope (POM), environmental scanning electron microscope (ESEM), micro-Fourier transform infrared spectroscopy (micro-FT-IR), transmission electron microscope (TEM), micro-area synchrotron radiation X-ray powder diffraction (μ-SRXRD) and fluorescence (μ-SRXRF). Both the PBs in tissues and separated from eight typical cases were investigated. POM and ESEM observation revealed the inside-out growth pattern of PBs. μ-SRXRD and micro-FT-IR results demonstrated the dominant mineral phase of PBs in ovarian serous cancer and teratoma was AB-type carbonate hydroxyapatite (Ca10[(PO4)6-x-y(CO3)x(HPO4 2-)y][(OH)2-u(CO3)u] with 0 ≤ x,y,u ≤ 2). As observed by ESEM and TEM, the layer-rich PBs in teratoma were up to 70 μm and mainly consisted of 5 nm-wide, 5-12 nm-long columnar crystals; the PBs in ovarian serous cancer with a maximum diameter of 35 μm were composed of slightly longer columnar crystals and granulates with 20-100 nm in diameter. The selected area electron diffraction patterns showed dispersed polycrystalline diffraction rings with arching behavior of (002) diffraction, indicating the aggregated nanocrystals grew in the preferred orientation of (002) face. The EDX and μ-SRXRF results together indicated the existence of Na, Mg, Zn and Sr in PBs. These detailed mineralogical characteristics may help uncover the nature of the pathological PBs in ovary.
JCPDS-ICDD Research Associateship (Cooperative Program with NBS/NIST)
Wong-Ng, W.; McMurdie, H. F.; Hubbard, C. R.; Mighell, A. D.
2001-01-01
The Research Associateship program of the Joint Committee on Powder Diffraction-International Centre for Diffraction Data (JCPDS-ICDD, now known as the ICDD) at NBS/NIST was a long standing (over 35 years) successful industry-government cooperation. The main mission of the Associateship was to publish high quality x-ray reference patterns to be included in the Powder Diffraction File (PDF). The PDF is a continuing compilation of patterns gathered from many sources, compiled and published by the ICDD. As a result of this collaboration, more than 1500 high quality powder diffraction patterns, which have had a significant impact on the scientific community, were reported. In addition, various research collaborations with NBS/NIST also led to the development of several standard reference materials (SRMs) for instrument calibration and quantitative analyses, and computer software for data collection, calibration, reduction, for the editorial process of powder pattern publication, analysis of powder data, and for quantitative analyses. This article summarizes information concerning the JCPDS-ICDD organization, the Powder Diffraction File (PDF), history and accomplishments of the JCPDS-ICDD Research Associateship. PMID:27500061
Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, M. J., E-mail: macdonm@umich.edu; SLAC National Accelerator Laboratory, Menlo Park, California 94025; Vorberger, J.
2016-06-07
Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit [Higginbotham, J. Appl. Phys. 115, 174906 (2014)]. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate latticemore » strains for all initial crystallite orientations, enabling elastic anisotropy and sample texture effects to be modeled directly. The effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.« less
Tilka, J. A.; Park, J.; Ahn, Y.; ...
2016-07-06
Here, the highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale characterization of the structure of electronic materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. X-ray nanobeams exhibit optical coherence combined with a large angular divergence introduced by the x-ray focusing optics. The scattering of nanofocused x-ray beams from intricate semiconductor heterostructures produces a complex distribution of scattered intensity. We report here an extension of coherent xray optical simulations of convergent x-ray beam diffraction patterns to arbitrary x-ray incident angles to allow the nanobeam diffraction patternsmore » of complex heterostructures to be simulated faithfully. These methods are used to extract the misorientation of lattice planes and the strain of individual layers from synchrotron x-ray nanobeam diffraction patterns of Si/SiGe heterostructures relevant to applications in quantum electronic devices. The systematic interpretation of nanobeam diffraction patterns from semiconductor heterostructures presents a new opportunity in characterizing and ultimately designing electronic materials.« less
NASA Astrophysics Data System (ADS)
Puli, Venkata Sreenivas; Adireddy, Shiva; Elupula, Ravinder; Molugu, Sudheer; Shipman, Josh; Chrisey, Douglas B.
2017-05-01
We report the successful synthesis and structural characterization of barium lanthanum titanate Ba(1-x)LaxTiO3 (x=0.003,0.006,0.010) nanoparticles. The colloidal nanoparticles were prepared with high yield by a solvothermal method at temperatures as low as 150°C for 24h. The as-prepared nanopowders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The XRD studies revealed pseudo-cubic crystalline structure, with no impurity phases at room temperature. However ferroelectric tetragonal modes were clearly observed using Raman spectroscopy measurements. From TEM measurements, uniformly sized BLT nanoparticles were observed. Selected area diffraction TEM images revealed polycrystalline perovskite ring patterns, identified as corresponding to the tetragonal phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latychevskaia, Tatiana, E-mail: tatiana@physik.uzh.ch; Fink, Hans-Werner; Chushkin, Yuriy
Coherent diffraction imaging is a high-resolution imaging technique whose potential can be greatly enhanced by applying the extrapolation method presented here. We demonstrate the enhancement in resolution of a non-periodical object reconstructed from an experimental X-ray diffraction record which contains about 10% missing information, including the pixels in the center of the diffraction pattern. A diffraction pattern is extrapolated beyond the detector area and as a result, the object is reconstructed at an enhanced resolution and better agreement with experimental amplitudes is achieved. The optimal parameters for the iterative routine and the limits of the extrapolation procedure are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepoittevin, Christophe, E-mail: christophe.lepoittevin@neel.cnrs.fr
2016-10-15
The crystal structure of the strontium ferrite Sr{sub 5}Fe{sub 6}O{sub 15.4}, was solved by direct methods on electron diffraction tomography data acquired on a transmission electron microscope. The refined cell parameters are a=27.4047(3) Å, b=5.48590(7) Å and c=42.7442(4) Å in Fm2m symmetry. Its structure is built up from the intergrowth sequence between a quadruple perovskite-type layer with a complex rock-salt (RS)-type block. In the latter iron atoms are found in two different environments : tetragonal pyramid and tetrahedron. The structural model was refined by Rietveld method based on the powder X-ray diffraction pattern. - Highlights: • Complex structure of Sr{submore » 5}Fe{sub 6}O{sub 15.4} solved by electron diffraction tomography. • Observed Fourier maps allow determining missing oxygen atoms in the structure. • Structural model refined from powder X-ray diffraction data. • Intergrowth between quadruple perovskite layer with double rock-salt-type layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Sadao; Namikawa, Tadahiro; Hoshino, Masato
A Zernike-type phase contrast hard X-ray microscope was constructed at the Photon Factory BL3C2 (KEK). A white beam from a bending magnet was monochromatized by a silicon double crystal monochromator. Monochromatic parallel X-ray beam illuminated a sample, and transmitted and diffracted X-ray beams were imaged by a Fresnel zone plate (FZP) which had the outer zone width of 100 nm. A phase plate made of a thin aluminum foil with a pinhole was set at the back focal plane of the FZP. The phase plate modulated the diffraction beam from the FZP, whereas a direct beam passed through the pinhole.more » The resolution of the microscope was measured by observing a tantalum test pattern at an X-ray energy of 9 keV. A 100nm line-and-space pattern could be resolved. X-ray montage pictures of growing eggs of artemia (plankton) were obtained.« less
Structural investigation of Mimosa pudica Linn fibre
NASA Astrophysics Data System (ADS)
Patra, S. R.; Pattojoshi, P.; Tiwari, T. N.; Mallick, B.
2017-04-01
Sensitive plant ( Mimosa pudica Linn.) fibre is a natural fibre with electrically conductive property. Because of its electro-active sensing nature, it has been found very interesting among physicists, chemists, biologists, material scientists and technologists. So far as our knowledge is concerned; there is no report on the X-ray structure of M. pudica fibre using diffraction technique. In the present report, the M. pudica fibre has been extracted from the stem of the herb by sinking the stem in 10% NaOH solution for one week. The diffraction pattern of the fibre is found out to be cellulose-I. The effect of the fibre structure and its orientation due to different mounting have been investigated using X-ray diffraction technique. The I max of cellulose-I has been observed along (002) and (10\\overline{1)} for the perpendicular and parallel mounting of the native-fibre, respectively. Full width at half maxima of the diffraction profile turns out to be decreased with fibre orientation. Dimension of crystallite size D hkl estimated in the perpendicular mounting D_{hkl}^{ \\bot } is more as compared to that of the parallel mounting D_{hkl}^{{^{allel } }}. The smallest crystallite sizes observed in both parallel and perpendicular mounting are 18.78 and 30.78 Å respectively. It is expected that the present study may help to analyse the X-ray diffraction of fibre materials in general and natural fibres in particular.
Nederlof, Igor; van Genderen, Eric; Li, Yao-Wang; Abrahams, Jan Pieter
2013-01-01
When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e− Å−2), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins. PMID:23793148
Calculating cellulose diffraction patterns
USDA-ARS?s Scientific Manuscript database
Although powder diffraction of cellulose is a common experiment, the patterns are not widely understood. The theory is mathematical, there are numerous different crystal forms, and the conventions are not standardized. Experience with IR spectroscopy is not directly transferable. An awful error, tha...
Publications - GMC 196 | Alaska Division of Geological & Geophysical
DGGS GMC 196 Publication Details Title: X-ray diffraction patterns of clay from the following wells for more information. Bibliographic Reference Unknown, 1992, X-ray diffraction patterns of clay from
Parrow, Nermi L; Tu, Hongbin; Nichols, James; Violet, Pierre-Christian; Pittman, Corinne A; Fitzhugh, Courtney; Fleming, Robert E; Mohandas, Narla; Tisdale, John F; Levine, Mark
2017-06-01
Decreased erythrocyte deformability, as measured by ektacytometry, may be associated with disease severity in sickle cell anemia (SCA). Heterogeneous populations of rigid and deformable cells in SCA blood result in distortions of diffraction pattern measurements that correlate with the concentration of hemoglobin S (HbS) and the percentage of irreversibly sickled cells. We hypothesize that red cell heterogeneity, as well as deformability, will also be influenced by the concentration of alternative hemoglobins such as fetal hemoglobin (HbF) and the adult variant, HbA 2 . To test this hypothesis, we investigate the relationship between diffraction pattern distortion, osmotic gradient ektacytometry parameters, and the hemoglobin composition of SCA blood. We observe a correlation between the extent of diffraction pattern distortions and percentage of HbF and HbA 2 . Osmotic gradient ektacytometry data indicate that minimum elongation in the hypotonic region is positively correlated with HbF, as is the osmolality at which it occurs. The osmolality at both minimum and maximum elongation is inversely correlated with HbS and HbA 2 . These data suggest that HbF may effectively improve surface-to-volume ratio and osmotic fragility in SCA erythrocytes. HbA 2 may be relatively ineffective in improving these characteristics or cellular hydration at the levels found in this patient cohort. Copyright © 2017. Published by Elsevier Inc.
Reflector antennas with low sidelobes, low cross polarization, and high aperture efficiency
NASA Technical Reports Server (NTRS)
Faigen, I. M.; Reichert, C. F.; Sletten, C. J.; Shore, R. A.
1984-01-01
Techniques are presented for computing the horn near field patterns on the subreflectors and for correcting the phase center errors of the horn pattern by shaping the subreflector surface. The diffraction pattern computations for scanned beams are described. The effects of dish aperture diffraction on pattern bandwidth are investigated. A model antenna consisting of a reflector, shaped subreflector, and corrugated feed horn is described.
NASA Astrophysics Data System (ADS)
Wang, Jing; Zhang, Xiao-Min; Han, Wei; Li, Fu-Quan; Zhou, Li-Dan; Feng, Bin; Xiang, Yong
2011-08-01
We report the experimental investigation of a stimulated rotational Raman scattering effect in long air paths on SG-III TIL, with a 1053 nm, 20-cm-diameter, linearly polarized, 3 ns flat-topped laser pulse. An intense speckle pattern of near field with thickly dotted hot spots is observed at the end of propagation with an intensity-length product above 17TW/cm. The Stokes developing from the scattering of the laser beam by quantum fluctuations is characterized by a combination of high spatial frequency components. The observed speckle pattern with small-diameter hot spots results from the combination of the nonlinear Raman amplification and the linear diffraction propagation effect of the Stokes with a noise pattern arising from the spontaneous Raman scattering. A new promising suppression concept based on the special characteristic of the Stokes, called active and selective filtering of Stokes, is proposed.
Quantum beating patterns observed in the energetics of Pb film nanostructures.
Czoschke, P; Hong, Hawoong; Basile, L; Chiang, T-C
2004-07-16
We have studied the nanoscale structural evolution of Pb films grown at 110 K on a Si(111) substrate as they are annealed to increasingly higher temperatures. Surface x-ray diffraction from a synchrotron source is used to observe the morphology evolve from an initial smooth film through various metastable states before reaching a state of local equilibrium, at which point the coverage of different height Pb structures is analyzed and related to the thickness-dependent surface energy. Rich patterns are seen in the resulting energy landscape similar to the beating patterns heard from the interference of two musical notes of similar pitch. The explanation is, however, very simple, as demonstrated by a model calculation based on the confinement of free electrons to a quantum well.
Quantum Beating Patterns Observed in the Energetics of Pb Film Nanostructures
NASA Astrophysics Data System (ADS)
Czoschke, P.; Hong, Hawoong; Basile, L.; Chiang, T.-C.
2004-07-01
We have studied the nanoscale structural evolution of Pb films grown at 110K on a Si(111) substrate as they are annealed to increasingly higher temperatures. Surface x-ray diffraction from a synchrotron source is used to observe the morphology evolve from an initial smooth film through various metastable states before reaching a state of local equilibrium, at which point the coverage of different height Pb structures is analyzed and related to the thickness-dependent surface energy. Rich patterns are seen in the resulting energy landscape similar to the beating patterns heard from the interference of two musical notes of similar pitch. The explanation is, however, very simple, as demonstrated by a model calculation based on the confinement of free electrons to a quantum well.
A review and reassessment of diffraction, scattering, and shadows in electrodynamics
NASA Astrophysics Data System (ADS)
Berg, Matthew J.; Sorensen, Christopher M.
2018-05-01
The concepts of diffraction and scattering are well known and considered fundamental in optics and other wave phenomena. For any type of wave, one way to define diffraction is the spreading of waves, i.e., no change in the average propagation direction, while scattering is the deflection of waves with a clear change of propagation direction. However, the terms "diffraction" and "scattering" are often used interchangeably, and hence, a clear distinction between the two is difficult to find. This review considers electromagnetic waves and retains the simple definition that diffraction is the spreading of waves but demonstrates that all diffraction patterns are the result of scattering. It is shown that for electromagnetic waves, the "diffracted" wave from an object is the Ewald-Oseen extinction wave in the far-field zone. The intensity distribution of this wave yields what is commonly called the diffraction pattern. Moreover, this is the same Ewald-Oseen wave that cancels the incident wave inside the object and thereafter continues to do so immediately behind the object to create a shadow. If the object is much wider than the beam but has a hole, e.g., a screen with an aperture, the Ewald-Oseen extinction wave creates the shadow behind the screen and the incident light that passes through the aperture creates the diffraction pattern. This point of view also illustrates Babinet's principle. Thus, it is the Ewald-Oseen extinction theorem that binds together diffraction, scattering, and shadows.
Local and average structures of BaTiO 3-Bi(Zn 1/2Ti 1/2)O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usher, Tedi-Marie; Iamsasri, Thanakorn; Forrester, Jennifer S.
The complex crystallographic structures of (1-x)BaTiO 3-xBi(Zn 1/2Ti 1/2)O 3 (BT-xBZT) are examined using high resolution synchrotron X-ray diffraction, neutron diffraction, and neutron pair distribution function (PDF) analyses. The short-range structures are characterized from the PDFs, and a combined analysis of the X-ray and neutron diffraction patterns is used to determine the long-range structures. Our results demonstrate that the structure appears different when averaged over different length scales. In all compositions, the local structures determined from the PDFs show local tetragonal distortions (i.e., c/a > 1). But, a box-car fitting analysis of the PDFs reveals variations at different length scales.more » For 0.80BT-0.20BZT and 0.90BT-0.10BZT, the tetragonal distortions decrease at longer atom-atom distances (e.g., 30 vs. 5 ). When the longest distances are evaluated (r > 40 ), the lattice parameters approach cubic. Neutron and X-ray diffraction yield further information about the long-range structure. Compositions 0.80BT-0.20BZT and 0.90BT-0.10BZT appear cubic by Bragg diffraction (no peak splitting), consistent with the PDFs at long distances. However, these patterns cannot be adequately fit using a cubic lattice model; modeling their structures with the P4mm space group allows for a better fit to the patterns because the space group allows for c-axis atomic displacements that occur at the local scale. Furthermore, for the compositions 0.92BT-0.08BZT and 0.94BT-0.06BZT, strong tetragonal distortions are observed at the local scale and a less-distorted tetragonal structure is observed at longer length scales. In Rietveld refinements, the latter is modeled using a tetragonal phase. Since the peak overlap in these two-phase compositions limits the ability to model the local-scale structures as tetragonal, it is approximated in the refinements as a cubic phase. These results demonstrate that alloying BT with BZT results in increased disorder and disrupts the long-range ferroelectric symmetry present in BT, while the large tetragonal distortion present in BZT persists at the local scale.« less
Local and average structures of BaTiO 3-Bi(Zn 1/2Ti 1/2)O 3
Usher, Tedi-Marie; Iamsasri, Thanakorn; Forrester, Jennifer S.; ...
2016-11-11
The complex crystallographic structures of (1-x)BaTiO 3-xBi(Zn 1/2Ti 1/2)O 3 (BT-xBZT) are examined using high resolution synchrotron X-ray diffraction, neutron diffraction, and neutron pair distribution function (PDF) analyses. The short-range structures are characterized from the PDFs, and a combined analysis of the X-ray and neutron diffraction patterns is used to determine the long-range structures. Our results demonstrate that the structure appears different when averaged over different length scales. In all compositions, the local structures determined from the PDFs show local tetragonal distortions (i.e., c/a > 1). But, a box-car fitting analysis of the PDFs reveals variations at different length scales.more » For 0.80BT-0.20BZT and 0.90BT-0.10BZT, the tetragonal distortions decrease at longer atom-atom distances (e.g., 30 vs. 5 ). When the longest distances are evaluated (r > 40 ), the lattice parameters approach cubic. Neutron and X-ray diffraction yield further information about the long-range structure. Compositions 0.80BT-0.20BZT and 0.90BT-0.10BZT appear cubic by Bragg diffraction (no peak splitting), consistent with the PDFs at long distances. However, these patterns cannot be adequately fit using a cubic lattice model; modeling their structures with the P4mm space group allows for a better fit to the patterns because the space group allows for c-axis atomic displacements that occur at the local scale. Furthermore, for the compositions 0.92BT-0.08BZT and 0.94BT-0.06BZT, strong tetragonal distortions are observed at the local scale and a less-distorted tetragonal structure is observed at longer length scales. In Rietveld refinements, the latter is modeled using a tetragonal phase. Since the peak overlap in these two-phase compositions limits the ability to model the local-scale structures as tetragonal, it is approximated in the refinements as a cubic phase. These results demonstrate that alloying BT with BZT results in increased disorder and disrupts the long-range ferroelectric symmetry present in BT, while the large tetragonal distortion present in BZT persists at the local scale.« less
Li, C; Jacques, S D M; Chen, Y; Daisenberger, D; Xiao, P; Markocsan, N; Nylen, P; Cernik, R J
2016-12-01
The average residual stress distribution as a function of depth in an air plasma-sprayed yttria stabilized zirconia top coat used in thermal barrier coating (TBC) systems was measured using synchrotron radiation X-ray diffraction in reflection geometry on station I15 at Diamond Light Source, UK, employing a series of incidence angles. The stress values were calculated from data deconvoluted from diffraction patterns collected at increasing depths. The stress was found to be compressive through the thickness of the TBC and a fluctuation in the trend of the stress profile was indicated in some samples. Typically this fluctuation was observed to increase from the surface to the middle of the coating, decrease a little and then increase again towards the interface. The stress at the interface region was observed to be around 300 MPa, which agrees well with the reported values. The trend of the observed residual stress was found to be related to the crack distribution in the samples, in particular a large crack propagating from the middle of the coating. The method shows promise for the development of a nondestructive test for as-manufactured samples.
Decay patterns of brick wall in atmospheric environment: a possible analogue to rock weathering?
NASA Astrophysics Data System (ADS)
Prikryl, Richard; Weishauptová, Zuzana; Přikrylová, Jiřina; Jablonský, Jakub
2015-04-01
This study is focused on the decay of bricks exposed in enclosing wall of the Regional maternal hospital in Prague city centre (Czech Republic). The hospital, listed as a Czech architectural monument, has been constructed from locally produced bricks in neo-Gothic style in the period of 1867-1875. The bricks of the enclosing wall show sequence of decay patterns that resemble weathering forms observable on monuments built of natural stone. This study aims to study the observed decay patterns by means of in situ mapping and by analyses of decayed material (optical microscopy, SEM/EDS, X-ray diffraction, Hg-porosimetry, water soluble salts analysis) and to interpret them based on the phase composition and other properties of bricks. Finally, the decay patterns of studied brick wall are compared to known weathering sequences on porous rocks (both on natural outcrops and on artistic monuments).
NASA Astrophysics Data System (ADS)
Lindberg, P. A. P.; Shen, Z.-X.; Wells, B. O.; Mitzi, D. B.; Lindau, I.
1988-12-01
The surface structure of Bi2Sr2CaCu2O(8+delta) has been studied using low-energy electron diffraction (LEED). Sharp diffraction spots indicative of a well-ordered surface are observed. The LEED patterns unequivocally show that this type of material preferentially cleaves along the a-b planes of the nearly tetragonal unit cell. A superstructure extending along one of the axes in the a-b plane (b) is found to have a periodicity of 27 + or - 0.5 A, in good agreement with earlier studies of the three-dimensional crystal structure. The superstructure at the surface is nonlocal in character and reflects the long-range superlattice of the bulk along the b axis. Intensity modulations of the diffraction spots oriented along the b axis are also reported and discussed in terms of the cell dimension of the unit cell along the b axis.
Improved crystal orientation and physical properties from single-shot XFEL stills
Sauter, Nicholas K.; Hattne, Johan; Brewster, Aaron S.; ...
2014-11-28
X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factors from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model themore » diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Bragg's law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise.« less
Improved crystal orientation and physical properties from single-shot XFEL stills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauter, Nicholas K.; Hattne, Johan; Brewster, Aaron S.
X-ray diffraction patterns from still crystals are inherently difficult to process because the crystal orientation is not uniquely determined by measuring the Bragg spot positions. Only one of the three rotational degrees of freedom is directly coupled to spot positions; the other two rotations move Bragg spots in and out of the reflecting condition but do not change the direction of the diffracted rays. This hinders the ability to recover accurate structure factors from experiments that are dependent on single-shot exposures, such as femtosecond diffract-and-destroy protocols at X-ray free-electron lasers (XFELs). Here, additional methods are introduced to optimally model themore » diffraction. The best orientation is obtained by requiring, for the brightest observed spots, that each reciprocal-lattice point be placed into the exact reflecting condition implied by Bragg's law with a minimal rotation. This approach reduces the experimental uncertainties in noisy XFEL data, improving the crystallographic R factors and sharpening anomalous differences that are near the level of the noise.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brewster, Aaron S.; Sawaya, Michael R.; University of California, Los Angeles, CA 90095-1570
2015-02-01
Special methods are required to interpret sparse diffraction patterns collected from peptide crystals at X-ray free-electron lasers. Bragg spots can be indexed from composite-image powder rings, with crystal orientations then deduced from a very limited number of spot positions. Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of the Computational Crystallography Toolbox (cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data setmore » from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set of diffraction patterns with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented.« less
Dynamical scattering in coherent hard x-ray nanobeam Bragg diffraction
NASA Astrophysics Data System (ADS)
Pateras, A.; Park, J.; Ahn, Y.; Tilka, J. A.; Holt, M. V.; Kim, H.; Mawst, L. J.; Evans, P. G.
2018-06-01
Unique intensity features arising from dynamical diffraction arise in coherent x-ray nanobeam diffraction patterns of crystals having thicknesses larger than the x-ray extinction depth or exhibiting combinations of nanoscale and mesoscale features. We demonstrate that dynamical scattering effects can be accurately predicted using an optical model combined with the Darwin theory of dynamical x-ray diffraction. The model includes the highly divergent coherent x-ray nanobeams produced by Fresnel zone plate focusing optics and accounts for primary extinction, multiple scattering, and absorption. The simulation accurately reproduces the dynamical scattering features of experimental diffraction patterns acquired from a GaAs/AlGaAs epitaxial heterostructure on a GaAs (001) substrate.
Crystal structure determination of new antimitotic agent bis(p-fluorobenzyl)trisulfide.
An, Haoyun; Hu, Xiurong; Gu, Jianming; Chen, Linshen; Xu, Weiming; Mo, Xiaopeng; Xu, Wanhong; Wang, Xiaobo; Xu, Xiao
2008-01-01
The purpose of this research was to investigate the physical characteristics and crystalline structure of bis(p-fluorobenzyl)trisulfide, a new anti-tumor agent. Methods used included X-ray single crystal diffraction, X-ray powder diffraction (XRPD), Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetric (DSC) and thermogravimetric (TG) analyses. The findings obtained with X-ray single crystal diffraction showed that a monoclinic unit cell was a = 12.266(1) A, b = 4.7757(4) A, c = 25.510(1) A, beta = 104.25(1) degrees ; cell volume = 1,448.4(2) A(3), Z = 4, and space group C2/c. The XRPD studies of the four crystalline samples, obtained by recrystallization from four different solvents, indicated that they had the same diffraction patterns. The diffraction pattern stimulated from the crystal structure data is in excellent agreement with the experimental results. In addition, the identical FT-IR spectra of the four crystalline samples revealed absorption bands corresponding to S-S and C-S stretching as well as the characteristic aromatic substitution. Five percent weight loss at 163.3 degrees C was observed when TG was used to study the decomposition process in the temperature range of 20-200 degrees C. DSC also allowed for the determination of onset temperatures at 60.4(1)-60.7(3) degrees C and peak temperatures at 62.1(3)-62.4(3) degrees C for the four crystalline samples studied. The results verified that the single crystal structure shared the same crystal form with the four crystalline samples investigated.
Melo, Leandro A; Jesus-Silva, Alcenísio J; Chávez-Cerda, Sabino; Ribeiro, Paulo H Souto; Soares, Willamys C
2018-04-23
We introduce a simple method to characterize the topological charge associated with the orbital angular momentum of a m-order elliptic light beam. This method consists in the observation of the far field pattern of the beam carrying orbital angular momentum, diffracted from a triangular aperture. We show numerically and experimentally, for Mathieu, Ince-Gaussian, and vortex Hermite-Gaussian beams, that only isosceles triangular apertures allow us to determine in a precise and direct way, the magnitude m of the order and the number and sign of unitary topological charges of isolated vortices inside the core of these beams.
Crystallization and X-ray diffraction of crystals formed in water-plasticized amorphous lactose.
Jouppila, K; Kansikas, J; Roos, Y H
1998-01-01
Effects of storage time and relative humidity on crystallization and crystal forms produced from amorphous lactose were investigated. Crystallization was observed from time-dependent loss of sorbed water and increasing intensities of peaks in X-ray diffraction patterns. The rate of crystallization increased with increasing storage relative humidity. Lactose crystallized mainly as alpha-lactose monohydrate and anhydrous crystals with alpha- and beta-lactose in a molar ratio of 5:3. The results suggested that the crystal form was defined by the early nucleation process. The crystallization data are important in modeling of crystallization phenomena and prediction of stability of lactose-containing food and pharmaceutical materials.
NASA Astrophysics Data System (ADS)
Barwick, Brett; Gronniger, Glen; Yuan, Lu; Liou, Sy-Hwang; Batelaan, Herman
2006-10-01
Electron diffraction from metal coated freestanding nanofabricated gratings is presented, with a quantitative path integral analysis of the electron-grating interactions. Electron diffraction out to the 20th order was observed indicating the high quality of our nanofabricated gratings. The electron beam is collimated to its diffraction limit with ion-milled material slits. Our path integral analysis is first tested against single slit electron diffraction, and then further expanded with the same theoretical approach to describe grating diffraction. Rotation of the grating with respect to the incident electron beam varies the effective distance between the electron and grating bars. This allows the measurement of the image charge potential between the electron and the grating bars. Image charge potentials that were about 15% of the value for that of a pure electron-metal wall interaction were found. We varied the electron energy from 50to900eV. The interaction time is of the order of typical metal image charge response times and in principle allows the investigation of image charge formation. In addition to the image charge interaction there is a dephasing process reducing the transverse coherence length of the electron wave. The dephasing process causes broadening of the diffraction peaks and is consistent with a model that ascribes the dephasing process to microscopic contact potentials. Surface structures with length scales of about 200nm observed with a scanning tunneling microscope, and dephasing interaction strength typical of contact potentials of 0.35eV support this claim. Such a dephasing model motivated the investigation of different metallic coatings, in particular Ni, Ti, Al, and different thickness Au-Pd coatings. Improved quality of diffraction patterns was found for Ni. This coating made electron diffraction possible at energies as low as 50eV. This energy was limited by our electron gun design. These results are particularly relevant for the use of these gratings as coherent beam splitters in low energy electron interferometry.
Iridescence of a shell of mollusk Haliotis Glabra
NASA Astrophysics Data System (ADS)
Tan, T. L.; Wong, D.; Lee, Paul
2004-10-01
Pearls and shells of some mollusks are attractive inorganic materials primarily owing to the beauty of their natural lustrous and iridescent surface. The iridescent colors can be explained by diffraction or interference or both, depending on the microstructure of the surface. Strong iridescent colors are very evident on the polished shell of the mollusk Haliotis Glabra, commonly known as abalone. It would be interesting to study how these colors are produced on the surface of the shell. By using a scanning electron microscope (SEM), the surface of the shell is found to have a fine-scale diffraction grating structure, and stacks of thin crystalline nacreous layers or platelets are found below the surface. These observations suggest that the iridescent colors are caused by both diffraction and interference. From measurements done on the diffraction patterns that were obtained using a He-Ne laser illuminating the shell, the groove width of the grating structure was derived. Good agreement was found between the derived groove density by diffraction and that measured directly using the SEM. The crystalline structure of the nacreous layers of the shell is studied using Fourier transform infrared spectroscopy and SEM observations. The infrared absorption peaks of 700, 713, 862 and 1083 cm-1 confirmed that the nacre of the shell is basically aragonite. The strong iridescent colors of the shell are the result of high groove density on the surface which causes diffraction. The uniform stacking of layers of nacre below the surface of the shell also causes interference effects that contribute to the iridescent colors.
Nakajima, Nobuharu
2010-07-20
When a very intense beam is used for illuminating an object in coherent x-ray diffraction imaging, the intensities at the center of the diffraction pattern for the object are cut off by a beam stop that is utilized to block the intense beam. Until now, only iterative phase-retrieval methods have been applied to object reconstruction from a single diffraction pattern with a deficiency of central data due to a beam stop. As an alternative method, I present a noniterative solution in which an interpolation method based on the sampling theorem for the missing data is used for object reconstruction with our previously proposed phase-retrieval method using an aperture-array filter. Computer simulations demonstrate the reconstruction of a complex-amplitude object from a single diffraction pattern with a missing data area, which is generally difficult to treat with the iterative methods because a nonnegativity constraint cannot be used for such an object.
Real-time observation of X-ray diffraction patterns with the Lixiscope
NASA Technical Reports Server (NTRS)
Chung, D. Y.; Tsang, T.; Yin, L. I.; Anderson, J. R.
1981-01-01
The feasibility of the Lixiscope (Low Intensity X-ray Imaging Scope) is demonstrated for real-time observation of transmission Laue patterns. Making use of the high-gain capability of microchannel plate (MCP) visible-light image intensifier tubes, X-ray images are converted to visible-light images by a scintillator. Pb discs are taped to the center of the Lixiscope input face, and crystal samples are held on a goniometer stage with modeling clay. With a compact size to facilitate off axis viewing, and real-time viewing to allow instantaneous response, the Lixiscope may prove useful in dynamic studies of the effects of plastic flows, stresses, high pressures, and low temperatures.
NASA Technical Reports Server (NTRS)
Heedy, D. J.; Burnside, W. D.
1984-01-01
The moment method and the uniform geometrical theory of diffraction are utilized to obtain two separate solutions for the E-plane field pattern of an aperture-matched horn antenna. This particular horn antenna consists of a standard pyramidal horn with the following modifications: a rolled edge section attached to the aperture edges and a curved throat section. The resulting geometry provides significantly better performance in terms of the pattern, impedance, and frequency characteristics than normally obtainable. The moment method is used to calculate the E-plane pattern and BSWR of the antenna. However, at higher frequencies, large amounts of computation time are required. The uniform geometrical theory of diffraction provides a quick and efficient high frequency solution for the E-plane field pattern. In fact, the uniform geometrical theory of diffraction may be used to initially design the antenna; then, the moment method may be applied to fine tune the design. This procedure has been successfully applied to a compact range feed design.
Brewster, Aaron S.; Sawaya, Michael R.; Rodriguez, Jose; ...
2015-01-23
Still diffraction patterns from peptide nanocrystals with small unit cells are challenging to index using conventional methods owing to the limited number of spots and the lack of crystal orientation information for individual images. New indexing algorithms have been developed as part of the Computational Crystallography Toolbox( cctbx) to overcome these challenges. Accurate unit-cell information derived from an aggregate data set from thousands of diffraction patterns can be used to determine a crystal orientation matrix for individual images with as few as five reflections. These algorithms are potentially applicable not only to amyloid peptides but also to any set ofmore » diffraction patterns with sparse properties, such as low-resolution virus structures or high-throughput screening of still images captured by raster-scanning at synchrotron sources. As a proof of concept for this technique, successful integration of X-ray free-electron laser (XFEL) data to 2.5 Å resolution for the amyloid segment GNNQQNY from the Sup35 yeast prion is presented.« less
Scattering apodizer for laser beams
Summers, Mark A.; Hagen, Wilhelm F.; Boyd, Robert D.
1985-01-01
A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.
Scattering apodizer for laser beams
Summers, M.A.; Hagen, W.F.; Boyd, R.D.
1984-01-01
A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.
Undergraduate Experiment with Fractal Diffraction Gratings
ERIC Educational Resources Information Center
Monsoriu, Juan A.; Furlan, Walter D.; Pons, Amparo; Barreiro, Juan C.; Gimenez, Marcos H.
2011-01-01
We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics…
Observation of quantum interferences via light-induced conical intersections in diatomic molecules
Natan, Adi; Ware, Matthew R.; Prabhudesai, Vaibhav S.; ...
2016-04-07
We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H + 2. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed 2-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state andmore » the cone apex. As a result, these findings are supported by numerical solutions of the time-dependent Schrodinger equation for similar experimental conditions.« less
Observation of quantum interferences via light-induced conical intersections in diatomic molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natan, Adi; Ware, Matthew R.; Prabhudesai, Vaibhav S.
We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H + 2. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed 2-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state andmore » the cone apex. As a result, these findings are supported by numerical solutions of the time-dependent Schrodinger equation for similar experimental conditions.« less
NASA Astrophysics Data System (ADS)
Nakamura, N.; Anno, K.; Kono, S.
1991-10-01
A single-domain Si(111)4 × 1-In surface has been studied by μ-probe reflection high-energy electron diffraction (RHEED) to elucidate the symmetry of the 4 × 1 surface. Azimuthal diffraction patterns of In MNN Auger electron have been obtained by a μ-probe Auger electron diffraction (AED) apparatus from the single-domain Si(111)4 × 1-In surface. On the basis of information from scanning tunneling microscopy [J. Microsc. 152 (1988) 727] and under the assumption that the 4 × 1 surface is composed of In-overlayers, the μ-probe AED patterns were kinematically analyzed to reach a concrete model of indium arrangement.
NASA Technical Reports Server (NTRS)
Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)
1996-01-01
An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.
High-resolution three-dimensional partially coherent diffraction imaging.
Clark, J N; Huang, X; Harder, R; Robinson, I K
2012-01-01
The wave properties of light, particularly its coherence, are responsible for interference effects, which can be exploited in powerful imaging applications. Coherent diffractive imaging relies heavily on coherence and has recently experienced rapid growth. Coherent diffractive imaging recovers an object from its diffraction pattern by computational phasing with the potential of wavelength-limited resolution. Diminished coherence results in reconstructions that suffer from artefacts or fail completely. Here we demonstrate ab initio phasing of partially coherent diffraction patterns in three dimensions, while simultaneously determining the coherence properties of the illuminating wavefield. Both the dramatic improvements in image interpretability and the three-dimensional evaluation of the coherence will have broad implications for quantitative imaging of nanostructures and wavefield characterization with X-rays and electrons.
Features of Talbot effect on phase diffraction grating
NASA Astrophysics Data System (ADS)
Brazhnikov, Denis G.; Danko, Volodymyr P.; Kotov, Myhaylo M.; Kovalenko, Andriy V.
2018-01-01
The features of the Talbot effect using the phase diffraction gratings have been considered. A phase grating, unlike an amplitude grating, gives a constant light intensity in the observation plane at a distance multiple to half of the Talbot length ZT. In this case, the subject of interest consists in so-called fractional Talbot effect with the periodic intensity distribution observed in planes shifted from the position nZT/2 (the so-called Fresnel images). Binary phase diffraction gratings with varying phase steps have been investigated. Gratings were made photographically on holographic plates PFG-01. The phase shift was obtained by modulating the emulsion refraction index of the plates. Two types of gratings were used: a square grating with a fill factor of 0.5 and a checkerwise grating (square areas with a bigger and lower refractive index alternate in a checkerboard pattern). By the example of these gratings, the possibility of obtaining in the observation plane an image of a set of equidistant spots with a size smaller than the size of the phase-shifting elements of the grating (the so-called Talbot focusing) has been shown. Clear images of spots with a sufficient signal-to-noise ratio have been obtained for a square grating. Their period was equal to the period of the grating. For a grating with a checkerwise distribution of the refractive index, the spots have been located in positions corresponding to the centres of cells. In addition, the quality of the resulting pattern strongly depended on the magnitude of a grating phase step. As a result of the work, the possibility to obtain Talbot focusing has been shown and the use of this effect to wavefront investigation with a gradient sensor has been demonstrated.
Common arc method for diffraction pattern orientation.
Bortel, Gábor; Tegze, Miklós
2011-11-01
Very short pulses of X-ray free-electron lasers opened the way to obtaining diffraction signal from single particles beyond the radiation dose limit. For three-dimensional structure reconstruction many patterns are recorded in the object's unknown orientation. A method is described for the orientation of continuous diffraction patterns of non-periodic objects, utilizing intensity correlations in the curved intersections of the corresponding Ewald spheres, and hence named the common arc orientation method. The present implementation of the algorithm optionally takes into account Friedel's law, handles missing data and is capable of determining the point group of symmetric objects. Its performance is demonstrated on simulated diffraction data sets and verification of the results indicates a high orientation accuracy even at low signal levels. The common arc method fills a gap in the wide palette of orientation methods. © 2011 International Union of Crystallography
Pauling, L
1987-06-01
It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl(6) and Mg(32)(Al,Zn)(49) and the neutron powder diffraction pattern of MnAl(6) are compatible with the proposed 820-atom primitive cubic structure [Pauling, L. (1987) Phys. Rev. Lett. 58, 365-368]. The values found for the edge of the unit cube are 23.365 A (x-ray) and 23.416 A (neutron) for MnAl(6) and 24.313 A (x-ray) for Mg(32)(Al,Zn)(49).
Pauling, Linus
1987-01-01
It is shown that the x-ray powder diffraction patterns of rapidly quenched MnAl6 and Mg32(Al,Zn)49 and the neutron powder diffraction pattern of MnAl6 are compatible with the proposed 820-atom primitive cubic structure [Pauling, L. (1987) Phys. Rev. Lett. 58, 365-368]. The values found for the edge of the unit cube are 23.365 Å (x-ray) and 23.416 Å (neutron) for MnAl6 and 24.313 Å (x-ray) for Mg32(Al,Zn)49. PMID:16593841
NASA Astrophysics Data System (ADS)
von Boehn, Bernhard; Mehrwald, Sarah; Imbihl, Ronald
2018-04-01
Various oxidation reactions with NO as oxidant have been investigated on a partially VOx covered Rh(111) surface (θV = 0.3 MLE) in the 10-4 mbar range, using photoelectron emission microscopy (PEEM) as spatially resolving method. The PEEM studies are complemented by rate measurements and by low-energy electron diffraction. In catalytic methanol oxidation with NO and in the NH3 + NO reaction, we observe that starting from a homogeneous surface with increasing temperature first a stripe pattern develops, followed by a pattern in which macroscopic holes of nearly bare metal surface are surrounded by a VOx film. These hole patterns represent just the inverse of the VOx distribution patterns seen if O2 instead of NO is used as oxidant.
NASA Astrophysics Data System (ADS)
Debiossac, M.; Zugarramurdi, A.; Khemliche, H.; Roncin, P.; Borisov, A. G.; Momeni, A.; Atkinson, P.; Eddrief, M.; Finocchi, F.; Etgens, V. H.
2014-10-01
A grazing incidence fast atom diffraction (GIFAD or FAD) setup, installed on a molecular beam epitaxy chamber, has been used to characterize the β2(2×4) reconstruction of a GaAs(001) surface at 530∘C under an As4 overpressure. Using a 400-eV 4He beam, high-resolution diffraction patterns with up to eighty well-resolved diffraction orders are observed simultaneously, providing a detailed fingerprint of the surface structure. Experimental diffraction data are in good agreement with results from quantum scattering calculations based on an ab initio projectile-surface interaction potential. Along with exact calculations, we show that a straightforward semiclassical analysis allows the features of the diffraction chart to be linked to the main characteristics of the surface reconstruction topography. Our results demonstrate that GIFAD is a technique suitable for measuring in situ the subtle details of complex surface reconstructions. We have performed measurements at very small incidence angles, where the kinetic energy of the projectile motion perpendicular to the surface can be reduced to less than 1 meV. This allowed the depth of the attractive van der Waals potential well to be estimated as -8.7 meV in very good agreement with results reported in literature.
2014-11-26
zeolite and showed that a step in the Ar isotherm coincides with a change in the neutron diffraction pattern. Using grand canonical Monte Carlo...the stepped Ar isotherm at 77 K for a MFI zeolite . More recently, Mallon et al. surmised that the hysteresis of the Ar 87 K adsorption isotherm of
Kodama, Wataru; Nakasako, Masayoshi
2011-08-01
Coherent x-ray diffraction microscopy is a novel technique in the structural analyses of particles that are difficult to crystallize, such as the biological particles composing living cells. As water is indispensable for maintaining particles in functional structures, sufficient hydration of targeted particles is required during sample preparation for diffraction microscopy experiments. However, the water enveloping particles also contributes significantly to the diffraction patterns and reduces the electron-density contrast of the sample particles. In this study, we propose a protocol for the structural analyses of particles in water by applying a three-dimensional reconstruction method in real space for the projection images phase-retrieved from diffraction patterns, together with a developed density modification technique. We examined the feasibility of the protocol through three simulations involving a protein molecule in a vacuum, and enveloped in either a droplet or a cube-shaped water. The simulations were carried out for the diffraction patterns in the reciprocal planes normal to the incident x-ray beam. This assumption and the simulation conditions corresponded to experiments using x-ray wavelengths of shorter than 0.03 Å. The analyses demonstrated that our protocol provided an interpretable electron-density map. Based on the results, we discuss the advantages and limitations of the proposed protocol and its practical application for experimental data. In particular, we examined the influence of Poisson noise in diffraction patterns on the reconstructed three-dimensional electron density in the proposed protocol.
3D Diffraction Microscope Provides a First Deep View
NASA Astrophysics Data System (ADS)
Miao, Jianwei
2005-03-01
When a coherent diffraction pattern is sampled at a spacing sufficiently finer than the Bragg peak frequency (i.e. the inverse of the sample size), the phase information is in principle encoded inside the diffraction pattern, and can be directly retrieved by using an iterative process. In combination of this oversampling phasing method with either coherent X-rays or electrons, a novel form of diffraction microscopy has recently been developed to image nanoscale materials and biological structures. In this talk, I will present the principle of the oversampling method, discuss the first experimental demonstration of this microscope, and illustrate some applications in nanoscience and biology.
Hair treatment process providing dispersed colors by light diffraction
Sutton, Richard Matthew Charles; Lamartine, Bruce Carvell; Orler, E. Bruce; Song, Shuangqi
2015-12-22
A hair treatment process for providing dispersed colors by light diffraction including (a) coating the hair with a material comprising a polymer, (b) pressing the hair with a pressing device including one or more surfaces, and (c) forming a secondary nanostructured surface pattern on the hair that is complementary to the primary nanostructured surface pattern on the one or more surfaces of the pressing device. The secondary nanostructured surface pattern diffracts light into dispersed colors that are visible on the hair. The section of the hair is pressed with the pressing device for from about 1 to 55 seconds. The polymer has a glass transition temperature from about 55.degree. C. to about 90.degree. C. The one or more surfaces include a primary nanostructured surface pattern.
In-situ high-pressure powder X-ray diffraction study of α-zirconium phosphate.
Readman, Jennifer E; Lennie, Alistair; Hriljac, Joseph A
2014-06-01
The high-pressure structural chemistry of α-zirconium phosphate, α-Zr(HPO4)2·H2O, was studied using in-situ high-pressure diffraction and synchrotron radiation. The layered phosphate was studied under both hydrostatic and non-hydrostatic conditions and Rietveld refinement carried out on the resulting diffraction patterns. It was found that under hydrostatic conditions no uptake of additional water molecules from the pressure-transmitting medium occurred, contrary to what had previously been observed with some zeolite materials and a layered titanium phosphate. Under hydrostatic conditions the sample remained crystalline up to 10 GPa, but under non-hydrostatic conditions the sample amorphized between 7.3 and 9.5 GPa. The calculated bulk modulus, K0 = 15.2 GPa, showed the material to be very compressible with the weak linkages in the structure of the type Zr-O-P.
Neutron and electron diffraction studies of La(Zn1/2Ti1/2)O3 perovskite.
Ubic, Rick; Hu, Yi; Abrahams, Isaac
2006-08-01
The crystallography and microwave dielectric properties of La(Zn(1/2)Ti(1/2))O(3) (LZT) ceramics prepared via the mixed-oxide route were investigated in this study. While samples were largely single phase, small amounts of ZnO impurity were detected in sintered pellets. Observed reflections in electron and neutron diffraction patterns indicate that the symmetry of LZT is P2(1)/n. The B site is ordered on {110} or pseudocubic {111}, but the presence of the pseudocubic 1/2(111) reflection is in itself insufficient to indicate the existence of such order. Rietveld refinements of the neutron diffraction data yield an excellent fit for such a model. The structure is highly twinned, with variants related through common {211} composition planes and 90 degrees rotations about <011>. The microwave dielectric properties measured were epsilon(r) = 34, Qf = 36,090 and tau(f) = -70 MK(-1).
Experimental study of discrete diffraction behavior in a coherent atomic system
NASA Astrophysics Data System (ADS)
Yuan, Jinpeng; Li, Yihong; Li, Shaohua; Li, Changyong; Wang, Lirong; Xiao, Liantuan; Jia, Suotang
2017-12-01
Discrete diffraction behavior was experimentally studied in a coherent rubidium 5S 1/2 - 5P 3/2 - 5D 5/2 cascade system. An optical lattice was established by the interference of two coupling lasers corresponding to 5P 3/2 - 5D 5/2 transition with a small angle. The distinct discrete diffraction patterns were observed in vapor when the probe laser corresponding to the 5S 1/2 - 5P 3/2 transition propagated through the optical lattice. The optimized pertinent experimental parameters such as vapor temperature, two-photon detuning, coupling laser intensity and probe laser intensity are obtained. The experimental results are well analyzed utilizing the density-matrix theory. This system provides a new approach to investigate non-Hermitian physics and discrete solitons.
Synthesis of nanocrystalline CdS thin film by SILAR and their characterization
NASA Astrophysics Data System (ADS)
Mukherjee, A.; Satpati, B.; Bhattacharyya, S. R.; Ghosh, R.; Mitra, P.
2015-01-01
Cadmium sulphide (CdS) thin film was prepared by successive ion layer adsorption and reaction (SILAR) technique using ammonium sulphide as anionic precursor. Characterization techniques of XRD, SEM, TEM, FTIR and EDX were utilized to study the microstructure of the films. Structural characterization by x-ray diffraction reveals the polycrystalline nature of the films. Cubic structure is revealed from X-ray diffraction and selected area diffraction (SAD) patterns. The particle size estimated using X-ray line broadening method is approximately 7 nm. Instrumental broadening was taken into account while particle size estimation. TEM shows CdS nanoparticles in the range 5-15 nm. Elemental mapping using EFTEM reveals good stoichiometric composition of CdS. Characteristic stretching vibration mode of CdS was observed in the absorption band of FTIR spectrum. Optical absorption study exhibits a distinct blue shift in band gap energy value of about 2.56 eV which confirms the size quantization.
Low-energy transmission electron diffraction and imaging of large-area graphene
Zhao, Wei; Xia, Bingyu; Lin, Li; Xiao, Xiaoyang; Liu, Peng; Lin, Xiaoyang; Peng, Hailin; Zhu, Yuanmin; Yu, Rong; Lei, Peng; Wang, Jiangtao; Zhang, Lina; Xu, Yong; Zhao, Mingwen; Peng, Lianmao; Li, Qunqing; Duan, Wenhui; Liu, Zhongfan; Fan, Shoushan; Jiang, Kaili
2017-01-01
Two-dimensional (2D) materials have attracted interest because of their excellent properties and potential applications. A key step in realizing industrial applications is to synthesize wafer-scale single-crystal samples. Until now, single-crystal samples, such as graphene domains up to the centimeter scale, have been synthesized. However, a new challenge is to efficiently characterize large-area samples. Currently, the crystalline characterization of these samples still relies on selected-area electron diffraction (SAED) or low-energy electron diffraction (LEED), which is more suitable for characterizing very small local regions. This paper presents a highly efficient characterization technique that adopts a low-energy electrostatically focused electron gun and a super-aligned carbon nanotube (SACNT) film sample support. It allows rapid crystalline characterization of large-area graphene through a single photograph of a transmission-diffracted image at a large beam size. Additionally, the low-energy electron beam enables the observation of a unique diffraction pattern of adsorbates on the suspended graphene at room temperature. This work presents a simple and convenient method for characterizing the macroscopic structures of 2D materials, and the instrument we constructed allows the study of the weak interaction with 2D materials. PMID:28879233
Low-energy transmission electron diffraction and imaging of large-area graphene.
Zhao, Wei; Xia, Bingyu; Lin, Li; Xiao, Xiaoyang; Liu, Peng; Lin, Xiaoyang; Peng, Hailin; Zhu, Yuanmin; Yu, Rong; Lei, Peng; Wang, Jiangtao; Zhang, Lina; Xu, Yong; Zhao, Mingwen; Peng, Lianmao; Li, Qunqing; Duan, Wenhui; Liu, Zhongfan; Fan, Shoushan; Jiang, Kaili
2017-09-01
Two-dimensional (2D) materials have attracted interest because of their excellent properties and potential applications. A key step in realizing industrial applications is to synthesize wafer-scale single-crystal samples. Until now, single-crystal samples, such as graphene domains up to the centimeter scale, have been synthesized. However, a new challenge is to efficiently characterize large-area samples. Currently, the crystalline characterization of these samples still relies on selected-area electron diffraction (SAED) or low-energy electron diffraction (LEED), which is more suitable for characterizing very small local regions. This paper presents a highly efficient characterization technique that adopts a low-energy electrostatically focused electron gun and a super-aligned carbon nanotube (SACNT) film sample support. It allows rapid crystalline characterization of large-area graphene through a single photograph of a transmission-diffracted image at a large beam size. Additionally, the low-energy electron beam enables the observation of a unique diffraction pattern of adsorbates on the suspended graphene at room temperature. This work presents a simple and convenient method for characterizing the macroscopic structures of 2D materials, and the instrument we constructed allows the study of the weak interaction with 2D materials.
NASA Astrophysics Data System (ADS)
Asmi, D.; Low, I. M.; O'Connor, B.
2008-03-01
The analysis of x-ray diffraction (XRD) patterns by the Rietveld technique was tested to the quantitatively phase compositions of self reinforcement Al2O3/CaAl12O19 composite. Room-temperature XRD patterns revealed that α-Al2O3 was the only phase presence in the CA0 sample, whereas the α-Al2O3 and CaAl12O19 phases were found for CA5, CA15, CA30, and CA50 samples. The peak intensity of CA6 in the self reinforcement Al2O3/CaAl12O19 composites increased in proportion with increase in CaAl12O19 content in contrast to α-Al2O3. The diffraction patterns for CA100 sample shows minor traces of α-Al2O3 even in relatively low peak intensity. It is suggesting that the in-situ reaction sintering of raw materials were not react completely to form 100 wt% CaAl12O19 at temperature 1650 °C. Quantitative phase compositions of self reinforcement Al2O3/CaAl12O19 composites by Rietveld analysis with XRD data has been well demonstrated. The results showed that the GOF values are relatively low and the fluctuation in the difference plots shows a reasonable fit between the observed and the calculated plot.
NASA Technical Reports Server (NTRS)
Miller, James G.
1997-01-01
In this Progress Report, we describe our further development of advanced ultrasonic nondestructive evaluation methods applied to the characterization of anisotropic materials. We present images obtained from experimental measurements of ultrasonic diffraction patterns transmitted through water only and transmitted through water and a thin woven composite. All images of diffraction patterns have been included on the accompanying CD-ROM in the JPEG format and Adobe TM Portable Document Format (PDF), in addition to the inclusion of hardcopies of the images contained in this report. In our previous semi-annual Progress Report (NAG 1-1848, December, 1996), we proposed a simple model to simulate the effect of a thin woven composite on an insonifying ultrasonic pressure field. This initial approach provided an avenue to begin development of a robust measurement method for nondestructive evaluation of anisotropic materials. In this Progress Report, we extend that work by performing experimental measurements on a single layer of a five-harness biaxial woven composite to investigate how a thin, yet architecturally complex, material interacts with the insonifying ultrasonic field. In Section 2 of this Progress Report we describe the experimental arrangement and methods for data acquisition of the ultrasonic diffraction patterns upon transmission through a thin woven composite. We also briefly describe the thin composite specimen investigated. Section 3 details the analysis of the experimental data followed by the experimental results in Section 4. Finally, a discussion of the observations and conclusions is found in Section 5.
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, M. D.; Fralick, D. T.; Cockrell, C. R.; Beck, F. B.
1996-01-01
Radiation pattern prediction analysis of elliptically polarized cavity-backed aperture antennas in a finite ground plane is performed using a combined Finite Element Method/Method of Moments/Geometrical Theory of Diffraction (FEM/MoM/GTD) technique. The magnetic current on the cavity-backed aperture in an infinite ground plane is calculated using the combined FEM/MoM analysis. GTD, including the slope diffraction contribution, is used to calculate the diffracted fields caused by both soft and hard polarizations at the edges of the finite ground plane. Explicit expressions for regular diffraction coefficients and slope diffraction coefficients are presented. The slope of the incident magnetic field at the diffraction points is derived and analytical expressions are presented. Numerical results for the radiation patterns of a cavity-backed circular spiral microstrip patch antenna excited by a coaxial probe in a finite rectangular ground plane are computed and compared with experimental results.
Sun, Tao; Fezzaa, Kamel
2016-06-17
Here, a high-speed X-ray diffraction technique was recently developed at the 32-ID-B beamline of the Advanced Photon Source for studying highly dynamic, yet non-repeatable and irreversible, materials processes. In experiments, the microstructure evolution in a single material event is probed by recording a series of diffraction patterns with extremely short exposure time and high frame rate. Owing to the limited flux in a short pulse and the polychromatic nature of the incident X-rays, analysis of the diffraction data is challenging. Here, HiSPoD, a stand-alone Matlab-based software for analyzing the polychromatic X-ray diffraction data from polycrystalline samples, is described. With HiSPoD,more » researchers are able to perform diffraction peak indexing, extraction of one-dimensional intensity profiles by integrating a two-dimensional diffraction pattern, and, more importantly, quantitative numerical simulations to obtain precise sample structure information.« less
NASA Astrophysics Data System (ADS)
Shipilin, Mikhail; Stierle, Andreas; Merte, Lindsay R.; Gustafson, Johan; Hejral, Uta; Martin, Natalia M.; Zhang, Chu; Franz, Dirk; Kilic, Volkan; Lundgren, Edvin
2017-06-01
The structural model of the (√{ 5 } ×√{ 5 })R27°-PdO(101) surface oxide grown on Pd(100) has been proposed and refined by a number of authors over more than a decade. In the current contribution we discuss the long-range periodicity of this structure arising along one of the crystallographic directions due to its incommensurability with the substrate. Analyzing the results of surface sensitive diffraction studies, we determined a slight distortion of the previously reported perfect (√{ 5 } ×√{ 5 })R27° surface oxide unit cell. Considering it, we were able to achieve both qualitatively and quantitatively better fit to the experimental diffraction data than it was possible for the perfect structure. Further, taking into account the experimentally obtained scanning tunneling microscopy data and closely examining high-resolution patterns recorded by means of high-energy surface X-ray diffraction, we developed a qualitative structural model based on a larger non-orthogonal surface unit cell to shed more light on the long-range order of the PdO(101) surface oxide. The model comprises a shift of the atoms of the PdO perpendicularly to the direction of the incommensurability to correct for it. This structural model reproduces the fine details of the high-resolution diffraction patterns and qualitatively explains the periodic stripes of structural distortion observed in the images recorded by a scanning tunneling microscope.
rf streak camera based ultrafast relativistic electron diffraction.
Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Tran, T
2009-01-01
We theoretically and experimentally investigate the possibility of using a rf streak camera to time resolve in a single shot structural changes at the sub-100 fs time scale via relativistic electron diffraction. We experimentally tested this novel concept at the UCLA Pegasus rf photoinjector. Time-resolved diffraction patterns from thin Al foil are recorded. Averaging over 50 shots is required in order to get statistics sufficient to uncover a variation in time of the diffraction patterns. In the absence of an external pump laser, this is explained as due to the energy chirp on the beam out of the electron gun. With further improvements to the electron source, rf streak camera based ultrafast electron diffraction has the potential to yield truly single shot measurements of ultrafast processes.
Coherent Bragg nanodiffraction at the hard X-ray Nanoprobe beamline.
Hruszkewycz, S O; Holt, M V; Maser, J; Murray, C E; Highland, M J; Folkman, C M; Fuoss, P H
2014-03-06
Bragg coherent diffraction with nanofocused hard X-ray beams provides unique opportunities for quantitative in situ studies of crystalline structure in nanoscale regions of complex materials and devices by a variety of diffraction-based techniques. In the case of coherent diffraction imaging, a major experimental challenge in using nanoscale coherent beams is maintaining a constant scattering volume such that coherent fringe visibility is maximized and maintained over the course of an exposure lasting several seconds. Here, we present coherent Bragg diffraction patterns measured from different nanostructured thin films at the Sector 26 Nanoprobe beamline at the Advanced Photon Source and demonstrate that with nanoscale positional control, coherent diffraction patterns can be measured with source-limited fringe visibilities more than 50% suitable for imaging by coherent Bragg ptychography techniques.
Coherent Bragg nanodiffraction at the hard X-ray Nanoprobe beamline
Hruszkewycz, S. O.; Holt, M. V.; Maser, J.; Murray, C. E.; Highland, M. J.; Folkman, C. M.; Fuoss, P. H.
2014-01-01
Bragg coherent diffraction with nanofocused hard X-ray beams provides unique opportunities for quantitative in situ studies of crystalline structure in nanoscale regions of complex materials and devices by a variety of diffraction-based techniques. In the case of coherent diffraction imaging, a major experimental challenge in using nanoscale coherent beams is maintaining a constant scattering volume such that coherent fringe visibility is maximized and maintained over the course of an exposure lasting several seconds. Here, we present coherent Bragg diffraction patterns measured from different nanostructured thin films at the Sector 26 Nanoprobe beamline at the Advanced Photon Source and demonstrate that with nanoscale positional control, coherent diffraction patterns can be measured with source-limited fringe visibilities more than 50% suitable for imaging by coherent Bragg ptychography techniques. PMID:24470418
Diffraction of entangled particles by light gratings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sancho, Pedro, E-mail: psanchos@aemet.es
We analyze the diffraction regime of the Kapitza–Dirac effect for particles entangled in momentum. The detection patterns show two-particle interferences. In the single-mode case we identify a discontinuity in the set of joint detection probabilities, associated with the disconnected character of the space of non-separable states. For Gaussian multi-mode states we derive the diffraction patterns, providing an example of the dependence of the light–matter interaction on entanglement. When the particles are identical, we can explore the relation between exchange and entanglement effects. We find a complementary behavior between overlapping and Schmidt’s number. In particular, symmetric entanglement can cancel the exchangemore » effects. - Highlights: • Kapitza–Dirac diffraction of entangled particles shows multiparticle interference. • There is a discontinuity in the set of joint detection patterns of entangled states. • We find a complementary behavior between overlapping and Schmidt’s number. • Symmetric entanglement can cancel the exchange effects.« less
Understanding deformation with high angular resolution electron backscatter diffraction (HR-EBSD)
NASA Astrophysics Data System (ADS)
Britton, T. B.; Hickey, J. L. R.
2018-01-01
High angular resolution electron backscatter diffraction (HR-EBSD) affords an increase in angular resolution, as compared to ‘conventional’ Hough transform based EBSD, of two orders of magnitude, enabling measurements of relative misorientations of 1 x 10-4 rads (~ 0.006°) and changes in (deviatoric) lattice strain with a precision of 1 x 10-4. This is achieved through direct comparison of two or more diffraction patterns using sophisticated cross-correlation based image analysis routines. Image shifts between zone axes in the two-correlated diffraction pattern are measured with sub-pixel precision and this realises the ability to measure changes in interplanar angles and lattice orientation with a high degree of sensitivity. These shifts are linked to strains and lattice rotations through simple geometry. In this manuscript, we outline the basis of the technique and two case studies that highlight its potential to tackle real materials science challenges, such as deformation patterning in polycrystalline alloys.
Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device.
Heath, Daniel J; Grant-Jacob, James A; Feinaeugle, Matthias; Mills, Ben; Eason, Robert W
2017-08-01
We present the use of digital micromirror devices as variable illumination masks for pitch-splitting multiple exposures to laser machine the surfaces of materials. Ultrafast laser pulses of length 150 fs and 800 nm central wavelength were used for the sequential machining of contiguous patterns on the surface of samples in order to build up complex structures with sub-diffraction limit features. Machined patterns of tens to hundreds of micrometers in lateral dimensions with feature separations as low as 270 nm were produced in electroless nickel on an optical setup diffraction limited to 727 nm, showing a reduction factor below the Abbe diffraction limit of ∼2.7×. This was compared to similar patterns in a photoresist optimized for two-photon absorption, which showed a reduction factor of only 2×, demonstrating that multiple exposures via ablation can produce a greater resolution enhancement than via two-photon polymerization.
Two-Dimensional Light Diffraction from an EPROM Chip
ERIC Educational Resources Information Center
Ekkens, Tom
2018-01-01
In introductory physics classes, a laser pointer and a compact disc are all the items required to illustrate diffraction of light in a single dimension. If a two-dimensional diffraction pattern is desired, double axis diffraction grating material is available or a CCD sensor can be extracted from an unused electronics device. This article presents…
Starodub, D.
2013-03-25
This deposition includes the diffraction images generated by the paired polystyrene spheres in random orientations. These images were used to determine and phase the single particle diffraction volume from their autocorrelation functions.
A compact electron gun for time-resolved electron diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A., E-mail: derek.wann@york.ac.uk
A novel compact time-resolved electron diffractometer has been built with the primary goal of studying the ultrafast molecular dynamics of photoexcited gas-phase molecules. Here, we discuss the design of the electron gun, which is triggered by a Ti:Sapphire laser, before detailing a series of calibration experiments relating to the electron-beam properties. As a further test of the apparatus, initial diffraction patterns have been collected for thin, polycrystalline platinum samples, which have been shown to match theoretical patterns. The data collected demonstrate the focusing effects of the magnetic lens on the electron beam, and how this relates to the spatial resolutionmore » of the diffraction pattern.« less
NASA Astrophysics Data System (ADS)
Matsui, Fumihiko; Matsushita, Tomohiro; Kato, Yukako; Hashimoto, Mie; Daimon, Hiroshi
2009-11-01
In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, Auger electron diffraction spectroscopy, which is the combination of x-ray absorption spectroscopy (XAS) and Auger electron diffraction (AED) techniques. We have measured a series of Ni LMM AED patterns of the Ni film grown on Cu(001) surface for various thicknesses. Then we deduced a set of atomic-layer-specific AED patterns in a numerical way. Furthermore, we developed an algorithm to disentangle XANES spectra from different atomic layers using these atomic-layer-specific AED patterns. Surface and subsurface core level shift were determined for each atomic layer.
Evaluating diffraction based overlay metrology for double patterning technologies
NASA Astrophysics Data System (ADS)
Saravanan, Chandra Saru; Liu, Yongdong; Dasari, Prasad; Kritsun, Oleg; Volkman, Catherine; Acheta, Alden; La Fontaine, Bruno
2008-03-01
Demanding sub-45 nm node lithographic methodologies such as double patterning (DPT) pose significant challenges for overlay metrology. In this paper, we investigate scatterometry methods as an alternative approach to meet these stringent new metrology requirements. We used a spectroscopic diffraction-based overlay (DBO) measurement technique in which registration errors are extracted from specially designed diffraction targets for double patterning. The results of overlay measurements are compared to traditional bar-in-bar targets. A comparison between DBO measurements and CD-SEM measurements is done to show the correlation between the two approaches. We discuss the total measurement uncertainty (TMU) requirements for sub-45 nm nodes and compare TMU from the different overlay approaches.
Incorrect support and missing center tolerances of phasing algorithms
Huang, Xiaojing; Nelson, Johanna; Steinbrener, Jan; ...
2010-01-01
In x-ray diffraction microscopy, iterative algorithms retrieve reciprocal space phase information, and a real space image, from an object's coherent diffraction intensities through the use of a priori information such as a finite support constraint. In many experiments, the object's shape or support is not well known, and the diffraction pattern is incompletely measured. We describe here computer simulations to look at the effects of both of these possible errors when using several common reconstruction algorithms. Overly tight object supports prevent successful convergence; however, we show that this can often be recognized through pathological behavior of the phase retrieval transfermore » function. Dynamic range limitations often make it difficult to record the central speckles of the diffraction pattern. We show that this leads to increasing artifacts in the image when the number of missing central speckles exceeds about 10, and that the removal of unconstrained modes from the reconstructed image is helpful only when the number of missing central speckles is less than about 50. In conclusion, this simulation study helps in judging the reconstructability of experimentally recorded coherent diffraction patterns.« less
Single beam write and/or replay of spatial heterodyne holograms
Thomas, Clarence E.; Hanson, Gregory R.
2007-11-20
A method of writing a spatially heterodyne hologram having spatially heterodyne fringes includes: passing a single write beam through a spatial light modulator that digitally modulates said single write beam; and focusing the single write beam at a focal plane of a lens to impose a holographic diffraction grating pattern on the photorefractive crystal, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein only said single write beam is incident on said photorefractive crystal without a reference beam. A method of replaying a spatially heterodyne hologram having spatially heterodyne fringes at a replay angle includes: illuminating a photorefractive crystal having a holographic diffraction grating with a beam from a laser at an illumination angle, the holographic diffraction grating pattern including the spatially heterodyne hologram having spatially heterodyne fringes, wherein a difference between said illumination angle and said replay angle defines a diffraction angle .alpha. that is a function of a plane wave mathematically added to original object wave phase and amplitude data of said spatially heterodyne hologram having spatially heterodyne fringes.
Physicochemical behavior of several kinds of paper under gamma irradiation
NASA Astrophysics Data System (ADS)
Jiménez-Reyes, Melania; Tenorio, Dolores; Rojas-Robles, Mariela; García-Rosales, Genoveva
2018-07-01
Several kinds of paper (Bond, Amate, Rice, Press, and Whatman#1) were studied in their original condition and were then exposed to gamma radiation between 3 and 15 kGy (0.9 kGy/h) with intervals of 3 kGy. The length and width of fibers (SEM) as well as pH were measured, and the chemical composition was determined by EDS. Pyrolysis characteristics (TGA and DTC), transmittance spectra by IR and X-ray diffraction patterns were studied as well. Whatman#1 contains only cellulose; whereas Bond, Press and Rice papers also contain calcite and Amate whewellite. All X-ray diffraction patterns showed Type I semicrystalline cellulose, but a slight presence of Type II was noted in the artisan papers (Amate and Rice). These results were confirmed by IR spectra and thermogravimetric analyses. Due to gamma irradiation no acidification nor change of fiber sizes or alteration of other studied parameters were observed. Therefore, these conditions may be recommended for the treatment of some deteriorated documents.
Occurrence of amylose-lipid complexes in teff and maize starch biphasic pastes.
Wokadala, Obiro Cuthbert; Ray, Suprakas Sinha; Emmambux, Mohammad Naushad
2012-09-01
The occurrence of amylose-lipid complexes was determined in maize and teff starch biphasic pastes i.e. peak viscosity pastes at short and prolonged pasting times. Maize and teff starches were pasted for 11.5 and 130 min with or without added stearic acid followed by thermo-stable alpha-amylase hydrolysis in a rapid visco-analyzer. X-ray diffraction analysis of pastes before and residues after hydrolysis showed crystalline V-amylose diffraction patterns for the starches pasted for a prolonged time with added stearic acid while less distinct V-amylose patterns with non-complexed stearic acid peaks were observed with a short pasting time. Differential scanning calorimetry of pastes before and residues after paste hydrolysis showed that Type I amylose-lipid complexes were formed after pasting for the short duration with added stearic acid, while Type II complexes are formed after pasting for the prolonged time. The present research provides evidence that amylose-lipid complexes play an important role in starch biphasic pasting. Copyright © 2012 Elsevier Ltd. All rights reserved.
X ray reflection masks: Manufacturing, characterization and first tests
NASA Astrophysics Data System (ADS)
Rahn, Stephen
1992-09-01
SXPL (Soft X-ray Projection Lithography) multilayer mirrors are characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors with a 2d in the region of 14 nm were characterized by Cu-k(alpha) grazing incidence as well as soft X-ray normal incidence reflectivity measurements. The multilayer mirrors were patterned by reactive ion etching with CF4 using a photoresist as etch mask, thus producing X-ray reflection masks. The masks were tested at the synchrotron radiation laboratory of the electron accelerator ELSA. A double crystal X-ray monochromator was modified so as to allow about 0.5 sq cm of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto a resist and structure sizes down to 8 micrometers were nicely reproduced. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.
Path-separated electron interferometry in a scanning transmission electron microscope
NASA Astrophysics Data System (ADS)
Yasin, Fehmi S.; Harvey, Tyler R.; Chess, Jordan J.; Pierce, Jordan S.; McMorran, Benjamin J.
2018-05-01
We report a path-separated electron interferometer within a scanning transmission electron microscope. In this setup, we use a nanofabricated grating as an amplitude-division beamsplitter to prepare multiple spatially separated, coherent electron probe beams. We achieve path separations of 30 nm. We pass the +1 diffraction order probe through amorphous carbon while passing the 0th and ‑1 orders through vacuum. The probes are then made to interfere via imaging optics, and we observe an interference pattern at the CCD detector with up to 39.7% fringe visibility. We show preliminary experimental results in which the interference pattern was recorded during a 1D scan of the diffracted probes across a test phase object. These results qualitatively agree with a modeled interference predicted by an independent measurement of the specimen thickness. This experimental design can potentially be applied to phase contrast imaging and fundamental physics experiments, such as an exploration of electron wave packet coherence length.
NASA Astrophysics Data System (ADS)
Da Pieve, F.
2016-01-01
A method for mapping the local spin and orbital nature of the ground state of a system via corresponding flip excitations is proposed based on angle-resolved resonant photoemission and related diffraction patterns, obtained here via an ab initio modified one-step theory of photoemission. The analysis is done on the paradigmatic weak itinerant ferromagnet bcc Fe, whose magnetism, a correlation phenomenon given by the coexistence of localized moments and itinerant electrons, and the observed non-Fermi-Liquid behavior at extreme conditions both remain unclear. The combined analysis of energy spectra and diffraction patterns offers a mapping of local pure spin-flip, entangled spin-flip-orbital-flip excitations and chiral transitions with vortexlike wave fronts of photoelectrons, depending on the valence orbital symmetry and the direction of the local magnetic moment. Such effects, mediated by the hole polarization, make resonant photoemission a promising tool to perform a full tomography of the local magnetic properties even in itinerant ferromagnets or macroscopically nonmagnetic systems.
Zürch, Michael; Foertsch, Stefan; Matzas, Mark; Pachmann, Katharina; Kuth, Rainer; Spielmann, Christian
2014-01-01
Abstract. In cancer treatment, it is highly desirable to classify single cancer cells in real time. The standard method is polymerase chain reaction requiring a substantial amount of resources and time. Here, we present an innovative approach for rapidly classifying different cell types: we measure the diffraction pattern of a single cell illuminated with coherent extreme ultraviolet (XUV) laser-generated radiation. These patterns allow distinguishing different breast cancer cell types in a subsequent step. Moreover, the morphology of the object can be retrieved from the diffraction pattern with submicron resolution. In a proof-of-principle experiment, we prepared single MCF7 and SKBR3 breast cancer cells on gold-coated silica slides. The output of a laser-driven XUV light source is focused onto a single unstained and unlabeled cancer cell. With the resulting diffraction pattern, we could clearly identify the different cell types. With an improved setup, it will not only be feasible to classify circulating tumor cells with a high throughput, but also to identify smaller objects such as bacteria or even viruses. PMID:26158049
Zürch, Michael; Foertsch, Stefan; Matzas, Mark; Pachmann, Katharina; Kuth, Rainer; Spielmann, Christian
2014-10-01
In cancer treatment, it is highly desirable to classify single cancer cells in real time. The standard method is polymerase chain reaction requiring a substantial amount of resources and time. Here, we present an innovative approach for rapidly classifying different cell types: we measure the diffraction pattern of a single cell illuminated with coherent extreme ultraviolet (XUV) laser-generated radiation. These patterns allow distinguishing different breast cancer cell types in a subsequent step. Moreover, the morphology of the object can be retrieved from the diffraction pattern with submicron resolution. In a proof-of-principle experiment, we prepared single MCF7 and SKBR3 breast cancer cells on gold-coated silica slides. The output of a laser-driven XUV light source is focused onto a single unstained and unlabeled cancer cell. With the resulting diffraction pattern, we could clearly identify the different cell types. With an improved setup, it will not only be feasible to classify circulating tumor cells with a high throughput, but also to identify smaller objects such as bacteria or even viruses.
In-situ x-ray diffraction of a shock-induced phase transition in fluorite, CaF2
NASA Astrophysics Data System (ADS)
Glam, Benny; June Tracy, Sally; Turneaure, Stefan; Duffy, Thomas
2017-06-01
The difluorides are an important class of ionic compounds that show extensive polymorphism under both static and dynamic loading. In this study, the shock-induced phase transitions in CaF2 were investigated by in situ x-ray diffraction measurements in plate impact experiments carried out with the two-stage gas gun at the Dynamic Compression Sector of Argonne National Laboratory. Single-crystal samples in (100) and (111) orientations were shock loaded to pressures between 32 GPa to 70 GPa. The particle velocities at the interface between the sample and a LiF window were measured by VISAR and PDV. Synchrotron x-ray diffraction data were recorded at 153.4 ns intervals using a four-frame detector. The measured diffraction patterns show a high degree of sample texturing at all pressures. We observe evidence for a transition to a high-pressure phase followed by reverse transformation at late times during release. This study provides the first direct constraints on the high-pressure lattice structure of fluorite under shock compression.
Chanda, Debashis; Abolghasemi, Ladan E; Haque, Moez; Ng, Mi Li; Herman, Peter R
2008-09-29
We present a novel multi-level diffractive optical element for diffractive optic near-field lithography based fabrication of large-area diamond-like photonic crystal structure in a single laser exposure step. A multi-level single-surface phase element was laser fabricated on a thin polymer film by two-photon polymerization. A quarter-period phase shift was designed into the phase elements to generate a 3D periodic intensity distribution of double basis diamond-like structure. Finite difference time domain calculation of near-field diffraction patterns and associated isointensity surfaces are corroborated by definitive demonstration of a diamond-like woodpile structure formed inside thick photoresist. A large number of layers provided a strong stopband in the telecom band that matched predictions of numerical band calculation. SEM and spectral observations indicate good structural uniformity over large exposure area that promises 3D photonic crystal devices with high optical quality for a wide range of motif shapes and symmetries. Optical sensing is demonstrated by spectral shifts of the Gamma-Zeta stopband under liquid emersion.
Schäfer, Sascha; Liang, Wenxi; Zewail, Ahmed H
2011-12-07
Recent studies in ultrafast electron crystallography (UEC) using a reflection diffraction geometry have enabled the investigation of a wide range of phenomena on the femtosecond and picosecond time scales. In all these studies, the analysis of the diffraction patterns and their temporal change after excitation was performed within the kinematical scattering theory. In this contribution, we address the question, to what extent dynamical scattering effects have to be included in order to obtain quantitative information about structural dynamics. We discuss different scattering regimes and provide diffraction maps that describe all essential features of scatterings and observables. The effects are quantified by dynamical scattering simulations and examined by direct comparison to the results of ultrafast electron diffraction experiments on an in situ prepared Ni(100) surface, for which structural dynamics can be well described by a two-temperature model. We also report calculations for graphite surfaces. The theoretical framework provided here allows for further UEC studies of surfaces especially at larger penetration depths and for those of heavy-atom materials. © 2011 American Institute of Physics
Equivalence classes of Fibonacci lattices and their similarity properties
NASA Astrophysics Data System (ADS)
Lo Gullo, N.; Vittadello, L.; Bazzan, M.; Dell'Anna, L.
2016-08-01
We investigate, theoretically and experimentally, the properties of Fibonacci lattices with arbitrary spacings. Different from periodic structures, the reciprocal lattice and the dynamical properties of Fibonacci lattices depend strongly on the lengths of their lattice parameters, even if the sequence of long and short segment, the Fibonacci string, is the same. In this work we show that by exploiting a self-similarity property of Fibonacci strings under a suitable composition rule, it is possible to define equivalence classes of Fibonacci lattices. We show that the diffraction patterns generated by Fibonacci lattices belonging to the same equivalence class can be rescaled to a common pattern of strong diffraction peaks thus giving to this classification a precise meaning. Furthermore we show that, through the gap labeling theorem, gaps in the energy spectra of Fibonacci crystals belonging to the same class can be labeled by the same momenta (up to a proper rescaling) and that the larger gaps correspond to the strong peaks of the diffraction spectra. This observation makes the definition of equivalence classes meaningful also for the spectral and therefore dynamical and thermodynamical properties of quasicrystals. Our results apply to the more general class of quasiperiodic lattices for which similarity under a suitable deflation rule is in order.
Meena, K; Muthu, K; Meenatchi, V; Rajasekar, M; Bhagavannarayana, G; Meenakshisundaram, S P
2014-04-24
Transparent optical quality single crystals of imidazolium L-tartrate (IMLT) were grown by conventional slow evaporation solution growth technique. Crystal structure of the as-grown IMLT was determined by single crystal X-ray diffraction analysis. Thermal analysis reveals the purity of the crystal and the sample is stable up to the melting point. Good transmittance in the visible region is observed and the band gap energy is estimated using diffuse reflectance data by the application of Kubelka-Munk algorithm. The powder X-ray diffraction study reveals the crystallinity of the as-grown crystal and it is compared with that of the experimental one. An additional peak in high resolution X-ray diffraction (HRXRD) indicates the presence of an internal structural low angle boundary. Second harmonic generation (SHG) activity of IMLT is significant as estimated by Kurtz and Perry powder technique. HOMO-LUMO energies and first-order molecular hyperpolarizability of IMLT have been evaluated using density functional theory (DFT) employing B3LYP functional and 6-31G(d,p) basis set. The optimized geometry closely resembles the ORTEP. The vibrational patterns present in the molecule are confirmed by FT-IR coinciding with theoretical patterns. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesche, A.; Stoecker, H.; Levin, A. A.
2010-01-15
A series of Co{sub x}Cu{sub 100-x} (x=0, 40-75, 100) layers with thicknesses between 13 and 55 nm were prepared on silicon substrates using cross-beam pulsed laser deposition. Wide-angle x-ray diffraction (WAXRD), transmission electron microscopy (TEM), and electrical transport measurements revealed a structure consisting of decomposed cobalt and copper grains with grain sizes of about 10 nm. The influence of cobalt content and layer thickness on the grain size is discussed. Electron diffraction indicates the presence of an intermetallic Co-Cu phase of Cu{sub 3}Au structure type. Thermal treatment at temperatures between 525 and 750 K results in the progressive decomposition ofmore » Co and Cu, with an increase of the grain sizes up to about 100 nm. This is tunable by controlling the temperature and duration of the anneal, and is directly observable in WAXRD patterns and TEM images. A careful analysis of grain size and the coherence length of the radiation used allows for an accurate interpretation of the x-ray diffraction patterns, by taking into account coherent and noncoherent scattering. The alloy films show a giant magnetoresistance of 1%-2.3% with the maximum obtained after annealing at around 725 K.« less
Fast computation algorithms for speckle pattern simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nascov, Victor; Samoilă, Cornel; Ursuţiu, Doru
2013-11-13
We present our development of a series of efficient computation algorithms, generally usable to calculate light diffraction and particularly for speckle pattern simulation. We use mainly the scalar diffraction theory in the form of Rayleigh-Sommerfeld diffraction formula and its Fresnel approximation. Our algorithms are based on a special form of the convolution theorem and the Fast Fourier Transform. They are able to evaluate the diffraction formula much faster than by direct computation and we have circumvented the restrictions regarding the relative sizes of the input and output domains, met on commonly used procedures. Moreover, the input and output planes canmore » be tilted each to other and the output domain can be off-axis shifted.« less
Compact portable diffraction moire interferometer
Deason, Vance A.; Ward, Michael B.
1989-01-01
A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.
Data preparation and evaluation techniques for x-ray diffraction microscopy.
Steinbrener, Jan; Nelson, Johanna; Huang, Xiaojing; Marchesini, Stefano; Shapiro, David; Turner, Joshua J; Jacobsen, Chris
2010-08-30
The post-experiment processing of X-ray Diffraction Microscopy data is often time-consuming and difficult. This is mostly due to the fact that even if a preliminary result has been reconstructed, there is no definitive answer as to whether or not a better result with more consistently retrieved phases can still be obtained. We show here that the first step in data analysis, the assembly of two-dimensional diffraction patterns from a large set of raw diffraction data, is crucial to obtaining reconstructions of highest possible consistency. We have developed software that automates this process and results in consistently accurate diffraction patterns. We have furthermore derived some criteria of validity for a tool commonly used to assess the consistency of reconstructions, the phase retrieval transfer function, and suggest a modified version that has improved utility for judging reconstruction quality.
Energy-resolved coherent diffraction from laser-driven electronic motion in atoms
NASA Astrophysics Data System (ADS)
Shao, Hua-Chieh; Starace, Anthony F.
2017-10-01
We investigate theoretically the use of energy-resolved ultrafast electron diffraction to image laser-driven electronic motion in atoms. A chirped laser pulse is used to transfer the valence electron of the lithium atom from the ground state to the first excited state. During this process, the electronic motion is imaged by 100-fs and 1-fs electron pulses in energy-resolved diffraction measurements. Simulations show that the angle-resolved spectra reveal the time evolution of the energy content and symmetry of the electronic state. The time-dependent diffraction patterns are further interpreted in terms of the momentum transfer. For the case of incident 1-fs electron pulses, the rapid 2 s -2 p quantum beat motion of the target electron is imaged as a time-dependent asymmetric oscillation of the diffraction pattern.
Diffraction experiments with infrared remote controls
NASA Astrophysics Data System (ADS)
Kuhn, Jochen; Vogt, Patrik
2012-02-01
In this paper we describe an experiment in which radiation emitted by an infrared remote control is passed through a diffraction grating. An image of the diffraction pattern is captured using a cell phone camera and then used to determine the wavelength of the radiation.
Method to mosaic gratings that relies on analysis of far-field intensity patterns in two wavelengths
NASA Astrophysics Data System (ADS)
Hu, Yao; Zeng, Lijiang; Li, Lifeng
2007-01-01
We propose an experimental method to coherently mosaic two planar diffraction gratings. The method uses a Twyman-Green interferometer to guarantee the planar parallelism of the two sub-aperture gratings, and obtains the in-plane rotational error and the two translational errors from analysis of the far-field diffraction intensity patterns in two alignment wavelengths. We adjust the relative attitude and position of the two sub-aperture gratings to produce Airy disk diffraction patterns in both wavelengths. In our experiment, the repeatability of in-plane rotation adjustment was 2.35 μrad and that of longitudinal adjustment was 0.11 μm. The accuracy of lateral adjustment was about 2.9% of the grating period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, S. K.; Krishna, P. S. R.; Shinde, A. B.
2015-09-07
The phase stabilities of ecofriendly piezoelectric material of lithium doped sodium niobate for composition Li{sub 0.12}Na{sub 0.88}NbO{sub 3} (LNN12) have been investigated by a combination of powder X-ray and neutron diffraction techniques in the temperature range of 300–1100 K. We observed interesting changes with appearance or disappearance of the super-lattice reflections in the powder diffraction patterns. Unambiguous experimental evidence is shown for coexistence of paraelectric and ferroelectric orthorhombic phases in the temperature range of 525 K to 675 K. We identified the correct crystal structure of LNN12 with temperature and correlated it with observed anomaly in the physical properties. Identification of crystal structuremore » also helps in the mode assignments in Raman and infrared spectroscopies. We argued that application of chemical pressure as a result of Li substitution in NaNbO{sub 3} matrix favors the freezing of zone centre phonons in contrast to the freezing of zone boundary phonons in pure NaNbO{sub 3} with the variation of temperature.« less
Kirigami Nanocomposites as Wide-Angle Diffraction Gratings.
Xu, Lizhi; Wang, Xinzhi; Kim, Yoonseob; Shyu, Terry C; Lyu, Jing; Kotov, Nicholas A
2016-06-28
Beam steering devices represent an essential part of an advanced optics toolbox and are needed in a spectrum of technologies ranging from astronomy and agriculture to biosensing and networked vehicles. Diffraction gratings with strain-tunable periodicity simplify beam steering and can serve as a foundation for light/laser radar (LIDAR/LADAR) components of robotic systems. However, the mechanical properties of traditional materials severely limit the beam steering angle and cycle life. The large strain applied to gratings can severely impair the device performance both in respect of longevity and diffraction pattern fidelity. Here, we show that this problem can be resolved using micromanufactured kirigami patterns from thin film nanocomposites based on high-performance stiff plastics, metals, and carbon nanotubes, etc. The kirigami pattern of microscale slits reduces the stochastic concentration of strain in stiff nanocomposites including those made by layer-by-layer assembly (LBL). The slit patterning affords reduction of strain by 2 orders of magnitude for stretching deformation and consequently enables reconfigurable optical gratings with over a 100% range of period tunability. Elasticity of the stiff nanocomposites and plastics makes possible cyclic reconfigurability of the grating with variable time constant that can also be referred to as 4D kirigami. High-contrast, sophisticated diffraction patterns with as high as fifth diffraction order can be obtained. The angular range of beam steering can be as large as 6.5° for a 635 nm laser beam compared to ∼1° in surface-grooved elastomer gratings and ∼0.02° in MEMS gratings. The versatility of the kirigami patterns, the diversity of the available nanocomposite materials, and their advantageous mechanical properties of the foundational materials open the path for engineering of reconfigurable optical elements in LIDARs essential for autonomous vehicles and other optical devices with spectral range determined by the kirigami periodicity.
Sekiguchi, Yuki; Yamamoto, Masaki; Oroguchi, Tomotaka; Takayama, Yuki; Suzuki, Shigeyuki; Nakasako, Masayoshi
2014-11-01
Using our custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors, cryogenic coherent X-ray diffraction imaging experiments have been undertaken at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility. To efficiently perform experiments and data processing, two software suites with user-friendly graphical user interfaces have been developed. The first is a program suite named IDATEN, which was developed to easily conduct four procedures during experiments: aligning KOTOBUKI-1, loading a flash-cooled sample into the cryogenic goniometer stage inside the vacuum chamber of KOTOBUKI-1, adjusting the sample position with respect to the X-ray beam using a pair of telescopes, and collecting diffraction data by raster scanning the sample with X-ray pulses. Named G-SITENNO, the other suite is an automated version of the original SITENNO suite, which was designed for processing diffraction data. These user-friendly software suites are now indispensable for collecting a large number of diffraction patterns and for processing the diffraction patterns immediately after collecting data within a limited beam time.
A Simple Diffraction Experiment Using Banana Stem as a Natural Grating
ERIC Educational Resources Information Center
Aji, Mahardika Prasetya; Karunawan, Jotti; Chasanah, Widyastuti Rochimatun; Nursuhud, Puji Iman; Wiguna, Pradita Ajeng; Sulhadi
2017-01-01
A simple diffraction experiment was designed using banana stem as natural grating. Coherent beams of lasers with wavelengths of 632.8 nm and 532 nm that pass through banana stem produce periodic diffraction patterns on a screen. The diffraction experiments were able to measure the distances between the slit of the banana stem, i.e. d = (28.76 ±…
NASA Astrophysics Data System (ADS)
Murray, Ian B.; Densmore, Victor; Bora, Vaibhav; Pieratt, Matthew W.; Hibbard, Douglas L.; Milster, Tom D.
2011-06-01
Coatings of various metalized patterns are used for heating and electromagnetic interference (EMI) shielding applications. Previous work has focused on macro differences between different types of grids, and has shown good correlation between measurements and analyses of grid diffraction. To advance this work, we have utilized the University of Arizona's OptiScan software, which has been optimized for this application by using the Babinet Principle. When operating on an appropriate computer system, this algorithm produces results hundreds of times faster than standard Fourier-based methods, and allows realistic cases to be modeled for the first time. By using previously published derivations by Exotic Electro-Optics, we compare diffraction performance of repeating and randomized grid patterns with equivalent sheet resistance using numerical performance metrics. Grid patterns of each type are printed on optical substrates and measured energy is compared against modeled energy.
Exploring transmission Kikuchi diffraction using a Timepix detector
NASA Astrophysics Data System (ADS)
Vespucci, S.; Winkelmann, A.; Mingard, K.; Maneuski, D.; O'Shea, V.; Trager-Cowan, C.
2017-02-01
Electron backscatter diffraction (EBSD) is a well-established scanning electron microscope (SEM)-based technique [1]. It allows the non-destructive mapping of the crystal structure, texture, crystal phase and strain with a spatial resolution of tens of nanometers. Conventionally this is performed by placing an electron sensitive screen, typically consisting of a phosphor screen combined with a charge coupled device (CCD) camera, in front of a specimen, usually tilted 70° to the normal of the exciting electron beam. Recently, a number of authors have shown that a significant increase in spatial resolution is achievable when Kikuchi diffraction patterns are acquired in transmission geometry; that is when diffraction patterns are generated by electrons transmitted through an electron-transparent, usually thinned, specimen. The resolution of this technique, called transmission Kikuchi diffraction (TKD), has been demonstrated to be better than 10 nm [2,3]. We have recently demonstrated the advantages of a direct electron detector, Timepix [4,5], for the acquisition of standard EBSD patterns [5]. In this article we will discuss the advantages of Timepix to perform TKD and for acquiring spot diffraction patterns and more generally for acquiring scanning transmission electron microscopy micrographs in the SEM. Particularly relevant for TKD, is its very compact size, which allows much more flexibility in the positioning of the detector in the SEM chamber. We will furthermore show recent results using Timepix as a virtual forward scatter detector, and will illustrate the information derivable on producing images through processing of data acquired from different areas of the detector. We will show results from samples ranging from gold nanoparticles to nitride semiconductor nanorods.
High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Feichao; Liu, Shengguang; Zhu, Pengfei
2014-08-15
A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities inmore » various areas of sciences.« less
High quality single shot ultrafast MeV electron diffraction from a photocathode radio-frequency gun.
Fu, Feichao; Liu, Shengguang; Zhu, Pengfei; Xiang, Dao; Zhang, Jie; Cao, Jianming
2014-08-01
A compact ultrafast electron diffractometer, consisting of an s-band 1.6 cell photocathode radio-frequency gun, a multi-function changeable sample chamber, and a sensitive relativistic electron detector, was built at Shanghai Jiao Tong University. High-quality single-shot transmission electron diffraction patterns have been recorded by scattering 2.5 MeV electrons off single crystalline gold and polycrystalline aluminum samples. The high quality diffraction pattern indicates an excellent spatial resolution, with the ratio of the diffraction ring radius over the ring rms width beyond 10. The electron pulse width is estimated to be about 300 fs. The high temporal and spatial resolution may open new opportunities in various areas of sciences.
Sekiguchi, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi
2016-01-01
Coherent X-ray diffraction imaging (CXDI) is one of the techniques used to visualize structures of non-crystalline particles of micrometer to submicrometer size from materials and biological science. In the structural analysis of CXDI, the electron density map of a sample particle can theoretically be reconstructed from a diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction is difficult because diffraction patterns are affected by Poisson noise and miss data in small-angle regions due to the beam stop and the saturation of detector pixels. In contrast to X-ray protein crystallography, in which the phases of diffracted waves are experimentally estimated, phase retrieval in CXDI relies entirely on the computational procedure driven by the PR algorithms. Thus, objective criteria and methods to assess the accuracy of retrieved electron density maps are necessary in addition to conventional parameters monitoring the convergence of PR calculations. Here, a data analysis scheme, named ASURA, is proposed which selects the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a diffraction pattern. Each electron density map composed of J pixels is expressed as a point in a J-dimensional space. Principal component analysis is applied to describe characteristics in the distribution of the maps in the J-dimensional space. When the distribution is characterized by a small number of principal components, the distribution is classified using the k-means clustering method. The classified maps are evaluated by several parameters to assess the quality of the maps. Using the proposed scheme, structure analysis of a diffraction pattern from a non-crystalline particle is conducted in two stages: estimation of the overall shape and determination of the fine structure inside the support shape. In each stage, the most accurate and probable density maps are objectively selected. The validity of the proposed scheme is examined by application to diffraction data that were obtained from an aggregate of metal particles and a biological specimen at the XFEL facility SACLA using custom-made diffraction apparatus.
Crystal structure and superconducting properties of KSr2Nb3O10
NASA Astrophysics Data System (ADS)
Kawaguchi, T.; Horigane, K.; Itoh, Y.; Kobayashi, K.; Horie, R.; Kambe, T.; Akimitsu, J.
2018-05-01
We performed X-ray diffraction (XRD) and DC magnetic susceptibility measurements to elucidate the crystal structure and superconducting properties of KSr2Nb3O10. From the diffraction pattern indexing, it was found that KSr2Nb3O10 crystallizes with monoclinic symmetry, space group P21/m(11). We succeeded in preparing high temperature (HT) and low temperature (LT) phases of KSr2Nb3O10 powder samples synthesized by a conventional solid state reaction and an ion-exchange reaction, respectively. Superconductivity was observed at 4 K by Li intercalation and it was found that the superconducting volume fraction of the LT phase ( 1.4%) is clearly larger than that of the HT phase (0.07%).
Neutron scattering investigation of a macroscopic single crystal of a lyotropic Lα phase
NASA Astrophysics Data System (ADS)
Goecking, K. D.; Monkenbusch, M.
1998-07-01
Water-rich lamellar samples of the quaternary microemulsion SDS-pentanol-water-dodecane have been prepared in form of 1 mm×10 mm×20 mm macroscopic mono domains. The shape is given by the quartz cuvette containing the sample, the layer planes are parallel to the cuvette walls. Diffraction patterns and "rocking curves" have been obtained by neutron diffraction using a triple-axis spectrometer. Three "pseudo-Bragg peaks" have been observed, their (relative) intensities yield a new experimental access to estimate the product of the elastic constants η-2 propto Bκ resulting in a lower value than obtained from synchrotron investigation using peak shape fitting (Roux D. et al., Micelles, Membranes, Microemulsions and Monolayers (Springer, New York, Berlin) 1994).
Effects of higher order aberrations on beam shape in an optical recording system
NASA Technical Reports Server (NTRS)
Wang, Mark S.; Milster, Tom D.
1992-01-01
An unexpected irradiance pattern in the detector plane of an optical data storage system was observed. Through wavefront measurement and scalar diffraction modeling, it was discovered that the energy redistribution is due to residual third-order and fifth-order spherical aberration of the objective lens and cover-plate assembly. The amount of residual aberration is small, and the beam focused on the disk would be considered diffraction limited by several criteria. Since the detector is not in the focal plane, even this small amount of aberration has a significant effect on the energy distribution. We show that the energy redistribution can adversely affect focus error signals, which are responsible for maintaining sub-micron spot diameters on the spinning disk.
Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals
Dao, E. Han; Sierra, Raymond G.; Laksmono, Hartawan; ...
2015-04-30
In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecondmore » X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.« less
Nucleation of fcc Ta when heating thin films
Janish, Matthew T.; Mook, William M.; Carter, C. Barry
2014-10-25
Thin tantalum films have been studied during in-situ heating in a transmission electron microscope. Diffraction patterns from the as-deposited films were typical of amorphous materials. Crystalline grains were observed to form when the specimen was annealed in-situ at 450°C. Particular attention was addressed to the formation and growth of grains with the face-centered cubic (fcc) crystal structure. As a result, these observations are discussed in relation to prior work on the formation of fcc Ta by deformation and during thin film deposition.
Equation of state and phase transformations study of Nd at ultra-high pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akella, J.; Smith, G.S.; Weir, S.
1991-10-01
Neodymium was investigated to 96.0 GPa pressure in a diamond-anvil ell at room temperature. The observed structural sequence as a function of pressure is dhcp-fcc- six layered'' structure. In the diffraction pattern hexagonal doublets; notably 102, 006 and 100, 108; appear as single reflection when the c/a ratio is 4.899. However, when cc/a approaches 4.7, the splitting is clear. So far in this study, no monoclinic phase or tetragonal phase were observed. 1 fig., 18 refs.
NASA Astrophysics Data System (ADS)
Suastiyanti, Dwita; Sudarmaji, Arif; Soegijono, Bambang
2012-06-01
Barium hexaferrite BaFe12O19 (BFO) is of great importance as permanent magnets, particularly for magnetic recording as well as in microwave devices. Nano-crystalline BFO powders were prepared by sol gel auto combustion method in citric acid - metal nitrates system. Hence the mole ratios of Ba/Fe were variated at 1:12; 1:11.5 and 1:11. Ratio of cation to fuel was fixed at 1:1. An appropriate amount of amonia solution was added dropwise to this solution with constant stirring until the PH reached 7 in all cases. Heating at 850oC for 10 hours for each sample to get final formation of BFO nanocrystalline. The data from XRD showing the lattice parameters a,c and the unit-cell volume V, confirm that BFO with ratio 1:12 has same crystall parameters with ratio 1:11. Ratio of Ba/Fe 1:12 and 1:11 have diffraction pattern similarly at almost each 2 θ for each samples. Ratio of Ba/Fe 1: 11.5 has the finest crystallite size 22 nm. Almost diffraction pattern peaks of Ba/Fe 1:11.5 move to the left from of Ba/Fe 1:12 then return to diffraction pattern of Ba/Fe 1:12 for Ba/Fe 1:11. SEM observations show the particle size less than 100 nm and the same shape for each sample. Ratio of Ba/Fe 1: 12 gives the highest intrinsic coercive Hc = 427.3 kA/m. The highest remanent magnetization is at ratio 1:11 with Mr = 0.170 T. BFO with mole ratio 1:11.5 has the finest grain 22 nm, good magnetic properties and the highest value of best FoM 89%.
Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings
Zheng, Shuang; Wang, Jian
2017-01-01
Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams. PMID:28094325
Continuous motion scan ptychography: Characterization for increased speed in coherent x-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Nashed, Youssef S. G.; Chen, Si
Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object’s complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous “fly-scan” mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less
NASA Technical Reports Server (NTRS)
Palosz, B.; Grzanka, E.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H. P.; Janik, J. F.; Palosz, W.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The effect of the chemical state of the surface of nanoparticles on the relaxation in the near-surface layer was examined using the concept of the apparent lattice parameter (alp) determined for different diffraction vectors Q. The apparent lattice parameter is a lattice parameter determined either from an individual Bragg reflection, or from a selected region of the diffraction pattern. At low diffraction vectors the Bragg peak positions are affected mainly by the structure of the near-surface layer, while at high Q-values only the interior of the nano-grain contributes to the diffraction pattern. Following the measurements on raw (as prepared) powders we investigated powders cleaned by annealing at 400C under vacuum, and the same powders wetted with water. Theoretical alp-Q plots showed that the structure of the surface layer depends on the sample treatment. Semi-quantitative analysis based on the comparison of the experimental and theoretical alp-Q plots was performed. Theoretical alp-Q relations were obtained from the diffraction patterns calculated for models of nanocrystals with a strained surface layer using the Debye functions.
Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings.
Zheng, Shuang; Wang, Jian
2017-01-17
Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams.
Continuous motion scan ptychography: Characterization for increased speed in coherent x-ray imaging
Deng, Junjing; Nashed, Youssef S. G.; Chen, Si; ...
2015-02-23
Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object’s complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous “fly-scan” mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less
Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Junjing; Nashed, Youssef S. G.; Chen, Si
2015-01-01
Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object's complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous "fly-scan" mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less
Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging.
Deng, Junjing; Nashed, Youssef S G; Chen, Si; Phillips, Nicholas W; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris; Vine, David J
2015-03-09
Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object's complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous "fly-scan" mode for ptychographic data collection in which the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.
In Situ 3D Coherent X-ray Diffraction Imaging of Shock Experiments: Possible?
NASA Astrophysics Data System (ADS)
Barber, John
2011-03-01
In traditional coherent X-ray diffraction imaging (CXDI), a 2D or quasi-2D object is illuminated by a beam of coherent X-rays to produce a diffraction pattern, which is then manipulated via a process known as iterative phase retrieval to reconstruct an image of the original 2D sample. Recently, there have been dramatic advances in methods for performing fully 3D CXDI of a sample from a single diffraction pattern [Raines et al, Nature 463 214-7 (2010)], and these methods have been used to image samples tens of microns in size using soft X-rays. In this work, I explore the theoretical possibility of applying 3D CXDI techniques to the in situ imaging of the interaction between a shock front and a polycrystal, a far more stringent problem. A delicate trade-off is required between photon energy, spot size, imaging resolution, and the dimensions of the experimental setup. In this talk, I will outline the experimental and computational requirements for performing such an experiment, and I will present images and movies from simulations of one such hypothetical experiment, including both the time-resolved X-ray diffraction patterns and the time-resolved sample imagery.
Note on use of slope diffraction coefficients for aperture antennas on finite ground planes
NASA Technical Reports Server (NTRS)
Cockrell, C. R.; Beck, F. B.
1995-01-01
The use of slope diffraction coefficients along with regular diffraction coefficients for calculating the radiation patterns of aperture antennas in a finite ground plane is investigated. Explicit expressions for regular diffraction coefficients and slope diffraction coefficients are presented. The expressions for the incident magnetic field in terms of the magnetic current in the aperture are given. The slope of the incident magnetic field is calculated and closed form expressions are presented.
Compact portable diffraction moire interferometer
Deason, V.A.; Ward, M.B.
1988-05-23
A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.
NASA Astrophysics Data System (ADS)
Lam, Elisa; Gu, Qinfen; Swedlund, Peter J.; Marchesseau, Sylvie; Hemar, Yacine
2015-11-01
The changes in the crystal structures of synthetically prepared amorphous calcium phosphate (ACP) and hydroxyapatite (HAP) in water (1:1 mass ratio) were studied by synchrotron X-ray diffraction (XRD) under ultra-high hydrostatic pressures as high as 2.34 GPa for ACP and 4 GPa for HAP. At ambient pressure, the XRD patterns of the ACP and HAP samples in capillary tubes and their environmental scanning electron micrographs indicated amorphous and crystalline characteristics for ACP and HAP, respectively. At pressures greater than 0.25 GPa, an additional broad peak was observed in the XRD pattern of the ACP phase, indicating a partial phase transition from an amorphous phase to a new high-pressure amorphous phase. The peak areas and positions of the ACP phase, as obtained through fitting of the experimental data, indicated that the ACP exhibited increased pseudo-crystalline behavior at pressures greater than 0.96 GPa. Conversely, no structural changes were observed for the HAP phase up to the highest applied pressure of 4 GPa. For HAP, a unit-cell reduction during compression was evidenced by a reduction in both refined lattice parameters a and c. Both ACP and HAP reverted to their original structures when the pressure was fully released to ambient pressure.
USDA-ARS?s Scientific Manuscript database
The Segal method estimates the amorphous fraction of cellulose IB materials simply based on intensity at 18o 20 in an X-ray diffraction pattern and was extended to cellulose II using 16o 2O intensity. To address the dependency of Segal amorphous intensity on crystal size, cellulose polymorph, and th...
Primordial black hole detection through diffractive microlensing
NASA Astrophysics Data System (ADS)
Naderi, T.; Mehrabi, A.; Rahvar, S.
2018-05-01
Recent observations of gravitational waves motivate investigations for the existence of primordial black holes (PBHs). We propose the observation of gravitational microlensing of distant quasars for the range of infrared to the submillimeter wavelengths by sublunar PBHs as lenses. The advantage of observations in the longer wavelengths, comparable to the Schwarzschild radius of the lens (i.e., Rsch≃λ ) is the detection of the wave optics features of the gravitational microlensing. The observation of diffraction pattern in the microlensing light curve of a quasar can break the degeneracy between the lens parameters and determine directly the lens mass as well as the distance of the lens from the observer. We estimate the wave optics optical-depth, also calculate the rate of ˜0.1 to ˜0.3 event per year per a quasar, assuming that hundred percent of dark matter is made of sublunar PBHs. Also, we propose a long-term survey of quasars with the cadence of almost one hour to few days to resolve the wave optics features of the light curves to discover PBHs and determine the fraction of dark matter made of sublunar PBHs as well as their mass function.
Diffraction gratings used as identifying markers
Deason, V.A.; Ward, M.B.
1991-03-26
A finely detailed diffraction grating is applied to an object as an identifier or tag which is unambiguous, difficult to duplicate, or remove and transfer to another item, and can be read and compared with prior readings with relative ease. The exact pattern of the diffraction grating is mapped by diffraction moire techniques and recorded for comparison with future readings of the same grating. 7 figures.
Diffraction of a Gaussian Beam by a Spherical Obstacle
NASA Technical Reports Server (NTRS)
Lock, James A.; Hovenac, Edward A.
1993-01-01
The Kirchhoff integral for diffraction in the near-forward direction is derived from the exact solution of the electromagnetic boundary value problem of a focused Gaussian laser beam incident on a spherical particle. The diffracted intensity in the vicinity of the particle is computed and the way in which the features of the diffraction pattern depend on the width of the Gaussian beam is commented on.
NASA Astrophysics Data System (ADS)
Svedberg, E. B.; Birch, J.; Edvardsson, C. N. L.; Sundgren, J.-E.
1999-07-01
The use of video recording of reflection high energy electron diffraction (RHEED) patterns for assessing the dynamic evolution of the surface morphology and crystallinity during growth was evaluated. As an example, Mo/V(001) superlattices with varying layer thickness (with periods Λ of 2.5 to 8.9 nm and a constant Mo:V ratio of 1:1) were examined. During the deposition, changes from two- to three-dimensional growth were observed in situ. From prior transmission electron microscopy (TEM) and X-ray diffraction (XRD) studies, it is known that this transition is associated with a critical thickness and concurrent roughening of the V layer. Video recording and subsequent image and data processing allowed the surface morphology to be continuously followed during growth. Post-growth analyses of the recorded data provided the evolution of surface lattice parameters and short range [1-2 monolayer (ML)] surface roughnesses with a time resolution of 200-400 ms (0.02-0.04 nm thickness resolution). During growth of Mo, a smoothening effect could be observed while the growth of V evidently increased the surface roughness from 1 to 2 ML. Furthermore, the onset of coherency strain relaxation of the topmost growing layers was observed to occur at 2.0-2.5 nm layer thicknesses for both materials, which is in qualitative agreement with theoretical predictions.
Microstructural characterisation of proton irradiated niobium using X-ray diffraction technique
NASA Astrophysics Data System (ADS)
Dutta, Argha; Gayathri, N.; Neogy, S.; Mukherjee, P.
2018-04-01
The microstructural parameters in pure Nb, irradiated with 5 MeV proton beam have been evaluated as a function of dose using X-ray diffraction line profile analysis. In order to assess the microstructural changes in the homogeneous region and in the peak damage region of the damage energy deposition profile, X-ray diffraction patterns have been collected using two different geometries (Bragg-Brentano and parallel beam geometries). Different X-ray line profile analysis like Williamson-Hall (W-H) analysis, modified W-H analysis, double-Voigt analysis, modified Rietveld technique and convolutional multiple whole profile fitting have been employed to extract the microstructural parameters like coherent domain size, microstrain within the domain, dislocation density and arrangement of dislocations. The coherent domain size decreases drastically along with increase in microstrain and dislocation density in the first dose for both the geometries. With increasing dose, a decreasing trend in microstrain associated with decrease in dislocation density is observed for both the geometries. This is attributed to the formation of defect clusters due to irradiation which with increasing dose collapse to dislocation loops to minimise the strain in the matrix. This is corroborated with the observation of black dots and loops in the TEM images. No significant difference is observed in the trend of microstructural parameters between the homogeneous and peak damage region of the damage profile.
Sekiguchi, Yuki; Hashimoto, Saki; Kobayashi, Amane; Oroguchi, Tomotaka; Nakasako, Masayoshi
2017-09-01
Coherent X-ray diffraction imaging (CXDI) is a technique for visualizing the structures of non-crystalline particles with size in the submicrometer to micrometer range in material sciences and biology. In the structural analysis of CXDI, the electron density map of a specimen particle projected along the direction of the incident X-rays can be reconstructed only from the diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction, relying entirely on the computational procedure, sometimes fails because diffraction patterns miss the data in small-angle regions owing to the beam stop and saturation of the detector pixels, and are modified by Poisson noise in X-ray detection. To date, X-ray free-electron lasers have allowed us to collect a large number of diffraction patterns within a short period of time. Therefore, the reconstruction of correct electron density maps is the bottleneck for efficiently conducting structure analyses of non-crystalline particles. To automatically address the correctness of retrieved electron density maps, a data analysis protocol to extract the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a single diffraction pattern is proposed. Through monitoring the variations of the phase values during PR calculations, the tendency for the PR calculations to succeed when the retrieved phase sets converged on a certain value was found. On the other hand, if the phase set was in persistent variation, the PR calculation tended to fail to yield the correct electron density map. To quantify this tendency, here a figure of merit for the variation of the phase values during PR calculation is introduced. In addition, a PR protocol to evaluate the similarity between a map of the highest figure of merit and other independently reconstructed maps is proposed. The protocol is implemented and practically examined in the structure analyses for diffraction patterns from aggregates of gold colloidal particles. Furthermore, the feasibility of the protocol in the structure analysis of organelles from biological cells is examined.
Rajai H. Atalla; Rowan S Atalla; Umesh P. Agarwal
2018-01-01
Native celluloses in plant cell walls occur in a variety of highly periodic fibrillar forms that have curvature and varying degrees of twist about their longitudinal axes. Though X-ray measurements reveal diffraction patterns, the celluloses are not crystalline in the traditional sense. The diffraction patterns rather are a consequence of the high degree of spatial...
Ekeberg, Tomas
2015-05-26
This dataset contains the diffraction patterns that were used for the first three-dimensional reconstruction of a virus using FEL data. The sample was the giant mimivirus particle, which is one of the largest known viruses with a diameter of 450 nm. The dataset consists of the 198 diffraction patterns that were used in the analysis.
Gessner, Oliver; Kornilov, Oleg A; Wilcox, Russell B
2013-10-29
The invention provides for a device comprising an apparatus comprising (a) a transmission grating capable of diffracting a photon beam into a diffracted photon output, and (b) an image detector capable of detecting the diffracted photon output. The device is useful for measuring the spatial profile and diffraction pattern of a photon beam, such as a vacuum ultraviolet (VUV) beam.
Theory and Application of Auger and Photoelectron Diffraction and Holography
NASA Astrophysics Data System (ADS)
Chen, Xiang
This dissertation addresses the theories and applications of three important surface analysis techniques: Auger electron diffraction (AED), x-ray photoelectron diffraction (XPD), and Auger and photoelectron holography. A full multiple-scattering scheme for the calculations of XPD, AED, and Kikuchi electron diffraction pattern from a surface cluster is described. It is used to simulate 64 eV M_{2,3}VV and 913 eV L_3VV AED patterns from Cu(001) surfaces, in order to test assertions in the literature that they are explicable by a classical "blocking" and channeling model. We find that this contention is not valid, and that only a quantum mechanical multiple-scattering calculation is able to simulate these patterns well. The same multiple scattering simulation scheme is also used to investigate the anomalous phenomena of peak shifts off the forward-scattering directions in photo -electron diffraction patterns of Mg KLL (1180 eV) and O 1s (955 eV) from MgO(001) surfaces. These shifts are explained by calculations assuming a short electron mean free path. Similar simulations of XPD from a CoSi_2(111) surface for Co-3p and Si-2p normal emission agree well with experimental diffraction patterns. A filtering process aimed at eliminating the self -interference effect in photoelectron holography is developed. A better reconstructed image from Si-2p XPD from a Si(001) (2 times 1) surface is seen at atomic resolution. A reconstruction algorithm which corrects for the anisotropic emitter waves as well as the anisotropic atomic scattering factors is used for holographic reconstruction from a Co-3p XPD pattern from a CoSi_2 surface. This new algorithm considerably improves the reconstructed image. Finally, a new reconstruction algorithm called "atomic position recovery by iterative optimization of reconstructed intensities" (APRIORI), which takes account of the self-interference terms omitted by the other holographic algorithms, is developed. Tests on a Ni-C-O chain and Si(111)(sqrt{3} times sqrt{3})B surface suggest that this new method may overcome the twin image problem in the traditional holographic methods, reduce the artifacts in real space, and even separately identify the chemical species of the scatterers.
Fast and Adaptive Auto-focusing Microscope
NASA Astrophysics Data System (ADS)
Obara, Takeshi; Igarashi, Yasunobu; Hashimoto, Koichi
Optical microscopes are widely used in biological and medical researches. By using the microscope, we can observe cellular movements including intracellular ions and molecules tagged with fluorescent dyes at a high magnification. However, a freely motile cell easily escapes from a 3D field of view of the typical microscope. Therefore, we propose a novel auto-focusing algorithm and develop a auto-focusing and tracking microscope. XYZ positions of a microscopic stage are feedback controlled to focus and track the cell automatically. A bright-field image is used to estimate a cellular position. XY centroids are used to estimate XY positions of the tracked cell. To estimate Z position, we use a diffraction pattern around the cell membrane. This estimation method is so-called Depth from Diffraction (DFDi). However, this method is not robust for individual differences between cells because the diffraction pattern depends on each cellular shape. Therefore, in this study, we propose a real-time correction of DFDi by using 2D Laplacian of an intracellular area as a goodness of the focus. To evaluate the performance of our developed algorithm and microscope, we auto-focus and track a freely moving paramecium. In this experimental result, the paramecium is auto-focused and kept inside the scope of the microscope during 45s. The evaluated focal error is within 5µm, while a length and a thickness of the paramecium are about 200µm and 50µm, respectively.
Absolute angular encoder based on optical diffraction
NASA Astrophysics Data System (ADS)
Wu, Jian; Zhou, Tingting; Yuan, Bo; Wang, Liqiang
2015-08-01
A new encoding method for absolute angular encoder based on optical diffraction was proposed in the present study. In this method, an encoder disc is specially designed that a series of elements are uniformly spaced in one circle and each element is consisted of four diffraction gratings, which are tilted in the directions of 30°, 60°, -60° and -30°, respectively. The disc is illuminated by a coherent light and the diffractive signals are received. The positions of diffractive spots are used for absolute encoding and their intensities are for subdivision, which is different from the traditional optical encoder based on transparent/opaque binary principle. Since the track's width in the disc is not limited in the diffraction pattern, it provides a new way to solve the contradiction between the size and resolution, which is good for minimization of encoder. According to the proposed principle, the diffraction pattern disc with a diameter of 40 mm was made by lithography in the glass substrate. A prototype of absolute angular encoder with a resolution of 20" was built up. Its maximum error was tested as 78" by comparing with a small angle measuring system based on laser beam deflection.
Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi
2016-01-01
Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed. PMID:27359147
Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi
2016-07-01
Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed.
NASA Astrophysics Data System (ADS)
Bourdillon, Antony
2012-11-01
The following facts about icosahedra need wider attention. 1) The golden section τ is as fundamental to the icosahedral structure (length /edge) as π is to the sphere (circumference /diameter). 2) The diffraction series are in restricted Fibonacci order because the ratio of adjacent terms fn/fn-1 does not vary, but is the constant τ. The series is therefore geometric. 3) Because of the tetragonal subgroup in the icosahedral point group symmetry, many axes in the icosahedral structure have identical orientation to axes in the face centered cubic matrix of Al6Mn [1] (e.g. [100] and [111]). On these bases, a three dimensional stereographic projection will be presented. 4) A quasi-Bragg law is derived that correctly represents the diffraction series in powers of τ [2]. Furthermore, by employing the normal conventions of electron microscopy, all diffraction patterns are completely indexed in three dimensions. These are the topic of this presentation. Significant consequences will be presented elsewhere: 1) The diffraction pattern intensities near all main axes are correctly simulated, and all atoms are located on a specimen image. 2) The quasi-Bragg law has a special metric. Atomic locations are consistently calculated for the first time. 3) Whereas the Bragg law transforms a crystal lattice in real space into a reciprocal lattice in diffraction space, the quasi-Bragg law transforms a geometric diffraction pattern into a hierarchic structure. 4) Hyperspatial indexation [3] is superceded. [1] Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J.W., Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., 1984, 53, 1951-3. [2] Bourdillon, A. J., Nearly free electron band structures in a logarithmically periodic solid, Sol. State Comm. 2009, 149, 1221-1225. [3] Duneau, M., and Katz, A., Phys Rev Lett 54, 2688-2691
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelan, D.; Rodriguez, E. E.; Gao, J.
2014-11-17
We revisit the phase diagram of the relaxor ferroelectric PMN- xPT using neutron powder diffraction to test suggestions that residual oxygen vacancies and/or strain affect the ground state crystal structure. Powdered samples of PMN- xPT were prepared with nominal compositions of x = 0:10, 0.20, 0.30, and 0.40 and divided into two identical sets, one of which was annealed in air to relieve grinding-induced strain and to promote an ideal oxygen stoichiometry. For a given composition and temperature the same structural phase is observed for each specimen. However, the distortions in all of the annealed samples are smaller than thosemore » in the as-grown samples. Further, the diffraction patterns for x = 0:10, 0.20, and 0.30 are best refined using the monoclinic Cm space group. By comparing our neutron diffraction results to those obtained on single crystals having similar compositions, we conclude that the relaxor skin effect in PMN- xPT vanishes on the Ti-rich side of the morphotropic phase boundary.« less
7 Å Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction at Linac Coherent Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido
2014-06-09
Membrane proteins arranged as two-dimensional (2D) crystals in the lipid en- vironment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. X-ray diffraction from individual 2D crystals did not represent a suitable investigation tool because of radiation damage. The recent availability of ultrashort pulses from X-ray Free Electron Lasers (X-FELs) has now provided a mean to outrun the damage. Here we report on measurements performed at the LCLS X-FEL on bacteriorhodopsin 2D crystals mounted on a solid support and kept at room temperature. By merg- ing data from about a dozen of single crystalmore » diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 °A, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase of resolution. The presented results pave the way to further X-FEL studies on 2D crystals, which may include pump-probe experiments at subpicosecond time resolution.« less
NASA Astrophysics Data System (ADS)
Pradhan, A.; Maitra, T.; Mukherjee, S.; Mukherjee, S.; Satpati, B.; Nayak, A.; Bhunia, S.
2018-04-01
Spontaneous superlattice ordering in a length scale larger than an atomic layer has been observed in AlxGa1-xAs layers grown on (100) GaAs substrates by metalorganic vapor phase epitaxy. Transmission electron microscopic image clearly revealed superlattice structures and the selected area electron diffraction showed closely spaced superlattice spots around the main diffraction pattern. High resolution x-ray diffraction showed distinct and sharp superlattice peaks symmetrically positioned around the central (004) Bragg peak and the similar measurement for (002) planes, which is quasi-forbidden for Bragg reflections showed only superlattice peaks. Thermal annealing studies showed the superlattice structure was stable up to 800 °C and disappeared after annealing at 900 °C retaining the crystallinity of the epilayer. Study of inter-diffusivitiesin such superlattice structures has been carried out using high temperaturex-ray diffraction results. Here we present (004) x-ray θ-2θ scans of the AlGaAs/GaAs (100) sample with annealing time for different temperatures. Conclusions regarding interdiffusion in such superlattice structures are drawn from high temperature X-ray measurements.
7 Å resolution in protein two-dimensional-crystal X-ray diffraction at Linac Coherent Light Source
Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark S.; Zatsepin, Nadia A.; Barty, Anton; Benner, W. Henry; Boutet, Sébastien; Feld, Geoffrey K.; Hau-Riege, Stefan P.; Kirian, Richard A.; Kupitz, Christopher; Messerschmitt, Marc; Ogren, John I.; Pardini, Tommaso; Segelke, Brent; Williams, Garth J.; Spence, John C. H.; Abela, Rafael; Coleman, Matthew; Evans, James E.; Schertler, Gebhard F. X.; Frank, Matthias; Li, Xiao-Dan
2014-01-01
Membrane proteins arranged as two-dimensional crystals in the lipid environment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. Previously, X-ray diffraction from individual two-dimensional crystals did not represent a suitable investigational tool because of radiation damage. The recent availability of ultrashort pulses from X-ray free-electron lasers (XFELs) has now provided a means to outrun the damage. Here, we report on measurements performed at the Linac Coherent Light Source XFEL on bacteriorhodopsin two-dimensional crystals mounted on a solid support and kept at room temperature. By merging data from about a dozen single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 Å, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase in the resolution. The presented results pave the way for further XFEL studies on two-dimensional crystals, which may include pump–probe experiments at subpicosecond time resolution. PMID:24914166
NASA Astrophysics Data System (ADS)
Donnadieu, P.; Dénoyer, F.
1996-11-01
A comparative X-ray and electron diffraction study has been performed on Al-Li-Cu icosahedral quasicrystal in order to investigate the diffuse scattering rings revealed by a previous work. Electron diffraction confirms the existence of rings but shows that the rings have a fine structure. The diffuse aspect on the X-ray diffraction patterns is then due to an averaging effect. Recent simulations based on the model of canonical cells related to the icosahedral packing give diffractions patterns in agreement with this fine structure effect. Nous comparons les diagrammes de diffraction des rayon-X et des électrons obtenus sur les mêmes échantillons du quasicristal icosaèdrique Al-Li-Cu. Notre but est d'étudier les anneaux de diffusion diffuse mis en évidence par un travail précédent. Les diagrammes de diffraction électronique confirment la présence des anneaux mais ils montrent aussi que ces anneaux possèdent une structure fine. L'aspect diffus des anneaux révélés par la diffraction des rayons X est dû à un effet de moyenne. Des simulations récentes basées sur la décomposition en cellules canoniques de l'empilement icosaédrique produisent des diagrammes de diffraction en accord avec ces effects de structure fine.
Coherent X-ray diffraction from collagenous soft tissues
Berenguer de la Cuesta, Felisa; Wenger, Marco P. E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.
2009-01-01
Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60–70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the ‘speckled’ nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques. PMID:19706395
Coherent X-ray diffraction from collagenous soft tissues.
Berenguer de la Cuesta, Felisa; Wenger, Marco P E; Bean, Richard J; Bozec, Laurent; Horton, Michael A; Robinson, Ian K
2009-09-08
Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira, A. S.; Rovani, P. R.; Lima, J. C. de, E-mail: joao.cardoso.lima@ufsc.br
A nanostructured Ti{sub 50}Ni{sub 25}Fe{sub 25} phase (B2) was formed by mechanical alloying and its structural stability was studied as a function of pressure. The changes were followed by X-ray diffraction. The B2 phase was observed up to 7 GPa; for larger pressures, the B2 phase transformed into a trigonal/hexagonal phase (B19) that was observed up to the highest pressure used (18 GPa). Besides B2 and B19, elemental Ni or a SS-(Fe,Ni) and FeNi{sub 3} were observed. With decompression, the B2 phase was recovered. Using in situ angle-dispersive X-ray diffraction patterns, the single line method was applied to obtain the apparent crystallitemore » size and the microstrain for both the B2 and the B19 phases as a function of the applied pressure. Values of the bulk modulus for the B2, B19, elemental Ni or SS-(Fe,Ni) and FeNi{sub 3} phases were obtained by fitting the pressure dependence of the volume to a Birch–Murnaghan equation of state (BMEOS)« less
Behavior of implanted hydrogen in ferritic/martensitic steels under irradiation
NASA Astrophysics Data System (ADS)
Wan, F.; Takahashi, H.; Ohnuki, S.; Nagasaki, R.
1988-07-01
The aim of this study was to clarify the behavior of hydrogen under irradiation in ferritic/martensitic stainless steel Fe-10Cr-2Mo-1Ni. Hydrogen was implanted into the specimens by ion accelerator or chemical cathodic charging method, followed by electron irradiation in a HVEM at temperatures from room temperature to 773 K. Streaks in the electron diffraction patterns were observed only during electron irradiation at 623-723 K. From these results it is suggested that the occurrence of the streak pattern is due to the formation of radiation-induced complexes of Ni or Cr with hydrogen along <100> directions.
Diffraction enhanced kinetic depth X-ray imaging
NASA Astrophysics Data System (ADS)
Dicken, A.
An increasing number of fields would benefit from a single analytical probe that can characterise bulk objects that vary in morphology and/or material composition. These fields include security screening, medicine and material science. In this study the X-ray region is shown to be an effective probe for the characterisation of materials. The most prominent analytical techniques that utilise X-radiation are reviewed. The study then focuses on methods of amalgamating the three dimensional power of kinetic depth X-ray (KDFX) imaging with the materials discrimination of angular dispersive X-ray diffraction (ADXRD), thus providing KDEX with a much needed material specific counterpart. A knowledge of the sample position is essential for the correct interpretation of diffraction signatures. Two different sensor geometries (i.e. circumferential and linear) that are able to collect end interpret multiple unknown material diffraction patterns and attribute them to their respective loci within an inspection volume are investigated. The circumferential and linear detector geometries are hypothesised, simulated and then tested in an experimental setting with the later demonstrating a greater ability at discerning between mixed diffraction patterns produced by differing materials. Factors known to confound the linear diffraction method such as sample thickness and radiation energy have been explored and quantified with a possible means of mitigation being identified (i.e. via increasing the sample to detector distance). A series of diffraction patterns (following the linear diffraction approach) were obtained from a single phantom object that was simultaneously interrogated via KDEX imaging. Areas containing diffraction signatures matched from a threat library have been highlighted in the KDEX imagery via colour encoding and match index is inferred by intensity. This union is the first example of its kind and is called diffraction enhanced KDEX imagery. Finally an additional source of information obtained from object disparity is explored as an alternative means of calculating sample loci. This offers a greater level of integration between these two complimentary techniques as object disparity could be used to reinforce the results produced by the linear diffraction geometry.
Fibrous Protein Structures: Hierarchy, History and Heroes.
Squire, John M; Parry, David A D
2017-01-01
During the 1930s and 1940s the technique of X-ray diffraction was applied widely by William Astbury and his colleagues to a number of naturally-occurring fibrous materials. On the basis of the diffraction patterns obtained, he observed that the structure of each of the fibres was dominated by one of a small number of different types of molecular conformation. One group of fibres, known as the k-m-e-f group of proteins (keratin - myosin - epidermin - fibrinogen), gave rise to diffraction characteristics that became known as the α-pattern. Others, such as those from a number of silks, gave rise to a different pattern - the β-pattern, while connective tissues yielded a third unique set of diffraction characteristics. At the time of Astbury's work, the structures of these materials were unknown, though the spacings of the main X-ray reflections gave an idea of the axial repeats and the lateral packing distances. In a breakthrough in the early 1950s, the basic structures of all of these fibrous proteins were determined. It was found that the long protein chains, composed of strings of amino acids, could be folded up in a systematic manner to generate a limited number of structures that were consistent with the X-ray data. The most important of these were known as the α-helix, the β-sheet, and the collagen triple helix. These studies provided information about the basic building blocks of all proteins, both fibrous and globular. They did not, however, provide detailed information about how these molecules packed together in three-dimensions to generate the fibres found in vivo. A number of possible packing arrangements were subsequently deduced from the X-ray diffraction and other data, but it is only in the last few years, through the continued improvements of electron microscopy, that the packing details within some fibrous proteins can now be seen directly. Here we outline briefly some of the milestones in fibrous protein structure determination, the role of the amino acid sequences and how new techniques, including electron microscopy, are helping to define fibrous protein structures in three-dimensions. We also introduce the idea that, from the known sequence characteristics of different fibrous proteins, new molecules can be designed and synthesized, thereby generating new biological materials with specific structural properties. Some of these, for example, are planned for use in drug delivery systems. Along the way we also introduce the various Chapters of the book, where individual fibrous proteins are discussed in detail.
NASA Astrophysics Data System (ADS)
Cunha, L.; Apreutesei, M.; Moura, C.; Alves, E.; Barradas, N. P.; Cristea, D.
2018-04-01
The purpose of this work is to discuss the main structural characteristics of a group of tantalum oxynitride (TaNxOy) thin films, with different compositions, prepared by magnetron sputtering, and to interpret and compare the structural changes, by X-ray diffraction (XRD), when the samples are vacuum annealed under two different conditions: i) annealing, followed by ex-situ XRD: one sample of each deposition run was annealed at a different temperature, until a maximum of 800 °C, and the XRD patterns were obtained, at room temperature, after each annealing process; ii) annealing with in-situ XRD: the diffraction patterns are obtained, at certain temperatures, during the annealing process, using always the same sample. In-situ XRD annealing could be an interesting process to perform annealing, and analysing the evolution of the structure with the temperature, when compared to the classical process. A higher structural stability was observed in some of the samples, particularly on those with highest oxygen content, but also on the sample with non-metal (O + N) to metal (Ta) ratio around 0.5.
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Jauhari, Mrinal; Mittal, R.; Krishna, P. S. R.; Reddy, V. R.; Chaplot, S. L.
2018-04-01
We have carried out systematic temperature-dependent neutron diffraction measurements in conjunction with dielectric spectroscopy from 6 to 300 K for sodium niobate based compounds (1-x) NaNbO3-xBaTiO3 (NNBTx). The dielectric constant is measured as a function of both temperature and frequency. It shows an anomaly at different temperatures in cooling and heating cycles and exhibits a large thermal hysteresis of ˜150 K for the composition x = 0.03. The dielectric constant is found to be dispersive in nature and suggests a relaxor ferroelectric behavior. In order to explore structural changes as a function of temperature, we analyzed the powder neutron diffraction data for the compositions x = 0.03 and 0.05. Drastic changes are observed in the powder profiles near 2θ ˜ 30.6°, 32.1°, and 34.6° in the diffraction pattern below 200 K during cooling and above 190 K in heating cycles, respectively. The disappearance of superlattice reflection and splitting in main perovskite peaks provide a signature for structural phase transition. We observed stabilization of a monoclinic phase (Cc) at low temperature. This monoclinic phase is believed to provide a flexible polarization rotation and considered to be directly linked to the high performance piezoelectricity in materials. The thermal hysteresis for composition x = 0.03 is larger than that for x = 0.05. This suggests that the addition of BaTiO3 to NaNbO3 suppresses the thermal hysteresis. It is also observed that the structural phase transition temperature decreases upon increasing the dopant concentration.
Structure induced magnetic anisotropy behavior in Co/GaAs(001) films
NASA Astrophysics Data System (ADS)
Blundell, S. J.; Gester, M.; Bland, J. A. C.; Daboo, C.; Gu, E.; Baird, M. J.; Ives, A. J. R.
1993-05-01
Epitaxial Co has been grown on GaAs(001) and studied by both low-energy electron diffraction (LEED) and reflection high-energy electron diffraction (RHEED), and by the magneto-optic Kerr effect (MOKE) and polarized neutron reflection (PNR). Three samples were fabricated using different growth procedures: (1) ``interrupted'' growth (including an anneal); (2) and (3) continuous growth of similar thicknesses. For sample 1, RHEED patterns indicate an initial growth in the bcc phase followed by a relaxation into a distorted single phase at completion of growth, whereas samples 2 and 3 showed a multicrystalline structure after growth. LEED patterns were used to check the existence of the 2×4 reconstruction patterns before growth, but no LEED patterns could be obtained after more than 2 Å Co was deposited, in contrast to the RHEED patterns which remained visible throughout the growth. Structural analysis of the completed films indicates the formation of a ˜10 Å CoO layer on the Co/air interface, and gives thicknesses for magnetic material of (1) 30 Å and (2) 80 Å. Sample 1 showed a dominant fourfold magnetic anisotropy with the easy axis parallel to the (100) direction and with a strength 2K4/M of ˜0.5 kOe, smaller in magnitude than that reported for bcc films on GaAs(110) but along the same axis [G. A. Prinz et al., J. Appl. Phys. 57, 3672 (1985)]. However, samples 2 and 3 showed only a large uniaxial anisotropy along the (110) direction of strength 2K1/M of ˜1.5 kOe and ˜2.5 kOe, respectively, similar in magnitude to those previously observed [G. A. Prinz et al., J. Appl. Phys. 57, 3676 (1985)]. We attribute the origin of the contrasting magnetic anisotropy behavior observed to the differences in final structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latychevskaia, Tatiana; Fink, Hans-Werner
Previously reported crystalline structures obtained by an iterative phase retrieval reconstruction of their diffraction patterns seem to be free from displaying any irregularities or defects in the lattice, which appears to be unrealistic. We demonstrate here that the structure of a nanocrystal including its atomic defects can unambiguously be recovered from its diffraction pattern alone by applying a direct phase retrieval procedure not relying on prior information of the object shape. Individual point defects in the atomic lattice are clearly apparent. Conventional phase retrieval routines assume isotropic scattering. We show that when dealing with electrons, the quantitatively correct transmission functionmore » of the sample cannot be retrieved due to anisotropic, strong forward scattering specific to electrons. We summarize the conditions for this phase retrieval method and show that the diffraction pattern can be extrapolated beyond the original record to even reveal formerly not visible Bragg peaks. Such extrapolated wave field pattern leads to enhanced spatial resolution in the reconstruction.« less
Luis Martínez Fuentes, Jose; Moreno, Ignacio
2018-03-05
A new technique for encoding the amplitude and phase of diffracted fields in digital holography is proposed. It is based on a random spatial multiplexing of two phase-only diffractive patterns. The first one is the phase information of the intended pattern, while the second one is a diverging optical element whose purpose is the control of the amplitude. A random number determines the choice between these two diffractive patterns at each pixel, and the amplitude information of the desired field governs its discrimination threshold. This proposed technique is computationally fast and does not require iterative methods, and the complex field reconstruction appears on axis. We experimentally demonstrate this new encoding technique with holograms implemented onto a flicker-free phase-only spatial light modulator (SLM), which allows the axial generation of such holograms. The experimental verification includes the phase measurement of generated patterns with a phase-shifting polarization interferometer implemented in the same experimental setup.
Resolution of 90 nm (lambda/5) in an optical transmission microscope with an annular condenser.
Vainrub, Arnold; Pustovyy, Oleg; Vodyanoy, Vitaly
2006-10-01
Resolution of 90 nm was achieved with a research microscope simply by replacing the standard bright-field condenser with a homebuilt illumination system with a cardioid annular condenser. Diffraction gratings with 100 nm width lines as well as less than 100 nm size features of different-shaped objects were clearly visible on a calibrated microscope test slide. The resolution increase results from a known narrower diffraction pattern in coherent illumination for the annular aperture compared with the circular aperture. This explanation is supported by an excellent accord of calculated and measured diffraction patterns for a 50 nm radius disk.
Diffractive optics for particle velocimetry and sizing
NASA Technical Reports Server (NTRS)
Wilson, D. W.; Gogna, P. K.; Chacon, R. J.; Muller, R. E.; Fourguette, D.; Modarress, D.; Taugwalder, F.; Svitek, P.; Gharib, M.
2002-01-01
Beam-shaping diffractive optical elements are used to create structured light patterns in fluid flows. Particle scattering results in detected signals that can be used to determine the particle size and velocity.
Iodine Intercalation of Bundles of Single Wall Carbon Nanotubes (SWNT)
NASA Astrophysics Data System (ADS)
Grigorian, L.; Fang, S. L.; Williams, K. A.; Sumanasekera, G. U.; Dickey, E. C.; Eklund, P. C.; Pennycock, S.; Rinzler, A. G.; Smalley, R. E.
1998-03-01
We have been able to intercalate iodine into the interstitial channels within the rope lattice by direct contact of SWNT mats with molten iodine. These continuously filled channels were observed by Z-contrast STEM imaging. The intercalated iodine atoms provide a ``chemical wedge'' which expands the rope lattice as found from x-ray powder diffraction. At low doping level, Raman-active modes and photoluminescence were used to identify the intercalated species as (I_3)^-I2 linear polyiodide chains. The observed upshift of the high-frequency tangential Raman mode, as well as decreased values of four-probe electrical resistance and thermopower are all consistent with electron transfer from SWNT to iodine. At higher doping level, another iodine-SWNT compound was formed as evidenced by a different x-ray diffraction pattern and Raman spectrum. This new compound exhibits a number of new Raman lines, apparently unrelated to the intercalated iodine, in addition to the usual SWNT Raman modes. We discuss possible mechanisms responsible for activating new Raman modes in SWNT.
Pressure-induced structural transition in chalcopyrite ZnSiP2
NASA Astrophysics Data System (ADS)
Bhadram, Venkata S.; Krishna, Lakshmi; Toberer, Eric S.; Hrubiak, Rostislav; Greenberg, Eran; Prakapenka, Vitali B.; Strobel, Timothy A.
2017-05-01
The pressure-dependent phase behavior of semiconducting chalcopyrite ZnSiP2 was studied up to 30 GPa using in situ X-ray diffraction and Raman spectroscopy in a diamond-anvil cell. A structural phase transition to the rock salt type structure was observed between 27 and 30 GPa, which is accompanied by soft phonon mode behavior and simultaneous loss of Raman signal and optical transmission through the sample. The high-pressure rock salt type phase possesses cationic disorder as evident from broad features in the X-ray diffraction patterns. The behavior of the low-frequency Raman modes during compression establishes a two-stage, order-disorder phase transition mechanism. The phase transition is partially reversible, and the parent chalcopyrite structure coexists with an amorphous phase upon slow decompression to ambient conditions.
Measurement of strain in Al-Cu interconnect lines with x-ray microdiffraction
NASA Astrophysics Data System (ADS)
Solak, H. H.; Vladimirsky, Y.; Cerrina, F.; Lai, B.; Yun, W.; Cai, Z.; Ilinski, P.; Legnini, D.; Rodrigues, W.
1999-07-01
We report measurement of strain in patterned Al-Cu interconnect lines with x-ray microdiffraction technique with a ˜1 μm spatial resolution. Monochromatized x rays from an undulator were focused on the sample using a phase fresnel zone plate and diffracted light was collected by an area detector in a symmetric, angle dispersive x-ray diffraction geometry. Measurements were made before and after the line sample was stressed for electromigration. Results show an increase in inter- and intra-grain strain variation after the testing. Differences in strain behavior of grains with (111) and (200) crystallographic planes parallel to the substrate surface were observed. A position dependent variation of strain after the testing was measured whereas no such dependence was found before the testing.
NASA Astrophysics Data System (ADS)
Das, D.; Hussain, A. M. P.
2018-04-01
PbS/CdS core/shell (CS) nanoparticles (NPs) were fabricated with three different concentrations of PbS core and CdS shell. Formation of core/shell heterostructure was confirmed from X-ray diffraction studies. The diffraction patterns exhibited formation of cubic phase and polycrystalline core/shell nanostructure. The crystalline sizes calculated from Williamson-Hall plot exhibited increase with molar concentration of precursors with decrease in strain. High resolution electron microscopy studies also confirm the formation of core/shell structure with particle size around 10 nm. A large blue-shift for PbS core compared to its bulk and small red-shift for the PbS/CdS core/shell as compared to the core is being observed in absorption spectra.
NASA Technical Reports Server (NTRS)
Kies, J A; Quick, G W
1939-01-01
Report presents the results of a great number of tests made to determine the effect of service stresses on the impact resistance, the x-ray diffraction patterns, and the microstructure of 25s aluminum alloy. Many of the specimens were taken from actual propeller blades and others were cut from 13/16-inch rod furnished by the Aluminum Company of America.
Collimation testing using slit Fresnel diffraction
NASA Astrophysics Data System (ADS)
Luo, Xiaohe; Hui, Mei; Wang, Shanshan; Hou, Yinlong; Zhou, Siyu; Zhu, Qiudong
2018-03-01
A simple collimation testing method based on slit Fresnel diffraction is proposed. The method needs only a CMOS and a slit with no requirement in dimensional accuracy. The light beam to be tested diffracts across the slit and forms a Fresnel diffraction pattern received by CMOS. After analysis, the defocusing amount and the distance between the primary peak point and secondary peak point of diffraction pattern fulfill an expression relationship and then the defocusing amount can be deduced from the expression. The method is applied to both the coherent beam and partially coherent beam, and these two beams are emitted from a laser and light-emitting diode (LED) with a spectrum width of about 50 nm in this paper. Simulations show that the wide spectrum of LED has the effect of smooth filtering to provide higher accuracy. Experiments show that the LED with a spectrum width of about 50 nm has a lower limitation error than the laser and can achieve up to 58.1601 μm with focal length 200 mm and slit width 15 mm.
Direct single-shot phase retrieval from the diffraction pattern of separated objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leshem, Ben; Xu, Rui; Dallal, Yehonatan
The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less
Direct single-shot phase retrieval from the diffraction pattern of separated objects
Leshem, Ben; Xu, Rui; Dallal, Yehonatan; ...
2016-02-22
The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less
Diffracted light from latent images in photoresist for exposure control
Bishop, Kenneth P.; Brueck, Steven R. J.; Gaspar, Susan M.; Hickman, Kirt C.; McNeil, John R.; Naqvi, S. Sohail H.; Stallard, Brian R.; Tipton, Gary D.
1997-01-01
In microelectronics manufacturing, an arrangement for monitoring and control of exposure of an undeveloped photosensitive layer on a structure susceptible to variations in optical properties in order to attain the desired critical dimension for the pattern to be developed in the photosensitive layer. This is done by ascertaining the intensities for one or more respective orders of diffracted power for an incident beam of radiation corresponding to the desired critical dimension for the photosensitive layer as a function of exposure time and optical properties of the structure, illuminating the photosensitive layer with a beam of radiation of one or more frequencies to which the photosensitive layer is not exposure-sensitive, and monitoring the intensities of the orders of diffracted radiation due to said illumination including at least the first order of diffracted radiation thereof, such that when said predetermined intensities for the diffracted orders are reached during said illumination of photosensitive layer, it is known that a pattern having at least approximately the desired critical dimension can be developed on the photosensitive layer.
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration
2017-11-01
The STAR Collaboration reports on the photoproduction of π+π- pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly real photon emitted by one ion scatters from the other ion. We fit the π+π- invariant-mass spectrum with a combination of ρ0 and ω resonances and a direct π+π- continuum. This is the first observation of the ω in ultraperipheral collisions, and the first measurement of ρ -ω interference at energies where photoproduction is dominated by Pomeron exchange. The ω amplitude is consistent with the measured γ p →ω p cross section, a classical Glauber calculation, and the ω →π+π- branching ratio. The ω phase angle is similar to that observed at much lower energies, showing that the ρ -ω phase difference does not depend significantly on photon energy. The ρ0 differential cross section d σ /d t exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with two minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.
Comparative study of the magnetic properties of La3Ni2B‧O9 for B‧ = Nb, Taor Sb
NASA Astrophysics Data System (ADS)
Chin, Chun-Mann; Battle, Peter D.; Blundell, Stephen J.; Hunter, Emily; Lang, Franz; Hendrickx, Mylène; Paria Sena, Robert; Hadermann, Joke
2018-02-01
Polycrystalline samples of La3Ni2NbO9 and La3Ni2TaO9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (μSR); the latter technique was also applied to La3Ni2SbO9. On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random ⅓Ni/⅔B‧ mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La3Ni2B‧O9 (B‧ = Nb or Ta) at 5 K although in each case μSR identified the presence of static spins below 30 K. Magnetometry showed that La3Ni2NbO9 behaves as a spin glass below 29 K but significant short-range interactions are present in La3Ni2TaO9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.
NASA Astrophysics Data System (ADS)
Rougeot, R.; Aime, C.
2018-04-01
Context. This study is made in the context of the future solar coronagraph ASPIICS of the ESA formation-flying mission Proba-3. Aims: In the context of solar coronagraphy, we provide a comparative study of the theoretical performance of serrated (or toothed) external occulters by varying the number and size of the teeth, which we compare to the sharp-edged and apodized disks. The tooth height is small (a few centimeters), to avoid hindering the observation of the solar corona near the limb. We first analyze the diffraction pattern produced by such occulters. In a second step, we compute the umbra profile by integration over the Sun. Methods: We explored a few methods to compute the diffraction pattern. Two of them were implemented. The first is based on 2D fast Fourier transformation (FFT) routines and a multiplication by the Fresnel filter of the form exp(-iπλzu2). Simple rules were derived and discussed to set the sampling conditions. The Maggi-Rubinowicz representation is then proposed as an alternative method, and is proven to be very efficient for this study. Results: Serrated occulters tend to create a two-level intensity pattern, the inner being the darker, which perfectly matches a previously reported geometrical prediction. The diffraction in this central region is lower by two to four orders of magnitude when compared to the sharp-edged disk. The achieved umbra level at the center ranges from 10-4 to below 10-7, depending on the geometry of the teeth. Conclusions: Our study shows that serrated occulters can achieve a high rejection and can almost reach the performance of the apodized disk when very many teeth are used. We prove that shaped occulters must be preferred to simple disks in solar and stellar coronagraphy.
Large-Scale Diffraction Patterns from Circular Objects
ERIC Educational Resources Information Center
Rinard, Phillip M.
1976-01-01
Investigates quantitatively the diffractions of light by a U.S. penny and an aperture of the same size. Differences noted between the theory and measurements are discussed, with probable causes indicated. (Author/CP)
NASA Astrophysics Data System (ADS)
Quaranta, Giorgio; Basset, Guillaume; Benes, Zdenek; Martin, Olivier J. F.; Gallinet, Benjamin
2018-01-01
Resonant waveguide gratings (RWGs) are thin-film structures, where coupled modes interfere with the diffracted incoming wave and produce strong angular and spectral filtering. The combination of two finite-length and impedance matched RWGs allows the creation of a passive beam steering element, which is compatible with up-scalable fabrication processes. Here, we propose a design method to create large patterns of such elements able to filter, steer, and focus the light from one point source to another. The method is based on ellipsoidal mirrors to choose a system of confocal prolate spheroids where the two focal points are the source point and observation point, respectively. It allows finding the proper orientation and position of each RWG element of the pattern, such that the phase is constructively preserved at the observation point. The design techniques presented here could be implemented in a variety of systems, where large-scale patterns are needed, such as optical security, multifocal or monochromatic lenses, biosensors, and see-through optical combiners for near-eye displays.
Meng, Yifei; Zuo, Jian-Min
2016-09-01
A diffraction-based technique is developed for the determination of three-dimensional nanostructures. The technique employs high-resolution and low-dose scanning electron nanodiffraction (SEND) to acquire three-dimensional diffraction patterns, with the help of a special sample holder for large-angle rotation. Grains are identified in three-dimensional space based on crystal orientation and on reconstructed dark-field images from the recorded diffraction patterns. Application to a nanocrystalline TiN thin film shows that the three-dimensional morphology of columnar TiN grains of tens of nanometres in diameter can be reconstructed using an algebraic iterative algorithm under specified prior conditions, together with their crystallographic orientations. The principles can be extended to multiphase nanocrystalline materials as well. Thus, the tomographic SEND technique provides an effective and adaptive way of determining three-dimensional nanostructures.
Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation
Zhang, Hongjia; Sui, Tan; Daisenberger, Dominik; Fong, Kai Soon
2018-01-01
High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation. PMID:29543728
Broadband diffractive lens or imaging element
Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.
1991-01-01
A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed.
Tassin, Philippe; Van der Sande, Guy; Veretennicoff, Irina; Kockaert, Pascal; Tlidi, Mustapha
2009-05-25
We consider a degenerate optical parametric oscillator containing a left-handed material. We show that the inclusion of a left-handed material layer allows for controlling the strength and sign of the diffraction coefficient at either the pump or the signal frequency. Subsequently, we demonstrate the existence of stable dissipative structures without diffraction matching, i.e., without the usual relationship between the diffraction coefficients of the signal and pump fields. Finally, we investigate the size scaling of these light structures with decreasing diffraction strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Häusler, I., E-mail: ines.haeusler@bam.de; Dörfel, I., E-mail: Ilona.doerfel@bam.de; Peplinski, B., E-mail: Burkhard.peplinski@bam.de
A model system was used to simulate the properties of tribofilms which form during automotive braking. The model system was prepared by ball milling of a blend of 70 vol.% iron oxides, 15 vol.% molybdenum disulfide and 15 vol.% graphite. The resulting mixture was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and various transmission electron microscopic (TEM) methods, including energy dispersive X-ray spectroscopy (EDXS), high resolution investigations (HRTEM) with corresponding simulation of the HRTEM images, diffraction methods such as scanning nano-beam electron diffraction (SNBED) and selected area electron diffraction (SAED). It could be shown that the ballmore » milling caused a reduction of the grain size of the initial components to the nanometer range. Sometimes even amorphization or partial break-down of the crystal structure was observed for MoS{sub 2} and graphite. Moreover, chemical reactions lead to a formation of surface coverings of the nanoparticles by amorphous material, molybdenum oxides, and iron sulfates as derived from XPS. - Highlights: • Ball milling of iron oxides, MoS{sub 2}, and graphite to simulate a tribofilm • Increasing coefficient of friction after ball milling of the model blend • Drastically change of the diffraction pattern of the powder mixture • TEM & XPS showed the components of the milled mixture and the process during milling. • MoS{sub 2} and graphite suffered a loss in translation symmetry or became amorphous.« less
Very High-Frequency (VHF) ionospheric scintillation fading measurements at Lima, Peru
NASA Technical Reports Server (NTRS)
Blank, H. A.; Golden, T. S.
1972-01-01
During the spring equinox of 1970, scintillating signals at VHF (136.4 MHz) were observed at Lima, Peru. The transmission originated from ATS 3 and was observed through a pair of antennas spaced 1200 feet apart on an east-west baseline. The empirical data were digitized, reduced, and analyzed. The results include amplitude probability density and distribution functions, time autocorrelation functions, cross correlation functions for the spaced antennas, and appropriate spectral density functions. Results show estimates of the statistics of the ground diffraction pattern to gain insight into gross ionospheric irregularity size, and irregularity velocity in the antenna planes.
Modified alignment CGHs for aspheric surface test
NASA Astrophysics Data System (ADS)
Song, Jae-Bong; Yang, Ho-Soon; Rhee, Hyug-Gyo; Lee, Yun-Woo
2009-08-01
Computer Generated Holograms (CGH) for optical test are commonly consisted of one main pattern for testing aspheric surface and some alignment patterns for aligning the interferometer, CGH, and the test optics. To align the CGH plate and the test optics, we designed the alignment CGHs modified from the cat's eye alignment method, which are consisted of a couple of CGH patterns. The incident beam passed through the one part of the alignment CGH pattern is focused onto the one radius position of the test aspheric surface, and is reflected to the other part, and vice versa. This method has several merits compared to the conventional cat's eye alignment method. First, this method can be used in testing optics with a center hole, and the center part of CGH plate can be assigned to the alignment pattern. Second, the alignment pattern becomes a concentric circular arc pattern. The whole CGH patterns including the main pattern and alignment patterns are consisted of only concentric circular fringes. This concentric circular pattern can be easily made by the polar coordinated writer with circular scanning. The required diffraction angle becomes relatively small, so the 1st order diffraction beams instead of the 3rd order diffraction beam can be used as alignment beams, and the visibility can be improved. This alignment method also is more sensitive to the tilt and the lateral shift of the test aspheric surface. Using this alignment pattern, a 200 mm diameter F/0.5 aspheric mirror and a 600 mm diameter F/0.9 mirror were tested.
Maurice, Claire; Fortunier, Roland; Driver, Julian; Day, Austin; Mingard, Ken; Meaden, Graham
2010-06-01
This comment on the paper "Bragg's Law diffraction simulations for electron backscatter diffraction analysis" by Kacher et al. explains the limitations in determining elastic strains using synthetic EBSD patterns. Of particular importance are those due to the accuracy of determination of the EBSD geometry projection parameters. Additional references and supporting information are provided. Copyright 2010 Elsevier B.V. All rights reserved.
Étude de la structure des alliages vitreux Ag-As2S3 par diffraction de rayons X
NASA Astrophysics Data System (ADS)
Popescu, M.; Sava, F.; Cornet, A.; Broll, N.
2002-07-01
The structure of several silver alloyed arsenic chalocgenide has been determined by X-ray diffraction. For low silver doping the disordered layer structure, characteristic to the glassy AS2S3 is retained as demonstrated by the well developed first sharp diffraction peak in the X-ray diffraction pattern. For high amount of silver introduced in the As2S3 matrix, the disoredered layer configurations disappear, as shown by the diminishing and even disappearance of the first sharp diffraction peak in the X-ray patterns. A three-dimensional structure based on Ag2S -type configuration is formed. La structure de quelques alliages sulfure d'arsenic - argent a été determinée par diffraction de rayons X. Pour de faibles dopages à l'argent on conserve la structure desordonnées caractéristique des couches atomique d'As2S3 vitreux ; ceci est prouvé par la forte intensité du premier pic étroit de diffraction. Pour des plus grandes proportions d'argent la structure de l'alliage vitreux fait apparaître des unités structurales caractéristiques du cristal d'Ag2S et la configuration atomique avec des couches desordonnées disparaît (le premier pic étroit de diffraction s'évanouit) en faisant place à une structure tridimensionelle.
Continuous diffraction of molecules and disordered molecular crystals
Yefanov, Oleksandr M.; Ayyer, Kartik; White, Thomas A.; Barty, Anton; Morgan, Andrew; Mariani, Valerio; Oberthuer, Dominik; Pande, Kanupriya
2017-01-01
The intensities of far-field diffraction patterns of orientationally aligned molecules obey Wilson statistics, whether those molecules are in isolation (giving rise to a continuous diffraction pattern) or arranged in a crystal (giving rise to Bragg peaks). Ensembles of molecules in several orientations, but uncorrelated in position, give rise to the incoherent sum of the diffraction from those objects, modifying the statistics in a similar way as crystal twinning modifies the distribution of Bragg intensities. This situation arises in the continuous diffraction of laser-aligned molecules or translationally disordered molecular crystals. This paper develops the analysis of the intensity statistics of such continuous diffraction to obtain parameters such as scaling, beam coherence and the number of contributing independent object orientations. When measured, continuous molecular diffraction is generally weak and accompanied by a background that far exceeds the strength of the signal. Instead of just relying upon the smallest measured intensities or their mean value to guide the subtraction of the background, it is shown how all measured values can be utilized to estimate the background, noise and signal, by employing a modified ‘noisy Wilson’ distribution that explicitly includes the background. Parameters relating to the background and signal quantities can be estimated from the moments of the measured intensities. The analysis method is demonstrated on previously published continuous diffraction data measured from crystals of photosystem II [Ayyer et al. (2016 ▸), Nature, 530, 202–206]. PMID:28808434
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; ...
2015-08-11
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary tomore » fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15µm) loaded into the chips yielded a complete, high-resolution (<1.6Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.
2015-01-01
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs. PMID:26457423
Diffractive Optic Fluid Shear Stress Sensor
NASA Technical Reports Server (NTRS)
Wilson, D.; Scalf, J.; Forouhar, S.; Muller, R.; Taugwalder, F.; Gharib, M.; Fourguette, D.; Modarress, D.
2000-01-01
Light scattering off particles flowing through a two-slit interference pattern can be used to measure the shear stress of the fluid. We have designed and fabricated a miniature diffractive optic sensor based on this principle.
In-volume structuring of a bilayered polymer foil using direct laser interference patterning
NASA Astrophysics Data System (ADS)
Rößler, Florian; Günther, Katja; Lasagni, Andrés F.
2018-05-01
Periodic surface patterns can provide materials with special optical properties, which are usable in decorative or security applications. However, they can be sensitive to contact wear and thus their lifetime and functionality are limited. This study describes the use of direct laser interference patterning for structuring a multilayered polymer film at its interface creating periodic in-volume structures which are resistant to contact wear. The spatial period of the structures are varied in the range of 1.0 μm to 2.0 μm in order to produce decorative elements. The pattern formation at the interface is explained using cross sectional observations and a thermal simulation of the temperature evolution during the laser treatment at the interface. Both, the diffraction efficiency and direct transmission are characterized by light intensity measurements to describe the optical behavior of the produced periodic structures and a decorative application example is presented.
Three-dimensional imaging of nanoscale materials by using coherent x-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Jianwei
X-ray crystallography is currently the primary methodology used to determine the 3D structure of materials and macromolecules. However, many nanostructures, disordered materials, biomaterials, hybrid materials and biological specimens are noncrystalline and, hence, their structures are not accessible by X-ray crystallography. Probing these structures therefore requires the employment of different approaches. A very promising technique currently under rapid development is X-ray diffraction microscopy (or lensless imaging), in which the coherent X-ray diffraction pattern of a noncrystalline specimen is measured and then directly phased to obtain a high-resolution image. Through the DOE support over the past three years, we have applied X-raymore » diffraction microscopy to quantitative imaging of GaN quantum dot particles, and revealed the internal GaN-Ga2O3 core shell structure in three dimensions. By exploiting the abrupt change in the scattering cross-section near electronic resonances, we carried out the first experimental demonstration of resonant X-ray diffraction microscopy for element specific imaging. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent X-ray diffraction patterns acquired below and above the Bi M5 edge. We have also applied X-ray diffraction microscopy to nondestructive imaging of mineral crystals inside biological composite materials - intramuscular fish bone - at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization and proposed a dynamic mechanism to account for the nucleation and growth of mineral crystals in the collagen matrix. In addition, we have also discovered a novel 3D imaging modality, denoted ankylography, which allows for complete 3D structure determination without the necessity of sample titling or scanning. We showed that when the diffraction pattern of a finite object is sampled at a sufficiently fine scale on the Ewald sphere, the 3D structure of the object is determined by the 2D spherical pattern. We confirmed the theoretical analysis by performing 3D numerical reconstructions of a sodium silicate glass structure at 2 A resolution from a 2D spherical diffraction pattern alone. As X-ray free electron lasers are under rapid development worldwide, ankylography may open up a new horizon to obtain the 3D structure of a non-crystalline specimen from a single pulse and allow time-resolved 3D structure determination of disordered materials.« less
Anomalous refraction of light through slanted-nanoaperture arrays on metal surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Myungji; Jung, Yun Suk; Xi, Yonggang
2015-09-07
We report a nanoapertured metal surface that demonstrates anomalous refraction of light for a wide range of incident angles. A nanoslit aperture is designed to serve as a tilted vertical-dipole whose radiation pattern orients to a glancing angle direction to substrate. An array of such slanted nanoslits formed in a metal film redirects an incident beam into the direction of negative refraction angle: the aperture-transmitted wave makes a far-field propagation to the tilt-oriented direction of radiation pattern. The thus-designed nanoaperture array demonstrates the −1st order diffraction (i.e., to the negative refraction-angle direction) with well-suppressed background transmission (the zero-order direct transmissionmore » and other higher-order diffractions). Engineering the radiation pattern of nanoaperture offers an approach to overcoming the limits of conventional diffractive/refractive optics and complementing metasurface-based nano-optics.« less
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Xiong, Rui; Yi, Fan; Yin, Di; Ke, Manzhu; Li, Changzhen; Liu, Zhengyou; Shi, Jing
2005-05-01
High quality and large-sized Rb 0.3MoO 3 single crystals were synthesized by molten salt electrolysis method. X-ray diffraction (XRD) patterns and rocking curves, as well as the white beam Laue diffraction of X-ray images show the crystals grown by this method have high quality. The lattice constants evaluated from XRD patterns are a0=1.87 nm, b0=0.75 nm, c0=1.00 nm, β=118.83∘. The in situ selected area electron diffraction (SAED) patterns along the [101¯], [11¯1¯] and [103¯] zone axes at room temperature indicate that the Rb 0.3MoO 3 crystal possess perfect C-centered symmetry. Temperature dependence of the resistivity shows this compound undergoes a metal to semiconductor transition at 183 K.
Low-energy Auger electron diffraction: influence of multiple scattering and angular momentum
NASA Astrophysics Data System (ADS)
Chassé, A.; Niebergall, L.; Kucherenko, Yu.
2002-04-01
The angular dependence of Auger electrons excited from single-crystal surfaces is treated theoretically within a multiple-scattering cluster model taking into account the full Auger transition matrix elements. In particular the model has been used to discuss the influence of multiple scattering and angular momentum of the Auger electron wave on Auger electron diffraction (AED) patterns in the region of low kinetic energies. Theoretical results of AED patterns are shown and discussed in detail for Cu(0 0 1) and Ni(0 0 1) surfaces, respectively. Even though Cu and Ni are very similar in their electronic and scattering properties recently strong differences have been found in AED patterns measured in the low-energy region. It is shown that the differences may be caused to superposition of different electron diffraction effects in an energy-integrated experiment. A good agreement between available experimental and theoretical results has been achieved.
Fourier phase retrieval with a single mask by Douglas-Rachford algorithms.
Chen, Pengwen; Fannjiang, Albert
2018-05-01
The Fourier-domain Douglas-Rachford (FDR) algorithm is analyzed for phase retrieval with a single random mask. Since the uniqueness of phase retrieval solution requires more than a single oversampled coded diffraction pattern, the extra information is imposed in either of the following forms: 1) the sector condition on the object; 2) another oversampled diffraction pattern, coded or uncoded. For both settings, the uniqueness of projected fixed point is proved and for setting 2) the local, geometric convergence is derived with a rate given by a spectral gap condition. Numerical experiments demonstrate global, power-law convergence of FDR from arbitrary initialization for both settings as well as for 3 or more coded diffraction patterns without oversampling. In practice, the geometric convergence can be recovered from the power-law regime by a simple projection trick, resulting in highly accurate reconstruction from generic initialization.
The α–β phase transition in volcanic cristobalite
Damby, David E.; Llewellin, Edward W.; Horwell, Claire J.; Williamson, Ben J.; Najorka, Jens; Cressey, Gordon; Carpenter, Michael
2014-01-01
Cristobalite is a common mineral in volcanic ash produced from dome-forming eruptions. Assessment of the respiratory hazard posed by volcanic ash requires understanding the nature of the cristobalite it contains. Volcanic cristobalite contains coupled substitutions of Al3+ and Na+ for Si4+; similar co-substitutions in synthetic cristobalite are known to modify the crystal structure, affecting the stability of the α and β forms and the observed transition between them. Here, for the first time, the dynamics and energy changes associated with the α–β phase transition in volcanic cristobalite are investigated using X-ray powder diffraction with simultaneous in situ heating and differential scanning calorimetry. At ambient temperature, volcanic cristobalite exists in the α form and has a larger cell volume than synthetic α-cristobalite; as a result, its diffraction pattern sits between ICDD α- and β-cristobalite library patterns, which could cause ambiguity in phase identification. On heating from ambient temperature, volcanic cristobalite exhibits a lower degree of thermal expansion than synthetic cristobalite, and it also has a lower α–β transition temperature (∼473 K) compared with synthetic cristobalite (upwards of 543 K); these observations are discussed in relation to the presence of Al3+ and Na+ defects. The transition shows a stable and reproducible hysteresis loop with α and β phases coexisting through the transition, suggesting that discrete crystals in the sample have different transition temperatures. PMID:25242910
The α-β phase transition in volcanic cristobalite.
Damby, David E; Llewellin, Edward W; Horwell, Claire J; Williamson, Ben J; Najorka, Jens; Cressey, Gordon; Carpenter, Michael
2014-08-01
Cristobalite is a common mineral in volcanic ash produced from dome-forming eruptions. Assessment of the respiratory hazard posed by volcanic ash requires understanding the nature of the cristobalite it contains. Volcanic cristobalite contains coupled substitutions of Al 3+ and Na + for Si 4+ ; similar co-substitutions in synthetic cristobalite are known to modify the crystal structure, affecting the stability of the α and β forms and the observed transition between them. Here, for the first time, the dynamics and energy changes associated with the α-β phase transition in volcanic cristobalite are investigated using X-ray powder diffraction with simultaneous in situ heating and differential scanning calorimetry. At ambient temperature, volcanic cristobalite exists in the α form and has a larger cell volume than synthetic α-cristobalite; as a result, its diffraction pattern sits between ICDD α- and β-cristobalite library patterns, which could cause ambiguity in phase identification. On heating from ambient temperature, volcanic cristobalite exhibits a lower degree of thermal expansion than synthetic cristobalite, and it also has a lower α-β transition temperature (∼473 K) compared with synthetic cristobalite (upwards of 543 K); these observations are discussed in relation to the presence of Al 3+ and Na + defects. The transition shows a stable and reproducible hysteresis loop with α and β phases coexisting through the transition, suggesting that discrete crystals in the sample have different transition temperatures.
From quantum to classical interactions between a free electron and a surface
NASA Astrophysics Data System (ADS)
Beierle, Peter James
Quantum theory is often cited as being one of the most empirically validated theories in terms of its predictive power and precision. These attributes have led to numerous scientific discoveries and technological advancements. However, the precise relationship between quantum and classical physics remains obscure. The prevailing description is known as decoherence theory, where classical physics emerges from a more general quantum theory through environmental interaction. Sometimes referred to as the decoherence program, it does not solve the quantum measurement problem. We believe experiments performed between the microscopic and macroscopic world may help finish the program. The following considers a free electron that interacts with a surface (the environment), providing a controlled decoherence mechanism. There are non-decohering interactions to be examined and quantified before the weaker decohering effects are filtered out. In the first experiment, an electron beam passes over a surface that's illuminated by low-power laser light. This induces a surface charge redistribution causing the electron deflection. This phenomenon's parameters are investigated. This system can be well understood in terms of classical electrodynamics, and the technological applications of this electron beam switch are considered. Such phenomena may mask decoherence effects. A second experiment tests decoherence theory by introducing a nanofabricated diffraction grating before the surface. The electron undergoes diffraction through the grating, but as the electron passes over the surface it's predicted by various physical models that the electron will lose its wave interference property. Image charge based models, which predict a larger loss of contrast than what is observed, are falsified (despite experiencing an image charge force). A theoretical study demonstrates how a loss of contrast may not be due to the irreversible process decoherence, but dephasing (a reversible process due to randomization of the wavefunction's phase). To resolve this ambiguity, a correlation function on an ensemble of diffraction patterns is analyzed after an electron undergoes either process in a path integral calculation. The diffraction pattern is successfully recovered for dephasing, but not for decoherence, thus verifying it as a potential tool in experimental studies to determine the nature of the observed process.
Cherepanova, Svetlana; Markovskaya, Dina; Kozlova, Ekaterina
2017-06-01
The X-ray diffraction (XRD) pattern of a deleterious phase in the photocatalyst based on Cd 1 - x Zn x S/Zn(OH) 2 contains two relatively intense asymmetric peaks with d-spacings of 2.72 and 1.56 Å. Very small diffraction peaks with interplanar distances of (d) ≃ 8.01, 5.40, 4.09, 3.15, 2.49 and 1.35 Å are characteristic of this phase but not always observed. To identify this phase, the XRD patterns for sheet-like hydroxide β-Zn(OH) 2 and sheet-like hydrozincite Zn 5 (CO 3 ) 2 (OH) 6 as well as for turbostratic hydrozincite were simulated. It is shown that the XRD pattern calculated on the basis of the last model gives the best correspondence with experimental data. Distances between layers in the turbostratically disordered hydrozincite fluctuate around d ≃ 8.01 Å. This average layer-to-layer distance is significantly higher than the interlayer distance 6.77 Å in the ordered Zn 5 (CO 3 ) 2 (OH) 6 probably due to a deficiency of CO 3 2- anions, excess OH - and the presence of water molecules in the interlayers. It is shown by variable-temperature XRD and thermogravimetric analysis (TGA) that the nanocrystalline turbostratic nonstoichiometric hydrozincite-like phase is quite thermostable. It decomposes into ZnO in air above 473 K.
NASA Astrophysics Data System (ADS)
Bentley, Joel B.; Davis, Jeffrey A.; Albero, Jorge; Moreno, Ignacio
2006-10-01
We report a new self-interferometric technique for visualizing phase patterns that are encoded onto a phase-only liquid-crystal display (LCD). In our approach, the LCD generates both the desired object beam as well as the reference beam. Normally the phase patterns are encoded with a phase depth of 2π radians, and all of the incident energy is diffracted into the first-order beam. However, by reducing this phase depth, we can generate an additional zero-order diffracted beam, which acts as the reference beam. We work at distances such that these two patterns spatially interfere, producing an interference pattern that displays the encoded phase pattern. This approach was used recently to display the phase vortices of helical Ince-Gaussian beams. Here we show additional experimental results and analyze the process.
NASA Astrophysics Data System (ADS)
Mamezaki, Daiki; Harada, Tetsuo; Nagata, Yutaka; Watanabe, Takeo
2017-07-01
In extreme ultraviolet (EUV) lithography, development of review tools for EUV mask pattern and phase defect at working wavelength of 13.5 nm is required. The EUV mask is composed of an absorber pattern (50 - 70 nm thick) and Mo/Si multilayer (280 nm thick) on a glass substrate. This mask pattern seems three-dimensional (3D) structure. This 3D structure would modulate EUV reflection phase, which would cause focus and pattern shifts. Thus, EUV phase imaging is important to evaluate this phase modulation. We have developed coherent EUV scatterometry microscope (CSM), which is a simple microscope without objective optics. EUV phase and intensity image are reconstructed with diffraction images by ptychography with coherent EUV illumination. The high-harmonic-generation (HHG) EUV source was employed for standalone CSM system. In this study, we updated HHG system of pump-laser reduction and gas-pressure control. Two types of EUV mask absorber patterns were observed. An 88-nm lines-and-spaces and a cross-line patterns were clearly reconstructed by ptychography. In addition, a natural defect with 2-μm diameter on the cross-line was well reconstructed. This demonstrated the high capability of the standalone CSM, which system will be used in the factories, such as mask shops and semiconductor fabrication plants.
NASA Astrophysics Data System (ADS)
Vasuki, G.; Balu, T.
2018-06-01
Mixed spinel copper manganese ferrite (CuXMn1‑XFe2O4, X = 0, 0.25, 0.5, 0.75, 1) nanoparticles were synthesized by chemical co-precipitation technique. From the powder x-ray diffraction analysis the lattice constant, volume of unit cell, x-ray density, hopping lengths, crystallite size, surface area, dislocation density and microstrain were calculated. The substitution of Cu2+ ions shows a considerable reduction in the crystallite size of manganese ferrite from 34 nm to 22 nm. Further a linear fit of Williamson-Hall plot has been drawn to determine the microstrain and crystallite size. The crystallite size and morphology were further observed through high resolution transmission electron microscope and scanning electron microscope. The diffraction rings observed from selected area electron diffraction pattern exhibits the crystalline nature of all the samples. The energy dispersive x-ray analysis shows the composition of all the elements incorporated in the synthesized nanomaterials. FTIR studies reveal the absorption peaks that correspond to the metal-oxygen vibrations in the tetrahedral and octahedral sites. From the UV–vis absorption spectra the band gap energy, refractive index and optical dielectric constant were determined. Magnetic studies carried out using vibrating sample magnetometer shows interesting behaviour in the variation of magnetisation and coercivity. Peculiar magnetic behaviour is observed when Cu2+ ions are substituted in manganese ferrites. All the synthesized materials have very low value of squareness ratio which attributes to the superparamagnetic behaviour.
X-Ray Diffraction and the Discovery of the Structure of DNA
ERIC Educational Resources Information Center
Crouse, David T.
2007-01-01
A method is described for teaching the analysis of X-ray diffraction of DNA through a series of steps utilizing the original methods used by James Watson, Francis Crick, Maurice Wilkins and Rosalind Franklin. The X-ray diffraction pattern led to the conclusion of the basic helical structure of DNA and its dimensions while basic chemical principles…
NASA Astrophysics Data System (ADS)
Fallet, Clément; Caron, Julien; Oddos, Stephane; Tinevez, Jean-Yves; Moisan, Lionel; Sirat, Gabriel Y.; Braitbart, Philippe O.; Shorte, Spencer L.
2014-08-01
We present a new technology for super-resolution fluorescence imaging, based on conical diffraction. Conical diffraction is a linear, singular phenomenon taking place when a polarized beam is diffracted through a biaxial crystal. The illumination patterns generated by conical diffraction are more compact than the classical Gaussian beam; we use them to generate a super-resolution imaging modality. Conical Diffraction Microscopy (CODIM) resolution enhancement can be achieved with any type of objective on any kind of sample preparation and standard fluorophores. Conical diffraction can be used in multiple fashion to create new and disruptive technologies for super-resolution microscopy. This paper will focus on the first one that has been implemented and give a glimpse at what the future of microscopy using conical diffraction could be.
Meng, Yifei; Zuo, Jian -Min
2016-07-04
A diffraction-based technique is developed for the determination of three-dimensional nanostructures. The technique employs high-resolution and low-dose scanning electron nanodiffraction (SEND) to acquire three-dimensional diffraction patterns, with the help of a special sample holder for large-angle rotation. Grains are identified in three-dimensional space based on crystal orientation and on reconstructed dark-field images from the recorded diffraction patterns. Application to a nanocrystalline TiN thin film shows that the three-dimensional morphology of columnar TiN grains of tens of nanometres in diameter can be reconstructed using an algebraic iterative algorithm under specified prior conditions, together with their crystallographic orientations. The principles can bemore » extended to multiphase nanocrystalline materials as well. Furthermore, the tomographic SEND technique provides an effective and adaptive way of determining three-dimensional nanostructures.« less
Data preparation and evaluation techniques for x-ray diffraction microscopy
Steinbrener, Jan; Nelson, Johanna; Huang, Xiaojing; ...
2010-01-01
The post-experiment processing of X-ray Diffraction Microscopy data is often time-consuming and difficult. This is mostly due to the fact that even if a preliminary result has been reconstructed, there is no definitive answer as to whether or not a better result with more consistently retrieved phases can still be obtained. In addition, we show here that the first step in data analysis, the assembly of two-dimensional diffraction patterns from a large set of raw diffraction data, is crucial to obtaining reconstructions of highest possible consistency. We have developed software that automates this process and results in consistently accurate diffractionmore » patterns. We have furthermore derived some criteria of validity for a tool commonly used to assess the consistency of reconstructions, the phase retrieval transfer function, and suggest a modified version that has improved utility for judging reconstruction quality.« less
Yuan, Kai-Jun; Bandrauk, André D
2017-10-04
Exploring ultrafast charge migration is of great importance in biological and chemical reactions. We present a scheme to monitor attosecond charge migration in molecules by electron diffraction with spatial and temporal resolutions from ab initio numerical simulations. An ultraviolet pulse creates a coherent superposition of electronic states, after which a time-delayed attosecond X-ray pulse is used to ionize the molecule. It is found that diffraction patterns in the X-ray photoelectron spectra show an asymmetric structure, which is dependent on the time delay between the pump-probe pulses, encoding the information of molecular orbital symmetry and chemical bonding. We describe these phenomena by developing an electronic time-dependent ultrafast molecular photoionization model of a coherent superposition state. The periodical distortion of electron diffraction patterns illustrates the evolution of the electronic coherence, providing a tool for attosecond imaging of ultrafast molecular reaction processes.
Xu, W; LeBeau, J M
2018-05-01
We establish a series of deep convolutional neural networks to automatically analyze position averaged convergent beam electron diffraction patterns. The networks first calibrate the zero-order disk size, center position, and rotation without the need for pretreating the data. With the aligned data, additional networks then measure the sample thickness and tilt. The performance of the network is explored as a function of a variety of variables including thickness, tilt, and dose. A methodology to explore the response of the neural network to various pattern features is also presented. Processing patterns at a rate of ∼ 0.1 s/pattern, the network is shown to be orders of magnitude faster than a brute force method while maintaining accuracy. The approach is thus suitable for automatically processing big, 4D STEM data. We also discuss the generality of the method to other materials/orientations as well as a hybrid approach that combines the features of the neural network with least squares fitting for even more robust analysis. The source code is available at https://github.com/subangstrom/DeepDiffraction. Copyright © 2018 Elsevier B.V. All rights reserved.
Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation
NASA Astrophysics Data System (ADS)
Pinilla, Samuel; Poveda, Juan; Arguello, Henry
2018-03-01
Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Thomas D.; Johns Hopkins University School of Medicine, Baltimore, MD 21205; Lyubimov, Artem Y.
A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming themore » challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
Anomalous Diffraction in Crystallographic Phase Evaluation
Hendrickson, Wayne A.
2014-01-01
X-ray diffraction patterns from crystals of biological macromolecules contain sufficient information to define atomic structures, but atomic positions are inextricable without having electron-density images. Diffraction measurements provide amplitudes, but the computation of electron density also requires phases for the diffracted waves. The resonance phenomenon known as anomalous scattering offers a powerful solution to this phase problem. Exploiting scattering resonances from diverse elements, the methods of multiwavelength anomalous diffraction (MAD) and single-wavelength anomalous diffraction (SAD) now predominate for de novo determinations of atomic-level biological structures. This review describes the physical underpinnings of anomalous diffraction methods, the evolution of these methods to their current maturity, the elements, procedures and instrumentation used for effective implementation, and the realm of applications. PMID:24726017
NASA Astrophysics Data System (ADS)
Dorofeyev, Illarion
2009-03-01
Characteristics of a quasi-spherical wave front of an electromagnetic field diffracted by a subwavelength hole in a thin film with real optical properties are studied. Related diffraction problem is solved in general by use of the scalar and vector Green's theorems and related Green's function of a boundary-value problem. Local phase deviations of a diffracted wave front from an ideal spherical front are calculated. Diffracted patterns are calculated for the coherent incident fields in case of holes array in a screen of perfect conductivity.
Broadband diffractive lens or imaging element
Ceglio, Natale M.; Hawryluk, Andrew M.; London, Richard A.; Seppala, Lynn G.
1993-01-01
A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described.
Broadband diffractive lens or imaging element
Ceglio, N.M.; Hawryluk, A.M.; London, R.A.; Seppala, L.G.
1993-10-26
A broadband diffractive lens or imaging element produces a sharp focus and/or a high resolution image with broad bandwidth illuminating radiation. The diffractive lens is sectored or segmented into regions, each of which focuses or images a distinct narrowband of radiation but all of which have a common focal length. Alternatively, a serial stack of minus filters, each with a diffraction pattern which focuses or images a distinct narrowband of radiation but all of which have a common focal length, is used. The two approaches can be combined. Multifocal broadband diffractive elements can also be formed. Thin film embodiments are described. 21 figures.
Badali, D. S.; Gengler, R. Y. N.; Miller, R. J. D.
2016-01-01
A compact electron source specifically designed for time-resolved diffraction studies of free-standing thin films and monolayers is presented here. The sensitivity to thin samples is achieved by extending the established technique of ultrafast electron diffraction to the “medium” energy regime (1–10 kV). An extremely compact design, in combination with low bunch charges, allows for high quality diffraction in a lensless geometry. The measured and simulated characteristics of the experimental system reveal sub-picosecond temporal resolution, while demonstrating the ability to produce high quality diffraction patterns from atomically thin samples. PMID:27226978
Molecular matter waves - tools and applications
NASA Astrophysics Data System (ADS)
Juffmann, Thomas; Sclafani, Michele; Knobloch, Christian; Cheshnovsky, Ori; Arndt, Markus
2013-05-01
Fluorescence microscopy allows us to visualize the gradual emergence of a deterministic far-field matter-wave diffraction pattern from stochastically arriving single molecules. We create a slow beam of phthalocyanine molecules via laser desorption from a glass window. The small source size provides the transverse coherence required to observe an interference pattern in the far-field behind an ultra-thin nanomachined grating. There the molecules are deposited onto a quartz window and can be imaged in situ and in real time with single molecule sensitivity. This new setup not only allows for a textbook demonstration of quantum interference, but also enables quantitative explorations of the van der Waals interaction between molecules and material gratings.
2001-06-06
X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.
Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro
2008-02-01
Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.
Reentrant cluster glass and stability of ferromagnetism in the Ga2MnCo Heusler alloy
NASA Astrophysics Data System (ADS)
Samanta, Tamalika; Bhobe, P. A.; Das, A.; Kumar, A.; Nigam, A. K.
2018-05-01
We present here a detailed investigation into the magnetic ordering of a full Heusler alloy Ga2MnCo using dc and ac magnetization measurements, neutron diffraction, and neutron depolarization experiments. The crystal structure at room temperature was first confirmed to be L 21 using the highly intense synchrotron x-ray diffraction technique. Temperature-dependent magnetization reveals that Ga2MnCo enters a ferromagnetic (FM) state at TC=154 K, characterized by a sharp increase in magnetization and a plateaulike region hereafter. As the temperature is decreased further, a sharp drop in magnetization is observed at Tf=50 K, hinting toward an antiferromagnetic (AFM) phase change. Neutron diffraction (ND) recorded over the range of temperature from 6 to 300 K provides combined information regarding crystal as well as magnetic structure. Accordingly, an increase in the intensity of the ND pattern is seen at 150 K, signaling the onset of long-range FM order. However, there is no sign of the appearance of superlattice reflections corresponding to the AFM phase in the patterns recorded below 50 K. An unusual discontinuity in the unit-cell volume is seen around Tf, indicating a coupling of this second transition with the contraction of the lattice. Attempts to unravel this interesting magnetic behavior using ac susceptibility measurements led to the existence of glassy magnetism below Tf. Systematic analysis of the susceptibility results along with neutron depolarization measurement identifies the low-temperature phase as a reentrant cluster glass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGonegle, David, E-mail: d.mcgonegle1@physics.ox.ac.uk; Wark, Justin S.; Higginbotham, Andrew
2015-08-14
A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as maymore » occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. The simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.« less
McGonegle, David; Milathianaki, Despina; Remington, Bruce A.; ...
2015-08-11
A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as maymore » occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. In conclusion, the simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.« less
Elimination of coherent noise in a coherent light imaging system
NASA Technical Reports Server (NTRS)
Grebowsky, G. J.; Hermann, R. L.; Paull, H. B.; Shulman, A. R.
1970-01-01
Optical imaging systems using coherent light introduce objectionable noise into the output image plane. Dust and bubbles on and in lenses cause most of the noise in the output image. This noise usually appears as bull's-eye diffraction patterns in the image. By rotating the lens about the optical axis these diffraction patterns can be essentially eliminated. The technique does not destroy the spatial coherence of the light and permits spatial filtering of the input plane.
Photoelectron and Auger electron diffraction studies of a sulfur-terminated GaAs(001)-(2×6) surface
NASA Astrophysics Data System (ADS)
Shimoda, M.; Tsukamoto, S.; Koguchi, N.
1998-01-01
Core-level X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED) have been applied to investigate the sulfur-terminated GaAs(001)-(2×6) surface. No forward scattering peaks were found in the XPD pattern of S 2s emission, indicating that adsorbed S atoms form a single layer on the GaAs substrate. In accordance with the zincblende structure of GaAs, the AED patterns of Ga L 3M 45M 45 and As L 3M 45M 45 emission almost coincide with each other, if one of the emissions is rotated by 90° around the [001] direction. This fact suggests that the diffraction patterns mainly reflect the structure of the bulk GaAs crystal. In order to investigate the surface structure, AED patterns in large polar angles were analyzed with single scattering cluster (SSC) calculations. The best result was obtained with a model cluster where the S-S bond length was set at 0.28 nm, 30% shorter than the corresponding length of the ideal (1×1) structure, and the adsorption height was set at 0.12-0.13 nm, 10% shorter than the ideal interlayer distance of GaAs(001) planes. These values are in good agreement with the results of STM measurements. A modulation of the inter-dimer distance was also found, suggesting the existence of missing dimers.
When holography meets coherent diffraction imaging.
Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner
2012-12-17
The phase problem is inherent to crystallographic, astronomical and optical imaging where only the intensity of the scattered signal is detected and the phase information is lost and must somehow be recovered to reconstruct the object's structure. Modern imaging techniques at the molecular scale rely on utilizing novel coherent light sources like X-ray free electron lasers for the ultimate goal of visualizing such objects as individual biomolecules rather than crystals. Here, unlike in the case of crystals where structures can be solved by model building and phase refinement, the phase distribution of the wave scattered by an individual molecule must directly be recovered. There are two well-known solutions to the phase problem: holography and coherent diffraction imaging (CDI). Both techniques have their pros and cons. In holography, the reconstruction of the scattered complex-valued object wave is directly provided by a well-defined reference wave that must cover the entire detector area which often is an experimental challenge. CDI provides the highest possible, only wavelength limited, resolution, but the phase recovery is an iterative process which requires some pre-defined information about the object and whose outcome is not always uniquely-defined. Moreover, the diffraction patterns must be recorded under oversampling conditions, a pre-requisite to be able to solve the phase problem. Here, we report how holography and CDI can be merged into one superior technique: holographic coherent diffraction imaging (HCDI). An inline hologram can be recorded by employing a modified CDI experimental scheme. We demonstrate that the amplitude of the Fourier transform of an inline hologram is related to the complex-valued visibility, thus providing information on both, the amplitude and the phase of the scattered wave in the plane of the diffraction pattern. With the phase information available, the condition of oversampling the diffraction patterns can be relaxed, and the phase problem can be solved in a fast and unambiguous manner. We demonstrate the reconstruction of various diffraction patterns of objects recorded with visible light as well as with low-energy electrons. Although we have demonstrated our HCDI method using laser light and low-energy electrons, it can also be applied to any other coherent radiation such as X-rays or high-energy electrons.
NASA Astrophysics Data System (ADS)
Wen, Sy-Bor; Bhaskar, Arun; Zhang, Hongjie
2018-07-01
A scanning digital lithography system using computer controlled digital spatial light modulator, spatial filter, infinity correct optical microscope and high precision translation stage is proposed and examined. Through utilizing the spatial filter to limit orders of diffraction modes for light delivered from the spatial light modulator, we are able to achieve diffraction limited deep submicron spatial resolution with the scanning digital lithography system by using standard one inch level optical components with reasonable prices. Raster scanning of this scanning digital lithography system using a high speed high precision x-y translation stage and piezo mount to real time adjust the focal position of objective lens allows us to achieve large area sub-micron resolved patterning with high speed (compared with e-beam lithography). It is determined in this study that to achieve high quality stitching of lithography patterns with raster scanning, a high-resolution rotation stage will be required to ensure the x and y directions of the projected pattern are in the same x and y translation directions of the nanometer precision x-y translation stage.
Diffraction-based overlay metrology for double patterning technologies
NASA Astrophysics Data System (ADS)
Dasari, Prasad; Korlahalli, Rahul; Li, Jie; Smith, Nigel; Kritsun, Oleg; Volkman, Cathy
2009-03-01
The extension of optical lithography to 32nm and beyond is made possible by Double Patterning Techniques (DPT) at critical levels of the process flow. The ease of DPT implementation is hindered by increased significance of critical dimension uniformity and overlay errors. Diffraction-based overlay (DBO) has shown to be an effective metrology solution for accurate determination of the overlay errors associated with double patterning [1, 2] processes. In this paper we will report its use in litho-freeze-litho-etch (LFLE) and spacer double patterning technology (SDPT), which are pitch splitting solutions that reduce the significance of overlay errors. Since the control of overlay between various mask/level combinations is critical for fabrication, precise and accurate assessment of errors by advanced metrology techniques such as spectroscopic diffraction based overlay (DBO) and traditional image-based overlay (IBO) using advanced target designs will be reported. A comparison between DBO, IBO and CD-SEM measurements will be reported. . A discussion of TMU requirements for 32nm technology and TMU performance data of LFLE and SDPT targets by different overlay approaches will be presented.
ERIC Educational Resources Information Center
School Science Review, 1972
1972-01-01
Short articles describe preparation of clean iron sheet for corrosion experiments, models of crystalline structures using glass marbles, photographic production of diffraction grids for producing analogies of X-ray diffraction patterns, and a simple method of determining a reactivity series for the common metals. (AL)
Falahati, Hamid; Kim, Edward; Barz, Dominik P J
2015-06-17
The utilization of micropower sources is attractive in portable microfluidic devices where only low-power densities and energy contents are required. In this work, we report on the microfabrication of patterned α-Ni(OH)2 films on glass substrates which can be used for rechargeable microbatteries as well as for microcapacitors. A multilayer deposition technique is developed based on e-beam evaporation, ultraviolet lithography, and electroplating/electrodeposition which creates thin-film electrodes that are patterned with arrays of micropillars. The morphology and the structure of the patterned electrode films are characterized by employing field emission scanning electron microscopy. The chemical (elemental) composition is investigated by using X-ray diffraction and X-ray photoelectron spectroscopy. Finally, cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge measurements are used to evaluate the electrochemical performance of the patterned thin film electrodes compared to patternless electrodes. We observe that patterning of the electrodes results in significantly improved stability and, thus, longer endurance while good electrochemical performance is maintained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madden, Jeremy T.; Toth, Scott J.; Dettmar, Christopher M.
Nonlinear optical (NLO) instrumentation has been integrated with synchrotron X-ray diffraction (XRD) for combined single-platform analysis, initially targeting applications for automated crystal centering. Second-harmonic-generation microscopy and two-photon-excited ultraviolet fluorescence microscopy were evaluated for crystal detection and assessed by X-ray raster scanning. Two optical designs were constructed and characterized; one positioned downstream of the sample and one integrated into the upstream optical path of the diffractometer. Both instruments enabled protein crystal identification with integration times between 80 and 150 µs per pixel, representing a ~10 3–10 4-fold reduction in the per-pixel exposure time relative to X-ray raster scanning. Quantitative centering andmore » analysis of phenylalanine hydroxylase fromChromobacterium violaceumcPAH,Trichinella spiralisdeubiquitinating enzyme TsUCH37, human κ-opioid receptor complex kOR-T4L produced in lipidic cubic phase (LCP), intimin prepared in LCP, and α-cellulose samples were performed by collecting multiple NLO images. The crystalline samples were characterized by single-crystal diffraction patterns, while α-cellulose was characterized by fiber diffraction. Good agreement was observed between the sample positions identified by NLO and XRD raster measurements for all samples studied.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azuri, Asaf; Pollak, Eli, E-mail: eli.pollak@weizmann.ac.il
2015-07-07
In-plane two and three dimensional diffraction patterns are computed for the vertical scattering of an Ar atom from a frozen LiF(100) surface. Suitable collimation of the incoming wavepacket serves to reveal the quantum mechanical diffraction. The interaction potential is based on a fit to an ab initio potential calculated using density functional theory with dispersion corrections. Due to the potential coupling found between the two horizontal surface directions, there are noticeable differences between the quantum angular distributions computed for two and three dimensional scattering. The quantum results are compared to analogous classical Wigner computations on the same surface and withmore » the same conditions. The classical dynamics largely provides the envelope for the quantum diffractive scattering. The classical results also show that the corrugation along the [110] direction of the surface is smaller than along the [100] direction, in qualitative agreement with experimental observations of unimodal and bimodal scattering for the [110] and [100] directions, respectively.« less
Non-invasive imaging of the crystalline structure within a human tooth.
Egan, Christopher K; Jacques, Simon D M; Di Michiel, Marco; Cai, Biao; Zandbergen, Mathijs W; Lee, Peter D; Beale, Andrew M; Cernik, Robert J
2013-09-01
The internal crystalline structure of a human molar tooth has been non-destructively imaged in cross-section using X-ray diffraction computed tomography. Diffraction signals from high-energy X-rays which have large attenuation lengths for hard biomaterials have been collected in a transmission geometry. Coupling this with a computed tomography data acquisition and mathematically reconstructing their spatial origins, diffraction patterns from every voxel within the tooth can be obtained. Using this method we have observed the spatial variations of some key material parameters including nanocrystallite size, organic content, lattice parameters, crystallographic preferred orientation and degree of orientation. We have also made a link between the spatial variations of the unit cell lattice parameters and the chemical make-up of the tooth. In addition, we have determined how the onset of tooth decay occurs through clear amorphization of the hydroxyapatite crystal, and we have been able to map the extent of decay within the tooth. The described method has strong prospects for non-destructive probing of mineralized biomaterials. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gunnella, R.; Castrucci, P.; Pinto, N.; Davoli, I.; Sébilleau, D.; de Crescenzi, M.
1996-09-01
We used the XPD (x-ray photoelectron diffraction) and AED (Auger electron diffraction) from Ge core levels to probe the crystalline structure of 3 and 6 ML of Ge epitaxially grown by molecular-beam epitaxy on the Si(001) surface. In order to check the film tetragonal distortion and the pseudomorphic growth morphology, we used two different temperatures of the substrate during the deposition: room temperature and 400 °C. Evidence for an interfacial intermixing has been found by means of the observation of the angular behavior of the intensity of the emitted electrons. We also investigated the effects of Sb as a surfactant on such an interface. In this case indications of a laminar growth of strained Ge overlayer with reduced intermixing is obtained when 1 ML of Sb is predeposited on the substrate. Furthermore making use of a multiple-scattering approach to reproduce the experimental XPD patterns, a higher amount of accessible information on the morphology of the interface, beyond the determination of the strain content, is obtained.
Synthesis and characterization of graphene oxide using modified Hummer's method
NASA Astrophysics Data System (ADS)
Kaur, Manpreet; Kaur, Harsimran; Kukkar, Deepak
2018-05-01
In the present study, a simple approach has been followed for the synthesis of graphene oxide (GO) using modified Hummers method in which graphite powder was oxidized in the presence of concentrated H2SO4 and KMnO4. The amount of NaNO3 and KMnO4 was varied to produce sheet like structure. The varied concentrations of NaNO3 and KMnO4 resulted in yielding large amount of the product. Structural, morphological and physicochemical features of the product were studied using UV-Visible spectrophotometer, Fourier Transform infrared spectroscopy (FTIR), and crystal structure was determined using X-ray powder diffraction (XRD). UV-Vis spectra of GO was observed at a maximum absorption of 230 nm due to (π-π*) transition of atomic carbon-carbon bonds. FTIR spectra revealed the presence of oxygen containing functional groups which ensures the complete exfoliation of graphite into graphene oxide X-ray powder diffraction pattern of the product showed the diffraction peak at (2θ = 26.7°) with an interlayer spacing of 0.334 nm. All the above characterizations successfully confirmed the formation of GO.
Pressure-induced structural transition in chalcopyrite ZnSiP 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhadram, Venkata S.; Krishna, Lakshmi; Toberer, Eric S.
The pressure-dependent phase behavior of semiconducting chalcopyrite ZnSiP 2 was studied up to 30 GPa using in situ X-ray diffraction and Raman spectroscopy in a diamond-anvil cell. A structural phase transition to the rock salt type structure was observed between 27 and 30 GPa, which is accompanied by soft phonon mode behavior and simultaneous loss of Raman signal and optical transmission through the sample. The high-pressure rock salt type phase possesses cationic disorder as evident from broad features in the X-ray diffraction patterns. The behavior of the low-frequency Raman modes during compression establishes a two-stage, order-disorder phase transition mechanism. Themore » phase transition is partially reversible, and the parent chalcopyrite structure coexists with an amorphous phase upon slow decompression to ambient conditions.« less
Synthesis and characterization of hollow spherical copper phosphide (Cu 3P) nanopowders
NASA Astrophysics Data System (ADS)
Liu, Shuling; Qian, Yitai; Xu, Liqiang
2009-03-01
In this paper, hollow spherical Cu 3P nanopowders were synthesized by using copper sulfate pentahydrate (CuSO 4ṡ5H 2O) and yellow phosphorus in a mixed solvent of glycol, ethanol and water at 140-180 ∘C for 12 h. X-ray powder diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), electron diffraction pattern (ED) and transmission electronic microscopy (TEM) studies show that the as-synthesized nanocrystal is pure hexagonal phase Cu 3P with a hollow spherical morphology. Based on the TEM observations, a possible aggregation growth mechanism was proposed for the formation of Cu 3P hollow structures. Meanwhile, the effects of some key factors such as solvents, reaction temperature and reaction time on the final formation of the Cu 3P hollow structure were also discussed.
Nanoscale probing of image-dipole interactions in a metallic nanostructure
Ropp, Chad; Cummins, Zachary; Nah, Sanghee; Fourkas, John T.; Shapiro, Benjamin; Waks, Edo
2015-01-01
An emitter near a surface induces an image dipole that can modify the observed emission intensity and radiation pattern. These image-dipole effects are generally not taken into account in single-emitter tracking and super-resolved imaging applications. Here we show that the interference between an emitter and its image dipole induces a strong polarization anisotropy and a large spatial displacement of the observed emission pattern. We demonstrate these effects by tracking the emission of a single quantum dot along two orthogonal polarizations as it is deterministically positioned near a silver nanowire. The two orthogonally polarized diffraction spots can be displaced by up to 50 nm, which arises from a Young’s interference effect between the quantum dot and its induced image dipole. We show that the observed spatially varying interference fringe provides a useful measure for correcting image-dipole-induced distortions. These results provide a pathway towards probing and correcting image-dipole effects in near-field imaging applications. PMID:25790228
NASA Technical Reports Server (NTRS)
Palosz, B.; Grzanka, E.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Neuefiend, J.; Weber, H.-P.; Proffen, T.; VonDreele, R.; Palosz, W.;
2002-01-01
Fundamental limitations, with respect to nanocrystalline materials, of the traditional elaboration of powder diffraction data like the Rietveld method are discussed. A tentative method of the analysis of powder diffraction patterns of nanocrystals is introduced which is based on the examination of the variation of lattice parameters calculated from individual Bragg lines (named the "apparent lattice parameter", alp). We examine the application of our methodology using theoretical diffraction patterns computed for models of nanocrystals with a perfect crystal lattice and for grains with a two-phase, core-shell structure. We use the method for the analysis of X-ray and neutron experimental diffraction data of nanocrystalline diamond powders of 4, 6 and 12 nm in diameter. The effects of an internal pressure and strain at the grain surface is discussed. This is based on the dependence of the alp values oil the diffraction vector Q and on the PDF analysis. It is shown, that the experimental results support well the concept of the two-phase structure of nanocrystalline diamond.
X-ray diffraction patterns and diffracted intensity of Kα spectral lines of He-like ions
NASA Astrophysics Data System (ADS)
Goyal, Arun; Khatri, Indu; Singh, A. K.; Sharma, Rinku; Mohan, Man
2017-09-01
In the present paper, we have calculated fine-structure energy levels related to the configurations 1s2s, 1s2p, 1s3s and 1s3p by employing GRASP2K code. We have also computed radiative data for transitions from 1s2p 1 P1o, 1s2p 3 P2o, 1s2p 3 P1o and 1s2s 3S1 to the ground state 1s2. We have made comparisons of our presented energy levels and transition wavelengths with available results compiled by NIST and good agreement is achieved. We have also provided X-ray diffraction (XRD) patterns of Kα spectral lines, namely w, x, y and z of Cu XXVIII, Kr XXXV and Mo with diffraction angle and maximum diffracted intensity which is not published elsewhere in the literature. We believe that our presented results may be beneficial in determination of the order parameter, X-ray crystallography, solid-state drug analysis, forensic science, geological and medical applications.
Structural investigation of porcine stomach mucin by X-ray fiber diffraction and homology modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veluraja, K., E-mail: veluraja@msuniv.ac.in; Vennila, K.N.; Umamakeshvari, K.
Research highlights: {yields} Techniques to get oriented mucin fibre. {yields} X-ray fibre diffraction pattern for mucin. {yields} Molecular modeling of mucin based on X-ray fibre diffraction pattern. -- Abstract: The basic understanding of the three dimensional structure of mucin is essential to understand its physiological function. Technology has been developed to achieve orientated porcine stomach mucin molecules. X-ray fiber diffraction of partially orientated porcine stomach mucin molecules show d-spacing signals at 2.99, 4.06, 4.22, 4.7, 5.37 and 6.5 A. The high intense d-spacing signal at 4.22 A is attributed to the antiparallel {beta}-sheet structure identified in the fraction of themore » homology modeled mucin molecule (amino acid residues 800-980) using Nidogen-Laminin complex structure as a template. The X-ray fiber diffraction signal at 6.5 A reveals partial organization of oligosaccharides in porcine stomach mucin. This partial structure of mucin will be helpful in establishing a three dimensional structure for the whole mucin molecule.« less
Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chun-Yueh; Chang, Wei-Tse; Chen, Yi-Sheng
2016-03-15
In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This workmore » demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.« less
CD, DVD, and Blu-Ray Disc Diffraction with a Laser Ray Box
ERIC Educational Resources Information Center
DeWeerd, Alan J.
2016-01-01
A compact disc (CD) can be used as a diffraction grating, even though its track consists of a series of pits, not a continuous groove. Previous authors described how to measure the track spacing on a CD using an incident laser beam normal to the surface or one at an oblique angle. In both cases, the diffraction pattern was projected on a screen…
JMFA2—a graphically interactive Java program that fits microfibril angle X-ray diffraction data
Steve P. Verrill; David E. Kretschmann; Victoria L. Herian
2006-01-01
X-ray diffraction techniques have the potential to decrease the time required to determine microfibril angles dramatically. In this paper, we discuss the latest version of a curve-fitting toll that permits us to reduce the time required to evaluate MFA X-ray diffraction patterns. Further, because this tool reflects the underlying physics more accurately than existing...
NASA Technical Reports Server (NTRS)
Morris, R. V.; Rampe, E. B.; Graff, T. G.; Archer, P. D., Jr.; Le, L.; Ming, D. W.; Sutter, B.
2015-01-01
The Mars Science Laboratory (MSL) CheMin instrument on the Curiosity rover is a transmission X-ray diffractometer (Co-Kalpha radiation source and a approx.5deg to approx.52deg 2theta range) where the analyzed powder samples are constrained to have discrete particle diameters <150 microns by a sieve. To date, diffraction patterns have been obtained for one basaltic soil (Rocknest (RN)) and four drill fines of coherent rock (John Klein (JK), Cumberland (CB), Windjana (WJ), and Confidence Hills (CH)). The CheMin instrument has detected and quantified the abundance of both primary igneous (e.g., feldspar, olivine, and pyroxene) and secondary (e.g., Ca-sulfates, hematite, akaganeite, and Fe-saponite) minerals. The diffraction patterns of all CheMin samples are also characterized by a broad diffraction band centered near 30deg 2theta and by increasing diffraction intensity (scattering continuum) from approx.15deg to approx.5deg, the 2theta minimum. Both the broad band and the scattering continuum are attributed to the presence of an XRD amorphous component. Estimates of amorphous component abundance, based on the XRD data itself and on mass-balance calculations using APXS data crystalline component chemistry derived from XRD data, martian meteorites, and/or stoichiometry [e.g., 6-9], range from approx.20 wt.% to approx.50 wt.% of bulk sample. The APXSbased calculations show that the amorphous component is rich in volatile elements (esp. SO3) and is not simply primary basaltic glass, which was used as a surrogate to model the broad band in the RN CheMin pattern. For RN, the entire volatile inventory (except minor anhydrite) is assigned to the amorphous component because no volatile-bearing crystalline phases were reported within detection limits [2]. For JK and CB, Fesaponite, basanite, and akaganeite are volatile-bearing crystalline components. Here we report transmission XRD patterns for sulfate and silicate phases relevant to interpretation of MSL-CheMin XRD amorphous components.
Nonlocal nonlinear refraction in Hibiscus sabdariffa with large phase shifts.
Ramírez-Martínez, D; Alvarado-Méndez, E; Trejo-Durán, M; Vázquez-Guevara, M A
2014-10-20
In this work we present a study of nonlinear optical properties in organic materials (hibiscus sabdariffa). Our results demonstrate that the medium exhibits a highly nonlocal nonlinear response. We show preliminary numerical results of the transmittance as nonlocal response by considering, simultaneously, the nonlinear absorption and refraction in media. Numerical results are accord to measurement obtained by Z- scan technique where we observe large phase shifts. We also analyze the far field diffraction ring patterns of the sample.
3-Fluorobenzoic acid–4-acetylpyridine (1/1) at 100 K
Craig, Gavin A.; Thomas, Lynne H.; Adam, Martin S.; Ballantyne, Angela; Cairns, Andrew; Cairns, Stephen C.; Copeland, Gary; Harris, Clifford; McCalmont, Eve; McTaggart, Robert; Martin, Alan R. G.; Palmer, Sarah; Quail, Jenna; Saxby, Harriet; Sneddon, Duncan J.; Stewart, Graeme; Thomson, Neil; Whyte, Alex; Wilson, Chick C.; Parkin, Andrew
2009-01-01
In the title compound, C7H5FO2·C7H7NO, a moderate-strength hydrogen bond is formed between the carboxyl group of one molecule and the pyridine N atom of the other. The benzoic acid molecule is observed to be disordered over two positions with the second orientation only 4% occupied. This disorder is also reflected in the presence of diffuse scattering in the diffraction pattern. PMID:21581976
Growth studies at bulk III-Vs by image processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donecker, J.; Hempel, G.; Kluge, J.
1996-12-01
The patterns of inhomogeneities in GaAs and InP are studied by scattering and diffraction of light. An adapted version of laser scattering tomography is used for observations with short exposure times and large fields. The information about the three-dimensional distribution of the scatterers in GaAs are evaluated by video travels through the crystal and images of intensities added in interesting directions. Near-infrared transmission and striation distance mapping act like special data compression techniques due to their optical principles. In general, columnar extension of cellular patterns and striations could not be detected in s.i. GaAs. Long-range correlations exist for lineages andmore » slip lines. The comparison with the behavior of striations in doped InP cannot confirm the idea that cellular patterns in GaAs originate from constitutional supercooling during solidification.« less
Specimen-thickness effects on transmission Kikuchi patterns in the scanning electron microscope.
Rice, K P; Keller, R R; Stoykovich, M P
2014-06-01
We report the effects of varying specimen thickness on the generation of transmission Kikuchi patterns in the scanning electron microscope. Diffraction patterns sufficient for automated indexing were observed from films spanning nearly three orders of magnitude in thickness in several materials, from 5 nm of hafnium dioxide to 3 μm of aluminum, corresponding to a mass-thickness range of ~5 to 810 μg cm(-2) . The scattering events that are most likely to be detected in transmission are shown to be very near the exit surface of the films. The energies, spatial distribution and trajectories of the electrons that are transmitted through the film and are collected by the detector are predicted using Monte Carlo simulations. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Diffractive optical element in materials testing
NASA Astrophysics Data System (ADS)
Silvennoinen, Raimo V. J.; Peiponen, Kai-Erik
1998-09-01
The object of this paper is to present a sensor based on diffractive optics that can be applied for the materials testing. The present sensor, which is based on the use of a computer-generated hologram (CGH) exploits the holographic imagery. The CGH-sensor was introduced for inspection of surface roughness and flatness of metal surfaces. The results drawn out by the present sensor are observed to be in accordance with the experimental data. Together with the double exposure holographic interferometry (DEHI) and digital electronic speckle pattern interferometry (DSPI) in elasticity inspection, the sensor was applied for the investigations of surface quality of opaque fragile materials, which are pharmaceutical compacts. The optical surface quality was observed to be related to the porosity of the pharmaceutical tablets. The CGH-sensor was also applied for investigations of optical quality of thin films as PLZT ceramics and coating of pharmaceutical compacts. The surfaces of PLZT samples showed fluctuations in optical curvature, and wedgeness for all the cases studied. For pharmaceutical compacts, the optical signals were observed to depend to a great extent on the optical constants of the coatings and the substrates, and in addition to the surface porosity under the coating.
DIFFRACTION FROM MODEL CRYSTALS
USDA-ARS?s Scientific Manuscript database
Although calculating X-ray diffraction patterns from atomic coordinates of a crystal structure is a widely available capability, calculation from non-periodic arrays of atoms has not been widely applied to cellulose. Non-periodic arrays result from modeling studies that, even though started with at...
NASA Astrophysics Data System (ADS)
Campetella, Marco; Martino, Delia Chillura; Scarpellini, Eleonora; Gontrani, Lorenzo
2016-09-01
In this contribution we report for the first time the X-ray patterns of choline-phenylalanine and choline-homophenylalanine ionic liquids. The presence of a low Q peak in both systems is another evidence that a long alkyl chain is not always needed to establish a nanodomain segregation in the liquid sufficient to be revealed by the diffraction experiment. These new data are compared with the diffraction patterns and the theoretical calculations of other choline-aminoacid ionic liquids recently reported. A significant role might be played by the stacking interactions between aromatic rings.
Replication of Holograms with Corn Syrup by Rubbing
Mejias-Brizuela, Nildia Y.; Olivares-Pérez, Arturo; Ortiz-Gutiérrez, Mauricio
2012-01-01
Corn syrup films are used to replicate holograms in order to fabricate micro-structural patterns without the toxins commonly found in photosensitive salts and dyes. We use amplitude and relief masks with lithographic techniques and rubbing techniques in order to transfer holographic information to corn syrup material. Holographic diffraction patterns from holographic gratings and computer Fourier holograms fabricated with corn syrup are shown. We measured the diffraction efficiency parameter in order to characterize the film. The versatility of this material for storage information is promising. Holographic gratings achieved a diffraction efficiency of around 8.4% with an amplitude mask and 36% for a relief mask technique. Preliminary results using corn syrup as an emulsion for replicating holograms are also shown in this work.
Nicolas, F; Coëtmellec, S; Brunel, M; Allano, D; Lebrun, D; Janssen, A J E M
2005-11-01
The authors have studied the diffraction pattern produced by a particle field illuminated by an elliptic and astigmatic Gaussian beam. They demonstrate that the bidimensional fractional Fourier transformation is a mathematically suitable tool to analyse the diffraction pattern generated not only by a collimated plane wave [J. Opt. Soc. Am A 19, 1537 (2002)], but also by an elliptic and astigmatic Gaussian beam when two different fractional orders are considered. Simulations and experimental results are presented.
"XANSONS for COD": a new small BOINC project in crystallography
NASA Astrophysics Data System (ADS)
Neverov, Vladislav S.; Khrapov, Nikolay P.
2018-04-01
"XANSONS for COD" (http://xansons4cod.com) is a new BOINC project aimed at creating the open-access database of simulated x-ray and neutron powder diffraction patterns for nanocrystalline phase of materials from the collection of the Crystallography Open Database (COD). The project uses original open-source software XaNSoNS to simulate diffraction patterns on CPU and GPU. This paper describes the scientific problem this project solves, the project's internal structure, its operation principles and organization of the final database.
NASA Astrophysics Data System (ADS)
Ravikiran, Y. T.; Vijaya Kumari, S. C.
2013-06-01
To innovate the properties of Polypyrrole/Titanium dioxide (PPy/TiO2) nanocomposite further, it has been synthesized by chemical polymerization technique. The nanostructure and monoclinic phase of the prepared composite have been confirmed by simulating the X-ray diffraction pattern (XRD). Also, complex plane impedance plot of the composite has been simulated to find equivalent resistance capacitance circuit (RC circuit) and numerical values of R and C have been predicted.
NASA Astrophysics Data System (ADS)
Bocan, G. A.; Gravielle, M. S.
2018-04-01
In this article we address grazing incidence fast atom diffraction (GIFAD) for the He/KCl(001) system, for which a systematic experimental study was recently reported [E. Meyer, Ph.D dissertation, Humboldt-Universität, Berlin, Germany, 2015]. Our theoretical model is built from a projectile-surface interaction obtained from Density Functional Theory (DFT) calculations and the Surface Initial-Value Representation (SIVR), which is a semi-quantum approach to describe the scattering process. For incidence along the 〈 100 〉 and 〈 110 〉 directions, we present and discuss the main features of our interaction potential, the dependence of the rainbow angle with the impact energy normal to the surface, and the simulated GIFAD patterns, which reproduce the main aspects of the reported experimental charts. The features of the diffraction charts for He/KCl(001) are related to the averaged equipotential curves of the system and a comparison is established with the case of He/LiF(001). The marked differences observed for 〈 110 〉 incidence are explained as due to the much larger size of the K+ ion relative to that of Li+.
NASA Astrophysics Data System (ADS)
Arun, B.; Athira, M.; Akshay, V. R.; Sudakshina, B.; Mutta, Geeta R.; Vasundhara, M.
2018-02-01
We have investigated the structural, magnetic and magnetocaloric properties of nanocrystalline Pr-deficient Pr1-xSrxMnO3-δ Perovskite manganites. Rietveld refinement of the X-ray powder diffraction patterns confirms that all the studied compounds have crystallized into an orthorhombic structure with Pbnm space group. Transmission electron microscopy analysis reveals nanocrystalline compounds with crystallite size less than 50 nm. The selected area electron diffraction patterns reveal the highly crystalline nature of the compounds and energy dispersive X-ray spectroscopic analysis shows that the obtained compositions are nearly identical with the nominal one. The oxygen stoichiometry is estimated by iodometric titration method and stoichiometric compositions are confirmed by X-ray Fluorescence Spectrometry analysis. A large bifurcation is observed in the ZFC/FC curves and Arrott plots not show a linear relation but have a convex curvature nature. The temperature dependence of inverse magnetic susceptibility at higher temperature confirms the existence of ferromagnetic clusters. The experimental results reveal that the reduction of crystallite size to nano metric scale in Pr-deficient manganites adversely influences structural, magnetic and magnetocaloric properties as compared to its bulk counterparts reported earlier.
Green synthesis of Silver and Gold Nanoparticles for Enhanced catalytic and bactericidal activity
NASA Astrophysics Data System (ADS)
Naraginti, S.; Tiwari, N.; Sivakumar, A.
2017-11-01
A rapid one step green synthetic method using kiwi fruit extract was employed for preparation of silver and gold nanoparticles. The synthesized nanoparticles were successfully used as green catalysts for the reduction of 4-nitrophenol (4-NP) and methylene blue (MB). They also exhibited excellent antimicrobial activity against clinically isolated Pseudomonas aeruginosa (P.aeruginosa) and Staphylococcus aureus (S.aureus). It was noticed that with increase in concentration of the aqueous silver and gold solutions, particle size of the Ag and Au NPS showed increase as evidenced from UV-Visible spectroscopy and TEM micrograph. The method employed for the synthesis required only a few minutes for more than 90% formation of nanoparticles when the temperature was raised to 80°C. It was also noticed that the catalytic activity of nanoparticles depends upon the size of the particles. These nanoparticles were observed to be crystalline from the clear lattice fringes in the transmission electron microscopic (TEM) images, bright circular spots in the selected area electron diffraction (SAED) pattern and peaks in the X-ray diffraction (XRD) pattern. The Fourier-transform infrared (FTIR) spectrum indicated the presence of different functional groups in the biomolecule capping the nanoparticles.
Observation of ferromagnetism in Mn doped KNbO3
NASA Astrophysics Data System (ADS)
Manikandan, M.; Venkateswaran, C.
2015-06-01
Pure and Mn doped KNbO3 have been prepared by ball milling assisted ceramic method. Mn ion had been doped at Nb site to induce ferromagnetism at room temperature. X-ray diffraction (XRD) patterns reveal the formation of orthorhombic phase. High resolution scanning electron micrograph (HR-SEM) of both pure and Mn doped samples show a mixture of spherical and plate like particles. Room temperature magnetic behavior of both the samples were analyzed using vibrating sample magnetometer (VSM). 5% Mn doped KNbO3 exhibits ferromagnetic behavior. Observed ferromagnetic feature has been explained by interactions between bound magnetic polarons which are created by Mn4+ ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.
The STAR Collaboration reports on the photoproduction of π + π - pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly real photon emitted by one ion scatters from the other ion. In this work, we fit the π + π - invariant-mass spectrum with a combination of ρ 0 and ω resonances and a direct π + π - continuum. This is the first observation of the ω in ultraperipheral collisions, and the first measurement of ρ - ω interference at energies where photoproduction is dominated by Pomeron exchange.more » The ω amplitude is consistent with the measured γp → ωp cross section, a classical Glauber calculation, and the ω → π + π - branching ratio. The ω phase angle is similar to that observed at much lower energies, showing that the ρ - ω phase difference does not depend significantly on photon energy. The ρ 0 differential cross section dσ/dt exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with two minima visible. In conclusion, the positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.« less
Microstructure anisotropy of nanocrystalline titanium produced by cryomechanical grain fragmentation
NASA Astrophysics Data System (ADS)
Pohribnaya, Yu. M.; Moskalenko, V. A.; Braude, I. S.
2018-05-01
Using X-ray diffraction analysis, a systematic study was undertaken of the parameters of the deformation microstructure formed in commercially pure VT1-0 titanium as a result of cryogenic rolling at a temperature of 77 K at different degrees of compression. In order to ascertain the anisotropy of the microstructure, a comparative analysis of diffraction patterns, dimensions of crystallites (coherent scattering regions) L and microdeformation values ⟨" separators="| ɛ2 ⟩ 1 / 2 in the rolling plane and in a plane perpendicular to the rolling direction was performed by comparison with the relative activity of deformation modes. As a result, anisotropy was detected in the distribution of integral intensities of diffraction peaks for mutually perpendicular planes. The established difference in the dimensions of crystallites in the rolling plane and in the plane perpendicular to the rolling direction indicates the shape anisotropy of the crystallites. The effect of morphological anisotropy of crystallites/grains is most pronounced for the nanocrystalline state. The observed complex variation in the microdeformation values ⟨" separators="| ɛ2 ⟩ 1 / 2 ( e ) with compression deformation is well correlated with relative slip and twinning activity, which affect the level of local internal stresses and the possibility of their relaxation. The observed anisotropy with respect to the magnitude of microdeformations may be attributed to the presence of oriented grain boundaries associated with the shape anisotropy of crystallites/grains.
The influence of Ni(II) on brushite structure stabilization
NASA Astrophysics Data System (ADS)
Guerra-López, J. R.; Güida, J. A.; Ramos, M. A.; Punte, G.
2017-06-01
Brushite samples doped with Ni(II) in different concentrations, from 5% to 20%, were prepared in aqueous solution at pH = 7 and at two temperatures: 25 and 37 °C. The solid samples were characterized by chemical analysis, infrared spectroscopy (FTIR) and x-ray powder diffraction (XRPD). Chemical analysis has shown Ni(II) almost complete incorporation to the solid phase up to 15%. X-ray diffraction patterns have allowed to identify brushite phase with almost no modification of the line breadth and only small shifts of lines positions with increasing Ni(II) incorporation up to 15%. For larger Ni(II) concentration, in solution, a mixture of phases has been detected. Infrared spectra have supported diffraction results. For Ni(II) 20% and over the characteristic bands of HPO42- anions tend to vanish, and the typical shaped PO43- bands are observed. These results have allowed to establish that the presence of low levels of Ni in the synthetic process not only helps brushite formation; but, also prevents brushite from apatite conversion and, in addition, preserves brushite crystallinity. According to these findings, it is possible to propose that nickel traces present in the urinary system might be a trigger to brushite stone formation and/or growth, rather than the expected brushite conversion to hydroxyapatite. This outcome would explain the recurrent detection of difficult to treat brushite stones, observed in the last three decades.
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...
2017-11-13
The STAR Collaboration reports on the photoproduction of π + π - pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly real photon emitted by one ion scatters from the other ion. In this work, we fit the π + π - invariant-mass spectrum with a combination of ρ 0 and ω resonances and a direct π + π - continuum. This is the first observation of the ω in ultraperipheral collisions, and the first measurement of ρ - ω interference at energies where photoproduction is dominated by Pomeron exchange.more » The ω amplitude is consistent with the measured γp → ωp cross section, a classical Glauber calculation, and the ω → π + π - branching ratio. The ω phase angle is similar to that observed at much lower energies, showing that the ρ - ω phase difference does not depend significantly on photon energy. The ρ 0 differential cross section dσ/dt exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with two minima visible. In conclusion, the positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.« less
Interpretation of small-angle diffraction experiments on opal-like photonic crystals
NASA Astrophysics Data System (ADS)
Marlow, F.; Muldarisnur, M.; Sharifi, P.; Zabel, H.
2011-08-01
Comprehensive structural information on artificial opals involving the deviations from the strongly dominating face-centered cubic structure is still missing. Recent structure investigations with neutrons and synchrotron sources have shown a high degree of order but also a number of unexpected scattering features. Here, we point out that the exclusion of the allowed 002-type diffraction peaks by a small atomic form factor is not obvious and that surface scattering has to be included as a possible source for the diffraction peaks. Our neutron diffraction data indicate that surface scattering is the main reason for the smallest-angle peaks in the diffraction patterns.
Hyperbolic umbilic caustics from oblate water drops with tilted illumination: Observations
NASA Astrophysics Data System (ADS)
Jobe, Oli; Thiessen, David B.; Marston, Philip L.
2017-11-01
Various groups have reported observations of hyperbolic umbilic diffraction catastrophe patterns in the far-field scattering by oblate acoustically levitated drops with symmetric illumination. In observations of that type the drop's symmetry axis is vertical and the illuminating light beam (typically an expanded laser beam) travels horizontally. In the research summarized here, scattering patterns in the primary rainbow region and drop measurements were recorded with vertically tilted laser beam illumination having a grazing angle as large as 4 degrees. The findings from these observations may be summarized as follows: (a) It remains possible to adjust the drop aspect ratio (diameter/height) = D/H so as to produce a V-shaped hyperbolic umbilic focal section (HUFS) in the far-field scattering. (b) The shift in the required D/H was typically an increase of less than 1% and was quadratic in the tilt. (c) The apex of the V-shaped HUFS was shifted vertically by an amount proportional to the tilt with a coefficient close to unity. The levitated drops had negligible up-down asymmetry. Our method of investigation should be useful for other generalized rainbows with tilted illumination.
Planar shock reflection on a wedged concave reflector
NASA Astrophysics Data System (ADS)
Yu, Fan-Ming; Sheu, Kuen-Dong
2001-04-01
The investigation of shock reflection and shock diffraction phenomena upon a wedged concave reflector produced by a planar incident shock wave has been done in the shock tube facility of Institute of Aeronautics and Astronautics, National Cheng- Kung University. The experiment proceeds upon three wedged concave reflectors models the upper and lower wedge angles arrangement of them are (50 degrees, 50 degrees) - 35 degrees, 35 degrees) and (50 degrees, 35 degrees), respectively. They were tested at Mach numbers of 1.2 - 1.65 and 2.0. On the first reflector, following the regular reflection on the 50 degree-wedged surface by the incident shock wave, a Mach shock diffraction behavior has been observed as shock moves outward from the apex of the reflector. On the apex of the reflector, it behaviors as a sector of the blast shock moving on a diverging channel. On the shadowgraph pictures it has been observed there exists a pattern of gas dynamics focus upon the second reflector. The Mach reflection from the 35 degree- wedged surface as being generated by the planar incident shock wave, on which the overlapping of the two triple points from both wedged surface offers the focusing mechanism. The shock interference, which proceeds by the Mach shock reflection and the regular shock diffraction from the reflector, generates a very complicate rolling-up of slip lines system. On the third reflector, the mixed shock interference behavior has been observed of which two diffraction shocks from concave 50 degree-wedged surface and 35 degree-wedged surface interfere with each other. The measurement of the peak pressure along a ray from the model apex parallel to incident shock direction indicates that the measured maximum pressure rising is larger near the apex of the reflector. Considering the measured maximum pressure increment due to the reflection shocks indicate that the wave strength upon large apex angle reflector is greater than it is upon small apex angle reflector. However, as considering the measured maximum pressure increment following the diffraction shocks, the results show that due to the focusing process upon (35 degree, 35 degree) reflector, it is of the largest increment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, L. W.; Lin, L.; Huang, S. L.
We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.
NASA Astrophysics Data System (ADS)
Zeylikovich, Iosif; Nikitin, Aleksandr
2018-04-01
The diffraction of a Gaussian laser beam by a straight edge has been studied theoretically and experimentally for many years. In this paper, we have experimentally observed for the first time the formation of the cusped caustic (for the Fresnel number F ≈ 100) in the shadow region of the straight edge, with the cusp placed near the center of the circular laser beam(λ = 0 . 65 μm) overlapped with the elliptical diffraction fringes. These fringes are originated at the region near the cusp of the caustic where light intensity is zero and the wave phase is singular (the optical vortex). We interpret observed diffraction fringes as a result of interference between the helical wave created by the optical vortex and cylindrical wave diffracted at the straight edge. We have theoretically revealed that the number of high contrast diffraction fringes observable in a shadow region is determined by the square of the diffracted angles in the range of spatial frequencies of the scattered light field in excellent agreement with experiments. The extra phase singularities with opposite charges are also observed along the shadow boundary as the fork-like diffraction fringes.
Increased understanding of cellulose crystallinity
USDA-ARS?s Scientific Manuscript database
According to the International Union of Crystallography, “material is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering.”...
Diffraction Plates for Classroom Demonstrations
ERIC Educational Resources Information Center
Hoover, Richard B.
1969-01-01
Describes the computer generation of random and regular arrays of apertures on photographic film and their applications for classroom demonstrations of the Fraunhofer patterns produced by simple and complex apertures, Babinet's principle, resolution according to the Rayleigh criterion, and many other aspects of diffraction. (LC)
Idealized powder diffraction patterns for cellulose polymorphs
USDA-ARS?s Scientific Manuscript database
Cellulose samples are routinely analyzed by X-ray diffraction to determine their crystal type (polymorph) and crystallinity. However, the connection is seldom made between those efforts and the crystal structures of cellulose that have been determined with synchrotron X-radiation and neutron diffrac...
Near-field limitations of Fresnel-regime coherent diffraction imaging
Pound, Benjamin A.; Barber, John L.; Nguyen, Kimberly; ...
2017-08-04
Coherent diffraction imaging (CDI) is a rapidly developing form of imaging that offers the potential of wavelength-limited resolution without image-forming lenses. In CDI, the intensity of the diffraction pattern is measured directly by the detector, and various iterative phase retrieval algorithms are used to “invert” the diffraction pattern and reconstruct a high-resolution image of the sample. But, there are certain requirements in CDI that must be met to reconstruct the object. Although most experiments are conducted in the “far-field”—or Fraunhofer—regime where the requirements are not as stringent, some experiments must be conducted in the “near field” where Fresnel diffraction mustmore » be considered. According to the derivation of Fresnel diffraction, successful reconstructions can only be obtained when the small-angle number, a derived quantity, is much less than one. We show, however, that it is not actually necessary to fulfill the small-angle condition. The Fresnel kernel well approximates the exact kernel in regions where the phase oscillates slowly, and in regions of fast oscillations, indicated by large A n , the error between kernels should be negligible due to stationary-phase arguments. Finally we verify, by experiment, this conclusion with a helium neon laser setup and show that it should hold at x-ray wavelengths as well.« less
Plana-Ruiz, S; Portillo, J; Estradé, S; Peiró, F; Kolb, Ute; Nicolopoulos, S
2018-06-06
A general method to set illuminating conditions for selectable beam convergence and probe size is presented in this work for Transmission Electron Microscopes (TEM) fitted with µs/pixel fast beam scanning control, (S)TEM, and an annular dark field detector. The case of interest of beam convergence and probe size, which enables diffraction pattern indexation, is then used as a starting point in this work to add 100 Hz precession to the beam while imaging the specimen at a fast rate and keeping the projector system in diffraction mode. The described systematic alignment method for the adjustment of beam precession on the specimen plane while scanning at fast rates is mainly based on the sharpness of the precessed STEM image. The complete alignment method for parallel condition and precession, Quasi-Parallel PED-STEM, is presented in block diagram scheme, as it has been tested on a variety of instruments. The immediate application of this methodology is that it renders the TEM column ready for the acquisition of Precessed Electron Diffraction Tomographies (EDT) as well as for the acquisition of slow Precessed Scanning Nanometer Electron Diffraction (SNED). Examples of the quality of the Precessed Electron Diffraction (PED) patterns and PED-STEM alignment images are presented with corresponding probe sizes and convergence angles. Copyright © 2018. Published by Elsevier B.V.
Near-field limitations of Fresnel-regime coherent diffraction imaging
NASA Astrophysics Data System (ADS)
Pound, Benjamin A.; Barber, John L.; Nguyen, Kimberly; Tyson, Matthew C.; Sandberg, Richard L.
2017-08-01
Coherent diffraction imaging (CDI) is a rapidly developing form of imaging that offers the potential of wavelength-limited resolution without image-forming lenses. In CDI, the intensity of the diffraction pattern is measured directly by the detector, and various iterative phase retrieval algorithms are used to "invert" the diffraction pattern and reconstruct a high-resolution image of the sample. However, there are certain requirements in CDI that must be met to reconstruct the object. Although most experiments are conducted in the "far-field"—or Fraunhofer—regime where the requirements are not as stringent, some experiments must be conducted in the "near field" where Fresnel diffraction must be considered. According to the derivation of Fresnel diffraction, successful reconstructions can only be obtained when the small-angle number, a derived quantity, is much less than one. We show, however, that it is not actually necessary to fulfill the small-angle condition. The Fresnel kernel well approximates the exact kernel in regions where the phase oscillates slowly, and in regions of fast oscillations, indicated by large A n , the error between kernels should be negligible due to stationary-phase arguments. We experimentally verify this conclusion with a helium neon laser setup and show that it should hold at x-ray wavelengths as well.
Yang, Zhi; Gu, Qinfen; Hemar, Yacine
2013-08-14
The gelatinization of waxy (very low amylose) and high-amylose maize starches by ultra-high hydrostatic pressure (up to 6 GPa) was investigated in situ using synchrotron X-ray powder diffraction on samples held in a diamond anvil cell (DAC). The starch pastes, made by mixing starch and water in a 1:1 ratio, were pressurized and measured at room temperature. X-ray diffraction pattern showed that at 2.7 GPa waxy starch, which displayed A-type XRD pattern at atmospheric pressure, exhibited a faint B-type-like pattern. The B-type crystalline structures of high-amylose starch were not affected even when 1.5 GPa pressure was applied. However, both waxy and high-amylose maize starches can be fully gelatinized at 5.9 GPa and 5.1 GPa, respectively. In the case of waxy maize starch, upon release of pressure (to atmospheric pressure) crystalline structure appeared as a result of amylopectin aggregation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Coherent convergent-beam time-resolved X-ray diffraction
Spence, John C. H.; Zatsepin, Nadia A.; Li, Chufeng
2014-01-01
The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic laser radiation of a free-electron X-ray laser is unsuitable. We discuss the possibility of obtaining single-shot, angle-integrated rocking curves from CCB patterns, and the dependence of the resulting patterns on the focused beam coordinate when the beam diameter is larger or smaller than a nanocrystal, or smaller than one unit cell. We show how structure factor phase information is provided at overlapping interfering orders and how a common phase origin between different shots may be obtained. Their use in refinement of the phase-sensitive intensity between overlapping orders is suggested. PMID:24914153
Apparatus and method for laser beam diagnosis
Salmon, Jr., Joseph T.
1991-01-01
An apparatus and method is disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam.
Apparatus and method for laser beam diagnosis
Salmon, J.T. Jr.
1991-08-27
An apparatus and method are disclosed for accurate, real time monitoring of the wavefront curvature of a coherent laser beam. Knowing the curvature, it can be quickly determined whether the laser beam is collimated, or focusing (converging), or de-focusing (diverging). The apparatus includes a lateral interferometer for forming an interference pattern of the laser beam to be diagnosed. The interference pattern is imaged to a spatial light modulator (SLM), whose output is a coherent laser beam having an image of the interference pattern impressed on it. The SLM output is focused to obtain the far-field diffraction pattern. A video camera, such as CCD, monitors the far-field diffraction pattern, and provides an electrical output indicative of the shape of the far-field pattern. Specifically, the far-field pattern comprises a central lobe and side lobes, whose relative positions are indicative of the radius of curvature of the beam. The video camera's electrical output may be provided to a computer which analyzes the data to determine the wavefront curvature of the laser beam. 11 figures.
Aqueous Nucleation and Growth of Titanium Oxides Using Time-Resolved Synchrotron X- ray Diffraction
NASA Astrophysics Data System (ADS)
Hummer, D. R.; Heaney, P. J.; Post, J. E.
2006-05-01
The inorganic precipitation of oxide minerals in soil environments has profound effects on a variety of geochemical processes. These include the removal of metals from the aqueous phase, the production of coatings that reduce the reactive surface area of pre-existing mineral grains, and the generation of feedstocks for microbial metabolic reactions. Recent observations of transient, metastable phases during the growth of oxide crystallites has raised questions about their role in crystallization mechanisms, and created a need for more detailed structural measurements. To better understand the process of nucleation and growth, we investigated the crystallization of Ti oxides from aqueous 0.5 M TiCl4 solutions using synchrotron X-ray diffraction at temperatures of 100 and 150 °C. Solutions were heated in a 1.0 mm internal diameter quartz glass capillary sealed with epoxy. Powder diffraction patterns of the growing crystallites were collected using image plate technology with a time step of ~ 4 minutes, providing high resolution in situ measurements of structural changes during the crystallization process. The data indicate a co-precipitation of the two crystalline phases anatase and rutile within the first 30 minutes of heating, followed by a gradual phase transition from anatase to rutile during particle coarsening throughout the 10 hour duration of an experiment. The co-existence of anatase and rutile at the onset of crystallization lends additional support to the assertion of nearly identical free energies for anatase and rutile at the nanoscale, believed to be due to the prominence of surface energy effects (Ranade et al., 2001). Whole pattern analyses using the Rietveld refinement method also documented previously unobserved changes in lattice parameters of both phases during growth, on the order of 0.2-0.3 % expansion for each axis. The trends in lattice parameters are observed to be temperature dependent, generally having lower values at higher crystallization temperature. In addition to increased surface energy, these small but measurable structural changes may be partially responsible for the observed reversals in thermodynamic stability between crystalline Ti oxide phases at very small particle sizes.
NASA Technical Reports Server (NTRS)
2001-01-01
X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.
NASA Astrophysics Data System (ADS)
Triyono, Joko; Rizha, Yushak; Triyono, Teguh
2018-04-01
The use of biomaterials in orthopedics is increasing. This led to the growth of innovations in the field of medicine, one of them is the development of biomaterials. Study of Sheep Hydroxyapatite (SHA)/shellac/sugar biocomposite characterization was to determine the phase of the material, porosity, hardness and compressive strength of them. This research was conducted to develop new types of biomaterials that can be used as bone filler material. The analysis that used in this research was dry methods. The results showed that observation of XRD (X-Ray Diffraction) shows the pattern of diffraction 2θ: 31.6472°, 32.7753°, 32.0723°, The highest hardness of SHA/shellac/sugar ratio was 70:30% (7.38±0.1395 VHN) and the lowest at 50:50% (4.91±0.37 VHN). The highest Diametral Tensile Strength (DTS) test was 70:30% (5.43±1.395 MPa) and the lowest at 50:50% (3.10±0.26 MPa). SEM observations are performed to see the material porosity.
Solvent and temperature effects on crambin, a hydrophobic protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llinas, M.; Lecomte, J.T.J.; De Marco, A.
1980-10-01
Crambin, a 5000-mol. wt. water-insoluble protein found in crambe abyssinica seeds is presently being studied by x-ray diffraction to 0.9 A resolution and /sup 1/H-nuclear magnetic resonance (NMR) spectroscopy. Preliminary /sup 1/H-NMR data at 250 and 600 MHz have suggested that this hydrophobic protein retains a similar globular conformation in both glacial acetic acid (AA), a Bronsted acid, and dimethylformamide (DMF), a Lewis base. These observations suggest that the globular conformation observed in these organic solvents is most likely the native structure present in the crystalline state. As suggested by the high intrinsic resolution of the crystallographic x-ray diffraction pattern,more » and demonstrated by the NMR data, crambin is a very rigid protein. Work is in progress to assign the /sup 1/H-resonances and to correlate H and /sup 13/C NMR dynamic data with the crystallographic model. It is hoped that unravelling conformational features of this hydrophobic protein will provide clues to help us understand other membrane-bound functional proteins.« less
X-ray diffraction, Raman, and photoacoustic studies of ZnTe nanocrystals
NASA Astrophysics Data System (ADS)
Ersching, K.; Campos, C. E. M.; de Lima, J. C.; Grandi, T. A.; Souza, S. M.; da Silva, D. L.; Pizani, P. S.
2009-06-01
Nanocrystalline ZnTe was prepared by mechanical alloying. X-ray diffraction (XRD), energy dispersive spectroscopy, Raman spectroscopy, and photoacoustic absorption spectroscopy techniques were used to study the structural, chemical, optical, and thermal properties of the as-milled powder. An annealing of the mechanical alloyed sample at 590 °C for 6 h was done to investigate the optical properties in a defect-free sample (close to bulk form). The main crystalline phase formed was the zinc-blende ZnTe, but residual trigonal tellurium and hexagonal ZnO phases were also observed for both as-milled and annealed samples. The structural parameters, phase fractions, average crystallite sizes, and microstrains of all crystalline phases were obtained from Rietveld analyses of the X-ray patterns. Raman results corroborate the XRD results, showing the longitudinal optical phonons of ZnTe (even at third order) and those modes of trigonal Te. Nonradiative surface recombination and thermal bending heat transfer mechanisms were proposed from photoacoustic analysis. An increase in effective thermal diffusivity coefficient was observed after annealing and the carrier diffusion coefficient, the surface recombination velocity, and the recombination time parameters remained the same.
Formation of sodium bismuth titanate-barium titanate during solid-state synthesis
Hou, Dong; Aksel, Elena; Fancher, Chris M.; ...
2017-01-12
Phase formation of sodium bismuth titanate (Na 0.5Bi 0.5TiO 3 or NBT) and its solid solution with barium titanate (BaTiO 3 or BT) during the calcination process is studied using in situ high-temperature diffraction. The reactant powders were mixed and heated to 1000°C, while X-ray diffraction patterns were recorded continuously. Phase evolutions from starting materials to final perovskite products are observed, and different transient phases are identified. The formation mechanism of NBT and NBT–xBT perovskite structures is discussed, and a reaction sequence is suggested based on the observations. The in situ study leads to a new processing approach, which ismore » the use of nano-TiO 2, and gives insights to the particle size effect for solid-state synthesis products. Lastly, it was found that the use of nano-TiO 2 as reactant powder accelerates the synthesis process, decreases the formation of transient phases, and helps to obtain phase-pure products using a lower thermal budget.« less
Ferro-Lattice-Distortions and Charge Fluctuations in Superconducting LaO 1- x F x BiS 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athauda, Anushika; Hoffmann, Christina; Aswartham, Saicharan
2017-05-15
Competing ferroelectric and charge density wave states have been proposed to exist in the electron–phonon coupled LaO1-xFxBiS2 superconductor. The lattice instability is proposed to arise from unstable phonon modes that can break the crystal symmetry. Using single crystal diffraction, a superlattice pattern is observed, that arises from coherent in-plane displacements of the sulfur atoms in the BiS2 superconducting planes. The distortions morph into coordinated ferrodistortive patterns with displacements in the x- and y-directions, that alternate along the c-axis. Diffuse scattering is observed along the (H0L) plane due to stacking faults but not along the (HH0) plane. The ferro-distortive pattern remainsmore » in the superconducting state upon fluorine doping, but the displacements are diminished in magnitude. Moreover, we find that the in-plane distortions give rise to disorder where the (00L) reflections become quite broad. It is possible that charge carriers can get trapped in the lattice deformations reducing the effective number of carriers available for pairing.« less
Relativistic electron diffraction at the UCLA Pegasus photoinjector laboratory.
Musumeci, P; Moody, J T; Scoby, C M
2008-10-01
Electron diffraction holds the promise to yield real-time resolution of atomic motion in an easily accessible environment like a university laboratory at a fraction of the cost of fourth-generation X-ray sources. Currently the limit in time-resolution for conventional electron diffraction is set by how short an electron pulse can be made. A very promising solution to maintain the highest possible beam intensity without excessive pulse broadening from space charge effects is to increase the electron energy to the MeV level where relativistic effects significantly reduce the space charge forces. Rf photoinjectors can in principle deliver up to 10(7)-10(8) electrons packed in bunches of approximately 100-fs length, allowing an unprecedented time resolution and enabling the study of irreversible phenomena by single-shot diffraction patterns. The use of rf photoinjectors as sources for ultrafast electron diffraction has been recently at the center of various theoretical and experimental studies. The UCLA Pegasus laboratory, commissioned in early 2007 as an advanced photoinjector facility, is the only operating system in the country, which has recently demonstrated electron diffraction using a relativistic beam from an rf photoinjector. Due to the use of a state-of-the-art ultrashort photoinjector driver laser system, the beam has been measured to be sub-100-fs long, at least a factor of 5 better than what measured in previous relativistic electron diffraction setups. Moreover, diffraction patterns from various metal targets (titanium and aluminum) have been obtained using the Pegasus beam. One of the main laboratory goals in the near future is to fully develop the rf photoinjector-based ultrafast electron diffraction technique with particular attention to the optimization of the working point of the photoinjector in a low-charge ultrashort pulse regime, and to the development of suitable beam diagnostics.
ERIC Educational Resources Information Center
Bergsten, Ronald
1974-01-01
Discusses the production and structure of a sequence of optical crystals which can serve as one-, two-, and three-dimensional diffraction plates to illustrate diffraction patterns by using light rather than x-rays or particles. Applications to qualitative presentations of Laue theory at the secondary and college levels are recommended. (CC)
Dissociation behavior of methane--ethane mixed gas hydrate coexisting structures I and II.
Kida, Masato; Jin, Yusuke; Takahashi, Nobuo; Nagao, Jiro; Narita, Hideo
2010-09-09
Dissociation behavior of methane-ethane mixed gas hydrate coexisting structures I and II at constant temperatures less than 223 K was studied with use of powder X-ray diffraction and solid-state (13)C NMR techniques. The diffraction patterns at temperatures less than 203 K showed both structures I and II simultaneously convert to Ih during the dissociation, but the diffraction pattern at temperatures greater than 208 K showed different dissociation behavior between structures I and II. Although the diffraction peaks from structure II decreased during measurement at constant temperatures greater than 208 K, those from structure I increased at the initial step of dissociation and then disappeared. This anomalous behavior of the methane-ethane mixed gas hydrate coexisting structures I and II was examined by using the (13)C NMR technique. The (13)C NMR spectra revealed that the anomalous behavior results from the formation of ethane-rich structure I. The structure I hydrate formation was associated with the dissociation rate of the initial methane-ethane mixed gas hydrate.
Imaging single cells in a beam of live cyanobacteria with an X-ray laser.
van der Schot, Gijs; Svenda, Martin; Maia, Filipe R N C; Hantke, Max; DePonte, Daniel P; Seibert, M Marvin; Aquila, Andrew; Schulz, Joachim; Kirian, Richard; Liang, Mengning; Stellato, Francesco; Iwan, Bianca; Andreasson, Jakob; Timneanu, Nicusor; Westphal, Daniel; Almeida, F Nunes; Odic, Dusko; Hasse, Dirk; Carlsson, Gunilla H; Larsson, Daniel S D; Barty, Anton; Martin, Andrew V; Schorb, Sebastian; Bostedt, Christoph; Bozek, John D; Rolles, Daniel; Rudenko, Artem; Epp, Sascha; Foucar, Lutz; Rudek, Benedikt; Hartmann, Robert; Kimmel, Nils; Holl, Peter; Englert, Lars; Duane Loh, Ne-Te; Chapman, Henry N; Andersson, Inger; Hajdu, Janos; Ekeberg, Tomas
2015-02-11
There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.
Gbabode, Gabin; Dohr, Michael; Niebel, Claude; Balandier, Jean-Yves; Ruzié, Christian; Négrier, Philippe; Mondieig, Denise; Geerts, Yves H; Resel, Roland; Sferrazza, Michele
2014-08-27
A detailed structural study of the bulk and thin film phases observed for two potential high-performance organic semiconductors has been carried out. The molecules are based on [1]benzothieno[3,2-b]benzothiophene (BTBT) as conjugated core and octyl side groups, which are anchored either symmetrically at both sides of the BTBT core (C8-BTBT-C8) or nonsymmetrically at one side only (C8-BTBT). Thin films of different thickness (8-85 nm) have been prepared by spin-coating for both systems and analyzed by combining specular and grazing incidence X-ray diffraction. In the case of C8-BTBT-C8, the known crystal structure obtained from single-crystal investigations is observed within all thin films, down to a film thickness of 9 nm. In the case of C8-BTBT, the crystal structure of the bulk phase has been determined from X-ray powder diffraction data with a consistent matching of experimental and calculated X-ray diffraction patterns (Rwp = 5.8%). The packing arrangement of C8-BTBT is similar to that of C8-BTBT-C8, that is, consisting of a lamellar structure with molecules arranged in a "herringbone" fashion, yet with lamellae composed of two head-to-head (or tail-to-tail as the structure is periodic) superimposed molecules instead of only one molecule for C8-BTBT-C8. As for C8-BTBT-C8, we demonstrate that the same phase is observed in bulk and thin films for C8-BTBT whatever the film thickness investigated.
NASA Technical Reports Server (NTRS)
Kuriyama, Masao; Steiner, Bruce; Dobbyn, Ronald C.; Laor, Uri; Larson, David; Brown, Margaret
1988-01-01
Streaking images restricted to the direction of the diffraction (scattering) vector have been observed on transmission through undoped GaAs. These disruption images (caused by the reduction of diffraction in the direction of observation) appear both in the forward and in Bragg diffracted directions in monochromatic synchrontron radiation diffraction imaging. This previously unobserved phenomenon can be explained in terms of planar defects (interfaces) or platelets which affects the absorption coefficient in anomalous transmission. Such regions of the crystal look perfect despite the presence of imperfections when the scattering vector is not perpendicular to the normal of the platelets. The observed crystallographic orientation of these interfaces strongly indicates that they are antiphase boundaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adil, Muhammad, E-mail: muhammadadil86@hotmail.com; Zaid, Hasnah Mohd, E-mail: hasnamz@petronas.com.my; Chuan, Lee Kean, E-mail: lee.kc@petronas.com.my
2015-07-22
Dielectric nano powder synthesis is carried by a simple and fast sol-gel auto-combustion method. The transformation of crystalline phases of as-synthesized nano powders is investigated through the detailed transmission electron microscopy (TEM), revealed the crystallographic alterations and morphological information even at lattice scale. From specific area electron diffraction (SAED) pattern, has specified the d-spacing and corresponding planes supported by the observed lattice fringes. The morphological characterization of nanoparticles is performed through field-emission scanning electron microscopy (FESEM), exhibiting the increment in particle size due to agglomeration with the increase in annealing temperature. Furthermore, EDX pattern has been used to verify themore » formation of nanoparticles by revealing the presence of required elements.« less
NASA Astrophysics Data System (ADS)
Costa, M.; Benseny-Cases, N.; Cócera, M.; Teixeira, C. V.; Alsina, M.; Cladera, J.; López, O.; Fernández, M.; Sabés, M.
In previous chapters, the basis of SAXS for the study of biological systems like proteins in solution have been presented. The SAXS patterns of proteins in solution present, in general, broad dependences with the scattering vector, and the interpretation requires a huge component of modelling. In this chapter and in the following one, it is shown how SAXS technique can be used to study biological systems that are partially crystalline and with a large crystalline cells. This is done by analysing the diffraction obtained from these systems at small angles. In this chapter, a new approach to the application of small-angle X-ray scattering (SAXS) for diagnosis using the diffraction pattern of collagen is presented. This chapter shows the development of a new strategy in the preventive diagnosis of breast cancer following changes on collagen from breast connective tissue. SAXS profiles are related to different features in cutaneous preparations and to the supra-molecular arrangement of skin layers (stratum corneum, epidermis and dermis), in order to introduce objective values on the diagnosis of different skin pathologies. Working parameters (size, thickness) and methods (freezing, paraffin embedment) have been established. The results suggest that collagen diffraction patterns could be used as diagnostic indicators; especially for breast cancer and preliminary results obtained with skin collagen are promising too.
Moore, Michael D; Steinbach, Alison M; Buckner, Ira S; Wildfong, Peter L D
2009-11-01
To use advanced powder X-ray diffraction (PXRD) to characterize the structure of anhydrous theophylline following compaction, alone, and as part of a binary mixture with either alpha-lactose monohydrate or microcrystalline cellulose. Compacts formed from (1) pure theophylline and (2) each type of binary mixture were analyzed intact using PXRD. A novel mathematical technique was used to accurately separate multi-component diffraction patterns. The pair distribution function (PDF) of isolated theophylline diffraction data was employed to assess structural differences induced by consolidation and evaluated by principal components analysis (PCA). Changes induced in PXRD patterns by increasing compaction pressure were amplified by the PDF. Simulated data suggest PDF dampening is attributable to molecular deviations from average crystalline position. Samples compacted at different pressures were identified and differentiated using PCA. Samples compacted at common pressures exhibited similar inter-atomic correlations, where excipient concentration factored in the analyses involving lactose. Practical real-space structural analysis of PXRD data by PDF was accomplished for intact, compacted crystalline drug with and without excipient. PCA was used to compare multiple PDFs and successfully differentiated pattern changes consistent with compaction-induced disordering of theophylline as a single component and in the presence of another material.
Volume gratings and welding of glass/plastic by femtosecond laser direct writing
NASA Astrophysics Data System (ADS)
Watanabe, Wataru
2018-01-01
Femtosecond laser direct writing is used to fabricate diffractive optical elements in three dimensions and to weld glass and/or plastic. In this paper, we review volume gratings in plastics and welding of glass/plastic by femtosecond laser direct writing. Volume gratings were embedded inside polymethyl methacrylate (PMMA) by femtosecond laser pulses. The diffraction efficiency of the gratings increased after fabrication and reached the maximum. After an initial slow decrease within first several days after the fabrication, the efficiency increased again. This phenomena was called regeneration of the grating. We also demonstrate welding of PMMA by dendrite pattern using femtosecond laser pulses. Laser pulses are focused at the interface of two PMMA substrates with an air gap and melted materials in laser-irradiated region spread within a gap of the substrates and dendrite morphology of melted PMMA was observed outside the laser irradiated area. Finally, we show welding of glass/plastic and metal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Baozhuo; Young, Marcus L.
Many technological applications of austenitic shape memory alloys (SMAs) involve cyclical mechanical loading and unloading in order to take advantage of pseudoelasticity. In this paper, we investigated the effect of mechanical bending of pseudoelastic NiTi SMA wires using high-energy synchrotron radiation X-ray diffraction (SR-XRD). Differential scanning calorimetry was performed to identify the phase transformation temperatures. Scanning electron microscopy images show that micro-cracks in compressive regions of the wire propagate with increasing bend angle, while tensile regions tend not to exhibit crack propagation. SR-XRD patterns were analyzed to study the phase transformation and investigate micromechanical properties. By observing the various diffraction peaks such as the austenite (200) and the martensite (more » $${\\bar 1}12$$), ($${\\bar 1}03$$), ($${\\bar 1}11$$), and (101) planes, intensities and residual strain values exhibit strong anisotropy, depending upon whether the sample is in compression or tension during bending.« less
NASA Astrophysics Data System (ADS)
Verma, Vivek; Pandey, Vibhav; Singh, Sukhveer; Aloysius, R. P.; Annapoorni, S.; Kotanala, R. K.
2009-08-01
Lithium ferrite has been considered as one of the highly strategic magnetic material. Nano-crystalline Li 0.5Fe 2.5O 4 was prepared by four different techniques and characterized by X-ray diffraction, vibrating sample magnetometer (VSM), transmission electron microscope (TEM) and Fourier transform infrareds (FTIR). The effect of annealing temperature (700, 900 and 1050 °C) on microstructure has been correlated to the magnetic properties. From X-ray diffraction patterns, it is confirmed that the pure phase of lithium ferrite began to form at 900 °C annealing. The particle size of as-prepared lithium ferrite was observed around 40, 31, 22 and 93 nm prepared by flash combustion, sol-gel, citrate precursor and standard ceramic technique, respectively. Lithium ferrite prepared by citrate precursor method shows a maximum saturation magnetization 67.6 emu/g at 5 KOe.
NASA Astrophysics Data System (ADS)
Naveen Kumar, N.; Tewari, R.; Mukherjee, P.; Gayathri, N.; Durgaprasad, P. V.; Taki, G. S.; Krishna, J. B. M.; Sinha, A. K.; Pant, P.; Revally, A. K.; Dutta, B. K.; Dey, G. K.
2017-08-01
In the present study, microstructures of Ferritic-martensitic T-91 steel irradiated at room temperature for 5, 10 and 20 dpa using 315 KeV Ar+9 ions have been characterized by grazing incident X-ray diffraction (GIXRD) and by transmission electron microscopy (TEM). Line profiles of GIXRD patterns have shown that the size of domain continuously reduced with increasing dose of radiation. TEM investigations of irradiated samples have shown the presence of black dots, the number density of which decreases with increasing dose. Microstructures of irradiated samples have also revealed the presence of point defect clusters, such as dislocation loops and bubbles. In addition, dissolution of precipitates due to irradiation was also observed. Nano-indentation studies on the irradiated samples have shown saturation behavior in hardness as a function of dose which could be correlated with the changes in the yield strength of the alloy.
Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorkhover, Tais; Ulmer, Anatoli; Ferguson, Ken
Ultrafast X-ray imaging on individual fragile specimens such as aerosols, metastable particles, superfluid quantum systems and live biospecimens provides high-resolution information that is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imaging, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely defined. Here in this paper, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lateral resolutionmore » so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond timescale.« less
High-Pressure Polymorph of NaBiO3.
Naa, Octavianti; Kumada, Nobuhiro; Miura, Akira; Takei, Takahiro; Azuma, Masaki; Kusano, Yoshihiro; Oka, Kengo
2016-06-20
A new high-pressure polymorph of NaBiO3 (hereafter β-NaBiO3) was synthesized under the conditions of 6 GPa and 600 °C. The powder X-ray diffraction pattern of this new phase was indexed with a hexagonal cell of a = 9.968(1) Å and c = 3.2933(4) Å. Crystal structure refinement using synchrotron powder X-ray diffraction data led to RWP = 8.53% and RP = 5.55%, and the crystal structure was closely related with that of Ba2SrY6O12. No photocatalytic activity for phenol decomposition was observed under visible-light irradiation in spite of a good performance for its mother compound, NaBiO3. The optical band-gap energy of β-NaBiO3 was narrower than that of NaBiO3, which was confirmed with density of states curves simulated by first-principles density functional theory calculation.
Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles
NASA Astrophysics Data System (ADS)
Gorkhover, Tais; Ulmer, Anatoli; Ferguson, Ken; Bucher, Max; Maia, Filipe R. N. C.; Bielecki, Johan; Ekeberg, Tomas; Hantke, Max F.; Daurer, Benedikt J.; Nettelblad, Carl; Andreasson, Jakob; Barty, Anton; Bruza, Petr; Carron, Sebastian; Hasse, Dirk; Krzywinski, Jacek; Larsson, Daniel S. D.; Morgan, Andrew; Mühlig, Kerstin; Müller, Maria; Okamoto, Kenta; Pietrini, Alberto; Rupp, Daniela; Sauppe, Mario; van der Schot, Gijs; Seibert, Marvin; Sellberg, Jonas A.; Svenda, Martin; Swiggers, Michelle; Timneanu, Nicusor; Westphal, Daniel; Williams, Garth; Zani, Alessandro; Chapman, Henry N.; Faigel, Gyula; Möller, Thomas; Hajdu, Janos; Bostedt, Christoph
2018-03-01
Ultrafast X-ray imaging on individual fragile specimens such as aerosols1, metastable particles2, superfluid quantum systems3 and live biospecimens4 provides high-resolution information that is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imaging, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely defined4,5. Here, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lateral resolution so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond timescale.
Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals.
Wu, Yimin A; Kirkland, Angus I; Schäffel, Franziska; Porfyrakis, Kyriakos; Young, Neil P; Briggs, G Andrew D; Warner, Jamie H
2011-05-13
We demonstrate the use of thin BN sheets as supports for imaging nanocrystals using low voltage (80 kV) aberration-corrected high resolution transmission electron microscopy. This provides an alternative to the previously utilized 2D crystal supports of graphene and graphene oxide. A simple chemical exfoliation method is applied to get few layer boron nitride (BN) sheets with micrometer-sized dimensions. This generic approach of using BN sheets as supports is shown by depositing Mn doped ZnSe nanocrystals directly onto the BN sheets and resolving the atomic structure from both the ZnSe nanocrystals and the BN support. Phase contrast images reveal moiré patterns of interference between the beams diffracted by the nanocrystals and the BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes. Double diffraction is observed and has been analyzed.
Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles
Gorkhover, Tais; Ulmer, Anatoli; Ferguson, Ken; ...
2018-02-26
Ultrafast X-ray imaging on individual fragile specimens such as aerosols, metastable particles, superfluid quantum systems and live biospecimens provides high-resolution information that is inaccessible with conventional imaging techniques. Coherent X-ray diffractive imaging, however, suffers from intrinsic loss of phase, and therefore structure recovery is often complicated and not always uniquely defined. Here in this paper, we introduce the method of in-flight holography, where we use nanoclusters as reference X-ray scatterers to encode relative phase information into diffraction patterns of a virus. The resulting hologram contains an unambiguous three-dimensional map of a virus and two nanoclusters with the highest lateral resolutionmore » so far achieved via single shot X-ray holography. Our approach unlocks the benefits of holography for ultrafast X-ray imaging of nanoscale, non-periodic systems and paves the way to direct observation of complex electron dynamics down to the attosecond timescale.« less
NASA Astrophysics Data System (ADS)
Kale, Swati B.; Somvanshi, Sandeep B.; Sarnaik, M. N.; More, S. D.; Shukla, S. J.; Jadhav, K. M.
2018-05-01
This paper reports facile synthesis, characterizations by X-ray diffraction and scanning electron microscopy and magnetic behaviour of cobalt ferrite nanoparticles. Cobalt ferrite nanoparticles were prepared by sol-gel auto combustion technique using glycine as a fuel. Phase purity and nanocrystalline nature of the prepared sample was confirmed through X-ray diffraction technique. No extra peak other than cubic spinel structure was observed in the XRD pattern. The crystallite size calculated by using Scherrer's formula is of the order of 21.6 nm indicating the nanocrystalline nature of the prepared cobalt ferrite sample. The surface morphological studies were carried out using scanning electron microscope (SEM). SEM image shows homogeneous, agglomerated particles with sponge-like form. The saturation magnetization, coercivity and remenance magnetization obtained by hysteresis curve clearly gives the evidence of excellent and enhanced magnetic behaviour.
Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study
NASA Astrophysics Data System (ADS)
Kotsedi, L.; Kaviyarasu, K.; Fuku, X. G.; Eaton, S. M.; Amara, E. H.; Bireche, F.; Ramponi, R.; Maaza, M.
2017-11-01
The two-temperature model was used to gain insight into the thermal evolution of the hot electrons and the crystal lattice of the molybdenum thin coating during femtosecond laser treatment. The heat from the laser raised the bulk temperature of the sample through heat transfer from the hot electron to the crystal lattice of the material, which then led to the melting of the top layer of the film. This process resulted in the hot melt reacting ambient oxygen, which in turn oxidized the surface of molybdenum coating. The topological study and morphology of the oxidized film was conducted using high-resolution scanning electron microscope, with micrographs taken in both the cross-sectional geometry and normal incidence to the electron beam. The molybdenum oxide nanorods were clearly observed and the x-ray diffraction patterns showed the diffraction peaks due to molybdenum oxide.
Neutron diffraction study of layered Ni dioxides: Ag2NiO2
NASA Astrophysics Data System (ADS)
Nozaki, Hiroshi; Sugiyama, Jun; Janoschek, Marc; Roessli, Bertrand; Pomjakushin, Vladimir; Keller, Lukas; Yoshida, Hiroyuki; Hiroi, Zenji
2008-03-01
In order to elucidate the antiferromagnetic (AF) nature of hexagonal Ag2NiO2 with TN = 56 K and to know the mechanism of the structural phase transition of TS~270 K, neutron powder diffraction patterns have been measured in the temperature range between 1.5 and 330 K. One magnetic Bragg peak indexed as \\frac {1}{3}~\\frac {1}{3}~0 is clearly observed below TN, confirming the formation of long-range AF order, reported by a muon-spin spectroscopy measurement. The weak intensity of the magnetic peak also suggests the two-dimensional nature of the AF order, but the spin structure is still unknown. In addition, the precise structural analysis of the data between 160 and 330 K shows that only the cH-axis length changes drastically at TS, which suggests the appearance of local Jahn-Teller distortion below TS.
NASA Astrophysics Data System (ADS)
Bibi, Sherino; Mohammad, Sharifah; Manan, Ninie Suhana Abdul; Ahmad, Jimmy; Kamboh, Muhammad Afzal; Khor, Sook Mei; Yamin, Bohari M.; Abdul Halim, Siti Nadiah
2017-08-01
Two new mononuclear coordination complexes [Cu(bim)4Cl2]ṡ2H2O (1) and [Zn(bim)2Cl2] (2) containing the 1-benzylimidazole (bim) ligand were successfully synthesized. Both complexes were characterized by IR, UV-vis, and fluorescence spectroscopies, single crystal and powder X-ray diffraction measurements, and thermogravimetric analysis. Self-assembly during the recrystallization process resulted in the formation of octahedral and tetrahedral Cu(II) and Zn(II) complexes, respectively. The single crystals obtained are representative of the bulk material, as shown by the powder X-ray diffraction patterns. Cyclic voltammetry measurements showed that complex 1 undergoes a quasi-reversible redox reaction, while complex 2 undergoes reduction alone, and no oxidation peak was observed; this is due to the stability of the reduced form of complex 2.
Image-based spectroscopy for environmental monitoring
NASA Astrophysics Data System (ADS)
Bachmakov, Eduard; Molina, Carolyn; Wynne, Rosalind
2014-03-01
An image-processing algorithm for use with a nano-featured spectrometer chemical agent detection configuration is presented. The spectrometer chip acquired from Nano-Optic DevicesTM can reduce the size of the spectrometer down to a coin. The nanospectrometer chip was aligned with a 635nm laser source, objective lenses, and a CCD camera. The images from a nanospectrometer chip were collected and compared to reference spectra. Random background noise contributions were isolated and removed from the diffraction pattern image analysis via a threshold filter. Results are provided for the image-based detection of the diffraction pattern produced by the nanospectrometer. The featured PCF spectrometer has the potential to measure optical absorption spectra in order to detect trace amounts of contaminants. MATLAB tools allow for implementation of intelligent, automatic detection of the relevant sub-patterns in the diffraction patterns and subsequent extraction of the parameters using region-detection algorithms such as the generalized Hough transform, which detects specific shapes within the image. This transform is a method for detecting curves by exploiting the duality between points on a curve and parameters of that curve. By employing this imageprocessing technique, future sensor systems will benefit from new applications such as unsupervised environmental monitoring of air or water quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Yifei; Zuo, Jian -Min
A diffraction-based technique is developed for the determination of three-dimensional nanostructures. The technique employs high-resolution and low-dose scanning electron nanodiffraction (SEND) to acquire three-dimensional diffraction patterns, with the help of a special sample holder for large-angle rotation. Grains are identified in three-dimensional space based on crystal orientation and on reconstructed dark-field images from the recorded diffraction patterns. Application to a nanocrystalline TiN thin film shows that the three-dimensional morphology of columnar TiN grains of tens of nanometres in diameter can be reconstructed using an algebraic iterative algorithm under specified prior conditions, together with their crystallographic orientations. The principles can bemore » extended to multiphase nanocrystalline materials as well. Furthermore, the tomographic SEND technique provides an effective and adaptive way of determining three-dimensional nanostructures.« less