Science.gov

Sample records for observed energy-dependent composition

  1. Role of galactic sources and magnetic fields in forming the observed energy-dependent composition of ultrahigh-energy cosmic rays.

    PubMed

    Calvez, Antoine; Kusenko, Alexander; Nagataki, Shigehiro

    2010-08-27

    Recent results from the Pierre Auger Observatory, showing energy-dependent chemical composition of ultrahigh-energy cosmic rays (UHECRs) with a growing fraction of heavy elements at high energies, suggest a possible non-negligible contribution of the Galactic sources. We show that, in the case of UHECRs produced by gamma-ray bursts or rare types of supernova explosions that took place in the Milky Way in the past, the change in UHECR composition can result from the difference in diffusion times for different species. The anisotropy in the direction of the Galactic center is expected to be a few per cent on average, but the locations of the most recent or closest bursts can be associated with observed clusters of UHECRs.

  2. Energy dependent polymerization of resin-based composite.

    PubMed

    Halvorson, Rolf H; Erickson, Robert L; Davidson, Carel L

    2002-09-01

    This study explores the relationship between the extent of polymerization and the radiant energy (dose) applied during the photopolymerization of resin-based composites. FTIR was used to measure the 5-min and 24-h conversion of four resin-based composites prepared in a thin film and polymerized under conditions of decreasing intensity and a constant exposure time (30s) using a tungsten halogen curing light. The measured conversion was obtained over a wide range of applied radiant energy. Additionally, samples for two of the materials were polymerized at various intensities and exposure times such that the dose remained constant. This process was performed at four dose levels representing approximately 75% of the conversion range. The curing profiles (percent conversion versus applied radiant energy) depict a gradual decrease in conversion with decreasing energy followed by a rapid descent. Though there are differences in the maximum conversion attained between the materials, when conversion is represented as a fractional conversion relative to the maximum 24-h value, their 5-min and 24-h curing profiles appear quite similar. Additionally, very similar conversion was measured when the films were exposed using equivalent doses providing evidence for a reciprocal relationship between irradiance (power density) and exposure time. For the 24-h measurements, statistical equivalence (Fishers protected LSD at the 0.05 level) was noted for most of the combinations of exposure time and power density within a given dose. Generally, the exceptions occurred with the shortest exposure times. A reciprocal relationship between exposure time and power density adds significance to the study of conversion as a function of the total applied dose. This relationship establishes the curing profile as a universal correlation between exposure time and power density.

  3. Observed antiprotons and energy dependent confinement of cosmic rays: A conflict?

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.

    1985-01-01

    In the frame work of energy dependent confinement for cosmic rays, the energy spectrum inside the source is flatter than that observed. Antiproton observation suggests large amount of matter is being traversed by cosmic rays in some sources. As a result, secondary particles are produced in abundance. Their spectra was calculated and it is shown that the energy dependent confinement model is in conflict with some observations.

  4. Results on the energy dependence of cosmic-ray charge composition

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.

    1973-01-01

    Results of measurements by a balloon-borne ionization spectrometer of the energy dependence of high-energy cosmic-ray charge composition. The results presented are greatly improved over those obtained earlier by Ormes et al. (1971) by the use of a multidimensional charge analysis with more efficient background rejection, and a more accurate energy determination. Complex couplings between the charge, energy, and trajectory information were taken into account and are discussed. The spectra of individual elements up to oxygen and of groups of nuclei up through iron were measured up to almost 100 GeV per nucleon. The energy spectrum of the secondary nuclei, B + N, is found to be steeper than that of the primary nuclei, C + O, in agreement with Smith et al. (1973). The most dramatic finding is that the spectrum of the iron nuclei is flatter than that of the carbon and oxygen nuclei by 0.57 plus or minus 0.14 of a power.

  5. Observation of an Energy-Dependent Difference in Elliptic Flow between Particles and Antiparticles in Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Barnovska, Z.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bruna, E.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Cai, X. Z.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, P.; Chwastowski, J.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Ding, F.; Dion, A.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elnimr, M.; Engelage, J.; Eppley, G.; Eun, L.; Evdokimov, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Gliske, S.; Grebenyuk, O. G.; Grosnick, D.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hajkova, O.; Hamed, A.; Han, L.-X.; Harris, J. W.; Hays-Wehle, J. P.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jena, C.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Kikola, D. P.; Kiryluk, J.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lima, L. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Lu, Y.; Luo, X.; Luszczak, A.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Mioduszewski, S.; Mitrovski, M. K.; Mohammed, Y.; Mohanty, B.; Mondal, M. M.; Munhoz, M. G.; Mustafa, M. K.; Naglis, M.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nogach, L. V.; Novak, J.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Oliveira, R. A. N.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Powell, C. B.; Pruneau, C.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Ruan, L.; Rusnak, J.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, B.; Schmitz, N.; Schuster, T. R.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shao, M.; Sharma, B.; Sharma, M.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; deSouza, U. G.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Xue, L.; Yang, Y.; Yang, Y.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Zawisza, M.; Zbroszczyk, H.; Zhang, J. B.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.

    2013-04-01

    Elliptic flow (v2) values for identified particles at midrapidity in Au+Au collisions, measured by the STAR experiment in the beam energy scan at RHIC at sNN=7.7-62.4GeV, are presented. A beam-energy-dependent difference of the values of v2 between particles and corresponding antiparticles was observed. The difference increases with decreasing beam energy and is larger for baryons compared to mesons. This implies that, at lower energies, particles and antiparticles are not consistent with the universal number-of-constituent-quark scaling of v2 that was observed at sNN=200GeV.

  6. Energy dependence of cosmic ray composition above 10(15) GeV/nucleus

    NASA Technical Reports Server (NTRS)

    Linsley, J.; Fichtel, C. E.

    1985-01-01

    It is argued that above 10 to the 5th power GeV/nucleus, in the range where charge-resolved spectra have not yet been determined, the appropriate measures of equal-energy composition are 1nA and 1nA , the mean value and dispersion relative to the mean value and dispersion relative to the mean of 1nA, where A is the mass number. Experimental data which are sensitive to changes in 1nA with increasing energy are examined. It is found that, taken as a whole, they show no change (+ or 0.5) between 10 to the 5th power and 10 to the 6th power GeV, and a decrease of 1.5 + or - 0.5 between 10 to the 6th power and 10 to the 8th power GeV, with no further change + or - 0.5) above 10 to the 8th power GeV. Taken as a whole, the various indirect estimates of the absolute value of 1nA above 10 to the 5th power GeV/nucleus are also consistent with this pattern. For a wide range of astrophysically plausible composition models the value of the other measure, 1nA is insensitive to changes in 1nA . Because of this the existing data on 1nA can likewise easily be reconciled with this pattern.

  7. Bounds on an Energy-Dependent and Observer-Independent Speed of Light from Violations of Locality

    SciTech Connect

    Hossenfelder, Sabine

    2010-04-09

    We show that models with deformations of special relativity that have an energy-dependent speed of light have nonlocal effects. The requirement that the arising nonlocality is not in conflict with known particle physics allows us to derive strong bounds on deformations of special relativity and rule out a modification to first order in energy over the Planck mass.

  8. Bounds on an energy-dependent and observer-independent speed of light from violations of locality.

    PubMed

    Hossenfelder, Sabine

    2010-04-09

    We show that models with deformations of special relativity that have an energy-dependent speed of light have nonlocal effects. The requirement that the arising nonlocality is not in conflict with known particle physics allows us to derive strong bounds on deformations of special relativity and rule out a modification to first order in energy over the Planck mass.

  9. Reproducing the observed energy-dependent structure of Earth's electron radiation belts during storm recovery with an event-specific diffusion model

    DOE PAGES

    Ripoll, J. -F.; Reeves, Geoffrey D.; Cunningham, Gregory Scott; ...

    2016-06-11

    Here, we present dynamic simulations of energy-dependent losses in the radiation belt “slot region” and the formation of the two-belt structure for the quiet days after the 1 March storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally resolved whistler-mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L shells (2–6) including (a) the strong energy dependence to the radiation belt dynamics (b) an energy-dependent outer boundary to the inner zone that extends to higher L shells at lower energies andmore » (c) an “S-shaped” energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial transport and losses. We find that the characteristic energy-dependent structure of the radiation belts and slot region is dynamic and can be formed gradually in ~15 days, although the “S shape” can also be reproduced by assuming equilibrium conditions. The highest-energy electrons (E > 300 keV) of the inner region of the outer belt (L ~ 4–5) also constantly decay, demonstrating that hiss wave scattering affects the outer belt during times of extended plasmasphere. Through these simulations, we explain the full structure in energy and L shell of the belts and the slot formation by hiss scattering during storm recovery. We show the power and complexity of looking dynamically at the effects over all energies and L shells and the need for using data-driven and event-specific conditions.« less

  10. Reproducing the observed energy-dependent structure of Earth's electron radiation belts during storm recovery with an event-specific diffusion model

    NASA Astrophysics Data System (ADS)

    Ripoll, J.-F.; Reeves, G. D.; Cunningham, G. S.; Loridan, V.; Denton, M.; Santolík, O.; Kurth, W. S.; Kletzing, C. A.; Turner, D. L.; Henderson, M. G.; Ukhorskiy, A. Y.

    2016-06-01

    We present dynamic simulations of energy-dependent losses in the radiation belt "slot region" and the formation of the two-belt structure for the quiet days after the 1 March storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally resolved whistler-mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L shells (2-6) including (a) the strong energy dependence to the radiation belt dynamics (b) an energy-dependent outer boundary to the inner zone that extends to higher L shells at lower energies and (c) an "S-shaped" energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial transport and losses. We find that the characteristic energy-dependent structure of the radiation belts and slot region is dynamic and can be formed gradually in ~15 days, although the "S shape" can also be reproduced by assuming equilibrium conditions. The highest-energy electrons (E > 300 keV) of the inner region of the outer belt (L ~ 4-5) also constantly decay, demonstrating that hiss wave scattering affects the outer belt during times of extended plasmasphere. Through these simulations, we explain the full structure in energy and L shell of the belts and the slot formation by hiss scattering during storm recovery. We show the power and complexity of looking dynamically at the effects over all energies and L shells and the need for using data-driven and event-specific conditions.

  11. Reproducing the observed energy-dependent structure of Earth's electron radiation belts during storm recovery with an event-specific diffusion model

    SciTech Connect

    Ripoll, J. -F.; Reeves, Geoffrey D.; Cunningham, Gregory Scott; Loridan, V.; Denton, M.; Santolik, O.; Kurth, W. S.; Kletzing, C. A.; Turner, D. L.; Henderson, M. G.; Ukhorskiy, A. Y.

    2016-06-11

    Here, we present dynamic simulations of energy-dependent losses in the radiation belt “slot region” and the formation of the two-belt structure for the quiet days after the 1 March storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally resolved whistler-mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L shells (2–6) including (a) the strong energy dependence to the radiation belt dynamics (b) an energy-dependent outer boundary to the inner zone that extends to higher L shells at lower energies and (c) an “S-shaped” energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial transport and losses. We find that the characteristic energy-dependent structure of the radiation belts and slot region is dynamic and can be formed gradually in ~15 days, although the “S shape” can also be reproduced by assuming equilibrium conditions. The highest-energy electrons (E > 300 keV) of the inner region of the outer belt (L ~ 4–5) also constantly decay, demonstrating that hiss wave scattering affects the outer belt during times of extended plasmasphere. Through these simulations, we explain the full structure in energy and L shell of the belts and the slot formation by hiss scattering during storm recovery. We show the power and complexity of looking dynamically at the effects over all energies and L shells and the need for using data-driven and event-specific conditions.

  12. Reproducing the observed energy-dependent structure of Earth's electron radiation belts during storm recovery with an event-specific diffusion model

    SciTech Connect

    Ripoll, J. -F.; Reeves, Geoffrey D.; Cunningham, Gregory Scott; Loridan, V.; Denton, M.; Santolik, O.; Kurth, W. S.; Kletzing, C. A.; Turner, D. L.; Henderson, M. G.; Ukhorskiy, A. Y.

    2016-06-11

    Here, we present dynamic simulations of energy-dependent losses in the radiation belt “slot region” and the formation of the two-belt structure for the quiet days after the 1 March storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally resolved whistler-mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L shells (2–6) including (a) the strong energy dependence to the radiation belt dynamics (b) an energy-dependent outer boundary to the inner zone that extends to higher L shells at lower energies and (c) an “S-shaped” energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial transport and losses. We find that the characteristic energy-dependent structure of the radiation belts and slot region is dynamic and can be formed gradually in ~15 days, although the “S shape” can also be reproduced by assuming equilibrium conditions. The highest-energy electrons (E > 300 keV) of the inner region of the outer belt (L ~ 4–5) also constantly decay, demonstrating that hiss wave scattering affects the outer belt during times of extended plasmasphere. Through these simulations, we explain the full structure in energy and L shell of the belts and the slot formation by hiss scattering during storm recovery. We show the power and complexity of looking dynamically at the effects over all energies and L shells and the need for using data-driven and event-specific conditions.

  13. Discharge products of ionic liquid-based Li-O2 batteries observed by energy dependent soft x-ray transmission microscopy

    NASA Astrophysics Data System (ADS)

    Olivares-Marín, Mara; Sorrentino, Andrea; Pereiro, Eva; Tonti, Dino

    2017-08-01

    Products deposited on an O2-cathode discharged in ionic liquid electrolytes are analyzed by transmission soft X-ray microscopy (TXM) and compared to ether-based electrolytes, showing differences in morphology and chemical compositions. With both solvents we observe Li2O2 and LiO2 primary products in similar proportions. However, while as previously observed in tetraglyme an important reactivity takes place producing significant amount of carbonates, in ionic liquid-based electrolytes the formation of carbonates was almost negligible, confirming higher stability. Only when sample is intentionally air exposed before analysis, significant amounts of carbonates came up. However, LiOH crystallites are clearly recognized with the ionic liquid electrolyte. The abundance of these crystallites depends on both the LiTFSI concentration and the storage time of discharged electrodes, suggesting that they result from the reaction of water trace with primary discharge products.

  14. A generic π* shape resonance observed in energy-dependent photoelectron angular distributions from two-colour, resonant multiphoton ionization of difluorobenzene isomers.

    PubMed

    Staniforth, Michael; Daly, Steven; Reid, Katharine L; Powis, Ivan

    2013-08-14

    We present new evidence for the existence of a near threshold π* shape resonance as a common feature in the photoionization of each isomer of difluorobenzene. Experimentally, this is revealed by significant changes in the anisotropy of the photoelectron angular distributions (PADs) following the ionization of the optically aligned S1 state of these molecules at varying photon energies. Continuum multiple scattering Xα calculations reproduce this behaviour well, and allow the visualisation of the continuum shape resonances. The resonances are unusually narrow in energy (<1 eV), but nevertheless appear to extend right down to the ionization thresholds--exactly the low energy range typically accessed in laser-based resonance enhanced multiphoton ionization (REMPI) schemes. The anticipation of such pronounced energy dependence in the PADs and cross-sections sought for other molecules, and an ability to accurately predict such features, should be important for the reliable application and interpretation of experiments involving REMPI probing of those molecules.

  15. A Search for Spectral Hysteresis and Energy-dependent Time Lags from X-Ray and TeV Gamma-Ray Observations of Mrk 421

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Cardenzana, J. V.; Cerruti, M.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Eisch, J. D.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Flinders, A.; Fortson, L.; Furniss, A.; Griffin, S.; Håkansson, N.; Hanna, D.; Hervet, O.; Holder, J.; Humensky, T. B.; Hütten, M.; Kaaret, P.; Kar, P.; Kertzman, M.; Kieda, D.; Krause, M.; Kumar, S.; Lang, M. J.; Maier, G.; McArthur, S.; McCann, A.; Meagher, K.; Moriarty, P.; Mukherjee, R.; Nieto, D.; O'Brien, S.; Ong, R. A.; Otte, A. N.; Park, N.; Pelassa, V.; Pohl, M.; Popkow, A.; Pueschel, E.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Wakely, S. P.; Weinstein, A.; Wilhelm, A.; Williams, D. A.; VERITAS Collaboration; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Nöthe, M.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.; MAGIC Collaboration; Hovatta, T.; de la Calle Perez, I.; Smith, P. S.; Racero, E.; Baloković, M.

    2017-01-01

    Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three “target-of-opportunity” observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering the X-ray and optical/ultraviolet bands) and VERITAS (covering the TeV gamma-ray band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi-Large Area Telescope) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time delays, which could provide insight into the emission mechanisms and the source properties (e.g., the radius of the emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at ≳4 × 10-4 Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and 1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic length scale) compared to the previously reported values at lower frequencies.

  16. Energy dependence of hadronic activity

    NASA Astrophysics Data System (ADS)

    Gabriel, T. A.; Groom, D. E.; Job, P. K.; Mokhov, N. V.; Stevenson, G. R.

    1994-01-01

    Two features of high-energy hadronic cascades have long been known to shielding specialists: a) in a high-energy hadronic cascade in a given material (incident E ≳ 10 GeV), the relative abundance and spectrum of each hadronic species responsible for most of the energy deposition is independent of the energy or species of the incident hadron, and b) because π0 production bleeds off more and more energy into the electromagnetic sector as the energy of the incident hadron increases, the absolute level of this low-energy hadronic activity ( E ≲ 1 GeV) rises less rapidly than the incident energy, and in fact rises very nearly as a power of the incident energy. Both features are of great importance in hadron calorimetry, where it is the "universal spectrum" which makes possible the definition of an intrinsic {e}/{h}, and the increasing fraction of the energy going into π0's which leads to the energy dependence of {e}/{π}. We present evidence for the "universal spectrum," and use an induction argument and simulation results to demonstrate that the low-energy activity ss Em, with 0.80 ≲ m ≲ 0.85. The hadronic activity produced by incident pions is 15-20% less than that initiated by protons.

  17. Terrestrial planet composition: simulation and observation

    NASA Astrophysics Data System (ADS)

    Carter-Bond, J.; Bolmont, E.; Raymond, S.

    2014-03-01

    As direct detection and examination of terrestrial exoplanets is not yet possible, we must persue alternative methods to constarin the types of planets likely to be found within extrasolar planetary systems and thus guide future missions. Such studies cannot be undertaken by transit surveys. Instead, secondary sources must be utilized. In addition to simultions of terrestrial planet formation, based on spectroscopic observations of known stars, observations of polluted white dwarfs (e.g. Jura, M., & Xu, S. (2012); Gaensicke et al., (2013)) and simulations of the pollution of migrating gas giants may be utilized to determine the composition of solid bodies withn extrasolar planetary systems. Observations of polluted white dwarfs (e.g. Jura, M., & Xu, S. (2012); Gaensicke et al., (2013)) will be compared to simulations of the bulk composition of terrestrial planets (Carter-Bond et al. (2012)). Combining dynamical simulations of Carter-Bond et al. (2012) and Raymond et al. (2006) with spectrally-derived abundances for 15 planet-forming elements (H, C, N, O, Na, Mg, Al, Si, P, S, Ca, Ti, Cr, Fe and Ni), bulk compositions for simulated terrestrial planets have been obtained. This is the first time that compositional simulations can be compared with observations (albeit of a proxy for solid composition) and will be crucial for placing constraints on both the true diversity of planetary compositions expected to exist in extrasolar planetary systems and the simulations currently utilized. Simulations of the change in composition resulting from pollution of a gas giant as it migrates through a planetary system will also be presented. These simulations represent an as-yet untested approach to determining the solid composition within a planetary system. By simulating the amount and composition of material accreted by the gas giant (following Carter-Bond et al. (2012)), we will be able to determine what effect, if any, the accretion of solid material during migration has on

  18. Tropospheric Composition Change observed from Space (Invited)

    NASA Astrophysics Data System (ADS)

    Richter, A.; Hilboll, A.; Leitao, J.; Vrekoussis, M.; Wittrock, F.; Burrows, J. P.

    2010-12-01

    The composition of the troposphere is largely influenced by surface emissions of both natural and anthropogenic origins. These emissions change over time as result of human activities and natural variability, leading to varying atmospheric levels of primary and secondary pollutants. Satellite observations of sun light scattered back by the surface and the atmosphere can be used to retrieve information on atmospheric trace gases by application of optical absorption spectroscopy. In the UV and visible part of the spectrum, these measurements have good sensitivity to the lower troposphere providing information on relevant species such as O3, NO2, SO2, HCHO or glyoxal. Here, we report on recent results on tropospheric composition changes obtained from the GOME, SCIAMACHY and GOME-2 instruments which have a combined data record of nearly 15 years. The focus is on NO2 which shows an increasing trend over Asia and many large cities in countries with growing economies. At the same time, significant reductions are observed over the US and Europe, probably as result of changes in environmental legislation. SO2 signals have been decreasing over the US since 1996 while a strong upward trend was evident over China until recently when desulphurisation of power plant emissions came into effect. There also is evidence for increases in VOC levels over China which could be either of anthropogenic origin or from biogenic emissions.

  19. Solar cosmic ray composition above 10 MeV/nucleon and its energy dependence in the 4 August 1972 event. [including proton, helium, and Fe-group nuclei fluxes

    NASA Technical Reports Server (NTRS)

    Bertsch, D. L.; Biswas, S.; Reames, D. V.

    1974-01-01

    Observations of the proton, helium (C,N,O) and Fe-group nuclei fluxes made during the large 4 August 1972 solar particle event are presented. The results show a small, but significant variation of the composition of multicharged nuclei as a function of energy in the energy region above 10 MeV/nucleon. In particular, the He/(C,N,O) abundance ratio varies by a factor approximately 2 between 10 and 50 MeV/nucleon, and the Fe-group/(C,N,O) ratio suggests a similar variation. Abundance ratios from the 4 August 1972 event are compared as a function of energy with ratios measured in other solar events. At energies approximately greater than 50 MeV/nucleon, the He/(C,N,O) abundance ratio for August 1972 is consistent with all earlier measurements made above that energy.

  20. Energy dependent 4-dimensional multiple scattering distributions

    NASA Astrophysics Data System (ADS)

    Tschalär, C.

    1984-12-01

    A complete analytic solution in Fourier space is presented of the four dimensional small angle, multiple scattering distribution MSD in angle and space, produced by an energy dependent single scattering cross section from an initial pencil beam of heavy particles. Independently, simple integrals are derived for the central moments of the energy dependent MSD in the continuous-slowing-down approximation. The distributions of the projections t and x of the scattering angle and displacement into a plane through the axis of propagation are evaluated numerically for a truncated Rutherford scattering cross section using a fast Fourier transform. The resulting MSDs for a wide range of particles, initial and final momenta, and scattering materials are found to be approximately represented by one-dimensional set of standard distributions symmetrized by a linear transformation in t- x-space.

  1. Applying supersymmetry to energy dependent potentials

    SciTech Connect

    Yekken, R.; Lassaut, M.; Lombard, R.J.

    2013-11-15

    We investigate the supersymmetry properties of energy dependent potentials in the D=1 dimensional space. We show the main aspects of supersymmetry to be preserved, namely the factorization of the Hamiltonian, the connections between eigenvalues and wave functions of the partner Hamiltonians. Two methods are proposed. The first one requires the extension of the usual rules via the concept of local equivalent potential. In this case, the superpotential becomes depending on the state. The second method, applicable when the potential depends linearly on the energy, is similar to what has been already achieved by means of the Darboux transform. -- Highlights: •Supersymmetry extended to energy dependent potentials. •Generalization of the concept of superpotential. •An alternative method used for linear E-dependence leads to the same results as Darboux transform.

  2. Composition of Ultra High Energy Cosmic Rays Observed by Telescope Array in Hybrid Mode

    NASA Astrophysics Data System (ADS)

    Hanlon, William; Telescope Array Collaboration

    2016-03-01

    The energy spectrum of cosmic rays exhibits several important features such as the knee (E ~10 15 . 5 eV), ankle (E ~10 18 . 7 eV), and high energy suppression (E ~10 19 . 8 eV). Cosmic ray chemical composition is the key to understanding their galactic and extragalactic sources as well as the origin of particle production and acceleration mechanisms. Energy dependent chemical composition is a fundamental input for models of cosmic ray sources and interstellar transport which may lead to competing explanations of the observed spectral features. Understanding composition will therefore allow one to distinguish between the different scenarios of cosmic ray origin, a decades old problem in astrophysics. In this talk we will describe measurements of ultra high energy cosmic ray composition performed by Telescope Array (TA) using Xmax measured in extended air showers (EAS) simultaneously observed by the TA surface array and TA fluorescence stations (called hybrid mode). Showers with primary energies above 1018 eV will be considered. We will also discuss improved methods of comparing the measured composition to EAS models.

  3. Composite Overwrap Fragmentation Observations, Concerns, and Recommendations

    NASA Technical Reports Server (NTRS)

    Bangham, Mike; Hovater, Mary

    2017-01-01

    A series of test activities has raised some concerns about the generation of orbital debris caused by failures of composite overwrapped pressure vessels (COPVs). These tests have indicated that a large number of composite fragments can be produced by either pressure burst failures or by high-speed impacts. A review of prior high-speed tests with COPV indicates that other tests have produced large numbers of composite fragments. As was the case with the test referenced here, the tests tended to produce a large number of small composite fragments with relatively low velocities induced by the impact and or gas expansion.

  4. Energy dependence of scatter components in multispectral PET imaging.

    PubMed

    Bentourkia, M; Msaki, P; Cadorette, J; Lecomte, R

    1995-01-01

    High resolution images in PET based on small individual detectors are obtained at the cost of low sensitivity and increased detector scatter. These limitations can be partially overcome by enlarging discrimination windows to include more low-energy events and by developing more efficient energy-dependent methods to correct for scatter radiation from all sources. The feasibility of multispectral scatter correction was assessed by decomposing response functions acquired in multiple energy windows into four basic components: object, collimator and detector scatter, and trues. The shape and intensity of these components are different and energy-dependent. They are shown to contribute to image formation in three ways: useful (true), potentially useful (detector scatter), and undesirable (object and collimator scatter) information to the image over the entire energy range. With the Sherbrooke animal PET system, restoration of detector scatter in every energy window would allow nearly 90% of all detected events to participate in image formation. These observations suggest that multispectral acquisition is a promising solution for increasing sensitivity in high resolution PET. This can be achieved without loss of image quality if energy-dependent methods are made available to preserve useful events as potentially useful events are restored and undesirable events removed.

  5. Energy dependence corrections to MOSFET dosimetric sensitivity.

    PubMed

    Cheung, T; Butson, M J; Yu, P K N

    2009-03-01

    Metal Oxide Semiconductor Field Effect Transistors (MOSFET's) are dosimeters which are now frequently utilized in radiotherapy treatment applications. An improved MOSFET, clinical semiconductor dosimetry system (CSDS) which utilizes improved packaging for the MOSFET device has been studied for energy dependence of sensitivity to x-ray radiation measurement. Energy dependence from 50 kVp to 10 MV x-rays has been studied and found to vary by up to a factor of 3.2 with 75 kVp producing the highest sensitivity response. The detectors average life span in high sensitivity mode is energy related and ranges from approximately 100 Gy for 75 kVp x-rays to approximately 300 Gy at 6 MV x-ray energy. The MOSFET detector has also been studied for sensitivity variations with integrated dose history. It was found to become less sensitive to radiation with age and the magnitude of this effect is dependant on radiation energy with lower energies producing a larger sensitivity reduction with integrated dose. The reduction in sensitivity is however approximated reproducibly by a slightly non linear, second order polynomial function allowing corrections to be made to readings to account for this effect to provide more accurate dose assessments both in phantom and in-vivo.

  6. Energy Dependence of the Hounsfield Number

    PubMed Central

    Brooks, Rodney A.

    1977-01-01

    A standard definition is proposed for the Hounsfield number. Any CT number can be converted to the Hounsfield scale after performing a simple calibration using air and water. The energy dependence of the Hounsfield number H is given by the expression H = (Hc + Hp Q)/(1 + Q), where Hc and Hp are the Compton and photoelectric coefficients of the material being measured, expressed in Hounsfield units, and Q is the “quality factor” of the scanner. Q can be measured by performing a scan of a single calibrating material, such as a KI solution. By applying this analysis to dual-energy scans, the Compton and photoelectric coefficients of an unknown substance may easily be obtained. This can lead to a limited degree of chemical identification.

  7. Results on the energy dependence of cosmic ray charge composition

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.; Ormes, J. F.

    1973-01-01

    Measurements using a balloon-borne ionization spectrometer on the differential energy spectra of the heavy nuclei of the galactic cosmic radiation are reported. The spectra of individual elements up to oxygen and groups of nuclei up through iron were measured up to almost 100 GeV/nucleon. The energy spectrum of the secondary nuclei, B+N, is steeper than that of the primary nuclei, C+O, by gamma = 0.21 + or - .09 in agreement with other authors. The spectral shapes found are reasonably well represented by single power laws between 2 and 60 GeV/nucleon. Data are consistent with the decrease in the secondary to primary ratio found by others above 20 GeV/nucleon, but it shows no evidence for any sudden change in this ratio within counting statistics. The most dramatic finding is that the spectrum of the iron nuclei is flatter than that of the carbon and oxygen nuclei by 0.57 + or - 0.14 of a power. The experimental techniques for charge and energy determination are presented and corrections due to nuclear disintegration and losses of energy out the bottom of the spectrometer are discussed.

  8. Energy-dependent collective excitations in Os and Pt isotopes

    NASA Astrophysics Data System (ADS)

    Budaca, A. I.; Budaca, R.

    2017-08-01

    An exactly solvable model is constructed by considering an energy-dependent harmonic oscillator potential in the β part of the Bohr Hamiltonian separated adiabatically from the γ-angular degrees of freedom. The energy dependence is linear and introduced in the string constant. The fundamental implications of the energy dependence in quantum theory are thoroughly discussed in connection with the slope parameter. The numerical applications of the model are found to match the collective features for extended chains of even-even Os and Pt isotopes, which exhibit a smooth evolution in the slope of the energy dependence.

  9. Constraining photon mass by energy-dependent gravitational light bending

    NASA Astrophysics Data System (ADS)

    Qian, Lei

    2012-03-01

    In the standard model of particle physics, photons are massless particles with a particular dispersion relation. Tests of this claim at different scales are both interesting and important. Experiments in territory labs and several exterritorial tests have put some upper limits on photon mass, e.g., torsion balance experiment in the lab shows that photon mass should be smaller than 1.2 × 10-51g. In this work, this claim is tested at a cosmological scale by looking at strong gravitational lensing data available and an upper limit of 8.71 × 10-39g on photon mass is given. Observations of energy-dependent gravitational lensing with not yet available higher accuracy astrometry instruments may constrain photon mass better.

  10. Energy dependence of fusion cross sections

    SciTech Connect

    Bang, J.M.; Ferreira, L.S.; Maglione, E.; Hansteen, J.M.

    1996-01-01

    Observed enhancements of fusion cross sections at low energies are explained as caused by an underestimate of beam energy due to an overestimate of the stopping energy loss. {copyright} {ital 1996 The American Physical Society.}

  11. Nonlinear thermoelectric response due to energy-dependent transport properties of a quantum dot

    NASA Astrophysics Data System (ADS)

    Svilans, Artis; Burke, Adam M.; Svensson, Sofia Fahlvik; Leijnse, Martin; Linke, Heiner

    2016-08-01

    Quantum dots are useful model systems for studying quantum thermoelectric behavior because of their highly energy-dependent electron transport properties, which are tunable by electrostatic gating. As a result of this strong energy dependence, the thermoelectric response of quantum dots is expected to be nonlinear with respect to an applied thermal bias. However, until now this effect has been challenging to observe because, first, it is experimentally difficult to apply a sufficiently large thermal bias at the nanoscale and, second, it is difficult to distinguish thermal bias effects from purely temperature-dependent effects due to overall heating of a device. Here we take advantage of a novel thermal biasing technique and demonstrate a nonlinear thermoelectric response in a quantum dot which is defined in a heterostructured semiconductor nanowire. We also show that a theoretical model based on the Master equations fully explains the observed nonlinear thermoelectric response given the energy-dependent transport properties of the quantum dot.

  12. Energy-dependent harmonic oscillator in noncommutative space

    NASA Astrophysics Data System (ADS)

    Benchikha, A.; Merad, M.; Birkandan, T.

    2017-06-01

    In noncommutative quantum mechanics, the energy-dependent harmonic oscillator problem is studied by solving the Schrödinger equation in polar coordinates. The presence of the noncommutativity in space coordinates and the dependence on energy for the potential yield energy-dependent mass and potential. The correction of normalization condition is calculated and the parameter-dependences of the results are studied graphically.

  13. The energy dependence of cosmic ray propagation at low energy

    NASA Technical Reports Server (NTRS)

    Garcia-Munoz, M.; Guzik, T. G.; Margolis, S. H.; Simpson, J. A.; Wefel, J. P.

    1982-01-01

    The interstellar propagation of cosmic rays is investigated using current 'best estimates' for the partial and total cross sections and their energy dependence and the current model of solar modulation. The experimental boron to carbon ratio is reproduced if the mean of the path length distribution decreases with decreasing energy below approximately 1 GeV/nucleon. This energy dependence is compared to shock acceleration models and dynamical halo models using different galactic wind velocities.

  14. Angular and Energy Dependence of Proton Upset in Optocouplers

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.; Miyahira, T.; Swift, G. M.; Guertin, S.; Edmonds, L. D.

    2000-01-01

    Proton upset effects in optocouplers were reported by LaBel, et al. that showed an unexpected increase in cross section for incident angles above 80 degrees. Although it appeared that the angular dependence was related to direct ionization from protons, the angular dependence was weaker than expected from basic geometrical arguments using a shallow charge collection depth. Later work showed that the angular dependence of proton upset observed in the earlier studies at a single energy could be explained by considering the distribution of proton recoil energies along with the assumption of a deeper charge collection depth, which was consistent with upset tests from heavy ions. However, an experimental test of the underlying assumptions in the latter work has yet to be done. Protons in space not only arrive over a wide range of incident angles, but also involve a distribution of proton energies. It is necessary to understand both the angular dependence and the dependence of proton upset on energy in order to determine how optocouplers will respond in space. If the angular dependence only occurs for extreme angles of incidence, it will have little impact on the overall cross section because of the narrow acceptance angle. The present work examines mechanisms for proton upset in optocouplers in more detail, investigating the energy dependence and the effects of different load conditions. A model for proton upset is developed, along with a laboratory screening method to determine whether direct ionization is significant for specific device types.

  15. Telescope Array UHECR composition measurement via stereoscopic fluorescence observation

    NASA Astrophysics Data System (ADS)

    Stroman, Thomas; Bergman, Douglas; Telescope Array Collaboration

    2016-03-01

    When entering Earth's atmosphere at ultra-high energies, cosmic rays (UHECRs) produce extensive air showers whose longitudinal development is influenced by the incident primary particle's mass. Each longitudinal shower profile reaches its maximum particle count at an atmospheric slant depth Xmax, and the distributions of observed Xmax values can be compared to those predicted by detailed simulations of the air-shower physics and the detector; accurately simulated compositions that most closely resemble that found in nature will produce the best agreement between predicted and observed Xmax distributions. This is the basis of composition measurement at the Telescope Array experiment, the largest and most sensitive UHECR detector in the northern hemisphere. At the perimeter of a large surface-detector array are three fluorescence telescope stations, whose overlapping apertures enable high-precision reconstruction of Xmax from stereoscopic observation of air-shower longitudinal profiles. We present the distribution of Xmax observed during eight years of operation, and from comparisons with several simulated combinations of composition and high-energy hadronic physics, we show that a low primary mass is favored at E >10 18 . 2 eV.

  16. Separable representation of energy-dependent optical potentials

    NASA Astrophysics Data System (ADS)

    Hlophe, L.; Elster, Ch.

    2016-03-01

    Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g., (d ,p ) reactions, should be used. Those (d ,p ) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy dependent. Potential matrix elements as well as transition matrix elements calculated with them must fulfill the reciprocity theorem. The purpose of this paper is to introduce a separable, energy-dependent representation of complex, energy-dependent optical potentials that fulfill reciprocity exactly. Methods: Momentum space Lippmann-Schwinger integral equations are solved with standard techniques to obtain the form factors for the separable representation. Results: Starting from a separable, energy-independent representation of global optical potentials based on a generalization of the Ernst-Shakin-Thaler (EST) scheme, a further generalization is needed to take into account the energy dependence. Applications to n +48Ca ,n +208Pb , and p +208Pb are investigated for energies from 0 to 50 MeV with special emphasis on fulfilling reciprocity. Conclusions: We find that the energy-dependent separable representation of complex, energy-dependent phenomenological optical potentials fulfills reciprocity exactly. In addition, taking into account the explicit energy dependence slightly improves the description of the S matrix elements.

  17. Compositional Ground Truth of Diviner Lunar Radiometer Observations

    NASA Technical Reports Server (NTRS)

    Greenhagen, B. T.; Thomas, I. R.; Bowles, N. E.; Allen, C. C.; Donaldson Hanna, K. L.; Foote, E. J.; Paige, D. A.

    2012-01-01

    The Moon affords us a unique opportunity to "ground truth" thermal infrared (i.e. 3 to 25 micron) observations of an airless body. The Moon is the most accessable member of the most abundant class of solar system bodies, which includes Mercury, astroids, and icy satellites. The Apollo samples returned from the Moon are the only extraterrestrial samples with known spatial context. And the Diviner Lunar Radiometer (Diviner) is the first instrument to globally map the spectral thermal emission of an airless body. Here we compare Diviner observations of Apollo sites to compositional and spectral measurements of Apollo lunar soil samples in simulated lunar environment (SLE).

  18. Regulation by proteolysis: energy-dependent proteases and their targets.

    PubMed Central

    Gottesman, S; Maurizi, M R

    1992-01-01

    A number of critical regulatory proteins in both prokaryotic and eukaryotic cells are subject to rapid, energy-dependent proteolysis. Rapid degradation combined with control over biosynthesis provides a mechanism by which the availability of a protein can be limited both temporally and spatially. Highly unstable regulatory proteins are involved in numerous biological functions, particularly at the commitment steps in developmental pathways and in emergency responses. The proteases involved in energy-dependent proteolysis are large proteins with the ability to use ATP to scan for appropriate targets and degrade complete proteins in a processive manner. These cytoplasmic proteases are also able to degrade many abnormal proteins in the cell. PMID:1480111

  19. Titan's Atmospheric Composition from Observations by the Cassini Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Flasar, F. M.; Kunde, V. G.; Conrath, B. J.; Coustenis, A.; Jennings, D. J.; Nixon, C. A.; Brasunas, J.; Achterberg, R. K.

    2006-01-01

    The Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft has been making observations during the fly-bys of Titan since the Saturn-Orbit-Insertion in July 2004. The observations provide infrared them1 emission spectra of Titan s atmosphere in three spectral channels covering the 10/cm to 1400/cm spectral region, with variable spectral resolutions of 0.53/cm and 2.8/cm. The uniquely observed spectra exhibit rotational and vibrational-rotational spectral lines of the molecular constituents of Titan s atmosphere that may be analyzed to retrieve information about the composition, thermal structure, and physical and dynamical processes in the remotely sensed atmosphere. We present an analysis of Titan's infrared spectra observed during July 2004 (TO), December 2004 (Tb) and February 2005 (T3), for retrieval of the stratospheric thermal structure, distribution of the hydrocarbons, nitriles, and oxygen bearing constituents, such as C2H2, C2H4, C2H6, C3H8, HCN, HC3N, CO, and CO2 . Preliminary results on the distribution and opacity of haze in Titan s atmosphere are discussed.

  20. Titan's Atmospheric Composition from Observations by the Cassini Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Flasar, F. M.; Kunde, V. G.; Conrath, B. J.; Coustenis, A.; Jennings, D. J.; Nixon, C. A.; Brasunas, J.; Achterberg, R. K.

    2006-01-01

    The Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft has been making observations during the fly-bys of Titan since the Saturn-Orbit-Insertion in July 2004. The observations provide infrared them1 emission spectra of Titan s atmosphere in three spectral channels covering the 10/cm to 1400/cm spectral region, with variable spectral resolutions of 0.53/cm and 2.8/cm. The uniquely observed spectra exhibit rotational and vibrational-rotational spectral lines of the molecular constituents of Titan s atmosphere that may be analyzed to retrieve information about the composition, thermal structure, and physical and dynamical processes in the remotely sensed atmosphere. We present an analysis of Titan's infrared spectra observed during July 2004 (TO), December 2004 (Tb) and February 2005 (T3), for retrieval of the stratospheric thermal structure, distribution of the hydrocarbons, nitriles, and oxygen bearing constituents, such as C2H2, C2H4, C2H6, C3H8, HCN, HC3N, CO, and CO2 . Preliminary results on the distribution and opacity of haze in Titan s atmosphere are discussed.

  1. Reproducing the energy-dependent structure of Earth's electron radiation belts during quiet times

    NASA Astrophysics Data System (ADS)

    Ripoll, J. F.; Reeves, G. D.; Santolik, O.; Cunningham, G.; Loridan, V.; Denton, M.; Kurth, W. S.; Turner, D. L.; Kletzing, C.; Henderson, M. G.; Ukhorskiy, S.

    2016-12-01

    We present and discuss dynamic simulations of energy-dependent losses in the radiation belt "slot region" and the formation of the two-belt structure for the quiet days after the 1 March storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally resolved whistler-mode hiss wave observations from the Van Allen Probes satellites. We will describe how the latter is generated from massively parallel computations of pitch angle diffusion at a scale never achieved in the past. The simulations reproduce Van Allen Probes observations for all energies and L shells (2-6) including (a) the strong energy dependence to the radiation belt dynamics (b) an energy-dependent outer boundary to the inner zone that extends to higher L shells at lower energies and (c) an "S-shaped" energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial transport and losses. We find that the characteristic energy-dependent structure of the radiation belts and slot region is dynamic and can be formed gradually in 15 days, although the "S shape" can also be reproduced by assuming equilibrium conditions. But we will show that equilibrium states are usually not reachable as it requires very long times for most energy electrons and L-shells. The highest-energy electrons (E>300 keV) of the inner region of the outer belt (L 4-5) also constantly decay, demonstrating that hiss wave scattering affects the outer belt during times of extended plasmasphere. Through these simulations, we explain the full structure in energy and L shell of the belts and the slot formation by hiss scattering during storm recovery. We show the power and complexity of looking dynamically at the effects over all energies and L shells and the need for using data-driven and event-specific conditions.

  2. Saturn's Atmospheric Composition from Observations by the Cassini/Composite Infrared Spectrometer

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Young, M.; LeClair, A. C.; Achterberg, R. K.; Flasar, F. M.; Kunde, V. G.

    2010-01-01

    Thermal emission infrared observation of Saturn s atmosphere are being made by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft since its insertion in Saturn s orbit on July 2nd, 2004. The measurements made in both limb and nadir modes of observations consist of infrared spectra in the 10-1400/cm region with a variable spectral resolution of 0.53/cm and 2.8/cm, and exhibit rotational and vibrational spectral features that may be analyzed for retrieval of the thermal structure and constituent distribution of Saturn s atmosphere. In this paper, we present a comprehensive analysis of the CIRS infrared observed spectra for retrieval of Saturn s atmospheric composition focusing on the distributions of some selected hydrocarbons, phosphine, ammonia, and possible determination of the isotopic ratios of some species with sufficiently strong isolated spectral features. A comparison of the retrieved constituent distributions with the available data in the literature will be made.

  3. An Integrated Global Atmospheric Composition Observing System: Progress and Impediments

    NASA Astrophysics Data System (ADS)

    Keating, T. J.

    2016-12-01

    In 2003-2005, a vision of an integrated global observing system for atmospheric composition and air quality emerged through several international forums (IGACO, 2004; GEO, 2005). In the decade since, the potential benefits of such a system for improving our understanding and mitigation of health and climate impacts of air pollution have become clearer and the needs more urgent. Some progress has been made towards the goal: technology has developed, capabilities have been demonstrated, and lessons have been learned. In Europe, the Copernicus Atmospheric Monitoring Service has blazed a trail for other regions to follow. Powerful new components of the emerging global system (e.g. a constellation of geostationary instruments) are expected to come on-line in the near term. But there are important gaps in the emerging system that are likely to keep us from achieving for some time the full benefits that were envisioned more than a decade ago. This presentation will explore the components and benefits of an integrated global observing system for atmospheric composition and air quality, some of the gaps and obstacles that exist in our current capabilities and institutions, and efforts that may be needed to achieve the envisioned system.

  4. Satellite Observations for Detecting and Tracking Changes in Atmospheric Composition

    NASA Technical Reports Server (NTRS)

    Neil, Doreen O.; Kondragunbta, Shobha; Osterman, Gregory; Pickering, Kenneth; Pinder, Robert W.; Prados, Ana I.; Szykman, James

    2009-01-01

    The satellite observations provide constraints on detailed atmospheric modeling, including emissions inventories, indications of transport, harmonized data over vast areas suitable for trends analysis, and a link between spatial scales ranging from local to global, and temporal scales from diurnal to interannual. 1 The National Oceanic and Atmospheric Administration's (NOAA) long-term commitments help provide these observations in cooperation with international meteorological organizations. NASA s long-term commitments will advance scientifically important observations as part of its Earth Science Program, and will assist the transition of the science measurements to applied analyses through the Applied Science Program. Both NASA and NOAA have begun to provide near realtime data and tools to visualize and analyze satellite data,2 while maintaining data quality, validation, and standards. Consequently, decision-makers can expect satellite data services to support air quality decision making now and in the future. The international scientific community's Integrated Global Atmosphere Chemistry Observation System Report3 outlined a plan for ground-based, airborne and satellite measurements and models to integrate the observations into a four-dimensional representation of the atmosphere (space and time) to support assessment and policy information needs. This plan is being carried out under the Global Earth Observation System of Systems (GEOSS). Demonstrations of such an integrated capability4 provide new understanding of the changing atmosphere and link policy decisions to benefits for society. In this article, we highlight the use of satellite data to constrain biomass burning emissions, to assess oxides of nitrogen (NO(x)) emission reductions, and to contribute to state implementation plans, as examples of the use of satellite observations for detecting and tracking changes in atmospheric composition.

  5. Satellite Observations for Detecting and Tracking Changes in Atmospheric Composition

    NASA Technical Reports Server (NTRS)

    Neil, Doreen O.; Kondragunbta, Shobha; Osterman, Gregory; Pickering, Kenneth; Pinder, Robert W.; Prados, Ana I.; Szykman, James

    2009-01-01

    The satellite observations provide constraints on detailed atmospheric modeling, including emissions inventories, indications of transport, harmonized data over vast areas suitable for trends analysis, and a link between spatial scales ranging from local to global, and temporal scales from diurnal to interannual. 1 The National Oceanic and Atmospheric Administration's (NOAA) long-term commitments help provide these observations in cooperation with international meteorological organizations. NASA s long-term commitments will advance scientifically important observations as part of its Earth Science Program, and will assist the transition of the science measurements to applied analyses through the Applied Science Program. Both NASA and NOAA have begun to provide near realtime data and tools to visualize and analyze satellite data,2 while maintaining data quality, validation, and standards. Consequently, decision-makers can expect satellite data services to support air quality decision making now and in the future. The international scientific community's Integrated Global Atmosphere Chemistry Observation System Report3 outlined a plan for ground-based, airborne and satellite measurements and models to integrate the observations into a four-dimensional representation of the atmosphere (space and time) to support assessment and policy information needs. This plan is being carried out under the Global Earth Observation System of Systems (GEOSS). Demonstrations of such an integrated capability4 provide new understanding of the changing atmosphere and link policy decisions to benefits for society. In this article, we highlight the use of satellite data to constrain biomass burning emissions, to assess oxides of nitrogen (NO(x)) emission reductions, and to contribute to state implementation plans, as examples of the use of satellite observations for detecting and tracking changes in atmospheric composition.

  6. Titan's stratospheric composition from Cassini/CIRS observations

    NASA Astrophysics Data System (ADS)

    Coustenis, A.; Conrath, B.; Achterberg, R.; Jennings, D.; Bjoraker, G.; Flasar, M.; Nixon, C.; Romani, P.; Samuelson, R.; Bézard, B.; Lellouch, E.; Courtin, R.; Lellouch, E.; Marten, A.; Vinatier, S.; Fouchet, Th.; Irwin, P.; Teanby, N.; Abbas, M.; CIRS Investigation Team

    2005-08-01

    We have analyzed data recorded by the Composite Infrared Spectrometer (CIRS) aboard the Cassini mission during the recent Titan fly-bys (October 2004- June 2005). The spectra characterize various regions on Titan from south to north pole with a large spectrum of emission angles. We study the emission observed in the 3 CIRS detectors (covering roughly the 10-1500 cm-1 spectral range with a 0.53 cm-1 apodized resolution at best). The composite spectrum shows several molecular signatures : hydrocarbons, nitriles and 3 oxygen components. We have used temperature profiles retrieved by inversion of the emission observed in the methane ν 4 band at 1304 cm-1 and a line-by-line radiative transfer code to infer the abundances of the trace constituents and some of their isotopes in Titan's stratosphere. Information is retrieved on the meridional variation of the trace constituents. We will compare these mixing ratios with values retrieved two Titan seasons ago by V1 and V2 IRIS observations, with more recent disk-averaged Infrared Space Observatory (ISO) results and with the latest Cassini-Huygens inferences from other instruments in an attempt to tie our findings to the seasonal phenomena on Titan. References Flasar, F. M., Achterberg R. K., Conrath B. J., Gierasch, P. J., Kunde V. G., Nixon C. A., Bjoraker G. L., Jennings D. E., Romani P. N., Simon-Miller A. A., Bézard B., Coustenis A., Irwin P. G. J., Teanby, N. A., Brasunas J., Pearl J. C., Segura, M. E., Carlson, R., Matmoukine, A., Schinder, P. J., Barucci A., Courtin R., Fouchet T., Gautier D., Lellouch E., Marten A., Prangé, R., Vinatier, S., Strobel, D. F., Calcutt S. B., Read P. L., Taylor, F. W., Bowles, N., Samuelson R. E., Orton G. S., Spilker L. J., Owen T. C., Spencer, J. A., Showalter, M. R., Ferrari, C., Abbas M. M., Raulin F., Edgington, S., Ade P., Wishnow, E. H. 2005. Titan's atmospheric temperatures, winds, and composition. Science, 308, 975-978.

  7. Material identification based upon energy-dependent attenuation of neutrons

    DOEpatents

    Marleau, Peter

    2015-10-06

    Various technologies pertaining to identifying a material in a sample and imaging the sample are described herein. The material is identified by computing energy-dependent attenuation of neutrons that is caused by presence of the sample in travel paths of the neutrons. A mono-energetic neutron generator emits the neutron, which is downscattered in energy by a first detector unit. The neutron exits the first detector unit and is detected by a second detector unit subsequent to passing through the sample. Energy-dependent attenuation of neutrons passing through the sample is computed based upon a computed energy of the neutron, wherein such energy can be computed based upon 1) known positions of the neutron generator, the first detector unit, and the second detector unit; or 2) computed time of flight of neutrons between the first detector unit and the second detector unit.

  8. Energy dependence of urinary bicarbonate secretion in turtle bladder.

    PubMed Central

    Oliver, J A; Himmelstein, S; Steinmetz, P R

    1975-01-01

    Addition of HCO3- to the serosal side (S) of the isolated turtle bladder results in a HCO3- flow from S to the mucosal side (M) which markedly reduces the net rate of acid secretion. To characterize the driving forces for this downhill HCO3- flow, the effects of metabolic inhibitors and substrates were examined. In short-circuited bladders with the M pH lowered to the point of zero net H+ secretion, the rate of HCO3- entry into M in response to a 20-mM HCO3- gradient was measured by pH stat titration. Deoxygenation reduced the HCO3- flux from 1.24 plus or minus 0.1 mum/h/8 cm2 (SEM) to 0.50 plus or minus 0.1 muM/h with glucose (2 times 10-3 M) AND FROM 1.32 PLUS OR MINUS TO 0.47 PLUS OR MINUS 0.1 MUM/h without glucose. A similar reduction (61 per cent) was observed in the presence of 1 per cent C92. Dinitrophenol (10-4 M), cyanide (10-3 M), and deoxyglucose (10-2 M) inhibited the HCO3- flux by 39 per cent, 37 per cent, and 38 per cent, respectively. The combination of any of these inhibitors with N2 caused the same inhibition as N2 alone. In bladders depleted of substrate, pyruvate (5 times 10-3 M) increased the HCO3- flux from 0.36 plus or minus 0.05 to 0.58 plus or minus 0.01 muM/h (P smaller than 0.005); the increment was abolished by deoxygenation. The results indicate that the bulk of the downhill HCO3- flow in this system is dependent on metabolic energy derived primarily from oxidative sources, and that this energy-dependent flow approximates the electroneutral component of HCO3- secretion that is coupled to Cl- absorption. PMID:235565

  9. Normalization of energy-dependent gamma survey data.

    PubMed

    Whicker, Randy; Chambers, Douglas

    2015-05-01

    Instruments and methods for normalization of energy-dependent gamma radiation survey data to a less energy-dependent basis of measurement are evaluated based on relevant field data collected at 15 different sites across the western United States along with a site in Mongolia. Normalization performance is assessed relative to measurements with a high-pressure ionization chamber (HPIC) due to its "flat" energy response and accurate measurement of the true exposure rate from both cosmic and terrestrial radiation. While analytically ideal for normalization applications, cost and practicality disadvantages have increased demand for alternatives to the HPIC. Regression analysis on paired measurements between energy-dependent sodium iodide (NaI) scintillation detectors (5-cm by 5-cm crystal dimensions) and the HPIC revealed highly consistent relationships among sites not previously impacted by radiological contamination (natural sites). A resulting generalized data normalization factor based on the average sensitivity of NaI detectors to naturally occurring terrestrial radiation (0.56 nGy hHPIC per nGy hNaI), combined with the calculated site-specific estimate of cosmic radiation, produced reasonably accurate predictions of HPIC readings at natural sites. Normalization against two to potential alternative instruments (a tissue-equivalent plastic scintillator and energy-compensated NaI detector) did not perform better than the sensitivity adjustment approach at natural sites. Each approach produced unreliable estimates of HPIC readings at radiologically impacted sites, though normalization against the plastic scintillator or energy-compensated NaI detector can address incompatibilities between different energy-dependent instruments with respect to estimation of soil radionuclide levels. The appropriate data normalization method depends on the nature of the site, expected duration of the project, survey objectives, and considerations of cost and practicality.

  10. Ion composition and drift observations in the nighttime equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Aikin, A. C.; Murthy, B. V. K.

    1974-01-01

    The first in situ measurements of ion composition in the nighttime equatorial E and F region ionospheres (90-300 km) are presented and discussed. These profiles were obtained by two rocket-borne ion mass spectrometers launched from Thumba, India on March 9-10, 1970 at solar zenith angles of 112 deg and 165 deg. Ionosonde data established that the composition was measured at times bounding a period of F region downward drift. During this period the ions O(+) and N(+) were enhanced by one to three orders of magnitude between 220 and 300 km. Below the drift region (200 km), O(+) ceased to be the major ionic constituent, but the concentrations of O(+) and N(+) remained larger than predicted from known radiation sources and loss processes. Here also, both the O2(+) and NO(+) profiles retained nearly the same shape and magnitude throughout the night in agreement with theories assuming scattered UV radiation to be the maintaining source. Light metallic ions including Mg(+), Na(+) and possibly Si(+) were observed to altitude approaching 300 km, while the heavier ions Ca(+) and K(+) were seen in reduced quantity to 200 km. All metal ion profiles exhibited changes which can be ascribed to vertical drifting.

  11. Composite disturbance rejection control based on generalized extended state observer.

    PubMed

    Zhang, Yanjun; Zhang, Jun; Wang, Lu; Su, Jianbo

    2016-07-01

    Traditional extended state observer (ESO) design method does not focus on analysis of system reconstruction strategy. The prior information of the controlled system cannot be used for ESO implementation to improve the control accuracy. In this paper, composite disturbance rejection control strategy is proposed based on generalized ESO. First, the disturbance rejection performance of traditional ESO is analyzed to show the essence of the reconstruction strategy. Then, the system is reconstructed based on the equivalent disturbance model. The generalized ESO is proposed based on the reconstructed model, while convergence of the proposed ESO is analyzed along with the outer loop feedback controller. Simulation results on a second order mechanical system show that the proposed generalized ESO can deal with the external disturbance with known model successfully. Experiment of attitude tracking task on an aircraft is also carried out to show the effectiveness of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Titan's Surface Composition from Cassini VIMS Solar Occultation Observations

    NASA Astrophysics Data System (ADS)

    McCord, Thomas; Hayne, Paul; Sotin, Christophe

    2013-04-01

    Titan's surface is obscured by a thick absorbing and scattering atmosphere, allowing direct observation of the surface within only a few spectral win-dows in the near-infrared, complicating efforts to identify and map geologi-cally important materials using remote sensing IR spectroscopy. We there-fore investigate the atmosphere's infrared transmission with direct measure-ments using Titan's occultation of the Sun as well as Titan's reflectance measured at differing illumination and observation angles observed by Cas-sini's Visual and Infrared Mapping Spectrometer (VIMS). We use two im-portant spectral windows: the 2.7-2.8-mm "double window" and the broad 5-mm window. By estimating atmospheric attenuation within these windows, we seek an empirical correction factor that can be applied to VIMS meas-urements to estimate the true surface reflectance and map inferred composi-tional variations. Applying the empirical corrections, we correct the VIMS data for the viewing geometry-dependent atmospheric effects to derive the 5-µm reflectance and 2.8/2.7-µm reflectance ratio. We then compare the cor-rected reflectances to compounds proposed to exist on Titan's surface. We propose a simple correction to VIMS Titan data to account for atmospheric attenuation and diffuse scattering in the 5-mm and 2.7-2.8 mm windows, generally applicable for airmass < 3.0. We propose a simple correction to VIMS Titan data to account for atmospheric attenuation and diffuse scatter-ing in the 5-mm and 2.7-2.8 mm windows, generally applicable for airmass < 3.0. The narrow 2.75-mm absorption feature, dividing the window into two sub-windows, present in all on-planet measurements is not present in the occultation data, and its strength is reduced at the cloud tops, suggesting the responsible molecule is concentrated in the lower troposphere or on the sur-face. Our empirical correction to Titan's surface reflectance yields properties shifted closer to water ice for the majority of the low

  13. Measurements of the spectrum and energy dependence of X-ray transition radiation

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.

    1978-01-01

    The results of experiments designed to test the theory of X-ray transition radiation and to verify the predicted dependence of the characteristic features of the radiation on the radiator dimensions are presented. The X-ray frequency spectrum produced by 5- to 9-GeV electrons over the range 4 to 30 keV was measured with a calibrated single-crystal Bragg spectrometer, and at frequencies up to 100 keV with an NaI scintillator. The interference pattern in the spectrum and the hardening of the radiation with increasing foil thickness are clearly observed. The energy dependence of the total transition-radiation intensity was studied using a radiator with large dimensions designed to yield energy-dependent signals at very high particle energies, up to E/mc-squared approximately equal to 100,000. The results are in good agreement with the theoretical predictions.

  14. Exciton interference revealed by energy dependent exciton transfer rate for ring-structured molecular systems

    SciTech Connect

    Yan, Yun-An

    2016-01-14

    The quantum interference is an intrinsic phenomenon in quantum physics for photon and massive quantum particles. In principle, the quantum interference may also occur with quasi-particles, such as the exciton. In this study, we show how the exciton quantum interference can be significant in aggregates through theoretical simulations with hierarchical equations of motion. The systems under investigation are generalized donor-bridge-acceptor model aggregates with the donor consisting of six homogeneous sites assuming the nearest neighbor coupling. For the models with single-path bridge, the exciton transfer time only shows a weak excitation energy dependence. But models with double-path bridge have a new short transfer time scale and the excitation energy dependence of the exciton transfer time assumes clear peak structure which is detectable with today’s nonlinear spectroscopy. This abnormality is attributed to the exciton quantum interference and the condition for a clear observation in experiment is also explored.

  15. Carbon Observations from Geostationary Earth Orbit as Part of an Integrated Observing System for Atmospheric Composition

    NASA Astrophysics Data System (ADS)

    Edwards, D. P.

    2015-12-01

    This presentation describes proposed satellite carbon measurements from the CHRONOS mission. The primary goal of this experiment is to measure the atmospheric pollutants carbon monoxide (CO) and methane (CH4) from geostationary orbit, with hourly observations of North America at high spatial resolution. CHRONOS observations would provide measurements not currently available or planned as part of a surface, suborbital and satellite integrated observing system for atmospheric composition over North America. Carbon monoxide is produced by combustion processes such as urban activity and wildfires, and serves as a proxy for other combustion pollutants that are not easily measured. Methane has diverse anthropogenic sources ranging from fossil fuel production, animal husbandry, agriculture and waste management. The impact of gas exploration in the Western States of the USA and oil extraction from the Canadian tar sands will be particular foci of the mission, as will the poorly-quantified natural CH4 emissions from wetlands and thawing permafrost. In addition to characterizing pollutant sources, improved understanding of the domestic CH4 budget is a priority for policy decisions related to short-lived climate forcers. A primary motivation for targeting CO is its value as a tracer of atmospheric pollution, and CHRONOS measurements will provide insight into local and long-range transport across the North American continent, as well as the processes governing the entrainment and venting of pollution in and out of the planetary boundary layer. As a result of significantly improved characterization of diurnal changes in atmospheric composition, CHRONOS observations will find direct societal applications for air quality regulation and forecasting. We present a quantification of this expected improvement in the prediction of near-surface concentrations when CHRONOS measurements are used in Observation System Simulation Experiments (OSSEs). If CHRONOS and the planned NASA Earth

  16. The CEOS Atmospheric Composition Constellation (ACC), an Integrated Observing System

    NASA Astrophysics Data System (ADS)

    Hilsenrath, E.; Langen, J.; Zehner, C.

    2008-05-01

    The Atmospheric Composition (AC) Constellation is one of four pilot projects initiated by the Committee for Earth Observations Systems (CEOS) to bring about technical/scientific cooperation among space agencies that meet the goals of GEO and comply with the CEOS member agencies national programs. The Constellation concept has been endorsed in the GEO Work Plan, 2007-2009. The AC Constellation goal is to collect and deliver data to develop and improve monitoring, assessment and predictive capabilities for changes in the ozone layer, air quality and climate forcing associated with changes in the environment. These data will support five of the nine GEO SBAs: Health, Energy, Climate, Hazards, and Ecosystems. At the present time ESA, EC, CSA, CNES, JAXA, DLR, NIVR, NASA, NOAA and Eumetsat are participating in the Constellation study, and have major assets in orbit including 17 instruments on seven platforms. One goal of the Constellation study is to identify missing capabilities that will result when the present orbiting research satellites missions end and those not included in the next generation operational missions. Missing observations include very accurate and high spatial resolution measurements needed to be to track trends in atmospheric composition and understand their relationship to climate change. The following are the top level objectives for the AC Constellation Concept Study: • Develop a virtual constellation of existing and upcoming missions using synergies among the instruments and identify missing capabilities. • Study advanced architecture with new space assets and varying orbits with expectations that new technology could also be brought forward to best meet user requirements • Data system interoperability to insure that data are useful, properly targeted, and easily accessible. To demonstrate that the Constellation concept can provide value added data products, the ACC has initiated the three projects that are being supported by the

  17. HZEFRG1: An energy-dependent semiempirical nuclear fragmentation model

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.; Norbury, John W.; Badavi, Francis F.; Khan, Ferdous

    1993-01-01

    Methods for calculating cross sections for the breakup of high-energy heavy ions by the combined nuclear and coulomb fields of the interacting nuclei are presented. The nuclear breakup contributions are estimated with an abrasion-ablation model of heavy ion fragmentation that includes an energy-dependent, mean free path. The electromagnetic dissociation contributions arising from the interacting coulomb fields are estimated by using Weizsacker-Williams theory extended to include electric dipole and electric quadrupole contributions. The complete computer code that implements the model is included as an appendix. Extensive comparisons of cross section predictions with available experimental data are made.

  18. ECCO: The extremely heavy cosmic ray composition observer

    SciTech Connect

    Westphal, A. J.; Weaver, B. A.; Solarz, M.; Price, P. B.; Lin, C.-L.

    1999-01-22

    Using the Trek ultraheavy galactic cosmic ray collector onboard Mir, we have measured the abundances of even-Z elements from {sub 76}Os through the actinides in the galactic cosmic rays, with a charge resolution of {approx}0.45e, roughly a three-fold improvement in resolution over pioneering measurements by HEAO, Ariel, and UHCRE onboard LDEF. Building on the successful design of Trek, we plan to design and construct ECCO, a large array of BP-1 glass track-etch detectors which would be deployed on the International Space Station. ECCO, the Extremely Heavy Cosmic Ray Composition Observer, would have sufficient charge resolution and collecting power to accurately measure the abundances of the very rare actinides with respect to each other and with respect to the platinum-group. These abundance measurements will strongly distinguish between models of GCR origin. We are verifying a promising new detector concept, which would result in significant cost savings, and would have several technical advantages over previous detector configurations; also, we are testing an advanced gas-transfer hodoscope for ECCO. Finally, we are constructing mockup ECCO modules for flight testing in preparation for a launch in 2003 and supporting an accommodation and design study for ECCO at GSFC.

  19. MESSENGER observations of plasma ion composition at Mercury through the first 150 days of orbital observations

    NASA Astrophysics Data System (ADS)

    Raines, J. M.; Gershman, D. J.; Zurbuchen, T.; Slavin, J. A.; Gilbert, J. A.; Korth, H.; Anderson, B. J.; Baker, D. N.; Gloeckler, G.; Krimigis, S. M.; McNutt, R. L.; Solomon, S. C.

    2011-12-01

    The Fast Imaging Plasma Spectrometer (FIPS) on the MESSENGER spacecraft has taken nearly continuous measurements of Mercury's plasma environment since insertion of the spacecraft into orbit about the innermost planet on March 18, 2011. Though substantial variability is seen, two regular plasma features persist in measurements collected over the first 1.5 Mercury years. On the dayside, a marked plasma population is observed at high northern latitudes, in the region of the magnetic cusp. On the nightside, plasma is regularly observed near the equator. In this work, we examine the composition of these plasma populations in detail, as well as the compositional variability. On average, protons make up 97% of the observed flux. Helium is next in abundance, with the majority in the form of alpha particles (2.6%) and small amounts of He+ (0.09%). Heavy ions (mass > 4 amu) are less well resolved and have been grouped together for improved statistics. The two most abundant are Na-group ions (with mass per charge values (m/q) of 21-30 amu/e, 0.2%) and O-group ions (m/q of 14-20 amu/e, 0.06%). Other species, such as S, K, and Ca, are present in only trace amounts (< 0.01%). These orbital ion abundances are very similar to those seen during MESSENGER's first and second flybys of Mercury for the same analysis methods. Substantial departures from these averages and resulting abundance ratios are found to regularly occur, including instances when Na-group abundances exceed those for protons. These results offer insight into plasma ion source and transport processes in Mercury's space environment.

  20. Venus Surface Composition Constrained by Observation and Experiment

    NASA Astrophysics Data System (ADS)

    Gilmore, Martha; Treiman, Allan; Helbert, Jörn; Smrekar, Suzanne

    2017-08-01

    New observations from the Venus Express spacecraft as well as theoretical and experimental investigation of Venus analogue materials have advanced our understanding of the petrology of Venus melts and the mineralogy of rocks on the surface. The VIRTIS instrument aboard Venus Express provided a map of the southern hemisphere of Venus at ˜1 μm allowing, for the first time, the definition of surface units in terms of their 1 μm emissivity and derived mineralogy. Tessera terrain has lower emissivity than the presumably basaltic plains, consistent with a more silica-rich or felsic mineralogy. Thermodynamic modeling and experimental production of melts with Venera and Vega starting compositions predict derivative melts that range from mafic to felsic. Large volumes of felsic melts require water and may link the formation of tesserae to the presence of a Venus ocean. Low emissivity rocks may also be produced by atmosphere-surface weathering reactions unlike those seen presently. High 1 μm emissivity values correlate to stratigraphically recent flows and have been used with theoretical and experimental predictions of basalt weathering to identify regions of recent volcanism. The timescale of this volcanism is currently constrained by the weathering of magnetite (higher emissivity) in fresh basalts to hematite (lower emissivity) in Venus' oxidizing environment. Recent volcanism is corroborated by transient thermal anomalies identified by the VMC instrument aboard Venus Express. The interpretation of all emissivity data depends critically on understanding the composition of surface materials, kinetics of rock weathering and their measurement under Venus conditions. Extended theoretical studies, continued analysis of earlier spacecraft results, new atmospheric data, and measurements of mineral stability under Venus conditions have improved our understanding atmosphere-surface interactions. The calcite-wollastonite CO2 buffer has been discounted due, among other things, to

  1. SU-F-BRE-15: Verification of Energy Dependence of MAGAT Polymer Gel at Orthovoltage Energies

    SciTech Connect

    Roed, Y; Tailor, R; Ibbott, G; Pinsky, L

    2014-06-15

    Purpose: Investigation of dose response curves of methacrylic acid-based “MAGAT” gel at different effective energies to verify an energy dependence of polymer-gel dosimeters for orthovoltage energy x-rays. Methods: Six small cylindrical MAGAT gel phantoms were exposed to different dose levels; one phantom was unirradiated for background subtraction. This experiment was repeated for three different effective beam energies.24 h post irradiation the spin-spin relaxation times (T2) were measured with a 4.7 T Bruker MR scanner at 2 cm depth inside the gel. The T2 values were converted to relaxation rates (R2) and plotted against the respective dose levels corresponding to the different effective energies. The resulting dose response curves were compared for a 250 kVp beam, the 250 kVp beam filtered by 6 cm of water, and a 125 kVp beam. Results: The passage of the 250 kVp beam through water resulted in a half-value-layer (HVL) change from 1.05 mm Cu to 1.32 mm Cu at 6 cm depth with a change in effective energy from 81.3 keV to 89.5 keV, respectively. The dose response curves showed a shift to higher relaxation rates for the harder beam. The dose response measurements for the 125 kVp beam (HVL: 3.13 mm Al, effective energy: 33.9 keV) demonstrated even higher relaxation rates than for either of the other beams. Conclusion: The MAGAT dose response curves for three different effective energies demonstrate a complex energy dependence, with an apparent decrease in sensitivity at 89.5 keV effective energy. This energy dependence is consistent with observed discrepancies of depth dose data compared with ion-chamber data. For future investigations of larger volumes, an energy-dependent sensitivity function is needed to properly assess 3-dimensional dose distributions.

  2. Further development of the EUMETNET Composite Observing System (EUCOS)

    NASA Astrophysics Data System (ADS)

    Klink, S.; Dibbern, J.

    2009-09-01

    EUCOS, which stands for EUMETNET Composite Observing System, is a EUMETNET programme whose main objective is a central management of surface based operational observations on a European-wide scale serving the needs of regional scale NWP. EUMETNET is a consortium of currently 26 national meteorological services in Europe that provides a framework for different operational and developmental co-operative programmes between the services. The work content of the EUCOS Programme includes the management of the operational observing networks, through the E-AMDAR, E-ASAP, E-SURFMAR and E-WINPROF programmes. The coordination of NMSs owned territorial networks (e.g. radiosonde stations and synoptic stations), data quality monitoring, fault reporting and recovery, a studies programme for the evolution of the observing networks and liaison with other organisations like WMO are among the tasks of the programme. The current period of the EUCOS programme has a five year duration (2007-2011) and a two stage approach was proposed in the programme definition. During the transition phase 2007-2008 no new programmatic objectives had been set because amongst others the Space-Terrestrial (S-T) study which investigated the relative contributions of selected space based and ground based observing systems to the forecast skill of global and regional NWP models had to be finalised first. Based on the findings of this study EUCOS currently prepares a redesign of its upper-air network. The original EUCOS upper-air network design was prepared in 2000 in order to define a set of stations serving the common general NWP requirement. Additional considerations were to make it possible to supply a common set of performance standards across the territory of EUMETNET Members and to ensure that the radiosonde network interleaved with AMDAR airports. The EUCOS upper-air network now requires a redesign because of several reasons. There is a need to take into account the significant evolution of the AMDAR

  3. Examination of the energy dependence of the fusion process

    NASA Astrophysics Data System (ADS)

    Torabi, F.; Ghodsi, O. N.; Pahlavani, M. R.

    2017-03-01

    In this study, the role of bombarding energy in analyzing the interaction potentials and describing the densities of interacting nuclei during fusion is investigated. For this purpose, the fusion cross sections of the 40Ca+48Ca , 16O+92Zr , and 40Ca+90Zr systems are calculated by the use of potentials derived from the semiclassical Skyrme energy density functional and the coupled-channel formalism. The comparisons drawn between the theoretical fusion data and the experimental ones demonstrate the energy-dependence behavior of the potentials employed in the calculations. Considering this dependence, we also show the variations of the density parameters of the colliding nuclei with the bombarding energy. The obtained results indicate that with increasing energy, the fusion barrier heights increase, while the diffuseness parameters of the densities decrease.

  4. Surface composition of Europa based on VLT observations

    NASA Astrophysics Data System (ADS)

    Ligier, N.; Poulet, F.; Carter, J.

    2016-12-01

    Jupiter's moon Europa may harbor a global salty ocean under an 80-170 km thick outer layer consisting of an icy crust (Anderson et al. 1998). Meanwhile, the 10-50 My old surface, dated by cratering rates (Pappalardo et al. 1999) implies rapid surface recycling and reprocessing that could result in tectonic activity (Kattenhorn et al. 2014) and plumes (Roth et al. 2014). The surface could thus exhibit fingerprints of chemical species, as minerals characteristics of an ocean-mantle interaction and/or organics of exobiological interest, directly originating from the subglacial ocean. In order to re-investigate the composition of Europa's surface, a global mapping campaign of the satellite was performed with the near-infrared integral field spectrograph SINFONI on the Very Large Telescope (VLT) in Chile. The high spectral binning of this instrument (0.5 nm) and large signal noise ratio in comparison to previous observations are adequate to detect sharp absorptions in the wavelength range 1.45-2.45 μm. In addition, the spatially resolved spectra we obtained over five epochs nearly cover the entire surface of Europa with a pixel scale of 12.5 by 25 m.a.s ( 35 by 70 km on Europa's surface), thus permitting a global scale study. Several icy and non-icy compounds were detected and mapped at <100 km resolution. They are unevenly distributed on the moon's surface. Amorphous and crystalline water ice are both present and, in spite of a particularly strong amorphization process likely engendered by the Io plasma torus, the crystalline form is found to be approximately twice as abundant as the amorphous ice based on the analysis of the 1.65 μm band. If the surface is dominated by small and mid-sized water ice grains (25-200 μm), crystalline water-ice grains exhibit spatial inhomogeneities in their distribution. The sulfuric acid hydrate distribution exhibits the typical "bullseye" feature on the trailing hemisphere. The presence of Mg-bearing chlorinated salts (chloride

  5. North-Polar Lunar Light Plains: Ages and Compositional Observations

    NASA Astrophysics Data System (ADS)

    Koehler, U.; Head, J. W., III; Neukum, G.; Wolf, U.

    1999-01-01

    Varying surface ages of lunar light plains in northern-nearside latitudes indicate an origin of these smooth terrae units not exclusively related to Imbrium and/or Orientale impact ejecta. and subsequent processes. Multispectral data seem to support a more diversified history for many of these plains. The nature, ages, stratigraphic position, composition, and mode of emplacement of lunar light plains have been discussed with controversy for more than three decades. Covering about 5% of the lunar terra surface, the relatively low albedo plains are the most distinctive terra landforms after the more crater-like ejecta of the fresh basins. Morphological properties, like their smoothness, lower crater densities, their superposition on the "Imbrian Sculpture," and frequent occurence as crater fill, are mare-like. Other features, such as relative (compared to mare basalts) high-albedo and geological/stratigraphical setting, are more highland-like. Not surprisingly, light plains were seen as both volcanic and impact related deposits. The Cayley Plains, a type locality in the central-nearside highlands, has been chosen as the landing site of the Apollo XVI mission partly to help resolve these interpretations. The astronauts collected samples - highly brecciated rocks - and concluded that the Cayley was indeed of impact origin. These findings have been extrapolated to stratigraphically similar plains units on the nearside, focusing on the Imbrium and Orientale impacts as responsible events for resurfacing terrae environment to form light plains. In addition, theoretical modeling mechanisms have been provided that could explain how basin and crater ejecta were able to make up for the smoothness of light plains by stirring up local material through secondary-impact related processes, or mega impact induced seismic shaking. However, subsequent age determinations showed that some light plains cannot be correlated to the Imbrium or Orientale event, the last two basin

  6. Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Li, W.; Thorne, R. M.; Nishimura, Y.; Zhang, X.-J.; Reeves, G. D.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Henderson, M. G.; Spence, H. E.; Baker, D. N.; Blake, J. B.; Fennell, J. F.; Angelopoulos, V.

    2016-05-01

    The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth's radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron Proton Telescope (REPT) instruments on board the Van Allen Probes exhibit a rapid enhancement followed by a slow diffusive movement in differential energy fluxes, and the radial extent to which electrons can penetrate into depends on energy with closer penetration toward the Earth at lower energies than higher energies. We incorporate radial diffusion, local acceleration, and loss processes due to whistler mode wave observations to perform a 3-D diffusion simulation. Our simulation results demonstrate that chorus waves cause electron flux increase by more than 1 order of magnitude during the first 18 h, and the subsequent radial extents of the energetic electrons during the storm recovery phase are determined by the coupled radial diffusion and the pitch angle scattering by EMIC waves and plasmaspheric hiss. The radial diffusion caused by ULF waves and local plasma wave scattering are energy dependent, which lead to the observed electron flux variations with energy dependences. This study suggests that plasma wave distributions in the inner magnetosphere are crucial for the energy-dependent intrusions of several hundred keV to several MeV electrons.

  7. Satellite Observations for Detecting and Tracking Changes in Atmospheric Composition

    EPA Science Inventory

    The international scientific community's Integrated Global Atmosphere Chemistry Observation System report outlined a plan for ground-based, airborne and satellite Measurements, and models to integrate the observations into a 4-dimensional representation of the atmosphere (space a...

  8. Satellite Observations for Detecting and Tracking Changes in Atmospheric Composition

    EPA Science Inventory

    The international scientific community's Integrated Global Atmosphere Chemistry Observation System report outlined a plan for ground-based, airborne and satellite Measurements, and models to integrate the observations into a 4-dimensional representation of the atmosphere (space a...

  9. CRRES observations of ion composition during EMIC mode wave events

    SciTech Connect

    Macdonald, Elizabeth; Larsen, Brian

    2010-12-13

    EMIC mode waves may play an important role in the dynamics of the growth and loss of the radiation belts. CRRES mission analysis has provided extensive information on the distributions of EMIC mode waves. Less well studied and understood is the role that ion composition plays in the formation of the EMIC mode waves. The CRESS plasma mass spectrometer LOMICS measured all ion species of interest up to 45 keV/q. This preliminary study will examine the characteristics of heavy ions during a multitude of wave events, in particular, the effect of ion composition on wave-particle interactions, amplitude, and frequency. The relevance of such data to the upcoming RBSP mission will be highlighted.

  10. Observation of nonconventional spin waves in composite-fermion ferromagnets.

    PubMed

    Wurstbauer, U; Majumder, D; Mandal, S S; Dujovne, I; Rhone, T D; Dennis, B S; Rigosi, A F; Jain, J K; Pinczuk, A; West, K W; Pfeiffer, L N

    2011-08-05

    We find unexpected low energy excitations of fully spin-polarized composite-fermion ferromagnets in the fractional quantum Hall liquid, resulting from a complex interplay between a topological order manifesting through new energy levels and a magnetic order due to spin polarization. The lowest energy modes, which involve spin reversal, are remarkable in displaying unconventional negative dispersion at small momenta followed by a deep roton minimum at larger momenta. This behavior results from a nontrivial mixing of spin-wave and spin-flip modes creating a spin-flip excitonic state of composite-fermion particle-hole pairs. The striking properties of spin-flip excitons imply highly tunable mode couplings that enable fine control of topological states of itinerant two-dimensional ferromagnets.

  11. Energy-Dependent Octagonal Lattice Boltzmann Modeling for Compressible Flows

    NASA Astrophysics Data System (ADS)

    Pavlo, Pavol; Vahala, Linda; Vahala, George

    2000-10-01

    There has been much interest in thermal lattice Boltzmann modeling (TLBM) for compressible flows because of their inherent parallelizeability. Instead of applying CFD techniques to the nonlinear conservation equations, one instead solves a linear BGK kinetic equation. To reduce storage requirements, the velocity space is discretized and lattice geometries are so chosen to minimize the number of degrees of freedom that must be retained in the Chapman-Enskog recovery of the original macroscopic equations. The simplest (and most efficient) TLBM runs at a CFL=1, so that no numerical diffusion or dissipation is introduced. The algorithm involves Lagrangian streaming (shift operator) and purely local operations. Because of the underlying discrete lattice symmetry, the relaxation distributions cannot be Maxwellian and hence the inherent numerical instability problem in TLBM. We are investigating the use of energy-dependent lattices so as to allow simulation of problems of interest in divertor physics, The appeal of TLBM is that it can provide a unified representation for both strongly collisional (‘fluid’) and weakly collisional (‘Monte Carlo’) regimes. Moreover, our TLBM code is more efficiently solved on mulit-PE platforms than the corresponding CFD codes and is readily extended to 3D. MHD can also be handled by TLBM.

  12. Pulse energy dependence of subcellular dissection by femtosecond laser pulses

    NASA Technical Reports Server (NTRS)

    Heisterkamp, A.; Maxwell, I. Z.; Mazur, E.; Underwood, J. M.; Nickerson, J. A.; Kumar, S.; Ingber, D. E.

    2005-01-01

    Precise dissection of cells with ultrashort laser pulses requires a clear understanding of how the onset and extent of ablation (i.e., the removal of material) depends on pulse energy. We carried out a systematic study of the energy dependence of the plasma-mediated ablation of fluorescently-labeled subcellular structures in the cytoskeleton and nuclei of fixed endothelial cells using femtosecond, near-infrared laser pulses focused through a high-numerical aperture objective lens (1.4 NA). We find that the energy threshold for photobleaching lies between 0.9 and 1.7 nJ. By comparing the changes in fluorescence with the actual material loss determined by electron microscopy, we find that the threshold for true material ablation is about 20% higher than the photobleaching threshold. This information makes it possible to use the fluorescence to determine the onset of true material ablation without resorting to electron microscopy. We confirm the precision of this technique by severing a single microtubule without disrupting the neighboring microtubules, less than 1 micrometer away. c2005 Optical Society of America.

  13. Energy-Dependent Fission Q Values Generalized for All Actinides

    SciTech Connect

    Vogt, R

    2008-09-25

    We generalize Madland's parameterization of the energy release in fission to obtain the dependence of the fission Q values on incident neutron energy, E{sub n}, for all major and minor actinides. These Q(E{sub n}) parameterizations are included in the ENDL2008 release. This paper describes calculations of energy-dependent fission Q values based on parameterizations of the prompt energy release in fission [1], developed by Madland [1] to describe the prompt energy release in neutron-induced fission of {sup 235}U, {sup 238}U, and {sup 239}Pu. The energy release is then related to the energy deposited during fission so that experimentally measurable quantities can be used to obtain the Q values. A discussion of these specific parameterizations and their implementation in the processing code for Monte Carlo neutron transport, MCFGEN, [2] is described in Ref. [3]. We extend this model to describe Q(E) for all actinides, major and minor, in the Evaluated Nuclear Data Library (ENDL) 2008 release, ENDL2008.

  14. Energy Dependent Bias in the Weighted Point Model.

    SciTech Connect

    Santi, P. A.; Geist, W. H.

    2005-01-01

    While the weighted point multiplicity model has successfully reduced the bias that is associated with variable multiplication of neutrons within a sample (which was assumed constant in the standard point multiplicity model), other potential sources of bias still exists within the weighted point model. One significant source of bias arises from the assumption that the energies of the neutrons from ({alpha},n) reactions on impurities in the sample have the same average energy as neutrons emitted from the spontaneous fission of {sup 240}Pu. An investigation into the effects that neutron energy has on the assay results (effective {sup 240}Pu mass, alpha, and multiplication) of the weighted point multiplicity model has been performed using MCNPX, Version 2.5f for impure plutonium metal samples in a number of different detector systems. The effects of energy dependence of the detection efficiency and gate fractions on the assay results, as well as the measured singles, doubles, and triples rates were also studied. Methods for mitigating the effects of neutron energy on the weighted-point multiplicity model results will be presented and discussed.

  15. Inelastic cotunneling with energy-dependent contact transmission

    NASA Astrophysics Data System (ADS)

    Blok, S.; Agundez Mojarro, R. R.; Maduro, L. A.; Blaauboer, M.; Van Der Molen, S. J.

    2017-03-01

    We investigate inelastic cotunneling in a model system where the charging island is connected to the leads through molecules with energy-dependent transmission functions. To study this problem, we propose two different approaches. The first is a pragmatic approach that assumes Lorentzian-like transmission functions that determine the transmission probability to the island. Using this model, we calculate current versus voltage (IV) curves for increasing resonance level positions of the molecule. We find that shifting the resonance energy of the molecule away from the Fermi energy of the contacts leads to a decreased current at low bias, but as bias increases, this difference decreases and eventually inverses. This is markedly different from IV behavior outside the cotunneling regime. The second approach involves multiple cotunneling where also the molecules are considered to be in the Coulomb blockade regime. We find here that when Ec≫eV ,kBT , the IV behavior approaches the original cotunneling behavior proposed by Averin and Nazarov [Phys. Rev. Lett. 65, 2446-2449 (1990)].

  16. Composition of comet Halley dust particles from Giotto observations

    NASA Technical Reports Server (NTRS)

    Kissel, J.; Buechler, K.; Fechtig, H.; Gruen, E.; Jessberger, E. K.; Brownlee, D. E.; Clark, B. C.; Hornung, K.; Igenbergs, E. B.; Sekanina, Z.

    1986-01-01

    Mass spectra of cometary dust particles measured by the PIA dust particle analyzer aboard the Giotto spacecraft show some unexpected and striking features. First, small particles below 10 to the -14th g are much more abundant than anticipated by models. Second, most of the particles are rich in light elements such as H, C, N, and O, suggesting the validity of models that describe the cometary dust as including organic material. Third, the light elements specifically seem to have a low ratio of mass to volume. Three examples of original mass spectra showing typical compositions are given; these have been measured, and are compared with a computer-simulated mass spectrum.

  17. From flint to stainless steel: observations on surgical instrument composition.

    PubMed Central

    Kirkup, J.

    1993-01-01

    Man's failure to extract deeply embedded thorns and arrowheads, with bare hands and teeth, stimulated 'instrument substitutes' mimicking these appendages. Evidence from primitive communities suggest animal, plant and mineral items were employed, both before and after metal became the standard material of today's armamentarium. Changing surgical instrument composition has mirrored concurrent technology and manufacturing methods both of which are reviewed. Particular significance is accorded flint, bronze, crucible steel, thermal sterilisation, nickel-plate, stainless steel and disposable plastics. The paper is based on an exhibition From Flint to Stainless Steel on display at the College. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8215156

  18. The direct observation of cosmic ray composition in JACEE

    SciTech Connect

    Burnett, T.H.; Iwai, J.; Lord, J.J. ); Dake, S.; Oda, H. ); Derrickson, J.H.; Fountain, W.F. ); Fuki, M. ); Gregory, J.C.; Hayashi, T. ); Holynski, R.; Jurak, A. ); Jones, W.V. ); Miyamura, O. )

    1989-03-01

    No significant changes in spectral index for protons up to 500 TeV and higher intensity for helium above 2 TeV were observed. For heavier elements, a general tendency of intensity enhancement of medium heavies in the relative abundance above about 10 TeV/amu was observed.

  19. Energy-Dependent Stability of Shewanella oneidensis MR-1 Biofilms▿

    PubMed Central

    Saville, Renee M.; Rakshe, Shauna; Haagensen, Janus A. J.; Shukla, Soni; Spormann, Alfred M.

    2011-01-01

    Stability and resistance to dissolution are key features of microbial biofilms. How these macroscopic properties are determined by the physiological state of individual biofilm cells in their local physical-chemical and cellular environment is largely unknown. In order to obtain molecular and energetic insight into biofilm stability, we investigated whether maintenance of biofilm stability is an energy-dependent process and whether transcription and/or translation is required for biofilm dissolution. We found that in 12-hour-old Shewanella oneidensis MR-1 biofilms, a reduction in cellular ATP concentration, induced either by oxygen deprivation or by addition of the inhibitor of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone (CCCP), dinitrophenol (DNP), or CN−, resulted in massive dissolution. In 60-hour-old biofilms, the extent of uncoupler-induced cell loss was strongly attenuated, indicating that the integrity of older biofilms is maintained by means other than those operating in younger biofilms. In experiments with 12-hour-old biofilms, the transcriptional and translational inhibitors rifampin, tetracycline, and erythromycin were found to be ineffective in preventing energy starvation-induced detachment, suggesting that neither transcription nor translation is required for this process. Biofilms of Vibrio cholerae were also induced to dissolve upon CCCP addition to an extent similar to that in S. oneidensis. However, Pseudomonas aeruginosa and P. putida biofilms remained insensitive to CCCP addition. Collectively, our data show that metabolic energy is directly or indirectly required for maintaining cell attachment, and this may represent a common but not ubiquitous mechanism for stability of microbial biofilms. PMID:21572002

  20. Energy-dependent stability of Shewanella oneidensis MR-1 biofilms.

    PubMed

    Saville, Renee M; Rakshe, Shauna; Haagensen, Janus A J; Shukla, Soni; Spormann, Alfred M

    2011-07-01

    Stability and resistance to dissolution are key features of microbial biofilms. How these macroscopic properties are determined by the physiological state of individual biofilm cells in their local physical-chemical and cellular environment is largely unknown. In order to obtain molecular and energetic insight into biofilm stability, we investigated whether maintenance of biofilm stability is an energy-dependent process and whether transcription and/or translation is required for biofilm dissolution. We found that in 12-hour-old Shewanella oneidensis MR-1 biofilms, a reduction in cellular ATP concentration, induced either by oxygen deprivation or by addition of the inhibitor of oxidative phosphorylation carbonyl cyanide m-chlorophenylhydrazone (CCCP), dinitrophenol (DNP), or CN(-), resulted in massive dissolution. In 60-hour-old biofilms, the extent of uncoupler-induced cell loss was strongly attenuated, indicating that the integrity of older biofilms is maintained by means other than those operating in younger biofilms. In experiments with 12-hour-old biofilms, the transcriptional and translational inhibitors rifampin, tetracycline, and erythromycin were found to be ineffective in preventing energy starvation-induced detachment, suggesting that neither transcription nor translation is required for this process. Biofilms of Vibrio cholerae were also induced to dissolve upon CCCP addition to an extent similar to that in S. oneidensis. However, Pseudomonas aeruginosa and P. putida biofilms remained insensitive to CCCP addition. Collectively, our data show that metabolic energy is directly or indirectly required for maintaining cell attachment, and this may represent a common but not ubiquitous mechanism for stability of microbial biofilms.

  1. Energy dependence and angular dependence of an optically stimulated luminescence dosimeter in the mammography energy range.

    PubMed

    Kawaguchi, Ai; Matsunaga, Yuta; Suzuki, Shoichi; Chida, Koichi

    2017-03-01

    This study aimed to investigate the energy dependence and the angular dependence of commercially available optically stimulated luminescence (OSL) point dosimeters in the mammography energy range. The energy dependence was evaluated to calculate calibration factors (CFs). The half-value layer range was 0.31-0.60 mmAl (Mo/Mo 22-28 kV, Mo/Rh 28-32 kV, and W/Rh 30-34 kV at 2-kV intervals). Mo/Rh 28 kV was the reference condition. Angular dependence was tested by rotating the X-ray tube from -90° to 90° in 30° increments, and signal counts from angled nanoDots were normalized to the 0° signal counts. Angular dependence was compared with three tube voltage and target/filter combinations (Mo/Mo 26 kV, Mo/Rh 28 kV and W/Rh 32 kV). The CFs of energy dependence were 0.94-1.06. In Mo/Mo 26-28 kV and Mo/Rh 28-32 kV, the range of CF was 0.99-1.01, which was very similar. For angular dependence, the most deteriorated normalized values (Mo/Mo, 0.37; Mo/Rh, 0.43; and W/Rh, 0.58) were observed when the X-ray tube was rotated at a 90° angle, compared to 0°. The most angular dependences of ± 30°, 60°, and 90° decreased by approximately 4%, 14%, and 63% respectively. The mean deteriorated measurement 30° intervals from 0° to ± 30° was 2%, from ± 30° to ± 60° was 8%, and from ± 60° to ± 90° was 40%. The range of energy dependence in typical mammography energy range was not as much as that in general radiography and computed tomography. For accurate measurement using nanoDot, the tilt needs to be under 30°.

  2. Sub-barrier fusion excitation function data and energy dependent Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Gautam, Manjeet Singh

    2016-07-01

    This paper analyzed the role of intrinsic degrees of freedom of colliding nuclei in the enhancement of sub-barrier fusion cross-section data of various heavy ion fusion reactions. The influences of inelastic surface vibrations of colliding pairs are found to be dominant and their couplings result in the significantly larger fusion enhancement over the predictions of the one dimensional barrier penetration model at sub-barrier energies. The theoretical calculations are performed by using energy dependent Woods-Saxon potential model (EDWSP model) in conjunction with the one dimensional Wong formula. The effects of dominant intrinsic channels are entertained within framework of the coupled channel calculations obtained by using the code CCFULL. It is quite interesting to note that the energy dependence in Woods-Saxon potential simulates the effects of inelastic surface vibrational states of reactants wherein significantly larger value of diffuseness parameter ranging from a = 0.85 fm to a = 0.95 fm is required to address the observed fusion excitation function data of the various heavy ion fusion reactions.

  3. AN INDEX OF COMPOSITIONAL DISSIMILARITY BETWEEN OBSERVED AND EXPECTED ASSEMBLAGES

    EPA Science Inventory

    The reference-condition approach to bioassessment often uses the observed/expected (O/E) ratio to indicate anthropogenic alteration of aquatic macroinvertebrates, fish, or periphyton assemblages. Given a list of taxa found at 1 or more minimally disturbed reference sites, E is t...

  4. AN INDEX OF COMPOSITIONAL DISSIMILARITY BETWEEN OBSERVED AND EXPECTED ASSEMBLAGES

    EPA Science Inventory

    The reference-condition approach to bioassessment often uses the observed/expected (O/E) ratio to indicate anthropogenic alteration of aquatic macroinvertebrates, fish, or periphyton assemblages. Given a list of taxa found at 1 or more minimally disturbed reference sites, E is t...

  5. Experimental Observations of Particle-hole Asymmetry for Composite Fermions

    NASA Astrophysics Data System (ADS)

    Liu, Yang

    In this talk, I will present our experimental study of the breaking of particle-hole symmetry for composite fermions (CFs), quasi-particles formed by attaching two flux quanta to each electron at large perpendicular magnetic fields. We measure the Fermi contour of the spin-polarized CFs near ν = 1 / 2 via commensurability oscillations, and find an asymmetry of the Fermi wave vector for ν < 1 / 2 and > 1 / 2 . In particular, we find that the deduced wave vector is smaller for ν > 1 / 2 compared to ν < 1 / 2 , and on both sides consistent with the density of minority carriers in the lowest Landau level. We also study the spin-polarization transitions of fractional quantum Hall states near ν = 3 / 2 and 1/2; these states are particle-hole conjugates of each other and are expected to have the same polarization energies. Our systematic results clearly show the transition energies are about three times larger for states near ν = 3 / 2 compared to those near ν = 1 / 2 . Work done in collaboration with D. Kamburov, M. A. Mueed, S. Hasdemir, A. Wojs, J.K. Jain, L.N. Pfeiffer, K.W. West, K.W. Baldwin, and M. Shayegan. We acknowledge support from the DOE, NSF, the Gordon and Betty Moore Foundation and the Keck Foundation. The experiments were partly performed at the National High Magnetic Field Laboratory.

  6. Oxidation Embrittlement Observed in SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.

    1997-01-01

    As part of a comprehensive materials characterization program at the NASA Lewis Research Center, tensile creep-rupture tests were performed on a SiC-fiber-reinforced SiC-matrix composite. The results of these tests and subsequent analysis revealed an oxidation embrittlement phenomena that occurs readily at a discreet temperature range below the maximum use temperature. The graph shows rupture lives for a creep stress of 83 MPa as a function of temperature. Note that the rupture time is constant at an intermediate temperature range of 700 to 982 C. This graph also shows the failure location, as measured from the center of the specimen. Whereas for temperatures of 500 to 700 C, failure occurred in the specimen gage section; at higher temperatures, the failure location migrated toward the cooled grip ends. Although the results initially suggested that the test procedure was influencing the measured creep rupture lives and driving the failure location out of the gage section, subsequent experiments and thermal stress analyses verified the robustness of the test method employed.

  7. ENERGY-DEPENDENT TIME LAGS IN THE SEYFERT 1 GALAXY NGC 4593

    SciTech Connect

    Sriram, K.; Agrawal, V. K.; Rao, A. R.

    2009-08-01

    We investigate the energy-time lag dependence of the source NGC 4593 using XMM-Newton/EPIC pn data. We found that the time lag dependency is linear in nature with respect to the logarithm of different energy bands. We also investigate the frequency-dependent time lags and identify that at some frequency range (5 x 10{sup -5} Hz to 2 x 10{sup -4} Hz) the X-ray emission is highly coherent, mildly frequency dependent, and very strongly energy dependent. These observations can be explained in the framework of the thermal Comptonization process, and they indicate a truncated accretion disk very close to the black hole. We discuss the plausible spectral state to explain the phenomenon and conclude that the observed properties bear a close resemblance to the intermediate state or the steep power-law state, found in galactic black hole sources.

  8. NIMS Observes the Structure and Composition of Jupiter Clouds

    NASA Image and Video Library

    1998-03-26

    With the NIMS instrument high quality observations are being obtained from all parts of Jupiter. The images in the upper panel are taken at a wavelength of 4.8 microns. At this wavelength thermal radiation from about 100 km deep below the visible cloud deck is escaping, allowing us to study the deep atmospheric region. The overlying cloud deck absorbs a part of the radiation, but there are places where it is thin and more radiation can escape. These are called hot spot regions. Many hotspots regions occur in a zone between the equator and 15 degrees north latitude, the North Equatorial Belt (NEB), but thermal radiation is seen from much of the planet. The uniqueness of NIMS is that it is capable of observing the same spatial region at a maximum of 408 different wavelengths between 0.7 and 5.2 micron simultaneously. Every picture element (pixel) contains a spectrum of up to 408 wavelengths. The gases that compose the atmosphere leave there traces in the spectra. In this particular case, 48 wavelengths were available between 4.6 and 5.2 micron, and we see spectral signatures of water, ammonia, and phosphine. Also, the total amount of radiation is determined by the amount of overlying cloud, characterized by the cloud opacity. By means of model calculations, we can determine the amount of water and the cloud opacity for each individual spectrum. The amount ammonia and phosphine is more difficult to obtain because its influence on the spectra is weaker. The results of these calculations are shown in the form of maps in the next two panels. With NIMS, we can now have a detailed look at the spatial distribution of the water and ammonia amounts and the cloud opacity in the atmosphere. Not all the pixels from the observations have good spectra, so for some data points no reliable determination of the water and cloud opacity could be made. We find that the atmosphere is extremely dry in, and close to, the hot spot, with relative humidities between 0.02 % and 10 %, with the

  9. NIMS Observes the Structure and Composition of Jupiter's Clouds

    NASA Technical Reports Server (NTRS)

    1997-01-01

    With the NIMS instrument high quality observations are being obtained from all parts of Jupiter. The images in the upper panel are taken at a wavelength of 4.8 microns. At this wavelength thermal radiation from about 100 km deep below the visible cloud deck is escaping, allowing us to study the deep atmospheric region.

    The overlying cloud deck absorbs a part of the radiation, but there are places where it is thin and more radiation can escape. These are called hot spot regions. Many hotspots regions occur in a zone between the equator and 15 degrees north latitude, the North Equatorial Belt (NEB), but thermal radiation is seen from much of the planet.

    The uniqueness of NIMS is that it is capable of observing the same spatial region at a maximum of 408 different wavelengths between 0.7 and 5.2 micron simultaneously. Every picture element (pixel) contains a spectrum of up to 408 wavelengths. The gases that compose the atmosphere leave there traces in the spectra. In this particular case, 48 wavelengths were available between 4.6 and 5.2 micron, and we see spectral signatures of water, ammonia, and phosphine. Also, the total amount of radiation is determined by the amount of overlying cloud, characterized by the cloud opacity. By means of model calculations, we can determine the amount of water and the cloud opacity for each individual spectrum. The amount ammonia and phosphine is more difficult to obtain because its influence on the spectra is weaker.

    The results of these calculations are shown in the form of maps in the next two panels. With NIMS, we can now have a detailed look at the spatial distribution of the water and ammonia amounts and the cloud opacity in the atmosphere. Not all the pixels from the observations have good spectra, so for some data points no reliable determination of the water and cloud opacity could be made.

    We find that the atmosphere is extremely dry in, and close to, the hot spot, with relative humidities between 0.02 % and 10

  10. Characterizing energy dependence and count rate performance of a dual scintillator fiber-optic detector for computed tomography

    SciTech Connect

    Hoerner, Matthew R. Stepusin, Elliott J.; Hyer, Daniel E.; Hintenlang, David E.

    2015-03-15

    Purpose: Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV energy range, even small differences in material composition can result in significant variations in the absorbed energy between soft tissue and the detector. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the detector. This study investigated the feasibility of using a novel dual scintillator detector and whether its response to changes in beam energy from scatter and hardening is readily quantified. The detector incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator, which has a higher sensitivity to scatter x-rays. Methods: The detector was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 μm in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 μm in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm{sup 3} Radcal{sup ®} thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon energy-absorption characteristics from free-in-air and in phantom measurements. The depth/energy dependence of the detector was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm{sup 3} calibrated

  11. Characterizing energy dependence and count rate performance of a dual scintillator fiber-optic detector for computed tomography.

    PubMed

    Hoerner, Matthew R; Stepusin, Elliott J; Hyer, Daniel E; Hintenlang, David E

    2015-03-01

    Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV energy range, even small differences in material composition can result in significant variations in the absorbed energy between soft tissue and the detector. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the detector. This study investigated the feasibility of using a novel dual scintillator detector and whether its response to changes in beam energy from scatter and hardening is readily quantified. The detector incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator, which has a higher sensitivity to scatter x-rays. The detector was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 μm in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 μm in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm(3) Radcal(®) thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon energy-absorption characteristics from free-in-air and in phantom measurements. The depth/energy dependence of the detector was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm(3) calibrated ionization chamber to measure the

  12. Mineralogical indicators of Mercury's hollows composition in MESSENGER color observations

    NASA Astrophysics Data System (ADS)

    Vilas, Faith; Domingue, Deborah L.; Helbert, Jörn; D'Amore, Mario; Maturilli, Alessandro; Klima, Rachel L.; Stockstill-Cahill, Karen R.; Murchie, Scott L.; Izenberg, Noam R.; Blewett, David T.; Vaughan, William M.; Head, James W.

    2016-02-01

    Early during MErcury Surface Space ENvironment GEochemistry, and Ranging (MESSENGER)'s orbital mission, the Mercury Dual-Imaging System imaged the landform called hollows on the two craters Dominici and Hopper, using its Wide-Angle Camera with eight narrowband color filters ranging from 433 to 996 nm. An absorption feature centered in the MDIS 629 nm filter is evident in reflectance spectra for Dominici's south wall/rim hollows. A different absorption feature found in photometry of Dominici's center hollows extends through the MDIS 828 nm filter. Hollows in Hopper exhibit a weaker spectral absorption feature than that observed in Dominici's center. At Dominici, we postulate that fresher hollows-hosting material in the wall/rim was exposed to the space environment through a process of slumping of the overlying material. With time, local and global processes darken the hollows and change or mix the surface mineralogy, so that the spectral signature evolves. The hollows could contain low-density MgS and an opaque component, potentially derived from background material.

  13. Monte Carlo Computational Modeling of the Energy Dependence of Atomic Oxygen Undercutting of Protected Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Stueber, Thomas J.; Norris, Mary Jo

    1998-01-01

    A Monte Carlo computational model has been developed which simulates atomic oxygen attack of protected polymers at defect sites in the protective coatings. The parameters defining how atomic oxygen interacts with polymers and protective coatings as well as the scattering processes which occur have been optimized to replicate experimental results observed from protected polyimide Kapton on the Long Duration Exposure Facility (LDEF) mission. Computational prediction of atomic oxygen undercutting at defect sites in protective coatings for various arrival energies was investigated. The atomic oxygen undercutting energy dependence predictions enable one to predict mass loss that would occur in low Earth orbit, based on lower energy ground laboratory atomic oxygen beam systems. Results of computational model prediction of undercut cavity size as a function of energy and defect size will be presented to provide insight into expected in-space mass loss of protected polymers with protective coating defects based on lower energy ground laboratory testing.

  14. Excitation energy dependence of the level density parameter close to the doubly magic 208Pb

    NASA Astrophysics Data System (ADS)

    Roy, Pratap; Banerjee, K.; Bhattacharya, C.; Pandey, R.; Sen, A.; Manna, S.; Kundu, S.; Rana, T. K.; Ghosh, T. K.; Mukherjee, G.; Roy, T.; Dhal, A.; Dey, A.; Meena, J. K.; Saha, A. K.; Pandit, Deepak; Mukhopadhyay, S.; Bhattacharya, S.

    2016-12-01

    Neutron evaporation spectra have been measured from 4He+208Pb and 4He+209Bi reactions by using 4He-ion beams of several bombarding energies. Excitation-energy dependence of the level density parameter has been studied for the two systems in the excitation energy range of ˜18 -50 MeV. For both the reactions an overall reduction of the asymptotic level density parameter with increasing excitation energy (temperature) is observed. The trend of the data was compared with the Thomas-Fermi model predictions and found to be in reasonable agreement. The value of the shell damping parameter has been extracted from the lowest-energy data in the case of Po,211210 and At,212211 nuclei close to the Z =82 and N =126 shell closure, and it was found to be consistent with the recent measurement in the vicinity of doubly magic 208Pb nucleus.

  15. Energy-Dependent Ionization States of Shock-Accelerated Particles in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.; Ng, C. K.; Tylka, A. J.

    2000-01-01

    We examine the range of possible energy dependence of the ionization states of ions that are shock-accelerated from the ambient plasma of the solar corona. If acceleration begins in a region of moderate density, sufficiently low in the corona, ions above about 0.1 MeV/amu approach an equilibrium charge state that depends primarily upon their speed and only weakly on the plasma temperature. We suggest that the large variations of the charge states with energy for ions such as Si and Fe observed in the 1997 November 6 event are consistent with stripping in moderately dense coronal. plasma during shock acceleration. In the large solar-particle events studied previously, acceleration occurs sufficiently high in the corona that even Fe ions up to 600 MeV/amu are not stripped of electrons.

  16. REVEALING THE STRUCTURE OF AN ACCRETION DISK THROUGH ENERGY-DEPENDENT X-RAY MICROLENSING

    SciTech Connect

    Chartas, G.; Moore, D.; Kochanek, C. S.; Mosquera, A. M.; Blackburne, J. A.; Dai, X.

    2012-10-01

    We present results from monitoring observations of the gravitationally lensed quasar RX J1131-1231 performed with the Chandra X-Ray Observatory. The X-ray observations were planned with relatively long exposures that allowed a search for energy-dependent microlensing in the soft (0.2-2 keV) and hard (2-10 keV) light curves of the images of RX J1131-1231. We detect significant microlensing in the X-ray light curves of images A and D, and energy-dependent microlensing of image D. The magnification of the soft band appears to be larger than that in the hard band by a factor of {approx}1.3 when image D becomes more magnified. This can be explained by the difference between a compact, softer-spectrum corona that is producing a more extended, harder spectrum reflection component off the disk. This is supported by the evolution of the fluorescent iron line in image D over three consecutive time-averaged phases of the light curve. In the first period, an Fe line at E = 6.35{sup +0.14}{sub -0.14} keV is detected (at >99% confidence). In the second period, two Fe lines are detected, one at E = 5.50{sup +0.03}{sub -0.08} keV (detected at >99% confidence) and another at E = 6.04{sup +0.10}{sub -0.07} keV (marginally detected at >90% confidence), and in the third period, a broadened Fe line at 6.42{sup +0.16}{sub -0.14} keV is detected (at >99% confidence). This evolution of the Fe line profile during the microlensing event is consistent with the line distortion expected when a caustic passes over the inner disk where the shape of the fluorescent Fe line is distorted by general relativistic and Doppler effects.

  17. Paired observation on light-cured composite resin and nano-composite resin in dental caries repair.

    PubMed

    Xiaoling, Tao; Ashraf, Muhammad Aqeel; Yanyan, Zhao

    2016-11-01

    To compare the value of light-cured composite resin with that of nano-composite resin in dental caries repair. 88 patients taking dental caries repair in our hospital from May 2014 to April 2015 were selected, and divided into observation group and control group by coin method with 44 patients in each group. Nano-composite resin was used in observation group, while light-cured composite resin in control group. Then, the occurrence rates of odontohyperesthesia, aesthetic satisfaction with dental caries repair and complications were compared between two groups by visual analogue scale (VAS). The occurrence rate of odontohyperesthesia in observation group is significantly lower than that in control group (9.09% (4/44) vs 31.82% (14/44), 6.82% (3/44) vs 22.73% (10/44), 2.27% (1/44) vs 13.64% (6/44)) with difference of statistical significance (P<0.05) 1 week, 4 weeks, and 8 weeks after repair. VAS score of patients in observation is significantly lower than that in control group ((2.78±0.56) scores vs (5.22±0.76) scores, (2.02±0.35) scores vs (4.32±0.57) scores, (1.12±0.14) scores vs (2.41±0.43) scores) 1 week, 4 weeks, and 8 weeks after repair. Moreover, the difference in comparison of interactive effects between two groups, between different time points, and between groups at different time points has statistical significance (P<0.05). Nano-composite resin can lower the occurrence rate of odontohyperesthesia in dental caries repair, reduce the pain of patients, and improve the satisfaction of patients with tooth appearance.

  18. Role of energy dependent interaction potential in sub-barrier fusion of S2814i +Z9040r system

    NASA Astrophysics Data System (ADS)

    Gautam, Manjeet Singh; Sharma, Manoj K.

    2015-08-01

    We have analyzed the importance of the inelastic surface vibrations of colliding nuclei in the sub-barrier fusion enhancement of S2814i +Z9040r system by using the energy dependent Woods-Saxon potential model (EDWSP model) in conjunction with one dimensional Wong formula and the coupled channel formulation using the code CCFULL. The multi-phonon vibrational states of colliding nuclei seem to impart significant contribution. The coupling between relative motion of reactants and these relevant channels in turn produce anomalously large sub-barrier fusion enhancement over the expectations of one dimensional barrier penetration model. Furthermore, the effects of coupling to inelastic surface excitations are imitated due to energy dependence in the Woods-Saxon potential. In EDWSP model calculations, a wide range of diffuseness parameter much larger than the elastic scattering predictions is needed to account the observed fusion enhancement in the close vicinity of Coulomb barrier.

  19. Hilda Asteroid Compositions as an Observational Test of Giant Planet Migration Models

    NASA Astrophysics Data System (ADS)

    Ryan, Erin L.; Woodward, Charles E.; Sharkey, Benjamin; Noll, Keith S.

    2015-11-01

    Multiple lines of evidence indicate that planetary migration is a key part of the evolution of planetary systems. Planetary migration models of the solar system suggest that the Jupiter Trojan and Hilda stable resonances were repopulated during giant planet migration. We have completed a 4-year, multi-epoch photomteric multi-color survey of Hilda asteroids in order to determine individual object composition. The colors of ~500 Hildas are now known, a factor of 3 increase in objects with determined compositions compared to the start of our observations. We report the results of our survey in the context of the predictions from current dynamical migration models, identify the model inconsistent with the compositional results, and address future observational data that is required in addition to Hilda asteroid compositions to validate the Nice and Grand Tack models.This work supported by the University of Minnesota Undergraduate Research Scholarship Program and NASA Planetary Astronomy Grant NNX13AJ11G.

  20. Excitation-energy dependence of the giant dipole resonance width

    NASA Astrophysics Data System (ADS)

    Enders, G.; Berg, F. D.; Hagel, K.; Kühn, W.; Metag, V.; Novotny, R.; Pfeiffer, M.; Schwalb, O.; Charity, R. J.; Gobbi, A.; Freifelder, R.; Henning, W.; Hildenbrand, K. D.; Holzmann, R.; Mayer, R. S.; Simon, R. S.; Wessels, J. P.; Casini, G.; Olmi, A.; Stefanini, A. A.

    1992-07-01

    High-energy γ rays have been measured in coincidence with heavy fragents in deeply inelastic reactions of 136Xe+48Ti at 18.5 MeV/nucleon. The giant dipole resonance (GDR) strength function is deduced from an analysis of the photon spectra within the statistical model. The GDR width Γ is studied as a function of the fragment excitation energy E*. A saturation at about Γ=10 MeV is observed for E*/A>=1.0 MeV/nucleon.

  1. Entrance Channel Mass Asymmetry Effects in Sub-Barrier Fusion Dynamics by Using Energy Dependent Woods-Saxon Potential

    NASA Astrophysics Data System (ADS)

    Manjeet Singh, Gautam

    2015-12-01

    The present article highlights the inconsistency of static Woods-Saxon potential and the applicability of energy dependent Woods-Saxon potential to explore the fusion dynamics of {}4822Ti+58,60,6428Ni, {}4622Ti+{}6428Ni,{}5022Ti+{}6028Ni, and {}199F+9341Nb reactions leading to formation of different Sn-isotopes via different entrance channels. Theoretical calculations based upon one-dimensional Wong formula obtained by using static Woods-Saxon potential unable to provide proper explanation for sub-barrier fusion enhancement of these projectile-target combinations. However, the predictions of one-dimensional Wong formula based upon energy dependent Woods-Saxon potential model (EDWSP model) accurately describe the observed fusion dynamics of these systems wherein the significantly larger value of diffuseness parameter ranging from a = 0.85 fm to a = 0.97 fm is required to address the experimental data in whole range of energy. Therefore, the energy dependence in nucleus-nucleus potential simulates the influence of the nuclear structure degrees of freedom of the colliding pairs. Supported by Dr. D.S. Kothari Post-Doctoral Fellowship Scheme sponsored by University Grants Commission (UGC), New Delhi, India

  2. Energy dependence of hadron polarization in e+e-→h X at high energies

    NASA Astrophysics Data System (ADS)

    Chen, Kai-bao; Yang, Wei-hua; Zhou, Ya-jin; Liang, Zuo-tang

    2017-02-01

    The longitudinal polarization of a hyperon in e+e- annihilation at high energies depends on the longitudinal polarization of the quark produced at the e+e- annihilation vertex, whereas the spin alignment of vector mesons is independent of it. They exhibit very different energy dependences. We use the longitudinal polarization of the Lambda hyperon and the spin alignment of K* as representative examples to present numerical results of energy dependences and demonstrate such distinct differences. We present the results at the leading twist with perturbative QCD evolutions of fragmentation functions at the leading order.

  3. Excitation energy dependent Raman spectrum of MoSe2

    PubMed Central

    Nam, Dahyun; Lee, Jae-Ung; Cheong, Hyeonsik

    2015-01-01

    Raman investigation of MoSe2 was carried out with eight different excitation energies. Seven peaks, including E1g, A1g, E2g1, and A2u2 peaks are observed in the range of 100–400 cm−1. The phonon modes are assigned by comparing the peak positions with theoretical calculations. The intensities of the peaks are enhanced at different excitation energies through resonance with different optical transitions. The A1g mode is enhanced at 1.58 and 3.82 eV, which are near the A exciton energy and the band-to-band transition between higher energy bands, respectively. The E2g1 mode is strongly enhanced with respect to the A1g mode for the 2.71- and 2.81-eV excitations, which are close to the C exciton energy. The different enhancements of the A1g and E2g1 modes are explained in terms of the symmetries of the exciton states and the exciton-phonon coupling. Other smaller peaks including E1g and A2u2 are forbidden but appear due to the resonance effect near optical transition energies. PMID:26601614

  4. Energy dependence of resonance production in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Shao, Feng-Lan; Song, Jun; Wang, Rui-Qin; Zhang, Mao-Sheng

    2017-01-01

    The production of the hadronic resonances K*0(892), ϕ(1020), Σ*(1385), and Ξ*(1530) in central AA collisions at , 200, and 2760 GeV is systematically studied. The direct production of these resonances at system hadronization is described by the quark combination model and the effects of hadron multiple-scattering stage are dealt with by a ultra-relativistic quantum molecular dynamics model (UrQMD). We study the contribution of these two production sources to final observation and compare the final spectra with the available experimental data. The p T spectra of K*0(892) calculated directly by quark combination model are explicitly higher than the data at low p T ≲ 1.5 GeV, and taking into account the modification of rescattering effects, the resulting final spectra well agree with the data at all three collision energies. The rescattering effect on ϕ(1020) production is weak and including it can slightly improve our description at low p T on the basis of overall agreement with the data. We also predict the p T spectra of Σ*(1385) and Ξ*(1530), to be tested by the future experimental data. Supported by National Natural Science Foundation of China (11575100, 11305076, 11505104)

  5. Neutron energy-dependent initial DNA damage and chromosomal exchange.

    PubMed

    Tanaka, K; Gajendiran, N; Endo, S; Komatsu, K; Hoshi, M; Kamada, N

    1999-12-01

    This study was undertaken to investigate the biological effect of monoenergetic neutrons on human lymphocyte DNA and chromosomes. Monoenergetic neutrons of 2.3, 1.0, 0.79, 0.57, 0.37 and 0.186 MeV were generated, and 252Cf neutrons and 60Co gamma-rays were also used for comparison. Biological effect was evaluated two ways. The RBE values with the comet assay were estimated as 6.3 and 5.4 at 0.37 MeV and 0.57 MeV relative to that of 60Co gamma-rays, and chromosome aberration rates were also observed in these different levels of monoenergetic neutrons. The yield of chromosome aberrations per unit dose was high at lower neutron energies with a gradual decline with 0.186 MeV neutron energy. The RBE was increased to 10.7 at 0.57 MeV from 3.9 at 252Cf neutrons and reached 16.4 as the highest RBE at 0.37 MeV, but the value decreased to 11.2 at 0.186 MeV. The response patterns of initial DNA damage and chromosome exchange were quite similar to that of LET. These results show that the intensity of DNA damage and chromosomal exchange is LET dependent. RBE of low energy neutrons is higher than that of fission neutrons. Low energy neutrons containing Hiroshima atomic bomb radiation may have created a significantly higher incidence of biological effect in atomic bomb survivors.

  6. New Observations of Europa's Surface Composition: Discovery of an Anti-Jovian Salty Region

    NASA Astrophysics Data System (ADS)

    Fischer, Patrick D.; Brown, Michael E.; Hand, Kevin P.

    2014-11-01

    The surface composition of Europa is the best means available to probe its global chemical cycle and constrain the composition of its ocean. New observations of Europa's near-infrared reflectance spectra were obtained with the OSIRIS instrument on the Keck II telescope. Previous investigations of Europa's surface composition have mostly relied on Galileo NIMS infrared spectra; though NIMS measurements have high spatial resolution, they lack spectral resolution and span a limited spatial extent. Conversely, our observations comprise a near-global spectral map of Europa in the infrared H and K bands. At ~ 1 nm spectral resolution and ~ 100 km spatial resolution, these data reveal global distributions of key spectral features, enabling a more complete characterization of Europa's surface composition than previously possible. Simple linear spectral modelling of these data reproduces the global abundance distributions of water ice and sulfuric acid hydrate. In addition, this modelling reveals a suggestively "salty" region on Europa's anti-Jovian hemisphere. This region is spectrally distinct from both the trailing hemisphere bullseye and the spectrum of pure water ice, and shows a direct spatial correlation to an anti-Jovian chaos unit. Similar chaos regions show enhancements of saltier spectra as well, though to a lesser degree. We report three spectral end member regions on Europa's surface, represented by the trailing hemisphere bullseye, the leading hemisphere north polar "icy" region, and the anti-Jovian "salty" chaos unit. We present global compositional maps, and discuss the potential compositions of the three end member regions.

  7. Energy dependence of pion and kaon production in central Pb+Pb collisions

    NASA Astrophysics Data System (ADS)

    Afanasiev, S. V.; Anticic, T.; Barna, D.; Bartke, J.; Barton, R. A.; Behler, M.; Betev, L.; Białkowska, H.; Billmeier, A.; Blume, C.; Blyth, C. O.; Boimska, B.; Botje, M.; Bracinik, J.; Bramm, R.; Brun, R.; Bunčić, P.; Cerny, V.; Cramer, J. G.; Csató, P.; Dinkelaker, P.; Eckhardt, V.; Filip, P.; Fodor, Z.; Foka, P.; Freund, P.; Friese, V.; Gál, J.; Gaździcki, M.; Georgopoulos, G.; Gładysz, E.; Hegyi, S.; Höhne, C.; Igo, G.; Jones, P. G.; Kadija, K.; Karev, A.; Kolesnikov, V. I.; Kollegger, T.; Kowalski, M.; Kraus, I.; Kreps, M.; van Leeuwen, M.; Lévai, P.; Malakhov, A. I.; Margetis, S.; Markert, C.; Mayes, B. W.; Melkumov, G. L.; Mischke, A.; Molnár, J.; Nelson, J. M.; Pálla, G.; Panagiotou, A. D.; Perl, K.; Petridis, A.; Pikna, M.; Pinsky, L.; Pühlhofer, F.; Reid, J. G.; Renfordt, R.; Retyk, W.; Roland, C.; Roland, G.; Rybicki, A.; Sammer, T.; Sandoval, A.; Sann, H.; Schmitz, N.; Seyboth, P.; Siklér, F.; Sitar, B.; Skrzypczak, E.; Squier, G. T.; Stock, R.; Ströbele, H.; Susa, T.; Szentpétery, I.; Sziklai, J.; Trainor, T. A.; Varga, D.; Vassiliou, M.; Veres, G. I.; Vesztergombi, G.; Vranić, D.; Wetzler, A.; Whitten, C.; Yoo, I. K.; Zaranek, J.; Zimányi, J.

    2002-11-01

    Measurements of charged pion and kaon production in central Pb+Pb collisions at 40, 80, and 158 A GeV are presented. These are compared with data at lower and higher energies as well as with results from p+p interactions. The mean pion multiplicity per wounded nucleon increases approximately linearly with s1/4NN with a change of slope starting in the region 15-40 A GeV. The change from pion suppression with respect to p+p interactions, as observed at low collision energies, to pion enhancement at high energies occurs at about 40A GeV. A nonmonotonic energy dependence of the ratio of K+ to π+ yields is observed, with a maximum close to 40A GeV and an indication of a nearly constant value at higher energies. The measured dependences may be related to an increase of the entropy production and a decrease of the strangeness to entropy ratio in central Pb+Pb collisions in the low SPS energy range, which is consistent with the hypothesis that a transient state of deconfined matter is created above these energies. Other interpretations of the data are also discussed.

  8. Composition of transient events in the solar wind: Ulysses/SWICS observations

    NASA Technical Reports Server (NTRS)

    Galvin, A. B.; Cohen, C. M. S.; Gloeckler, G.; vonSteiger, R.; Geiss, J.

    1995-01-01

    The Ulysses mission covers an extensive data base which includes an in-ecliptic phase (Oct 1990 - Feb 1992), a southern hemisphere polar pass (with a southernmost point of 80 deg S heliographic latitude reached in Sept 1994). and a south to north transit passing through the ecliptic plane (March 1995). The Solar Wind Ion Composition Spectrometer measures solar wind ion composition, including charge state composition. for all types of solar wind flows. In-ecliptic measurements of the charge states of solar wind heavy ions in transient-related solar wind. such as solar wind associated with coronal mass c ejections (CMEs), typically indicate hotter than normal coronal temperatures. This distinction is not as prevalent for higher latitude observations. In this paper, we present temporal and latitudinal variations in the charge state composition of Oxygen, Silicon, and Iron for several transient-related solar wind events.

  9. Using Near Infrared Observations and Models to Analyze Surface Compositions of Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    McGuire, Ryan

    Kuiper Belt Objects (KBOs) are primordial icy objects in the outer solar system. Compositional information for KBOs helps us understand the original environment of the solar system as well as identify objects that are compositionally anomalous. Due to the faint nature of KBOs, very few spectroscopic observations have been made of them. Instead, photometric observations at infrared wavelengths are made to partially construct their spectra. I calculate near infrared reflectances for 12 objects using photometric observations from the Gemini North telescope. I combine these near infrared reflectances with data from the Spitzer Space Telescope. This combination of Gemini and Spitzer photometry along with compositional model analysis allows us to find the surface composition (organics, H2O, CO2, CH4, and other hydrated silicates) for these 12 objects. I found that my objects fit into one of four taxonomic classes found in the Kuiper Belt. We have found using the color analysis, that Haumea has water on its surface and Eris is most likely to have methane on its surface. By analyzing this data we measure the compositional mixing in the outer solar system.

  10. Quantum models with energy-dependent potentials solvable in terms of exceptional orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Schulze-Halberg, Axel; Roy, Pinaki

    2017-03-01

    We construct energy-dependent potentials for which the Schrödinger equations admit solutions in terms of exceptional orthogonal polynomials. Our method of construction is based on certain point transformations, applied to the equations of exceptional Hermite, Jacobi and Laguerre polynomials. We present several examples of boundary-value problems with energy-dependent potentials that admit a discrete spectrum and the corresponding normalizable solutions in closed form.

  11. The Parallax and the Energy-dependent Position of the IBEX Ribbon - Implication for its Origin

    NASA Astrophysics Data System (ADS)

    Swaczyna, P.; Bzowski, M.; Sokol, J. M.; Christian, E. R.; Funsten, H. O.; McComas, D. J.; Schwadron, N.

    2016-12-01

    Observations made by the Interstellar Boundary Explorer (IBEX) revealed an arc-like enhancement of the energetic neutral atom (ENA) flux in the sky, dubbed the IBEX ribbon. A number of mechanisms have since been proposed to explain these observations. Discrimination between different hypotheses is important for understanding the interaction between the solar wind and the local interstellar medium. The expected distances to the source region in these mechanisms span a range from 90 AU to a few hundred AU. The observational strategy of IBEX allows for determination of the ribbon's parallax. We precisely determined the apparent positions of the maximum signal of the ribbon observed from the opposite sides of the Sun. These apparent positions were subsequently corrected for the Compton-Getting effect and compensated for gravitational deflection and radiation pressure. We found that, after corrections, they differ by a parallax angle of 0.41±0.15 deg, which corresponds to a distance of 140+84/-38 AU. This suggests that the source is located just outside the heliopause. Moreover, the ribbon position is energy-dependent, as indicated by a systematic 10 deg shift of the ribbon center in the IBEX energy range. Several hypotheses on the origin of the ribbon with the source located in the outer heliosheath base on the secondary ENA mechanism. We adopted an analytical model of this mechanism with primary ENAs resulting from charge exchange operating in the latitudinally structured supersonic solar wind. We calculated the ribbon flux expected in this model and fitted the ribbon center for energies corresponding to IBEX energy steps. We found that the calculated sequence agrees with the observed one. The distance to the ribbon source obtained from parallax and the energy progression of the ribbon center taken together suggest that the secondary ENA mechanism is a plausible explanation for the ribbon origin.

  12. Energy-dependent expansion of .177 caliber hollow-point air gun projectiles.

    PubMed

    Werner, Ronald; Schultz, Benno; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2017-05-01

    Amongst hundreds of different projectiles for air guns available on the market, hollow-point air gun pellets are of special interest. These pellets are characterized by a tip or a hollowed-out shape in their tip which, when fired, makes the projectiles expand to an increased diameter upon entering the target medium. This results in an increase in release of energy which, in turn, has the potential to cause more serious injuries than non-hollow-point projectiles. To the best of the authors' knowledge, reliable data on the terminal ballistic features of hollow-point air gun projectiles compared to standard diabolo pellets have not yet been published in the forensic literature. The terminal ballistic performance (energy-dependent expansion and penetration) of four different types of .177 caliber hollow-point pellets discharged at kinetic energy levels from approximately 3 J up to 30 J into water, ordnance gelatin, and ordnance gelatin covered with natural chamois as a skin simulant was the subject of this investigation. Energy-dependent expansion of the tested hollow-point pellets was observed after being shot into all investigated target media. While some hollow-point pellets require a minimum kinetic energy of approximately 10 J for sufficient expansion, there are also hollow-point pellets which expand at kinetic energy levels of less than 5 J. The ratio of expansion (RE, calculated by the cross-sectional area (A) after impact divided by the cross-sectional area (A 0) of the undeformed pellet) of hollow-point air gun pellets reached values up of to 2.2. The extent of expansion relates to the kinetic energy of the projectile with a peak for pellet expansion at the 15 to 20 J range. To conclude, this work demonstrates that the hollow-point principle, i.e., the design-related enlargement of the projectiles' frontal area upon impact into a medium, does work in air guns as claimed by the manufacturers.

  13. Energy Dependence of Synchrotron X-Ray Rims in Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Tran, Aaron; Williams, Brian J.; Petre, Robert; Ressler, Sean M.; Reynolds, Stephen P.

    2015-01-01

    Several young supernova remnants exhibit thin X-ray bright rims of synchrotron radiation at their forward shocks. Thin rims require strong magnetic field amplification beyond simple shock compression if rim widths are only limited by electron energy losses. But, magnetic field damping behind the shock could produce similarly thin rims with less extreme field amplification. Variation of rim width with energy may thus discriminate between competing influences on rim widths. We measured rim widths around Tycho's supernova remnant in 5 energy bands using an archival 750 ks Chandra observation. Rims narrow with increasing energy and are well described by either loss-limited or damped scenarios, so X-ray rim width-energy dependence does not uniquely specify a model. But, radio counterparts to thin rims are not loss-limited and better reflect magnetic field structure. Joint radio and X-ray modeling favors magnetic damping in Tycho's SNR with damping lengths approximately 1-5% of remnant radius and magnetic field strengths approximately 50-400 micron G assuming Bohm diffusion. X-ray rim widths are approximately 1% of remnant radius, somewhat smaller than inferred damping lengths. Electron energy losses are important in all models of X-ray rims, suggesting that the distinction between loss-limited and damped models is blurred in soft X-rays. All loss-limited and damping models require magnetic fields approximately greater than 20 micron G, arming the necessity of magnetic field amplification beyond simple compression.

  14. Energy-dependent relaxation time in quaternary amorphous oxide semiconductors probed by gated Hall effect measurements

    NASA Astrophysics Data System (ADS)

    Socratous, Josephine; Watanabe, Shun; Banger, Kulbinder K.; Warwick, Christopher N.; Branquinho, Rita; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira; Sirringhaus, Henning

    2017-01-01

    Despite the success of exploiting the properties of amorphous oxide semiconductors for device applications, the charge transport in these materials is still not clearly understood. The observation of a definite Hall voltage suggests that electron transport in the conduction band is free-electron-like. However, the temperature dependence of the Hall and field-effect mobilities cannot be explained using a simple bandlike model. Here, we perform gated Hall effect measurements in field-effect transistors, which allow us to make two independent estimates of the charge carrier concentration and determine the Hall factor providing information on the energy dependence of the relaxation time. We demonstrate that the Hall factor in a range of sputtered and solution-processed quaternary amorphous oxides, such as a-InGaZnO, is close to two, while in ternary oxides, such as InZnO, it is near unity. This suggests that quaternary elements like Ga act as strong ionized impurity scattering centers in these materials.

  15. ENERGY DEPENDENCE OF SYNCHROTRON X-RAY RIMS IN TYCHO’S SUPERNOVA REMNANT

    SciTech Connect

    Tran, Aaron; Williams, Brian J.; Petre, Robert; Reynolds, Stephen P.

    2015-10-20

    Several young supernova remnants (SNRs) exhibit thin X-ray bright rims of synchrotron radiation at their forward shocks. Thin rims require strong magnetic field amplification beyond simple shock compression if rim widths are only limited by electron energy losses. But, magnetic field damping behind the shock could produce similarly thin rims with less extreme field amplification. Variation of rim width with energy may thus discriminate between competing influences on rim widths. We measured rim widths around Tycho's SNR in five energy bands using an archival 750 ks Chandra observation. Rims narrow with increasing energy and are well described by either loss-limited or damped scenarios, so X-ray rim width-energy dependence does not uniquely specify a model. But, radio counterparts to thin rims are not loss-limited and better reflect magnetic field structure. Joint radio and X-ray modeling favors magnetic damping in Tycho's SNR with damping lengths ∼1%–5% of remnant radius and magnetic field strengths ∼50–400 μG assuming Bohm diffusion. X-ray rim widths are ∼1% of remnant radius, somewhat smaller than inferred damping lengths. Electron energy losses are important in all models of X-ray rims, suggesting that the distinction between loss-limited and damped models is blurred in soft X-rays. All loss-limited and damping models require magnetic fields ≳20 μG, affirming the necessity of magnetic field amplification beyond simple compression.

  16. Energy dependence of mass, charge, isotopic, and energy distributions in neutron-induced fission of 235U and 239Pu

    NASA Astrophysics Data System (ADS)

    Pasca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kim, Y.

    2016-05-01

    The mass, charge, isotopic, and kinetic-energy distributions of fission fragments are studied within an improved scission-point statistical model in the reactions 235U+n and 239Pu+n at different energies of the incident neutron. The charge and mass distributions of the electromagnetic- and neutron-induced fission of 214,218Ra, 230,232,238U are also shown. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments.

  17. Microstructural Observations in a Cast Al-Si-Cu/TiC Composite

    NASA Astrophysics Data System (ADS)

    Karantzalis, A. E.; Lekatou, A.; Georgatis, E.; Poulas, V.; Mavros, H.

    2010-06-01

    A 3-5 vol.% TiC particulate Al-Si-Cu composite was prepared by diluting Al/20 vol.% TiC composite in an Al-7Si-4Cu alloy matrix. TiC particle distribution consists of isolated and clustered particles which are both located at the primary-α grain boundaries and at the areas of the last solidified liquid. Particle pushing by the solidification front is responsible for the final particle location. The solidified microstructure consists of primary and intermetallic phases formed by a sequence of possible eutectic reactions. No evidence of TiC particle degradation was observed.

  18. Crack healing in cross-ply composites observed by dynamic mechanical analysis

    NASA Astrophysics Data System (ADS)

    Nielsen, Christian; Nemat-Nasser, Sia

    2015-03-01

    Cross-ply composites with healable polymer matrices are characterized using dynamic mechanical analysis (DMA). The [90,0]s samples are prepared by embedding layers of unidirectional glass or carbon fibers in 2MEP4FS, a polymer with thermally reversible covalent cross-links, which has been shown to be capable of healing internal cracks and fully recovering fracture toughness when the crack surfaces are kept in contact. After fabrication, cracks in the composites' transverse plies are observed due to residual thermal stresses introduced during processing. Single cantilever bending DMA measurements show the samples exhibit periods of increasing storage moduli with increasing temperature. These results are accurately modeled as a one-dimensional composite, which captures the underlying physics of the phenomenon. The effect of cracks on the stiffness is accounted for by a shear-lag model. The predicted crack density of the glass fiber composite is shown to fall within a range observed from microscopy images. Crack healing occurs as a function of temperature, with chemistry and mechanics-based rationales given for the onset and conclusion of healing. The model captures the essential physics of the phenomenon and yields results in accord with experimental observations.

  19. Latitudinal and Energy Dependence of Energetic Neutral Atom Spectral Indices Measured by the Interstellar Boundary Explorer

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Allegrini, F.; Dayeh, M. A.; Funsten, H.; Heerikhuisen, J.; McComas, D. J.; Fuselier, S. A.; Pogorelov, N.; Schwadron, N. A.; Zank, G. P.; Zirnstein, E. J.

    2015-04-01

    We investigate the latitudinal and energy dependence of the globally distributed 0.5-6 keV energetic neutral atom (ENA) spectra measured by the Interstellar Boundary Explorer (IBEX) during the first 3 yrs of the mission. Our results are: (1) the ENA spectral indices at the two lowest energies (0.89 and 1.47 keV) exhibit no clear trend with ecliptic latitude θ, while those at ˜2.29 and ˜3.41 keV exhibit a clear latitudinal pattern; flatter spectra occur above 60° latitude and steeper spectra occur ±30° of the equator. (2) The latitudinal dependence of the spectral indices at different energies can be represented by the cosine function γ ={{a}0}+{{a}1}cos ({{a}2}θ ) with unique offsets, amplitudes, and phase angles; the higher energy ENA indices transition to successively larger amplitudes within ±45° of the equator. Our results confirm the previously reported latitudinal organization of the ENA spectra and their remarkable similarity to that of the solar wind (SW) speed observed by Ulysses in the inner heliosphere. While earlier studies showed that the ˜0.5-6 keV globally distributed ENA spectral indices could be represented as single power laws over much of the sky, our new results indicate that this is an over-simplification because the spectral indices have an energy and latitude dependence. This dependence is an important factor that must be taken into consideration by models and simulations that seek to map the IBEX ENA observations back to the latitudinal profile of the SW speed structure observed in the inner heliosphere.

  20. Latittudinal and energy dependence of energetic neutral atom spectral indices measured by the Interstellar Boundary Explorer

    DOE PAGES

    Desai, M. I.; Allegrini, F.; Dayeh, M. A.; ...

    2015-03-30

    Here, we investigate the latitudinal and energy dependence of the globally distributed 0.5-6 keV energetic neutral atom (ENA) spectra measured by the Interstellar Boundary Explorer (IBEX) during the first 3 yrs of the mission. Our results are: (1) the ENA spectral indices at the two lowest energies (0.89 and 1.47 keV) exhibit no clear trend with ecliptic latitude θ, while those at ~2.29 and ~3.41 keV exhibit a clear latitudinal pattern; flatter spectra occur above 60° latitude and steeper spectra occur ±30° of the equator. (2) The latitudinal dependence of the spectral indices at different energies can be represented bymore » the cosine function γ =a0 + a1 cos (a2θ) with unique offsets, amplitudes, and phase angles; the higher energy ENA indices transition to successively larger amplitudes within ±45° of the equator. The results confirm the previously reported latitudinal organization of the ENA spectra and their remarkable similarity to that of the solar wind (SW) speed observed by Ulysses in the inner heliosphere. And while earlier studies showed that the ~0.5-6 keV globally distributed ENA spectral indices could be represented as single power laws over much of the sky, our new results indicate that this is an over-simplification because the spectral indices have an energy and latitude dependence. Furthermore, this dependence is an important factor that must be taken into consideration by models and simulations that seek to map the IBEX ENA observations back to the latitudinal profile of the SW speed structure observed in the inner heliosphere.« less

  1. Latittudinal and energy dependence of energetic neutral atom spectral indices measured by the Interstellar Boundary Explorer

    SciTech Connect

    Desai, M. I.; Allegrini, F.; Dayeh, M. A.; Funsten, H.; Heerikhuisen, J.; McComas, D. J.; Fuselier, S. A.; Pogorelov, N.; Schwadron, N. A.; Zank, G. P.; Zirnstein, E. J.

    2015-03-30

    Here, we investigate the latitudinal and energy dependence of the globally distributed 0.5-6 keV energetic neutral atom (ENA) spectra measured by the Interstellar Boundary Explorer (IBEX) during the first 3 yrs of the mission. Our results are: (1) the ENA spectral indices at the two lowest energies (0.89 and 1.47 keV) exhibit no clear trend with ecliptic latitude θ, while those at ~2.29 and ~3.41 keV exhibit a clear latitudinal pattern; flatter spectra occur above 60° latitude and steeper spectra occur ±30° of the equator. (2) The latitudinal dependence of the spectral indices at different energies can be represented by the cosine function γ =a0 + a1 cos (a2θ) with unique offsets, amplitudes, and phase angles; the higher energy ENA indices transition to successively larger amplitudes within ±45° of the equator. The results confirm the previously reported latitudinal organization of the ENA spectra and their remarkable similarity to that of the solar wind (SW) speed observed by Ulysses in the inner heliosphere. And while earlier studies showed that the ~0.5-6 keV globally distributed ENA spectral indices could be represented as single power laws over much of the sky, our new results indicate that this is an over-simplification because the spectral indices have an energy and latitude dependence. Furthermore, this dependence is an important factor that must be taken into consideration by models and simulations that seek to map the IBEX ENA observations back to the latitudinal profile of the SW speed structure observed in the inner heliosphere.

  2. Eating frequency and weight and body composition: a systematic review of observational studies.

    PubMed

    Canuto, Raquel; da Silva Garcez, Anderson; Kac, Gilberto; de Lira, Pedro Israel Cabral; Olinto, Maria Teresa Anselmo

    2017-08-01

    The present review aimed to examine the association of eating frequency with body weight or body composition in adults of both sexes. PubMed, EMBASE and Scopus databases were searched. PRISMA and MOOSE protocols were followed. Observational studies published up to August 2016 were included. The methodological quality of the studies was assessed with the Downs and Black checklist. A systematic review of the literature. Adults (n 136 052); the majority of studies were developed in the USA and Europe. Thirty-one articles were included in the review: two prospective and twenty-nine cross-sectional studies. Thirteen per cent of the studies received quality scores above 80 %. The assessment of eating frequency and body composition or body weight varied widely across the studies. Potential confounders were included in 73 % of the studies. Fourteen studies reported an inverse association between eating frequency and body weight or body composition, and seven studies found a positive association. The majority of studies applied multiple analyses adjusted for potential confounders, such as sex, age, education, income, smoking, physical activity and alcohol intake. Six studies took into account under-reporting of eating frequency and/or energy intake in the analysis, and one investigated the mediation effect of energy intake. There is not sufficient evidence confirming the association between eating frequency and body weight or body composition when misreporting bias is taken into account. However, in men, a potential protective effect of high eating frequency was observed on BMI and visceral obesity.

  3. Energy dependent time delays of kHz oscillations due to thermal Comptonization

    NASA Astrophysics Data System (ADS)

    Kumar, Nagendra; Misra, Ranjeev

    2014-12-01

    We study the energy dependent photon variability from a thermal Comptonizing plasma that is oscillating at kHz frequencies. In particular, we solve the linearized time-dependent Kompaneets equation and consider the oscillatory perturbation to be either in the soft photon source or in the heating rate of the plasma. For each case, we self consistently consider the energy balance of the plasma and the soft photon source. The model incorporates the possibility of a fraction of the Comptonized photons impinging back into the soft photon source. We find that when the oscillation is due to the soft photon source, the variation of the fractional root mean sqaure (rms) is nearly constant with energy and the time-lags are hard. However, for the case when the oscillation is due to variation in the heating rate of the corona, and when a significant fraction of the photons impinge back into the soft photon source, the rms increases with energy and the time-lags are soft. As an example, we compare the results with the ˜850 Hz oscillation observed on 1996 March 3 for 4U 1608-52 and show that both the observed soft time-lags as well as the rms versus energy can be well described by such a model where the size of the Comptonizing plasma is ˜1 km. Thus, modelling of the time-lags as due to Comptonization delays, can provide tight constraints on the size and geometry of the system. Detailed analysis would require well-constrained spectral parameters.

  4. Speckle Observations of Composite Spectrum Stars with PISCO in 1993-1998

    NASA Astrophysics Data System (ADS)

    Prieur, J.-L.; Koechlin, L.; Ginestet, N.; Carquillat, J.-M.; Aristidi, E.; Scardia, M.; Arnold, L.; Avila, R.; Festou, M. C.; Morel, S.; Pérez, J.-P.

    2002-09-01

    We present speckle interferometry observations of 47 composite spectrum stars obtained between 1993 and 1998 at the Pic du Midi Observatory with the PISCO speckle camera. 76% of over 150 independent 10 minute sequences of observations led to a companion detection. Binary component angular separations ranged from 0.05" to 1.2". We also obtained a series of 23 measurements of an additional nine close binaries. PISCO observations confirm, for the first time since their discovery, the duplicity of HD 29104 (L4), HD 83808 (WGT 1Aa), HD 183912 Aa' (BON Ap), and HD 156729 (HR 6436). Discovered as double by Hipparcos, the particularly difficult to resolve HD 156729 was observed despite the large magnitude difference, Δm=4.2, between its two components. Based on observations made with the Télescope Bernard Lyot at Pic du Midi Observatory, France.

  5. Neutral composition gravity waves in the thermosphere observed by ESRO 4

    NASA Technical Reports Server (NTRS)

    Trinks, H.; Mayr, H. G.

    1975-01-01

    Neutral composition waves with a wave length of about 5000 km and a wave period of about 2.5 hours were observed by ESRO 4 in the altitude region of 250 km. The amplitudes are of the order of 25 percent for Ar, 15 percent for N2, and roughly 10 percent for He and O at 25 percent geographic latitude. The wave amplitudes are seen to decrease towards lower latitudes suggesting that the composition waves are launched by auroral sources. Simultaneous ground based ionosonde measurements of the F2 layer critical frequency at mid and low latitudes show a wave period consistent with the satellite observations. The theoretical investigation with a multi-component model shows that diffusion plays a major role in explaining these wave phenomena. The phase and amplitude relation between atmospheric constituents are sensitive to the altitude region in which energy is deposited thus suggesting that Joule heating or soft particle precipitation are the predominant energy sources.

  6. In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite

    NASA Astrophysics Data System (ADS)

    Saucedo-Mora, L.; Lowe, T.; Zhao, S.; Lee, P. D.; Mummery, P. M.; Marrow, T. J.

    2016-12-01

    SiC-SiC ceramic matrix composites are candidate materials for fuel cladding in Generation IV nuclear fission reactors and as accident tolerant fuel clad in current generation plant. Experimental methods are needed that can detect and quantify the development of mechanical damage, to support modelling and qualification tests for these critical components. In situ observations of damage development have been obtained of tensile and C-ring mechanical test specimens of a braided nuclear grade SiC-SiC ceramic composite tube, using a combination of ex situ and in situ computed X-ray tomography observation and digital volume correlation analysis. The gradual development of damage by matrix cracking and also the influence of non-uniform loading are examined.

  7. ROSAT Observations of the Composite Supernova Remnant G326.3-1.8

    DTIC Science & Technology

    1993-12-20

    We have observed X-ray emission from the radio-defined composite (shell plus filled-center plerion) Galactic supernova remnant ( SNR ) 0326.3 - 1.8...radio studies that would place the SNR significantly further than this lower limit. Higher quality radio absorption measurements are warranted to confirm...our distance determination. This result, along with other recent ROSAT studies of SNRs , implies that improved distance estimates may be established

  8. EPR dosimetry of cortical bone and tooth enamel irradiated with X and gamma rays: Study of energy dependence

    SciTech Connect

    Schauer, D.A.; Links, J.M. ); Desrosiers, M.F.; Le, F.G.; Seltzer, S.M. )

    1994-04-01

    Previous investigators have reported that the radiation-induced EPR signal intensity in compact or cortical bone increases up to a factor of two with decreasing photon energy for a given absorbed dose. If the EPR signal intensity was dependent on energy, it could limit the application of EPR spectrometry and the additive reirradiation method to obtain dose estimates. We have recently shown that errors in the assumptions governing conversion of measured exposure to absorbed dose can lead to similar [open quotes]apparent[close quotes] energy-dependence results. We hypothesized that these previous results were due to errors in the estimated dose in bone, rather than the effects of energy dependence per se. To test this hypothesis we studied human adult cortical bone from male and female donors ranging in age from 23 to 95 years, and bovine tooth enamel, using 34 and 138 keV average energy X-ray beams and [sup 137]Cs (662 keV) and [sup 60]Co (1250 keV) [gamma] rays. In a femur from a 47-year-old male (subject 1), there was a difference of borderline significance at the [alpha] = 0.05 level in the mean radiation-induced hydroxyapatite signal intensities as a function of photon energy. No other statistically significant differences in EPR signal intensity as a function of photon energy were observed in this subject, or in the tibia from a 23-year-old male (subject 2) and the femur from a 75-year-old female (subject 3). However, there was a trend toward a decrease (12-15%) in signal intensity at the lowest energy compared with the highest energy in subjects 1 and 3. Further analysis of the data from subject 1 revealed that this trend, which is in the opposite direction of previous reports but is consistent with theory, is statistically significant. There were no efforts of energy dependence in the tooth samples. 16 refs., 7 figs., 5 tabs.

  9. The CEOS Atmospheric Composition Constellation: Enhancing the Value of Space-Based Observations

    NASA Technical Reports Server (NTRS)

    Eckman, Richard; Zehner, Claus; Al-Saadi, Jay

    2015-01-01

    The Committee on Earth Observation Satellites (CEOS) coordinates civil space-borne observations of the Earth. Participating agencies strive to enhance international coordination and data exchange and to optimize societal benefit. In recent years, CEOS has collaborated closely with the Group on Earth Observations (GEO) in implementing the Global Earth Observing System of Systems (GEOSS) space-based objectives. The goal of the CEOS Atmospheric Composition Constellation (ACC) is to collect and deliver data to improve monitoring, assessment and predictive capabilities for changes in the ozone layer, air quality and climate forcing associated with changes in the environment through coordination of existing and future international space assets. A project to coordinate and enhance the science value of a future constellation of geostationary sensors measuring parameters relevant to air quality supports the forthcoming European Sentinel-4, Korean GEMS, and US TEMPO missions. Recommendations have been developed for harmonization to mutually improve data quality and facilitate widespread use of the data products.

  10. Some Physicochemical Phenomena Observed During Fabrication of Mg-C Cast Composites

    NASA Astrophysics Data System (ADS)

    Olszówka-Myalska, Anita

    2016-08-01

    Some effects acquired in composites processed under industrial conditions were presented. Glassy carbon particles (GCp) and short carbon fibers were applied in magnesium matrix composites fabricated by suspension casting. As the matrix magnesium alloys with Al and without Al but with Zn, Zr and rare earth elements (RE) were used. The main interest was focused on the behavior of the reinforcing components, depending on the magnesium alloying elements. The observation of the stirred suspensions during their industrial processing detected an effect of carbon components' migration to the top of the crucible, suggesting segregation processes. Experiments with unmixed suspensions performed by way of remelting the composites with uniformly distributed reinforcement showed that the segregation effect depends on the magnesium matrix composition. In the case of the alloy with Al, two zones with (top) and without reinforcement can be formed. For the alloys with Zn, Zr, and RE, an additional zone of segregated carbon reinforcement can appear directly at the bottom of the crucible. The SEM/EDS examination also showed some differences in the influence of the magnesium matrix on the carbon reinforcement dependent on the applied alloying elements. The most destructive effect was detected for the Al-containing alloy and minor defects in GCp were formed when Gd with Nd were applied.

  11. Hanle precession in the presence of energy-dependent coupling between localized states and an epitaxial graphene spin channel

    NASA Astrophysics Data System (ADS)

    van den Berg, J. J.; Kaverzin, A.; van Wees, B. J.

    2016-12-01

    Hanle spin precession measurements are a common method to extract the spin transport properties of graphene. In epitaxial graphene on silicon carbide, these measurements show unexpected behavior, due to presumed localized states in the carbon buffer layer that is present between the channel and the substrate. As a consequence, the Hanle curve narrows in its magnetic field dependence and can show an unconventional shape, which has been experimentally observed and modeled in previous studies. Here, we extend the previously developed model by assuming that the localized states are charge traps, that have a power-law distribution of trapping times. Our simulations show that the energy dependence of these trapping times can be extracted from the temperature evolution of the Hanle curve, which was previously observed in experiments. Our extended model gives better insight into what processes play a role when a spin channel is coupled to localized states and their relation to the experimental observations.

  12. Energy-dependent parameterization of heavy-ion absorption cross sections.

    PubMed

    Townsend, L W; Wilson, J W

    1986-01-01

    An energy-dependent parameterization of the total absorption (reaction) cross sections for heavy ion (Z > or = 2) collisions at energies above 25 MeV per nucleon is presented. The formula will be especially useful in heavy-ion transport applications.

  13. Gamma-rigid regime of the Bohr-Mottelson Hamiltonian in energy-dependent approach

    NASA Astrophysics Data System (ADS)

    Alimohammadi, M.; Hassanabadi, H.

    2016-10-01

    We determine the energy spectrum and wave function for the Bohr-Mottelson Hamiltonian on γ-rigid regime separately with the harmonic and Coulomb energy-dependent potentials. We study the effect of potential parameters on the energy levels and probability density distribution. The transition rates are determined in each case.

  14. The Compton Microscope: Using the Energy Dependence of QPO Amplitudes to Probe Their Origin in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Lehr, D. E.; Wagoner, R. V.; Wilms, J.

    1999-12-01

    We report the development of a new tool to determine the origin of quasi-periodic oscillations (QPOs) in accretion disk systems. The technique uses the source energy spectrum and the energy dependence of the QPO fractional amplitude to restrict the location of the emission region of the modulated photons, which are assumed to originate in the inner accretion disk. Both Monte-Carlo and semi-analytical methods are presented. We assume the accretion disk is enshrouded by a slab atmosphere of hot electrons in which unsaturated Compton scattering produces the high-energy spectrum. Properties of the atmosphere, in particular the electron temperature, are assumed functions of radius from the central compact object. We show that our model reproduces the observed energy dependence of the fractional amplitude of the 67 Hz QPO in GRS 1915+105 if the QPO is assumed to originate at a particular region of the inner disk. This work was supported by NASA Graduate Student Researchers Program grant NGT 5-50044 to D.E.L., NASA grant NAG 5-3102 to R.V.W., and grant number Sta 173/22 of the Deutsche Forschungsgemeinschaft to J.W. This research has made use of data obtained through the High Energy Astrophysics Science Archive Research Center Online Service, provided by the NASA/Goddard Space Flight Center.

  15. Using Apollo sites and soils to compositionally ground truth Diviner Lunar Radiometer observations

    NASA Astrophysics Data System (ADS)

    Greenhagen, B. T.; Lucey, P. G.; Song, E.; Thomas, I. R.; Bowles, N. E.; Donaldson Hanna, K. L.; Foote, E. J.; Paige, D. A.; Allen, C.

    2012-12-01

    Apollo landing sites and returned soils afford us a unique opportunity to "ground truth" Diviner Lunar Radiometer compositional observations, which are the first global, high resolution, thermal infrared measurements of an airless body. The Moon is the most accessible member of the most abundant class of solar system objects, which includes Mercury, asteroids, and icy satellites. And the Apollo samples returned from the Moon are the only extraterrestrial samples with known spatial context. Here we compare Diviner observations of Apollo landing sites and compositional and spectral laboratory measurements of returned Apollo soils. Diviner, onboard NASA's Lunar Reconnaissance Orbiter, has three spectral channels near 8 μm that were designed to characterize the mid-infrared emissivity maximum known as the Christiansen feature (CF), a well-studied indicator of silicate mineralogy. It has been observed that thermal infrared spectra measured in simulated lunar environment (SLE) are significantly altered from spectra measured under terrestrial or martian conditions, with enhanced CF contrast and shifted CF position relative to other spectral features. Therefore only thermal emission experiments conducted in SLE are directly comparable to Diviner data. With known compositions, Apollo landing sites and soils are important calibration points for the Diviner dataset, which includes all six Apollo sites at approximately 200 m spatial resolution. Differences in measured CFs caused by composition and space weathering are apparent in Diviner data. Analyses of Diviner observations and SLE measurements for a range of Apollo soils show good agreement, while comparisons to thermal reflectance measurements under ambient conditions do not agree well, which underscores the need for SLE measurements and validates our measurement technique. Diviner observations of Apollo landing sites are also correlated with geochemical measurements of Apollo soils from the Lunar Sample Compendium. In

  16. Towards retrievals of aerosol chemical composition from satellite observations by POLDER/PARASOL polarimeter

    NASA Astrophysics Data System (ADS)

    Li, L.; Dubovik, O.; Derimian, Y.; Lapyonok, T.; Schuster, G. L.; Ducos, F.

    2016-12-01

    The information about composition of aerosols has a great importance for monitoring and understanding of climate and environment dynamics. Such information can be obtained using situ measurements or chemical transport models. However, in situ sampling has limited spatial and temporal coverage, while estimations have large uncertainties. The present work enables the monitoring of aerosol chemical species from space-borne observations, providing observationally-based results with spatial and temporal coverage. Following the ideas of Schuster et al.(2005, 2009, 2016), we retrieve chemical composition directly from remote sensing measurements without intermediate retrieval of the refractive index (in contrast with Schuster's approach). This approach is expected to reduce the influence of modeling uncertainties, and to provide additional constraints in situations where remote sensing observations do not have enough spectral sensitivity to refractive index. One of principal difficulties is the identification of an adequate model for linking refractive index to chemical composition. Therefore, the initial effort of this work has focused on identifying an optimal "chemical composition to refractive index" conversion model. With that purpose, we first tested the retrieval approach using a simplified volume-weighting model and updated by the Maxwell Garnett mixing model. This concept was incorporated into the GRASP algorithm designed to retrieve an extended set of atmospheric parameters from remote sensing observations. Then a series of sensitivity tests using synthetic data of POLDER/PARASOL were conducted, and followed by inversion of real PARASOL observations. The sensitivity tests showed that these two models allow the retrieval to distinguish amongst the assumed chemical species. Results obtained from real PARASOL data demonstrated good agreement with the optical characteristics provided by AERONET (e.g., r2 of AOT 0.9). The obtained patterns of chemical component

  17. Using Apollo Sites and Soils to Compositionally Ground Truth Diviner Lunar Radiometer Observations

    NASA Technical Reports Server (NTRS)

    Greenhagen, Benjamin T.; Lucey, P. G.; Song, E.; Thomas, I R.; Bowles, N. E.; DonaldsonHanna, K. L.; Allen, C.; Foote, E. J.; Paige, D .A.

    2012-01-01

    Apollo landing sites and returned soils afford us a unique opportunity to "ground truth" Diviner Lunar Radiometer compositional observations, which are the first global, high resolution , thermal infrared measurements of an airless body. The Moon is the most accessible member of the most abundant class of solar system objects, which includes Mercury, asteroids, and icy satellites. And the Apollo samples returned from the Moon are the only extraterrestrial samples with known spatial context. Here we compare Diviner observations of Apollo landing sites and compositional and spectral laboratory measurements of returned Apollo soils. Diviner, onboard NASA's Lunar Reconnaissance Orbiter, has three spectral channels near 8 micron that were designed to characterize the mid-infrared emissivity maximum known as the Christiansen feature (CF), a well-studied indicator of silicate mineralogy. It has been observed that thermal infrared spectra measured in simulated lunar environment (SLE) are significantly altered from spectra measured under terrestrial or martian conditions, with enhanced CF contrast and shifted CF position relative to other spectral features. Therefore only thermal emission experiments conducted in SLE are directly comparable to Diviner data. With known compositions, Apollo landing sites and soils are important calibration points for the Diviner dataset, which includes all six Apollo sites at approximately 200 m spatial resolution. Differences in measured CFs caused by composition and space weathering are apparent in Diviner data. Analyses of Diviner observations and SLE measurements for a range of Apollo soils show good agreement, while comparisons to thermal reflectance measurements under ambient conditions do not agree well, which underscores the need for SLE measurements and validates our measurement technique. Diviner observations of Apollo landing sites are also correlated with geochemical measurements of Apollo soils from the Lunar Sample Compendium

  18. Comparison of Martian magnetic pileup boundary with ion composition boundary observed by MAVEN

    NASA Astrophysics Data System (ADS)

    Matsunaga, K.; Seki, K.; Brain, D. A.; Hara, T.; Masunaga, K.; McFadden, J. P.; Halekas, J. S.; Mitchell, D. L.; Mazelle, C. X.; Connerney, J. E. P.; Jakosky, B. M.

    2015-12-01

    Martian upper atmosphere directly interacts with the solar wind, since Mars does not possess the intrinsic global magnetic field. This interaction forms a transition region between the shocked solar wind (magnetosheath) and the ionosphere, in which characteristic boundary structures are embedded. Previous studies have shown existence of the induced magnetosphere or magnetic pileup region in the transition region. Mars Global Surveyor (MGS) observed the magnetic pileup boundary (MPB), a boundary between the magnetosheath and the magnetic pileup region by its magnetometer and electron reflectometer [e.g., Vignes et al., 2000, Trotignon et al., 2006]. On one hand, Phobos 2 and Mars Express (MEX) observed the ion composition boundary (ICB) by their ion mass analyzer [e.g., Breus et al., 1991, Dubinin et al., 2006], where the ion composition changes from the solar wind origin to planetary origin dominant. Due to the lack of continuous simultaneous observations of the magnetic field and ion composition, however, relations between MPB and ICB are far from understood. In this study, we investigate relative locations and characteristics of MPB and ICB and their dependence on solar wind parameters, utilizing a full package of plasma instruments onboard Mars Atmosphere and Volatile EvolutioN (MAVEN). We conducted a statistical analysis of the ion, electron, and magnetic field data obtained by MAVEN from November 2014 to March 2015 in order to investigate relations between MPB and ICB. We identified MPB from the electron and magnetic field data by inspection based on Trotignon et al. [2006]. We calculated the density ratio between the planetary heavy ions and the solar wind protons to investigate the ion composition around MPB. Results show that there is a north-south asymmetry in locations of MPB and ICB. Observations also indicate that the relative location of MPB and ICB has deference between dayside and nightside. The MPB locations also depend on the solar wind parameters

  19. In situ observation of partial melting in superplastic aluminum alloy composites at high temperature

    SciTech Connect

    Koike, J. . Dept. of Mechanical Engineering); Mabuchi, M. ); Higashi, K. . Dept. of Mechanical Systems Engineering)

    1995-01-01

    The possibility of partial melting and its relations to the superplasticity at high strain rates were studied with transmission electron microscopy and differential scanning calorimetry in Al-Cu-Mg(2124), Al-Mg (5052), and Al-Mg-Si (6061) alloys reinforced with Si[sub 3]N[sub 4] particles. Calorimetry measurements of all three composites showed a sharp endothermic peak at an optimum superplastic temperature. At the same temperature, transmission electron microscopy showed the melting of grain boundaries and interfaces, suggesting direct correlations between partial melting and the superplasticity. Solute segregation was also observed at boundaries and interfaces, and was discussed as causes for partial melting.

  20. Ionosphere of venus: first observations of the dayside ion composition near dawn and dusk.

    PubMed

    Taylor, H A; Brinton, H C; Bauer, S J; Hartle, R E; Donahue, T M; Cloutier, P A; Michel, F C; Daniell, R E; Blackwell, B H

    1979-02-23

    The first in situ measurements of the composition of the ionosphere of Venus are provided by independent Bennett radio-frequency ion mass spectrometers on the Pioneer Venus bits and orbiter spacecraft, exploring the dawn and duskside regions, respectively. An extensive composition of ion species, rich in oxygen, nitrogen, and carbon chemistry is idenitified. The dominant topside ion is O(+), with C(+), N(+), H(+), and He(+) as prominent secondary ions. In the lower ionosphere, the ionzization peak or F(1) layer near 150 kilometers reaches a concentration of about 5 x l0(3) ions per cubic centimeter, and is composed of the dominant molecular ion, O(2)(+), with NO(+), CO(+), and CO(2)(+), constituting less than 10 percent of the total. Below the O(+) peak near 200 kilometers, the ions exhibit scale heights consistent with a neutral gas temperature of about 180 K near the terminator. In the upper ionosphere, scale heights of all species reflect the effects of plasma transport, which lifts the composition upward to the often abrupt ionopause, or thermal ion boundary, which is observed to vary in height between 250 to 1800 kilometers, in response to solar wind dynamics.

  1. C_60/Ferromagnet Composites: Observation of a Temperature-Dependent Crossover from Negative to Positive Magnetoresistance

    NASA Astrophysics Data System (ADS)

    Hudspeth, Q. M.; Arnason, S. B.; Hebard, A. F.

    2001-03-01

    In this work we report on the fabrication and characterization of composite thin films (M_xC_60) of C_60 with ferromagnetic metals (M). Magnetoresistance (MR) measurements will be presented for Ni_xC_60 samples with x in the range 20 - 90. A change in MR from negative (characteristic of pure Ni) at high temperatures to positive at low temperatures is observed as the sample temperature is decreased from 300 to 2 K. This crossover from negative to positive MR is similar to that seen below 1 K in phosphorous-doped silicon[1], and more recently at higher temperatures in Fe_1-yCo_ySi[2] and is attributed to quantum interference effects in the presence of Coulomb interactions with spin splitting. This interpretation can be tested for the M_xC_60 composites by comparing the MR of M_xC_60 (M= Fe, Co, Ni) with Gd_xC_60. In the Gd composite we would expect the positive MR to be absent since magnetism in Gd arises from local moments and the carriers are no longer responsible for both magnetism and conduction as they are in Fe_1-yCo_ySi. [1] T. F. Rosenbaum et al., Phys. Rev. Lett. 47, 1758 (1981). [2] N. Manyala, et al., Nature 404, 581 (2000).

  2. The composition of M-type asteroids II: Synthesis of spectroscopic and radar observations

    NASA Astrophysics Data System (ADS)

    Neeley, J. R.; Clark, B. E.; Ockert-Bell, M. E.; Shepard, M. K.; Conklin, J.; Cloutis, E. A.; Fornasier, S.; Bus, S. J.

    2014-08-01

    This work updates and expands on results of our long-term radar-driven observational campaign of main-belt asteroids (MBAs) focused on Bus-DeMeo Xc- and Xk-type objects (Tholen X and M class asteroids) using the Arecibo radar and NASA Infrared Telescope Facilities (Ockert-Bell, M.E., Clark, B.E., Shepard, M.K., Rivkin, A.S., Binzel, R.P., Thomas, C.A., DeMeo, F.E., Bus, S.J., Shah, S. [2008]. Icarus 195, 206-219; Ockert-Bell, M.E., Clark, B.E., Shepard, M.K., Issacs, R.A., Cloutis, E.A., Fornasier, S., Bus, S.J. [2010]. Icarus 210, 674-692; Shepard, M.K. et al. [2008a]. Icarus 193, 20-38; Shepard, M.K. et al. [2008b]. Icarus 195, 184-205; Shepard, M.K. et al. [2010]. Icarus 215, 547-551). Eighteen of our targets were near-simultaneously observed with radar and those observations are described in Shepard et al. (Shepard, M.K. et al. [2010]. Icarus 215, 547-551). We combine our near-infrared data with available visible wavelength data for a more complete compositional analysis of our targets. Compositional evidence is derived from our target asteroid spectra using two different methods, a χ2 search for spectral matches in the RELAB database and parametric comparisons with meteorites. We present four new methods of parametric comparison, including discriminant analysis. Discriminant analysis identifies meteorite type with 85% accuracy. This paper synthesizes the results of these two analog search algorithms and reconciles those results with analogs suggested from radar data (Shepard, M.K. et al. [2010]. Icarus 215, 547-551). We have observed 29 asteroids, 18 in conjunction with radar observations. For eighteen out of twenty-nine objects observed (62%) our compositional predictions are consistent over two or more methods applied. We find that for our Xc and Xk targets the best fit is an iron meteorite for 34% of the samples. Enstatite chondrites were best fits for 6 of our targets (21%). Stony-iron meteorites were best fits for 2 of our targets (7%). A discriminant

  3. Solar wind observations with the ion composition instrument aboard the ISEE-3/ICE spacecraft

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Coplan, M. A.; Bochsler, P.; Geiss, J.

    1989-01-01

    The principal observations obtained by the Ion Composition Instrument (ICI) flown on the ISEE-3/ICE spacecraft, which was in the solar wind from September 1978 to the end of 1982, before being directed to the far magnetotail of the Earth are discussed. Almost continuous observations were made of the abundances of 3He++, 4He++, 06+, 07+, Ne, Si and Fe in various charge states, and of their bulk speeds and temperatures. The results show that there is a strong tendency in the collisionless solar wind for the ionic temperatures to be proportional to the masses. For heavier ions these temperatures exceed typical coronal electron temperatures. 4He++, especially in high speed streams, moves faster than H+, and travels at the same speed as heavier ions. The mechanism leading to this heating and rapid streaming is still not entirely clear.

  4. Solar wind observations with the ion composition instrument aboard the ISEE-3 ICE spacecraft

    NASA Technical Reports Server (NTRS)

    Ogilvie, K. W.; Coplan, M. A.; Bochsler, P.; Geiss, J.

    1989-01-01

    The principal observations obtained by the Ion Composition Instrument (ICI) flown on the ISEE-3/ICE spacecraft, which was in the solar wind from September 1978 to the end of 1982, before being directed to the far magnetotail of the Earth are discussed. Almost continuous observations were made of the abundances of 3He++, 4He++, O6+, O7+, Ne, Si and Fe in various charge states, and of their bulk speeds and temperatures. The results show that there is a strong tendency in the collisionless solar wind for the ionic temperatures to be proportional to the masses. For heavier ions these temperatures exceed typical coronal electron temperatures. 4He++, especially in high speed streams, moves faster than H+, and travels at the same speed as heavier ions. The mechanism leading to this heating and rapid streaming is still not entirely clear.

  5. Ionosphere of venus: first observations of the effects of dynamics on the dayside ion composition.

    PubMed

    Taylor, H A; Brinton, H C; Bauer, S J; Hartle, R E; Cloutier, P A; Michel, F C; Daniell, R E; Donahue, T M; Maehl, R C

    1979-02-23

    Bennett radio-frequency ion mass spectrometers have returned the first in situ measurements of the Venus dayside ion composition, including evidence of pronounced structural variability resulting from a dynamic interaction with the solar wind. The ionospheric envelope, dominated above 200 kilometers by O(+), responds dramatically to variations in the solar wind pressure, Which is observed to compress the thermal ion distributions from heights as great as 1800 kilometers inward to 280 kilometers. At the thermal ion boundary, or ionopause, the ambient ions are swept away by the solar wind, such that a zone of accelerated suprathermnal plasma is encountered. At higher altitudes, extending outward on some orbits for thousands of kilometers to the bows shock, energetic ion currents are detected, apparently originating from the shocked solar wind plasma. Within the ionosphere, observations of pass-to-pass differences in the ion scale heights are indicative of the effects of ion convection stimlulated by the solar wind interaction.

  6. Deep Chandra Observations of the Composite Supernova Remnant G327.1-1.1

    NASA Astrophysics Data System (ADS)

    Temim, Tea

    2014-11-01

    G327.1-1.1 is a composite SNR containing a symmetric radio shell and a PWN that has likely been disrupted by the reverse shock. Previous X-ray studies reveled a complex morphology; a compact core embedded in bow-shock-like structure, prong-like features extending into large arcs, and thermal emission from the SNR shell. We present deep, 350 ks Chandra observations of G327.1-1.1 that provide new information about the properties of the system, such as the spatial variations in the spectral index across the observed PWN structures, and the thermal temperature across the SNR shell. We also present preliminary HD simulations of an asymmetric PWN/SNR interaction in a system with a moving pulsar, expanding into a non-uniform ISM density, which offer new insight into the nature of the remnant.

  7. COMPOSITION STRUCTURE OF INTERPLANETARY CORONAL MASS EJECTIONS FROM MULTISPACECRAFT OBSERVATIONS, MODELING, AND COMPARISON WITH NUMERICAL SIMULATIONS

    SciTech Connect

    Reinard, Alysha A.; Mulligan, Tamitha E-mail: blynch@ssl.berkeley.edu

    2012-12-20

    We present an analysis of the ionic composition of iron for two interplanetary coronal mass ejections (ICMEs) observed on 2007 May 21-23 by the ACE and STEREO spacecraft in the context of the magnetic structure of the ejecta flux rope, sheath region, and surrounding solar wind flow. This analysis is made possible due to recent advances in multispacecraft data interpolation, reconstruction, and visualization as well as results from recent modeling of ionic charge states in MHD simulations of magnetic breakout and flux cancellation coronal mass ejection (CME) initiation. We use these advances to interpret specific features of the ICME plasma composition resulting from the magnetic topology and evolution of the CME. We find that, in both the data and our MHD simulations, the flux ropes centers are relatively cool, while charge state enhancements surround and trail the flux ropes. The magnetic orientations of the ICMEs are suggestive of magnetic breakout-like reconnection during the eruption process, which could explain the spatial location of the observed iron enhancements just outside the traditional flux rope magnetic signatures and between the two ICMEs. Detailed comparisons between the simulations and data were more complicated, but a sharp increase in high iron charge states in the ACE and STEREO-A data during the second flux rope corresponds well to similar features in the flux cancellation results. We discuss the prospects of this integrated in situ data analysis and modeling approach to advancing our understanding of the unified CME-to-ICME evolution.

  8. The Wmo Global Atmosphere Watch Programme: Global Framework for Atmospheric Composition Observations and Analysis

    NASA Astrophysics Data System (ADS)

    Tarasova, O. A.; Jalkanen, L.

    2010-12-01

    The WMO Global Atmosphere Watch (GAW) Programme is the only existing long-term international global programme providing an international coordinated framework for observations and analysis of the chemical composition of the atmosphere. GAW is a partnership involving contributors from about 80 countries. It includes a coordinated global network of observing stations along with supporting facilities (Central Facilities) and expert groups (Scientific Advisory Groups, SAGs and Expert Teams, ETs). Currently GAW coordinates activities and data from 27 Global Stations and a substantial number of Regional and Contributing Stations. Station information is available through the GAW Station Information System GAWSIS (http://gaw.empa.ch/gawsis/). There are six key groups of variables which are addressed by the GAW Programme, namely: ozone, reactive gases, greenhouse gases, aerosols, UV radiation and precipitation chemistry. GAW works to implement integrated observations unifying measurements from different platforms (ground based in situ and remote, balloons, aircraft and satellite) supported by modeling activities. GAW provides data for ozone assessments, Greenhouse Gas Bulletins, Ozone Bulletins and precipitation chemistry assessments published on a regular basis and for early warnings of changes in the chemical composition and related physical characteristics of the atmosphere. To ensure that observations can be used for global assessments, the GAW Programme has developed a Quality Assurance system. Five types of Central Facilities dedicated to the six groups of measurement variables are operated by WMO Members and form the basis of quality assurance and data archiving for the GAW global monitoring network. They include Central Calibration Laboratories (CCLs) that host primary standards (PS), Quality Assurance/Science Activity Centres (QA/SACs), World Calibration Centers (WCCs), Regional Calibration Centers (RCCs), and World Data Centers (WDCs) with responsibility for

  9. Corrections to charge exchange spectroscopic measurements in TFTR due to energy-dependent excitation rates

    SciTech Connect

    Howell, R.B.; Fonck, R.J.; Knize, R.J.; Jaehnig, K.P.

    1988-08-01

    The use of charge exchange spectrocopy to determine plasma rotation speeds and ion temperature is complicated by the energy dependence of the excitation cross sections. The Doppler-broadened spectral line shape is distorted by the relative velocity between the neutral hydrogen atoms of the injected beam and impurity ions. The asymmetric nature of the energy dependence of this cross section causes a non-motional shift of the line center and a non-thermal change in the line width. These effects vary with the angles between the beam direction, rotation velocity direction, and direction of the viewing sightline. When viewing two neutral beams at different angles on TFTR, the two measurements of v/sub phi/(r) show discrepancies about 20 to 30% with each other. The calculation of the spectral intensity profiles, using the excitation rates available, overcorrects these discrepancies and indicates the need for better excitation coefficients. 10 refs., 5 figs.

  10. Bohr Hamiltonian with an energy-dependent γ-unstable Coulomb-like potential

    NASA Astrophysics Data System (ADS)

    Budaca, R.

    2016-10-01

    An exact analytical solution for the Bohr Hamiltonian with an energy-dependent Coulomb-like γ-unstable potential is presented. Due to the linear energy dependence of the potential's coupling constant, the corresponding spectrum in the asymptotic limit of the slope parameter resembles the spectral structure of the spherical vibrator, however with a different state degeneracy. The parameter free energy spectrum as well as the transition rates for this case are given in closed form and duly compared with those of the harmonic U(5) dynamical symmetry. The model wave functions are found to exhibit properties that can be associated to shape coexistence. A possible experimental realization of the model is found in few medium nuclei with a very low second 0+ state known to exhibit competing prolate, oblate and spherical shapes.

  11. Investigation of the energy dependence of the orbital light curve in LS 5039

    NASA Astrophysics Data System (ADS)

    Chang, Z.; Zhang, S.; Ji, L.; Chen, Y. P.; Kretschmar, P.; Kuulkers, E.; Collmar, W.; Liu, C. Z.

    2016-11-01

    LS 5039 is so far the best-studied γ-ray binary system at multiwavelength energies. A time-resolved study of its spectral energy distribution (SED) shows that above 1 keV its power output is changing along its binary orbit as well as being a function of energy. To disentangle the energy dependence of the power output as a function of orbital phase, we investigated in detail the orbital light curves as derived with different telescopes at different energy bands. We analysed the data from all existing International Gamma-Ray Astrophysics Laboratory (INTEGRAL)/INTEGRAL on-board Imager/INTEGRAL Soft Gamma-Ray Imager observations of the source and generated the most up-to-date orbital light curves at hard X-ray energies. In the γ-ray band, we carried out orbital phase-resolved analysis of Fermi-Large Area Telescope (LAT) data between 30 MeV and 10 GeV in five different energy bands. We found that, at ≲100 MeV and ≳1 TeV the peak of the γ-ray emission is near orbital phase 0.7, while between ˜100 MeV and ˜1 GeV it moves close to orbital phase 1.0 in an orbital anticlockwise manner. This result suggests that the transition region in the SED at soft γ-rays (below a hundred MeV) is related to the orbital phase interval of 0.5-1.0 but not to the one of 0.0-0.5, when the compact object is `behind' its companion. Another interesting result is that between 3 and 20 GeV no orbital modulation is found, although Fermi-LAT significantly (˜18σ) detects LS 5039. This is consistent with the fact that at these energies, the contributions to the overall emission from the inferior conjunction phase region (INFC, orbital phase 0.45-0.9) and from the superior conjunction phase region (orbital phase 0.9-0.45) are equal in strength. At TeV energies the power output is again dominant in the INFC region and the flux peak occurs at phase ˜0.7.

  12. Enabling in-situ observation of organic aerosol speciated composition: Advances in TAG instrumentation (Invited)

    NASA Astrophysics Data System (ADS)

    Goldstein, A. H.; Worton, D. R.; Zhao, Y.; Kreisberg, N. M.; Teng, A. P.; Hering, S. V.; Gorecki, T.; Ranjan, M.; Hennigan, C. J.; Lambe, A.; Nguyen, N.; Donahue, N. M.; Robinson, A. L.; Jayne, J. T.; Williams, B. J.; Worsnop, D. R.

    2009-12-01

    The complex chemical composition of atmospheric aerosols, particularly the organic carbon portion, presents unique measurement challenges. We developed the Thermal Desorption Aerosol Gas chromatograph (TAG) system for hourly in-situ speciation of a wide range of primary and secondary organic compounds in aerosols. This instrument combines an impactor particle collector with thermal desorption followed by gas chromatography and mass spectrometric detection to provide separation, identification, and quantification of organic constituents at the molecular level. Observed compounds include alkanes, aldehydes, ketones, PAHs, monocarboxylic acids, and many more. The hourly time resolution measurements provided by TAG capture dynamic and frequent changes in aerosol composition that would not be resolved using traditional filter collection. TAG measurements also provide a much larger data set, facilitating the use of statistical approaches such as positive matrix factorization to identify source categories and their contributions to the total observed aerosol. Because TAG identifies organic compounds at the molecular level, it can build on the extensive work obtained by traditional GC/MS analysis of filter samples on source emission profiles and secondary organic aerosol formation. We report here continued developments in the capabilities of our TAG system. Most recently, we have incorporated a two-dimensional chromatography (GC×GC) capability into TAG, and now have that instrument operating with a time of flight (TOF) MS detector. Two-dimensional chromatography provides two types of compound separation, most typically by volatility and polarity. It uses two columns with different stationary phases connected in series separated by a modulator. The modulator periodically traps analytes eluting from the first column, and injects fractions of this effluent onto the second column in the form of narrow pulses providing additional separation for co-eluting peaks. The approach

  13. Energy dependence of the trapping of uranium atoms by aluminum oxide surfaces

    NASA Technical Reports Server (NTRS)

    Librecht, K. G.

    1979-01-01

    The energy dependence of the trapping probability for sputtered U-235 atoms striking an oxidized aluminum collector surface at energies between 1 eV and 184 eV was measured. At the lowest energies, approximately 10% of the uranium atoms are not trapped, while above 10 eV essentially all of them stick. Trapping probabilities averaged over the sputtered energy distribution for uranium incident on gold and mica are also presented.

  14. Energy dependent 3-body loss in out-of-equilibrium 1D Bose gases

    NASA Astrophysics Data System (ADS)

    Zundel, Laura; Xia, Lin; Wilson, Joshua; Riou, Jean-Felix; Weiss, David

    2015-05-01

    We measure the three-body loss of out-of-equilibrium one-dimensional (1D) Bose gases and find that it depends strongly on the average energy of the distribution. The theory of three-body loss in 1D gas experiments is incomplete due to the challenge of calculating how correlations evolve. We present an empirical model based on energy dependent correlations and show that it reproduces the data.

  15. Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC.

    PubMed

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2014-08-01

    Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy and tends to vanish by 7.7 GeV. This implies the dominance of hadronic interactions over partonic ones at lower collision energies.

  16. Momentum and energy dependence of the anomalous high-energy dispersion in the electronic structure of high temperature superconductors.

    PubMed

    Inosov, D S; Fink, J; Kordyuk, A A; Borisenko, S V; Zabolotnyy, V B; Schuster, R; Knupfer, M; Büchner, B; Follath, R; Dürr, H A; Eberhardt, W; Hinkov, V; Keimer, B; Berger, H

    2007-12-07

    Using high-resolution angle-resolved photoemission spectroscopy we have studied the momentum and photon energy dependence of the anomalous high-energy dispersion, termed waterfalls, between the Fermi level and 1 eV binding energy in several high-T_{c} superconductors. We observe strong changes of the dispersion between different Brillouin zones and a strong dependence on the photon energy around 75 eV, which we associate with the resonant photoemission at the Cu3p-->3d_{x;{2}-y;{2}} edge. We conclude that the high-energy "waterfall" dispersion results from a strong suppression of the photoemission intensity at the center of the Brillouin zone due to matrix element effects and is, therefore, not an intrinsic feature of the spectral function. This indicates that the new high-energy scale in the electronic structure of cuprates derived from the waterfall-like dispersion may be incorrect.

  17. Beam-Energy Dependence of Charge Separation along the Magnetic Field in Au +Au Collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-08-01

    Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au +Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy and tends to vanish by 7.7 GeV. This implies the dominance of hadronic interactions over partonic ones at lower collision energies.

  18. Momentum and Energy Dependence of the Anomalous High-Energy Dispersion in the Electronic Structure of High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Inosov, D. S.; Fink, J.; Kordyuk, A. A.; Borisenko, S. V.; Zabolotnyy, V. B.; Schuster, R.; Knupfer, M.; Büchner, B.; Follath, R.; Dürr, H. A.; Eberhardt, W.; Hinkov, V.; Keimer, B.; Berger, H.

    2007-12-01

    Using high-resolution angle-resolved photoemission spectroscopy we have studied the momentum and photon energy dependence of the anomalous high-energy dispersion, termed waterfalls, between the Fermi level and 1 eV binding energy in several high-Tc superconductors. We observe strong changes of the dispersion between different Brillouin zones and a strong dependence on the photon energy around 75 eV, which we associate with the resonant photoemission at the Cu3p→3dx2-y2 edge. We conclude that the high-energy “waterfall” dispersion results from a strong suppression of the photoemission intensity at the center of the Brillouin zone due to matrix element effects and is, therefore, not an intrinsic feature of the spectral function. This indicates that the new high-energy scale in the electronic structure of cuprates derived from the waterfall-like dispersion may be incorrect.

  19. Thermoelectrics in Coulomb-coupled quantum dots: Cotunneling and energy-dependent lead couplings

    NASA Astrophysics Data System (ADS)

    Walldorf, Nicklas; Jauho, Antti-Pekka; Kaasbjerg, Kristen

    2017-09-01

    We study thermoelectric effects in Coulomb-coupled quantum-dot (CCQD) systems beyond lowest-order tunneling processes and the often applied wide-band approximation. To this end, we present a master-equation (ME) approach based on a perturbative T -matrix calculation of the charge and heat tunneling rates and transport currents. Applying the method to transport through a noninteracting single-level QD, we demonstrate excellent agreement with the Landauer-Büttiker theory when higher-order (cotunneling) processes are included in the ME. Next, we study the effect of cotunneling and energy-dependent lead couplings on the heat currents in a system of two CCQDs. We find that cotunneling processes (i) can dominate the off-resonant heat currents at low temperature and bias compared to the interdot interaction, and (ii) give rise to a pronounced reduction of the cooling power achievable with the recently demonstrated Maxwell's demon cooling mechanism. Furthermore, we demonstrate that the cooling power can be boosted significantly by carefully engineering the energy dependence of the lead couplings to filter out undesired transport processes. Our findings emphasize the importance of higher-order cotunneling processes as well as engineered energy-dependent lead couplings in the optimization of the thermoelectric performance of CCQD systems.

  20. Circumstellar Dust Composition of M-type Mira Variables observed with phase with Spitzer

    NASA Astrophysics Data System (ADS)

    Güth, Tina; Creech-Eakman, Michelle J.

    2017-01-01

    Our research concerns the detailed dust composition surrounding Mira variables. These regular pulsators are easily observed in the optical and infrared due to their changes in brightness. Data on 25 galactic Miras were obtained with the Spitzer Infrared Spectrograph (IRS) instrument in 2008-09 under a GO program led by Creech-Eakman. The stars were observed approximately once per month to track changes in their brightness and spectral features. This dataset is unique for both the number of observations of each star and the high SNR due to their intrinsic brightness.The stars in this study span the range of oxygen- to carbon-rich, with each type exhibiting certain known solid state components (i.e dust). The current focus is on trying to reproduce dust spectral features in the short, high (SH) and long, high (LH) resolution wavelength range (~9.7 - 40 microns) of the oxygen-rich Miras (C/O < 1). These high resolution, reduced spectra reveal a wonderful “forest” of features that provide insight into the stellar atmospheres and circumstellar dust composition with phase.Using the 1-D radiative transfer modeling code, DUSTY, we are attempting to identify several broad, and some sharp, dust features by including recently derived laboratory spectral indices for dust opacities. Prominent features seen in oxygen-rich Mira variables include potential identifications of water ice emission, as well as amorphous and crystalline silicates. We implement a greybody continuum obtained from MARCS, a 1-D hydrostatic spherical LTE model grid code, as the stellar continuum input for DUSTY. Using a greybody rather than a blackbody curve allows us to obtain a better agreement between the DUSTY spectrum and the Spitzer data. We will show these amended model fits that will improve the identification of the dust and other features in the spectra.

  1. The effects of Pilates training on flexibility and body composition: an observational study.

    PubMed

    Segal, Neil A; Hein, Jane; Basford, Jeffrey R

    2004-12-01

    To assess claims regarding the effects of Pilates training on flexibility, body composition, and health status. An observational prospective study. A community athletic club. A sample of 47 adults (45 women, 2 men) who presented for Pilates training. Not applicable. Fingertip-to-floor distance, truncal lean body mass by bioelectric impedance, health status by questionnaire and visual analog scale were assessed at baseline, 2, 4, and 6 months (+/-1 wk). Thirty-two of 47 enrolled subjects met the protocol requirements of missing no more than 1 weekly 1-hour session Pilates mat class during each 2-month period. Investigators were blinded to measurements from previous time points. Median (interquartile range [IQR]) fingertip-to-floor distance improved from baseline by 3.4 cm (1.3-5.7 cm), 3.3 cm (0.3- 7.8 cm), and 4.3 cm (1.5-7.6 cm) at 2, 4, and 6 months, respectively (paired nonparametric analysis, all P<.01). There were no statistically significant changes in truncal lean body mass, height, weight, or other body composition parameters. Self-assessment of health also did not change in a statistically significant manner from its baseline median (IQR) value of 77 mm (69-85 mm). Pilates training may result in improved flexibility. However, its effects on body composition, health status, and posture are more limited and may be difficult to establish. Further study might involve larger sample sizes, comparison with an appropriate control group, and assessment of motor unit recruitment as well as strength of truncal stabilizers.

  2. Gafchromic EBT3 film dosimetry in electron beams - energy dependence and improved film read-out.

    PubMed

    Sipilä, Petri; Ojala, Jarkko; Kaijaluoto, Sampsa; Jokelainen, Ilkka; Kosunen, Antti

    2016-01-01

    For megavoltage photon radiation, the fundamental dosimetry characteristics of Gafchromic EBT3 film were determined in  60Co gamma ray beam with addition of experimental and Monte Carlo (MC)-simulated energy dependence of the film for 6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams in water phantom. For the film read-out, two phase correction of scanner sensitivity was applied: a matrix correction for scanning area and dose-dependent correction by iterative procedure. With these corrections, the uniformity of response can be improved to be within ±50 pixel values (PVs). To improve the read-out accuracy, a procedure with flipped film orientations was established. With the method, scanner uniformity can be improved further and dust particles, scratches and/or dirt on scanner glass can be detected and eliminated. Responses from red and green channels were averaged for read-out, which decreased the effect of noise present in values from separate channels. Since the signal level with the blue channel is considerably lower than with other channels, the signal variation due to different perturbation effects increases the noise level so that the blue channel is not recommended to be used for dose determination. However, the blue channel can be used for the detection of emulsion thickness variations for film quality evaluations with unexposed films. With electron beams ranging from 6 MeV to 16 MeV and at reference measurement conditions in water, the energy dependence of the EBT3 film is uniform within 0.5%, with uncertainties close to 1.6% (k=2). Including 6 MV photon beam and the electron beams mentioned, the energy dependence is within 1.1%. No notable differences were found between the experimental and MC-simulated responses, indicating negligible change in intrinsic energy dependence of the EBT3 film for 6 MV photon beam and 6 MeV-16 MeV electron beams. Based on the dosimetric characteristics of the EBT3 film, the read-out procedure established

  3. Gafchromic EBT3 film dosimetry in electron beams - energy dependence and improved film read-out.

    PubMed

    Sipilä, Petri; Ojala, Jarkko; Kaijaluoto, Sampsa; Jokelainen, Ilkka; Kosunen, Antti

    2016-01-08

    For megavoltage photon radiation, the fundamental dosimetry characteristics of Gafchromic EBT3 film were determined in 60Co gamma ray beam with addition of experimental and Monte Carlo (MC)-simulated energy dependence of the film for 6 MV photon beam and 6 MeV, 9 MeV, 12 MeV, and 16 MeV electron beams in water phantom. For the film read-out, two phase correction of scanner sensitivity was applied: a matrix correction for scanning area and dose-dependent correction by iterative procedure. With these corrections, the uniformity of response can be improved to be within ± 50 pixel values (PVs). To improve the read-out accuracy, a procedure with flipped film orientations was established. With the method, scanner uniformity can be improved further and dust particles, scratches and/or dirt on scan-ner glass can be detected and eliminated. Responses from red and green channels were averaged for read-out, which decreased the effect of noise present in values from separate channels. Since the signal level with the blue channel is considerably lower than with other channels, the signal variation due to different perturbation effects increases the noise level so that the blue channel is not recommended to be used for dose determination. However, the blue channel can be used for the detection of emulsion thickness variations for film quality evaluations with unexposed films. With electron beams ranging from 6 MeV to 16 MeV and at reference measurement conditions in water, the energy dependence of the EBT3 film is uniform within 0.5%, with uncertainties close to 1.6% (k = 2). Including 6 MV photon beam and the electron beams mentioned, the energy dependence is within 1.1%. No notable differences were found between the experimental and MC-simulated responses, indicating negligible change in intrinsic energy dependence of the EBT3 film for 6 MV photon beam and 6 MeV-16 MeV electron beams. Based on the dosimetric characteristics of the EBT3 film, the read-out procedure established

  4. ENERGY-DEPENDENT GAMMA-RAY BURST PULSE WIDTH DUE TO THE CURVATURE EFFECT AND INTRINSIC BAND SPECTRUM

    SciTech Connect

    Peng, Z. Y.; Ma, L.; Zhao, X. H.; Yin, Y.; Bao, Y. Y.

    2012-06-20

    Previous studies have found that the width of the gamma-ray burst (GRB) pulse is energy dependent and that it decreases as a power-law function with increasing photon energy. In this work we have investigated the relation between the energy dependence of the pulse and the so-called Band spectrum by using a sample including 51 well-separated fast rise and exponential decay long-duration GRB pulses observed by BATSE (Burst and Transient Source Experiment on the Compton Gamma Ray Observatory). We first decompose these pulses into rise and decay phases and find that the rise widths and the decay widths also behave as a power-law function with photon energy. Then we investigate statistically the relations between the three power-law indices of the rise, decay, and total width of the pulse (denoted as {delta}{sub r}, {delta}{sub d}, and {delta}{sub w}, respectively) and the three Band spectral parameters, high-energy index ({alpha}), low-energy index ({beta}), and peak energy (E{sub p} ). It is found that (1) {alpha} is strongly correlated with {delta}{sub w} and {delta}{sub d} but seems uncorrelated with {delta}{sub r}; (2) {beta} is weakly correlated with the three power-law indices, and (3) E{sub p} does not show evident correlations with the three power-law indices. We further investigate the origin of {delta}{sub d}-{alpha} and {delta}{sub w}-{alpha}. We show that the curvature effect and the intrinsic Band spectrum could naturally lead to the energy dependence of the GRB pulse width and also the {delta}{sub d}-{alpha} and {delta}{sub w}-{alpha} correlations. Our results hold so long as the shell emitting gamma rays has a curved surface and the intrinsic spectrum is a Band spectrum or broken power law. The strong {delta}{sub d}-{alpha} correlation and inapparent correlations between {delta}{sub r} and the three Band spectral parameters also suggest that the rise and decay phases of the GRB pulses have different origins.

  5. Experimental observations and finite element analysis of the initiation of fiber microbuckling in notched composite laminates

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1989-01-01

    An understanding was developed of the factors that determine the semi-circular edge-notched compressive strength and the associated failure mode(s) were identified of thermoplastic composite laminates with multidirectional stacking sequences. The experimental observations and the detailed literature review suggest at least four factors that affected the determination of the strain levels at which fiber microbuckling initiates and thus, partially control the composite's compression strength. The dependent variables studied are the compressive strength of a reduced gage section compression specimen and the compression strength of a compression specimen with two semi-circular edge notches (no opposite free edges) centered along the gage section. In this research, specimens containing two semi-circular edge notches (no opposite free edges) were loaded in compression at a relatively slow rate to provide more stable development of fiber microbuckling damage. The results indicate that the local constraints (free surfaces, supporting ply orientation, and resin-rich regions) significantly affect the strain level for the initiation of in-plane fiber microbuckling. Preliminary results at an elevated temperature, 77 C, showed the shear stress yield strength of the resin was reduced and consequently, the resistance to fiber microbuckling was also reduced. The finite element analysis of the perfectly straight fiber problem indicates that the free surface effect causes a 10 percent reduction in the critical buckling strain. However, the experimentally measured reduction for fibers with an initial fiber curvature, was 35 percent.

  6. Ion Composition of Titan's Ionosphere Observed During T9 Magnetotail Crossing

    NASA Technical Reports Server (NTRS)

    Sittler, Edward; Hartle, Richard; Cooper, John; Shappirio, Marcus; Johnson, Robert; Simpson, David

    2011-01-01

    In a recent paper, Sittler et al., (2010) presented new results on the T9 encounter by the Cassini spacecraft when it passed through Titan s induced magnetotail. Two crossings were observed, but the first crossing, event 1, is thought to be out flowing ionosphere plasma. T9 is ideal for CAPS IMS probing of the ionosphere, since the ion densities at the higher altitudes of the T9 flyby approx. 10,000 km, allows measurements to be made down to 1 eV without saturating its detectors. Sittler et al., (2010) reported possible detection of NH4+ ions, but favored the detection of CH5+ and C2H5+ ions. In this report we investigate both the medium mass resolution (straight through (ST)) and high mass resolution (linear electric field (LEF)) composition data from the Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS). We present a more in depth analysis of the composition data and make comparisons with ionospheric models including nitrogen chemistry such as that by Vuitton et al. (2007). The LEF data does not support NH4+ identification, but favors a CH5+ and C2H5+ identification, but also molecular ions C2N+ and CH2NH2+ are chemically allowed possibilities.

  7. Impact of Deep Convection on UTLS Composition -New Observations from Recent Airborne Field Studies

    NASA Astrophysics Data System (ADS)

    Pan, L.

    2014-12-01

    Deep convection redistributes chemical trace gas species throughout the troposphere. Tropopause-penetrating deep convection injects water vapor and pollutants into the lower stratosphere. To obtain the necessary information for characterizing its role in chemistry-climate coupling, the impact of deep convection on UTLS ozone, water vapor, and short-lived organic species has been a key component of several recent airborne field campaigns. We present selected findings and observational highlights from two airborne field campaigns. They are the CONvective TRansport of Active Species in the Tropics (CONTRAST) experiment, conducted January-February 2014 over the western Pacific using the NCAR GV research aircraft, in collaboration with the UK FAAM BAe146 and the NASA Global Hawk, and the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) experiment, conducted August-September 2013 over the north America using the NASA DC-8 and ER-2 research aircraft.

  8. Satellite Observations of Arctic and Antarctic Polar Stratospheric Clouds and Atmospheric Composition

    NASA Astrophysics Data System (ADS)

    Lambert, A.; Santee, M. L.; Wu, D. L.

    2012-12-01

    We present an overview of polar stratospheric clouds (PSCs) and atmospheric composition during the 2008-2012 Arctic and Antarctic seasons using A-Train measurements of lidar backscatter and gas phase concentrations of HNO3, H2O, HCl and ClO. The processes of denitrification, dehydration and chlorine activation are investigated. PSC types are classified using the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite which measures vertical profiles of aerosol and cloud backscatter at 532 nm (total and perpendicular polarization) and 1064 nm. Ambient temperature/pressure profiles and constituent gases are obtained from the Aura Microwave Limb Sounder (MLS). Since April 2008 these two instruments have flown in close formation in the A-Train, maintaining colocation across track to less than 10 km and with temporal sampling differences less than 30 seconds.

  9. An Introduction to Critical Points for Biophysicists; Observations of Compositional Heterogeneity in Lipid Membranes

    PubMed Central

    Honerkamp-Smith, Aurelia R.; Veatch, Sarah L.; Keller, Sarah L.

    2011-01-01

    Scaling laws associated with critical points have the power to greatly simplify our description of complex biophysical systems. For the general reader, we first review basic concepts and equations associated with critical phenomena for the general reader. We then apply these concepts to the specific biophysical system of lipid membranes. We recently reported that lipid membranes can contain composition fluctuations that behave in a manner consistent with the two-dimensional Ising universality class. Near the membrane’s critical point, these fluctuations are micron-sized, clearly observable by fluorescence microscopy. At higher temperatures, above the critical point, we expect to find submicron fluctuations. In separate work, we have reported that plasma membranes isolated directly from cells exhibit the same Ising behavior as model membranes do. We review other models describing submicron lateral inhomogeneity in membranes, including microemulsions, nanodomains, and mean field critical fluctuations, and we describe experimental tests that may distinguish these models. PMID:18930706

  10. Recent laboratory and field observations of the chemical composition of atmospheric nanoparticles

    NASA Astrophysics Data System (ADS)

    Smith, J. N.; Winkler, P.; Hildebrandt Ruiz, L.; Lawler, M. J.; Ortega, J.; Fry, J.; Barsanti, K. C.; McMurry, P. H.; Johnston, M. V.

    2012-12-01

    This presentation will focus on understanding the species and mechanisms that are responsible for the formation and growth of atmospheric nanoparticles. We report 10 - 40 nm diameter nanoparticle chemical composition measurements performed in two coastal sites (Mace Head, Ireland, and Lewes, Delaware USA) and two forested sites (Hyytiälä, Finland, and Manitou Forest, Colorado USA) with the recently-developed High Resolution Time-of-Flight Thermal Desorption Chemical Ionization Mass Spectrometer (HTOF-TDCIMS). These field measurements are supplemented by laboratory experiments of particle formation and growth performed at NCAR using a flow tube apparatus and a Teflon bag reaction chamber, and by thermodynamic modeling. Together, our field and laboratory observations point to crucial roles played in nanoparticle growth by two compounds: organic acids and organonitrates. The first, organic acids, are major contributors to the organic fraction in sub-20 nm diameter biogenic nanoparticles but appear to be less abundant in the organic fraction of larger particles, the latter of which are dominated by multifunctional carbonyl- and alcohol-containing compounds. The observed changes in chemical composition of the organic fraction as a function of particle size are supported by thermodynamic modeling results. The second, organonitrates, are commonly found in ambient nanoparticles as small as 10 nm in diameter. However unlike organic acids, organonitrates become increasingly more important in nanoparticle growth as particle size increases. Laboratory experiments suggest that organonitrates formed from the nitrate radical oxidation of biogenic organic compounds, a subset of total organonitrates, exhibit particularly low volatility and can thus partition into the smallest nanoparticles. This is confirmed by HTOF-TDCIMS measurements of 10 - 20 nm diameter particles, which show that particulate phase organonitrates peak in the morning, shortly following the period where

  11. Excitation energy-dependent nature of Raman scattering spectrum in GaInNAs/GaAs quantum well structures.

    PubMed

    Erol, Ayse; Akalin, Elif; Sarcan, Fahrettin; Donmez, Omer; Akyuz, Sevim; Arikan, Cetin M; Puustinen, Janne; Guina, Mircea

    2012-11-28

    The excitation energy-dependent nature of Raman scattering spectrum, vibration, electronic or both, has been studied using different excitation sources on as-grown and annealed n- and p-type modulation-doped Ga1 - xInxNyAs1 - y/GaAs quantum well structures. The samples were grown by molecular beam technique with different N concentrations (y = 0%, 0.9%, 1.2%, 1.7%) at the same In concentration of 32%. Micro-Raman measurements have been carried out using 532 and 758 nm lines of diode lasers, and the 1064 nm line of the Nd-YAG laser has been used for Fourier transform-Raman scattering measurements. Raman scattering measurements with different excitation sources have revealed that the excitation energy is the decisive mechanism on the nature of the Raman scattering spectrum. When the excitation energy is close to the electronic band gap energy of any constituent semiconductor materials in the sample, electronic transition dominates the spectrum, leading to a very broad peak. In the condition that the excitation energy is much higher than the band gap energy, only vibrational modes contribute to the Raman scattering spectrum of the samples. Line shapes of the Raman scattering spectrum with the 785 and 1064 nm lines of lasers have been observed to be very broad peaks, whose absolute peak energy values are in good agreement with the ones obtained from photoluminescence measurements. On the other hand, Raman scattering spectrum with the 532 nm line has exhibited only vibrational modes. As a complementary tool of Raman scattering measurements with the excitation source of 532 nm, which shows weak vibrational transitions, attenuated total reflectance infrared spectroscopy has been also carried out. The results exhibited that the nature of the Raman scattering spectrum is strongly excitation energy-dependent, and with suitable excitation energy, electronic and/or vibrational transitions can be investigated.

  12. Polar stratospheric clouds observed by the ILAS-II in the Antarctic region: Dual compositions and variation of compositions during June to August of 2003

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Choi, W.; Lee, K.-M.; Park, J. H.; Massie, S. T.; Sasano, Y.; Nakajima, H.; Yokota, T.

    2006-07-01

    Compositions and effective radii of polar stratospheric clouds (PSCs) in the Antarctic region from 5 June to 28 August of 2003 are determined using transmittance data from the Improved Limb Atmospheric Spectrometer-II (ILAS-II). Dual compositions are derived for 83 Antarctic cases. The primary components are β-NAT (β form of nitric acid trihydrate), NAW (nitric acid water, or SBS, supercooled binary solution), and ICE. Other minor composition components are LTA (liquid ternary aerosol, or STS, supercooled ternary solution), α-NAT (α form of NAT), NAD (nitric acid dihydrate), and SAW (sulfuric acid water). Three single compositions are found; that is, β-NAT particles were observed from 11 June to 12 August, NAW particles were observed from 28 June to 24 July, and ICE particles were observed from 28 July to 25 August. During this period, dual compositions are also found, i.e., NAW + β-NAT, β-NAT + ICE, NAW + ICE, β-NAT + NAD, β-NAT + LTA, and β-NAT + SAW. For this observation period, temperatures varied from 195 K to 180 K while measurements were made progressively in time as latitude varied from 65°S to 80°S. This mixture of compositions is assumed to be either two separate patches of PSCs or a mixture of two different types along the line of sight. The feasibility of the coexistence of dual compositions in a PSC and importance of determination of the PSC particle type for the study of heterogeneous chemistry for ozone are briefly discussed.

  13. On the energy dependence of the radial diffusion coefficient and spectra of inner radiation belt particles - Analytic solutions and comparison with numerical results

    NASA Technical Reports Server (NTRS)

    Westphalen, H.; Spjeldvik, W. N.

    1982-01-01

    A theoretical method by which the energy dependence of the radial diffusion coefficient may be deduced from spectral observations of the particle population at the inner edge of the earth's radiation belts is presented. This region has previously been analyzed with numerical techniques; in this report an analytical treatment that illustrates characteristic limiting cases in the L shell range where the time scale of Coulomb losses is substantially shorter than that of radial diffusion (L approximately 1-2) is given. It is demonstrated both analytically and numerically that the particle spectra there are shaped by the energy dependence of the radial diffusion coefficient regardless of the spectral shapes of the particle populations diffusing inward from the outer radiation zone, so that from observed spectra the energy dependence of the diffusion coefficient can be determined. To insure realistic simulations, inner zone data obtained from experiments on the DIAL, AZUR, and ESRO 2 spacecraft have been used as boundary conditions. Excellent agreement between analytic and numerical results is reported.

  14. On the energy dependence of the radial diffusion coefficient and spectra of inner radiation belt particles - Analytic solutions and comparison with numerical results

    NASA Technical Reports Server (NTRS)

    Westphalen, H.; Spjeldvik, W. N.

    1982-01-01

    A theoretical method by which the energy dependence of the radial diffusion coefficient may be deduced from spectral observations of the particle population at the inner edge of the earth's radiation belts is presented. This region has previously been analyzed with numerical techniques; in this report an analytical treatment that illustrates characteristic limiting cases in the L shell range where the time scale of Coulomb losses is substantially shorter than that of radial diffusion (L approximately 1-2) is given. It is demonstrated both analytically and numerically that the particle spectra there are shaped by the energy dependence of the radial diffusion coefficient regardless of the spectral shapes of the particle populations diffusing inward from the outer radiation zone, so that from observed spectra the energy dependence of the diffusion coefficient can be determined. To insure realistic simulations, inner zone data obtained from experiments on the DIAL, AZUR, and ESRO 2 spacecraft have been used as boundary conditions. Excellent agreement between analytic and numerical results is reported.

  15. Observations of the ring current composition at L less than 4

    NASA Astrophysics Data System (ADS)

    Lundin, R.; Lyons, L. R.; Pisarenko, N.

    1980-06-01

    Observations showing that the low energy (less than 17 keV) portion of the ring current at L less than 4 is composed mainly of O(+) and He(+) ions during quiet times and the recovery of magnetic storms are presented. The data were obtained from the ion composition experiment on board the Prognoz-7 satellite during several passes through the ring current region. For L less than 3.5, the relative abundance of H(+) was only a few percent of the ion energy density in the energy range of 0.2-17 keV. Although O(+) normally dominates for L less than 4, the relative contribution of He(+) increases with decreasing L, and in one case became more abundant than O(+) for L less than 3. One example of a storm injection shows dominance by O(+) ions (82%) with H(+) only giving a minor contribution (15%) to the density. These observations are consistent with inferences based on charge exchange, H(+) being most rapidly lost and He(+) being the most stable.

  16. In-situ observation of nucleated polymer crystallization in polyoxymethylene sandwich composites

    NASA Astrophysics Data System (ADS)

    Slouf, Miroslav; Krejcikova, Sabina; Vackova, Tatana; Kratochvil, Jaroslav; Novak, Libor

    2015-03-01

    We introduce a dynamic sandwich method, which can be used for in-situ observation and quantification of polymer crystallization nucleated by micro/nanoparticles. The method was applied on polyoxymethylene (POM) composites with three nucleating agents: talc micropowder (POM/mTalc), chalk nanopowder (POM/nChalk) and titanate nanotubes (POM/TiNT). The nucleating agents were deposited between polymer films, the resulting sandwich samples were consolidated by thermal treatment, and their microtomed cross-sections were observed during isothermal crystallization by polarized light microscopy. As the intensity of polarized light was shown to be proportional to the relative crystallinity, the PLM results could be fitted to Avrami equation and the nucleating activity of all investigated particles could be quantified by means of Avrami parameters (n, k). The crystallization half-times increased reproducibly in the following order: POM/nChalk < POM/mTalc < POM/TiNT ~ POM. For strong nucleating agents (mTalc, nChalk), the crystallization kinetics corresponded to spontaneous crystallization starting from central nucleating layer, which was verified by computer simulations. The results were also confirmed by DSC. We concluded that the sandwich method is an efficient microscopic technique for detailed evaluation of nucleating activity of arbitrary micro/nanoparticles in polymer systems.

  17. Analysis of incident-energy dependence of delayed neutron yields in actinides

    SciTech Connect

    Nasir, Mohamad Nasrun bin Mohd Metorima, Kouhei Ohsawa, Takaaki Hashimoto, Kengo

    2015-04-29

    The changes of delayed neutron yields (ν{sub d}) of Actinides have been analyzed for incident energy up to 20MeV using realized data of precursor after prompt neutron emission, from semi-empirical model, and delayed neutron emission probability data (P{sub n}) to carry out a summation method. The evaluated nuclear data of the delayed neutron yields of actinide nuclides are still uncertain at the present and the cause of the energy dependence has not been fully understood. In this study, the fission yields of precursor were calculated considering the change of the fission fragment mass yield based on the superposition of fives Gaussian distribution; and the change of the prompt neutrons number associated with the incident energy dependence. Thus, the incident energy dependent behavior of delayed neutron was analyzed.The total number of delayed neutron is expressed as ν{sub d}=∑Y{sub i} • P{sub ni} in the summation method, where Y{sub i} is the mass yields of precursor i and P{sub ni} is the delayed neutron emission probability of precursor i. The value of Y{sub i} is derived from calculation of post neutron emission mass distribution using 5 Gaussian equations with the consideration of large distribution of the fission fragments. The prompt neutron emission ν{sub p} increases at higher incident-energy but there are two different models; one model says that the fission fragment mass dependence that prompt neutron emission increases uniformly regardless of the fission fragments mass; and the other says that the major increases occur at heavy fission fragments area. In this study, the changes of delayed neutron yields by the two models have been investigated.

  18. X-ray Variability Characteristics of the Narrow line SEYFERT 1 MKN 766 I: Energy Dependent Timing Properties

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Turner, T. J.; Papadakis, I.; Arevalo, P.; Reeves, J. N.; Miller, L.

    2007-01-01

    We present the energy-dependent power spectral density (PSD) and cross-spectral properties of Mkn 766 obtained from a six-revolution XMM-Newton observation in 2005. The resulting PSDs, which have highest temporal frequency resolution for an AGN PSD to date, show breaks which increase in temporal frequency as photon energy increases; break frequencies differ by an average of approx.0.4 in the log between the softest and hardest bands. The consistency of the 2001 and 2005 observations variability properties, namely PSD shapes and the linear rms-flux relation, suggests the 2005 observation is simply a low-flux extension of the 2001 observation. The coherence function is measured to be approx.0.6-0.9 at temporal frequencies below the PSD break, and is lower for relatively larger energy band separation; coherence also drops significantly towards zero above the PSD break frequency. Temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time: lags increase towards longer time scales and as energy separation increases. Cross-spectral properties are the thus consistent with previous measurements for Mkn 766 (Vaughan & Fabian 2003) and other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly-propagating viscosity variations in the accretion disk.

  19. The Energy-Dependent X-Ray Timing Characteristics of the Narrow Line Seyfert 1 MKN 766

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Papadakis, I.; Arevalo, P.; Turner, T. J.; Miller, L.; Reeves, J. N.

    2007-01-01

    We present the energy-dependent power spectral density (PSD) and cross-spectral properties of Mkn 766, obtained from combining data obtained during an XMM-Newton observation spanning six revolutions in 2005 with data obtained from an XMM-Newton long-look in 2001. The PSD shapes and rms-flux relations are found to be consistent between the 2001 and 2005 observations, suggesting the 2005 observation is simply a low-flux extension of the 2001 observation and permitting us to combine the two data sets. The resulting PSD has the highest temporal frequency resolution for any AGN PSD measured to date. Applying a broken power-law model yields break frequencies which increase in temporal frequency with photon energy. Obtaining a good fit when assuming energy-independent break frequencies requires the presence of a Lorentzian at 4.6 +/- 0.4 x 10(exp -4)Hz whose strength increases with photon energy, a behavior seen in black hole X-ray binaries. The cross-spectral properties are measured; temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time. Cross-spectral results are consistent with those for other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly-propagating viscosity variations in the accretion disk.

  20. Particle sizes and composition of Mars atmospheric dust based upon Viking and Mariner 9 observations

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.

    1993-01-01

    Mars atmospheric dust can play an important role in the thermal structure of the Mars atmosphere during periods of high dust loading. However, the radiative properties of Mars atmospheric dust remain uncertain due to uncertain definitions of the dust composition and size distribution. The analysis by Toon et al., of Mariner 9 IRIS spectra during the 1971-1972 global dust storm indicated a reasonable match between the modeled 9-micron absorption of montmorillinite and the observed 9-micron absorption. Toon et al. also determined that an effective (cross-section weighted) mean radius of 2.5 microns (R(sub mode) = 0.4 microns) provided a consistent fit of montmorillinite to the IRIS dust spectra at 9 microns. Pollack et al. analyzed Viking lander observations of atmospheric extinction and scattering at visible-near IR wavelengths (0.5-1.0 microns), and obtained consistency with the Toon et al. dust size distribution when the effects of nonspherical particle shapes were included. An additional, minor (1 percent) component of visible-ultraviolet absorbing material was required to model the derived visible (0.86) and ultraviolet (0.4-0.6) single-scattering albedos of the dust, since montmorillinite does not absorb sufficiently in this wavelength region. A combined analysis of the Viking IRTM and Mariner 9 observations was conducted to reassess the model of Mars atmospheric ultraviolet-to-infrared measurements of dust absorption and scattering. The optical constants for palagonite are incorporated in a doubling-adding radiative transfer model of the Mars atmosphere to simulate Mariner 9 IRIS spectra as well as the Viking IRTM IR band observations. Visible and ultraviolet single-scattering albedos based on the Hansen and Travis Mie scattering code were also derived. A tentative conclusion is that smaller dust particles (R(sub mode) = 0.15 microns, cross-section weighted mean R = 1.2 microns) composed of palagonite provide a much improved fit to the Mariner 9 IRIS spectra

  1. The energy dependence of the pp {yields} K{sup +}n{Sigma}{sup +} reaction

    SciTech Connect

    Valdau, Yu.

    2011-10-24

    The energy dependence of the total cross section for the pp {yields} K{sup +}n{Sigma}{sup +} reaction has been investigated at the magnetic spectrometer COSY-ANKE. Signals from the production of the {Sigma}{sup +} hyperon were searched for in three simultaneously measured spectra. The values obtained for the total production cross section {sigma}({Sigma}{sup +}) are slightly below those of {sigma}({Sigma}{sup 0}) at the same excess energies. They follow a phase space dependence and do not show any evidence for strong threshold effects or a significant n{Sigma}{sup +} final state interaction.

  2. Scaling-law for the energy dependence of anatomic power spectrum in dedicated breast CT

    SciTech Connect

    Vedantham, Srinivasan; Shi, Linxi; Glick, Stephen J.; Karellas, Andrew

    2013-01-15

    Purpose: To determine the x-ray photon energy dependence of the anatomic power spectrum of the breast when imaged with dedicated breast computed tomography (CT). Methods: A theoretical framework for scaling the empirically determined anatomic power spectrum at one x-ray photon energy to that at any given x-ray photon energy when imaged with dedicated breast CT was developed. Theory predicted that when the anatomic power spectrum is fitted with a power curve of the form k f{sup -{beta}}, where k and {beta} are fit coefficients and f is spatial frequency, the exponent {beta} would be independent of x-ray photon energy (E), and the amplitude k scales with the square of the difference in energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues. Twenty mastectomy specimens based numerical phantoms that were previously imaged with a benchtop flat-panel cone-beam CT system were converted to 3D distribution of glandular weight fraction (f{sub g}) and were used to verify the theoretical findings. The 3D power spectrum was computed in terms of f{sub g} and after converting to linear attenuation coefficients at monoenergetic x-ray photon energies of 20-80 keV in 5 keV intervals. The 1D power spectra along the axes were extracted and fitted with a power curve of the form k f{sup -{beta}}. The energy dependence of k and {beta} were analyzed. Results: For the 20 mastectomy specimen based numerical phantoms used in the study, the exponent {beta} was found to be in the range of 2.34-2.42, depending on the axis of measurement. Numerical simulations agreed with the theoretical predictions that for a power-law anatomic spectrum of the form k f{sup -{beta}}, {beta} was independent of E and k(E) =k{sub 1}[{mu}{sub g}(E) -{mu}{sub a}(E)]{sup 2}, where k{sub 1} is a constant, and {mu}{sub g}(E) and {mu}{sub a}(E) represent the energy-dependent linear attenuation coefficients of fibroglandular and adipose tissues, respectively. Conclusions: Numerical

  3. The energy dependence of the diffraction minimum in the elastic scattering and new LHC data

    NASA Astrophysics Data System (ADS)

    Selyugin, O. V.

    2017-03-01

    The soft diffraction phenomena in the elastic proton-proton scattering are reviewed from the viewpoint of experiments at the LHC (TOTEM and ATLAS collaboration). In the framework of the High Energy Generalized Structure (HEGS) model the form of the diffraction minimum in the nucleon-nucleon elastic scattering in a wide energy region is analyzed. The energy dependencies of the main characteristics of the diffraction dip are obtained. The numerical predictions at LHC energies are presented. The comparison of the model predictions with the new LHC data at √{ s} = 13 TeV is made.

  4. Energy dependence of photoion rotational distributions of N2 and CO

    NASA Astrophysics Data System (ADS)

    Choi, Heung Cheun; Rao, R. M.; Mihill, A. G.; Kakar, Sandeep; Poliakoff, E. D.; Wang, Kwanghsi; McKoy, V.

    1994-01-01

    We present the first measurements of rotational distributions for photoionization over extended energy ranges [0<=Ek<=200 eV for N2 (2σ-1u) and of 3<=Ek<=125 eV for CO (4σ-1)]. The N2 and CO results show a strikingly unusual and different energy dependence. Although differences are expected due to the absence of a center of symmetry in CO, detailed calculations reveal that this behavior arises from the presence of Cooper minima in the photoelectron continuum (kσg) in the case of N2 and from an f-wave shape resonance for 4σ-1 photoionization in CO.

  5. Level-energy-dependent mean velocities of excited tungsten atoms sputtered by krypton-ion bombardment

    SciTech Connect

    Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota; Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A.; Kenmotsu, Takahiro; Furuya, Kenji; Motohashi, Kenji

    2015-11-15

    Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.

  6. Bohr Hamiltonian with an energy dependent γ-unstable harmonic oscillator potential

    NASA Astrophysics Data System (ADS)

    Budaca, Radu

    2017-01-01

    A new exactly solvable collective solution is realized by inducing a linear energy dependence in the γ-unstable harmonic oscillator potential of the Bohr Hamiltonian and taking the asymptotic limit of the slope parameter. The model preserves the degeneracy features of the U(5) dynamical symmetry but with an expanded energy spectrum and with damped B(E2) rates. The phenomenological interpretation of the model is investigated in comparison to the spherical vibrator collective conditions by means of particular features of the corresponding ground state. Three experimental candidates for the new parameter free model are identified and extensively confronted with the theoretical predictions.

  7. Measurement of the energy dependence of the total photon-proton cross section at HERA

    NASA Astrophysics Data System (ADS)

    ZEUS Collaboration; Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bołd, T.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Boutle, S. K.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Butterworth, J. M.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; Del Peso, J.; Dementiev, R. K.; de Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Forrest, M.; Foster, B.; Fourletov, S.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Göttlicher, P.; Grabowska-Bołd, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Horton, K.; Hüttmann, A.; Iacobucci, G.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jakob, H.-P.; Januschek, F.; Jimenez, M.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kamaluddin, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kowalski, H.; Kulinski, P.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Loizides, J. H.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Łużniak, P.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Miglioranzi, S.; Idris, F. Mohamad; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nicholass, D.; Nigro, A.; Ning, Y.; Noor, U.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Oliver, K.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlanski, W.; Perrey, H.; Piotrzkowski, K.; Plucinski, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycień, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Ron, E.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Salii, A.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomalak, O.; Tomaszewska, J.; Tsurugai, T.; Turcato, M.; Tymieniecka, T.; Uribe-Estrada, C.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Volynets, O.; Walczak, R.; Abdullah, W. A. T. Wan; Whitmore, J. J.; Whyte, J.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zhou, C.; Zichichi, A.; Zolko, M.; Zotkin, D. S.; Zulkapli, Z.

    2011-03-01

    The energy dependence of the photon-proton total cross section, σtotγp, was determined from e+p scattering data collected with the ZEUS detector at HERA at three values of the center-of-mass energy, W, of the γp system in the range 194

  8. Measurement of the energy dependence of the total photon-proton cross section at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bołd, T.; Boos, E. G.; Borras, K.; Boscherini, D.; Bot, D.; Boutle, S. K.; Brock, I.; Brownson, E.; Brugnera, R.; Brümmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Butterworth, J. M.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A. M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; del Peso, J.; Dementiev, R. K.; De Pasquale, S.; Derrick, M.; Devenish, R. C. E.; Dobur, D.; Dolgoshein, B. A.; Dolinska, G.; Doyle, A. T.; Drugakov, V.; Durkin, L. S.; Dusini, S.; Eisenberg, Y.; Ermolov, P. F.; Eskreys, A.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M. I.; Figiel, J.; Forrest, M.; Foster, B.; Fourletov, S.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gladilin, L. K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Göttlicher, P.; Grabowska-Bołd, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J. C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Horton, K.; Hüttmann, A.; Iacobucci, G.; Ibrahim, Z. A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jakob, H.-P.; Januschek, F.; Jimenez, M.; Jones, T. W.; Jüngst, M.; Kadenko, I.; Kahle, B.; Kamaluddin, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I. I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L. A.; Kim, J. Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kooijman, P.; Korol, Ie.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kowalski, H.; Kulinski, P.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T. Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Löhr, B.; Lohrmann, E.; Loizides, J. H.; Long, K. R.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Łużniak, P.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J. F.; Mastroberardino, A.; Mattingly, M. C. K.; Melzer-Pellmann, I.-A.; Miglioranzi, S.; Idris, F. Mohamad; Monaco, V.; Montanari, A.; Morris, J. D.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nicholass, D.; Nigro, A.; Ning, Y.; Noor, U.; Notz, D.; Nowak, R. J.; Nuncio-Quiroz, A. E.; Oh, B. Y.; Okazaki, N.; Oliver, K.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J. M.; Pawlik, B.; Pelfer, P. G.; Pellegrino, A.; Perlanski, W.; Perrey, H.; Piotrzkowski, K.; Plucinski, P.; Pokrovskiy, N. S.; Polini, A.; Proskuryakov, A. S.; Przybycień, M.; Raval, A.; Reeder, D. D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y. D.; Robertson, A.; Roloff, P.; Ron, E.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Salii, A.; Samson, U.; Sartorelli, G.; Savin, A. A.; Saxon, D. H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W. B.; Schneekloth, U.; Schönberg, V.; Schörner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L. M.; Shehzadi, R.; Shimizu, S.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Smith, W. H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stern, A.; Stewart, T. P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A. D.; Tassi, E.; Terrón, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomalak, O.; Tomaszewska, J.; Tsurugai, T.; Turcato, M.; Tymieniecka, T.; Uribe-Estrada, C.; Vázquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N. N.; Volynets, O.; Walczak, R.; Abdullah, W. A. T. Wan; Whitmore, J. J.; Whyte, J.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagües-Molina, A. G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B. O.; Zhmak, N.; Zhou, C.; Zichichi, A.; Zolko, M.; Zotkin, D. S.; Zulkapli, Z.; ZEUS Collaboration

    2011-03-01

    The energy dependence of the photon-proton total cross section, σtotγp, was determined from ep scattering data collected with the ZEUS detector at HERA at three values of the center-of-mass energy, W, of the γp system in the range 194

  9. Systematic Relationships Between Lidar Observables and Sizes And Mineral Composition Of Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Van Diedenhoven, Bastiaan; Stangl, Alexander; Perlwitz, Jan; Fridlind, Ann M.; Chowdhary, Jacek; Cairns, Brian

    2015-01-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  10. Elemental and charge state composition of the fast solar wind observed with SMS instruments on WIND

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.; Galvin, A. B.; Ipavich, F. M.; Hamilton, D. C.; Bochsler, P.; Geiss, J.; Fisk, L. A.; Wilken, B.

    1995-01-01

    The elemental composition and charge state distributions of heavy ions of the solar wind provide essential information about: (1) atom-ion separation processes in the solar atmosphere leading to the 'FIP effect' (the overabundance of low First Ionization potential (FIP) elements in the solar wind compared to the photosphere); and (2) coronal temperature profiles, as well as mechanisms which heat the corona and accelerate the solar wind. This information is required for solar wind acceleration models. The SWICS instrument on Ulysses measures for all solar wind flow conditions the relative abundance of about 8 elements and 20 charge states of the solar wind. Furthermore, the Ulysses high-latitude orbit provides an unprecedented look at the solar wind from the polar coronal holes near solar minimum conditions. The MASS instrument on the WIND spacecraft is a high-mass resolution solar wind ion mass spectrometer that will provide routinely not only the abundances and charge state of all elements easily measured with SWICS, but also of N, Mg, S. The MASS sensor was fully operational at the end of 1994 and has sampled the in-ecliptic solar wind composition in both the slow and the corotating fast streams. This unique combination of SWICS on Ulysses and MASS on WIND allows us to view for the first time the solar wind from two regions of the large coronal hole. Observations with SWICS in the coronal hole wind: (1) indicate that the FIP effect is small; and (2) allow us determine the altitude of the maximum in the electron temperature profile, and indicate a maximum temperature of approximately 1.5 MK. New results from the SMS instruments on Wind will be compared with results from SWICS on Ulysses.

  11. Systematic Relationships Between Lidar Observables And Sizes And Mineral Composition Of Dust Aerosols

    NASA Astrophysics Data System (ADS)

    van Diedenhoven, B.; Perlwitz, J. P.; Fridlind, A. M.; Chowdhary, J.; Cairns, B.; Stangl, A. J.

    2015-12-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  12. Osseointegration of fiber-reinforced composite implants: histological and ultrastructural observations.

    PubMed

    Ballo, A M; Cekic-Nagas, I; Ergun, G; Lassila, L; Palmquist, A; Borchardt, P; Lausmaa, J; Thomsen, P; Vallittu, P K; Närhi, T O

    2014-12-01

    The aim of this study was to evaluate the bone tissue response to fiber-reinforced composite (FRC) in comparison with titanium (Ti) implants after 12 weeks of implantation in cancellous bone using histomorphometric and ultrastructural analysis. Thirty grit-blasted cylindrical FRC implants with BisGMA-TEGDMA polymer matrix were fabricated and divided into three groups: (1) 60s light-cured FRC (FRC-L group), (2) 24h polymerized FRC (FRC group), and (3) bioactive glass FRC (FRC-BAG group). Titanium implants were used as a control group. The surface analyses were performed with scanning electron microscopy and 3D SEM. The bone-implant contact (BIC) and bone area (BA) were determined using histomorphometry and SEM. Transmission electron microscopy (TEM) was performed on Focused Ion Beam prepared samples of the intact bone-implant interface. The FRC, FRC-BAG and Ti implants were integrated into host bone. In contrast, FRC-L implants had a consistent fibrous capsule around the circumference of the entire implant separating the implant from direct bone contact. The highest values of BIC were obtained with FRC-BAG (58±11%) and Ti implants (54±13%), followed by FRC implants (48±10%), but no significant differences in BIC or BA were observed (p=0.07, p=0.06, respectively). TEM images showed a direct contact between nanocrystalline hydroxyapatite of bone and both FRC and FRC-BAG surfaces. Fiber-reinforced composite implants are capable of establishing a close bone contact comparable with the osseointegration of titanium implants having similar surface roughness. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Pollution in the Summertime Canadian High Arctic observed during NETCARE 2014: Investigation of origin and composition

    NASA Astrophysics Data System (ADS)

    Köllner, Franziska; Schneider, Johannes; Bozem, Heiko; Hoor, Peter; Willis, Megan; Burkart, Julia; Leaitch, Richard; Abbatt, Jon; Herber, Andreas; Borrmann, Stephan

    2015-04-01

    The clean and sensitive Arctic atmosphere is influenced by transport of air masses from lower latitudes that bring pollution in the form of aerosol particles and trace gases into the Arctic regions. However, the transport processes causing such pollution events are yet not sufficiently well understood. Here we report on results from the aircraft campaign NETCARE 2014 that took place in July 2014 in Resolute Bay, Nunavut (Canada) as part of the "Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environment" (NETCARE). These airborne measurements add to only a very few of such measurements conducted in the Arctic during the summertime. The instrumentation on board the research aircraft Polar 6 (operated by the Alfred Wegener Institute for Polar and Marine Research) included a large set of physico-chemical aerosol analysis instruments, several trace gas measurements and basic meteorological parameters. Here we focus on observed pollution events that caused elevated trace gas and aerosol concentrations in the summertime Canadian High Arctic between 50 and 3500 m. In order to better understand the chemical composition and the origin of those polluted air masses, we use single particle aerosol composition obtained using the Aircraft-based Laser Ablation Aerosol Mass Spectrometer (ALABAMA), combined with aerosol size distributions and number concentrations from an Optical Particle Counter as well as trace gas measurements of CO and CO2. CO and CO2 are important tracers to study pollution events, which are connected to anthropogenic and non-anthropogenic combustion processes, respectively biomass burning and fossil fuel combustion. The ALABAMA provides a detailed single particle aerosol composition analysis from which we identify different particle types like soot-, biomass burning-, organics-, diesel exhaust- and metallic particles. The measurements were compared to Lagrangian models like FLEXPART and LAGRANTO to find the pollution sources

  14. A simulation for UV-VIS observations of tropospheric composition from a geostationary satellite over Asia

    NASA Astrophysics Data System (ADS)

    Irie, Hitoshi; Iwabuchi, Hironobu; Noguchi, Katsuyuki; Kasai, Yasuko; Kita, Kazuyuki; Akimoto, Hajime

    To investigate the potential for observing tropospheric composition from a geostationary (GEO) satellite over Asia, we perform a simulation for UV-VIS ranges (280-600 nm). A sophisticated radiative transfer model JACOSPAR is used to calculate radiance spectra that would be mea-sured at a GEO point. The air mass factor (AMF) is also calculated at different altitudes, wavelengths, and solar zenith angles (SZAs), to investigate whether the measured backscat-tered photons penetrate deep inside the planetary boundary layer (PBL). According to the AMF dependence on wavelength, visible wavelengths can provide much more PBL information. Compared to the nadir geometry, a geometry observing Tokyo reveals that AMFs near the sur-face drop by only about 15% (30%), at SZA<40 (60) degrees, where the elevated concentration of surface ozone is generally anticipated. This suggests that a GEO satellite would enable ob-servation of elevated ozone events, similar to existing low earth orbit satellites. Next, radiance spectra, to which noises corresponding to given signal-to-noise ratios (SNRs) are added, are analyzed using the Differential Optical Absorption Spectroscopy to estimate the precision for the slant column retrieval as a function of SNR. For the retrieval of ozone from UV (Huggins bands), the precision reaches 1% at SNR>1000. AMF calculations, however, indicate that as a mean path, the measured photons do not penetrate deep inside the PBL. As an alterna-tive way, we analyze Chappuis bands using the fitting window 450-550 nm and find that the precision can be as high as 1% at SNR>1000, with much improved sensitivity to PBL ozone. Similar analyses are made for other trace gases such as NO2 and HCHO, providing a basis for characterizing overall performance of GEO satellite measurements with UV-VIS regions. An instrument design proposed based on these simulations in Japan is also presented.

  15. Simulations and observations of plasma depletion, ion composition, and airglow emissions in two auroral ionospheric depletion experiments

    NASA Technical Reports Server (NTRS)

    Yau, A. W.; Whalen, B. A.; Harris, F. R.; Gattinger, R. L.; Pongratz, M. B.

    1985-01-01

    Observations of plasma depletion, ion composition modification, and airglow emissions in the Waterhole experiments are presented. The detailed ion chemistry and airglow emission processes related to the ionospheric hole formation in the experiment are examined, and observations are compared with computer simulation results. The latter indicate that the overall depletion rates in different parts of the depletion region are governed by different parameters.

  16. The effect of cross-section uncertainties on the derivation of source abundances from cosmic-ray composition observations

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.

    1983-01-01

    It is pointed out that the derivation of source abundances from the composition observed near the earth requires that the secondary contribution to the observed nuclidic abundances be calculated from a model of cosmic-ray propagation. A crucial element in such a calculation is the choice of nuclear fragmentation cross sections. Uncertainties in these cross sections give rise to uncertainties in the derived source abundances. It is shown here that the uncertainties in fragmentation cross sections can, in certain important cases, contribute significantly to the uncertainties in cosmic ray source abundances deduced from the observed composition. For this reason, it is essential that reliable estimates of the effect of cross section uncertainties be made when interpreting the source composition deduced from cosmic ray observations. In addition, formulas are presented which can be used to obtain such estimates with a minimum of computational effort.

  17. Seismic observations of mid-mantle discontinuities on a global scale: implications for convection and composition

    NASA Astrophysics Data System (ADS)

    Waszek, L.; Schmerr, N. C.; Ballmer, M.

    2016-12-01

    Seismic observations of mid-mantle discontinuities on a global scale Dr Lauren Waszek & Dr Nicholas Schmerr University of Maryland, Department of Geology Contact: lwaszek@umd.edu Recent tomographical studies have found that some slabs stagnate at the 660 km discontinuity, whereas others stagnate at 1000 km depth. Very few slabs continue subducting into the mid mantle (Fukao & Obayashi, 2013). Conversely, upwelling material also shows deflection at various depths. These depths show some relationship to observed mantle discontinuities. The apparent transition at 1000 km depth is particularly enigmatic, as both subducting slabs and upwelling material are observed to be displaced here (French & Romanowicz, 2013). Although some recent publications suggest that the transition is a viscosity jump (Rudolph et al., 2015) or a compositional difference (Ballmer et al., 2015), the relationship to observed seismic discontinuities is unclear. Here, we present global-scale interrogations of mid-mantle discontinuities.We have compiled a large high quality global dataset of over 45,000 hand-picked SS phases. We use SS precursors to search for the presence (of lack thereof) of discontinuities in the mid-mantle, from 700 km to 1200 km depth. The data are partitioned into spherical caps to generate regional maps, using different cap sizes to investigate the lateral extent of the discontinuities. Differential precursor-SS travel time measurements with respect to AK135 are used to estimate the depth of the discontinuities. Amplitude ratios of precursors/SS help to constrain velocity and density contrasts across the boundaries.Our results display evidence for multiple discontinuities at various depths in the mid-mantle. We analyse the locations of mid-mantle discontinuities for any relationship to SS tomographical models and other mantle structures. We find some correlation to subduction zones, oceanic ridges and LIPS, however the discontinuities cannot be linked to any one mantle

  18. A High-Resolution 3D Weather Radar, MSG, and Lightning Sensor Observation Composite

    NASA Astrophysics Data System (ADS)

    Diederich, Malte; Senf, Fabian; Wapler, Kathrin; Simmer, Clemens

    2013-04-01

    Within the research group 'Object-based Analysis and SEamless prediction' (OASE) of the Hans Ertel Centre for Weather Research programme (HerZ), a data composite containing weather radar, lightning sensor, and Meteosat Second Generation observations is being developed for the use in object-based weather analysis and nowcasting. At present, a 3D merging scheme combines measurements of the Bonn and Jülich dual polarimetric weather radar systems (data provided by the TR32 and TERENO projects) into a 3-dimensional polar-stereographic volume grid, with 500 meters horizontal, and 250 meters vertical resolution. The merging takes into account and compensates for various observational error sources, such as attenuation through hydrometeors, beam blockage through topography and buildings, minimum detectable signal as a function of noise threshold, non-hydrometeor echos like insects, and interference from other radar systems. In addition to this, the effect of convection during the radar 5-minute volume scan pattern is mitigated through calculation of advection vectors from subsequent scans and their use for advection correction when projecting the measurements into space for any desired timestamp. The Meteosat Second Generation rapid scan service provides a scan in 12 spectral visual and infrared wavelengths every 5 minutes over Germany and Europe. These scans, together with the derived microphysical cloud parameters, are projected into the same polar stereographic grid used for the radar data. Lightning counts from the LINET lightning sensor network are also provided for every 2D grid pixel. The combined 3D radar and 2D MSG/LINET data is stored in a fully documented netCDF file for every 5 minute interval, and is made ready for tracking and object based weather analysis. At the moment, the 3D data only covers the Bonn and Jülich area, but the algorithms are planed to be adapted to the newly conceived DWD polarimetric C-Band 5 minute interval volume scan strategy. An

  19. Diversity of Rock Compositions at Gale Crater Observed by ChemCam and APXS on Curiosity, and Comparison to Meteorite and Orbital Observations

    NASA Astrophysics Data System (ADS)

    Wiens, R. C.; Maurice, S.; Grotzinger, J. P.; Gellert, R.; Mangold, N.; Sautter, V.; Ollila, A.; Dyar, M. D.; Le Mouelic, S.; Ehlmann, B. L.; Clegg, S. M.; Lanza, N.; Cousin, A.; Forni, O.; Gasnault, O.; Lasue, J.; Blaney, D. L.; Newsom, H. E.; Herkenhoff, K. E.; Anderson, R. B.; D'Uston, L.; Bridges, N. T.; Fabre, C.; Meslin, P.; Johnson, J.; Vaniman, D.; Bridges, J.; Dromart, G.; Schmidt, M. E.; Team, M.

    2013-12-01

    Gale crater was selected as the Curiosity landing site because of the apparent sedimentary spectral signatures seen from orbit. Sedimentary materials on Mars have to this point showed very little expression of major element mobility, so compositions of precursor igneous minerals play a strong role in the compositions of sediments. In addition, pebbles and float rocks on Bradbury Rise (sols 0-50, > 324) appear to be mostly igneous in origin, and are assumed to have been carried down from the crater rim. Overall in the first year on Mars ChemCam obtained >75,000 LIBS spectra on > 2,000 observation points, supported by > 1,000 RMI images, and APXS obtained a significant number of observations. These show surprisingly variable compositions. The mean ChemCam compositions for Bradbury Rise dust-free rocks and pebbles (62 locations) give SiO2 = 56%, FeOT = 16% and show high alkalis consistent with Jake Matijevic (sol ~47) APXS Na2O ~6.6 wt%. ChemCam observations on the conglomerate Link (sol 27) gave Rb > 150 ppm and Sr > 1500 ppm. These compositions imply the presence of abundant alkali feldspars in the material infilling the lower parts of Gale crater. They are generally consistent with the more feldspar-rich SNC meteorites but show a radical departure from larger scale orbital observations, e.g., GRS, raising the question of how widespread these compositions are outside of Gale crater. Sedimentary materials at Yellowknife Bay encompassing the Sheepbed (sols 125-300) and Shaler (sols 121, 311-324) units, potentially including Point Lake (sols 301-310) and Rocknest (sols 57-97), appear to have incorporated varying amounts of igneous source materials. Seven rocks investigated at Rocknest show significant additions of Fe, with mean FeOT = 25% (154 locations), suggesting that FeO was a cementing agent. ChemCam observations at Shaler show varying amounts of alkali feldspar (i.e., related to Bradbury Rise), Fe-rich material (Rocknest-like), and potassium-rich material

  20. Energy dependence of r.m.s amplitude of low frequency broadband noise and kHz quasi periodic oscillations in 4U 1608-52

    NASA Astrophysics Data System (ADS)

    Mandal, Soma

    2016-07-01

    The neutron star low mass X-ray binary 4U 1608-52 is known to show kHz QPOs as well as low frequency broad band noise. The energy dependence of the fractional r.m.s of these variations reflect the underlying radiative mechanism responsible for the phenomena. In this work we compute the energy depedence for 26 instances of kHz QPO observed by RXTE. We typically find as reported before, that the r.m.s increases with energy with slope of ˜0.5. This indicates that the variation is in the hot thermal compotonization component and in particular the QPO is likely to be driven by variation in the thermal heating rate of the hot plasma. For the same data, we compute the energy dependent r.m.s variability of the low frequency broad band noise component by considering the light curves. In contrast to the behaviour seen for the kHz QPO, the energy dependence is nearly flat i.e. the r.m.s. is energy independent. This indicates that the driver here may be the soft photon source. Thus the radiative mechanism driving the low frequency broad band noise and the high frequency QPO are different in nature.

  1. Energy Dependence of Electron Anisotropy and Agyrotropy from PIC Simulations of Tail Reconnection

    NASA Astrophysics Data System (ADS)

    Newman, D. L.; Goldman, M. V.; Lapenta, G.; Eastwood, J. P.

    2015-12-01

    MMS is capable of measuring particle distributions with unprecedented temporal resolution. These distributions will aid in the identification of key regions of the reconnecting plasma, such as the electron diffusion region and dipolarization fronts (DFs) in Earth's magnetotail. Electron anisotropy and agyrotropy are particularly useful diagnostics for this purpose. Normally, anisotropy and agyrotropy are defined as properties of the total pressure tensor. However, such global velocity-space measures of the electron distribution can hide detailed energy-dependent variations. Using electron distributions from 2D and 3D PIC simulations of tail reconnection, we employ a combination of 3D velocity-space visualization techniques and energy-dependent anisotropy and agyrotropy measures to analyze the distributions from regions in the vicinity of the reconnection x-line, the magnetic separatricies, and DFs. For example, regions of the reconnection exhaust near a DF can exhibit a nearly isotropic pressure tensor due to the competing influences of low-energy electrons, which contribute disproportionately to the parallel pressure, and high-energy electron, which contribute disproportionately to the perpendicular pressure.

  2. Computed tomography dosimetry with high-resolution detectors commonly used in radiotherapy - an energy dependence study.

    PubMed

    Liebmann, Mario; Poppe, Bjoern; von Boetticher, Heiner

    2015-09-08

    New methods of dosimetry in computed tomography (CT) X-ray fields require the use of high-resolution detectors instead of pencil-type ionization chambers typically used for CT dose index (CTDI) measurements. This paper presents a study on the suitability of a wide range of ionization chambers, diodes, and a two-dimensional detector array, used primarily in radiation therapy, for CT and cone-beam CT dosimetry. Specifically, the energy dependence of these detectors from 50 kVp up to 125 kVp is reported. All measurements were performed in reference to a calibrated diode for use in this energy region. The radiation quality correction factors provided by the manufacturer were used, depending on the measured half-value layer (HVL) for the particular X-ray beam. Our study demonstrated the general usability of thimble ionization chambers. These thimble ionization chambers showed a maximum variation in energy response of 5%. Ionization chambers with even smaller sensitive volume, and which exhibit similar variation in energy dependence, can be used if higher spatial resolution is required. Furthermore, the investigated detectors are better suited for dosimetry at CT and CBCT units than conventional large volume or flat detectors, due to their rotational symmetry. Nevertheless, a flat detector can be used for certain measurement tasks, such as the acquisition of percent depth-dose curves or beam profiles for nonrotating beams, which are important for beam characterization.

  3. Energy Dependence of the πN Amplitude and the Three-Nucleon Interaction

    NASA Astrophysics Data System (ADS)

    Saito, T.-Y.; Afnan, I. R.

    1995-08-01

    By calculating the contribution of the ππ three-body force to the three-nucleon binding energy in terms of the πN amplitude using perturbation theory, we are able to determine the importance of the energy dependence and the contribution of the different partial waves of the πN amplitude to the three-nucleon force. A separable representation of the non-pole πN amplitude allows us to write the three-nucleon force in terms of the amplitude for NN → NN*, propagation of the NNN* system, and the amplitude for NN* → NN , with N* being the πN quasi-particle amplitude in a given state. The division of the πN amplitude into a pole and non-pole part gives a procedure for the determination of the πNN form factor within the model. The total contribution of the three-body force to the binding energy of the triton for the separable approximation to the Paris nucleon-nucleon potential (PEST) is found to be very small mainly as a result of the energy dependence of the πN amplitude, the cancellation between the S- and P-wave πN amplitudes, and the soft πNN form factor.

  4. Energy Dependence and Scaling Property of Localization Length near a Gapped Flat Band

    NASA Astrophysics Data System (ADS)

    Ge, Li; Tureci, Hakan

    Using a tight-binding model for a one-dimensional Lieb lattice, we show that the localization length near a gapped flat band behaves differently from the typical Urbach tail in a band gap: instead of reducing monotonically as the energy E moves away from the flat band energy Ef, the presence of the flat band causes a nonmonotonic energy dependence of the localization length. This energy dependence follows a scaling property when the energy is within the spread (W) of uniformly distributed diagonal disorder, i.e. the localization length is only a function of (E-Ef)/W. Several other lattices are compared to distinguish the effect of the flat band on the localization length, where we eliminate, shift, or duplicate the flat band, without changing the dispersion relations of other bands. Using the top right element of the Green's matrix, we derive an analytical relation between the density of states and the localization length, which shines light on these properties of the latter, including a summation rule for its inverse. This work is partially supported by NSF under Grant No. DMR-1506987.

  5. Classical and quantum dynamics of a perfect fluid scalar-energy dependent metric cosmology

    NASA Astrophysics Data System (ADS)

    Khodadi, M.; Nozari, K.; Vakili, B.

    2016-05-01

    Inspired from the idea of minimally coupling of a real scalar field to geometry, we investigate the classical and quantum models of a flat energy-dependent FRW cosmology coupled to a perfect fluid in the framework of the scalar-rainbow metric gravity. We use the standard Schutz' representation for the perfect fluid and show that under a particular energy-dependent gauge fixing, it may lead to the identification of a time parameter for the corresponding dynamical system. It is shown that, under some circumstances on the minisuperspace prob energy, the classical evolution of the of the universe represents a late time expansion coming from a bounce instead of the big-bang singularity. Then we go forward by showing that this formalism gives rise to a Schrödinger-Wheeler-DeWitt equation for the quantum-mechanical description of the model under consideration, the eigenfunctions of which can be used to construct the wave function of the universe. We use the resulting wave function in order to investigate the possibility of the avoidance of classical singularities due to quantum effects by means of the many-worlds and Bohmian interpretation of quantum cosmology.

  6. Fully energy-dependent HZETRN (a galactic cosmic-ray transport code)

    NASA Technical Reports Server (NTRS)

    Shinn, Judy L.; John, Sarah; Tripathi, Ram K.; Norbury, John W.; Wilson, John W.; Townsend, Lawrence W.

    1992-01-01

    For extended manned space missions, the radiation shielding design requires efficient and accurate cosmic-ray transport codes that can handle the physics processes in detail. The Langley Research Center galactic cosmic-ray transport code (HZETRN) is currently under development for such design use. The cross sections for the production of secondary nucleons in the existing HZETRN code are energy dependent only for nucleon collisions. The approximation of energy-independent, heavy-ion fragmentation cross section is now removed by implementing a mathematically simplified energy-dependent stepping formalism for heavy ions. The cross section at each computational grid is obtained by linear interpolation from a few tabulated data to minimize computing time. Test runs were made for galactic cosmic-ray transport through a liquid hydrogen shield and a water shield at solar minimum. The results show no appreciable change in total fluxes or computing time compared with energy-independent calculations. Differences in high LET (linear energy transfer) spectra are noted, however, because of the large variation in cross sections at the low-energy region. The high LET components are significantly higher in the new code and have important implications on biological risk estimates for heavy-ion exposure.

  7. Compositional radial variability in the Saturn's system observed by Cassini-VIMS (INVITED) (Invited)

    NASA Astrophysics Data System (ADS)

    Filacchione, G.; Capaccioni, F.; Clark, R. N.; Brown, R. H.; Cuzzi, J. N.; Buratti, B. J.; Coradini, A.; Lunine, J. I.; Cerroni, P.; Tosi, F.; Ciarniello, M.; Cruikshank, D. P.; Jaumann, R.; Nicholson, P. D.; Stephan, K.; Nelson, R.; Baines, K. H.

    2010-12-01

    From ~2200 disk-integrated observations of the moons and several radial mosaics of the rings acquired by Cassini-VIMS, we have found very striking differences among the various objects in the Saturn system, ranging from the almost uncontaminated and water ice-rich surfaces of Enceladus and Calypso to the metal/organic-rich and red surfaces of Iapetus’ leading hemisphere and Phoebe. In this framework, we have investigated the relationships between the satellite surface composition, orbital distance from Saturn, and average density. In the F ring environment, the inner satellites (Prometheus, Pandora, Janus and Epimetheus) have average surface water ice abundances similar to particles in the C ring and CD but with much less reddening contaminant. Although their orbits are close to the F-ring, Prometheus and Pandora have very evident differences in surface composition: Prometheus is very water ice-rich but at the same time very red at VIS wavelengths. These properties make it very similar to A-B ring particles while Pandora is bluer. Moving outward, the effects of E ring particles, generated by Enceladus plumes become evident as they contaminate surfaces from Mimas to Rhea. We have found some differences between the Lagrangian moons of Tethys: Calypso is much more water ice-rich and bluer with respect to Telesto. Among the outer satellites, moving from Hyperion, to Iapetus and Phoebe, a linear trend is observed relating the decrease of water ice to reddening, with Hyperion resulting as the reddest object of the population. As a further step, we have investigated how these surface properties are correlated with the average densities and dimensions of the moons. Mid-sized icy satellites are in a transition regime, between the high pressure/high density ice phases of Titan and the high porosity/irregular shapes of the minor moons and Hyperion. Low-density (0.5-1.0 g cm-3) satellites show different trends with Prometheus, Pandora and Calypso characterized by high

  8. Synoptic Mapping of Chemical Composition, Thermal Structure, and Air Motion from UARS Observations

    NASA Technical Reports Server (NTRS)

    Salby, Murry L.

    1999-01-01

    An operational mapping algorithm was developed to process measurements of individual species observed by different satellite instruments on board UARS. Based on Fast Fourier Synoptic Mapping (FFSM), the algorithm accounts for the precessing orbit of UARS, the error of individual instruments, and gaps associated with instrument duty cycle and the satellite yaw maneuver. It provides synoptic structure and evolution on periods as short as 1 day, derived collectively from all observations of an individual species. The algorithm was applied to synoptically map temperature, thickness, and several chemical constituents observed by the instruments: MLS, CLAES, ISAMS, and HALOE. Each field variable observed by these instruments was mapped twice-daily in continuous global time series several months long. Mapped behavior produced via FFSM was compared against standard archived products generated via Kalman filtering. The standard map products reveal similar behavior, but are limited to features of larger scale. Tracer structure that develops through flow deformation and attending transport is therefore represented in those products more coarsely, eventually being sheared down to scales that are no longer represented properly. The synoptic time series also reveal a diurnal cycle for several of the constituents, one that emerges clearly in their space-time spectra. The zonal and meridional structure of diurnal variability was mapped by filtering the space-time spectrum, an intermediate product of FFSM, to those scales resolved by the UARS sampling. Geographical variations of the diurnal cycle have also been evaluated in its seasonal-mean structure by compositing distributions at individual local times. Both were compared to diurnal variations in chemical models and in dynamical models that account for transport by the diurnal tide. Diurnal variations were found to introduce spurious behavior into the archived products generated via Kalman filtering, behavior that is

  9. Deriving the Structure and Composition of Enceladus’ Plume from Cassini UVIS Observations

    NASA Astrophysics Data System (ADS)

    Hansen, Candice; Esposito, Larry; Colwell, Josh; Hendrix, Amanda; Portyankina, Ganna; Shemansky, Don; West, Robert

    2015-11-01

    Cassini’s Ultraviolet Imaging Spectrograph (UVIS) has observed 4 stellar and one solar occultation by Enceladus’ water vapor plume. The July 2005 occultation observation established that water is the primary constituent of the plume [1], and allowed us to calculate the flux of water coming from the plume; the 2007 occultation showed super-sonic jets of gas imbedded within the plume [2]. The solar occultation observation set upper limits for N2 as a constituent of the plume and provided higher resolution data on the jets [3]. On 19 October 2011, epsilon and zeta Orionis were simultaneously occulted by the plume. The stars were in separate pixels on the detector, separated by 24 mrad, or ~20 km, with the lower altitude star (epsilon Orionis) 18 km above the limb at its closest point. The profile at two altitudes shows evidence for a new gas jet location, possibly between dust jet #50 and #51 identified in [4].Results from the assemblage of these data sets, with implications for the composition and vertical structure of the plume and jets, will be described. Gas being expelled from the “tiger stripe” fissures is largely on a vertical escape trajectory away from Enceladus. Upper limits are set for water vapor near the limb at latitudes well away from the south pole at 3 x 1015 cm-2. Upper limits are set for the amount of ethylene and H2 in the plume, two species of interest to the chemistry of the plume [5]. No hydrogen or oxygen emission features have been observed from Enceladus’ water vapor plume, in contrast to the purported plumes at Europa, probably due to the very different plasma environment at Saturn. Data have now been processed consistently for all occultations with slightly different results for water vapor supply to the Saturn magnetosphere than previously reported. Overall, eruptive activity has been steady to within ~20% from 2005 to 2011.References: [1] Hansen, C. J. et al., Science 311:1422 (2006). Hansen, C. J. et al., Nature 456:477 (2008

  10. The composition of thermal and hot ions observed by the GEOS-1 and -2 spacecraft

    NASA Astrophysics Data System (ADS)

    Balsiger, H.; Geiss, J.; Young, D. T.

    1983-01-01

    The GEOS-1 and -2 ion composition experiments have surveyed the plasma composition of the near equatorial inner magnetosphere in the energy per charge range below 16 keV/e since May 1977. In this paper, a review is provided of the contributions of these studies to plasmasphere and ring current composition, to wave particle interactions, to the questions of large scale plasma circulation and to origins of magnetospheric ions.

  11. VLT/SINFONI Observations of Europa: New Insights into the Surface Composition

    NASA Astrophysics Data System (ADS)

    Ligier, N.; Poulet, F.; Carter, J.; Brunetto, R.; Gourgeot, F.

    2016-06-01

    We present new insights into Europa’s surface composition on the global scale from linear spectral modeling of a high spectral resolution data set acquired during a ground-based observation campaign using SINFONI4, an adaptive optics near-infrared instrument on the Very Large Telescope (ESO). The spectral modeling confirms the typical “bullseye” distribution of sulfuric acid hydrate on the trailing hemisphere, which is consistent with Iogenic sulfur ion implantation. However, the traditional hypothesis of the presence of sulfate salts on the surface of the satellite is challenged as Mg-bearing chlorinated species (chloride, chlorate, and perchlorate) are found to provide improved spectral fits. The derived global distribution of Mg-chlorinated salts (and particularly chloride) is correlated with large-scale geomorphologic units such as chaos and darker areas, thus suggesting an endogenous origin. Based on the 1.65 μm water-ice absorption band shape and position, the surface temperature is estimated to be in the range 110-130 K, and water ice is found to be predominantly in its crystalline state rather than amorphous. While amorphous water ice exhibits a strong correlation with the expected intensity of the Ionian plasma torus bombardment, crystalline water ice is instead more associated with distinct geomorphological units. Endogenous processes such as jets and ice heating due to active geology may explain this relationship. Otherwise, no evidence of a correlation between grain size for the water ice and the sputtering rate has been detected so far.

  12. Resonant Triad in Boundary-Layer Stability. Part 2; Composite Solution and Comparison with Observations

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.

    1991-01-01

    Here, numerical results are computed from an asymptotic near-resonance triad analysis. The analysis considers a resonant triad of instability waves consisting of a plane fundamental wave and a pair of symmetrical oblique subharmonic waves. The relevant scaling ensures that nonlinearity is confined to a distinct critical layer. The analysis is first used to form a composite solution that accounts for both the flow divergence and nonlinear effects. It is shown that the backreaction on the plane Tollmien Schlichting (TS) fundamental wave, although fully accounted for, is of little significance. The observed enhancement at the fundamental frequency disturbance is not in the plane TS wave, but is caused by nonlinearly generated waves at the fundamental frequency that result from nonlinear interactions in the critical layer. The saturation of the oblique waves is caused by their self-interaction. The nonlinear phase-locking phenomenon, the location of resonance with respect to the neutral stability curve, low frequency effects, detuning in the streamwise wave numbers, and nonlinear distortion of the mode shapes are discussed. Nonlinearity modifies the initially two dimensional Blasius profile into a fuller one with spanwise periodicity. The interactions at a wide range of unstable spanwise wave numbers are considered, and the existence of a preferred spanwise wave number is explained by means of the vorticity distribution in the critical layer. Besides presenting novel features of the phenomena and explaining the delicate mechanisms of the interactions, the results of the theory are in excellent agreement with experimental and numerical observations for all stages of the development and for various input parameters.

  13. The energy dependence of the neon-22 excess in the cosmic radiation

    NASA Technical Reports Server (NTRS)

    Herrstroem, N. Y.; Lund, N.

    1985-01-01

    It has been recognized now for some time that the heavy neon isotope, neon-22, is overabundant by a factor of 3 to 4 with respect to neon-22 in the cosmic ray source compared to the ratio of these isotopes in the Solar System. In view of the otherwise remarkable similarity of the chemical composition of the cosmic ray source and the composition of the Solar Energetic Particles, the anomaly regarding the neon isotopes is so much more striking. The observed excess of neon-22 is too large to be explained as a result of the chemical evolution of the Galaxy since the formation of the Solar System. Further information on the origin of the neon-22 excess may come from a comparison of the energy spectra of the two neon isotopes. If the cosmic radiation in the solar neighborhood is a mixture of material from several sources, one of which has an excess of neon-22, then the source energy spectra of neon-20 and neon-22 may differ significantly.

  14. D/H RATIO OF TITAN FROM OBSERVATIONS OF THE CASSINI/COMPOSITE INFRARED SPECTROMETER

    SciTech Connect

    Abbas, M. M.; LeClair, A.; Kandadi, H. E-mail: andre.c.leClair@nasa.go

    2010-01-01

    The Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft, launched in 1997 October and inserted into Saturn's orbit in 2004 July for exploration of the Saturnian system, has been making observations of Titan during its close flybys. The infrared spectra of Titan observed over a wide range of latitudes cover the 10-1400 cm{sup -1} spectral region with variable apodized resolutions from 0.53 to 15 cm{sup -1}. The spectra exhibit features of the nu{sub 4} band of methane (CH{sub 4}) in the 1300 cm{sup -1} region, and the deuterated isotope of methane (CH{sub 3}D) centered around 1156 cm{sup -1}, along with features of many trace constituents in other spectral regions, comprising hydrocarbons and nitriles in Titan's atmosphere. An analysis of the observed infrared spectra in the 1300 cm{sup -1} and 1156 cm{sup -1} regions, respectively, permits retrieval of the thermal structure and the CH{sub 3}D distributions of Titan's atmosphere. In this paper, we present a comprehensive analysis of the CIRS infrared spectra for retrieval of the CH{sub 3}D abundance and the corresponding D/H ratio in Titan's atmosphere. The analysis is based on the 0.53 cm{sup -1} resolution infrared spectra obtained during the Titan flybys from 2004 July 3 to 2008 May 28 over a range of latitudes extending from 74.{sup 0}4 N to 84.{sup 0}9 S. Using the CH{sub 4} mixing ratio of 1.4 x 10{sup -2} as measured by the Gas Chromatograph and Mass Spectrometer on the Huygens probe on the Cassini mission, we determine the D/H ratio of Titan as (1.58 +- 0.16) x 10{sup -4}, where the 1sigma uncertainty includes the standard deviation due to spectral noise and the estimated errors arising from uncertainties in the temperature retrieval, the mixing ratio of CH{sub 4}, and the spectral line parameters. Comparison of this value with the previously measured values for Titan as well as in other astrophysical sources, and its possible implications are discussed.

  15. Probing the chemical composition of the Z < 1 intergalactic medium with observations and simulations

    NASA Astrophysics Data System (ADS)

    Cooksey, Kathy L.

    2009-09-01

    Metals are produced in the stars in the galaxies, and a variety of feedback processes move metals from the sites of production into the intergalactic medium (IGM), enriching the material for future generations of stars. The signature of this process is etched in the recycled gas: its metallicity, elemental abundances, density, distribution, etc. The study of the low- redshift, z <, IGM is the study of the last eight-billion years of cosmic chemical evolution and all prior enrichment. In this thesis, I characterize the cosmic enrichment cycle with the use of observations and simulations. The gas is observed through quasar absorption- line spectroscopy. As the light of a distant quasar travels to us, intervening clouds of gas absorb the light at wavelengths characteristic, albeit redshifted, of the elements in the clouds. By identifying and modeling the elements associated with the absorption systems, I learn the ionic composition and density of the cosmic web (voids, filaments, and/or groups) along the line of sight. >From a detailed study of a single sightline, I observe a multi-phase IGM, with kinematically-distinct, hot and warm components ( T [approximate] 10 5.5 K and 10 4 K, respectively). By correlating the absorption systems with a complementary galaxy survey of the field around the background quasar, I find that the IGM systems arise in a variety of galactic environments. The metal- lines systems all have L > 0.1 L [low *] galaxies within a few hundred kiloparsecs, which suggests this is the distance to which galactic feedback processes typically disperse metals. I conduct a large, blind survey for triply-ionized carbon (C IV) absorption at z < 1 in the spectra of 49 low-redshift quasars and compare their propertie with those detected at z > 1. The mass density in C IV doublets with 13 < = log N (C +3 ) <= 15 at z < 1 has increased by a factor of 2.8 ± 0.7 over the error- weighted mean of the 1.5 < z < 5 measurements, where the mass density has not evolved

  16. Ion composition at comet 67P near perihelion: Rosetta observations and model-based interpretation

    NASA Astrophysics Data System (ADS)

    Heritier, K. L.; Altwegg, K.; Balsiger, H.; Berthelier, J.-J.; Beth, A.; Bieler, A.; Biver, N.; Calmonte, U.; Combi, M. R.; De Keyser, J.; Eriksson, A. I.; Fiethe, B.; Fougere, N.; Fuselier, S. A.; Galand, M.; Gasc, S.; Gombosi, T. I.; Hansen, K. C.; Hassig, M.; Kopp, E.; Odelstad, E.; Rubin, M.; Tzou, C.-Y.; Vigren, E.; Vuitton, V.

    2017-07-01

    We present the ion composition in the coma of comet 67P with newly detected ion species over the 28-37 u mass range, probed by Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA)/Double Focusing Mass Spectrometer (DFMS). In summer 2015, the nucleus reached its highest outgassing rate and ion-neutral reactions started to take place at low cometocentric distances. Minor neutrals can efficiently capture protons from the ion population, making the protonated version of these neutrals a major ion species. So far, only NH_4^+ has been reported at comet 67P. However, there are additional neutral species with proton affinities higher than that of water (besides NH3) that have been detected in the coma of comet 67P: CH3OH, HCN, H2CO and H2S. Their protonated versions have all been detected. Statistics showing the number of detections with respect to the number of scans are presented. The effect of the negative spacecraft potential probed by the Rosetta Plasma Consortium/LAngmuir Probe on ion detection is assessed. An ionospheric model has been developed to assess the different ion density profiles and compare them to the ROSINA/DFMS measurements. It is also used to interpret the ROSINA/DFMS observations when different ion species have similar masses, and their respective densities are not high enough to disentangle them using the ROSINA/DFMS high-resolution mode. The different ion species that have been reported in the coma of 67P are summarized and compared with the ions detected at comet 1P/Halley during the Giotto mission.

  17. The Influence of Aerosol Composition on Photolysis Rates Based on Airborne Observations

    NASA Astrophysics Data System (ADS)

    Corr, C.; Barrick, J. D. W.; Beyersdorf, A. J.; Chen, G.; Crawford, J. H.; Jordan, C. E.; Moore, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Ziemba, L. D.; Madronich, S.; Anderson, B. E.

    2015-12-01

    The potential variability in modeled photolysis rates introduced by aerosol optical properties measured at visible wavelengths is presented here. Aerosol scattering and absorption were measured aboard the NASA P-3B aircraft during the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) using a TSI Nephelometer and a Radiance Research Particle Soot Absorption Photometer (PSAP), respectively. To isolate the effect of aerosols on photolysis rates, cloud-free case studies were identified using aircraft videos for the four DISCOVER-AQ deployments: Baltimore, MD-Washington, D.C. in July 2011, the California Central Valley in January/February 2013, Houston, TX in September 2013, and Denver, CO in July 2014. For these case studies, absorption measurements at 470 and 532 nm were extrapolated to the Nephelometer wavelengths (450 and 550nm) using the 470-532nm absorption Angstrom exponent (AAE470-532) to calculate aerosol extinction and SSAs at these wavelengths. Photolysis rates were modeled using the Tropospheric Ultraviolet model version 5.2 (TUV 5.2) for three scenarios: 1) an aerosol-free case, 2) using a spectrally-flat SSA at 550nm and 3) using a spectrally-dependent SSA derived from scattering and absorption measurements. Modeled photolysis rates were compared to those measured aboard the P-3B during DISCOVER-AQ. The relationship between airborne measurements of water soluble organic carbon (WSOC) made by a Particle-Into-Liquid-Sampler (PILS), AAE470-532 and model/measurement discrepancies were explored to assess the influence of aerosol composition on photolysis rates. Additional comparisons between photolysis rates modeled with vertically-resolved aerosol optical properties and those modeled using column-average values were performed to assess the influence of aerosol vertical distribution on photolysis rates.

  18. Determination of pulse energy dependence for skin denaturation from 585nm fibre laser

    NASA Astrophysics Data System (ADS)

    Mujica-Ascencio, S.; Velazquez-Gonzalez, J. S.; Mujica-Ascencio, C.; Alvarez-Chavez, J. A.

    2014-05-01

    In this paper, simulation and mathematical analysis for the determination of pulse energy from a Q-switched Yb3+-doped fibre laser is required in Port Wine Stain (PWS) treatment. The pulse energy depends on average power, gain, volume, repetition rate and pulse duration. In some treatments such as Selective Photothermolysis (SP), the peak power at the end of the optical fibre and pulse duration can be obtained and modified via a cavity design. For that purpose, a 585nm optical fibre laser full design which considers all of the above besides the average losses through the optical devices proposed for the design and the Ytterbium optical fibre overall gain will be presented.

  19. An energy-dependent numerical model for the condensation probability, γj

    DOE PAGES

    Kerby, Leslie Marie

    2016-12-09

    The “condensation” probability, γj, is an important variable in the preequilibrium stage of nuclear spallation reactions. It represents the probability that pj excited nucleons (excitons) will “condense” to form complex particle type j in the excited residual nucleus. In addition, it has a significant impact on the emission width, or probability of emitting fragment type j from the residual nucleus. Previous formulations for γj were energy-independent and valid for fragments up to 4He only. This paper explores the formulation of a new model for γj, one which is energy-dependent and valid for up to 28Mg, and which provides improved fitsmore » compared to experimental fragment spectra.« less

  20. Energy dependence of the electron attenuation length in lead arachidate Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Sastry, Murali; Badrinarayanan, S.; Ganguly, P.

    1992-04-01

    The attenuation lengths for electrons in the kinetic-energy range 1350-550 eV in lead arachidate [(C19H39COO)2Pb] Langmuir-Blodgett films have been determined from measurements of the x-ray photoemission intensity variation with electron takeoff angle. Attenuation lengths are determined from an elementary layer model proposed in the paper. The layer model increases the kinetic-energy range over which attenuation lengths can be determined and is thus more versatile than the overlayer method. The Bethe equation for inelastic scattering of electrons is found to describe the energy dependence of the measured attenuation lengths quite well. The material dependence of the Bethe parameters determined by Tanuma, Powell, and Penn [Surf. Interface Anal. 11, 577 (1988)] for some metals, oxides, and insulators does not exist in the case of lead arachidate Langmuir-Blodgett films.

  1. Nonlinearly charged dilatonic black holes and their Brans-Dicke counterpart: energy dependent spacetime

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Talezadeh, M. S.

    2017-01-01

    Regarding the wide applications of dilaton gravity in the presence of electrodynamics, we introduce a suitable Lagrangian for the coupling of dilaton with gauge field. There are various Lagrangians which show the coupling between scalar fields and electrodynamics with correct special situations. In this paper, taking into account conformal transformation of Brans-Dicke theory with an electrodynamics Lagrangian, we show that how scalar field should couple with electrodynamics in dilaton gravity. In other words, in order to introduce a correct Lagrangian of dilaton gravity, one should check at least two requirements: compatibility with Brans-Dicke theory and appropriate special situations. Finally, we apply the mentioned method to obtain analytical solutions of dilaton-Born-Infeld and Brans-Dicke-Born-Infeld theories with energy dependent spacetime.

  2. An energy-dependent numerical model for the condensation probability, γj

    NASA Astrophysics Data System (ADS)

    Kerby, Leslie M.

    2017-04-01

    The "condensation" probability, γj, is an important variable in the preequilibrium stage of nuclear spallation reactions. It represents the probability that pj excited nucleons (excitons) will "condense" to form complex particle type j in the excited residual nucleus. It has a significant impact on the emission width, or probability of emitting fragment type j from the residual nucleus. Previous formulations for γj were energy-independent and valid for fragments up to 4He only. This paper explores the formulation of a new model for γj, one which is energy-dependent and valid for up to 28Mg, and which provides improved fits compared to experimental fragment spectra.

  3. Energy-Dependent microscopic optical potential for p+{sup 9}Be elastic scattering

    SciTech Connect

    Maridi, H. M.; Farag, M. Y. H. Esmael, E. H.

    2016-06-10

    The p+{sup 9}Be elastic scattering at an energy range up to 200 MeV/nucleon is analyzed using the single-folding model. The density- and isospin-dependent M3Y-Paris nucleon-nucleon (NN) interaction is used for the real part and the NN-scattering amplitude of the high-energy approximation for the imaginary one. The analysis reveals that the cross-section data are reproduced well at energies up to 100 MeV/nucleon by use of the partial-wave expansion. For higher energies, the eikonal approximation give results better than the partial-wave expansion calculations. The volume integrals of the optical-potential parts have systematic energy dependencies, and they are parameterized in empirical formulas.

  4. Energy dependent ripple growth on Si (100) by N+ ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Bhowmik, D.; Karmakar, P.

    2017-05-01

    The energy dependence of pattern formation on Si (100) surface by N+ ion beam irradiation has been studied. Periodic ripple pattern growth has been found for low energy (5-10 keV) N+ ion bombardment at oblique incidence at a fluence of 7 × 1017 ions/cm2. The wave vector of the ripples is parallel to the ion beam direction which follows the Bradley Harper theory of ripple growth [Bradley et. al, J. Vac. Sci. Technol. A 6, 2390 (1988)]. We also found that the lateral (wavelength) and vertical (roughness) dimensions of the ripples increase with the ion energy. Ion penetration and collision cascade dimensions are calculated by Stopping and Range of Ions in Matter (SRIM). It is found that the roughness is proportional to ion penetration depth whereas the wavelength is proportional to the horizontal width of collision cascade.

  5. Relativistic mean-field model with energy dependent self-energies

    SciTech Connect

    Antic, S.; Typel, S.

    2015-02-24

    Conventional relativistic mean-field theory is extended with the introduction of higher-order derivative couplings of nucleons with the meson fields. The Euler-Lagrange equations follow from the principle of stationary action. From invariance principles of the Lagrangian density the most general expressions for the conserved current and energy-momentum tensor are derived. The nucleon self-energies show the explicit dependence on the meson fields. They contain additional regulator functions which describe the energy dependence. The density dependence of meson-nucleon couplings causes the apperance of additional rearrangement contributions in the self-energies. The equation of state of infinite nuclear matter is obtained and the thermodynamical consistency of the model is demonstrated. This model is applied to the description of spherical, non-rotating stars in β-equilibrium. Stellar structure is calculated by solving the Tolman-Oppenheimer-Volkov (TOV) equations. The results for neutron stars are shown in terms of mass-radius relations.

  6. Correlation length and universality in the BCS-BEC crossover for energy-dependent resonance superfluidity

    NASA Astrophysics Data System (ADS)

    Musolino, S.; Chiofalo, M.-L.

    2017-07-01

    We consider the BCS-BEC crossover of a quantum Fermi gas at T = 0 in the presence of an energy-dependent Fano-Feshbach resonance, driving the system from broad to narrow limits. We choose a minimal microscopic potential reproducing the two-particle resonance physics in terms of the scattering length a and the effective range R∗ representing the resonance width, and solve the BCS mean-field equations varying a, R∗ and the density. We show that the condensate fraction manifests a universal behavior when the correlation length, measuring the pair size, is used as the crossover parameter. Generally, a negative effective range has the effect of stretching the crossover region between the two extreme regimes, as evidenced by the behavior of the chemical potential. These results can be useful in view of the more recent perspectives of realizing narrow resonances also by optical means and amenable as a base quantum Monte Carlo simulations.

  7. Photon energy dependent circular dichroism in angle-resolved photoemission from Au(111) surface states

    NASA Astrophysics Data System (ADS)

    Ryu, Hanyoung; Song, Inkyung; Kim, Beomyoung; Cho, Soohyun; Soltani, Shoresh; Kim, Timur; Hoesch, Moritz; Kim, Choong H.; Kim, Changyoung

    2017-03-01

    We performed angle-resolved photoemission experiments on Au(111) surface with circularly polarized light. Data were taken with photon energies in the range between 20 and 100 eV in order to investigate the photon energy dependent behavior in the circular dichroism (CD). While the magnitude of the normalized CD value varies with a maximum value of about 70%, the sign of CD does not change for the photon energy within the range, inconsistent with the prediction based on the density-functional theory (DFT) calculation. Our calculation of the CD using DFT initial state and free electron final state shows a better consistency with experimental results than an earlier study using the inverse low-energy electron diffraction state as the final state. We briefly discuss the dominating factor that determines the CD from Au(111) states.

  8. The energy dependence and surface morphology of Kapton (trademark) degradation under atomic oxygen bombardment

    NASA Technical Reports Server (NTRS)

    Ferguson, D. C.

    1984-01-01

    Data from laboratory simulations and from samples returned from STS-8 are used to derive the energy dependence of the mass loss rate of Kapton under atomic oxygen bombardment and to discuss the development of surface structure and its effect on erosion rates. It is concluded that all the laboratory data from discharge and flow tubes and from accelerated beams, along with the orbital data from STS-3 through STS-8, can be accommodated by a rate of mass loss that varies with impact energy normal to the surface. It is hypothesized that increases of mass loss rate with exposure time may be due to trapping of the incoming atoms by the surface structure which develops.

  9. Correlation between surface chemistry and ion energy dependence of the etch yield in multicomponent oxides etching

    SciTech Connect

    Berube, P.-M.; Poirier, J.-S.; Margot, J.; Stafford, L.; Ndione, P. F.; Chaker, M.; Morandotti, R.

    2009-09-15

    The influence of surface chemistry in plasma etching of multicomponent oxides was investigated through measurements of the ion energy dependence of the etch yield. Using pulsed-laser-deposited Ca{sub x}Ba{sub (1-x)}Nb{sub 2}O{sub 6} (CBN) and SrTiO{sub 3} thin films as examples, it was found that the etching energy threshold shifts toward values larger or smaller than the sputtering threshold depending on whether or not ion-assisted chemical etching is the dominant etching pathway and whether surface chemistry is enhancing or inhibiting desorption of the film atoms. In the case of CBN films etched in an inductively coupled Cl{sub 2} plasma, it is found that the chlorine uptake is inhibiting the etching reaction, with the desorption of nonvolatile NbCl{sub 2} and BaCl{sub 2} compounds being the rate-limiting step.

  10. Using XMM-Newton to study the energy-dependent variability of H 1743-322 during its 2014 outburst

    NASA Astrophysics Data System (ADS)

    Stiele, H.; Yu, W.

    2016-08-01

    Black hole transients evolve during bright outbursts, showing distinct changes in their spectral and variability properties. These changes are interpreted as evidence for changes in the accretion flow and in the X-ray-emitting regions. We obtained an anticipated XMM-Newton Target of Opportunity observation of H 1743-322 during its outburst in 2014 September. Based on data from eight outbursts observed in the last 10 yr, we expected to catch the start of the hard-to-soft state transition. The fact that neither the general shape of the observed power density spectrum nor the characteristic frequency shows an energy dependence implies that the source remained in the low-hard state at the time of our observation near outburst peak. The spectral properties agree with the source being in the low-hard state, and a Swift/XRT monitoring of the outburst revealed that H 1743-322 stayed in the low-hard state during the entire outburst (known as a `failed outburst'). Here we derive the averaged QPO waveform and obtain phase-resolved spectra. A comparison of the phase-resolved spectra with the phase-averaged energy spectrum reveals spectral pivoting. We compare variability on long and short time-scales using covariance spectra and find that the covariance ratio does not show an increase towards lower energies. In other binaries an increase has been found. There are two possible explanations: either the absence of additional disc variability on longer time-scales is related to the high inclination of H 1743-322 compared with other black hole X-ray binaries, or it is the reason why we observe H 1743-322 during a failed outburst. More data on failed outbursts and on high-inclination sources will be needed in order to investigate these two possibilities further.

  11. Pencil beam approach for correcting the energy dependence artifact in film dosimetry for IMRT verification

    SciTech Connect

    Kirov, Assen S.; Caravelli, Gregory; Palm, Aasa; Chui, Chen; LoSasso, Thomas

    2006-10-15

    The higher sensitivity to low-energy scattered photons of radiographic film compared to water can lead to significant dosimetric error when the beam quality varies significantly within a field. Correcting for this artifact will provide greater accuracy for intensity modulated radiation therapy (IMRT) verification dosimetry. A procedure is developed for correction of the film energy-dependent response by creating a pencil beam kernel within our treatment planning system to model the film response specifically. Film kernels are obtained from EGSnrc Monte Carlo simulations of the dose distribution from a 1 mm diameter narrow beam in a model of the film placed at six depths from 1.5 to 40 cm in polystyrene and solid water phantoms. Kernels for different area phantoms (50x50 cm{sup 2} and 25x25 cm{sup 2} polystyrene and 30x30 cm{sup 2} solid water) are produced. The Monte Carlo calculated kernel is experimentally verified with film, ion chamber and thermoluminescent dosimetry (TLD) measurements in polystyrene irradiated by a narrow beam. The kernel is then used in convolution calculations to predict the film response in open and IMRT fields. A 6 MV photon beam and Kodak XV2 film in a polystyrene phantom are selected to test the method as they are often used in practice and can result in large energy-dependent artifacts. The difference in dose distributions calculated with the film kernel and the water kernel is subtracted from film measurements to obtain a practically film artifact free IMRT dose distribution for the Kodak XV2 film. For the points with dose exceeding 5 cGy (11% of the peak dose) in a large modulated field and a film measurement inside a large polystyrene phantom at depth of 10 cm, the correction reduces the fraction of pixels for which the film dose deviates from dose to water by more than 5% of the mean film dose from 44% to 6%.

  12. XMM-Newton Observations of HESSJ1813-178 Reveal a Composite Supernova Remnant

    SciTech Connect

    Funk, S.; Hinton, J.A.; Moriguchi, Y.; Aharonian, F.A.; Fukui, Y.; Hofmann, W.; Horns, D.; Puehlhofer, G.; Reimer, O.; Rowell, G.; Terrier, R.; Vink, J.; Wagner, S.

    2006-11-27

    Aims--We present X-ray and {sup 12}CO(J=1-0) observations of the very-high-energy (VHE) {gamma}-ray source HESS J1813-178 with the aim of understanding the origin of the {gamma}-ray emission. Methods--High-angular resolution X-ray studies of the VHE {gamma}-ray emission region are performed using 18.6 ks of XMM-Newton data, taken on HESS J1813-178 in October 2005. Using this dataset we are able to undertake spectral and morphological studies of the X-ray emission object with greater precision than previous studies. NANTEN {sup 12}CO(J=1-0) data are used to search for correlations of the {gamma}-ray emission with molecular clouds which could act as target material for {gamma}-ray production in a hadronic scenario. Results--The NANTEN {sup 12}CO(J=1-0) observations show a giant molecular cloud of mass 2.5 x 10{sup 5} M{sub {circle_dot}} at a distance of 4 kpc in the vicinity of HESS J1813-178. Even though there is no direct positional coincidence, this giant cloud might have influenced the evolution of the {gamma}-ray source and its surroundings. The X-ray data show a highly absorbed (n{sub H} {approx} 1 x 10{sup 23} cm{sup -2}) non-thermal X-ray emitting object coincident with the previously known ASCA source AXJ1813-178 showing a compact core and an extended tail towards the north-east, located in the center of the radio shell-type Supernova remnant (SNR) G12.82-0.2. This central object shows morphological and spectral resemblance to a Pulsar Wind Nebula (PWN) and we therefore consider that this object is very likely to be a composite SNR. Nevertheless, we cannot distinguish between the scenarios in which the {gamma}-rays originate in the shell of the SNR and the one in which they originate in the central object. We discuss both scenarios in terms of a one-zone leptonic model and demonstrate, that in order to connect the core X-ray emission to the VHE {gamma}-ray emission electrons have to be accelerated to energies of at least 1 PeV. We conclude that if indeed the

  13. CCN frequency distributions and aerosol chemical composition from long-term observations at European ACTRIS supersites

    NASA Astrophysics Data System (ADS)

    Decesari, Stefano; Rinaldi, Matteo; Schmale, Julia Yvonne; Gysel, Martin; Fröhlich, Roman; Poulain, Laurent; Henning, Silvia; Stratmann, Frank; Facchini, Maria Cristina

    2016-04-01

    Cloud droplet number concentration is regulated by the availability of aerosol acting as cloud condensation nuclei (CCN). Predicting the air concentrations of CCN involves knowledge of all physical and chemical processes that contribute to shape the particle size distribution and determine aerosol hygroscopicity. The relevance of specific atmospheric processes (e.g., nucleation, coagulation, condensation of secondary organic and inorganic aerosol, etc.) is time- and site-dependent, therefore the availability of long-term, time-resolved aerosol observations at locations representative of diverse environments is strategic for the validation of state-of-the-art chemical transport models suited to predict CCN concentrations. We focused on long-term (year-long) datasets of CCN and of aerosol composition data including black carbon, and inorganic as well as organic compounds from the Aerosol Chemical Speciation Monitor (ACSM) at selected ACTRIS supersites (http://www.actris.eu/). We discuss here the joint frequency distribution of CCN levels and of aerosol chemical components concentrations for two stations: an alpine site (Jungfraujoch, CH) and a central European rural site (Melpitz, DE). The CCN frequency distributions at Jungfraujoch are broad and generally correlated with the distributions of the concentrations of aerosol chemical components (e.g., high CCN concentrations are most frequently found for high organic matter or black carbon concentrations, and vice versa), which can be explained as an effect of the strong seasonality in the aerosol characteristics at the mountain site. The CCN frequency distributions in Melpitz show a much weaker overlap with the distributions of BC concentrations or other chemical compounds. However, especially at high CCN concentration levels, a statistical correlation with organic matter (OM) concentration can be observed. For instance, the number of CCN (with particle diameter between 20 and 250 nm) at a supersaturation of 0.7% is

  14. Auroral energy deposition and neutral composition changes observed simultaneously by ESRO 4 and AE-C at different altitudes

    NASA Technical Reports Server (NTRS)

    Trinks, H.; Mayr, H. G.; Kayser, D. C.; Potter, W. E.

    1977-01-01

    Neutral composition data obtained simultaneously from ESRO 4 and AE-C during geomagnetically disturbed conditions at different altitudes (160 and 230 km) are used to investigate the atmospheric response to geomagnetic storms and to infer information regarding the excitation mechanism. The data are compared with a theoretical model that estimates the composition effects in terms of wind induced diffusion. A parametric study was conducted bearing on the influence of energy deposition at different altitudes and with varying latitudinal extent. In one of the observed events the composition effects at 160 km are substantially smaller than at 230 km for which we inferred by comparison with the theory that the energy mainly was deposited at 150 km altitude over a wide latitude range. Another event required energy deposition at somewhat lower altitudes near 120 km with a more localized energy source. Significant variations of the turbopause level were not necessary to explain the observed variations.

  15. Application of Local Time Dependent Ion Composition to Observations, Modeling, and Effects of Electromagnetic Ion Cyclotron Waves

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Angelopoulos, V.; Chen, L.; Thorne, R. M.

    2014-12-01

    Numerous global magnetospheric studies on electromagnetic ion cyclotron (EMIC) waves have revealed the typical wave properties observed throughout the Earth's magnetosphere. The observed trends in the wave properties at various geocentric distances and local time sectors, although in general agreement, elude satisfactory explanation without further details on the ambient plasma properties, the low-energy (few to ~100 eV) ions in particular. Recent studies also described techniques to deduce the presence and properties of low-energy ions and the application of such a technique to THEMIS (Time History of Events and Macroscale Interactions during Substorms) data has revealed the typical low-energy ion compositional properties throughout the Earth's magnetosphere. Motivated by the recent work on EMIC waves and low-energy ion composition, we analyze typical wave cases observed at each local time sector by the THEMIS satellites and apply the composition techniques or the statistical low-energy ion composition data to constrain the low-energy components in modeling of each wave case in the context of linear hot plasma theory. We find that the observed waves are modeled well with hot plasma theory and both are fully consistent with the composition of the ambient plasma. Our results suggest that combined ion composition and wave measurements are critical for further assessment of the effects of the waves on energetic particles. In the cases we report on here, we find the waves could resonantly interact with electrons at energies in excess of 2 MeV and therefore do not have an effect on the dominant trapped electron population.

  16. Energy-dependent deposition processes of size-selected Ag nanoclusters on highly-oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Yamaguchi, W.; Yoshimura, K.; Tai, Y.; Maruyama, Y.; Igarashi, K.; Tanemura, S.; Murakami, J.

    2000-06-01

    Singly charged cations of silver atoms and clusters (Agn+, n=1,3,5,7,9) were deposited on highly oriented pyrolytic graphite substrates at well-controlled, various collision energies. The total amount of Ag atoms remaining on the substrates after collision was quantified by measuring the Ag3d5/2 photoelectron intensities. The collision energy dependence of the amount of deposited Ag atoms revealed that, for all the species, there are three distinct energy regions, for which soft landing, rebounding, or implantation is a dominant process, and that the energy ranges for the processes strongly depend on the cluster size. The deposition efficiency vs collision energy curve for each cluster is well fitted to that for Ag1, by considering the difference between the contact area of Ag1 with the surface and that of the cluster, reflecting the compactness of the clusters. Boundaries between the different deposition regimes for the clusters were less distinct than those for Ag1. Considering anisotropy in shape of a cluster, deposition efficiency around the implantation threshold was calculated, which well explains the indistinctness of the threshold observed in the experimental data. This supports the picture that the energy given to a unit surface area determines the collision process.

  17. One Year of Observations of Dawn at Ceres: Composition as seen by VIR

    NASA Astrophysics Data System (ADS)

    De Sanctis, M. Cristina; Ammannito, Eleonora; Ciarniello, Mauro; Raponi, Andrea; Carrozzo, F. Giacomo; Frigeri, Alessandro; Longobardo, Andrea; Palomba, Ernesto; Tosi, Federico; Zambon, Francesca; Fonte, Sergio; Formisano, Michelangelo; Giardino, Marco; Magni, Gianfranco; Capaccioni, Fabrizio; Capria, M. Teresa; Marchi, Simone; Pieters, Carle M.; Ehlmann, Bethany; McCord, Tom

    2016-04-01

    NASA's Dawn spacecraft [1] arrived at Ceres on March 5, 2015, and has been studying the dwarf planet. The Dawn mission is observing Ceres' surface with its suite of instruments [1] including a Visible and InfraRed Mapping Spectrometer (VIR-MS) [2]. VIR-MS is an imaging spectrometer coupling high spectral and spatial resolution in the VIS (0.25-1-micron) and IR (0.95-5-micron) spectral ranges. Ceres' surface is very dark, but small localized areas exhibit unexpectedly bright materials. Since the first approach data, near infrared spectra revealed a dark surface, with a strong and complex absorption band in the spectral region around 3 microns [3]. Near-infrared spectroscopic analyses confirmed previous observation of bands at 3.1, 3.3-3.5, 3.9 micron but have clearly identified a band at 2.72 micron. This characteristic narrow feature is distinctive for OH-bearing minerals, while H2O-bearing phases, show a much broader absorption band that is a poor match for the Ceres spectrum. Water ice does not fit the observed spectrum. The 3.05-3.1 μm band is also visible in Ceres' ground-based spectra, and has been previously attributed to different phases including water ice, hydrated or NH4-bearing clays and brucite [4,5,6]. We find here that the best fit is obtained with ammoniated phyllosilicate added to a dark material (likely magnetite), antigorite and carbonate [7]. These different components, including ammoniated phases, occur everywhere across the surface although with different relative abundances [8]. Particularly interesting are the bright materials present in some craters like Occator, Haulani and Oxo that show different proportions of the components of the mixture [8]. However, the distribution of the band depths are not always linked to morphological structures. The retrieved mineralogy and composition indicates pervasive aqueous alteration of the surface, processes that are expected to be favored on large bodies like Ceres [9]. Furthermore, Ceres' low density

  18. Ecosystem composition changes over the past millennium: model simulations and comparison with paleoecological observations

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Rollinson, C.; Dietze, M.; McLachlan, J. S.; Poulter, B.; Quaife, T. L.; Raiho, A.; Ricciuto, D. M.; Schaefer, K. M.; Steinkamp, J.; Moore, D. J.

    2015-12-01

    Over multi-decadal to multi-centennial timescales, ecosystem function and carbon storage is largely influenced by vegetation composition. The predictability of ecosystem responses to climate change thus depends on the understanding of long-term community dynamics. Our study aims to quantify the influence of the most relevant ecological factors that control plant distribution and abundance, in contemporary terrestrial biosphere models and in paleo-records, and constrain the model processes and parameters with paleoecological data. We simulated vegetation changes at 6 sites in the northeastern United States over the past 1160 years using 7 terrestrial biosphere models and variations (CLM4.5-CN, ED2, ED2-LU, JULES-TRIFFID, LINKAGES, LPJ-GUESS, LPJ-wsl) driven by common paleoclimatic drivers. We examined plant growth, recruitment, and mortality (including other carbon turnover) of the plant functional types (PFTs) in the models, attributed the responses to three major factors (climate, competition, and disturbance), and estimated the relative effect of each factor. We assessed the model responses against plant-community theories (bioclimatic limits, niche difference, temporal variation and storage effect, and disturbance). We found that vegetation composition were sensitive to realized niche differences (e.g. differential growth response) among PFTs. Because many models assume unlimited dispersal and sometimes recruitment, the "storage effect" constantly affects community composition. Fire was important in determining the ecosystem composition, yet the vegetation to fire feedback was weak in the models. We also found that vegetation-composition changes in the simulations were driven to a much greater degree by growth as opposed to by turnover/mortality, when compared with those in paleoecological records. Our work suggest that 1) for forecasting slow changes in vegetation composition, we can use paleo-data to better quantify the realized niches of PFTs and associated

  19. The compositional and thermal structure of the lithosphere from thermodynamically-constrained multi-observable probabilistic inversion

    NASA Astrophysics Data System (ADS)

    Afonso, J. C.; Fullea, J.; Yang, Y.; Jones, A. G.; Griffin, W. L.; Connolly, J. A. D.; O'Reilly, S. Y.; Lebedev, S.

    2012-04-01

    Our capacity to image and characterize the thermal and compositional structure of the lithospheric and sublithospheric upper mantle is a fundamental prerequisite for understanding the formation and evolution of the lithosphere, the interaction between the crust-mantle and lithosphere-asthenosphere systems, and the nature of the lithosphere-asthenosphere boundary (LAB). In this context, the conversion of geophysical observables (e.g. travel-time data, gravity anomalies, etc) into robust estimates of the true physical and chemical state of the Earth's interior plays a major role. Unfortunately, available methods/software used to make such conversions are not well suited to deal with one or more of the following problems: 1) Strong non-linearity of the system. Traditional linearized inversions do not generally provide reliable estimates. 2) The temperature effect on geophysical observables is much greater than the compositional effect, therefore the latter is much harder to isolate. 3) Non-uniqueness of the compositional field. Different compositions can fit equally well seismic and potential field observations. 4) Strong correlations between physical parameters and geophysical observables complicate the inversion procedure and their effects are poorly understood. 5) Trade-off between temperature and composition in wave speeds. In this contribution we present a new full-3D multi-observable inversion method particularly designed to circumvent these problems. Some other key aspects of the method are: a) it combines multiple datasets (ambient noise tomography, receiver function analysis, body-wave tomography, magnetotelluric, geothermal, petrological, and gravity) in a single thermodynamic-geophysical framework, b) a general probabilistic (Bayesian) formulation is used to appraise the data, c) neither initial models nor well-defined a priori information is required, and d) it provides realistic uncertainty estimates. Both synthetic models and preliminary results for real

  20. Observation

    ERIC Educational Resources Information Center

    Helfrich, Shannon

    2016-01-01

    Helfrich addresses two perspectives from which to think about observation in the classroom: that of the teacher observing her classroom, her group, and its needs, and that of the outside observer coming into the classroom. Offering advice from her own experience, she encourages and defends both. Do not be afraid of the disruption of outside…

  1. Observations

    ERIC Educational Resources Information Center

    Joosten, Albert Max

    2016-01-01

    Joosten begins his article by telling us that love and knowledge together are the foundation for our work with children. This combination is at the heart of our observation. With this as the foundation, he goes on to offer practical advice to aid our practice of observation. He offers a "List of Objects of Observation" to help guide our…

  2. Chemical Composition and Size Distributions of Coastal Aerosols Observed on the U.S. East Coast

    NASA Astrophysics Data System (ADS)

    Xia, L.; Song, F.; Jusino-Atresino, R.; Thuman, C.; Gao, Y.

    2008-12-01

    Aerosol input is an important source of certain limiting nutrients, such as iron, for phytoplankton growth in several large oceanic regions. As the efficiency of biological uptake of nutrients may depend on the aerosol properties, a better knowledge of aerosol properties is critically important. Characterizing aerosols over the coastal ocean needs special attention, because the properties of aerosols could be altered by many anthropogenic processes in this land-ocean transition zone before they are transported over the remote ocean. The goal of this experiment was to examine aerosol properties, in particular chemical composition, particle-size distributions and iron solubility, over the US Eastern Seaboard, an important boundary for the transport of continental substances from North America to the North Atlantic Ocean. Our field sampling site was located at Tuckerton (39°N, 74°W) on the southern New Jersey coast. Fourteen sets of High-Volume aerosol samples and three sets of size segregated aerosol samples by a 10-stage MOUDI impactor were collected during 2007 and 2008. The ICP-MS methodology was used to analyze aerosol samples for the concentrations of thirteen trace elements: Al, Fe, Mn, Sc, Cd, Pb, Sb, Ni, Co, Cr, Cu, Zn and V. The IC procedures were applied to determine five cations (sodium, ammonium, potassium, magnesium and calcium) and eleven anions (fluoride, acetate, propionate, formate, MSA, chloride, nitrate, succinate, malonate, sulfate and oxalate). The UV spectrometry was employed for the determination of iron solubility. Preliminary results suggest three major sources of aerosols: anthropogenic, crustal and marine. At this location, the concentrations of iron (II) ranged from 2.8 to 29ng m-3, accounting for ~20% of the total iron. The iron concentrations at this coastal site were substantially lower than those observed in Newark, an urban site in northern NJ. High concentrations of iron (II) were associated with both fine and coarse aerosol

  3. ACCURATE MEASUREMENT OF THE ENERGY DEPENDENCE OF THE PROCESS e+ + e- → e± + e∓, IN THE s-RANGE 1.44-9.0 GeV2

    NASA Astrophysics Data System (ADS)

    Bernardini, M.; Bollini, D.; Brunini, P. L.; Fiorentino, E.; Massam, T.; Monari, L.; Palmonari, F.; Rimondi, F.; Zichichi, A.

    The analysis of 12 827 e+ + e- → e± + e∓ events observed in the s-range 1.44-9.0 GeV2 allows measurement of the energy dependence of the cross-section for the most typical QED process, with ±2% accuracy. Within this limit the data follow QED, with first-order radiative corrections included.

  4. Composition and energy spectra of low energy ions observed upstream of the earth's bow shock on ISEE-1

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.; Galvin, A. B.; Gloeckler, G.; Hovestadt, D.; Klecker, B.; Scholer, M.; Fan, C. Y.; Fisk, L. A.; Ogallagher, J. J.

    1980-01-01

    The characteristics of eleven locally accelerated particle events in the energy range from 30 to 125 keV/Q observed upstream of the earth's bow shock have been determined, including composition, energy spectra, and intensity versus time profiles. The measurements were made with the Ultra Low Energy Charge Analyzer sensor on ISEE-1. The composition in these events is similar to that of the solar wind, with a He to proton ratio of 8% and a CNO to He ratio of 6%. The composition is reasonably constant only when evaluated at equal energy per charge. The energy spectra cannot be adequately fit by a single power law in energy; an exponential or Maxwellian in energy per charge gives a satisfactory representation of the spectra. The time-intensity profiles of these upstream events show an inverse velocity dispersion, which may provide clues to the responsible acceleration mechanism.

  5. A composite indicator for assessing habitat quality of riparian forests derived from Earth observation data

    NASA Astrophysics Data System (ADS)

    Riedler, Barbara; Pernkopf, Lena; Strasser, Thomas; Lang, Stefan; Smith, Geoff

    2015-05-01

    Riparian forests are precious, complex habitats fostering high biodiversity where effective monitoring of habitat quality is particularly important. We present a composite indicator, referred to as Riparian Forest composite Indicator: focus on Structure (RFI_S), for the assessment of habitat quality and identification of 'hot-spot' areas where conservation actions need to be taken. The RFI_S is composed of seven indicators derived from very high resolution (VHR) satellite imagery and LiDAR data, calculated on patch level. These indicators assess four important attributes of riparian forest quality: (1) tree species composition, (2) vertical forest structure, (3) horizontal forest structure and (4) water regime. For the aggregation of the RFI_S, two different weighting schemes, expert-based and statistical weighting, are applied. Forest patches with high cumulative RFI_S values represent patches of good habitat quality. These patches are primarily found along water bodies, reflecting the importance of water bodies for the structural complexity, an optimum water regime and tree species composition. For forest patches of low habitat quality the RFI_S helps to design suitable measures to improve habitat quality status through its decomposability into the underlying indicators. A sensitivity analysis to test the robustness of the RFI_S shows that the indicator variance in terrain roughness has the strongest influence on the composite indicator. Finally, a comparison with an existing expert-based map on conservation status reveals the potential of a complementary quantitative assessment of habitat quality in the study site. We hence conclude that the RFI_S has a high capability to support sustainable forest management complementing regularly gathered in situ data.

  6. Observation

    ERIC Educational Resources Information Center

    Patell, Hilla

    2016-01-01

    In order to achieve the goal of observation, preparation of the adult, the observer, is necessary. This preparation, says Hilla Patell, requires us to "have an appreciation of the significance of the child's spontaneous activities and a more thorough understanding of the child's needs." She discusses the growth of both the desire to…

  7. Observation

    ERIC Educational Resources Information Center

    Kripalani, Lakshmi A.

    2016-01-01

    The adult who is inexperienced in the art of observation may, even with the best intentions, react to a child's behavior in a way that hinders instead of helping the child's development. Kripalani outlines the need for training and practice in observation in order to "understand the needs of the children and...to understand how to remove…

  8. Major-Element Compositional Diversity Observed by ChemCam Along the MSL Traverse: The First Three Years

    NASA Astrophysics Data System (ADS)

    Wiens, R. C.; Mangold, N.; Maurice, S.; Blaney, D. L.; Clegg, S. M.; Gasda, P. J.; Frydenvang, J.; Gasnault, O.; Forni, O.; Cousin, A.; Lasue, J.; Lanza, N.; Anderson, R. B.; Sautter, V.; Bridges, J.; Le Deit, L.; Nachon, M.; Rapin, W.; Meslin, P. Y.; Newsom, H. E.; Clark, B. C.; Vaniman, D. T.; Bridges, N.; Herkenhoff, K. E.; Ehlmann, B. L.; Dyar, M. D.; Fisk, M. R.; Francis, R.; Leveille, R. J.; Johnson, J. R.; Melikechi, N.; Jackson, R.; Fabre, C.; Payré, V.; Grotzinger, J. P.; Vasavada, A. R.; Crisp, J. A.

    2015-12-01

    ChemCam on Curiosity has used LIBS to obtain elemental compositions of >6000 target points at distances to 7.4 m from the rover. Observations include igneous clasts, sediments, diagenetic features, and other details often not accessible by the rover arm. A major re-calibration was recently completed using >350 standards. This significantly improved the accuracies of mineral end-members including plag-feldspars, hi-Si compositions, oxide grains, Mg-rich end-members (presumably Mg saponites; not yet confirmed by CheMin), and Mg and Ca sulfates. Here we draw conclusions from the overall compositional distributions observed in Gale crater from landing until the present using the new calibration. Observations from Bradbury Rise (sols 0-53, 326-520) show a scattering of compositions toward mineral end-members from igneous clasts and pebbles transported from the crater rim. In contrast, Sheepbed mudstones (first drill location; sols 126-300) form a tight cluster close to average Mars composition. The nearby Shaler fluvial sandstone outcrop (sols 306-325)--the first outcrop of potential deltaic foreset beds--shows K enrichment. This enrichment reaches a peak of 6 wt % K2O (sol 625) in the Mt. Remarkable member of the Kimberley formation, Kimberley being a drill location flanked by foreset beds 7 km SW of Shaler. The Pahrump outcrop (sols 753-919)—first observed material of the Murray formation at Mt. Sharp's base—shows lower Mg, higher Si, and much higher Al, consistent with stronger alteration. Further along the traverse ChemCam discovered an outcrop of light-toned Murray formation rock (sols 992 on) of nearly pure SiO2+TiO2. Overall, the ChemCam database points to a very strong diversity of inputs and alteration processes within a relatively short distance within Gale. Igneous compositions: while Jake Matijevic, a float analyzed early by APXS, appeared nepheline normative, no clear nepheline has been found by ChemCam. Additionally, despite the significant number of

  9. A study of the energy dependence of the underlying event in proton-antiproton collisions

    SciTech Connect

    Aaltonen, T.

    2015-11-23

    We study charged particle production (pT > 0.5 GeV/c, |η| < 0.8) in proton-antiproton collisions at 300 GeV, 900 GeV, and 1.96 TeV. We use the direction of the charged particle with the largest transverse momentum in each event to define three regions of η-Φspace; “toward”, “away”, and “transverse”. Furthermore, the average number and the average scalar pT sum of charged particles in the transverse region are sensitive to the modeling of the “underlying event”. The transverse region is divided into a MAX and MIN transverse region, which helps separate the “hard component” (initial and final-state radiation) from the “beam-beam remnant” and multiple parton interaction components of the scattering. We found that the center-of-mass energy dependence of the various components of the event are studied in detail. The data presented here can be used to constrain and improve QCD Monte Carlo models, resulting in more precise predictions at the LHC energies of 13 and 14 TeV.

  10. Study of the energy dependence of the underlying event in proton-antiproton collisions

    SciTech Connect

    Nodulman, L.; Aaltonen, T; Albrow, M; Amerio, S.; Amidei, D; Anastassov, A.; Annovi, A; Antos, J; Apollinari, G.; Appel, J A; Arisawa, T

    2015-11-23

    We study charged particle production (p(T) > 0.5 GeV/c, vertical bar eta vertical bar < 0.8) in proton-antiproton collisions at total center-of-mass energies root s = 300 GeV, 900 GeV, and 1.96 TeV. We use the direction of the charged particle with the largest transverse momentum in each event to define three regions of eta - phi space: "toward", "away", and "transverse." The average number and the average scalar pT sum of charged particles in the transverse region are sensitive to the modeling of the "underlying event." The transverse region is divided into a MAX and MIN transverse region, which helps separate the "hard component" (initial and final-state radiation) from the "beam-beam remnant" and multiple parton interaction components of the scattering. The center-of-mass energy dependence of the various components of the event is studied in detail. The data presented here can be used to constrain and improve QCD Monte Carlo models, resulting in more precise predictions at the LHC energies of 13 and 14 TeV.

  11. Beyond the Lorentzian Model in Quantum Transport: Energy-Dependent Resonance Broadening in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Liu, Zhenfei; Neaton, Jeffrey B.

    In quantum transport calculations, transmission functions of molecular junctions, as well as spectral functions of metal-organic interfaces, often feature peaks originating from molecular resonances. These resonance peaks are often assumed to be Lorentzian, with an energy-independent broadening function Γ. However, in the general case, the wide-band-limit breaks down, and the Lorentzian approximation is no longer valid. Here, we develop a new energy-dependent broadening function Γ (E) , based on diagonalization of non-Hermitian matrices within a non-equilbrium Green's function (NEGF) formalism. As defined, Γ (E) can describe resonances of non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively; and it is particularly useful in understanding transport properties in terms of molecular orbitals in asymmetric junctions. We compute this quantity via an ab initio NEGF approach based on density functional theory and illustrate its utility with several junctions of experimental relevance, including recent work on rectification in Au-graphite junctions. This work is supported by the DOE, and computational resources are provided by NERSC.

  12. A study of the energy dependence of the underlying event in proton-antiproton collisions

    DOE PAGES

    Aaltonen, T.

    2015-11-23

    We study charged particle production (pT > 0.5 GeV/c, |η| < 0.8) in proton-antiproton collisions at 300 GeV, 900 GeV, and 1.96 TeV. We use the direction of the charged particle with the largest transverse momentum in each event to define three regions of η-Φspace; “toward”, “away”, and “transverse”. Furthermore, the average number and the average scalar pT sum of charged particles in the transverse region are sensitive to the modeling of the “underlying event”. The transverse region is divided into a MAX and MIN transverse region, which helps separate the “hard component” (initial and final-state radiation) from the “beam-beammore » remnant” and multiple parton interaction components of the scattering. We found that the center-of-mass energy dependence of the various components of the event are studied in detail. The data presented here can be used to constrain and improve QCD Monte Carlo models, resulting in more precise predictions at the LHC energies of 13 and 14 TeV.« less

  13. Energy dependence of p¯/p ratio in p+p collisions

    NASA Astrophysics Data System (ADS)

    Singha, Subhash; Netrakanti, Pawan Kumar; Kumar, Lokesh; Mohanty, Bedangadas

    2010-10-01

    We compiled the experimentally measured p¯/p ratio at midrapidity in p+p collisions from s=23 to 7000 GeV and compared it to various mechanisms of baryon production as implemented in the pythia, phojet, and Heavy Ion Jet Interaction Generator (HIJING)/B-B¯ models. For the models studied with default settings, phojet has the best agreement with the measurements, pythia gives a higher value for s<200 GeV, and the ratios from HIJING/B-B¯ are consistently lower for all the s studied. A comparison of the data to different mechanisms of baryon production as implemented in pythia shows that through a suitable tuning of the suppression of diquark-antidiquark pair production in the color field relative to quark-antiquark production and allowing the diquarks to split according to the popcorn scheme, a fairly reasonable description of the measured p¯/p ratio for s<200 GeV is given. A comparison of the beam energy dependence of the p¯/p ratio in p+p and nucleus-nucleus (A + A) collisions at midrapidity shows that the baryon production is significantly more for A + A collisions relative to p+p collisions for s<200 GeV. We also carry out a phenomenological fit to the ybeam dependence of the p¯/p ratio.

  14. Energy dependence of p-bar/p ratio in p+p collisions

    SciTech Connect

    Singha, Subhash; Mohanty, Bedangadas; Netrakanti, Pawan Kumar; Kumar, Lokesh

    2010-10-15

    We compiled the experimentally measured p-bar/p ratio at midrapidity in p+p collisions from {radical}(s)=23 to 7000 GeV and compared it to various mechanisms of baryon production as implemented in the pythia, phojet, and Heavy Ion Jet Interaction Generator (HIJING)/B-B models. For the models studied with default settings, phojet has the best agreement with the measurements, pythia gives a higher value for {radical}(s)<200 GeV, and the ratios from HIJING/B-B are consistently lower for all the {radical}(s) studied. A comparison of the data to different mechanisms of baryon production as implemented in pythia shows that through a suitable tuning of the suppression of diquark-antidiquark pair production in the color field relative to quark-antiquark production and allowing the diquarks to split according to the popcorn scheme, a fairly reasonable description of the measured p-bar/p ratio for {radical}(s)<200 GeV is given. A comparison of the beam energy dependence of the p-bar/p ratio in p+p and nucleus-nucleus (A + A) collisions at midrapidity shows that the baryon production is significantly more for A + A collisions relative to p+p collisions for {radical}(s)<200 GeV. We also carry out a phenomenological fit to the y{sub beam} dependence of the p-bar/p ratio.

  15. Subpicosecond Photon-Energy-Dependent Hole Transfer from PbS Quantum Dots to Conjugated Polymers.

    PubMed

    Colbert, Adam E; Jedlicka, Erin; Wu, Wenbi; Ginger, David S

    2016-12-15

    We use transient absorption (TA) spectroscopy to study the origin of photon-energy dependent hole transfer yields in blends of PbS quantum dots with the conjugated polymer poly(3-hexylthiophene-2,5-diyl) (P3HT). We selectively excite only the quantum dots at two different wavelengths and measure the polymer ground state bleach resulting from the transfer of photoexcited holes. The higher photon-energy pump shows a greater prompt yield of hole transfer compared to the lower photon-energy excitation, on time scales sufficient to out-compete hot carrier cooling in lead chalcogenide quantum dots. We interpret the results as evidence that the excess energy of nonthermalized, or "hot," excitons resulting from higher photon-energy excitation allows more efficient charge transfer to the polymer in these systems. The data also demonstrate slow charge transfer rates, up to ∼1 ns, of the relaxed excitations on the PbS dots. These findings help to clarify the role of excess photon energy and carrier relaxation dynamics on free carrier generation in donor/acceptor solar cells.

  16. Tropical deep convection and its impact on composition in global and mesoscale models - Part 1: Meteorology and comparison with observations.

    NASA Astrophysics Data System (ADS)

    Russo, M. R.; Marécal, V.; Hoyle, C. R.; Arteta, J.; Chemel, C.; Chipperfield, M. P.; Dessens, O.; Feng, W.; Hosking, J. S.; Telford, P. J.; Wild, O.; Yang, X.; Pyle, J. A.

    2010-08-01

    Tropical convection is a very important atmospheric process acting on the water cycle, radiative budget of the atmosphere and air composition of the upper troposphere and lower stratosphere (UTLS), and it affects a broad range of spatial and temporal scales. The fast vertical transport in convective plumes can efficiently redistribute water vapour and pollutants up to the Tropical Tropopause Layer (TTL), and therefore affect the composition of the lower stratosphere. Chemistry Climate Models and Chemistry Transport Models are routinely used to study chemical processes in the atmosphere. In these models convection and convective transport of tracers are parameterised, and due to the interplay of chemical and dynamical processes, it has proven difficult to evaluate the convective transport of chemical species by comparison with observed chemical fields. In this work we investigate different characteristics of tropical convection by using convective proxies from many independent observational datasets (including surface precipitation rates, cloud top pressure and OLR). We use observations to analyse the seasonal cycle and geographical preferences of convection, and its impact on water vapour. Using highly temporally resolved cloud top data we calculate the frequency distribution of high clouds in three tropical regions. The observational data is used as a benchmark for a number of numerical models, with a view to assess the ability of models to reproduce the seasonality, preferential location and vertical extent of tropical convection. Finally we discuss the implications of our findings on modelling the composition of the upper troposphere and lower stratosphere.

  17. Energy dependent Hanbury Brown -- Twiss interferometry and the freeze-out eccentricity of heavy ion collisions at STAR

    NASA Astrophysics Data System (ADS)

    Anson, Christopher Daniel

    Ultra-relativistic heavy ion collisions are believed to produce a state of deconfined quark-gluon plasma that is similar to the universe just after the Big Bang. To investigate the properties of this matter, a Beam Energy Scan was performed at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab. Information about the phase diagram describing the matter produced in these collisions can be gained by studying the beam energy dependence of various observables. One such analysis is Hanbury Brown Twiss (HBT) interferometry which is used to measure the size and shape of the regions emitting particles which are in turn related to dynamical processes that drive the evolution of the collisions. In this thesis analyses using two-pion HBT interferometry are presented for Au+Au collisions at sqrt(sNN) = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR detector during the Beam Energy Scan program. The dependence of extracted correlation lengths (radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality and transverse mass, mT. The eccentricity of the entire fireball at kinetic freeze-out can be extracted from the azimuthally-differential analysis. This freeze-out shape is believed to be sensitive to changes in the equation of state when measured as a function of beam energy. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The freeze-out eccentricity is observed to decrease monotonically with beam energy which is qualitatively consistent with the trends from all model predictions and quantitatively most consistent with a hadronic transport model.

  18. Energy dependence of analyzing power Ay and cross section for p+d scattering below 18 MeV

    NASA Astrophysics Data System (ADS)

    Sagara, K.; Oguri, H.; Shimizu, S.; Maeda, K.; Nakamura, H.; Nakashima, T.; Morinobu, S.

    1994-08-01

    The vector analyzing power Ay(θ) of the 2H(p-->,p)2H scattering has been measured at Ep=5, 6, 6.5, 7, 8, 8.5, 9, 10, 12, 14, 16, and 18 MeV with a typical statistical accuracy of 0.0009 and an uncertainty in the beam polarization of less than 0.7%. The differential cross section σ(θ) of the 2H(p,p)2H scattering has also been measured with a typical uncertainty of 0.8% using unpolarized beams of the same energies and of 2, 2.5, 3, and 4 MeV. A large discrepancy of about 25% between the experiment and the Faddeev calculation with the Paris NN potential is observed at the maximum of Ay(θ) around θc.m.=120°. This discrepancy is shown to be reduced by modifying LS force in the NN potential, though a discrepancy still remains in the energy dependence of the Ay(θ) maximum. At the minimum of σ(θ) around θc.m.=120°, a large discrepancy ranging from -19% at 2 MeV to +24% at 18 MeV is observed between the experiment and the calculations with either of the original and the LS-modified NN potentials. This indicates that an improvement is also necessary in the scalar part of the potential. The difference in the Ay(θ) maximum between the p-->+d and the n-->+d scatterings is discussed.

  19. Centrality and energy dependence of charged-particle multiplicities in heavy ion collisions in the context of elementary reactions

    SciTech Connect

    Back, B. B.; Wuosmaa, A. H.; Baker, M. D.; Barton, D. S.; Carroll, A.; Gushue, S.; Heintzelman, G. A.; Holzman, B.; Pak, R.; Remsberg, L. P.; Steinberg, P.; Sukhanov, A.; Betts, R. R.; Garcia, E.; Halliwell, C.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Kucewicz, W.; McLeod, D.

    2006-08-15

    The PHOBOS experiment at the BNL Relativistic Heavy Ion Collider has measured the total multiplicity of primary charged particles as a function of collision centrality in Au+Au collisions at {radical}(s{sub NN})= 19.6, 130, and 200 GeV. An approximate independence of / on the number of participating nucleons is observed, reminiscent of 'wounded nucleon' scaling (N{sub ch}{proportional_to}N{sub part}) observed in proton-nucleus collisions. Unlike p+A, the constant of proportionality does not seem to be set by the pp/pp data at the same energy. Rather, there seems to be a surprising correspondence with the total multiplicity measured in e{sup +}e{sup -} annihilations, as well as the rapidity shape measured over a large range. The energy dependence of the integrated multiplicity per participant pair shows that e{sup +}e{sup -} and A+A data agree over a large range of center-of-mass energies ({radical}(s)>20 GeV), and pp/pp data can be brought to agree approximately with the e{sup +}e{sup -} data by correcting for the typical energy taken away by leading particles. This is suggestive of a mechanism for soft particle production that depends mainly on the amount of available energy. It is conjectured that the dominant distinction between A+A and p+p collisions is the multiple collisions per participant, which appears to be sufficient to substantially reduce the energy taken away by leading particles.

  20. Carbon Monoxide Data Assimilation for Atmospheric Composition and Climate Science: Evaluating Performance with Current and Future Observations

    NASA Astrophysics Data System (ADS)

    Barre, J.; Edwards, D. P.; Gaubert, B.; Worden, H. M.; Arellano, A. F.; Anderson, J. L.

    2015-12-01

    Current satellite observations of tropospheric composition made from low Earth orbit provide at best one or two measurements each day at any given location. Comparisons of Terra/MOPITT carbon monoxide (CO) and IASI/Metop CO observation assimilations will be presented. We use the DART Ensemble Adjustment Kalman Filter to assimilate observations in the CAM-Chem global chemistry-climate model. Data assimilation impacts due to both different instrument capabilities (i.e. vertical sensitivity and global coverage) will be discussed. Coverage is global but sparse, often with large uncertainties in individual measurements that limit examination of local and regional atmospheric composition over short time periods. This has hindered the operational uptake of these data for monitoring air quality and population exposure, and for initializing and evaluating chemical weather forecasts. By the end of the current decade there are planned geostationary Earth orbit (GEO) satellite missions for atmospheric composition over North America, East Asia and Europe with additional missions proposed. Together, these present the possibility of a constellation of geostationary platforms to achieve continuous time-resolved high-density observations of continental domains for mapping pollutant sources and variability on diurnal and local scales. We describe Observing System Simulation Experiments (OSSEs) to evaluate the contributions of these GEO missions to improve knowledge of near-surface air pollution due to intercontinental long-range transport and quantify chemical precursor emissions. Our approach uses an efficient computational method to sample a high-resolution global GEOS-5 chemistry Nature Run over each geographical region of the GEO constellation. The demonstration carbon monoxide (CO) observation simulator, which will be expanded to other chemical pollutants, currently produces multispectral retrievals (MOPITT-like) and captures realistic scene-dependent variation in measurement

  1. Variation of the ion composition in the ring current during magnetic storms: Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Luo, Hao; Du, Aimin; Ge, Yasong; Cao, Xin; Zhang, Ying; Wang, Yuan

    2015-04-01

    It has been reported that the energy density of the oxygen ions in the ring current region will show more enhancements than protons during magnetic storms. Knowing how the ion composition changes during a magnetic storm is important for understanding the dynamic processes in the inner magnetosphere. By using ion flux data from HOPE and RBSPICE instruments on board the Van Allen probes, we study the energy density variation of both protons and oxygen ions during fifteen strong magnetic storms (minimum Dst < -80 nT) happened during year 2013 to 2014. Results provide important details about the ion composition at different storm stages and different magnetic local times. Results also give important indications about the ion acceleration in the inner magnetosphere and the source of the ring current ions during the magnetic storms.

  2. Energy-Dependent Scintillation Pulse Shape and Proportionality of Decay Components for CsI:Tl: Modeling with Transport and Rate Equations

    NASA Astrophysics Data System (ADS)

    Lu, X.; Gridin, S.; Williams, R. T.; Mayhugh, M. R.; Gektin, A.; Syntfeld-Kazuch, A.; Swiderski, L.; Moszynski, M.

    2017-01-01

    Relatively recent experiments on the scintillation response of CsI:Tl have found that there are three main decay times of about 730 ns, 3 μ s , and 16 μ s , i.e., one more principal decay component than had been previously reported; that the pulse shape depends on gamma-ray energy; and that the proportionality curves of each decay component are different, with the energy-dependent light yield of the 16 -μ s component appearing to be anticorrelated with that of the 0.73 -μ s component at room temperature. These observations can be explained by the described model of carrier transport and recombination in a particle track. This model takes into account processes of hot and thermalized carrier diffusion, electric-field transport, trapping, nonlinear quenching, and radiative recombination. With one parameter set, the model reproduces multiple observables of CsI:Tl scintillation response, including the pulse shape with rise and three decay components, its energy dependence, the approximate proportionality, and the main trends in proportionality of different decay components. The model offers insights on the spatial and temporal distributions of carriers and their reactions in the track.

  3. The atmospheric composition geostationary satellite constellation for air quality and climate science: Evaluating performance with Observation System Simulation Experiments

    NASA Astrophysics Data System (ADS)

    Edwards, D. P.; Barre, J.; Worden, H. M.; Arellano, A. F.; Gaubert, B.; Anderson, J. L.; Mizzi, A. P.; Lahoz, W. A.

    2014-12-01

    Current satellite observations of tropospheric composition made from low Earth orbit provide at best one or two measurements each day at any given location. Coverage is global but sparse, often with large uncertainties in individual measurements that limit examination of local and regional atmospheric composition over short time periods. This has hindered the operational uptake of these data for monitoring air quality and population exposure, and for initializing and evaluating chemical weather forecasts. By the end of the current decade there are planned geostationary Earth orbit (GEO) satellite missions for atmospheric composition over North America, East Asia and Europe with additional missions proposed. Together, these present the possibility of a constellation of GEO platforms to achieve continuous time-resolved high-density observations of continental domains for mapping pollutant sources and variability on diurnal and local scales. We describe Observing System Simulation Experiments (OSSEs) to evaluate the contributions of these GEO missions to improve knowledge of near-surface air pollution due to intercontinental long-range transport and quantify chemical precursor emissions. We discuss the requirements on measurement simulation, chemical transport modeling, and data assimilation for a successful OSSE infrastructure. Our approach uses an efficient computational method to sample a high-resolution global GEOS-5 chemistry Nature Run over each geographical region of the GEO constellation. The demonstration carbon monoxide (CO) observation simulator, which is being expanded to other chemical pollutants, currently produces multispectral retrievals and captures realistic scene-dependent variation in measurement vertical sensitivity and cloud cover. We use the DART Ensemble Adjustment Kalman Filter to assimilate the simulated observations in a CAM-Chem global chemistry-climate model Control Run. The impact of observing over each region is evaluated using data

  4. AMPTE/CCE observations of the plasma composition below 17 keV during the September 4, 1984 magnetic storm

    NASA Astrophysics Data System (ADS)

    Shelley, E. G.; Klumpar, D. M.; Peterson, W. K.; Ghielmetti, A.; Balsiger, H.; Geiss, J.; Rosenbauer, H.

    1985-05-01

    Observations from the Hot Plasma Composition Experiment on the AMPTE/CCE spacecraft during the magnetic storm of 4-5 September 1984 reveal that significant injection of ions of terrestrial origin accompanied the storm development. The compression of the magnetosphere at storm sudden commencement carried the magnetopause inside the CCE orbit clearly revealing the shocked solar wind plasma. A build up of suprathermal ions is observed near the plasmapause during the storm main phase and recovery phase. Pitch angle distributions in the ring current during the main phase show differences between H(+) and O(+) that suggest mass dependent injection, transport and/or loss processes.

  5. AMPTE/CCE observations of the plasma composition below 17 keV during the September 4, 1984 magnetic storm

    NASA Technical Reports Server (NTRS)

    Shelley, E. G.; Klumpar, D. M.; Peterson, W. K.; Ghielmetti, A.; Balsiger, H.; Geiss, J.; Rosenbauer, H.

    1985-01-01

    Observations from the Hot Plasma Composition Experiment on the AMPTE/CCE spacecraft during the magnetic storm of 4-5 September 1984 reveal that significant injection of ions of terrestrial origin accompanied the storm development. The compression of the magnetosphere at storm sudden commencement carried the magnetopause inside the CCE orbit clearly revealing the shocked solar wind plasma. A build up of suprathermal ions is observed near the plasmapause during the storm main phase and recovery phase. Pitch angle distributions in the ring current during the main phase show differences between H(+) and O(+) that suggest mass dependent injection, transport and/or loss processes.

  6. AMPTE/CCE observations of the plasma composition below 17 keV during the September 4, 1984 magnetic storm

    SciTech Connect

    Shelley, E.G.; Klumpar, D.M.; Peterson, W.K.; Ghielmetti, A.; Balsiger, H.; Geiss, J.; Rosenbauer, H.

    1985-05-01

    Observations from the Hot Plasma Composition Experiment on the AMPTE/CCE spacecraft during the magnetic storm of 4-5 September 1984 reveal that significant injection of ions of terrestrial origin accompanied the storm development. The compression of the magnetosphere at storm sudden commencement carried the magnetopause inside the CCE orbit clearly revealing the shocked solar wind plasma. A build up of suprathermal ions is observed near the plasmapause during the storm main phase and recovery phase. Pitch angle distributions in the ring current during the main phase show differences between H(+) and O(+) that suggest mass dependent injection, transport and/or loss processes. 9 references.

  7. Effect of coupled channels on the energy dependence of phenomenological optical potential parameters

    NASA Astrophysics Data System (ADS)

    Al-Rayashi, W. S.; Jaghoub, M. I.

    2016-06-01

    The phenomenological optical potential parameters are known to vary with incident energy due to sources of nonlocalities in the nucleon-nucleus elastic scattering process. Here we investigate the effect of one source, which is coupling the ground-state elastic channel to collective inelastic excitations on the energy dependence of the optical potential parameters. For incident energies in the range 10-70 MeV, we considered elastic and inelastic nucleon scattering from light, medium, and heavy nuclei ranging from 6Li to 208Pb. The potential parameters were first determined by fitting the elastic angular distributions only. Then we included coupling to collective excitation channels and determined the potential parameters that reproduced the elastic and inelastic angular distribution data simultaneously. Our results show that coupling to inelastic excitations reduces the energy variations of the potential parameters compared to that of the elastic scattering case. In particular, the our best fit values for the real part of the spin-orbit term are highly stable as a function of energy. The values of the surface imaginary term are not only more stable but are also reduced compared to the elastic case. The reduction is a direct consequence of the channel coupling accounting explicitly for part of the flux removed from the elastic channel. In the fitting process we also searched for the best fit values of the deformation parameters. Our values compare well with the corresponding ones obtained in previous works. Finally, we used our best fit values for the potential and deformation parameters to theoretically predict the total elastic, total cross section, and polarization data. The predicted values are in very good agreement with the experimental data.

  8. Dynamical dipole mode in fusion reactions at 16 MeV/nucleon and beam energy dependence

    NASA Astrophysics Data System (ADS)

    Pierroutsakou, D.; Martin, B.; Agodi, C.; Alba, R.; Baran, V.; Boiano, A.; Cardella, G.; Colonna, M.; Coniglione, R.; Filippo, E. De; Zoppo, A. Del; Toro, M. Di; Inglima, G.; Glodariu, T.; Commara, M. La; Maiolino, C.; Mazzocco, M.; Pagano, A.; Parascandolo, C.; Piattelli, P.; Pirrone, S.; Rizzo, C.; Romoli, M.; Sandoli, M.; Santonocito, D.; Sapienza, P.; Signorini, C.

    2009-08-01

    High-energy γ rays and light charged particles from the Ar36+Zr96 and Ar40+Zr92 reactions at Elab=16 and 15.1 MeV/nucleon, respectively, were measured in coincidence with evaporation residues by means of the MEDEA multidetector array coupled to four parallel plate avalanche counters. The aim of this experiment was to investigate the prompt γ radiation, emitted in the decay of the dynamical dipole mode, in the ~16 MeV/nucleon energy range and to map its beam energy dependence, comparing the present results with our previous ones obtained at lower energies. The studied reactions populate, through entrance channels having different charge asymmetries, a compound nucleus in the region of Ce under the same conditions of excitation energy and spin. Light charged particle energy spectra were used to pin down the average excitation energy and the average mass of the system. By studying the γ-ray spectra of the charge symmetric reaction Ar40+Zr92, the statistical giant dipole resonance (GDR) parameters and angular distribution were extracted, and a comparison of the linearized 90°γ-ray spectra of the two reactions revealed a 12% extra yield in the GDR energy region for the more charge asymmetric system. The center-of-mass angular distribution data of this extra γ yield, compatible with a dipole oscillating along the symmetry axis of the dinuclear system, support its dynamical nature. The experimental findings are compared with theoretical predictions performed within a Boltzmann-Nordheim-Vlasov transport model and based on a collective bremsstrahlung analysis of the entrance channel reaction dynamics. An interesting sensitivity to the symmetry term of the equation of state and to in-medium effects on nucleon-nucleon (nn) cross sections is finally discussed.

  9. SU-E-T-361: Energy Dependent Radiation/light-Field Misalignment On Truebeam Linear Accelerator

    SciTech Connect

    Sperling, N; Tanny, S; Parsai, E

    2015-06-15

    Purpose: Verifying the co-incidence of the radiation and light field is recommended by TG-142 for monthly and annual checks. On a digital accelerator, it is simple to verify that beam steering settings are consistent with accepted and commissioned values. This fact should allow for physicists to verify radiation-light-field co-incidence for a single energy and accept that Result for all energies. We present a case where the radiation isocenter deviated for a single energy without any apparent modification to the beam steering parameters. Methods: The radiation isocenter was determined using multiple Methods: Gafchromic film, a BB test, and radiation profiles measured with a diode. Light-field borders were marked on Gafchromic film and then irradiated for all photon energies. Images of acceptance films were compared with films taken four months later. A phantom with a radio-opaque BB was aligned to isocenter using the light-field and imaged using the EPID for all photon energies. An unshielded diode was aligned using the crosshairs and then beam profiles of multiple field sizes were obtained. Field centers were determined using Omni-Pro v7.4 software, and compared to similar scans taken during commissioning. Beam steering parameter files were checked against backups to determine that the steering parameters were unchanged. Results: There were no differences between the configuration files from acceptance. All three tests demonstrated that a single energy had deviated from accepted values by 0.8 mm in the inline direction. The other two energies remained consistent with previous measurements. The deviated energy was re-steered to be within our clinical tolerance. Conclusions: Our study demonstrates that radiation-light-field coincidence is an energy dependent effect for modern linacs. We recommend that radiation-light-field coincidence be verified for all energies on a monthly basis, particularly for modes used to treat small fields, as these may drift without

  10. Modulation of energy-dependent quenching of excitons in antennae of higher plants

    PubMed Central

    Avenson, Thomas J.; Cruz, Jeffrey A.; Kramer, David M.

    2004-01-01

    Energy-dependent exciton quenching, or qE, protects the higher plant photosynthetic apparatus from photodamage. Initiation of qE involves protonation of violaxanthin deepoxidase and PsbS, a component of the photosystem II antenna complex, as a result of lumen acidification driven by photosynthetic electron transfer. It has become clear that the response of qE to linear electron flow, termed “qE sensitivity,” must be modulated in response to fluctuating environmental conditions. Previously, three mechanisms have been proposed to account for qE modulation: (i) the sensitivity of qE to the lumen pH is altered; (ii) elevated cyclic electron flow around photosystem I increases proton translocation into the lumen; and (iii) lowering the conductivity of the thylakoid ATP synthase to protons (gH+) allows formation of a larger steady-state proton motive force (pmf). Kinetic analysis of the electrochromic shift of intrinsic thylakoid pigments, a linear indicator of transthylakoid electric field component, suggests that, when CO2 alone was lowered from 350 ppm to 50 ppm CO2, modulation of qE sensitivity could be explained solely by changes in conductivity. Lowering both CO2 (to 50 ppm) and O2 (to 1%) resulted in an additional increase in qE sensitivity that could not be explained by changes in conductivity or cyclic electron flow associated with photosystem I. Evidence is presented for a fourth mechanism, in which changes in qE sensitivity result from variable partitioning of proton motive force into the electric field and pH gradient components. The implications of this mechanism for the storage of proton motive force and the regulation of the light reactions are discussed. PMID:15064404

  11. The energy dependence of lithium formate and alanine EPR dosimeters for medium energy x rays

    SciTech Connect

    Waldeland, Einar; Hole, Eli Olaug; Sagstuen, Einar; Malinen, Eirik

    2010-07-15

    Purpose: To perform a systematic investigation of the energy dependence of alanine and lilthium formate EPR dosimeters for medium energy x rays. Methods: Lithium formate and alanine EPR dosimeters were exposed to eight different x-ray beam qualities, with nominal potentials ranging from 50 to 200 kV. Following ionometry based on standards of absorbed dose to water, the dosimeters were given two different doses of approximately 3 and 6 Gy for each radiation quality, with three dosimeters for each dose. A reference series was also irradiated to three different dose levels at a {sup 60}Co unit. The dose to water energy response, that is, the dosimeter reading per absorbed dose to water relative to that for {sup 60}Co {gamma}-rays, was estimated for each beam quality. In addition, the energy response was calculated by Monte Carlo simulations and compared to the experimental energy response. Results: The experimental energy response estimates ranged from 0.89 to 0.94 and from 0.68 to 0.90 for lithium formate and alanine, respectively. The uncertainties in the experimental energy response estimates were typically 3%. The relative effectiveness, that is, the ratio of the experimental energy response to that following Monte Carlo simulations was, on average, 0.96 and 0.94 for lithium formate and alanine, respectively. Conclusions: This work shows that lithium formate dosimeters are less dependent on x-ray energy than alanine. Furthermore, as the relative effectiveness for both lithium formate and alanine were systematically less than unity, the yield of radiation-induced radicals is decreased following x-irradiation compared to irradiation with {sup 60}Co {gamma}-rays.

  12. Transverse-momentum and collision-energy dependence of high-pT hadron suppression in Au+Au collisions at ultrarelativistic energies.

    PubMed

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, X; Draper, J E; Drees, K A; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Ganti, M S; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Kollegger, T; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Rykov, V; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, H Y; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2003-10-24

    We report high statistics measurements of inclusive charged hadron production in Au+Au and p+p collisions at sqrt[s(NN)]=200 GeV. A large, approximately constant hadron suppression is observed in central Au+Au collisions for 5energy dependence of the yields and the centrality and p(T) dependence of the suppression provide stringent constraints on theoretical models of suppression. Models incorporating initial-state gluon saturation or partonic energy loss in dense matter are largely consistent with observations. We observe no evidence of p(T)-dependent suppression, which may be expected from models incorporating jet attenuation in cold nuclear matter or scattering of fragmentation hadrons.

  13. In situ observations of the isotopic composition of methane at the Cabauw tall tower site

    NASA Astrophysics Data System (ADS)

    Röckmann, Thomas; Eyer, Simon; van der Veen, Carina; Popa, Maria E.; Tuzson, Béla; Monteil, Guillaume; Houweling, Sander; Harris, Eliza; Brunner, Dominik; Fischer, Hubertus; Zazzeri, Giulia; Lowry, David; Nisbet, Euan G.; Brand, Willi A.; Necki, Jaroslav M.; Emmenegger, Lukas; Mohn, Joachim

    2016-08-01

    High-precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS)-based technique for in situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands and performed in situ, high-frequency (approx. hourly) measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of (+0.25 ± 0.04) ‰ for δ13C and (-4.3 ± 0.4) ‰ for δD. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high-precision and high-temporal-resolution dataset not only reveals the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget when they are performed at multiple sites that are representative for the entire European domain.

  14. Experimental Observations of a Stitched Composite with a Notch Subjected to Combined Bending and Tension Loading

    NASA Technical Reports Server (NTRS)

    Palmer, Susan O.; Nettles, Alan T.; Poe, C. C.

    1998-01-01

    A series of tests was conducted to support development of an analytical model for predicting the failure strains of stitched warp-knit carbon/epoxy composite materials with through-thicknesss damage in the form of a crack-like notch. Measurements of strain near notch tips, crack opening displacement (COD), and applied load were monitored in all tests. The out-of-plane displacement at the center of the notch was also measured when the specimen was subjected to bending. Three types of loading were applied: pure bending, pure tension, and combined bending and tension.

  15. Deep scattering layer migration and composition: observations from a diving saucer.

    PubMed

    Barham, E G

    1966-03-18

    The distribution of a myctophid fish and physonect siphonophores observed during dives in the Soucoupe off Baja California closely correlates with scattering layers recorded simultaneously with a 12-kcy/sec echo sounder. These organisms were observed while they were migrating vertically, and at their night and daytime levels. They are capable of rapid, extensive changes in depth.

  16. Reconcile Mantle Dynamic Models with Compositionally Distinct and Stable LLSVPs with the Observations of the Geoid and Dynamic Topography

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhong, S.

    2015-12-01

    The geoid has been well explained in mantle flow models with the buoyancy inferred from seismic models that in turn place constraints on mantle viscosity structure (e.g., Hager & Richards, 1989). These models often assume a whole-mantle convection with uniform composition and 1-D viscosity. However, seismic and geochemical observations suggest possible existence of chemically distinct piles under Africa and Pacific which extends hundreds of kilometers above the CMB (i.e., LLSVPs). As compositional heterogeneity would significantly alter the interpretation of seismic anomalies as buoyancy structure, important questions are whether a thermochemical mantle model based on seismic velocity anomalies can reconcile the geoid and how this may impact inference of mantle viscosity structure. In this study, we formulate mantle flow models that use buoyancy derived from seismic model S40RTS (Ritsema et al., 2011), assuming that the LLSVPs are stable with negative buoyancy. The models use temperature-, depth- and composition-dependent viscosity and are computed for the geoid, dynamic topography and flow velocity using CitcomS. Seismic anomalies are converted to buoyancy using thermal conversion factor cT for the whole mantle materials and composition conversion factor cc for the chemical piles defined as the domains with seismic slow anomaly <-0.5% and a maximum height of 500 km. The temperature-dependence viscosity gives rise to 3 orders of magnitude variations in viscosity, and horizontally averaged viscosity profile is consistent with the inferred 1-D viscosity from the geoid. The viscosity in the chemical piles is further reduced by a factor of Cvisc to represent the compositional effect. We measure the stability of the chemical piles by the RMS vertical velocities on the piles boundary. Our preferred thermochemical models with stable chemical piles reach similar variance reduction of geoid at ~64% to that for the uniform composition models. In the preferred model, cT is ~0

  17. Observation of the initiation and progression of damage in compressively loaded composite plates containing a cutout

    NASA Technical Reports Server (NTRS)

    Waas, A.; Babcock, C., Jr.

    1986-01-01

    A series of experiments was carried out to determine the mechanism of failure in compressively loaded laminated plates with a circular cutout. Real time holographic interferometry and photomicrography are used to observe the progression of failure. These observations together with post experiment plate sectioning and deplying for interior damage observation provide useful information for modelling the failure process. It is revealed that the failure is initiated as a localised instability in the zero layers, at the hole surface. With increasing load extensive delamination cracking is observed. The progression of failure is by growth of these delaminations induced by delamination buckling. Upon reaching a critical state, catastrophic failure of the plate is observed. The levels of applied load and the rate at which these events occur depend on the plate stacking sequence.

  18. Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition

    PubMed Central

    Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O’Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin

    2017-01-01

    Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment. PMID:28291234

  19. Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition.

    PubMed

    Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O'Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin

    2017-03-14

    Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.

  20. Ionosphere of venus: first observations of day-night variations of the ion composition.

    PubMed

    Taylor, H A; Brinton, H C; Bauer, S J; Hartle, R E; Cloutier, P A; Daniell, R E; Donahue, T M

    1979-07-06

    The Bennett radio-frequency ion mass spectrometer on the Pioneer Venus orbiter is returning the first direct composition evidence of the processes responsible for the formation and maintenance of the nightside ionosphere. Early results from predusk through the nightside in the solar zenith angle range 63 degrees (dusk) to 120 degrees (dawn) reveal that, as on the dayside, the lower nightside ionosphere consists of F(1)and F(2) layers dominated by O(2)(+) and O(+), respectively. Also like the dayside, the nightside composition includes distributions of NO(+), C(+), N(+), H(+), He(+), CO(2)(+), and 28(+) (a combination of CO(+) and N(2)(+)). The surprising abundance of the nightside ionosphere appears to be maintained by the transport of O(+) from the dayside, leading also to the formation of O(2)(+) through charge exchange with CO(2). Above the exobase, the upper nightside ionosphere exhibits dramatic variability in apparent response to variations in the solar wind and interplanetary magnetic field, with the ionopause extending to several thousand kilometers on one orbit, followed by the complete rertnoval of thermal ions to altitudes below 200 kilometers on the succeeding orbit, 24 hours later. In the upper ionosphere, considerable structure is evident in many of the nightside ion profiles. Also evident are horizontal ion drifts with velocities up to the order of 1 kilometer per second. Whereas the duskside ionopause is dominated by O(+) H(+) dominates the topside on the dawnside of the antisolar point, indicating two separate regions for ion depletion in the magnetic tail regions.

  1. The composition of Martian aeolian sands: Thermal emissivity from Viking IRTM observations

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.; Christensen, Philip R.

    1992-01-01

    Aeolian sands provide excellent surfaces for the remote determination of the mineralogic composition of Martian materials, because such deposits consist of relatively well-sorted, uniform particle sizes and might consist of chemically unaltered, primary mineral grains derived from bedrock. Dark features on the floors of Martian craters are controlled by aeolian processes and many consist largely of unconsolidated, windblown sand. Measurement of the thermal emissivity of geologic materials provides a way to identify mid-infrared absorption bands, the strength and positions of which vary with mineral structure and composition. The Viking Infrared Thermal Mapper (IRTM) had four surface-sensing mid-IR bands, three of which, the 7, 9, and 11 micron channels, correspond to absorption features characteristic of carbonates, sialic, and mafic minerals, respectively. In this study, the highest quality IRTM data were constrained so as to avoid the effects of atmospheric dust, clouds, surface frosts, and particle size variations (the latter using data obtained between 7 and 9 H, and they were selected for dark intracrater features such that only data taken directly from the dark feature were used, so as to avoid thermal contributions from adjacent but unrelated materials. Three-point emissivity spectra of Martian dart intracrater features were compared with laboratory emission spectra of minerals and terrestrial aeolian sands convolved using the IRTM response function to the four IRTM spectral channels.

  2. Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition

    NASA Astrophysics Data System (ADS)

    Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O'Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin

    2017-03-01

    Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.

  3. Surface composition of dairy powders observed by X-ray photoelectron spectroscopy and effects on their rehydration properties.

    PubMed

    Gaiani, C; Ehrhardt, J J; Scher, J; Hardy, J; Desobry, S; Banon, S

    2006-04-15

    The surface composition of three dairy powders was investigated by X-ray photoelectron spectroscopy. These spray-dried casein powders were more or less enriched in hygroscopic material (lactose and/or minerals). The principal limitation of these high protein content powders is their poor rehydration ability. Consequently, information about surface composition is required in order to get a better understanding of rehydration behaviour (i.e. wetting time and time of rehydration). The obtained results indicate that the surface of the three powders was dominated by proteins. Lactose and minerals are marginal compounds at the surface whereas the surface coverage of fat was over represented. A correlation between the lactose surface content and the wetting time of the powders was found, but no relationship with the surface fat. Moreover, as the surface is partly depleted in minerals and lactose, it is concluded that these compounds are principally located in the bulk of the particle. Therefore this observation could be related with a wetting time of the powders only slightly affected by the addition of hygroscopic material whereas the time of rehydration was strongly improved; powder wetting being more affected by the surface composition whereas powder dispersion being more influenced by the powder bulk composition.

  4. Comparison of an analytical expression of resin composite curing stresses with in vitro observations of marginal cracking.

    PubMed

    Kahler, Bill; Swain, Michael V; Kotousov, Andrei

    2010-12-01

    To observe the marginal failure at the enamel-resin composite interface upon curing, and utilize a recently developed analytical model for curing stresses to relate to the extent of interfacial failure. Occlusal cavity preparations were restored with Heliomolar, Filtek Z100 or UltraSeal XT Plus resin composites. Teeth were restored with either bulk or incremental placement. The control group was not restored. Teeth were placed in an acrylic ring and embedded in cold mounting epoxy resin and the crown sectioned so that the tooth/restoration interface and cavosurface margin could be visualized with an optical microscope. A recently developed simplified analytical approach was utilized to evaluate the composite-enamel interface tensile stresses for these materials theoretically and thereby the fracture susceptibility of the resin-enamel interface during polymerization. White lines, enamel cracks and interfacial failure of the bond were evident for all three materials evaluated (P < 0.01). Gaps at the enamel-composite interface measured 1-10 microm and were more evident for Ultra Seal XT Plus and Z100 than Heliomolar. Conversely, cracking of the enamel adjacent to the interface was more evident for Heliomolar. Statistical analysis showed that enamel cracking and interfacial failure was significant for all groups (P < 0.01). An inverse relationship was noted between enamel cracking and interfacial failure (P < 0.05). The predictions for the extent of cracking from the mathematical modeling match the experimental data and prior studies.

  5. In-situ observations of the isotopic composition of methane at the Cabauw tall tower site

    NASA Astrophysics Data System (ADS)

    Röckmann, Thomas; Eyer, Simon; van der Veen, Carina; E Popa, Maria; Tuzson, Béla; Monteil, Guillaume; Houweling, Sander; Harris, Eliza; Brunner, Dominik; Fischer, Hubertus; Zazzeri, Giulia; Lowry, David; Nisbet, Euan G.; Brand, Willi A.; Necki, Jaroslav M.; Emmenegger, Lukas; Mohn, Joachim

    2017-04-01

    High precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS) based technique for in-situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw experimental site for atmospheric research (CESAR) in the Netherlands and performed in-situ, high-frequency (approx. hourly) measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of +0.05 ± 0.03 ‰ for δ13C-CH4 and -3.6 ± 0.4 ‰ for δD-CH4. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high precision and temporal resolution dataset does not only reveal the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site, but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget, when they are performed at multiple sites that are representative for the entire European

  6. Neutron transfer versus inelastic surface vibrations in the enhancement of sub-barrier fusion excitation function data and the energy dependent Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Singh Gautam, Manjeet

    2015-02-01

    This work deeply analyzed the relative importance of the neutron transfer channels and inelastic surface vibrations of colliding nuclei in the sub-barrier fusion enhancement of various heavy ion systems using an energy dependent Woods-Saxon potential (EDWSP) model in conjunction with a one-dimensional Wong formula and the coupled channel formulation using the code CCFULL. The multi-phonon vibrational states of colliding nuclei and the nucleon transfer channels are found to be dominant internal degrees of freedom. The coupling between the relative motion of reactants and these relevant channels produces anomalously large sub-barrier fusion enhancement over the expectations of the one-dimensional barrier penetration model. In some cases, the influence of neutron transfer dominates over the couplings to low lying surface vibrational states of collision partners. Furthermore, the effects of coupling to inelastic surface excitations and the impact of neutron transfer channels with positive ground state Q-values are imitated due to energy dependence in the Woods-Saxon potential. In the EDWSP model calculations, a wide range for the diffuseness parameter, which is much larger than the value extracted from the elastic scattering data, is needed to account for the observed fusion enhancement in the close vicinity of the Coulomb barrier.

  7. In situ observation and measurement of composites subjected to extremely high temperature

    NASA Astrophysics Data System (ADS)

    Fang, Xufei; Yu, Helong; Zhang, Guobing; Su, Hengqiang; Tang, Hongxiang; Feng, Xue

    2014-03-01

    In this work, we develop an instrument to study the ablation and oxidation process of materials such as C/SiC (carbon fiber reinforced silicon carbide composites) and ultra-high temperature ceramic in extremely high temperature environment. The instrument is integrated with high speed cameras with filtering lens, infrared thermometers and water vapor generator for image capture, temperature measurement, and humid atmosphere, respectively. The ablation process and thermal shock as well as the temperature on both sides of the specimen can be in situ monitored. The results show clearly the dynamic ablation and liquid oxide flowing. In addition, we develop an algorithm for the post-processing of the captured images to obtain the deformation of the specimens, in order to better understand the behavior of the specimen subjected to high temperature.

  8. Observation of tunable nonlinear effects in an analogue of superconducting composite right/left hand filter

    PubMed Central

    Liu, Haiwen; Lei, Jiuhuai; Jiang, Hao; Guan, Xuehui; Ji, Laiyun; Ma, Zhewang

    2015-01-01

    Artificial structures with negative permittivity or permeability have attracted significant attention in the science community because they provide a pathway for obtaining exotic electromagnetic properties not found in natural materials. At the moment, the great challenge of these artificial structures in microwave frequency exhibits a relatively large loss. It is well-known that superconducting thin films have extremely low surface resistance. Hence, it is a good candidate to resolve this constraint. Besides, the reported artificial structures with negative permittivity or permeability are mainly focusing on linear regime of wave propagation. However, any future effort in creating tunable structures would require knowledge of nonlinear properties. In this work, a tunable superconducting filter with composite right/left-hand transmission property is proposed and fabricated. Its nonlinear effects on temperature and power are studied by theoretical analysis and experiments. PMID:26442447

  9. Composites

    NASA Astrophysics Data System (ADS)

    Taylor, John G.

    The Composites market is arguably the most challenging and profitable market for phenolic resins aside from electronics. The variety of products and processes encountered creates the challenges, and the demand for high performance in critical operations brings value. Phenolic composite materials are rendered into a wide range of components to supply a diverse and fragmented commercial base that includes customers in aerospace (Space Shuttle), aircraft (interiors and brakes), mass transit (interiors), defense (blast protection), marine, mine ducting, off-shore (ducts and grating) and infrastructure (architectural) to name a few. For example, phenolic resin is a critical adhesive in the manufacture of honeycomb sandwich panels. Various solvent and water based resins are described along with resin characteristics and the role of metal ions for enhanced thermal stability of the resin used to coat the honeycomb. Featured new developments include pultrusion of phenolic grating, success in RTM/VARTM fabricated parts, new ballistic developments for military vehicles and high char yield carbon-carbon composites along with many others. Additionally, global regional market resin volumes and sales are presented and compared with other thermosetting resin systems.

  10. High Pressure Crystallization of Mafic Magma: Field Observations, Compositional Measurements and Computer Modeling

    NASA Astrophysics Data System (ADS)

    Tracy, R. J.

    2009-05-01

    The Cortlandt Complex is a small early Silurian composite, mafic to ultramafic, anorogenic deep crustal pluton about 60 km N of New York City in which most rocks in the six mapped plutonic phases have resulted from either fractionation or contamination or both. Bender et al (AJS-1984) estimated Cortlandt parental composition as an alkalic gabbro based on the nature of early plutons. The youngest and easternmost pluton consists largely of concentrically layered pyroxenites and olivine pyroxenites (with subequal modal proportions of opx and cpx, and only minor ol) and it appears to have had a different parental magma. Samples collected through a series of layers reflecting a few hundred meters of stratigraphy in layered pyroxenites indicate wide variation in F/FM (0.18 to 0.3) and both Al and Ti contents of pyroxenes are unusually high (cpx - Al2O3 from 6-7 wt percent and TiO2 from 1.0 - 1.5 wt percent; opx - Al2O3 from 3.8 - 5.7 wt percent and TiO2 from 0.2 to 0.7 wt percent). All pyroxenes show significant exsolution of ilm lamellae. Crystallization pressure has been well constrained by thermobarometry of metapelites in the thermal aureole at roughly 0.8 GPa, making this a very unusual example of very high P cumulate formation. Several magma compositions were tested as suitable parents by running computer simulations using MELTS (Ghiorso and Sack, 1995, CMP; Asimow and Ghiorso, 1998, Am. Min.). These MELTS runs quickly eliminated the proposed alkalic gabbro parent - it did not crystallize opx at any P. In this preliminary modeling, the most suitable parental magma for the cumulates was a picritic Karoo basalt (SiO2 - 46.9, TiO2 - 1.6, Al2O3 - 9.3, FeO - 12.2, MgO - 15.9, CaO - 9.1; Na2O - 1.3, K2O - 0.6, P2O5 - 0.2). MELTS runs at 8 kbar and FMQ showed a close approximation to both mineral proportions and mineral chemistry of the Cortlandt samples. The initial liquidus phase was opx at 1421C, ol at 1407C (L 4.4percent crystallized), spl at 1301C (L 19.7 percent

  11. Structure and Composition of the Distant Lunar Exosphere: Constraints from ARTEMIS Observations of Ion Acceleration in Time-Varying Fields

    NASA Technical Reports Server (NTRS)

    Halekas, J. S.; Poppe, A. R.; Farrell, W. M.; McFadden, J. P.

    2016-01-01

    By analyzing the trajectories of ionized constituents of the lunar exosphere in time-varying electromagnetic fields, we can place constraints on the composition, structure, and dynamics of the lunar exosphere. Heavy ions travel slower than light ions in the same fields, so by observing the lag between field rotations and the response of ions from the lunar exosphere, we can place constraints on the composition of the ions. Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) provides an ideal platform to utilize such an analysis, since its two-probe vantage allows precise timing of the propagation of field discontinuities in the solar wind, and its sensitive plasma instruments can detect the ion response. We demonstrate the utility of this technique by using fully time-dependent charged particle tracing to analyze several minutes of ion observations taken by the two ARTEMIS probes 3000-5000 km above the dusk terminator on 25 January 2014. The observations from this time period allow us to reach several interesting conclusions. The ion production at altitudes of a few hundred kilometers above the sunlit surface of the Moon has an unexpectedly significant contribution from species with masses of 40 amu or greater. The inferred distribution of the neutral source population has a large scale height, suggesting that micrometeorite impact vaporization and/or sputtering play an important role in the production of neutrals from the surface. Our observations also suggest an asymmetry in ion production, consistent with either a compositional variation in neutral vapor production or a local reduction in solar wind sputtering in magnetic regions of the surface.

  12. Structure and Composition of the Distant Lunar Exosphere: Constraints from ARTEMIS Observations of Ion Acceleration in Time-Varying Fields

    NASA Technical Reports Server (NTRS)

    Halekas, J. S.; Poppe, A. R.; Farrell, W. M.; McFadden, J. P.

    2016-01-01

    By analyzing the trajectories of ionized constituents of the lunar exosphere in time-varying electromagnetic fields, we can place constraints on the composition, structure, and dynamics of the lunar exosphere. Heavy ions travel slower than light ions in the same fields, so by observing the lag between field rotations and the response of ions from the lunar exosphere, we can place constraints on the composition of the ions. Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) provides an ideal platform to utilize such an analysis, since its two-probe vantage allows precise timing of the propagation of field discontinuities in the solar wind, and its sensitive plasma instruments can detect the ion response. We demonstrate the utility of this technique by using fully time-dependent charged particle tracing to analyze several minutes of ion observations taken by the two ARTEMIS probes 3000-5000 km above the dusk terminator on 25 January 2014. The observations from this time period allow us to reach several interesting conclusions. The ion production at altitudes of a few hundred kilometers above the sunlit surface of the Moon has an unexpectedly significant contribution from species with masses of 40 amu or greater. The inferred distribution of the neutral source population has a large scale height, suggesting that micrometeorite impact vaporization and/or sputtering play an important role in the production of neutrals from the surface. Our observations also suggest an asymmetry in ion production, consistent with either a compositional variation in neutral vapor production or a local reduction in solar wind sputtering in magnetic regions of the surface.

  13. Structure and composition of the distant lunar exosphere: Constraints from ARTEMIS observations of ion acceleration in time-varying fields

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Poppe, A. R.; Farrell, W. M.; McFadden, J. P.

    2016-06-01

    By analyzing the trajectories of ionized constituents of the lunar exosphere in time-varying electromagnetic fields, we can place constraints on the composition, structure, and dynamics of the lunar exosphere. Heavy ions travel slower than light ions in the same fields, so by observing the lag between field rotations and the response of ions from the lunar exosphere, we can place constraints on the composition of the ions. Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) provides an ideal platform to utilize such an analysis, since its two-probe vantage allows precise timing of the propagation of field discontinuities in the solar wind, and its sensitive plasma instruments can detect the ion response. We demonstrate the utility of this technique by using fully time-dependent charged particle tracing to analyze several minutes of ion observations taken by the two ARTEMIS probes ~3000-5000 km above the dusk terminator on 25 January 2014. The observations from this time period allow us to reach several interesting conclusions. The ion production at altitudes of a few hundred kilometers above the sunlit surface of the Moon has an unexpectedly significant contribution from species with masses of 40 amu or greater. The inferred distribution of the neutral source population has a large scale height, suggesting that micrometeorite impact vaporization and/or sputtering play an important role in the production of neutrals from the surface. Our observations also suggest an asymmetry in ion production, consistent with either a compositional variation in neutral vapor production or a local reduction in solar wind sputtering in magnetic regions of the surface.

  14. The energy dependence of p_t angular correlations inferred frommean -pt fluctuation scale dependence in heavy ion collisions at the SPSand RHIC

    SciTech Connect

    Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson,B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai, Y.; Balewski,J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland,L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderonde la Barca Sanchez, M.; Castillo, J.; Catu, O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta, N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; Kollegger, T.; et al.

    2006-05-17

    We present the first study of the energy dependence of ptangular correlations inferred from event-wise mean transverse momentumfluctuations in heavy ion collisions. We compare ourlarge-acceptance measurements at CM energies sqrt sNN = 19.6, 62.4, 130and 200 GeV to SPS measurements at 12.3 and 17.3 GeV. pt angularcorrelation structure suggests that the principal source of ptcorrelations and fluctuations is minijets (minimum-bias partonfragments). We observe a dramatic increase in correlations andfluctuations from SPS to RHIC energies, increasing linearly with ln sqrtsNN from the onset of observable jet-related pt fluctuations near 10GeV.

  15. (abstract) Constraints on the Venus Deep Atmosphere Composition from Near Infrared Observations of the Night Side

    NASA Technical Reports Server (NTRS)

    Crisp, David

    1996-01-01

    Spatially resolved NIR images and spectra of Venus obtained in 1983 revealed high-contrast emission features on the night side of the planet at wavelengths near 1.74 and 2.3 (micro)m. Subsequent observational and modeling studies confirmed that this radiation originates as thermal emission from the hot lower atmosphere (25-40 km).

  16. Classroom Composition and Measured Teacher Performance: What Do Teacher Observation Scores Really Measure?

    ERIC Educational Resources Information Center

    Steinberg, Matthew P.; Garrett, Rachel

    2016-01-01

    As states and districts implement more rigorous teacher evaluation systems, measures of teacher performance are increasingly being used to support instruction and inform retention decisions. Classroom observations take a central role in these systems, accounting for the majority of teacher ratings upon which accountability decisions are based.…

  17. Classroom Composition and Measured Teacher Performance: What Do Teacher Observation Scores Really Measure?

    ERIC Educational Resources Information Center

    Steinberg, Matthew P.; Garrett, Rachel

    2016-01-01

    As states and districts implement more rigorous teacher evaluation systems, measures of teacher performance are increasingly being used to support instruction and inform retention decisions. Classroom observations take a central role in these systems, accounting for the majority of teacher ratings upon which accountability decisions are based.…

  18. Observations of fatigue crack initiation and damage growth in notched titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Naik, R. A.; Johnson, W. S.

    1990-01-01

    The purpose was to characterize damage initiation and growth in notched titanium matrix composites at room temperature. Double edge notched or center open hole SCS-6/Ti-15-3 specimens containing 0 deg plies or containing both 0 and 90 deg plies were fatigued. The specimens were tested in the as-fabricated (ASF) and in heat-treated conditions. A local strain criterion using unnotched specimen fatigue data was successful in predicting fatigue damage initiation. The initiation stress level was accurately predicted for both a double edge notched unidirectional specimen and a cross-plied center hole specimen. The fatigue produced long multiple cracks growing from the notches. These fatigue cracks were only in the matrix material and did not break the fibers in their path. The combination of matrix cracking and fiber/matrix debonding appears to greatly reduce the stress concentration around the notches. The laminates that were heat treated showed a different crack growth pattern. In the ASF specimens, matrix cracks had a more tortuous path and showed considerable more crack branching. For the same specimen geometry and cyclic stress, the (0/90/0) laminate with a hole had far superior fatigue resistance than the matrix only specimen with a hole.

  19. Nitrogen Isotopic Ratio in Jupiter's Atmosphere from Observations by Composite Infrared Spectrometer (CIRS) on the Cassini Spacecraft

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Owen, T.; Conrath, B. J.; Flasar, F. M.; Kunde, V. G.; Nixon, C. A..; Achterberg, R. K.; Bjoraker, G.; Jennings, D. J.

    2003-01-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft made infrared observations of Jupiter's atmosphere during the flyby in December 2000 to January 2001. The unique database in the 600-1400/cm region with 0.53 and 2.8/cm spectral resolutions obtained from the observations permits retrieval of global maps of the thermal structure and composition of Jupiter's atmosphere including the distributions of (14)NH3 and (15)NH3. Analysis of Jupiter's ammonia distributions from three isolated (15)NH3 spectral lines in eight latitudes is presented for evaluation of the nitrogen isotopic ratio. The nitrogen isotopic ratio (14)N/(15)N (or (15)N/(14)N) in Jupiter's atmosphere in this analysis is calculated to be: 448 +/- 62 ((2.23 +/- 0.31) x 10(exp -3)). This value of the ratio determined from CIRS data is found to be in very close agreement with the value previously obtained from the measurements by the Galileo Probe Mass Spectrometer. Some possible mechanisms to account for the variation of Jupiter's observed isotopic ratio relative to various astrophysical environments are discussed.

  20. Nitrogen Isotopic Ratio in Jupiter's Atmosphere from Observations by Composite Infrared Spectrometer (CIRS) on the Cassini Spacecraft

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Owen, T.; Conrath, B. J.; Flasar, F. M.; Kunde, V. G.; Nixon, C. A..; Achterberg, R. K.; Bjoraker, G.; Jennings, D. J.

    2003-01-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft made infrared observations of Jupiter's atmosphere during the flyby in December 2000 to January 2001. The unique database in the 600-1400/cm region with 0.53 and 2.8/cm spectral resolutions obtained from the observations permits retrieval of global maps of the thermal structure and composition of Jupiter's atmosphere including the distributions of (14)NH3 and (15)NH3. Analysis of Jupiter's ammonia distributions from three isolated (15)NH3 spectral lines in eight latitudes is presented for evaluation of the nitrogen isotopic ratio. The nitrogen isotopic ratio (14)N/(15)N (or (15)N/(14)N) in Jupiter's atmosphere in this analysis is calculated to be: 448 +/- 62 ((2.23 +/- 0.31) x 10(exp -3)). This value of the ratio determined from CIRS data is found to be in very close agreement with the value previously obtained from the measurements by the Galileo Probe Mass Spectrometer. Some possible mechanisms to account for the variation of Jupiter's observed isotopic ratio relative to various astrophysical environments are discussed.

  1. Composites

    NASA Astrophysics Data System (ADS)

    Chmielewski, M.; Nosewicz, S.; Pietrzak, K.; Rojek, J.; Strojny-Nędza, A.; Mackiewicz, S.; Dutkiewicz, J.

    2014-11-01

    It is commonly known that the properties of sintered materials are strongly related to technological conditions of the densification process. This paper shows the sintering behavior of a NiAl-Al2O3 composite, and its individual components sintered separately. Each kind of material was processed via the powder metallurgy route (hot pressing). The progress of sintering at different stages of the process was tested. Changes in the microstructure were examined using scanning and transmission electron microscopy. Metal-ceramics interface was clean and no additional phases were detected. Correlation between the microstructure, density, and mechanical properties of the sintered materials was analyzed. The values of elastic constants of NiAl/Al2O3 were close to intermetallic ones due to the volume content of the NiAl phase particularly at low densities, where small alumina particles had no impact on the composite's stiffness. The influence of the external pressure of 30 MPa seemed crucial for obtaining satisfactory stiffness for three kinds of the studied materials which were characterized by a high dense microstructure with a low number of isolated spherical pores.

  2. MESSENGER observations of the composition of Mercury's ionized exosphere and plasma environment.

    PubMed

    Zurbuchen, Thomas H; Raines, Jim M; Gloeckler, George; Krimigis, Stamatios M; Slavin, James A; Koehn, Patrick L; Killen, Rosemary M; Sprague, Ann L; McNutt, Ralph L; Solomon, Sean C

    2008-07-04

    The region around Mercury is filled with ions that originate from interactions of the solar wind with Mercury's space environment and through ionization of its exosphere. The MESSENGER spacecraft's observations of Mercury's ionized exosphere during its first flyby yielded Na+, O+, and K+ abundances, consistent with expectations from observations of neutral species. There are increases in ions at a mass per charge (m/q) = 32 to 35, which we interpret to be S+ and H2S+, with (S+ + H2S+)/(Na+ + Mg+) = 0.67 +/- 0.06, and from water-group ions around m/q = 18, at an abundance of 0.20 +/- 0.03 relative to Na+ plus Mg+. The fluxes of Na+, O+, and heavier ions are largest near the planet, but these Mercury-derived ions fill the magnetosphere. Doubly ionized ions originating from Mercury imply that electrons with energies less than 1 kiloelectron volt are substantially energized in Mercury's magnetosphere.

  3. Direct Observation of Fracture of Cas-Glass/SiC Composites and Processing of Toughened Alumina

    DTIC Science & Technology

    1992-09-01

    to the load-displacement behaviour include indirect techniques such as acoustic emission and edge replication microscopy ( Zawada et at, 1991; Harris...18b). Zawada et aL (1991) also observed that 900 ply cracks precede 00 cracks in tests on the same cross-ply material with unnotched specimens; Pryce...have been some loss of stiffness. Similar behaviour has been found in fatigue with unnotched specimens of this material by Zawada et aL (1991). - 58

  4. Aerosol Observability and Data Assimilation Investigations in Support of Atmospheric Composition Forecasts

    DTIC Science & Technology

    2013-09-30

    Assimilation-Aerosol Optical Depth (NAVDAS- AOD ) framework. This work also led to the development of the world’s first quasi-operational global multi...satellite and in situ observations including their flow dependant correlation lengths for use in NAVDAS- AOD : The optimal mix of meteorological and...project with Dr. Hansen. Hence, in house knowledge already exists to expedite this process . Included in this budget is additional travel money so that

  5. Aerosol Observability and Data Assimilation Investigations in Support of Atmospheric Composition Forecasts

    DTIC Science & Technology

    2012-09-30

    aerosol model demands for such applications as joint surface-atmosphere retrievals, directed energy (DE), and intelligence, surveillance, and...C. Schmidt, J. I Miettinen, L. Giglio, (2012), Different views of fire activity over Indonesia and Malaysia from polar and geostationary...Greece, 25-29 June, 2012. Hyer, E. J., J. S. Reid, E. M. Prins, J. Hoffman, C. C. Schmidt, L. Giglio, D. A. Peterson (2011) Biomass burning observations

  6. Spatial Variability of Trace Gases During DISCOVER-AQ: Planning for Geostationary Observations of Atmospheric Composition

    NASA Technical Reports Server (NTRS)

    Follette-Cook, Melanie B.; Pickering, K.; Crawford, J.; Appel, W.; Diskin, G.; Fried, A.; Loughner, C.; Pfister, G.; Weinheimer, A.

    2015-01-01

    Results from an in-depth analysis of trace gas variability in MD indicated that the variability in this region was large enough to be observable by a TEMPO-like instrument. The variability observed in MD is relatively similar to the other three campaigns with a few exceptions: CO variability in CA was much higher than in the other regions; HCHO variability in CA and CO was much lower; MD showed the lowest variability in NO2All model simulations do a reasonable job simulating O3 variability. For CO, the CACO simulations largely under over estimate the variability in the observations. The variability in HCHO is underestimated for every campaign. NO2 variability is slightly overestimated in MD, more so in CO. The TX simulation underestimates the variability in each trace gas. This is most likely due to missing emissions sources (C. Loughner, manuscript in preparation).Future Work: Where reasonable, we will use these model outputs to further explore the resolvability from space of these key trace gases using analyses of tropospheric column amounts relative to satellite precision requirements, similar to Follette-Cook et al. (2015).

  7. Composition and stability of the condensate observed at the Viking Lander 2 site on Mars

    NASA Technical Reports Server (NTRS)

    Hart, H. M.; Jakosky, B. M.

    1986-01-01

    Surface energy balance and near-surface temperature data from the Viking Lander 2 site taken during the first winter that condensated were observed and analyzed to determine the relative stability of CO2 and H2O frosts. The CO2 frost stability is calculated with an equilibrium surface energy balance model, i.e., the total energy incident on a frost surface is compared with the blackbody energy emitted by the surface. The energy sources considered were IR emission from the atmosphere, sunlight, and the sensible heat flux from the atmosphere. H2O stability was examined as a function of buoyant diffusion and turbulent mixing processes which could remove saturated near-surface gases. The CO2 frost is found to be sufficiently unstable at the time the condensate was observed on the ground, so all CO2 ice deposited at night would boil away in a few hours of sunlight. CO2 ice would not form during a dust storm. Water frost would be stable during the condensate observations, since sublimation would occur at a rate below 1 micron/day. A stable winter thickness of 10 microns is projected for the water ice.

  8. Human brain mass: similar body composition associations as observed across mammals.

    PubMed

    Heymsfield, Steven B; Müller, Manfred J; Bosy-Westphal, Anja; Thomas, Diana; Shen, Wei

    2012-01-01

    A classic association is the link between brain mass and body mass across mammals that has now been shown to derive from fat-free mass (FFM) and not fat mass (FM). This study aimed to establish for the first time the associations between human brain mass and body composition and to compare these relations with those established for liver as a reference organ. Subjects were 112 men and 148 women who had brain and liver mass measured by magnetic resonance imaging with FM and FFM measured by dual-energy X-ray absorptiometry. Brain mass scaled to height (H) with powers of ≤0.6 in men and women; liver mass and FFM both scaled similarly as H(~2) . The fraction of FFM as brain thus scaled inversely to height (P < 0.001) while liver mass/FFM was independent of height. After controlling for age, brain, and liver mass were associated with FFM while liver was additionally associated with FM (all models P ≤ 0.01). After controlling for age and sex, FFM accounted for ~5% of the variance in brain mass while levels were substantially higher for liver mass (~60%). Brain mass was significantly larger (P < 0.001) in men than in women, even after controlling for age and FFM. As across mammals, human brain mass associates significantly, although weakly, with FFM and not FM; the fraction of FFM as brain relates inversely to height; brain differs in these relations from liver, another small high metabolic rate organ; and the sexual dimorphism in brain mass persists even after adjusting for age and FFM. Copyright © 2012 Wiley Periodicals, Inc.

  9. Commercial DNA extraction kits impact observed microbial community composition in permafrost samples.

    PubMed

    Vishnivetskaya, Tatiana A; Layton, Alice C; Lau, Maggie C Y; Chauhan, Archana; Cheng, Karen R; Meyers, Arthur J; Murphy, Jasity R; Rogers, Alexandra W; Saarunya, Geetha S; Williams, Daniel E; Pfiffner, Susan M; Biggerstaff, John P; Stackhouse, Brandon T; Phelps, Tommy J; Whyte, Lyle; Sayler, Gary S; Onstott, Tullis C

    2014-01-01

    The total community genomic DNA (gDNA) from permafrost was extracted using four commercial DNA extraction kits. The gDNAs were compared using quantitative real-time PCR (qPCR) targeting 16S rRNA genes and bacterial diversity analyses obtained via 454 pyrosequencing of the 16S rRNA (V3 region) amplified in single or nested PCR. The FastDNA(®) SPIN (FDS) Kit provided the highest gDNA yields and 16S rRNA gene concentrations, followed by MoBio PowerSoil(®) (PS) and MoBio PowerLyzer™ (PL) kits. The lowest gDNA yields and 16S rRNA gene concentrations were from the Meta-G-Nome™ (MGN) DNA Isolation Kit. Bacterial phyla identified in all DNA extracts were similar to that found in other soils and were dominated by Actinobacteria, Firmicutes, Gemmatimonadetes, Proteobacteria, and Acidobacteria. Weighted UniFrac and statistical analyses indicated that bacterial community compositions derived from FDS, PS, and PL extracts were similar to each other. However, the bacterial community structure from the MGN extracts differed from other kits exhibiting higher proportions of easily lysed β- and γ-Proteobacteria and lower proportions of Actinobacteria and Methylocystaceae important in carbon cycling. These results indicate that gDNA yields differ between the extraction kits, but reproducible bacterial community structure analysis may be accomplished using gDNAs from the three bead-beating lysis extraction kits. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Observation on the composition and biosynthesis of egg wax lipids in the cattle tick, Boophilus microplus.

    PubMed

    Booth, T F

    1992-05-01

    The biosynthesis of wax lipids by Gené's organ, the egg waxing organ in ticks, was investigated. Gené's organ, a complex dermal gland system, applies a superficial wax layer to the eggs during oviposition which prevents desiccation and is essential for egg viability. The detailed anatomy and histology of the three gland cell types are unambiguously described. Serial sectioning of ticks showed that all three gland cell types are capable of contributing to the egg wax. The wax synthetic ability of these three gland types was characterized. The composition of wax lipids extracted from the surface egg wax, and from the three types of wax gland dissected from ovipositing ticks, was analysed using thin-layer and gas-liquid chromatography. Injection of ovipositing ticks with radiolabelled acetate resulted in the incorporation of the label into wax lipids by gland cells of Gené's organ. The egg wax was a complex mixture of long-chain alkanes and fatty acid esters. The gland cells contained a greater proportion of shorter chain alkanes than were present in the egg surface wax. Some unsaturated long-chain fatty acids were present, and these were more abundant in the gland cells than in the surface wax of oviposited eggs, suggesting that oxidation occurs after oviposition. The results confirm that the tubular glands, acinar accessory glands and lobular glands of Gené's organ all contribute to the egg waxes, although the lipid components differed in relative abundance. The results are also consistent with alkane synthesis from fatty acids in Gené's organ by a chain-elongation-decarboxylation pathway.

  11. Correlation of Structural Differences between Nafion/Polyaniline and Nafion/Polypyrrole Composite Membranes and Observed Transport Properties

    SciTech Connect

    Schwenzer, Birgit; Kim, Soowhan; Vijayakumar, M.; Yang, Zhenguo; Liu, Jun

    2011-04-15

    Polyaniline/Nafion and polypyrrole/Nafion composite membranes, prepared by chemical polymerization, are studied by infrared and nuclear magnetic resonance spectroscopy, and scanning electron microscopy. Differences in vanadium ion diffusion through the membranes and in the membranes’ area specific resistance are linked to analytical observations that polyaniline and polypyrrole interact differently with Nafion. Polypyrrole, a weakly basic polymer, binds less strongly to the sulfonic acid groups of the Nafion membrane, and thus the hydrophobic polymer aggregates in the center of the Nafion channel rather than on the hydrophilic side chains of Nafion that contain sulfonic acid groups. This results in a drastically elevated membrane resistance and an only slightly decreased vanadium ion permeation compared to a Nafion membrane. Polyaniline on the other hand is a strongly basic polymer, which forms along the sidewalls of the Nafion pores and on the membrane surface, binding tightly to the sulfonic acid groups of Nafion. This leads to a more effective reduction in vanadium ion transport across the polyaniline/Nafion membranes and the increase in membrane resistance is less severe. The performance of selected polypyrrole/Nafion composite membranes is tested in a static vanadium redox cell. Increased coulombic efficiency, compared to a cell employing Nafion, further confirms the reduced vanadium ion transport through the composite membranes.

  12. 3D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and sublithospheric upper mantle

    NASA Astrophysics Data System (ADS)

    Afonso, J. C.; Fullea, J.; Yang, Y.; Griffin, W. L.; Jones, A. G.; Connolly, J.; Lebedev, S.; O'Reilly, S. Y.

    2011-12-01

    High-resolution imaging and characterization of the thermal and compositional structure of the lithospheric and sublithospheric upper mantle are the basis for understanding the formation and evolution of the lithosphere and the interaction between the crust-mantle and lithosphere-asthenosphere systems. Unfortunately, such imaging and characterization using available geophysical-geochemical methods still present unsolved and technically challenging problems. In this contribution we present a new full-3D multi-observable inversion method particularly designed for high-resolution (regional) thermal and compositional mapping of the lithosphere and sublithospheric upper mantle. Ambient noise tomography, multiple plane wave earthquake tomography, magnetotelluric, thermal, thermodynamic, and potential field modelling are all combined in a single thermodynamic-geophysical framework and appraised within a general probabilistic (Bayesian) formulation. This circumvents the problems of strong non-linearity involved in traditional inversions, provides highly refined seismic information, minimizes the problem of trade-off between temperature and composition in wave speeds, offers critical insights into incompatibilities between traditional stand-alone methods, and takes advantage of a priori local geochemical information. Both synthetic models and preliminary results in real-case examples will be used to discuss the benefits, robustness, and limitations of this method.

  13. Mean Thermal and Compositional Properties of Uranus from Combined Spitzer, ISO, Herschel and Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Orton, Glenn; Feuchtgruber, Helmut; Fletcher, Leigh; Moreno, Raphael; Moses, Julianne; Hofstadter, Mark; Lellouch, Emmanuel; Schaeffer, Jochem

    2013-04-01

    We derived models for the mean thermal structure and composition of the atmosphere of Uranus from a suite of spacecraft and ground-based observations. A family of models of the atmospheric temperature and composition derived from the Spitzer Infrared Spectrometer (IRS) data (Orton et al. 2013, submitted to Icarus) have been updated to include the significant influence of H2-H2 dimers on collision-induced absorption that was used to constrain the vertical temperature profile in the upper troposphere down to the 2-bar pressure level. IRS observations of H2 quadrupole lines provided additional constraints on temperatures in the lower stratosphere at pressures less than 100 mbar. We applied additional constraints on this family of models from Hershel PACS observations of HD (Feuchtgruber et al. 2013, Astron. & Astrophys. in press). We have also constrained the He/H2 ratio that characterizes the bulk composition of the atmosphere from previously unpublished observations by the ISO Short-Wavelength Spectrometer (SWS) and confirmed values originally derived by the Voyager IRIS and Radio Sub-System experiment (Conrath et al. 1987. J. Geophys. Res. 92, 15003). We have coupled observational constraints on the vertical distribution of CH4 in the stratosphere of Uranus with models for the vertical mixing that are consistent with the mixing ratios of hydrocarbons whose abundances are primarily influenced by dynamics rather than chemistry. Spitzer and Hershel data provide substantial constraints on the abundances and distributions of CH3, CH4, C2H2, C2H6, C3H4, C4H2, H2O and CO2. At millimeter wavelengths, strategic ground-based observations from the United Kingdom Infrared Telescope (UKIRT) and Caltech Submillimeter Observatory (CSO) atop Mauna Kea, Hawaii, provide evidence that an additional opacity source in Uranus is required besides (i) the H2 collision-induced and absorption, including significant dimer contributions, and (ii) the NH3 absorption that is consistent with the

  14. The volatile composition of comet 103P/Hartley 2 from ground-based radio observations

    NASA Astrophysics Data System (ADS)

    Gicquel, Adeline; Milam, S. N.; Remijan, A. J.; Chuang, Y.; Kuan, Y.; Coulson, I. M.; Villanueva, G.; Charnley, S. B.; Cordiner, M. M.

    2013-10-01

    103P/Hartley 2 (103P) is a Jupiter-family comet which has a short orbital period (6.5 years) and perihelion at 1.06 AU. 103P was discovered on 4 June 1984 by Malcolm Hartley at the Siding Spring Observatory and has been frequently observed over the 20 years following its discovery, both by ground-based and space telescopes. Observation from 1991 and 1997 indicated a maximum water production rate of 3 x 10^28 molecules/s. 103P passed perihelion on 28 October 2010 at q = 1.059 AU. It made an exceptional close approach to the Earth just before perihelion on 21 October 2010 at Δ = 0.12 AU. On UT 2010 November 4.58, the comet was visited by NASA’s EPOXI spacecraft with a flyby at 700 km. As part of an ongoing investigation to establish the contribution of the natal molecular cloud from which the solar system was formed to primitive materials and comets, we have been conducting observations toward the comet 103P to determine taxonomy and cosmogonic quantities, such as the ortho:para ratio and isotope ratios. Here we report detections of HCN, H2CO, CS, and OH and upper limits on HNC and DCN toward comet 103P, using the Arizona Radio Observatory Kitt Peak 12m (12m) and submillimeter telescopes (SMT), the James Clerk Maxwell Telescope (JCMT) and the Greenbank Telescope (GBT). From these data physical parameters such as temperature, column densities, and production rates have been determined toward comet 103P. The ortho:para ratio has been derived from H2CO. We used the JCMT data to compute the D/H ratio from DCN and HCN. Here we present our analysis and discuss the origin of volatiles in cometary material.

  15. Multicolor observations of phobos with the viking lander cameras: evidence for a carbonaceous chondritic composition.

    PubMed

    Pollack, J B; Veverka, J; Pang, K; Colburn, D; Lane, A L; Ajello, J M

    1978-01-06

    The reflectivity of Phobos has been determined in the spectral region from 0.4 to 1.1 micrometers from images taken with a Viking lander camera. The reflectivity curve is flat in this spectral interval and the geometric albedo equals 0.05 +/- 0.01. These results, together with Phobos's reflectivity spectrum in the ultraviolet, are compared with laboratory spectra of carbonaceous chondrites and basalts. The spectra of carbonaceous chondrites are consistent with the observations, whereas the basalt spectra are not. These findings raise the possibility that Phobos may be a captured object rather than a natural satellite of Mars.

  16. Experimental observations of scale effects on bonded and bolted joints in composite structures

    NASA Astrophysics Data System (ADS)

    Grimes, Glenn C.

    1994-07-01

    The objective is to observe size (scale) effects in (1) fiber dominated laminates and bolted joints, (2) adhesive (matrix) dominated bonded joints with fiber dominated laminate adherends, and (3) matrix dominated laminates. Selected literature on scale effects is reviewed with comments and test data from one source that is analyzed for predicted and actual scale effects utilizing uniaxial loaded static strength, spectrum fatigue residual strength, and spectrum fatigue lifetime test results. Causes of scale effects are discussed, the results are summarized, and conclusions are made.

  17. Experimental observations of scale effects on bonded and bolted joints in composite structures

    NASA Technical Reports Server (NTRS)

    Grimes, Glenn C.

    1994-01-01

    The objective is to observe size (scale) effects in (1) fiber dominated laminates and bolted joints, (2) adhesive (matrix) dominated bonded joints with fiber dominated laminate adherends, and (3) matrix dominated laminates. Selected literature on scale effects is reviewed with comments and test data from one source that is analyzed for predicted and actual scale effects utilizing uniaxial loaded static strength, spectrum fatigue residual strength, and spectrum fatigue lifetime test results. Causes of scale effects are discussed, the results are summarized, and conclusions are made.

  18. Is the Z0 observed in pp collisions a composite object?

    NASA Astrophysics Data System (ADS)

    Renard, F. M.

    1983-12-01

    If the Z0 boson is made of colored subconstituents it can be produced in pp (and pp) collisions through the subprocess gluon + gluon --> Z0 + gluon. The rate is estimated from the Z0 - γ mixing parameter and found comparable to that of the Drell-Yan process. Events with a large pTZ0 and a large pT balancing gluon should be observed at the pp collider. Address after October 1, 1983: Dêpartment de Physique Mathématique, USTL, 34060 Montpellier Cedex, France.

  19. Looking for Calcium Phosphate Composite Suitable to Study Osteoclast Endocytosis: Preliminary Observations

    PubMed Central

    Nicolin, V; Baldini, G; De Iaco, D; Bortul, R; Turco, G; Nori, SL

    2016-01-01

    One of the issues regarding in vitro study of bone resorption is the synthesis of a bone-like biomaterial forming a thin layer onto either glass or plastic. The synthesis of a bone-like material suitable for in vitro studies can be valuable both to investigate osteoclast differentiation, that in vivo proceeds within the local microenvironment of bone and to understand how its presence triggers activation of macrophages present in situ when bone is damaged (a scenario that can occur for example in case of bone fracture). Despite the intensive studies committed to recreate synthetic bone analogues, the most used substrates for in vitro studies on bone resorption are slices of bone or dentine. Therefore morphological investigations (i.e. fluorescence analysis and phase contrast) are strongly compromised due to the thickness of the bone analogue. In the present study, with the aim to guarantee a versatile (and easy to be made) substrate, that could be suitable to study cell adhesion and morphology by epifluorescence, phase contrast and TEM, we developed a biomaterial containing a calcium phosphate salt and type I collagen. This material (made specifically for in vitro studies) forms a very thin layer that allowed to merge the morphological information derived from phase-contrast and epifluorescence observation, making possible the observation of the interface between cell and matrix. Moreover the electron microscopy evaluation of the endocytosis performed on cell differentiated could be more suitable because sample does not need the process of demineralization. PMID:27326391

  20. Composition of Pickup Ions at Titan Observed by the Cassini Plasma Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartle, R.; Sittler, E.; Burger, M.; Shappirio, M.; Johnson, R.; Smith, H.; Reisenfeld, D.; Szego, K.; Bertucci, C.; Neubauer, F.; Bolton, S.; Young, D.

    2006-01-01

    Pickup ions have been observed in Saturn's rotating magnetosphere near Titan by the Cassini Plasma Spectrometer (CAPS) instrument during the Cassini orbiter's recent flybys of the moon. A preliminary analysis of the CAPS Time of Flight (TOF) spectra of the pickup ions observed during the TA flyby indicated the presence of H(+), H2(+), N(+)/CH2(+), CH4(+), and N2(+). These ions slow down Saturn's magnetospheric plasma beyond Titan's ionosphere through mass loading. Because of its relatively high mass and high concentration, CH4(+) is the dominant mass loading ion. The other ions make negligible contributions to the mass loading process except for N2(+) just above the ionopause, where its concentration becomes important. With the exception of CH2(+), the pickup ion sources are the neutral exosphere constituents H, H2, N, CH4, and N2, where CH2 is a fragment of the parents CH4 and CH4(+). A more detailed analysis of CAPS TOF spectra and empirical cracking patterns is carried out to determine the relative concentrations of N(+) and CH2(+). Although, the 28 amu ion was identified as N2(+), consistent with the dominance of its neutral source, N2, just above the ionopause, the ionospheric ion HCNH(+) may also be present. The possible leakage of this and other ionospheric ions such as CH5(+) into the pickup ion /mass loading region is also examined by further analysis of the corresponding TOF spectra.

  1. Composition of Pickup Ions at Titan Observed by the Cassini Plasma Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartle, R.; Sittler, E.; Burger, M.; Shappirio, M.; Johnson, R.; Smith, H.; Reisenfeld, D.; Szego, K.; Bertucci, C.; Neubauer, F.; hide

    2006-01-01

    Pickup ions have been observed in Saturn's rotating magnetosphere near Titan by the Cassini Plasma Spectrometer (CAPS) instrument during the Cassini orbiter's recent flybys of the moon. A preliminary analysis of the CAPS Time of Flight (TOF) spectra of the pickup ions observed during the TA flyby indicated the presence of H(+), H2(+), N(+)/CH2(+), CH4(+), and N2(+). These ions slow down Saturn's magnetospheric plasma beyond Titan's ionosphere through mass loading. Because of its relatively high mass and high concentration, CH4(+) is the dominant mass loading ion. The other ions make negligible contributions to the mass loading process except for N2(+) just above the ionopause, where its concentration becomes important. With the exception of CH2(+), the pickup ion sources are the neutral exosphere constituents H, H2, N, CH4, and N2, where CH2 is a fragment of the parents CH4 and CH4(+). A more detailed analysis of CAPS TOF spectra and empirical cracking patterns is carried out to determine the relative concentrations of N(+) and CH2(+). Although, the 28 amu ion was identified as N2(+), consistent with the dominance of its neutral source, N2, just above the ionopause, the ionospheric ion HCNH(+) may also be present. The possible leakage of this and other ionospheric ions such as CH5(+) into the pickup ion /mass loading region is also examined by further analysis of the corresponding TOF spectra.

  2. The Composition and Structure of Enceladus' Plume from a Cassini UVIS Observation of a Solar Occultation

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Shemansky, D. E.; Esposito, L. W.; Stewart, I.; Hendrix, A. R.

    2010-12-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed an occultation of the sun by Enceladus’ water vapor plume on May 18, 2010. UVIS used its extreme ultraviolet (EUV) channel for this new observation, to detect absorptions in the wavelength range 55 to 110 nm. Molecular nitrogen and water vapor have absorptions in this range. The N2 b(3,0) line is at 97.2 nm, extinguishing the solar H Lyman gamma emission. Cassini’s Ion and Neutral Mass Spectrometer (INMS) detected a species with an atomic mass of 28 amu, which could be CO, C2H4 or N2 [1, 2]. Definitive UVIS detection of N2 was important to clear up this ambiguity, and this was an important goal of the observation, as the presence or lack of N2 is key to models of the geochemistry in the interior [3, 4, 5]. UVIS did not detect N2 and we set an upper limit for the column density of 3 x 10^13 cm^-2. The absorption features in the spectrum are best fit by a water vapor column density of 0.9 x 10^16 cm^-2. This column density is in family with previous UVIS measurements from stellar occultations in 2005 and 2007 at far ultraviolet wavelengths, suggesting that Enceladus’ activity has been stable for the last 5 years [6, 7]. We used fluctuations in the signal to probe the structure of the gas jets again, as was analyzed in the 2007 occultation of zeta Orionis [7]. Gas jets are correlated to the dust jets detected by Cassini’s Imaging Science Subsystem [8]. The path of the sun cut through the jets horizontally at an altitude above the limb of ~15 km at the closest point. The resolution of the solar occultation is higher than the stellar occultation, and collimation of the gas jets observed in the solar occultation is greater than estimated in 2007. The observed collimation allows us to derive a mach number of ~4 for the ratio of the vertical velocity in the jet to the thermal velocity of the plume gas. The new opportunity afforded by this solar occultation is used to further model the structure and

  3. Biophysical and Pharmacological Characterization of Energy-Dependent Efflux of Sb in Laboratory-Selected Resistant Strains of Leishmania (Viannia) Subgenus

    PubMed Central

    dos Reis, Priscila G.; do Monte-Neto, Rubens L.; Melo, Maria N.; Frézard, Frédéric

    2017-01-01

    The growing resistance of leishmaniasis to first-line drugs like antimonials in some regions limits the control of this parasitic disease. The precise mechanisms involved in Leishmania antimony resistance are still subject to debate. The reduction of intracellular SbIII accumulation is a common change observed in both laboratory-selected and field isolated resistant Leishmania strains, but the exact transport pathways involved in antimony resistance have not yet been elucidated. In order to functionally characterize the antimony transport routes responsible for resistance, we performed systematic transport studies of SbIII in wild-type and resistant strains of L. (Viannia) guyanensis and L. (V.) braziliensis. Those include influx and efflux assays and the influence of ABC transporters and metabolism inhibitors: prochlorperazine, probenecid, verapamil, BSO, and sodium azide. The mRNA levels of genes associated with antimony resistance (MRPA, GSH1, ODC, AQP1, ABCI4, and ARM58) were also investigated in addition to intracellular thiol levels. A strong reduction of Sb influx was observed in L. guyanensis resistant mutant (LgSbR), but not in L. braziliensis (LbSbR). Both mutants showed increased energy-dependent efflux of SbIII, when compared to their respective parental strains. In LgSbR, BSO and prochlorperazine inhibited antimony efflux and resistance was associated with increased MRPA and GSH1 mRNA levels, while in LbSbR antimony efflux was inhibited by probenicid and prochlorperazine in absence of resistance-associated gene modulation. Intracellular thiol levels were increased in both Sb-resistant mutants. An energy-dependent SbIII efflux pathway sensitive to prochlorperazine was clearly evidenced in both Sb-resistant mutants. In conclusion, the present study allowed the biophysical and pharmacological characterization of energy-dependent Sb efflux pathway apparently independent of MRPA, ABCI4, and ARM58 upregulation, in Leishmania (Vianna) mutant selected in vitro

  4. Building oceanographic and atmospheric observation networks by composition: unmanned vehicles, communication networks, and planning and execution control frameworks

    NASA Astrophysics Data System (ADS)

    Sousa, J. T.; Pinto, J.; Martins, R.; Costa, M.; Ferreira, F.; Gomes, R.

    2014-12-01

    The problem of developing mobile oceanographic and atmospheric observation networks (MOAO) with coordinated air and ocean vehicles is discussed in the framework of the communications and control software tool chain developed at Underwater Systems and Technologies Laboratory (LSTS) from Porto University. This is done with reference to field experiments to illustrate key capabilities and to assess future MOAO operations. First, the motivation for building MOAO by "composition" of air and ocean vehicles, communication networks, and planning and execution control frameworks is discussed - in networked vehicle systems information and commands are exchanged among multiple vehicles and operators, and the roles, relative positions, and dependencies of these vehicles and operators change during operations. Second, the planning and execution control framework developed at LSTS for multi-vehicle systems is discussed with reference to key concepts such as autonomy, mixed-initiative interactions, and layered organization. Third, the LSTS tool software tool chain is presented to show how to develop MOAO by composition. The tool chain comprises the Neptus command and control framework for mixed initiative interactions, the underlying IMC messaging protocol, and the DUNE on-board software. Fourth, selected LSTS operational deployments illustrate MOAO capability building. In 2012 we demonstrated the use of UAS to "ferry" data from UUVs located beyond line of sight (BLOS). In 2013 we demonstrated coordinated observations of coastal fronts with small UAS and UUVs, "bent" BLOS through the use of UAS as communication relays, and UAS tracking of juvenile hammer-head sharks. In 2014 we demonstrated UUV adaptive sampling with the closed loop controller of the UUV residing on a UAS; this was done with the help of a Wave Glider ASV with a communications gateway. The results from these experiments provide a background for assessing potential future UAS operations in a compositional MOAO.

  5. Inhomogeneities in particle composition of single, levitated aerosol particles observed by Mie resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Krieger, Ulrich; Lienhard, Daniel; Bastelberger, Sandra; Steimer, Sarah

    2014-05-01

    Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a "white light" LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. [1] A. Virtanen et al. (2010): An amorphous solid state of biogenic secondary

  6. Radial inhomogeneities in particle composition of single, levitated aerosol particles observed by Mie resonance spectroscopy (Invited)

    NASA Astrophysics Data System (ADS)

    Krieger, U. K.; Steimer, S.; Lienhard, D.; Bastelberger, S.

    2013-12-01

    Recent observations have indicated that organic aerosol particles in the atmosphere may exist in an amorphous semi-solid or even solid (i.e. glassy) state, e.g. [1]. The influence of highly viscous and glassy states on the timescale of aerosol particle equilibration with respect to water vapor have been investigated for some model systems of atmospheric aerosol, e.g. [2,3]. In particular, it has been shown that the kinetics of the water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules for a highly viscous aerosol particle. A liquid phase diffusion model based on numerically solving the non-linear diffusion equation predicts strong internal gradients in water concentration when condensed phase diffusion impedes the water uptake from the gas phase [2]. Here we observe and quantify the internal concentration gradients in single, levitated, micron size aerosol particles of aqueous MBTCA (3-methyl-1,2,3-Butanetricarboxylic acid) and shikimic acid using elastic Mie resonance spectroscopy. A single, aqueous particle is levitated in an electro-dynamic balance (for details see [2]), dried for several days at room temperature, cooled to the target temperature and exposed to a rapid change in relative humidity. In addition to measuring the elastically backscattered light of a 'white light ' LED source and recording the full spectrum with a spectrograph as in [2], we use a tunable diode laser (TDL) to scan high resolution TE- and TM spectra. This combination allows observing various Mie resonance mode orders simultaneously. Since we perform the experiment at low temperatures and low humidities the changes in the Mie-spectra due to water uptake are sufficiently slow to resolve the kinetics. Experimental Mie resonance spectra are inverted to concentration profiles of water within the particle by applying the numerical diffusion model [2] in conjunction with Mie calculations of multilayered spheres [4]. Potential implications for

  7. Direct observations of the role of solution composition in magnesite dissolution

    NASA Astrophysics Data System (ADS)

    King, H. E.; Putnis, C. V.

    2012-04-01

    Magnesite, MgCO3, occurs in association with the alteration of ultramafic rocks and serpentine during metamorphic and metasomatic events. Its formation from the carbonation of olivine is an indication of natural CO2 sequestration. Both magnesite dissolution and precipitation are controlled by the strongly hydrated nature of the Mg2+ ion in solution. Flow-through experiments have shown that increased dissolution results from an increase in ionic strength of the solution (Pokrovsky and Schott, 1999). To test whether this observation is related to changes in Mg hydration, we have compared the dissolution of the {1014} magnesite surface in solutions of different electrolytes (NaCl, NaNO3 and Na2SO4) using atomic force microscopy (AFM). As the dissolution of magnesite is slow at ambient conditions, experimental solutions (water, 10, 100 and 500 mM) were acidified (pH 2). In all electrolyte solutions, dissolution of the magnesite surface began by the nucleation of randomly spaced etch pits followed by the sudden nucleation of many pits across the entire surface. Coalescence of etch pits produced islands of remnant surface which then dissolved until a single layer was removed and a new flat surface generated. The process was then repeated via the further nucleation of random etch pits one unit cell deep ( 0.3 nm). Dissolution rates were obtained from the frequency of this dissolution cycle using measurements of surface roughness and etch pit spreading rates. The reactivity of magnesite in the presence of added ions varied in the order Na2SO4 < NaCl < NaNO3. Increased dissolution rates in the presence of NO3 compared to Cl is consistent with changes in Mg hydration (Ruiz-Agudo et al., 2010). However, although the ionic strength of the equivalent Na2SO4 concentrations was higher than that of NaCl (expected to increase magnesite dissolution), we observed a decrease in dissolution. The effect of sulfate is most likely dependent on the formation of Mg-SO4 contact ion pairs

  8. Energy dependent sticking coefficients of trimethylamine on Si(001)-Influence of the datively bonded intermediate state on the adsorption dynamics

    NASA Astrophysics Data System (ADS)

    Lipponer, M. A.; Reutzel, M.; Dürr, M.; Höfer, U.

    2016-11-01

    The adsorption dynamics of the datively bonded trimethylamine (TMA) on Si(001) was investigated by means of molecular beam techniques. The initial sticking probability s0 of TMA on Si(001) was measured as a function of kinetic energy at two different surface temperatures (230 and 550 K). At given surface temperature, s0 was found to decrease with increasing kinetic energy (0.1 to 0.6 eV) indicating a non-activated reaction channel. At increased surface temperature, s0 is reduced due to the onset of desorption into the gas phase. The energy dependence of s0 is compared to the results for the adsorption of tetrahydrofuran (THF) on Si(001), which reacts via a datively bonded intermediate into a covalently bound final state. As s0 follows the same energy dependence both for TMA and THF, the datively bonded intermediate state is concluded to dominate the reaction dynamics in the latter case as well.

  9. A Biaxial-Bending Test to Observe the Growth of Interacting Delaminations in a Composite Laminate Plate

    NASA Technical Reports Server (NTRS)

    McElroy, Mark; Jackson, Wade; Pankow, Mark

    2016-01-01

    It is not easy to isolate the damage mechanisms associated with low-velocity impact in composites using traditional experiments. In this work, a new experiment is presented with the goal of generating data representative of progressive damage processes caused by low-velocity impact in composite materials. Carbon fiber reinforced polymer test specimens were indented quasi-statically such that a biaxial-bending state of deformation was achieved. As a result, a three-dimensional damage process, involving delamination and delamination-migration, was observed and documented using ultrasonic and x-ray computed tomography. Results from two different layups are presented in this paper. Delaminations occurred at up to three different interfaces and interacted with one another via transverse matrix cracks. Although this damage pattern is much less complex than that of low-velocity impact on a plate, it is more complex than that of a standard delamination coupon test and provides a way to generate delamination, matrix cracking, and delamination-migration in a controlled manner. By limiting the damage process in the experiment to three delaminations, the same damage mechanisms seen during impact could be observed but in a simplified manner. This type of data is useful in stages of model development and validation when the model is capable of simulating simple tests, but not yet capable of simulating more complex and realistic damage scenarios.

  10. Direct observation of interface and nanoscale compositional modulation in ternary III-As heterostructure nanowires

    SciTech Connect

    Venkatesan, Sriram; Scheu, Christina; Madsen, Morten H.; Krogstrup, Peter; Johnson, Erik; Schmid, Herbert

    2013-08-05

    Straight, axial InAs nanowire with multiple segments of Ga{sub x}In{sub 1−x}As was grown. High resolution X-ray energy-dispersive spectroscopy (EDS) mapping reveals the distribution of group III atoms at the axial interfaces and at the sidewalls. Significant Ga enrichment, accompanied by a structural change is observed at the Ga{sub x}In{sub 1−x}As/InAs interfaces and a higher Ga concentration for the early grown Ga{sub x}In{sub 1−x}As segments. The elemental map and EDS line profile infer Ga enrichment at the facet junctions between the sidewalls. The relative chemical potentials of ternary alloys and the thermodynamic driving force for liquid to solid transition explains the growth mechanisms behind the enrichment.

  11. The surface composition and temperature of asteroid 21 Lutetia as observed by Rosetta/VIRTIS.

    PubMed

    Coradini, A; Capaccioni, F; Erard, S; Arnold, G; De Sanctis, M C; Filacchione, G; Tosi, F; Barucci, M A; Capria, M T; Ammannito, E; Grassi, D; Piccioni, G; Giuppi, S; Bellucci, G; Benkhoff, J; Bibring, J P; Blanco, A; Blecka, M; Bockelee-Morvan, D; Carraro, F; Carlson, R; Carsenty, U; Cerroni, P; Colangeli, L; Combes, M; Combi, M; Crovisier, J; Drossart, P; Encrenaz, E T; Federico, C; Fink, U; Fonti, S; Giacomini, L; Ip, W H; Jaumann, R; Kuehrt, E; Langevin, Y; Magni, G; McCord, T; Mennella, V; Mottola, S; Neukum, G; Orofino, V; Palumbo, P; Schade, U; Schmitt, B; Taylor, F; Tiphene, D; Tozzi, G

    2011-10-28

    The Visible, InfraRed, and Thermal Imaging Spectrometer (VIRTIS) on Rosetta obtained hyperspectral images, spectral reflectance maps, and temperature maps of the asteroid 21 Lutetia. No absorption features, of either silicates or hydrated minerals, have been detected across the observed area in the spectral range from 0.4 to 3.5 micrometers. The surface temperature reaches a maximum value of 245 kelvin and correlates well with topographic features. The thermal inertia is in the range from 20 to 30 joules meter(-2) kelvin(-1) second(-0.5), comparable to a lunarlike powdery regolith. Spectral signatures of surface alteration, resulting from space weathering, seem to be missing. Lutetia is likely a remnant of the primordial planetesimal population, unaltered by differentiation processes and composed of chondritic materials of enstatitic or carbonaceous origin, dominated by iron-poor minerals that have not suffered aqueous alteration.

  12. Titania and Oberon: Surface Composition from New Near-Infrared Observations and Reflectance Models

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Cruikshank, D. P.; Owen, T. C.; Geballe, T. R.; Benedix, G. K.; deBergh, C.; Noll, K. S.; Khare, B.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Here we report the combination of new near-ir spectra (1.45-2.48 micrometers), of Titania and Oberon obtained in September 1995 at a resolving power of approx. 800, with older near-ir observations (0.5- 1.44 micrometers), and recent UV (0.22-0.48 micrometers) observations obtained with HST. Previous interpretations suggest these surfaces are chiefly composed of water ice and varying amounts of spectrally neutral material. The new near-ir data provide the opportunity to search for absorption bands that could be attributable to surface materials other than water ice and because the combined spectra include such a broad wavelength region, to undertake improved models of water and neutral components on the surface. The calculated near-ir geometric albedos clearly exhibit three broad spectral features. Two (1.52- & 2.05 micrometer) have previously been used to demonstrate the presence of water ice on these satellites. The third (approx. 1.65 micrometer), suggests the presence of hexagonal water ice at low temperatures, and may provide a mechanism of estimating the surface temperature. There is no spectral evidence for ices of CO2, CO, NH3 or CH4. At UV wavelengths there is a broad absorption near 0.27-0.28 micrometer previously attributed to OH formed by magnetospheric-surface interactions and retained at the low surface temperatures of these satellites. Surface components used in a Hapke scattering models include values for a combination of irradiated water ice in the UV and hexagonal water ice at 100k in the near-ir (IR), amorphous carbon (AC), and tholins (T) (produced from gas and solid). Results of these models suggest the surfaces of Titania/Oberon are composed of IW (-77/52%) with AC the next most abundant component (approx. 19/52%) and finally T (approx. 4/7%).

  13. Constraints On Titan's Surface Composition From 5-µm Cassini/VIMS Observations

    NASA Astrophysics Data System (ADS)

    Hayne, Paul; McCord, T. B.; Combe, J.; Hansen, G.

    2007-10-01

    Observing Titan's surface is complicated by the strong absorbing and scattering properties of the atmosphere. Fortunately, there exist several "windows” between methane absorptions, where the surface is viewable. The 5-µm window is least affected by haze scattering, although the signal is low in this spectral region. We present the results of an extensive search for absorption features in the VIMS hyperspectral data using a statistically unbiased band-fitting algorithm. The approach is optimized for finding narrow absorption lines in the 5-µm window. If a candidate absorption meets any of the following criteria, it is deemed significant: i) The feature is apparent above the noise in the average of all pixels in a dataset. ii) Contiguous subset(s) of an image contain a higher concentration of pixels showing the feature than predicted by the data noise statistics. This excess should be observed consistently in different images containing the region. iii) The feature is spatially correlated with a morphologically and/or spectrally distinct unit, again consistent through time. Using these criteria, one statistically significant absorption is found: near 4.9 µm, it is strongly correlated with the Tui Regio bright anomaly (described by Barnes et al., GRL, 2005). The wavelength location and strength of this absorption are consistent with CO2 ice, likely complexed with other materials such as H2O ice (McCord et al., this meeting). Other localized regions of Titan also show the feature, notably Omacatl Macula (Hayne et al., AGU abstract, 2006). Not finding any other absorptions, for example due to organics predicted to precipitate on Titan's surface (Wilson et al., JGR, 2003), we can place tentative upper limits on the spatial coverage by these hypothetical constituents. The methods described are also being applied to other icy Saturnian satellites.

  14. Post-threshold energy dependence of the cross section for endoergic processes - Vibrational excitation and reactive scattering.

    NASA Technical Reports Server (NTRS)

    Levine, R. D.; Bernstein, R. B.

    1972-01-01

    The essential features of the translational energy dependence or excitation function for two types of endoergic collisional processes are deduced on the basis of information on the inverse, exoergic processes. Microreversibility is conveniently exploited via the symmetric field function, Y(E), which is uniquely determined at a given total energy, E. In the case of the vibrational excitation of diatomic molecules by atomic or molecular impact, use is made of the abundant data on the temperature dependence of the relaxation time.

  15. Energy dependence of multi-electron transfer reactions between slow multi-charged ions and neutral atoms

    NASA Astrophysics Data System (ADS)

    Sonoda, Toshinori; Kamemoto, Shinsuke; Hirayama, Takato; Koizumi, Tetsuo

    2009-11-01

    Using an ion-spectroscopy method, charge transfer reactions between slow multi-charged Arq+(q=3~5) ions and neutral Ar atoms have been studied in the laboratory collision energies from 3.1 to 4.6keV. The energy gain spectra of single-electron capture processes show no strong energy dependence. On the contrary, those of double-electron capture processes depend on the collision energy.

  16. Impairment of Energy-Dependent Processes in the Muscle Tissue as a Pathogenetic Mechanism of Statin-Induced Myopathy.

    PubMed

    Mikashinovich, Z I; Belousova, E S; Sarkisyan, O G

    2017-02-01

    Administration of simvastatin was followed by a decrease in activities of superoxide dismutase and cytochrome oxidase in rat mitochondria, which attested to dysfunction of the respiratory chain. The decrease in total ATPase and Ca(2+)-ATPase activities in muscle tissue homogenates reflected impaired transport of active cations essential for muscle contraction. We conclude that abnormal relationships in the system of energy synthetic and energy-dependent processes in myocytes serve as the molecular basis for the formation of statin-induced degenerative changes.

  17. Energy dependence of the optical potentials for the 9Be +208Pb and 9Be +209Bi systems at near-Coulomb-barrier energies

    NASA Astrophysics Data System (ADS)

    Gómez Camacho, A.; Yu, N.; Zhang, H. Q.; Gomes, P. R. S.; Jia, H. M.; Lubian, J.; Lin, C. J.

    2015-04-01

    We analyze the energy dependence of the interacting optical potential, at near barrier energies, for two systems involving the weakly bound projectile 9Be and the heavy 208Pb and 209Bi targets, by the simultaneous fit of elastic scattering angular distributions and fusion excitation functions. The approach used consists of dividing the optical potential into two parts. A short-range potential VF+i WF that is responsible for fusion, and a superficial potential VDR+i WDR for direct reactions. It is found, for both systems studied, that the fusion imaginary potential WF presents the usual threshold anomaly (TA) observed in tightly bound systems, whereas the direct reaction imaginary potential WDR shows a breakup threshold anomaly (BTA) behavior. Both potentials satisfy the dispersion relation. The direct reaction polarization potential predominates over the fusion potential and so a net overall behavior is found to follow the BTA phenomenon.

  18. Energy dependence of J/ψ production in Au + Au collisions at sNN=39,62.4 and 200GeV

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2017-05-10

    The inclusive J/ψ transverse momentum spectra and nuclear modification factors are reported at mid-rapidity (|y|<1.0) in Au + Au collisions at √sNN = 39, 62.4 and 200 GeV taken by the STAR experiment. A suppression of J/ψ production, with respect to the production in p+p scaled by the number of binary nucleon–nucleon collisions, is observed in central Au + Au collisions at these three energies. No significant energy dependence of nuclear modification factors is found within uncertainties. The measured nuclear modification factors can be described by model calculations that take into account both suppression of direct J/ψ production due tomore » the color screening effect and J/ψ regeneration from recombination of uncorrelated charm–anticharm quark pairs.« less

  19. Energy dependence of J/ψ production in Au + Au collisions at √{sNN} = 39 , 62.4 and 200GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fujita, J.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, T.; Huang, X.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Y.; Li, X.; Li, W.; Li, C.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, Y.; Liu, H.; Liu, F.; Liu, P.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shi, Z.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, X.; Sun, Y.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.

    2017-08-01

    The inclusive J / ψ transverse momentum spectra and nuclear modification factors are reported at mid-rapidity (| y | < 1.0) in Au + Au collisions at √{sNN} = 39, 62.4 and 200 GeV taken by the STAR experiment. A suppression of J / ψ production, with respect to the production in p + p scaled by the number of binary nucleon-nucleon collisions, is observed in central Au + Au collisions at these three energies. No significant energy dependence of nuclear modification factors is found within uncertainties. The measured nuclear modification factors can be described by model calculations that take into account both suppression of direct J / ψ production due to the color screening effect and J / ψ regeneration from recombination of uncorrelated charm-anticharm quark pairs.

  20. The 67P nucleus composition and temporal variations observed by the OSIRIS cameras onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Fornasier, Sonia; Barucci, Maria Antonietta; Feller, Clement; Deshapriya, Prasanna J. D.; Pommerol, Antoine; Lara, Luisa; Oklay, Nilda; A'Hearn, Mike; Davidsson, Bjorn; Perna, Davide; Sierks, Holger

    2015-11-01

    Since August 2014, the comet 67P/Churyumov-Gerasimenko has been mapped by the NAC and WAC cameras of the OSIRIS imaging system in the 250-1000 nm wavelength range. OSIRIS got the most detailed maps at the highest spatial resolution of a comet nucleus surface. Here we report on the colors and spectrophotometry of the whole 67P nucleus from images acquired since the first Rosetta bound orbits in August 2014 up to the comet perihelion passage. Globally, the nucleus shows a red spectral behavior and it has spectrophotometric properties similar to those of bare cometary nuclei, of primitive D-type asteroids such us Jupiter Trojans, and of the moderately red Transneptunians. No clear absorption bands have been identified yet in the UV-VIS-NIR range, except for a potential absorption centered at 290 nm, possibly due to SO2 ice. The nucleus shows an important phase reddening, with disk-averaged spectral slopes increasing from 11%/(100 nm) to 16%/(100 nm) in the 1.3-54° phase angle range. On the basis of the spectral slope, we identified three different groups of regions, characterized by a low, medium, and high spectral slope, respectively. The three groups are distributed everywhere on the nucleus, with no evident distinction between the two lobes of the comet. The comet southern hemisphere, that has been observed by Rosetta since April 2015, shows a lack of spectrally red regions associated to the absence of wide spread smooth or dust covered terrains. Several local bright and spectrally blue patches have been identified on the nucleus and attributed to exposed water ice on the surface. In particular we observed big (> 1500 m2) bright ice rich areas in the southern hemisphere which completely sublimated in a few weeks. We see evidence of very bright patches in the NUV-blue region close to the morning shadows that are compatible with the presence of frosts/ices. These patches disappear when fully illuminated by the Sun indicating that important processes of sublimation

  1. Inferring the Observed PSC Composition Using the Improved Limb Atmospheric Spectrometer (ILAS) Data Along With Trajectory Analysis

    NASA Astrophysics Data System (ADS)

    Saitoh, N.; Hayashida, S.; Sasano, Y.

    2001-12-01

    The Improved Limb Atmospheric Spectrometer (ILAS) captured many polar stratospheric cloud (PSC) events in the Northern Hemisphere during the winter and early spring of 1997. We identified about 250 events in 65 profiles as PSCs in the Arctic. Preliminary analysis made it clear that the ILAS also observed many PSC events during the early winter of 1997 in the Southern Hemisphere. The ILAS aerosol extinction coefficient and nitric acid data were compared with the theoretically predicted values for supercooled ternary solution (STS), nitric acid dihydrate (NAD), and nitric acid trihydrate (NAT) particles at thermodynamic equilibrium to infer the chemical composition of the observed PSC particles. In mid-January of 1997, both the extinction coefficient and nitric acid values of some of the observed PSC events showed better agreement with the theoretical values for STS than with those of NAT or NAD. Although a few PSCs were observed in March, most of the PSCs observed late in the PSC season had features of nitric-acid-containing hydrates. An intensive analysis of the temperature histories suggested that most of the STS particles observed in January had experienced the thermal conditions necessary for the formation of liquid particles. The nitric-acid-containing solid PSC events observed in early March experienced temperatures below TNAT for more than several days, and sometimes fell below Tice during the 20-day period. They had not passed over typical mountainous area before their measurements, so the formation mechanisms of these solid particles should be explained from their synoptic scale temperature histories, without considering lee waves. They maintained relatively high nitric acid hydrate saturation ratios along their trajectory, which suggests their homogeneous nucleation.

  2. Energy dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions

    NASA Astrophysics Data System (ADS)

    Reeves, G. D.; Friedel, R. H.; Larsen, B.; Skoug, R. M.; Funsten, H. O.; Claudepierre, S. G.; Fennell, J. F.; Turner, D. L.; Denton, M.; Spence, H. E.; Blake, J. B.; Baker, D. N.

    2015-12-01

    We present observations that illustrate the energy-dependence and L-shell dependence of radiation belt dynamics. We survey events in 2013 and analyze individual events in more detail. The survey data show: (a) Lower-energy electrons are enhanced more often than higher energies. (b) Events that fill the slot region are more common at lower energies. (c) Enhancements of electrons in the inner zone are more common at lower energies. And (d) even when events do not fully fill the slot region, enhancements at lower-energies tend to extend to lower L-shells than higher energies. The outer zone, inner zone, and slot region all occupy regions of space that are strongly energy dependent. During enhancement events the outer zone extends to lower L-shells at lower energies and higher L-shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L-shells for lower energies. Both boundaries are nearly straight in log(energy) vs. L-shell space. At energies below a few hundred keV radiation belt electron penetration through the slot region into the inner zone is commonplace but the number and frequency of "slot filling" events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Analysis shows that at least three processes may determine which electrons penetrate into the slot and inner zone: (1) enhanced convective electric fields at low L-shells, (2) impulsive, substorm-associated injections at low L-shells, and (3) slower radial diffusion and interaction with plasmaspheric hiss. These new observations challenge some of our long-held pictures of what the radiation belts look like and how they behave.

  3. Saturn's stratospheric temperature and composition in 2015 from Cassini/CIRS limb observations

    NASA Astrophysics Data System (ADS)

    Guerlet, Sandrine; Fouchet, Thierry; Hesman, Brigette; Bjoraker, Gordon; Spiga, Aymeric; Sylvestre, Melody

    2015-11-01

    As Cassini's solstice mission goes on, our understanding of Saturn's atmospheric seasonal evolution continues to build up. Infrared spectra acquired by Cassini/CIRS in limb viewing geometry in 2015 (end of spring in the northern hemisphere) are analysed to retrieve vertical profiles of the stratospheric temperature and hydrocarbon abundances at several latitudes spanning tropical, mid and high latitudes.These new measurements reveal how the equatorial oscillation continues to propagate downward with time, and help better characterize its period. At 40N, the previously observed temperature anomaly and enrichment in hydrocarbons associated with the 2011 storm have since disappeared. Compared to previous measurements acquired between 2005 and 2012 (Guerlet et al., Icarus, 2009; Sylvestre et al., Icarus, 2015), these new limb measurements also allow the study of the warming and cooling trends at different pressure levels associated with the change of seasons. These trends will be compared to predictions from a radiative climate model (Guerlet et al., Icarus, 2014).We also report the detection of benzene and aerosols at 77N, which confirms that these compounds are enhanced in auroral regions compared to low and mid latitudes, as already derived from a previous measurement at 80S in 2007 (Guerlet et al., A&A, 2015). The aerosol optical depth is found twice lower at 77N in 2015 (end of spring in N. hemisphere) than that derived at 80S in 2007 (end of summer in S. hemisphere). However, whether this north/south difference stems from a permanent asymmetry or from a temporal variation of the aerosol optical depth cannot be assessed from these two measurements alone. We will discuss implications for the role of aerosols in the radiative forcing of the polar regions.

  4. Composite characteristics of Nor'westers based on observations and simulations

    NASA Astrophysics Data System (ADS)

    Das, Someshwar; Sarkar, Abhijit; Das, Mohan K.; Rahman, Md. Mizanur; Islam, Md. Nazrul

    2015-05-01

    The Nor'westers (severe thunderstorms) that form over northeast India and adjoining Bangladesh region during the pre-monsoon season of 2008 are studied employing observations from ground based radar, Tropical Rainfall Measuring Mission (TRMM) and synoptic stations. Subsequently, an attempt is made to simulate the storms using Weather Research and Forecasting (WRF) model at 9 km horizontal resolution, and 28 vertical levels. Analyses of Radar data for 15 cases out of 108 during the study period showed that the Nor'westers typically propagate in the form of squall lines (parallel bow shaped bands) having horizontal length of about 200 km, reaching more than 400 km on some occasions. They propagate at typical speeds of about 50 km h- 1 from northwest to southeast directions. The model underestimated the strength of the squall lines in terms of wind speed. The simulated results showed the presence of strong vertical wind shear and an advection of warm moist southerly wind from the Bay of Bengal during the formation of Nor'westers. Low level positive vorticity in combination with moist southerly wind from the Bay of Bengal and strong surface heating resulted in the formations of the Nor'westers in all the cases. Cloud tops reached as high as 18-20 km in some of the cases of the severe storms. The altitude of core of maximum precipitation was located between 3-5 km. Average cloud hydrometeor content of the Nor'westers was estimated to be about 3.5 g m- 3.

  5. ROSAT PSPC and HRI observations of the composite starburst/Seyfert 2 galaxy NGC 1672

    NASA Technical Reports Server (NTRS)

    Brandt, W. N.; Halpern, Jules P.; Iwasawa, K.

    1995-01-01

    The nearby barred spiral galaxy NGC 1672 has been observed with the Position Sensitive Proportional Counter (PSPC) and High Resolution Imager (HRI) instruments on board the ROSAT X-ray satellite. NGC 1672 is thought to have an obscured Seyfert nucleus, and it has strong starburst activity as well. Three bright X-ray sources with luminosities 1-2 x 10(exp 40) erg/s are clearly identified with NGC 1672. The strongest lies at the nucleus, and the other two lie at the ends of NGC 1672's prominent bar, locations that are also bright in H alpha and near-infrared images. The nuclear source is resolved by the HRI on about the scale of the recently identified nuclear ring, and one of the sources at the ends of the bar is also probably resolved. The X-ray spectrum of the nuclear source is quite soft, having a Raymond-Smith plasma temperature of approximately equals 0.7 keV and little evidence for intrinsic absorption. The ROSAT band X-ray flux of the nuclear source appears to be dominated not by X-ray binary emission but rather by diffuse gas emission. The absorption and emission properties of the sources, as well as their spatial extents, lead us to models of superbubbles driven by supernovae. However, the large density and emission measure of the nuclear X-ray source stretch the limits that can be comfortably accommodated by these models. We do not detect direct emission from the putative Seyfert nucleus, although an alternative model for the nuclear source is thermal emission from gas that is photoionized by a hidden Seyfert nucleus. The spectra of the other two X-ray sources are harder than that of the nuclear source, and have similar difficulties with regard to superbubble models.

  6. Detection of special nuclear material by observation of delayed neutrons with a novel fast neutron composite detector

    NASA Astrophysics Data System (ADS)

    Mayer, Michael; Nattress, Jason; Barhoumi Meddeb, Amira; Foster, Albert; Trivelpiece, Cory; Rose, Paul; Erickson, Anna; Ounaies, Zoubeida; Jovanovic, Igor

    2015-10-01

    Detection of shielded special nuclear material is crucial to countering nuclear terrorism and proliferation, but its detection is challenging. By observing the emission of delayed neutrons, which is a unique signature of nuclear fission, the presence of nuclear material can be inferred. We report on the observation of delayed neutrons from natural uranium by using monoenergetic photons and neutrons to induce fission. An interrogating beam of 4.4 MeV and 15.1 MeV gamma-rays and neutrons was produced using the 11B(d,n-γ)12C reaction and used to probe different targets. Neutron detectors with complementary Cherenkov detectors then discriminate material undergoing fission. A Li-doped glass-polymer composite neutron detector was used, which displays excellent n/ γ discrimination even at low energies, to observe delayed neutrons from uranium fission. Delayed neutrons have relatively low energies (~0.5 MeV) compared to prompt neutrons, which makes them difficult to detect using recoil-based detectors. Neutrons were counted and timed after the beam was turned off to observe the characteristic decaying time profile of delayed neutrons. The expected decay of neutron emission rate is in agreement with the common parametrization into six delayed neutron groups.

  7. Cassini RADAR observations of lakes and seas in the Northern Polar region of Titan: Bathymetry and Composition

    NASA Astrophysics Data System (ADS)

    Mastrogiuseppe, Marco; Hayes, Alex; Poggiali, Valerio; Lunine, Jonathan; Seu, Roberto; Hofgartner, Jason; Le Gall, Alice; Lorenz, Ralph; Mitri, Giuseppe

    2017-04-01

    Recent observations by the Cassini spacecraft has revealed its RADAR to be an invaluable tool for investigating Titan's seas and lakes. The T91 (May 2013) observation of Ligeia Mare, Titan's second largest sea, has demonstrated the capabilities of the RADAR, in its altimeter mode, to measure depth, composition and seafloor topography. The 104 (August 2014) observation provided similar data over the largest sea, Kraken Mare, and the T108 (January 2015) flyby acquired an altimetry pass over Punga Mare. The T49 (December 2007) altimetry pass over Ontario Lacus, the largest southern liquid body, has also been processed to retrieve subsurface echoes. Cassini's final flyby of Titan, T126 (April 2017), is the next and unique opportunity to observe an area in the Northern Polar region of Titan, where several small - medium size (5 - 30 km) lakes are present and have been previously imaged by Cassini. In our presentation, we will report the integrated results of these investigations and discuss them in the overall context of Titan's hydrologic cycle.

  8. Periodontal repair in dogs: histologic observations of guided tissue regeneration with a prostaglandin E1 analog/methacrylate composite.

    PubMed

    Trombelli, L; Lee, M B; Promsudthi, A; Guglielmoni, P G; Wikesjö, U M

    1999-06-01

    This report describes observations of healing following guided tissue regeneration (GTR) including surgical implantation of the prostaglandin E1 analog misoprostol with calcium-layered methacrylate particles. Critical size, supra-alveolar periodontal defects were surgically created around the 3rd and 4th mandibular premolar teeth in 4 beagle dogs. Wound management included soaking with a 24 microg/ml misoprostol solution and implantation of the misoprostol/methacrylate composite. One jaw quadrant per animal was prepared for GTR using expanded polytetrafluoroethylene membranes. The gingival flaps were coronally advanced and sutured to submerge the teeth. The tissues covering the surgical sites daily received topical misoprostol in an oral adhesive over the 4-week healing interval. Upon euthanasia, tissue blocks were prepared for histometric analysis of regeneration of alveolar bone and cementum, root resorption and ankylosis. The defect area underneath the membrane and the density of methacrylate particles were recorded for the GTR defects. The methacrylate particles appeared encapsulated in a dense connective tissue without signs of an inflammatory reaction, some in contact to newly formed bone. Alveolar bone regeneration height averaged (+/-SD) 1.2+/-1.0 and 1.0+/-0.6 mm for GTR and non-GTR defects, respectively. Corresponding values for bone regeneration area were 1.3+/-1.0 and 0.7+/-0.5 mm2. Cementum regeneration was confined to the apical aspect of the defects. Small areas of root resorption and ankylosis were observed for all teeth. Bone regeneration area correlated positively to the defect area and negatively to the density of methacrylate particles in the GTR defects. The histologic observations suggest that the methacrylate composite has marginal potential to promote bone and cementum regeneration under provisions for GTR.

  9. The temperature and ion energy dependence of deuterium retention in lithium films

    NASA Astrophysics Data System (ADS)

    Buzi, Luxherta; Koel, Bruce E.; Skinner, Charles H.

    2016-10-01

    Lithium conditioning of plasma facing components in magnetic fusion devices has improved plasma performance and lowered hydrogen recycling. For applications of lithium in future high heat flux and long pulse duration machines it is important to understand and parameterize deuterium retention in lithium. This work presents surface science studies of deuterium retention in lithium films as a function of surface temperature, incident deuterium ion energy and flux. Initial experiments are performed on thin (3-30 ML) lithium films deposited on a single crystal molybdenum substrate to avoid effects due to grain boundaries, intrinsic defects and impurities. A monoenergetic and mass-filtered deuterium ion beam was generated in a differentially pumped Colutron ion gun. Auger electron spectroscopy and X-ray photoelectron spectroscopy were used to identify the elemental composition and temperature programmed desorption was used to measure the deuterium retention under the different conditions. Support was provided through DOE Contract Number DE-AC02-09CH11466.

  10. High-resolution observations of the isotopic composition of carbon and silicon in the galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.; Greiner, D. E.

    1981-01-01

    High resolution satellite observations of the galactic cosmic rays (approximately 100-300 MeV/amu) have yielded determinations of near-earth isotopic compositions, which are presented: (C-13)/(C-12) = 0.070 + or - 0.006; (Si-29)/(Si-28) = 0.109(+0.024, -0.014); and (Si-30)/(Si-28) = 0.084(+0.020, -0.014). Using a standard propagation model, source values greater than solar are derived for each of these ratios. The (C-13) excess may be the result of cross section uncertainties, but the (Si-29) and (Si-30) appear to reflect real differences between the galactic cosmic-ray source and the solar system.

  11. SU-E-T-491: Importance of Energy Dependent Protons Per MU Calibration Factors in IMPT Dose Calculations Using Monte Carlo Technique

    SciTech Connect

    Randeniya, S; Mirkovic, D; Titt, U; Guan, F; Mohan, R

    2014-06-01

    Purpose: In intensity modulated proton therapy (IMPT), energy dependent, protons per monitor unit (MU) calibration factors are important parameters that determine absolute dose values from energy deposition data obtained from Monte Carlo (MC) simulations. Purpose of this study was to assess the sensitivity of MC-computed absolute dose distributions to the protons/MU calibration factors in IMPT. Methods: A “verification plan” (i.e., treatment beams applied individually to water phantom) of a head and neck patient plan was calculated using MC technique. The patient plan had three beams; one posterior-anterior (PA); two anterior oblique. Dose prescription was 66 Gy in 30 fractions. Of the total MUs, 58% was delivered in PA beam, 25% and 17% in other two. Energy deposition data obtained from the MC simulation were converted to Gy using energy dependent protons/MU calibrations factors obtained from two methods. First method is based on experimental measurements and MC simulations. Second is based on hand calculations, based on how many ion pairs were produced per proton in the dose monitor and how many ion pairs is equal to 1 MU (vendor recommended method). Dose distributions obtained from method one was compared with those from method two. Results: Average difference of 8% in protons/MU calibration factors between method one and two converted into 27 % difference in absolute dose values for PA beam; although dose distributions preserved the shape of 3D dose distribution qualitatively, they were different quantitatively. For two oblique beams, significant difference in absolute dose was not observed. Conclusion: Results demonstrate that protons/MU calibration factors can have a significant impact on absolute dose values in IMPT depending on the fraction of MUs delivered. When number of MUs increases the effect due to the calibration factors amplify. In determining protons/MU calibration factors, experimental method should be preferred in MC dose calculations

  12. Predicting the Mineral Composition of Dust Aerosols. Part 2; Model Evaluation and Identification of Key Processes with Observations

    NASA Technical Reports Server (NTRS)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    A global compilation of nearly sixty measurement studies is used to evaluate two methods of simulating the mineral composition of dust aerosols in an Earth system model. Both methods are based upon a Mean Mineralogical Table (MMT) that relates the soil mineral fractions to a global atlas of arid soil type. The Soil Mineral Fraction (SMF) method assumes that the aerosol mineral fractions match the fractions of the soil. The MMT is based upon soil measurements after wet sieving, a process that destroys aggregates of soil particles that would have been emitted from the original, undisturbed soil. The second method approximately reconstructs the emitted aggregates. This model is referred to as the Aerosol Mineral Fraction (AMF) method because the mineral fractions of the aerosols differ from those of the wet-sieved parent soil, partly due to reaggregation. The AMF method remedies some of the deficiencies of the SMF method in comparison to observations. Only the AMF method exhibits phyllosilicate mass at silt sizes, where they are abundant according to observations. In addition, the AMF quartz fraction of silt particles is in better agreement with measured values, in contrast to the overestimated SMF fraction. Measurements at distinct clay and silt particle sizes are shown to be more useful for evaluation of the models, in contrast to the sum over all particles sizes that is susceptible to compensating errors, as illustrated by the SMF experiment. Model errors suggest that allocation of the emitted silt fraction of each mineral into the corresponding transported size categories is an important remaining source of uncertainty. Evaluation of both models and the MMT is hindered by the limited number of size-resolved measurements of mineral content that sparsely sample aerosols from the major dust sources. The importance of climate processes dependent upon aerosol mineral composition shows the need for global and routine mineral measurements.

  13. Predicting the Mineral Composition of Dust Aerosols. Part 2; Model Evaluation and Identification of Key Processes with Observations

    NASA Technical Reports Server (NTRS)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    A global compilation of nearly sixty measurement studies is used to evaluate two methods of simulating the mineral composition of dust aerosols in an Earth system model. Both methods are based upon a Mean Mineralogical Table (MMT) that relates the soil mineral fractions to a global atlas of arid soil type. The Soil Mineral Fraction (SMF) method assumes that the aerosol mineral fractions match the fractions of the soil. The MMT is based upon soil measurements after wet sieving, a process that destroys aggregates of soil particles that would have been emitted from the original, undisturbed soil. The second method approximately reconstructs the emitted aggregates. This model is referred to as the Aerosol Mineral Fraction (AMF) method because the mineral fractions of the aerosols differ from those of the wet-sieved parent soil, partly due to reaggregation. The AMF method remedies some of the deficiencies of the SMF method in comparison to observations. Only the AMF method exhibits phyllosilicate mass at silt sizes, where they are abundant according to observations. In addition, the AMF quartz fraction of silt particles is in better agreement with measured values, in contrast to the overestimated SMF fraction. Measurements at distinct clay and silt particle sizes are shown to be more useful for evaluation of the models, in contrast to the sum over all particles sizes that is susceptible to compensating errors, as illustrated by the SMF experiment. Model errors suggest that allocation of the emitted silt fraction of each mineral into the corresponding transported size categories is an important remaining source of uncertainty. Evaluation of both models and the MMT is hindered by the limited number of size-resolved measurements of mineral content that sparsely sample aerosols from the major dust sources. The importance of climate processes dependent upon aerosol mineral composition shows the need for global and routine mineral measurements.

  14. Transmission electron microscopy observations on phase transformations during aluminium/mullite composites formation by gas pressure infiltration

    SciTech Connect

    Pawlyta, M.; Tomiczek, B.; Dobrzański, L.A.; Kujawa, M.; Bierska-Piech, B.

    2016-04-15

    The porous ceramic preforms were manufactured using the powder metallurgy technique. First, the start-up material (halloysite with the addition of carbon fibres as the pore-forming agent) was slowly heated to 800 °C and then sintered at 1300 °C. Degradation of the carbon fibres enabled the open canals to form. At the end of the sintering process, the porous ceramic material consisting mainly of two phases (mullite and cristobalite) was formed, without any residual carbon content. During infiltration, the liquid metal filled the empty spaces (pores) effectively and formed the three-dimensional network of metal in the ceramic. The cristobalite was almost entirely decomposed. In the areas of its previous occurrence, there are new pores, only in the ceramic grains. The mullite, which was formed from halloysite during annealing, crystallized in the Pbam orthorhombic space group, with the (3Al{sub 2}O{sub 3}·2SiO{sub 2}) stoichiometric composition. The mullite structure does not change during the infiltration. The composite components are tightly connected. A transition zone between the ceramics and the metal, having the thickness of about 200 nm, was formed. The nanocrystalline zone, identified as γ-Al{sub 2}O{sub 3}, was formed by diffusing the product of the cristobalite decomposition into the aluminium alloy matrix. There is an additional, new phase, identified as (Mg,Si)Al{sub 2}O{sub 4} in the outer parts of the transition zone. - Highlights: • Phase changes after the infiltration of aluminium into porous mullite preforms were observed by TEM. • TEM observations confirm that during infiltration cristobalite was decomposed and the structure of mullite did not change. • Between the ceramic and the metal, a transition zone comprising a layer of γ-Al{sub 2}O{sub 3} and (Mg,Si)Al{sub 2}O{sub 4} was formed.

  15. Observations of accumulation mode aerosol composition and soot carbon concentrations by means of a high-temperature volatility technique

    NASA Astrophysics Data System (ADS)

    Smith, Michael H.; O'Dowd, Colin D.

    1996-08-01

    A high-temperature volatility system has been deployed for the measurement of the composition and concentration of the accumulation mode aerosol (0.05 μm < r < 1 μm) within the atmospheric boundary layer. This instrumentation comprises a volatility system based around a Particle Measuring Systems ASASP-X optical particle counter, which was operated together with an aethalometer for the direct observation of soot carbon concentrations. By cycling the heater tube through a range of temperatures from near ambient to over 1000°C, size-differentiated information upon aerosol composition may be obtained. Furthermore, by careful selection of analysis temperatures, discrimination is possible between elemental carbon and the more volatile fractions of the soot carbon aerosol. Observations made over the North Sea near the Dutch coast and in the central United Kingdom are presented for differing environmental conditions with soot carbon concentrations ranging from about 100 to over 6000 ng m-3. For polluted conditions over the North Sea the volatility technique clearly showed the dominance of soot carbon particles over other aerosol components with a narrow carbon particle distribution of mode radius around 0.06 μm accounting for about 80% of all particles with radii below 0.1 μm. Under polluted conditions, only about 25% of the total soot carbon aerosol comprised elemental carbon (with the remainder consisting of more volatile material), whereas this proportion rose to around 50% in the lower carbon loadings found in a cleaner maritime air mass. The use of soot carbon loadings as a tracer of anthropogenic aerosol inputs to oceanic regions is explored on the basis of measurements from a NE Atlantic cruise.

  16. Comparison of Modeled and Observed Environmental Influences on the Stable Oxygen and Hydrogen Isotope Composition of Leaf Water in Phaseolus vulgaris L. 1

    PubMed Central

    Flanagan, Lawrence B.; Comstock, Jonathan P.; Ehleringer, James R.

    1991-01-01

    In this paper we describe how a model of stable isotope fractionation processes, originally developed by H. Craig and L. I. Gordon ([1965] in E Tongiorgi, ed, Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, Italy, pp 9-130) for evaporation of water from the ocean, can be applied to leaf transpiration. The original model was modified to account for turbulent conditions in the leaf boundary layer. Experiments were conducted to test the factors influencing the stable isotopic composition of leaf water under controlled environment conditions. At steady state, the observed leaf water isotopic composition was enriched above that of stem water with the extent of the enrichment dependent on the leaf-air vapor pressure difference (VPD) and the isotopic composition of atmospheric water vapor (AWV). The higher the VPD, the larger was the observed heavy isotope content of leaf water. At a constant VPD, leaf water was relatively depleted in heavy isotopes when exposed to AWV with a low heavy isotope composition, and leaf water was relatively enriched in heavy isotopes when exposed to AWV with a large heavy isotope composition. However, the observed heavy isotope composition of leaf water was always less than that predicted by the model. The extent of the discrepancy between the modeled and observed leaf water isotopic composition was a strong linear function of the leaf transpiration rate. PMID:16668226

  17. Solar Energetic Particle Drifts and the Energy Dependence of 1 AU Charge States

    NASA Astrophysics Data System (ADS)

    Dalla, S.; Marsh, M. S.; Battarbee, M.

    2017-01-01

    The event-averaged charge state of heavy ion solar energetic particles (SEPs), measured at 1 au from the Sun, typically increases with the ions’ kinetic energy. The origin of this behavior has been ascribed to processes taking place within the acceleration region. In this paper we study the propagation through interplanetary space of SEP Fe ions, injected near the Sun with a variety of charge states that are uniformly distributed in energy, by means of a 3D test particle model. In our simulations, due to gradient and curvature drifts associated with the Parker spiral magnetic field, ions of different charge propagate with very different efficiencies to an observer that is not magnetically well connected to the source region. As a result we find that, for many observer locations, the 1 au event-averaged charge state < Q> , as obtained from our model, displays an increase with particle energy E, in qualitative agreement with spacecraft observations. We conclude that drift-associated propagation is a possible explanation for the observed distribution of < Q> versus E in SEP events, and that the distribution measured in interplanetary space cannot be taken to represent that at injection.

  18. Earth Observations Composite

    NASA Image and Video Library

    2016-03-22

    ISS047e014747 (03/22/2016) --- Crewmembers of the International Space Stations Expedition 47 captured this image of southern South America. Patagonia is a sparsely populated region located at the southern end of South America, shared by Argentina and Chile. The region comprises the southern section of the Andes mountains as well as the deserts, steppes and grasslands east of this southern portion of the Andes. The Colorado and Barrancas rivers, which run from the Andes to the Atlantic, are commonly considered the northern limit of Argentine Patagonia

  19. The mass composition of ultra-high energy cosmic rays measured by the Telescope Array experiment

    NASA Astrophysics Data System (ADS)

    Fujii, Toshihiro

    2014-03-01

    Measurements of the mass composition and its energy dependence are necessary to understand sources and propagations of cosmic rays and to exclude several theoretical models. A longitudinal development of an extensive air shower reaches its maximum at a depth, Xmax, that depends on the species of the primary cosmic ray. Using a technique based on Xmax, we report the mass composition of ultra-high energy cosmic rays from analyses of data observed by fluorescence detectors of the Telescope Array experiment. We summarize results analyzed by three different types of reconstruction procedures which are stereo, monocular and hybrid mode. JSPS Postdoctoral Fellowship for Research Abroad.

  20. Models for Temperature and Composition in Uranus from Spitzer, Herschel and Ground-Based Infrared through Millimeter Observations

    NASA Astrophysics Data System (ADS)

    Orton, G. S.; Fletcher, L. N.; Feuchtgruber, H.; Lellouch, E.; Moreno, R.; Encrenaz, T.; Hartogh, P.; Jarchow, C.; Swinyard, B.; Moses, J. I.; Burgdorf, M. J.; Hammel, H. B.; Line, M. R.; Sandell, G.; Dowell, C. D.

    2013-12-01

    Photometric and spectroscopic observations of Uranus were combined to create self-consistent models of its global-mean temperature profile, bulk composition, and vertical distribution of gases. These were derived from a suite of spacecraft and ground-based observations that includes the Spitzer IRS, and the Herschel HIFI, PACS and SPIRE instruments, together with ground-based observations from UKIRT and CSO. Observations of the collision-induced absorption of H2 have constrained the temperature structure in the troposphere; this was possible up to atmospheric pressures of ~2 bars. Temperatures in the stratosphere were constrained by H2 quadrupole line emission. We coupled the vertical distribution of CH4 in the stratosphere of Uranus with models for the vertical mixing in a way that is consistent with the mixing ratios of hydrocarbons whose abundances are influenced primarily by mixing rather than chemistry. Spitzer and Herschel data constrain the abundances of CH3, CH4, C2H2, C2H6, C3H4, C4H2, H2O and CO2. At millimeter wavelengths, there is evidence that an additional opacity source is required besides the H2 collision-induced absorption and the NH3 absorption needed to match the microwave spectrum; this can reasonably (but not uniquely) be attributed to H2S. These models will be made more mature by consideration of spatial variability from Voyager IRIS and more recent spatially resolved imaging and mapping from ground-based observatories. The model is of ';programmatic' interest because it serves as a calibration source for Herschel instruments, and it provides a starting point for planning future spacecraft investigations of the atmosphere of Uranus.

  1. Axial anomaly and energy dependence of hyperon polarization in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Sorin, Alexander; Teryaev, Oleg

    2017-01-01

    We address the issue of energy and charge dependence of global polarization of Λ hyperons in peripheral Au-Au collisions recently observed by the STAR Collaboration at Relativistic Heavy Ion Collider (RHIC). We compare different contributions to the anomalous mechanism relating polarization to vorticity and hydrodynamic helicity in QCD matter. We stress that the suppression of the gravitational anomaly contribution in strongly correlated matter observed in lattice simulations confirms our earlier prediction of rapid decrease of polarization with increasing collision energy. Our mechanism leads to polarization of Λ ¯ of the same sign and larger magnitude than the polarization of Λ. The energy and charge dependence of polarization is suggested as a sensitive probe of fine details of QCD matter structure.

  2. Energy dependent variability and outburst evolution in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Stiele, H.; Kong, A. K. H.

    2016-12-01

    Almost all low mass black hole X-ray binaries are transient sources. Most of these sources show a certain pattern during outburst: the evolution from low hard state through intermediate state(s) into high soft state and the returning to the hard state at lower luminosity. However, there are outbursts that remain in the hard state (so called "failed" outbursts). Using the technique of covariance spectra we can investigate the variability of individual spectral components on different time scales. Comprehensive studies of covariance spectra for a sample of black hole X-ray binaries observed in the rising low hard state of "normal" outbursts revealed an increase of the covariance ratios towards lower energies that has been interpreted as the sign of additional disc variability on long time scales. There are now two sources (h1743 and gs) that do not show an increase towards lower energies in their covariance ratio. Both sources have been observed during "failed" outbursts and showed photon indices much harder than what is usually observed in black hole X-ray binaries.

  3. Cosmic-ray composition measurements and cosmic ray background-free γ -ray observations with Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Neronov, Andrii; Semikoz, Dmitri V.; Vovk, Ievgen; Mirzoyan, Razmik

    2016-12-01

    The muon component of extensive air showers (EAS) initiated by cosmic-ray particles carries information on the primary particle identity. We show that the muon content of EAS could be measured in a broad energy range from 10-100 TeV up to ultra-high-energy cosmic-ray range using wide field-of-view imaging atmospheric Cherenkov telescopes observing strongly inclined or nearly horizontal EAS from the ground of from high altitude. Cherenkov emission from muons in such EAS forms a distinct component (halo or tail) of the EAS image in the telescope camera. We show that detection of the muon signal could be used to measure composition of the cosmic-ray spectrum in the energy ranges of the knee, the ankle and of the Galactic-to-extragalactic transition. It could also be used to veto the cosmic-ray background in gamma-ray observations. This technique provides a possibility for up to 2 orders of magnitude improvement of sensitivity for γ -ray flux in the energy band above 10 PeV, compared to KASCADE-Grande, and an order-of-magnitude improvement of sensitivity in the multi-EeV energy band, compared to Pierre Auger Observatory.

  4. Composition and size distribution of submicrometer aerosol particles observed on Mt. Fuji in the volcanic plumes from Miyakejima

    NASA Astrophysics Data System (ADS)

    Naoe, Hiroaki; Heintzenberg, Jost; Okada, Kikuo; Zaizen, Yuji; Hayashi, Kazuhiko; Tateishi, Takahiro; Igarashi, Yasuhito; Dokiya, Yukiko; Kinoshita, Kisei

    An aerosol observation campaign was conducted at the summit of Mt. Fuji (at an altitude of 3776 m), which is located 170 km northwest of Miyakejima. Individual aerosol particles were collected with an electrostatic aerosol sampler and the number-size distribution and composition were examined by electron microscopy. Number-size distributions were measured with the combination of a diffusion battery (DB) and a condensation particle counter. Sulfate and sulfur dioxide concentrations were also determined. During the first half of the campaign (13-15 September 2000), high number fractions of sulfuric-acid containing particles with a mode radius around 0.06 μm were observed in the radius range of 0.02-0.2 μm coincident with a humid maritime air mass originated from the south. Sulfate and sulfur dioxide also showed high concentrations in this period. These results suggested that the volcanic plumes of Miyakejima were transported up to the summit of Mt. Fuji. Number-size distributions determined by electron microscope were consistent with those derived using the DB. During the later half of the experiment (18-20 September), low fractions of sulfuric-acid containing particles represented only a small fraction of the total particle number, coincident with a dry continental air mass originating from the west.

  5. Energy dependence of 12C+12C single-neutron transfer cross sections

    NASA Astrophysics Data System (ADS)

    Winfield, J. S.; Austin, Sam M.; Crawley, G. M.; Djalali, C.; Ogilvie, C. A.; Smith, R. J.; Chen, Ziping; Torres, M.

    1988-04-01

    The one-neutron transfer reaction induced by 25, 35 and 50 MeV/nucleon 12C beams on a 12C target has been studied. The observed angular distributions for the 13Cg.s-11Cg.s. final state agree in shape and magnitude with predictions of the exact finite- range distorted wave Born approximation. Above roughly 30 MeV/nucleon, the angel integrated cross section falls off with an approximately exponential slope in accordance with the expectations of the reaction dynamics at high bombarding energies. Present address: Department of Health Physics, University of Michigan, Ann Arbor, MI 48109, USA.

  6. Remote Sensing of lower thermospheric temperature and composition based on observations of O2 Atmospheric band emission.

    NASA Astrophysics Data System (ADS)

    Christensen, A. B.; Yee, J.; Budzien, S. A.; Bishop, R. L.; Hecht, J. H.; Stephan, A. W.; Crowley, G.

    2011-12-01

    The properties of the O2 Atmospheric bands emitted in the lower thermosphere are examined through the use of a photochemical model and compared with measurements from the RAIDS near-infrared spectrometer on the International Space Station. An updated model (Yee, 2011) has been used to establish the sensitivity of the line-of-sight (LOS) brightness of the (0,0), (1,1) and (0,1) bands to changes in neutral composition and some reaction rate and branching ratios. We found that the most sensitive region to O2 variability is near 120 km where the brightness is ~ [O2]^2. Calculations based on the MSIS-90E neutral atmospheric model corresponding to the geographical locations of the brightness measurements at 120 and 125 km for several days of observations indicate greater variability in the model results than observed by RAIDS based on our current understanding of the pointing errors. Up to about 200 km the (0,0) band lifetime is sufficiently long to allow thermalization of the upper state through collisions with the background gasses making the rotational distribution representative of the local temperature. The analysis of rocket data by Heller et al. (1991) and more recently Sheese et al. (2010) using OSIRIS observations up to an altitude of ~ 110 km illustrates the approach. Using the same measurement concept, the RAIDS data extend the range of altitudes an additional two scale heights to approximately 130 km. Comparing RAIDS and TIMED/SABER LOS measurements we have been able to validate temperatures in the region around 100 km. During moderate geomagnetic activity (Kp ~ 4) localized but greatly enhanced temperatures have been observed. J. W. Heller, A. B. Christensen, J. H. Yee and W. E. Sharp, Mesospheric temperature inferred from daytime observation of the O2 atmospheric (0,0) band system, J. Geophys. Res., 96,19,499-19,505,1991. P. E. Sheese, E. J. Llewellyn, R. L. Gattinger, A. E. Bourassa, D. A. Degenstein, N. D. Lloyd, and I. C. McDade, Temperatures in the

  7. Measurement of the energy dependence of X-ray-induced decomposition of potassium chlorate.

    PubMed

    Pravica, Michael; Bai, Ligang; Sneed, Daniel; Park, Changyong

    2013-03-21

    We report the first measurements of the X-ray induced decomposition of KClO3 as a function of energy in two experiments. KClO3 was pressurized to 3.5 GPa and irradiated with monochromatic synchrotron X-rays ranging in energy from 15 to 35 keV in 5 keV increments. A systematic increase in the decomposition rate as the energy was decreased was observed, which agrees with the 1/E(3) trend for the photoelectric process, except at the lowest energy studied. A second experiment was performed to access lower energies (10 and 12 keV) using a beryllium gasket; suggesting an apparent resonance near 15 keV or 0.83 Ǻ maximizing the chemical decomposition rate. A third experiment was performed using KIO3 to ascertain the anionic dependence of the decomposition rate, which was observed to be far slower than in KClO3, suggesting that the O-O distance is the critical factor in chemical reactions. These results will be important for more efficiently initiating chemical decomposition in materials using selected X-ray wavelengths that maximize decomposition to aid useful hard X-ray-induced chemistry and contribute understanding of the mechanism of X-ray-induced decomposition of the chlorates.

  8. Comparison of modeled and observed environmental influences on the stable oxygen and hydrogen isotope composition of leaf water in Phaseolus vulgaris L

    SciTech Connect

    Flanagan, L.B.; Comstock, J.P.; Ehleringer, J.R. )

    1991-06-01

    In this paper the authors describe how a model of stable isotope fractionation processes, originally developed by H. Craig and L.I. Gordon for evaporation of water from the ocean, can be applied to leaf transpiration. The original model was modified to account for turbulent conditions in the leaf boundary layer. Experiments were conducted to test the factors influencing the stable isotopic composition of leaf water under controlled environment conditions. At steady state, the observed leaf water isotopic composition was enriched above that of stem water with the extent of the enrichment dependent on the leaf-air vapor pressure difference (VPD) and the isotopic composition of atmospheric water vapor (AMV). The higher the VPD, the larger was the observed heavy isotope content of leaf water. At a constant VPD, leaf water was relatively enriched in heavy isotopes when exposed to AWV with a large heavy isotope composition. However, the observed heavy isotope composition of leaf water was always less than that predicted by the model. The extent of the discrepancy between the modeled and observed leaf water isotopic composition was a strong linear function of the leaf transpiration rate.

  9. Internal Energy Dependence of Molecular Condensation Coefficients Determined from Molecular Beam Surface Scattering Experiments

    DOE R&D Accomplishments Database

    Sibener, S. J.; Lee, Y. T.

    1978-05-01

    An experiment was performed which confirms the existence of an internal mode dependence of molecular sticking probabilities for collisions of molecules with a cold surface. The scattering of a velocity selected effusive beam of CCl{sub 4} from a 90 K CC1{sub 4} ice surface has been studied at five translational velocities and for two different internal temperatures. At a surface temperature of 90 K (approx. 99% sticking probability) a four fold increase in reflected intensity was observed for the internally excited (560 K) CC1{sub 4} relative to the room temperature (298 K) CC1{sub 4} at a translational velocity of 2.5 X 10{sup 4} cm/sec. For a surface temperature of 90 K all angular distributions were found to peak 15{sup 0} superspecularly independent of incident velocity.

  10. Energy dependence of the transverse momentum distributions of charged particles in pp collisions measured by ALICE.

    PubMed

    Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agocs, A G; Agostinelli, A; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahmed, I; Ahn, S A; Ahn, S U; Aimo, I; Aiola, S; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alexandre, D; Alici, A; Alkin, A; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Batzing, P C; Baumann, C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Bock, F; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bornschein, J; Botje, M; Botta, E; Böttger, S; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dainese, A; Dang, R; Danu, A; Das, K; Das, D; Das, I; Dash, A; Dash, S; De, S; Delagrange, H; Deloff, A; Dénes, E; Deppman, A; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; de Rooij, R; Diaz Corchero, M A; Dietel, T; Divià, R; Di Bari, D; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Dönigus, B; Dordic, O; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; D Erasmo, G; Elia, D; Emschermann, D; Engel, H; Erazmus, B; Erdal, H A; Eschweiler, D; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evdokimov, S; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Feofilov, G; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floratos, E; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Garishvili, I; Gerhard, J; Germain, M; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Goerlich, L; Gomez, R; González-Zamora, P; Gorbunov, S; Gotovac, S; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, C; Grigoras, A; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Khan, K H; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hanratty, L D; Hansen, A; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hippolyte, B; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hutter, D; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Ionita, C; Ippolitov, M; Irfan, M; Ivanov, V; Ivanov, M; Ivanytskyi, O; Jachołkowski, A; Jahnke, C; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jung, H; Jusko, A; Kalcher, S; Kaliňák, P; Kalliokoski, T; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Ketzer, B; Khan, S A; Khan, M M; Khan, P; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, S; Kim, D W; Kim, D J; Kim, B; Kim, T; Kim, M; Kim, M; Kim, J S; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, J; Klein-Bösing, C; Kluge, A; Knichel, M L; Knospe, A G; Köhler, M K; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Kovalenko, V; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kravčáková, A; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucera, V; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A B; Kurepin, A; Kuryakin, A; Kushpil, S; Kushpil, V; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lara, C; Lardeux, A; La Pointe, S L; La Rocca, P; Lea, R; Lechman, M; Lee, S C; Lee, G R; Legrand, I; Lehnert, J; Lemmon, R C; Lenhardt, M; Lenti, V; León Monzón, I; Lévai, P; Li, S; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loggins, V R; Loginov, V; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luzzi, C; Jacobs, P M; Ma, R; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Manko, V; Manso, F; Manzari, V; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Markert, C; Marquard, M; Martashvili, I; Martin, N A; Martinengo, P; Martínez, M I; Martínez García, G; Martin Blanco, J; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Matyja, A; Mazer, J; Mazumder, R; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, B; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Murray, S; Musa, L; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Nayak, T K; Nazarenko, S; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Nyanin, A; Nyatha, A; Nystrand, J; Oeschler, H; Oh, S K; Oh, S; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Onderwaater, J; Oppedisano, C; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pachr, M; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Patalakha, D I; Paticchio, V; Paul, B; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perrino, D; Peryt, W; Pesci, A; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Planinic, M; Płoskoń, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Rademakers, A; Rak, J; Rakotozafindrabe, A; Ramello, L; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Rauch, W; Rauf, A W; Razazi, V; Read, K F; Real, J S; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reicher, M; Reidt, F; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohni, S; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, P; Roy, C; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Šafařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Šándor, L; Sandoval, A; Sano, M; Santagati, G; Santoro, R; Sarkar, D; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schuchmann, S; Schukraft, J; Schulc, M; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Scott, P A; Segato, G; Selyuzhenkov, I; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, S; Sharma, N; Shigaki, K; Shtejer, K; Sibiriak, Y; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Song, M; Song, J; Soos, C; Soramel, F; Spacek, M; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Suleymanov, M; Sultanov, R; Šumbera, M; Susa, T; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymański, M; Takahashi, J; Tangaro, M A; Tapia Takaki, J D; Tarantola Peloni, A; Tarazona Martinez, A; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Ter Minasyan, A; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Toia, A; Torii, H; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vande Vyvre, P; Vannucci, L; Van Hoorne, J W; van Leeuwen, M; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, S; Voloshin, K; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wagner, J; Wang, Y; Wang, Y; Wang, M; Watanabe, D; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilkinson, J; Williams, M C S; Windelband, B; Winn, M; Xiang, C; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, P; Yang, S; Yano, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yushmanov, I; Zaccolo, V; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, F; Zhang, Y; Zhang, H; Zhang, X; Zhou, D; Zhou, Y; Zhou, F; Zhu, X; Zhu, J; Zhu, J; Zhu, H; Zichichi, A; Zimmermann, M B; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M

    Differential cross sections of charged particles in inelastic pp collisions as a function of pT have been measured at [Formula: see text] at the LHC. The pT spectra are compared to NLO-pQCD calculations. Though the differential cross section for an individual [Formula: see text] cannot be described by NLO-pQCD, the relative increase of cross section with [Formula: see text] is in agreement with NLO-pQCD. Based on these measurements and observations, procedures are discussed to construct pp reference spectra at [Formula: see text] up to pT=50 GeV/c as required for the calculation of the nuclear modification factor in nucleus-nucleus and proton-nucleus collisions.

  11. Energy dependence of the ridge in high multiplicity proton-proton collisions

    DOE PAGES

    Dusling, Kevin; Tribedy, Prithwish; Venugopalan, Raju

    2016-01-27

    In this study, we demonstrate that the recent measurement of azimuthally collimated, long-range rapidity (“ridge”) correlations in √s=13 TeV proton-proton (p+p) collisions by the ATLAS Collaboration at the LHC are in agreement with expectations from the color glass condensate effective theory of high-energy QCD. The observation that the integrated near-side yield as a function of multiplicity is independent of collision energy is a natural consequence of the fact that multiparticle production is driven by a single semihard saturation scale in the color glass condensate framework. We argue further that the azimuthal structure of these recent ATLAS ridge measurements strongly constrainsmore » hydrodynamic interpretations of such correlations in high-multiplicity p+p collisions.« less

  12. Mass-number and excitation-energy dependence of the spin cutoff parameter

    SciTech Connect

    Grimes, S. M.; Voinov, A. V.; Massey, T. N.

    2016-07-12

    Here, the spin cutoff parameter determining the nuclear level density spin distribution ρ(J) is defined through the spin projection as < J2z > 1/2 or equivalently for spherical nuclei, (< J(J+1) >/3)1/2. It is needed to divide the total level density into levels as a function of J. To obtain the total level density at the neutron binding energy from the s-wave resonance count, the spin cutoff parameter is also needed. The spin cutoff parameter has been calculated as a function of excitation energy and mass with a super-conducting Hamiltonian. Calculations have been compared with two commonly used semiempirical formulas. A need for further measurements is also observed. Some complications for deformed nuclei are discussed. The quality of spin cut off parameter data derived from isomeric ratio measurement is examined.

  13. Energy dependence of the ridge in high multiplicity proton-proton collisions

    SciTech Connect

    Dusling, Kevin; Tribedy, Prithwish; Venugopalan, Raju

    2016-01-27

    In this study, we demonstrate that the recent measurement of azimuthally collimated, long-range rapidity (“ridge”) correlations in √s=13 TeV proton-proton (p+p) collisions by the ATLAS Collaboration at the LHC are in agreement with expectations from the color glass condensate effective theory of high-energy QCD. The observation that the integrated near-side yield as a function of multiplicity is independent of collision energy is a natural consequence of the fact that multiparticle production is driven by a single semihard saturation scale in the color glass condensate framework. We argue further that the azimuthal structure of these recent ATLAS ridge measurements strongly constrains hydrodynamic interpretations of such correlations in high-multiplicity p+p collisions.

  14. Mass-number and excitation-energy dependence of the spin cutoff parameter

    SciTech Connect

    Grimes, S. M.; Voinov, A. V.; Massey, T. N.

    2016-07-12

    Here, the spin cutoff parameter determining the nuclear level density spin distribution ρ(J) is defined through the spin projection as < J2z > 1/2 or equivalently for spherical nuclei, (< J(J+1) >/3)1/2. It is needed to divide the total level density into levels as a function of J. To obtain the total level density at the neutron binding energy from the s-wave resonance count, the spin cutoff parameter is also needed. The spin cutoff parameter has been calculated as a function of excitation energy and mass with a super-conducting Hamiltonian. Calculations have been compared with two commonly used semiempirical formulas. A need for further measurements is also observed. Some complications for deformed nuclei are discussed. The quality of spin cut off parameter data derived from isomeric ratio measurement is examined.

  15. Mass-number and excitation-energy dependence of the spin cutoff parameter

    DOE PAGES

    Grimes, S. M.; Voinov, A. V.; Massey, T. N.

    2016-07-12

    Here, the spin cutoff parameter determining the nuclear level density spin distribution ρ(J) is defined through the spin projection as < J2z > 1/2 or equivalently for spherical nuclei, (< J(J+1) >/3)1/2. It is needed to divide the total level density into levels as a function of J. To obtain the total level density at the neutron binding energy from the s-wave resonance count, the spin cutoff parameter is also needed. The spin cutoff parameter has been calculated as a function of excitation energy and mass with a super-conducting Hamiltonian. Calculations have been compared with two commonly used semiempirical formulas.more » A need for further measurements is also observed. Some complications for deformed nuclei are discussed. The quality of spin cut off parameter data derived from isomeric ratio measurement is examined.« less

  16. Stoichiometric relationship between energy-dependent proton ejection and electron transport in mitochondria.

    PubMed Central

    Brand, M D; Reynafarje, B; Lehninger, A L

    1976-01-01

    The number of protons ejected during electron transport per pair of electrons per energy-conserving site (the H+/site ratio) was measured in rat liver mitochondria by three different methods under conditions in which transmembrane movements of endogenous phosphate were minized or eliminated. (1) In the Ca2+ pulse method, between 3.5 and 4.0 molecules of 3-hydroxybutyrate and 1.75 to 2.0 Ca2+ ions were accumulated per 2 e- per site during Ca2+ induced electron transport in the presence of rotenone, when measured under conditions in which movements of endogenous phosphate were negligible. Since entry of 3-hydroxybutyrate requires its protonation to the free acid these data correspond to an H+/site ratio of 3.5-4.0 (2) In the oxygen pulse method addition of known amounts of oxygen to anaerobic mitochondria in the presence of substrate yielded H+/site ratios of 3.0 when phosphate transport was eliminated by addition of N-ethylmaleimide or by anaerobic washing to remove endogenous phosphate. In the absence of such measures the observed H+/site ratio was 2.0. (3) In the reductant pulse method measurement of the initial steady rates of H+ ejection and oxygen consumption by mitochondria in an aerobic medium after addition of substrate gave H+/site near 4.0 in the presence of N-ethylmaleimide; in the absence of the inhibitor the observed ratio was only 2.0. These and other experiments reported indicate that the values of 2.0 earlier obtained for the H+/site ratio by Mitchell and Moyle [Biochem J. (1967) 105, 1147-1162] and others were underestimates due to the unrecognized masking of H+ ejection by movements of endogenous phosphate. The results presented here show that the H+/site ratio of mitochondrial electron transport is at least 3.0 and may be as high as 4.0. PMID:1061146

  17. Photon energy dependence of the light pressure exerted onto a thin silicon slab

    NASA Astrophysics Data System (ADS)

    Reinhart, F. K.; Boero, G.

    2011-04-01

    We review the theory of ponderomotive forces of classical nonionizing electromagnetic (EM) radiation exerted on dispersive matter. Minkowski's EM energy and momentum density lack any dispersion term in contrast to Nelson's theory, where they are included naturally. By considering force experiments on a dielectric mirror immersed in weakly dispersive liquids [R. V. Jones and B. Leslie, Proc. R. Soc. London, Ser. A1364-502110.1098/rspa.1978.0072 360, 347 (1978)], we found that the appearance of the dispersive term should depend on the phase of the mirror reflectivity. It thus matters if the electric or the magnetic field is dominant at the interface. Accordingly, the force measurements depend on the boundary condition and do not permit to uniquely determine the EM momentum in the liquids. Force measurements as a function of the reflectivity phase would permit to experimentally verify the expressions for the EM energy density in a dispersive medium. In our experiments, we chop light beams of different photon energies to excite the motion of a very thin and long Si slab near its mechanical resonance under UHV conditions. This permits to study the force response, where the power reflectivity of the sample varies from 0.7 to smaller than 10-3. The determination of the velocity of the slab with a Doppler interferometer yields the effective force exerted by the light beam. The measurements also confirm our theoretical considerations that the observed forces due to EM radiation cannot be traced to the EM momentum in matter, as the observed forces primarily depend on the boundary conditions. Minkowski's stress tensor remains applicable in our case thanks to the embedding of the Si slab in vacuum. Our quantitative analysis of the experimental data reveals an extra force of thermal origin most likely associated with the difference of the native oxide thickness on the surfaces of the slab. The estimated difference in oxide layer thickness amounts to ˜4 nm.

  18. Stoichiometric relationship between energy-dependent proton ejection and electron transport in mitochondria.

    PubMed

    Brand, M D; Reynafarje, B; Lehninger, A L

    1976-02-01

    The number of protons ejected during electron transport per pair of electrons per energy-conserving site (the H+/site ratio) was measured in rat liver mitochondria by three different methods under conditions in which transmembrane movements of endogenous phosphate were minized or eliminated. (1) In the Ca2+ pulse method, between 3.5 and 4.0 molecules of 3-hydroxybutyrate and 1.75 to 2.0 Ca2+ ions were accumulated per 2 e- per site during Ca2+ induced electron transport in the presence of rotenone, when measured under conditions in which movements of endogenous phosphate were negligible. Since entry of 3-hydroxybutyrate requires its protonation to the free acid these data correspond to an H+/site ratio of 3.5-4.0 (2) In the oxygen pulse method addition of known amounts of oxygen to anaerobic mitochondria in the presence of substrate yielded H+/site ratios of 3.0 when phosphate transport was eliminated by addition of N-ethylmaleimide or by anaerobic washing to remove endogenous phosphate. In the absence of such measures the observed H+/site ratio was 2.0. (3) In the reductant pulse method measurement of the initial steady rates of H+ ejection and oxygen consumption by mitochondria in an aerobic medium after addition of substrate gave H+/site near 4.0 in the presence of N-ethylmaleimide; in the absence of the inhibitor the observed ratio was only 2.0. These and other experiments reported indicate that the values of 2.0 earlier obtained for the H+/site ratio by Mitchell and Moyle [Biochem J. (1967) 105, 1147-1162] and others were underestimates due to the unrecognized masking of H+ ejection by movements of endogenous phosphate. The results presented here show that the H+/site ratio of mitochondrial electron transport is at least 3.0 and may be as high as 4.0.

  19. Collision energy dependence of viscous hydrodynamic flow in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Shen, Chun; Heinz, Ulrich

    2012-05-01

    Using a (2+1)-dimensional viscous hydrodynamical model, we study the dependence of flow observables on the collision energy ranging from s=7.7A GeV at the Relativistic Heavy Ion Collider (RHIC) to s=2760A GeV at the Large Hadron Collider (LHC). With a realistic equation of state, Glauber model initial conditions, and a small specific shear viscosity η/s=0.08, the differential charged hadron elliptic flow v2ch(pT,s) is found to exhibit a very broad maximum as a function of s around top RHIC energy, rendering it almost independent of collision energy for 39⩽s⩽2760A GeV. Compared to ideal fluid dynamical simulations, this “saturation” of elliptic flow is shifted to higher collision energies by shear viscous effects. For color-glass-motivated Monte Carlo-Kharzeev-Levin-Nardi initial conditions, which require a larger shear viscosity η/s=0.2 to reproduce the measured elliptic flow, a similar saturation is not observed up to LHC energies, except for very low pT. We emphasize that this saturation of the elliptic flow is not associated with the QCD phase transition, but arises from the interplay between radial and elliptic flow, which shifts with s depending on the fluid's viscosity and leads to a subtle cancellation between increasing contributions from light particles and decreasing contributions from heavy particles to v2 in the s range, where v2ch(pT,s) at fixed pT is maximal. By generalizing the definition of spatial eccentricity ɛx to isothermal hypersurfaces, we calculate ɛx on the kinetic freeze-out surface at different collision energies. Up to top RHIC energy, s=200A GeV, the fireball is still out-of-plane deformed at freeze-out, while at LHC energy the final spatial eccentricity is predicted to approach zero.

  20. Experimental verification of the individual energy dependencies of the partial L-shell photoionization cross sections of Pd and Mo.

    PubMed

    Hönicke, Philipp; Kolbe, Michael; Müller, Matthias; Mantler, Michael; Krämer, Markus; Beckhoff, Burkhard

    2014-10-17

    An experimental method for the verification of the individually different energy dependencies of L(1)-, L(2)-, and L(3)- subshell photoionization cross sections is described. The results obtained for Pd and Mo are well in line with theory regarding both energy dependency and absolute values, and confirm the theoretically calculated cross sections by Scofield from the early 1970 s and, partially, more recent data by Trzhaskovskaya, Nefedov, and Yarzhemsky. The data also demonstrate the questionability of quantitative x-ray spectroscopical results based on the widely used fixed jump ratio approximated cross sections with energy independent ratios. The experiments are carried out by employing the radiometrically calibrated instrumentation of the Physikalisch-Technische Bundesanstalt at the electron storage ring BESSY II in Berlin; the obtained fluorescent intensities are thereby calibrated at an absolute level in reference to the International System of Units. Experimentally determined fixed fluorescence line ratios for each subshell are used for a reliable deconvolution of overlapping fluorescence lines. The relevant fundamental parameters of Mo and Pd are also determined experimentally in order to calculate the subshell photoionization cross sections independently of any database.

  1. Isotopic dependence of fusion enhancement of various heavy ion systems using energy dependent Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Gautam, Manjeet Singh

    2015-01-01

    In the present work, the fusion of symmetric and asymmetric projectile-target combinations are deeply analyzed within the framework of energy dependent Woods-Saxon potential model (EDWSP model) in conjunction with one dimensional Wong formula and the coupled channel code CCFULL. The neutron transfer channels and the inelastic surface excitations of collision partners are dominating mode of couplings and the coupling of relative motion of colliding nuclei to such relevant internal degrees of freedom produces a significant fusion enhancement at sub-barrier energies. It is quite interesting that the effects of dominant intrinsic degrees of freedom such as multi-phonon vibrational states, neutron transfer channels and proton transfer channels can be simulated by introducing the energy dependence in the nucleus-nucleus potential (EDWSP model). In the EDWSP model calculations, a wide range of diffuseness parameter ranging from a = 0.85 fm to a = 0.97 fm, which is much larger than a value (a = 0.65 fm) extracted from the elastic scattering data, is needed to reproduce sub-barrier fusion data. However, such diffuseness anomaly, which might be an artifact of some dynamical effects, has been resolved by trajectory fluctuation dissipation (TFD) model wherein the resulting nucleus-nucleus potential possesses normal diffuseness parameter.

  2. Demonstration of thermal dissipation of absorbed quanta during energy-dependent quenching of chlorophyll fluorescence in photosynthetic membranes.

    PubMed

    Yahyaoui, W; Harnois, J; Carpentier, R

    1998-11-27

    When plant leaves or chloroplasts are exposed to illumination that exceeds their photosynthetic capacity, photoprotective mechanisms such as described by the energy-dependent (non-photochemical) quenching of chlorophyll fluorescence are involved. The protective action is attributed to an increased rate constant for thermal dissipation of absorbed quanta. We applied photoacoustic spectroscopy to monitor thermal dissipation in spinach thylakoid membranes together with simultaneous measurement of chlorophyll fluorescence in the presence of inhibitors of opposite action on the formation of delta pH across the thylakoid membrane (tentoxin and nigericin/valinomycin). A linear relationship between the appearance of fluorescence quenching during formation of the delta pH and the reciprocal variation of thermal dissipation was demonstrated. Dicyclohexylcarbodiimide, which is known to prevent protonation of the minor light-harvesting complexes of photosystem II, significantly reduced the formation of fluorescence quenching and the concurrent increase in thermal dissipation. However, the addition of exogenous ascorbate to activate the xanthophyll de-epoxidase increased non-photochemical fluorescence quenching without affecting the measured thermal dissipation. It is concluded that a portion of energy-dependent fluorescence quenching that is independent of de-epoxidase activity can be readily measured by photoacoustic spectroscopy as an increase in thermal deactivation processes.

  3. Energy-dependent dissociation of ATP from high affinity catalytic sites of beef heart mitochondrial adenosine triphosphatase

    SciTech Connect

    Penefsky, H.S.

    1985-11-05

    Incubation of (gamma-TSP)ATP with a molar excess of the membrane-bound form of mitochondrial ATPase (F1) results in binding of the bulk of the radioactive nucleotide in high affinity catalytic sites (Ka = 10(12) M-1). Subsequent initiation of respiration by addition of succinate or NADH is accompanied by a profound decrease in the affinity for ATP. About one-third of the bound radioactive ATP appears to dissociate, that is, the (gamma-TSP)ATP becomes accessible to hexokinase. The NADH-stimulated dissociation of (gamma-TSP)ATP is energy-dependent since the stimulation is inhibited by uncouplers of oxidative phosphorylation and is prevented by respiratory chain inhibitors. The rate of the energy-dependent dissociation of ATP that occurs in the presence of NADH, ADP, and Pi is commensurate with the measured initial rate of ATP synthesis in NADH-supported oxidative phosphorylation catalyzed by the same submitochondrial particles. Thus, the rate of dissociation of ATP from the high affinity catalytic site of submitochondrial particles meets the criterion of kinetic competency under the conditions of oxidative phosphorylation. These experiments provide evidence in support of the argument that energy conserved during the oxidation of substrates by the respiratory chain can be utilized to reduce the very tight binding of product ATP in high affinity catalytic sites and to promote dissociation of the nucleotide.

  4. VIRTIS/Rosetta Observes Comet 67P/Churyumov-Gerasimenko: Nucleus and Coma Derived Composition and Physical Properties.

    NASA Astrophysics Data System (ADS)

    Capaccioni, F.; Filacchione, G.; Erard, S.; Arnold, G.; De Sanctis, M. C.; Bockelée-Morvan, D.; Leyrat, C.; Tosi, F.; Ciarniello, M.; Raponi, A.; Migliorini, A.; Quirico, E.; Rinaldi, G.; Schmitt, B.; Carlson, R. W.; Combi, M. R.; Fink, U.; Tozzi, G. P.; Palomba, E.; Longobardo, A.; Formisano, M.; Debout, V.; Drossart, P.; Piccioni, G.; Fougere, N.

    2015-12-01

    The paper will describe the major results obtained throughout the nominal mission by the instrument VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer), the dual channel spectrometer onboard Rosetta, on the surface composition and thermal properties of the nucleus of comet 67P/Churyumov-Gerasimenko and on the 2D distribution of H2O and CO2 in the coma. VIRTIS is a dual channel spectrometer; VIRTIS-M (M for Mapper) is a hyper spectral imager covering a wide spectral range from 0.25 through 5μm. VIRTIS-M uses a slit and a scan mirror to generate images with spatial resolution of 250 μrad over a FOV of 3.7°. The second channel is VIRTIS-H (H for High-resolution), a point spectrometer with high spectral resolution (λ/Δλ=3000 @3μm) in the range 2-5 μm. The nucleus observations have been performed in a wide range of conditions with best spatial resolution of 2.5m. The surface temperature has been determined since the first distant observations when the nucleus filled one single VIRTIS-M pixel and continuously monitored since. Maximum temperature determined until April 2015 are as high as 300K at the subsolar point. Modeling of the thermophysical properties allowed to derive the thermal inertia of the crust. The VIRTIS composition analysis has showed evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 μm), the spectral slopes in VIS and IR ranges (5-25 and 1.5-5 % kÅ-1) and the broad absorption feature in the 2.9-3.6 μm range present across the entire illuminated surface, are compatible with a surface crust made of a complex mixture of dark disordered poly-aromatic compounds, opaque minerals and several chemical species containing: -COOH, CH2 / CH3, -OH (in Alcohols) and possibly NH4+. Both channels are contributing to the determination of the spatial distribution of H2O and CO2 in the coma; their abundances as a function of altitude

  5. Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au +Au Collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, X.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, X.; Li, Y.; Li, W.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, R.; Ma, G. L.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Z.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, G.; Wang, J. S.; Wang, H.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Xu, H.; Xu, Z.; Xu, J.; Yang, S.; Yang, Y.; Yang, Y.; Yang, C.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Y.; Zhang, J.; Zhang, J.; Zhang, S.; Zhang, S.; Zhang, Z.; Zhang, J. B.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-03-01

    We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au +Au collisions for energies ranging from √{sN N }=7.7 to 200 GeV. The third harmonic v32{2 }=⟨cos 3 (ϕ1-ϕ2)⟩ , where ϕ1-ϕ2 is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs Δ η =η1-η2 . Nonzero v32{2 } is directly related to the previously observed large-Δ η narrow-Δ ϕ ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity quark gluon plasma phase. For sufficiently central collisions, v32{2 } persist down to an energy of 7.7 GeV, suggesting that quark gluon plasma may be created even in these low energy collisions. In peripheral collisions at these low energies, however, v32{2 } is consistent with zero. When scaled by the pseudorapidity density of charged-particle multiplicity per participating nucleon pair, v32{2 } for central collisions shows a minimum near √{sN N }=20 GeV .

  6. Energy Dependent Morphology in the PWN Candidate HESS J1825-137

    SciTech Connect

    Funk, S.; Hinton, J.A.; deJager, O.C.; /North West U., South Africa

    2007-09-26

    Observations with H.E.S.S. revealed a new source of very high-energy (VHE) gamma-rays above 100 GeV - HESS J1825-137 - extending mainly to the south of the energetic pulsar PSRB1823-13. A detailed spectral and morphological analysis of HESS J1825-137 reveals for the first time in VHE gamma-ray astronomy a steepening of the energy spectrum with increasing distance from the pulsar. This behavior can be understood by invoking radiative cooling of the IC-Compton gamma-ray emitting electrons during their propagation. In this scenario the vastly different sizes between the VHE gamma-ray emitting region and the X-ray PWN associated with PSRB1823-13 can be naturally explained by different cooling timescales for the radiating electron populations. If this scenario is correct, HESS J1825-137 can serve as a prototype for a whole class of asymmetric PWN in which the X-rays are extended over a much smaller angular scales than the gamma-rays and can help understanding recent detections of X-ray PWN in systems such as HESS J1640-465 and HESS J1813-178. The future GLAST satellite will probe lower electron energies shedding further light on cooling and diffusion processes in this source.

  7. Photon energy dependence of three fortuitous dosemeters from personal electronic devices, measured by optically stimulated luminescence.

    PubMed

    Beerten, Koen; Vanhavere, Filip

    2010-08-01

    New data are presented with regard to the relative OSL sensitivity of three different emergency dosemeters irradiated to various photon energies approximately between 48 and 1250 keV using blue excitation light. Investigated components extracted from commonly worn objects include those from USB flash drives (alumina substrate), mobile phones (Ba-rich silicate) and credit cards (chip card module). Several basic properties have been investigated such as the overall radiation sensitivity, the shape of the decay curve and fading of the OSL signal. An increase of the sensitivity for low energies relative to (60)Co gamma rays can be observed for the three dosemeters, the increase being very pronounced for the Ba-rich component (factor of 10) and less pronounced for the chip card module (factor of 2). It is concluded that proper dose correction factors for photon energy have to be applied in order to accurately determine the absorbed dose to tissue. The OSL sensitivity to neutron irradiation was investigated as well, but this was found to be less than the gamma sensitivity.

  8. Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane.

    PubMed

    Jordan, Lorne D; Zhou, Yongyao; Smallwood, Chuck R; Lill, Yoriko; Ritchie, Ken; Yip, Wai Tak; Newton, Salete M; Klebba, Phillip E

    2013-07-09

    Gram-negative bacteria acquire iron with TonB-dependent uptake systems. The TonB-ExbBD inner membrane complex is hypothesized to transfer energy to outer membrane (OM) iron transporters. Fluorescence microscopic characterization of green fluorescent protein (GFP)-TonB hybrid proteins revealed an unexpected, restricted localization of TonB in the cell envelope. Fluorescence polarization measurements demonstrated motion of TonB in living cells, which likely was rotation. By determining the anisotropy of GFP-TonB in the absence and presence of inhibitors, we saw the dependence of its motion on electrochemical force and on the actions of ExbBD. We observed higher anisotropy for GFP-TonB in energy-depleted cells and lower values in bacteria lacking ExbBD. However, the metabolic inhibitors did not change the anisotropy of GFP-TonB in ΔexbBD cells. These findings demonstrate that TonB undergoes energized motion in the bacterial cell envelope and that ExbBD couples this activity to the electrochemical gradient. The results portray TonB as an energized entity in a regular array underlying the OM bilayer, which promotes metal uptake through OM transporters by a rotational mechanism.

  9. Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane

    PubMed Central

    Jordan, Lorne D.; Zhou, Yongyao; Smallwood, Chuck R.; Lill, Yoriko; Ritchie, Ken; Yip, Wai Tak; Newton, Salete M.; Klebba, Phillip E.

    2013-01-01

    Gram-negative bacteria acquire iron with TonB-dependent uptake systems. The TonB–ExbBD inner membrane complex is hypothesized to transfer energy to outer membrane (OM) iron transporters. Fluorescence microscopic characterization of green fluorescent protein (GFP)-TonB hybrid proteins revealed an unexpected, restricted localization of TonB in the cell envelope. Fluorescence polarization measurements demonstrated motion of TonB in living cells, which likely was rotation. By determining the anisotropy of GFP-TonB in the absence and presence of inhibitors, we saw the dependence of its motion on electrochemical force and on the actions of ExbBD. We observed higher anisotropy for GFP-TonB in energy-depleted cells and lower values in bacteria lacking ExbBD. However, the metabolic inhibitors did not change the anisotropy of GFP-TonB in ΔexbBD cells. These findings demonstrate that TonB undergoes energized motion in the bacterial cell envelope and that ExbBD couples this activity to the electrochemical gradient. The results portray TonB as an energized entity in a regular array underlying the OM bilayer, which promotes metal uptake through OM transporters by a rotational mechanism. PMID:23798405

  10. Ultrafast excited state dynamics of fucoxanthin: excitation energy dependent intramolecular charge transfer dynamics.

    PubMed

    Kosumi, Daisuke; Kusumoto, Toshiyuki; Fujii, Ritsuko; Sugisaki, Mitsuru; Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko; Frank, Harry A; Hashimoto, Hideki

    2011-06-14

    Carotenoids containing a carbonyl group in conjugation with their polyene backbone are naturally-occurring pigments in marine organisms and are essential to the photosynthetic light-harvesting function in aquatic algae. These carotenoids exhibit spectral characteristics attributed to an intramolecular charge transfer (ICT) state that arise in polar solvents due to the presence of the carbonyl group. Here, we report the spectroscopic properties of the carbonyl carotenoid fucoxanthin in polar (methanol) and nonpolar (cyclohexane) solvents studied by steady-state absorption and femtosecond pump-probe measurements. Transient absorption associated with the optically forbidden S(1) (2(1)A) state and/or the ICT state were observed following one-photon excitation to the optically allowed S(2) (1(1)B) state in methanol. The transient absorption measurements carried out in methanol showed that the ratio of the ICT-to-S(1) state formation increased with decreasing excitation energy. We also showed that the ICT character was clearly visible in the steady-state absorption in methanol based on a Franck-Condon analysis. The results suggest that two spectroscopic forms of fucoxanthin, blue and red, exist in the polar environment. This journal is © the Owner Societies 2011

  11. Excitation-energy dependence of solvation dynamics in room-temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Kim, Daekeon; Park, Sang-Won; Shim, Youngseon; Kim, Hyung J.; Jung, YounJoon

    2016-07-01

    Influence of the excitation energy of a probe solute molecule on its solvation dynamics and emission spectrum in 1-ethyl-3-methylimidazolium hexafluorophosphate (EMI+PF6-) is studied via molecular dynamics simulations using a coarse-grained model description. By exciting the probe at different energies, each with an extremely narrow distribution, ensuing solvent relaxation and its dynamic variance are monitored using the isoconfigurational ensemble method. Resulting Stokes shift function, S(t), indicates that long-time solvent relaxation becomes slower with the decreasing excitation energy and approaches the equilibrium correlation function, C(t), of solvent fluctuations. This suggests that the system excited at the red-edge of the spectrum observes linear response better than that at the blue-edge. A detailed analysis of nonequilibrium trajectories shows that the effect of initial configurations on variance of relaxation dynamics is mainly confined to short times; it reaches a maximum around 0.1 ≲ t ≲ 1 ps and diminishes as time further increases. The influence of the initial velocity distribution, on the other hand, tends to grow with time and dominates the long-time variations of dynamics. The emission spectrum shows the red-edge effect in accord with previous studies.

  12. Fermi energy dependence of the optical emission in core/shell InAs nanowire homostructures

    NASA Astrophysics Data System (ADS)

    Möller, M.; Oliveira, D. S.; Sahoo, P. K.; Cotta, M. A.; Iikawa, F.; Motisuke, P.; Molina-Sánchez, A.; de Lima, M. M., Jr.; García-Cristóbal, A.; Cantarero, A.

    2017-07-01

    InAs nanowires grown by vapor-liquid-solid (VLS) method are investigated by photoluminescence. We observe that the Fermi energy of all samples is reduced by ˜20 meV when the size of the Au nanoparticle used for catalysis is increased from 5 to 20 nm. Additional capping with a thin InP shell enhances the optical emission and does not affect the Fermi energy. The unexpected behavior of the Fermi energy is attributed to the differences in the residual donor (likely carbon) incorporation in the axial (low) and lateral (high incorporation) growth in the VLS and vapor-solid (VS) methods, respectively. The different impurity incorporation rate in these two regions leads to a core/shell InAs homostructure. In this case, the minority carriers (holes) diffuse to the core due to the built-in electric field created by the radial impurity distribution. As a result, the optical emission is dominated by the core region rather than by the more heavily doped InAs shell. Thus, the photoluminescence spectra and the Fermi energy become sensitive to the core diameter. These results are corroborated by a theoretical model using a self-consistent method to calculate the radial carrier distribution and Fermi energy for distinct diameters of Au nanoparticles.

  13. Energy Dependence of HCD on Peptide Fragmentation: Stepped Collisional Energy Finds the Sweet Spot

    NASA Astrophysics Data System (ADS)

    Diedrich, Jolene K.; Pinto, Antonio F. M.; Yates, John R.

    2013-11-01

    An understanding of the process of peptide fragmentation and what parameters are best to obtain the most useful information is important. This is especially true for large-scale proteomics where data collection and data analysis are most often automated, and manual interpretation of spectra is rare because of the vast amounts of data generated. We show herein that collisional cell peptide fragmentation, in this case higher collisional dissociation (HCD) in the Q Exactive, is significantly affected by the normalized energy applied. Both peptide sequence and energy applied determine what ion fragments are observed. However, by applying a stepped normalized collisional energy scheme and combining ions from low, medium, and high collision energies, we are able to increase the diversity of fragmentation ions generated. Application of stepped collision energy to HEK293T lysate demonstrated a minimal effect on peptide and protein identification in a large-scale proteomics dataset, but improved phospho site localization through increased sequence coverage. Stepped HCD is also beneficial for tandem mass tagged (TMT) experiments, increasing intensity of TMT reporters used for quantitation without adversely effecting peptide identification.

  14. 3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: a priori petrological information and geophysical observables

    NASA Astrophysics Data System (ADS)

    Afonso, J. C.; Fullea, J.; Griffin, W. L.; Yang, Y.; Jones, A. G.; D. Connolly, J. A.; O'Reilly, S. Y.

    2013-05-01

    Traditional inversion techniques applied to the problem of characterizing the thermal and compositional structure of the upper mantle are not well suited to deal with the nonlinearity of the problem, the trade-off between temperature and compositional effects on wave velocities, the nonuniqueness of the compositional space, and the dissimilar sensitivities of physical parameters to temperature and composition. Probabilistic inversions, on the other hand, offer a powerful formalism to cope with all these difficulties, while allowing for an adequate treatment of the intrinsic uncertainties associated with both data and physical theories. This paper presents a detailed analysis of the two most important elements controlling the outputs of probabilistic (Bayesian) inversions for temperature and composition of the Earth's mantle, namely the a priori information on model parameters, ρ(m), and the likelihood function, L(m). The former is mainly controlled by our current understanding of lithosphere and mantle composition, while the latter conveys information on the observed data, their uncertainties, and the physical theories used to relate model parameters to observed data. The benefits of combining specific geophysical datasets (Rayleigh and Love dispersion curves, body wave tomography, magnetotelluric, geothermal, petrological, gravity, elevation, and geoid), and their effects on L(m), are demonstrated by analyzing their individual and combined sensitivities to composition and temperature as well as their observational uncertainties. The dependence of bulk density, electrical conductivity, and seismic velocities to major-element composition is systematically explored using Monte Carlo simulations. We show that the dominant source of uncertainty in the identification of compositional anomalies within the lithosphere is the intrinsic nonuniqueness in compositional space. A general strategy for defining ρ(m) is proposed based on statistical analyses of a large database

  15. ENERGY-DEPENDENT POWER SPECTRAL STATES AND ORIGIN OF APERIODIC VARIABILITY IN BLACK HOLE BINARIES

    SciTech Connect

    Yu Wenfei; Zhang Wenda

    2013-06-20

    We found that the black hole candidate MAXI J1659-152 showed distinct power spectra, i.e., power-law noise (PLN) versus band-limited noise (BLN) plus quasi-periodic oscillations (QPOs) below and above about 2 keV, respectively, in observations with Swift and the Rossi X-ray Timing Explorer during the 2010 outburst, indicating a high energy cutoff of the PLN and a low energy cutoff of the BLN and QPOs around 2 keV. The emergence of the PLN and the fading of the BLN and QPOs initially took place below 2 keV when the source entered the hard intermediate state and settled in the soft state three weeks later. The evolution was accompanied by the emergence of the disk spectral component and decreases in the amplitudes of variability in the soft and hard X-ray bands. Our results indicate that the PLN is associated with an optically thick disk in both hard and intermediate states, and the power spectral state is independent of the X-ray energy spectral state in a broadband view. We suggest that in the hard or intermediate state, the BLN and QPOs emerge from the innermost hot flow subjected to Comptonization, while the PLN originates from the optically thick disk farther out. The energy cutoffs of the PLN and the BLN or QPOs then follow the temperature of the seed photons from the inner edge of the optically thick disk, while the high frequency cutoff of the PLN follows the orbital frequency of the inner edge of the optically thick disk as well.

  16. In situ observations of meteor smoke particles (MSP) during the Geminids 2010: constraints on MSP size, work function and composition

    NASA Astrophysics Data System (ADS)

    Rapp, M.; Plane, J. M. C.; Strelnikov, B.; Stober, G.; Ernst, S.; Hedin, J.; Friedrich, M.; Hoppe, U.-P.

    2012-12-01

    We present in situ observations of meteoric smoke particles (MSP) obtained during three sounding rocket flights in December 2010 in the frame of the final campaign of the Norwegian-German ECOMA project (ECOMA = Existence and Charge state Of meteoric smoke particles in the Middle Atmosphere). The flights were conducted before, at the maximum activity, and after the decline of the Geminids which is one of the major meteor showers over the year. Measurements with the ECOMA particle detector yield both profiles of naturally charged particles (Faraday cup measurement) as well as profiles of photoelectrons emitted by the MSPs due to their irradiation by photons of a xenon-flash lamp. The column density of negatively charged MSPs decreased steadily from flight to flight which is in agreement with a corresponding decrease of the sporadic meteor flux recorded during the same period. This implies that the sporadic meteors are a major source of MSPs while the additional influx due to the shower meteors apparently did not play any significant role. Surprisingly, the profiles of photoelectrons are only partly compatible with this observation: while the photoelectron current profiles obtained during the first and third flight of the campaign showed a qualitatively similar behaviour as the MSP charge density data, the profile from the second flight (i.e., at the peak of the Geminids) shows much smaller photoelectron currents. This may tentatively be interpreted as a different MSP composition (and, hence, different photoelectric properties) during this second flight, but at this stage we are not in a position to conclude that there is a cause and effect relation between the Geminids and this observation. Finally, the ECOMA particle detector used during the first and third flight employed three instead of only one xenon flash lamp where each of the three lamps used for one flight had a different window material resulting in different cut off wavelengths for these three lamp types

  17. Trace gas composition in the Asian summer monsoon anticyclone: a case study based on aircraft observations and model simulations

    NASA Astrophysics Data System (ADS)

    Gottschaldt, Klaus-D.; Schlager, Hans; Baumann, Robert; Bozem, Heiko; Eyring, Veronika; Hoor, Peter; Jöckel, Patrick; Jurkat, Tina; Voigt, Christiane; Zahn, Andreas; Ziereis, Helmut

    2017-05-01

    We present in situ measurements of the trace gas composition of the upper tropospheric (UT) Asian summer monsoon anticyclone (ASMA) performed with the High Altitude and Long Range Research Aircraft (HALO) in the frame of the Earth System Model Validation (ESMVal) campaign. Air masses with enhanced O3 mixing ratios were encountered after entering the ASMA at its southern edge at about 150 hPa on 18 September 2012. This is in contrast to the presumption that the anticyclone's interior is dominated by recently uplifted air with low O3 in the monsoon season. We also observed enhanced CO and HCl in the ASMA, which are tracers for boundary layer pollution and tropopause layer (TL) air or stratospheric in-mixing respectively. In addition, reactive nitrogen was enhanced in the ASMA. Along the HALO flight track across the ASMA boundary, strong gradients of these tracers separate anticyclonic from outside air. Lagrangian trajectory calculations using HYSPLIT show that HALO sampled a filament of UT air three times, which included air masses uplifted from the lower or mid-troposphere north of the Bay of Bengal. The trace gas gradients between UT and uplifted air masses were preserved during transport within a belt of streamlines fringing the central part of the anticyclone (fringe), but are smaller than the gradients across the ASMA boundary. Our data represent the first in situ observations across the southern part and downstream of the eastern ASMA flank. Back-trajectories starting at the flight track furthermore indicate that HALO transected the ASMA where it was just splitting into a Tibetan and an Iranian part. The O3-rich filament is diverted from the fringe towards the interior of the original anticyclone, and is at least partially bound to become part of the new Iranian eddy. A simulation with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model is found to reproduce the observations reasonably well. It shows that O3-rich air is entrained by the outer streamlines of the

  18. Nitrification in the euphotic zone as evidenced by nitrate dual isotopic composition: Observations from Monterey Bay, California

    USGS Publications Warehouse

    Wankel, Scott D.; Kendall, C.; Pennington, J.T.; Chavez, F.P.; Paytan, A.

    2007-01-01

    Coupled measurements of nitrate (NO3-), nitrogen (N), and oxygen (O) isotopic composition (??15NNO3 and ??18ONO3) were made in surface waters of Monterey Bay to investigate multiple N cycling processes occurring within surface waters. Profiles collected throughout the year at three sites exhibit a wide range of values, suggesting simultaneous and variable influence of both phytoplankton NO3- assimilation and nitrification within the euphotic zone. Specifically, increases ??18ONO3 were consistently greater than those in ??15NN03. A coupled isotope steady state box model was used to estimate the amount of NO3- supplied by nitrification in surface waters relative to that supplied from deeper water. The model highlights the importance of the branching reaction during ammonium (NH4+) consumption, in which NH4+ either serves as a substrate for regenerated production or for nitrification. Our observations indicate that a previously unrecognized proportion of nitrate-based productivity, on average 15 to 27%, is supported by nitrification in surface waters and should not be considered new production. This work also highlights the need for a better understanding of isotope effects of NH4+ oxidation, NH4+ assimilation, and NO4+ assimilation in marine environments.

  19. A model for radial dike emplacement in composite cones based on observations from Summer Coon volcano, Colorado, USA

    USGS Publications Warehouse

    Poland, Michael P.; Moats, W.P.; Fink, J.H.

    2008-01-01

    We mapped the geometry of 13 silicic dikes at Summer Coon, an eroded Oligocene stratovolcano in southern Colorado, to investigate various characteristics of radial dike emplacement in composite volcanoes. Exposed dikes are up to about 7 km in length and have numerous offset segments along their upper peripheries. Surprisingly, most dikes at Summer Coon increase in thickness with distance from the center of the volcano. Magma pressure in a dike is expected to lessen away from the pressurized source region, which would encourage a blade-like dike to decrease in thickness with distance from the center of the volcano. We attribute the observed thickness pattern as evidence of a driving pressure gradient, which is caused by decreasing host rock shear modulus and horizontal stress, both due to decreasing emplacement depths beneath the sloping flanks of the volcano. Based on data from Summer Coon, we propose that radial dikes originate at depth below the summit of a host volcano and follow steeply inclined paths towards the surface. Near the interface between volcanic cone and basement, which may represent a neutral buoyancy surface or stress barrier, magma is transported subhorizontally and radially away from the center of the volcano in blade-like dikes. The dikes thicken with increasing radial distance, and offset segments and fingers form along the upper peripheries of the intrusions. Eruptions may occur anywhere along the length of the dikes, but the erupted volume will generally be greater for dike-fed eruptions far from the center of the host volcano owing to the increase in driving pressure with distance from the source. Observed eruptive volumes, vent locations, and vent-area intrusions from inferred post-glacial dike-fed eruptions at Mount Adams, Washington, USA, support the proposed model. Hazards associated with radial dike emplacement are therefore greater for longer dikes that propagate to the outer flanks of a volcano. ?? Springer-Verlag 2007.

  20. Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions

    SciTech Connect

    Reeves, Geoffrey D.; Friedel, Reiner H. W.; Larsen, Brian A.; Skoug, Ruth M.; Funsten, Herbert O.; Claudepierre, Seth G.; Fennell, Joseph F.; Turner, Drew L.; Denton, Mick H.; Spence, Harlan E.; Blake, J. Bernard; Baker, Daniel N.

    2016-01-28

    Here, we present observations of the radiation belts from the Helium Oxygen Proton Electron and Magnetic Electron Ion Spectrometer particle detectors on the Van Allen Probes satellites that illustrate the energy dependence and L shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on 1 March in more detail. The observations show the following: (a) at all L shells, lower energy electrons are enhanced more often than higher energies; (b) events that fill the slot region are more common at lower energies; (c) enhancements of electrons in the inner zone are more common at lower energies; and (d) even when events do not fully fill the slot region, enhancements at lower energies tend to extend to lower L shells than higher energies. During enhancement events the outer zone extends to lower L shells at lower energies while being confined to higher L shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L shells for lower energies. Both boundaries are nearly straight in log(energy) versus L shell space. At energies below a few 100 keV, radiation belt electron penetration through the slot region into the inner zone is commonplace, but the number and frequency of “slot filling” events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy- and L shell-dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions.

  1. Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions.

    PubMed

    Reeves, Geoffrey D; Friedel, Reiner H W; Larsen, Brian A; Skoug, Ruth M; Funsten, Herbert O; Claudepierre, Seth G; Fennell, Joseph F; Turner, Drew L; Denton, Mick H; Spence, Harlan E; Blake, J Bernard; Baker, Daniel N

    2016-01-01

    We present observations of the radiation belts from the Helium Oxygen Proton Electron and Magnetic Electron Ion Spectrometer particle detectors on the Van Allen Probes satellites that illustrate the energy dependence and L shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on 1 March in more detail. The observations show the following: (a) at all L shells, lower energy electrons are enhanced more often than higher energies; (b) events that fill the slot region are more common at lower energies; (c) enhancements of electrons in the inner zone are more common at lower energies; and (d) even when events do not fully fill the slot region, enhancements at lower energies tend to extend to lower L shells than higher energies. During enhancement events the outer zone extends to lower L shells at lower energies while being confined to higher L shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L shells for lower energies. Both boundaries are nearly straight in log(energy) versus L shell space. At energies below a few 100 keV, radiation belt electron penetration through the slot region into the inner zone is commonplace, but the number and frequency of "slot filling" events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy- and L shell-dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions.

  2. Energy dependence of the outer core-level multiplet structures in atomic Mn and Mn-containing compounds

    SciTech Connect

    Hermsmeier, B.D.; Fadley, C.S.; Sinkovic, B. ); Krause, M.O.; Jimenez-Mier, J.; Gerard, P.; Carlson, T.A. ); Manson, S.T.; Bhattacharya, S.K. )

    1993-11-01

    We consider the energy dependence of the Mn 3[ital s] and 3[ital p] multiplets from gas-phase atomic Mn and crystalline MnF[sub 2] and KMnF[sub 3] over the range from x-ray photoelectron spectroscopy (XPS) energies down to energies near threshold. First comparing atomic and solid-state spectra for these multiplets permits concluding that the splittings in the compounds MnF[sub 2], MnO, and Cd[sub 0.3]Mn[sub 0.7]Te are highly atomic in character, with no significant effects due to extra-atomic screening. Measuring the energy dependence for atomic Mn, MnF[sub 2], and KMnF[sub 3] then shows for both the 3[ital s] and 3[ital p] multiplets that there is a decrease in the intensities of the higher-binding-energy quintet states relative to those of the corresponding septet states as the excitation energy is lowered. This effect on the quintet:septet branching ratios is also found to extend to rather high energies, with the ratios at the XPS limit of [approx]1400 eV above threshold being approximately 25--30 % greater than those at [approx]200 eV above threshold. We show that this energy-dependent final-state branching ratio is not due simply to spin-dependent dipole matrix elements as derived from single-configuration Hartree-Fock calculations. We suggest that this effect is caused by the sudden-to-adiabatic transition, which at lower energies favors the exchange-stabilized septet states that are the ground states of the ions formed. However, two prior theoretical models for such sudden-to-adiabatic intensity changes [Stohr, Jaeger, and Rehr, Phys. Rev. Lett. 51, 821 (1983) and Thomas, Phys. Rev. Lett. 54, 182 (1985)] were not found to describe our results well, particularly in the extension of the effect to higher energies. We consider qualitatively a configuration-interaction model with quintet-septet interchannel coupling that may better describe these effects and form the basis for more quantitative calculations.

  3. Mineralogical composition of lunar central crater peaks inferred from NIR observations by the SIR-2 reflectance spectrometer on Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Mall, Urs; Combe, Jean-Philippe; Bugiolacchi, Roberto; Bhatt, Megha; Bhattacharya, Satadru; McKenna-Lawlor, Susan; SIR-2 Collaboration

    Since the return of lunar samples by the Apollo missions the lunar crust, which is believed to have been formed by differentiation of a global magma ocean, is known to be mostly made up of anorthosite (a plagioclase-rich rock). Denser, iron-rich and magnesium-rich minerals such as pyroxenes and olivines are sunk deeper into the interior. The mineralogy of the crust provides key information for refining chemical and thermodynamical models of lunar formation and evolution. Remote observations of the lunar crust and its quantitative compositional identification were partly hampered in the past from the experimental side by the fact that a combination of good spectral and spatial resolution of an imaged surface area is difficult to achieve. Also the mineralogical spectral deconvolution process of such observations is in itself quite complex. The identification of plagioclase has proved to pose a particular challenge. This challenge originates not only from the fact that the plagioclase characterizing absorption feature, which is located at around 1.3 m, is only detectable if trace amounts of Fe2+ are present in the mineral's structure, but also due to the fact that olivine and pyroxene have strong absorption bands around 1 m which dominate nearinfrared spectra. In addition, any analysis is complicated by the fact that experimental laboratory work has clearly demonstrated that changes in reflectance with increasing peak shock pressures in experimentally shocked plagioclase feldspar-rich rocks can occur and that these changes are nonlinear [1]. Despite these difficulties, new near-infrared spectrometers recently flown around the Moon have led to the identification of plagioclase on the lunar surface [2,3]. Among this new generation of spectrometers is the SIR-2 instrument, [4] flown on Chandrayaan-1. This instrument is a grating-based, compact, high-resolution pointing spectrometer operating in the spectral range 0.9-2.4 m. SIR-2 combines high spectral resolution ( 0

  4. Electronic transport coefficients in plasmas using an effective energy-dependent electron-ion collision-frequency

    NASA Astrophysics Data System (ADS)

    Faussurier, G.; Blancard, C.; Combis, P.; Decoster, A.; Videau, L.

    2017-10-01

    We present a model to calculate the electrical and thermal electronic conductivities in plasmas using the Chester-Thellung-Kubo-Greenwood approach coupled with the Kramers approximation. The divergence in photon energy at low values is eliminated using a regularization scheme with an effective energy-dependent electron-ion collision-frequency. Doing so, we interpolate smoothly between the Drude-like and the Spitzer-like regularizations. The model still satisfies the well-known sum rule over the electrical conductivity. Such kind of approximation is also naturally extended to the average-atom model. A particular attention is paid to the Lorenz number. Its nondegenerate and degenerate limits are given and the transition towards the Drude-like limit is proved in the Kramers approximation.

  5. 57Co (n,γ) 58Co reaction cross section: Thermal and resonance integral measurements and energy dependence

    NASA Astrophysics Data System (ADS)

    Maidana, Nora L.; Mesa, Joel; Vanin, Vito R.; Castro, Ruy M.; Dias, Mauro S.; Koskinas, Marina F.

    2004-07-01

    The 57Co (n,γ) 58Co thermal and resonance integral cross section were measured as 51 (5) b and 20.0 (19) b , respectively, by irradiating aliquots of 57Co solution sealed inside quartz bottles near the core of the IEA-R1 IPEN research reactor and counting the gamma-ray residual activity. The irradiations were monitored using Au-Al alloy foils, with and without Cd cover. The gamma-ray measurements were performed with a shielded HPGe detector. Westcott formalism was applied for the average neutron flux determination. The cross section energy dependence was evaluated using the multilevel Breit-Wigner expression considering the first two resonances and the statistical model for energies above the second resonance. Maxwellian averaged neutron capture cross section with neutron temperatures between 5 and 100 keV were also evaluated.

  6. The simulated features of heliospheric cosmic-ray modulation with a time-dependent drift model. III - General energy dependence

    NASA Technical Reports Server (NTRS)

    Potgieter, M. S.; Le Roux, J. A.

    1992-01-01

    The time-dependent cosmic-ray transport equation is solved numerically in an axially symmetric heliosphere. Gradient and curvature drifts are incorporated, together with an emulated wavy neutral sheet. This model is used to simulate heliospheric cosmic-ray modulation for the period 1985-1989 during which drifts are considered to be important. The general energy dependence of the modulation of Galactic protons is studied as predicted by the model for the energy range 1 MeV to 10 GeV. The corresponding instantaneous radial and latitudinal gradients are calculated, and it is found that, whereas the latitudinal gradients follow the trends in the waviness of the neutral sheet to a large extent for all energies, the radial gradients below about 200 MeV deviate from this general pattern. In particular, these gradients increase when the waviness decreases for the simulated period 1985-1987.3, after which they again follow the neutral sheet by increasing rapidly.

  7. {sup 57}Co(n,{gamma}){sup 58}Co reaction cross section: Thermal and resonance integral measurements and energy dependence

    SciTech Connect

    Maidana, Nora L.; Mesa, Joel; Vanin, Vito R.; Castro, Ruy M.; Dias, Mauro S.; Koskinas, Marina F.

    2004-07-01

    The {sup 57}Co(n,{gamma}){sup 58}Co thermal and resonance integral cross section were measured as 51(5) b and 20.0(19) b, respectively, by irradiating aliquots of {sup 57}Co solution sealed inside quartz bottles near the core of the IEA-R1 IPEN research reactor and counting the gamma-ray residual activity. The irradiations were monitored using Au-Al alloy foils, with and without Cd cover. The gamma-ray measurements were performed with a shielded HPGe detector. Westcott formalism was applied for the average neutron flux determination. The cross section energy dependence was evaluated using the multilevel Breit-Wigner expression considering the first two resonances and the statistical model for energies above the second resonance. Maxwellian averaged neutron capture cross section with neutron temperatures between 5 and 100 keV were also evaluated.

  8. Energy Dependence of Measured CT Numbers on Substituted Materials Used for CT Number Calibration of Radiotherapy Treatment Planning Systems

    PubMed Central

    Mahmoudi, Reza; Jabbari, Nasrollah; aghdasi, Mehdi; Khalkhali, Hamid Reza

    2016-01-01

    Introduction For accurate dose calculations, it is necessary to provide a correct relationship between the CT numbers and electron density in radiotherapy treatment planning systems (TPSs). The purpose of this study was to investigate the energy dependence of measured CT numbers on substituted materials used for CT number calibration of radiotherapy TPSs and the resulting errors in the treatment planning calculation doses. Materials and Methods In this study, we designed a cylindrical water phantom with different materials used as tissue equivalent materials for the simulation of tissues and obtaining the related CT numbers. For evaluating the effect of CT number variations of substituted materials due to energy changing of scanner (kVp) on the dose calculation of TPS, the slices of the scanned phantom at three kVp's were imported into the desired TPSs (MIRS and CorePLAN). Dose calculations were performed on two TPSs. Results The mean absolute percentage differences between the CT numbers of CT scanner and two treatment planning systems for all the samples were 3.22%±2.57% for CorePLAN and 2.88%±2.11% for MIRS. It was also found that the maximum absolute percentage difference between all of the calculated doses from each photon beam of linac (6 and 15 MV) at three kVp's was less than 1.2%. Discussion The present study revealed that, for the materials with effective low atomic number, the mean CT number increased with increasing energy, which was opposite for the materials with an effective high atomic number. We concluded that the tissue substitute materials had a different behavior in the energy ranges from 80 to 130 kVp. So, it is necessary to consider the energy dependence of the substitute materials used for the measurement or calibration of CT number for radiotherapy treatment planning systems. PMID:27391672

  9. Modelling of OPNMR phenomena using photon energy-dependent in GaAs and InP

    NASA Astrophysics Data System (ADS)

    Wheeler, Dustin D.; Willmering, Matthew M.; Sesti, Erika L.; Pan, Xingyuan; Saha, Dipta; Stanton, Christopher J.; Hayes, Sophia E.

    2016-12-01

    We have modified the model for optically-pumped NMR (OPNMR) to incorporate a revised expression for the expectation value of the z-projection of the electron spin, and apply this model to both bulk GaAs and a new material, InP. This expression includes the photon energy dependence of the electron polarization when optically pumping direct-gap semiconductors in excess of the bandgap energy, Eg . Rather than using a fixed value arising from coefficients (the matrix elements) for the optical transitions at the k = 0 bandedge, we define a new parameter, Sopt (Eph) . Incorporating this revised element into the expression for , we have simulated the photon energy dependence of the OPNMR signals from bulk semi-insulating GaAs and semi-insulating InP. In earlier work, we matched calculations of electron spin polarization (alone) to features in a plot of OPNMR signal intensity versus photon energy for optical pumping (Ramaswamy et al., 2010). By incorporating an electron spin polarization which varies with pump wavelength into the penetration depth model of OPNMR signal, we are able to model features in both III-V semiconductors. The agreement between the OPNMR data and the corresponding model demonstrates that fluctuations in the OPNMR intensity have particular sensitivity to light hole-to-conduction band transitions in bulk systems. We provide detailed plots of the theoretical predictions for optical pumping transition probabilities with circularly-polarized light for both helicities of light, broken down into illustrative plots of optical magnetoabsorption and spin polarization, shown separately for heavy-hole and light-hole transitions. These plots serve as an effective roadmap of transitions, which are helpful to other researchers investigating optical pumping effects.

  10. HST-COS OBSERVATIONS OF AGNs. I. ULTRAVIOLET COMPOSITE SPECTRA OF THE IONIZING CONTINUUM AND EMISSION LINES

    SciTech Connect

    Shull, J. Michael; Stevans, Matthew; Danforth, Charles W. E-mail: matthew.stevans@colorado.edu

    2012-06-20

    The ionizing fluxes from quasars and other active galactic nuclei (AGNs) are critical for interpreting the emission-line spectra of AGNs and for photoionization and heating of the intergalactic medium. Using ultraviolet spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST), we have directly measured the rest-frame ionizing continua and emission lines for 22 AGNs. Over the redshift range 0.026 < z < 1.44, COS samples the Lyman continuum and many far-UV emission lines (Ly{alpha} {lambda}1216, C IV {lambda}1549, Si IV/O IV] {lambda}1400, N V {lambda}1240, O VI {lambda}1035). Strong EUV emission lines with 14-22 eV excitation energies (Ne VIII {lambda}{lambda}770, 780, Ne V {lambda}569, O II {lambda}834, O III {lambda}833, {lambda}702, O IV {lambda}788, 608, 554, O V {lambda}630, N III {lambda}685) suggest the presence of hot gas in the broad emission-line region. The rest-frame continuum, F{sub {nu}}{proportional_to}{nu}{sup {alpha}{sub {nu}}}, shows a break at wavelengths {lambda} < 1000 A, with spectral index {alpha}{sub {nu}} = -0.68 {+-} 0.14 in the FUV (1200-2000 A) steepening to {alpha}{sub {nu}} = -1.41 {+-} 0.21 in the EUV (500-1000 A). The COS EUV index is similar to that of radio-quiet AGNs in the 2002 HST/FOS survey ({alpha}{sub {nu}} = -1.57 {+-} 0.17). We see no Lyman edge ({tau}{sub HI} < 0.03) or He I {lambda}584 emission in the AGN composite. Our 22 AGNs exhibit a substantial range of FUV/EUV spectral indices and a correlation with AGN luminosity and redshift, likely due to observing below the 1000 A spectral break.

  11. Observations of molecular hydrogen mixing ratio and stable isotopic composition at the Cabauw tall tower in the Netherlands

    NASA Astrophysics Data System (ADS)

    Batenburg, A. M.; Popa, M. E.; Vermeulen, A. T.; van den Bulk, W. C. M.; Jongejan, P. A. C.; Fisher, R. E.; Lowry, D.; Nisbet, E. G.; Röckmann, T.

    2016-12-01

    Measurements of the stable isotopic composition (δD(H2) or δD) of atmospheric molecular hydrogen (H2) are a useful addition to mixing ratio (χ(H2)) measurements for understanding the atmospheric H2 cycle. δD datasets published so far consist mostly of observations at background locations. We complement these with observations from the Cabauw tall tower at the CESAR site, situated in a densely populated region of the Netherlands. Our measurements show a large anthropogenic influence on the local H2 cycle, with frequently occurring pollution events that are characterized by χ(H2) values that reach up to ≈1 ppm and low δD values. An isotopic source signature analysis yields an apparent source signature below -400‰, which is much more D-depleted than the fossil fuel combustion source signature commonly used in H2 budget studies. Two diurnal cycles that were sampled at a suburban site near London also show a more D-depleted source signature (≈-340‰), though not as extremely depleted as at Cabauw. The source signature of the Northwest European vehicle fleet may have shifted to somewhat lower values due to changes in vehicle technology and driving conditions. Even so, the surprisingly depleted apparent source signature at Cabauw requires additional explanation; microbial H2 production seems the most likely cause. The Cabauw tower site also allowed us to sample vertical profiles. We found no decrease in χ(H2) at lower sampling levels (20 and 60 m) with respect to higher sampling levels (120 and 200 m). There was a significant shift to lower median δD values at the lower levels. This confirms the limited role of soil uptake around Cabauw, and again points to microbial H2 production during an extended growing season, as well as to possible differences in average fossil fuel combustion source signature between the different footprint areas of the sampling levels. So, although knowledge of the background cycle of H2 has improved over the last decade, surprising

  12. A Study of Chemical Composition of δ Scuti-Type Stars Based on the Observations with the BTA and RTT-150

    NASA Astrophysics Data System (ADS)

    Galeev, A. I.; Berdnikova, V. M.; Ivanova, D. V.; Kudryavtsev, D. O.; Shimanskaya, N. N.; Shimansky, V. V.; Balashova, M. O.

    2017-06-01

    The results of a study of a sample of δ Scuti-type stars obtained from the observations with the BTA and RTT-150 are presented. Based on photometric data, we measured and analyzed the fundamental parameters of all the studied stars. For eight stars (for two of them for the first time), the fundamental parameters of the atmospheres (Teff, log g, [Fe/H]) and the chemical composition for 29 elements in the LTE-approximation are received using spectroscopic observations. The chemical composition analysis demonstrates both the solar abundances of chemical elements and the anomalies of chemical composition typical of Am stars in the studied sample of δ Scuti-type stars.

  13. The solar wind interaction with Mars: Consideration of Phobos 2 mission observation of an ion composition boundary on the dayside

    SciTech Connect

    Breus, T.K.; Dubinin, E.M.; Barabash, S.V. Mitnitskii, V.Ya.; Pissarenko, N.F. ); Krymskii, A.M. ); Lundin, R. ); Luhmann, J.G. ); Yeroshenko, Ye.G.

    1991-07-01

    This paper describes the features of the boundary in the plasma ion composition near Mars which separates the region dominated by the solar wind protons from the plasma of planetary origin. This boundary was detected by the ASPERA experiment on Phobos 2. It is argued that the features of this boundary seem to be similar to those of other composition boundaries detected elsewhere: the cometopause near comet Halley, and a boundary in the ion composition which appears near Venus during periods of high solar wind dynamic pressure. Numerical modeling of the solar wind interaction with Mars supports the idea that during solar maximum the interaction of the Martian neutral atmosphere with the solar wind can result in a composition transition from solar wind to planetary ions in the low-altitude magnetosheath. This transition occurs because of charge exchange of solar wind protons with the neutral atmosphere and photoionization.

  14. Beam-energy-dependent two-pion interferometry and the freeze-out eccentricity of pions measured in heavy ion collisions at the STAR detector

    SciTech Connect

    Adamczyk, L.

    2015-07-10

    In this study, we present results of analyses of two-pion interferometry in Au+Au collisions at √sNN = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR detector as part of the RHIC Beam Energy Scan program. The extracted correlation lengths (HBT radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass (mT) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes in the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.

  15. Beam-energy-dependent two-pion interferometry and the freeze-out eccentricity of pions measured in heavy ion collisions at the STAR detector

    DOE PAGES

    Adamczyk, L.

    2015-07-10

    In this study, we present results of analyses of two-pion interferometry in Au+Au collisions at √sNN = 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR detector as part of the RHIC Beam Energy Scan program. The extracted correlation lengths (HBT radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass (mT) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes in the equationmore » of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.« less

  16. Beam-energy-dependent two-pion interferometry and the freeze-out eccentricity of pions measured in heavy ion collisions at the STAR detector

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2015-07-01

    We present results of analyses of two-pion interferometry in Au +Au collisions at √{sNN}=7.7 , 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR detector as part of the BNL Relativistic Heavy Ion Collider Beam Energy Scan program. The extracted correlation lengths (Hanbury-Brown-Twiss radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass (mT) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive to changes in the equation of state. A new global fit method is studied as an alternate method to directly measure the parameters in the azimuthal analysis. The eccentricity shows a monotonic decrease with beam energy that is qualitatively consistent with the trend from all model predictions and quantitatively consistent with a hadronic transport model.

  17. Energy dependence of the spin excitation anisotropy in uniaxial-strained BaFe1.9Ni0.1As2

    DOE PAGES

    Song, Yu; Lu, Xingye; Abernathy, Douglas L.; ...

    2015-11-06

    In this study, we use inelastic neutron scattering to study the temperature and energy dependence of the spin excitation anisotropy in uniaxial-strained electron-doped iron pnictide BaFe1.9Ni0.1As2 near optimal superconductivity (Tc = 20K). Our work has been motivated by the observation of in-plane resistivity anisotropy in the paramagnetic tetragonal phase of electron-underdoped iron pnictides under uniaxial pressure, which has been attributed to a spin-driven Ising-nematic state or orbital ordering. Here we show that the spin excitation anisotropy, a signature of the spin-driven Ising-nematic phase, exists for energies below 60 meV in uniaxial-strained BaFe1.9Ni0.1As2. Since this energy scale is considerably larger thanmore » the energy splitting of the dxz and dyz bands of uniaxial-strained Ba(Fe1–xCox)2As2 near optimal superconductivity, spin Ising-nematic correlations are likely the driving force for the resistivity anisotropy and associated electronic nematic correlations.« less

  18. Cell aggregation of Pseudomonas aeruginosa strain PAO1 as an energy-dependent stress response during growth with sodium dodecyl sulfate.

    PubMed

    Klebensberger, Janosch; Rui, Oliver; Fritz, Eva; Schink, Bernhard; Philipp, Bodo

    2006-06-01

    Pseudomonas aeruginosa strain PAO1 grew with the detergent sodium dodecyl sulfate (SDS). The growth started with the formation of macroscopic cell aggregates which consisted of respiring cells embedded in an extracellular matrix composed of acidic polysaccharides and DNA. Damaged and uncultivable cells accumulated in these aggregates compared to those cells that remained suspended. We investigated the response of suspended cells to SDS under different conditions. At high energy supply, the cells responded with a decrease in optical density and in viable counts, release of protein and DNA, and formation of macroscopic aggregates. This response was not observed if the energy supply was reduced by inhibiting respiration with KCN, or if cells not induced for SDS degradation were exposed to SDS. Exposure to SDS caused cell lysis without aggregation if cells were completely deprived of energy, either by applying anoxic conditions, by addition of CCCP, or by addition of KCN to a mutant defective in cyanide-insensitive respiration. Aggregated cells showed a more than 100-fold higher survival rate after exposure to SDS plus CCCP than suspended cells. Our results demonstrate that cell aggregation is an energy-dependent response of P. aeruginosa to detergent stress which might serve as a survival strategy during growth with SDS.

  19. Energy dependence of Kπ, pπ and Kp fluctuations in Au+Au collisions from √sNN=7.7 to 200 GeV

    DOE PAGES

    Adamczyk, L.

    2015-08-07

    A search for the quantum chromodynamics (QCD) critical point was performed by the STAR experiment at the Relativistic Heavy Ion Collider, using dynamical fluctuations of unlike particle pairs. Heavy ion collisions were studied over a large range of collision energies with homogeneous acceptance and excellent particle identification, covering a significant range in the QCD phase diagram where a critical point may be located. Dynamical Kπ, pπ, and Kp fluctuations as measured by the STAR experiment in central 0–5% Au+Au collisions from center-of-mass collision energies √sNN=7.7 to 200 GeV are presented. The observable νdyn was used to quantify the magnitude ofmore » the dynamical fluctuations in event-by-event measurements of the Kπ, pπ, and Kp pairs. The energy dependences of these fluctuations from central 0–5% Au+Au collisions all demonstrate a smooth evolution with collision energy.« less

  20. Net electron-phonon scattering rates in InN/GaN multiple quantum wells: The effects of an energy dependent acoustic deformation potential

    SciTech Connect

    Xia, H. Patterson, R.; Feng, Y.; Shrestha, S.; Conibeer, G.

    2014-08-11

    The rates of charge carrier relaxation by phonon emission are of substantial importance in the field of hot carrier solar cell, primarily in investigation of mechanisms to slow down hot carrier cooling. In this work, energy and momentum resolved deformation potentials relevant to electron-phonon scattering are computed for wurtzite InN and GaN as well as an InN/GaN multiple quantum well (MQW) superlattice using ab-initio methods. These deformation potentials reveal important features such as discontinuities across the electronic bandgap of the materials and variations over tens of eV. The energy dependence of the deformation potential is found to be very similar for wurtzite nitrides despite differences between the In and Ga pseudopotentials and their corresponding electronic band structures. Charge carrier relaxation by this mechanism is expected to be minimal for electrons within a few eV of the conduction band edge. However, hole scattering at energies more accessible to excitation by solar radiation is possible between heavy and light hole states. Moderate reductions in overall scattering rates are observed in MQW relative to the bulk nitride materials.

  1. Initial observations on tree mortality following a severe drought in 2012 in two Indiana state forests and implications for long-term compositional dynamics

    Treesearch

    Andrew R. Meier; Mike R. Saunders

    2014-01-01

    Compositional and structural changes in response to silvicultural treatments in forest stands are well documented (e.g., Saunders and Wagner 2008), but the stochastic nature of natural disturbance events often precludes direct observation of their impacts on stand dynamics. Though the current dominance of oak-hickory forest types in the Central Hardwoods Forest region...

  2. Composition of inner-source heavy pickup ions at 1 AU: SOHO/CELIAS/CTOF observations. Implications for the production mechanisms

    NASA Astrophysics Data System (ADS)

    Taut, A.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F.

    2015-04-01

    Context. Pickup ions in the inner heliosphere mainly originate in two sources, one interstellar and one in the inner solar system. In contrast to the interstellar source that is comparatively well understood, the nature of the inner source has not been clearly identified. Former results obtained with the Solar Wind Ion Composition Spectrometer on-board the Ulysses spacecraft revealed that the composition of inner-source pickup ions is similar, but not equal, to the elemental solar-wind composition. These observations suffered from very low counting statistics of roughly one C+ count per day. Aims: Because the composition of inner-source pickup ions could lead to identifying their origin, we used data from the Charge-Time-Of-Flight sensor on-board the Solar and Heliospheric Observatory. It offers a large geometry factor that results in about 100 C+ counts per day combined with an excellent mass-per-charge resolution. These features enable a precise determination of the inner-source heavy pickup ion composition at 1 AU. To address the production mechanisms of inner-source pickup ions, we set up a toy model based on the production scenario involving the passage of solar-wind ions through thin dust grains to explain the observed deviations of the inner-source PUI and the elemental solar-wind composition. Methods: An in-flight calibration of the sensor allows identification of heavy pickup ions from pulse height analysis data by their mass-per-charge. A statistical analysis was performed to derive the inner-source heavy pickup ion relative abundances of N+, O+, Ne+, Mg+, Mg2+, and Si+ compared to C+. Results: Our results for the inner-source pickup ion composition are in good agreement with previous studies and confirm the deviations from the solar-wind composition. The large geometry factor of the Charge-Time-of-Flight sensor even allowed the abundance ratios of the two most prominent pickup ions, C+ and O+, to be investigated at varying solar-wind speeds. We found

  3. The discovery and modeling of energy dependent time-lags and fractional RMS of heartbeat state in GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Mir, Mubashir; Iqbal, Naseer; Pahari, Mayukh; Misra, Ranjeev

    2016-07-01

    We report the discovery and modeling of enigmatic Energy dependent time-lags and fractional RMS of the heartbeat state in GRS 1915+105. The time-lags reveal the crucial information related to geometry of accretion flow, the emission regions and the relation between various spectral parameters. The lag and frms at the fundamental frequency show non-monotonic behavior with energy. The lag increases up to typically ˜10 keV and later shows a reversal and in some observations becomes hard(negative). However, the lags at the harmonic increase with energy and don't show any turn around at least till ˜20 keV. The frms at harmonic has similar non-monotonic behavior as at fundamental, however the variability amplitude is lesser as expected. The lag seen here can have magnitude of the order of seconds, and thus can't be accounted by light travel time effects or comptonization delays. The continuum X-ray spectra can roughly be described by a disk blackbody and a hard X-ray power-law component and from phase resolved spectroscopy it has been shown that the inner disk radius varies during the oscillation We propose the model based on the delayed response of inner disc (DRIOD) radius to the outer accretion rate i;e r_{in}(t)∝ dot{m}^β (t-τ_d). The fluctuating accretion rate varies the inner disk after a certain time delay t_d which could be of the order of the viscous propagation delays. The model very well explains the observed shape and nature of lags and frms at fundamental and harmonic frequencies. We present here the series of observations that constrain the four free parameters of our model. These parameters contain the vital information related to the nature of accretion flow in a highly periodic state like a heartbeat state.

  4. Structure and composition of the Southern Mariana Forearc: new observations and samples from Shinkai 6500 dive studies in 2010

    NASA Astrophysics Data System (ADS)

    Ohara, Y.; Reagan, M. K.; Ishizuka, O.; Stern, R. J.

    2010-12-01

    The 3000-km long Izu-Bonin-Mariana (IBM) Arc system is an outstanding example of an intraoceanic convergent plate margin, and has become the particular focus of Japanese and US efforts to understand the operation of the “Subduction Factory”. In 2006 and 2008, twelve DSV Shinkai 6500 dives (973-977 and 1091-1097) were performed during YK06-12 and YK08-08 Leg 2 cruises along the landward slope of the southern Mariana Trench. The goal was to sample the remaining early arc crust associated with subduction initiation in the IBM system and upper mantle exposed in the forearc in order to gain a clearer understanding of the structure and evolution of Mariana forearc crust and upper mantle. The fruitful results include the recovery of the entire suite of rocks associated with what could be termed a “supra-subduction zone ophiolite” that formed during subduction initiation. An important discovery is that MORB-like tholeiitic basalts crop out over large areas. These “fore-arc basalts” (FAB) underlie boninites and overlie diabasic and gabbroic rocks. Potential origins include eruption at a spreading center before subduction began or eruption during near-trench spreading after subduction began (Reagan et al., 2010, G3). Another important discovery is a region of active forearc rifting at the southern end of the Mariana arc, named SE Mariana Forearc Rift (SEMFR). The SEMFR was firstly mapped with HMR-1 sonar (Martinez et al., 2000, JGR). Two dives at SEMFR recovered less-depleted backarc related peridotites (at Dive 973; Michibayashi et al., 2009, G3), and fresh basalts and basaltic andesites with petrographic characteristics like backarc basin lavas (at Dive 1096; see Ribeiro et al., AGU FM 2010). Although our previous studies have produced a number of important new observations about the geology of the southern Mariana forearc, our understanding of the region is still primitive. We will be conducting another cruise (YK10-12) during late September, 2010 to tackle

  5. Submicron aerosol and trace gas composition near Manaus as observed during GoAmazon2014/5

    NASA Astrophysics Data System (ADS)

    Ferreira De Brito, J.; Wurm, F.; Liu, Y.; de Sá, S. S.; Carbone, S.; Rizzo, L. V.; Cirino, G. G.; Barbosa, H. M.; Souza, R. A. F. D.; Martin, S. T.; Artaxo, P.

    2014-12-01

    The Amazon Basin, during the wet season, has one of the lowest aerosol concentrations worldwide, with air masses covering thousands of kilometers of pristine forest with negligible human impact. The atmosphere in such regions is strongly coupled with the biosphere through primary biological aerosols, biogenic salts and secondary aerosols from oxidation of biogenic VOCs. The natural environment is strongly modified nearby urbanized areas, in particular Manaus, a city of nearly two million people. The urban pollution plume has high concentrations of oxides of nitrogen and sulfur, carbon monoxide, particle concentrations, and soot, among other pollutants, strongly contrasting with the clean air masses reaching the city. Such unique location provides the ideal laboratory to study the isolated urban emission, as well the pristine environment by perturbing it in a relatively known fashion. The GoAmazon experiment was designed with these questions in mind, combining remote sensing, in situand airborne measurements. This manuscript describes the measurements currently taking place at the T2 site, near Manaus, frequently impacted by relatively fresh emissions from the city. This presentation focuses on aerosol properties and trace gas composition at the T2 site. PM1 mass concentration from March up to July 2014 has been observed to be dominated by organics (1.51 μg m-3), followed by BC (0.83 μg m-3), SO4 (0.17 μg m-3), NO3 (0.08 μg m-3) and NH4 (0.06 μg m-3). Mean aerosol number concentration was 3600 cm-3, with a mean geometric diameter of 70 nm. As for the trace gases, initial estimates of isoprene average ambient concentration is 0.95 ppb, whereas MVK+MACR has been estimated to be 0.76 ppb. Average mixing ratios of toluene, benzene and C8 aromatics were 0.31 ppb, 0.16 ppb and 0.15 ppb, respectively, correlating relatively well with markers of anthropogenic activities, such as BC. Such measurements will carry on throughout GoAmazon 2014/5, providing a unique dataset

  6. Elemental composition, isotopes, electrons and positrons in cosmic rays

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V. K.

    1979-01-01

    Papers presented at the 16th International Cosmic Ray Conference, Kyoto, Japan, dealing with the composition of cosmic rays are reviewed. Particular interest is given to data having bearing on nucleosynthesis sites, supernovae, gamma-process, comparison with solar system composition, multiplicity of sources, and the energy dependence of composition.

  7. Compositional trends of γ-induced optical changes observed in chalcogenide glasses of binary As-S system

    SciTech Connect

    Shpotyuk, M.; Shpotyuk, O.; Golovchak, Roman; McCloy, John S.; Riley, Brian J.

    2014-01-23

    Compositional trends of γ-induced optical changes in chalcogenide glasses are studied with the binary As-S system. Effects of γ-irradiation and annealing are compared using the changes measured in the fundamental optical absorption edge region. It is shown that annealing near the glass transition temperature leads to bleaching of As-S glasses, while γ-irradiation leads to darkening; both depend on the glass composition and thermal history of the specimens. These results are explained in terms of competitive destruction–polymerization transformations and physical aging occurring in As-S chalcogenide glasses under the influence of γ-irradiation.

  8. Solar Ion Processing of Major Element Surface Compositions of Mature Mare Soils: Insights from Combined XPS and Analytical TEM Observations

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Dukes, C.; Keller, L. P.; Baragiola, R.

    2012-01-01

    Solar wind ions are capable of altering the sur-face chemistry of the lunar regolith by a number of mechanisms including preferential sputtering, radiation-enhanced diffusion and sputter erosion of space weathered surfaces containing pre-existing compositional profiles. We have previously reported in-situ ion irradiation experiments supported by X-ray photoelectron spectroscopy (XPS) and analytical TEM that show how solar ions potentially drive Fe and Ti reduction at the monolayer scale as well as the 10-100 nm depth scale in lunar soils [1]. Here we report experimental data on the effect of ion irradiation on the major element surface composition in a mature mare soil.

  9. The energy dependence of the lateral dose response functions of detectors with various densities in photon-beam dosimetry

    NASA Astrophysics Data System (ADS)

    Khee Looe, Hui; Harder, Dietrich; Poppe, Björn

    2017-02-01

    The lateral dose response function is a general characteristic of the volume effect of a detector used for photon dosimetry in a water phantom. It serves as the convolution kernel transforming the true absorbed dose to water profile, which would be produced within the undisturbed water phantom, into the detector-measured signal profile. The shape of the lateral dose response function characterizes (i) the volume averaging attributable to the detector’s size and (ii) the disturbance of the secondary electron field associated with the deviation of the electron density of the detector material from the surrounding water. In previous work, the characteristic dependence of the shape of the lateral dose response function upon the electron density of the detector material was studied for 6 MV photons by Monte Carlo simulation of a wall-less voxel-sized detector (Looe et al 2015 Phys. Med. Biol. 60 6585-07). This study is here continued for 60Co gamma rays and 15 MV photons in comparison with 6 MV photons. It is found (1) that throughout these photon spectra the shapes of the lateral dose response functions are retaining their characteristic dependence on the detector’s electron density, and (2) that their energy-dependent changes are only moderate. This appears as a practical advantage because the lateral dose response function can then be treated as practically invariant across a clinical photon beam in spite of the known changes of the photon spectrum with increasing distance from the beam axis.

  10. Determination of the energy dependence of the BC-408 plastic scintillation detector in medium energy x-ray beams

    NASA Astrophysics Data System (ADS)

    Yücel, H.; Çubukçu, Ş.; Uyar, E.; Engin, Y.

    2014-11-01

    The energy dependence of the response of BC-408 plastic scintillator (PS), an approximately water-equivalent material, has been investigated by employing standardized x-ray beams. IEC RQA and ISO N series x-ray beam qualities, in the range of 40-100 kVp, were calibrated using a PTW-type ionization chamber. The energy response of a thick BC-408 PS detector was measured using the multichannel pulse height analysis method. The response of BC-408 PS increased gradually with increasing energy in the energy range of 40-80 kVp and then showed a flat behavior at about 80 to 120 kVp. This might be due to the self-attenuation of scintillation light by the scintillator itself and may also be partly due to the ionization quenching, leading to a reduction in the intensity of the light output from the scintillator. The results indicated that the sensitivity drop in BC-408 PS material at lower photon energies may be overcome by adding some high-Z elements to its polyvinyltoluene (PVT) base. The material modification may compensate for the drop in the response at lower photon energies. Thus plastic scintillation dosimetry is potentially suitable for applications in diagnostic radiology.

  11. Energy-dependent Orbital Modulation of X-rays and Constraints on Emission of the Jet in Cyg X-3

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Maitra, Chandreyee; Frankowski, Adam; Skinner, Gerald K.; Misra, Ranjeev

    2012-01-01

    We study orbital modulation of X-rays from Cyg X-3, using data from Swift, INTEGRAL and RXTE. Using the wealth of the presently available data and an improved averaging method, we obtain energy-dependent folded and averaged light curves with unprecedented accuracy. We find that above 5 keV, the modulation depth decreases with the increasing energy, which is consistent with the modulation being caused by both bound-free absorption and Compton scattering in the stellar wind of the donor, with minima corresponding to the highest optical depth, which occurs around the superior conjunction. We find a decrease of the depth below 3 keV, which appears to be due to re-emission of the absorbed continuum by the wind in soft X-ray lines. Based on the shape of the folded light curves, any X-ray contribution from the jet in Cyg X-3, which emits ?-rays detected at energies > 0.1 GeV in soft spectral states, is found to be minor up to 100 keV. This implies the presence of a rather sharp low-energy break in the jet MeV-range spectrum.We also calculate phase-resolved RXTE X-ray spectra, and show the difference between the spectra corresponding to phases around the superior and inferior conjunctions can indeed be accounted for by a combined effect of bound-free absorption in an ionized medium and Compton scattering.

  12. Energy Dependence of Moments of Net-Proton, Net-Kaon, and Net-Charge Multiplicity Distributions at STAR

    NASA Astrophysics Data System (ADS)

    Xu, Ji

    2016-08-01

    One of the main goals of the RHIC Beam Energy Scan (BES) program is to study the QCD phase structure, which includes the search for the QCD critical point, over a wide range of chemical potential (μB). Theoretical calculations predict that fluctuations of conserved quantities, such as baryon number (B), charge (Q), and strangeness (S), are sensitive to the correlation length of the dynamical system. Experimentally, higher moments of multiplicity distributions have been utilized to search for the QCD critical point in heavy-ion collisions. In this paper, we report recent efficiency-corrected cumulants and cumulants ratios of the net- proton, net-kaon, and net-charge multiplicity distributions in Au+Au collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200 GeV collected in the years 2010, 2011, and 2014 with STAR at RHIC. The centrality and energy dependence of the cumulants up to the fourth order, as well as their ratios, are presented. Furthermore, the comparisons with baseline calculations (Poisson) and non-critical-point models (UrQMD) will also be discussed.

  13. Temperature- and energy-dependent phase shifts of resonant multiple-beam X-ray diffraction in germanium crystals.

    PubMed

    Liao, Po-Yu; Liu, Wen-Chung; Cheng, Chih-Hao; Chiu, Yi-Hua; Kung, Ying-Yu; Chang, Shih-Lin

    2015-07-01

    This paper reports temperature- and energy-dependent phase shifts of resonant multiple-beam X-ray diffraction in germanium crystals, involving forbidden (002) and weak (222) reflections. Phase determination based on multiple-beam diffraction is employed to estimate phase shifts from (002)-based {(002)(375)(373̅)} four-beam cases and (222)-based { (222)(5̅33̅)} three-beam cases in the vicinity of the Ge K edge for temperatures from 20 K up to 300 K. The forbidden/weak reflections enhance the sensitivity of measuring phases at resonance. At room temperature, the resonance triplet phases reach a maximum of 8° for the four-beam cases and -19° for the three-beam cases. It is found that the peak intensities and triplet phases obtained from the (002) four-beam diffraction are related to thermal motion induced anisotropy and anomalous dispersion, while the (222) three-beam diffraction depends on the aspherical covalent electron distribution and anomalous dispersion. However, the electron-phonon interaction usually affects the forbidden reflections with increasing temperatures and seems to have less effect on the resonance triplet phase shifts measured from the (002) four-beam diffraction. The resonance triplet phase shifts of the (222) three-beam diffraction versus temperature are also small.

  14. Ethylene Regulates Energy-Dependent Non-Photochemical Quenching in Arabidopsis through Repression of the Xanthophyll Cycle.

    PubMed

    Chen, Zhong; Gallie, Daniel R

    2015-01-01

    Energy-dependent (qE) non-photochemical quenching (NPQ) thermally dissipates excess absorbed light energy as a protective mechanism to prevent the over reduction of photosystem II and the generation of reactive oxygen species (ROS). The xanthophyll cycle, induced when the level of absorbed light energy exceeds the capacity of photochemistry, contributes to qE. In this work, we show that ethylene regulates the xanthophyll cycle in Arabidopsis. Analysis of eto1-1, exhibiting increased ethylene production, and ctr1-3, exhibiting constitutive ethylene response, revealed defects in NPQ resulting from impaired de-epoxidation of violaxanthin by violaxanthin de-epoxidase (VDE) encoded by NPQ1. Elevated ethylene signaling reduced the level of active VDE through decreased NPQ1 promoter activity and impaired VDE activation resulting from a lower transthylakoid membrane pH gradient. Increasing the concentration of CO2 partially corrected the ethylene-mediated defects in NPQ and photosynthesis, indicating that changes in ethylene signaling affect stromal CO2 solubility. Increasing VDE expression in eto1-1 and ctr1-3 restored light-activated de-epoxidation and qE, reduced superoxide production and reduced photoinhibition. Restoring VDE activity significantly reversed the small growth phenotype of eto1-1 and ctr1-3 without altering ethylene production or ethylene responses. Our results demonstrate that ethylene increases ROS production and photosensitivity in response to high light and the associated reduced plant stature is partially reversed by increasing VDE activity.

  15. Ethylene Regulates Energy-Dependent Non-Photochemical Quenching in Arabidopsis through Repression of the Xanthophyll Cycle

    PubMed Central

    Chen, Zhong; Gallie, Daniel R.

    2015-01-01

    Energy-dependent (qE) non-photochemical quenching (NPQ) thermally dissipates excess absorbed light energy as a protective mechanism to prevent the over reduction of photosystem II and the generation of reactive oxygen species (ROS). The xanthophyll cycle, induced when the level of absorbed light energy exceeds the capacity of photochemistry, contributes to qE. In this work, we show that ethylene regulates the xanthophyll cycle in Arabidopsis. Analysis of eto1-1, exhibiting increased ethylene production, and ctr1-3, exhibiting constitutive ethylene response, revealed defects in NPQ resulting from impaired de-epoxidation of violaxanthin by violaxanthin de-epoxidase (VDE) encoded by NPQ1. Elevated ethylene signaling reduced the level of active VDE through decreased NPQ1 promoter activity and impaired VDE activation resulting from a lower transthylakoid membrane pH gradient. Increasing the concentration of CO2 partially corrected the ethylene-mediated defects in NPQ and photosynthesis, indicating that changes in ethylene signaling affect stromal CO2 solubility. Increasing VDE expression in eto1-1 and ctr1-3 restored light-activated de-epoxidation and qE, reduced superoxide production and reduced photoinhibition. Restoring VDE activity significantly reversed the small growth phenotype of eto1-1 and ctr1-3 without altering ethylene production or ethylene responses. Our results demonstrate that ethylene increases ROS production and photosensitivity in response to high light and the associated reduced plant stature is partially reversed by increasing VDE activity. PMID:26630486

  16. Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions

    DOE PAGES

    Reeves, Geoffrey D.; Friedel, Reiner H. W.; Larsen, Brian A.; ...

    2016-01-28

    Here, we present observations of the radiation belts from the Helium Oxygen Proton Electron and Magnetic Electron Ion Spectrometer particle detectors on the Van Allen Probes satellites that illustrate the energy dependence and L shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on 1 March in more detail. The observations show the following: (a) at all L shells, lower energy electrons are enhanced more often than higher energies; (b) events that fill the slot region are more common at lower energies; (c) enhancements of electrons in the inner zone are moremore » common at lower energies; and (d) even when events do not fully fill the slot region, enhancements at lower energies tend to extend to lower L shells than higher energies. During enhancement events the outer zone extends to lower L shells at lower energies while being confined to higher L shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L shells for lower energies. Both boundaries are nearly straight in log(energy) versus L shell space. At energies below a few 100 keV, radiation belt electron penetration through the slot region into the inner zone is commonplace, but the number and frequency of “slot filling” events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy- and L shell-dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions.« less

  17. Forward-backward correlation and its incident energy dependence in secondary-electron emission from a thin carbon foil upon proton penetration

    SciTech Connect

    Ogawa, H.; Ishii, K.; Shimada, A.; Kiuchi, M.; Hagihara, M.; Inoue, Y.; Kaneko, T.

    2010-07-15

    The statistical distributions of the number of simultaneously emitted secondary electrons (SEs) from a carbon foil have been measured with proton beams of 0.5-3.5 MeV. In this experiment, the forward- and backward-emitted SEs have been measured simultaneously with foil-transmitted protons using a digitizer. As a method to examine how the forward and backward SE emissions correlate to each other, the forward (backward) SE yields {gamma}{sub F} ({gamma}{sub B}), that is, the mean number of the forward-emitted (backward-emitted) electrons per projectile, have been evaluated as a function of the number of the backward-emitted (forward-emitted) SEs, n{sub B} (n{sub F}). At higher incident energies, {gamma}{sub F} ({gamma}{sub B}) increases with increasing n{sub B} (n{sub F}). With decreasing incident energy, this so-called positive correlation becomes weaker and then changes to negative at the lowest incident energy. Although measurements using a slightly thicker foil exhibit just the same trend, the correlation changes from positive to negative at the higher incident energy. For a given foil thickness, the range of the produced binary electron and hence the incident proton energy seems to determine the sign of the correlation. A simple Monte Carlo simulation for the forward and backward SE emission in the present experimental condition can qualitatively reproduce the observed incident-energy dependence of the positive correlation but cannot reproduce the negative one observed at the lower incident energies.

  18. Experimental determination of the photon-energy dependent dose-to-water response of TLD600 and TLD700 (LiF:Mg,Ti) thermoluminescence detectors.

    PubMed

    Schwahofer, Andrea; Feist, Harald; Georg, Holger; Häring, Peter; Schlegel, Wolfgang

    2017-03-01

    The aim of this study has been the experimental determination of the energy dependent dose-to-water response of TLD600 and TLD700 thermoluminescent detectors (Harshaw) in X-ray beams with mean photon energies from about 20 to 200keV in comparison with (60)Co gamma rays and 6MV X-rays. Experiments were carried out in collaboration with the German secondary standard laboratory PTW Freiburg. The energy dependent relative responses of TLD600 and TLD700 thermoluminescence detectors were determined at radiation qualities between 30kVp and 280kVp. The overall uncertainty of the measured values was characterized by standard deviations varying from 1.2 to 3%. The present results agree with previous studies on the energy dependent dose-to-water response of TLD100. As an application example, the results were used to measure doses associated with X-ray imaging in image-guided radiotherapy.

  19. Photon energy dependence of photo-induced inverse spin-Hall effect in Pt/GaAs and Pt/Ge

    SciTech Connect

    Isella, Giovanni Bottegoni, Federico; Ferrari, Alberto; Finazzi, Marco; Ciccacci, Franco

    2015-06-08

    We report the photon energy dependence of photo-induced inverse spin Hall effect (ISHE) in Pt/GaAs and Pt/Ge Schottky junctions. The experimental results are compared with a spin drift-diffusion model, which highlights the role played by the different spin lifetime in the two semiconductors, in determining the energy dependence of the ISHE signal detected in the Pt layer. The good qualitative agreement between experiments and modelling indicates that photo-induced ISHE can be used as a tool to characterize spin lifetime in semiconductors.

  20. Observations of Magnetospherically Reflected (MR) Whistler Mode (WM) Echoes Observed by Radio Plasma Imager (RPI) on the IMAGE Satellite: Diagnostics of Electron Density and Ion Composition

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Proddaturi, R. V.; Reddy, A.; Carpenter, D. L.; Reinisch, B.

    2006-12-01

    We report first observations of Magnetospherically Reflected (MR) Whistler Mode (WM) echoes, hereafter called MR echoes, by Radio Plasma Imager (RPI) on the IMAGE satellite. MR echoes were observed in 2004 and 2005 when RPI transmitted 3.2-ms pulses in 6-63 kHz band. These echoes occurred at frequencies <12 kHz with time delays ranging from ~40 ms to 160 ms. They often showed a minimum in time delay in the 6-12 kHz frequency range, a feature commonly seen for lightning-generated MR whistlers observed on satellites. MR echoes were typically observed inside the plasmasphere at altitude ranging from ~700 to ~4000 km, L-shell from ~1.5 to ~3.5, and geomagnetic latitude λ_m from -30° to 50°, and MLT from 3 to 17. These echoes were observed during geomagnetically quiet conditions with the maximum K_p index during the preceding 24 hours varying between 1 and 4. In one case, the MR echo was observed in the polar region at an altitude ~2600km and λ_m ~ 82° during geomagnetically disturbed conditions (K_p ~5-6 during the preceding 12 hours). In general, at higher altitudes (>3000-3500 km) these echoes were either discrete, with time delay spread ~3-6ms at each frequency or exhibited multi path propagation with a time delay spread <20ms at each frequency. At lower altitudes (<3000 km) these echoes appeared diffuse with time delay spread >40-100 ms at each frequency. All MR echoes were accompanied by Proton Gyro Harmonic (PGH) echoes and were frequently accompanied by discrete WM echoes resulting from the reflections at the bottom of the ionosphere. Ray tracing simulations show that MR echoes result from the reflection of WM waves at the altitude where f_ {lh} ≍ f , where f_ {lh} is the lower hybrid frequency at the reflection altitude. In this interpretation, the MR echo frequency is limited to the range flh,local ≤ f < flh,max, where flh,local and flh,max are, respectively, the lower hybrid frequency at the satellite and the maximum lower hybrid frequency along the

  1. In-situ heating TEM observation of microscopic structural changes of size-controlled metallic copper/gelatin composite.

    PubMed

    Narushima, Takashi; Hyono, Atsushi; Nishida, Naoki; Yonezawa, Tetsu

    2012-10-01

    Copper/gelatin composite particles with controlled sizes were prepared at room temperature from cupric sulfate pentahydrate in the presence of gelatin as a protective reagent by using hydrazine monohydrate as a reducing agent. The formed particles with the size between 190-940 nm were secondary aggregated particles which were composed of smaller nanosized particles ("particle-in-particle"), the presence of which was established by XRD patterns and a cross-sectional TEM image. The sintering behavior of these copper/gelatin composite particles was demonstrated by in-situ heating TEM under a high vacuum (approximately 10(-5) Pa) and separately with the oxygen partial pressure controlled at the 10(-4) Pa level. It was established that the particles began to sinter at about 330 degrees C with the oxygen and that they sublimate above 450 degrees C both in the vacuum and oxygen conditions. This result shows that the introduction of an adequate amount of oxygen was effective to remove the gelatin surrounding the particles. It can also be concluded that the sintering of the copper/gelatin composite particles occurred even in the absence of a reducing agent such as hydrogen gas.

  2. Competitive inhibition of an energy-dependent nickel transport system by divalent cations in Bradyrhizobium japonicum JH

    SciTech Connect

    Changlin Fu; Maier, R.J. )

    1991-12-01

    Both nickel-specific transport and nickel transport by a magnesium transporter have been described previously for a variety of nickel-utilizing bacteria. The derepression of hydrogenase activity in Bradyrhizobium japonicum JH and in a gene-directed mutant of strain JH (in an intracellular Ni metabolism locus), strain JHK7, was inhibited by MgSO{sub 4}. For both strains, Ni{sup 2+} uptake was also markedly inhibited by Mg{sup 2+}, and the Mg{sup 2+}-mediated inhibition could be overcome by high levels of Ni{sup 2+} provided in the assay buffer. The results indicate that both B. japonicum strains transport Ni{sup 2+} via a high-affinity magnesium transport system. Dixon plots (1/V versus inhibitor) showed that the divalent cations Co{sup 2+}, Mn{sup 2+}, and Zn{sup 2+}, like Mg{sup 2+}, were competitive inhibitors of Ni{sup 2+} uptake, The K{sub i}s for nickel uptake inhibition by Mg{sup 2+}, Co{sup 2+}, Mn{sup 2+}, and Zn{sup 2+} were 48, 22, 12, and 8 {mu}M, respectively. Cu{sup 2+} strongly inhibited Ni{sup 2+} uptake, and molybdate inhibited it slightly. Respiratory inhibitors cyanide and azide, the uncoupler carbonyl cyanide m-chlorophenylhydrazone, the ATPase inhibitor N, N{prime}-dicyclohexylcarbodiimide, and ionospheres nigericin and valinomycin significantly inhibited short-term (5 min) Ni{sup 2+} uptake, showing that Ni{sup 2+} uptake in strain JH is energy dependent. Most of these conclusions are quite different from those reported previously for a different B. japonicum strain belonging to a different serogroup.

  3. 3D position of radiation sources using an automated gamma camera and ML algorithm with energy-dependent response functions

    NASA Astrophysics Data System (ADS)

    Lee, Wonho; Wehe, David

    2004-09-01

    Portable γ-ray imaging systems operating from 100keV to 3MeV are used in nuclear medicine, astrophysics and industrial applications. 2D images of γ-rays are common in many fields using radiation-detection systems (Appl. Opt. 17 (3) (1978) 337; IEEE Trans. Nucl. Sci. Ns- 31 (1984) 771; IEEE Trans. Nucl. Sci. NS- 44 (3) (1997) 911). In this work, the 3D position of a radiation source is determined by a portable gamma-ray imaging system. 2D gamma-ray images were obtained from different positions of the gamma camera and the third dimension, the distance between the detector and the radiation source, was calculated using triangulation. The imaging system consists of a 4×4 array of CsI(Tl) detectors coupled to photodiode detectors that are mounted on an automated table which can precisely position the angular axis of the camera. Lead shields the detector array from the background radiation. Additionally, a CCD camera is attached to the top of the gamma camera and provides coincident 2D visual information. The inferred distances from the center of the two measurement points and a radiation source had less than a 3% error within a range of 3m. The radiation image from the gamma camera and the visual image from CCD camera are superimposed into one combined image using a maximum-likelihood (ML) algorithm to make the image more precise. The response functions for the ML algorithm depend on the energy of incident radiation, and are obtained from both experiments and simulations. The energy-dependent response functions are shown to yield better imaging performance compared with the fixed energy response function commonly used previously.

  4. Protective effect of vitamin E on cypermethrin-induced follicular atresia in rat ovary: Evidence for energy dependent mechanism

    PubMed Central

    Molavi, Morteza; Razi, Mazdak; Cheraghi, Hadi; Khorramjouy, Mona; Ostadi, Araz; Gholirad, Safa

    2016-01-01

    It has been shown that chronic exposure to cypermethrin (CPM), a pyrethroid pesticide, results in follicular atresia via pathologically affecting angiogenesis, disrupting endocrine potential and enhancing oxidative stress. This study was aimed to uncover the CPM-exposed energy dependent follicular cells apoptosis and to estimate protective effect of vitamin E (VitE) as a potent antioxidant. Thirty six Wistar rats were divided into six groups (n = 6 rats for each group) including; control-sham, CPM-received (CPM, 75 mg kg-1, intraperitoneally), and CPM and VitE-treated (VitE, 150 mg kg-1, orally) for 14 and 24 days. The protein biosynthesis of glucose transporter-1 (GLUT-1) and caspase-3 in follicles were estimated by using immuno-histochemical staining at preantral and antral stages. Moreover, the periodic acid Schiff (PAS) staining was performed in order to evaluate the intracytoplasmic carbohydrate ratio in follicular cells and oocyte. Percentages of follicles with GLUT-1, Caspase-3 and PAS-positive cells were compared between groups. Immunohistochemical analyses showed that, VitE significantly up-regulated the GLUT-1 expression and improved the intracytoplasmic carbohydrate supplementation especially at preantral follicles. The cross sections from the CPM-exposed ovaries represented remarkable elevation in percentage of atretic preantral and antral follicles with caspase-3 biosynthesis, which was remarkably (p < 0.05) diminished in VitE co-treated groups. In conclusion, our data showed that VitE by up-regulating of the GLUT-1 biosynthesis improved glucose uptake at follicular cells and oocyte levels that in turn inhibited pro-apoptotic protein caspase-3 biosynthesis. PMID:27482357

  5. Effects of intrinsic degrees of freedom in enhancement of sub-barrier fusion excitation function data and energy-dependent one-dimensional barrier penetration model

    NASA Astrophysics Data System (ADS)

    Gautam, M. S.

    2016-03-01

    We have analyzed the role of barrier modification effects (barrier height, barrier position, barrier curvature) introduced due to the energy-dependent Woods-Saxon potential model (EDWSP model) and the coupled channel model on the sub-barrier fusion dynamics of {}_{16}^{32,36} {{S}} + {}_{40}^{90,96} {{Zr}} reactions. The influence of inelastic surface excitations of colliding pairs and multi-neutron transfer channels is found to be a dominant mode of couplings. The coupling of relative motion of colliding nuclei to these dominant intrinsic degrees of freedom leads to a substantially large fusion enhancement at below-barrier energies over the expectations of one-dimensional barrier penetration model. The coupled channel calculations based upon static Woods-Saxon potential must include the internal nuclear structure degrees of freedom of colliding nuclei for complete description of experimental data. On the other hand, theoretical calculations based upon the EDWSP model along with Wong formula provide a complete description of sub-barrier fusion enhancement of various heavy-ion fusion reactions. In EDWSP model calculations, significantly larger values of diffuseness parameter ranging from a = 0.98 fm to a = 0.85 fm are required to address the observed sub-barrier fusion enhancement of {}_{16}^{32,36} {{S}} + {}_{40}^{90,96} {{Zr}} reactions. Furthermore, within the context of EDWSP model, it is possible to achieve an agreement with the experimental fusion cross-sectional data within 10 %. For four heavy-ion fusion reactions, only at 4 fusion data points out of 90 fusion data points deviates exceeding 5 %, while 86 fusion data points lie within 5 % and hence the EDWSP model is able to account the above-barrier portion of the fusion cross-sectional data within 5 % with a probability greater than 90 %.

  6. A Comprehensive Analysis of Fermi Gamma-Ray Burst Data. III. Energy-dependent T 90 Distributions of GBM GRBs and Instrumental Selection Effect on Duration Classification

    NASA Astrophysics Data System (ADS)

    Qin, Ying; Liang, En-Wei; Liang, Yun-Feng; Yi, Shuang-Xi; Lin, Lin; Zhang, Bin-Bin; Zhang, Jin; Lü, Hou-Jun; Lu, Rui-Jing; Lü, Lian-Zhong; Zhang, Bing

    2013-01-01

    The durations (T 90) of 315 gamma-ray bursts (GRBs) detected with Fermi/GBM (8-1000 keV) up to 2011 September are calculated using the Bayesian Block method. We compare the T 90 distributions between this sample and those derived from previous/current GRB missions. We show that the T 90 distribution of this GRB sample is bimodal, with a statistical significance level comparable to those derived from the BeppoSAX/GRBM sample and the Swift/BAT sample, but lower than that derived from the CGRO/BATSE sample. The short-to-long GRB number ratio is also much lower than that derived from the BATSE sample, i.e., 1:6.5 versus 1:3. We measure T 90 in several bands, i.e., 8-15, 15-25, 25-50, 50-100, 100-350, and 350-1000 keV, to investigate the energy-dependence effect of the bimodal T 90 distribution. It is found that the bimodal feature is well observed in the 50-100 and 100-350 keV bands, but is only marginally acceptable in the 25-50 keV and 350-1000 keV bands. The hypothesis of bimodality is confidently rejected in the 8-15 and 15-25 keV bands. The T 90 distributions in these bands are roughly consistent with those observed by missions with similar energy bands. The parameter T 90 as a function of energy follows {\\bar{T}}_{90}\\propto E^{-0.20+/- 0.02} for long GRBs. Considering the erratic X-ray and optical flares, the duration of a burst would be even longer for most GRBs. Our results, together with the observed extended emission of some short GRBs, indicate that the central engine activity timescale would be much longer than T 90 for both long and short GRBs and the observed bimodal T 90 distribution may be due to an instrumental selection effect.

  7. A COMPREHENSIVE ANALYSIS OF FERMI GAMMA-RAY BURST DATA. III. ENERGY-DEPENDENT T {sub 90} DISTRIBUTIONS OF GBM GRBs AND INSTRUMENTAL SELECTION EFFECT ON DURATION CLASSIFICATION

    SciTech Connect

    Qin, Ying; Liang, En-Wei; Liang, Yun-Feng; Lu, Rui-Jing; Lue, Lian-Zhong; Yi, Shuang-Xi; Lin, Lin; Zhang, Bin-Bin; Zhang, Jin; Lue, Hou-Jun; Zhang, Bing E-mail: zhang@physics.unlv.edu

    2013-01-20

    The durations (T {sub 90}) of 315 gamma-ray bursts (GRBs) detected with Fermi/GBM (8-1000 keV) up to 2011 September are calculated using the Bayesian Block method. We compare the T {sub 90} distributions between this sample and those derived from previous/current GRB missions. We show that the T {sub 90} distribution of this GRB sample is bimodal, with a statistical significance level comparable to those derived from the BeppoSAX/GRBM sample and the Swift/BAT sample, but lower than that derived from the CGRO/BATSE sample. The short-to-long GRB number ratio is also much lower than that derived from the BATSE sample, i.e., 1:6.5 versus 1:3. We measure T {sub 90} in several bands, i.e., 8-15, 15-25, 25-50, 50-100, 100-350, and 350-1000 keV, to investigate the energy-dependence effect of the bimodal T {sub 90} distribution. It is found that the bimodal feature is well observed in the 50-100 and 100-350 keV bands, but is only marginally acceptable in the 25-50 keV and 350-1000 keV bands. The hypothesis of bimodality is confidently rejected in the 8-15 and 15-25 keV bands. The T {sub 90} distributions in these bands are roughly consistent with those observed by missions with similar energy bands. The parameter T {sub 90} as a function of energy follows T-bar {sub 90}{proportional_to}E{sup -0.20{+-}0.02} for long GRBs. Considering the erratic X-ray and optical flares, the duration of a burst would be even longer for most GRBs. Our results, together with the observed extended emission of some short GRBs, indicate that the central engine activity timescale would be much longer than T {sub 90} for both long and short GRBs and the observed bimodal T {sub 90} distribution may be due to an instrumental selection effect.

  8. Interstellar neutral flow characteristics, composition, and interaction with the heliosphere - neutral gas and pickup ion analysis from ongoing observations and perspectives for IMAP

    NASA Astrophysics Data System (ADS)

    Moebius, E.; Bzowski, M.; Drews, C.; Frisch, P. C.; Fuselier, S. A.; Galli, A.; Gloeckler, G.; Kubiak, M. A.; Kucharek, H.; Lee, M. A.; Leonard, T.; McComas, D. J.; Park, J.; Schwadron, N.; Swaczyna, P.; Sokol, J. M.; Wood, B. E.; Wurz, P.

    2015-12-01

    The Sun's motion relative to the surrounding interstellar medium lea